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Abstract
The successful operation of the Large Hadron Collider (LHC) and the excel-
lent performance of the ATLAS, CMS, LHCb and ALICE detectors in Run-1
and Run-2 with pp collisions at center-of-mass energies of 7, 8 and 13 TeV
as well as the giant leap in precision calculations and modeling of fundamen-
tal interactions at hadron colliders have allowed an extraordinary breadth of
physics studies including precision measurements of a variety physics pro-
cesses. The LHC results have so far confirmed the validity of the Standard
Model of particle physics up to unprecedented energy scales and with great
precision in the sectors of strong and electroweak interactions as well as flavour
physics, for instance in top quark physics. The upgrade of the LHC to a High
Luminosity phase (HL-LHC) at 14 TeV center-of-mass energy with 3 ab−1

of integrated luminosity will probe the Standard Model with even greater pre-
cision and will extend the sensitivity to possible anomalies in the Standard
Model, thanks to a ten-fold larger data set, upgraded detectors and expected
improvements in the theoretical understanding. This document summarises
the physics reach of the HL-LHC in the realm of strong and electroweak in-
teractions and top quark physics, and provides a glimpse of the potential of a
possible further upgrade of the LHC to a 27 TeV pp collider, the High-Energy
LHC (HE-LHC), assumed to accumulate an integrated luminosity of 15 ab−1.
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1 Introduction
The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. To extend its
discovery potential, the LHC will undergo a major upgrade in the 2020s, the High-Luminosity LHC
(HL-LHC). The HL-LHC will collide protons against protons at 14 TeV centre-of-mass energy with an
instantaneous luminosity a factor of five greater than the LHC and will accumulate ten times more data,
resulting in an integrated luminosity of 3 ab−1.

The LHC results have so far confirmed the validity of the Standard Model of particle physics up
to unprecedented energy scales and with great precision in the sectors of strong and electroweak inter-
actions, Higgs boson as well as flavour physics including top quark properties. The HL-LHC program,
thanks to a ten-fold larger data set, upgraded detectors and expected improvements in the theoretical
understanding, will extend the sensitivity to new physics in direct and indirect searches for processes
with low production cross sections and harder signatures. In addition, a considerable improvement is
expected in precise measurements of properties of the Higgs boson, e.g. couplings measurements at
the percent level, and of Standard Model (SM) production processes. Several of these measurements
will be limited by the uncertainties on the knowledge of the partonic inner structure of the proton, i.e.
Parton Denstity Functions (PDFs). Global PDF fits of several HL-LHC measurements will allow a sig-
nificant improvement in PDF uncertainties and, in turn, in measurements of SM parameters, e.g. the
weak mixing angle and the W boson mass. Anomalies in precision measurements in the SM sector can
become significant when experimental measurements and theoretical predictions reach the percent level
of precision, and when probing unprecedented energy scales in the multi-TeV regime. These anomalies
could give insights to new physics effects from higher energy scales.

Additional studies on the potential of a possible further upgrade of the LHC to a 27 TeV pp
collider, the High-Energy LHC (HE-LHC), assumed to accumulate an integrated luminosity of 15 ab−1,
have also been carried out.

A year long Workshop organized at CERN in 2017-2018 brought together experimentalists from
the ATLAS, CMS, LHCb, and ALICE Collaborations and theorists to study the expected physics reach
of the HL-LHC project and its possible upgrade to the HE-LHC. Studies of the Workshop in the sectors
of electroweak and strong interactions as well as top physics were carried out within the Working Group
1 (WG1) and the results are summarized in this report that constitutes a chapter of the HL/HE-LHC
Yellow Report volume to be submitted to the European Strategy Group.

The report first introduces the theoretical tools used for the following theoretical projections and
their expected future improvements as well as the experimental performance assumed in the following
experimental analyses. Dedicated sections summarize the results of the studies in the areas of elec-
troweak processes, strong interactions, top physics including effective coupling interpretations, and pro-
poses studies of forward physics that are possible with new forward detectors. The sections focus on
physics projections for the HL-LHC and the expected improvements in measurement precision or kine-
matic reach compared to LHC. In some cases the studies are extended to HE-LHC highlighting the
larger statistics and energy reach of HE-LHC compared to HL-LHC. In the following sections the au-
thors of the theoretical contributions are listed in footnotes to the section titles. Where the authors are
not explicitly indicated, they are the experimental LHC Collaborations.
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2 Theoretical tools
2.1 High Order QCD calculations1

In order to exploit the full potential of the High-Luminosity LHC physics program, the high precision
of experimental data must be compared to theoretical predictions that have the same accuracy. Precision
calculations in QCD are typically classified into fixed-order expansions in the coupling constant αs, and
into predictions that resum large logarithms to all orders in αs. The latter are usually also subdivided
into numerical parton-shower approaches and analytic resummed calculations. In recent years, a lot of
work has been devoted also to matching and merging fixed-order and resummed calculations, so as to
have an improved accuracy in all regions of phase space.

The technical ingredients required for a fixed-order calculation to higher orders are the computa-
tion of real, virtual or, from two loop on, mixed real-virtual amplitudes, the calculations of the required
master integrals and a procedure to regularize intermediate soft and collinear divergences. The first
non-trivial contribution is of next-to-leading order (NLO). Here, the basis of master integrals required to
compute any process at one-loop in QCD had been known for a long time, and is now available in public
codes [1,2]. In addition, two general subtraction methods (FKS [3] and CS [4]), well suited for automa-
tion, were developed. The tensor reduction of virtual amplitudes (i.e. the reduction of virtual amplitude
into a combination of master integrals) proved to be the most difficult problem, since the most straight-
forward approaches yielded too complex results for generic processes. Around ten to fifteen years ago,
a number of breakthrough ideas [5–10] led to algorithms for tensor reduction that can be automatized
efficiently. With all ingredients in place, a number of tools to compute NLO cross sections for generic
LHC processes in an automated way were developed. These tools are today heavily used at the LHC
and will be indispensable for future phenomenology. The most widely used tools include GOSAM [11],
MADLOOP [12], or OPENLOOPS [10]. It is interesting to note that, in the early days of NLO calcula-
tions, also slicing approaches were suggested to handle intermediate divergences (see e.g. [13]). They
were however soon abandoned in favour of subtraction approaches.

While NLO tools are certainly more appropriate then leading-order (LO) generators to accurately
predict LHC distributions, already with Run-2 data it is clear that an even better perturbative accuracy
is required to match the precision of data. One of the first explicit demonstrations of this fact was given
by the WW cross section [14–16], that raised interest because of discrepancies in the extrapolated total
cross section between theory and data both at 7 TeV and 8 TeV, and both at ATLAS and CMS. The
discrepancy could be resolved thanks to the inclusion of next-to-next-to-leading (NNLO) corrections
and thanks to the observation that the extrapolation from the fiducial to the inclusive cross section had
a larger uncertainty than the estimated one. This example highlights the importance of quoting also
fiducial cross sections, prior to any Monte Carlo based extrapolation, and of including NNLO corrections
when comparing to high-precision data.

Current years are seeing an incredibly fast progress in the calculation of NNLO cross sections
(for recent short reviews see e.g. Ref. [17, 18]). The current status is that all non-loop induced 2 →
2 SM processes are known at NNLO, including dijet production [19] that has the most complicated
subprocess and singularity structure. This breakthrough was possible thanks to the development of
new methods to compute two-loop integrals. One idea that was exploited to a great extent is the fact
that polylogarithmic integrals can be calculated by means of differential equations [20–23]. Currently,
the processes that are more difficult to compute are those that involve internal masses, since they lead
not only to polylogarithms but also to elliptic integrals. Examples include loop-induced processes like
gluon-fusion Higgs or di-Higgs production with full top-mass dependence, or gluon induced di-boson
production.

With the High-Luminosity run of the LHC, it will be possible to explore the Higgs transverse

1Contributed by G. Zanderighi.

9



momentum spectrum up to almost 1 TeV, where the large-mt approximation is well-known to fail.
Recently, two-loop NLO results for the Higgs transverse momentum spectrum became available [24,25],
but genuine NNLO predictions for these loop-induced processes are still out of reach.

The calculations of multi-scale two-loop amplitudes with massive internal particles relevant for
Higgs-, top- and vector-boson production, and in particular the mathematical structures beyond multiple
polylogarithms that appear in these amplitudes, is a very active area of research today [26–39]. The
developments of yet new ideas and computational methods are eagerly needed. Approaches for the
full numerical calculation of master integrals also exist (see e.g. Ref. [40–43] and references therein),
requiring however considerable computing power as the complexity increases.

As far as the problem of canceling divergences, quite a number of different approaches are being
pursued now. They can be broadly divided into subtractions methods (antenna subtraction [44], sector-
improved residue subtraction [45–48], nested subtraction [49], colourful subtraction [50], projection to
Born [51]) or slicing methods (qT -subtraction [52], N -jettiness [53,54]). These methods are being scru-
tinized, compared, and refined, and while it is not clear yet which method will prevail, it seems realistic
to assume that, by the beginning of the High-Luminosity phase, the issue of handling intermediate di-
vergences in NNLO calculations will be considered solved. An ambitious goal is in fact to have 2 → 3
NNLO results by the beginning of the High-Luminosity phase. A milestone would be certainly to have
NNLO prediction for ttH production. Motivated by the success at one-loop, a lot of effort is devoted to
extending generalized unitarity and the OPP methods beyond one loop (see e.g. Ref. [55]). Currently,
2 → 3 processes are a very active subject of study, with initial results of 3-jet amplitudes starting to
appear [56–62].

Beyond NNLO, two calculations of LHC processes exist today at N3LO for inclusive Higgs pro-
duction in the large mt approximation [63, 64] and for vector-boson-fusion (VBF) Higgs production in
the structure function approximation [65]. The complexity of these calculations suggest that it will be
very hard to extend this level of accuracy to more complicated processes, since the technology they use
explicitly exploits the simplicity of these two processes, and cannot be easily extended to more complex
ones.

Besides fixed-order, also resummed calculations have seen a leap in recent years. The accuracy
with which particular observables can be resummed analytically reaches N3LL (see e.g. Ref, [66–68]),
which means three towers of logarithmic terms down compared to the leading logarithms that arise when
only soft and collinear gluons are correctly accounted for. These results are properly matched to fixed
order NNLO calculations.

Resummed calculations rely either on methods based upon coherent branching [69, 70] or upon
Soft Collinear Effective Theory (SCET) [71]. So far, the two approaches have also been considered as
complementary, in fact both methods proceed by performing a systematic expansion of the contributions
to the cross section. Recent work highlights the connection between the two methods [72].

While the logarithmic accuracy of resummed calculations is impressive, the formal accuracy of
parton showers is much less advanced. Unlike resummed calculations, that are targeted to a well defined
cross section or distribution, Monte Carlo generators make predictions for several kind of observables
at the same time, and, at present, a rigorous way to qualify their accuracy is missing. First studies
in this direction can be found in [73]. Nevertheless, attempts to improve some aspects of the shower
algorithms are the focus of recent work. Different approaches are taken: one can incorporate the spin-
color interference into showers [74], include higher-order splitting functions and 1→ 3 splitting kernels
into showers [75, 76] or consider different shower evolution variables [77, 78]. It seems likely that by
the start of the High-Luminosity program we will have a much better theoretical control on the parton
shower evolution and the uncertainty associated to it.

In the same way as the progress in NLO went hand in hand with the development of matching
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procedures of NLO and parton shower, a number of approaches have been suggested recently to match
NNLO calculations and parton showers [79–81]. The bottleneck in these approaches is currently the fact
that they rely on a reweighing procedure that is differential in the Born phase space. Such a reweighing
is possible for relatively simple processes but becomes numerically unfeasible for more complicated
ones. It seems reasonable to expect that in the next years better NNLOPS approaches will be developed
that do not rely on any reweighing to the NNLO. This would make it possible to have NNLO predictions
matched to parton shower (PS), also called NNLOPS, to more generic processes for which an NNLO
calculation is available, as is currently the case at NLO.

2.2 Electroweak corrections2

Existing tools
In the last few years, the automation of electroweak (EW) NLO corrections has witnessed an impres-
sive progress, for what concerns both one-loop and real-emission contributions (and their combination),
by collaborations such as RECOLA [82, 83] with SHERPA [84, 85], OPENLOOPS [10] with SHERPA,
GOSAM [11, 86] with either MADDIPOLE [87, 88] or SHERPA, and MadGraph5_aMC@NLO [12, 89].
For most of these codes tuned comparisons have also been published [90, 91], displaying excellent
agreement among them. Although the capabilities and reach in process complexity can differ from one
computer program to another, recent results obtained with these tools [92–117] clearly demonstrate how
automation has made it possible to tackle problems whose complexity is too great to justify their solu-
tions through traditional approaches.

Stemming from these advances, newer applications have become possible, one of these is the
computation of the so-called “complete-NLO” corrections. In general, a given scattering processes can
proceed through n different coupling combinations at LO (for example, tt̄ or dijet production receives
contributions at order α2

s , αsα and α2); typically only the term with the largest power of αs is retained,
owing to the fact that αs � α. This structure generates a similar one at NpLO, with n+p contributions,
and the term “complete-NLO” means the (simultaneous) computation of all the terms entering at LO and
NLO. Among the computer programs cited above, some have been employed for the computation of the
complete-NLO corrections. In most of the cases the impact of the various contributions closely follows
the pattern one would expect from the coupling powers, as it is the case for dijet production [106],
top-pair [113] possibly with one extra jet [116]. However, there exist processes for which the coupling
hierarchy is violated, or even flipped. Examples are same-sign W production with two jets [111], top-
pair production in association with a W boson and four-top production [115].

Corrections beyond NLO
Similarly to the NLO case, also NNLO corrections can be organized in powers of α and αs. At the
moment, O(α2

s) NNLO QCD calculations have been performed for many production processes at the
LHC. Conversely, complete NNLO mixed QCD-EW calculations of O(αsα) have not been performed
for any process yet. These calculations are essential in order to pin down the theoretical uncertainties for
processes that at the HL- and HE-LHC will be measured with very high precision. For this reason a great
effort has been already invested for achieving this result and great progress can be expected in the next
years. We recall the calculations that have been performed for Drell-Yan production [118, 119] in the
resonance region via the pole approximation. For this kind of calculations two-loop amplitudes [120–
124] as well as regularized double-real emissions [125] are necessary ingredients. Similarly, NNLO
mixed QCD-EW corrections to gluon-gluon-fusion (ggF) Higgs production, which are induced by three-
loop diagrams, have been estimated in ref. [126]. Further recent calculations [127, 128] support those

2Contributed by D. Pagani, M. Zaro and M. Schönherr.
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results and, in particular, support the fact that they can be correctly approximated via the so-called
multiplicative approach. In short: NNLO mixed QCD-EW ∼ NLO QCD × NLO EW.

The aforementioned multiplicative approach is in general a very good approximation when the
bulk of QCD and EW corrections at NLO is dominated by soft effects and Sudakov logarithms, re-
spectively. Given the current lack of exact NNLO mixed QCD-EW calculations, this approximation is
already being used for estimating these corrections and/or missing higher orders uncertainties of differ-
ent processes. First (N)NNLO QCD calculations including NLO EW corrections via the multiplicative
approach have already appeared [63, 113, 129] and are already necessary for a correct interpretation of
current data; this level of accuracy will be mandatory for more processes at HL and HE-LHC.

Besides NNLO mixed QCD-EW corrections ofO(αsα), non-negligible contributions can emerge
also from large O(αn) corrections with n > 1. These typically involve final-state radiation (FSR) from
massless/light particles and Sudakov logarithms. Both effects can be resummed, (at LL) via shower
simulations (see the following sections on matching with QED showers and with EW showers), or
analytically. In the case of Sudakov logarithms, general methods for their calculation [130, 131] and
techniques for resumming them [132,133] are already known since quite some time. Based on the study
already performed for 100 TeV proton–proton collisions [134], at the HE-LHC, the resummation of
Sudakov effects may be relevant in the tail of distributions.

Matching with QED shower

Fixed order computations need to be matched to parton showers, which compute a fully differential
numerical resummation and implement the evolution of both QCD and EW particles from the hard scale
to low scales, connecting it to the non-perturbative hadronization stage to arrive at fully differential
particle level that can be subjected to detector level data. This matching has been fully automated for
NLO QCD calculations. At NLO EW accuracy only selected process specific solutions exist [135–139].
As all parton showers incorporate a joint QCD+QED parton evolution, general matching procedures,
which are still lacking at the moment, will become available in the near future. This will enable precise
particle level predictions that can be subjected to detector simulations for highly realistic and detailed
studies.

Additionally, first solutions exist to incorporate approximate electroweak corrections in multijet
merged calculations [98, 116, 140]. In these approximations, the universal nature of EW corrections
in the high energy limit, where they are dominated by Sudakov-type logarithms of virtual origin, is
exploited. Thus, these methods will form the cornerstone of precise particle-level predictions at large
transverse momenta, which are at the basis of the increased reach of both the HL– and HE–LHC new
physics search program.

Weak showers

All parton showers publicly available in the major Monte-Carlo event generators HERWIG, PYTHIA and
SHERPA contain both QCD and QED splitting functions to numerically resum the respective logarithms
at (N)LL accuracy. First steps towards parton showers incorporating also weak effects in their splitting
functions have been taken recently [141, 142]. The now complete electroweak splitting functions suffer
from their strong dependence on the helicity of the propagating parton. These parton showers, how-
ever, operate in the spin-averaged approximation, neglecting all spin-correlations. The current effort to
understand the full spin dependence of the electroweak part of the evolution of partons [143, 144] in
analytic resummations is complemented by efforts to keep the full colour and spin structure, including
non-diagonal parts of the (now matrix-valued) evolution equations, in the parton shower community.
In time for the High Luminosity Upgrade fully spin-dependent parton evolution will then be incorpo-
rated in fully differential parton shower resummations that can then produce accurate predictions for the
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emission probabilities of secondary weakly interacting particles and gauge bosons.

2.3 Monte Carlo generators3

The complexity of the final states, together with the complexity of the detectors that analyse them, are
such that a full simulation of an event, yielding a realistic multi-particle final state distribution, is an
indispensable theoretical tool for the physics of high-energy hadron colliders. Driven by the needs of
the Tevatron and LHC, the physics of Monte Carlo (MC) generators has seen steady progress from its
inception to the present, and is, at the moment, a field in active development. The current LHC physics
program, as well as the requirements for its HL-LHC and eventually its HE-LHC phases, has evidenced
several areas of development that need to be addressed by theorists. These are mainly driven by the
quest for higher precision and accuracy, but also by practical issues, such as the need for generating very
large samples for the most abundant LHC processes, and for the efficient handling of the variations of
the input parameters needed in order to study uncertainties.

Much progress in this field takes place within the main collaborations that maintain the widely
used general purpose Monte Carlo generators, i.e. HERWIG [145–147], PYTHIA [148,149] and SHERPA [84],
but there is also a large theoretical community that works on more specialised aspects of Monte Carlo
generators, such as formal/theoretical advances to improve the resummation accuracy, and to improve
the fixed-order accuracy in the generation of the primary event and of the hardest radiations accompa-
nying it.

In spite of the several challenges ahead of us, considering the evolution of the field in the last
twenty years, it can be anticipated that considerable progress will be made from now up to the beginning
(around 2025) and in the following ten-fifteen years of the high luminosity program. This progress will
take place in particularly favourable conditions, as the running of the LHC and the data accumulated
will provide continuous feedback to the theoretical work in the field.

It can be can anticipated major developments in the following directions: precision for inclusive
observables, logarithmic accuracy, technical improvements for fast and efficient generation of events,
and improvements in the modeling of hadronization and underlying event.

Precision for inclusive observables
In this context, let us generically refer to “precision" as a measure of the accuracy of the result as well as
of the size of the left-over uncertainties that can be achieved in the computation of inclusive quantities,
i.e. those that can be computed directly in fixed-order calculations. Fixed-order calculation have always
been, and are now, ahead of the precision that Monte Carlo generators can provide for inclusive observ-
ables. Since their wide use started, and up to about twenty years ago, shower MC’s had typically leading
order precision for inclusive observables, while the state of the art for fixed order computations was at
the Next-to-Leading-Order (NLO) level. Thanks to the introduction of general methods for interfacing
shower Monte Carlo to fixed-order NLO calculations, like AMC@NLO [150], POWHEG [151], and
more recently the KRK-NLO method [152], the state of the art for shower MC’s precision has reached
the NLO level. On the other hand, progress in fixed-order computations, including the evaluation of
two-loop amplitudes and the development of several subtraction methods, allowed NNLO calculations
to become available for a rather large set of processes. It is therefore natural to wonder whether general
methods for interfacing Shower generators to NNLO calculation will be available at the start of the
High Luminosity program. NNLO-PS methods have already appeared for relatively simple processes,
typically in the production of massive colourless final states [79, 80, 153–155]. However, the methods
used so far do not seem to have the generality needed to handle processes of increasing complexity, and
it is very likely that new theoretical breakthroughs will be needed.

3Contributed by F. Maltoni, M. Schönherr and P. Nason.
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Achieving NNLO accuracy for a given final state, for example for Higgs production, implies also
the NLO accuracy for the the same final state in association with a jet, i.e. the HJ process in the Higgs
example. In practical applications, the less ambitious goal of having NLO accuracy for inclusive result,
and also achieve NLO accuracy for the final states that also include associated production of jets, thus
achieving an extension of the CKKW [156] method to NLO order, can be extremely useful.

The availability of automated NLO corrections for arbitrary processes including a relatively large
number of associated jets has paved the way to important developments in this direction. Several pro-
posals to merge samples with different jet multiplicity computed at the NLO, usually called “NLO-PS
matrix-element merging”, have been put forward. These are the FXFX method [157], implemented in the
AMC@NLO framework; the UNLOPS method [158], implemented in PYTHIA and the MEPSNLO
method [159], implemented in SHERPA. All methods introduce a separation scale that defines the jet
multiplicity for a given event, and allows to generate inclusive samples out of non-overlapping samples
with different jet multiplicity. Whether these procedures really achieve NLO accuracy for observables
involving different jet multiplicity also when generic (i.e. different from those used at the generation
level) separation scales are chosen, is a delicate question, which is still a matter of debate. Alterna-
tive merging procedures, that consider more carefully the problems that may arise at the boundary of
the merging regions and also aim at improving the resummation accuracy , have been proposed in the
GENEVA approach [160], and presently applied to Drell-Yan production [155,161]. The goal of achiev-
ing NLO accuracy for different jet multiplicity has also been achieved without the use of merging with
the so called MINLO procedure [162, 163].

While NLO-PS generators for standard QCD processes can be obtained with a fairly high level of
automation, there are processes that require particular attention, typically the loop induced ones. An ex-
ample of one such process is Higgs-pair production, that has been implemented first in AMC@NLO [164]
using an approximation for the yet unknown two-loop contributions and then in POWHEG and AMC@NLO [165]
as soon as the results of the two-loop computation has become available. [166, 167]. There are several
other gg loop-induced processes for which a full NLO+PS implementation is still missing which, thanks
to the quick developments in computation of two-loop amplitudes, are expected to become available in
the coming years.

Another important direction where there has been considerable progress recently is the automation
of the computation of EW corrections [83, 85, 89, 95] to the point that fixed-order NLO QCD and EW
corrections are readily available for virtually all processes of interest. Details can be found in Section 2.2.
An general interface of these calculations to shower generators that correctly account for QED radiation
for these computations, however, is not yet available. The problem in this case is the consistent handling
of photon radiation, that can arise both from the shower and from the fixed-order calculation. These pose
new problems compared to the production of coloured partons, where the presence of individual partons
cannot be required in the final state, and thus showers develop inclusively generating jets from partons.
Photons, on the other hand, can be explicitly detected in the final state, and an NLO+PS scheme should
take care of handling both shower generated photons and those originating in the NLO calculation in
a consistent way, in order to give a reliable description of both collinear photons embedded in jets and
highly energetic isolated ones. A scheme for achieving this in the Drell-Yan case has been presented in
Ref. [136, 137] in the context of the POWHEG method. A scheme using fragmentation functions has
been introduced in Ref. [89].

Finally, it is to be noted that the progress achieved recently to account for intermediate resonant
states in the NLO+PS context [168–170] will likely be essential in the framework of electro-weak cor-
rections. In this case, weak vector bosons are part of the electroweak corrections and their presence
entail a correct handling of their decays also in presence of extra QED radiation. It is expected that
interfacing complete NLO EW-QCD calculations with a shower approach (QED+QCD) will become
standard procedure by the beginning of HL-LHC.
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Accuracy in resummation
As current state of the art, shower generators rely upon the first order Altarelli-Parisi splitting kernels,
together with some appropriate scheme to handle soft emissions, either by angular ordering in parton
shower cascades or using dipole shower algorithms. Several studies have appeared recently aiming
at improving parton showers by increasing the accuracy of specific ingredients, either by developing
novel shower schemes that remain within the standard parton or dipole branching, such as DIRE [77]
and Vincia [78, 171]; by going beyond the typical probabilistic cascade of the shower algorithms and
handling directly the quantum density matrix [172]; and by incorporating higher order splitting functions
[76, 152, 173–175].

While fixed order improvements in shower MC generators have the clear goal of reaching the same
fixed order accuracy as the corresponding computations for inclusive observables, it is less straightfor-
ward to quantify how improvements in the shower algorithms impact the precision of the description
of observables that require resummation. In a recent study [73], some criteria were proposed in order
to address this problem. In particular, two criteria were examined: the first refers to the ability of a
shower algorithm to correctly reproduce the singularity structure of n-parton matrix elements, while the
second measures the level of accuracy of a shower algorithm in the computation of a general class of
observables that require resummation. It was found that there are regions where commonly used shower
algorithms fail to reproduce the correct singularity structure of the matrix elements, and that this af-
fects the logarithmic resummation accuracy of the shower already in the leading term, yet at subleading
number of colours, and in the next-to-leading term at leading colour.

Thus, the current trend of research moves along parallel directions, not only by seeking improve-
ments in the shower algorithms in particular areas, but also by critical examination of the shower for-
malism in an attempt to qualify their accuracy in a more solid way.

Technical improvements
The pressing requirements of the LHC physics program have already had an impact in driving technical
improvements in Monte Carlo generators. In particular, the need to study uncertainties, corresponding
to a large set of combination of parameter variations when generating a sample, often leading to several
hundreds variations, has led to the development of procedures to implement the variation of parame-
ters by reweighting the same event, rather than generating independent samples. Besides the obvious
simplification of having to deal with a single event sample, this has also the advantage that the effects
of variations of the input parameters are affected by smaller theoretical errors, since they all apply to
the same generated event. A method for reweigthing the full shower development was presented in
Ref. [176] and implemented in HERWIG in Ref. [177]. A similar method was presented in [178] for
PYTHIA, and in Ref. [179] for SHERPA. Reweighting techniques to evaluate uncertainties as well as for
other applications are available in MADGRAPH5_AMC@NLO [12, 180] and in POWHEG.

For certain common Standard Model processes, a large statistics is often required, and is espe-
cially needed to populate the kinematic tails at large transverse momenta. The most advanced generators
usually suffer from poor performance, especially in such areas of the phase space, and thus the need for
more accurate tools must be balanced with the practical needs for large samples. These problems will
need to be addressed on a case by case basis, depending upon the process that is been considered, and
the specific purpose that a generator for that process should serve. The presence of negative weights,
for example, should be minimised for generators that must produce large samples to be fed through
detector simulators. The sampling of suppressed tails of phase space, on the other hand, may be easily
increased by suitable bias functions. It is also apparent that attention should be given to whether new
computer architectures may be advantageously explored for Monte Carlo generators, such as MPIs and
GPU architectures, and that new software techniques making use of Boosted Decision Trees or Deep
Neural Networks may provide advantages over traditional techniques of Monte Carlo integration and
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phase space generation [181].

Hadronization and underlying event

A recent fascinating direction in parton shower MC’s is towards establishing a unified picture in the
description of multi-parton dynamics in pp, pA, and AA collisions [182]. Traditionally, pp collisions
have been described through the picture of double-, single- and non-diffractive interactions of partons
in a vacuum in pp collisions. AA collisions, on the other hand, are typically described in terms of
the dynamics of a quark gluon plasma, with a formalism more related to hydrodynamics than particle
physics. A series of observations in high-multiplicity pp events at the LHC, however, have exposed
remarkable similarities and features in common with those observed in pA and AA collisions, at least
with respect to flavour composition and flow. The question therefore arises whether a new state of
matter, the quark gluon plasma, is actually formed in high-multiplicity pp events and how this could
be tested quantitatively. Efforts and new ideas have recently emerged towards having a unified MC
description of such events. This has started with a simple stacking of (soft and hard) pp events [183].
A recent proposal, Angantyr [184], has been inspired by the old Fritiof model [185] and the notion of
wounded nucleons. While more elaborated than a stacking approach, it does not yet feature a description
of collective effects. In the coming years, progress will be achieved by first identifying the experimental
features that are genuine signatures of the formation of a quark gluon plasma, and those which could be
associated to other effects. Alternative explanations would likely also be of a collective character, yet
without requiring a phase transition.

The intense ongoing theoretical and experimental work in this framework is likely to lead to new
breakthrough in the modeling of the hadronization phase and the underlying event before the beginning
of the HL-LHC running.

In the description of the underlying event in pp collisions, a key role is played by multi-parton
interactions (MPI, see Sec. 5.3). There has been recent progress in the theoretical understanding of
double parton scattering that has been summarised in Sec. 5.3.2. There it is also shown that at the HL-
LHC it may be possible to find evidence of correlations in double parton interactions. This opens the
possibility of constructing improved models of MPI in MC generators, to be eventually refined in the
first few years of running of the HL-LHC.

2.4 PDF calculations and tools4

At the HL-LHC, a precise knowledge of the quark and gluon structure of the proton will be essential
for many analyses. These include the profiling of the Higgs boson sector [186], direct searches for
new heavy BSM states [187], indirect BSM searches by e.g. means of the SMEFT [188], and the
measurement of fundamental SM parameters such as the W boson mass [189], the Weinberg mixing
angle [190] or the strong coupling constant [191] and its running.

This section gives a brief review the PDF tools that will be used in this Report for the studies of
the SM chapter. Those aspects of modern PDF fits that are more relevant for studies at the HL-LHC will
be also highlighted. The end of this section will provide some perspectives about the role of PDFs at the
HE-LHC. It must be stressed that this document is not intended to be a review of recent developments
on PDFs, and the reader is referred to [192–194] and reference therein, for further details in this sense.

The studies presented in this Report will be based mostly on the PDF4LHC15 set [195], con-
structed from the statistical combination and subsequent reduction [196–198] of the CT14 [199], MMHT14 [200],
and NNPDF3.0 [201] global analyses. The PDF4LHC15 set is interfaced to matrix-elements calculators
and Monte Carlo shower programs by means of the LHAPDF6 package [202].

4Contributed by L. Harland-Lang, J. Gao and J. Rojo.
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Fig. 1: Comparison of the NNPDF3.1NNLO fits with and without LHC data, normalized to the central value of
the former at Q = 100 GeV. The up quark (left) and the gluon (right plot) are shown. The bands indicate the 68%
confidence level PDF uncertainty.

Quantifying the impact of LHC measurements.

In recent years, one of the main developments in global PDF fits has been the increasingly significant
role played by LHC processes in providing stringent PDF constraints. The combination of high precision
LHC data with state-of-the art NNLO theory calculations for such hadronic processes as top-quark pair
production [203], the transverse momentum spectrum ofZ bosons [204], direct photon production [205],
and inclusive jet production [206] is having an important impact on precision PDF fits. To illustrate this,
Fig. 1 compares the recent NNPDF3.1 fit [207] with and without the LHC data at Q = 100 GeV for
the up quark and gluon PDFs. The marked impact of the LHC data for x & 0.005 can be observed
both for central values and for the PDF uncertainties. It is of particular note that only Run-1 data
has been included in these fits. Thus, it is clear that the addition of data from Run-2 and -3 first and
then from the HL-LHC, for which the precision and reach will be greatly increased, should lead to
further improvements in the determination of the proton structure. A subsequent section of this report
will quantify the impact of HL-LHC measurements, demonstrating that a significant reduction can be
expected and providing a public PDF set including the expected constraints from the final HL-LHC
dataset.

Fast interfaces to (N)NLO calculations

To avoid the direct evaluation of the lengthy (N)NLO hadronic cross sections during the fit itself, a
method of fast interfaces is generally applied, whereby the CPU time intensive part of the higher–
order calculation is pre–computed once using a complete interpolation basis for the input PDFs. For
a number of years, the APPLGRID [208] and FASTNLO [209] tools have been available for a range of
NLO processes. The former is interfaced to the MCFM [210] and NLOJET++ [211] programs. More
recently, the AMCFAST interface [212] to MADGRAPH5_AMC@NLO [12] has also been developed.
Results within the FASTNLO framework for differential top quark production at NNLO are already
available [213, 214], while work is ongoing within the APPLFAST project to extend the FASTNLO and
APPLGRID technology to NNLO. This will be interfaced by default to the NNLOJET program [206],
but will be reusable for other theory codes. Thus, for future PDF fits, relevant to HL and HE-LHC
running, fast interface implementations of NNLO theory calculations are expected to be the standard.
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Fig. 2: Photon-initiated contributions partially cancel the NLO EW corrections in the TeV region, as
shown for the case of W+W− production (left) and hW+ production (right plot) at 13 TeV.

Theoretical uncertainties

Given the high precision expected for HL-LHC data, it will be crucial to include all sources of exper-
imental, methodological, and theoretical uncertainties associated with PDFs in order to ensure robust
predictions. An important issue in this context is to estimate the theoretical uncertainties in PDFs due to
missing higher orders (MHOU) in the perturbative expansion for the theory prediction [215], which are
so far ignored in all global fits. There is by now some evidence that MHOUs can be comparable, if not
larger, than the nominal PDF uncertainties based on the propagation of experimental and methodological
uncertainties. In this context, HL-LHC projections should ideally be based on PDFs that consistently
account for MHOUs in addition to other sources of uncertainties.

To keep such uncertainties to a minimum, global PDF fits will need to include higher-order pertur-
bative corrections either at fixed-order or at all-orders using some form of resummation. In the former
case, encouraging recent progress with N3LO splitting functions [216] suggest that an (approximate)
N3LO fit might be within the reach of the HL-LHC era, to match the precision of partonic cross-sections
for processes such as Higgs production in gluon fusion [63,217]. In the latter case, one can use threshold
(BFKL) resummation [218, 219] to reduce theoretical uncertainties at the large-x (small-x) kinematic
regions. Indeed, several state-of-the-art predictions for LHC processes include threshold resummation,
such as for example top quark pair production [220].

Electroweak effects and photon-initiated contributions

The enhanced coverage of the TeV region at the HL-LHC requires not only higher-order QCD cor-
rections to be accounted for, but also electroweak ones, which can be enhanced due to Sudakov loga-
rithms [221]. In the context of PDF studies, there are two main considerations to take into account. First
of all, exploiting the constraints from the HL-LHC measurements for PDF fits will require systematically
accounting for NLO EW corrections. Secondly, PDFs with QED effects and thus with photon-initiated
contributions should become the baseline. It has now been demonstrated [222, 223] (see Ref. [224] for
a recent implementation within a global fit) that the photon PDF can be determined with percent–level
uncertainties and carry up to ' 0.5% of the proton’s momentum. For certain processes, in the TeV re-
gion the photon-initiated contributions can have a comparable size but opposite sign to the NLO virtual
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section at the HE-LHC, for different orders and with/without (LL) low–x resummation, and with uncertainty bands
from PDF, subleading logarithms, and scale variations [226].

EW corrections, and therefore it is crucial to include both consistently. This is illustrated in Fig. 2 in the
specific cases ofW+W− and hW+ production at 13 TeV. A more detailed discussion of EW corrections
for HL-LHC studies is presented later in the report.

Perspectives at the High Energy LHC

At a centre-of-mass energy of
√
s = 27 GeV, a number of novel phenomena are expected to arise, due to

the increased phase space available. Much of this has already been discussed in the context of the Future
Circular Collider (FCC) studies at

√
s = 100 TeV [134,225]. To begin with, as illustrated in Fig. 3, when

going to higher energies one becomes more sensitive to the small-x region, even for electroweak-scale
observables, implying that BFKL resummation effects could become relevant.

Indeed, for MX ' 100 GeV the NNPDF3.1sx results [219] at NNLO and at NNLO+NLLx
for the gg luminosities are found to differ at the ' 5% level at the HE–LHC. In Ref. [226] a detailed
study of SM Higgs boson production via gluon fusion has been performed, consistently including BFKL
resummation in the PDFs (see Ref. [219]) and coefficient functions. The role of the former is found to be
dominant, and while the impact is mild at the LHC, for the HE–LHC a larger increase is seen relative to
the N3LO result with fixed–order NNLO PDFs, that lies outside the fixed–order PDF uncertainty bands,
see Fig. 3 (right). This highlights the important role such effects will play at high energies and precision.

Another effect that might become relevant at the HE-LHC are the electroweak PDFs [143, 227]
from the resummation of large collinear logarithms of the masses of the W and Z bosons, which be-
come effectively massless at high energies. Related to this is the top quark PDF, which can be (and
is) straightforwardly generated within the standard PDF framework. When included with a suitably
matched flavour scheme, this may provide a more accurate description of processes involving top
quarks [228,229]. In addition, at

√
s = 27 TeV, knowledge of the small-x PDFs will be also required for

the modeling of soft and semi-hard QCD dynamics in Monte Carlo event generators [134,230]. In turn,
an improved understanding of the PDFs in the ultra-low-x regime will have implications in high-energy
astrophysics, for processes such as cosmic ray detection and for signal and background event rates in
neutrino telescopes [231].
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2.5 Effective Field Theory calculations and tools5

State of the art
The success of the Standard Model Effective Theory (SMEFT) programme at the LHC relies on the
availability of public tools for calculations in this framework. Among the most important of these are
Monte Carlo (MC) tools for providing realistic predictions for collider processes both for phenomeno-
logical studies and experimental analyses. In this respect, significant efforts are being made to implement
the effects of dimension-6 operators in MC event generators. Concerning Leading Order (LO) predic-
tions, recent progress includes SMEFTSIM, a complete implementation of the dimension-6 operators
in the Warsaw basis [232], an alternative implementation of the Warsaw basis in the Rξ gauge [233],
DIM6TOP, an implementation of top quark operators under various flavour assumptions [234] and the
Higgs Effective Lagrangian (HEL) [235] implementation of SILH basis operators. Complementary to
SMEFT implementations, there also exist several models of anomalous couplings such as the Higgs
Characterisation [236–238] and BSM Characterisation models [239]. These models are all made avail-
able in the Universal FEYNRULES Output (UFO) format that can be imported into general purpose
Monte Carlo tools, such as MADGRAPH5_AMC@NLO or SHERPA, to generate events and interface
them to parton shower generators (PS). A powerful aspect of this workflow is that, once implemented,
the model is generic enough to enable event generation for any desired process.

Implementations of particular processes in the presence of dimension-6 operators exist also in
other frameworks. An example is the weak production of Higgs in association with a vector boson in
POWHEG based on the NLO computation of [240], the implementation of Higgs pair production in
the EFT in HPAIR (including approximate NLO corrections) [241] and in HERWIG [147, 242]. Two
well-known tools for calculating cross sections for Higgs production via gluon fusion including higher
order QCD corrections, HIGLU [243, 244] and SUSHI [245], can also include the effects of modified
top and bottom quark Yukawas and the dimension-5 Higgs-gluon-gluon operator. The latter code also
permits event generation at NLOQCD+PS accuracy via AMCSUSHI [246] including modified top and
bottom quark Yukawa couplings. For a variety of processes with electroweak and Higgs bosons in the
final state (VBF H, W and Z production, weak boson pair production, vector-boson-scattering processes,
triboson production) the VBFNLO program [247, 248] provides NLO QCD corrections together with
implementations of dimension-6 operators and, in the case of VBS and triboson production, dimension-8
operators.

There are also EFT-specific tools providing a number of useful interfaces and calculations.
EHDECAY [249, 250] is a package for the calculation of Higgs boson branching fractions including
SMEFT effects parametrised by SILH basis operators. The freedom of basis choice in the SMEFT
implies that arbitrarily many equivalent descriptions of the model can be formulated. This has impor-
tant consequences for the development of EFT tools given that any numerical implementation of EFT
effects requires choosing a specific basis. A SMEFT basis translation tool, ROSETTA [239], can be
used to numerically transform points in parameter space from one basis to another. It adopts the SLHA
convention for model parameter specification and provides an interface to Monte Carlo event genera-
tion tools through the aforementioned BSMC model. Furthermore, additional interfaces exist to other
programs such as EHDECAY, internal routines testing compatibility of Higgs signal-strength and EW
precision measurements as well as providing predictions for di-Higgs production cross sections in the
SMEFT. Rosetta provides SMEFT basis-independent access to these functionalities. A related tool is
DEFT [251], a python code that can check if a set of operators forms a basis, generate a basis and change
between bases. A similar implementation based on FEYNRULES is ALLYOURBASES, that performs the
reduction of an arbitrary dimension-6 operator into the Warsaw basis operator set. Efforts are also un-
derway to establish a common format for the Wilson coefficients [252], which will allow interfacing
various programs computing the matching and running of the operators such as DIM6TOOLS [253] and

5Contributed by E. Vryonidou.
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WILSON [254]. A public fitting framework that can be used to obtain constraints on the EFT is HEPFIT,
which is based on the Bayesian Analysis Toolkit, and includes Higgs and electroweak precision observ-
ables.

Future Developments
There is significant progress in computing NLO QCD corrections for the EFT, in both the top and Higgs
sector [240, 255–262]. This progress, now on a process-by-process basis, will eventually lead to a full
automation of QCD corrections for the SMEFT. As experimental measurements become increasingly
systematics dominated, the importance of higher order calculations grows. The complete implementa-
tion of dimension-6 operators at NLO, including some flavour symmetry assumptions, is in preparation.
This implementation will enable the computation of NLO-QCD corrections to any tree-level process,
bringing the Monte Carlo automation to the same level as the Standard Model.

Another direction in which progress is expected over the coming years is the computation of
weak corrections in the SMEFT. A small sample of computations has been done, e.g. weak corrections
to Higgs production and decay due to top quark loops [263] and due to modified trilinear Higgs cou-
pling [264–266] as well as Higgs and Z-boson decays [267–272]. Due to the behaviour of the Sudakov
logarithms, weak corrections are typically important for high transverse momentum regions. Therefore
at HE/HL-LHC their impact is expected to be enhanced. It can be expected that the recent progress on a
process-by-process basis will eventually lead to the automation of the computation of weak loops in the
EFT, as in the Standard Model.

