Hay4nom Behy

Hucruryra 3a pusuky y beorpany

IIpeamer: MoJi0a 3a n300p y 3Bame HCTPAKUBAY CAPAHUK
MOJIBA

Monum HayuHo Behe MHcTuTyTa 32 husuky y beorpany na mokpeHe mocrymnak 3a
Moj u300p y 3Bame UcTpakuBau capagHuk, uMajyhu y BUIY J1a UCITyHaBaM CBE
KpUTEpUjyMe TMpOMUcaHe oJ cTpaHe MuHuUCTapcTBA NPOCBETE, HayKe U
TEXHOJIOMIKOT pa3Boja Pemybnuke CpoOuje 3a cTUIamkhe HAaBEJCHOT 3Bamba.

VY nmpuiiory gocTaBsbam:
1. Munubeme pyKoBOIHUOIA Ca TIPEIJIOTOM KOMUCH]E 32 U300p Y 3Bambe;
2. buorpadwujy u niperiieq HaydYHe aKTUBHOCTH;

3. Cnucak u xonuje 00jaBJb€HUX HAYYHUX PajioOBa;
4. ®oToKONHjy TUTIIOMA Ca OCHOBHUX U MAacCTEP CTY/IH]a;
5. IloTBpAy O ymucaHuUM JOKTOPCKHUM CTYIU]jaMa;
6. Omyky 0 mpUxBaTamky TEME JOKTOPCKE TUCEpTaIlHje.

C nourroBameM

V Beorpay, 04.05.2022. MM k analril

Mapuja MBanoBuh

Hayuynowm Behy
HucruryTa 32 pusuky y beorpany

Ipeamer: Munubeme pykoBoauona 3a uzoop Mapuje UBanosuh y 3Bame
HCTPAXKUBAY CAPATHUK

Mapuja VBanoBuh je 3aBpuiMiia OCHOBHE W MacTep CTyauje Ha MaTeMaThuuKoM
dakynrery VYHuBep3utera y beorpany — cmep Hymepuuxa mamemamuka u
onmumuzayuja. Ha 1OKTOpckUM cTyaujaMma Ha MareMatuykoM (akynaTeTy
VYuusep3urera y beorpany, monoxwuia je cBe uCuTe npeasuleHe miaHoM U MporpaMom
U Tpefaa JOKTOpCcKy Te3y. Tema WeHe JOKTOPCKE OucepTallje NPEelCTaBHhEHA je U
npuxBahena ox crpane HayuHo-nactaBHor Beha Marematuukor dakynrera
YHusep3urera y beorpany.

On neuem6Opa 2021. ronune 3amnocnena je y Uncturyty 3a ¢usuky y beorpany, rue je
n3adpaHa y 3Bamb€ UCTPAKMBAY MPUIIPABHUK. TPEHYTHO je aHTa)KOBaHAa Ha pa3BHUjamby
U ycaBplllaBamy IMPOTPaMCKUX IMaKeTa KOjU ce KOPHCTE y MOJIEJIOBakby Mpolieca Koju
ce OJBMjajJy Yy TKHBY TOKOM MHUKpOTajacHe aliamuje, ITO je BeoMa 3HaudajHO 3a
MeIUIMHCKe mpumeHe. Mapuja ViBanoBuh je Owuna Ko-ayTop Ha BHIIE pajoBa
nyOJIMKOBaHUX y Mel)yHapoaHMM yaconucrMa U yuyecTBOBaja je Ha BUIE MelyHapoJHUX
KoH(pepeHIyja.

C o63upom na Mapuja MBanoBuh wucnymwasa cBe ycnoBe npensuhene IlpaBuinHukom o
MOCTYNIKY U Ha4YMHy BpEIHOBamba u KBAaHTUTATUBHOM UCKa3UBamby
HAayYHOUCTPAXXMBAUKUX pe3yiTara HUCTpaKMBaya, carjacHa caM ca IOKpeTambeM
MOCTYTIKA 32 HEeH U300p Yy 3Bambe UCTPAKUBAY CAPATHHUK.

3a unmaHoBe kommucHje, 3a u3bop Mapuje MBanoBuh y 3Bame UCTpakuBau capagHUK,
npeaxem cieaehu cacras:

1. ap Mapuja Panmunosuh-Pahenosuh, Hayunu caBetHuk, UHcTUTYT 32 Qusuky beorpan
2. np bpanucnas PalhenoBuh, HayuHu caBeTHUK y neH3uju, MHctutyT 3a ¢pusuky beorpan
3. mpod. nap. Munan [paxwuh, pegoBHu mpodecop, Marematuuku GaKyITeT
YHuBep3urera y beorpany

4. npod. np. Anekcanmap Casuh, BaHpeanu mnpodecop, Marematnuku Qaxynrer
YHusepsurera y beorpany

C nomrroBameM

N

.-*{_ S /SN Y/ R P I ,
J L LL}(\, KO koL C - ‘cﬂl'qwt-(

o \

VY Beorpany, 04.05.2022. np Mapuja Pagmunosuh-Pahenosuh
HAyYHH CaBETHHUK

Bbuorpagmuja

Mapuja HMBanoBuh je 3aBpummiia OCHOBHY Ikoiy ,Joan ILlBujuh® vy
Koctony, nok je I'mmnasujy ,,JoBan Illep6anoBuh‘ 3aBpimuna y Iloxaperiy. Ha
cmepy Hymepuuka mamemamuxa u onmumuszayuja, Ha MateMaTuakoMm (akynTeTy,
murmomupana je 2007. ronure. Ha ucrom cmepy je, centemOpa 2011. IN'onune,
oJ0paHuIa MacTep TeMy IO/ Ha3UBOM ,, [eopHja urapa — Urpe cycperama U Urpe
HaTaXema'™“ U TUME CTeKIa 3Bamke Mactep-mMatemaTuuap. TpeHyTHO je CTYACHT
JOKTOPCKUX CTyavja Ha MarematnukoM ¢akyiaTety YHHBep3uTeTa y beorpamy
(nonoxxenux 154 ECIIba).

Ha Marematnukom ¢akynrety je ox 2008.-2021. rogune Apkana HacTaBy
Ha BHWINE PAJTMUUTUX TMpeAMEeTa KOJU C€ THYy HYMEpUUYKe MaTeMaThke |
ONTHMH3AllMj€ HAa OCHOBHMM M MacTep cryaujama (YBoa y HYMEPHUKY
marematuky, Hymepuuka wmatematuka Ila u II6, OcHoBM MaTeMaTHYKOT
MoJenupama, MeTo/le KOHAauHMX ejemeHara, JludepeHuujaiHe jeIHAYUHE,
Henuneapno nporpamupame, OnepanuoHa UCTpakuBama, Teopuja urapa). On
2009.-2021. roguHe Owuia je y4eCHHK Ha TMPOjeKTy MHHHCTapCTBa IMPOCBETE U
TEXHOJIOMIKOT pa3Boja nox Opojem TP36006. YuecTBoBana je Ha Temmyc npojekTy
SEE Doctoral Studies in Mathematical Sciences 44703 - TEMPUS-1 -2008- 1 u na
European Study Group with Industry ESGI 99 y opranumsanuju I[IpupomHo-
Marematuukor Qakynrera YHuBep3utera y HoBom Canmy. Ox neunemOpa 2021.
roauHe 3amnociieHa je y MHctutyty 3a ¢usuky y beorpany, rae je uzaOpaHa y
3BaFb-€ UCTPAKHUBAY MTPUTIPABHUK.

HayuyHa akTMBHOCT

Tokom paga Ha Martematuukom dakynrety YHuBep3uteta y beorpany,
HayyHa akTUBHOCT Mapuje lBanoBuh O6uina je ycmepeHa Ha pa3BOj MaTeMaTHUKHX
MoJiella U XEYPUCTHKA 332 HUXOBO pelIaBamke. Y OKBUPY JOKTOPCKHUX CTyIH]ja,
pa3BWIIa je IPBU MaTeMaTUYKU MOJIEN 3a jeIHy MoJauduKanujy npodiemMa puMcKe
JOMHHAIIMjE, TIOK je caMm MpoOJieM pUMCKE AOMMHAIIM]e ONTUMHU30BaJla pa3BojeM
JBa HOBa MaTeMatnuka mojiena. [lopen npobiema puMcKe JOMHUHAIM]E, YOUua je
HETPaBUITHOCTH KOj€ Cy TI0CTOjajie KO MOJeNia KOJU C€ OJTHOCHO Ha clIady puMCKY
JIOMHUHAIIM]E, TIa jé UCTy KOpWUroBaja M YHalpeawia yBohemeM HOBOT MOJEIA.

Nmajyhu y Buy 1a ce TOMEHYTH TpoOJieMu MpUMERY]y Ha TpaduiumMa BEIUKHX
IUMeH3Hja, YnHehn WHUXOBO €r3akTHO pelraBamke roToBo Hemoryhe, Mapuja
NBanoBuh je pas3Buia jemaH Mojiesl KOJUM ce MpoOJIeM pPHUMCKE JTOMHHAIIU]jE
peliaBa er3akTHO 3a JeJIHY ClelHjaiHy BpCcTy rpadoBa. Ocum Tora, pa3Buia je u
JIBE XEYpPUCTUUYKE METOJIe KOjuMa ce MpoOJieM pUMCKE JOMHHAIMje U MpobdiieM
cinabe pUMCKe JOMMHAIM]€ MOTY PEIIMTH IPUOIMKHO 3a OmiIo Koje rpadose.
ExcriepuMeHTamHu pe3yaTaTd MoKa3ajid Cy MPEeIHOCT Pa3BUJEHUX XEYPUCTUUKUX
METO/a Y OJHOCY Ha KomepumjaiHe copTBepe Ha rpadoBuma Behux numensuja.
[Topen momeHyTHX TpoOJieMa, jeJaH €0 HCTpaKHWBama OJHOCHO CE Ha Pa3Bo)j
MaTeMaTUYKOI MOJIeJla U XEYPUCTHUKE METOJIe 3a pellaBame MpodiiemMa Koju ce
TUYY JTUHAMUYKE aJlOKallije MEMOpPH]e.

Toxom pana y UuctutyTy 3a Gusuky (Qokyc ncTpakuBama MpeycMEPeH je
Ha METOJly KOHAYHHUX eJIeMEeHaTa U HhEeHY MPUMEHY 3a Pa3B0j HYMEPUUKUX Mojielia
Koju Ou ce mpuMewmHBaIu y OuoMemuuuHu. Mapuja MBanoBuh je TpeHYTHO
aHTa)kKOBaHa Ha pa3BHjalby METOJIOJIOTH]E 3a pellaBame JeIHAUYMHE IMPEHOca
TOILUIOTE y BPEMEHCKOM JOMEHy, Kao M XeJIMXOJIOBE jeIHAYHHE 32
€JIEKTPOMArHeTHO TMOJhE METOJAOM KOHAUXUX eJeMEeHara, Koje Ce KOpPHUCTE 3a
MOJIEJIOBa-€ IMpoIleca KOjUu C€ OJ[BHUjajy Y TKHUBY TOKOM MHUKpOTaJlacHe abiaiuje,
TpeTMaHa KOju je BeoMa 3HadajaH 3a OTKIamame Tymopa. Hanme, mokaszano ce na
32 CBaKM TyMOp, MOHA0C00, MOCTOje ONTUMAIHU TNapameTpu (yJa3Ha cHara,
BpeMe abuanuje, UTi.) Koju o6u omoryhuinu mro eukacHuju abJaTUBHU TPETMaH,
y3 OTKJIahame IEIOKYITHOT TYMOPAJIHOT TKHBA U MUHUMAIHO omTeheme 3apaBor
TkuBa. Mmajyhu y Buay 1a ce pa3Boj Mojena TKMBa MPUMEHOM METOJe KOHAYHHMX
eJeMeHaTa Oj[BUja y BHIIE KOpaka, Ykbyduyjyhu neduHucCame TeoMeTpuje,
MOCTaB/bAb€ TPAHUYHUX YCJIOBA, TEHEPUCAE MpEXKe, WTH., T[03HABAE
HYMEPUUYKHX METO/a KaHAUJATKUI-E je 0] HajBehe BaXKHOCTH.

Spisak referenci Marije Ivanovi¢
Objavljeni radovi:

1. M. Ivanovié, ,, Improved integer linear programming formulation for weak
roman domination problem”, Soft Computing, ONLINE ISSN 1433-7479,
strane 1-11, 2017. (My,)

2. M. Ivanovi¢, D. UroSevi¢, ,,Variable Neighborhood Search Approach for
Solving Roman and Weak Roman Domination Problems on Graphs”,

Computing and Informatics 38 (1), strane 57-84, 2019. (My3)

3. M. Ivanovié, ,,A mixed integer linear programming formulation for restrained
roman domination problem”, Theory of Applied Mathematics & Computer
Science, TAMCS, 5(2), strane 110-115, 2015. (My,)

4. M. Ivanovi¢, ,, Improved mixed integer linear programing formulation for
roman domination problem”, Publications de I'Institut Mathematique,

99(113), strane 51-58, 2016. (M,,)
5. M. Ivanovi¢, A. Savi¢, D. UroSevi¢, B. DugoSija, ,, 4 new Variable

Neighborhood Search approach for solving Dynamic Memory Allocation
Problem*, Yugoslav Journal of Operations Research, Vol 28, No 3 (2018),
p 291-314. (Ms,)

6. Lian Chen, Huiqin Jiang, Yehui Shao, Marija Ivanovié, ,, Dominator and total
dominator coloring in vague graphs“, Engineering and Applied Science
Letters, 2(2), 10-17, 2019, doi:10.30538/psrp-easl2019.0017 (My,)

SaopStenje sa medunarodnog skupa Stampano u celini M33

1. M. Ivanovi¢, B. Dugosija, A. Savi¢, D. UroSevi¢, ,,4 New Integer Linear
Formulation for a Memory Allocation Problem”, Proceeding of XI Balkan
Conference on Operational Research, pp. 284 — 288. Belgrade, Serbia, 2013.

2. M. Ivanovié, D. Urosevié, ,,A New Linear-Time Algorithm for Computing the
Weak Roman Domination Number of a Block Graph”, Proceedings of XIlII
Balkan Conference on Operational Research, pp. 25-31. Belgrade, Serbia, May
25-28, 2018.

SaopStenje sa medunarodnog skupa Stampano u izvodu Mg,

1.M.Ivanovi¢, D.UroSevi¢, Variable Neighborhood Search Solution for some
variants of the Roman Domination problem, 4th International VNS conference,
Book of abstracts p.23 Malaga, Spain, October 305, 2016.

2. J.Brimberg, M. Ivanovi¢, N.Mladenovi¢, D.Urosevi¢, Primal-Dual VNS for
large p-center problem, ICVNS2018 — 6th International Conference on
Variable Neighborhood Search, Sithonia, p.47. Halkidiki, Greece, October
,2018.

3. M. Radmilovi¢-Radenovi¢, M. Ivanovié¢, Branislav Radenovié¢, The Effect of
the Antenna Design on the Characteristics of Microwave Ablation Treatment
on Liver Cancer, MAS 16" International European Conference On
Mathematics, Engineering, Natural & Medical Sciences, Mardin, Turkey,
February 22-23, 2022, Conference program, pp.6.

4. M. Radmilovi¢-Radenovié¢, N. Boskovi¢, M. Ivanovi¢, B. Radenovié, Finite
Element Analysis of the Efficiency of Multislot Antenna in Microwave Tissue
Ablation, 6-th Ankara International Congress on Scientific , Ankara, Turkey,
April 1-3, 2022, Congress program, pp. 51.

5. M. Radmilovi¢-Radenovi¢, M. Ivanovi¢, N. Boskovi¢, B. Radenovig,
Simulation studies of the effect of the input power on the performance of
microwave tissue ablation, International Scientific Research Congress, Baku,
Azerbaijan, April 27-28, 2022, Congress program, pp. 31.

Zbirka zadataka
1. A. Delié, Z. Drazié, S. Zivanovié, M. Ivanovié, ,, Zbirka resenih zadataka

iz Uvoda u numericku matematiku‘, izdavac¢: Matematicki fakultet,
Univerzitet u Beogradu, Srbija.

Improved integer linear programming
formulation for weak Roman domination
problem

Marija Ivanovic

Soft Computing T
A Fusion of Foundations,
Methodologies and Applications

ISSN 1432-7643

Soft Comput
DOI 10.1007/s00500-017-2706-4

i Soft Computing

A Fusion of Foundations,
Methodologies and Applications

@ Springer

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag GmbH Germany. This e-offprint is

for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Soft Comput
DOI 10.1007/s00500-017-2706-4

@ CrossMark

METHODOLOGIES AND APPLICATION

Improved integer linear programming formulation for weak

Roman domination problem

Marija Ivanovié!

© Springer-Verlag GmbH Germany 2017

Abstract Let f: V — {0, 1, 2} be afunction, G = (V, E)
be a graph with a vertex set V and a set of edges E and
let the weight of the vertex u € V be defined by f(u).
A vertex u with property f(u) = 0 is considered to be
defended with respect to the function f if it is adjacent
to a vertex with positive weight. Further, the function f
is called a weak Roman dominating function (WRDF) if
for every vertex u with property f(u) = O there exists at
least one adjacent vertex v with positive weight such that
the function f/ : V — {0, 1,2} defined by f'(u) = 1,
f'w) = fv) —land f'(w) = f(w), w € V\ {u, v}
has no undefended vertices. In this paper, an optimization
problem of finding the WRDF f such that), f(u) is
minimal, known as the weak Roman domination problem
(WRDP), is considered. Therefore, a new integer linear pro-
graming (ILP) formulation is proposed and compared with
the one known from the literature. Comparison between the
new and the existing formulation is made through compu-
tational experiments on a grid, planar, net and randomly
generated graphs known from the literature and up to 600
vertices. Tests were run using standard CPLEX and Gurobi
optimization solvers. The obtained results demonstrate that

Communicated by V. Loia.

This research was partially supported by the Serbian Ministry of
Education, Science and Technological Developments under the Grant
No. TR36006.

Electronic supplementary material The online version of this
article (doi:10.1007/s00500-017-2706-4) contains supplementary
material, which is available to authorized users.

B Marija Ivanovié
maria.ivanovic @gmail.com; marijai @math.rs

Faculty of Mathematics, Univeristy of Belgrade, Studentski
Trg 16, Belgrade, Serbia

Published online: 10 July 2017

the proposed new ILP formulation clearly outperforms the
existing formulation in the sense of solutions’ quality and
running times.

Keywords Weak Roman domination in graphs -
Combinatorial optimization - Integer linear programming

1 Introduction

Problem of domination is a very popular area in a graph
theory. Inspired by the real-world historical problem, in his
article “Defend the Roman Empire!” Stewart (1999), Ian
Stewart introduced a Roman domination problem (RDP)
as a problem of organizing Roman legions such that any
province without legion stationed within it must be adjacent
to a province with at least two legions stationed within it.
Hence, in case of an attack, when two legions are stationed
within one province, one legion is considered to be perma-
nently stationed in order to keep that province safe, while
the second legion could move in order to defend an adjacent
province.

In order to keep the Roman Empire safe against one attack,
several generalizations and variations followed. This paper is
devoted to a one of them, known as weak Roman domination
problem.

Weak Roman domination problem (WRDP) was pro-
posed by Henning and Hedetniemi (2003) as an alternative
approach for defending the Empire against a single attack
and can be interpreted as follows. Given that every province
without legion stationed within it is vulnerable to an attack,
the WRDP requires that such a province must be adjacent to
a province with at least one legion stationed within it, i.e.,
province is considered to be defended if there is a legion
stationed within it or stationed within the adjacent province.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2706-4&domain=pdf
http://orcid.org/0000-0002-3372-8271
http://dx.doi.org/10.1007/s00500-017-2706-4

M. Ivanovié

Furthermore, movement of a legion to an adjacent province
which is without any legion stationed within it must not cre-
ate an undefended province.

In a graph terminology, for a graph G = (V, E) and a
function f, f : V — {0, 1, 2}, avertex u € V with property
f(u) = 0is considered to be defended, with respect to f, if
it is adjacent to at least one vertex v € N, = {v|(u, v) € E}
with positive weight (f(v) > 0). Further, the function f is
called a weak Roman dominating function (WRDF) for a
graph G if for every vertex u € V such that f(u) = O there
exists an adjacent vertex v € V such that f(v) > 0 and a
function f’ : V — {0, 1, 2}, defined by f'(u) = 1, f'(v) =
f()—1and f'(w) = f(w), w € V\ {u, v} has no unde-
fended vertices. The weight of the function f is calculated
by a formula w(f) =),y f(u) and the minimal weight
among all WRDF f for a graph G is denoted by y,(G). The
WRDP can be described as a problem of finding the WRDF
f for a graph G with the minimal weight.

However, the WRDP is not applicable to a war strategic
problems only, and it can be also used for a huge number
of recourse sharing problems. For instance, emergency vehi-
cles are very expensive and minimizing their numbers, while
still being able to help en injured people, will be of great
use. Therefore, if emergency vehicles are organized between
hospitals as Roman legions between their provinces, all hos-
pitals will either own a vehicle or there will be en emergency
vehicle in a neighborhood hospital that can be borrowed.

This paper is organized as follows. A previous work is
given in Sect. 2, while the new improved integer linear pro-
graming formulation is presented in Sect. 3. Computational
results are summarized in Sect. 4.

2 Previous work

Let G = (V, E) be a simple undirected graph with a vertex
set V and a set of edges E. A subset V' C V is called dom-
inating in a graph G, if every vertex in V \ V' is adjacent
to some vertex in V’. The cardinality of the minimum dom-
inating set in G, denoted by y (G), is called the domination
number of a graph G, and a problem of finding the set V' is
known as the domination problem.

The function f, f : V — {0, 1, 2} defined such that every
vertex u € V with property f(u) = 0 is adjacent to a vertex
v € V with property f(v) = 2is called a Roman dominating
function (RDF). The weight of the function f is calculated
by a formula w(f) =), .y f(v), and a problem of finding
the RDF f with the minimal weight is called a Roman dom-
ination problem (RDP). The minimal weight among all RDF
represents a Roman domination number, denoted by yg(G).

The RDP was initially proposed by Stewart (1999) and
ReVelle and Rosing (2000). Later, with the potential of sav-
ing the Empire substantial costs of maintaining legions while

@ Springer

still defending the Roman Empire, several generalizations
and improvements arose. Some of them are the Roman k-
domination Henning (2003), the weak Roman domination
Henning and Hedetniemi (2003), the restrained Roman domi-
nation Pushpam and Mai (2011), the edge Roman domination
Chang et al. (2014), the secure Roman domination Burger
et al. (2013), the total Roman domination Liedloff et al.
(2005), the independent Roman domination Targhi et al.
(2012), the signed Roman domination Ahangar et al. (2014)
and the strong Roman domination Alvarez-Ruiz et al. (2015).

In this paper, the weak Roman domination problem
(WRDP) is considered, and therefore, the previous work will
be related only to that topic.

First, Henning and Hedetniemi (2003) observed that every
RDF in a graph G is also a WRDF in a G and proved that for
every graph G, ¥ (G) < y-(G) < 2y(G). Then, they proved
that y,(P,) = [3n/7] for a path P,, n > 1, noting that
cost savings of the weak Roman domination over the Roman
domination number for a mentioned path, yr (P,) — v, (Py) =
[2n/7] — [3n/7], is either |Sn/21] or [Sn /217 and showed
that y,-(C) = y-(Py) for cycles C,, whenn > 4. And finally
they characterized graphs G for which y,(G) = y(G) and
forests G for which y,(G) = 2y (G).

Considering properties of domination, Roman domina-
tion, weak Roman domination and secure domination prob-
lems, Cockayne et al. (2005) studied four parameters which
give the minimum number of legions required to protect the
graph under the mentioned strategies and obtained the exact
values for specific classes of graphs. Also, they gave char-
acterization of secure dominating sets which are minimal.
Setting y(G) as the secure domination number on a graph
G, Cockayne et. al. first proved that inequalities

Yr(G) = 2y(G)

G) <% (G) <
7(G) = v (G) {ys(G)

hold. Then, for a complete graph K,,, they gave proposition
that y (G) = y,-(G) = y5(G) = 1, while yr(G) = 2 and for
a complete bipartite graph K, ,, where p < ¢, they found
values for y (G), yr(G), ¥, (G) and y5(G) proving that

2,p=1,2,g>1
3, p=3
4, p <4.

Yr(G) =

Finally, they proposed all four domination numbers for a
complete multipartite graph Kp, p, .. p, where p1 < p» <
... < pyand t > 3 (proving that y, is equal to 2 when p; =
1,2 and equal to 3 when p; > 3), paths P, and cycles C,
(proving that y,, = y; = [3n/7]), and their products P, x Py
and C,, x Ci (proving that y,- (P, X Pr) < ys(Pp X Py) <
[mk/31+ 2 and y,(Cpy x Ci) < y5(Cm x Ci) < [mk/3]).

Improved integer linear programming formulation for weak Roman domination problem

Pushpam and Mai (2011) characterized the class of the
trees and split graphs for which y,(G) = y(G), found y;
value for caterpillar, 2 x n grid graphs and a complete binary
tree and proved that y,-(Cp,) = ;- (Py).

The weak Roman domination number of a corona of any
two graphs and generalized web graphs is established by Lai
et al. (2011). For instance, they prove that for a corona of
a graph G of n vertices and a complete graph K,,, y,-(G o
K,,) = n, while for two graphs G and H with n and m
vertices and H # K, (G o H) = 2n. Further, for a helm
graph H, and a web graph W, they show that y,.(H,) =
vr(W,) = n + 1, while for a generalized web graph W; 3,
when t > 3, y,(W;3) =t 4 2. Proving that y,(W34) =7
and y-(W35) = 9, they also gave generalization of a weak
Roman domination number for a generalized web graphs
vr(W3,) when n > 6 by settingn = 3a + b, for0 < b <
2 and proving that y.(W3,) = 4a + 2 when b = 0 and
vr(W3,,) = 4a + 3 4 b otherwise.

The impact on the weak Roman domination number of a
simple connected graph G with connectivity of one, when
one of its cut points is removed, is, for example, considered
by Song et al. (2013).

The weak Roman domination number for 2 x n grid graphs
is determined by Song et al. (2011).

Nonetheless, some relations between several different
domination numbers were nicely summarized by Chellali
et al. (2014) who also showed that for all graphs, the weak
Roman domination number is bounded above by the 2-
rainbow domination number ;2 (G).

Motivated by Chellali et al. (2014), Alvarez-Ruiz et al.
(2015) provided a constructive characterization of the trees
for which the Roman domination number strongly equals to
the weak Roman domination number. With the characteriza-
tion based on five simple extension operations, Alvarado et al.
(2015b) also revealed several structural properties of these
trees.

Later, Alvarado et al. (2015a) proved that y,2(G) <
2y, (G) for every graph G. Then, for a complete graph K,
they characterized the extremal graphs for this inequality that
are {K4, K4 — e}-free, and showed that the recognition of the
Ks-free extremal graphs is NP-hard (by the K,, — e it was
meant on a graph that arises by removing one edge from K,).

Recently, Pushpam and Kamalam (2015a) found an effi-
cient weak Roman domination number of some of the
Myscielski graphs.

The idea of efficiency to the weak roman domination was
extended by Pushpam et al, who also characterized certain
classes of graphs that are efficiently weak Roman dominant
(Pushpam and Kamalam 2015b).

In general case, it was proved that the RDP is NP-
complete (i.e., Dreyer 2000; Shang and Hu 2007; Klobucar
and Pulji¢ 2014), but for some special classes of graphs,
such as interval graphs, intersection graphs, co-graphs and

distance-hereditary graphs, it can be solved in a linear time,
see Klobucar and Pulji¢ (2014). Given that the WRDP is
a generalization of the RDP, the WRDP can be also con-
sidered as NP-complete problem. Nonetheless, Henning and
Hedetniemi (2003) proved that WRDP is NP-complete, even
restricted to bipartite and chordal graphs.

The linear time algorithm for computing the weak Roman
domination number of a block graph is given by Liu et al.
(2010).

Considering the algorithms for solving the WRDP,
Chapelle et al. (2013) broke the trivial enumeration barrier of
0*(3") (the notation O*(f (n)) suppresses polynomial fac-
tors) providing two faster algorithms. Proving that the WRDP
can be solved in O*(2") time needing exponential space,
they described an O*(2.2279") algorithm using polynomial
space. Their proposed results rely on structural properties of
a WRDF, as well as on the best polynomial space algorithm
for the Red-Blue Dominating Set problem.

Burger et al. Burger et al. (2013) gave relation between
y(G), yr(G) and y;(G) and proposed the only one integer
linear programming (ILP) formulation for the weak Roman
domination problem to the knowledge of the author.

In this paper, a new ILP formulation will be proposed,
proved to be correct and compared with the existing one.
Thus, the first binary programing formulation of the WRDP
will be reviewed here below.

For a graph G = (V, E) represented by a vertex set V,
n = |V|, and a set of edges E, m = |E|, let the adjacency
matrix be denoted by a;; for alli # j, with the convention
thata;; = 1foralli =1, ..., n.Further, let X represents a set
of vertices containing exactly one legion and let Y represents
a set of vertices containing exactly two legions within it.
Binary decision variables will be defined with

1, ieX
Xj =) (D
0, otherwise
1, ieY
J— 2
i {O, otherwise @

foralli =1,...,n and

1, i(x; =0andy; =0)and j (x; =lory; =1)
Zij = form a swap set 3)

0, otherwise
foralli,j=1,...,n,i #jandi,j e V.

Burger et. al. formulation of the weak Roman domination
problem is:

min) (o + 230) “)
k=1

@ Springer

M. Ivanovié

subject to the constraints

n

dajxj+yp =1 i=1.....n Q)

j=1

Xp+ye <1, k=1,...,n (6)
n

Xi+yi+Y zp=1li=1...n 7)
j=1
J#i

aij(xj+yj—xi—yi) =2z, Lj=1,....,n,j#i (8

n
Yiakj +awi + Y aw (i +) = zij,
7
I#]

L, jk=1,....ni#])
xi,yi,zije{O,l}, i,j:l,...,n. (10)

The objective function value, given by (4), represents
the weak Roman domination number y, (G). Constraints (5)
ensure that each vertex i € V with property f (i) = 0 is adja-
cent to at least one vertex j with property f(j) > 0. By the
constraints (6), it is ensured that sets X and Y are mutually
disjunctive. Further, by the constraints (7) it is ensured that
for each unoccupied vertex i (x; = y; = 0) there exists a
vertex j, j € N; with whom it can form a swap, while by
the constraints (8) it is ensured that each swap from j to i is
valid. Furthermore, safety of every province after any single
swap performed from j to i is preserved by the constraints
(9). Constraints (10) deal with binary nature of decision vari-
ables x;, y; and z;;.

Presented formulation has n> 4 2n variables, has n> +
n? + 3n constraints and will be referred as the O/,
Note that in Burger et al. (2013), in the constraints (9) origi-
nally stand

n

yjaki + agj + Zakz(XZ +y) = zij-
i
1]

We assume that it was a typing error since in that case math-
ematical formulation does not correspond to the WRDP.

3 Improved ILP formulation for the weak Roman
domination problem

Inspired by the O/d formulation, it was noticed that there is
no need to calculate swap z;; for each pair of vertices i and j.
Instead of that, it is sufficient to calculate swap only between
two adjacent vertices. Therefore, let E' = {(j, i)|(i, j) € E}
and

@ Springer

I, e=(47J),
i(x;=0andy; =0)and j(x; =lory; =1)
Z =
¢ form a swap set

0, otherwise

(1)

for all e € E U E’ and, again, let binary decision variables
x; and y; be defined with (1) and (2).

Now, new ILP formulation for the WRDP, on a graph
G = (V, E), can be described as follows:

minZ(xk + 2y (12)
keV
subject to the constraints
XNyt Y ezl i€V (13)
edi
xj+yj—xi—yi+1>2z, e=(,j)e EUE (14
Vit D+ =z,
leNk
I#i,
I#j
e=(i,j) € EUE' ke Nj\N; (15)
Xi,Vi,2e €{0,1} i€V, ec EUE'. (16)

Again, the objective function value, given by (12), rep-
resents the weak Roman domination number y, (G). Con-
straints (13) ensure that vertex i is defended, or it is adjacent
to a defended vertex with whom it can form a swap. Validity
of the swap from the vertex j to the vertex i is ensured by the
constraints (14). Also, by the constraints (15), safety of the
Empire is preserved after any single swap performed from j
to i. Binary nature of decision variables is ensured by (16).

New ILP formulation will be referred as the Aw and has
2n + m variables and 3n + 2m constraints.

Note that, for a complete planar graph with n vertices, the
New formulation consists of %nz + %n variables and n? 4 2n
constraints. Therefore, when the Alw formulation is used,
the number of the variables is reduced by at least %(n2 +n)
while the number of the constraints is reduced by n> + n.

The following theorem proves that Afw formulation is
equivalent to the O/d formulation.

Theorem 1 For every simple graph G, optimal objective
function value of the Old formulation (4)—(10) is equal to
the optimal objective function value of the New formulation
(12)—(16).

Proof (=) Let a feasible solution to the O/d formulation be
represented by a set (X', Y', Z"), X' = (x{,...,x,), Y =
ooy Z8 = (24, - -5 Zan)s n = |V, and similarly,

Improved integer linear programming formulation for weak Roman domination problem

let a set (X", Y"”, Z") of variables x', y/" and z, be defined

1
such that x/" = x/, y/ = y/,i =1,...,n and

s L e=diig =1

z, = , ec EUE". (17)

0, e=(.j).z;=0

Note that variables z; ; are defined for each pair of vertices
(i, j), while z/ are defined only for edges that exist in a graph
G. Hence, zé/ are defined only when aij =1l,e=(@,)) €
E U E’. Also note that, by the conditions (8), for ajj =0
it follows that z/ ;= 0. Thus, variables z, are well defined
since in the conditions (7) z; ;= 0 are part of the sum, and
given that zero is neutral for summing, they do not affect the
given sum. Even more, for those z; i conditions (8) and (9)
become trivial. From the above consideration, foreachi € V,
it follows that 3 _ ;. z;; is equal to the }_,; z;. Therefore,
conditions (13) follow from the conditions (7). Also note
that conditions (8) are nontrivial only when a;; = 1. Given
that, and from the definition of the z’e’ , directly follows that
conditions (7) imply (14).

In order to prove conditions (15), itis necessary to consider
next three cases:
Case I k ¢ N;.Since k and j are not in the neighborhood, it
follows that a;; = 0, which means that left-hand side (LHS)
of the conditions (9),

n
Yiaj +ari+ Y an(x] + y) — awi (x] + 3]) — agj (< +¥))
=1

becomes

n
—aij;- + (1 —x; — yDaki + Zakl(xl/ +).
=1

Further, ay jx;. = 0 holds from the starting assumption,
while from the conditions (6) it follows that 1 —x; — y! > 0.
Finally, from the conditions (5) it follows that

n
—agx + (= x] = yDari + Y au(x) +y) =
I=1

n
Zakz(xl/-i-yl/) > 1>z
=1

From the above consideration, it is obvious that in Case I
conditions (9) are redundant.

Case 2 k € N; N N;. By the assumption that the vertex k is
in the neighborhood of the vertices i and j, it follows that
ag; = agj = 1. Since akjy} > 0 and Zi;:ézl ap (x; +y)) =0,

I#]
it follows that LHS of the conditions (9) is greater or equal
to ax; = 1, implying that LHS is greater or equal to z; I

From the above consideration, it is obvious that in Case 2
conditions (9) are redundant.

Case 3k € N\ N;. Assuming that vertex k is in the neigh-
borhood of the j and not in the neighborhood of the i, it
follows that ag; = 1 and ai; = 0. Therefore, conditions (9)
becomes y} + Zé;:él ag (x; + y)) = z;j. By the definition of

! 75;'

the variables z/, it follows that conditions (15) hold.

Since that Case I and Case 2 are redundant and do not
have influence on the feasible solution space of the model
(4)—(10), it follows that they can be ignored.

Variables x’, y/" and z,, are binary by the definition, i.e.,
conditions (16) hold also.

Finally, since x; = x; and y;/ = y;, it follows that objec-
tive function values are equal, i.e.,

Objou= Y _ (xp +2y)) = Y (x{ +2¥) = Objngu-
keV keV

Even more, objective function value of the O/d formulation
is greater or equal to the objective function value of the Aew
formulation, since feasible solution of the O/d formulation is
feasible solution of the Aew formulation.

(&) Let a set (X”,Y”,Z") represents a feasible solu-

tion to the Agw formulation (X" = (x},...,x,), Y =
(yi’, ...,y,’{),Z” = (z’l’, ...,z;,;)),n = |V|,m = |E| and let
aset (X',Y', Z") of variables x/, y. and 2, i, j = 1,...,n

ij?
be defined such that y! =y, i =1,...,n,

7 4 "
x{_{xi, x!+y’ =<1
[" " "o __
xi =1, x/'+y =2

and

[s+ ste=apeEVE
;I 0, otherwise.

In order to prove conditions (5)—(9), two cases will be
observed:

(1) x!' +y! < 1and
Q) x'+y!'=2.

Conditions (6) trivially hold since, in (1.), x; + y;, = x; +
y/ <land,in(2),x, +y, =x/ —1+y/=1=<1

Starting from the conditions (13) and by the definition of
the variables z; i conditions (7) hold also:

@ Springer

M. Ivanovié

n
xj 4y + Zz:j =
j=1
J#
in (1.), xl-// + yi// +

Y@t), it

e=(i,j)eEUE’ e=(i, j))eEUE’
i "oy
xj+y;<1 xj+yi=2

/ f—
Zij =

e=(i,j)eEUE’
4 "
x; +yj <1

" " " 1
d4y+d - > A=
esi e=(j,i)eEUE’

N
xjty;=2

x[’~|—y,{’+21221

edi

/ —
Z ij =

e=(i,j)¢ EUE’

x;/+yl//+

n
in (), X —1+y/+) g zx—1+y/=1
j=1

i

foralli=1,...,n.

Above formulas are correct since Y .. j)e rUE’ Z; ; =0and
xi+yi=2

Ze:(i,j)¢EUE’ z;j = 0 by the definition of the variable z

while

/
ij
e=(j,i)eEUE’ 7/ = 0 because of the constraint (14)

V "__
xi+yi=2

which in case e = (j,) should read as follows x/ + y! —
'/

x} - y;’ + 1 > 27/ directly implying that z) = 0.

Validity of the conditions (8) can be shown also: For a;; =
0, conditions (8) trivially hold since 0 > 0, while fora;; =1
four cases are considered:

— (I)holdsforalli, j=1,...,n.
Xy = +yD+1 = x4y =]+ +1 = 22 = 2z},

— (1.) holds for i while (2.) holds for j,i,j =1,...,n.

Xy = o) l=x] = Ly — 6+)+ 1
=x]+y] =&/ +y)=2—] +yH)=1>0=2g;

since, by the definition, z; ;= 0 when x}/ + y}/ =2.
— (I.) holds for j while (2.) holds fori,i, j =1,...,n.

Xj Y= @) F L= a4y = G = Ty +
=]+ y] = O +y]) +2 = 22 = 22

@ Springer

— (2)holdsforalli, j=1,...,n.
Xty =i +y)+1
P
Xy =Gy 12 220 = 225

Combining all four cases together with the case when a;; =
0, it follows that conditions (8) are satisfied.
Conditions (5) which can be equally written as

XA+ Y =1
JEN;

are satisfied for (2.) since

XAV Y @Y
JEN;
=x/ = 1+y/+ D &+ =1+) h+yp =1
JEN; JEN;

If (1.) holds for i and conditions x}’ + y}’ < lholdforall j,
conditions (5) can be written asxl.”+yl.”+ZjGNi (x}’ + y}’) >
1. The last relation holds if at least one of next two relations is
satisfied: x;" +y/ > Tor}_ ey, (x}’ + y}’) > 1. Assuming
that conditions (13)—(16) are satisfied, from the conditions
(13) it follows that at least one of the relations x;" 4y > 1
and) i zg > 1 holds. If the first relation holds, conditions
(5) are satisfied. If the second relation holds, then there exists
an edge e such that zJ = 1. Now, from the condition (14)
it follows that x}’ + yfj’ > 1 for e = (i, j), proving that
conditions (5) are satisfied again.

If (/.) holds for i and there exists j_ such that x}’ +

y%/ = 2, conditions (5) can be written as x, + y/ +
- a ’ ’ ’ ’ o " o_
12:./6N,-,j75./ &+ Y+ Hyp = x54y; = xp—14y5 =

In order to show validity of the conditions (9), next three

cases should be considered.

1. agj = dki = 0.
Keeping in mind that constraints (5) hold, constraints (9)
can be equally written as

n
akj Y’ + agi + Z a1 (x; + y;)
=1

I#i
1#]

n
=Y au(x] + y) — au(x] + y)) — ag (<) + ;)
=1

n
=Y auxj+y) = 1>z
=1

from which it can be concluded that they are satisfied.

Improved integer linear programming formulation for weak Roman domination problem

2. agj = l,ak,- =0.
Keeping in mind that constraints (15) are also satisfied,
constraints (9) are satisfied again,

n
agy; +aki +) au(x +y) =y + Y ([+y) =

=1 leN
I#i I#i
I#] 1#j

case (V) (x] + y/ < 1)):

" " 1 1 /
y]+§ (x1+yl)ZZeizij
leNk
1#i
1%

mw@m%+%=3y

/ / / / / / / /
y;+ E (xl+y,)+(xl—+yl—) Z Xty = 1 2 i
le Ny
I#i
l;ﬁj_
1]

3. arj =0Aay =1orag =ar = 1.
Since axjy; > 0 and ag(x; + y;) = 0 for all k,I =
1,...,n,l # i, constraints (9) are again satisfied,

n
a Y+ ak + Y an(x] +y) =
=1

I#£i
1#]

n
ayy + 1+ Y aux +y) = 1> zj;.
i
I#]
From the above, it can be concluded that constraints (9) hold.
Finally, since x; < x; and y, = y/, it follows that
objective function value of the O/ formulation is less or
equal to the objective function value of the Afw formula-
tion, i.e., Objoyr < Objag,. Even more, feasible solution to
the N\ew formulation is a feasible solution to the Ol formu-
lation.
Combining given inequalities theorem is proved, i.e.,
Objaew = Objous. o

4 Computational results

In this section, computational results which show effective-
ness of the proposed ILP formulation method are summa-
rized. Direct comparison is given only between the proposed
ILP formulation and mathematical formulation presented

in Burger et al. (2013). Comparison with algorithms pre-
sented in Liu et al. (2010) and Chapelle et al. (2013) is
not possible since both of these two papers are theoret-
ical and without numerical results. Tests were run using
CPLEX 12.6 and Gurobi 5.6 optimization solvers and car-
ried out on Intel(R) Core(TM) 17-4700MQ CPU @ 2.40GHz
2.39GHz, with 8GB RAM under Windows 8.1 operating
system.

For all computational experiments grid, planar, net and
randomly generated graphs were used. Grid, planar and net
graphs are well-known type of graphs, while randomly gen-
erated graphs are provided by Vincenzo Currd and were
specially generated for his Ph.D. theses Currd (2014). The
set of grid graph instances consists of 42 instances where the
smallest one has 40 vertices, while the greatest one has 100
vertices. The set of planar graph instances consists only of
6 instances with 10, 20, 30, 50, 100 and 150 vertices. The
set of net graphs consists only of four instances with 100,
200, 400 and 600 vertices, while randomly generated graphs
consists of 32 instances from which 18 of them are with 50
and 14 of them are with 100 vertices.

All instances were tested using both optimization solvers.
The results are shown for each type of graph instance in
separate tables. For all tables, in the first three columns the
name of the instance, the number of vertices and the number
of edges are given. In case that optimizations solvers suc-
ceeded in finding and proving the optimal solution to the
tested instances, the objective function value is shown at the
fourth column (val). For each ILP formulation, the results
(objective function value and optimization solvers’ execu-
tion time) are shown in the next two sets of four columns
such that the results of the O/ formulation are followed by
the results of the Aew formulation. For instances where opti-
mal solution was not reached within the time limit of 7200
seconds, the sign “*” is shown. Also for instances where opti-
mization solver stopped because of “out of memory status,”
the sign “~” stands.

Comparing the execution time of two solvers and two
formulations, it is obvious that both solvers were more suc-
cessful by using Aw formulation.

From Table 1, based on the Off formulation, CPLEX
reached optimal solution value for 22 instances and Gurobi
for 9 instances, while based on the Aew formulation, CPLEX
and Gurobi were successful in finding optimal solution for 32
instances. Actually, based on the Aew formulation, Gurobi
succeeds in finding the solution value for all grid graph
instances, but because of the running time limit, not all found
solution values are verified as optimal. Even more, from Table
1, for all instances where solution is found and verified as
optimal, Gurobi running time was less when Agw formula-
tion is used. For instances, with at most 60 vertices CPLEX,
based on the both formulations, was successful in finding
optimal solution values with very small differences in run-

@ Springer

M. Ivanovié

Table 1 Computational results

on grid graph instances Instance Old formulation New formulation
V| [E| opt val. ftgur value fep val tour val fep

grid04 x 10 40 66 15 15 497.37 15 4.954 15 9.16 15 4.109
grid05 x 08 40 67 14 14 551.75 14 5.191 14 7.56 14 404
grid03 x 14 42 67 16 16 314.72 16 4.829 16 13.64 16 5372
grid06 x 07 42 71 15 15 454.75 15 6.927 15 12.28 15 5.801
gridod x 11 44 73 16 16 912.76 16 6.13 16 14.1 16 55
grid03 x 15 45 72 17 17 712.63 17 8.36 17 19.69 17 7.789
grid0S x 09 45 76 16 16 942.68 16 7.908 16 1948 16 10.781
grid04 x 12 48 80 17 17 891.93 17 14364 17 1491 17 12.84
grid06 x 08 48 82 18 18 * 18 26.662 18 108.8 18 25.499
grid07 x 07 49 84 18 18 * 18 9.845 18 80.37 18 12.844
grid05 x 10 50 85 18 18 5953.67 18 11469 18 71.83 18 10.61
gridod x 13 52 87 19 22 - 19 13.16 19 69.13 19 11.813
grid06 x 09 54 93 19 55 - 19 26988 19 79.64 19 25.539
grid05 x 11 55 94 19 59 - 19 14365 19 107.34 19 11.424
gridod x 14 56 94 20 25 - 20 35.6 20 5253 20 35.326
grid07 x 08 56 97 20 23 - 20 21.882 20 107.63 20 4248
gridod x 15 60 101 22 27 - 22 40.256 22 172.62 22 51.518
grid05 x 12 60 103 21 28 - 21 41364 21 127.57 21 14.88
grid06 x 10 60 104 21 26 - 21 51458 21 5841 21 35713
grid07 x 09 63 110 22 27 - 22 995.68 22 101.89 22 70.259
grid08 x 08 64 112 23 26 - 23 * 23 166453 23 171.925
grid05 x 13 65 112 23 28 - 23 1825 23 195.49 23 67.007
grid06 x 11 66 115 24 29 - 24 * 24 1001.9 24 381.771
grid05 x 14 70 121 24 28 - 24 53689 24 677.63 24 73.489
grid07 x 10 70 123 25 30 - 25 * 25 829.21 25 618.089
grid06 x 12 72 126 26 31 - 27 - 26 325434 26 1166.405
grid08 x 09 72 127 25 32 - 25 * 25 419549 25 435.146
grid05S x 15 75 130 26 31 - 26 * 26 288.06 26 465.006
grid07 x 11 77 136 27 32 - 28 * 27 154324 27 988.596
grid06 x 13 78 137 27 33 - 28 * 27 6657.33 27 1005.126
grid08 x 10 80 142 28 33 - 28 * 28 369343 28 2162812
grid09 x 09 81 144 28 35 - 29 * 28 * 28 737.579
grid06 x 14 84 148 34 - 30 * 30 % 30 -
grid07 x 12 84 149 29 35 - 30 * 29 463738 30 -
grid08 x 11 88 157 36 - 31 * 31 % 31 -
grid06 x 15 90 159 95 - 32 * 32 % 33 -
grid09 x 10 90 161 90 - 32 * 31 * 32 -
grid07 x 13 91 162 109 - 32 * 32 % 33 -
grid08 x 12 96 172 106 - 38 - 33 % 34 -
grid07 x 14 98 175 115 - 34 * 35 * 34 -
grid09 x 11 99 178 110 - 35 * 35 * 35 -
gridl0x 10 100 180 100 - 36 - 35 * 36 -

ning time, but for instances such as grid07 x 09, grid05 x 13
and grid05 x 14, when Aewformulation is used, running time
was significantly less. Also, for instances with more than
60 vertices, where CPLEX based on the Aew formulation

@ Springer

was successful in finding optimal solution, running time was
lesser than 2200 seconds, while CPLEX based on the Ofdfor-
mulation, for the same instances, was either stopped because
of “out of memory” status, either because of the time limit.

Improved integer linear programming formulation for weak Roman domination problem

Table 2 Computational results

. Instance Old formulation New formulation
on net graph instances
4 |E| opt val. tour value tepl val tour val tepl
net-10-10 100 342 20 90 - 21 - 20 598.98 20 148.213
net-10-20 200 712 - - 42 * 40 -
net-20-20 400 1482 - - 83 * 87 -
net-30-20 600 2252 - - 122 * 142 -
Table 3 Compu.tatlonal results Instance Old formulation New formulation
on planar graph instances
V| |E| opt val Lour value fep| val Tour val fepl
plan10 10 27 3 3 0.31 3 0.156 3 0.17 3 0.206
plan20 20 105 3 3 2.75 3 1.363 3 1.36 3 1.423
plan30 30 182 5 5 2673 5 8.724 5 1145 5 7.49
plan50 50 465 6 6 - 6 302.82 6 9849 6 153.215
plan100 100 1540 - - 10 * 9 -
plan150 150 2867 - - 13 * -

From Table 2, it can be seen that optimal solution value
for net graph instances was reached only for one instance,
Net-10-10. Based on the Aew formulation, both CPLEX and
Gurobi optimization solvers were stopped either because of
“out of memory” status, either because of the time limita-
tion but still were able to provide some solution values for
other three instances. Based on the O/dformulation, both opti-
mization solvers were unsuccessful in providing any solution
value for these three instances.

Table 3 consists of computational results on the pla-
nar graph instances. Optimal solution value was reached
for instances with at most 50 vertices by using both opti-
mization solvers based on the both formulations and mostly
with lesser running time when the Aw formulation is
used. Both optimization solvers based on the O/ for-
mulation were unsuccessful in solving instances plan100
and planl50 because of “out of memory” status, while
Gurobi optimization solver based on the Afw formulation
provides some solution value within the time limit of 2
hours.

Finally, from Table 4, computational results on randomly
generated graphs are given. Usage of the O/dformulation pro-
vides optimal solution value for 24 instances with CPLEX
and 13 instances with Gurobi optimization solver, while
usage of the Agwformulation provides optimal solution value
for 24 instances when CPLEX is used and for 25 when Gurobi
optimization solver is used. Further, for instances when opti-
mal solution value was reached by using both formulations,
at almost all instances, solvers’ running times are lesser
when Aewformulation is used. Moreover, on instances where
provided solution value was not verified as optimal (Random-

100-8, Random-100-9, Random-100-10 and Random-100-
20), better solution values are provided when Aew formu-
lation is used. Furthermore, on instances Random-100-30,
Random-100-40 and Random-100-50, both optimization
solvers, based on the O/d formulation, were unsuccessful in
providing any solution value before status “out of memory”
occurs.

5 Conclusions

In this paper, the weak Roman domination problem is con-
sidered. New, improved ILP formulation is proposed, proved
to be correct and compared with the one known from the lit-
erature. It was shown that set of the constraints (7) can be
excluded, and that in some cases the set of the constraints
(9), of the known formulation, are redundant. Even more, it
was shown that it is sufficient to calculate swap only between
two adjacent vertices. Since proposed formulation uses lesser
number of constraints and lesser number of variables than the
one known from the literature, significant improvements in
the computational effort for solving Aew formulation were
expected. Therefore, computational experiments were car-
ried out on a grid, planar, net and randomly generated graphs
up to 600 vertices from the literature. It was shown that
CPLEX and Gurobi solvers, based on the A\ew formulation,
provide optimal solutions for a larger number of instances;
then, it was the case with optimization solvers based on the
Oldformulation. Even more, running times are mostly lesser
when Aew formulation is used. Regardless the fact that run-
ning times using CPLEX were lesser than the running times

@ Springer

M. Ivanovié

Table 4 Computational results on randomly generated graph instances

Instance Old formulation New formulation

V| |E| opt val. tour value fepl val tour val fepl
Random-50-1 50 49 24 28 - 24 1.125 24 0.72 24 0.281
Random-50-2 50 49 23 23 85.66 23 1.156 23 1.48 23 0.343
Random-50-3 50 58 24 24 53.95 24 1.265 24 0.66 24 0.39
Random-50-4 50 54 24 24 66.97 24 1.239 24 0.58 24 0.484
Random-50-5 50 67 22 22 79.59 22 1.635 22 1.41 22 0.968
Random-50-6 50 86 19 19 118.34 19 4915 19 12.31 19 2.053
Random-50-7 50 84 19 19 248.14 19 4.677 19 9.33 19 3.171
Random-50-8 50 95 17 17 226.28 17 15.308 17 4.11 17 3.093
Random-50-9 50 108 17 17 865.54 17 90.188 17 39.31 17 26.373
Random-50-10 50 112 16 16 716.16 16 43.673 16 342 16 6.781
Random-50-20 50 248 9 13 - 9 1304.7 9 792.33 9 346.264
Random-50-30 50 373 7 9 - 7 1143.9 7 943.77 7 476.278
Random-50-40 50 475 6 9 - 6 1767.9 6 3734.27 6 1447.318
Random-50-50 50 597 5 6 - 5 1856.4 5 1545.06 5 1779.272
Random-50-60 50 739 4 6 - 4 509.08 4 210.71 4 260.999
Random-50-70 50 860 3 5 - 3 203.18 3 156.14 3 168.483
Random-50-80 50 980 3 3 381.44 3 90.813 3 172.01 3 235.731
Random-50-90 50 1103 2 2 248.67 2 120.87 2 36.53 2 38.206
Random-100-1 100 100 46 123 - 46 8.769 46 2.61 46 0.64
Random-100-2 100 109 46 125 - 46 11.385 46 53 46 0.843
Random-100-3 100 181 37 109 - 37 704.88 37 23.17 37 7421
Random-100-4 100 206 34 99 - 34 2533.2 34 66.7 34 61.702
Random-100-5 100 231 32 101 - 35 - 32 562.64 32 164.502
Random-100-6 100 321 26 90 - 28 * 26 5806.74 26 -
Random-100-7 100 317 25 87 - 26 * 25 4493.7 25 4009.377
Random-100-8 100 317 91 - 25 * 23 * 24 *
Random-100-9 100 430 81 - 23 * 21 * 22 *
Random-100-10 100 498 76 - 22 - 19 * 20 *
Random-100-20 100 981 64 - - 12 * 12 *
Random-100-30 100 1477 - - 11 - 11 -
Random-100-40 100 1945 - - 9 - -
Random-100-50 100 2483 - - 7 - -
using Gurobi optimization solver, usage of Gurobi optimiza- ~ References

tion solver provides solution values for some instances even
when CPLEX was stopped because of the memory limita-
tions.

Given that optimization solvers were unsuccessful in pro-
viding solution values for larger graph instances than the
one with 100 vertices, designing an exact method or even
metaheuristic method for solving the proposed mathemati-
cal formulation is matter of the future work.

Compliance with ethical standards

Conflict of interest The author declares that there is no conflict of
interest regarding the publication of this paper.

@ Springer

Ahangar HA, Henning MA, Lowenstein C, Zhao Y, Samodivkin
V (2014) Signed roman domination in graphs. J Comb Optim
27(2):241-255

Alvarado JD, Dantas S, Rautenbach D (2015a) Relating 2-
rainbow domination to weak roman domination. arXiv preprint
arXiv:1512.01067

Alvarado JD, Dantas S, Rautenbach D (2015b) Strong Equality of
Roman and Weak Roman Domination in Trees. arXiv preprint
arXiv:1507.04901

Alvarez-Ruiz M, Yero IG, Mediavilla-Gradolph T, Valenzuela J (2015)
A stronger vision for roman domination in graphs. arXiv preprint
arXiv:1502.03933

Burger A, De Villiers A, Van Vuuren J (2013) A binary programming
approach towards achieving effective graph protection. In: Pro-

http://arxiv.org/abs/1512.01067
http://arxiv.org/abs/1507.04901
http://arxiv.org/abs/1502.03933

Improved integer linear programming formulation for weak Roman domination problem

ceedings of the 2013 ORSSA annual conference, ORSSA, 2013,
pp 19-30

Chang GJ, Chen SH, Liu CH (2014) Edge roman domination on graphs.
arXiv preprint arXiv:1405.5622

Chapelle M, Cochefert M, Couturier JF, Kratsch D, Liedloff M, Perez
A (2013) Exact algorithms for weak roman domination. In: Com-
binatorial Algorithms, Springer, pp 81-93

Chellali M, Haynes TW, Hedetniemi ST (2014) Bounds on weak roman
and 2-rainbow domination numbers. Discrete Appl Math 178:27—
32

Cockayne E, Grobler P, Grundlingh W, Munganga J, Jv Vuuren (2005)
Protection of a graph. Util Math 67:19-32

Currd V (2014) The roman domination problem on grid graphs. Ph.D.
thesis, Universita di Catania

Dreyer PA Jr (2000) Applications and variations of domination in
graphs. Ph.D. thesis, Citeseer

Henning MA (2003) Defending the roman empire from multiple attacks.
Discret Math 271(1):101-115

Henning MA, Hedetniemi ST (2003) Defending the roman empire a
new strategy. Discret Math 266(1):239-251

Klobucar A, Pulji¢ I (2014) Some results for roman domination number
on cardinal product of paths and cycles. Kragujev J Math 38(1):83—
94

Lai YL, Lin CT, Ho HM (2011) Weak roman domination on graphs.
In: Proceedings of the 28th workshop on combinatorial mathe-
matics and computation theory, Penghu University of Science and
Technology, Penghu, Taiwan, May 27-28, 2011, pp 224-214

Liedloff M, Kloks T, Liu J, Peng SL (2005) Roman domination over
some graph classes. In: Graph-Theoretic Concepts in Computer
Science, Springer, pp 103-114

Liu CS, Peng SL, Tang CY (2010) Weak Roman Domination on Block
Graphs. In: Proceedings of The 27th workshop on combinato-
rial mathematics and computation theory, Providence University,
Taichung, Taiwan, April 30-May 1, 2010, pp 86-89

Pushpam PRL, Kamalam M (2015) Efficient weak roman domination
in myscielski graphs. Int J Pure Eng Math (IIPEM) 3(2):93-100

Pushpam PRL, Kamalam M (2015) Efficient weak roman domination
in graphs. Int J Pure Appl Math 101(5):701-710

Pushpam PRL, Mai TM (2011) Weak roman domination in graphs.
Discuss Math Graph Theory 31(1):161-170

ReVelle CS, Rosing KE (2000) Defendens imperium romanum: a clas-
sical problem in military strategy. Am Math Mon 107(7):585-594

Shang W, Hu X (2007) The roman domination problem in unit disk
graphs. In: Computational Science—ICCS 2007, Springer, pp 305—
312

Song X, Yang J, Xie Y (2011) Weak Roman domination in 2xn grid
graphs. J Henan Univ (Nat Sci) 41(1): 4-9 (in Chinese)

Song X, Bian J, Yin W (2013) Six safe grades on weak roman domina-
tion. J Henan Univ (Nat Sci) 5:002

Stewart I (1999) Defend the roman empire!. Sci Am 281:136-138

Targhi M, Rad NJ, Moradi MS (2012) Properties of independent roman
domination in graphs. Australas J] Combin 52:11-18

@ Springer

http://arxiv.org/abs/1405.5622

Computing and Informatics, Vol. 38, 2019, , doi: 10.31577/cai,2019,1

VARIABLE NEIGHBORHOOD SEARCH APPROACH
FOR SOLVING ROMAN AND WEAK ROMAN
DOMINATION PROBLEMS ON GRAPHS

Marija IVANOVIC

Faculty of Mathematics
University of Belgrade
Studentski trg 16/IV
11000 Belgrade, Serbia
e-mail: marijai@math.rs

Dragan UROSEVIC

Mathematical Institute, SANU
Kneza Mihaila 36

11000 Belgrade, Serbia

e-mail: draganu@mi.sanu.ac.rs

Abstract. In this paper Roman and weak Roman domination problems on graphs
are considered. Given that both problems are NP hard, a new heuristic approach,
based on a Variable Neighborhood Search (VNS), is presented. The presented
algorithm is tested on instances known from the literature, with up to 600 vertices.
The VNS approach is justified since it was able to achieve an optimal solution value
on the majority of instances where the optimal solution value is known. Also, for
the majority of instances where optimization solvers found a solution value but
were unable to prove it to be optimal, the VNS algorithm achieves an even better
solution value.

Keywords: Roman domination in graphs, weak Roman domination in graphs,
combinatorial optimization, metaheuristic, variable neighborhood search

Mathematics Subject Classification 2010: 05C69, 05C85, 90C10

58 M. Ivanovié, D. UroSevié
1 INTRODUCTION

The Roman domination problem (RD problem) was introduced by ReVelle and
Rosing [T] and Cockayne et al. [2] and can be interpreted as follows.

Assuming that any province of the Roman Empire is considered to be safe if
there is at least one legion (of maximum 2) stationed within it, the RD problem
requires that every unsafe province must be adjacent to a province with at least
two legions stationed within it and the total number of stationed legions within all
provinces of the Roman Empire is minimal.

In a graph terminology, let G = (V| E) be a simple undirected graph with a ver-
tex set V' such that each vertex u € V represents a province of the Roman Empire
and each edge, e € FE, represents an existing connection between two provinces.
Let f be a function f : V — {0,1,2} and let the weight of the vertex u, denoted
by f(u), represent the number of legions stationed at province u. Further, let the
weight of the function f be calculated by a formula }° . f(v). Function f is called
a Roman dominating function (RD function) if every vertex u such that f(u) =0
is adjacent to a vertex v such that f(v) = 2. The Roman domination problem is to
find an RD function f of a graph G with the smallest weight. The smallest weight of
the RD function f, denoted by vg(G), is known as the Roman domination number.

We illustrate the Roman domination problem in the example below.

Example 1. Let us assume that the Roman Empire can be described by a graph
G = (V,E) as it is presented below, in Figure

Figure 1: Graph G = (V, E)

The optimal number of legions necessary to defend the given graph is 4, provinces
represented by vertices v; and vs are with one stationed legion, province represented
by vertex w3 is with two stationed legions and all other provinces are without sta-
tioned legions. With the given schedule, vertices vy, v and vy are defended be-
cause they have at least one legion stationed within it, while vy, v4, vg, v7 and wvg
are defended since they are in the neighborhood of the vertex wvs, which is with
two stationed legions. The optimal solution to the proposed problem is illustrated
in Figure 2 where vertices are marked by black squares if they are representing
provinces with two stationed legions, marked by red circles if they are represent-
ing provinces with one stationed legion, and marked by white circles if they are
representing provinces without stationed legions.

VNS Approach for Solving the RD and the WRD Problems on Graphs 59

Figure 2: Illustrated solution of the RD problem on a graph G defined in the Ex-
ample []]

In order to reduce the number of legions necessary to defend the Roman Empire
against a single attack, Henning and Hedetniemi [3] introduced the weak Roman
domination problem (WRD problem) as a variant of the RD problem. First, they
assumed that every province of the Roman Empire is safe if there is at least one legion
stationed within it and every unsafe province is defended if it is adjacent to a safe
province. Then they required that for every unsafe province there exists at least one
adjacent safe province whose legion could move and protect it in case it is attacked,
such that this particular legion movement does not affect the Empire’s safety, i.e.,
all provinces are considered to be defended before and after the movement.

Similarly as for the RD problem, for a graph G = (V, F) and a function f :
V — {0,1,2}, every vertex with positive weight is considered to be defended, and
a vertex u with property f(u) = 0 is considered to be defended if it is adjacent
to a vertex v € V with positive weight. A function f is called a weak Roman
dominating function (WRD function) on a graph G if every vertex u with property
f(u) = 0 is adjacent to a vertex v with property f(v) > 0 and, with respect to
the function f’, ' : V — {0,1,2} defined by f'(u) = 1, f'(v) = f(v) — 1 and
f(w) = f(w), w € V\ {u,v}, all vertices are defended. The problem of finding
the WRD function f with the minimal weight for a given graph G is referred to
as the weak Roman domination problem (WRD problem). The minimum weight
of the WRD function f, denoted by 7,.(G), represents the weak Roman domination
number.

We illustrate the weak Roman domination problem in the example below.

Example 2. Let us assume that the Roman Empire can be described by the graph
G = (V, E) presented on Figure . The optimal solution value for the WRD problem
on the given graph is 3. Legions are stationed such that provinces represented by
vertices vy, vs and v; are with one stationed legion while all other provinces are
without stationed legions, see Figure [3| (vertices are marked by red circles if they
are representing provinces with one stationed legion and marked by white circles if
they are representing provinces without stationed legions).

With the given strategy, in case of an attack, provinces represented by vertices vo
and vg are defended by the legion stationed at the province represented by the
vertex v1. In case of attack, movements of legion stationed at province v; to province
vy or to vg does not affect Empire’s safety. Similarly, provinces v, and vg are defended

60 M. Ivanovié, D. UroSevié

Figure 3: Illustrated solution of the WRD problem for a graph G defined in the
Example 2]

by the legion from province vs, province v is defended by the legion from province vy,
ete.

Ivanovié [6] showed that neither the CPLEX nor the Gurobi optimization solvers
were able to solve the WRD problem on a huge number of instances with more than
100 vertices. Since there is only one algorithm for solving the WRD problem (see [7]),
which is written only for block graphs, we present a Variable Neighborhood Search
solution for solving the WRD problem on any types of graphs.

We also show that the same algorithm can be applied to the RD problem,
although Burger et al. [8] showed that there are significant differences in solving
these two problems (their assumption was based on the fact that the RD problem
involves static configuration of legions on the vertices of G, while the WRD problem
involves moving a legion between the adjacent vertices).

This paper is organized as follows. Previous work is given in Section The
Variable Neighborhood Search algorithm is proposed in Section [Computational
results are summarized in Section [l

2 PREVIOUS WORK

The Roman domination problem was introduced by Stewart [9] and ReVelle and
Rossing [1]. Inspired by Stewart’s paper, Cockayne et al. [2] gave some properties
of the Roman domination sets. Later Henning et al. [3] introduced the WRD prob-
lem as special variant of the RD problem and observed that every RD function in
a graph G is also a WRD function in G. In the same paper they proved relation
Y(G) < %(G) < vr(GQ) < 29(G), where v(G) represents cardinality of the minimum
dominating set on the graph G (dominating set is a set of vertices such that each of
the other vertices has a neighbor in the dominating set). Relations between several
different domination numbers were summarized by Chellali et al. [T0].

Upper and lower bounds for g for special types of graphs were determined,
for instance, in [2 M1, 13 T4, 15 06, I7]. Exact values for g for paths, cycles,
complete, complete n-partite and Petersen P(n,2) graphs were given in [2] [TT], 15}
16, 18, 19, 20, 2T, 22], while cardinal and Cartesian products of paths and cycles
and lexicographic product of some graphs were given in [T5], [16, T9]. Exact values of

VNS Approach for Solving the RD and the WRD Problems on Graphs 61

the 7,.(G) for paths, cycles, complete, complete n-partite, 2 x n grid and web graphs
and values of 7,.(G) of corona and products of some special types of graphs were
given in [3] 12, 23] 24].

The complexity of computing vz when restricted to interval graphs was men-
tioned as an open question in [2]. In the same paper it was shown that the problem
of computing yg on trees can be solved in linear time and that it remains NP-
complete even when restricted to split graphs, bipartite graphs, and planar graphs.
Linear-time algorithm for computing vz on bounded tree-width graphs was pro-
posed in [25]. In [20] it was shown that vz can be computed in linear time on
interval graphs and co-graphs. In the same papers, the authors give a polynomial
time algorithm for computing vz on AT-graphs and graphs with d-octopus. Linear-
time approximation algorithm and a polynomial time approximation scheme for the
RD problem on unit disk graphs was given in [22]. If we assume that the size
of G is a given constant, Pavli¢ and Zerovnik provided algorithm for computing vz
for polygraphs, including rota-graphs and fascia-graphs, that run in constant time
n [19]. Some variants of the algorithm for solving the RD problem on a grid graph
together with theoretical properties of g of grid graphs were given in [13]. In [I3]
Curro also showed that the same algorithm can be applied to some other types of
graph.

A binary programing formulations for the RD problem, which can be used for
computing g on arbitrary graphs by using standard optimization solvers, were
provided by ReVelle and Rossing [I] and Burger et al. [4]. Burger et al. [4] also gave
a binary programming formulations for the WRD problem. Recently Ivanovié [6]
gave another formulation for the WRD problem. Ivanovi¢ compared formulations
for the WRD problem in [6], showing that neither CPLEX nor Gurobi optimization
solvers were able to solve the WRD problem, regardless of the used formulation, on
many instances with more than 100 vertices.

Peng [7] gave a linear time algorithm for computing 7, on block graphs. Provid-
ing two faster algorithms, Chapelle et al. [26] broke trivial enumeration barrier of
O*(3™) for calculating 7, (G) (the notation O*(f(n)) suppresses polynomial factors).
With the first algorithm they proved that the WRD problem can be solved in O*(2")
time needing exponential space. The second algorithm uses polynomial space and
time, O*(2.2279™).

For some special classes of graphs (interval graphs, intersection graphs, co-graphs
and distance-hereditary graphs) the RD problem can be solved in linear time [I5],
but in the general case, the RD problem is NP-complete, [I1]. Proof that the WRD
problem is NP-complete, even when restricted to bipartite and chordal graphs, is
given in [3].

Now, since both the Roman and the weak Roman domination problems are NP-
complete problems, creating a heuristic that could be successful in finding an optimal
solution value, providing legions schedule as well, represents a challenge.

Therefore, in [13] a genetic algorithm for solving the RD problem was proposed
by Curro, and that was the only heuristic written for any type of Roman domination
problem known to the authors. In the mentioned paper, the author proposes a set

62 M. Ivanovié, D. Urosevié

of instances on random generated graphs which will be used in experimental results
of this paper.

In the next section we propose the Variable Neighborhood Search algorithm for
solving both the Roman and the weak Roman domination problems on graphs. The
VNS heuristic is chosen because it was previously proven to be successful for some
problems on graphs, for example [27, 28].

3 VARIABLE NEIGHBORHOOD SEARCH APPROACH
FOR SOLVING ROMAN AND WEAK ROMAN DOMINATION
PROBLEMS

The Variable Neighborhood Search (VNS) is a heuristic method, which starts from
some point from the search space, explores its neighborhoods, then changes the
starting point through some search procedures such that it moves to another point
of the search space, explores its neighborhoods, and repeats the whole procedure in
order to find a better solution. The VNS heuristic was proposed by Mladenovié [29)]
and later studied by Mladenovi¢ and Hansen [30] and Hansen and Mladenovié¢ in [31].

With respect to the problems’ definitions, let us assume that all Roman provinces
are represented by a set of vertices V', n = |V, and all existing roads by the set of
edges E = {e = (i,j), 1,7 €V, iand j are connected}, m = |E|, of some simple
undirected graph G = (V, E). Given that graph G is undirected, we will say that
e = (i,j) € E implies (j,i) € E. Moreover, for every vertex ¢ € V let the set of all
vertices adjacent to the vertex i be marked by V;. Furthermore, let us assume that
each province is represented by a number ¢ = 1,... n, and the number of legions
stationed within a province ¢ is represented by value z;. Vector X = (z1,...,x,) of
values z;, i = 1,...,n, is a feasible solution to the RD problem (WRD problem) if
f, f:V —={0,1,2} defined by

f@)=a;, 1€V (1)

is a Roman domination function (weak Roman domination function).