Finally progress is expected in linking tools which compute the running and mixing of the opera-
tors with Monte Carlo tools. This will allow the automatic computation of cross-sections and differential
distributions taking into account the mixing and running of the operator coefficients.
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3 Experimental environment at HL-LHC
3.1 Analysis methods, particle reconstruction and identification

Different approaches have been used by the experiments and in theoretical prospect studies, hereafter
named projections, to assess the sensitivity in searching for new physics at the HL-LHC and HE-LHC.
For some of the projections, a mix of the approaches described below is used, in order to deliver the
most realistic result. The total integrated luminosity for the HL-LHC dataset is assumed to be 3000 fb−1

at a centre-of-mass energy of 14 TeV. For HE-LHC studies the dataset is assumed to be 15 ab−1 at
a centre-of-mass of 27 TeV. The effect of systematic uncertainties is taken into account based on the
studies performed for the existing analyses and using common guidelines for projecting the expected
improvements that are foreseen thanks to the large dataset and upgraded detectors, as described in Sec-
tion 3.2.

Detailed-simulations are used to assess the performance of reconstructed objects in the upgraded
detectors and HL-LHC conditions, as described in Sections 3.1.1,3.1.2. For some of the projections, such
simulations are directly interfaced to different event generators, parton showering (PS) and hadronisation
generators. Monte Carlo (MC) generated events are used for Standard Model (SM) and beyond-the-
Standard-Model (BSM) processes, and are employed in the various projections to estimate the expected
contributions of each process.

Extrapolations of existing results rely on the existent statistical frameworks to estimate the ex-
pected sensitivity for the HL-LHC dataset. The increased centre-of-mass energy and the performance
of the upgraded detectors are taken into account for most of the extrapolations using scale factors on the
individual processes contributing to the signal regions. Such scale factors are derived from the expected
cross sections and from detailed simulation studies.

Fast-simulations are employed for some of the projections in order to produce a large number
of Monte Carlo events and estimate their reconstruction efficiency for the upgraded detectors. The
upgraded CMS detector performance is taken into account encoding the expected performance of the
upgraded detector in DELPHES [273], including the effects of pile-up interactions. Theoretical contri-
butions use DELPHES [273] with the commonly accepted HL-LHC card corresponding to the upgraded
ATLAS and CMS detectors.

Parametric-simulations are used for some of the projections to allow a full re-optimization of
the analysis selections that profit from the larger available datasets. Particle-level definitions are used
for electrons, photons, muons, taus, jets and missing transverse momentum. These are constructed from
stable particles of the MC event record with a lifetime larger than 0.3 × 10−10 s within the observable
pseudorapidity range. Jets are reconstructed using the anti-kT algorithm [274] implemented in the Fast-
jet [275] library, with a radius parameter of 0.4. All stable final-state particles are used to reconstruct
the jets, except the neutrinos, leptons and photons associated to W or Z boson or τ lepton decays. The
effects of an upgraded ATLAS detector are taken into account by applying energy smearing, efficiencies
and fake rates to generator level quantities, following parameterisations based on detector performance
studies with the detailed simulations. The effect of the high pileup at the HL-LHC is incorporated by
overlaying pileup jets onto the hard-scatter events. Jets from pileup are randomly selected as jets to
be considered for analysis with ∼ 2% efficiency, based on studies of pile-up jet rejection and current
experience.

3.1.1 ATLAS and CMS performance

The expected performance of the upgraded ATLAS and CMS detectors has been studied in detail in the
context of the Technical Design Reports and subsequent studies; the assumptions used for this report
and a more detailed description are available in Ref. [276, 277]. For CMS, the object performance
in the central region assumes a barrel calorimeter aging corresponding to an integrated luminosity of
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1000 fb−1.

The triggering system for both experiments will be replaced and its impact on the triggering
abilities of each experiment assessed; new capabilities will be added, and, despite the more challenging
conditions, most of the trigger thresholds for common objects are expected to either remain similar to
the current ones or to even decrease [278, 279].

The inner detector is expected to be completely replaced by both experiments, notably extending
its coverage to |η| < 4.0. The performance for reconstructing charged particles has been studied in
detail in Ref. [280–282].

Electrons and photons are reconstructed from energy deposits in the electromagnetic calorimeter
and information from the inner tracker [283–286]. Several identification working points have been
studied and are employed by the projection studies as most appropriate.

Muons are reconstructed combining muon spectrometer and inner tracker information [287,288].

Jets are reconstructed by clustering energy deposits in the electromagnetic and hadronic calorime-
ters [283, 284, 289] using the anti-kT algorithm [274]. B-jets are identified via b-tagging algorithms.
B-tagging is performed if the jet is within the tracker acceptance (|η| < 4.0). Multivariate techniques
are employed in order to identify b−jets and c−jets, and were fully re-optimized for the upgraded de-
tectors [280, 282]. An 70% b−jet efficiency working point is used, unless otherwise noted.

High pT boosted jets are reconstructed using large-radius anti-kT jets with a distance parameter
of 0.8. Various jet substructure variables are employed to identify boosted W /Z/Higgs boson and top
quark jets with good discrimination against generic QCD jets.

Missing transverse energy is reconstructed following similar algorithms as employed in the cur-
rent data taking. Its performance has been evaluated for standard processes, such as top pair produc-
tion [280, 290].

The addition of new precise-timing detectors and its effect on object reconstruction has also been
studied in Ref. [286, 291], although its results are only taken into account in a small subset of the
projections in this report.

3.1.2 LHCb performance

The LHCb upgrades are shifted with respect to those of ATLAS and CMS. A first upgrade will happen at
the end of Run-2 of the LHC, to run at a luminosity five times larger (2× 1033cm−2s−1) in LHC Run-3
compared to those in Runs-1 and-2, while maintaining or improving the current detector performance.
This first upgrade (named Upgrade I) will be followed by by the so-called Upgrade II (planned at the
end of Run-4) to run at a luminosity of ∼ 2× 1034cm−2s−1.

The LHCb MC simulation used in this document mainly relies on the PYTHIA 8 generator [292]
with a specific LHCb configuration [293], using the CTEQ6 leading-order set of parton density func-
tions [294]. The interaction of the generated particles with the detector, and its response, are imple-
mented using the GEANT toolkit [295, 296], as described in Ref. [297].

The reconstruction of jets is done using a particle flow algorithm, with the output of this clustered
using the anti-kT algorithm as implemented in FASTJET, with a distance parameter of 0.5. Requirements
are placed on the candidate jet in order to reduce the background formed by particles which are either
incorrectly reconstructed or produced in additional pp interactions in the same event.

Concerning the increased pile-up, different assumptions are made, but in general the effect is
assumed to be similar to the one in Run-2.
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3.2 Treatment of systematic uncertainties
It is a significant challenge to predict the expected systematic uncertainties of physics results at the end
of HL-LHC running. It is reasonable to anticipate improvements to techniques of determining systematic
uncertainties over an additional decade of data-taking. To estimate the expected performance, experts in
the various physics objects and detector systems from ATLAS and CMS have looked at current limita-
tions to systematic uncertainties in detail to determine which contributions are limited by statistics and
where there are more fundamental limitations. Predictions were made taking into account the increased
integrated luminosity and expected potential gains in technique. These recommendations were then har-
monized between the experiments to take advantage of a wider array of expert opinions and to allow the
experiments to make sensitivity predictions on equal footing [276, 277]. For theorists’ contributions, a
simplified approach is often adopted, loosely inspired by the improvements predicted by experiments.

General guide-lining principles were defined in assessing the expected systematic uncertainties.
Theoretical uncertainties are assumed to be reduced by a factor of two with respect to the current knowl-
edge, thanks to both higher-order calculation as well as reduced PDF uncertainties [298]. All the un-
certainties related to the limited number of simulated events are neglected, under the assumption that
sufficiently large simulation samples will be available by the time the HL-LHC becomes operational. For
all scenarios, the intrinsic statistical uncertainty in the measurement is reduced by a factor 1/

√
L, where

L is the projection integrated luminosity divided by that of the reference Run-2 analysis. Systematics
driven by intrinsic detector limitations are left unchanged, or revised according to detailed simulation
studies of the upgraded detector. Uncertainties on methods are kept at the same value as in the latest
public results available, assuming that the harsher HL-LHC conditions will be compensated by method
improvements.

The uncertainty in the integrated luminosity of the data sample is expected to be reduced down to
1% by a better understanding of the calibration methods and their stability employed in its determination,
and making use of the new capabilities of the upgraded detectors.

In addition to the above scenario (often referred to as “YR18 systematics uncertainties” scenario),
results are often compared to the case where the current level of understanding of systematic uncertain-
ties is assumed (“Run-2 systematic uncertainties”) or to the case of statistical-only uncertainties.

3.3 Precision Luminosity
Motivation
Measurements of production cross sections provide fundamental tests of theoretical predictions. Ul-
timate precision both of the experimental measurements and the theoretical predictions is required in
order to determine fundamental parameters of the Standard Model and to constrain or discover beyond-
the-Standard-Model phenomena. At the LHC, the precision of cross section measurements is limited by
the uncertainty of the integrated luminosity, currently about 2%. The impact of all other experimental
uncertainties combined is smaller than ∼ 1% (2–3%) for Drell-Yan (tt̄) cross section measurements,
respectively [299, 300]. For the HL-LHC [301], significant improvements of the luminosity measure-
ment are being planned. A target uncertainty of 1% has been set, and this is also assumed for many
of the results presented in this report. Such improvement is expected to be achieved by combination
of improved luminosity detector instrumentation, currently in the design phase, and refined analysis
techniques, rapidly developing during the analysis of Run-2 data. In the following, we provide a short
description of the general plan towards the 1% target for the integrated luminosity at the HL-LHC.

Van der Meer Scans
At hadron colliders, the precision of theoretical predictions for inclusive cross sections, e.g. for Z/γ∗

production, is limited by the knowledge of the parton density functions (PDFs) in the proton, and the
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uncertainty is of the order of 3–5% [302]. A more precise, and purely experimental method to determine
the luminosity is based on the Van der Meer (VdM) scan technique [303]. In VdM scans, beam axes are
moved in the transverse planes, x and y, across each other such that the beam overlap integral can be
determined. From the measured overlap integral, and the beam currents, the instantaneous luminosity
during the VdM scan is determined [304].

In practice, VdM scan data are typically recorded with a small number of low pile-up bunches well
separated in time, with special interaction-region optics optimised for the measurement of the luminous-
region parameters [304–306], and with the bunch intensity lowered to about 3/4 of that during physics
runs so as to reduce beam-beam biases while retaining adequate statistics in the luminometers. To
transfer the luminosity information from VdM scans to high pileup operation, rate measurements are
performed during the VdM scan, in several detectors. The absolute scale, i.e. the relation between the
measured rate in a given detector and the luminosity measurement is a detector-specific calibration
constant, usually referred to as visible cross section σvis, relating the measured event rate dN/dt to the
instantaneous luminosity through the relation dN/dt = L·σvis. The integrated luminosity for a complete
data taking period, e.g. a full year of data taking is then obtained by continuous rate measurements
throughout the year. The integrated normalized rate measurement then corresponds to the integrated
luminosity.

Systematic Uncertainties

The uncertainty in the integrated luminosity consists of three components [306,307]: the absolute-scale
uncertainty, i.e. that on the measured visible cross-sections extracted from the VdM-scan analysis;
the calibration-transfer uncertainty, which affects the extrapolation of the visible cross-section from
the low pile-up, low luminosity VdM regime to the high pile-up, high luminosity physics regime; and
the stability uncertainty, that arises from possible time-dependencies and degradations of the detector
response affecting the rate measurement over time. Improved analysis techniques, better detectors and
extended data takings dedicated to precision luminosity measurements are required to reduce the current
uncertainty towards the 1% goal.

Absolute Scale Uncertainty

Dominant uncertainties in the luminosity scale arise from the modeling of, and the potential non-linear
correlations between, the horizontal and vertical beam profiles; from inconsistencies between equivalent
visible cross-section measurements carried out during the same calibration session or using different
luminometers; from the absolute displacement scale of the beams during the scans; and from beam-orbit
stability. In Run-2, these and other uncertainties have been reduced using refined methods and dedicated
additional data have been recorded for such specific purposes. Improvements of the uncertainty can
be achieved by combination of different complementary approaches, of results obtained using different
detectors, and of datasets obtained from different VdM scans.

An alternative technique, complementary to VdM scans, was established by the LHCb experi-
ment [308]. The shape of a single beam is measured as the distribution of beam-gas interactions. For
this purpose a gas is injected into the interaction region during the VdM fill. The combination of VdM-
scan and beam-gas imaging measurements leads to further reduction of the uncertainty, at least for
LHCb, thanks to the exquisite performance of the VELO vertex detector.

Calibration-transfer Uncertainty

In the HL-LHC area, the VdM calibration will typically be carried out under similar conditions as in
Run-2, i.e. at a pile-up level of about 0.5 interactions per bunch crossing, and with a luminosity of
a few Hz/µbarn. In contrast, the physics running during the HL-LHC, will be characterized by pile-up
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parameters of up to 200 interactions per bunch crossing, and by average instantaneous luminosities of 50
Hz/nb, two to three times the peak instantaneous luminosity achieved so far. This will lead to an increase
of the uncertainties associated with non-linearities in luminometer response. Most luminosity detectors
for HL-LHC are still being designed. Drawing on Run-1 and Run-2 experience with precision luminosity
measurements, the design of the future detectors aims to reduce the associated systematic uncertainties.
HL-LHC detectors are required to behave linearly over several orders of magnitude in their track, energy
or hit rate measurements, with residual non-linearities that are reproducible and monitorable. Special
runs with scans at intermediate instantaneous luminosity can be used to pin down nonlinear behaviour
further.

Long-term stability and consistency of luminosity measurements

In the past, one obvious way to determine stability and linearity effects has been to devise and compare
the luminosity measurements by several detectors, using different technologies, with uncorrelated sys-
tematics. Since 2016, experiments started to exploit so-called emittance scans. These are short VdM
scans (duration of minutes) performed at standard physics optics and currents, regularly at the beginning
and at the end of fills [309–312]. While the emittance scans are not primarily designed for the preci-
sion determination of σvis, trends over time, or as a function of instantaneous luminosity, can be used
to determine stability effects, such as aging, independently for each given detector. The combination
of emittance scans and of rate comparisons between redundant and independent detector systems has
been successfully used to discover and control drifts and trends throughout Run-2, the longest LHC
data-taking period so far, during which 150 fb−1 worth of data were recorded. As a result, the uncer-
tainty in the integrated luminosity in recent years remained at around 2-2.5% even though the pile-up
extrapolation range and the duration of the integration periods increased significantly.

Recent Ideas

Additional methods are being discussed among luminosity experts of the LHC experiments and machine.
One method recently developed is to use the rate measurement of Z → µµ production [313]. This
is a high-rate physics process with in-situ calibration capabilities. Luminosity and Z boson rate are
experimentally related through the following formula: σZ = NZ/(L× εZ→µµ) whereNZ is the number
of reconstructed Z bosons, L the integrated luminosity, and εZ→µµ the Z → µµ event reconstruction
efficiency. If εZ→µµ and L are known, then the fiducial Z boson production cross section σZ can directly
be determined from the measured event rate. To minimize the uncertainties associated with luminometer
non-linearities and long-term stability, the fiducial Z boson cross section is measured from data recorded
during an extended proton–proton production run at low pileup. This run should be close in time to
one or two extended VdM scans. The efficiency εZ→µµ can be determined in situ, using the tag-and-
probe method on the same event sample [313]. Once the cross section is measured at sub-percent level
precision, the continuous rate measurement can be used to transfer the calibration to the high pileup
dataset. The integrated luminosity will be given by the total number of produced Z bosons, corrected
by the time-integrated muon identification efficiency with an uncertainty consisting of the absolute scale
uncertainty from the VdM scan (or, in LHCb, beam-gas imaging scan), and a remaining uncertainty in
the pileup dependency of the muon identification efficiency.

Conclusions Towards HL-LHC
The aim for HL-LHC is to measure luminosity with substantially improved precision. This aim can be
achieved by combination of three ingredients:

1. High precision luminosity detectors are needed to provide high-granularity bunch-by-bunch lumi-
nosity measurements, with very good linearity and stability.
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2. Advanced, multiple and redundant VdM scans and refined VdM analysis techniques can lead to
substantial improvements.

3. Novel techniques, such as the measurement of fiducial Z boson production rates exploiting in-situ
efficiency determination, provide handles for advancement of the integrated luminosity uncer-
tainty towards the 1% target.

In order to achieve these goals during HL-LHC, a suite of tests and proof-of-concept measure-
ments is being developed which should be carried out already during Run-3.
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4 Electroweak processes
The study of electroweak processes is a central topic of SM tests. Given the small electroweak couplings,
high luminosity provides a crucial handle for gaining precision in these measurements, in particular for
complex final states with relatively small cross sections. Prospects for those measurements and for their
theoretical description are considered in the following for vector boson fusion (VBF) and vector boson
scattering (VBS) processes, for di-boson and tri-boson production, and for single weak boson production
processes, which promise unprecedented precision on W-mass and weak mixing angle measurements.

4.1 Vector boson fusion6

This sub-section discusses the prospects for vector boson fusion Higgs production at the HL-LHC and
the HE-LHC, respectively. A particular focus is to investigate how hard and how forward the two tag jets
are expected to be at 27 TeV. The efficiency of VBF cuts will be discussed, and fiducial cross sections
and differential distributions for a set of typical analysis cuts will be determined. Finally, the quality of
the VBF approximation will be considered, in particular when extra jet activity in addition to the two
tag jets is required.

The relevant parameters used for the calculations in this chapter are reported here. More details
can be found in LHC Higgs Cross Section Working Group report [186]. The gauge boson masses and
widths are set to

mW = 80.385 GeV, ΓW = 2.085GeV. (1)

mZ = 91.1876 GeV, ΓZ = 2.4952 GeV. (2)

and the Fermi constant is

GF = 1.16637 · 10−5 GeV−2. (3)

The Higgs is described in the narrow width approximation with massmH = 125 GeV. The parton distri-
bution function PDF4LHC15_nnlo_100_pdfas is used and the central renormalization and factorization
scale is set to µ0 = mW , unless otherwise specified.

Detector requirements
VBF production is characterized by two hard and forward jets accompanying the two bosons. The
requirement of two such jets can significantly reduce the QCD induced background along with the
electroweak production stemming from s-channel processes. The transverse hardness of the VBF jets
is fundamentally set by the mass scale of the virtual vector bosons. It is therefore expected that the jet
spectrum is not very sensitive to the collider centre-of-mass energy, and in particular that the jets do not
get appreciably harder when increasing the energy.

Figure 4 shows the fraction of total VBF cross sections that survives the cut on the transverse
momentum of the two tag jets for the three collider energies 14, 27, and 100 TeV. As can be seen, the
cross section drops rapidly as the pT-cut is increased. In particular, at 27 TeV, roughly 60% survive for
pT,tag > 30 GeV, which diminishes to 30% of the total VBF cross section for pT,tag > 50 GeV. It will
therefore be of great importance to the VBF program to be able to keep the jet definition not too hard.

Given that the two tag jets tend to be forward in the detector volume, it is of interest to study
how many jets are lost above a certain rapidity threshold. Figure 5 shows the fraction of events with
max

∣∣yj1
∣∣ ,
∣∣yj2
∣∣ above some threshold at

√
s = 27 TeV for various jet pT definitions. As can be seen

6Contribution by F. Campanario, T. Chen, J. M. Cruz-Martinez, T. Figy, A. Karlberg, S. Plätzer and M. Sjödahl.
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Fig. 4: Fraction of the total VBF cross section surviving a pT cut on the two hardest jets of pT,jtag
for

three different collider energies. The results shown here are computed at LO.

Fig. 5: Fraction of events lost as a function of the rapidity acceptance of the detector at a collider energy
of
√
s = 27 TeV. Results shown for three different tag jet transverse momentum cuts. The results shown

here are computed at LO.

from the plot, about 20% of the cross section has max
∣∣yj1
∣∣ ,
∣∣yj2
∣∣ > 4. For comparison, this number

is ∼ 5% at 14 TeV. Additionally one finds that these losses increase to ∼ 30% when imposing the
dedicated VBF cuts for 27 TeV defined below. Hence, in order to maximize the potential of VBF
analyses at the HE-LHC it will be highly desirable that the detectors have a rapidity reach beyond 4.0.

HL-LHC
For VBF production with a centre of mass energy of

√
s = 14 TeV, VBF cuts as in Ref. [186] are used,

with two anti-kT jets with R = 0.4 and

pjT > 20 GeV, |yj | < 5.0, |yj1 − yj2 | > 3.0, Mjj > 130 GeV. (4)

The requirement on the rapidity separation and invariant mass significantly reduces background contri-
butions to the process pp→ Hjj.

Table 1 reports the fiducial VBF cross section under the above cuts. The cross section includes

29



Table 1: Fiducial VBF cross sections including QCD and EW corrections and their uncertainties for
collider energy

√
s = 14 TeV and for a Higgs-boson mass mH = 125 GeV. The QCD corrections have

been updated compared to those reported in Ref. [186].

σVBF[fb] ∆scale[%] ∆PDF⊕αs
[%] σDIS

NNLOQCD[fb] δEW[%] σγ[fb] σs-channel[fb]

2259 +1.5
−1.3 ±2.1/± 0.4/± 2.1 2401 −6.9 23.6 32.9
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Fig. 6: Transverse momentum and rapidity of the Higgs boson after the cuts of eq. (4) and at a collider
energy

√
s = 14 TeV.

NNLO-QCD corrections in the DIS approximation and NLO-EW corrections including photon induced
contributions. Shown separately is the s-channel contribution which is not included in the total number.
The NNLO-QCD corrections have been computed with PROVBFH-1.1.0 [51, 65, 314–316] and the
electroweak contributions with HAWK-2.0 [317–320].

HE-LHC
For fiducial cross sections at a centre-of-mass energy of

√
s = 27 TeV, all physical parameters are kept

unchanged with respect to the previous sections. The contributions of the gluon fusion (ggF) and VBF
channels to Hjj production are compared, and results are presented for the effects of the NLO and NNLO
QCD corrections to VBF Hjj production as computed in NNLOJET [321] with a redefined set of VBF
cuts for the new energy choice.

For the comparison of VBF to the ggF background, any kind of VBF cut is omitted, requiring
only two jets with

pjT > 30 GeV, |yj | < 5.0, (5)

defined using the anti-kT algorithm [322] with R = 0.4. The total cross section for ggF and VBF is
shown in Table 2. Both the ggF and VBF contributions are computed with the parton-level Monte Carlo
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Fig. 7: In the top row the transverse momentum the two hardest jet after the cuts of eq. (4) and at collider
energy

√
s = 14 TeV. In the bottom row the invariant mass and absolute rapidity gap between the two

hardest jets.
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Fig. 8: Differential distributions for the invariant mass (left) and spatial distribution (right) of the dijet
system. At lower values of mjj and ∆yjj one observes a strong dominance of the ggF channel. For
larger values of both observables, however, the VBF channel gains importance.

NNLOJET which includes ggF Higgs production in the heavy top limit (HTL) [67,68,323–325] among
other processes [19, 206, 326–332]. The comparison of Table 2 is done at NLO QCD since Higgs plus
two jets in gluon fusion is only available at this accuracy level.

In order to define a set of cuts which enhance the VBF contribution, the invariant mass (mjj) and
the spacial distribution (through the rapidity gap between both jets, ∆yjj) of the dijet system formed by
the two leading jets is considered. The VBF production mode dominates over ggF in the large rapidity
separation region (∆yjj > 4.5) as well as for moderate and high values of the dijet invariant mass
(mjj > 700 GeV).

Table 2: Comparison between Higgs production by gluon fusion and vector boson fusion for a centre-
of-mass energy

√
s = 27 TeV, at NLO QCD. Errors correspond to Monte Carlo statistics.

Production mode Total cross section (fb) % of Total
ggF (HTL) 21984 ± 10 75.32 ± 0.04

VBF 7203 ± 2 24.68 ± 0.01

Fiducial cross sections for VBF at
√
s = 27 TeV are defined with a set of tight VBF cuts,

∆yjj > 4.5, mjj > 600 GeV, (6)

requiring the two leading jets to be found in opposite rapidity hemispheres with a maximum rapidity
of |yj | < 5.0. In Table 3 the fiducial cross section is computed for three choices of the cut on the
transverse momentum of the two leading jets: pjT > {30, 40, 50} GeV while differential distributions
for pjT > 30 GeV are shown in Figs. 9 and 10. The Hjj contribution in the VBF approximation as well
as plots in this section are calculated at NNLO QCD accuracy with NNLOJET, electroweak corrections
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Table 3: Fiducial VBF cross sections including QCD and EW corrections and their uncertainties for
collider energy

√
s = 27 TeV (mH = 125 GeV). For completeness the s-channel contribution (corre-

sponding to pp→ HV → qq̄) is also included.

σVBF[fb] ∆scale[%] σDIS
NNLOQCD[fb] δEW[%] σγ[fb] σs-channel[fb] pjT cut [GeV]

2805 +1.05
−0.02 3059 −9.6 39.8 5.9 30

2087 +1.13
−1.05 2283 −10.0 32.3 4.4 40

1442 +1.43
−1.61 1586 −10.5 22.3 3.0 50
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Fig. 9: Kinematical variables for the Higgs boson at
√
s = 27 TeV for tight VBF cuts. The NLO

corrections are of more than -10 % across the whole considered range. The NNLO corrections, much
smaller than NLO, show good convergence of the perturbative series. The NNLO corrections changes
sign for high transverse momentum (left). For the rapidity distribution (right) they remain stable across
the entire range of the observable.

and the s-channel contribution shown in Table 3 are again computed with HAWK-2.0. Shaded boxes
in all plots represent scale variations with µR = µF = {0.5, 2}µ0 with the central scale µ0 = mW and
error bars represent statistical uncertainties from the Monte Carlo integration. In Fig. 9 the transverse
momentum and rapidity distribution of the Higgs boson is shown. The kinematical variables for the
system formed by the two leading jets are shown in Fig. 10.

Comparison of HJETS++ and VBFNLO for Higgs boson production
The HJETS++ 1.1 module implements [333–336] electroweak Higgs boson plus two and three jet pro-
duction. The one-loop integrals are computed using the techniques discussed in Ref. [337] and the
colour algebra is performed using COLORFULL [338]. For the VBF approximation, the matrix ele-
ments encoded in VBFNLO version 3.0 beta 5 [247, 248, 339, 340] are used, with HERWIG 7 as the
event generator [146, 147, 341, 342]. Jet reconstruction is performed on final state partons using the
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Fig. 10: The top row shows the transverse momentum of the two leading jets ordered in rapidity at√
s = 27 TeV for tight VBF cuts. The bottom row depicts the kinematical variables for the dijet system

they form. Note that NNLO corrections noticeably reduce the scale uncertainties for both observables
over the entire range considered. NLO corrections are big for moderate and high transverse momentum
with a scale uncertainty that grows with the transverse momentum. This behaviours is softened by the
NNLO corrections.
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Fig. 11: Differential distributions of ∆yjj andmjj at
√
s = 14 TeV (top row) and

√
s = 27 TeV (bottom

row). HJETS++ matrix elements and inclusive cuts are used in the H + 2 jets calculations.

anti-kT algorithm [322] in the FASTJET library [343]. Simulated events are analyzed via RIVET [344].

For comparison plots of Higgs plus two jet calculations, collider energies of
√
s = 14 TeV and√

s = 27 TeV are considered. Two kinematic variables, namely the invariant mass, mjj , and the spa-
tial distribution, ∆yjj , of the two tag jets are chosen to present their differential distributions. Parton
distribution functions PDF4_LHC15_nlo_100 are used, while all other input parameters are the same
as given at the beginning of Section 4.1. Differential distributions for leading order, leading order plus
parton shower, next-to-leading order, and next-to-leading order plus parton shower are shown in Fig. 11,
with the inclusive cuts defined in eq. (5). Comparison plots between two different matrix elements,
HJETS++ and VBFNLO are shown in Fig. 12. VBFNLO uses the VBF approximation throughout, i.e.
s-channel contributions such as pp → V H → jjH production need to be added as separate processes.
The comparison between HJETS++ and VBFNLO thus also serves to highlight the phase space regions
where the VBF approximation is warranted.

The tight VBF cuts applied for
√
s = 14 TeV are defined as

pjT > 30 GeV, |yj | < 5.0, |yj1 − yj2 | > 3.0, Mjj > 130 GeV. (7)
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Fig. 12: The distributions of kinematic variables in H + 2 jets at
√
s = 14 TeV (top row) and

√
s =

27 TeV (bottom row). Comparisons are between the HJETS++ matrix elements and the VBFNLO ma-
trix elements at NLO plus parton shower. Plots indicate that both HJETS++ and VBFNLO calculations
agree once the tight VBF cuts are applied.

For
√
s = 27 TeV comparison plots, the tight VBF cuts defined in eq. (6) are used. The VBFNLO

calculation is consistent with the HJETS++ calculation after applying the tight VBF cut.

Fig. 13 shows differential distributions of kinematics variables for the NLO full and approximate
results at

√
s = 14 TeV and

√
s = 27 TeV. The comparison of the full and approximate calculations

are shown in the second and third rows of Fig. 13 for tight VBF cuts for the transverse momentum
of the third jet pj3T and the centrality of the third jet y?j3 = (yj3 −

1
2(yj1 + yj2))/|yj1 − yj2 |. For

the
√
s = 27 TeV tight VBF cuts (∆yjj > 4.5, mjj > 600 GeV, and yj1 · yj2 < 0), one observes

excellent agreement between the full and approximate calculation. For the
√
s = 14 TeV tight VBF cuts

(∆yjj > 3.0, mjj > 130 GeV, and yj1 · yj2 < 0), the full and approximate calculations still do not
converge. However, for ∆yjj > 4.0 or mjj > 600 GeV the full and approximate calculations would
compare quite well.
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Fig. 13: Kinematics distributions for H + 3 jet production at NLO for the full result (HJETS++) and
the approximate result (VBFNLO) for

√
s = 14 TeV (first column ) and

√
s = 27 TeV (second col-

umn). The kinematic distribution ∆yjj (top row) is shown for inclusive selection cuts. The kinematic
distributions for pj3T and y?j3 are shown for VBF tight selection cuts.
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4.2 Vector boson scattering processes
The study of the scattering of two massive vector bosons V = W,Z (vector boson scattering, VBS)
provides a key opportunity to probe the nature of the electroweak symmetry breaking (EWSB) mech-
anism as well as physics beyond the Standard Model (SM) [345, 346]. It is still unknown whether the
discovered Higgs boson [347] preserves unitarity of the longitudinal V V scattering amplitude at all en-
ergies, or if other new physics processes are involved [348–352]. In the VBS topology, two incoming
quarks radiate bosons which interact, yielding a final state of two jets from the outgoing quarks, and two
massive bosons which decay into fermions. This final state can be the result of V V jj electroweak (EW)
production with and without a scattering topology, or of processes involving the strong interaction.

4.2.1 Measurements ofW±W± scattering and extraction of the longitudinal scattering component
With the largest cross section ratio of electroweak to strong production [353, 354], events with W±W±

plus two jets (W±W±jj) provide one of the best opportunities to study the scattering of two vector
bosons. ATLAS and CMS have both observed the EW process at 13 TeV with significances of 6.9 σ and
5.5 σ, respectively [355, 356].

This section describes the prospects for the study of W±W±jj at
√
s = 14 TeV at the HL-LHC,

with the HL-LHC upgraded ATLAS and CMS detectors [357, 358]. Results are presented for a range
of integrated luminosities L, from 300 fb−1through 8000 fb−1, where the first value corresponds to one
year of data taking, and the latter to 10 years of combined data sets collected by the ATLAS and CMS
experiments in the most optimistic scenario.

In both ATLAS and CMS analyses, the signal (VBS and non-VBS EW) and background (QCD)W±W±jj
events are simulated at leading order using MADGRAPH5_AMC@NLO [12,150] with the NNPDF3.0
set [201, 359], interfaced with PYTHIA V8 [149] for parton showering, hadronization and underlying
event modelling. The information about the polarization of the individualW bosons in the signal process
is extracted by generating a separate set of events using the DECAY package of MADGRAPH(v1.5.14).
The other backgrounds – top (tt̄ + jets, single-top), Drell-Yan, diboson (Wγ, W±W± and WZ) and tri-
boson (WWγ,WZγ,WWW ,WWZ,WZZ,ZZZ) – are generated with either MADGRAPH5_AMC@NLO,
POWHEG [360], or PYTHIA V8. The analyses use generated events obtained either using a fully simu-
lated description of the HL-LHC CMS detector, implemented using the GEANT4 package [296] (CMS)
or using a parameterised description of the detector response [276] (ATLAS). Additional details for each
analysis are provided in the relevant reports from CMS [358] and ATLAS [357].

The experimental signature of the W±W±jj scattering process consists of exactly two isolated leptons
(electrons or muons) with the same electric charge, two jets well-separated in rapidity, and moder-
ate EmissT . The event selection requirements for the two experiments are listed in Table 4. A mini-
mum requirement on the dilepton mass reduces the contamination from low-mass Drell-Yan processes,
with an additional restriction excluding the Z mass in the dielectron channel where the likelihood of
charge misidentification is higher. A requirement on EmissT further reduces the background from charge
misidentified events, and events containing any b-tagged jets7 are vetoed to suppress background con-
tribution from tt̄ production. A veto on additional preselected leptons significantly reduces background
fromWZ events. The two leading jets are required to have a large invariant mass, and large angular sep-
aration, to satisfy the expected VBS topology. Since leptons in the EW W±W±jj process are expected
to be located in the central region defined by the forward-backward jets, non-VBS background can be
suppressed with a requirement on the centrality of the two leptons. CMS uses the Zeppenfeld variable

7The b-tagging of jets in CMS is performed with the Deep Combined Secondary Vertex discriminator based on a deep
neural network [363].
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Table 4: ATLAS and CMS event selection criteria for W±W±jj candidate events, with ` = e, µ and j
as the leading(sub-leading) lepton or jet.

Selection requirement ATLAS Selection CMS Selection

Signal lepton pT pT> 28(25) GeV pT> 20 GeV
Signal lepton η |η| ≤ 4.0 |η| ≤ 3.0

Tag jet pT pT> 90(45) GeV pT> 50 GeV
Tag jet η |η| ≤ 4.5 |η| ≤ 4.7

Dilepton mass m`` > 28 GeV m`` > 20 GeV
Zee veto |mee −mZ | > 10 GeV |mee −mZ | > 15 GeV
EmissT EmissT > 40 GeV EmissT > 40 GeV
Number of b-tagged jets 0 0
Jet selection Anti-kT [361] jets with ∆R`,j > 0.3 Anti-kT PUPPI [362] jets with ∆R`,j > 0.4
Preselected lepton veto pT> 7(6) GeV pT> 10 GeV
Dijet rapidity separation ∆ηj,j > 2.5 ∆ηj,j > 2.5
Dijet mass mjj > 520 GeV mjj > 500 GeV
Lepton centrality ζ > -0.5 ZMAX < 0.75

[364], defined for a given lepton with pseudorapidity η` as

Z` =
[η` − 0.5(η1 + η2)]

|(η1 − η2)| ,

where η1, η2 refer to the pseudorapidities of the leading and subleading jets. The maximum value of this
variable, ZMAX, for any of the leptons is required to be less than 0.75. ATLAS uses a requirement on
the function ζ, where ζ = min[min(η`1, η`2)−min(ηj1, ηj2),max(ηj1, ηj2)−max(η`1, η`2)]

The event selections are optimized to maximize signal acceptance (CMS) or minimize fake background
(ATLAS). ATLAS uses tight electron requirements, which have a lower efficiency (around 50% [276]).

The expected event yields are summarized in Table 5 for CMS, and Table 6 for ATLAS. The mjj

distributions after the full event selection for L = 3000 fb−1 are presented in Fig. 14 . The main back-
ground contributions in the final signal region are due to inclusive tt̄ and WZ productions, where the
third lepton in the event was not reconstructed within the detector acceptance. ATLAS explicitly models
the background contributions from jets faking electrons and lepton charge misidentification, which also
contribute significantly in the signal region, while CMS includes the fake contribution under tt̄ and does
not consider the charge-misidentified or triboson backgrounds in this study, since their contributions
were found to be negligible. The integrated number of signal and background events as a function of the
dilepton invariant mass is shown in Figure 16 for the ATLAS selection.

The uncertainty of the expected cross section measurement as a function of integrated luminosity
is measured by fitting the mjj distribution, using a binned maximum likelihood approach with all sys-
tematic uncertainties in the form of nuisance parameters with log- normal distributions. The correlations
among different sources of uncertainties are taken into account while different final states are considered
as independent channels in the fit. CMS considers three channels categorised by lepton flavour (ee, eµ
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Table 5: CMS expected yields for signal and background contributions for L = 3000 fb−1.

Process Expected yield, L = 3000 fb−1

W±W± (QCD) 196
tt̄ 5515
WZ 1421
Wγ 406
Total Background 7538
Signal W±W± (EW) 5368

Table 6: The ATLAS expected signal and background event yields after the optimised full event selection
for a corresponding integrated luminosity of L=3000 fb−1. Events tagged as either "charge misidentifi-
cation" or "jets faking leptons" are summed for all background samples and combined into a single entry
each in the table. Remaining events are listed separately per process. Both QCD and EW production of
WZ processes are included in the diboson background.

Process All channels µ±µ± e±e± µ±e± e±µ±

W±W±jj(QCD) 168.7 74.6 19.7 32.2 42.2
Charge Misidentification 200 0.0 11 30 160
Jets faking electrons 460 0.0 130 260 70
WZ + ZZ 1286 322 289 271 404
Tribosons 76 30.1 9.6 15.1 21.6
Other non-prompt 120 29 16.6 50 19

Total Background 2310 455 480 660 710

Signal W±W±jj(EW) 2958 1228 380 589 761

and µµ), while ATLAS uses eight channels by lepton flavour and charge (e+e+, e−e−, e+µ+, e−µ−,
µ+e+, µ−e−, µ+µ+, µ−µ−).

The experimental uncertainties, statistical and systematic, in the CMS analysis contribute to a total
uncertainty on the signal strength of 3.2% for 3000 fb−1. Including a theoretical uncertainty of 3% and
an uncertainty on the luminosity of 1%, the total uncertainty reaches a value of 4.5% for 3000 fb−1. For
the ATLAS analysis experimental systematics on the trigger, leptons, jets, and flavour tagging are taken
from the 13 TeV analysis unchanged, while for the baseline estimation, rate uncertainties on the back-
grounds are halved. An "optimistic" set of uncertainties is also presented, where the uncertainties on the
non-data-driven backgrounds are aggressively reduced. The total uncertainty is presented in Fig. 15 as a
function of the integrated luminosity. The values of L exceeding 3000 fb−1are an estimation of a combi-
nation of the measurements from CMS and ATLAS, effectively doubling the total integrated luminosity.

The total W±W±jj VBS cross section can be decomposed into the polarized components based
on the decays of the individual W bosons. Either or both can be longitudinally (L) or transversely (T)
polarized, giving rise to final states of LL, TT as well as the mixed state LT (with TL combination
implied). The LL component, W±L W

±
L jj, is expected to be only about 6-7% of the total VBS cross
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Fig. 14: The distribution of the invariant mass of the two leading jets after the selection requirements for
an integrated luminosity of 3000 fb−1, for CMS (left) and ATLAS (right).
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Fig. 15: The estimated uncertainty of the EW W±W± cross section measurement as a function of
the integrated luminosity, for CMS (left), only statistical and experimental systematic uncertainties are
considered, and ATLAS (right).

section for jet pT > 50 GeV. The difference in azimuthal angle between the two leading jets, ∆φjj , has
the potential for discriminating the LL component of the VBS scattering from TT and LT contributions.
Since the signal-to-background separation for the EWW±W±jj process improves with increasingmjj

as shown in Fig. 14 (left), the ∆φjj distributions are studied in two ranges of mjj : for 500-1100 GeV
and above 1100 GeV. Figure 17 shows the combination of signal and background yields as a function
of ∆φjj for high mjj regions. Using a simultaneous fit to two mass regions8, the significance for the
observation of the LL process is estimated as a function of integrated luminosity. The significance
is found to be up to 2.7 standard deviations for L = 3000 fb−1. The gradual improvement of signal
significance as a function of integrated luminosity is shown in Fig. 18 right. A combination of ATLAS
and CMS results, using fully simulated ATLAS events and improved electron efficiency, is expected to
reach an expected significance of 3 standard deviations with 2000 fb−1 per experiment. In addition,

8The low mjj region serves to constrain the tt̄/fake background.

41



recent studies [365] have shown that advances in machine learning can also improve the prospects for
the measurement of the W±L W

±
L jj process.
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4.2.2 High Order corrections in VBS W±W± production9

The expected experimental precision in the measurement of VBS processes offers great opportunities to
probe the electroweak (EW) sector and its associated symmetry breaking mechanism (see Refs. [134,
366, 367] for 100 TeV-collider studies). Therefore, it is of prime importance to make precise theoretical
predictions available for the future operation of the LHC. In this contribution, predictions for NLO EW
corrections are provided for the LHC running in its high-luminosity and high-energy configurations.
The HL set-up corresponds to a centre-of-mass energy of 14 TeV while the HE one refers to 27 TeV.

9Contribution by A. Denner and M. Pellen.
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as a function of the integrated luminosity at CMS (left) and ATLAS (right).

For both centre-of-mass energies the same type of event selections has been used. These predictions
represent important benchmarks as they indicate the expected rates when accounting for NLO EW cor-
rections. The NLO EW corrections have been shown to be very large for VBS processes [103] and
even the dominating NLO contribution for same-sign WW scattering [111]. Nonetheless, the inclusion
of NLO QCD corrections is necessary as they can significantly distort the shape of jet-related observ-
ables [111,368–376]. In addition, they drastically reduce theoretical uncertainties. The QCD corrections
for all VBS signatures can be obtained from public programs such as MADGRAPH5_AMC@NLO [12],
POWHEG [151, 314, 377], SHERPA [84, 378], or VBFNLO [247, 248, 339].

In this study, the NLO EW corrections have been obtained from MOCANLO+RECOLA [82, 82,
91] based on a full NLO computation [111] for the same-sign WW signature. While the exact value of
the corrections is expected to be different for other signatures, their magnitudes and nature should be
similar.

The hadronic scattering processes are simulated at the LHC with a centre-of-mass energies
√
s =

14 TeV and
√
s = 27 TeV. The NNNPDF 3.1 LUXQED parton distribution functions (PDFs) [224]

with five massless flavours,10 NLO-QCD evolution, and a strong coupling constant αs(MZ) = 0.118 are
employed.11 Initial-state collinear singularities are factorised according to the MS scheme, consistently
with the conventions in the NNPDF set.