Given that a feasible solution to the WRD problem does not have to be a feasible
solution to the RD problem, we define a function feasibleSolution(X, problem) which
checks if X is a feasible solution for the problem € {RD, WRD}.

In order to check if vector X is a feasible solution to the RD problem, for every
element x; (i = 1,...,n) feasibleSolution(X, RD) checks if z; is a positive value, or
x; = 0 and there is at least one vertex v; connected to v; such that z; = 2.

In order to check if vector X is a feasible solution to the WRD problem, for
every element x; (i = 1,...,n) feasibleSolution(X,WRD) checks if it is a positive
value, or z; = 0 and at least one of the following two conditions holds:

1. there exists at least one element z; (j =1,...,n, j # i) with properties z; = 2
and j € N, i.e.

VNS Approach for Solving the RD and the WRD Problems on Graphs 63

e after a single legion movement from a province j to a province s (s # i, 7)
there still is one legion stationed at a province j which defends provinces ¢
and j;

e after a single legion movement from a province j to a province i, both
provinces ¢ and j are defended by stationed legions.

2. there exists at least one element x;, j € IV;, such that z; = 1 and swapping the
values of z; and z; does not affect the feasibility of the vector X. More precisely,
after the swap, for every element z, s € IV;, with property x, = 0, there exists
at least one xy, k € Ny, k #£ j, with property xp > 0, i.e.

e in order to move a single legion from a province j to a province %, all provinces
s, which are neighbors with j and which are without any stationed legion,
must have another neighbor k (k # j) with at least one stationed legion.

We will say that the function feasibleSolution(X, problem) is satisfied if there are
no undefended provinces with respect to the problem.

Also, we create function penalty(X, problem), which calculates the number of
undefended provinces with respect to the problem.

Further, we will say that two solutions, X and X’, have difference of the first
order if one legion was moved from one province to another (value of one element,
with value lower than 2, of the vector X, is increased by one, while value of the other
element, with positive value, of the vector X, is decreased by one) or disbanded
(value of one element, with positive value, of the vector X, is decreased by one).
Respectively, two solutions have difference of the k™ order if at most k legions were
moved, including possible disbanding.

Now, let us define a set Ni.(X), k = Epin, - - - » kmaz as the set of all vectors X’ that
have difference of the k' order from the solution X and call that set k" Neighborhood
to the solution X.

The VNS-based heuristic can be defined in such a way that it starts from the
initial feasible solution X, shakes it by creating another solution X' € N (X)
(by the expression shake we mean movement of a certain number of legions) and
then applies local search method in order to create a better feasible solution X”.
If the feasible solution X”, obtained by the local search procedure, is not better
than the current incumbent X (F(X”) > F*), the VNS algorithm repeats the
procedure of shaking, but in neighborhood Ny, (X) (i.e., k increments by kep)
and local search within it and so on until k reaches its maximum k,,,,. Otherwise,
if F(X") < F*, X* becomes X", F* becomes F'(X") and k becomes ky;,. Changing
neighborhoods enables one to get out from the local minima. The VNS algorithm is
presented as Algorithm [Functions InitialSolution(), Shake(), LocalSearch() and
StoppingCondition() are described below.

Function InitialSolution() (pseudo code is presented as Algorithm [2) is defined
so that it produces an initial feasible solution X* by applying random changes to
elements of the zero vector X. That is, InitialSolution() assigns randomly generated
number from the set {1,2} to a randomly chosen element of the vector X until X

64 M. Ivanovié, D. Urosevié

Algorithm 1 Variable Neighborhood Search metaheuristic
1. X* « InitialSolution();

2: F* «+ F(X™);

3: repeat

4: k k‘min;

5 repeat

6: X« X%

7: X' + Shake(X, k);

8: X" + LocalSearch(X');
9: if F(X") < F* then
10: F* + F(X");

11: X* X"

12: k < Emin;

13: else

14: k< k4 ksteps

15: until £ > k4.
16: until StoppingCondition()

Algorithm 2 InitialSolution()
1 X « {0,...,0};

2: repeat

3: i + random number € {1,... n};

4: x; < random number € {1,2};

5: until (feasibleSolution(X, problem))

6: fori=1,...,ndo

7: if z; > 0 then

8: T — x; — 1

9: if not(feasibleSolution(X, problem)) then
10: T — x; + 1

becomes a feasible solution. Then, given that the function InitialSolution() finds
a feasible solution, and our goal is to find a feasible solution such that the objective
function value F(X) (F(X) = Y7, x;) is minimal, the found solution will be, for
now, saved as the best one (X* < X, F* + F(X™)).

Further, in order to lower the value F*, i.e., to improve the incumbent, among
the elements of the vector X with positive value, InitialSolution() searches for an el-
ement whose value could be decreased by one such that the resulting vector remains
a feasible solution. If such an element is found, InitialSolution() will decrease its
value by one, and then continue to search for an element of the incumbent with
the same property. Whenever the procedure of decreasing a value of one element
produces a feasible vector, the resulting vector will be stored as the best one and
objective function value F(X) will be stored as F*. This procedure repeats until
there are no elements whose decreased value will result with feasible X.

VNS Approach for Solving the RD and the WRD Problems on Graphs 65

Algorithm 3 Shake()

X+ X*

2: DecreasingProcedure(X);

3: forj=1,...,k do

4 a + random number € {1,...,n} such that x, # 0;
5 b + random number € {1,...,n} such that z; # 2;
6 Tq — Tq — 1

7 Ty — xp + 1
8
9

. if feasibleSolution(X, problem) then
X*+ X;
10 DecreasingProcedure(X);

Now, if it is possible to find a feasible solution with the same or smaller objec-
tive function value than F*, the resulting solution will be better than the current
incumbent. Hence, we define the following two functions, Shake() and LocalSearch().
These two functions are defined to search for a better feasible solution than the one
with which they start the searching process.

Therefore, Shake(X*, k) function (presented as Algorithm [3) starts with a fea-
sible solution X*, stores it as X (X <« X*) and then randomly chooses an ele-
ment of the solution X with positive value and decreases its value by one. If the
resulting vector is again a feasible solution, it stores it as the new best solution
and repeats the process until an infeasible solution is found. We call this process
DecreasingProcedure(). Then, among the elements of the current solution X with
value lower than 2, shake function randomly choses one element, and among the ele-
ments with positive value of the incumbent X, it randomly chooses another element
and increases a value of the first chosen element by one and decreases the value of
the second chosen element also by one (i.e., it moves one legion) and repeats this
process k times. If the resulting vector X' is a feasible one, given that F(X') < F*
the new best feasible is found. Therefore, X’ will be stored as the new best feasi-
ble (X* < X'). Also, if X' is feasible, we will apply DecreasingProcedure() to the
vector X' and resulting vector denote as X’ (note that in this case it follows that
F(X')<F*—1).

Now, the LocalSearch(X') function (presented as Algorithms[]and[f]) starts with
an infeasible incumbent X', calculates its penalty(X’, problem) value and stores it as
Ndyin. Then it searches a neighborhood A7 (X’) of the incumbent X’ in order to find
a feasible solution. If a solution with lower penalty value is found it will be stored
as incumbent and search for a better solution continues. If a solution with penalty
value equal to zero is found, it means that a feasible solution is found. If there is no
solution with penalty value lower or equal to nd,,;, within the neighborhood N;(X")
of the incumbent, local search procedure will continue its search in the neighborhood
Ny(X") of the incumbent. In both cases, whenever a feasible solution is found, it
will be stored as the new best feasible solution. Also, local search procedure will
continue to search for a feasible solution within the neighborhoods of the incumbent

66

M. Ivanovié, D. Urosevié¢

Algorithm 4 LocalSearch()

1: ndpn + penalty(X', problem);

2: while some improvement is made do

3 fori=1,...,n suchthat:r;>0do

4: x; — x; —1;

5: if feasibleSolution(X', problem) then
6 X* + XI;

7 DecreasingProcedure(X');

8 Ndpin < penalty(X', problem);

9: go to line 3;
10: else

11: for j=1,...,n, j #1i such that x/j<2 do
12: z; — CC; +1;
13: nd < penalty(X', problem);
14: if nd =0 then
15: execute lines 6-9;
16: else

17: if nd < ndn;, then

18: Xl;etter - X/;

19: Ndpin < nd;
20: if nd = nd,,;, then
21: X, yme + X' with some probability;
22: z; — CC; -1
23: T, x; +1;
24: if X f;ett o is found then
25: Xl A Xl/)cttcr;
26: else
27: if X, is found then
28: with some probability X' « X -
29: else
30: run LS2();
31 X"+ X*;

(i.e., a decreasing procedure will be applied to the feasible incumbent) until there is
no better feasible solution.

In other words, local search procedure consists of three steps. In the first step,

local search procedure searches for an element (of the incumbent X’) with positive
value, decreases its value by one and checks if the resulting vector is a feasible
one. If the resulting vector is a feasible solution, it will be stored as X*. If the
resulting vector is infeasible, the procedure goes to the second step of the local
search. In the second step, the local search procedure searches for an element x;

of the incumbent of the local search procedure with property x; < 2, such that
increasing its value by one creates a feasible solution. If the required element is

VNS Approach for Solving the RD and the WRD Problems on Graphs 67

found, its value will be increased by one and the resulting feasible solution stored
as X*. If a feasible solution is found (both in the first and in the second step),
DecreasingProcedure() will be applied to that feasible incumbent, nd,,;, will be
set to be equal to penalty(X’, problem) and the local search procedure will restart
from the beginning of the first step (lines 6-9 and 15 of Algorithm . If the required
element of the second step was not found, solution with the smallest penalty value
penalty(X', problem) will be stored as Xj,.. and the solution with the penalty
value equal to the incumbent will be stored as X., .. Then, when the second step
is finished, in case that a better solution than the incumbent is found, it will be
set as the incumbent solution and the second step will restart from the beginning.
Similarly, if at least a solution of the same quality is found, it will be set as the
incumbent solution with some probability and the second step will restart from
the beginning. Otherwise, if there is no better solution nor a solution of the same
quality, the third step of the local search procedure will start.

In the third step of the local search procedure, we explore a neighborhood N (X")
of the incumbent in order to find a feasible solution. We denoted the third step of
the local search procedure as LS2() only because we want to make algorithm of
LocalSearch() function easier for reading.

In the third step (which is presented as Algorithm 7 the local search procedure
searches for an element 2; with value z; = 2 and for an element 1; with value x; <2
(i, =1,...,n). Then, it decreases the value of x; by two and increases a value of
Z‘; by one and then checks if a feasible solution is found, or if there exists an element
x; < 2 such that increasing its value by one results with a feasible solution or
with a better infeasible solution. Similarly as in the first two steps, LS2() function
computes penalty() value before and after each change and stores an incumbent
solution X’ with smaller penalty value than nd,., as X, and the incumbent
with the same penalty value as X., . Again, whenever a better incumbent is
found, nd,,;, will be set to be equal to penalty(X,,,;.,, problem) and the incumbent
solution of the same quality will be stored with some probability. Then, if a process
of decreasing a value of an element z; by two and increasing a value of each pair
of elements x; and x; by one does not create a feasible solution, values of elements
z;, v; and x, will be restored and the third step will continue its search with the
next element whose value is equal to 2. In case that all element combinations are
checked and better solution is found, it will be set as the incumbent and LS2() will
restart its search within the new incumbent. Similarly, in case that all elements
combinations are checked and only a solution of the same quality is found, it will
be set as the incumbent with some probability and LS2() will restart.

During all the steps of the local search procedure we are also checking if moves
from one solution to the solution of the same quality will not make a loop, i.e., we
will not store the incumbent of the same quality if it will take us to some previous
incumbent. Given that the size of a loop may vary, we do not allow moves from
one incumbent to the incumbent of the same quality for more then k,,,, successive
times. This means that the second and the third step will restart with the solution

68

M. Ivanovié, D. Urosevié¢

Algorithm 5 LS2()

1:
2:
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

ndpmin + penalty(X', problem)
while some improvement is made do

for i =1,...,n such that :1:; =2do
x; — x; -2
for j =1,...,n such that x; < 2do
1’; — 1’; +1
if feasibleSolution(X', problem) then
X* X’
DecreasingProcedure(X")
Ndmin < penalty(X', problem)

go to line 2
else
for s =1,...,n, such that x; <2do
x; — CE; +1

if feasibleSolution(X', problem) then
apply lines 8 — 11
else
nd < penalty(X")
if nd < ndyp,;, then
Xlgetter — Xl
Ndmin < nd
if nd = nd,;, then
X! yme < X' with some probability
:p; — x; -1
1; — .[; -1
1,; — 1; +2
if Xl;etter is found then
X « X,
else
if X.,.. is found then
with some probability X " Xéetm_
else
finish LS2()

better

of the same quality for no more than k,,,, successive times. If some improvements
are made within LS2(), the local search procedure restarts from the beginning of the
first step with the new incumbent. Finally, when all three steps are finished and no
improvement is made, LocalSearch() function will finish its search and the feasible
solution X* will be returned as X”. Now, if a better feasible solution is obtained
(F(X") < F*), its objective function value will be stored (F* < F(X")) and k will
be set to k., otherwise k£ will be increased by kse,. The VNS algorithm continues
until £ reaches its maximum or some other stopping condition occurs.

VNS Approach for Solving the RD and the WRD Problems on Graphs 69

Input parameters for the VNS heuristic are the problem, the minimal (k)
and the maximal (k;.;) numbers of neighborhoods that should be searched, the
increment of the parameter k (ks.p) and the maximum CPU time allowed (f44)-
In our implementation StoppingCondition() finishes the VNS algorithm if either
kmae or maximal CPU time allowed is reached.

The parameters used for the proposed VNS algorithm are k., = 1, Kkpmaz = 30,
kstep = 1 and t,,4, = 7200s and probability is set to p = 0.5.

The VNS algorithm cannot guarantee finding global optima because of its non-
deterministic nature. Therefore, in order to find solution of sufficiently high quality
it is necessary to run the VNS heuristic algorithm on the same instance more than
once. Hence, in out experiments each instance was run 20 times.

4 COMPUTATIONAL RESULTS

Experimental results obtained by the proposed VNS algorithm for solving the RD
and the WRD problems are presented in this section. The VNS algorithm was im-
plemented in C++. All computational experiments have been performed on Intel®)
Core™ i7-4700MQ CPU@2.40 GHz with 8 GB RAM, under Windows 10 operating
system.

CPLEX optimizations solver was run on all five formulations of the RD problem
presented in [5] on grid, planar, net and randomly generated sets of graphs. The
set of randomly generated graphs is the same as the one generated and proposed
by Currd in [I3] (names of instances consist of the number of vertices and of the
probability that edge is incident to vertices expressed in percentage) while grid, net
and planar sets are well known sets of graphs and also provided by Curro. Since
there are several different ILP formulations of the Roman and the weak Roman
domination problems (see [5] and [6]), and that performance of CPLEX differs in
accordance with used ILP formulation, for the RD problem we present only instances
for which optimal solution value is found, while for the WRD problem the results
are presented on all instances with some known solution. In case that CPLEX was
successful in finding an optimal solution value by using more than one formulation,
the smallest running time is presented.

The results are summarized in Tables [H&

Tables contain instances where CPLEX optimization solver was able to
find and prove optimality of the found solution value for the RD problem (CPLEX
was run for all five formulations of the RD problem presented in [5]). Tables GH
contains instances where CPLEX and Gurobi optimization solvers were success-
ful in finding some solution value by using at least one ILP formulation presented
in [6] within the given time. In all tables, whenever the optimal solution value is
found by more than one formulation, the smallest running time is shown. Also,
whenever optimization solver was unable to prove optimality of the found solution
either because of time limit or “out of memory” status, in the column t¢,, we put
sign “-".

70 M. Ivanovié, D. UroSevié

Instances are sorted by the number of vertices and the number of edges, in
that order. Tables are organized as follows: The name of the instance is given in
the first column. The next two columns (|V|, |E|) represent the number of ver-
tices and the number of edges. In tables that correspond to the RD problem for
all instances we have optimal solution values. Therefore, in the next two columns,
opt and t,, optimal solution value and minimal running time are given. In tables
that correspond to the WRD problem we have three columns, the optimal solu-
tion value, the best solution value and the smallest running time, which is given
regardless the optimization solver and ILP formulation. It should be noted that for
the WRD problem optimal solution values and minimal running times of standard
optimization solvers are taken from [6]. Also note that, in case that optimization
solver could not provide an optimal solution value, a symbol “-” stands in the col-
umn tg,;.

For both problems, the VNS algorithm was run 20 times for each problem in-
stance and informations of the best solution values obtained in these 20 runs are
given in the final four columns (sol, t, err, o) of all the tables. The best solution
value obtained by the VNS algorithm is given in the column sol and whenever the
VNS solution value was equal to the optimal solution value (from opt column), it
was marked as “opt”. The best time in 20 runs, necessary for the VNS algorithm to
reach the corresponding solution in the first occurrence is given in the column ¢. The
final two columns err and o contains informations on the average solution quality:
err stands for average relative error of found solutions from the best found solution,
which is calculated as err = 55 S err;, where err; = [VNS; — sol|/|[VNS,|, and
VNS, is the VNS solution obtained in the i run. Parameter o is the standard

deviation of the err obtained by the formula o = \/ > S (err; — err)2.

The VNS algorithm for the RD problem is tested on 231 different instances and
achieves the optimal solution on 218 of them. All solutions are found within the time
limit (running time for 99 instances is lower than 1 second and only for 29 larger
than 100 seconds). For majority of instances (on 214 instances), percentage average
relative error from the found solution is lower than 2.5 %. Also, for the majority
of instances (for 121 instances) the VNS heuristic running time is lower than the
best CPLEX running time. Detailed informations of these testings are given in

Tables -4l

Instance CPLEX VNS
Name V] |E| | opt tept | sol t err o
grid04x10 40 66 20 0.081 | opt 0.01 0 0
grid05x08 40 67 21 0.081 | opt 0.005 0 0
grid08x05 40 67 21 0.062 | opt <0.01 O 0
grid10x04 40 66 20 0.077 | opt 0.013 0 0
grid03x14 42 67 22 0.042 | opt <0.01 O 0
grid06x07 42 71 22 0.119 | opt <0.01 O 0
grid07x06 42 71 22 0.115 | opt <0.01 O 0
grid14x03 42 67 22 0.062 | opt 0.031 0 0

VNS Approach for Solving the RD and the WRD Problems on Graphs

Table |1| continues ...
Instance CPLEX VNS
Name V] |E| | opt tept | sol t err o
grid04x11 44 73 22 0.057 | opt 0.013 0 0
grid11x04 44 73 22 0.046 | opt <0.01 O 0
grid03x15 45 72 24 0.046 | opt 0.012 0 0
grid05x09 45 76 23 0.168 | opt <0.01 O 0
grid09x05 45 76 23 0.148 | opt 0.013 0 0
grid15x03 45 72 24 0.061 | opt 0.022 0 0
grid04x12 48 80 24 0.058 | opt 0.034 0 0
grid06x08 48 82 24 0.05 | opt 0.033 0.0040 0.0120
grid08x06 48 82 24 0.098 | opt 0.012 0.0040 0.0120
grid12x04 48 80 24 0.076 | opt 0.019 0 0
grid07x07 49 84 24 0.098 | opt 0.029 0.0060 0.0143
grid05x10 50 85 26 0.147 | opt <0.01 O 0
grid10x05 50 85 26 0.166 | opt <0.01 0 0
erid04x13 52 87 26 0.162 | opt 0.104 0 0
grid13x04 52 87 26 0.099 | opt 0.017 0.0019 0.0081
grid06x09 54 93 27 0.111 | opt 0.436 0.0143 0.0175
grid09x06 54 93 27 0.179 | opt < 0.01 0.0071 0.0143
erid05x11 55 94 28 0.153 | opt 0.013 0 0
grid11x05 55 94 28 0.184 | opt <0.01 0 0
grid04x14 56 94 28 0.059 | opt 0.035 0.0017 0.0075
grid07x08 56 97 28 0.131 | opt <0.01 O 0
grid08x07 56 97 28 0.153 | opt 0.033 0 0
grid14x04 56 94 28 0.06 | opt 0.438 0.0356 0.0109
grid04x15 60 101 30 0.092 | opt < 0.01 0.0016 0.0070
grid05x12 60 103 30 0.13 | opt 0.036 0.0194 0.0158
grid06x10 60 104 30 0.092 | opt 0.041 0.0048 0.0115
grid10x06 60 104 30 0.152 | opt 0.163 0.0097 0.0148
grid12x05 60 103 30 0.177 | opt 0.078 0.0129 0.0158
grid15x04 60 101 30 0.075 | opt 0.04 0 0
grid07x09 63 110 31 0.066 | opt 0.135 0.0094 0.0143
grid09x07 63 110 31 0.162 | opt 0.082 0 0
grid08x08 64 112 32 0.118 | opt 0.031 0.0015 0.0066
grid05x13 65 112 33 0.173 | opt 0.171 0.0029 0.0088
grid13x05 65 112 33 0.204 opt 0.054 0.0044 0.0105
grid06x11 66 115 33 0.137 | opt 0.045 0.0059 0.0118
grid11x06 66 115 33 0.169 | opt 0.246 0.0029 0.0088
grid05x14 70 121 35 0.207 | opt 0.264 0.0083 0.0127
grid07x10 70 123 34 0.146 opt 0.164 0.0171 0.0140
grid10x07 70 123 34 0.119 | opt 0.699 0.0171 0.0165
grid14x05 70 121 35 0.191 | opt 0.19 0.0083 0.0127
grid06x12 72 126 36 0.169 | opt 0.198 0.0054 0.0108
grid08x09 72 127 35 0.153 | opt 0.017 0.0069 0.0120
grid09x08 72 127 35 0.125 | opt 0.037 0.0110 0.0181

71

72

M. Ivanovié, D. Urosevié¢

Table |1| continues ...
Instance CPLEX VNS

Name V] |E| | opt tept | sol t err o

grid12x06 72 126 36 0.186 | opt 0.161 0.0014 0.0059
grid05x15 75 130 38 0.214 | opt 0.352 0.0026 0.0077
grid15x05 75 130 38 0.247 | opt 0.101 0 0

grid07x11 7 136 38 0.169 | opt 0.094 0.0013 0.0056
grid11x07 7 136 38 0.186 | opt 0.102 0.0026 0.0077
grid06x13 78 137 38 0.148 | opt 1.553 0.0242 0.0148
grid13x06 78 137 38 0.209 | opt 38 0.0256 0.0079
grid08x10 80 142 39 0.128 opt 0.132 0.0113 0.0124
grid10x08 80 142 39 0.142 | opt 0.039 0.0075 0.0115
grid09x09 81 144 38 0.073 | opt 2.937 0.0226 0.0236
grid06x14 84 148 41 0.134 opt 22.542 0.0306 0.0128
grid07x12 84 149 41 0.168 opt 1.727 0.0083 0.0114
grid12x07 84 149 41 0.192 opt 1.062 0.0024 0.0071
grid14x06 84 148 41 0.231 opt 7.766 0.0225 0.0116
erid08x11 88 157 42 0.192 | opt 11.391 0.0275 0.0151
grid11x08 88 157 42 0.141 | opt 0.778 0.0206 0.0187
erid06x15 90 159 44 0.247 | opt 5.733 0.0188 0.0125
grid09x10 90 161 43 0.223 | opt 1.224 0.0279 0.0184
grid10x09 90 161 43 0.237 | opt 0.672 0.0102 0.0133
grid15x06 90 159 44 0.264 | opt 3.141 0.0133 0.0109
erid07x13 91 162 44 0.178 | opt 0.801 0.0177 0.0112
grid13x07 91 162 44 0.178 | opt 0.882 0.0177 0.0131
grid08x12 96 172 46 0.21 | opt 1.527 0.0178 0.0176
grid12x08 96 172 46 0.191 | opt 5.175 0.0159 0.0113
grid07x14 98 175 47 0.247 | opt 1.621 0.0247 0.0149
grid14x07 98 175 47 0.214 | opt 2.929 0.0196 0.0137
grid09x11 99 178 47 0.194 | opt 3.737 0.0124 0.0136
grid11x09 99 178 47 0.287 | opt 4.522 0.0245 0.0187
grid10x10 100 180 48 0.22 | opt 0.199 0.0051 0.0088
erid08x13 104 187 50 0.262 | opt 0.274 0.0097 0.0130
erid13x08 104 187 50 0.401 | opt 9.993 0.0146 0.0135
erid07x15 105 188 50 0.348 | opt 20.739 0.0252 0.0121
erid15x07 105 188 50 0.278 | opt 22.274 0.0243 0.0102
grid09x12 108 195 51 0.268 | opt 9.665 0.0244 0.0204
grid12x09 108 195 51 0.29 | opt 22.53 0.0208 0.0183
grid10x11 110 199 52 0.306 | opt 2.545 0.0185 0.0192
grid11x10 110 199 52 0.256 opt 12.061 0.0222 0.0188
erid08x14 112 202 53 0.289 | opt 6.864 0.0201 0.0138
grid14x08 112 202 53 0.284 | opt 1.213 0.0228 0.0159
erid09x13 117 212 55 0.232 | opt 10.045 0.0260 0.0224
erid13x09 117 212 55 0.439 | opt 46.869 0.0262 0.0184
erid08x15 120 217 57 0.404 | opt 5.05 0.0154 0.0119
erid10x12 120 218 56 0.236 | opt 29.077 0.0381 0.0228

VNS Approach for Solving the RD and the WRD Problems on Graphs

Table |1| continues ...
Instance CPLEX VNS

Name V] |E| | opt tept | sol t err o

grid12x10 120 218 56 0.326 | opt 27.666 0.0343 0.0150
grid15x08 120 217 57 0.414 | opt 18.631 0.0161 0.0155
gridl1x11 121 220 57 0.443 opt 2.414 0.0219 0.0198
grid09x14 126 229 58 0.25 | opt 0.518 0.0397 0.0277
grid14x09 126 229 58 0.334 | opt 46.688 0.0458 0.0170
grid10x13 130 237 61 0.519 | opt 12.797 0.0174 0.0178
grid13x10 130 237 61 0.529 | opt 1.85 0.0188 0.0226
gridl1x12 132 241 62 0.453 opt 26.008 0.0248 0.0183
grid12x11 132 241 62 0.464 opt 31.964 0.0204 0.0131
grid09x15 135 246 63 0.535 | opt 36.088 0.0252 0.0185
grid15x09 135 246 63 0.733 | opt 23.271 0.0312 0.0168
grid10x14 140 256 65 0.478 | opt 78.302 0.0339 0.0165
grid14x10 140 256 65 0.432 | opt 10.337 0.0359 0.0210
gridl11x13 143 262 66 0.463 | opt 70.571 0.0303 0.0223
grid13x11 143 262 66 0.503 | opt 21.158 0.0372 0.0250
erid12x12 144 264 67 0.516 | opt 36.922 0.0349 0.0185
grid10x15 150 275 70 0.715 | opt 126.053 0.0266 0.0221
grid15x10 150 275 70 0.951 | opt 24.143 0.0301 0.0189
gridl1x14 154 283 71 0.483 | opt 59.802 0.0438 0.0246
gridl4x11 154 283 71 0.67 | opt 62.236 0.0382 0.0203
grid12x13 156 287 72 0.715 73 115.106 0.0232 0.0159
grid13x12 156 287 72 0.783 | opt 62.928 0.0384 0.0168
gridl1x15 165 304 76 0.77 | opt 117.803 0.0484 0.0198
grid15x11 165 304 76 0.918 | opt 52.315 0.0406 0.0193
grid12x14 168 310 7 0.614 | opt 181.88 0.0389 0.0205
grid14x12 168 310 77 0.721 opt 155.635 0.0424 0.0222
grid13x13 169 312 78 0.77 | opt 68.571 0.0325 0.0191
grid12x15 180 333 82 0.94 83 164.384 0.0362 0.0191
grid15x12 180 333 82 1.3 83 130.71 0.0439 0.0207
grid13x14 182 337 83 0.777 | opt 75.472 0.0486 0.0249
grid14x13 182 337 83 0.776 | opt 201.98 0.0441 0.0270
grid13x15 195 362 89 1.73 | opt 407.358 0.0483 0.0277
grid15x13 195 362 89 1.309 | opt 139.451 0.0460 0.0239
grid14x14 196 364 88 0.739 | opt 353.878 0.0516 0.0254
grid14x15 210 391 95 1.198 | opt 282.147 0.0508 0.0250
grid15x14 210 391 95 1.159 opt 92.424 0.0543 0.0202
erid15x15 225 420 | 102 1.357 | opt 697.859 0.0536 0.0240
grid20x20 400 760 | 176 37.579 | 185 676.713 0.0390 0.0135
grid30x20 600 1150 | 260 1279.438 | 286 5114.624 0.0330 0.0160

Table 1. Experimental results for the RD problem on grid graph instances

73

74 M. Ivanovié, D. Urosevié

From Table [1] it can be concluded that the VNS algorithm reaches the solu-
tion value equal to the optimal solution value on almost all instances (unsuccessful
on 5 among 133 instances of grid type). On instances “grid12x13”, “grid12x15”,
“grid15x12”, “grid20x20” and “grid30x20”, where an optimal solution was not
reached, percentage average relative error from the found solution is lower than
2.1%. Further, on 123 of 133 instances, percentage average relative error from the
found solution is lower or equal to 2.5% and on 5 instances between 2.5% and
3%. So, from Table [I] we can conclude that for the RD problem on grid graph
instances the VNS algorithm provides solutions of good quality and within the time
limit.

Instance CPLEX VNS
Name V| |E| | opt tepi sol t err
plan10 10 27 3 0.048 opt < 0.01
plan20 20 105 5 0.062 opt < 0.01
plan30 30 182 5 0.046 opt < 0.01
plan50 50 465 6 0.082 opt < 0.01
plan100 100 1540 10 0.0383 | opt 0.054
plan150 150 2867 12 1.303 opt 1.166
plan200 200 4475 16 145.262 | opt 2.466

O O OO o oo
o oo oo ofaN

Table 2: Experimental results for the RD problem on planar graph instances

From Table it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on all instances with ¢ equal to zero. The
VNS algorithm was also tested on instances “plan250” and “plan300” but, because
CPLEX was unable to provide optimal solution values on these instances, we will
not present the VNS algorithm results for these instances either. Also, we can
conclude that instances of planar type are easier for solving for the VNS algorithm
than for CPLEX, given the fact that the VNS algorithm provides results much more
rapidly.

Instance CPLEX VNS
Name V| |E| | opt tept | sol t err o
Net-10-10 100 342 28 0.043 | opt 0.129 0 0

Net-10-20 200 712 56 0.088 | opt 18.013 0.0018 0.0053
Net-20-20 400 1482 98 0.134 | opt 94494 0.0228 0.0316
Net-30-20 600 2252 | 140 0.162 | 145 6916.4 0.0580 0.0274

Table 3: Experimental results for the RD problem on net graph instances

From Table [§]it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on 3 of 4 instances. On instance “Net-30-
20”7, where an optimal solution value was not reached, percentage average relative
error is equal to 2.74%. Instances of the net type can be considered as easy for

VNS Approach for Solving the RD and the WRD Problems on Graphs

(0]

solving for CPLEX given the fact that CPLEX is able to provide results for less

than 1 second.

Instance CPLEX VNS
Name V] |E| | opt tept | sol t err o
Random-50-1 50 49 32 0.062 | opt 0.031 0 0
Random-50-2 50 49 33 0.062 | opt 0.069 0 0
Random-50-3 50 58 28 0.084 | opt 0.029 0 0
Random-50-4 50 54 30 0.08 | opt 0.006 0 0
Random-50-5 50 67 28 0.1 | opt 0.005 0 0
Random-50-6 50 86 25 0.184 | opt 0.041 0 0
Random-50-7 50 84 26 0.1 | opt <001 O 0
Random-50-8 50 95 23 0.121 | opt <001 O 0
Random-50-9 50 108 23 0.152 | opt 0.011 0 0
Random-50-10 50 112 22 0.162 | opt 0.021 0 0
Random-50-20 50 248 12 0.337 | opt <001 O 0
Random-50-30 50 373 9 0.178 | opt <001 0 0
Random-50-40 50 475 8 0.432 | opt <001 O 0
Random-50-50 50 597 6 0.285 | opt <001 0 0
Random-50-60 50 739 4 0.115 | opt <0.01 O 0
Random-50-70 50 860 4 0.121 | opt <0.01 O 0
Random-50-80 50 980 4 0.131 | opt <001 0 0
Random-50-90 50 1103 3 0.131 | opt <001 O 0
Random-100-1 100 100 61 0.062 | opt 4.662 0.0056 0.0092
Random-100-2 100 109 59 0.1 | opt 2.744 0.0058 0.0095
Random-100-3 100 181 48 0.168 | opt 3.767 0.0142 0.0113
Random-100-4 100 206 45 0.438 | opt 0.895 0.0184 0.0103
Random-100-5 100 231 39 0.469 | opt 3.425 0.0243 0.0251
Random-100-6 100 321 34 0.532 | opt 3.572 0.0157 0.0142
Random-100-7 100 317 32 0.585 | opt 3.291 0.0152 0.0152
Random-100-8 100 398 29 0.774 | opt 0.669 0.0017 0.0073
Random-100-9 100 430 27 0.728 | opt 0.389 0 0
Random-100-10 100 498 24 1.263 | opt 3.95 0.0160 0.0196
Random-100-20 100 981 14 0.971 | opt 0.086 0 0
Random-100-30 100 1477 11 2.916 | opt 0.137 0.0083 0.0250
Random-100-40 100 1945 8 0.761 | opt 0.052 0 0
Random-100-50 100 2483 7 0.808 | opt 0.049 0.0188 0.0446
Random-100-60 100 2985 6 0.345 | opt <001 0 0
Random-100-70 100 3435 5 0.285 | opt 0.044 0 0
Random-100-80 100 3935 4 0.238 | opt <001 0 0
Random-100-90 100 4446 4 0.263 | opt <001 O 0
Random-150-1 150 157 94 0.115 | opt 22.389 0.0011 0.0032
Random-150-2 150 243 78 0.332 | opt 234.872 0.0290 0.0151
Random-150-3 150 322 65 0.834 | opt 67.784 0.0171 0.0162
Random-150-4 150 437 53 1.046 | opt 30.304 0.0264 0.0155
Random-150-5 150 557 | 46 3.115 | opt 2.293 0.0169 0.0142
Random-150-6 150 705 38 10.362 | opt 19.279 0.0165 0.0165

76

M. Ivanovié, D. Urosevié¢

Table ELI continues . ..
Instance CPLEX VNS
Name V| |E| | opt tept | sol t err o
Random-150-7 150 778 34 5.622 | opt 0.462 0.0057 0.0114
Random-150-8 150 906 31 18.691 | opt 0.865 0 0
Random-150-9 150 965 30 10.489 | opt 3.727 0.0064 0.0161
Random-150-10 150 1152 27 45.44 | opt 3.128 0.0054 0.0128
Random-150-20 150 2228 16 31.857 | opt 1.561 0 0
Random-150-30 150 3318 12 21.507 | opt 0.383 0 0
Random-150-40 150 4476 9 13.628 | opt 0.409 0.0700 0.0458
Random-150-50 150 5550 8 17.671 | opt 0.014 0 0
Random-150-60 150 6734 6 1.742 | opt 0.012 0 0
Random-150-70 150 7807 6 8.667 | opt 0.015 0 0
Random-150-80 150 8924 4 0.366 | opt 0.019 0 0
Random-150-90 150 10043 4 0.839 | opt 0.017 0 0
Random-200-1 200 229 | 116 0.132 | 117 173.552 0.0167 0.0119
Random-200-2 200 390 92 0.933 93 647.247 0.0294 0.0184
Random-200-3 200 581 69 2.69 | opt 507.393 0.0403 0.0256
Random-200-4 200 737 60 13.301 | opt 568.08 0.0433 0.0214
Random-200-5 200 1010 47 60.589 | opt 41.339 0.0354 0.0217
Random-200-6 200 1180 42 245.778 | opt 84.363 0.0518 0.0332
Random-200-7 200 1453 36 130.93 | opt 11.272 0.0093 0.0173
Random-200-30 200 5876 12 153.586 | opt 9.478 0.0110 0.0346
Random-200-40 200 7907 10 89.663 | opt 0.302 0 0
Random-200-50 200 9895 8 30.844 | opt 0.248 0 0
Random-200-60 200 11971 6 7.707 | opt 0.496 0 0
Random-200-70 200 14059 6 19.27 | opt 0.025 0 0
Random-200-80 200 15918 4 0.831 | opt 0.038 0 0
Random-200-90 200 17821 4 0.801 | opt 0.03 0 0
Random-250-1 250 345 | 136 0.21 | 137 1111.594 0.0220 0.0130
Random-250-2 250 633 97 7.95 99 380.006 0.0304 0.0211
Random-250-3 250 956 73 257.891 | opt 132.791 0.0305 0.0252
Random-250-4 250 1194 62 1406.04 | opt 148.167 0.0224 0.0218
Random-250-30 250 9347 13 1408.412 14 1.005 0 0
Random-250-40 250 12500 10 359.601 | opt 0.743 0 0
Random-250-50 250 15605 8 61.927 | opt 0.621 0 0
Random-250-60 250 18660 8 206.548 | opt 0.037 0 0
Random-250-70 250 21741 6 40.379 | opt 0.037 0 0
Random-250-80 250 24836 4 3.071 | opt 0.465 0 0
Random-250-90 250 27974 4 1.404 | opt 0.052 0 0
Random-300-1 300 481 | 145 0.299 | 149 2797.158 0.0221 0.0135
Random-300-2 300 876 | 103 116.818 | 105 1057.238 0.0394 0.0192
Random-300-40 300 17934 10 483.378 | opt 3.232 0.0174 0.0437
Random-300-50 300 22520 8 334.329 | opt 31.909 0 0
Random-300-60 300 26952 8 622.751 | opt 0.069 0 0
Random-300-70 300 31390 6 66.546 | opt 0.286 0 0

VNS Approach for Solving the RD and the WRD Problems on Graphs 7

Table ELI continues ...
Instance CPLEX VNS
Name V| |E| | opt tept | sol t err o
Random-300-80 300 35871 5 34.579 | opt 1.725 0.0667 0.0816
Random-300-90 300 40412 4 2.191 | opt 0.092 0 0

Table 4. Experimental results for the RD problem on random graph instances

Table [contains the results of the experimental testing on random generated
graphs. As it can be seen, the VNS algorithm reaches the solution value equal to the
optimal solution value on many instances (unsuccessful on 7 among 87 instances).
On instances where an optimal solution was not reached, standard deviation o is
lower than 2.5%. Instances “Random-200-8"—“Random-200-20",
“Random-250-5"-“Random-250-20" and “Random-300-3"—“Random-300-30" are
omitted from Table] because CPLEX was unable to find an optimal solution value
on these instances. Nevertheless, the VNS algorithm finds some solution value for
these instances, but because we do not have an optimal solution value on these
instances, we will not present the VNS algorithm results either.