The other input parameters have been chosen as in Ref. [375]. For the massive particles, the
following masses and decay widths are used:

mt = 173.21 GeV, Γt = 0 GeV,

MOS
Z = 91.1876 GeV, ΓOS

Z = 2.4952 GeV,

MOS
W = 80.385 GeV, ΓOS

W = 2.085 GeV,

MH = 125.0 GeV, ΓH = 4.07× 10−3 GeV. (8)

The measured on-shell (OS) values for the masses and widths of the W and Z bosons are converted into

10For the process considered, no bottom (anti-)quarks appear in the initial or final state at LO and NLO, as they would lead
to top quarks rather than light jets in the final state.

11The corresponding identifier lhaid in the program LHAPDF6 [202] is 324900.
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pole values for the gauge bosons (V = W,Z) according to Ref. [379],

MV = MOS
V /

√
1 + (ΓOS

V /MOS
V )2 ,

ΓV = ΓOS
V /

√
1 + (ΓOS

V /MOS
V )2.

(9)

The EW coupling is fixed in the Gµ scheme [380] according to

α =

√
2

π
GµM

2
W

(
1− M2

W

M2
Z

)
, (10)

with
Gµ = 1.16637× 10−5 GeV−2, (11)

and M2
V corresponds to the real part of the squared pole mass. The complex-mass scheme [381–383] is

used throughout to treat unstable intermediate particles in a gauge-invariant manner.

The central value of the renormalisation and factorisation scales is set to

µR = µF =
√
pT,j1

pT,j2
. (12)

The transverse momenta are those of the two hardest jets. This choice of scale has been shown to provide
stable NLO-QCD predictions [373].

Following experimental measurements [354, 384–386] and prospect studies [387], the event se-
lection used in the present study is:

– The two same-sign charged leptons are required to fulfill cuts on transverse momentum, rapidity,
separation in the rapidity–azimuthal-angle, and the lepton-pair invariant mass,

pT,` > 20 GeV, |y`| < 4.0, ∆R`` > 0.3, m`` > 20 GeV. (13)

– The total missing transverse momentum, computed from the vectorial sum of the transverse mo-
menta of the two neutrinos, is required to be

pT,miss > 40 GeV . (14)

– QCD partons (light quarks and gluons) are clustered using the anti-kT algorithm [274] with jet-
resolution parameter R = 0.4. Cuts on the jets’ transverse momenta and rapidities are imposed,

pT,j > 30 GeV, |yj | < 4.0. (15)

VBS cuts are applied to the two jets with largest transverse momentum, specifically on the in-
variant mass of the di-jet system, as well as on the rapidity separation of the two jets and their
separation from leptons,

mjj > 500 GeV, |∆yjj | > 2.5, ∆Rj` > 0.3. (16)

– Finally, the centrality of the leptons is enforced according to Ref. [387]:

ζ = min
[
min

(
y`1 , y`2

)
−min

(
yj1 , yj2

)
,max

(
yj1 , yj2

)
−max

(
y`1 , y`2

)]
> 0. (17)

– For EW corrections, real photons and charged fermions are clustered using the anti-kT algo-
rithm with radius parameter R = 0.1. In this case, leptons and quarks are understood as dressed
fermions.
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in pp → µ+νµe+νejj at 14 TeV including NLO EW corrections (upper panel) and relative NLO EW
corrections (lower panel). The yellow band describes the expected statistical uncertainty for a high-
luminosity LHC collecting 3000 fb−1and represents a relative variation of±1/

√
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number of observed events in each bin.

In the following discussion of SM predictions for the HL- and HE-LHC both QCD and EW
corrections have been combined. For VBS processes EW corrections are particularly large and therefore
of prime importance. The leading contributions originate from the exchange of massive gauge bosons in
the virtual corrections. They tend to grow large and negative in the high-energy limit owing to so-called
Sudakov double logarithms. As shown in Ref. [103], large EW corrections are an intrinsic feature of
VBS at the LHC. While this study is based on the same-sign W channel, it has been further confirmed
recently by the computation of large EW corrections to the WZ channel [388, 389].

Given their size and the foreseen experimental precision, these corrections are actually measur-
able. Because they involve interactions of the EW sector, their measurement would constitute a further
test of the SM. On the left hand-side of Fig. 19, the distribution in the invariant mass of the two leading
jets is shown at LO and NLO EW for the process pp → µ+νµe+νejj at 14 TeV. The yellow band de-
scribes the expected statistical uncertainty for a HL LHC collecting 3000 fb−1. On the right hand-side
for Fig. 19, a similar plot for the absolute rapidity of the jet pair is shown. It is thus clear that with the
expected luminosity, one is not only sensitive to the VBS process but also to its EW corrections.

In Fig. 20, the distributions in the invariant mass of the visible system (e+µ+jj) at both 14 TeV
(left) and 27 TeV (right) are shown. As expected, the corrections are larger for higher centre-of-mass
energy due to the higher representative scale of the process. In the tail of the distribution where new
physics could play an important role, the corrections are particularly large and reach about 25% for
the 27 TeV set-up. Note that in the present predictions, the real radiation of massive gauge bosons is
not taken into account. This effect has been estimated to be of the order of few percent for the HL
set-up when considering the total cross section. While this effect is for now negligible, for the HL and
HE mode of the LHC, it will become relevant in the same way as the use of VBS approximations in
theoretical predictions [375]. These observations are further confirmed via the cross sections for the two
centre-of-mass energies at LO (using full matrix element) and NLO EW given in Table 7. At 27 TeV the
EW corrections are a few percent larger than at 14 TeV (−18.9% against −15.1%, respectively). Note
that the jump in energy from 14 TeV to 27 TeV is accompanied by an increase by more than a factor 3 in
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Fig. 20: Differential distribution in the invariant mass of the visible system (e+µ+jj) in pp →
µ+νµe+νejj at 14 TeV (left) and 27 TeV (right) including NLO EW corrections (upper panel) and rela-
tive NLO EW corrections (lower panel).

Table 7: Cross sections at LO (O
(
α6
)

) and NLO EW (O
(
α7
)

) for pp→ µ+νµe+νejj at both 14 TeV
and 27 TeV at the LHC. The relative EW corrections are given in percent, and the digits in parentheses
indicate the integration error.

σLO [fb] σNLO
EW [fb] δEW [%]

14 TeV 1.4282(2) 1.213(5) −15.1
27 TeV 4.7848(5) 3.881(7) −18.9

the cross section at LO.

4.2.3 Measurements ofWZ scattering at the HL-HLC

Prospects are presented for measuring the WZ electroweak production in fully leptonic final state at
the HL-LHC. This work includes studies of the polarised WZ production: measurements of the vector
bosons in longitudinally polarized states are of particular importance, since they give direct access to
the nature of the electroweak symmetry breaking via the exchange of a Higgs bosons in the t-channel
as shown in Fig. 21. Another relevant aspect of WZ production lies in the probe of the non-abelian
structure of the Standard Model via sensitive tests to triple and quartic gauge couplings, a topic which is
partially addressed in the next subsection. Measurements of the electroweak production using 36 fb−1of
the proton-proton collisions at 13 TeV were reported by both the ATLAS [390] and CMS [391] collab-
orations. The existing results are strongly limited by the statistical uncertainties of the data samples,
therefore the integrated luminosity expected at the end of the HL-LHC operation is mandatory to fully
exploit the physics behind VBS in WZ production via measurement of differential distributions and the
polarization of the final state bosons.

In proton-proton collisions, the VBS process results from the interaction of two bosons radiated
by the initial quarks leading to a final state with two centrally produced bosons and two forward jets.
The main irreducible background is represented by events in which the same final state is mediated by
strong interactions (QCD−WZ ) and where the two bosons are not the direct result of a scattering
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Fig. 21: Feymann diagrams contributing to VBS WZ production.

process. Other backgrounds consist of different di-boson final states (ZZ, Zγ), tri-bosons and tV or
tt̄V production, where V is a Z or a W boson. The amount of the non-prompt backgrounds, where
one or more lepton candidates are coming from jets misidentified as leptons, ultimately depends on the
detector geometry, reconstruction technique and event selection requirements.

The signal selection requires events with three isolated leptons with pT > 15 GeV with |η| < 4
for ATLAS and |η| < 2.8 (3.0) for muons (electrons) for CMS. In addition, at least one lepton should
pass the single lepton trigger (ATLAS). In order to suppress the background from ZZ processes, events
containing four or more lepton candidates are discarded. At least one of the three lepton candidates is
required to have pT > 25 GeV. The event must have at least one pair of leptons of the same flavor and op-
posite charge, with an invariant mass that is consistent with the nominal Z boson mass at MZ = 91.188
GeV within 10 GeV for ATLAS and 15 GeV for CMS. This pair is considered as a Z boson candidate.
The third lepton is assigned to the W boson and its pT is required to be greater than 20 GeV. Finally,
EmissT (CMS) or the transverse mass of the W candidate computed using EmissT and the pT of the third
lepton (ATLAS) is required to be above 30 GeV. The VBS signature is characterized by the presence
of two forward jets. Jets are reconstructed with the anti-kT algorithm with distance parameter 0.4. For
ATLAS, the event is selected if it contains two jets in opposite hemispheres with pjet

T greater than 30
GeV and |ηjet| < 3.8. For CMS, the event is selected if it contains two jets with pjet

T > 50 GeV and |ηjet|
< 4.7. In addition, the pseudorapidity separation between jets, ∆ηjj , is requested to be greater than 2.5.
Finally, the dijet mass mjj is required to be greater than 500 GeV. The full list of selection requirements
is summarized in Table 8.

Distinct approaches are used by ATLAS and CMS, respectively based on simulation at 14 TeV and
on extrapolation from Run-2 results. ATLAS uses Monte Carlo samples generated with a fast simulation
based on the parameteriation of the performance of the HL-LHC detector and where jets from pileup
(PU) interactions corresponding to <µ> = 200 are added to the event record; a loose event selection
and a conservative background hypothesis is used. The signal events are generated at LO with SHERPA

2.2.2 [84] and the QCD−WZ background is simulated at NLO with SHERPA 2.2.0: in Ref. [390], it was
shown that the QCD−WZ background predictions might be overestimated by 40% in certain regions
of the phase-space. And with a pjet

T cut as low as 30 GeV, an |ηjet| cut less than 3.8, corresponding to
the HL-LHC tracker acceptance, was found necessary to maintain the contamination of PU jets in signal
(resp. QCD−WZ ) events from 18% (resp. 69%) to 2% (resp. 11%).

The CMS projection is based on MC samples with full simulation of the CMS detector at 13 TeV
and data driven background estimates, see Ref. [392]. The cross sections of samples are scaled for this
projection from 13 to 14 TeV using SM predictions, for the data-driven backgrounds the scaling is done
using appropriate mixture of simulated events. The performance of the CMS detector at the HL-LHC
at pileup 200 is simulated using DELPHES. It is proven that lepton and PUPPI [362] jet reconstruction
allow to keep the same or better level of reconstruction efficiency and background rejection as in existing
data; no additional corrections are applied in the projection. An additional scaling factor is applied to
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Table 8: Summary of event selection requirements.

Variables ATLAS CMS
pT(`) [GeV] > 15 > 15

pT(`lead) > 25 –
pT(`Z,1), pT(`Z,2) [GeV] > 25, > 15

pT(`W ) [GeV] > 20 > 20
|η(µ)| < 4.0 < 2.8
|η(e)| < 4.0 < 3.0

|mZ −mPDG
Z | [GeV] < 10 < 15

m3` [GeV] – > 100
m`` [GeV] – > 4

EmissT [GeV] – > 30

MW
T [GeV] > 30 –
nj ≥ 2 ≥ 2
|η(j)| < 3.8 < 4.7

pjet
T [GeV] > 30 > 50
∆R(j, `) – > 0.4

pT(b) [GeV] – > 30
nb−jet – = 0

mjj > 500 > 500
∆ηjj Opp. hemis. > 2.5∣∣η3` − 1
2(ηj1 + ηj2)

∣∣ – < 2.5

Table 9: Expected signal and background yields corresponding to the event selection listed in Table 8
for 3000 fb−1. Background contributions are grouped differently for ATLAS and CMS.

Process ATLAS CMS
EW−WZjj 3889 2757
QCD−WZ 29754 3486

tt̄V 3145 –
tZ 2221 –

tV/VVV – 1374
Non prompt – 1192

ZZ 1970 –
VV – 398
Zγ – 296

account for the increased pseudorapidity coverage of the HL-LHC CMS detector. The ATLAS and CMS
signal and background yields are summarized in Table 9 for the total integrated luminosity of 3000 fb−1.

To extract the electroweak signal, ATLAS uses nominally a final mjj cut optimised at 600 GeV
or a multivariate analysis (BDT) based on 25 variables that are shown to best separate the signal and
background events. The shape of the BDT output is shown in Fig. 22 left. In the CMS case, a 2D
distribution of dijet invariant mass in bins of dijet angular separation is used, as shown in Fig. 22 right.
The measurement of the EW−WZjj production cross section results from a maximum likelihood fit
of this distribution performed simultaneously for four different lepton combinations in the final states,
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each combination being considered as independent decay channel. The systematic uncertainties are
represented by nuisance parameters in the fit and are allowed to vary according to their probability
density functions. The correlations across bins, between different sources of uncertainty and decay
channels are taken into account. The background contributions are allowed to vary within the estimated
uncertainties.
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Fig. 23: Expected uncertainty on the cross section measurement as a function of the integrated lumi-
nosity for the CMS projection (left). Signal significance versus the total background uncertainty for
the ATLAS simulation (right), presented for the nominal selection, along with two alternative selections
meant to mitigate the QCD−WZ background.

The experimental systematic error will be dominated by the jet energy related uncertainties, and
amounts to a maximum of 5%. The non-prompt background uncertainty may also be significant depend-
ing on the final state. Depending on the level of QCD−WZ background, the theoretical error affecting
its modeling will eventually dominate. However it is expected that the impact of these uncertainties can
be controlled to less that 5% using refined and diverse control regions allowed by the large statistics at
HL-LHC. The total uncertainty of the electroweak cross section measurement as a function of luminos-
ity is shown in Fig. 23 left for the CMS projection, while the signal significance as a function of the
projected total uncertainty on background is presented in Fig. 23 right for the ATLAS simulation as it is
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arguable whether the theoretical uncertainty can be precisely predicted at this stage.

The polarisation of the final state bosons can be measured inclusively for each boson in two
different final state configurations, ZW+ and ZW− or combined in a doubly longitudinally polarised
final state. The cosθ∗Z ( cosθ∗W ), where θ∗Z represents the angle of the lepton with the Z (W ) direction in
the WZ rest frame, is the most sensitive differential distribution to the polarisation of the Z (W ) boson.
An example of the cosθ∗Z distribution is shown in Fig. 24 left for the EW−WZjj signal and the sum
of backgrounds for Z(W+) final state; the distribution is fitted with three parameters: the longitudinal
polarised fraction F0, the left-handed minus right-handed contributions and the number of EW−WZjj
events using three polarisation templates plus the two background contributions. The result of the fit is
shown in Fig. 24 left, where the fraction of EW−WZjj events where the Z-boson is longitudinally,
left or right polarised are represented, while the log-likelihood profile corresponding to F0 is presented
in Fig. 24 right. The significance to measure F0, computed as

√
−2log(λ(F0 = 0)), is estimated to

be between 1.5 and 2.5 σ for Z(W+) and 0.7 and 1.5 σ for W− depending on the final selection that
affects the signal purity, and systematic assumptions on the total background normalisation.
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To measure the doubly longitudinal (LL) process, an approach based on the jets kinematics similar
to this for the total EW−WZjj cross section is used by CMS. The LL fraction is expected to be of
the order of 5% of the total EW−WZjj production ( [393]) and its unrolled 2D distribution is shown
in Fig. 25 left for 3000 fb−1. It can be observed that the LL contribution is increasing from 2-3% to 7-
8% for high angular separation between jets and for high invariant mass of the dijet system. In the fit,
the LL fraction is considered as signal, while the rest of the EW−WZjj process is considered as an
additional background. The systematic uncertainties of the LL and non-LL fractions are considered as
fully correlated within the total electroweak cross section. The significance of the LL observation as a
function of integrated luminosity is shown in Fig. 25 right: the red curve presents the significance if only
statistical uncertainties of the measurement are taken into account and the black line presents the results
including the systematics as discussed above.

The results presented in this section confirm that the EW−WZjj cross section can be measured
with accuracy at the HL-LHC if the jets from pileup collisions in the events are well separated from
the jets produced in the hard interactions. Increased pseudorapidity coverage of the detectors should
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improve precision of such measurement. The single polarized cross sections can also be measured
and the double polarized measurement requires more sophisticated methods, including development of
multivariate discriminants for better separation of the signal from background. Systematic uncertainties
also start to play a significant role at the HL-LHC, in particular those affecting the theoretical prediction.

4.2.4 Prospects for quartic gauge coupling measurements in VBS12

Due to the strong gauge theory cancellations between the different Feynman graphs present in VBS
(Fig. 21) the various VBS processes provide excellent probes for the structure of gauge boson inter-
actions, in particular for the quartic gauge couplings. Deviations from SM predictions can conve-
niently be parameterised by an effective Lagrangian, LEFT =

∑
i fi/Λ

di−4O(di)
i , where the oper-

ators O(di)
i of energy dimension di are built with the covariant derivative of the SM Higgs doublet

field, DµΦ, and the SU(2)L and U(1)Y field strength tensors Ŵµν and B̂µν (normalized according to
[Dµ, Dν ] = Ŵµν + B̂µν). At the dimension six level, all allowed operators in LEFT also contribute
to trilinear couplings of electroweak gauge bosons or to hV V couplings, which are better measured in
qq̄ → V V processes or in Higgs boson decay. Thus, operators of energy dimension eight, which do not
give rise to anomalous trilinear couplings, are used for a parameterisation of anomalous quartic gauge
couplings (aQGC), which is sufficiently general for the present purpose. In the following, the operator
basis of Ref. [394,395] with VBFNLO normalization [374,396,397] is used to assess the sensitivity of
VBS W±W±jj and WZjj production to aQGC, with the subset of operators

OS0
=
[(
DµΦ

)†
DνΦ

]
×
[
(DµΦ)

†
DνΦ

]
, (18a)

OS1
=
[(
DµΦ

)†
DµΦ

]
×
[
(DνΦ)†DνΦ

]
(18b)

OT0
= Tr

[
ŴµνŴ

µν
]
× Tr

[
ŴαβŴ

αβ
]
, (18c)

OT1
= Tr

[
ŴανŴ

µβ
]
× Tr

[
ŴµβŴ

αν
]

(18d)

OM0
= Tr

[
ŴµνŴ

µν
]
×
[(
DβΦ

)†
DβΦ

]
, (18e)

OM1
= Tr

[
ŴµνŴ

νβ
]
×
[(
DβΦ

)†
DµΦ

]
. (18f)

in LEFT =
∑

i
fi
Λ

4 Oi. At high invariant masses,
√
s, of the V V → V V subprocess, the tree level

insertions of the dimension eight operators lead to matrix elements which grow like s2 and violate
12Contribution by H. Schäfer-Siebert and D. Zeppenfeld.
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Fig. 26: Integrated WZ transverse mass distribution for fM0
/Λ4 = 3.8 TeV−4 within the pure EFT, the

unitarization of the Tu-model as well as the SM VBS signal and the background predictions based on
the ATLAS WZjj analysis.

unitarity within the accessible energy range of the LHC. This unphysical behaviour is avoided below
by using the unitarization scheme of Ref. [397], dubbed Tu-model, which is a variant of K-matrix
unitarization, producing close to maximal absolute values of the partial wave amplitudes at high energies.

In the presence of aQGC which signify strong interactions in the bosonic sector, VBS cross sec-
tions are enhanced at high V V invariant masses, which feeds into observables correlated to mV V such
as the integrated dilepton invariant mass distribution for W±W±jj events shown in Fig. 16 or the inte-
grated WZ transverse mass distribution shown in Fig. 26. The mT(WZ)-distribution is obtained from
the ATLAS WZjj analysis (see Table 8) with the additional cuts mjj > 600 GeV, ∆ηjj > 3.0 on the
invariant mass and the rapidity separation of the tagging jets, and |ηµ| < 2.7 on muon rapidity. Also
shown in Fig. 26 are mT(WZ)-distributions for fM0

/Λ4 = 3.8 TeV−4 within the pure EFT and in-
cluding the unitarization of the Tu-model for the VBS WZjj signal. Detector effects are included by
assuming the same efficiencies in eachmT(WZ) bin as for the SM EW signal. The processes contribut-
ing to the background distribution in Fig. 26 are listed in Table 9. The aQGC leads to an excess of events
at very highmT(WZ). Assuming that no significant excess is observed in the high energy tail, one finds
the expected 95% CL bounds on aQGC listed in Table 10. Also shown in the Table are bounds expected
from W±W±jj production, based on the dilepton invariant mass distribution of Fig. 16. The expected
bounds for the HE-LHC are obtained in a similar fashion, assuming the same signal to background ratio
as at 14 TeV for the SM case, and generating VBS W±W±jj and WZjj events with VBFNLO at LO
QCD.

The above procedure provides conservative estimates for the sensitivity to aQGC in VBS: The
experimental VBS analyses focused on the significance of the various SM VBS signals and did not try
to optimize sensitivity to deviations at highest V V invariant masses, as would be favorable for aQGC
measurements. Taking into account weak boson rapidity and transverse momentum distributions and
correlations, the sensitivity to aQGC could be improved somewhat. On the other hand, dedicated anal-
yses including Sudakov suppression at high invariant mass, as discussed in Section 4.2.2, which is
expected to slightly decrease sensitivity to aQGC, have not been performed yet in the above setting.
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Table 10: Expected bounds (in TeV−4) on the coefficients of dimension-8 operators, assuming no sig-
nificant excess in the integrated mT(WZ) (WZjj) or mll (W±W±jj) distributions at high mass.

14 TeV 27 TeV

WZjj W±W±jj WZjj W±W±jj

fS0
/Λ4 [-8,8] [-6,6] [-1.5,1.5] [-1.5,1.5]

fS1
/Λ4 [-18,18] [-16,16] [-3,3] [-2.5,2.5]

fT0
/Λ4 [-0.76,0.76] [-0.6,0.6] [-0.04,0.04] [-0.027,0.027]

fT1
/Λ4 [-0.50,0.50] [-0.4,0.4] [-0.03,0.03] [-0.016,0.016]

fM0
/Λ4 [-3.8,3.8] [-4.0,4.0] [-0.5,0.5] [-0.28,0.28]

fM1
/Λ4 [-5.0,5.0] [-12,12] [-0.8,0.8] [-0.90,0.90]

4.2.5 Measurements of ZZ scattering

This section presents the studies performed for VBS in the ZZ fully leptonic decay channel for HL-LHC
and HE-LHC. Despite the very low cross section times branching fraction, the reconstruction of all final
state leptons allows to precisely measure the angular distributions of the Z decays to optimally separate
the longitudinal from the dominating transverse polarizations. In addition, a precise measurement of
the hard scattering centre-of-mass energy is possible from the reconstructed four-leptons invariant mass.
Last but not least, the reducible background in this channel is very small, making it an ideal case for high
statistics measurement since the impact of associated experimental systematics uncertainties is expected
to be very small.

The ATLAS analysis is performed with simulated events at generator level at 14 TeV, where
the detector effects of lepton and jet reconstruction and identification were estimated by corrections,
assuming a mean number of interactions per bunch crossing of 200. The CMS analysis is based on
the experimental investigation of VBS in the ZZ channel using 36 fb−1of data collected in 2016 [398]
which showed an observed significance of 2.7 standard deviations. This analysis is projected to HL-
LHC conditions [399] by scaling the expected yields for the signal and background processes, taking
into account the increase in luminosity and scattering energy as well as the changes in acceptance and
selection efficiencies between the LHC Phase-1 (13 TeV) and the HL-LHC (14 TeV) configurations.
The DELPHES simulation [273] is then used to assess the sensitivity to VBS ZLZL. The HL-LHC result
is further projected to the HE-LHC configuration.

Several Monte Carlo event generators were used to simulate the signal and background contri-
butions. In the ATLAS analysis, both the EW-ZZjj and QCD-ZZjj processes with the ZZ → 4`
decays are modeled using SHERPA v2.2.2 [84] with the NNPDF3.0NNLO [400] parton distribution
functions (PDFs) set. The signal sample is generated with two jets at Matrix Element (ME) level. The
background process is modeled with next-to-leading order (NLO) QCD accuracy for events with up
to one outgoing parton and with leading order (LO) accuracy for the case with two and three par-
tons, in a phase space of m`` > 4 GeV and at least two leptons with pT > 5 GeV. Other back-
grounds have minor contributions to the 4` channel and therefore are not included. The CMS analy-
sis uses MADGRAPH5_AMC@NLO v2.3.3 [401] to simulate the EW-ZZjj signal and QCD-ZZjj
background samples with zero, one, and two outgoing partons at Born level at NLO. The different jet
multiplicities are merged using the FxFx scheme [157] with a merging scale of 30 GeV, and leptonic
Z boson decays were simulated using MADSPIN [402]. The gluon loop-induced production of two Z
bosons (ggZZ) is simulated at LO with MCFM v.7.0.1 [403], and checked with a dedicated simulation
of the loop-induced gg → ZZjj process using MADGRAPH5_AMC@NLO. The NNPDF3.0 PDF set
is also used. The interference between EW-ZZjj and QCD-ZZjj processes is found to be small and is
neglected in both analyses. Simulated samples with polarization information on the outgoing Z bosons
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are generated using MADGRAPH5_AMC@NLO v1.5.14 and the DECAY package from this version.

The selections are based on Run-2 analyses and have been modified according to the expected
changes for the detectors at HL-LHC. The foreseen forward lepton coverage is up to |η| = 4.0 for both
electrons and muons in ATLAS, while it is is up to |η| = 3.0(2.8) for electrons (muons) in the CMS
upgrade, with an option for an extension of up to |η| = 4.0 for electrons. Candidate events should
contain two pairs of oppositely charged isolated leptons (electrons or muons), consistent with the decays
of two on-shell Z bosons. The VBS topology is ensured by requiring at least two jets with large invariant
mass and η separation in the cut based analysis, whereas an inclusive selection is used when the signal
extraction is performed with a multivariate discriminant (BDT). Table 11 summarizes the details of the
selection criteria used by the ATLAS and CMS collaborations.

Table 11: Event selections used in ATLAS and CMS analyses. For the leptons η and pT in CMS the first
number refers to electrons and the second, in parenthesis, to muons.

ATLAS CMS
lepton η |η| < 4.0 |η| < 3.0(2.8) (|η| < 4.0(2.8), extended option)
lepton pT pT > 20, 20, 10, 7 GeV pT > 20, 12(10), 10, 7(5) GeV
N leptons exactly 4 ≥ 4
Z mass 60 < mll < 120 GeV 60 < mll < 120 GeV
Z1 definition mll closest to PDG [404] value pT-leading Z
jet η |η| < 4.5 |η| < 4.7
jet pT pT > 30(70) GeV for |η| < 3.8(> 3.8) pT > 30 GeV
N jets ≥ 2, with ηj1 × ηj2 < 0 ≥ 2
VBS cuts mjj > 600 GeV and |∆ηjj | > 2 mjj > 100 GeV, signal extraction from BDT

The distributions of the ZZ invariant mass (mZZ) and the azimuthal angular difference between
the two Z bosons (|∆φ(ZZ)|) are shown in Fig. 27, after the ATLAS event selection. The numbers of
selected signal and background events are quoted in Table 12, normalized to 3000 fb−1 of integrated
luminosity. In addition to the baseline selection, two alternative selections are also studied to compare
different detector scenarios at the HL-LHC. Uncertainties in the table refer to expected data statistical
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the cut-based event selection, normalized to 3000 fb−1.
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uncertainty at 14 TeV with 3000 fb−1. The benefit of the extension for the rejection of PU jets is

Table 12: Comparison of event yields for the signal (NEW−ZZjj) and background (NQCD−ZZjj) pro-
cesses, and expected significance of EW-ZZjj processes, normalized to 3000 fb−1 data at 14 TeV, for
baseline and alternative selections.

Selection NEW−ZZjj NQCD−ZZjj NEW−ZZjj /
√
NQCD−ZZjj

Baseline 432 ± 21 1402 ± 37 11.5 ± 0.6
Leptons with |η| < 2.7 373 ± 19 1058 ± 33 11.5 ± 0.6
PU jet suppression only in |η| < 2.4 536 ± 23 15470 ± 124 4.3 ± 0.2

clear. The extended tracking coverage improves the lepton detection efficiency and increases the number
of signal events, providing larger event yield for differential cross section measurements and for the
longitudinal scattering. However, the overall significance of observing the EW-ZZjj process does
not improve as much, due to larger increase of the QCD-ZZjj background contribution. This is due
to the ZZ system being more centrally produced in EW processes than in QCD processes. These
results, however, do not include the gluon-induced contribution, for which the ZZ system is found to be
more centrally produced than for the leading quark-induced contribution. Moreover, in the case of the
longitudinal scattering, the η distribution of longitudinally polarized Z bosons is peaked in the forward
region, therefore extended coverage is beneficial in this case as will be shown in the following.

The dominant systematics for 4` channel are from theoretical modeling of the QCD-ZZjj back-
ground processes. The ATLAS analysis considers different sizes of systematic uncertainty in the back-
ground modeling of 5, 10 and 30%. The 30% uncertainty is a conservative estimation from direct cal-
culation by comparing different choices of PDF sets and QCD renormalization and factorization scales,
following recommendation from PDF4LHC [195]. The 5% one is an optimistic estimation where enough
data events from QCD enriched control region at the HL-LHC could be used to provide constraints on
the theoretical modeling of QCD-ZZjj processes. For the experimental sources, the jet uncertainties
have been checked following the studies in Ref. [405] and the effect is within fluctuation of the simu-
lated events, which is at the 5% level. Thus a 5% uncertainty is used as a conservative estimate of the
experimental uncertainties. In this analysis these uncertainties are treated as uncorrelated and summed
up quadratically. The CMS analysis considers two scenarios for the systematic uncertainties. The first
scenario (’Run-2 scenario’) consists in using the same systematic uncertainties as those used for the
Run-2 analysis, apart from the uncertainty in the gluon-induced background contribution for which a
10% uncertainty is considered. In the second scenario (’YR18 scenario’), improved systematic uncer-
tainties are assumed to be obtained from the more data and better understanding of the detector. In this
scenario, the theory systematic uncertainties (PDF and QCD scales) are halved with respect to the Run-2
scenario. In this analysis the systematic uncertainties are considered as nuisances in the fit and profiled.

Figure 28 (left) shows the result of a scan over different mjj cuts in addition to the ATLAS
baseline selection, for an integrated luminosity of 3000 fb−1. The expected significance of EW-ZZjj

production processes is calculated as Significance = S/
√
σ(B)2

stat. + σ(B)2
syst., where S denotes the

number of signal events after the selection, and σ(B)stat. and σ(B)syst. refer to the statistical and sys-
tematic uncertainties in background yield. The statistical uncertainty is estimated from expected data
yield at 14 TeV with 3000 fb−1.

The CMS analysis employs a multivariate discriminant based on a boosted decision tree (BDT) to
extract the EW-ZZjj signal from the QCD-ZZjj background processes. Seven observables are used in
the BDT, including mjj, |∆ηjj|, mZZ, as well as the Zeppenfeld variables [364] η∗Z1,2

= ηZ1,2
− (ηjet1

+
ηjet2

)/2 of the two Z bosons, and the ratio between the pT of the tagging jet system and the scalar sum
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Fig. 28: Expected significance of EW-ZZjj processes as a function of differentmjj cuts for 3000 fb−1,
for different sizes of theoretical uncertainties in the QCD-ZZjj background modeling (left). Projected
significance in the multivariate analysis as a function of the integrated luminosity for the two considered
scenario and a 10% uncertainty in the loop-induced ggZZ background yield, as well as with only the
statistical uncertainties included (right).

of pT of the tagging jets (R(pT)jets). The BDT also exploits the event balance R(pT)hard, defined as
the transverse component of the vector sum of the Z bosons and tagging jets momenta, normalized to
the scalar pT sum of the same objects [406]. The modeling of all these observables was checked with
Run-2 data in a background-enriched region [398]. A maximum likelihood fit of the BDT distributions
for signal and backgrounds is used to extract the signal strength. The shape and normalization of each
distribution are allowed to vary within their respective uncertainties. Figure 28 (right) shows the pro-
jected significance for a 10% uncertainty in the loop-induced ggZZ background yield, as a function
of the integrated luminosity and for the two scenarios described above, as well as for a scenario with
only the statistical uncertainty included. The dashed line shows the projected significance as obtained
scaling the 2016 result with statistical uncertainty only by the luminosity ratio. The impact of a multi-
variate analysis is clear for such small signal. The expected significance is 13.0σ (13.6σ) for the Run-2
(YR18) systematic scenario, with a 10% uncertainty in the loop-induced ggZZ background yield and
an integrated luminosity of 3000 fb−1.

A fiducial phase space is defined at generator level with the same kinematic selections as listed
in Table 11, and is used to study the expected precision of the cross section measurements. Table 13
shows the expected cross section measurement in this phase space for 3000 fb−1, with the statistical only
case, and the cases with different sizes of theoretical uncertainties. The statistical uncertainty is at 10%
level and the integrated cross section measurement becomes dominated by experimental and modeling
uncertainty in the QCD-ZZjj background. For the possible extension of the HL-LHC run to 4000 fb−1,
the statistical uncertainty will be further reduced to 8% level.

Table 13: Summary of expected cross section measurements for different theoretical uncertainties. The
statistical uncertainty is estimated from expected data yield at 14 TeV with 3000 fb−1. Different uncer-
tainties are summed up quadratically.

Cross section [fb] Stat. only Plus exp. Plus 5% theo. Plus 10% theo. Plus 30% theo.
EW-ZZjj 0.21 ±0.02 ±0.04 ±0.05 ±0.08 ±0.21
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The projected measurement uncertainty from the CMS analysis is 9.8% (8.8%) for the Run-2
(YR18) scenario and for a 10% uncertainty in the loop-induced ggZZ background yield, for an inte-
grated luminosity of 3000 fb−1and a coverage of up to |η| = 3 for electrons. Extending the coverage up
to |η| = 4 for electrons, the expected measurement uncertainty becomes 9.5% and 8.5%, respectively.
In these estimates it is assumed that a fiducial cross section close to the detector volume is used, such
that the measurement is to first order insensitive to theoretical uncertainties in the signal cross section.

In addition, the expected differential cross section measurements of the EW-ZZjj processes at
14 TeV have been studied in the defined phase space, as a function of mjj , and mZZ , as shown in
Fig. 29. The expected differential cross section measurements are calculated bin by bin as

σ =
Npseudo−data −NQCD−ZZjj

L ∗ CEW−ZZjj
, CEW−ZZjj =

Ndet.
EW−ZZjj

Npart.
EW−ZZjj

, (19)

where Npseudo−data is the expected number of data events with 3000 fb−1 luminosity, and NQCD−ZZjj
and NEW−ZZjj are the number of predicted events from QCD-ZZjj and EW-ZZjj processes, respec-
tively. The CEW−ZZjj factor refers to the detector efficiency for EW-ZZjj processes, calculated as
number of selected signal events at detector level (Ndet.

EW−ZZjj), divided by number of selected events at
particle level in the fiducial phase space (Npart.

EW−ZZjj). Both the statistical only case (statistical uncer-
tainty is estimated from expected data yield at 14 TeV with 3000 fb−1) and the ones with different sizes
of theoretical uncertainties on the background modeling are shown in Fig. 29.
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Fig. 29: Expected differential cross sections at 14 TeV for the EW-ZZjj processes as a function of
mjj(left) and mZZ (right). Results are shown with different sizes of systematic uncertainties.

The decay angle cos θ∗ of the lepton direction in the Z decay rest frame with respect to the Z mo-
mentum direction in the laboratory frame is the most distinctive feature of longitudinal Z bosons (ZL).
The Z boson pT and η distributions also carry information on ZLZL production, in particular longitu-
dinal Z bosons are produced with a lower pT and more forward, compared to transverse polarizations
(ZT). The distributions of cos θ∗, pT and η of both Z bosons, together with the distributions of all ob-
servables used to separate VBS processes from QCD backgrounds and described above are employed as
input to a BDT to separate the VBS ZLZL signal from all backgrounds. The BDT is trained separately
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to discriminate the VBS ZLZL signal from the QCD backgrounds (QCD BDT) and to discriminate the
VBS ZLZL signal from the VBS background (VBS BDT). Cut values are defined on the QCD BDT
and on the VBS BDT output values, which maximizes the overall significance estimator S/

√
B for the

selected events. The corresponding signal efficiency is 14.1% and the VBS, leading QCD-ZZjj and
loop-induced ggZZ background efficiencies are 1.6%, 0.03% and 0.05%, respectively. It is assumed
that the VBS ZLZL fraction, defined as VBS ZLZL / VBS (ZLZL +ZLZT +ZTZT) will be measured,
rather than the absolute VBS ZL ZL cross section. In such ratio measurement, the systematic uncertain-
ties from luminosity, and selection efficiency, as well as theoretical uncertainties on the VBS and VBS
background cross section cancel out, such that only the uncertainties in the QCD backgrounds yields are
considered.

Figure 30 shows the expected significance for the VBS ZLZL fraction as a function of the inte-
grated luminosity and for the two scenarios described above and a 10% uncertainty in the loop-induced
ggZZ background yield, as well as for a scenario with only the statistical uncertainty included. A
significance of 1.4σ is reached for 3000 fb−1. As expected from the ratio measurement, the effect of
systematic uncertainties is very small. Results are also shown for an integrated luminosity of 6000 fb−1,
which would approximately correspond to combining ATLAS and CMS after 3000 fb−1. Table 14
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Fig. 30: Expected significance for the VBS ZLZL fraction as a function of the integrated luminosity
and for systematic uncertainties according to the Run-2 and YR18 scenario, as well as with only the
statistical uncertainties included.

presents the expected significance and relative uncertainty in the VBS ZLZL fraction for various η cov-
erage configurations. The foreseen coverage extension of up to |η| = 3 (2.8) for electrons (muons) leads
to a ∼ 13% improvement for the significance and precision on the VBS ZLZL fraction. An extension of
up to |η| = 4 for electrons would allow to further improve by ∼ 4% both significance and cross section
measurement uncertainty.

Finally, a simple scaling of the signal and background cross sections is performed to assess the
sensitivity to the VBS ZLZL fraction at HE-LHC. An integrated luminosity of 15 ab−1 is considered,
together with a c.o.m energy of 27 TeV. The cross section ratios σ27 TeV / σ14 TeV are evaluated at LO
with MADGRAPH(v5.4.2) [393] for the EW signal and the leading QCD-ZZjj background, and with
MCFM(v.7.0.1) [403] for the ggZZ loop-induced background. Table 15 shows the expected significance
and relative uncertainty for the VBS ZLZL fraction at HE-LHC, compared to HL-LHC. The HE-LHC
machine would allow to bring the sensitivity (uncertainty) for the measurement of the VBS ZLZL frac-
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Table 14: Significance and measurement uncertainty for the VBS ZLZL fraction for different acceptance
configurations at HL-LHC. In the quoted η coverages, the first number corresponds to electrons while
the number in parentheses corresponds to muons.

η coverage significance VBS ZLZL fraction uncertainty (%)
|η| < 2.5 (2.4) 1.22σ 88
|η| < 3.0 (2.8) 1.38σ 78
|η| < 4.0 (2.8) 1.43σ 75

tion to the level of ∼ 5σ (∼ 20%).

Table 15: Expected significance and measurement uncertainty for the VBS ZLZL fraction at HL-LHC
and HE-LHC with and without systematic uncertainties included.

significance precision (%)
w/ syst. uncert. w/o syst. uncert. w/ syst. uncert. w/o syst. uncert.)

HL-LHC 1.4σ 1.4σ 75% 75%
HE-LHC 5.2σ 5.7σ 20% 19%

4.2.6 The production ofWW /WZ via vector boson scattering with semi-leptonic final states
The existing Run-2 VBS measurements and the above analyses have focused on channels involving the
fully leptonic boson decays, or decay modes involving photons. The semileptonic channels can however
offer some interesting advantages: the V → qq̄ branching fractions are much larger than the leptonic
ones and the use of jet substructure techniques with large-radius jet reconstruction allows to reconstruct
and identify the V -boson produced in the high-pT region, which is the most sensitive to new physics
effects. This section presents the sensitivity of the ATLAS experiment to VBS in the V (qq)W (`ν) final
state, assuming an integrated luminosity of 300 or 3000 fb−1 of pp collisions at

√
s= 14 TeV.

This analyses uses generator-level samples of the main signal and background processes, com-
bined with the parameterisations of the detector performance (muon and jet reconstruction and selection
efficiencies and momentum resolutions) expected at the HL-LHC from fully simulated samples. The
parametrized detector resolutions are used to smear the generator-level particle transverse momenta,
while the parametrized efficiencies are used to reweigh the selected events. All generated samples were
produced at

√
s= 14 TeV and normalized to luminosities of 300 or 3000 fb−1 when the results are

presented.

The electroweak (EW) V V jj production is modeled using MADGRAPH5_AMC@NLO v2.3.3 [12],
plus PYTHIA8 [292] for fragmentation. The main background sources are W bosons produced in as-
sociation with jets (W+jets), with significant contributions from top-quark production (both tt̄ pair and
single-top), non-resonant vector-boson pair production (ZZ, WZ and WW ) and Z bosons produced
in association with jets (Z+jets). Background originating from multi-jet processes are expected to be
negligible due to the event selection requirements. Details about the samples generation can be found in
Ref. [407].

To increase the purity of considered events, several requirements are placed on the constituents
of an event. Events are required to have exactly one lepton. Generator-level electrons or muons are
required to be isolated and pass the tight identification criteria [405] and to have pT > 27 GeV. Events
are required to contain a hadronically-decaying W/Z candidate, reconstructed either from two small-R
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jets, defined as the resolved channel, or from one large-R jet, designated the boosted channel. Small-R
jets are defined using the anti-kT algorithm [408] with a radius parameter of R = 0.4. The identification
of jets originating from b-quarks is done by finding jets with generator-level b-hadron within a cone of
∆R < 0.4 around the jet direction. Similarly, the anti-kT algorithm with a radius parameter of R = 1.0
is used to reconstruct large-R jets. The large-R jets are trimmed using the standard ATLAS trimming
parameters [409]. It is assumed that the performance of a future W/Z-boson tagger at the HL-LHC
conditions will have similar, if not better, performance as existing boson taggers. To simulate the effect
of Run-2 W/Z-boson tagging performance [410, 411] events which contain a large-R jet are scaled by
the expected boson tagging efficiency for the V → qq with kinematics corresponding to the large-R
jet, calculated from fully-simulated 13 TeV Monte-Carlo (MC) samples. The missing transverse energy
EmissT is required to be greater than 60 GeV, which suppresses the expected multijet background to a
negligible level. By constraining the EmissT + lepton system to be consistent with the W mass, the z
component of the neutrino (ν) momentum can be reconstructed by solving a quadratic equation.

Experimentally, VBS is characterized by the presence of a pair of vector bosons and two forward
jets with a large separation in pseudorapidity and a large dijet invariant mass. Therefore the VBS search
is required to have 2 additional forward VBS-topology tagging jets in the event in addition to jets as-
sociated with the boson decay, similar to the resonant VBF search. The VBS tagging jets are required
to be non-b-tagged, be in the opposite hemispheres, η(jtag

1 ) · η(jtag
2 ) < 0, and to have the highest dijet

invariant mass among all pairs of jets remaining in the event after the V → jj jet selection. After the
tagging jet pair are selected, it is required that both tagging jets should have pT >30 GeV, and that the in-
variant mass of the two tagging jets system is greater than 400 GeV . In the merged selection, events are
required to have at least one large-R jet with pT(J) > 200 GeV and |η(J)| < 2. From those candidate
large-R jets, the one with the smallest |m(J)−m(W/Z)| is selected as the signal large-R jet. Mass
window cuts and boson tagging efficiencies are applied as described above. To suppress backgrounds
with top quarks, an event is rejected if any of the reconstructed jets outside the large R jet, is identified
as containing a b-quark. If events fail the merged VBS selection, the resolved selection is then applied.
Signal jets are chosen as the pair with m(jj) closest to the W/Z mass. The signal jet pairs are then
required to have |m(jj) −m(W/Z)| < 15 GeV. To suppress backgrounds with top quarks, an event is
rejected if any of the reconstructed jets is identified as containing a b-quark.

To optimize the signal sensitivity, Boosted Decision Trees (BDT) for the resolved and merged
searches were trained on the background and signal MC samples in the respective regions. Four variables
are included in the merged BDT: the invariant mass of the lνJ system, the lepton η, the second tag jet pT

and the boson centrality ζV . The boson centrality is defined as ζV = min(∆η+,∆η−) where ∆η+ =
max(η(jtag

1 ), η(jtag
2 )) − max(η(`ν), η(J)) and ∆η− = min(η(`ν), η(J)) − min(η(jtag

1 ), η(jtag
2 )).

In the resolved BDT, eight variables were used: the invariant mass of the WV jj system , the lepton
η, the pT of both VBS-tagging jets and sub-leading signal jet, the boson centrality defined similarly
to above, the ∆η between signal jets, and the ∆R between the lepton and neutrino candidate. These
variables were chosen as they are the minimal subset of variables with the greatest separation between
the signal and background, that provide significant improvement when added during the training. The
BDT were trained using a gradient descent BDT algorithm, maximizing the Gini index, in the TMVA
package [412]. The BDT are chosen as the discriminants and their distributions are used in the final fit
for the VBS search shown in Figure 31.

If an event fails either a mass-window cut or a b-veto but passes all other events then the event
is categorized as a W or top control region. These regions are used to constrain the normalization and
shape systematics of the background.

The results are extracted by performing a simultaneous binned maximum-likelihood fit to the
BDT distributions in the signal regions and the W+jets and tt̄ control regions. A test statistic based
on the profile likelihood ratio [413] is used to test hypothesized values of the signal cross section. The
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Fig. 31: Final signal and background distributions for the VBS search in the respective resolved signal
region for the normalized BDT response. Background distributions are separated into production type.
VBS signals in WW and WZ mode are overlaid as dashed curves where appropriate. Both background
and signal BDT distributions are normalized to unity (left). Expected signal significance as a function
of integrated luminosity up to 300 fb−1. The solid black curve is the significance from the `νqqchannel,
while the black dashed curve shows the expected significance from all semi-leptonic channels assuming
equal sensitivity (right).

likelihood is defined as the product of the Poisson likelihoods for all signal and control regions for a
given production mechanism category and channel. Systematic uncertainties are taken into account as
constrained nuisance parameters with Gaussian or log-normal distributions. The main background mod-
elling systematics, namely the W+jets and tt̄ shape uncertainties, are constrained by the corresponding
control regions and are treated as uncorrelated among the resolved and merged signal regions.

The expected significance for the SM VBS process is 5.7σ at 300 fb−1 as shown in Fig. 31.
The expected cross section uncertainties are 18% at 300 fb−1 and 6.5% at 3000 fb−1. The effects
of unfolding were not considered for the cross section estimates. If control regions are not used to
constrain the systematics the expected significance is reduced to 3.6σ at 300 fb−1. Likewise the cross
section uncertainty are increased to 28% at 300 fb−1 and 10% at 3000 fb−1 when control regions are
ignored.

4.2.6.1 Electroweak WW / WZ production analysis at HE-LHC

The prospect analysis at HE-LHC [414] mimics the analysis at HL-LHC but the DELPHES simulation
is used [415]. VBS signal samples are produced in the same manner as the HL-LHC analysis. The
major backgrounds W+jets and tt̄ production are simulated with MADGRAPH and AMC@NLO re-
spectively, interfaced with PYTHIA. Z+jets, single top and diboson contribution are not simulated and
are expected to contribute at most 10% to the total background.

The unprecedented energy of pp collisions at the HE-LHC will significantly improve sensitivity to
new multi-TeV particles over LHC and HL-LHC. However, the experimental environment is expected to
be challenging at the HE-LHC, primarily due to a significant increase of the number of pp collisions in a
same and nearby bunch crossings (pile-up). The HE-LHC is planned to be operated at a centre-of-mass
energy of 27 TeV with 800 pile-up collisions at the peak luminosity. Such extreme pile-up conditions are
expected to be particularly challenging for identifying hadronically decaying W /Z boson as the extra
contribution of particles produced from pile-up collisions into jets could degrade the performance of
W /Z boson tagger significantly. It is therefore important to assess the performance of pile-up mitigation
technique at the HE-LHC in order to have a reliable estimate of the search sensitivity.

The study presented here focuses on the performance of pile-up mitigation techniques and W /Z
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Fig. 32: Leading large-R jet mass (left) after applying the PUPPI algorithm at an integrated luminosity
of 1 ab−1 at

√
s = 27 TeV with five different pile-up overlay conditions of µpileup = 0, 100, 200, 400

and 800. The right plots shows the same distribution but after additionally requiring that the jets are
trimmed with the conditions described in the text.

boson tagging. The VBS signal events are produced with the overlay of minimum-bias pp interactions
generated using PYTHIA 8. The minimum-bias interactions are overlaid onto hard scattering event
using Poisson probability distribution with the mean number of interactions (µpileup) varied from 0 to
100, 200, 400 and 800. Furthermore, the minimum-bias interactions are distributed randomly in z and
timing using Gaussian profiles of σz = 5.3 cm and σt = 160 ps, respectively (z=0 at the detector centre
and t=0 for hard scattering event). The overlaid VBS signal events are processed through DELPHES

with two pile-up mitigation techniques: the Pile-up Per Particle Identification (PUPPI) algorithm [362]
used in CMS and the trimming procedure used in ATLAS. The trimming parameters of the pT fraction
cut and the sub-jet reclustering radius are chosen to be the same as those used in ATLAS. For the PUPPI
algorithm the standard DELPHES implementation is used.

Figure 32 shows the leading large-R jet mass (mJ ) for the PUPPI-only jets and the PUPPI+trimmed
jets, both required to have pT > 200 GeV. The mJ distribution get shifted towards lower values with
the trimming applied, enhancing the peak around mW . The residual pile-up effect is still visible as a
shift towards larger values with increasing µpileup, but the overall signal yield after the mass-window and
D2 requirements (e.g, D2 < 1.5) is largely stable. This indicates that an impact to the W /Z-boson tag-
ging performance from expected pile-up collisions at the HE-LHC can be mitigated to the level where
the tagging performance is similar to what is expected at Run-2 or the HL-LHC. Therefore, the study
presented in the rest of this note is based on the W /Z-boson tagging performance at Run-2.

The sensitivity to the VBS signal at 27 TeV is extracted in the same manner as the HL-LHC anal-
ysis. The event selection is similar and a BDT is built using the same variables both in the resolved and
boosted channel. For more details about the BDT and the setup used please refer to citation. Figure 33
shows the expected cross section uncertainty as function of integrated luminosity at 27 TeV compared
to the one obtained at 14 TeV. The results are very consistent and show that given the same luminosity
the same uncertainty can be reached at 27 TeV. Prospects are also presented for the extraction of the
longitudinal component of the WW scattering. For the extraction of the longitudinal component in
VBS processes, the electroweak WWjj samples are generated with the DECAY program to identify
the polarization state of the produced V bosons. The generated events are then classified according to
the polarization state: both V bosons are longitudinally (LL) or transversely (TT) polarized, or in the
mixed state (LT). Each event is showered using PYTHIA and then processed through the DELPHES

simulation.
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Fig. 33: The expected cross section uncertainty as function of integrated luminosity at 27 TeV compared
to the one obtained at 14 TeV (left). Right: Observed significance as a function of the luminosity and
expected uncertainty for the EW WLWL signal assuming a 10% fraction predicted by MADGRAPH

(right). One line shows the results obtained by fitting a single variable, the total invariant mass of
the system and the other one shows the expected significance using the BDT. The third line shows
the expected significance assuming the combination of all three semi-leptonic channels with the same
sensitivity.

In this case a BDT is built training the signal samples (WW LL) against the sum of the back-
grounds which include the TT and LT component of the electroweak WWjj samples. The observed
significance expected with this simple setup is shown in the right figure of Fig. 33. One line shows
the results obtained by fitting a single variable, the total invariant mass of the system and the other one
shows the expected significance using the BDT. The third line shows the expected significance assuming
the combination of all three semi-leptonic channels with the same sensitivity. It is expected to reach 5σ
sensitivities with 3000 fb−1 combining all the semileptonic channels.

4.3 Tri-boson production
The production of multiple heavy gauge bosons V (= W±, Z) opens up a multitude of potential de-
cay channels categorised according to the number of charged leptons in the final state. The sen-
sitivity prospect studies have been performed related to the production of W±W±W∓, W±W∓Z
or W±ZZ followed by the fully leptonic or semi-hadronic13 decays: W±W±W∓ → `±ν`±ν`∓ν,
W±W±W∓ → `±ν`±νjj, W±W∓Z → `±ν`±ν`+`−, W±W∓Z → `±νjj`+`−, W±ZZ →
`±ν`+`−`+`−, W±ZZ → `±ν`+`−νν, W±ZZ → jj`+`−`+`− and W±ZZ → `±ν`+`−jj, with
` = e or µ. Prospect studies have been performed, using a cut-based analysis, corresponding to an in-
tegrated luminosity of 3000 fb−1 and 4000 fb−1 of proton–proton collisions at a centre-of-mass energy
of
√
s = 14 TeV, expected to be collected by the ATLAS detector at the HL-LHC [301]. In this section

we summarize only results that are expected to provide the best sensitivity according to the full prospect
studies documented in [416].

Monte Carlo (MC) simulated event samples are used to predict the background from SM pro-
cesses and to model the multi-boson signal production. The effects of an upgraded ATLAS detector are
taken into account by applying energy smearing, efficiencies and fake rates to generator level quantities,
following parameterisations based on detector performance studies with full simulation and HL-LHC
conditions. The most relevant MC samples have equivalent luminosities (at 14 TeV) of at least 3000
fb−1. Several MC generators are used to model the production of signal and dominant SM background

13In case of semi-hadronic channels we assume that one of the vector bosons decays hadronically while the other two decay
leptonically.
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processes relevant for the analysis.

For the generation of triboson signal events, matrix elements for all combinations of pp → V V
(V = W±, Z) have been generated using SHERPA v2.2.2 [84] with up to two additional partons in the
final state, including full next-to-leading-order calculations (NLO) [417–419] accuracy for the inclusive
process. All diagrams with three electroweak couplings are taken into account, including diagrams
involving Higgs propagators. However, since these samples use factorised decays with on-shell vector
bosons, the resonant contribution from those diagrams can not be reached from the 125 GeV Higgs. In
order to account for the contribution coming from these diagrams the corresponding production of V H
(V = W,Z) bosons is added to the signal. Electroweak NLO corrections to the signal production cross
sections are not considered in this analysis. The diboson processes are generated with SHERPA event
generator following the approach described in [420]. For the simulation of the top quark pair and the
production of V H (V = W,Z) bosons POWHEG [151, 314, 377]+PYTHIA [148] was used as described
in [421], while for the tt̄ + V (V = W,Z,H) MADGRAPH5_aMC@NLO [12] interfaced to PYTHIA

was used as in [422].

The expected multi-boson yields are normalised to the SHERPA predictions, while the tt̄ + V
(V = W,Z,H) yields are normalized to NLO. The top quark pair-production contribution is normalised
to approximate NNLO+NNLL accuracy [41, 423].

Experimental signatures
The experimental signature of the triboson processes considered in these studies consists of at least
three charged leptons, moderate Emiss

T originating from the leptonic decay of W bosons, and jets in
case one of the vector bosons decays hadronically. The event selection starts from the one used in
the published analysis in Ref. [424], but considers tighter selection criteria in terms of transverse
momentum of the selected objects and missing transverse momentum of the event, in order to sup-
press higher pile-up contributions expected at the HL-LHC. The selection requirements used to de-
fine the signal regions are obtained from an optimization to maximize the sensitivity to W±W±W∓,
W±W∓Z and W±ZZ processes and to reduce the contributions from SM background processes.
In the case of W±W±W∓ → `±ν`±ν`∓ν channel, three separate signal regions are defined based
on the number of same-flavour opposite-sign (SFOS) lepton pairs in the event: 0SFOS (e±e±µ∓,
µ±µ±e∓), 1SFOS (e±e∓µ±, e±e∓µ∓, µ±µ∓e±, µ±µ∓e∓) and 2SFOS (e±e±e∓, µ±µ±µ∓). Simi-
larly, in W±W∓Z → `±ν`±ν`+`− channel, two signal regions are defined based on the selection of
SFOS or different-flavour opposite-sign (DFOS) lepton-pair events: SFOS (e±e∓µ∓µ±, e±e∓e±e∓,
µ∓µ±µ∓µ±) and DFOS (e±e∓µ∓e±, µ∓µ±µ∓e±). To select W±W±W∓ → `±ν`±νjj candidates,
events are required to have exactly two leptons with the same electric charge, and at least two jets. Three
different final states are considered based on the lepton flavour, namely e±e±, e±µ± and µ±µ±. In
the case of W±ZZ process, separate set of selection criteria are defined in order to select events in
which vector bosons undergo either fully leptonic of semi-hadronic decay. In all channels, events are
rejected if they have identified b-jets. This selection requirement suppresses background involving top
quarks, with marginal impact on the signal efficiency. Full description to the optimized selection criteria,
estimated systematic uncertainties and expected signal and background event yields for all channels con-
sidered in the study are available in Ref. [416]. Three channels, 0SFOS W±W±W∓ → 3` 3ν, DFOS
W±W∓Z → 4` 2ν and W±ZZ → 5` 1ν, for which we give details in the following, are estimated
to provide best sensitivities. Tables 16 to 18 show the kinematic selection criteria used to select signal
events in these channels.

Results
The SM processes that mimic the multi-boson signal signatures by producing at least three prompt lep-
tons or two prompt leptons with the same electric charge, can be grouped into the following categories:
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Table 16: Event selection criteria for W±W±W∓ → 3` 3ν candidate events.

W
±
W
±
W
∓ → `

±
ν`
±
ν`
∓
ν 0SFOS events: e±e±µ∓, µ±µ±e∓

Preselection Exactly 3 charged tight leptons with pT > 30 GeV and |η| < 4
SFOS dilepton mass m

SFOS
`` > 20 GeV

Angle between the trilepton system and
−→
E

miss
T |ϕ3` − ϕ

−→
E

miss
T | > 2.5

Z boson veto |mee −mZ| > 15 GeV
Jet veto At most one jet with pT > 30 GeV and |η| < 2.5
b-jet veto No identified b-jets with pT > 30 GeV

Table 17: Event selection criteria for W±W∓Z → 4` 2ν candidate events. The four-lepton mass m4`

is calculated as invariant mass of the four-lepton system.

W
±
W
∓
Z → `

±
ν`
±
ν`

+
`
− DFOS events: e±e∓µ∓e±, µ∓µ±µ∓e±

Preselection Exactly 4 charged loose (3rd and 4th tight) leptons
with pT(1, 2) > 30 GeV, pT(3, 4) > 25 GeV and |η| < 4

SFOS dilepton mass |mSFOS
`` − 91 GeV| < 15 GeV

DFOS dilepton mass m
DFOS
`` > 40 GeV

Four-lepton mass m4` > 250 GeV
b-jet veto No identified b-jets with pT > 30 GeV

Table 18: Event selection criteria for W±ZZ → 5` 1ν candidate events. Two-lepton pairs of the
same flavour and opposite charge have to satisfy same-flavour dilepton mass selection requirement. The
transverse mass is calculated from theEmiss

T and the lepton that does not pass dilepton mass requirement.

W
±
ZZ → `

±
ν`

+
`
−
`
+
`
−

5`1ν

Preselection Exactly 5 charged loose (4rd and 5th tight) leptons with
pT(1, 2, 3) > 30 GeV, pT(4, 5) > 25 GeV and |η| < 4

SFOS dilepton mass |mSFOS
`` − 91 GeV| < 15 GeV

Transverse mass mT > 40 GeV
b-jet veto No identified b-jets with pT > 30 GeV

– The WZ and ZZ processes, referred to as “diboson background”;
– The WWW,WWZ,WZZ,ZZZ processes, excluding the signal process under study, referred

to as “triboson background”;
– The V H and tt̄H processes, excluding the processes which are added to the signal, referred to as

“Higgs+X background”;
– The production of four top quarks, top quark associated with WZ bosons or tt̄ associated with
W,Z,WZ or W±W∓ bosons, referred to as “top background”;

– Processes that have non-prompt leptons (electrons) originating from misidentified jets (referred to
as “fake-lepton background”);

– Processes that produce prompt charged leptons, but the charge of one lepton is misidentified (re-
ferred to as “charge-flip background”).

The contributions from theWW and tt̄ processes are accounted for in the fake-lepton and charge-
flip backgrounds. The diboson, triboson, Higgs+X and top background sources are estimated using
simulated events, with the dominant irreducible background in most of the channels originating from the
diboson processes. In some channels the contribution of the fake-lepton background, which is derived
by applying the pre-defined (pT, η)-dependent likelihood as described in Section 3, becomes significant.
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The charge-flip background has been investigated and found to be negligible in all considered processes.

In W±W±W∓ → 3` 3ν channel, the background is dominated by the irreducible diboson back-
ground and fake-lepton contribution. The contribution of signal events containing Higgs decays are at
the level of 40%. In W±W∓Z → 4` 2ν channel with two leptons being of different flavour, this re-
quirement suppresses a large fraction of the diboson background. Contribution of Higgs decays is quite
smaller with respect to the one in W±W±W∓ → 3` 3ν due to smaller lepton pT and invariant mass
requirementmDFOS

`` > 40 GeV. In theW±ZZ channel, the most promising signal region is the one with
five charged leptons. In this case, the fake-lepton contribution becomes significant. The background is
dominated by rare top production of tt̄ZW .

Figure 34 shows relevant distributions in the three channels: them3`
T distribution for theW±W±W∓ →

3` 3ν channel, the distribution of transverse momenta of the two-lepton system p``T in W±W∓Z → 4`
2ν channel and the distribution of two lepton invariant mass p``T selected to give the mass closest to the
mass of the Z boson in W±ZZ → 5` 1ν channel.
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Fig. 34: The distribution of m3`
T for the W±W±W∓ → 3` 3ν channel (top left), the distribution of

transverse momenta of the two-lepton system p``T in W±W∓Z → 4` 2ν channel (top right) and the
distribution of two lepton invariant mass p``T selected to give the mass closest to the mass of the Z boson
in W±ZZ → 5` 1ν channel (bottom) as expected from the signal and background processes at 3000
fb−1 after applying the selection criteria from Tables 16 to 18.

Systematic uncertainties in the signal and background predictions arise from the uncertainties in
the measurement of the integrated luminosity, from the experimental modelling of the signal acceptance
and detection efficiency, and from the background normalisation. With the much larger integrated lumi-
nosity and a sophisticated understanding of the detector performance and backgrounds at the HL-LHC,
we expect experimental uncertainties related to the lepton reconstruction and identification efficiencies
as well as lepton energy/momentum resolution and scale modelling of 1%, to the Emiss

T modelling of
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1%, to the jet energy scale and resolution of 1.5% and 5% in the fully leptonic and leptons+jets channels,
respectively, to the luminosity measurement of 1% and to the expected pileup of 1% [276]. Based on
the extrapolations of current ATLAS measurements and assuming a reduction of the uncertainty at the
level of 15–80%, depending on the process and the origin of the systematics, the following systematic
uncertainties on the cross section normalisation for each of the background processes are assumed: 4%
on σdiboson, 30% on σtriboson, 3% on σtt̄, 20% on σtt̄H , 6% on σtt̄Z , and 11% on σtt̄W . The uncertainty
on the level of the fake-lepton background is estimated to be 10%. Taking these assumptions into ac-
count, we estimate the total systematic uncertainty on the background of 9% for W±W±W∓ → 3`3ν
and W±ZZ → 5`1ν channels and 6% in W±W∓Z → 4`2ν channel. Assuming that the number of
signal events follows a Poissonian distribution and taking into account an estimated systematic uncer-
tainty on the background, the signal significance Zσ and the estimated precision on the signal strength
measurement, ∆µ

µ are calculated using the asymptotic formula from Ref. [413]. Only experimental un-
certainties are taken into account for the signal. Uncertainties related to the limited number of MC
events are neglected. The total number of signal and background events expected after applying the full
set of selection requirements from Tables 16 to 18 in three selected channels, the corresponding signal
significance and the expected precision on the signal strength measurement, for an integrated luminosity
of 3000 fb−1 are shown in Table 19.

Table 19: Expected number of signal and background events, the expected signal significance Zσ and
the estimated precision on the signal strength measurement, ∆µ

µ in W±W±W∓ → 3`3ν, W±W∓Z →
4`2ν and W±ZZ → 5`1ν channels after applying the selection criteria from Tables 16 to 18.

W
±
W
±
W
∓ → 3`3ν W

±
W
∓
Z → 4`2ν W

±
ZZ → 5`1ν

Signal 312 168 19
Diboson 208 357 4.0
Triboson 37 11 3.0
Higgs+X 25 10 0.3
Top 60 390 15
fake-lepton 97 16 3.0
Total: 427 784 25

Significance Zσ 6.7 3.0 3.0
Significance Zσ (4000 fb−1) 7.0 3.1 3.4
Precision ∆µ

µ
11% 27% 36%

Precision ∆µ
µ

(4000 fb−1) 10% 25% 31%

The HL-LHC offers a large improvement to multi-boson production, where this simple cut-and-
count approach provides sensitivities larger than 3σ in the three channels considered in this analysis. It
should be noted that more mature analysis techniques such as MVA, would likely improve these results
further. However, high level of background control, mainly diboson background as well as instrumental
background arising from fake-leptons, will be needed in order to maintain desired level of precision.

4.4 Precision electroweak measurements
4.4.1 NNLO predictions for Z-boson pair production14

The results presented in this section are produced using the program described in Ref. [425] with the
NNPDF3.0 [201] set of parton distribution functions. The parton densities and αs are evaluated at each
corresponding order (i.e. (n+1)-loop αs is used at NnLO, with n = 0, 1, 2) and Nf = 5 massless
quark flavours are considered. For the renormalisation (µR) and factorisation (µF ) scales two choices
are investigated: µR = µF = mZ and the dynamic scale µR = µF = mZZ/2. The Gµ EW scheme is

14Contribution by G. Heinrich, S. Jahn, S. Jones, M. Kerner and J. Pires.
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used where the EW input parameters have been set to GF = 1.16639× 10−5, mW = 80.399 GeV and
mZ = 91.1876 GeV. The top quark and Higgs boson masses that are included in the real-virtual one-loop
contributions and in the loop-induced gg channel have been set tomt = 173.2 GeV andmH = 125 GeV,
respectively. The one-loop contributions are calculated with the program GOSAM [11, 86]. For the
NNLO real radiation the N -jettiness subtraction scheme [53, 54, 426, 427] is employed. The process
dependent hard function has been extracted from the two-loop amplitude computed in Ref. [428] and
cross-checked with an in-house calculation. The top quark contributions in the double virtual two-loop
diagrams are not included in the results below. Table 20 shows cross section results for the central
scale µR = µF = mZ , including 7-point scale variations. In Table 21 results for the dynamic scale
µR = µF = mZZ/2 are given.

Table 20: Inclusive cross section for ZZ production at the LHC for
√
s =14 TeV and

√
s =27 TeV

at LO, NLO and NNLO with µR = µF = mZ . The uncertainties are obtained by varying the
renormalisation and factorisation scales in the range mZ/2 < µR, µF < 2mZ with the constraint
0.5 < µF /µR < 2.

σLO [pb] σNLO [pb] σNNLO [pb] gg → ZZ [pb]

14 TeV 10.80+5.7%
−6.7% 15.55+3.0%

−2.4% 18.50+3.0%
−3.2% 1.56+25%

−18%

27 TeV 23.59+10.0%
−10.9% 35.59+3.2%

−4.2% 44.52+3.7%
−4.1% 4.81+25%

−18%

Table 21: Inclusive cross section for ZZ production at the LHC for
√
s =14 TeV and

√
s =27 TeV

at LO, NLO and NNLO with the dynamic scale choice µR = µF = mZZ/2. The uncertainties are
obtained by varying the renormalisation and factorisation scales in the range mZZ/4 < µR, µF < mZZ

with the constraint 0.5 < µF /µR < 2.

σLO [pb] σNLO [pb] σNNLO [pb] gg → ZZ [pb]

14 TeV 11.03+5.2%
−6.1% 15.38+2.5%

−2.0% 18.20+3.3%
−2.3% 1.41+23%

−18%

27 TeV 24.68+9.0%
−9.8% 35.43+2.6%

−3.7% 43.71+3.3%
−3.2% 4.41+23%

−17%

Figures 35 and 36 show largely non-overlapping scale uncertainty bands between NLO and
NNLO, both for a fixed central scale choice µ = mZ as well as for a dynamic central scale choice
µ = mZZ/2. This demonstrates that for this process, the scale variations are insufficient to estimate
missing higher order terms in the perturbative expansion. This is mostly due to the fact that at NNLO,
the loop-induced gluon fusion channel gg → ZZ opens up, and due to the large gluon flux it represents
a numerically significant contribution, about 8% at

√
s = 14 TeV and 11% at

√
s = 27 TeV of the total

NNLO cross section, for both central scale choices. Further studies of the gluon channel can be seen in
Refs. [429,430]. Since this new channel contributes for the first time at NNLO its contribution cannot be
captured by the scale variations of the NLO cross section. Therefore, with increasing perturbative order,
a systematic reduction of the factorisation scale dependence of the cross section is observed (indicated
by the thickness of the scale uncertainty band), while there is no significant reduction of the renormali-
sation scale dependence. To show that this effect can be attributed to the gluon fusion channel opening
up at NNLO, the NNLO result excluding this channel is also shown in Figs. 35 and 36.
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Fig. 35: Renormalisation and factorisation scale dependence of theZZ cross section for
√
s = 14 TeV at

LO, NLO and NNLO for the fixed central scale choice µR = µF = mZ (left) and for the dynamic central
scale choice µR = µF = mZZ/2 (right). The NNLO result without the gluon fusion contributions is
shown in light blue. The thickness of the bands show the variation with the factorisation scale, while
the slope shows the renormalisation scale dependence. The scale uncertainties are the envelope of scale
variations by a factor of two up and down with the constraint 0.5 < µF /µR < 2, i.e. 7-point scale
variations.

1
Z/m

R
µ

10

20

30

40

50

60

 [p
b]

σ

0.2 0.5 2.0 4.0 8.0

=27 TeV  s ZZ + X   →pp 

LO

NLO

NNLO

NNPDF3.0

 ZZ)→NNLO w/o (gg 

=0.5
Z

/m
F

µ
=1.0

Z
/m

F
µ

=2.0
Z

/m
F

µ

1
/2)

ZZ
/(m

R
µ

10

20

30

40

50

60

 [p
b]

σ

0.2 0.5 2.0 4.0 8.0

=27 TeV  s ZZ + X   →pp 

LO

NLO

NNLO

NNPDF3.0

 ZZ)→NNLO w/o (gg 

/2)=0.5
ZZ

/(m
F

µ
/2)=1.0

ZZ
/(m

F
µ

/2)=2.0
ZZ

/(m
F

µ

Fig. 36: Renormalisation and factorisation scale dependence of theZZ cross section for
√
s = 27 TeV at

LO, NLO and NNLO for the fixed central scale choice µR = µF = mZ (left) and for the dynamic central
scale choice µR = µF = mZZ/2 (right). The NNLO result without the gluon fusion contributions is
shown in light blue, and the bands are produced in the same way as in Fig. 35.

4.4.2 Gauge-boson pair production with MATRIX15

NNLO QCD predictions for W+W−, W±Z and ZZ production in proton–proton collisions are pre-
sented in this section. Two LHC upgrade scenarios are considered, namely the HL-LHC running at√
s = 14 TeV with an assumed integrated luminosity of 3 ab−1, and the HE-LHC at

√
s = 27 TeV with

15 ab−1. More precisely, the following inclusive hard-scattering processes are considered

pp→ `+ν` `
′−ν̄`′ +X ,

pp→ `ν` `
′+`′− +X ,

pp→ `+`−`′+`′− +X ,

where all off-shell effects and interference contributions are fully accounted for.

15Contribution by S. Kallweit, M. Grazzini and M. Wiesemann.
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All results are obtained with the public parton-level NNLO framework MATRIX. This program,
and earlier versions of it, have been used to compute state-of-the-art QCD predictions for gauge-boson
pair production processes [431–439].16 All tree-level and one-loop amplitudes are evaluated with OPEN-
LOOPS

17 [10, 444]. At two-loop level the qq̄ → V V ′ amplitudes of Ref. [428] are used.

The complex mass scheme [382] is applied throughout, i.e. complex W - and Z-boson masses are
used and the EW mixing angle is defined as cos θ2

W = (m2
W − iΓW mW )/(m2

Z − iΓZ mZ). For the in-
put of the weak parameters theGµ scheme is employed with α =

√
2Gµ|(m2

W−iΓW mW ) sin2 θW |/π .
The following parameters are set,GF = 1.16639×10−5 GeV−2,mW = 80.399 GeV, ΓW = 2.1054 GeV,
mZ = 91.1876 GeV, ΓZ = 2.4952 GeV, mH = 125 GeV and ΓH = 0.00407 GeV. Furthermore, a diag-
onal CKM matrix is used.

The number of light quarks is chosen differently for the processes under consideration: allW+W−

results are obtained by applying the four-flavour scheme (4FS) with massive top and bottom quarks in
order to consistently remove top-quark contamination by omitting the (separately IR finite) partonic
processes with real bottom-quark emissions. In the 4FS, the on-shell bottom mass mb = 4.92 GeV is
used. For all other processes the five-flavour scheme (5FS) is applied with a vanishing bottom mass
mb = 0. The top quark is treated as massive and unstable throughout, and mt is set to 173.2 GeV as
well as Γt = 1.44262 GeV.18

The MMHT2014 [200] sets of parton distribution functions (PDFs) are used with nf = 4 or
nf = 5 active quark flavours, consistently with the flavour scheme under consideration. NnLO (n =
0, 1, 2) predictions are obtained by using PDFs at the same perturbative order and the evolution of
αS at (n + 1)-loop order, as provided by the corresponding PDF set. To be precise, in the 5FS
MMHT2014lo68cl, MMHT2014nlo68cl, and MMHTnnlo68cl at LO, NLO, and NNLO are used. In
the 4FS MSTW2008lo68cl_nf4, MMHT2014nlo68cl_nf4, and MMHT2014nnlo68cl_nf4 at LO, NLO,
and NNLO are used.

The central predictions are obtained by setting the factorization and renormalization scales to

µF = µR = µ0 ≡ ET,V1
+ ET,V2

, with ET,Vi
=
√
M2
Vi

+ p2
T,Vi

, where MVi
is the invariant mass

and pT,Vi
the transverse momentum of the respective vector boson. Uncertainties from missing higher-

order contributions are estimated in the usual way by independently varying µF and µR in the range
0.5µ0 < µF , µR < 2µ0 with the constraint 0.5 < µF /µR < 2.

In Table 22 cross sections are presented forW+W−,W±Z andZZ production, inclusive over the
phase space of the final-state leptons, for pp collisions at

√
s = 14 TeV and

√
s = 27 TeV. Throughout,

only a basic selection cut on Z bosons is applied, by requiring the invariant masses of all opposite-sign
same-flavour lepton pairs to be within a Z-mass window of 66 GeV < m

`
−
`
+ < 116 GeV, which is

necessary to avoid divergencies induced by soft intermediate photons. The gain in the inclusive cross
section at

√
s = 27 TeV is roughly a factor of 2.5 for all processes under consideration, see last column

of Table 22. The importance of QCD corrections is seen: Higher-order contributions are huge, especially
for W±Z production. The NLO corrections range from about +36% to +82% depending on process
and collider energy, while NNLO QCD corrections are still sizeable and induce a further increase of
the cross sections of 13% to 20%. The cross-section ratio for W+Z/W−Z production is about 1.55
at NNLO for

√
s = 14 TeV, changes to 1.42 for

√
s = 27 TeV, and is essentially independent on the

perturbative order.

16It was also used in the NNLL+NNLO computation for W+
W
− and ZZ production of Ref. [440], and in the NNLOPS

computation for W+
W
− production of Ref. [153].

17OPENLOOPS which relies on the fast and stable tensor reduction of COLLIER [441, 442], supported by a rescue system
based on quad-precision CUTTOOLS [443] with ONELOOP [2] to deal with exceptional phase-space points.

18Massive top-quark contributions are neglected in the virtual two-loop corrections, but are kept everywhere else in the
computations.
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Table 22: Inclusive cross sections for W+W−, W±Z and ZZ production where the leptonic decays of
the bosons are included.

σ [fb] LO NLO NLO′+gg NNLO σNNLO(27 TeV)
σNNLO(14 TeV)(correction) (NLO/LO−1) (NLO′+gg/NLO−1) (NNLO/NLO−1)

W+W−

√
s = 14 TeV

897.27(9)+4.3%
−5.3% 1303.3(1)+2.7%

−2.2% 1386.1(2)+3.7%
−2.9% 1485.(1)+2.4%

−2.2%

2.33
(+45.3%) (+6.4%) (+13.9%)

√
s = 27 TeV

2091.5(2)+7.6%
−8.6% 2988.4(3)+2.8%

−2.9% 3213.0(4)+4.1%
−3.2% 3457.(4)+2.8%

−2.4%

(+42.9%) (+7.0%) (+15.6%)

W+Z

√
s = 14 TeV

60.322(6)+3.4%
−4.3% 106.15(1)+3.6%

−3.0% —
120.5(1)+2.0%

−1.9%

2.35
(+76.0%) (+13.5%)

√
s = 27 TeV

136.66(1)+6.8%
−7.8% 248.51(2)+4.0%

−3.3% —
283.4(3)+2.1%

−2.1%

(+81.8%) (+14.0%)

W−Z

√
s = 14 TeV

39.182(4)+3.7%
−4.7% 68.430(7)+3.7%

−3.0% —
77.63(7)+1.9%

−1.9%

2.57
(+74.6%) (+13.4%)

√
s = 27 TeV

96.70(1)+7.2%
−8.2% 175.44(2)+4.0%

−3.3% —
199.7(2)+2.0%

−2.0%

(+81.4%) (+13.8%)

ZZ

√
s = 14 TeV

24.500(2)+4.3%
−5.3% 34.201(3)+2.0%

−1.8% 37.531(4)+3.3%
−2.6% 39.64(4)+2.4%

−2.1%

2.40
(+39.6%) (+9.7%) (+15.9%)

√
s = 27 TeV

58.622(6)+7.9%
−8.9% 79.757(8)+2.2%

−3.0% 89.89(1)+3.7%
−3.0% 95.20(9)+2.9%

−2.4%

(+36.1%) (+12.7%) (+19.4%)

It should be stressed that QCD radiative corrections may change quite significantly as soon as
fiducial cuts on the leptonic final state are applied, or when kinematical distributions are considered. The
corrections for the inclusive cross sections in Table 22 should therefore be understood as illustrative, and
the use of inclusive K-factors to obtain NNLO predictions from lower order results with different sets
of cuts should be avoided in general.

It is interesting to quantify the size of the loop-induced gluon fusion contribution of the charge-
neutral processes, which is part of the NNLO QCD corrections. By NLO′+gg its sum is denoted with
the NLO cross section computed with NNLO PDFs. The NLO′+gg result for W+W− production is
6.4% (7.0%) larger than the NLO result at

√
s = 14 (27) TeV, while their difference is even 9.7%

(12.7%) for ZZ production. These numbers amount to roughly half of the full NNLO correction of the
W+W− process, and even about two-thirds for ZZ production. However, one has to bear in mind that
under typical fiducial selection requirements on the leptons and missing transverse energy, the impact of
the loop-induced contribution decreases significantly, especially for W+W− production. Furthermore,
its relative contribution is strongly suppressed as far as the tails of the kinematical distributions are
concerned, due to the large-x suppression of the gluon density.

To illustrate how strongly the radiative corrections may depend on the fiducial cuts, in Table 23
cross sections are shown with a minimum pT,min = 100 GeV cut on the transverse momentum of the
charged leptons and the missing energy. More precisely, depending on the process the following cuts
have been applied, as shown in Table 24.

As can be read from Tables 22 and 23, radiative corrections at NLO can be enormous for some
processes with pT,min = 100 GeV, ranging from +51% to even +281%. Also the NNLO corrections are
significantly increased with respect to the inclusive case, and can be as large as +27%. It is also apparent
that the importance of the loop-induced gluon fusion contribution is significantly reduced. For W+W−

production, due to the applied pT,miss cut the NLO′+gg contribution is even smaller than the NLO cross
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Table 23: Cross sections with a pT,min = 100 GeV cut on the transverse momentum of the charged
leptons and the missing energy for W+W−, W±Z and ZZ production.

σ [fb] LO NLO NLO′+gg NNLO σNNLO(27 TeV)
σNNLO(14 TeV)(correction) (NLO/LO−1) (NLO′+gg/NLO−1) (NNLO/NLO−1)

W+W−

√
s = 14 TeV

0.920(1)+2.7%
−2.7% 2.827(5)+9.7%

−8.0% 2.793(7)+9.9%
−8.1% 3.51(1)+5.2%

−5.0%

3.93
(+207.1%) (−1.2%) (+24.3%)

√
s = 27 TeV

2.847(3)+0.08%
−0.5% 10.83(2)+8.2%

−6.9% 10.66(2)+8.4%
−7.1% 13.80(4)+5.3%

−4.8%

(+280.5%) (−1.6%) (+27.3%)

W+Z

√
s = 14 TeV

0.06524(8)+3.3%
−3.2% 0.1273(3)+7.1%

−5.8% —
0.1485(9)+3.4%

−3.3%

3.82
(+95.2%) (+16.6%)

√
s = 27 TeV

0.1919(2)+0.1%
−0.5% 0.4642(8)+7.0%

−5.8% —
0.568(3)+3.8%

−3.6%

(+141.9%) (+22.5%)

W−Z

√
s = 14 TeV

0.03289(4)+3.1%
−3.1% 0.0641(2)+7.5%

−6.0% —
0.0767(5)+3.4%

−3.5%

4.34
(+94.9%) (+19.7%)

√
s = 27 TeV

0.1121(1)+0.%
−0.3% 0.2719(5)+7.2%

−5.9% —
0.333(2)+3.7%

−3.5%

(+142.7%) (+22.5%)

ZZ

√
s = 14 TeV

0.02108(3)+3.1%
−3.1% 0.0318(1)+3.8%

−3.2% 0.0342(1)+5.4%
−4.3% 0.0371(3)+3.6%

−3.0%

3.70
(+50.6%) (+7.7%) (+16.9%)

√
s = 27 TeV

0.0675(1)+0.%
−0.2% 0.1100(3)+3.5%

−2.8% 0.1235(3)+5.4%
−4.3% 0.1371(7)+4.3%

−3.5%

(+62.9%) (+12.3%) (+24.7%)

Table 24: Selection cuts applied in the analysis for the different processes.

W+W− W±Z ZZ

lepton cuts pT,`1/2
> pT,min pT,`1/2/3

> pT,min pT,`1/2/3/4
> pT,min

neutrino cuts pT,miss > pT,min pT,miss > pT,min —

section by −1.2% (−1.6%) at
√
s = 14 (27) TeV (i.e. the positive impact of the gg channel is smaller

than the negative effect from using NNLO PDFs instead of NLO PDFs in the NLO′+gg prediction).
For ZZ production, it is still sizeable with 7.7% (12.3%), but its relative contribution at O(α2

S) has
decreased from roughly two-thirds in the inclusive case to less than half of the NNLO corrections for
pT,min = 100 GeV. Furthermore, compared to the inclusive results an even more substantial increase of
the cross sections is observed from

√
s = 14 TeV to

√
s = 27 TeV of roughly a factor of four. This

can be understood by the fact, that the additional energy enlarges the available phase-space, especially
at high momentum transfer.

From the results in Table 22 and 23 it is clear that the perturbative uncertainties at NLO cannot
account for the additional loop-induced gluon fusion contribution that appears at NNLO. Besides that,
also the genuine NNLO corrections to the quark–antiquark production mechanism cannot be anticipated
from NLO scale variations, which in turn means that the NLO uncertainties are underestimated. The
inclusion of NNLO corrections is therefore crucial. At this order all partonic channels are included for
the first time, and scale variations can be used to obtain an estimate of the actual size of missing higher-
order terms. However, the NLO corrections to the loop-induced gluon fusion contribution are relevant
and should be included when possible, especially at

√
s = 27 TeV where gluons with smaller x are
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Fig. 37: Cumulative number of events as a function of pT,min for the following production processes:
W+W− (blue), W±Z (green), and ZZ (orange); at 14 TeV (dashed) and 27 TeV (solid).

probed. In particular in tails of high-energy observables, the inclusion of NLO EW corrections and their
interplay with QCD corrections will also need to be investigated. Nevertheless NNLO QCD results are
presented in the following, but the above-mentioned extensions will become available well before the
start of the HL-LHC.

The differential results in diboson processes in light of the HL and HE upgrades of the LHC
are now discussed. Since the importance of highest-order predictions is evident from the previous dis-
cussion, only NNLO QCD accurate results are presented here. The cumulative cross section with a
minimum pT,min cut, as introduced above is considered first. In order to analyse the number of expected
events as a function of pT,min, the cross sections have been translated into event numbers by assuming
an integrated luminosity of 3 ab−1 at 14 TeV and of 15 ab−1 at 27 TeV.