Before we present experimental results for the WRD problem on the same set
of instances, let us summarize the results presented in Tables [l The VNS algo-
rithm for the RD problem finds solutions of good quality relatively fast, especially
on instances of planar type. On instances of grid and net type, using CPLEX op-
timization solver is better, but on instances of planar and random type, using the
VNS algorithm is preferable.

Experimental results of the VNS algorithm for the WRD problem are performed
on instances where some solution values are known from the literature. Given that
CPLEX was not able to solve the WRD problem on many instances within the
time limit because of the “out of memory” status or because of the time limit, we
tested the VNS algorithm both on instances where the optimal solution value is
known and on instances where the found solution is not proved to be the optimal
solution. Testings were made on 84 instances of different type. CPLEX optimization
solver was able to find the optimal solution on 64 of them. The VNS algorithm was
not able to find solutions equal to the optimal ones only on two instances. On
instances where the optimal solution value is unknown, the VNS solutions are equal
or better than the solutions found by CPLEX. Also, for almost all instances, the VNS
algorithm runtime is lower than CPLEX runtime. Detailed information considering
these testings is provided in Tables B8

From Table [it can be concluded that the VNS reaches the solution value
equal to the optimal solution value on almost all instances (unsuccessful only on
“grid06x13”). On instances where the optimal solution value is unknown, o is lower
than 2.2 %. Running times on instances where the optimal solution value is known
shows that the VNS rapidly reaches these solutions in lower than 150 seconds. Even
more, on many instances (38 of 42), running times are smaller than 30 seconds and
only on “grid07x14” and “grid08x12” greater than 100 seconds. On instances where

78

M. Ivanovié, D. Urosevié¢

Instance Solver VNS

Name V| |E| opt | val t sol t err o

grid04x10 40 66 15 | 15 4.109 opt 0.015 0 0

grid05x08 40 67 14 | 14 4.64 opt 0.047 0.0333 0.0333
grid03x14 42 67 16 | 16 4.829 opt <001 O 0

grid06x07 42 71 15 | 15 5.801 opt 0.08 0.0063 0.0188
grid04x11 44 73 16 | 16 5.5 opt 0.031 0.0088 0.0210
grid03x15 45 72 17 | 17 7.789 opt 0.012 0 0

grid05x09 45 76 16 | 16 7.908 opt 0.139 0.0235 0.0288
grid04x12 48 80 17 | 17 12.84 opt 0.069 0.0361 0.0265
grid06x08 48 82 18 | 18 25.499 opt <001 O 0

grid07x07 49 84 18 | 18 9.845 opt 0.021 0 0

grid05x10 50 85 18 | 18 10.61 opt 0.055 0.0053 0.0158
grid04x13 52 87 19 | 19 11.813 opt 0.035 0.0050 0.0150
grid06x09 54 93 19 | 19 25.539 opt 0.331 0.0450 0.0150
grid05x11 55 94 19 | 19 11.424 opt 0.388 0.0300 0.0245
grid04x14 56 94 20 | 20 35.326 opt 0.082 0.0214 0.0237
grid07x08 56 97 20 | 20 21.882 opt 0.076 0.0286 0.0233
grid04x15 60 101 22 | 22 40.256 opt 0.163 0 0

grid05x12 60 103 21 | 21 14.88 opt 4.036 0.0271 0.0260
grid06x10 60 104 21 | 21 35.713 opt 0.746 0.0273 0.0223
grid07x09 63 110 22 | 22 70.259 opt 0.318 0.0370 0.0155
grid08x08 64 112 23 | 23 171.925 opt 0.037 0.0063 0.0149
grid05x13 65 112 23 | 23 67.007 opt 0.928 0.0208 0.0208
grid06x11 66 115 24 | 24 381.771 opt 0.757 0.0040 0.0120
grid05x14 70 121 24 | 24 73.489 opt 27.03 0.0491 0.0202
grid07x10 70 123 25 | 25 618.089 opt 0.67 0.0077 0.0154
grid06x12 72 126 26 | 26 1166.405 | opt 0.544 0.0074 0.0148
grid08x09 72 127 25 | 25 435.146 opt 15.935 0.0383 0.0117
erid05x15 75 130 26 | 26 288.06 opt 8.133 0.0313 0.0174
erid07x11 77T 136 27 | 27 988.596 | opt 0.582 0.0268 0.0155
erid06x13 78 137 27 | 27 1005.126 | 28 0.407 0.0086 0.0149
grid08x10 80 142 28 | 28 2162.812 | opt 10.011 0.0375 0.0178
grid09x09 81 144 28 | 28 737.579 opt 12.521 0.0437 0.0251
grid06x14 84 148 30 | 30 - 30 2.319 0.0097 0.0148
grid07x12 84 149 29 | 29 4637.38 opt 47.642 0.0441 0.0181
grid08x11 88 157 31 | 31 - 31 3.412 0.0278 0.0190
grid06x15 90 159 32 | 32 - 32 1.196 0.0179 0.0218
grid09x10 90 161 31 | 31 - 31 40.651 0.0443 0.0197
grid07x13 91 162 32 | 32 - 32 16.778 0.0272 0.0130
grid08x12 96 172 33 | 33 - 33 107.765 0.0403 0.0184
grid07x14 98 175 34 | 34 1720.86 | opt 143.804 0.0433 0.0181
grid09x11 99 178 35 | 35 - 35 2.261 0.0181 0.0132
grid10x10 100 180 35 | 35 35 6.63 0.0302 0.0168

Table 5: Experimental results for the WRD problem on grid graph instances

VNS Approach for Solving the RD and the WRD Problems on Graphs 79

optimization solvers were unable to prove optimality of the found solutions, the
VNS heuristic reaches the same solution values for less than 108 seconds. So, we
can conclude that the VNS heuristic solves the WRD problem on grid graph instance
significantly faster than the optimization solver CPLEX and found solutions are of
good quality.

Instance Solver VNS
Name |V| |E| opt | val t sol t err o
planl0 10 27 3 3 0156 | opt < 0.01 0 0
plan20 20 105 3 3 1.36 | opt < 0.01 0 0
plan30 30 182 5 5 749 | opt < 0.01 0 0
plan50 50 465 6 6 98.49 | opt 0.01 0 0
plan100 100 1540 9 9 - 8 4.916 0 0
plan150 150 2867 13 | 13 - 10 88.248 0.0273 0.041

Table 6: Experimental results for the WRD problem on planar graph instances

From Table [f] it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on all instances. Also, on instances where
optimization solvers were unable to prove optimality of the found solution, the VNS
solution is better. Again, running time for the instances where the optimal solution
value is known is lower than 1 second. On “planl00”, where optimization solvers
were unable to prove optimality of the found solution, the proposed VNS algorithm
finds solution value with o equal to zero. On “plan150” the VNS solution is equal
to 10 with o = 0.0417, which can be considered as the solution of the good quality
(solution value equal to 10 was reached in 14 of 20 runnings).

Instance Solver VNS
Name V] |E| opt | val t sol t err o
Net-10-10 100 342 20 20 148.213 | opt 4.29 0.0095 0.0190
Net-10-20 200 712 40 40 - 40 67.323 0.0146 0.0119
Net-20-20 400 1482 83 83 - 81 2066.577 0.0180 0.0132
Net-30-20 600 2252 122 | 122 - 123 6034.018 0.0474 0.0352

Table 7: Experimental results for the WRD problem on net graph instances

In Table [optimization solvers were able to find optimal solution value only for
“Net-10-10". The same solution value was found by the proposed VNS algorithm
with lower running time and with o equal to 1.9 %. On “Net-10-20” and “Net-20-20”
the VNS algorithm reaches the same and better solution value than optimization
solvers, while for “Net-30-20” the VNS solution value is worse than the solvers’
solution value.

From Table [§ it can be concluded that the VNS algorithm reaches the solution
value equal to the optimal solution value on almost all instances (unsuccessful only
on 1 among 25 instances of random type). On instance “Random-100-6", where the

80 M. Ivanovié, D. UroSevié

Instance Solver VNS
Name \4 |E| opt | val t sol t err o
Random-50-1 50 49 24| 24 0.281 opt <001 O 0
Random-50-2 50 49 23| 23 0.343 opt 0.034 0 0
Random-50-3 50 58 24| 24 0.39 opt 0.062 0 0
Random-50-4 50 54 24| 24 0.484 opt 0.225 0 0
Random-50-5 50 67 22| 22 0.968 opt 0.377 0.0196 0.0216
Random-50-6 50 8 19| 19 2.053 opt 0.03 0 0
Random-50-7 50 84 19| 19 3.171 opt 0.889 0.0175 0.0238
Random-50-8 50 95 17| 17 3.093 opt 0.131 0.0333 0.0272
Random-50-9 50 108 17| 17 26.373 | opt 0.129 0.0028 0.0121
Random-50-10 50 112 16| 16 6.781 opt 0.047 0 0
Random-50-20 50 248 9 9 346.264 |opt <001 O 0
Random-50-30 50 373 7 7 476.278 | opt 0.038 0 0
Random-50-40 50 475 6 6 1447.318 | opt 0.092 0 0
Random-50-50 50 597 5 5 1545.06 | opt 0.013 0 0
Random-50-60 50 739 4 4 210.71 | opt 0.014 0 0
Random-50-70 50 860 3 3 156.14 | opt 0.059 0 0
Random-50-80 50 980 3 3 90813 |opt <001 O 0
Random-50-90 50 1103 2 2 36.53 opt 0.03 0 0
Random-100-1 100 100 46 | 46 0.64 opt 157.329 0.0354 0.0145
Random-100-2 100 109 46 | 46 0.843 opt 36.052 0.0148 0.0117
Random-100-3 100 181 37| 37 7.421 opt 23.64 0.0445 0.0261
Random-100-4 100 206 34| 34 61.702 | opt 12.367 0.0213 0.0175
Random-100-5 100 231 32| 32 164.502 | opt 60.361 0.0299 0.0186
Random-100-6 100 321 26| 26 5806.74 | 27 12.441 0.0265 0.0217
Random-100-7 100 317 25| 25 4009.377 | opt 204.939 0.0434 0.0234
Random-100-8 100 317 23| 23 - 23 313.924 0.0448 0.0279
Random-100-9 100 430 21| 21 - 21 4.98 0.0269 0.0293
Random-100-10 100 498 19| 19 - 19 460.905 0.0445 0.0260
Random-100-20 100 981 12| 12 - 11 8.951 0.0250 0.0382
Random-100-30 100 1477 11| 11 — 8 1462.462 0.1056 0.0242
Random-100-40 100 1945 9 9 - 7 1.501 0 0
Random-100-50 100 2483 7 7 - 5 37.134 0 0

Table 8: Experimental results for the WRD problem on random generated graph
instances

optimal solution value was not reached, o is equal to 2.17%. Further, on instances
“Random-100-40" and “Random-100-50", where optimization solvers were unable
to prove optimality of the found solution, the VNS algorithm finds better solutions
values with ¢ equal to zero for less than 38 seconds.

From Tables FH§ we can see that optimization solvers were unable to provide
an optimal solution value on instances of grid type with number of vertices larger
than 84, on instances of planar and net type with number of vertices larger than

VNS Approach for Solving the RD and the WRD Problems on Graphs 81

100 and on large number of instances of random type with 100 vertices. Also, we
can see that, on the same set of instances, the VNS algorithm finds solutions of the
WRD problem of good quality and, for many instances, faster than optimization
solvers.

5 CONCLUSIONS

In this paper, the Variable Neighborhood Search approach for solving the Roman
and the weak Roman domination problems is proposed. Tests were run on grid, net,
planar and randomly generated graphs, with up to 600 vertices. The VNS was able
to find solutions equal to the optimal ones for the RD problem on 218 of 231 tested
instances and able to find solutions equal or better than CPLEX solutions for the
WRD problem on 84 of 86 tested instances. Therefore, we can conclude that the VNS
algorithm provides good quality solutions regardless of the type of instance and the
type of problem, which makes it efficient for solving both the Roman and the weak
Roman domination problems. Moreover, given the fact that optimization solvers
were not able to solve the WRD problem on large scale instances (i.e., instances
with more than 100 vertices) proposed algorithm can be used. Furthermore, given
the fact that this algorithm does not contain any limitations on the number of
variables and the number of conditions, it can be used for solving the RD problem
on instances where optimization solvers are not able to provide an optimal solution
value.

In future work, hybridization with some exact methods or application of some
other heuristic could lead to possible better achievements in solving the Roman and
the weak Roman domination problems.

Acknowledgments

This research has been partially supported by the Serbian Ministry of Education,
Science and Technological Development under grants No. TR36006 and ON174010.
The authors gratefully acknowledge the two referees of this paper for many excellent
suggestions which have helped in improving this paper.

REFERENCES

[1] REVELLE, C.S.—RosING, K.E.: Defendens Imperium Romanum: A Classical
Problem in Military Strategy. The American Mathematical Monthly, Vol. 107, 2000,
No. 7, pp. 585-594, doi: 10.2307/2589113.

[2] COCKAYNE, E.J.—DREYER, P.A.—HEDETNIEMI, S.M.—HEDETNIEMI, S.T.:
Roman Domination in Graphs. Discrete Mathematics, Vol. 278, 2004, No. 1-3,
pp. 11-22; doi: 10.1016/j.disc.2003.06.004.

https://doi.org/10.2307/2589113
https://doi.org/10.1016/j.disc.2003.06.004

82

3]

[4]

[5]

(6]

(7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Ivanovié, D. Urosevié¢

HenNNING, M. A.—HEDETNIEMI, S.T.: Defending the Roman Empire — A New
Strategy. Discrete Mathematics, Vol. 266, 2003, No. 1-3, pp. 239-251, doi:
10.1016/s0012-365x(02)00811-7.

BURGER, A.P.—DE VILLIERS, A.P.—VAN VUUREN, J.H.: A Binary Program-
ming Approach Towards Achieving Effective Graph Protection. Proceedings of the
2013 ORSSA Annual Conference, ORSSA, 2013, pp. 19-30.

IvaNovi¢, M.: Improved Mixed Integer Linear Programing Formulations for Ro-
man Domination Problem. Publications de I'Institut Mathématique, Vol. 99, 2016,
No. 113, pp. 51-58, doi: 10.2298/PIM1613051L.

Ivanovi¢, M.: Improved Integer Linear Programming Formulation for Weak Roman
Domination Problem. Soft Computing, Vol. 22, 2018, No. 19, pp. 6583-6593, doi:
10.1007/s00500-017-2706-4.

Liu, C.S.—PENG, S.L.—Tang, C.Y.: Weak Roman Domination on Block
Graphs. Proceedings of the 27" Workshop on Combinatorial Mathematics and Com-
putation Theory, Providence University, Taichung, Taiwan, April 30-May 1, 2010,
pp- 86—89.

BURGER, A. P.—COCKAYNE, E. J.—GRUNDLINGH, W. R.—MYNHARDT, C. M.—
VAN VUUREN, J. H.—WINTERBACH, W.: Finite Order Domination in Graphs. Jour-
nal of Combinatorial Mathematics and Combinatorial Computing, Vol. 49, 2004,
pp- 159-176.

STEWART, [.: Defend the Roman Empire! Scientific American, Vol. 281, 1999,
pp. 136-138, doi: 10.1038/scientificamerican1299-136.

CHELLALI, M.—HAYNES, T. W.—HEDETNIEMI, S.T.: Bounds on Weak Roman
and 2-Rainbow Domination Numbers. Discrete Applied Mathematics, Vol. 178, 2014,
pp. 27-32, doi: 10.1016/j.dam.2014.06.016.

DREYER JRr, P. A.: Applications and Variations of Domination in Graphs. Ph.D.
thesis, Rutgers University, 2000.

COCKAYNE, E.J.—GROBLER, P.J.P.—GRUNDLINGH, W. R.—MUNGANGA, J.—
VAN VUUREN, J.H.: Protection of a Graph. Utilitas Mathematica, Vol. 67, 2005,
pp- 19-32.

CURRO, V.: The Roman Domination Problem on Grid Graphs. Ph.D. thesis, Uni-
versita di Catania, 2014.

FAVARON, O.—KARrRAMI, H.—KHOEILAR, R.—SHEIKHOLESLAMI, S.M.: On the
Roman Domination Number of a Graph. Discrete Mathematics, Vol. 309, 2009,
No. 10, pp. 3447-3451, doi: 10.1016/j.disc.2008.09.043.

KLOBUCAR, A.—PuULJI¢, I.: Some Results for Roman Domination Number on Car-
dinal Product of Paths and Cycles. Kragujevac Journal of Mathematics, Vol. 38, 2014,
No. 1, pp. 83-94, doi: 10.5937/KgJMath1401083K.

KLOBUCAR, A.—PuLJI¢, I.: Roman Domination Number on Cardinal Product
of Paths and Cycles. Croatian Operational Research Review, Vol. 6, 2015, No. 1,
pp. 71-78, doi: 10.17535/crorr.2015.0006.

XING, H.-M.—CHEN, X.—CHEN, X.-G.: A Note on Roman Domination in
Graphs. Discrete Mathematics, Vol. 306, 2006, No. 24, pp. 3338-3340, doi:
10.1016/j.disc.2006.06.018.

https://doi.org/10.1016/s0012-365x(02)00811-7
https://doi.org/10.2298/PIM1613051I
https://doi.org/10.1007/s00500-017-2706-4
https://doi.org/10.1038/scientificamerican1299-136
https://doi.org/10.1016/j.dam.2014.06.016
https://doi.org/10.1016/j.disc.2008.09.043
https://doi.org/10.5937/KgJMath1401083K
https://doi.org/10.17535/crorr.2015.0006
https://doi.org/10.1016/j.disc.2006.06.018

VNS Approach for Solving the RD and the WRD Problems on Graphs 83

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Wanag, H—Xu, X.—YANG, Y.—J1, C.: Roman Domination Number of General-
ized Petersen Graphs p(n,2). arXiv Preprint, arXiv:1103.2419, 2011.

PAVLIC, P.—ZEROVNIK, J.: Roman Domination Number of the Cartesian Products
of Paths and Cycles. The Electronic Journal of Combinatorics, Vol. 19, 2012, No. 3,
Art. No. P19.

LiepLorr, M.—Kroks, T.—Liu, J.—PENG, S.-L.: Efficient Algorithms for Ro-
man Domination on Some Classes of Graphs. Discrete Applied Mathematics, Vol. 156,
2008, No. 18, pp. 3400-3415, doi: 10.1016/j.dam.2008.01.011.

LiepLorr, M.—KLOKS, T.—LI1u, J.—PENG, S. L.: Roman Domination over Some
Graph Classes. In: Kratsch, D. (Ed.): Graph-Theoretic Concepts in Computer Sci-
ence (WG 2005). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 3787, 2005, pp. 103114, doi: [10.1007/11604686-10.

SuaNnG, W.—Hu, X.: The Roman Domination Problem in Unit Disk Graphs. In:
Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P. M. A. (Eds.): Computational Scien-
ce (ICCS 2007). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 4489, 2007, pp. 305-312, doi: 10.1007/978-3-540-72588-6_51.

Pusupam, P. R. L.—MALINT MAI1, T. N. M.: Weak Roman Domination in Graphs.
Discussiones Mathematicae Graph Theory, Vol. 31, 2011, No. 1, pp. 161-170, doi:
10.7151 /dmgt.1532.

Lan, Y. L.—LiN, C. T.—Ho, H. M.: Weak Roman Domination on Graphs. Proceed-
ings of the 28" Workshop on Combinatorial Mathematics and Computation Theory,
National Penghu University of Science and Technology, Penghu, Taiwan, May 2728,
2011, pp. 224-214.

PENG, S.-L.—TsaAI1, Y.-H.: Roman Domination on Graphs of Bounded Treewidth.
Proceedings of the 24" Workshop on Combinatorial Mathematics and Computation
Theory, 2007, pp. 128-131.

CHAPELLE, M.—COCHEFERT, M.—COUTURIER, J.-F.—KRrATSCH, D.—
LiEDLOFF, M.—PEREZ, A.: Exact Algorithms for Weak Roman Domination.
In: Lecroq, T., Mouchard, L. (Eds.): Combinatorial Algorithms (IWOCA 2013).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 8288, 2013,
pp. 81-93, doi: 10.1007/978-3-642-45278-9_8.

HANSEN, P.—MLADENOVIC¢, N.—UROSEVI¢, D.: Variable Neighborhood Search
for the Maximum Clique. Discrete Applied Mathematics, Vol. 145, 2004, No. 1,
pp. 117-125, doi: [10.1016/5.dam.2003.09.012.

BRIMBERG, J.—MLADENOVI¢, N.—UROSEVI¢, D.—NcaIl, E.: Variable Neigh-
borhood Search for the Heaviest k-Subgraph. Computers and Operations Research,
Vol. 36, 2009, No. 11, pp. 2885-2891, doi: [10.1016/j.cor.2008.12.020.

MLADENOVIC, N.: A Variable Neighborhood Algorithm — A New Metaheuristic for
Combinatorial Optimization. Papers Presented at Optimization Days, 1995, p. 112.

MLADENOVIC, N.—HANSEN, P.: Variable Neighborhood Search. Computers and
Operations Research, Vol. 24, 1997, No. 11, pp. 1097-1100, doi: [10.1016/s0305-
0548(97)00031-2.

https://doi.org/10.1016/j.dam.2008.01.011
https://doi.org/10.1007/11604686_10
https://doi.org/10.1007/978-3-540-72588-6_51
https://doi.org/10.7151/dmgt.1532
https://doi.org/10.1007/978-3-642-45278-9_8
https://doi.org/10.1016/j.dam.2003.09.012
https://doi.org/10.1016/j.cor.2008.12.020
https://doi.org/10.1016/s0305-0548(97)00031-2
https://doi.org/10.1016/s0305-0548(97)00031-2

84 M. Ivanovié, D. Urosevié

[31] HANSEN, P.—MLADENOVIC, N.: An Introduction to Variable Neighborhood Search.
In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (Eds.): Meta-Heuristics.
Springer, Boston, MA, 1999, pp. 433-458, doi: 10.1007/978-1-4615-5775-3_30.

Marija IvaNovi¢ finished her master studies at Faculty
of Mathematics, University of Belgrade, in 2011. Since 2007 she
has worked at the Faculty of Mathematics, Department for Nu-
merical Mathematics and Optimization as Assistant. The main
areas of research are game theory, combinatorial optimization
and operations research. She participates in research projects fi-
nanced by the Ministry of Education, Science and Technological
Development, Serbia.

Dragan UROSEVIC finished his Ph.D. studies at Faculty of
Mathematics, University of Belgrade, in 2004. Since 1993 he
has worked at the Mathematical Institute SANU. The main ar-
eas of research are combinatorial optimization and operations
research. He is engaged in the development and implementation
of heuristic methods to solve complex problems in graph theory
and the development of methods for solving location problems.
He participates in research projects financed by the Ministry of
Education, Science and Technological Development, Serbia.

https://doi.org/10.1007/978-1-4615-5775-3_30

ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325429486

A Mixed Integer Linear Programming Formulation for Restrained Roman
Domination Problem

Article - November 2015

CITATIONS READS
0 102
1 author:

Marija Ivanovic
ﬂ Institute of Physics Belgrade
7 PUBLICATIONS 25 CITATIONS

SEE PROFILE

All content following this page was uploaded by Marija Ivanovic on 29 May 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325429486_A_Mixed_Integer_Linear_Programming_Formulation_for_Restrained_Roman_Domination_Problem?enrichId=rgreq-630cbf85e2b90d4865afc1b4a5188076-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyOTQ4NjtBUzo2MzE3MTc0NTQ5MzgxMTNAMTUyNzYyNDU4NjI3NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325429486_A_Mixed_Integer_Linear_Programming_Formulation_for_Restrained_Roman_Domination_Problem?enrichId=rgreq-630cbf85e2b90d4865afc1b4a5188076-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyOTQ4NjtBUzo2MzE3MTc0NTQ5MzgxMTNAMTUyNzYyNDU4NjI3NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-630cbf85e2b90d4865afc1b4a5188076-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyOTQ4NjtBUzo2MzE3MTc0NTQ5MzgxMTNAMTUyNzYyNDU4NjI3NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Ivanovic-6?enrichId=rgreq-630cbf85e2b90d4865afc1b4a5188076-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyOTQ4NjtBUzo2MzE3MTc0NTQ5MzgxMTNAMTUyNzYyNDU4NjI3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Ivanovic-6?enrichId=rgreq-630cbf85e2b90d4865afc1b4a5188076-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyOTQ4NjtBUzo2MzE3MTc0NTQ5MzgxMTNAMTUyNzYyNDU4NjI3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Institute-of-Physics-Belgrade?enrichId=rgreq-630cbf85e2b90d4865afc1b4a5188076-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyOTQ4NjtBUzo2MzE3MTc0NTQ5MzgxMTNAMTUyNzYyNDU4NjI3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Ivanovic-6?enrichId=rgreq-630cbf85e2b90d4865afc1b4a5188076-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyOTQ4NjtBUzo2MzE3MTc0NTQ5MzgxMTNAMTUyNzYyNDU4NjI3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Ivanovic-6?enrichId=rgreq-630cbf85e2b90d4865afc1b4a5188076-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyOTQ4NjtBUzo2MzE3MTc0NTQ5MzgxMTNAMTUyNzYyNDU4NjI3NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

9 el Theory and Applications of
. &q Mathematics & Computer Science

(ISSN 2067-2764, EISSN 2247-6202)
http://www.uav.ro/applications/se/journal/index.php/tamcs

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110- 115

A Mixed Integer Linear Programming Formulation for Restrained
Roman Domination Problem

Marija Ivanovi¢*

“Faculty of Mathematics, University of Belgrade, Studentski trg 16/IV, 11 000 Belgrade, Serbia

Abstract

This paper deals with a subgroup of Roman domination problems (RDP) named Restrained Roman domination
problem (RRDP). It introduces a new mixed integer linear programming (MILP) formulation for the RRDP. The pre-
sented model uses relatively small number of the variables and constraints and could be of use both in theoretical and
practical purposes. Proof of its correctness is given, i.e. it was shown that optimal solution to the RRDP formulation
is equal to the optimal solution of the original problem.

Keywords: Restrained Roman domination in graphs, combinatorial optimization, integer linear programming.
2010 MSC: 90C11, 05C69.

1. Introduction

With contiguous territories throughout Europe, North Africa, and the Middle East, the Roman
Empire was one of the largest in history (Kelly, 2006). The idea of building ”empire without end”
(Nicolet, 1991) expressed the ideology that neither time nor space limited the Empire. During the
fourth century A.D., Emperor of Rome, Constantine the Great, intended to accomplish that idea.
In order to expand the Roman Empire, he dealt with the next problem: How to organize legions
such that entire Empire of Rome stayed defended? Since legions were highly trained, it was as-
sumed that they could move fast from one city to another. City was considered to be defended
if at least one legion was stationed in it or it was adjacent to a city with two legions within. The
second condition was made because legion could move from a stationed city only if such an act
won’t leave it undefended.

Inspired by this historical problem, a new subgroup of the domination problems, named Ro-

man domination problem (RDP), was proposed by Stewart (1999). RDP can be described as a
problem of finding the minimal number of legions such that entire Empire of Rome is defended.

Email address: marijai@math.rs (Marija Ivanovic)

Marija Ivanovi¢ /| Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110- 115 111

More details about the RDP can be found in (ReVelle & Rosing, 2000), (Curro, 2014), (Liedloff
et al., 2005) and (Xing et al., 2006).

Restrained Roman domination problem (RRDP), previously introduced by Pushpam & Sam-
path (2015), is defined also as a problem of finding the minimal number of legions such that entire
Empire of Rome is defended but the conditions are slightly changed. Again, a city is considered
to be defended if at least one legion is stationed within. But, a city without legion within is con-
sider to be defended if it is adjacent to at least one city with two legions within and to at least one
undefended city.

The Roman domination problem and the Restrained Roman domination problem can be illus-
trated by a graph such that each city of the Empire of Rome is represented by a vertex and, for two
connected cities, the corresponding vertices are set to be adjacent.

Assuming that five cities, marked by numbers 1 - 5, are constructed such that a city marked by
1 is only adjacent to a city marked by 2 and that all other cities are adjacent to each other, a small
illustration of the RDP and RRDP solutions are given in the figure below.

Figure 1. [llustrations of the the RDP (left) and RRDP (right) solutions

Vertex colored in red indicates that corresponding city is defended by two legions, vertex col-
ored in gray indicates that corresponding city is defended by one legion, while vertices colored in
white stands for the cities without legions within. For the Roman domination problem (shown on
the figure on the left) by using only two legions, all five cities could be defended, i.e. assigning
two legions to a city marked by 2, corresponding city and all adjacent cities are consider to be
defended. Note that minimal number of legions for the RRDP (shown on the figure on the right)
is three, i.e. assigning two legions to a city marked by 2, corresponding city and cities marked
by 3, 4 and 5 are set to be defended because they are adjacent to a city with two legions within
and adjacent to two cities with no assigned legions; city marked by 1 is set to be defended by one
legion, since it can’t be adjacent to at least one city without legions within and to at least one city
with two legions within, at the same time. Given solution for RRDP is not unique since the same
result could be obtained by assigning two legions to a city marked by 3 instead of the city marked
by 2.

112 Marija Ivanovié¢ /| Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110- 115

In the next sections, MILP formulation for the RRDP together with the proof of its validity,
are proposed.

2. Problem definition

Let G = (V, E) be an undirected graph with a vertex set V such that each vertex u € V represents

a city of Roman Empire and each edge, e € E, represents an existing road between two adjacent

cities. A neighborhood set N, (N, C V), of a vertex u € V, is defined as a set of vertices v adjacent
to a vertex u. For a function f

f:V-1{0,1,2} 2.1

let a number of legions assigned to a city represented by a vertex u to be equal to a value f(u).
Additionally, let a function f satisfy the condition that for every vertex u € Vsuch that f(u) = 0
there exists vertices v,w € V such that f(v) = 2 and f(w) = 0. In other words, if there is an
undefended city u, then there exist at least one city v,v € N,, with two legions within and at least
one undefended city w,w € N,. Function f is called a restrained Roman domination function.

Mathematically, a proposed problem can be formulated as:

m}n Fi(f) (2.2)
subject to:
Fi(f)=) f@ (2.3)
ueV
NMueV)fu)=0= Fv,we N)(f(v) =2 A f(w)=0). 2.4)

Now, using a proposed notations, a solution to the illustrated RRDP can be written as: F(f) =
3for f(2) =2, f(1) =1and f(3) = f(4) = f(5) = 0 and it is not unique (F;(f) = 3 for f(3) = 2,
f() =1land f(2) = f(4) = f(5) = 0).

3. A mixed integer linear programming formulation for the RRDP

For a function f, defined by (2.1), let a continuous decision variable x;, x; € [0, o), indicate a
number of legions assigned to a corresponding city i € V. Although, f € {0, 1,2} and x; € [0, o),
x; and f(i) are with equal values in the optimal solution, and not necessary with equal values for
every feasible solution. Let binary decision variables y; and z; indicate if there are two or none
legions assigned to a corresponding city i € V,

I, f=2 I, f=0
Vi = , and Zi = o
0, otherwise 0, otherwise

A mixed integer linear programming (MILP) formulation for the RRDP can now be formulated

as follows:
min Z x; 3.1)

eV

Marija Ivanovi¢ /| Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110- 115 113

subject to

xi+)yl eV (3.2)

JEN;
xi+) 21, ieV (3.3)

JEN;
x; > 2y, ieV (3.4)
X + 2Zi <2, ieV (35)
x; € [0, +00); vi.zi €1{0,1}, ieV. (3.6)

Further, for vector values x = [x;],y = [y;] and z = [z;], which satisfies constraints (3.2) -
(3.6), notation F,(x,y,z) = ey X; Will be used. Now, condition (3.1) which minimizes the num-
ber of legions, can be written as (mm) F>(x,y,z). By the constraints (3.2) it is ensured that each

X,),2,

undefended vertex i is adjacent to at least one vertex with two legions within. Similarly, by the
constraints (3.3) it is ensured that each undefended vertex i is adjacent to at least one vertex which
is also undefended. From the inequalities (3.4) and (3.5) it follows that for each city i € V with
at most 1 legion within, corresponding value y; is set to be equal to zero and that for each city
i € V with at least one legions within, corresponding value z; is set to be equal to zero. Finally, de-
cision variables x are set to be continuous, while y and z are set to be binary by the constraints (3.6).

A given MILP formulation consists of 2|V| variables which are binary and |V| continuous vari-
ables. Number of constraints is equal to 4|V/|.

A proof of the validity of the MILP formulation for the RRDP is given in the next proposition.

Proposition 1. The optimal objective function value F(f) of the Restrained Roman domination
problem (2.1) - (2.4) is equal to the optimal objective function value F,(x,y,z) of the MILP for-
mulation (3.1) - (3.6).