Figure 37 shows the expected number of events as a function of pT,min. Since the transverse
momentum of all leptonic final states are restricted simultaneously, the reach in the tails may appear
smaller than expected, and would be significantly larger if a cut on the transverse momentum of only
the leading lepton or the missing energy were to be considered. However, the toy scenario considered is
well suited to compare the three diboson production processes, and to quantify the relative gain of the
additional energy and luminosity.

The curves in Fig. 37 show all production processes under consideration: W+W− (blue), W±Z
(green), and ZZ (orange); at 14 TeV (dashed) and 27 TeV (solid). The horizontal red line shows the
one-event threshold, below which no events are expected anymore. The following features are evident
in the plot: At

√
s = 14 TeV events up to pT,min values of roughly 550 GeV, 370 GeV, and 270 GeV

are expected for W+W−, W±Z, and ZZ production, respectively. At
√
s = 27 TeV these values read

>1000 GeV, 740 GeV, and 550 GeV. To put these numbers into perspective, a dash-dotted red line for
the present status at the end of Run-2 is added, which represents the one-event threshold for 150 fb−1

at 13 TeV (14 TeV→ 13 TeV conversion approximated by a constant cross-section correction factor of
0.9). Its intersection points with the

√
s = 14 TeV curves indicates the current reach of the LHC, which

is roughly up to 350 GeV, 210 GeV, and 140 GeV for W+W−, W±Z, and ZZ production, respectively.
The improved reach in the tails at 27 TeV is not only related to the larger inclusive cross section and
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Fig. 38: Cumulative number of events as a function of mn`,min for the following production processes:
W+W− (blue), W±Z (green), and ZZ (orange); at 14 TeV (dashed) and 27 TeV (solid).

higher luminosity, but also the enlarged phase-space available with higher energies plays an important
role: Whereas the solid curves fall only by 7− 8 orders of magnitude in the range of 0 GeV ≤ pT,min ≤
1000 GeV, the dashed 14 TeV curves fall by more than 9 orders of magnitude in the same region. This
also explains why the 14 TeV W+W− result, which has a much larger inclusive cross section, crosses
the red one-event line at almost the same point as the 27 TeV ZZ result.

In Fig. 38 the reach of the three vector-boson pair production processes is considered for future
LHC upgrades in the invariant-mass distributions of all produced charged leptons. A scenario is chosen
where pT,min, defined as before in the three processes, is 20 GeV in order to have at least a rough
definition of the fiducial phase-space. The expected number of events, assuming the same integrated
luminosities as stated above, is shown for

√
s = 14 TeV (dashed) and

√
s = 27 TeV (solid) with a

lower cut mn` > mn`,min, where n is the number of leptons in the respective process, i.e., for W+W−

production it is the distribution in m2` (blue), for W±Z it is the one in m3` (green), and for ZZ in m4`

(orange). The significant reach in energy for both the HL run of the LHC and a potential HE upgrade is
evident, where “reach" refers to the point where the curves cross the red horizontal one-event threshold.
A resonance in the tails of the invariant masses of two leptons (plus missing transverse momentum) or
of four leptons is indeed a realistic signature predicted by many BSM theories. While with the current
Run-2 data (red, dash-dotted line crossing the 14 TeV results) searches can hardly pass the two TeV
frontier, future LHC upgrades will probe mass scales of a few TeV at 14 TeV with 3 ab−1, or potentially
even up to ten TeV at 27 TeV with 15 ab−1. It is also apparent that despite σ

W
+
W
− � σ

W
±
Z
� σZZ

holding inclusively, the point where the three lines fall below one event is much closer. This is simply
caused by the fact that the phase space of the four-lepton system in ZZ production is larger than the one
of the three-lepton system in W±Z production, where some energy is taken by the additional neutrino.
An analogous interpretation applies to W+W− production. Furthermore, also here the significantly
enlarged phase space induced by the increase in energy at 27 TeV is evident: The 27 TeV results drop
by roughly 4− 5 orders of magnitude in the displayed range, while the 14 TeV ones drop by more than
6 orders.

The study is continued by analysing the importance of the additional fiducial phase space that
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Fig. 39: Rapidity efficiency of the charged leptons.

becomes available with detector upgrades to enlarge the accessible rapidity range of charged leptons.
Since very similar results were found for W+W−, W±Z and ZZ production in that respect, in Fig. 39
the rapidity efficiency of the four-lepton signature for ZZ production only is shown. The rapidity effi-
ciency is defined as the ratio of the cross section with an absolute-rapidity cut ηcut on all four charged
leptons, divided by the inclusive cross section. As for ηcut →∞ no cut is applied, the ratio tends to unity
for large ηcut values. The efficiency as a function of ηcut is studied for three pT,min scenarios: inclusive
(light blue), pT,min = 20 GeV (blue), and pT,min = 100 GeV (dark blue); at 14 TeV (dashed) and 27 TeV
(solid). It is directly observed that the efficiency decreases with the machine energy. In other words, a
small rapidity threshold at 27 TeV results in a much larger (relative) reduction of the cross section than at
14 TeV. This is because the additional energy induces more forward (and boosted) leptons, and it shows
that detector upgrades that enlarge the measurable rapidity range become even more important at the HE
LHC. Requiring minimum transverse-momentum cuts, on the other hand, has the effect of increasing the
rapidity efficiency, which is particularly striking for pT,min = 100 GeV. The reason for this is simple:
Leptons with high transverse momentum are predominantly produced at central rapidities.

The scenario with pT,min = 20 GeV provides the most realistic fiducial setup, which is actually
not much different from the fully inclusive case, and is discussed here. Typical rapidity cuts on charged
leptons with the current LHC detectors are of the order of η` = 2.5. Future detector upgrades for the HL
phase of the LHC can be expected to reach rapidities at the level of η` = 4. At 14 (27) TeV this would
allow us to improve measurements of fiducial cross from a <60% (∼ 50%) efficiency for ηcut = 2.5 to
a >90% (. 90%) efficiency for ηcut = 4. This implies that the available inclusive cross section will be
hardly reduced by fiducial rapidity requirements anymore once the detectors have been upgraded. This
statement holds even more when considering scenarios with boosted leptons: For pT,min = 100 GeV the
efficiency is practically 100% for ηcut = 4.
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4.4.3 Projections for measurements of anomalous 3-gauge boson couplings19

The sensitivity of the production of W+W− pairs to anomalous gauge boson and anomalous fermion
couplings at future LHC upgrades is now discussed. The SU(2) × U(1) structure of the electroweak
sector of the Standard Model determines the W+W−V interactions (V = γ, Z). The amplitudes for the
production of W+W− pairs involve subtle cancellations between contributions that grow with energy,
so the pair production of gauge bosons is extremely sensitive to new physics interactions. Assuming C
and P conservation, the most general Lorentz invariant 3−gauge boson couplings can be written as in
Ref. [445, 446]

LV = −igWWV

{
(1 + δgV1 )

(
W+
µνW

−µV ν −W−µνW+µV ν
)

+ (1 + δκV )W+
µ W

−
ν V

µν)

+
λV

M2
W

W+
ρµW

−µ
νV

νρ

}
, (20)

where V = γ, Z, gWWγ = e, gWWZ = g cos θW , sW ≡ sin θW , cW ≡ cos θW , and in the SM,
δgV1 = δκV = λV = 0. Because of gauge invariance, this form can be translated into the language of
effective field theory, where δgV1 , δκ

V , λV ∼ v
2

Λ
2 , with Λ the scale of BSM physics, Λ� v.

The effective couplings of fermions to gauge fields are parameterised as,

L =
g

cW
Zµ

[
gZqL + δgZqL

]
qLγµqL + gZZµ

[
gZqR + δgZqR

]
qRγµqR

+
g√
2

{
Wµ

[
(1 + δgWL )qLγµq

′
L + δgWR qRγµq

′
R

]
+ h.c.

}
, (21)

where Qq is the electric charge of the quarks, and q denotes up-type or down-type quarks. The anoma-

lous fermion couplings also scale as δgZqL,R, δg
W
L,R ∼ v

2

Λ
2 . The SM quark couplings are gZqR = −s2

WQq

and gZqL = T q3 − s2
WQq with T q3 = ±1

2
. SU(2) invariance relates the coefficients, δgWL = δgZfL −

δgZf
′

L , δgZ1 = δκZ + s
2
W

c
2
W

δκγ and λγ = λZ , where f denotes up-type quarks and f ′ down-type quarks.

The anomalous 3-gauge boson and fermion couplings have been implemented into the POWHEG BOX
framework [447–449] forW+W− production and samples of events are generated with pp→W+W− →
µ±e∓νν. Fits to 8 TeV data [450, 451] illustrate the importance of including both anomalous fermion
and 3-gauge boson couplings. The sensitivity to anomalous couplings results almost entirely from con-
tributions quadratic in the anomalous couplings and the effects of anomalous 3-gauge boson and fermion
couplings are numerically similar.

To probe the sensitivity to anomalous couplings, events are generated using the cuts

plT > 30 GeV, | ηl |< 2.5, mll > 10 GeV, Emiss
T > 20 GeV . (22)

These cuts are similar to those applied in the ATLAS [452] and CMS [453] extractions of anomalous
coupling limits using the 8 TeV data. A hypothetical future systematic uncertainty of δsys = 16% is
postulated and a cut on the pT of the leading lepton applied such that the systematic error is smaller than
the statistical error, δstat = 1√

Lσ(p
lead
l,T >p

cut
T )

> δsys,where L is the integrated luminosity. The integrated

cross section above a pcutT is evaluated, assuming a 50 % efficiency and the cuts set as

27 TeV with 15 ab−1 : pcutT = 750 GeV, 14 TeV with 3 ab−1 : pcutT = 1350 GeV . (23)

19Contribution by J. Baglio, S. Dawson and I. M. Lewis.
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The calculations are performed at NLO QCD, using CT14qed-inc-proton PDFs, and the renormalisa-
tion/factorisation scales are taken to be to be MWW /2. It is assumed the Wlν couplings in the decays
are SM-like.

The results of the scans are shown in Figs. 40 and 41; the allowed regions are within the ellipses.
A significant improvement going from 14 TeV to 27 TeV is seen, while the improvement from reducing
the systematic error, δsys = 0.16 → 0.04, is marginal. The fermion couplings are allowed to vary
around 0, assuming the 2σ errors from fits to LEP data. As can be seen, by including the anomalous
fermion couplings, the sensitivity of the scan is significantly reduced [449, 450, 454]. This effect is
quite pronounced at 27 TeV and implies that global fits to both anomalous fermion and 3 gauge boson
couplings are necessary.

4.4.4 Prospects for the measurement of theW -boson mass
Special low pile-up proton-proton collision data at the HL-LHC (and HE-LHC) will be of large interest
for W boson physics. At

√
s = 14 TeV and for an instantaneous luminosity of L ∼ 5× 1032 cm−2s−1,

corresponding to two collisions per bunch crossing on average, about 2×106 W boson events can be
collected in one week. Such a sample provides a statistical sensitivity at the permille level for cross
section measurements, at the percent level for measurements of the W boson transverse momentum dis-
tribution, and of about 10 MeV for a measurement of mW . The increased acceptance provided by the
new inner detector in ATLAS, the ITk [281], extends the coverage in pseudorapidity from |η| < 2.5 to
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|η| < 4 and allows further constraints on the parton density functions (PDFs) from cross section mea-
surements, reducing the corresponding uncertainties in the measurement of mW . An energy increase at
the HE-LHC to

√
s = 27 TeV [455] could play a similar role. A first quantitative study of the potential

improvement in the W -boson mass using low pile-up data at the HL-LHC and HE-LHC is discussed
in [456] considering only statistical and PDF uncertainties. Experimental systematic uncertainties can
be maintained at a level similar to the statistical uncertainty, since they are largely dominated by the
statistics of the low pile-up samples. Other theoretical uncertainties in the modelling of the W -boson
production, like the description of the boson transverse momentum distribution, will also be constrained
by measurements using these data.

Leptonic W boson decays are characterised by an energetic, isolated electron or muon, and signifi-
cant missing transverse momentum reflecting the decay neutrino. The hadronic recoil, uT, is defined
from the vector sum of the transverse momenta of all reconstructed particles in the event excluding the
charged lepton, and provides a measure of the W boson transverse momentum. The lepton transverse
momentum, p`T, the missing transverse momentum, Emiss

T , and the hadronic recoil are related through
~Emiss

T = −(~p`T + ~uT). The p`T and Emiss
T distributions have sharp peaks at p`T ∼ Emiss

T ∼ mW /2. The

transverse mass mT, defined as mT =

√
2p`TE

miss
T cos(φ` − φmiss), peaks at mT ∼ mW .

Events are generated at
√
s = 14 and 27 TeV using the W_EW_BMNNP process [136] of the POWHEG

v1 event generator [314], with electroweak corrections switched off. The CT10 PDF set [457] is used,
and parton shower effects are included using the PYTHIA v8 event generator [149] with parameters set
according to the AZNLO tune [458]. Final-state QED corrections are applied using PHOTOS [459]. The
energy resolutions of the lepton and hadronic recoil are parameterised as a function of the truth-related
observables in order to emulate detector effects. These parameterised resolutions are checked against
simulated distributions at the reconstructed level, and they agree at the level of a few percent.

Events are selected by applying the following cuts to the object kinematics, after resolution corrections:
p`T > 25 GeV, Emiss

T > 25 GeV, mT > 50 GeV and uT < 15 GeV; |η`| < 2.4 or 2.4 < |η`| < 4. The
first set of cuts selects the range of the kinematic peaks of theW boson decay products, restricting to the
region of small pWT to maximise the sensitivity of the distributions to mW . Two pseudorapidity ranges
are considered, corresponding to the central region accessible with the current ATLAS detector, and to
the forward region accessible in the electron channel with the ITk.

The Monte Carlo samples are produced using the CT10 PDF set, mref
W = 80.399 GeV, and the corre-

sponding Standard Model prediction for ΓW . Kinematic distributions for the different values of mW are
obtained by applying an event weight to the reference samples based on the ratio of the Breit–Wigner
densities corresponding to mW and mref

W , for a given value of the final state invariant mass. A simi-
lar event weight, calculated internally by POWHEG and corresponding to the ratio of the event cross
sections predicted by CT10 and several alternate PDFs, is used to obtain final state distributions corre-
sponding to the CT14 [199], MMHT2014 [200], HL-LHC [298] and LHeC [460] PDF sets and their
associated uncertainties. Compared to current sets such as CT14 and MMHT2014, the HL-LHC set
incorporates the expected constraints from present and future LHC data; it starts from the PDF4LHC
convention [195] and comes in three scenarios corresponding to more or less optimistic projections of the
experimental uncertainties. The LHeC PDF set represents the impact of a proposed future high-energy,
high-luminosity ep scattering experiment [461] on the uncertainties in the proton structure, using the
theoretically best understood process for this purpose.

The shift in the measured value of mW resulting from a change in the assumed PDF set is estimated
as follows. Considering a set of template distributions obtained for different values of mW and a given
reference PDF set, and “pseudo-data” distributions obtained for mW = mref

W and an alternate set i
(representing, for example, uncertainty variations with respect to the reference set), the preferred value
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of mW for this set is determined by minimising the χ2 between the pseudo-data and the templates. The
preferred value is denoted mi

W , and the corresponding variation is defined as δmi
W = mi

W −mref
W . The

statistical uncertainty on the measurement is estimated from the half width of the χ2 function one unit
above the minimum.

The present study considers measurements ofmW in separate categories, corresponding toW+ andW−

events; five pseudorapidity bins, |η`| < 0.6, 0.6 < |η`| < 1.2, 1.2 < |η`| < 1.8, 1.8 < |η`| < 2.4, and
2.4 < |η`| < 4; p`T andmT distribution fits; and two centre-of-mass energies (

√
s = 14 and 27 TeV). For

each category α and for the PDF sets considered here, the Hessian uncertainty corresponding to a given

set is estimated as δm+
Wα =

[∑
i

(
δmi

Wα

)2
]1/2

, if δmi
Wα > 0, and as δm−Wα =

[∑
i

(
δmi

Wα

)2
]1/2

,

if δmi
Wα < 0, where i runs over the uncertainty sets, and δmi

Wα is calculated with respect to the
reference PDF set. For CT10 and CT14, the uncertainties are divided by a factor 1.645 to match the
68% CL. Only symmetrised uncertainties, δmWα = (δm+

Wα+δm−Wα)/2, are considered for simplicity.
The correlation of PDF uncertainties between different measurement categories is calculated as ραβ =∑

i δm
i
Wαδm

i
Wβ

δmWαδmWβ
.

PDF variations generate correlated variations in the pWT and pZT distributions, while the latter are strongly
constrained by experimental data [458, 462]. These constraints were used in the ATLAS measurement
of mW [189], bringing significant reduction in the PDF uncertainties. The uncertainties estimated here
are thus conservative from this perspective, and partly account for uncertainties in the pWT distribution.

The overall measurement precision is evaluated by combining the results obtained in the different cate-
gories using the BLUE prescription [463]. Only statistical and PDF uncertainties are considered. The
former are assigned assuming an integrated luminosity of 200 pb−1, and normalising the samples to
the expected cross-sections. The expected measurement uncertainties, together with their statistical and
PDF components, are summarised in Fig. 42 (a) for CT10. The numbers quoted for 0 < |η`| < 2.4
correspond to the combination of the four pseudorapidity bins in this range. Moderate or negative PDF
uncertainty correlations, leading to reduced combined uncertainties, are observed between categories
of different W -boson charges, and between central and forward pseudorapidities, at given

√
s. On the

other hand, PDF uncertainty correlations tend to be large and positive between
√
s = 14 and 27 TeV, for

a given boson charge and lepton pseudorapidity range. With 200 pb−1of data collected at each energy, a
total uncertainty of about 10 MeV is obtained.

Table 25 and Fig. 42 (b) compare the uncertainties obtained for different PDF sets. The CT10 and CT14
sets display similar uncertainty correlations, leading to similar improvements under combination of cat-
egories, and yielding comparable final PDF uncertainties. The MMHT2014 uncertainties are about 30%
lower. The three projected HL-LHC PDF sets give very similar uncertainties; the most conservative one
is shown here. Compared to CT10 and CT14, a reduction in PDF uncertainty of about a factor of two
is obtained. The LHeC projection results from a QCD fit to 1 ab−1 of ep scattering pseudodata, with
Ee = 60 GeV and Ep = 7 TeV. Such a sample could be collected in about five years, synchronously
with the HL-LHC operation. In this configuration, the neutral- and charged-current DIS samples are
sufficient to disentangle the first and second generation parton densities without ambiguity, and reduce
the PDF uncertainty below 2 MeV, a factor 5–6 compared to present knowledge. Also in this case the
mW measurement will benefit from the large W boson samples collected at the LHC, and from the
anti-correlation between central and forward categories. In this context, PDF uncertainties would still
be sub-leading with 1 fb−1 of low pile-up data.
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Fig. 42: Measurement uncertainty for combined fits to the p`T and mT distributions (a) in differ-
ent lepton acceptance regions and for different centre-of-mass energies, using the CT10 PDF set and
for 200 pb−1collected at each energy and (b) for different PDF sets in |η`| < 4, for 200 pb−1and
1 fb−1collected at

√
s = 14 TeV. The numbers quoted for 0 < |η`| < 2.4 correspond to the combination

of the four pseudorapidity bins in this range.

Table 25: Measurement uncertainty for different lepton acceptance regions, centre-of-mass energies and
PDF sets, combined fits to the p`T and mT distributions, and for 200 pb−1collected at each energy. The
numbers quoted for 0 < |η`| < 2.4 correspond to the combination of the four pseudorapidity bins in this
range. In each case, the first number corresponds to the sum of statistical and PDF uncertainties, and the
numbers between parentheses are the statistical and PDF components, respectively.

√
s [TeV] Lepton acceptance Uncertainty in mW [MeV]

CT10 CT14 MMHT2014
14 |η`| < 2.4 16.0 (10.6 ⊕ 12.0) 17.3 (11.4 ⊕ 13.0) 15.4 (10.7 ⊕ 11.1)
14 |η`| < 4 11.9 (8.8 ⊕ 8.0) 12.4 (9.2 ⊕ 8.4) 10.3 (9.0 ⊕ 5.1)
27 |η`| < 2.4 18.3 (10.2 ⊕ 15.1) 18.8 (10.5 ⊕ 15.5) 16.5 (9.4 ⊕ 13.5)
27 |η`| < 4 12.3 (7.5 ⊕ 9.8) 12.7 (8.2 ⊕ 9.7) 11.4 (7.9 ⊕ 8.3)

14+27 |η`| < 4 10.1 (6.3 ⊕ 7.9) 10.1 (6.9 ⊕ 7.4) 8.6 (6.5 ⊕ 5.5)

√
s [TeV] Lepton acceptance Uncertainty in mW [MeV]

HL-LHC LHeC
14 |η`| < 2.4 11.5 (10.0 ⊕ 5.8 ) 10.2 (9.9 ⊕ 2.2)
14 |η`| < 4 9.3 (8.6 ⊕ 3.7) 8.7 (8.5 ⊕ 1.6)

4.4.5 Prospects for the measurement of the effective weak mixing angle

At leading order dilepton pairs are produced through the annihilation of a quark and antiquark via the
exchange of a Z boson or a virtual photon: qq̄ → Z/γ∗ → `+`−. The definition of the forward-
backward asymmetry, AFB, is based on the angle θ∗ of the lepton (`−) in the Collins-Soper [464, 465]
frame of the dilepton system:

AFB =
σF − σB

σF + σB
, (24)
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where σF and σB are the cross sections in the forward (cos θ∗ > 0) and backward (cos θ∗ < 0) hemi-
spheres, respectively. In this frame the θ∗ is the angle of the `− direction with respect to the axis that
bisects the angle between the direction of the quark and opposite direction of the anti-quark. In pp colli-
sions the direction of the quark is assumed to be in the boost direction of the dilepton pair. Here, cos θ∗

is calculated using laboratory-frame quantities as follows:

cos θ∗ =
2(p+

1 p
−
2 − p−1 p+

2 )√
M2(M2 + P 2

T )
× Pz

|Pz|
, (25)

where M , PT, and Pz are the mass, transverse momentum, and longitudinal momentum, respectively,
of the dilepton system, and p1(p2) are defined in terms of energy, e1(e2), and longitudinal momentum,
pz,1(pz,2), of the negatively (positively) charged lepton as p±i = (ei ± pz,i)/

√
2 [464].

A non-zero AFB in dilepton events arises from the vector and axial-vector couplings of electroweak
bosons to fermions. At tree level, the vector vf and axial-vector af couplings of Z bosons to fermions
(f ) are:

vf = T f
3 − 2Qf sin2 θW, (26)

af = T f
3, (27)

where T f
3 andQf are the third component of the weak isospin and the charge of the fermion, respectively,

and sin2 θW is the weak mixing angle, which is related to the masses of the W and Z bosons by the
relation sin2 θW = 1−M2

W/M
2
Z . Electroweak radiative corrections affect these leading-order relations.

An effective weak mixing angle, sin2 θf
eff, is defined based on the relation between these couplings:

vf/af = 1 − 4|Qf| sin2 θf
eff, with sin2 θf

eff = κf sin2 θW, where flavour-dependent κf is determined by
electroweak corrections. Consequently, precise measurements of AFB can be used to extract the effective
leptonic weak mixing angle (sin2 θ

lept
eff ).

The most precise previous measurements of sin2 θ
lept
eff were performed by the LEP and SLD experi-

ments [466]. There is, however, a known tension of about 3 standard deviations between the two most
precise measurements. Measurements of sin2 θ

lept
eff have also been performed by the LHC and Tevatron

experiments [467–472].

In measurements of AFB (or associated angular variables) in leptonic decays ofZ bosons at a pp collider,
the assignment of the z-axis is crucial. At low rapidities, there is a two-fold ambiguity in the direction
of the initial state quark and anti-quark; the colliding quark is equally likely to be in either proton and
the parton level asymmetry is diluted. However, at higher rapidities, the Z boson tends to be produced
in the direction of travel of the quark, since the (valence) quark tends to be at higher Bjorken-x than the
anti-quark. This means that the dilution between parton level and proton level quantities is significantly
smaller at larger rapidities, illustrated in Fig. 43, and a larger forward-backward asymmetry is induced.
Consequently, the forward acceptance of LHCb, in addition to the increased forward coverage of the
ATLAS and CMS detectors, will be crucial to achieving the most precise measurement of sin2 θ

lept
eff

possible at the HL-LHC.

The uncertainties on the parton distribution functions translate into sizeable variations in the observed
AFB values, which have limited the precision of current measurements of sin2 θ

lept
eff at the LHC. However,

the changes in PDFs affect the AFB(M``, Y``) distribution in a different way from changes in sin2 θ
lept
eff .

Because of this behaviour, the distribution of AFB can itself be used to constrain the PDF uncertainties
on the extraction of sin2 θ

lept
eff using either a Bayesian χ2 reweighting method [473–475] (in the case

of PDFs with Monte Carlo replicas) or through a profiling procedure [476] (in the case of PDFs with
Hessian error sets).

Prospects for the measurement of the effective weak mixing angle using the forward-backward asym-
metry, AFB, in Drell-Yan di-lepton events at the HL-LHC at ATLAS [477], CMS [478] and LHCb [479]
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Fig. 43: The fraction of events where the Z boson travels in the same direction along the z-axis as the
colliding quark, in proton-proton collisions with

√
s = 14 TeV. This increases as the event becomes

more forward, reaching a maximum in the region probed by LHCb. The decrease once the rapidity is
greater than 4 is because the fraction of collisions involving valence quarks decreases (the Bjorken-x
value of the high momentum quark in these collisions is typically greater than 0.3). No detector effects
are simulated for this figure.

have been performed and are reported here. The leptonic effective weak mixing angle is extracted from
measurements of AFB in dilepton events by minimising the χ2 value between the simulated data and
template AFB distributions representing different sin2 θ

lept
eff values and PDF variations. The LHCb and

CMS analyses consider the dimuon final state, while the ATLAS analysis considers the dielectron final
state. For CMS and LHCb the samples and different sin2 θ

lept
eff templates are generated at next-to-leading

order using the POWHEG event generator [480–483], where the NNPDF3.0 [484] PDF set is used in
the case of the CMS analysis, and the NNPDF3.1 PDF set [207] for LHCb. For CMS, the analysis is
performed at generator level without the effect of smearing due to detector effects20 while for LHCb,
a smearing is performed where the momentum resolution and reconstruction efficiency is assumed to
be similar to the performance of the current detector [485]. In the case of ATLAS, events are gener-
ated with POWHEG and overlaid with additional inelastic pp collisions per bunch-crossing simulated
with PYTHIA. Parameterisations of the expected ATLAS detector performances during the HL-LHC
runs [486] are then applied on particle-level objects to emulate the detector response. Lepton trigger and
identification efficiencies are derived as a function of η and pT and used to estimate the likelihood of a
given lepton to fulfil either the trigger or identification requirements, which have been optimised for the
level of pile-up expected at the HL-LHC [405]. The AFB distributions are generated, at leading order
(LO) in QCD, with DYTURBO, an optimised version of DYRES/DYNNLO [487] with NNLO CT14
PDF and the world average value for sin2 θ

lept
eff = 0.23153.

The HL-LHC CMS detector will extend the pseudorapidity, η, coverage of the muon reconstruction
from the current configuration of 2.4 to 2.8. In the CMS analysis an event is selected if there are at
least two muons with |η| < 2.8 and with the leading pT muon pT > 25 GeV and the second leading
muon pT > 15 GeV. Figure 44 shows the AFB distributions in bins of dimuon mass and rapidity
for different energies and pseudorapidity acceptances. As expected, at higher centre-of-mass energies
the observed AFB is smaller because the interacting partons have smaller x-values which results in a
smaller fraction of dimuon events produced by the valence quarks, which also means more dilution. The
samples are normalised to the integrated luminosities of 19 fb−1 for

√
s = 8 TeV and to 10 – 3000 fb−1

20A comparison of 8 TeV predictions and measured values suggests the effect is not significant.
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for
√
s = 14 TeV samples and the simulated data are shown for

√
s = 8 TeV and

√
s = 14 TeV

for two different selection requirements, |η| < 2.4 and 2.8. Extending the pseudorapidity acceptance
significantly increases the coverage for larger x-values in the production and reduces both the statistical
and PDF uncertainties, as shown below.

 (GeV)µµM

F
B

A

0.15−

0.1−

0.05−

0

0.05

0.1

0.15

0.2

0.25

| < 0.4
µµ

 |Y≤0.0 | < 0.8
µµ

 |Y≤0.4 | < 1.2
µµ

 |Y≤0.8 | < 1.6
µµ

 |Y≤1.2 | < 2.0
µµ

 |Y≤1.6 | < 2.4
µµ

 |Y≤2.0 | < 2.8
µµ

 |Y≤2.4 

70 90 110 70 90 110 70 90 110 70 90 110 70 90 110 70 90 110 70 90 110

| < 2.4 η, |-1  8 TeV,     19 fb

| < 2.4 η, |-114 TeV, 3000 fb

| < 2.8 η, |-114 TeV, 3000 fb

CMS Phase-2 Simulation Preliminary

Fig. 44: Forward-backward asymmetry distribution, AFB(Mµµ, Yµµ), in dimuon events at
√
s = 8 TeV

and 14 TeV. The distributions are made with POWHEG event generator using NNPDF3.0 PDFs and
interfaced with PYTHIA v8 for parton-showering, QED final-state radiation (FSR) and hadronization.
Following acceptance selections are applied to the generated muons after FSR: |η| < 2.4 (or |η| < 2.8),
plead

T > 25 GeV, ptrail
T > 15 GeV. The error bars represent the statistical uncertainties for the integrated

luminosities corresponding to 19 fb−1 at
√
s = 8 TeV and 3000 fb−1 at

√
s = 14 TeV.

In the case of the 14 TeV analysis with a large number of events (> 200 fb−1), the pseudo-data are too
precise to estimate the PDF uncertainties with the Bayesian reweighting approach because the replica
distributions are too sparse compared to the statistical uncertainties. Therefore, the PDF uncertainties
after the Bayesian reweighting are estimated by extrapolating from the lower values of integrated lumi-
nosities.

The corresponding values for various luminosities at CMS are summarized in Table 26. One can see
from the table that with the extended pseudorapidity coverage of |η| < 2.8, the statistical uncertainties
are reduced by about 30% and the PDF uncertainties are reduced by about 20%, compared to |η| < 2.4
regardless of the target integrated luminosity and for both nominal and constrained PDF uncertainties.

The LHCb detector has coverage in the pseudorapidity range 2 < η < 5 and expects to install its
‘Upgrade II’ in Long Shutdown 4. Following this upgrade, LHCb will collect at least 300 fb−1 of data,
allowing high precision measurements. The forward acceptance of LHCb brings a number of benefits
in measurements of sin2 θ

lept
eff at the LHC. The lower level of dilution in the forward region results in a

larger sensitivity to sin2 θ
lept
eff and the PDF effects are (in relative terms) smaller, providing both statistical

precision in measurements of the weak mixing angle and a reduction in PDF uncertainties. In addition,
LHCb does not simply probe forward rapidities of the Z boson: the leptons themselves are located over
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Table 26: Statistical, nominal NNPDF3.0, and constrained NNPDF3.0 uncertainties of the extracted
sin2 θ

lept
eff value at CMS at 14 TeV for muon acceptances of |η| < 2.4 and |η| < 2.8 and for different

values of integrated luminosity. For comparison, results of the 8 TeV estimate of this analysis are
compared to the results obtained from 8 TeV measurement [488].

Lint δstat[10−5] δnominal
nnpdf3.0[10−5] δconstrained

nnpdf3.0 [10−5]

( fb−1) |η| < 2.4 |η| < 2.8 |η| < 2.4 |η| < 2.8 |η| < 2.4 |η| < 2.8

10 76 51 75 57 39 29
100 24 16 75 57 27 20
500 11 7 75 57 20 16

1000 8 5 75 57 18 14
3000 4 3 75 57 15 12

19 43 49 27
19 (from [488]) 44 54 32

a significant range of rapidities, allowing extremal values of cos θ∗ to be probed, increasing sensitivity to
the weak mixing angle. Finally, LHCb has the ability to select events at low momentum using a flexible
full software trigger and real time analysis scheme (from Run-3 onwards). It is therefore foreseen that
the LHCb Upgrade II will be able to select Z boson decays where one lepton has transverse momentum
above 20 GeV, while the other lepton has a transverse momentum above 5 GeV. Such low thresholds
again increase the sensitivity to asymmetric events at high | cos θ∗|. In addition to the advantages of the
extended forward acceptance for such measurements, as part of Upgrade II LHCb is expected to undergo
a significant calorimeter upgrade21 allowing similar precision to be achieved in both the dielectron and
dimuon final states.

LHCb has performed a study of projected sensitivities, considering the dimuon final state. The exper-
iment is assumed to have coverage in the region 2.0 < η < 5. Toy measurements of the forward-
backward asymmetry are used to determine the sensitivity of measurements at LHCb Upgrade II to the
weak mixing angle. Only statistical uncertainties are considered alongside the effects of knowledge
of PDFs. The statistical uncertainty on sin2 θ

lept
eff is expected to be below 5 × 10−5 with 300 fb−1 of

data. The expected PDF uncertainty from current PDF knowledge is ∼ 20 × 10−5, but with Bayesian
reweighting this can be reduced to the level of about 10×10−5 (with analysis of a dataset corresponding
to an integrated luminosity of 300 fb−1). This reduction assumes systematic effects are negligible in
comparison to statistical uncertainties, though the current knowledge of PDFs means that any measure-
ment in the forward region is expected to offer a smaller PDF uncertainty than the total uncertainties in
the previous best measurements of the weak mixing angle. The main challenge of such measurements at
LHCb Upgrade II will therefore be to control systematic uncertainties in order to ensure the overall mea-
surement also achieves high precision; however, the large dataset of J/ψ and Υ mesons to be recorded is
expected to aid the understanding of effects such as the momentum scale (which introduced the largest
systematic uncertainty in the Run-1 analysis at LHCb). This should enable a measurement at LHCb
Upgrade II with a precision similar to or better than that achieved in the combination of measurements
at LEP and SLD.

In the ATLAS analysis di-electron candidates are selected where each electron has pT in excess of
25 GeV and the combined invariant mass is in the region of the Z pole. A new inner tracking system
(ITk) will extend the tracking coverage of the ATLAS detector from |η| ≤ 2.5 up to |η| ≤ 4.0 at the
HL-LHC, providing the ability to reconstruct forward charged particle tracks, which can be matched
to calorimeter clusters for forward electron reconstruction. The selected data sample is split into three

21This upgrade will offer an extended dynamic range within the ECAL, offering improved electron momentum resolution.
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channels, where both electrons are in the central region, satisfying |η| < 2.47 (the CC channel), where
one electron is central and the other is forward, satisfying 2.5 < η < 4.2 (the CF channel), and finally
where both electrons are forward (the FF channel). Events are selected by requiring at least one electron
firing the single electron trigger, except in the FF channel, where a dielectron trigger is required.
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Fig. 45: The cos θ∗ distribution for CC, CF and FF channels for selected Drell-Yan di-electron events
expected for 3000 fb−1 of data at

√
s = 14 TeV.

As Fig. 45 shows, the CF channel selects events at high cos θ∗ values where the forward-backward
asymmetry is more pronounced, and consequently the sensitivity to sin2 θ

lept
eff is higher in this channel.

While the LHCb and CMS analyses consider only uncertainties due to statistics and PDFs, the ATLAS
analysis considers also various sources of experimental uncertainty which affect the precision of the
extraction of AFB. The main contributions arise from the limited knowledge of the momentum scale
and resolution of the electrons, and the background contributions, which are mostly relevant in the CF
and FF channels.

The extraction of sin2 θ
lept
eff is performed by minimising the χ2 value comparing particle-level AFB distri-

butions with different weak mixing angle hypotheses in invariant mass and rapidity bins combining the
CC, CF and FF channels. A global fit is performed where sin2 θ

lept
eff is extracted while constraining the

PDF uncertainties using a profiling procedure following that used in a previous ATLAS publication [489]
and implemented in the xFitter package [490].

With this analysis, a significant reduction of the light quark uncertainties at low x is seen and combining
the three channels together, the measurement reaches a precision of 18·10−5 (±16·10−5 (PDF)±9·10−5

(exp.) ). The uncertainty of the results remains dominated by the limited knowledge of the PDFs.

In the context of the Yellow Report for the HL-LHC, prospect PDF fits including HL-LHC pseudo-data
of future PDF-sensitive measurements from ATLAS, CMS and LHCb were performed (see Sec. 5.2).
Three prospect PDF scenarios were considered and compared with the reference PDF set PDF4LHC15 [195].
The expected sensitivity of the sin2 θ

lept
eff measurements with 3000 fb−1 at

√
s = 14 TeV is improved by

10-25% depending on the prospect PDFs scenario considered. In Table 27 the precision on sin2 θ
lept
eff ob-

tained with the "ultimate" HL-LHC PDF set is compared with the with the one obtained with CT14NNLO
PDF set.

The sensitivity of the analysis to the sin2 θ
lept
eff extraction is also estimated with a prospect PDF set

including expected data from the LHeC collider [460]. In this case the PDF uncertainty is reduced by
an additional factor of 5 with respect to the one obtained with the HL-LHC prospect PDFs.
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Table 27: The value of sin2 θ
lept
eff with the breakdown of uncertainties from the ATLAS preliminary

results at
√
s = 8 TeV with 20 fb−1 [491] is compared to the projected sin2 θ

lept
eff measurements with

3000 fb−1 of data at
√
s = 14 TeV for two PDF sets considered in this note. All the numbers values

are given in units of 10−5. Note that other sources of systematic uncertainties, such as the impact of the
MC statistical uncertainty, evaluated in Ref. [491] are not considered in this prospect analysis. For the
HL-LHC prospect PDFs the "ultimate" scenario is chosen.

ATLAS
√
s = 8 TeV ATLAS

√
s = 14 TeV ATLAS

√
s = 14 TeV

L [fb−1] 20 3000 3000
PDF set MMHT14 CT14 PDF4LHC15HL−LHC
sin2 θlept

eff [×10
−5

] 23140 23153 23153

Stat. ± 21 ± 4 ± 4
PDFs ± 24 ± 16 ± 13
Experimental Syst. ± 9 ± 8 ± 6
Other Syst. ± 13 - -
Total ± 36 ± 18 ± 15

To conclude, the accuracy of measurements of the weak mixing angle obtained with an analysis of
AFB in Z events at

√
s = 14 TeV with 3000 fb−1 at ATLAS and CMS and 300 fb−1 at LHCb at

the HL-LHC exceed the precision achieved in all previous single-experiment results to date and the
measurements are dominated by PDF uncertainties. To explore the full potential of the HL-LHC data it
will be therefore essential to reduce PDF uncertainties. A significant improvement of the sensitivity of
the measurement is observed in the ATLAS analysis when using prospect PDF sets including ancillary
Drell-Yan measurements performed with the data collected during the high luminosity phase of the LHC
and at the LHeC collider.

4.4.6 The global EW fit22

The measurement of the Higgs Boson mass (MH ) at the Large Hadron Collider (LHC) has provided the
last input to the global fit of electroweak (EW) precision observables (EWPO), which can now be used
to effectively constrain new physics. Moreover, the measurement of Higgs-boson production and decay
rates that is at the core of the physics program of the LHC Run-2 will further constrain those interactions
that directly affect Higgs-boson physics.

The HL-LHC will have the potential to provide more constraining bounds on new physics via the global
fit to EWPO and Higgs data, thanks to the higher precision it will reach both in the measurement of
some of the crucial input parameters of global EW fits (e.g. MW , mt, MH , and sin2 θlept

eff ), and in
the measurement of Higgs-boson total and differential rates. In this study the reach of the HL-LHC in
constraining new physics is explored via a global fit to EWPO. Earlier studies on the prospects for the
LHC were performed in [492, 493].

In the following, details are provided first on the parameters and procedure of the global EW fit. Next
the results are interpreted within the Standard Model (SM). Finally, the EW fit is used to constrain new
physics beyond the SM. The results are presented for both the current data and the projections in the
HL-LHC scenario.

The global fit of EWPO is performed using the HEPFIT package [494], a general tool to combine direct
and indirect constraints on the SM and its extensions in any statistical framework. The default fit proce-

22Contribution by J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, and L. Silvestrini.
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dure, used here, follows a Bayesian statistical approach and uses BAT (Bayesian Analysis Toolkit) [495].
Flat priors are used for all input parameters, and the likelihoods are built assuming Gaussian distributions
for all experimental measurements. The output of the fit is therefore given as the posterior distributions
for each input parameters and observables, calculated using a Markov Chain Monte Carlo method.

All EWPO are calculated as a SM core plus corrections. The SM core includes all available higher-order
corrections, including the latest theoretical developments in the calculation of radiative corrections to the
EWPO of [496, 497].23 New physics corrections are computed at the leading order. The HEPFIT code
allows for the implementation of different models of new physics. In particular, as explained below, the
study is specialised in the general framework of the so called SM effective field theory (SMEFT), where
the SM Lagrangian is extended by the addition of operators of canonical mass dimension higher than
four (limited to the basis of operators of canonical dimension six in this study).

As far as EWPO are concerned, this study updates the EWPO fit of Refs. [493, 498, 499], including
recent updates on the theory calculations [497] and experimental measurements [190, 491, 500–506].
The uncertainties on some input parameters that have been obtained by including hadron collider data
are further reduced, in order to account for the level of accuracy expected for the HL-LHC. In all these
projections it is assumed that the central values for the HL-LHC measurements will not change with
respect to current data. In particular the following assumptions are made:

1. The W mass, whose uncertainty obtained by combining ATLAS and Tevatron+LEP2 measure-
ments is currently around 12 MeV [189, 507–509] could be measured at the HL-LHC with a
precision of 7 MeV. This number is derived from the current estimate of the statistical plus PDF
uncertainty using 1 fb−1 of data reported in Sec. 4.4.4, and assuming systematic errors to be of
similar size to the statistical ones. In this fit a measurement of MW = 80.379 ± 0.007 GeV is
therefore added to the current combination.

2. An aggressive estimate of the current uncertainty on the top-quark mass, obtained by combining
current Tevatron and LHC measurements, puts the uncertainty on mt at the level of 0.4 GeV. It
will be difficult to further reduce this number at the HL-LHC, since the remaining uncertainty is
mainly of systematic and theoretical origin. In the current fit mt = 172.8± 0.4 GeV is used.

3. The measurements of the effective angle sin2 θlept
eff can also be improved at the HL-LHC. Cur-

rently, a combination of the latest LHC and Tevatron results returns a precision for this ob-
servable of ∼ 0.00022 − 0.00027, depending on the assumptions made in combining com-
mon uncertainties. For the HL-LHC fit, the combination is repeated using the ATLAS pro-
jections outlined in Sec. 4.4.5 where the HL-LHC PDF set is used, corresponding to the value
sin2 θlept

eff = 0.23143± 0.00015.