Proof. (=) In this part will be proven that the optimal objective function value of the Restrained
Roman domination problem (2.1) - (2.4) is greater or equal to the optimal objective function value
of the MILP formulation (3.1) - (3.6), i.e. F((f) = F»(x,y, 2).

For a fixed city i € V and a function f given by (2.1), let decision variables x;, y; and z; be
defined as

x = £00), yi:{l’ f) =2 o Zi:{l, £ =0

0, otherwise 0, otherwise

Since x; € [0, +), y;,z; € {0, 1}, conditions (3.4) - (3.6) are satisfied by the definition. For ex-
ample, a condition (3.5) is satisfied because z; = 1 for x; = f(i) = 0 (x; + 2z; = 2) and z; = O for

114 Marija Ivanovié¢ /| Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110- 115

xi = f(i) = 1(x;+2z =1 < 2). Similarly z; = 0 for x; = f(i) = 2, which again implies that
X; + 2Zi =2.

Assuming that conditions (3.2) and (3.3) holds for a fixed vertex i € V, there are two cases:
Case 1. Let values f(i) are set to be greater or equal to one. Since x; = f(i), relation x; > 1
implies. From the last relation and by the binary notations of the variables y; and z; it implies that
Xit Djenyj 2 land x; + X jen, 2 2 1.

Case 2. Let values f(i) are set to be equal to zero. Satisfying relation (2.4) (dv,w € N,)(f(v) =
2 A f(w) = 0), it follows that y, = 1 and z,, = 1. Therefore, x; + X jen, ¥; = Xjen,y; = 1 and
Xi+ Djen; 2j = 2jen; 2 2 1.

Finally, since decision variables satisfies the conditions (3.1) - (3.6) for a fixed vertex i, it fol-
lows that F(x,y,2) = 2iev Xi = Ziey f()) = F1(f).

(<) In this part it will be proven that optimal objective function value of the Restrained Ro-
man domination problem (2.1) - (2.4) is less or equal to the optimal objective function value of the
MILP formulation (3.1) - (3.6), i.e. Fi(f) < Fy(x,y, 2).

For a given set of decision variables x;, y; and z; which satisfy conditions (3.1) - (3.6), let a
function f be defined as

0, x€[0,1)
fiy=11, xe[l.2) . (3.7)
2, X; € [2, +OO)

By the definition of the function f, condition (2.1) holds. Since the condition (2.1) holds, for
a fixed vertex u € V there are two cases:
Case 1. Let x, € [1, +0c0). By the definition of the function f, it follows that f(u) = 1 or f(u) = 2.
Now, condition (2.4) holds, since L= p is tautology for any logical statement p.
Case 2. Let x, € [0,1). By the definition of the function f, f(u) = 0. Because of the condition
(3.2), xu + Xjen,y; = 1, it follows that 3} ey, v; = 1 — x, > 0. Since the decision variables y;

are binary, })cy, ¥; has to be integer, which implies that } .y, y; = 1. Therefore, there exists a
vertex v € N,, y, = 1. From the constraints (3.4), and because of the x, > 2y, = 2, it follows that
f(v) = 2. Similarly, from the constraints (3.3) it follows that } iy, z; > 1 — x, > 0. Because of
the binary type of the decision variables z;, }’ jcy, z; has an integer value. Now, since ' ey, z; > 1,
there exists a vertex w € N, such that z,, = 1. Finally, by the constraints (3.5), x,, <2 -2z, =0, it

follows that x,, = 0 and that f(w) = 0 which means that condition (2.4) holds also.

By the definition of the function f, it is clear that f(i) < x;, for i € V. Therefore, F(f) =
ZiEV f(l) < ZiGV Xi = FZ(-x7 Y, Z)'

So, for each feasible solution to the problem (2.1) - (2.4) there exists a feasible solution to the
problem (3.1) - (3.6), satisfying the relation F,(x,y,z) < Fi(f), and for each feasible solution to
the (3.1) - (3.6) there exists a feasible solution to the (2.1) - (2.4) satisfying the relation F(f) <

Marija Ivanovi¢ /| Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110- 115 115

F>(x,y,z). Therefore, it follows that m}n F\(f) = (min Fr(x,y,2). [l

‘x’.y’z)
Applying the given MILP formulation to the illustrated RRDP, solution (rmn) F>(x,y,7) to the
X,9,2

proposed problem is equal to 3, and it can be obtained for x = [1,0,2,0,0], y = [0, 1,0,0,0] and
z=10,0,1,1,1].

4. Conclusions

This paper is devoted to the Restrained Roman domination problem. A mixed integer linear
programming formulation is introduced and the correctness of the corresponding formulation is
proved. The presented model uses relatively small number of the variables and constraints, which
indicates that presented model can be used both in theoretical and practical considerations. As a
future study, it is planned to construct an exact method for solving the corresponding mathematical
model. Construction of the metaheuristics for solving the proposed problem can also be a part of
a possible future study.

Acknowledgments This research has been supported by the Research Grants 174010 and
TR36015 of the Serbia Ministry of Education, Science and Technological Developments.

References

Curro, Vincenzo (2014). The Roman Domination Problem on Grid Graphs. PhD thesis. Universita di Catania.
Kelly, Christopher (2006). The Roman Empire: A Very Short Introduction. Oxford University Press.

Liedloff, Mathieu, Ton Kloks, Jiping Liu and Sheng-Lung Peng (2005). Roman domination over some graph classes.
In: Graph-Theoretic Concepts in Computer Science. Springer. pp. 103—114.

Nicolet, Claude (1991). Space, Geography, and Politics in the Early Roman Empire. University of Michigan Press.

Pushpam, Roushini Leely and Padmapriea Sampath (2015). Restrained roman domination in graphs. Transactions on
Combinatorics 4(1), 1-17.

ReVelle, Charles S and Kenneth E Rosing (2000). Defendens imperium romanum: a classical problem in military
strategy. American Mathematical Monthly pp. 585-594.

Stewart, Ian (1999). Defend the roman empire!. Scientific American 281, 136—138.

Xing, Hua-Ming, Xin Chen and Xue-Gang Chen (2006). A note on roman domination in graphs. Discrete mathematics
306(24), 3338-3340.

https://www.researchgate.net/publication/325429486

PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 99(113) (2016), 51-58 DOI: 10.2298/PIM16130511

IMPROVED MIXED INTEGER LINEAR
PROGRAMING FORMULATIONS FOR
ROMAN DOMINATION PROBLEM

Marija Ivanovié

ABSTRACT. The Roman domination problem is considered. An improvement
of two existing Integer Linear Programing (ILP) formulations is proposed and
a comparison between the old and new ones is given. Correctness proofs show
that improved linear programing formulations are equivalent to the existing
ones regardless of the variables relaxation and usage of lesser number of con-
straints.

1. Introduction

Domination on a graph has been extensively studied in the literature. Many
variations and generalizations of this problem arose. One of them, with historical
significants, was called the Roman domination problem. The Roman domination
problem dates from the 4th century, when the Emperor of Rome, Constantine the
Great, in order to defend an entire Empire, decreed that two types of legions should
be placed in Roman provinces. The first type of legion were highly trained mobile
warriors and therefore, in order to defend a province against any attack, they could
move fast from one province to another. The second type of legion behaved as
a local militia and were permanently stationed in a given province. The Emperor
decreed that no mobile legion could ever leave a province in order to defend another
one, if such an act would leave an originating province undefended.

The Roman Empire can be illustrated by an undirected graph where each
province is represented by a different vertex. Two vertices will be set as adjacent
if a connection between corresponding provinces exists. For connected provinces it
will be said that they are neighbors. Any legion could move only over connected
provinces, i.e., legion could move only along the edge of two adjacent vertices.
Further, a province will be considered as defended if there is at least one legion

2010 Mathematics Subject Classification: 65K05, 90C11, 90C05, 94C15, 68R10.

Key words and phrases: Roman domination in graphs, combinatorial optimization, mixed
integer linear programming.

Partially supported by the Serbian Ministry of Education, Science and Technological Devel-
opments, grant TR36006.

Communicated by Slobodan K. Simié.

51

52 IVANOVIC

stationed within it. A province without a stationed legion will be considered to
be defended if a vertex which represents it is directly connected to a vertex which
represents a province with two stationed legions: if there are two legions in a
neighbor’s province, one legion will be considered as mobile and therefore, a certain
province will be considered as defended because a mobile legion could arrive fast
in order to defend it. Otherwise a province is left to be undefended. For a detailed
illustration see [8] p.586].

The proposed problem is illustrated on a small example where the Emperor of
Rome, Constantine the Great, had at his disposal only four legions to be placed
and eight provinces to be defended, see Figure [Il

BRITAIN

THRACIA

IBERIA MINOR

NORTH AFRICA
EGYPT

FIGURE 1. Representation of the Roman Empire illustrated on a graph.

Assigning two legions to Italy and another two to Thracia, one province was left
to be undefended. Given that, in order to defend Britain, one mobile legion should
move from Italy to Gaul waiting for another mobile legion to come from Thracia
and then proceed to Britain. It is obvious that such strategy is not optimal, i.e. by
assigning two legions to Iberia and another two to Egypt, the entire Empire will
be defended. The same result could be reached also by assigning two legions to
Britain or to Gaul and another two to Egypt. Note that the minimal number of
legions necessary to defend the given Empire of Rome is four.

The Roman domination problem (RDP), introduced by Ian Stewart in [10],
can be described as a problem of finding the minimal number of legions such that
the entire Empire of Rome is safe.

There are several papers on this problem. The first additional developments
of the RDP were proposed by ReVelle and Rosing in [8], while some of the most
recent theoretical developments were given in [11[35H7].

Some special classes of graphs, such as interval graphs, intersection graphs,
co-graphs and distance-hereditary graphs can be solved in linear time [5] but, in a
general case, the Roman domination problem is NP-hard, [415[9].

This paper is organized as follows: the definition of the Roman domination
problem is given in Section 2l and in Section Bl as proposed in the literature, two

IMPROVED MIXED INTEGER LINEAR PROGRAMING FORMULATIONS... 53

existing ILP formulations for solving the Roman domination problem will be re-
viewed. Subsequently, new alternative formulations together with the proofs of
their correctness will be presented in Section @l Conclusion, outlook on the future
work and literature are given in the two final sections.

2. Problem definition

Let G = (V, E) represents a finite and undirected graph with a vertex set V' such
that each vertex v € V represents a province and each edge, e € F, represents an
existing road between two adjacent provinces. There will be no loops nor multiple
edges between two adjacent vertices. Let us define a neighborhood set N,, (N,, C V),
of a vertex v € V, such that each vertex w € N, is adjacent to a vertex v. Finally,
let us define a function f : V' — {0,1,2} such that f(v) is equal to a number of
legions assigned to a province represented by a vertex v. Function f has to satisfy
the condition that for every vertex v € V such that f(v) = 0 there exists a vertex
w € N, such that f(w) = 2. In other words, if there is an undefended province v,
then there exists at least one province w, w € N, with two stationed legions.

A small illustration of the Roman domination problem follows.

ExXAMPLE 2.1. Let as assume that there are 25 provinces to be defended and
that each province can be represented by a particular vertex of a grid graph Gs 5.
An adjacency matrix of a given graph is defined in such a way that it reflects a
connection between the provinces illustrated on a Figure 2 (left).

FiGURE 2. Illustration of Example 1.

The solution to the given problem is illustrated by coloring vertices in three
colors, see Figure[Z (right) and is obtained by mathematical formulations described
in Section Bl The vertices colored in black represent provinces with two assigned
legions, colored in red represent provinces with one legion assigned and colored in
white otherwise. Note that the entire area of 25 provinces could be defended by 14
legions, i.e. f(vy)=2forallvi € {2,5,11,14,19,22}, f(vy) =1 for all v} € {8,25}
and f(v§) =0 for all v§ € {1,3,4,6,7,9,10,12,13, 15,16, 17, 18, 20, 21, 23, 24}.

3. Existing integer linear programing formulations

secl There are two ILP formulations known from the literature. The first
formulation was introduced by ReVelle and Rosing in [8] and will be referred to as

54 IVANOVIC

KRR, while the second formulation was introduced by Burger at el. in [2] and will
be referred to as BIMW.

3.1. RR formulation. For a function f, f: V — {0,1,2}, and i € V, let us
define the variables

L)21 1 f(i) =2
€T; = P =
0, otherwise Y 0, otherwise.

The RR formulation of the RDP can be described by

(3.1) miani +Zyi

eV eV
(3.2) it Y yp=1, P€V
JEN;
(3.3) yi <ax;, 1€V
(34) T, Y € {0,].}, ieV

The objective function value, given by ([B]), represents the number of legions
used in defense. Constraints ([B.2]) ensure that each province is safe or there is at
least one province in its neighborhood with two legions within it. By the constraints
B3) it is ensured that provinces with two legions are safe. Decision variables x;
and y; are preserved to be binary by the constraints (3.4]).

The RR. formulation consists of 2|V| binary variables and 2|V| constraints.

3.2. 81 formulation. For a function f, f: V — {0, 1,2}, let

Lo no=1[1 e =2
L 0, otherwise vi= 0, otherwise.

The B9 formulation of the RDP can now be described by

(3.5) miani +22yi

eV eV

(3.6) rityi+ Yy Y=l GieV
JEN;

(37) T, +y; <1, teV

Ti,Yi € {07 1}; teV

The objective function value is given by [335]). By conditions (B.6]) it is obtained
that an undefended province has to be in the neighborhood of at least one province
with two assigned legions. By conditions [B.7) it is given that if a province is
defended by two legions then there is no need to say that it is defended by one
legion as well and vice versa. Again, the decision variables x; and y; are preserved
to be binary by the constraints ([B.8)).

The 81 formulation also consists of 2|V| binary variables and 2|V| constraints.

IMPROVED MIXED INTEGER LINEAR PROGRAMING FORMULATIONS... 55

4. Alternative linear programing formulations
4.1. New improved RR formulation. Let us define
(4.1) z; € [0,400),y; € {0,1}, i€V

Considering the R® formulation it can be noted that the binary variables x;
can be relaxed to be real. Let us mark the ®R formulation with the given relaxation
1) as RRmp- Given that, the existing KR formulation, which is ILP formulation,
can be relaxed to the MILP KR;, formulation.

THEOREM 4.1. Optimal objective function value of the RR formulation [BII)—
B4), is equal to the optimal objective function value of the RRymy formulation (B.1I)-

B.3), @&I).

PROOF. Let a feasible solution to the K%mp formulation be represented by a
vector (z”,y") where 2”7 = (zf,...,2)) and y = (yl,...,y;{), n = |V|]. Given
that, let a vector (Z',3") (z' = (24,...,2)), ¥ = (y},...,y)) of variables z} and
y; be defined such that y} =y}’ for each i € V and

o= {o, 2/ €[0,1)
1, af €[1,400).

By this definition, the variables « and y; have binary values and therefore satisfy
conditions ([34). Combining the definitions of variables z; and binary notation
of variables y/, it follows that y, = y/ < xé’ . Now, if relations y! = 1 stand,
then inequalities 1 < zff imply that 2 =1 > 1 = y.. More, relations y = 0
provide inequalities 0 < &/, which imply that :E; € {0,1} > 0 =yj for each i € V.
Therefore, conditions (33]) are satisfied.
Assuming that 27’ + 3,y y7 > 1, two cases arise:

1) (3j € N;) such that y] =1,

2) (Vj e Ni)yj =0.
The first case implies that there exists j such that y; = 1, i.e, Z]eN yg > 1.
Therefore, z3+3 ;¢ v, y] 1. The second case implies that 1 < « +Z en, Vi =Tl
Now, because of z/ > 1, it follows that «} = 1. Given that, condltlons B2) are
satisfied.

Finally, the objective function value of the ®R formulation can be calculated
as) ey T; + > ey Yir but because of the relations y; = y;’ and z} < 2} it is easy
to notice that Objg, < Objmmp.

The objective function value of every relaxed minimization problem is less
than or equal to the objective function value of the associated original problem, i.e.
Obj Ry S Objgg - Finally, combining the given inequalities the theorem is proven,
i.e., Objgg = Obijgg, - O

From the above it can be noted that 2|V| binary variables of the existing RR.
formulation can be replaced with |V| binary and |V| real variables without losing
generality.

56 IVANOVIC

4.2. New improved B9 formulations. Considering the B9 formulation
it can be noted that conditions ([3.7)) can be omitted. Formulation (3.5]), (8:6) and
B8) will be marked as BVVimp1-

Moreover, following the idea for improving the ®% formulation, the B9Mimp1
formulation can be further improved by relaxing binary variables x; to be real.
Such an improvement, (&3], (8) and (@), will be marked as BV mp2.

THEOREM 4.2. Optimal objective function value of the BVVmp1 formulation
B3, @) and BI) is equal to the optimal objective function value of the BVY

formulation (B3)-3.3]).

PROOF. Let a feasible solution to the B114yp1 formulation be represented by
a vector (z”,y") where 2’ = («f,...,20), ¥y = (y{,...,y)), n = |V]. Now, let
us define a vector (z',y’) of variables &’ = («f,...,2)), ¥ = (y1,...,y,) such that
y; = yj for each i € V. Given that, we can define two disjunctive sets V3 and V3
such that V; UV, =V

1) z/ =0 or y/ =0, for each vertex i € Vi,
2) z// =1 and y; = 1, for each vertex i € V5.

For each ¢ € V1, let us define «} such that 2} = z7. By the definition of the
variables z; and y! and because (x},y!) = (z7,y!), conditions (36 and [B.8]) are
satisfied. Further, for a given set V; and because of the binary notations of the
variables 7 and y} conditions ([B.7]) are also satisfied:

o +y, =2 +y! <max{z] y/} €{0,1} <1
Now, let us define @ for each i € V2. Because of the definition of the variables
ys and set Vo (yl =y and y = 1), variables z} will be set to be equal to zero, i.e.
x; = 0.
Conditions (3.8)-(B3) are satisfied again:
Y+ Yy =0+14) g =1+[VR[>1, (Vi) e
jeN% jENi
Ty =0+1<1, (Vi) € Vo
1’;:06{0,1}, ygile{o,l}
Therefore, a feasible solution to the B1y,p1 formulation is a feasible solution
to the B formulation. The objective function value can be calculated as follows:

Obiynny,, = Sat +23 = S al+2 3 i+ S al +2 3o

eV eV i€V i€Vy A% A%
= a2l +2> yl +3Va.
eV %)
Obly =Y i +23 s = Yo w42 Y i+ w23,
i€V i€V i€V i€eVy % i€V

=Y al+2) yl +2Va.

i€Vy i€Vh

IMPROVED MIXED INTEGER LINEAR PROGRAMING FORMULATIONS... 57

It is easy to notice that Objgyy < Objgyy, ..
mpl
Now, let us assume that U is a solution set to the B9 formulation. Omitting
condition ([B7) from the B9V formulation, the solution to the B9 y,p1 formulation
can be marked as Uy. It is obvious that U C U; and therefore, a feasible solution
to the BV formulation is also a feasible solution to the B114mp1 formulation. By
the definition of the global and local minimums it implies that

ObjGWVImpl m1n Z T+ 2 Z Yi mm Z T + 2 Z Yi) = Objgyy

eV eV eV eV

Finally, combining Objgyu;,, = Objgyy and Objgy, < Objgyy it implies that
Objgons,,,, = Objgy- O

THEOREM 4.3. The optimal objective function value of the BVVmp2 formulation
@B3), B8) and [@I) is equal to the optimal objective function value of the BVVimp1
formulation BH), B8) and BI).

PROOF. Let a feasible solution to the B11yp2 formulation be represented by
a vector (2”,y"), 2" = («f,...,20), ¥’ = (yl,...,yn n = |V|. Again, let a vector
(', ') of variables «} (&' = (z,...,2})) and v} (¥ = (y1,--.,y,,)) be defined such

that y, =y} for each i € V and

o 0, z/€l0,1)
! 1, o €l,4+o0)
The variables 2 and y, have binary values by this definition, therefore they

satisfy conditions (3.8]).
Assuming that z7 +y;' + > .y, ¥j = 1, two cases arise:

D (yi=1)Vv(3je N)(y] =1),

2) (yi = 0)A (Y5 € Ni)(yj =0).
The ﬁrst case implies that y/ = 1 or there exists j such that yg-’ =1, ie.
+Z]€ ~, ¥j = 1. Now, knowing that y; = y;’ and z} > 0 for each i € V, it follows
that x! +yl+2]6N yj > 1. The second case implies that 1 < z/ +y/ JijENi y;-’ =
x. Now, because x > 1 it follows that z; = 1. Further, because y; € {0,1} it
follows that z; +y; +>_.cn, ¥; > 1 meaning that conditions ([B.2) are satisfied also.

Now, the objective function value of the B9y formulation can be calculated
as) ey Tp +2) 0y ¥i- Because of the relations y; = 3/ and o} < &7 it is easy to
notice that Objgy; < Objgyny, .-

Again, knowing that the objective function value of every relaxed minimization
problem is less than or equal to the objective function value of the associated
original problem, it follows that Objgyu;, . < Objgy,, . Combining the given
inequalities the theorem is proven, i.e. Oqug,WImpl = Objﬂ,WImp?. O

Concerning B"imp1 and BW1yp2 formulations, the number of constraints is
reduced to |V|. Further more, by using B9 1mp2 formulation 2|V| binary variables
are substituted by |V| binary and |V| real variables.

58 IVANOVIC

5. Conclusions

This paper is devoted to the Roman domination problem. For the ®% mathe-
matical formulation it was proven that from a total of 2|V| variables, |V| variables
can be relaxed to be real. For the B77/ mathematical formulation it was proven
that a set of |V/| constraints can be excluded. Further more, the number of 2|V|
binary variables of B9 mathematical formulation can be also relaxed to |V| binary
and |V real variables. While Theorems shows that improved formulations
RRimp, BV Wmp1 and BV mp2 are equivalent to the existing ones, there are signifi-
cant improvements of the computational efforts for solving these formulations.

Operating with lesser number of constraints and integer variables should pro-
vide a memory savings in solving the Roman domination problem on large size
instances. For instance, on Intel® Core™ i7-4700MQ CPU @ 2.40GHz 2.39GHz
with 8GB RAM under Windows 8.1 operating system and based on the new formu-
lations, standard optimization solver CPLEX was able to find the optimal solution
value on classes of graphs such as grid, net and planar up to 600 vertices.

Designing an exact method using the proposed MILP formulations is a matter
of the future research. Also, in the future work it will be interesting to consider
some variants of the Roman domination problem.

References

1. A. Bouchou, M. Blidia, Criticality indices of roman domination of paths and cycles, Australas.
J. Comb. 56 (2013), 103-112.

2. A.P. Burger, A.P. de Villiers, J. H. van Vuuren, A binary programming approach towards
achieving effective graph protection, Proc. 2013 ORSSA Annual Conf., ORSSA, 2013, pp. 19—
30.

3. V. Curro, The Roman Domination Problem on Grid Graphs, Ph.D. thesis, Universita di
Catania, 2014.

4. P. A. Dreyer, Jr., Applications and Variations of Domination in Graphs, Tech. report, 2000.

5. A. Klobucar, I. Puljié, Some results for roman domination number on cardinal product of
paths and cycles, Kragujevac J. Math. 38(1) (2014), 83-94.

6. C.H. Liu, G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26(3)
(2013), 608-619.

7. P. Pavli¢, J. Zerovnik, Roman domination number of the cartesian products of paths and
cycles, Electron. J. Comb. 19(3) (2012), p. 19.

8. C.S. ReVelle, K. E. Rosing, Defendens imperium romanum: a classical problem in military
strategy, Am. Math. Mon. 107(7) (2000), 585-594.

9. W. Shang, X. Hu, The roman domination problem in unit disk graphs; in: Computational
Science — Iccs 2007: Tth Internat. Conf., Betjing China, May 27-30, 2007, Proc., Part III,
Lect. Notes Comput. Sci. 4489, Springer, 2007, pp. 305-312.

10. 1. Stewart, Defend the roman empire!, Scientific American 281 (1999), 136-138.

Faculty of Mathematics (Received 25 03 2015)
Department for Applied Mathematics (Revised 14 10 2015)
University of Belgrade

Belgrade

Serbia

marijai@math.rs

Yugoslav Journal of Operations Research
28 (2018), Number 3, 291-314
DOIL: https://doi.org/10.2298/YJOR161015018I1

A NEW VARIABLE NEIGHBORHOOD SEARCH
APPROACH FOR SOLVING DYNAMIC MEMORY
ALLOCATION PROBLEM

Marija IVANOVIC
Faculty of Mathematics, University of Belgrade, Serbia
marijai@math.rs

Aleksandar SAVIC
Faculty of Mathematics, University of Belgrade, Serbia
asavic@matf.bg.ac.rs

Dragan UROSEVIC
Mathematical Institute, SANU, Belgrade, Serbia
draganu@mi.sanu.ac.rs

Djordje DUGOSIJA
Faculty of Mathematics, University of Belgrade, Serbia
dugosija@matf.bg.ac.rs

Received: October 2016 / Accepted: May 2018

Abstract: This paper is devoted to the Dynamic Memory Allocation Problem (DMAP)
in embedded systems. The existing Integer Linear Programing (ILP) formulation for
DMAP is improved, and given that there are several metaheuristic approaches for solving
the DMAP, a new metaheuristic approach is proposed and compared with the former
ones. Computational results show that our new heuristic approach outperforms the best
algorithm found in the literature regarding quality and running times.

Keywords: Dynamic Memory Allocation Problem, Combinatorial Optimization, Meta-
heuristics, Variable Neighborhood Search.

MSC: 90C59, 05C90, 68T20.

292 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

1. INTRODUCTION

Dedicated computational systems within a larger mechanical or electrical sys-
tem, usually with real time constraints, or the embedded systems, represent an
integral part of a large number of devices, ranging from portable devices up to
large industrial, medical, and military structures. Minimizing energy consump-
tion while increasing reliability and performance present a major challenge for
engineers. Therefore, designers want to find a balance between the architecture
cost and its power consumption [1].

Power consumption of a given application can be reduced by using data
access parallelization, which leads us to the definition of the Dynamic Memory
Allocation Problem (DMAP).

DMAP can be described as follows. If an application involves a number of
data structures with the given size and access cost, a number of memory banks
with limited memory capacity, and one external memory bank with unlimit-
ed capacity, develop the best memory allocation scheme so that change of data
structure allocation during program execution is allowed, while keeping loading,
moving, and access time for those and all other operations to a minimum.

Given that modern devices are usually designed to run on processors with
integrated or external memory, this problem has become very popular.

DMAP, as defined above, has an important role in modern software since
the dynamic memory usage provides greater flexibility and functionality of the
applications. There are a large number of papers and references to this particular
issue in the literature. In this paper, DMAP in embedded systems is studied as an
execution time problem, shown by Wuytack et al. in [17].

A memory allocation problem in embedded systems was widely analyzed by
Soto et. al. in [14]. In [12] Soto et al. proposed the first Mixed Integer Lin-
ear Programing (MILP) formulation for the static version of the memory alloca-
tion problem and a metaheuristic approach based on the Variable Neighborhood
Search (VNS). Later, Soto et al. [13] dealt with a dynamic version of the memory
allocation problem, providing ILP formulation, and two iterative approaches for
solving DMAP in embedded systems. These two approaches were followed by
GRASP with the ejection chains for the memory allocation problem in embedded
systems proposed in Sevaux et al. [11]. Focused on improving the memory allo-
cation problem in embedded systems, Sdnchez-Oro et. al [15] and [16] recently
proposed a parallel VNS algorithm for DMAP and compared it with the previous
ones. More precisely, they focused on the Synchronous Parallel VNS (SPVNS)
variant that was used for parallelization of the local search method in the sequen-
tial VNS (in [15]) and on the Replicated Shaking VNS (RSVNS), which allows the
search to simultaneously explore more solutions in the current neighborhood (in
[16]).

In this paper, an improved ILP formulation for DMAP in embedded systems is
proposed and a new metaheuristic approach based on the VNS is given. Results of
this new metaheuristic approach are compared with the results from the existing
literature.

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 293

The paper is organized as follows: Problem notation and ILP formulation
known from the literature are given in Section 2. Section 3 is dedicated to the
improved ILP formulation for dynamic versions of memory allocation problem
followed by a short illustrative example. A new VNS approach is presented in
the next section. Finally, the existing results from the literature, and the results
achieved by using new VNS approach are given and compared in Section 5.

2. EXISTING MATHEMATICAL FORMULATION AND PROBLEM
NOTATION

Notations and problem presentation will be similar as in [13]. Let us assume
that the number of memory banks is limited by an electronic device, and that there
are m internal memory banks with limited capacity, denoted by c;, 0 < ¢; < o
(j =1,...,m), and one external memory bank whose size is supposed to be large
enough so that it can be considered as unlimited (cy = ©0), i.e. the chosen memory
architecture is similar to the one of TI C6201 device. Size of a memory bank is
given in kilo Bytes (kB), and each memory bank is denoted by §;, j = 0,...,m.
Without loss of generality, let us assume that a particular application is written
in C++ code as a set of binary operations between the involved data structures.
The term data structure is used for scalars, arrays, or similar structures of the
applications. Further, let us assume that a set of all data structures is finite and
depends on a program code. Furthermore, let us mark each data structure with
a;, wherei = 1,...,n, where n is a number of data structures. Data structure ¢; size
is defined in kB and marked by 4;. Due to the fact that external memory is a huge
mass storage, all operations with data structures will be p times slower if mapped
to the external memory bank. Therefore, we say that p is a penalty cost for loading
data structure from the external memory bank. As all operations are not used at
the same time, program execution time T is divided into t time blocks, I;; it is not
necessary that time blocks have constant size, and it is allowed to reconsider and
move data structures before and after each time block. For instance, we say that
a time block has size equal to one if it contains only one operation. If all time
blocks are of size one, moving data structures is allowed before and after each
operation. Since the access to data structures during the particular time block can
differentiate, we define its access cost in milliseconds per kilo Bytes (ms/kB) and
mark access cost to data structure «; at time block I; by e;; .

As previously mentioned, given that the parallel data structure usage can
speed up program execution, moving data structure will be useful, especially
because memory banks are of limited size. We assume that moving data structure
is allowed only in between two time blocks and not during, without loss of gen-
erality. The problem with only one time block is a static memory allocation
problem and more about it can be found in [8] and [12]. Moving data structures
and rearranging their allocation is useful because in some cases moving data
structure from external to internal memory bank and loading it from the internal
memory bank can be less expensive than loading and operating with it while it

294 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

is mapped to the external memory bank. Every data structure movement is also
calculated.

It is assumed that the data structure movement between two internal memory
banks costs [times its size, while the movement between internal and external
memory banks is v times its size.

Similarly, when data structures are jointly involved in the same operation, i.e.
have to be accessed at the same time, it will be assumed that data structure location
affects its loading time. If two data structures, say a; and ay, are jointly involved
in the same operation during the particular time block I;, the given pair is called
”conflict pair” with notation {a;, a4};. The number of conflict pairs at time block I;,
t =1,...,Tis denoted by k;, while the set of all conflict pairs accessed at time block
I} is given by O;. Accessing the conflict pair {as, a4} at time block I; will cost b, ¢
if both data structures are mapped onto two different internal memory banks,
2b,, o+ if both data structures are mapped onto the same internal memory bank,
respectively; pb,, q, if one data structure is mapped onto the external memory
bank, and 2pb,, ., ; if both data structures are mapped onto the external memory
bank.

Let us assume that set O; consists of k; conflict pairs, marked as {as,, a4,},
{as,, aa,), ..., {ask[, g, }. In order to reduce the number of indices, for r-th conflict
pair {as,, a4}, r = 1,...,k instead of using notation by, 4, + conflict cost will be
written as b,. The set of all required data structures at time block ¢ is denoted by
p;.

Again, it is assumed that all data structures are mapped to the external mem-
ory bank at the beginning of the program execution. Also, at the beginning of
the program execution, the number of time intervals (T) is given and for each
time interval I;, t = 1,..., T, sets Py and O; are followed with all necessary data
(access cost for each data structure «; € P; and conflict costs for each conflict pair
las,, a4}, 7 =1,...,k in a particular time interval I;).

The first mathematical formulation for DMAP in embedded systems is pre-
sented as it was proposed in [13].

For all (i, j, k) € {1,...,n} X {0,...,m} X {1,...,T} a decision variable x; j; is
set to one if and only if data structure a; is allocated to the memory bank f;
during the time block I;, x;;; = 0 otherwise. Given that, the conflict pair is
considered as closed if the involving data structures are mapped onto two different
memory banks but open otherwise. For all conflicts r € {1,...,k;} at time block
Iy € {1,...,T}, decision variable y,; will be set to one if and only if during the time
interval I; conflict r is closed, otherwise y,; = 0. Further, data structure moving
is represented by the two following sets of variables: for all i € {1,...,n} and
tef{l,..., T}, wi;is set to one if and only if data structure ; has been moved from
a memory bank ; # f to a different memory bank f;; # o between time blocks
I;_yand I;. Forall o;, i = {1,...,n}, attimeblock I; = {1,...,T}, wl’,’t would be set to
one if and only if data structure a; was moved from internal memory bank to the
external memory bank, or if it was moved from the external memory bank to an
internal memory bank between time blocks I;_; and I;.

Before presenting ILP formulation for DMAP, let us recall all input and output

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 295

data described in [13].
Input:

T - number of time intervals.
n - number of data structures.
m - number of internal memory banks.

p - penalty cost for operating with data structure when it is mapped to the
external memory bank.

v - penalty cost for data structure movement from external memory bank to
the internal and vice versa.

[- penalty cost for data structure movement between two different internal
memory banks.

a; - size of data structure a;, i =1, ..., 1.
¢j - size of internal memory bank §;, j =1, ..., m.

P; - set of data structures which are going to be used at the time block I,
t=1,..T.

ei+ - number of times that a; € P, i = 1, ..., |P;| was accessed during the time
block I;,t=1,...,T.

O; - set of conflict pairs for time block I, |O¢| = k¢, t =1,..., T.

b+ - contflict cost for conflict pair {as,, a4} € O, v =1, ..., k; for time block I;,
t=1,..,T.

Output:

x;j+ - the decision if data structure a; (i = 1,...,n) is to be mapped to the
memory bank §; (j = 0,...,m) during the time interval I, (t = 1, ..., T).

Yr+ - the decision if conflict r is to be closed during time interval I; (t =
1,...,7).

wi; - the decision if data structure «;, i = 1,...,n is to be moved from one
internal memory bank to a different internal memory bank between time
intervals I;_1 and I;.

w;t - the decision if data structure «; (i = 1,...,n) is to be moved from the
external to the internal memory bank or vice versa between time intervals
I t—1 and It.

296 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

Now, DMAP formulation known from the literature can be described as fol-
lowed:

T
min f=)"[(p=1)) (eyr- xIOt)—Z“(yﬂ b+ Y aill - wig + - wl)] (1)
t=1

a;€Py a;eP;

Subject to the constraints

Zm:xi,j,t =1, ief{l,.n}, tef{l,..T} (2)

=0
Xijt i < Cj, jell,.,n},te(l, .., T} 3)

aeP,
Xs, jt + Xd, jt < 2= Ynt (as,, @4,) € Py, j€{0,...,n},re(l, . kit el T} (4)
Xiji-1+Xipp < T+w;y ie{l,...,n},(jj)efl,.,mp, (5} #Bj),tefl, .., T} (5)
Xio4-1 + Xijr < 1+ wlf,t ie{l,..,n},je{l,..m,te{l, .., T} (6)
Xiji-1+Xior <1+ wl’.,t iefl,.,n}je(l,. m,te{l,., T) 7)
X0 =0 ief{l,. n}jell, .. m} 8)
Xipo =1 iefl,.. n)
xii¢ €10,1} ie{l,.,n},je{l,..,m},tell,. ., T) (10)
w;; € {0,1} ief{l,.,n},te{l,..T) (11)
w;, €{0,1} ie{l,..,n},te{l,.., T} (12)
v €01} ref{l,. khtefl,.. T} (13)

Constraints (2) state that every data structure is allocated to only one memory
bank at time interval I;. Constraints (3) ensure that the total size of all data
structures allocated to any memory bank at time interval I; does not exceed its
size. Constraints (4) - (7) ensure that variables y,:, w;; and w; are set appropriately.
The initial conditions are given by the constraints (8) and (9) and finally, constraints
(10)-(13) enforce binary requirements.