4. The error on the Higgs-boson mass, currently around 0.20 GeV, can be reduced to 0.05 GeV [510,
511].

5. The HL-LHC should also be able to improve the current knowledge on the W width, whose
precision of 42 MeV is currently given by the combination of LEP2 and Tevatron measurements.
This uncertainty is dominated by the hadron collider measurement. While there is no available
information about a possible determination of this quantity at the (HL-)LHC, the conservative
assumption that the HL-LHC can achieve a precision on ΓW at least as good as the one on the
current average is used. An independent HL-LHC measurement of ΓW = 2.085 ± 0.042 GeV is
therefore added. This gives a 30 MeV uncertainty when combined with the current average.

23The uncertainties associated to missing higher-order corrections to the SM predictions for the EWPO are also taken into
account in the fits, via nuisance parameters with Gaussian priors.
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Finally, apart from the improved precision of the HL-LHC measurements, the assumption is made that,
by the end of the HL-LHC run, better measurements of some of the SM input parameters are possible
from other experiments. In particular, following Ref. [493, 498], it is assumed that: 1) the uncertainty
on ∆α

(5)
had(MZ) can be reduced to ±5 × 10−5 by using data from currently ongoing and future exper-

iments that measure the cross section for e+e− → hadrons, and 2) future lattice QCD measurements
will provide a determination of the strong coupling constant with accuracy δαS(MZ) = ±0.0002. The
measurements of all other EWPO and input parameters have been kept to their currently available val-
ues. The current values of all EWPO measurements, as well as the corresponding HL-LHC projected
uncertainties, are listed in the second and third columns of Table 28, respectively.

Table 28: Current experimental measurement, HL-LHC projected uncertainty, posterior, and pull for the
five input parameters (αs(MZ), ∆α

(5)
had(MZ), MZ , mt, MH ), and for the main EWPO considered in the

SM fit. The pulls in the last column are obtained comparing the experimental measurements with the
predictions from a fit removing the corresponding observable(s) (See for e.g. Ref. [493] for details.).

Measurement HL-LHC Posterior Pull
uncertainty Current HL-LHC Current/HL-LHC

αs(MZ) 0.1180± 0.0010 ±0.0002 0.1180± 0.0009 0.1180± 0.0002 0/0.5

∆α
(5)
had(MZ) 0.027611± 0.000111 ±0.00005 0.02758± 0.00011 0.02759± 0.00005 1.1/2.1

MZ [GeV] 91.1875± 0.0021 91.1880± 0.0020 91.1890± 0.0020 −1.3/−2.6
mt [GeV] 172.8± 0.7 ±0.4 173.2± 0.66 173.1± 0.38 −1.7/−2.9
MH [GeV] 125.13± 0.17 ±0.05 125.13± 0.17 125.13± 0.05 1.4/3

MW [GeV] 80.379± 0.012 ±0.007 80.362± 0.006 80.367± 0.004 1.6/2.7
ΓW [GeV] 2.085± 0.042 ±0.042 2.0885± 0.0006 2.0889± 0.0003 −0.1
BRW→`ν 0.1086± 0.0009 0.10838± 0.00002 0.10838± 0.000005 0.2
BRW→had 0.6741± 0.0027 0.67486± 0.00007 0.67486± 0.00001 −0.3

sin
2
θ

lept
eff (Q

had
FB ) 0.2324± 0.0012 0.23151± 0.00006 0.23150± 0.00005 0.7

P
pol
τ = A` 0.1465± 0.0033 0.14711± 0.0005 0.14713± 0.0004 −0.2

ΓZ [GeV] 2.4952± 0.0023 2.4946± 0.0007 2.4947± 0.0005 0.3

σ
0
h [nb] 41.540± 0.037 41.492± 0.008 41.491± 0.006 1.3

R
0
` 20.767± 0.025 20.749± 0.008 20.749± 0.006 0.7

A
0,`
FB 0.0171± 0.0010 0.01623± 0.0001 0.016247± 0.00008 0.9

A` (SLD) 0.1513± 0.0021 0.14711± 0.0005 0.14718± 0.0004 1.9

R
0
b 0.21629± 0.00066 0.21586± 0.0001 0.21586± 0.0001 0.7/0.6

R
0
c 0.1721± 0.0030 0.17221± 0.00005 0.17221± 0.00005 0

A
0,b
FB 0.0992± 0.0016 0.10313± 0.00032 0.10319± 0.00026 −2.4/−2.5

A
0,c
FB 0.0707± 0.0035 0.07369± 0.00024 0.07373± 0.0002 −0.9

Ab 0.923± 0.020 0.93475± 0.00004 0.93476± 0.00004 −0.6
Ac 0.670± 0.027 0.66792± 0.0002 0.66794± 0.0002 0.1

sin
2
θ

lept
eff(Had.coll.) 0.23143± 0.00027 ±0.00015 0.23151± 0.00006 0.23150± 0.00005 −0.5/−0.9

The results of the SM global fit to EWPO for both the present (LHC) and future (HL-LHC) scenarios are
collected in Table 28. These are given in the form of the mean and standard deviation for each of the ob-
servables, as derived from the posterior of the fits. For each EWPO the “pull” is also computed, defined
as the difference between the experimental value and the SM prediction computed by removing each
observable from the fit (not shown in the table), normalized to the total uncertainty. As it is apparent, the
differences in the posteriors between both fits are quite small. However, looking at the pulls one can see
that, should the central values of the SM input parameters remain the same, the expected improvements
in their experimental uncertainties, combined with the more precise measurements of some EWPO at
the HL-LHC, would significantly increase the tension between the indirect determinations of MZ , mt,
and MH from the EW fit and the corresponding experimental measurements, pushing them to the 3σ

88



level. The improvement in the precision on mt would also reduce the parametric uncertainty on some
observables, e.g. the W mass, bringing the total residual error very close to the intrinsic uncertainty as-
sociated to missing higher-order corrections in the calculation of MW . As in the case of some of the SM
inputs, the expected improvement on the experimental precision of MW , without a significant deviation
on the central value, would add some tension between theory and experiment, pushing the pull for this
observable well beyond the 2σ level. The impact of the HL-LHC measurements on the EW fit is well
illustrated in Fig. 46 where one can see the comparison between direct (i.e. experimental) and indirect
constraints on the fit input parameters given for both the current and HL-LHC scenarios in the MW vs.
mt and the MW vs. sin2 θlept

eff planes respectively.
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Fig. 46: Comparison of the indirect constraints on MW and mt with the current experimental mea-
surements and the expected improvements at the HL-LHC (left). The same in the MW -sin2 θlept

eff plane
(right).

The EWPO, being measured in processes mediated by the exchange of a Z or W boson, are extremely
sensitive to any new physics that modifies the propagation of such particles. This results in a universal
modification of the interactions between the EW gauge bosons and the SM fermions, which, from the
point of view of EWPO, can be described in terms of only three parameters: the well-known S, T , and
U oblique parameters [512]. The study of the constraints on the S, T , and U parameters is one of the
classical benchmarks in the study of EW precision constraints on new physics, and it is well motivated
from a theory point of view, within the context of universal theories. The results of the fit to the S, T ,
and U parameters are given in Table 29. The results are presents in terms of the full (S,T ,U ) fit and also
assuming U = 0, which is motivated in theories where EW symmetry breaking is realised linearly, since
in that case U � S, T . In both cases the current constraints are compared with the expected precision at
the HL-LHC, which, in some cases, could improve the sensitivity to such new physics effects by up to
∼ 30%. The results for the ST fit (U = 0) are shown in Fig. 47, illustrating also the constraints imposed
by the different EWPO.

As stressed above, the STU parameterisation only describes universal deformations with respect to
the SM predictions. In order to systematically explore the impact of global EW precision fits on new
physics, the framework of the SMEFT is adopted in what follows. In this formalism, the SM Lagrangian
is extended via operators of dimension five and higher, i.e.

Leff = LSM +
∑

d>4

1

Λd−4
Ld, with Ld =

∑

i

CiO(d)
i ,

[
O(d)
i

]
= d , (28)
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Table 29: Results of the fit for the oblique parameters S, T , U ; and S, T (U = 0). Projections for the
uncertainties at the HL-LHC are given in the last column.

Result Correlation Matrix Precision at HL-LHC
S 0.04± 0.10 1.00 0.09
T 0.08± 0.12 0.90 1.00 0.12
U 0.00± 0.09 −0.62 −0.84 1.00 0.08
S 0.04± 0.08 1.00 0.06
T 0.08± 0.06 0.90 1.00 0.05

(U = 0)
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Fig. 47: Comparison of the currently allowed 68% and 95% probability regions in the S, T fit (U = 0)
(dashed contours) with the HL-LHC projections (solid contours). The different bands illustrate the
bounds from the different EWPO included in the fit and the projected improvements at the HL-LHC.

where Λ denotes the cut-off scale of the SMEFT. This new physics scale introduces a first hierar-
chical ordering between contributions of operators of lower versus higher dimension, where higher-
dimension operators are suppressed by inverse powers of Λ. Each term in Ld is a linear combination of
d-dimensional operatorsO(d)

i built in terms of SM fields, with Wilson coefficients Ci that can depend on
both SM masses and couplings, as well as new physics parameters. For the analysis of EWPO the lead-
ing new physics corrections come from dimension-six operators (L6). The study is limited to this order
in the effective theory expansion. Using the complete basis of dimension-six interactions presented in
Ref. [513], the Z-pole and W observables in Table 28 are corrected at the leading order by 10 different
operators. The bosonic operators

OφD = |φ†Dµφ|2 and OφWB = (φ†σaφ)W a
µνB

µν ,

modify the gauge-boson propagators in a way similar to the T and S parameters, respectively. Among
the remaining operators,

O(1)
φψ = (φ†

↔
Dµφ)(ψγµψ) and O(3)

φF = (φ†σa
↔
Dµφ)(FγµσaF ),

with ψ = l, e, q, u , d and F = l, q (where l and q denote the SM left-handed fermion doublets, e, u, d
the SM right-handed fermion singlets, and flavour universality is assumed), correct, upon EW symmetry
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breaking, the EW couplings of the Z and W bosons to quarks and leptons. Finally, the four-lepton
operator Oll =

(
lγµl

) (
lγµl

)
modifies the muon decay amplitude and, by affecting the extraction of the

Fermi constant, propagates its effect to all the different observables considered in the EW global fit.

The aim of a global fit to EWPO data is to constrain the corresponding Wilson coefficients. Of the
ten operators considered, only eight combinations can be constrained using EW precision data in the
case of flavour universal couplings. This means that in the basis of [513] there are two flat directions
which, for simplicity are lifted by performing a field redefinition to exchange CφD and CφWB with two
interactions that do not enter in EWPO. The results of the fit to EWPO using the projected HL-LHC
data are shown in Fig. 48, both for the case in which the eight remaining coefficients are active and fitted
simultaneously and for the case in which only one coefficient at a time is active and independently fitted.
The results of both fits are also summarised in Table 30 where the HL-LHC bounds are additionally
compared to current bounds. It can be seen that the HL-LHC could improve the current bounds on some
of the considered Wilson coefficients by up to a 10-30%, although for most coefficients the effect is
much milder both when different effective interactions are fitted simultaneously and individually.
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Fig. 48: 68% and 95% probability limits on the dimension-six operator coefficients Ci/Λ
2 [TeV−2]

from the global fit to EWPO at HL-LHC including all operators (in blue), compared with the limits
obtained assuming only one operator at a time (in red). See Table 30 for the comparison with current
uncertainties.
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Table 30: Results of the fit to the coefficients of the SMEFT dimension-six Lagrangian. The uncertainties
shown refer to the fit performed assuming the presence of only one effective operator at a time and to the
case when all (eight) operators are active at the same time (global fit). Projections for the uncertainties
at the HL-LHC are given in the last two columns. Result shown for the ratios Ci ≡ Ci/Λ2. See text for
details.

Current uncertainty Precision at HL-LHC
[TeV−2] [TeV−2]

Operator 1 op. at Global 1 op. at Global
Coefficient a time fit a time fit

C
(1)
φl 0.004 0.012 0.004 0.012

C
(1)
φq 0.018 0.044 0.017 0.043

Cφe 0.005 0.009 0.005 0.007
Cφu 0.040 0.146 0.038 0.145
Cφd 0.054 0.237 0.051 0.230

C
(3)
φl 0.004 0.017 0.003 0.015

C
(3)
φq 0.007 0.040 0.006 0.038

Cll 0.007 0.028 0.005 0.028

CφWB 0.003 − 0.002 −
CφD 0.007 − 0.005 −
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5 Strong interactions
This section presents studies at the HL-LHC and HE-LHC conditions for jet and photon production,
parton density functions, underlying event and multi/double-parton interactions. Thanks to the larger
integrated luminosity at the HL-LHC and HE-LHC and the jump in centre-of-mass energy at the HE-
LHC, an increase in the kinematic reach is expected for light- and heavy-flavour jet production as well
as photon production. An improvement is also expected in the experimental systematic uncertainty
on the jet calibration. The measurements of jet and photon production cross sections in addition to
other processes, e.g. Drell-Yan and top quark, at the HL-LHC will help improve the understanding
of the parton density functions. The level of the underlying event activity is not expected to change
significantly at the HL-LHC given the small increase in centre-of-mass energy from

√
s = 13 TeV at the

LHC Run-2 to
√
s = 14 TeV at the HL-LHC, however a significant increase is expected at the HE-LHC

energy of
√
s = 27 TeV. Multi-parton interactions are expected to play a more significant role at higher

energies and, thanks to the large statistics available at both the HL- and HE-LHC, new measurements
can be carried out to test more precisely the current theoretical models.

5.1 Jet and photon production 24

This section presents phenomenological studies of inclusive jet, dijet, heavy-flavour jet production as
well as inclusive photon, diphoton, and associated photon and jet production at future upgrades at the
HL and HE stages of the LHC. In particular the reach in yields for these processes is investigated. A
comparison between the results expected at the future design centre-of-mass energies of

√
s = 14 TeV

and
√
s = 27 TeV is presented.

5.1.1 Inclusive jet production
Jets are reconstructed using the anti-kT algorithm [274] with distance parameter R=0.4 as implemented
in the FastJet software package [343], and calibrated following the procedure described in [514]. The
total jet energy scale (JES) uncertainty in ATLAS Run-2 measurements comprises of 88 sources, and all
need to be propagated through the analysis in order to correctly account for uncertainty correlations in
the jet calibration in the final result. Here follows a summary of the analysis detailed in Ref. [515].

A reduced set of uncertainty components (nuisance parameters) is derived from eigenvectors and
eigenvalues of the diagonalised total JES covariance matrix on the jet level. The globally reduced con-
figuration with 19 nuisance parameters (NPs) is used in this study. Eight NPs coming from the in situ
techniques are related to the detector description, physics modelling and measurements of the Z/γ en-
ergies in the ATLAS calorimeters. Three describe the physics modelling, the statistics of the dijet MC
sample and the non-closure of the method used to derive the η-intercalibration [514]. Single-hadron
response studies [516] are used to describe the JES uncertainty in the high-pT jet regions, where the
in situ studies have limited statistics. Four NPs are due to the pile-up corrections of the jet kinematics
that take into account mis-modelling of NPV and 〈µ〉 distributions, the average energy density ρ, and
the residual pT dependence. Finally, two uncertainty components take into account the difference in the
calorimeter response to the quark- and gluon-initiated jets (flavour response) and the jet flavour compo-
sition, and one uncertainty estimates the correction for the energy leakage beyond the calorimeter, the
“punch-through” effect.

In order to estimate the precision in the jet cross section measurements at the HL-LHC, three
scenarios of possible uncertainties in the jet energy scale calibration are defined.

In all three scenarios, the high-pT uncertainty, the punch-through uncertainty and the flavour com-
position uncertainty are considered to be negligible. The JES uncertainty in the high-pT range will be
accessed using the multi-jet balance (MJB) method, rather than single hadron response measurements,

24Contributed by the experimental collaborations, and by L. Cieri, G. Ferrera, A. Huss, and J. Pires.
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Fig. 49: Relative uncertainties in the inclusive jet cross section measurements at the HL-LHC due
the JES uncertainties. Three HL-LHC scenarios are compared to the Run-2 performance. Black line
corresponds to the Run-2 performance. Green, red and blue lines represent pessimistic, conservative
and optimistic scenarios, respectively.

since the high statistics at the HL-LHC will allow precision JES measurements in the high-pT region.
Flavour composition and flavour response uncertainties are derived from the MC generators. With the
advances in the MC modelling and development of tunes, these uncertainties could be significantly re-
duced. The flavour composition uncertainties are set to zero to highlight the maximal impact of possible
future improvements in the understanding of parton shower and hadronisation modeling on the preci-
sion of the jet energy measurements. The flavour response uncertainties are kept the same as in Run-2
or reduced by a factor of two in conservative and optimistic scenarios, respectively.

The pile-up uncertainties, except the ρ topology uncertainty, are considered to be negligible. Cur-
rent small uncertainties in the JES due to mis-modelling of NPV and 〈µ〉 distributions and the residual
pT dependence lead to a very small uncertainties at the HL-LHC conditions. With the advances of new
pile-up rejection techniques, the ρ topology uncertainty could be maintained at a level comparable to the
one in Run-2 or reduced by a factor of two. This is addressed in conservative and optimistic scenarios.

Since the Run-2 jet energy resolution (JER) uncertainty estimation is conservative, the final Run-2
JER uncertainty is expected (based on Run-1 experience) to be about twice as small as the current one.
Therefore, the JER uncertainty is estimated to be half of that in Run-2.

The remaining uncertainty sources are fixed in different scenarios as follows:

– Conservative scenario:

– All in situ components are kept the same as in Run-2, except the uncertainties related to the
photon energy measurement in the high-ET range and the MJB method uncertainties whose
uncertainties are reduced by a factor of two, since those are expected to be improved at the
HL-LHC;

– The MC modelling uncertainty in the η-intercalibration is reduced by a factor of two while
the other two are neglected. Currently, the MC modelling uncertainty is derived through
a comparison of leading-order (LO) pQCD generators. With future advances in next-to-
leading-order MC generators this uncertainty is expected to improve;

– The flavour response uncertainty is set to the Run-2 value;
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– The ρ-topology uncertainty is unchanged compared to Run-2 results;

– Optimistic scenario:

– All in situ components are treated identically to the conservative scenario;
– All three uncertainty sources in the η-intercalibration method are set to zero;
– The flavour response uncertainty is reduced by a factor of two compared to Run-2 results;
– ρ-topology uncertainty is two times smaller as in Run-2;

– Pessimistic scenario:

– Same as the optimistic scenario, but all uncertainty sources of in situ methods are retained
from Run-2.

All components of the JES uncertainty are propagated from the jet-level to the cross section level
as follows. The jet pT is scaled up and down by one standard deviation of each source of uncertainty.
The difference between the nominal detector-level spectrum and the systematically shifted one is taken
as a systematic uncertainty. All JES uncertainties are treated as bin-to-bin correlated and independent
from each other in this procedure. The unfolding of the detector-level distributions to the particle-level
spectrum is not performed is this study. A possible modification of the shapes of uncertainty components
during the unfolding procedure is expected to be small and neglected in this study.

The inclusive jet cross-sections are studied as a function of the jet transverse momentum for jets
with pT > 100 GeV and within |y| < 3. The total JES uncertainty in the inclusive jet cross section
measurement for the three HL-LHC scenarios is depicted in Fig. 49 and is compared to the total JES
uncertainty estimate for the Run-2 jet cross section measurements. The total JES uncertainty in the low
pT range is the same as in Run-2 and is about 2% better in the high-pT region. In the conservative
and pessimistic scenarios the JES uncertainties in the cross section are very similar in the intermediate
and high-pT range, while the JES uncertainty is about 1% better in the low-pT range for the optimistic
scenario.

The predicted number of events estimated using the program NNLOJET [326], which includes
next-to-next-to-leading order QCD calculations for both single jet inclusive [206] and dijet inclusive [19]
production, is shown in Fig. 50 (left and right respectively). In the dijet analysis, a second jet with pT >
75 GeV is required in the event. The lower panels show the ratios of events yields at 27 TeV and
14 TeV. This plot shows an enhancement of the cross section growing with the jet pT (left) and dijet
mass (right). In summary, assuming Lint = 3 ab−1 of pp collision data at

√
s = 14 TeV the pT reach

of the measurement is 5 TeV with the observation of dijet events of mass up to 9 TeV. At the HE-LHC
upgrade, an increase in cross section by a factor between 103 and 106 in the tails of the distributions
extends the pT range of the measurement by a factor of 2 up to 9 TeV, allowing the observation of dijet
events of mass up to 16 TeV.

The increase in cross section in these scenarios will allow for a very precise multi-differential
measurement of inclusive jet production. Working at a fixed centre-of-mass energy, the high-pT the
high-x and the large Q2 region are probed and the sensitivity to higher order QCD/EW effects and BSM
signals is increased. On the other hand, at fixed-pT, an increase in the collider energy and the inclusion
of the forward detector regions increase the coverage to the low-x regime, which is highly sensitive to
small-x resummation effects. For these reasons, it will be necessary to have accurate jet predictions
covering both regions.

To this end Fig. 51 presents the double-differential k-factors at
√
s = 14 TeV (left) and

√
s =

27 TeV (right) for the inclusive jet pT (top), differentially in pT and rapidity |y| and dijet mass (bottom)
differentially in dijet mass mjj and rapidity difference y∗ = 1/2 |yj1 − yj2|. The shaded bands assess
the scale uncertainty at different perturbative orders, LO, NLO and NNLO. As for the value of the
renormalization (µR) and factorization (µF ) scales µ = ĤT is used, i.e. the scalar sum of the pT of all
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Fig. 50: Predicted number of inclusive jet events as a function of the jet pT (left) and dijet events as a
function of dijet mass mjj (right) at NNLO, assuming an integrated luminosity of 3 ab−1 (15 ab−1) of
pp collision data at

√
s=14 TeV (

√
s=27 TeV).

partons in the event, as recommended in [332] for the inclusive jet pT, and the dijet mass µ = mjj for
the dijet mass distribution, as recommended in [19].

For the inclusive jet pT large NLO effects at high-pT and central rapidity of approximately 90%
(14 TeV) and 50% (27 TeV) are observed with large NLO scale uncertainties ofO(20−30%). At NNLO
moderate corrections across the entire pT and rapidity range are observed, except at high-pT in the
central rapidity slices where the NNLO effects can reach between 10 to 30%. An excellent convergence
of the perturbative result is observed as well as a significant reduction in the scale uncertainty of the
cross section when going from NLO to NNLO. The NNLO scale uncertainties are estimated at the
< 5% level. Similarly to the inclusive jet pT case, an excellent convergence of the perturbative result
for the dijet mass is observed. The NNLO/NLO k-factors are typically < 10% and alter the shape of the
prediction at low mjj and low y∗. A large reduction is observed in the scale variation and NNLO scale
uncertainties are estimated to be below the 5% level, even at large mjj . Scale uncertainties at this level
are well below the PDF uncertainty, highlighting the huge potential to constrain PDFs with inclusive jet
data.

Measurements of weak bosons [517], top quarks [518], photon and jet production [519] (and
many others) performed by the LHC Collaborations have been already used by the global PDF groups
[199, 200, 207, 520] in the determination of the proton structure. Comparisons of inclusive jet and dijet
production cross sections using different PDF sets at

√
s = 14 and 27 TeV, show 5–10% differences

respectively between central values in the low and intermediate pT and mjj regions, consistent with
current PDF uncertainties. Larger differences between the predictions of the various PDF sets in the
high-pT and mjj range highlight the expected constraining power of future measurements at the HL-
LHC and HE-LHC.

A study to estimate the impact of future PDF-sensitive measurements at the HL-LHC on PDFs
determination was performed in [298] and reported in Sec. 5.2. Three possible scenarios for the exper-
imental systematic uncertainties were considered. This study concluded that HL-LHC measurements
will further reduce the PDF uncertainties, and published dedicated PDF sets, PDF4LHC HL-LHC, with
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Fig. 51: Predictions for the inclusive jet pT (top) and dijet massmjj (bottom) at LO (green), NLO (blue)
and NNLO (red) at (a and c)

√
s = 14 TeV and (b and d)

√
s = 27 TeV normalised to the NLO result.

the inclusion of HL-LHC pseudo-data in the fits. Figure 52 depicts the comparison of PDF uncertainties
in the inclusive jet and dijet production cross sections for CT14 and PDF4LHC HL-LHC (conservative
scenario) in pp collisions at

√
s = 14 and 27 TeV. A significant reduction in the PDF uncertainty is

expected with the inclusion of PDF-sensitive measurements in HL-LHC PDF fits.

5.1.2 High–pT light– and heavy–flavour jet measurements at the HL–LHC
The program of jet physics will substantially profit from the HL-LHC data since higher scales can be
reached and the region of very low partonic momentum fractions x can be accessed, where the parton
density becomes large. Measurements of jets originating from b quarks are important to investigate the
heavy-flavor contribution to the total jet cross section and to study the agreement of the measurement
with available theoretical predictions. In particular, inclusive b-jet production is very sensitive to higher-
order corrections and to parton showers. In top quark production processes, top jets can be defined
when the top quark decays hadronically and all decay products can be clustered into a single jet. The
production of W bosons is studied in the high-pT region, where the W bosons decay hadronically and
are reconstructed as jets. Jet substructure techniques are applied to discriminate the jets originating from
top quarks and W bosons from the QCD background.

Higher order QCD radiation affects the distribution of the angular correlation, and the region

97



210 210×2 310 310×2
 [GeV]

T
p

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

P
D

F
 u

nc
er

ta
in

ty
CT14

PDF4LHC HL-LHC scenario 1

=14 TeVs

=0.4   |y|<0.5R tanti-k

(a)

210 210×2 310 310×2
 [GeV]

T
p

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

P
D

F
 u

nc
er

ta
in

ty

CT14

PDF4LHC HL-LHC scenario 1

=27 TeVs

|y|<3.0≤=0.4   2.5R tanti-k

(b)

210×3 310 310×2 410
 [GeV]jjm

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

P
D

F
 u

nc
er

ta
in

ty

CT14

PDF4LHC HL-LHC scenario 1

=14 TeVs

=0.4   |y|<0.5R tanti-k

(c)

210×3 310 310×2 410 410×2
 [GeV]jjm

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

P
D

F
 u

nc
er

ta
in

ty

CT14

PDF4LHC HL-LHC scenario 1

=27 TeVs

=0.4   |y|<0.5R tanti-k

(d)

Fig. 52: Comparison of PDF uncertainty in the inclusive jet (a,b) and dijet (c,d) cross sections calculated
using the CT14 PDF set and the conservative PDF4LHC HL-LHC scenario 1 (i.e. scenario C in Sec. 5.2)
[298] set at

√
s = 14 TeV (left) and

√
s = 27 TeV (right).

where the jets are back-to-back in the transverse plane is particularly sensitive to multiple “soft” gluon
contributions, treated by all-order resummation and parton showers. This region is of particular interest
since soft-gluon interference effects between the initial and final state can be significant [521,522]. The
azimuthal correlations ∆φ = |φ2 − φ1| between the two leading pT jets and their dependency on the
production process is of particular interest because of color interference effects [523, 524].

Compared to Run-2 measurements at
√
s = 13 TeV the increase of the centre-of-mass energy

leads to about twice larger cross section at highest pT. Taking into account the much higher luminos-
ity and the higher cross section, the statistical uncertainty is expected to be around six times smaller,
compared to the analysis of the Run-2 data [525].

Measurements of high-pT jets originated from b-quarks are sensitive to the higher-order correc-
tions, parton shower modeling and the parton densities of the proton. In Fig. 53 (left), the inclusive
b-jet cross section differential in pT is shown for centre-of-mass energy of 13 and 14 TeV and rapidity
|y| < 0.5. The depicted statistical uncertainties correspond to the luminosity 300 fb−1 (13 TeV) and
3 ab−1 (14 TeV). The systematic uncertainty of the measurement is dominated by the jet energy scale
uncertainty, which is of similar size as for inclusive jets, and the b-tagging uncertainty, which is expected
to play a role mainly at higher pT where it is about 10%. It can be seen that the pT reach at HL-LHC for
the inclusive b-jets is about 3 TeV, where about 30 events with pT > 3 TeV are expected.

It is worth noticing that at high-pT the mass of the b-quark is nearly negligible with respect to
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Fig. 53: The inclusive b-jet cross section differential in the pT (left). The error bars show the statistical
uncertainty corresponding to the given luminosity, while the gray band represent the systematic uncer-
tainty from the jet-energy-scale and the total systematic uncertainty. The fraction of b-jets containing
both B and B̄ hadrons as a function of pT (right).

the jet momentum. This leads to the high probability that the b-quark is not produced in the hard sub-
process, but in the parton shower. As the mass of the b-quark becomes negligible, the probability of
gluon splitting into bb̄-pairs is similar to any other flavour (excluding top). In this case, the pair of the
B-hadrons is expected to be found inside the b-jet, where one consists of a b-quark, the second a b̄-quark.
The fraction of such jets as a function of pT as predicted by PYTHIA v8 MC is shown on Fig. 53 (right).
In the future, it will be crucial to disentangle between b-jets with b-quarks produced in the shower, and
b-jets with b-quarks produced in the hard sub-process.

Figure 54 shows a comparison of the jet cross sections as a function of pT and as a function of ∆φ
for the different processes applying the anti-kT clustering algorithm [526] withR = 0.8. In Fig. 54 (left)
the inclusive b-jet cross section is shown (for comparison with the inclusive jet cross section), while in
Fig. 54 (right) the two-b-jet cross section is shown. Except for the cross section for W production, the
statistical uncertainties shown correspond to an integrated luminosity of 3 ab−1 including efficiencies
due to b-tagging and selection at the detector level, estimated using the DELPHES simulation. Details of
the studies can be found in Ref. [525].

It can be seen that the shapes of the pT spectra are comparable but the top-jet cross section is about
ten thousand times smaller than the inclusive jet cross section. The ratio to the inclusive dijet cross
section as a function of ∆φ illustrates the differences in shape of the ∆φ distribution of the different
processes (all processes are normalized at ∆φ = π), which depend on the partonic configuration of the
initial state.

5.1.3 Inclusive photon production
Here follows a summary of the studies detailed in Ref. [515] of inclusive isolated photon production and
photon production in association with at least one jet. In both analyses the photon is required to have a
transverse energy in excess of 400 GeV and the pseudorapidity to lie in the range |ηγ | < 2.37 excluding
the region 1.37 < |ηγ | < 1.56. The photon is required to be isolated by imposing an upper limit on
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shown (for comparison with the inclusive jet cross section), while for ∆φ the two-b-jet cross section is
shown. For the ratio the normalization is fixed arbitrarily at ∆φ = π. The cross section of W production
does not include statistical uncertainties corrected for efficiencies and background subtraction.

the amount of transverse energy inside a cone of size ∆R = 0.4 in the η–φ plane around the photon,
excluding the photon itself: Eiso

T < Eiso
T,max.

In the inclusive photon analysis, the goal is the measurement of the differential cross section
as a function of EγT in four regions of the photon pseudorapidity: |ηγ | < 0.6, 0.6 < |ηγ | < 1.37,
1.56 < |ηγ | < 1.81 and 1.81 < |ηγ | < 2.37. Photon isolation is enforced by requiring Eiso

T <
4.2 · 10−3 · EγT + 4.8 GeV.

In the photon+jet analysis, jets are reconstructed using the anti-kT algorithm [274] with a radius
parameter R = 0.4. Jets overlapping with the photon are not considered if the jet axis lies within a cone
of size ∆R = 0.8. The leading jet is required to have transverse momentum above 300 GeV and rapidity
in the range |yjet| < 2.37. No additional condition is used for the differential cross section as a function
of pjet

T . For the differential cross section as a function of the invariant mass of the photon+jet system
additional constraints are imposed: mγ−jet > 1.45 TeV, | cos θ∗| < 0.83 and |ηγ ± yjet| < 2.37. These
additional constraints are imposed to remove the bias due to the rapidity and transverse-momentum
requirements on the photon and the leading jet [527, 528]. Photon isolation is enforced by requiring
Eiso

T < 4.2 · 10−3 · EγT + 10 GeV.

The yields of inclusive isolated photons and of photon+jet events are estimated using the pro-
gram JETPHOX 1.3.1_2 [529, 530]. This program includes a full next-to-leading-order QCD calculation
of both the direct-photon and fragmentation contributions to the cross sections for the pp→ γ + X and
pp→ γ + jet + X reactions. The number of massless quark flavours is set to five. The renormalisation
(µR), factorisation (µF) and fragmentation (µf ) scales are chosen to be µR = µF = µf = EγT. The cal-
culations are performed using the MMHT2014 [531] parameterisations of the proton parton distribution
functions (PDFs) and the BGF set II of parton-to-photon fragmentation functions at NLO [532]. The
strong coupling constant αs(mZ) is set to the value assumed in the fit to determine the PDFs. The reli-
ability of the estimated yields using the program JETPHOX is supported by the high purity of the signal
photons, the mild unfolding corrections and the fact that the NLO QCD predictions describe adequately

100



 [TeV]
γ

TE

1 2 3

N
u

m
b
e
r 

o
f 
e
v
e
n
ts

110

1

10

210

310

410

510

610
NLO QCD (Jetphox), MMHT2014 PDF

1 = 14 TeV, 3 abs

 > 0.4 TeV
γ

T
Isolated photon, E

| < 0.6γ
η|

| < 1.37γ
η0.6 < |

| < 1.81γ
η1.56 < |

| < 2.37γ
η1.81 < |

(a)

 [TeV]
γ

TE

1 2 3 4 5

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

110

1

10

210

310

410

510

610

710

810
NLO QCD (Jetphox), MMHT2014 PDF

1 = 27 TeV, 15 abs

 > 0.4 TeV
γ

T
Isolated photon, E

| < 0.6γ
η|

| < 1.37γ
η0.6 < |

| < 1.81γ
η1.56 < |

| < 2.37γ
η1.81 < |

(b)

 [TeV]jet

T
p

1 2 3 4 5

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

110

1

10

210

310

410

510

610

710

810
NLO QCD (Jetphox), MMHT2014 PDF

Isolated photon+jet

1 = 27 TeV, 15 abs
1 = 14 TeV, 3 abs

| < 2.37 (except 1.371.56)
γ

η > 0.4 TeV, |
γ

TE

| < 2.37
jet

 > 0.3 TeV, |y
jet

T
p

(c)

 [TeV]
jetγ

m

5 10

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

110

1

10

210

310

410

510

610

710 NLO QCD (Jetphox), MMHT2014 PDF

Isolated photon+jet

1 = 27 TeV, 15 abs
1 = 14 TeV, 3 abs

| < 2.37 (except 1.371.56)
γ

η > 0.4 TeV, |
γ

TE

| < 2.37
jet

 > 0.3 TeV, |y
jet

T
p

| < 2.37
jet

+y
γ

η*| < 0.83, |θ|cos

(d)

Fig. 55: (a,b) Predicted number of inclusive isolated photon events as a function of EγT assuming an
integrated luminosity of 3 ab−1 (15 ab−1) of pp collision data at

√
s = 14 TeV (27 TeV) in different

ranges of photon pseudorapidity: |ηγ | < 0.6 (solid histogram), 0.6 < |ηγ | < 1.37 (dashed histogram),
1.56 < |ηγ | < 1.81 (dotted histogram) and 1.81 < |ηγ | < 2.37 (dot-dashed histogram). (c,d) Predicted
number of photon+jet events assuming an integrated luminosity of 3 ab−1 (15 ab−1) of pp collision data
at
√
s = 14 TeV (27 TeV) as a function of (c) pjet

T and (d) mγ−jet.

the measurements of these processes using pp collisions at
√
s = 13 TeV [533, 534].

The predicted number of inclusive isolated photon events as a function of EγT in the different
ranges of |ηγ | assuming an integrated luminosity of 3 ab−1 (15 ab−1) of pp collision data at

√
s =

14 TeV (27 TeV) is shown in Figure 55(a) and 55(b). For the HL-LHC (HE-LHC), the reach in EγT is
(a) 3–3.5 (5) TeV for |ηγ | < 0.6, (b) 2.5–3 (5) TeV for 0.6 < |ηγ | < 1.37, (c) 1.5–2 (3–3.5) TeV for
1.56 < |ηγ | < 1.81 and (d) 1–1.5 (2.5–3) TeV for 1.81 < |ηγ | < 2.37. This represents a significant
extension of the region measured so far with pp collisions at

√
s = 13 TeV [533]; as an example, at the
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HL-LHC (HE-LHC) the EγT reach is extended from 1.5 TeV to 3–3.5 (5) TeV for |ηγ | < 0.6.

The predicted number of photon+jet events as a function of pjet
T and mγ−jet assuming an in-

tegrated luminosity of 3 ab−1 (15 ab−1) of pp collision data at
√
s = 14 TeV (27 TeV) is shown in

Figs. 55(c) and 55(d). In comparison with the latest measurements at
√
s = 13 TeV [534], the ex-

pectations obtained at the HL-LHC (HE-LHC) extend significantly the reach in pjet
T from 1.5 TeV to

3.5 (5) TeV and mγ−jet from 3.3 TeV to 7 (12) TeV.

5.1.4 Diphoton production
The production of photon pairs (diphotons) with high invariant mass is a very important process for
physics studies at high-energy hadron colliders. Photons are very clean final states and photon energies
and momenta can be measured with high precision in modern electromagnetic calorimeters. Therefore
prompt photons represent ideal probes to test the properties of the Standard Model (SM) [535]– [536]
and they are also important in searches for new-physics signals (see, e.g., Refs. [537]– [538]). Owing to
the above reasons, it is important to provide accurate theoretical predictions for diphoton production at
LHC energies. This task requires in particular, the calculation of QCD and EW radiative corrections at
high perturbative orders.

This contribution considers diphoton production in pp collisions at the
√
s = 14 GeV and

√
s =

27 GeV energies, and presents perturbative QCD results up to the NNLO by using the smooth cone
isolation criterion 25. Within the smooth cone isolation criterion [539] (see also Refs. [540,541]) photons
are selected by fixing the sizeR of the isolation cone and imposing a maximal amount of hadronic energy
(EhadT (r)) allowed inside the cone

EhadT (r) ≤ ET max χ(r;R) , in all cones with r ≤ R , (29)

with a suitable choice of the r dependence of the isolation function χ(r;R). The smooth isolation
function χ(r;R) used is 26

χ(r;R) =

(
1− cos(r)

1− cos(R)

)n
, (30)

and the value of the power n is set to the n = 1. This value of n avoids the sensitivity of the cross
section to soft (collinear) photons for large (small) value of n [544]. The radius of the photon isolation
cone is set at the value R = 0.4 and ET max = 10 GeV. Detailed comparisons between standard and
smooth cone isolation criteria have been presented in Refs. [90, 544–546].

The following kinematic cuts are applied:

pγ; hard
T > 40 GeV, pγ; soft

T > 30 GeV, |yγ | < 2.8 , (31)

where pγ; hard
T and pγ; soft

T are respectively the transverse momenta of the harder and softer photon and
|yγ | is the photon rapidity. The minimum angular distance between the two photons is Rmin

γγ = 0.4.

A lower limit rcut is implemented on the ratio pTγγ/Mγγ (pTγγ > rcutMγγ) [547], and values in
the range rcut = 0.08%–0.15% are used. The perturbative uncertainty is computed as the envelope of
three-point scale variation by considering the two asymmetric scale configurations with {µR = µ0/2,
µF = 2µ0} and {µR = 2µ0 , µF = µ0/2} and the central scale {µR = µF = µ0}.

This study begins by considering the invariant mass (Mγγ) distribution up to value of 2 TeV. The
LO, NLO and NNLO QCD results for a centre–of–mass energy of

√
s = 14 TeV are presented in Fig.56

(left). It is first observed the presence of a LO threshold at an invariant mass MLO = 2pγ; hard
T . The

25The NNLO QCD calculation within the standard cone isolation criterion has not been performed yet.
26The same form of the isolation function is used in the NNLO predictions reported in Refs. [536, 542, 543].
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Fig. 56: The differential cross sections dσ/dMγγ (left) and dσ/dpTγγ (right) at
√
s = 14 TeV are

shown in the upper panel at LO (black dotted), NLO (red dashed) and NNLO (blue solid). The NLO
and NNLO scale variation bands are obtained as detailed in the text. In the lower subpanels the ratio
between cross sections at two different centre–of–mass energies (

√
s = 27 TeV and

√
s = 14 TeV) is

also shown. The selection cuts are described in the text.

bulk of the cross section is concentrated in the region around MLO while for large values of Mγγ the
distribution rapidly decreases. At high invariant mass, Mγγ > 1 TeV, the cross section is dominated
by the quark annihilation (qq̄) partonic subprocess (the other partonic subprocesses are suppressed by
one order of magnitude or more). The NNLO K factor, KNNLO = σNNLO/σNLO, is flat at large
values of Mγγ and it is roughly equal to the NNLO K factor of the qq̄ channel. The lower subpanel
of Figure 56 (left) presents results for the ratio (R) between the invariant mass distribution at

√
s =

27 TeV and
√
s = 14 TeV. At LO the dynamic enhancement of the ratio can be described roughly as

G(M2
γγ/272 TeV2)/G(M2

γγ/(142 TeV2), where G(τ) = log(τ) × Lqq̄(τ, µf ) and L are the integrated
parton luminosities. The ratio at NLO and NNLO is numerically similar to the corresponding LO one.
The enhancement of the ratio R at large values of invariant mass is directly related to the increasing the
centre–of–mass energy and it reaches the value R ∼ 4 at Mγγ ' 1 TeV.

Finally theoretical results are presented for the transverse momentum (pTγγ) distribution. The
NLO and NNLO predictions with a centre–of–mass energy of

√
s = 14 TeV are shown in the upper

panel of Figure 56 (right). Given the LO kinematical constraint pTγγ = 0, the (N)NLO correction
represent effectively an (N)LO prediction. Moreover, in the small pTγγ region, the convergence of the
fixed order expansion is spoiled by the presence of large logarithmic corrections. Reliable perturbative
results require an all order resummation of these enhanced logarithmic contributions.

The lower subpanel of Figure 56 (right) presents results for the ratio (R) between the transverse
momentum distribution at

√
s = 27 TeV and

√
s = 14 TeV. The ratio increases at large value of pTγγ ,

reaching R ∼ 4 for pTγγ ' 1 TeV.

It is observed that the uncertainty bands for the NLO and NNLO results fail to overlap in most of
the kinematical regions. This suggests that the computed scale dependence at NNLO cannot be consid-
ered a reliable estimate of the true perturbative uncertainty. As an alternative approach the perturbative
uncertainty of the NNLO result can be estimated by considering half of the difference between the
NNLO and NLO results at central values of the scales [544].
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It is finally observed that the photon fragmentation component (which is absent in the case of
smooth cone isolation) mainly affects the the low invariant mass region, where the cross section is
strongly suppressed. Conversely, the intermediate and high invariant mass region, the transverse mo-
mentum distribution and the value of total cross section, are less sensitive to photon fragmentation
effects. In particular, for isolation parameters commonly used in the experimental analysis at the LHC,
the quantitative differences between smooth and standard isolation predictions are much smaller than the
corresponding perturbative uncertainties. This observation justifies the use of the smooth cone criterion
in the theoretical calculations.

5.2 Ultimate Parton Densities27

The goal of this study is to quantify the precision that can be expected in the determination of the parton
distribution functions (PDFs) of the proton in the HL-LHC era. Such “ultimate PDFs” will provide an
important ingredient for the physics projections at the HL-LHC with a robust estimate of theoretical
uncertainties, including some of those presented in other chapters of this Yellow Report. With this moti-
vation, HL-LHC pseudo-data have been generated for a number of PDF-sensitive measurements such as
top-quark, Drell-Yan, isolated photon, and W+charm production, and then studied the constraints that
these pseudo-data impose on the global PDF analysis by means of the Hessian profiling method. While
such studies have been performed in the context of future lepton-hadron colliders, see e.g. [461,548] for
the LHeC, this is the first time that such a systematic effort has been directed to the projections for a
future hadron collider. The study below is described in further detail in [549].

5.2.1 HL-LHC measurements for PDF studies
The PDF-sensitive processes that will be considered in this study are listed here first. In all cases, pseudo-
data is generated for a centre-of-mass energy of

√
s = 14 TeV assuming a total integrated luminosity

of L = 3 ab−1 for the CMS and ATLAS experiments, and of L = 0.3 ab−1 for the LHCb experiment.
With these settings, HL-LHC pseudo-data has been generated for the following processes:

– High-mass Drell-Yan, specifically the dilepton invariant mass differential distributions dσ(pp →
ll)/dmll for mll & 110 GeV for a central rapidity acceptance, |ηl| ≤ 2.4. This process is particu-
larly useful for quark flavour separation, in particular of the poorly known large-x sea quarks.

– Differential distributions in top-quark pair production, providing direct information on the large x
gluon [203]. Specifically, pseudo-data has been generated for the top-quark transverse momentum
ptT and rapidity yt as well as for the top-quark pair rapidity ytt̄ and invariant mass mtt̄.

– The transverse momentum distribution of the Z bosons in the large pZT region for central rapidity
|yZ | ≤ 2.4 and different bins of the dilepton invariant mass mll. This process is relevant to
constrain the gluon and the antiquarks at intermediate values of x [204].

– The production of W bosons in association with charm quarks (both in the central and forward
region). This process provides a sensitive handle to the strangeness content of the proton [550,
551]. The pseudo-data for this process has been generated as function of the pseudorapidity ηl of
the charged lepton from the W boson decay.

– Prompt isolated photon production, which represents a complementary probe of the gluon PDF at
intermediate values of x [205,552]. Here the pseudo-data have been generated as differential dis-
tributions in the photon transverse momentum pγT for different bins in the photon pseudorapidity
ηγ .

– Differential distributions for on-peak W and Z boson production in the forward region, 2.0 ≤
ηl ≤ 4.5, covered by detectors with large acceptance, including forward rapidity. These measure-

27Contribution by R. Abdul Khalek, S. Bailey, J. Gao, L. Harland-Lang and J. Rojo.
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ments constrain quark flavour separation, including the strange and charm content of the proton,
in the large and small x region [553].

– The inclusive production of jets in different bins of rapidity (both in the central and forward region)
as a function of pjet

T . Jets have been reconstructed using the anti–kt algorithm [274] withR = 0.4,
and provide information on the large-x gluon and valence quarks [554].

In all cases, the binning and kinematic cuts from the most recent
√
s = 13 TeV analyses or the

corresponding 8 TeV analyses if the former are not available, are taken as the baseline. The binning
has been suitably extended to account for the extended kinematic coverage achieved with L = 3 (0.3)
ab−1. The statistical uncertainties are computed from the number of events per bin, while systematic
errors are rescaled as compared to the 13 (or 8) TeV baseline analysis, see below. Various scenarios for
the reduction of systematic errors are considered, from a more conservative one to a more optimistic
one. The overall acceptance of the selection cuts (which affects the final event yield per bin) is estimated
globally again based on the reference experimental analysis.

As mentioned above, this list of processes is not exhaustive: several other important processes
will provide useful information on the parton distributions in the HL-LHC era, from inclusive dijet
production [19] to single top quark [555] and D meson production [231], see also [193]. In addition,
progress may be expected from both the experimental and theory sides leading to novel processes, not
considered so far, being added to the PDF fitting toolbox. Even with these caveats, the list above is
extensive enough to provide a reasonable snapshot of the PDF-constraining potential of the HL-LHC.

It is worth emphasising that the projections are based on pseudo-data which have been generated
specifically for this study. They are thus not endorsed by the LHC experiments, although the feedback
received from the ATLAS, CMS, and LHCb contact persons have been taken into account.

Generation of HL-LHC pseudo-data and fitting procedure
For each of the HL-LHC processes listed above, theoretical predictions have been generated at next-to-
leading order (NLO) using MCFM [210] interfaced to APPLGRID [208] to produce the corresponding
fast grids. The central value of the pseudo-data is first produced according the central prediction of
the PDF4LHC15 NNLO set [195], and then fluctuations as expected by the corresponding experimental
uncertainties are included. Since the present study is based on pseudo-data, it does not account for
higher-order QCD effects or electroweak corrections. As in the case of PDF closure tests [201], here
only the relative reduction of PDF uncertainties once the HL-LHC data are added are of interest, while
by construction the central value will be mostly unaffected.

To be more specific, if σth
i is the theoretical cross-section for bin i of a given process, computed

with PDF4LHC15 NNLO, then the central value of the HL-LHC pseudo-data σexp
i is constructed by

means of
σexp
i = σth

i ×
(

1 + ri · δexp
tot,i + λ · δexp

L
)
, (32)

where ri, λ are univariate Gaussian random numbers, δexp
tot,i is the total (relative) experimental uncertainty

corresponding to this specific bin, and δexp
L is the luminosity uncertainty related to the experiment. The

latter are taken to be 1.5% for each of the CMS, ATLAS, and LHCb experiments. The motivation
for adding the fluctuations on top of the central theoretical predictions is to simulate the statistical and
systematic uncertainties of an actual experimental measurement. In eq. (32) the total experimental error
is defined as

δexp
tot,i ≡

((
δexp

stat,i

)2
+
(
fcorr × fred × δexp

sys,i

)2
)1/2

. (33)

In this expression, the relative statistical error δexp
stat,i is computed as

δexp
stat,i =

(
facc ×Nev,i

)−1/2
, (34)
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where Nev,i = σth
i ×L is the expected number of events in bin i at the HL-LHC with L = 3 (0.3) ab−1,

and facc ≤ 1 is an acceptance correction which accounts for the fact that, for some of the processes
considered, such as top quark pair production, there is a finite experimental acceptance and/or one needs
to include the effects of branching fractions. The value of facc is then determined by extrapolation using
the reference dataset. The one exception to this is the case of forward W+charm production, for which
no baseline measurement has so far been performed by LHCb; here the acceptance is set to facc = 0.3 to
account for the anticipated c–jet tagging efficiency. In eq. (33), δexp

sys,i indicates the total systematic error
of bin i taken from the reference LHC measurement at either 8 TeV or 13 TeV. The correction factor
fred ≤ 1 accounts for the expected improvement in the average systematic uncertainties at the HL-LHC
in comparison to Run-2, due to both detector improvements and the enlarged dataset for calibration.

With the exception of the luminosity in eq. (33) the systematic uncertainties have simply been
added in quadrature with the statistical ones. That is, correlations between systematic errors are not
taken into account. The full inclusion of such correlations goes beyond the scope of the closure tests
being pursued in this exercise, which aim simply to provide a reasonable extrapolation of the expected
PDF reach at the HL-LHC. In particular, the expected improvements in the overall size of the systematic
uncertainties can only be based on the estimates and expectations provided by the LHC collaborations,
and cannot be predicted with absolute certainty. The situation is certainly even more challenging in the
case of the specific mutual correlations of the systematic uncertainties, which will be sensitive to the
precise experimental setup in the future. However, simply excluding the effects of correlations would
artificially reduce the impact of the pseudo-data into the fit.

For this reason, an effective correction factor fcorr is introduced to accounts for the fact that data
with correlated systematic uncertainties is more constraining than the same data where all errors are
added in quadrature. The value of fcorr has been checked against the available

√
s = 8 TeV top quark

[556,557] and the 13 TeV W+charm [558] differential distributions, that is fcorr is varied until the PDF
impact is in line with the result including full experimental correlations. This turns out to have a value
of between fcorr ' 1.0 and 0.3 depending on the data set and observable. A factor of fcorr = 0.5 is
taken in what follows.

In Table 31 a summary of the features of the HL-LHC pseudo-data generated for the present study
is collected. For each process, the kinematic coverage, the number of pseudo-data points used Ndat, the
values of the correction factors facc, fcorr, and fred; and finally the reference from the 8 TeV or 13 TeV
measurement used as baseline to define the binning and the systematic uncertainties of the HL-LHC
pseudo-data are indicated. A total of Ndat = 768 pseudo-data points are then used in the PDF profiling.
The values of the reduction factor for the systematic errors fred are varied between 1 (0.5) and 0.4 (0.2)
in the conservative and optimistic scenarios for a 8 TeV (13 TeV) baseline measurement. This choice
is motivated because available 13 TeV measurements are based on a relatively small L and therefore
cannot be taken as representative of the systematic errors expected at the HL-LHC, even in the most
conservative scenario.

Hessian profiling

There exist a number of techniques that can be used to quantify the impact on PDFs of the pseudo-
data listed in Table 31. In the case of Monte Carlo sets such as NNPDF, the Bayesian reweighting
method [564,565] reproduces the result of a direct fit, but it is restricted by the fact that information loss
limits its reliability when the measurements provide significant new information. For Hessian sets such
as PDF4LHC15_100 instead, the profiling technique [476] is more suitable to achieve the same purpose.
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Table 31: Summary of the features of the HL-LHC pseudo-data generated for the present study. For each
process the kinematic coverage, the number of pseudo-data points used Ndat across all detectors, the values of
the correction factors fcorr and fred; and finally the reference from the 8 TeV or 13 TeV measurement used as
baseline to define the binning and the systematic uncertainties of the HL-LHC pseudo-data, as discussed in the
text, are indicated.

Process Kinematics Ndat fcorr fred Baseline

Z pT

20 GeV ≤ pllT ≤ 3.5 TeV

338 0.5 (0.4, 1) [559] (8 TeV)12 GeV ≤ mll ≤ 150 GeV

|yll| ≤ 2.4

high-mass Drell-Yan
p
l1(2)
T ≥ 40(30) GeV

32 0.5 (0.4, 1) [560] (8 TeV)
|ηl| ≤ 2.5, mll ≥ 116 GeV

top quark pair |yt| ≤ 2.4 110 0.5 (0.4, 1) [557] (8 TeV)

W+charm (central)
pµT ≥ 26 GeV, pcT ≥ 5 GeV

12 0.5 (0.2, 0.5) [558] (13 TeV)
|ηµ| ≤ 2.4

W+charm (forward)

pµT ≥ 20 GeV, pcT ≥ 20 GeV

10 0.5 (0.4, 1) LHCb projectionpµ+c
T ≥ 20 GeV

2 ≤ ηµ ≤ 5, 2.2 ≤ ηc ≤ 4.2

Direct photon EγT . 3 TeV, |ηγ | ≤ 2.5 118 0.5 (0.2, 0.5) [561] (13 TeV)

Forward W,Z

plT ≥ 20 GeV, 2.0 ≤ ηl ≤ 4.5

90 0.5 (0.4, 1) [562] (8 TeV)2.0 ≤ yll ≤ 4.5

60 ≤ mll ≤ 120 GeV

Inclusive jets |y| ≤ 3, R = 0.4 58 0.5 (0.2, 0.5) [563] (13 TeV)

Total 712

This Hessian profiling is based on the minimization of

χ2 (βexp, βth

)
=

Ndat∑

i=1

1
(
δexp

tot,iσ
th
i

)2


σexp

i +
∑

j

Γexp
ij βj,exp − σth

i +
∑

k

Γth
ik βk,th




2

+
∑

j

β2
j,exp + T 2

∑

k

β2
k,th , (35)

with σexp
i (σth

i ) are the central values of a given experimental measurement (theory prediction), βj,exp

are the nuisance parameters corresponding to the set of fully correlated experimental systematic uncer-
tainties, βk,th are the nuisance parameters corresponding to the PDF Hessian eigenvectors, Ndat is the
number of data points and T is the tolerance factor. The matrices Γexp

ij and Γth
ik encode the effects of the

corresponding nuisance parameters on the experimental data and on the theory predictions, respectively.

As mentioned above, in this study the statistical and experimental uncertainties are added in
quadrature excluding the luminosity, and then the effects of the missing correlations are accounted for
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Fig. 57: Comparison of the predictions for themtt̄ distribution in top-quark pair production at the HL-LHC using
PDF4LHC15 with the associated pseudo-data and with the profiled results with F ≡ fcorr · fred = 0.2 (left). The
corresponding differences at the level of the gluon PDF at Q = 100 GeV before and after profiling all top-quark
pair production observables (right).

by means of the factor fcorr. For this reason there are only nuisance parameters for the luminosity errors,
and for an overall normalization uncertainty of 5% in forward W+charm production due to charm-jet
tagging. If eq. (35) is minimised with respect to these nuisance parameters, this gives:

χ2 (βth) =

Ndat∑

i,j=1

(
σexp
i − σth

i +
∑

k

Γth
ik βk,th

)
(cov)−1

ij

(
σexp
j − σth

j +
∑

m

Γth
jm βm,th

)
+T 2

∑

k

β2
k,th ,

(36)
where:

(cov)ij = δij

(
δexp

tot,iσ
th
i

)2
+
∑

Γexp
i,lumi/normΓexp

j,lumi/norm. (37)

eq. (36) is then minimised with respect to the Hessian PDF nuisance parameters βk,th, which can be
interpreted as leading to PDFs that have been optimised to describe this new dataset. The resulting
Hessian matrix on βk,th at the minimum can be diagonalised to construct the new eigenvector directions.
Finally, the PDF uncertainties are determined from the ∆χ2 = T 2 criteria. In the studies presented
here, a global T = 3 is used which approximately corresponds to the average tolerance determined
dynamically in the CT14 and MMHT14 analyses.

Results for individual processes
The results of the Hessian profiling of PDF4LHC15 from individual processes are now presented, and
subsequently the corresponding results from the combination of all the HL-LHC processes are consid-
ered in different scenarios. First, the top-quark pair production case listed in Table 31 is considered. In
Fig. 57 the comparison of the predictions for themtt̄ distribution in top-quark pair production at the HL-
LHC using PDF4LHC15 is shown with the associated pseudo-data for ATLAS and CMS experiments,
and with the profiled results with F ≡ fcorr · fred = 0.2. The corresponding impact at the level of the
gluon PDF at Q = 100 GeV is also presented before and after profiling with all tt̄ data in Table 31. It is
clear that the HL-LHC pseudo-data in this scenario will have much smaller uncertainties than the PDF
uncertainties, so there is a marked reduction on the PDF errors on the gluon at large-x. Note that the
two points in each of the bins in Fig. 57 (left) correspond to the ATLAS and CMS pseudo-data.
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Fig. 58: Same as Fig. 57 for W+charm quark production with impact on strange quark PDF (upper) and the
high-mass Drell-Yan process with impact on ū PDF (lower).

Two other representative processes are considered next: W+charm quark production in central
rapidity region and the high-mass Drell-Yan process. In Fig. 58 the same comparison is shown as in
Fig. 57 for these two processes. In the case of the W+charm quark production, a clear reduction of PDF
errors is observed in the strangeness, s+s, at intermediate values of x, highlighting the sensitivity of this
measurement to the strange content of the proton. For the case of high-mass Drell-Yan, the uncertainties
on the ū quark PDF are reduced at large x region. Here the impact is rather moderate, as experimental
and PDF errors are comparable even in the high mll region.

5.2.2 Ultimate PDFs from HL-LHC data

The final profiled PDF sets are based on the combined datasets listed in Table 31; these provide an
estimate of the impact of future HL-LHC measurements into our knowledge of the quark and gluon
structure of the proton. In Table 32 the three scenarios for the systematic uncertainties of the HL-LHC
pseudo-data assumed in the present exercise are listed. These scenarios, ranging from more conservative
to more optimistic, differ among them in the reduction factor fred, eq. (33), applied to the systematic er-
rors of the reference 8 TeV or 13 TeV measurements. In particular, in the optimistic scenario a reduction
of the systematic errors by a factor 2.5 compared to the reference 8 TeV measurements is assumed. A
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Fig. 59: Comparison of PDF4LHC15 with the profiled sets with HL-LHC data in scenarios A and C (see text).
The gluon, down quark, up anti-quark, and total strangeness at Q = 10 GeV are shown, normalized to the central
value of the baseline.

large factor of 5 for the 13 TeV measurements is assumed, correcting for the fact that these are based in
the initial datasets which generally have larger systematic errors in comparison to the 8 TeV case. The
name of the corresponding LHAPDF grid is also indicated in each case.

Table 32: The three scenarios for the systematic uncertainties of the HL-LHC pseudo-data assumed in the present
exercise. These scenarios, ranging from conservative to optimistic, differ among them in the reduction factor fred,
eq. (33), applied to the systematic errors of the reference 8 TeV or 13 TeV measurements. The name of the
corresponding LHAPDF grid is also indicated in each case.

Scenario fred (8 TeV) fred (13 TeV) LHAPDF set Comments

A 0.4 0.2 PDF4LHC_nnlo_hllhc_scen3 Optimistic

B 0.7 0.36 PDF4LHC_nnlo_hllhc_scen2 Intermediate

C 1 0.5 PDF4LHC_nnlo_hllhc_scen1 Conservative

Then in Fig. 59 a comparison of the baseline PDF4LHC15 set is presented with the profiled sets
based on HL-LHC pseudo-data from scenarios A and C in Table 32. Specifically, the gluon, down quark,
up anti-quark, and total strangeness at Q = 10 GeV are shown, normalized to the central value of the
baseline. The predictions of scenarios A and C (optimistic and conservative respectively) are observed
to be reasonably similar. This demonstrates that the results are relatively robust against the projections
of how experimental errors will be reduced in HL-LHC measurements. A marked reduction of PDF

110



10 210 310
 ( GeV )XM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

G
lu

on
-G

lu
on

 (
R

at
io

 to
 b

as
el

in
e)

Baseline

+ HLLHC (scen C)

+ HLLHC (scen A)

=14 TeVsUncertanties in PDF lumis @ HL-LHC 

10 210 310
 ( GeV )XM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q
ua

rk
-G

lu
on

 (
R

at
io

 to
 b

as
el

in
e)

Baseline

+ HLLHC (scen C)

+ HLLHC (scen A)

=14 TeVsUncertanties in PDF lumis @ HL-LHC 

10 210 310
 ( GeV )XM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q
ua

rk
-A

nt
iq

ua
rk

 (
R

at
io

 to
 b

as
el

in
e) Baseline

+ HLLHC (scen C)

+ HLLHC (scen A)

=14 TeVsUncertanties in PDF lumis @ HL-LHC 

10 210 310
 ( GeV )XM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q
ua

rk
-Q

ua
rk

 (
R

at
io

 to
 b

as
el

in
e)

Baseline

+ HLLHC (scen C)

+ HLLHC (scen A)

=14 TeVsUncertanties in PDF lumis @ HL-LHC 

Fig. 60: The reduction of PDF uncertainties in the gg, qg, qq̄, and qq luminosities at
√
s = 14 TeV due to the

HL-LHC pseudo-data (in scenarios A and C) with respect to the PDF4HC15 baseline.

uncertainties is visible in all cases, and is particularly significant for the gluon and the sea quarks, which
are worse known than the valence quarks.

Next, the partonic luminosities are investigated, in particular by quantifying the improvement in
the PDF uncertainties in different initial-state partonic combinations from the HL-LHC pseudo-data. In
Fig. 60 the reduction of PDF uncertainties are shown in the gg, qg, qq̄, and qq luminosities at

√
s = 14

TeV due to the HL-LHC pseudo-data (in scenarios A and C) with respect to the PDF4HC15 baseline.
The average values of this PDF error reduction for three different invariant mass bins (low, medium, and
high values of MX ) is shown in the table in Fig. 61.28 The value outside (inside) brackets correspond
to scenario C (A). Note that in this table the us luminosity is also listed, which contributes to processes
such as inclusive W+ production.

From the comparisons in Fig. 60 and in Fig. 61 it is observed the overall error reduction is not
too sensitive to the specific projections assumed for the experimental systematic uncertainties. In the
intermediate mass bin, 40 GeV ≤ MX ≤ 1 TeV, the reduction of PDF uncertainties ranges roughly
between a factor of 2-4, depending on the partonic channel and the scenario for the systematic errors.
For example, for the gg luminosity in the range relevant for Higgs production, a reduction by a factor
' 3 in scenario A is found. A similar improvement is found in the high mass region, MX ≥ 1 TeV,
directly relevant for beyond-SM (BSM) searches. In the optimistic scenario, the PDF error reduction at
high masses ranges between a factor 4 for the gg luminosity to around a factor 2 for the qq and qq̄ ones.
On the other hand, the PDF error reduction is more moderate in the low mass region, MX . 20 GeV,
since none of the processes in Table 31 is directly sensitive to it.

28The average is computed from 10 points per mass bin, log-spaced in MX .
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PDF uncertainties 
HLLHC / Current 10 GeV < MX < 40 GeV 40 GeV < MX < 1 TeV 1 TeV < MX < 6 TeV

g-g luminosity 0.58 (0.49) 0.41 (0.29) 0.38 (0.24)

q-g luminosity 0.71 (0.65) 0.49 (0.42) 0.39 (0.29)

quark-quark 
luminosity 0.78 (0.73) 0.46 (0.37) 0.60 (0.45)

quark-antiquark 
luminosity 0.73 (0.70) 0.40 (0.30) 0.61 (0.50)

up-strange 
luminosity 0.73 (0.67) 0.38 (0.27) 0.42 (0.38)

Fig. 61: The uncertainties associated to different PDF luminosities, normalised to the uncertainties of the current
baseline (PDF4LHC15). The average for three different invariant mass MX bins is computed. The numbers
outside (inside) brackets correspond to the conservative (optimistic) scenario.
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Fig. 62: Comparison between the baseline PDF4LHC15 predictions for high-mass supersymmetric particle pro-
duction at the HL-LHC with the corresponding HL-LHC projections corresponding to scenarios C and A, nor-
malised to the central value of the baseline. The results for gluino-gluino and squark-gluino production cross-
sections are shown at

√
s = 14 TeV.

Implications for LHC phenomenology
Now some selected phenomenological implications of these “ultimate” PDFs at the HL-LHC are pre-
sented for a variety of processes, both within the SM and beyond. First high-mass supersymmetric
(SUSY) particle production at the HL-LHC is considered, where sparticles masses up to ' 3 TeV can
be searched for. While this SUSY scenario is considered for concreteness, similar results will hold
for the production of new BSM states within other models. In Fig. 62 the comparison between the
baseline PDF4LHC15 predictions with the corresponding HL-LHC results is shown corresponding to
scenarios C and A (conservative and optimistic respectively), normalised to the central value of the for-
mer. Specifically, the cross-sections for gluino-gluino and squark-gluino are shown at

√
s = 14 TeV.

Theoretical predictions have been computed at leading order (LO) using PYTHIA8.235 [292] with the
SLHA2 benchmark point [566] for a range of sparticle masses. For simplicity, underlying event and
multiple interactions have been ignored.

From the comparisons in Fig. 62, the constraints on the PDFs from the HL-LHC pseudo-data
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Fig. 63: Same as Fig. 62 for Standard Model processes. The upper plots show diphoton (dijet) production as a
function of the minimum invariant mass Mmin

γγ (Mmin
jj ). The bottom plots show Higgs boson production in gluon

fusion, first inclusive and decaying into bb̄ as a function of pT,min
b , and then in association with a hard jet as a

function of pT,min
jet .

lead to a marked reduction to the uncertainties in the high-mass SUSY cross-sections, consistent with
the corresponding reduction at the level of luminosities reported in Fig. 60. For instance, for gluino
pair-production with Mg̃ = 3 TeV, the PDF uncertainties are reduced from ' 60% to ' 25% in the
optimistic scenario. An even more marked reduction is found for the squark-gluino cross-section, spe-
cially at large sparticle masses. More moderate improvements are found in the case of squark-antisquark
production, due to the limited constraints that the HL-LHC provides on the large-x antiquarks, at least
for the processes considered here. In this case, an error reduction of a factor of ' 25% is found for
Mq̃ = 3 TeV.

Next, in Fig. 63 a similar comparison is presented as that of Fig. 62, now for various SM pro-
cesses. The upper plots display diphoton (dijet) production as a function of the minimum invariant mass
Mmin
γγ (Mmin

jj ). The bottom plots show Higgs boson production in gluon fusion, first inclusive and de-
caying into bb̄ as a function of pT,min

b , and then in association with a hard jet as a function of pT,min
jet .

These cross-sections have been computed at LO with MCFMv8.2 [210] with the basic ATLAS and CMS
acceptance cuts. The use of leading-order theory is justified as only the relative impact of the PDF error
reduction is of interest, rather than providing state-of-the-art predictions for the rates.

From the comparisons in Fig. 63, the two scenarios, A and C, give similar results. In the case
of dijet production, which at large masses is dominated by the qq and qg luminosities, PDF errors are
expected to reduce down to '2% even for invariant masses as large as Mjj = 6 TeV. A similar con-
clusion can be drawn for diphoton production, also sensitive to the qq partonic initial state. Concerning
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Higgs boson production in gluon fusion, in the inclusive case the HL-LHC constraints should lead to
PDF errors below the percent level. For Higgs boson production in association with a hard jet, a marked
error reduction is found, suggesting that PDF uncertainties in the phT distribution should be down to at
most the '2% level at the HL-LHC in the entire relevant kinematical range.

Summary and outlook
In this study, the constraints that HL-LHC measurements are expected to impose on the quark and
gluon structure of the proton have been quantified. The impact of a range of physical processes have
been assessed, from weak gauge boson and jet production to top quark and photon production, and
the robustness of the results has been studied with respect to different projections for the experimental
systematic uncertainties. It is found that, in the invariant mass region MX & 100 GeV, the HL-LHC
measurements can be expected to reduce the PDF uncertainties in processes such as Higgs boson or
SUSY particle production by a factor between 2 and 4, depending on the dominant partonic luminosity
and on the scenario for the systematic errors. Therefore, the exploitation of the HL-LHC constraints
on PDFs will feed into improved theoretical predictions for a range of phenomenologically relevant
processes both within and beyond the SM.

Two caveats are relevant at this point. First, only a non–exhaustive subset of all possible mea-
surements of relevance for PDF fits has been considered. Other processes not considered here, due to
currently anticipated measurements and those not foreseen but which may well added to the PDF tool-
box in the future, will certainly increase the PDF impact in some regions. Second, any possible issues
such as data incompatibility, theoretical limitations, or issues with the data correlation models, which
may limit the PDF impact in some cases have been ignored. All these issues can only be tackled once
the actual measurements are presented.

The results of this study are made publicly available in the LHAPDF6 format [202], with the grid
names listed in Table 32. This way, the “ultimate” PDFs produced here can be straightforwardly applied
to related physics projections of HL-LHC processes taking into account our improved knowledge of the
partonic structure of the proton which is expected by then.

5.3 Underlying Event and Multiple Parton Interactions
Underlying event (UE), defined as a accompanying activity to hard proton-proton scattering process,
is an unavoidable background to collider observables for most measurements and searches. The UE
activity is not constant on an event-by-event basis, so the contribution from UE cannot be subtracted.
However by using measurements sensitive to UE activity, the modelling of it in Monte Carlo (MC) event
generators is tuned.

Multiple parton interactions (MPI) are one of the most important contributors to UE. The de-
pendence of MPI on the centre-of-mass energy (

√
s) cannot be derived from first principles, rather

modelled by looking at data at different centrer-of-mass energies, from Tevatron to LHC. At the start of
the LHC, it was found that the this energy extrapolation of MPI based in Tevatron Run-1 and -2 data
(at
√
s = 1.8 TeV and

√
s = 1.96 TeV) did not describe the LHC data at

√
s = 900 GeV and at√

s = 7 TeV [567], and predictions of different MC generators varied significantly. These generators
were then tuned using LHC Run-1 and Run-2 (

√
s = 13 TeV) data.

5.3.1 Underlying Event at 27 TeV29

The level of UE activity at the HL-LHC centre-of-mass energy of
√
s = 14 TeV is expected to be very

similar to the one measured at
√
s = 13 TeV in Run-2. Given such a small increment in centre-of-mass

29Contribution by D. Kar.
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Fig. 64: Definition of UE regions in the azimuthal angle with respect to the leading charged particle

energy, it is expected that the current MC tunes will be generally valid at HL-LHC too. On the other
hand, to get a sense of the UE activity at HE-LHC, two state-of-the-art MC generators, PYTHIA8 [292]
(v235) with Monash tune [230] and HERWIG7 [146, 147] (v713) with default tune were used. As the
first measurements at a new centre-of-mass energy data are easiest to perform in inclusive (i.e minimum-
bias) events, 5 million such events were generated in each case. The UE activity is measured using the
leading charged particle as the reference object, and defining the usual UE regions with respect to it, as
shown in Fig. 64.

In Fig. 65, the scalar sum (density in per unit η-φ area) of charged particles and charged particle
multiplicity (density) as a function of leading charged particle pT are shown. The data is from the
ATLAS measurement at

√
s = 13 TeV [568], while MC predictions both at

√
s = 13 TeV and

√
s =

27 TeV are shown. A few conclusions can be drawn. The activity increases by about 25 - 30% by roughly
doubling the centre-of-mass energy, and the predictions by both generators are extremely consistent. The
typical plateau-like behaviour of the activity with increasing leading charged particle pT can be seen at√
s = 27 TeV as well.

The similarity in predictions by two different generators is a welcoming sign, and perhaps indi-
cates that the modelling of MPI evolution with centre-of-mass energy is mature enough. Of course at√
s = 27 TeV, the events will be very active, and disentangling the effect of MPI in even typical UE

observables will be a challenge, and innovative topologies and observables will be have to be devised in
order perform UE measurements.

The analysis and plots are done using the Rivet [344] analysis framework.

5.3.2 Double Parton Scattering30

An instance of MPI is the double parton scattering (DPS) that occurs when one has two distinct hard
parton-parton collisions in a single proton-proton interaction. In terms of the total cross section to pro-
duce a final state AB that may be divided into two subsets A and B, DPS is formally power suppressed
by ∼ Λ2

QCD/min(Q2
A, Q

2
B) compared to the more-familiar single parton scattering (SPS) mechanism.

However, in practice there are various processes and kinematic regions where DPS contributes at a simi-
lar (or greater) level than SPS. Processes include those in which the SPS is suppressed by small/multiple

30Contribution by S. Cotogno, M. Dunser, J. R. Gaunt, T. Kasemets, and M. Myska.
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Fig. 65: Comparison of the UE activities in different centre-of-mass energies.

coupling constants, such as same-signWW production, and processes where at least one part of the final
state can be produced via a comparatively low scale scattering – e.g. those involving a charm/bottom
quark pair.

The full theoretical description of DPS in QCD is rather complex, and many of the steps towards
its formulation were achieved only recently [569–574]. As a result, many past studies of DPS have taken
a strongly simplified approach in which it is assumed that the two colliding partons from each proton
are entirely uncorrelated with one another, and that the (single) parton density in momentum fraction x
and impact parameter b may be factorised into the PDF and a transverse profile depending only on b.
In this case the DPS cross section simplifies into the so-called ‘pocket formula’:

σABDPS '
σASPSσ

B
SPS

σeff
(38)

The quantity σeff is a geometrical factor of order of the proton radius squared. The modelling of
more general multiple parton interactions (MPI) in Monte Carlo event generators such as HERWIG and
PYTHIA is based on similar approximations.

The eq. (38) does not take into account the possibility that the two partons from either or both
protons may have arisen as the result of a perturbative 1 → 2 splitting of a single parton into two. It
also does not take into account a multitude of possible correlations between two partons in a proton, in
spin, colour, and momentum fraction xi, correlations between xi and the transverse separation between
partons y, as well as potential interference contributions in parton type. These correlations and QCD
effects can result in a DPS cross section differing from the prediction of eq. (38), both in terms of overall
rate and also, crucially, in distributions.

Studies of DPS at the LHC and earlier colliders have essentially been restricted to extractions of a
single number, the DPS rate, for several processes. From these early studies, in which the error bars are
large and multiple factors change between measurements (x values, parton channels, scales...), nothing
conclusive can be determined thus far concerning correlations. However, the increased luminosity of
the HL-LHC will provide the statistics needed to study differential distributions with sufficiently small
uncertainties that it will be possible to probe quantum correlations between partons in the proton and the
dynamics of the 1→ 2 splitting for the first time. The results of these studies can be fed back and used
to improve the theoretical modelling of DPS (and more general MPI), yielding improved DPS signal or
background predictions.

116



As can be inferred from eq. (38), DPS roughly scales as the fourth power of a parton distribution,
whilst SPS only scales as the second power. This means that for given hard scales QA, QB , the DPS
cross section grows faster than the SPS one as the collider energy increases (and decrease x), meaning
that at a HE-LHC DPS will be more prominent and easily measurable than at the LHC. At the same
time, at the lower x values involved the effects of the correlations and 1→ 2 splittings will be different
- a combination of measurements of different processes at both the HL-LHC and HE-LHC should help
us to separate out the effects of the different correlations.

Let us illustrate the general points above using a concrete process – namely same-sign WW
production, where both W s decay leptonically into e or µ. A simple correlation-sensitive observable for
this process is the asymmetry aηl :

aηl =
σ(η1 · η2 < 0)− σ(η1 · η2 > 0)

σ(η1 · η2 < 0) + σ(η1 · η2 > 0)
, (39)

where η1,2 are the rapidities of the two leptons. This quantity measures the discrepancy between the
number of times the produced leptons emerge into opposite hemispheres of the detector and the number
of times they emerge into the same hemisphere, normalised by the total number of lepton pairs produced.
In the absence of parton correlations, it is found that aηl = 0; any departure from this value indicates the
presence of correlations. A more differential version of this asymmetry is the cross section differential
in the product η1 · η2. Here an absence of correlations yields a symmetric distribution under η1 · η2 ↔
−η1 · η2, and an asymmetric distribution indicates correlations. In the below studies a cut of |ηi| < 2.4
is always applied.

One type of correlation that will clearly affect these observables are correlations in momentum
fraction x between the partons. This type of effect was investigated in [575]. Here, the double parton
distributions (DPDs) were calculated at an input scale of Q2

0 = 0.26 GeV2 from a constituent quark
model calculation where the proton is taken as being composed only from the three quarks uud. At this
scale there are necessarily strong correlations in x space from the fact that there are only three quarks
and due to the constraint

∑
i xi = 1. These inputs were then evolved up to the W mass scale via the

double DGLAP equations, with effects of 1 → 2 splittings being ignored. In Fig. 66, the green band
represents their result at

√
s = 14 TeV for a quantity equal to σ(η1 · η2 < 0)/σ(η1 · η2 > 0) – their

result corresponds to aηl ∼ 0.05. On the same plot is given the anticipated sensitivity of the CMS
experiment at the HL-LHC (3 ab−1) [576] and the lowest values of this ratio that would allow one to
reject the hypothesis of eq. (38) at the 95% confidence level. These results indicate good prospects of
the HL-LHC measuring aηl values on the few per cent level for this process.

One simple feature that must necessarily be present in the true DPDs, and is taken into account
by the DPDs of [575] but not by eq. (38), is the fact that removing one valence u quark from the
proton halves the probability to find another, and there is no chance to find two valence d quarks (this
requirement is formally expressed in the number sum rules of [577]). This effect is highly relevant
to aηl as it results in a reduction of cross section for large η1 · η2 (which probes the ‘double valence’
region in one DPD) whilst leaving the cross section elsewhere unchanged. To investigate the size of
aηl resulting from this effect only, DPD inputs are constructed at Q0 = 1 GeV based on a factorised
ansatz of a product of MSTW2008LO PDFs times a transverse factor, except that in the uu and dd cases
the PDF part is given by Du(x1)Du(x2)− 1

2D
uv(x1)Duv(x2) and Dd(x1)Dd(x2)−Ddv(x1)Ddv(x2)

respectively. Evolving these inputs and using them to calculate the W+W+ cross section at
√
s =

13 TeV, an asymmetry of∼ 0.017 is observed, indicating that these simple ‘valence number effects’ are
at least one important driving force in the asymmetry of [575].

Correlations in (longitudinal) spin can affect the rapidity distributions of the produced leptons
[578] and result in a nonzero aηl . The potential size of effects from spin correlations was investigated
recently in [579]. In this study the unpolarised double parton distributions were constructed according to
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Fig. 66: Ratio of σeff for η1 · η2 > 0 and η1 · η2 < 0, which is equal to the inverse ratio for σDPS . The
value of this in the absence of parton correlations is 1 (red line), whilst the prediction of [575] is given by
the green band. The black error bars indicate systematic uncertainty attainable by the CMS experiment
at 3 ab−1, the orange bars include systematic uncertainties assuming a conservative correlation of 0.8
between them for η1·η2 > 0 and η1·η2 < 0. The vertical line on the arrows indicates the lowest measured
value of the ratio that would allow the exclusion of the uncorrelated parton hypothesis (i.e. eq. (38) with
constant σeff ) at 95% CL. The black arrow corresponds to muon rapidity coverage |η| < 2.8, and the
orange arrow |η| < 2.4.

an uncorrelated ansatz at an initial scale of 1 GeV. The polarised double parton distributions, encoding
parton spin correlations, were chosen at the initial scale to correspond to the maximal possible spin
correlations (technically, saturate the positivity bounds [580]), in such a way that the effects on the
cross section would be maximal. These distributions were evolved to the W mass and used to compute
polarised and unpolarised W+W+ cross sections at

√
s = 13 TeV. The resulting η1 · η2 distribution

is shown in Fig. 67(a) – the corresponding value of aηl is 0.07, which is even larger than that resulting
from x correlations. One should, however, bear in mind that this is a maximal value, and that there are
possibilities for the polarised distributions at the input scale, compatible with the positivity bounds, that
also ultimately yield negative values for aηl [581]. Figure 67(b) shows the expected significance of a
measured non-zero asymmetry as a function of luminosity L, using a rapidity cut |ηi| > 0.6 imposed
such that the asymmetry aηl rises to 0.11 (but overallW+W+ cross section reduces from 0.51 fb to 0.29
fb). The blue band shows the sensitivity achievable using the µ+µ+ channel only, whilst the red band
shows the sensitivity attainable using µ+µ+, µ+e+, and e+e+ assuming a similar sensitivity can be
achieved for electrons as for muons. This plot reinforces the notion that a few per cent level asymmetry
can be measured at the HL-LHC.

To investigate how 1 → 2 splittings may affect the asymmetry aηl , the code discussed in section
9 of [571] was upgraded to include charm and bottom quarks above the appropriate mass thresholds
(chosen here to be equal to the MSTW 2008 values of 1.40 GeV and 4.75 GeV respectively). The
‘intrinsic’ and ‘splitting’ part of the DPDs were initialised as in [571] – in particular, the intrinsic part
was initialised according to an uncorrelated ansatz, up to a suppression factor near the phase space
boundary x1 + x2 = 1, that does not have a strong impact on aηl . Then, any nonzero value of aηl will
be almost entirely due to 1→ 2 splitting effects. Computing W+W+ cross sections at

√
s = 13 TeV it
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regarding the subtraction of SPS backgrounds. More details regarding the set-up for both panels may be
found in [579].

is found that aηl ∼ 0.028, which is of similar size to the asymmetry arising from other sources.

Note that the asymmetries from x correlations, valence number effects and 1→ 2 splitting are in
the same direction (favouring η1 · η2 < 0 over η1 · η2 > 0), whilst polarisation effects can potentially
either favour a positive or negative asymmetry.

At the HE-LHC, the asymmetry should be smaller for the same cuts on |ηi| – as x is lowered,
we move away from the ‘double valence’ region where valence number effects are important, and the
ratio of polarised to unpolarised quark distributions reduces (see Fig. 6 of [582]). Repeating the study
above where a minimal modification of the uncorrelated ansatz at the input scale is made to take account
of number effects, but at

√
s = 27 TeV, it is found that aηl ∼ 0.008. Including instead the effects

of the 1 → 2 splittings yields aηl ∼ 0.013 at
√
s = 27 TeV. At the HE-LHC (and the HL-LHC) it

could be interesting to compare same-sign WW , which is comparatively weakly affected by 1 → 2
parton splitting (due to the fact there is no direct LO splitting yielding, for example uu), with processes
that should receive stronger contributions from parton splitting, such as low mass Drell-Yan or bb̄bb̄
production, to probe in detail the effects of the 1 → 2 parton splitting and compare to theoretical
predictions. More detailed studies in this direction are needed.

In conclusion, the HL-LHC offers the opportunity to measure the effects of correlations between
partons, via measurements of DPS processes, for the first time. In same-sign WW production a good
observable to probe correlations is the lepton pseudorapidity asymmetry aηl , which can only be nonzero
in the presence of correlations – theoretical calculations indicate values of aηl at LHC energies on the
order of a few per cent, which should be measurable at the HL-LHC. By combining measurements of
various processes sensitive to DPS at the HL-LHC, and later and the HE-LHC, it will be ultimately
possible to build up a picture of the various correlatons existing between partons in the proton.
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Fig. 68: Cumulative differential distributions for HL-LHC at 14 TeV.

6 Top quark physics
Precision measurements of top quark properties present an important test of the SM. As the heaviest
particle in the SM, the top quark plays an important role for the electroweak symmetry breaking and
becomes a sensitive probe for physics beyond the SM.

6.1 Top quark cross section
6.1.1 The tt̄ production cross section: theoretical results31

This sub-section provides a quick reference for the kinematic reach of the main tt̄ differential distribu-
tions for both HL and HE-LHC. Figures 68 and 69 are given in terms of expected events for the proposed
ultimate luminosities for both colliders: 3 ab−1 for the HL-LHC running at 14 TeV and 15 ab−1 for the
27 TeV HE-LHC. The results are presented as plots of cumulative differential distributions and should
be interpreted as follows: the histograms show the numbers of expected events (for the luminosities
given above) above a given cut in any one of the four kinematic variables: mtt̄, pT,avt, yavt and ytt̄. Note
that the cut corresponds to the left edge of a bin. The predictions are based on the CT14 parton distri-
butions [199] with value of the top quark mass mt = 173.3 GeV which is close to the current world
average. The calculation is based on Ref. [583] and uses the dynamical scales of Ref. [213].