Note that the presented mathematical formulation does not correspond to the
DMAP problem. More precisely, calculation of the cost function is based only
on the fact that data structures are mapped to the same memory bank, though,
both data structures can be mapped to the external memory bank or to the same
internal memory bank. Additionally, the cost of accessing data structure a; during
time interval I; is calculated as (p — 1)e;; if the data are mapped to the external
memory bank and as 0 if the data are mapped to the internal memory bank, which
is not correct. We believe that ¥, Y.ep, €it is unintentionally left out, given the
fact that with this constant, the cost function (1) indeed corresponds to the DMAP

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 297

problem. Still, the way the solution to the DMAP problem was calculated in [11],
[13] and [15] included before mentioned oversights.

Considering that it was not easy to notice that the mentioned constant was
left out, we have given an improved ILP formulation for the DMAP in embedded
system in the following section.

3. IMPROVEMENT TO THE EXISTING ILP FORMULATION FOR DMAP
IN EMBEDDED SYSTEMS

Letbinary variables x; j;, w;; and w;t (i=1,..,nj=0,.,mt=1,..,T)havethe

same meaning as before, and let binary variables v, ;, defined such that r represent

a conflict pair (as,, a4,) at time block I;, have slightly different meaning, i.e.

1, if data a5, and a,, are both mapped into
Yrt = the same memory bank at time block I; (a5, a4) € I;,t =1,..., T (14)
0, otherwise

Additionally, let e;; represent the cost for accessing data ; during the time block I;
instead of denoting the number of that data structure @; accessed during the time
block I;. Value of the e; will actually differ, concerning the previous definition by
the conflict cost where it is involved during time interval I;. We think that with
this definition, loading each data structure and accessing the same data structure
during the conflict, in which it is involved, are defined more precisely.

Now, the improved formulation for DMAP can be defined as follows:

min f= ZT:(Z (1 +(p- 1)xi,0,t)€i,t+

t=1 ‘a;elP;

ki

Z br,t(l + Y+ (p— 1)(xs,,0,t + xd,,o,t>) + Z ai<lwilt + vwlt)) (15)

r=1 =1
{as, a4, 1€O;

subject to constraints:
Xs,,jt + Xd,jt < Yrt + 1 (Oésy, (Xdy) epb, t=1,.,T (16)

yre €{0,1} (17)

and constraints (2), (3), (5)-(12) from the existing ILP formulation.

Constraints (16) correspond to the constraints (4) in accordance with the new
definition of variables y,,.

Access cost at particular time block I; is equal to), p, (1 + (p — 1)x;0,)e; ¢, which
covers cases when data structure is mapped to the external memory bank. At
the same time block, expression 1+ y.; + (p — 1)(xs, 0+ + X4,0,) is equal to 1 if data
structures from the same conflict pair are mapped onto two different internal
memory banks; it is equal to 2 if they are mapped onto the same internal memory

298 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

bank, respectively, and it is equal to p if one conflict data is mapped to the external
memory bank and is equal to 2p if both data structures are mapped to the external
memory bank. Therefore,

kt

brs(1+ Yo + (p = D, 00 + X4,04))

r=1
{as, a4, }€O;

correspond to conflict cost at time interval I;, while movement cost between two
time blocks is again calculated by the sum

T n

Z Z ai(lwi,t + vw;.,t)

t=1 i=1

Now, given that all oversights are covered by the new proposed cost function,
the improved ILP formulation corresponds to the proposed DMAP in embedded
systems.

For T = 1, DMAP formulation becomes ILP formulation, which was proposed
and proven to be feasible for static version of the memory allocation problem in
[8]. Let us illustrate DMAP and its ILP formulation on a short example.

An illustrative example is given on a small size instance.

Example 3.1. There are 9 data structures (o, i = 1,..,.,9), which have to be placed
into 2 internal memory banks (B and f,), each size of 1000 (kB) (c; = 1000, j = 1,2),
and 1 external memory bank (co = o). Sizes of data structures are given in Table 1.
Loading time is divided into three time blocks of specified sizes. Data structures are used
in pairs. Access cost for each data structure at each time block, together with the conflict
sets are given in Table 2. For instance, at time block 1, 4 data structures are used,
Py = {ay, a5, ag, ag}, with zero access time each and with two conflict pairs. The first
one is between data structures ag and ag (ki1 = (as, ag)) with conflict cost b1 = 592,
and the second one is between data structures ap and as (kg1 = (a, as)) with conflict
cost by1 = 192. Loading all operations from the external memory bank costs p = 16
times more than loading them from the internal memory bank. Moving data between two
internal memory banks costs | = 1 (ms/kB), and moving between internal and external
memory bank v = 4 (ms/kB).

Let us assume that at the beginning of the program (t = 0), all data structures
are mapped to the external memory bank. Knowing the order of the data structure
usage, we can move them before each time block in order to reach better results.
Table 3 represents the optimal solution obtained by using IBM ILOG CPLEX
optimization solver for a mathematical model presented above. Solution can be
interpreted as follows: at time block I1, data structures a1, a3, a4, a6, and a7 should
be mapped to the external memory bank, marked as fy, while data structures as
and ag should be mapped to the memory bank marked as 1, and finally, data
structures a, and ag should be mapped to the memory bank marked as f3,. Then,
total execution time, which consists of moving time and conflict time for each

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 299

Table 1: Data structure size
data structures a ap az oy Qs ag ay ag a9
size of data sruct. 256 4 496 256 4 256 256 256 256

Table 2: Data access and conflict costs for t = 1 (left) , t = 2 (middle) and ¢ = 3 (right)
Time block: 1 Time block: 2 Time block: 3

Data set ay as ag g ar A a3 ay ay g ay

Access c. 4 4 256 256 256 4 496 256 256 256 256
Conflicts Conflicts Conflicts

Conflicts as ag Cost as oy Cost as ay Cost

kl,t ag g 592 an an 576 273 ay 1,024

kz[t an as 192 aq ay 64 (27} ay 1,024

k3,t [25] a3 1,024 ay ay 64

time block, is presented in Table 4. Loading time is excluded from this illustration
because loading cost is equal to zero for each data structure at each time block. For
instance, total block costs will be explained in detail for the time block I3: given
that data structure «; is replaced with data structure o and moved from memory
allocation 8, to the memory allocation fy and the other way around, moving cost
is equal to (256 + 256) - 4 = 2048 (ms). Further, conflict costs for the same block is
equal to 1,024 + 1,024 + 64 - 2 = 2,176 (ms), which brings total block cost to 4,224
(ms). Combining the results for all three time blocks gives the problem execution
cost of 17,772 (ms).

Table 3: Solution to the example for DMAP formulation

Mem. allocation t=0 t=1 t=2 t=3
Bo Alldata aq,as, ag, ae, a7 g, 08 a1, ag
p1 as, ag a3, as, az as, as, az
B2 a, a9 1, (2, A4, Q9 (2, A4, A, A9

Table 4: Costs
t=1 =2 =3
Access cost 520 1,012 768
Moving cost 2,080 6,080 2,048
Conflict cost 784 2304 2,176
Total cost per block 3,384 9,396 4,992

Now, the solution in terms of the proposed ILP formulation can be interpreted
as follows: min f = 17,772 whith nonzero decision variables X101, X301, X401,
X6,0,1, X7,01, X5,1,1, X8,1,1, X2,2,1, X921, X6,0,2, X8,0,2, X3,1,2, X512, X712, X1,2,2, xz,z,z, x4,;,2,
X9,22, X1,03, X8,0,3, X3,1,3, X523, X723, X233, X423, X6,23, X9,23, Y1,2, Y2,2, Y33, W; 1, W5 ¢,

Wy 1, We 1, Wy o, Wy, Wy oy Wy, Wep, Wy 5, a0 W 5.

In order to compare the presented ILP formulation for the DMAP with the
one known from the literature, both formulations were coded in C++ and tested
on Intel(R) Core(TM) i7-4700Mq CPU @ 2.40GHz, 2394MHz, 4 Core(s) with 8GB

300 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

RAM with CPLEX 12.6. For experimental testings of the proposed ILP formula-
tions we used the same set of instances as the one reported by Soto et. al in [13].
The set of instances can be downloaded under the name

dmap.zip from http://www.optsicom.es/dmap/dmap.zip.

More details about these instances are given in Section 5.

In these testings, penalty cost p is set to be equal to 16ms/kB, movement data
structure cost from internal to external memory bank (v) and vice versa is set to
be equal to 4ms/kB, while the movement between two internal memory banks
(I) is set to be equal to 1ms/kB. Comparison of the presented Soto et al. [13]
formulation and our formulation is presented in Table 5. The name of an instance
is given in the first and the fifth column. Solution value obtained for the particular
instance by using ILP formulation presented in [13] is given in the second and
the sixth column. Solution values for the corrected cost function of the same
ILP formulation, as described at the end of the Section 2, are given in the third
and the seventh column. Finally, solution values of the tested instances by using
our formulation are given in the fourth and the eight column. Time limit for
all testings was set to 7200 sec. Sign ”*” was used in case that testings were
stopped earlier because of status “out of memory”. On majority of instances, the
optimal solution value was found using both formulations. On instances such
as “myciel4dy.col”-"r125.1dy.col”, the found solutions were not proved to be the
optimal. As it can be seen from Table 5, on instances where optimal solution was
not reached, CPLEX was able to find better results by using our ILP formulation
on 4 instances and on 1 by using Soto et al. [13] corrected formulation.

4. VNS FOR THE PROPOSED DMAP PROBLEM

The problem of combinatorial optimization, presented in this paper, can be
solved by using exact methods, but because of its number of variable limitations
for large scale variables, metaheuristics are more useful. Therefore, DMAP was
solved by using VNS hybridized with Tabu Search (TS) in [13] and GRASP with
ejection chains in [11]. In this paper, a VNS metaheuristic method hybridized
with Variable Neighborhood Descent (VND) search, which corresponds to the
proposed DMAP model, is presented. VNS metaheuristic was first presented
by Mladenovi¢ and Hansen in [9], and the main idea was proposed in 1995,
[10]. Later, it was followed with several papers aimed at improving the method,
[2, 3,4, 5, 6], and [7]. The main idea of this heuristic is that starting from one
initial solution by using systematic search, we move to the solution that is locally
the best.

Solution space. Each solution can be represented by a matrix (two-dimensional
array) Z with T rows and n columns. Value of element z;; represents a label of
a memory bank on which the data structure a; is allocated at the time interval
L (t=12.,T,i=1,2,.,n). Only feasible solutions are considered, i.e. data
structures are allocated in such a way that there are no overloaded banks. In
other words, for each time interval I; and each bank f;, the following condition is

M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

301

Table 5: Comparison of the ILP formulation for the DMAP presented in Soto et al [13], their formulation
with correction and our ILP formulation

from Soto et al [13]

from Soto et al [13]

without with our ILP without with our ILP

correct val. correct val. formulat. correct val. correct val formulat.

Instance val val val Instance val val val
adpcemdy 37368 44192 44192 | mulsol_i2dy * * *
alidydy * 107518 107518 | mulsol.i4dy * * *
Gpegdy| -4237207 4466800 4466800 | mulsol i5dy * * *
compressdy -222272 342592 342592| muyciel3dy * 6379 6379
fpsol2i2dy * * *| myciel4dy * 18225 18295
fpsol2i3dy * * *| myciel5dy * 40380 40380
gsm_newdy 7320 7808 7808| myciel6dy * 108726 108726
gsmdy| 548645.75 1355390 1355390 myciel7dy * * *
gsmdycorrdy -312628 494119 494119| queen5.5dy * 21859 21859
inithx_ildy 0 * *| queen6_6dy * 43306 39144
Imsbdy| -7245829 7409669 7409669 | queen7_7dy * 88652 85606
Imsbv01ldy| -4051636 4350640 4350640| queen8_8dy * * 138939
Imsbvdy| -4061214 4323294 4323294| r125.1cdy * * *
Imsbvdyexpdy| -4035252 4367024 4367024 r125.1dy * 62354 60931
Ipcdy 23802 26888 26888 r125.5dy * * *
mpeg2enc2dy| 7788.8586 9812.312 9812.312| spectraldy 6352 15472 15472
mpegdy| 5805.625 10613.63 10613.63 treillisdy | 1331.563 1805.563 1805.563
mugl00_1dy 12797 29847 29847 | turbocodedy 847 3195 3195
mug10025dy 11621 28429 28429 | volterrady 166 178 178
mug88_1dy 10227 25305 25305| zeroin-ildy * * *
mug88_25dy 9157 24181 24181 | zeroin_i2dy * * *

mulsol_ildy

zeroin_i3dy

302 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

Z a; < Cj.

l‘ZZ[l,'=j

satisfied:

Note that the above expression represents the total size of memory bank f; occupi-
ed by data structures allocated to that bank during the time interval I;.

Similarly, a solution can be represented by a matrix X, where x; j; € X is equal
to one if data a; is allocated to the memory bank g; at the time block I; and zero
otherwise. For a matrix Z, which represents the solution, it is possible to evaluate
the solution X and its respective objective function value f(X). The objective
function value consists of two parts:

- Costs of moving data structures from one memory bank to another,

- Costs of accessing conflict pairs.

Complexity of computing the first part of the objective function is O(nT), while
the cost of computing the second part is O(K), where K represents a total number
of conflict pairs (K = Y[, k).

In the solution space, we introduce two types of moves:

- Insertion move,
- Swap move.

Insertion move consists of picking one time interval I; and one data structure
@;, and moving that data structure from the bank f;, on which it is allocated in
the current solution to the bank f;, (j2 # j1). Understandably, it is necessary to
choose 8, in such a way that the new solution obtained by this move is feasible.
If a solution is represented by a matrix Z, this move consists of setting value of
element z;; to js.

Swap move consists of picking time interval I;, two data structures «a; and
a;, currently allocated to different banks and exchanging their allocations. If a
solution is represented by a matrix Z, this move consists of exchanging values of
elements z;;, and z;;,.

Hence, based on the introduced moves, we can define neighborhoods of the
solution space. So, neighborhood Ni(X) consists of all solutions X’ obtained by
applying k successive moves (Insertion or Swap move) starting from the solution
X. Also, we introduce two neighborhoods, Njs(X) and Ngup(X), as the sets of all
solutions obtained by applying Insertion move or Swap move (respectively) on
solution X. Note that the union of neighborhoods Nj,s and Ny, represents the
neighborhood Nj.

Now, VNS heuristic can be defined in such a way that starting from initial
feasible solution X it “shakes” that solution by creating another feasible solution
X" € Ni(X) and applies local search method in order to move to a better solution
X", If such a solution is not better than the current incumbent X, we create another

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 303

neighborhood set Ny,1(X) and seek for a better solution until k reaches its maxi-
mum k... If X" is better than a current incumbent solution, it becomes new in-
cumbent and k becomes k. This systematic local environment change is needed
because of the fact that local minimum within one environment does not have to
be local minimum of the other environment, but a global minimum is a local min-
imum relative to all environments. Changing environments also enables to get
out from the local minimum. VNS metaheuristic is illustrated with Algorithm 1.

Algorithm 1: Variable Neighborhood Search metaheuristics

X « InitialSolution();
Xopt — X;
fopt — f(X),
repeat
k « Kin;
repeat
X' « Shake(X, k);
X" « LocalSearch(X");
if f(X") < fopt then
X« X",
fopt — f(X)/
k — kuin;
else
‘ ke—k+ kstep;
end
until k > kyux;
until StoppingCondition();

© 0 NN S Ul R W N =

e s e
B ® N =R o

Jury
Gl

e
RN

Initial solution. At the beginning, all data structures are mapped to the external
memory bank. After that, for each data structure a; and each time interval I;,
we try to “reallocate” a; to one of the banks such that the obtained solution is
feasible and better than the incumbent. The pseudocode for calculation of an
initial solution is given in Algorithm 2.

Shaking. Shaking in Neighborhood Ny (Shake(X,k)) consists of performing k
randomly selected moves. For each of these k moves, Insertion move or Swap
move were chosen equally (with probability equal to p = 0.5). The pseudo code
for Shaking procedure is given in Algorithm 3.

304 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

Algorithm 2:

1 Function InitialSolution();
2 for — 1tondo

3 fort —1toT do

4 ‘ Xt,i — 0,

5 end

6 end

7 fc — f(X);

s fori — 1tondo

9 fort —1toT do

10 for j < 1tomdo
11 x0 — Xi 45

12 Xii—J;

13 if Feasible(X) and f(X) < fc then
14 | foe fX);
15 else

16 | Xii < x0;
17 end

18 end

19 end

20 end

21 return X’;

Algorithm 3:
1 Function Shake(X, k);
2 X'« X;
3 fori — 1tokdo
4 p < RandomNumber(0, 1);
5 if p < 0.5 then
6 InsertMethod:
7 repeat
8 t, « RandomNumber(1,T);
9 i, « RandomNumber(1,n);
10 repeat
11 ‘ jr < RandomNumber(0, m);
12 until j, # CurrentPosition(i,, t,);
13 until NotFeasibleSolution;
14 Move data structure a;, to the memory location g, at time block ;.
15 else
16 SwapMethod:
17 repeat
18 t; « RandomNumber(1,T);
19 iy, &< RandomNumber(1,n);
20 repeat
21 | i, # i,
22 until i, #i,,;
23 until NotFeasibleSolution;
24 Swap memory locations for data structures a;, and a;, at time block
It'
25 end

26 end

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 305

Local Search is implemented as the Variable Neighborhood Descent (VND)
method based on two previously defined moves (and corresponding neighbor-
hoods Njus and Ngygp). This means that the neighborhood Njus(X’) of a current
solution X’ is examined in order to find a solution X/, which is better than the
solution X’ (f(X7) < f(X")). If such a solution X} exists, the corresponding move
is performed and examining the neighborhood Nj,s of the new solution contin-
ues. If there is no better solution in the neighborhood Ny, of the incumbent,
examining the neighborhood Ny, of the incumbent continues. If there is a so-
lution X] € Ngugp(X’), the corresponding move is performed and examining the
neighborhood Nyygy of the new solution continues. If during examination of
neighborhoods Ny, at least one improvement is made, we return to neighbor-
hood Nj,s, otherwise local search (VND) is finished. The pseudo-code of VND
and included functions are given in Algorithms 4, 5, and 6.

Algorithm 4: Function for Variable Neighborhood Descent procedure

1 Function VND(X);

2 ke1;

3 X «X;

4 whilek <2do

5 if k = 1 then

6 X" « LSIns(X);

7 if f(X”) < f(X’) then
8 X/ — X”}

9 k«1;

10 else

11 ‘ k< 2;

12 end

13 else

14 X"« LSSwap(X);
15 if f(X”) < f(X’) then
16 X « X",

17 k<1;

18 else

19 | k<3

20 end

21 end

22 end

23 return X’;

306 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

Algorithm 5: Function for local search in neighborhood Njys

1 Function LSIns(X);

2 X'« X;

3 fori < 1tondo

4 fort — 1to T do

5 X" « Move(X’,1i,t);
6

7

8

9

if Feasible(X") and f(X"') < f(X’) then
‘ X/ «— X”}
end
end
10 end
11 return X’;

Algorithm 6: Function for local search in neighborhood Ny

1 Function LSSwap(X);
2 X« X;

3 foriy « 1tondo

4 fori, —i;+1tondo
5 fort —1toT do
6

7

8

9

X" Swap(X', 11,1z, 1);
if Feasible(X") and f(X"”) < f(X’) then

\ X« X";
end
10 end
11 end
12 end

13 return X’;

Let us discuss briefly the complexity of the proposed local search. Cardinality
of the neighborhood Nj,s(X’) of the solution X’ is nmT (each of n data structures
can be reallocated in each of T time intervals to one of the remaining m memory
banks). On the other hand, examination of all neighboring solutions X] (suppose
that X/ is obtained by moving data structures a; from bank g;, to bank §;, during
the time interval I;) consists of calculating changes in objective function value.

The change of objective function value consists of

e change in the part of the objective function containing cost of transfering
data structure from one bank to another (can be calculated in (O(1)).

e change in the part of the objective function containing costs of accessing con-
flicts (can be calculated in O(k;;), where k;; is number of conflicts involving
data structure «; in time interval I;)

Obviously, the second part depends on a number of conflicts involving spec-
ified data structure and specified time interval. However, it is possible to make

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 307

aggregate complexity analysis if we note that each conflict participates in change
of the objective function for at most 2m neighboring solutions (from neighborhood
Nins). Finally, the total complexity for calculating the change of the second part
of the objective function is O(Km), while the total complexity for both parts is
O(nmT + Km).

Regarding neighborhood Ny, cardinality of neighborhood is (5)T (each of (5)
pairs of data structures can exchange allocation on each of the T time intervals).
Similarly, calculating change in objective function contains two parts: change in
cost of moving data structure (can be calculated in O(1) time), and change of cost
for conflict. Each conflict participates in change of the objective function for at
most 2(n — 2) + 1 moves (each of data structures from conflict pair can exchange
allocation with any of the remaining data structures). Now, it can be concluded

that the total complexity is O(DT + Kn).
5. COMPUTATIONAL RESULTS

Experimental results obtained by the proposed VNS algorithm for solving
DMAP are given in this section. VNS heuristic was coded in C++. All computa-
tional experiments were performed on Pentium Core Duo CPU @ 2.66GHz with
6GB RAM. For the experimental testings of the proposed implementation, the set
of instances used is the same as the one reported by Soto in [13].

The set of instances can be downloaded under the name
dmap.zip from http://www.optsicom.es/dmap/dmap.zip.

Instances are classified by their name and three relevant characteristics, no-
tably time interval, number of data structures, and number of internal memory
banks. In the following table, the main features of the instances are shown: In-
stance name, number of time intervals (T), number of data structures (1), and
number of available internal memory banks (m).

308 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

Instancename T n m Instacename T n m
adpcmdy.dat 3 10 2| mulsol.i2dy.dat 39 188 16
alidydy.dat 48 192 6| mulsol.i4dy.dat 39 185 16
gpegdy.dat 4 11 2| mulsol.i5dy.dat 40 185 16
compressdy.dat 3 6 2| myciel3dy.col 4 11 2
fpsol2i2dy.dat 87 451 15| myciel4dy.col 7 23 3
fpsol2i3dy.dat 87 425 15| mycielsdy.col 6 47 16
gsmnewdydat 2 6 2| mycielédy.col 11 95 2
gsmdydat 5 19 2| myciel7dy.col 24 191 4
gsmdycorrdy.dat 5 19 2| queen5.5dycol 5 25 3
inithx_ildy.dat 187 864 27| queen6_6dy.col 10 36 4
Imsbdy.dat 3 8 2| queen7.7dycol 16 49 4
Imsbv0Oldy.dat 4 8 2| queen8.8dycol 24 64 5
Imsbvdy.dat 3 8 2 r125.1cdy.col 75 125 23
Imsbvdyexpdy.dat 4 8 2 r125.5dy.col 38 125 18
Ipcdy.dat 4 15 2 r125.1dy.col 6 125 3
mpeg2enc2dy.dat 12 130 2| spectraldy.dat 3 9 2
mpegdy.dat 8 68 2 treillisdy.dat 6 33 2
mugl00_-1dy.col 7 100 2|turbocodedy.dat 4 12 3
mugl0025dy.col 7 100 2| volterrady.dat 2 8 2
mug88_1dy.col 6 88 2| zeroin.ildydat 41 211 25
mug88.25dy.col 6 88 2| zeroin.i2dy.dat 35 211 15
mulsol.ildy.dat 39 197 25| zeroin.i3dy.dat 35 206 15

Further, in order to compare with the known results, penalty cost p is set to be
equal to 16ms/kB, movement data structure cost from internal to external memory
bank (v), and vice versa, is set to be equal to 4ms/kB, while movement between
two internal memory banks (/) is set to be equal to 1ms/kB.

Given that all metaheuritics, including VNS, have a stochastic nature, VNS
algorithm was run 20 times for each problem instance. Finishing criteria of the
proposed VNS were either time limit or event when ky,,c was reached. In this
implementation, ky,x was set to 10, Ky to 1, and ki to 1. Execution time limit
for VNS was set to 7,200 seconds per instance.

For easier comparison, the results of the presented VNS metaheuristic on
tested instances are summarized in Tables 6 - 9, where presented VNS algorithm
is compared with IM (from [13]), CPA, GRASP, and GRASP+EC (from [11]) and
with BVNS, and RVNS methods (from [16]).

Table 6 is organized as follows. Names of instances, which are sorted alphabet-
ically, are given in the first column. Determined by the solution values presented
in columns “from Soto et. al [13] with correct. val.” and "our ILP formulat.”
of Table 5 and by the solution values obtained by all considered methods (IM,
CPA, GRASP, GRASP+EC, BVNS and RSVNS, and VNS), the best known solution
value is presented in the second column. The next six columns are obtained using
results from Sevaux et. al [11], where all known methods for solving DMAP
(IM, CPA, GRASP and GRASP+EC) till that time were compared. Results in
corresponding columns “%dev” are presented as a deviation value from the best
known value from the second column (in percentage). Respective running times,
which are given only for GRASP and GRASP+EC methods, are copied from [11].
Solution values, respective running times (in seconds), and deviations from the
best knowns (in percentage), obtained by VNS metaheuristic proposed in this

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 309

paper, are presented in three final columns.

Table 6: Comparison between new and existing methods from the literature for solving DMAP

M CPA GRASP GRASP+EC VNS
Instance Bestknown| %dev.| %dev.| % dev. time | % dev. time | Obj.val. time % dev.
adpemdy 44192 0 45.44 0 0.01 0 0| 44192 0 0
alidydy 107398 | 939.7749 | 149.3545 | 159.5870 160.48 | 50.5519 85| 107398 180.05 0
Gjpegdy 4466792 | 0.0002 | 1.9302| 0.0002 0.01| 0.0002 0| 4466800 0.01 0.0002
compressdy 342592 0 7.77 2.67 0.01 0 0| 342592 0 0
fpsol2i2dy 2587875 | 64.4663 | 33.5580 | 7.9954 1015.13 | 7.9954 1000 | 2605980 835.11 0.6996
fpsol2i3dy 2582988 | 60.1959 | 33.7942 | 6.9327 1062.37 | 6.9327 1000 | 2616849 1000 1.3109
gsm newdy 7808 0 17295 0 0.01 0 0 7808 0 0
gsmdy 1355389.875| <0.0001 | <0.0001| 0.1300 0.01| 0.1300 0| 1355390 022 <0.0001
gsmdycorrdy 494118 0 0 0.35 0.04 0.36 0| 494118 1.85 0
inithx_ildy 5652213 | 81.8834 | 24.2372| 11.1145 700 | 11.3479 1000 | 5716414 1000 1.1359
Imsbdy 7409660 | 0.0001 | 0.3601| 0.3301 029 0.1401 0| 7409669 0 0.0001
Imsbv01dy 4350588 | 0.0012| 3.7712| 1.1312 0.01| 1.8812 1000 | 4350640 0 0.0012
Imsbvdy 4323116 | 0.0041 | 2.2742| 0.0041 0.01| 1.1442 0| 4323294 0.03 0.0041
Imsbvdyexpdy 4366972 | 0.0012| 3.3812| 2.6312 0.01| 1.8812 1000 | 4367024 0.01 0.0012
Ipcdy 26888 0 43.67 22.02 0.02 26.19 0| 26888 0.04 0
mpeg2enc2dy 9812 0 45.99 9.46 0.75 10.14 010915.28 023 11.2442
mpegdy 10613.625 0.15 41.75 4.62 0.13 26.54 0[10648.88 480.44 0.3322
mugl00_1dy 28890 0| 109.98 2549 1471 21.47 0| 30638 395 6.0505
mugl00_25dy 28429 | 7.2813|101.1632 | 13.6967 11.89 | 14.7910 0| 28876 323.07 15723
mug88_1dy 25305 | 0.877297 | 94.82432 | 10.18827 11.43 | 13.72906 0| 25570 471.81 1.0472
mug88_25dy 24181 | 1.448331 | 74.51606 | 1.448331 7.78 | 0.533477 0| 24365 39218 0.7609
mulsol_ildy 459598 | 177.7919 | 223.0343 | 73.8314 1096.13 | 12.7677 66| 478739 1794.61 4.1647
mulsol_i2dy 552215 | 130.3367 | 214.9069 | 48.0897 1086.69 | 18.5287 71| 557552 1792.89 0.9665
mulsol_i4dy 505927 | 132.3606 | 222.5533 | 37.8263 1057.35| 12.7690 56| 505927 1785.29 0
mulsol i5dy 518854 | 144.7968 | 208.6101 | 40.8412 1080.78 | 10.7678 59| 520929 1797.09 0.3999
myciel3dy 6379 89.14 6.88 8.42 124 11.26 0 6379 0.2 0
myciel4dy 18225 | 46.7084 | 20.2284 | 19.6006 6.07 | 11.6009 0 18272 152.63 0.2579
myciel5dy 39144 | 40.5647 | 79.1557 | 42.4718 28.86 | 16.2980 0| 40383 19731 3.1652
myciel6dy 108726 | 65.31727 | 59.49225 | 39.17426 94.96 | 14.58194 1| 109942 2518 1.1184
myciel7dy 411022 | 94.7880 | 106.6965 | 30.7758 377.08 | 8.7533 18| 411022 193.94 0
queen5_5dy 21151 | 73.7655| 29.5211| 29.5211 4.76 | 29.5858 0| 21151 7041 0
queen6_6dy 39144 | 98.3058 | 50.1604 | 26.9977 284 | 20.5140 0| 3976 207.02 13591
queen?_7dy 73264 | 154.6836 | 80.1393 | 45.1697 42.82 | 10.6983 0| 73264 42952 0
queen8_8dy 133130 | 190.5342 | 74.3438| 33.4009 82.56 | 16.0512 2| 133130 486.6 0
r125.1cdy 770623 | 203.5352 | 343.4828 | 58.9772 700 | 589772 120 770623 1788.57 0
r125.1dy 60931 | 85.06245 | 19.0019 | 16.75982 33.38 | 13.3765 0| 61570 131553 1.0487
r125.5dy 501175 | 203.6558 | 214.9133 | 172.4574 1028.86 | 47.9300 26| 501175 1786.26 0
spectraldy 15472 6.72 25.44 6.31 0.01 0 0 15472 0 0
treillisdy ~ 1805.5625 0.02| 129.23| 113.11 0.03 33.1 0| 1807.56 61 0.1106
turbocodedy 3195 33.49 84.32 20.09 0.13 20.09 0 3195 0.05 0
volterrady 178 7.87 7.87 7.87 0.01 7.87 0 178 0 0
zeroin_ildy 486921 | 76.6642 | 277.5686 | 65.5265 1091.16 | 18.3601 79| 490350 1792.83 0.7042
zeroin_i2dy 501989 | 86.4093 | 207.0074 | 39.6488 1086.34 | 11.0174 103 | 501989 1194.54 0
zeroin.i3dy 551001 | 81.0598 | 222.9487 | 47.8225 1063.72| 12.5924 58| 551001 1798.99 0

Table 7 is organized similarly. The first two columns are copied from Table 6.
In the next six columns of Table 7, results of testing instances by using BVNS and
RSVNS are given. These results appear in groups of three (value, running time
(in seconds) and deviation value from the best known value (in percentage)). The
individual results (solution value and running time) for each instance, for both
algorithms proposed in Sdnchez-Oro et. al [16], are provided by Jestis Sdnchez-
Oro, to whom we are very grateful. Deviation value is calculated as deviation
from the Best known solution from the second column, in percentage. The last
three columns are copied from Table 6, where the results of the presented VNS
are given in the same way as the results for BVNS and RSVNS.

310 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

First, we want to point to the fact that with the introduced improved ILP
formulation of Soto et. al from [11] and our ILP formulation for DMAP problem
in embedded systems, CPLEX obtained better results than all considered methods
for 10 instances. Therefore, solution presented in column “Best known” of Tables
6 and 7, is the best solution obtained in comparison with the results presented
in Table 5 and solutions obtained by all considered methods (IM, CPA, GRASP,
GRASP+EC, BVNS, RSVNS, and VNS).

Table 7: Comparison between new and the most recent methods from the literature for solving DMAP

BVNS RSVNS VNS
Instance Best known value time %dev value time %dev| Obj.val. time %dev
adpemdy 44192 44192 0.088 0 44192 0.146 0] 44192 0 0
alidydy 107398 107766 100.004 0.3427 107846 100.022 0.4171| 107398 180.05 0
Gjpegdy 4466792| 4466792 0.031 0| 4466799 0.057 0.0002| 4466800 0.01 0.0002
compressdy 342592 342592 0.004 0 342592 0.016 0| 342592 0 0
fpsol2i2dy 2587875| 2610611 100.225 0.8786| 2587875 100.239 0] 2605980 835.11 0.6996
fpsol2i3dy 2582988| 2601944 100.205 0.7339| 2582988 100.107 0] 2616849 1000 1.3109
gsm_newdy 7808 7808 0.003 0 7808 0.019 0 7808 0 0
gsmdy 1355389.875|1355389.88 0.074 0]1355389.88 0.188 0] 1355390 0.22 <0.0001
gsmdycorrdy 494118 494120 0.071 0.0004 494118 0.192 0| 494118 1.85 0
inithx ildy 5652213| 5652213 102.062 0| 5654904 101.053 0.0476| 5716414 1000 1.1359
Imsbdy 7409660| 7409660 0.005 0| 7409660 0.032 0| 7409669 0 0.0001
Imsbv01ldy 4350588| 4350628 0.009 0.0009| 4350588 0.046 01 4350640 0 0.0012
Imsbvdy 4323116| 4327364 0.013 0.0983| 4323116 0.045 0] 4323294 0.03 0.0041
Imsbvdyexpdy 4366972| 4367004 0.01 0.0007| 4366972 0.052 0] 4367024 0.01 0.0012
Ipcdy 26888 26888 0.033 0 26888 0.16 0| 26888 0.04 0
mpeg2enc2dy 9812|12463.2793 22.921 27.0208|12451.2793 39.915 26.8985|10915.28 ~ 0.23 11.2442
mpegdy 10613.625|10764.6875 2.573 1.4233| 10694.375 4.167 0.7608|10648.88 480.44 0.3322
mug100_1dy 28890 30781 6.252 6.5455 30515 10.719 5.6248| 30638 395 6.0505
mug10025dy 28429 29409 6.058 3.4472 28997 10.629 1.9980| 28876 323.07 1.5723
mug88_1dy 25305 26048 3.821 29362 25823 6.596 20470 25570 471.81 1.0472
mug88_25dy 24181 24886 3.75 29155 24569 6.487 1.6046| 24365 392.18 0.7609
mulsolildy 459598 465557 100.033 1.2966 459598 100.064 0| 478739 1794.61 4.1647
mulsol_i2dy 552215 561626 100.001 1.7042 552215 100.006 0| 557552 1792.89 0.9665
mulsol_i4dy 505927 511055 100.056 1.0136 506162 100.139 0.0464| 505927 1785.29 0
mulsol i5dy 518854 527097 100.056 1.5887 518854 100.046 0] 520929 1797.09 0.3999
myciel3dy 6379 6382 0.015 0.0470 6379 0.048 0 6379 02 0
myciel4dy 18225 19041 0.172 4.4774 18678 0.405 2.4856| 18272 152.63 0.2579
myciel5dy 39144 42324 0.992 8.1239 42105 1.763 7.5644| 40383 197.31 3.1652
myciel6dy 108726 114466 14.774 52793 112502 25.107 3.4730| 109942 25.18 1.1184
myciel7dy 411022 417987 100.002 1.6946 412993 100.058 0.4795| 411022 193.94 0
queen5_5dy 21151 21903 0.182 3.5554 21763 0.404 2.8935| 21151 70.41 0
queen6_6dy 39144 41018 1.223 4.7875 40722 2.062 4.0313| 39676 207.02 1.3591
queen?_7dy 73264 75493 5.567 3.0424 75190 9.054 2.6288| 73264 429.52 0
queen8_8dy 133130 140476 19.34 5.5179 137027 32.223 29272| 133130 486.6 0
r125.1cdy 770623 854826 100.035 10.9266 836061 100.202 8.4916| 770623 1788.57 0
r125.1dy 60931 62798 8.181 3.0641 62033 13.396 1.8086| 61570 1315.53 1.0487
r125.5dy 501175 534619 100.012 6.6731 528754 100.101 5.5029| 501175 1786.26 0
spectraldy 15472 15472 0.009 0 15472 0.032 0| 15472 0 0
treillisdy ~ 1805.5625| 1869.375 0.411 3.5342| 1829.8125 0.813 1.3431| 1807.56 61 0.1106
turbocodedy 3195 3233 0.032 1.1894 3195 0.078 0 3195 0.05 0
volterrady 178 178 0.003 0 178 0.018 0 178 0 0
zeroin_ildy 486921 494032 100.006 1.4604 486921 100.023 0| 490350 1792.83 0.7042
zeroin_i2dy 501989 515845 100.004 2.7602 507314 100.098 1.0608| 501989 1194.54 0
zeroin.i3dy 551001 572150 100.039 3.8383 564326 100.084 2.4183| 551001 1798.99 0

Now, considering the results from Tables 6 and 7, none of the presented meth-
ods foundnd all best known solutions. For instance, CPLEX reached 18 of the
best known solutions, of 31 solved. Further, IM, CPA, GRASP, and GRASP+EC
together were successful in finding 8 of the best known, BVNS 10, RSVNS 20, and

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 311

the presented VNS 19. Further more, the best known solution obtained only by
IM was in two cases (the same number as for the BVNS), the best known solution
obtained only by RSVNS was in 9 cases, while the best known solution obtained
only by VNS was in 10 cases (same as with CPLEX). CPA, GRASP, and GRASP+EC
together have no solution better than the solutions obtained by other considered
methods for any of the tested instance. More details about this comparison are
given in Table 8.

If we compare presented VNS with IM, CPA, GRASP, and GRASP+EC only
(Table 6), we can see that: for 26 instances VNS finds better solutions than the
solutions obtained with other four methods; for 12 instances VNS finds solutions
equal to the best solutions obtained with other four methods; for 6 instances VNS
finds worse solutions than the best solutions obtained with other four methods.
Similarly, if we compare solutions of presented VNS with solutions obtained only
with BVNS and RSVNS methods (Table 7), we can see that for 21 instances VNS
finds better solutions than the solutions obtained with these two methods; for 9
instances solutions equal to the best solutions obtained with these two methods;
for 14 instances VNS finds worse solutions than the best solutions obtained with
these two methods.

Considering only results of the presented VNS, we can notice that running
values are less than 1, 800s, which can be considered as very fast execution time.
Comparing results of the presented VNS with results from the second column
of Tables 6 and 7, we can notice that deviation values varies from < 0.0001%
up to 11.2442% for instances where best known solutions are not reached. More
precisely, with average deviation from the best solution value of 0.8513%, solution
obtained by the proposed VNS differ from the best known solution in less than
1% for 14 instances, between 1% and 2% for 7 instances, and differ more than
2% for only 4 instances. Also, we can conclude that proposed VNS obtains the
best improvements especially on very large instances (T > 15,n > 20 and m > 5).
Notably, solutions for instances “r125.1cdy.col” and “r125.5dy.col” with respective
parameters T, n, and m equal to (75, 125, 23) and (38, 125, 18), improved for 37.1%
and 32.4%. Similarly, two instances of “zeroin” type with values parameters T, n,
and m up to (35,211, 15) have the improvement of 10% and higher.

In Table 8 average objective function values (Avg.), average running time in
seconds (Time(s)), average percentage deviation with respect to the best solution
found (Dev(%)), and the number of times only that method matches the best result
(#Best), are presented. Average value and average time for IM, CPA, GRASP,
GRASP+EC are taken from [11]. Average value and average time for BVNS,
RSVNS, and proposed VNS, together with the average deviation from the best
known result, shown in the second column of Tables 6 and 7, are calculated in
accordance with the data presented in Tables 6 and 7. The number of times a
method matches the best result is calculated as the number of instances for which
the best result is matched only by using that method. For instance, the best result
for "mpeg2end2dy” and “mugl00_-1dy” was reached only by IM. In analogy to
that, for 2 instances the best results were obtained only by the BVNS, for 9 instances
only by the RSVNS, and for 10 instances the best results were obtained only by the

312 M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija / A New VNS approach

proposed VNS. Given the fact that testings of considered methods were preformed
on computers of different specifications, in order to compare running times of the
proposed VNS algorithm with running times of the other considered algorithms,
specifically, in order to compare the running times of the proposed VNS algorithm
with the running times of the BVNS and RSVNS methods, a certain scaling factor
should be applied. Thisscaling factor can be calculated as ratio between CPU mark
(from https://www.cpubenchmark.net/compare.php) of computers performances.
Since CPU of the computer used for testings of BVNS and RSVNS was marked
as 4944 and CPU of ours as 1719, we can conclude that their computer is almost
3 times faster than ours. Regardless of the fact that average execution time of
the proposed VNS algorithm is longer than the running time of other considered
methods, longer execution time can be attributed to instances for which better
objective function value is obtained. Now;, as it can be seen from Table 8, although
average value of the tested instances got using the proposed VNS method is the
second best, the average deviation from the best known solution value obtained
by the proposed VNS algorithm is the best. Indeed, solution value of the proposed
VNS algorithm differ from the average value of the best known solutions in less
than 1%. Further more, by using the proposed VNS algorithm for the biggest
number of instances, the best known solution value is introduced.

Table 8: Comparisons between methods considered in this paper
Avg. | Time (s) | Dev (%) | #Best
IM | 1,378,609.24 | 300.72 76.81 2

CPA | 1,375,151.61 300.48 477.73 0
GRASP | 1,110,087.76 | 300.45 29.65 0
GRASP+EC | 1,060,597.74 130.55 13.94 0
BVNS | 1,006,790.25 34.08 277 2
RSVNS | 1,003,751.30 35.62 1.97 9
VNS | 1,004,086.27 | 539.78 0.85 10

In order to confirm the differences among the presented algorithm and al-
gorithms known from the literature, we performed the Friedman non-parametric
statistical test with all the individual values. The Friedman test ranks each al-
gorithm in all instances according to the quality of the solution obtained, giving
rank 1 to the best algorithm, 2 to the second one, and so on. If the averages differ
greatly, the associated p-value or significance will be small. Similarly to the test
presented in [16], the Friedman non-parametric statistical test is preformed for IM,
GRASP+EC, BVNS, RSVNS, and VNS. The resulting p-value (lower than 0.001)
obtained in this experiment clearly indicates that there are statistically significant
differences among the tested methods. More precisely, the average rank values
produced by this test are 3.9886 (IM), 4.0682 (GRASP+EC), 2.9091 (BVNS), 2.0227
(RSVNS), and 2.0114 (VNS), but additional p information shows that VNS and
RSVNS statistically significantly differ from IM, GRASP, GRASP+EC, and BVNS
but not from each other.

We conducted an additional statistical test (Wilcoxon signed rank test) to
perform pair-wise comparisons between our method (VNS) and the previous al-

M.Ivanovi¢, A.Savi¢, D.Uro$evi¢, Dj.Dugosija / A New VNS approach 313

gorithms (IM, GRASP + EC, BVNS and RSVNS). Table 9 presents the results of
Wilcoxon signed rank test. Since p-value obtained in the first three tests, presented
in Table 9, is lower than 0.001, it means that there are significant statistical differ-
ences between the compared algorithms. Therefore, VNS clearly outperforms the
results obtained by IM, GRASP+EC, and BVNS. Further, since p-value obtained in
the fourth test is much higher than the significant, we can consider these methods
as the methods of the similar quality. Still, given that with the proposed VNS
method better solution was obtained for 21 instance, while with RSVNS better
solution was obtained for 14 instances, we give VNS a little advantage.

Table 9: Results of the Wilcoxon signed rank test run over each pair of algorithms of the final experiment

Al A2 | A1 < A2 | A1 > A2 | A1 = A2 | p-value
VNS M 28 5 11 | <0.001
VNS | GRASP+EC 37 2 5| <0.001
VNS BVNS 30 8 6 | <0.001
VNS RSVNS 21 14 9| 0.2318

6. CONCLUSIONS

This paper presents our improvement of the existing ILP formulation for
DMAP. The proposed cost function covers all oversights we referred to and there-
fore, with the proposed improvements, our new ILP formulation corresponds to
the DMAP completely. In addition, we presented a new ILP formulation and a
new metaheuristic approach based on the Variable Neighborhood Search. In order
to compare the results of the proposed VNS heuristic and the methods previously
established, we tested all of them on the same set of instances. From the com-
putational results we can conclude that the proposed VNS heuristic effectively
solves DMAP, providing (including CPLEX solutions of the new ILP formulation)
20 new best known solution values. Results obtained by the VNS are better than
the results obtained by each method considered individually and better or equal
to the results obtained by all methods previously established. Indeed, results
obtained by the VNS are better or equal to the best result obtained by IM, CPA,
GRASP, GRASP+EC, BVNS and RSVNS, combined for 25 instances. Execution
time could not be easily compared given that almost all of the proposed methods
for solving DMAP were tested on different types of computers, but all solutions
were reached in a reasonable time limit or even less than 1,800 seconds.

Building similar dynamic memory allocation problems in embedded systems
such as problems which involve calculation memory, possible movings during
time blocks, conflicts which involve three or more data structures at the same time
could be considered as the future work. Also, implementation of parallelization
into VNS heuristic can be considered as well.

Acknowledgments: The authors are grateful to anonymous referees for their
remarks and suggestions that helped to improve the manuscript. This research
was supported by the Research Grants 174010 and TR36006 of the Serbia Ministry
of Education, Science and Technological Developments.

314

(1]

[2]
B3]
[4]
(5]
(6]
[7]
[8]

191
[10]
(11]
(12]

[13]

[14]

[15]

[16]

[17]

M.Ivanovi¢, A.Savi¢, D.Urosevi¢, Dj.Dugosija /| A New VNS approach
REFERENCES

Atienza, D., Mamagkakis, S., Poletti, F, Mendias, J. M., Catthoor, E.,, Benini, L., Soudris, D.,
“Efficient system-level prototyping of power-aware dynamic memory managers for embedded
systems”, INTEGRATION, the VLSI journal, 39 (2) (2006) 113-130.

Hanafi, S., Lazi¢, J., Mladenovi¢, N., Wilbaut, C., Crévits, I., ”"New variable neighbourhood search
based 0-1 MIP heuristics”, Yugoslav Journal of Operations Research, 25 (3) (2015) 343-360.

Hansen, P.,, Mladenovi¢, N., ”An introduction to variable neighborhood search”, Meta-heuristics,
Springer, Boston, MA, 1999, 433-458.

Hansen, P.,, Mladenovi¢, N., Pérez,].A.M,. ”Variable neighbourhood search: methods and appli-
cations”, Annals of Operations Research, 175 (1) (2010) 367-407.

Hansen, P., Mladenovi¢, N., “Variable neighborhood search: Principles and applications”, Euro-
pean journal of operational research, 130 (3) (2001) 449-467.

Hansen, P, Mladenovi¢, N., Developments of variable neighborhood search, Essays and surveys in
metaheuristics, Springer, 2002, 415-439.

Hansen, P, Mladenovi¢, N., Variable neighbourhood search, Handbook of Metaheuristics, Springer,
Boston, MA, 2003, 145-184.

Ivanovi¢, M., Dugosija, D., Savi¢, A., Urosevi¢, D., ”A new integer linear formulation for a
memory allocation problem”, in proc. Balcor 2013, XI Balcan Conference on Operational Research,
2013, 284 288.

Mladenovi¢, N., Hansen, P., “Variable neighborhood search”, Computers & Operations Research,
24 (11) (1997) 1097-1100.

Mladenovi¢, N., ”A variable neighborhood algorithm - a new metaheuristic for combinatorial
optimization”, Optimization Weeks, 112 (1995) 112-112.

Sevaux, M., Rossi, A., Soto, M., Duarte, A., Marti, R., ”Grasp with ejection chains for the dynamic
memory allocation in embedded systems”, Soft Computing, 18 (8) (2014) 1515-1527.

Soto, M., Rossi, A., Sevaux, M., “A mathematical model and a metaheuristic approach for a
memory allocation problem”, Journal of Heuristics, 18 (1) (2012) 149-167.

Soto, M., Rossi, A., Sevaux, M., “Two iterative metaheuristic approaches to dynamic memory al-
location for embedded systems”, European Conference on Evolutionary Computation in Combinatorial
Optimization, Springer, Berlin, Heidelberg, 2011, 250-261.

Soto, M., Sevaux, M., Rossi, A., Laurent, J., Memory Allocation Problems in Embedded Systems:
Optimization Methods, John Wiley & Sons, Inc, Hoboken, NJ, 2013.

Sénchez-Oro, J., Sevaux, M., Rosi, A., Marti, R., Duarte, A., “Solving dynamic memory allocation
problems in embedded systems with parallel variable neighborhood search strategies”, Electronic
Notes in Discrete Mathematics, 47 (2015) 85-92.

Sénchez-Oro, J., Sevaux, M., Rosi, A., Marti, R., Duarte, A., "Improving the performance of
embedded systems with variable neighborhood search”, Applied Soft Computing, Elsevier, 53
(2017) 217-226.

Waytack, S., Catthoor, F., Nachtergaele, L., De Man, H., "Power exploration for data dominated
video applications”, in: Proceedings of the 1996 international symposium on Low power electronics and
design, IEEE Press, 1996, 359-364.

AV

,.;5@&'@"‘ Engineering and
Applied Science Letters

% PSR Press

Article
Dominator and total dominator colorings in vague graphs

Lian Chen!, Huiqin Jiang?, Zehui Shao'** and Marija Ivanovié3

1 Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China.;

chenlian@gzhu.edu.cn(L.C); zshao@gzhu.edu.cn(Z.S)

School of Information Science and Engineering, Chengdu University, Chengdu 610106, China.;

hq.jiang@hotmail.com(H.])

3 Faculty of Mathematics, University of Belgrade, Studentski trg 16/IV, 11 000 Belgrade, Serbia.;
maria.ivanovic@gmail.com(M.I)

* Correspondence: zshao@gzhu.edu.cn
Received: 1 March 2019; Accepted: 15 May 2019; Published: 28 May 2019.

Abstract: The concept of vague graph was introduced early by Ramakrishna and substantial graph
parameters on vague graphs were proposed such graph coloring, connectivity, dominating set, independent
set, total dominating number and independent dominating number. In this paper, we introduce the concept
of the dominator coloring and total dominator coloring of a vague graph and establish mathematical
modelling for these problems.

Keywords: Dominator coloring, fuzzy graph theory, total dominator coloring, vague graph.

1. Introduction

uzzy set generalize classical sets by use of a membership function such that each element is assigned a
F number in the real unit interval [0,1], which measures its grade of membership in the set. The theory
of fuzzy sets was proposed by Zadeh in 1965 [1]. Since then, the theory was used in a wide range of domains
in which information is incomplete or imprecise, such as such as management science, medical science, social

science, financial science, environment science and bioinformatics [2]. In 1993, Gau et al. [3] presented the
concept of vague set theory as a generalization of fuzzy set theory, which allow a separation of evidence for
membership (grade of membership) and evidence against membership (negation of membership). They used
a subinterval of [0,1] to replace the value of an element in a set. That is, a vague set is characterized by
two functions. Namely, a truth-membership function t,(x) and false-membership function f,(x) are used to
describe the boundaries of the membership degree.

Graph theory is a very useful and well developed branch of discrete mathematics, and it also is
an important tool for modeling many types of relations and processes in biological, physical, social and
information systems. Realizing the importance of graph theory and inspiring of Zadeh’s fuzzy relations [4],
Kauffman [5] proposed the definition of fuzzy graph in 1973. Then Rosenfeld [6] proposed another elaborated
definition of fuzzy graph in 1975. Since then, there was a vast research on fuzzy graph [7-19]. Inspired by
fuzzy graph, in 2009, Ramakrishna [20] introduced the concept of vague graphs and studied some important
properties. After that, Samata et al. [21] analysed the concepts of vague graphs and its strength. Rashmanlou
et al. [22] introduced the notion of vague h-morphism on vague graphs and regular vague graphs, and they
investigated some properties of an edge regular vague graph [23]. At the same time, they introduced some
connectivity concepts in the vague graphs [24].

The Dominator coloring of a graph was proposed by Gera et al [25] in 2006. In the same paper, they
showed that dominator chromatic number is NP-complete. After that, they studied the bounds and realization
of the dominator chromatic number in terms of chromatic number and domination number [26] and the
dominator colorings in bipartite graphs [27]. Recently, several researchers have theoretically investigated
the dominator coloring number of Claw-free graph [28], Certain Cartesian Products [29], trees [30] and more
[31,32]. Motivated by dominator chromatic number, Kazemi [33] studied the new concept of a total dominator
chromatic number of a graph. And they showed that total dominator chromatic number is NP-complete. A
survey of total dominator chromatic number in graphs can also be found in [34,35].

Eng. Appl. Sci. Lett. 2019, 2(2), 10-17; doi:10.30538 / psrp-easl2019.0017 https:/ /pisrt.org/psr-press/journals/easl

https://pisrt.org/psr-press/journals/easl/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/easl

Eng. Appl. Sci. Lett. 2019, 2(2), 10-17 11

Borzooei et al. [36] in their work introduced the concepts of special kinds of dominating sets in vague
graph. Kumar et al. [37] discuss the new concepts of coloring in vague graphs with application. In this
paper, we introduce the concept of the dominator coloring and total dominator coloring of a vague graph and
establish mathematical modelling for these problems.

2. Preliminaries

A vague set A in an ordinary finite non-empty set X is a pair (ta, fa), where t4 : X — [0,1], fa :
X — [0,1], and 0 < t4(x) + fa(x) < 1 for each element x € X. Note that the truth-membership 4 (x)
is considered as the lower bound on grade of membership of x derived from the evidence for x € X and the
false-membership f4(x) is the lower bound on negation of membership of x derived from the evidence against
x € X. The grade of membership for x is characterized by the interval [t4(x),1 — f4(x)] not a crisp value. And
iftg(x) =1— fa(x) for all x € X, the vague set degrades to a fuzzy set.

In this paper, we denote by P,, C;, K, the path, cycle and complete graph on n vertices, respectively. The
complete bipartite graph with part size m, n is denoted by K, , and the ladder graph is the Cartesion product
of P, and C,,, denoted by P,00C,,.

Definition 1. Let G = (V, E) be a graph. A pair G’ = (A, B) is called a vague graph on G where A = (t4, fa)
is a vague set on V and B = (tp, fp) is a vague set on E such that tg(uv) < min{ts(u),ts(v)}, fp(uv) >
max{fa(u), fa(v)} for each uv € E.

Definition 2. For a vague graph G = (A, B), an edge uv is called a strong edge if t5(uv) = min{t4(u),ta(v)},
fe(uv) = max{fa(u), fa(v)}. Let N(u) = {v|uvis a strong edge in G} and N[u] = N(u) U {u}.
We say u dominates all vertices in N(u) and totally dominates all vertices in N|u].

Definition 3. Dominator coloring of a vague graph G is a coloring of the vertices of G such that every vertex
dominates all vertices of at least one other class. The dominator chromatic number x*(G) of G is the minimum
number of colors among all dominator colorings of G.

Definition 4. Total dominator coloring of a vague graph G is a coloring of the vertices of G such that every
vertex totally dominates all vertices of at least one other class. The total dominator chromatic number x¢(G)
of G is the minimum number of colors among all total dominator colorings of G.

3. Dominator coloring problems

Let [k] = {1,2,...,k}. Let V. C V denotes set of vertices with assigned color c. Further, let decision
variables x; . be defined as
1, ieV;
Xie =

0, ieV;

For a vague graph G and an integer k, let E° be the set of all strong edges of G. We propose integer
linear programming (ILP) formulations (called Dominator Coloring ILP and Total Dominator Coloring ILP,
respectively), for the dominator coloring problem and total dominator coloring problem as follows:

Dominator coloring ILP

k
th,czl, ieV)

c=1

k
Y xie>1, celk ®

eV
Yiey +Xje, + Micy e, <2, c1,¢2 € [k],i € V(G),j € VANI] 3)

k

Z Mi,Cl,C2 Z 1/ Cl c [k],l € V (4)

62:1

Eng. Appl. Sci. Lett. 2019, 2(2), 10-17 12

Xie +xjc <1, celk],(ij) € E° ®)
xic €{0,1}, celkl,ieV ©)
Mic,e, €{0,1}, {c1,c2} C[kl,ieV @

Theorem 5. Conditions (1) — (7) defined for the graph G are satisfied if and only if G admits a dominator coloring with
k colors.

Proof. Condition (1) ensures that each vertex is assigned with exactly one color. Condition (2) ensures that
each color should be used. Conditions (3) and (4) ensure that every vertex dominates all vertices of at least
one other class. Condition (5) ensures that the assignment is a proper coloring. Conditions (6) and (7) ensure
that each variable is boolean. Therefore, if each condition is satisfied, then G admits a dominator coloring with
k colors.

< By the definition of the dominator coloring, it is clear that Conditions (1) — (7) defined for the graph
G are satisfied. [J

Total dominator coloring ILP

k
Y xic=1 i€V (8)
c=1
k
Y xie>1, celk])
eV
Xiey + Xjoy + Mic ., <2, {c1, 02} € [k],i € V(G),j € VANIi] (10)
k
Z Mi,C],CZ Z 1/ Cl € [k]/l € V (11)
cpF#cq,00=1
Xie +xjc<1, cé€ k], (i,j) € E° (12)
x.€{0,1}, ce[k,ieV (13)
Mic e, €101}, {ci,c0} Clkl,ieV (14)

Theorem 6. Conditions (8) — (14) defined for the graph G are satisfied if and only if G admits a total dominator coloring
with k colors.

Proof. Condition (8) ensures that each vertex is assigned with exactly one color. Condition (9) ensures that
each color should be used. Conditions (10) and (11) ensure that every vertex totally dominates all vertices
of at least one other class. Condition (12) ensures that the assignment is a proper coloring. Conditions (13)
and (14) ensure that each variable is boolean. Therefore, if each condition is satisfied, then G admits a total
dominator coloring with k colors.

< By the definition of the total dominator coloring, it is clear that Conditions (1) — (7) defined for the
graph G are satisfied. [

Example 1. Let G be a vague graph depicted in Figure 1. Then the set of strong edges is
{(uru2), (u2v2), (uzus), (uzusz), (usus), (usvs), (uaus), (usvs), (usue), (ueuz), (v102), (v203), (v3v4), (v405)}

Example 2. Let G be a vague graph depicted in Figure 2. Then by solving the instance from Dominator
Coloring ILP, we obtain 7%(G) = 6. A dominator coloring f with 6 colors is f(u1) = 1, f(us) = 2, f(u3) =
4, f(us) =1, f(us) =4 f(ue) =6, f(uz) =1,f(v1) =3, f(v2) =1, f(v3) =4, f(va) =5, f(vs) =1 whichis

presented in Figure 2.

Eng. Appl. Sci. Lett. 2019, 2(2), 10-17 13

U1(0.1,0.3)

(0.2,0.3)U7 3,(’}1(0.5.0.3)
2

0, (O

U92(0.2,0.5)
2,09

(er0‘1°0)

S
=

(0.1,0.2)Ug

(0.2,0.7) U3(0.3,0.4)

U5 (0.4,0.7) U4 (0.2,0.3)

Figure 1. An example of a vague graph G

U1(0.1,0.3)
()

(0.2,0.3)U7T },(‘11(0.5.0.3)
1 =3

'06) -2

U92(0.2,0.5)

(g0°1°0)
(g'0‘z0)

(0.1,0.2)Ug (0.2,0.7)

.2,0.4] U3(0.3,0.4)

4 1
U5(0.4,0.7) U4(0.2,0.3)

Figure 2. A dominator coloring of G with 6 colors

11(0.1,0.3)
@)

(0.2,0.3)UT U2(0.2,0.5)
Z £
(0.1,0.2)Ug .1,0. (0.2,0.7) U3(0.3,0.4)

5 6 4
UE(0.4,0.7) U4(0.2,0.3)

Figure 3. A total dominator coloring of G with 7 colors

Example 3. Let G be a vague graph depicted in Figure 3. Then by solving the instance from Total Dominator
Coloring ILP, we obtain 4(G) = 7. A dominator coloring f with 7 colors is f(u) = 7, f(uz) = 1, f(u3) =
7, f(ug) =4, f(us) = 6,f(ue) =5, f(ur) =7, f(v1) =7, f(v2) = 2,f(v3) =7, f(va) =3, f(vs) = 7 whichis

presented in Figure 3.

Eng. Appl. Sci. Lett. 2019, 2(2), 10-17 14

4. Dominator coloring number of some classes of vague graphs

Definition 7. For a vague graph G, we define an underlying graph of G, denoted by G, with V(G) = V(G),

and xy € E(G) if and only if x € N(y) in G.

By the definition of Dominator coloring, we have

Proposition 8. For any vague graph G, x*(G) = x*(G) and x4(G) = x4(G).
Proposition 9. (see [28]) For any vague graph G with G = K,;, we have x;(G) = x4(G) = n.

Proof. By the definition, we have x,(G) > x4(G) > x(G) = n. Let V(G) = {v1,vy,...,0,}. We consider a
function f : V(G) — {1,2,...,n} with f(v;) = i for any i, then we have f is a total dominator coloring of G
with 7 colors. Therefore, we have x/;(G) < n and so the desired result holds. [

The following results are straightforward:
Proposition 10. (see [28]) For any vague graph G with G = Ky, ,, we have x*(G) = x4(G) =2

Proposition 11. (see [28]) For any vague graph G with G = Cy(n > 3), we have x*(G) = 3 for n = 3 (mod 6) and
Xx4(G) = 2 otherwise.

Proposition 12. (see [35]) For any vague graph G with G = P, or C,(n > 3), we have xX4(G) = [g] + {Z] - [2}

The Cartesian product GOH of two graphs G and H is a graph with V(G) x V(H) and two vertices (g1, 111)
and (g, hp) are adjacent if and only if either g1 = ¢» and (hy,hy) € E(H), or hy = hp and (g1,82) € E(G). Let
V(Ci) = {1,2,3,...n}, E(Cy) = {i(i + 1)}, 1nfi = 1,2,...n — 1} and V(P,) = {1,2}, E(P,) = {(12)}. Let u;;
be a vertex of P,0OOC, wherei = 1,2, j = 1,2,...n. We have the following result:

Proposition 13. For any vague graph G with G = P,0C, with n > 6,

42 n=0 (mod6)

2n —

L +4, n=1,2(mod6)
"G <<, B

43, n=3 (mod6)

12, n=4,5(mod6)

Proof. We use two lines of numbers to denote a total dominator coloring of P,00C,. The total dominator
coloring can be represented as a 2 x n array as follows:

flur) flura) .. f(urn-1) f(ur,n)

b,oC,) =
J(F0G) {f(uZ,l)f(uZ,Z)"'f(uZ,n1)f(u2,n)

Ifi=1andj=1,3(mod6),let f(u;;) =1
Ifi=1andj =24 (mod6),let f(u;;) =2.
Ifi =1and j =5 (mod 6), let f(u;;)
Ifi=1andj=0(mod 6), let f(u;;)
Ifi=2andj=4,5(mod 6), let f(u;;) = 1.
Ifi=2and j = 0,5 (mod 6), let f(u;;) = 2.
Ifi =2and j = 2 (mod 6), let f(u;;) = 4% + 3.
Ifi =2and j = 3 (mod 6), let f(u;;) = 4% + 4.
We will consider the following cases:

L

=4l 45
=4l +6

Eng. Appl. Sci. Lett. 2019, 2(2), 10-17 15

Case 1. n = 0 (mod 6).
Obviously, f is total dominator coloring with desired number of colors. For example, let n = 12, we have

1212561212910

P,0Cyp) =
f(F0Cr) {234121278121

Case2.n=1,2,4,5 (mod 6).
Let h(x) = f(x) for any x € V(P,OCy)\{tt1,n, tizn}, h(tt1,0) =2 x §, h(u2,,) = 2 x § + 4. Obviously, & is total
dominator coloring with desired number of colors. For example, let n = 13, we have

121256121291011

P,0Cq3) =
f(2 13) {23412127812112

Let n = 14, we have
1212561212910111

f(P,0Cyy) =
234121278121212

Let n = 16, we have
121256121291012113

P,0C6) =
f(F20GCre) {2341212781212111214

Letn = 17, we have
121256121 2910121213

P,0Cq7) =
f(z 17) {23412127812121112114

Case 3. n = 3 (mod 6).
Let h(x) = f(x) forany x € V(P,00Cy)\{u1,}, h(u1,) = & + 3. Obviously, & is total dominator coloring with
desired number of colors. As an example, let n = 15, we have

12125612129101213

P,0C5) =
f(F20Grs) {23412127812121112

Now the proof is complete. O

5. Conclusion

Fuzzy graph theory has substantial applications for real-world life in different domains, such as in
the fields of biological science, neural networks, decision making, physics and chemistry. At present,
the graph coloring problem can be applied in sequencing, timetabling, scheduling, electronic bandwidth
allocation, computer register allocation and printed circuit board testing. Also the domination is also one
of the fundamental concepts in graph theory and it has been wide used to distributed computing, biological
networks, resource allocation and social networks. In this paper, motivated with the combination of fuzzy
graph theory, graph coloring and graph domination, we introduce the concept of the dominator coloring and
total dominator coloring of a vague graph and establish mathematical modelling for these problems.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

[1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

[2] Pappis, C. P, Siettos, C. L., & Dasaklis, T. K. (2013). Fuzzy sets, systems, and applications. Encyclopedia of Operations
Research and Management Science, 609-620.

[3] Gau, W. L., & Buehrer, D. J. (1993). Vague sets. IEEE transactions on systems, man, and cybernetics, 23(2), 610-614.

[4] Zadeh, L. A. (1971). Similarity relations and fuzzy orderings. Information sciences, 3(2), 177-200.

Eng. Appl. Sci. Lett. 2019, 2(2), 10-17 16

[5]
(6]

[7]
(8]
9]
[10]
(11]
[12]
(13]
[14]

[15]

[16]
(17]

(18]

[19]

[20]
[21]

[22]
(23]

[24]

[25]

[26]
[27]

(28]
[29]
[30]
(31]
(32]
(33]
[34]

[35]

[36]

Kaufmann, A. (1975). Introduction to the theory of fuzzy subsets (Vol. 2). Academic Pr.

Zadeh, L. A. (1977). Fuzzy sets and their application to pattern classification and clustering analysis. In Classification
and clustering (pp. 251-299). Academic press.

Samanta, S., Pal, M., Rashmanlou, H., & Borzooei, R. A. (2016). Vague graphs and strengths. Journal of Intelligent &
Fuzzy Systems, 30(6), 3675-3680.

Borzooei, R. A., & Rashmanlou, H. (2015). Ring sum in product intuitionistic fuzzy graphs. Journal of advanced research
in pure mathematics, 7(1), 16-31.

Jun, Y. B. (2006). Intuitionistic fuzzy subsemigroups and subgroups associated by intuitionistic fuzzy graphs.
Communications of the Korean Mathematical Society, 21(3), 587-593.

Rashmanlou, H., Samanta, S., Pal, M., & Borzooei, R. A. (2015). A study on bipolar fuzzy graphs. Journal of Intelligent
& Fuzzy Systems, 28(2), 571-580.

Rashmanlou, H., Samanta, S., Pal, M., & Borzooei, R. A. (2015). Bipolar fuzzy graphs with categorical properties.
International Journal of Computational Intelligence Systems, 8(5), 808-818.

Rashmanlou, H., & Jun, Y. B. (2013). Complete interval-valued fuzzy graphs. Anmnals of Fuzzy Mathematics and
Informatics, 6(3), 677-687.

Samanta, S., & Pal, M. (2011). Fuzzy tolerance graphs. International Journal of Latest Trends in Mathematics, 1(2), 57-67.
Samanta, S., & Pal, M. (2011). Fuzzy threshold graphs. CIIT International Journal of Fuzzy Systems, 3(12), 360-364.
Sunitha, M. S., & Vijayakumar, A. (2002). Complement of a fuzzy graph. Indian Journal of pure and applied Mathematics,
33(9), 1451-1464.

Samanta, S., & Pal, M. (2015). Fuzzy planar graphs. IEEE Transactions on Fuzzy Systems, 23(6), 1936-1942.

Samanta, S., Akram, M., & Pal, M. (2015). M-Step fuzzy copetition graphs. Journal of Applied Mathematics and
Computing, 47(1-2), 461-472.

Samanta, S., & Pal, M. (2013). Fuzzy k-competition graphs and p-competition fuzzy graphs. Fuzzy Information and
Engineering, 5(2), 191-204.

Samanta, S., Pal, M., & Pal, A. (2014). New concepts of fuzzy planar graph. International Journal of Advanced Research
in Artificial Intelligence, 3(1), 52-59.

Ramakrishna, N. (2009). Vague graphs. International Journal of Computational Cognition, 7(51-58), 19.

Samanta, S., Pal, M., Rashmanlou, H., & Borzooei, R. A. (2016). Vague graphs and strengths. Journal of Intelligent &
Fuzzy Systems, 30(6), 3675-3680.

Rashmanlou, H., Samanta, S., Pal, M., & Borzooei, R. A. (2016). A study on vague graphs. SpringerPlus, 5(1), 1234.
Borzooei, R. A., Rashmanlou, H., Samanta, S., & Pal, M. (2016). Regularity of vague graphs. Journal of Intelligent &
Fuzzy Systems, 30(6), 3681-3689.

Rashmanlou, H., & Borzooei, R. A. (2016). Vague graphs with application. Journal of Intelligent & Fuzzy Systems, 30(6),
3291-3299.

Gera, R., Rasmussen, C. W., & Horton, S. (2006). Dominator colorings and safe clique partitions. Faculty Publications
181(7) (2006), 19-32. Need to cross check this reference

Gera, R. (2007). On dominator colorings in graphs. Graph Theory Notes of New York, 52, 25-30.

Gera, R. (2007, April). On the dominator colorings in bipartite graphs. In Fourth International Conference on Information
Technology (ITNG'07) (pp. 947-952). IEEE.

Abdolghafurian, A., Akbari, S., Ghorban, S. H., & Qajar, S. (2014). Dominating Coloring Number of Claw-free Graphs.
Electronic Notes in Discrete Mathematics, 45, 91-97.

Chen, Q., Zhao, C., & Zhao, M. (2017). Dominator colorings of certain cartesian products of paths and cycles. Graphs
and Combinatorics, 33(1), 73-83.

Merouane, H., & Chellali, M. (2012). On the dominator colorings in trees. Discussiones Mathematicae Graph Theory,
32(4), 677-683.

Chellali, M., & Maffray, F. (2012). Dominator colorings in some classes of graphs. Graphs and Combinatorics, 28(1),
97-107.

Bagan, G., Boumediene-Merouane, H., Haddad, M., & Kheddouci, H. (2017). On some domination colorings of
graphs. Discrete Applied Mathematics, 230, 34-50.

Kazemi, A. P. (2015). Totat Dominator Chromatic number of a Graph. Transactions on Combinatorics 4(2), 57-68.
Kazemi, A. P. (2014). Total dominator coloring in product graphs. Util. Math, 94, 329-345.

Henning, M. A. (2015). Total dominator colorings and total domination in graphs. Graphs and Combinatorics, 31(4),
953-974.

Borzooei, R. A., & Rashmanlou, H. (2015). Domination in vague graphs and its applications. Journal of Intelligent &
Fuzzy Systems 29(5), 1933-1940.

Eng. Appl. Sci. Lett. 2019, 2(2), 10-17 17

[37] Kishore Kumar, P. K., Lavanya, S., Broumi, S., & Rashmanlou, H. (2017). New concepts of coloring in vague graphs
with application. Journal of Intelligent & Fuzzy Systems, 33(3), 1715-1721.
© 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
BY

(http:/ /creativecommons.org/licenses /by /4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332739211

A NEW LINEAR-TIME ALGORITHM FOR COMPUTING THE WEAK ROMAN
DOMINATION NUMBER OF A BLOCK GRAPH

Conference Paper - May 2018

CITATIONS READS
0 13
2 authors:
Marija Ivanovic Dragan Urosevic
ﬂ Institute of Physics Belgrade Mathematical Institute of the Serbian Academy of Sciences and Arts
7 PUBLICATIONS 25 CITATIONS 64 PUBLICATIONS 765 CITATIONS
SEE PROFILE SEE PROFILE

All content following this page was uploaded by Marija Ivanovic on 29 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332739211_A_NEW_LINEAR-TIME_ALGORITHM_FOR_COMPUTING_THE_WEAK_ROMAN_DOMINATION_NUMBER_OF_A_BLOCK_GRAPH?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332739211_A_NEW_LINEAR-TIME_ALGORITHM_FOR_COMPUTING_THE_WEAK_ROMAN_DOMINATION_NUMBER_OF_A_BLOCK_GRAPH?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Ivanovic-6?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Ivanovic-6?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Institute-of-Physics-Belgrade?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Ivanovic-6?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dragan-Urosevic?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dragan-Urosevic?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Mathematical-Institute-of-the-Serbian-Academy-of-Sciences-and-Arts?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dragan-Urosevic?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Ivanovic-6?enrichId=rgreq-ad5f8750260d7a720ecd12c9c23e1709-XXX&enrichSource=Y292ZXJQYWdlOzMzMjczOTIxMTtBUzo3NTMxMzIzMzQyMzU2NTFAMTU1NjU3MjE0OTY0Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Xl Balkan Conference on Operational Research

A NEW LINEAR-TIME ALGORITHM FOR COMPUTING THE WEAK ROMAN DOMINATION
NUMBER OF A BLOCK GRAPH

MARIJA IVANOVIC!, DRAGAN UROSEVIC?

' University of Belgrade, Faculty of Mathemaics, marijai @math.rs
2 Mathematical Institute, Belgrade, draganu@mi.sanu.ac.rs

Abstract: In this paper we show that the known linear-time algorithm for solving the weak Roman domination
problem on a block graph, from the literature, does not always find a weak Roman Domination function (WRDF)
of minimal total weight. Furthermore, we present our newly developed linear-time algorithm that finds a WRDF
of minimal total weight for the block graph.

Keywords: weak Roman domination number, block graph, linear time algorithm

1. INTRODUCTION

The Roman domination problem starts with the assumption that the Roman Empire can be represented as a
graph such that every vertex represents a province. Two vertices are adjacent if the corresponding provinces
are neighbors, or there is direct connection between them, allowing fast traveling from one province to another.
Assuming that a province is safe from the attack if at least one legion is stationed in it and that the unsafe
province can be defended if it has a neighbor with two stationed legions, Stewart (1999) initiated a new variant
of the domination problem named Roman domination problem. Since the Roman domination problem was
defined by Stewart and ReVelle and Rosing (Stewart (1999); ReVelle and Rosing (2000)), many articles have
been published (i.e. Dreyer (2000); Henning (2002); Cockayne et al. (2004); Chambers et al. (2009); Liu and
Chang (2013); Ahangar et al. (2014); Beeler et al. (2016)). In this paper we are focused on one of its variant,
named weak Roman domination problem. The weak Roman domination problem, introduced by Henning and
Hedetniemi (2003), can be described as follows.

Let G = (V,E) be a graph, f:V — {0,1,2} a function, and let f(u) denote the weight of a vertex u € V. A
vertex u with f(u) = 0 is undefended if it is not adjacent to the neighbor with positive weight. The function f is
called a weak Roman dominating function (WRDF) if every vertex u with f(u) = 0 is adjacent to a vertex v
with f(v) > 0 such that the function " : V — {0,1,2}, defined as f'(u) =1, f'(v) = f(v) — 1 and f'(w) = f(w)
when w € V'\ {u, v}, has no undefended vertices. Assuming that f(u) is equal to a number of legions assigned
to the province represented by the vertex u, the number of legions assigned to graph G, with respect to the
function f, is called rotal function weight and is calculated as w(f) = Y.,cy f(u). The weak Roman domination
number, denoted by 7, (G), is equal to the minimal total weight of all possible WRDF that can be defined for that
graph, G (V,(G) = min{w(f)|f is a WRDF for G}). A WRDF for graph G of weight v, is called v,-function.
The problem of finding 7y,-function for the graph G is called the weak Roman domination problem (WRDP).

Although several structural results on the WRDP are known (see Henning and Hedetniemi (2003); Cockayne
et al. (2004); Mai and Pushpam (2011); Chellali et al. (2014)), only few algorithmic results exist. For instance,
integer linear programming (ILP) formulation, which corresponds to the Henning and Hedetniemi (2003)
definition of the WRDP, was given in Ivanovi¢ (2017). Proof that the WRDP is NP-hard even when restricted to
bipartite or chordal graphs is given in Henning and Hedetniemi (2003). Since the trivial enumeration algorithm
for solving this problem runs in O*(3") in polynomial space, Chapelle et al. (2017) proposed algorithm for
solving WRDP in O*(2") time needed exponential space, and O*(2.2279") algorithm using polynomial space
(the notation O*(f(n)) suppresses polynomial factors). In the same paper, it was shown that the WRDP can
be solved in a linear-time on interval graphs. Linear-time algorithm for finding a WRDF for a block graph is
proposed by Liu et al. (2010) but, as it will be shown in this paper, the proposed algorithm finds WRDF which
is not always ,-function. Inspired by their algorithm, we developed an algorithm for solving the WRDP on a
block graph which also runs in a linear-time.

Our paper is organized as follows. In Section 2 we give definitions and the algorithm for solving the WRDP
on a block graph (known from the literature). Also, we give an example to illustrate that this algorithm does not
find any 7,-function for some block graphs. In Section 3, we present our newly developed algorithm for solving
the WRDP on a block graph. Conclusion and References are given in the final two sections.

25

2. PRELIMINARIES AND NOTATIONS

Let G = (V,E) be a graph with a vertex set V and a set of edges E. The following graph terms are taken from
Harray (1969).

= A subgraph of G is a graph having all its vertices and edges in G. For any set S of vertices of G, a induced
subgraph is the maximal subgraph of G with vertex set S (i.e. H= (S,E’), S C V and for all vertices
u,veS, e=(u,v) €E'iffe € E).

= A cligue is a subset of vertices of an undirected graph such that every two distinct vertices in that subset
are adjacent, i.e. clique is an induced subgraph, which is complete.

= A graph G is connected if there is a path between every pair of its vertices.
A graph G is disconnected if in G there are two vertices such that they are not endpoints of any path in G.

» A maximal connected subset H = (Vi,Ep) of a graph G is called a component of a graph G if:

1) for every two vertices vi,v, € Vi (vi,v2) € Ep iff (vi,v;) € E and
2) there is no path whose endpoints are in Vy and V \ V.

= A cut-vertex (articulation point) of a graph is the one whose removal increases the number of components.

= A biconnected graph is a connected and non-separable graph, meaning that the graph will remain
connected after the removal of any vertex.

» A biconnected component (also known as a block or 2-connected component) is a maximal non-separable
subgraph.

» If G is non-separable, then G itself is often called a block.

» A bipartite graph (or bi-graph) is a graph whose vertices can be divided into two disjoint and independent
sets, U and V, such that every edge connects one vertex in U with one vertex in V.

= A tree T is a connected graph with no cycles.

= An undirected graph G is called an intersection graph if it is formed from a family of sets S;, i =0,1,2,...
by creating one vertex v; for each set S;, and connecting two vertices v; and v; by an edge whenever the
corresponding two sets have a nonempty intersection, that is E(G) = {{v;,v;}|S;NS; # 0}.

For a rooted tree, we will use the same definition as it was used in Liu et al. (2010):

» The distance between two vertices u and v, denoted as d(u,v), will be calculated as the minimum number
of edges that we pass when walking from u to v; the distance between two adjacent vertices is equal to 1.

= Atree T is a rooted tree if it has a vertex r, called the root of the tree, vertices with degree 1, called a
leaves, and non-leaf vertices, called internal-nodes.

» For two adjacent vertices u and v of the rooted tree T, vertex u will be called parent of v if d(r,u) < d(r,v)
with respect to the given root r. Vertex v will be called a child of the vertex u.

= Any vertex can have only one parent but many children.

Now, a block graph or a clique tree is a type of an undirected graph in which every biconnected component
is a clique. Block graphs, derived from graph G, are usually denoted by B(G), and can be defined as follows:
blocks of G correspond to the vertices of B(G) such that two vertices in B(G) are adjacent whenever the
corresponding blocks contain a common cut-vertex in G. Block graphs may be characterized as intersection
graphs of blocks of arbitrary undirected graphs. For more details see Harary (1963).

For a connected block graph G, a block-cut-vertex tree (cut-tree for short) of G, denoted by bc(G), is defined
such that each node in the tree represents either a biconnected component or a cut-vertex of G, and the node that
represents a cut-vertex is connected to all nodes representing any biconnected component which contains that
cut-vertex.

A block graph and its cut-tree are illustrated in Figures 1 and 2.

In Figure 2, leaves B and B, represent two component blocks, and vertices C;, j = 1,...,5 represent one
component block (i.e. C; is a block which contains only a cut-vertex of a graph G), while inner vertices B;,
i=3,...,6, represent empty blocks (since the corresponding cut-vertices of the graph G are adjacent and have
an empty intersection, the intersection of the corresponding C; vertices of the tree T will be empty sets, i.e.
empty blocks).

In Liu et al. (2010), a function ' : V — {0~,0" 1,2} was designed such that the sign 0~ were used when a
vertex was not dominated, and O if a vertex had been dominated at that moment. They also expected that only
cut vertices could be of positive weight. Starting from a cut-tree Ti; of a block graph G, they assigned 0~ to
every leaf. Then, they computed weights of the inner vertices as follows. Let u be the current vertex.

If u is a cut vertex,
i. f(u)=2if there are more than two undefended vertices (vertices whose weights are equal to zero
and whose examined neighbors are also with weights equal to zero) in the sets of children and

grandchildren of u.
26

/\ B @ (55

-~ ~ B =

4 6 G Cy Bj —0

I | Bs=10

B; Bs Bs=10
e ~N Cl — {3}
3 7 Cl C3 C2 — {4}
/\ /\ | | C = {7}
1 -2 8 -9 B By Cy={6}
. Cs = {5}

Figure 1 Block graph G Figure 2 Cut-tree of a block graph G, T

ii. f(u)=1if there is only one undefended vertex in the sets of children and grandchildren of u.
iii. f(u) =07 if all children and grandchildren of u are either 0" or 1.
iv. f(u) =0T if in the sets of children and grandchildren of u, there is a vertex v with f(v) = 2.
else
i. f(u) =07 if the number of nodes in u is 0.
ii. f(u) =07 if one children of u has value 2.
iii. f(u) =0~ otherwise.

Although Liu et al. (2010) claim that their algorithm finds a weak Roman domination function f of minimal
weight, the found WRDF is not always y,-function. According to their algorithm, the minimal total weight of the
cut-tree presented in Figure 2 is equal to 4: weight 2 is assigned to Cs, weight 1 to C; and Cs, and O to all other
vertices. But, the optimal solution value of the illustrated cut-tree is equal to 3: weight 1 is assigned to C;,Cs3,
and Cs, and weight equal to O to all other vertices. Indeed, if we apply the found solution to the corresponding
block graph, we will notice that with weight of vertices 3, 5 and 7, which is equal to 1, and weight of all other
vertices, which is equal to 0, all vertices will be considered as the currently defended and defended in case of
one attack. More precisely, with the presented legion arrangement, in case of one attack, vertices 1 and 2 will be
defended by the legion stationed at vertex 3; vertices 4 and 6 will be defended by the legion stationed at vertex
5; vertices 8 and 9 will be defended by the legion stationed at vertex 7, and all other vertices will be defended
by their own stationed legion. So, all listed moves will not affect safety of any vertex.

3. LINEAR-TIME ALGORITHM FOR SOLVING THE WEAK ROMAN DOMINATION PROBLEM ON
A BLOCK GRAPH

Based on the above considerations, we assume that G is a connected block graph. Its cut tree 7 = (Vr,., Er,),
which can be formed by depth first search in O(|V |+ |E|) time, is used as the input of our algorithm.

For a WRDF f let f(i) € {0,1,2} represents a number of legions assigned to a vertex i (let f(i) be a weight
of the vertex 7). The output of the algorithm is 7y,-function, both for the cut-tree 7 and the block graph G, i.e.
output is a function f, which assigns a value f(i) to every vertex of the formed cut-tree 75 (i.e. for every vertex
i € Vg, that represents some cut-vertex of G, the corresponding cut-vertex in G will be of the same weight, while
to all other vertices in G, which are not cut-vertices, the assigned weight is equal to 0) and is of minimal total
weight for that tree.

Weight will be assigned to vertices of the cut-tree T post-order traversal (complexity of post-order traversal
is O(|Vr,])), i.e. weight will be assigned first to leaves and last to the root of the tree; the weight can be assigned
to a parent vertex only if it is assigned to all of its children vertices.

Since the WRDP is a dynamical problem, we say that a legion could be sent from one vertex (whose weight
is positive) to its attacked neighbor vertex (whose weight is equal to zero); we decrease weight of the first vertex
by one and increase weight of the second vertex by one. So, a vertex i can be considered as defended currently
(i.e. it has positive weight or a neighbor j whose weight is positive), but it could be considered as undefended
if its weight is equal to zero and the only neighbor j, whose weight is equal to one, sends a legion to defend
neighbor k (i,k are neighbors to j, k # i), whose weight is also equal to zero. Therefore, we mark a vertex i as
"defended by the stationed legion", "defended by the neighbors’ legion", or "undefended", and we consider
variants of these marks in accordance with the marks given for children and the parent. In other words, the mark
of every vertex i can be determined by the flowchart-a shown in Figure 3.

27

H H

Is i defended
from the attack?

o \
{ Does i have sta-

tioned legions? ’

==

Does i have more ;
Does i need a parent
than one sta-

fiored Iz of positive weight?

o o ol N\

Is i the only Does i need a parent | | Does i need a parent
8 vertex that pro- who is able to who is able to
tects his child? send him a legion? send him a legion
yes an YC/ &10 yes/ \]‘10
Is i the only vertex
7 that can send a (0 s4) (s3 J(s3 J(s2
legion to his child?

yes no

Figure 3 Flowchart of possible vertex marks

From the above, there are 8 different marks for every vertex i which can be interpreted as follows:

S1 means that a vertex i has no child or his children don’t have stationed legions, i.e. vertex i must have
the parent who can protect him and send a legion in case of the attack; the parent can not send a legion to
any other child or to the parent unless he has two stationed legions;

S2 means that a vertex i has a child of positive weight j who can send a legion in case that it is attacked
and, in case that a child & of j is attacked, j is not obligated to send a legion to k;

S3 means that a vertex i has a child of positive weight j who can send a legion in case that it is attacked, and
who also protects his own child k£ to whom it is obligated to send a legion when it is attacked. Therefore, a
vertex i needs the parent with stationed legion to protect him when j sends his legion to the attacked child
k. Also, the parent is not obligated to send him a legion in case when it is attacked;

S4 means that a vertex i has a child of positive weight j and that j is the only neighbor with positive
weight to his own child k, to whom he is obligated to send a legion when it is attacked. Therefore, a vertex
i needs the parent who will protect him and is obligated to send a legion in case the child is attacked;

S5 means that a vertex i has a stationed legion and does not have any unprotected child and is not obligated
to send a legion to the children. Vertex i can send a legion to a parent in case that the parent is attacked;
S6 means that a vertex i has one stationed legion and an unprotected child to whom it is not obligated to
send a legion in case of the attack. Vertex i can send a legion to parent in case that parent is attacked;

S7 means that a vertex 7 has one stationed legion and an unprotected child to whom it is obligated to send
the legion in case that the child is attacked. Vertex i can not send the legion to its parent in case that the
parent is attacked;

S8 means that a vertex i has two stationed legions and, if it has an unprotected child, it can send one legion
to attacked child, also it can send a legion to the parent in case that the parent is without station legions
and needs a protection.

Our algorithm finds 7,-function for the formed cut-tree 7 and the found solution is applied to the original
block graph. Let F (i) be equal to a number of legions stationed at vertex i, i.e. let F (i) represents a weight
of the vertex i. Since the weights of all vertices of the cut-tree 7 will be assigned post-order transversal, let
i1 represents the first and i,, n = |Vr,| the last vertex to whom we assign their weights. Weight of a vertex i,,,
m=1,...,n, will be calculated as follows:

If i,, represents a leaf, i,, will be marked with S1 and F(i,,) = 0.

28

» If i, represents an empty block, it will be marked with S2 and F'(i,,) = 0.
= Let i, represents a nonempty block or a cut-vertex. If i,, represents a nonempty block, its mark will be
determined in accordance with the marks of its children; in case that i, represents a cut-vertex, its mark
will be in accordance with the marks of its children and, whenever a child represents an empty-blocks, in
accordance with the marks of the children of that child, too. For a vertex i,,, a number of the considered
vertices with mark S1 will be denoted as num;, a number of the considered vertices with mark S2 will be
denoted as num,, and so on (numy, represents a number of vertices with mark Sk of the considered vertices
for a vertex i, k=1,...,8).
Depending on values numy, k =1,...,8, mark of the vertex i,, will be determined in the following way:
- Ifi,, is a non-empty block then, whenever conditions num, + nums + nums = 0 and nums + nume + num; +
numg > 0 hold, it will be marked as
1. S3 when num; > 0 and nums + numg + numg = 0,
2. S2 when nums + nume + numg > 0,
otherwise, it will be marked as S1. For all cases F(i,,) = 0.
- If i, is a cut-vertex and
1. one of the following two conditions hold:
1) num; > 0 and numy > 0,
2) num; > 2,
it will be marked as S8, F(i,,) = 2.
2. otherwise, if
1) conditions num; = 1 and num4 = 0 hold, it will be marked as S7.
2) conditions num; = 0 and numy, > 0 hold, it will be marked as S6.
3) conditions numy = 0, num4 = 0 and nums > 0 hold, it will be marked as S5.
4) condition num; + nums + numy4 = 0 together with one of the following two conditions hold:
1) nums + numg > 0,
i) numeg +num7 > 1 i numg > 0,
it will be marked as S2.
5) conditions num; + nums + numy + nums + numg + numg = 0 and numy > 0 hold, it will be
marked as S4.
6) conditions num; + nums + numy + nums + num; + numg = 0 and numeg = 1 hold, it will be
marked as S3.
7) conditions numi + nums + numy + nums + numg + nums; + numg = 0 hold, it will be marked
as S1.
In cases 2.1)-2.3) F(i,,) = 1, while in cases 2.4)-2.7) F (i,,) = 0.

Since F(iy) € {0, 1,2} for every vertex i,, of the cut-tree T;, and weights are computed so that every vertex
has the positive weight, or has a neighbor whose weight is positive, with addition that, in case of an attack, it is
possible to send a legion from one vertex with positive weight to the attacked neighbor without violating the
safety of any vertex, constructed function F is the WRDF for the cut-tree 7;. Now, we will show that F is also
the WRDF of minimal total weight.

Suppose the opposite, let F’ be the WRDF for the cut-tree T; of smaller total weight than the total weight of F.
It is enough to show that total weight of F” is by one smaller than total weight of F. Therefore, let F'(i) = F (i) — 1
for some vertex i and F’(j) = F () for all other vertices of the cut-tree Ti. Since F'(i) € {0,1,2}, only two
cases are possible for the vertex i: 1) F(i) =2, and 2) F(i) = 1.

Let us first consider case 1). By the construction, F (i) = 2 holds if vertex i has at least two undefended
children to whom it is the only adjacent vertex with positive weight and the only neighbor who can send a
legion in case that someone attacks them. By the assumption, F’'(i) = F(i) — 1 = 1 and F'(j) = F(j) for all
other vertices of the cut-tree 7. Now, if a child of i, to whom i is obligated to send a legion in case of an attack,
is attacked, i must send a legion in order to defend it. At this movement i will be left out of any stationed legion
(will have weight equal to 0), and therefore other children, which were protected by the legion stationed at i,
will become undefended, meaning that function F’, constructed by the given assumption, is not a WRDF for the
cut-tree 1. So, this case is not possible.

Let us now consider case 2). By the construction of the function F, it follows that F (i) = 1 when

1) 7 has only one undefended child to whom it is the only neighbor with positive weight and to whom
it is obligated to send a legion in case of the attack, and does not have any other undefended child or a
grandchild (if child is an empty set) and is not obligated to send a legion to any of them.

ii) 7 has only one child (a grandchild if child is an empty set) to whom it is obligated to send a legion in
case that the child is attacked and has no undefended children or grandchildren (if child is an empty set),

29

iii) i has no undefended children (nor grandchildren if child is an empty set), but has at least one child

(grandchild if child is empty set) who needs the parent of positive weight.
Now, by the assumption, F’'(i) = F(i) — 1 = 0 and F’(j) = F(j) for all other vertices. In case i) i must be
able to protect its unprotected child and must be able to send him a legion. Since F'(i) = 0, it follows that F’,
constructed by the assumption, is not a WRDF for the cut-tree 7, the given child of i is left to be unprotected. In
case ii) i must be able to send a legion to its child and with F’(i) = 0 we can conclude again that F’, constructed
by the given assumption, is not a WRDF for the cut-tree 7. In case iii) weight of i is equal to zero, which is
contrary to a child’ needs, meaning again that F’ can not be a WRDF for the cut-tree 7.

So, since it not possible to lower the weight by one of any vertex whose weight is positive, it follows that
total weight can not be lowered as well. Therefore, constructed WRDF F is with minimal total weight, implying
that v, for the given T can be calculated as Ycy, F(i).

Now, since the weights of all vertices of the cut-tree T are known, constructed solution can be applied to
the original block graph as follows: For every cut-vertex of the cut-tree g, the corresponding cut-vertex of the
block graph will have the same weight. All other vertices will have weight equal to zero. Therefore, 7, for the
block graph can be also calculated as Yicy, F(i).

As it was earlier mentioned, the presented algorithm runs in a linear-time: transformation of the block graph
into a cut-tree is in O(|V |+ |E|), vertices of the cut-tree are sorted in accordance with postfix index in O(|Vy|),
and the algorithm runs through every instance of the cut-tree 7;; once, i.e. total minimal weight of that cut-tree
is found in O(|Vz,|).

3.1. COMPUTATIONAL RESULTS

Results presented in Liu et al. (2010) are theoretical and without a source code or an executable file which
can be used for testings. Therefore, in order to compare their algorithm with ours, we have programmed their
algorithm and our newly developed algorithm in MATLAB2016b, and tested on Intel(R) Core(TM) i17-4700MQ
CPU @ 2.40GHz, with 8GB RAM under Windows 10. Testings were performed on the set of instances that
can be downloaded from http://pallini.di.uniromal.it/Graphs.html. Results of testings are presented in Table
1: Name, number of vertices and number of edges for every instance are given in the first three columns. The
optimal solution value, calculated using optimization solver CPLEX and ILP formulation provided by Ivanovié
(2017), are given in the fourth column. The following two columns (val and ¢) contain value and execution time
obtained by the algorithm developed by Liu et al. (2010). For every tested instance, the last two columns contain
value (val) and execution time (¢) obtained by the algorithm presented in this paper.

Table 1: Computational results

Instance Alg. developed by Liu et al. (2010) | Our algorithm
Name VI IEl opt | val t val t
rantree-10 10 9 5 5 0.1037 5 0.0103
rantree-20 20 19 10 10 0.1511 10 0.0041
rantree-50 50 49 25 25 0.3022 25 0.0062
rantree-100 100 99 48 49 0.4254 48 0.0084
rantree-200 200 199 | 103 | 105 0.5338 103 0.0132
rantree-300 300 299 | 145 | 153 0.7563 145 0.0184
rantree-400 400 399 | 201 | 208 1.0028 201 0.0255
rantree-500 500 499 | 249 | 255 1.2237 249 0.0296
rantree-600 600 599 | 299 | 313 1461 299 0.0381
rantree-700 700 699 | 346 | 360 1.7541 346 0.0401
rantree-800 800 799 | 391 | 403 2.5813 391 0.0469
rantree-900 900 899 | 452 | 463 2.1692 452 0.0541
rantree-1000 | 1000 | 999 | 490 | 510 2.4234 490 0.0590

Once more, as it can be seen from Table 1: our algorithm finds solution value equal to the optimal value
(from column opt) for every tested instance, while the algorithm developed by Liu et al. (2010) finds solution
value equal to the optimal value (from column opt) only for the first three tested instances and greater solution
value for all other tested instances.

30

4. CONCLUSION

The algorithm for solving the weak Roman domination problem on a block graph, which is known from the
literature, is considered in this paper. It is shown that the considered algorithm does not always compute the
optimal solution value on a block graph and, therefore, a new linear-time algorithm for solving the weak Roman
domination problem on a block graph is presented. Since the WRDP is NP-hard problem, we believe that our
algorithm, with some modifications, can also be used for solving the WRDP on some other graph classes. Also,
we think that a similar approach can be used for solving the Roman domination problem on a block graph as
well.

Acknowledgement

This research was partially supported by Serbian Ministry of Education, Science and Technological Develop-
ments under grants no. TR36006 and ON174010.

REFERENCES

Ahangar, H., Henning, M., Lowenstein, C., Zhao, Y., and Samodivkin, V. (2014). Signed roman domination in
graphs. Journal of Combinatorial Optimization, 27(2):241-255.

Beeler, R. A., Haynes, T. W., and Hedetniemi, S. T. (2016). Double roman domination. Discrete Applied
Mathematics, 211:23-29.

Chambers, E., Kinnersley, B., Prince, N., and West, D. (2009). Extremal problems for roman domination. SIAM
Journal on Discrete Mathematics, 23(3):1575-1586.

Chapelle, M., Cochefert, M., Couturier, J.-F., Kratsch, D., Letourneur, R., Liedloff, M., and Perez, A. (2017).
Exact algorithms for weak roman domination. Discrete Applied Mathematics, in press.

Chellali, M., Haynes, T., and Hedetniemi, S. (2014). Bounds on weak roman and 2-rainbow domination numbers.
Discrete Applied Mathematics, 178:27-32.

Cockayne, E., P.AJr., D., Hedetniemi, S., and Hedetniemi, S. (2004). Roman domination in graphs. Discrete
Mathematics, 278 (1-3):11-22.

Dreyer, J. (2000). Applications and variations of domination in graphs. PhD thesis.

Harary, F. (1963). A characterization of block-graphs. Canadian Mathematical Bulletin, 6(1):1-6.

Harray, F. (1969). GRAPH THEORY. Addison-Wesley MR0256911.

Henning, M. (2002). A characterization of roman trees. Discussiones Mathematicae Graph Theory, 22(2):325—
334.

Henning, M. and Hedetniemi, S. (2003). Defending the roman empire - a new strategy. Discrete Mathematics,
266:239-251.

Ivanovié, M. (2017). Improved integer linear programming formulation for weak roman domination problem.
Soft Computing, pages 1-11.

Liu, C. H. and Chang, G. J. (2013). Roman domination on strongly chordal graphs. Journal of Combinatorial
Optimization, 26(3):608-619.

Liu, C. S., Peng, S. L., and Tang, C. Y. (2010). Weak roman domination on block graphs. In The 27th Workshop
on Combinatorial Mathematics and Computation Theory, pages 86—89. Providence University, Taichung,
Taiwan.

Mai, T. and Pushpam, P. (2011). Weak roman domination in graphs. Discuss.Math.Graph Theory, 31(1):161-
170.

ReVelle, C. and Rosing, K. (2000). Defendens imperium romanum: a classical problem in military strategy.
Amer.Math., 107 (7):585-594.

Stewart, 1. (1999). Defending the roman empire! Sci. Amer., 281 (6):136-139.

31

https://www.researchgate.net/publication/332739211

PenyvEAHKA GPEH)A

',-..'.' S0 1T

MATEMATHUKH DAKYATET YHHREPZHTETA Y heorpaay

AHIAOMA

0 CTEYEHOM BHCOKOM OBPAZORAHY

MAFPHIA TpRocaaska HRAHORHE

pohena 06.11.1982. roaHHe v
Tow®ApERLLY, PENVEAHKA GPEHjA
VIIHCAHA 2001/02. TOAHHE, & AAHA 21.0Y.2007. FoAHHe
ZABPLIHAA j€ CTYAHJE HA
MATEMATHIKOM DAKVATETY LHHREPIHTETA Vv heorpaay
HA CNEpY
HY MEPHUKA MATEMATHKA H ONTHAH3ZALH]A
cA OMWITHM venexom 8.37 (ocam H 37/100)
Ha OCHOBY TOra joj € H3AAj€ OBA
AHMAOMA O CTEUEHOM OEPAZORAHY
H CTPYUHOM HAZHEBY

AHNAOMHPAHH MATEMATHYAP

PeAHH BPOj H3 €BHACHLH]E O HZAATHA AHNAOMAMA 24907,
Y heorpapy 04.03.2007. roaHHE

%ﬂ PeKTOp

e
OLEHT AP APAronVE Keukk npo. Ap hipatko KosaY€HK

Scanne d with CamScanner

Peiiydnuka Cpouja

Yuusepauitieiii y beoipagy o

M

Yb Maitiemaimiuyku gaxynieits, beoipag L3

Ocnuaay: Peityonuxa Cpduja
Hossony 3a pag Spoj 612-00-02666/2010-04 og 10. geyemdpa 2010,
iogune je usgano Munucitapcitiso fipocseitie u Hayke Peityonuxe Cpéuje

Mapuja, Paguua, Msarosuh

poljena 6. HosemSpa 1982. iogume y Ilosxapesyy, Peitydnuxa Cpduja, yiiucaHa wikoacke
2011/2012. iogune, a gaxa 19. ceititiembpa 2012. iogune 3aspuiina je Maciiep
akagemcke cityguje, gpyiol cilielena, Ha ciiygujckom ipoipamy Maitiemaiiiuka,

oSuma 60 (we3sgeceiti) Sogosa ECIIE ca iipoceurom oyerom 9,00 (geseitt 1 0/100).

Ha ocHosy itioia u3gaje joj cc 08a guitnoma o CIiie eHOM BUCOKOM 00pazosarsy 1 AKAGeMCKOM Ha3UBy

maciiep mamemaiiu4ap

Bpuoj: 3699600
Y Bealpagy, 23, anpuna 2015, logune

Hexan Pexitiop
Tpo. gp 3opan Paxuh Tpod. gp Bragumup Bymdawuupenuth

/b')"% Q&—-’t M
00037143.

Scanned with CamScanner

B

11/21/21, 8:45 PM LLitamnate monbe

*,3“ »‘L 7 Crygmentcku tpr 16, 11000 Beorpag,
| £ l‘,f. JEL 2‘: yHI/IBEPBI/ITeT y Beorpa,u;y Ten: (+381) 0112027 801
WYL 7/ | (1) ®axc: (+381) 0112630 151
L k‘~t\\5£(°r?ﬁ/",,—« M aT e M aT I/I q K H aKyJI T e T E-azpeca: matf@matf.bg.ac.rs

187}7

MOJ1IBA

LWkoncka 2020/21. roguHa

noagAumM o nogHocmnoLly MOJIBE
Mpe3ume: MBaHoBMh Nme: Mapwuja

Apapeca y npebuBanuwty

/ 6opasuuITy: HapogHux xepoja, 7/57, 11070 Beorpaa (Hosu Beorpag)

KoHTakT TenedoH: 0642210714 E-nowrTa: maria.ivanovic@gmail.com
bpoj nHpekca: 2028/2018 Cratyc: CamodmHaHcKpatbe
HwuBo cTyavja: JokTopcke akagemcke ctyauje

Tvn: ynuc y HapeaHy roguHy cryamuja
Bpoj monbe: M2028/2018-4
OpraH dakynTteTta: CTyaeHTcka cnyxba

CAAOPXAJ MOJIBE:

Onobpeme ynuca y HapeaHy roavHy ctyauja.

MonuMm Bac ma mMu opgobpute ynuc HapeaHe wWKoNAcke roamHe. Takohe Bac MonuMM ga MM TOM NPUIIMKOM
npujasute nocneawun UCNUT Koju Mm je octao (M3papna AoKTopcke aAucepTauuje). XBana yHanpen. Mapwuja

MBaHoBMh

NPNNO3N MOJIBN:

https://hypatia.matf.bg.ac.rs:10333/StudInfo/scripts/studenti/stampajMolbu?molba=H4sIAAAAAAAAAFvzloG1ulhBLjexJE2vuKQOJTMvLV8vJUnPNz8n...

12

11/21/21, 8:45 PM LLitamnate monbe

Beorpaa, 4. okTobap 2021.

(notnuc)

(MonymaBa HagnexHa ocoba)

[x]oROBPABA CE , _
8. okTobap 2021., AgpnjaHa Myjuh

(BaTym, nme, Npesume n NoTnuc)

[]JHE OQOBPABA CE

OBPA3JTIOXEHSE:

AyToMaTcku npuxsaheHo NpuUIMKOM ynuca roguHe.

OBPA3/IOXEMSE:

8. okTto6ap 2021., Agpujana Myjuh
AYTOMaTCKM I'IpMXBaheHO NpUINKOM ynmca rogunHe.

https://hypatia.matf.bg.ac.rs:10333/StudInfo/scripts/studenti/stampajMolbu?molba=H4sIAAAAAAAAAFvzloG1ulhBLjexJE2vuKQOJTMvLV8vJUnPNz8n... 2/2

YHAGUESHIET ¥ BEorpaay
MATEMATHYEH ©AKYATET

Bp. 0{45 Z

Ha ocHoBy unana 37. u 38. [IpaBuiHrKa 0 JOKTOPCKUM CTyAMjaMa Ha YHUBEP3UTETY
y Beorpagy (,['nmacumk VYwuuBepsuretra y bBeorpagy“ ©Op. 191/2016, 212/2019,
21572020, 217/2020, 228/21 u 230/21) u 44. Craryra Marematuukor (akynrera,
HacrtaBHo- HayuHO Behie Ha cemuuiy ogpxanoj 15.04.2022. rogune, J0OHOCH

OJIUIYKY
Yn.1

Umenyje ce Komucmja 3a oreHy JIOKTOpcke aucepranmje ,,HoBu mnpuctynu y
peliaBamky ONTUMH3aIMOHOr TpobiremMa PumMcke nomuHamuje Ha rpadoBuMa’,
noktopanaa Mapuje UBanosuh, 6p. unaekca 2028/2018, y cnenehiem cacrasy:

1. mpod. ap Munan [Ipaxuh, pex. mpod.
2. np Hparan Ypomesuh, Hayunu capetHuk MU CAHY
3. nap Tarjana JlaBunoBuh, Hayunu caetnuk MU CAHY

Komucuja 6upa npejaceHuka u3 pejia CBOjUX 4IaHOBA.

IIpencenHuk KoMmucHje TpUNpeMa M3BEIITaj Ha OCHOBY MPHUKYNJEEHHX ITHCAHUX
MUIIJbEHa YIaHOBA KOMHCH]€E, a U3BENITaj TOTIHCY]y cBU wiaHOBH Komucyje.
UzBemitaj komucuje ce qoctaBba HactaBHO- HayunoM Behy dakynrera.

Yn.3
Omryka cTyIa Ha CHATY JaHOM JOHOIIIeHA.

OITyKy AOCTaBUTH:
- HMCHOBAHOj
- apxwuBH (akyiTeTa
- 4JIaHOBMMA KOMHCH]je

JIEKAH
MATHUKOT ®AKYJITETA

o

\ pod. np 3opan Pakuh