Figure 68 presents predictions for the four cumulative distributions specified above in the case
of the tt̄ production at the HL-LHC (14 TeV), computed in NNLO QCD. In conclusion the HL-LHC
allows detailed studies of top quark pair production with mtt̄ of up to about 7 TeV. Events with even
larger values of mtt̄ are kinematically accessible and one expects about 10 events with mtt̄ > 7 TeV.
Therefore, the region mtt̄ > 7 TeV provides a low SM background for, for example, searches for decays
of BSM heavy particles to tt̄ pairs. A detailed understanding of the SM background - at the level of one
expected event - will require a dedicated future effort due to the significant MC error in that region.

31Contributed by M. Czakon, A. Mitov, and A. Papanastasiou.
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Fig. 69: Cumulative differential distributions for HE-LHC at 27 TeV.

The top quark pT distribution can probe pT values as high as 2.5 TeV, with a total of about 30
events expected beyond that value.

The HL-LHC offers the possibility to access top production at high rapidity which might provide
a link between top measurements at LHCb on one hand and ATLAS and CMS on the other. Indeed, in
Fig. 68 it can be observed that top quarks with rapidity yavt as large as 4 will be copiously produced. The
cross-section is a steeply falling function at large rapidity with a maximum attainable value of around
4.2 or so. Similarly, the rapidity of top quark pairs can be measured in detail up to values exceeding 3.4
with the maximum reach at about ytt̄ ∼ 3.6. In Fig. 68 it is shown the ytt̄ distribution for a set of cuts on
the top pair invariant mass. One should bear in mind that the NNLO ytt̄ calculation has significant MC
error in the bins with 10 events or less.

Figure 69 presents the predictions for the same four cumulative distributions but in NLO QCD
for the case of tt̄ production at the HE-LHC (27 TeV). From this figure one can easily conclude that the
increase in the kinematic reach over the HL-LHC is very substantial. There will be few hundred events
with mtt̄ above 11 TeV and a similar number of events can be measured with pT above 4 TeV. For the
reliable description of such kinematics the inclusion of EW corrections as well as yet higher order soft
and or collinear radiation will be essential; see Ref. [113, 220].

Very large rapidities can be attained at the HE-LHC. In particular, the top quark rapidity yavt

distribution can be measured to values as high as 4.8 with excellent statistics. Indeed, about 1000 events
are expected above yavt = 4.8. The top pair rapidity can reach values as high as 4.4 and, if no additional
cuts are applied, few thousand events will be produced with ytt̄ > 4.2. As for the case of 14 TeV it is
also show in Fig. 69 the expected number of events as a function of ytt̄ for several cuts in mtt̄.
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6.1.2 Prospects in the measurement of differential tt̄ cross sections

A study is presented for the resolved reconstruction of top quark pairs in the e/µ+jets channels and
a projection of differential tt̄ cross sections measurements with an integrated luminosity of 3 ab−1 at
14 TeV [584]. The analysis techniques are based on previous measurements of differential tt̄ cross
sections at 13 TeV [585, 586]. It is shown that such a measurement is feasible at the HL-LHC despite
the expected large number of pileup interactions. The precision of the differential cross section can profit
from the enormous amount of data and the extended η-range of the HL-LHC CMS detector. The results
are used to estimate the improvement of measurements of parton distribution functions.

This study is based on a DELPHES simulation of the HL-LHC CMS detector [587–590] using the
Monte Carlo program POWHEG [151, 314, 360, 377] (v2,hvq) in combination with PYTHIA [148, 292]
(v8.219) for the generation of tt̄ events at NLO accuracy. Events with a single isolated electron or muon
with pT > 30 GeV and |η| < 2.8 are selected. Events with additional isolated electrons or muons with
pT > 15 GeV and |η| < 2.8 are rejected. At least 4 jets with pT > 30 GeV and |η| < 4.0 are required,
where at least 2 of the jets have to be identified as b jets. It is essential that the PUPPI algorithm [591]
is used for the mitigation of pileup contribution when the jets are clustered and the ~pmiss

T is calculated.

A detailed description of the tt̄ reconstruction is presented in [585,586]. For the reconstruction all
possible permutations of assigning detector-level jets to the corresponding tt̄ decay products are tested
and a likelihood that a certain permutation is correct is evaluated. In each event, the permutation with the
highest likelihood is selected. The likelihood is constructed from the 2 dimensionalmt–mW distribution
of correctly assigned jets for the hadronically decaying top quark and the distribution ofDν,min obtained
when calculating the neutrino momentum [592] for the leptonically decaying top quark. A comparison
of the expected event yields and the migration matrices together with their properties are shown in Fig. 70
for the HL-LHC expectation. Despite the high pileup a performance of the tt̄ reconstruction similar to
the one in 2016 [586] can be reached, while the portion of the direct measurable phase space is increased
due to the extended η-range.

The following experimental uncertainties are estimated based on the expected performance of the
HL-LHC CMS detector [277]: electron and muon identification, b-tagging efficiencies, jet energy and
~pmiss

T calibration, and luminosity. All theoretical and modelling uncertainties have been reduced by a
factor two.

The unfolded results of the differential tt̄ cross section measurements as a function of pT and
rapidity y of the hadronically decaying top quark (th) are shown in Fig. 71. In Fig. 72 the normalized
double-differential cross section as a function of M(tt̄) vs |y(tt̄)| is shown. The strong impact of these
measurement on PDF constraints is studied in Section 6.1.3. The high amount of data and the extended η-
range of the HL-LHC detector allow for fine-binned measurements in phase-space regions — especially
at high rapidity — that are not accessible in current measurements. The most significant reduction of
uncertainty is expected due to an improved jet energy calibration.

6.1.3 PDF constraints from double-differential tt̄ cross sections

The impact of differential tt̄ cross section measurements at the HL-LHC on the proton PDFs is quanti-
tatively estimated using a profiling technique [476], which is based on minimizing χ2 function between
data and theoretical predictions taking into account both experimental and theoretical uncertainties aris-
ing from PDF variations. The analysis is performed using the XFITTER program [490], with the theo-
retical predictions for the tt̄ cross sections calculated at NLO QCD using the MG5_AMC@NLO [12]
framework, interfaced with the AMCFAST [593] and APPLGRID [208] programs. Three NLO PDF
sets were chosen for this study: ABMP16 [594], CT14 [199], and NNPDF3.1 [207]. The normalized
double-differential tt̄ production cross sections as a function of M(tt̄) vs |y(tt̄)| are used which are ex-
pected to impose stringent constraints on the gluon distribution [595]. The χ2 value is calculated using
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Fig. 70: Expected signal yields (top-left), migration matrices (top-right), and its properties (bottom) for
measurements of pT(th) for the HL-LHC (Phase-2) simulation. The purity is defined as the fraction of
parton-level top quarks in the same bin at the detector level, the stability as the fraction of detector-level
top quarks in the same bin at the parton level, and the bin efficiency as the ratio of the number of events
found in a certain bin at detector level and the number of events found at parton-level in the same bin.

the full covariance matrix representing the statistical and systematic uncertainties of the data, while the
PDF uncertainties are treated through nuisance parameters. The values of these nuisance parameters at
the minimum are interpreted as optimized or profiled PDFs, while their uncertainties determined using
the tolerance criterion of ∆χ2 = 1 correspond to the new PDF uncertainties. The profiling approach
assumes that the new data are compatible with theoretical predictions using the existing PDFs, such
that no modification of the PDF fitting procedure is needed. Under this assumption, the central values
of the measured cross sections are set to the central values of the theoretical predictions. The origi-
nal and profiled ABMP16, CT14, and NNPDF3.1 uncertainties of the gluon distribution at the scale
µ2

f = 30 000GeV 2 ' m2
t are shown in Fig. 73. A consistent impact of the tt̄ data on the PDFs is

observed for the three PDF sets. The uncertainties of the gluon distribution are drastically reduced once
the tt̄ data are included in the fit.

6.1.4 Forward top quark physics

Three measurements of top production have been performed by LHCb during Run-1 and -2 of the LHC
with a precision of (20-40)%, limited by the available data samples. As LHCb collects data at a lower
rate than ATLAS and CMS, and has a limited acceptance, the measurements have focused on a partial
reconstruction of the tt̄ final state in order to make optimal use of statistics. Additionally, as no estimate
of missing energy is available, the measurements are performed at the level of the lepton and jets only,
with no full top quark reconstruction performed. The first observation in the forward region was made
in the µb final state, where the top quark is identified by the presence of a muon and a b-jet [596]. This
final state has the highest signal yield, but suffers from the largest backgrounds, in particular from W
boson production in association with a b-jet. It also cannot separate single top and top pair production,
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Fig. 71: Projections of the differential cross sections as a function of pT(th) (right) and |y(th)| (left).
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Fig. 72: Projections of the double-differential cross section as a function of |y(tt̄)|.

which both contribute to the final state. Measurements were also performed in the `bb final state [597]
and µeb final state [598], which suffer from lower statistics but select the signal with a higher purity.

While current measurements in the top sector at LHCb have been statistically limited, the available
dataset at the HL-LHC, where LHCb is expected to collect 300 fb−1, will permit precision measurements
of the top quark pair production cross-section in the forward region, providing complementary informa-
tion to ATLAS and CMS. The expected number of top pair events to be reconstructed at LHCb are given
in Table 33, where the yields are obtained using next-to-leading predictions from the AMC@NLO gen-
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Fig. 73: The relative gluon PDF uncertainties of the original and profiled ABMP16 (left), CT14 (middle)
and NNPDF3.1 (right) sets.

Table 33: The number of tt̄ events expected to be reconstructed at LHCb per final state using a dataset
corresponding to an integrated luminosity of 300 fb−1. The mean value of Bjorken-x of the most ener-
getic initiating parton is also shown for each final state.

Final state 300 fb−1 < x >

`b 830k 0.295
`bb̄ 130k 0.368
µeb 12k 0.348
µebb̄ 1.5k 0.415

erator interfaced with PYTHIA v8, with electroweak corrections approximated as described in Ref. [599].
Leptons are required to satisfy 2.0 < η < 4.5 and pT > 20 GeV, while jets are required to satisfy
2.2 < η < 4.2 and pT > 20 GeV in all final states except the `b final state, where the pT threshold
is raised to 60 GeV to combat the increased background. The detector efficiency is extrapolated from
current measurements, where increases of between 10 and 50% are expected due to to improvements in
the b-tagging algorithm and analysis techniques. Both muons and electrons are assumed to be employed
for all analyses with similar efficiencies due to anticipated improvements in electron performance at
LHCb during the HL-LHC. Measurements are expected to be made at sub-percent statistical precision
in the `b final state, and at the percent level in the µeb and µebb final states. The dominant systematic
uncertainties are expected to arise from the purity determination, particularly for the single lepton final
states, and the knowledge of the b-tagging efficiency, which are both expected to be at the level of a few
percent.

As tt̄ production in the LHCb acceptance probes very large values of Bjorken-x, it has the poten-
tial to provide significant constraints on the gluon PDF in this region. The potential of the µeb final state
was evaluated in Ref. [600], where reductions of 20% were found for a cross-section measurement with
a precision of 4%. Even more stringent constraints can be obtained through precise differential cross-
section measurements, and measurements in the µebb final state, both of which will only be possible
with the data available at the HL-LHC.
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6.1.5 Single top cross section: theoretical results32

Although top quarks are predominantly produced in tt̄ pairs through strong interactions, a substantial
fraction of them is also produced through the exchange of electroweak bosons. In the latter case, only
a single (anti-)top is produced per collision, hence one refers to these processes as “single-top” pro-
duction. Despite their smaller rates with respect to pair production, single-top processes offer unique
opportunities to study the electroweak structure of top interactions.

The purpose of this section is to summarize the state-of-the-art for the computation of single-top
production cross sections, and highlight what type of studies could be performed with an HL/HE-LHC
upgrade.

It is customary to categorize single-top production in the SM according to the virtuality of the
W -boson involved in the leading-order 2 → 2 partonic process: the s-channel processes (qq̄′ → tb̄)
involve the exchange of a time-like W boson, the t-channel processes bq → tq′ involve the exchange of
a space-like W , while associated Wt-production (bg → tW−) involves the production of a top quark in
association with a W boson.

Although convenient, the above characterization suffers two theoretical issues:

– a classification in terms of underlying 2 → 2 processes implicitly assumes that the b-quark is
treated as massless, i.e. the computations are performed in the so-called five-flavour number
scheme (5FNS). This framework effectively resums large logarithms of the form lnmb/Q, where
Q is a typical transverse scale of the process and as such it is particularly appropriate for ob-
servables that are only sensitive to large pT � mb scales, like for example total cross sections.
However, especially in the t-channel case, there are important observables which are sensitive to
small transverse scales pT ∼ mb (e.g. the kinematics of the “spectator” b-jet which originates
from initial state g → bb̄ splitting, particularly at small pT). In this case, the 5FNS is not appro-
priate and it is important to treat the b-quark as massive, i.e. to work in four-flavour mass scheme
(4FNS). In this scheme, the t-channel LO process becomes 2 → 3: gq → tb̄q′. The 4FNS and
5FNS are formally equivalent, but differences can arise when the perturbative expansion is trun-
cated, and in practice these effects might be relevant for some observables [601–603]. Within this
context, the advantages of a HL/HE upgrade is twofold. On the one hand, the larger dataset and
increased energy would allow for more harsh selection cuts that would effectively remove regions
of the phase space sensitive to small transverse scales. This would allow for a clean theoretical
description using the 5FNS, which does not suffer from large logarithmic contaminations. On the
other hand, it would allow one to explore with high accuracy the transition region between the
range of validity of the 4FNS and 5FNS, thus providing important information on their interplay.

– once higher-order corrections are included, the distinction between s and t channels does not hold,
due to interference effects. These interference effects first appear at orderO(α2

sα
2), i.e. at NNLO

in the 5FNS, or at NLO in the 4FNS, and are color and (typically) kinematic suppressed. Given
the large hierarchy and small kinematic overlap between t- and s- channels, interference effects
are typically very small in pp collisions, but may in principle play a role if very high accuracy
is required for specific observables. Moreover, once the W and top decay products are included,
interferences arise also between tt̄, single-top (with Wt-production, as well as t-channel in the
4FNS) and WWbb̄ production, unless the narrow-width limit Γt → 0 is taken. These effects can
play a role for high precision studies, see e.g. [169, 604].

In spite of the above issues, as long as only NLO QCD corrections are considered, it is possible
to compute well-defined cross-sections for s and t-channel in the 5FNS, and, by imposing a jet-veto on
b-jets, to suppress the contamination of tt̄ to the Wt process, thereby allowing for a sensible definition

32Contributed by F. Caola and E. Re.
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of the cross section for the latter channel as well. In Table 34 the NLO cross sections are reported for
the 3 channels at the LHC, for centre-of-mass energies of 14 and 27 TeV. Scale and PDF uncertainties
are also reported. At both energies, the t-channel is the dominant production mechanism. The relative
importance of the s-channel decreases with the collider energy, while it increases for Wt associated
production.

Table 34: Single-top inclusive cross sections at NLO for the LHC at 14 and 27 TeV, in the 5FNS.
All results were obtained using PDF4LHC15_nlo_mc, the central value for the renormalization and
factorizations scales (µR, µF ) have been set equal to mt = 173.2 GeV and varied by a factor of two,
with the constraint 1/2 ≤ µR/µF ≤ 2. For these predictions, Vtb has been set to one. For Wt-channel
only, a jet-veto on b-jets has been used (pT,bj

< 50 GeV), and the central value for µR and µF has been
set to 50 GeV too.

14 TeV 27 TeV
σ [pb] ∆µR,µF

∆PDF σ [pb] ∆µR,µF
∆PDF

t-channel (t) 156 +3%
−2.2% ± 2.3 % 447 +3%

−2.6% ± 2%
t-channel (t̄) 94 +3.1%

−2.1% ± 3.1% 299 +3.1%
−2.5% ± 2.6%

s-channel (t) 6.8 +2.7%
−2.2% ± 1.7% 14.8 +2.7%

−3.2% ± 1.8%
s-channel (t̄) 4.3 +2.7%

−2.2% ± 1.8% 10.4 +2.7%
−3.3% ± 1.8%

Wt-channel (t or t̄) 36 +2.9%
−4.4% ± 5% 137 +3.8%

−6.1% ± 4%

Figure 74 also shows, for the t-channel case, the cumulative cross section with a minimum pT,min

cut on the top, or antitop, transverse momentum, obtained at NLO in the 5FNS. The two horizontal bars

Fig. 74: Cumulative cross section for t-channel single-(anti)top production in the 5FNS at 14 and 27
TeV as a function of pT,min. The same settings used to obtain results in Table 34 were used here.
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in the plot correspond to the cross sections for which one has 100 events, by assuming an integrated
luminosity of 3 ab−1 at 14 TeV (red) and of 15 ab−1 at 27 TeV (blue).

For t-channel production, NNLO QCD corrections have also been computed in Refs. [555, 605,
606].33 These corrections have been obtained in the structure function approximations, where higher-
order corrections to the light and heavy-quark lines (q → q′W and b→ tW , respectively) are computed
separately. Within this approximation, the terms which are not included at NNLO are color suppressed

33NNLO QCD results were also obtained for s-channel, see Ref. [607].
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(1/N2
c ), and hence estimated to be negligible for phenomenology, given the moderate size of NNLO

effects. Moreover, when working in these approximations, interference effects between s and t-channel
are also absent. The results obtained in Refs [605, 606] indicate that NNLO QCD corrections are small:
the total cross sections at NNLO increase by at most 2% with respect to the NLO result (when the lat-
ter is obtained with NLO PDFs), whereas the relative scale uncertainty is reduced by at least ∼ 50%.
Moreover, the NNLO result is contained within the NLO uncertainty band, showing extremely good
convergence for the perturbative expansion.34 Despite the fact that the total cross section shows excel-
lent perturbative stability, more sizeable effects can be noticed in some differential distributions, where
NNLO/NLO corrections can reachO(10%) in certain regions of the transverse momentum distributions
of the top (anti-)quark and the pseudo-rapidity distributions of the leading jet. In these cases, scale
variation may underestimate the actual theoretical uncertainty.

NNLO corrections to the top quark decay are also known [608, 609], and they can be combined
with the NNLO corrections to production using the “on-shell top-quark approximation” where the top
width Γt is kept finite, but tree-level interference effects between the single top production and decay
stage are neglected, as well as loop diagrams with a virtual gluon connecting the production and decay
stages. This is an excellent approximation for inclusive-enough quantities, since omitted corrections are
suppressed by a factor Γt/mt < 1% 35. More details can be found in Ref. [555].

In presence of fiducial cuts, it is important to stress that QCD corrections are more pronounced,
with NNLO effects amounting about 5% on total rates as well as differential distributions. In this case,
corrections from pure decay are typically half of those from pure production. Finally, it should be noted
that NLO EW corrections to on-shell single top production are small, ∼ few permille, see e.g. [89].
The EW effect can become more relevant in tails of distributions, or for observables highly sensitive to
off-shell effects.

Single-top can also be produced in association with a Z boson (tZq). Although the cross section
is smaller than in the aforementioned channels, a HL/HE upgrade at the LHC will allow one to measure
well this production process too. QCD NLO corrections to tZq-production are known [611]. Table 35
reports the total cross sections at NLO in the SM, for centre-of-mass energies of 14 and 27 TeV.

Table 35: Single-top production cross section in association with a Z boson, at NLO for the LHC at
14 and 27 TeV, in the 5FNS. All results were obtained using PDF4LHC15_nlo_mc, the renormalization
and factorizations scales have been set equal to mt = 173.2 GeV.

σ [fb] @14 TeV σ [fb] @27 TeV
tZq-channel (t) 639 2536
tZq-channel (t̄) 350 1543

As far as phenomenology is concerned, single-top offers the possibility to perform several studies
within and beyond the SM. Within the “SM only” hypothesis, one can use it to extract information
about the SM Vtb matrix element, as discussed for instance in Ref. [612]. Setting constraints on the
b-quark PDF might also be possible, by looking at charge ratios, i.e. ratios of t/t̄ cross sections. These
ratios depend in general upon the PDFs used, and notably, in the t-channel case, on the b-quark PDF.
Moreover, they can be predicted quite accurately, as most of the theoretical uncertainties cancel out
in the ratio, leaving a residual theoretical uncertainty from scale variation (at NNLO) of few percent
for each PDF set, as shown for instance in Fig. 29 of Ref. [555]. Although the charge ratio for total

34When NLO corrections are computed with NNLO PDFs, the NNLO/NLO ratio is instead slightly smaller than one, but
the conclusions remain the same.

35 This is not the case for exclusive observables, which are sensitive to off-shell effects in the reconstructed top mass MWb,
and beyond kinematic edges, see Ref. [610] for a thorough analysis.
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Fig. 75: Differential charge ratios Ot/Ot̄ at 14 (left panels) and 27 (right panels) TeV for the top quark
and charged lepton rapidities, in t-channel single-top production.

cross sections σt/σt̄ exhibits a dependence upon the PDF set [613, 614], slightly more pronounced
sensitivity might be obtained by looking at differential distributions, such as (dσ/dyt)/(dσ/dyt̄) and
(dσ/dy

`
+)/(dσ/dy

`
−), which also allow one to constrain the u/d ratio in the proton. In Fig. 75 such

a comparison among different PDF sets is shown, for LHC collisions at 14 and 27 TeV: differences
among different PDF sets can be observed, especially at large rapidities. It is clear that a HL upgrade
will allow one to reduce the statistical uncertainty at large rapidities, giving the chance to discriminate
among different PDF sets. As the available phase space opens up, further sensitivity might be expected
at 27 TeV.

Single-top processes offer also several opportunities to probe some new-physics scenarios36. In
order to systematically interpret potential deviations from the SM, it is particularly convenient to work
in the SM Effective Field Theory (SMEFT) [615, 616], where the SM is augmented by a set of higher-
dimension operators. If the discussion is limited to dimension-6 operators, the SMEFT Lagrangian has
the form

LSMEFT = LSM +
∑

i

Ci

Λ2Oi +O(Λ−4). (40)

where the sum runs over all the dimension-6 operators that maintain the SM symmetries. The remarkable
virtue of t-channel single-top production is that its cross section only depends upon a limited number of
dimension-6 operators, thereby allowing to set bounds on them relatively easily. At LO and in the 5FNS
only three operators contribute:

OtW = i
(
Q̄σµν τI t

)
φ̃W I

µν + h.c. , (41)

O(3)

φq = i
(
φ†
↔
Dµ τIφ

)(
q̄i γ

µ τ Iqi
)

+ h.c. , (42)

O(3,1)

Qq =
(
q̄i γµ τIqi

)(
Q̄ γµ τ IQ

)
, (43)

36In the following the discussion is limited to the t-channel case, and the production in association with a Z boson.
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in agreement with the notation of [234]. The operators of eq. (41)-eq. (42) modify the Wtb interaction
in the following way

Ldim−6
Wtb = − g√

2
b̄(x)γµPLt(x)Wµ(x)


1 +

C
(3)
ϕQv

2

Λ2




+
2 v CtW

Λ2 b̄(x)σµνPRt(x) ∂νWµ(x) + h. c. , (44)

where v = 246 GeV is the Higgs doublet vacuum expectation value, and yt the top quark Yukawa
coupling. Here and below it is assumed Vtb = 1. Note that the four-fermion operator of eq. (43)
introduces a contact udtb interaction. From eq. (44) it is clear that setting bounds on the SMEFT using
single-top measurements allows to probe in detail the structure of the Wtb coupling. A comprehensive
discussion can be found in Ref. [262], where a NLO study of the effect of these operators on total and
differential distributions in single top production and decay is performed.

In the SMEFT, the single top cross section can be parameterised as

σ = σSM +
∑

i

1TeV2

Λ2 Ciσi +
∑

i≤j

1TeV4

Λ4 CiCjσij . (45)

To establish the impact of the operators on single top production at HL/HE-LHC, Table 36 shows the
ratio ri = σi/σSM for 14 TeV and 27 TeV both for the inclusive cross section and the high transverse
momentum region. Results are obtained in the 5FNS with NNPDF3.0 LO PDFs [201]. Central scales
for µR, µF are chosen as mt. It is found that the impact of the operator in eq. (42) remains unchanged
when going from 14 to 27 TeV, as its effect is to only rescale the SM coupling. The impact of the dipole
operator in eq. (41) is only mildly affected by going to the HE-LHC, whereas the sensitivity to the
four-fermion operator is the one which benefits most by probing the high pT tail and by the HE-LHC.

Table 36: Comparison among the LO sensitivities of t− channel single-top to the three operators de-
scribed in eq. (41)-(43), for the inclusive cross-section and with a cut ptT > 350 GeV, at 14 and 27
TeV. Results are obtained in the 5FNS with NNPDF3.0 LO PDFs [201], the renormalization and fac-
torizations scales have been set equal to mt = 173.2 GeV. The interference term ri = σi/σSM (when
non-zero) and the square ri,i = σi,i/σSM are given for each operator. σi and σi,i are defined in eq. (45).

t-channel 14 TeV t-channel 27 TeV
(ptT > 350 GeV) (ptT > 350 GeV)

σSM 225 pb 0.746 pb 640 pb 3.40 pb
rtW 0.025 0.052 0.022 0.040
rtW,tW 0.014 0.31 0.016 0.34
r
φQ

(3) 0.12 0.12 0.12 0.12
r
φQ

(3)
,φQ

(3) 0.0037 0.0037 0.0037 0.0037

r
Qq

(3,1) -0.36 -6.45 -0.39 -6.79
r
Qq

(3,1)
,Qq

(3,1) 0.135 18.8 0.222 26.8

Production in association with a Z boson is also important in the BSM context. A complete
study of its sensitivity to BSM effects was performed in Ref. [261], where the interplay with t-channel
single-top, as well as single-top production in association with a Higgs boson, is discussed thoroughly,
and at NLO. Table 6 of [261] reports a comparison among the sensitivity of these processes to various
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operators. Current limits from other processes, as well as current and future projections for bounds that
can be achieved looking into tZj production are also discussed (e.g. in Fig. 6 of Ref. [261]). For some
operators, notably OtW and O(3)

φq , the improvement due to considering tZj measurements at HL are
remarkable, especially when tails of distributions are considered. It is likely that even more promising
results could be obtained at HE.

Another goal of a HL/HE upgrade is to extract bounds on (or find evidence of) WWZ anomalous
gauge couplings, or FCNC. In this context, tZq is quite important both because it is sensitive to these
effects, as well as because it’s an irreducible background, as its production rate is competitive with tt̄Z
production, where these effects are typically looked for.

6.2 Four top production at the HL/HE-LHC
The production of four top quarks is one of the rare processes in top quark physics that has large sensitiv-
ity to variety of new physics effects (including effective field theory sensitivity and sensitivity to anoma-
lous top-Higgs couplings), while at the same time it is interesting in the Standard Model context as a
complex QCD process. The cross section at 13 TeV is about fifty times smaller than tt̄H production, with
multiple precision calculations predicting values of σtt̄tt̄ = 9.2+2.9

−2.4fb (NLO) and σtt̄tt̄ = 11.97+2.15
−2.51fb

(NLO+EW) [12, 115, 617].

ATLAS and CMS have published multiple papers where limits on tt̄tt̄ production were presented
as SM-oriented searches [618–620] and/or derived as a side product of searches for new physics, typi-
cally coming from searches for vector-like quarks or MSSM SUSY signatures [621–625].

The production of tt̄tt̄ is a rare SM process that is expected to be discovered by future LHC
runs, including HL-LHC and HE-LHC. The increase in collision energy is important for tt̄tt̄ produc-
tion because the cross section is largely induced by gluons in the initial state, leading to a substantial
improvement in the signal-to-background ratio when the collision energy of the LHC is increased. Anal-
yses looking for the production of tt̄tt̄ also are well-suited for interpretation in SMEFT [234].

The tt̄tt̄ process has not yet been observed at the LHC. Once closer to observation, and consid-
ering the sensitivity of tt̄tt̄ production to new physics scenarios in the top quark and scalar section, it is
prudent to instead consider how accurately the cross section can be measured. Of course in the future
analysis techniques are also expected to improve, and dedicated analyses will surely improve this sensi-
tivity, but this is beyond the scope of this study. It is however important to keep in mind that such a study
is less sensitive to systematic uncertainties on the background determination, while being more sensitive
to the signal modelling uncertainties and overall branching fraction and acceptance of the selection.

6.2.1 The complete NLO corrections to four-top production37

In this section the so-called “complete”-NLO corrections to four-top production at the HE and HL-LHC
is computed. Four-top production can proceed through different terms of order αpsα

q with p+q = 4, 5 at
LO and at NLO respectively. The term complete-NLO refers to computation of all terms with p+q ≤ 5,
which has been performed for the first time in Ref. [115] by employing the newly-released version of
MG5_AMC@NLO [12] capable of computing mixed QCD and electroweak corrections [89]. Among
the various contributions, the NLO QCD corrections (p = 5, q = 0) are also included, which have
been known for some years [617, 626]. Despite that power-counting arguments suggest that the larger
q the more suppressed a contribution is, it has been shown in Ref. [115] that this is not the case for tt̄tt̄
production. In fact, terms with up to two powers of α still contribute to several 10%s with respect to the
O(α4

s) LO contribution. One of the reasons why this happens is because of the large Higgs-top Yukawa
coupling; furthermore, important cancellations appear among these terms, which may be spoiled by
non-SM effects.

37Contributed by R. Frederix, D. Pagani and M. Zaro.
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This short paragraph reports inclusive predictions for the HL and HE-LHC, with a centre-of-mass en-
ergy of respectively 14 TeV and 27 TeV. For differential distributions, the qualitative and quantitative
behaviour is very similar to the predictions at 13 TeV reported in Ref. [115]. The same setup and nota-
tion of Ref. [115], is used, where the interested reader can find more details as well as predictions for 13
and 100 TeV.

Table 37: Cross section for four-top production at the HL and HE-LHC, in various approximations, for
µ = HT/4. See Ref. [115] for details.

σ[fb] LOQCD LOQCD + NLOQCD LO LO + NLO LO(+NLO)
LOQCD(+NLOQCD)

14 TeV 9.04+69%
−38% 14.72+19%

−23% 10.04+63%
−35% 15.83+18%

−21% 1.11 (1.08)
27 TeV 81.87+62%

−36% 135.19+19%
−21% 91.10+56%

−33% 143.93+17%
−20% 1.11 (1.06)

Table 37 reports the total-cross section for tt̄tt̄ production in different approximations, and Ta-
ble 38 the breakdown of the different orders contributing at LO and NLO, as fraction of the O(α4

s) LO
contribution, LO1. It is observed that the pattern of relative corrections is rather similar between 14
and 27 TeV. In particular, besides NLO1 which is entirely of QCD origin, and thus displays a strong
dependence on the renormalisation and factorisation scales, such a feature is present also for NLO2 and
NLO3, which witnesses the fact that they receive an important contribution through QCD corrections
from LO2 and LO3 respectively, on top of the electroweak corrections from LO1 and LO2. Furthermore,
NLO2 and NLO3 tend to cancel each other almost exactly, leading to a complete-NLO prediction well
within the uncertainty band of the one at NLO QCD accuracy. Such a feature may be spoiled by effects
beyond the Standard Model, such as anomalous Higgs-top couplings. Thus, NLO corrections cannot be
neglected when similar studies are performed, such as those presented in Sec. 6.3.2.

6.2.2 Prospect for experimental measurements

ATLAS has studied the potential to measure the Standard Model tt̄tt̄ cross section using 3000 fb−1 of
HL-LHC data in the channel with several leptons [627]. Events are selected if they contain at least two
isolated leptons with the same charge or at least three isolated leptons. At least six jets among which at
least three are b-tagged are required. In addition the scalar sum of the pT of all selected jets and leptons
(HT) is requested to be HT > 500 GeV and the missing transverse momentum EmissT > 40 GeV. In
order to extract the measured tt̄tt̄ cross section a fit is performed to theHT distributions in several signal
regions according to the jets and b-jets multiplicities: at least 6 jets and exactly 3 b-jets, or at least 6 jets
and at least 4 b jets. These regions are further split in events with two same-charge leptons or with at
least three leptons leading to 4 signal regions.

The background arises from tt̄V process, multiboson and tt̄H events as well as events with fake,
non prompt or charge mis-identified leptons. The rate of this difficult instrumental background is com-
puted from the ATLAS 36 fb−1 analysis [625] in the relevant regions with different lepton and b-tagged
jet multiplicities. The number of events selected in the different signal regions are shown in Fig. 76.

The main sources of systematic uncertainties taken into account come from uncertainties on the
fake lepton background and on the SM background and signal normalisations. A maximum-likelihood fit
is performed simultaneously in the four signal regions to extract the tt̄tt̄ signal cross section normalised
to the prediction from the SM. The impact of systematic uncertainties on the background expectations
is described by nuisance parameters. As a result of the fit, the expected uncertainty on the measured
tt̄tt̄ cross section is found to be 11%. The systematic uncertainty that impacts the precision the most is
uncertainty in the normalisation of the tt̄V and instrumental background in the region with at least 6 jets
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Table 38: tt̄tt̄: σ(N)LOi
/σLOQCD

ratios at 14 and 27 TeV, for different values of µ = µR = µF . See
Ref. [115] for details.

δ[%]
14 TeV 27 TeV

µ = HT/8 µ = HT/4 µ = HT/2 µ = HT/8 µ = HT/4 µ = HT/2

LO2 −25.8 −28.1 −30.4 −23.6 −25.9 −28.2
LO3 32.5 38.9 45.8 30.7 37.0 43.8
LO4 0.2 0.3 0.4 0.1 0.2 0.2
LO5 0.0 0.0 0.1 0.0 0.0 0.1

NLO1 14.7 62.9 103.3 21.7 65.1 101.9
NLO2 8.1 −3.5 −15.1 5.0 −4.4 −13.9
NLO3 −10.0 1.8 15.8 −7.8 1.6 13.2
NLO4 2.2 2.7 3.4 1.6 2.0 2.4
NLO5 0.1 0.2 0.2 0.1 0.2 0.2
NLO6 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

NLO2 + NLO3 −1.9 −1.7 0.7 −2.8 −2.8 −0.7

and exactly 3 b-jets. Overall the impact of the systematic uncertainties remain limited as a fit without
systematic uncertainties leads to a precision of 9% on the extracted tt̄tt̄ cross section.

Fig. 76: Event yields of signal and background processes in the different signal regions used to extract
the tt̄tt̄ cross section for an integrated luminosity of 3000 fb−1 [627].

The most sensitive result of the CMS collaboration on the Standard Model tt̄tt̄ process [618] is
based on an integrated luminosity of 35.9 fb−1and a centre-of-mass energy of 13 TeV, and relies on
events with 2 same-sign leptons or 3 or more leptons. This Run-2 analysis sets an expected 95% CL
upper limit on the tt̄tt̄ production cross section of 20.8+11.2

−6.9 fb, and an expected significance (based on
a cross section of 9.2 fb) of 1.0 standard deviations above the background-only hypothesis.

The result of Ref. [618] is used to derive extrapolations for HL and HE-LHC, which are described
in Ref. [628] and summarized below. The extrapolations rely on a simple rescaling of the signal and
background cross sections, and make different assumptions on the systematic uncertainties. First, the
statistical uncertainties are considered, then the same systematic uncertainties as the Run-2 published
result are used, and finally these systematics are progressively reduced as a function of the integrated
luminosity.
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The expected sensitivity on the tt̄tt̄ cross section for different HL and HE-LHC scenarios is listed
in Table 39. Based on these results, evidence for tt̄tt̄ production will become possible with around 300
fb−1 of HL-LHC data at

√
s = 14 TeV, at which point the statistical uncertainty on the measured cross

section will be of the order of 30% and the measurement will have a total uncertainty of around 33-
43%, depending on the systematic uncertainty scenario considered. For larger datasets at HL-LHC, all
scenarios considered become dominated by systematic uncertainties. With 3 ab−1 the cross section can
be constrained to 9% statistical uncertainty, and the total uncertainty of a measurement ranges between
18% and 28% depending on the considered systematic uncertainties. At HE-LHC the tt̄tt̄ cross section
is expected to be constrained to within a 1-2% statistical uncertainty, and the systematic uncertainties
also decrease due to the improved signal to background ratio at

√
s = 27 TeV. Future changes to the

analysis strategy might allow improvements based on optimizing the interplay between statistical and
systematic uncertainties.

The tt̄tt̄ cross section measurements can also be used to constrain the Wilson coefficients of the
OR,O(1)

L ,O(1)
B andO(8)

B dimension-6 operators of the Effective-Field-Theory (EFT) Lagrangian. These
constraints are included in Ref. [628] for both HL-LHC and HE-LHC scenarios.

Table 39: Expected sensitivity for the production cross section of tt̄tt̄ production, in percent, at 68%
confidence level. The fractional uncertainty on the cross section signal strength is given for various LHC
upgrade scenarios. Cross sections are corrected for the changes expected by

√
s. For the 15 ab−1 27 TeV

scenario, the systematic uncertainty extrapolation is no longer valid, so only the statistical uncertainty is
provided.

Int. Luminosity
√
s Stat. only (%) Run-2 (%) YR18 (%) YR18+ (%)

300 fb−1 14 TeV +30,−28 +43,−39 +36,−34 +36,−33

3 ab−1 14 TeV ±9 +28,−24 +20,−19 ±18

3 ab−1 27 TeV ±2 +15,−12 +9,−8 +8,−7

15 ab−1 27 TeV ±1

6.3 Four top quarks as a probe of new physics
Heavy coloured resonances decaying into a pair of top quarks are present in many new physics theo-
ries [629–633]. Such particles are typically pair-produced at large rate and their decay then leads to a
substantial enhancement of four-top production. Current bounds on such a setup are driven by a recent
CMS analysis of four-top events [618], using 35.9 fb−1 of LHC collisions at a centre-of-mass energy of
13 TeV. Those bounds however are expected to strongly improve in the upcoming years, as illustrated in
following contributions, with the example of a scalar colour-octet field O, traditionally dubbed a sgluon.

6.3.1 Limits on pseudoscalar colour-octets38

The effective Lagrangian describing the couplings of such a sgluon to the Standard Model is given
by [634]

L ⊃ g8dabcO
aGbµνG

µνc+ g̃8dabcO
aGbµνG̃

µνc+
{
q̄
[
yL
8PL + yR

8 PR

]
OaTaq + h.c.

}
, (46)

where T a and dabc are respectively the fundamental representation matrices and symmetric structure
constants of SU(3). Moreover, flavour and fundamental colour indices are understood for simplicity and
the gluon field strength (dual field strength) tensor is denoted byGaµν (G̃aµν). The focus here is on the case
of a pseudoscalar sgluon with g8 = 0 and purely imaginary y8 matrices, and it is additionally enforced

38Contributed by B. Fuks, L. Darmé and M.D. Goodsell.
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g̃8 = 0 as in Dirac gaugino supersymmetric scenarios. A non-vanishing g̃8 coupling would however
weaken the bounds by reducing the sgluon branching ratio into top quarks. In order to assess the impact
of future search on the potential discovery of a sgluon, recasting strategy is followed here, as detailed
in Ref. [635]. An NLO UFO module [636] is generated through FEYNRULES [637], NLOCT [638] and
FEYNARTS [639] and it is used to generate events within the MG5_AMC@NLO framework [12], the
hard-scattering matrix elements being convolved with the NNPDF3.0 NLO set of parton densities [201]
and the sgluon decays being achieved with MADSPIN [402] and MADWIDTH [640]. Parton showering
and hadronisation are performed by PYTHIA 8 [149] and the response of the CMS detector is simulated
with DELPHES 3 [273] and FASTJET [343]. Finally, the four-top selection strategy of CMS [618] is
mimicked by using the MADANALYSIS 5 [641–643] framework.

The best signal region (SR6) from Ref. [618], in terms of constraints, focuses on a topology
featuring one pair of same-sign leptons, at least 4 b-jets and at least 5 hard jets. It is shown the observed
and expected limits on the pseudoscalar octet cross section times the corresponding branching ration into
four top quarks in Fig. 77 (left). While the analysis of Ref. [618] targeted a Standard Model four-top
signal, future studies adopting a new physics signal selection strategy relying on the large differences in
the final-state kinematics could be more adapted and lead to sizeable improvement in the reach [635].

800 900 1000 1100 1200

0.00

0.01

0.02

0.03

0.04

0.05 Observed

Expected

1000 1100 1200 1300 1400 1500

0.000

0.005

0.010

0.015

0.020

0.025

0.030

1200 1250 1300 1350 1400 1450 1500 1550

0.05

0.10

0.15

0.20

Fig. 77: Left: Expected (dashed) and observed (solid) pseudoscalar sgluon pair-production cross section
excluded at the 95% confidence level when making use of the results associated with the SR6 region of
the four-top CMS analysis of Ref. [618]. Theoretical predictions for the signal rate are indicated by the
grey band. Right: expected limits for proton-proton collisions at centre-of-mass energies of 14 (top) and
27 (bottom) TeV, with the sgluon cross-section as the fine dotted line.

To calculate the projected sensitivity of the HL/HE-LHC, it is assumed that the current selection
efficiencies at 13 TeV are similar to the future ones, and moreover rescale the four-top and other SM
backgrounds by the appropriate partonic luminosities relative to those at 13 TeV. The rescaling factor
for the non-four-top SM background is taken to be the largest ratio of the ttZ and ttW background
component, using the projected cross-sections reported in Sec. 6.8. Factors of 1.3 and 12 are obtained
for the 14 and 27 TeV cases, respectively. According to Sec. 6.2.1, the four-top cross section is then
set to 15.83 fb and 144 fb at 14 and 27 TeV, respectively, recalling that the 13 TeV cross section is of
11.97 fb. The results for the projected mass limits are then given in the following Table 40, together with
the 13 TeV value for reference.
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Table 40: Results for the projected mass limits on pseudo-scalar color octets.

35.9 fb−1, 13 TeV 3 ab−1, 14 TeV 15 ab−1, 27 TeV
Octet mass (GeV) 1060 1260 1470

6.3.2 Limits on top-Higgs interaction from multi-top final state39

Four top-quark (tt̄tt̄) production provides a powerful tool to probe the Top-quark Yukawa coupling
(yt) [644]. In the SM the tt̄tt̄ production can be induced either by the pure gauge interaction (involving
the gluon, Z-boson or photon in the intermediate state) [645] or by the Higgs boson mediation [644].
Defining the general top-Higgs coupling as yt ≡ κty

SM
t with ySM

t the top-Yukawa coupling in the SM,
the leading-order cross section of tt̄tt̄ production can be parameterised as

σ(tt̄tt̄) = σ(tt̄tt̄)SM
g/Z/γ + κ2

tσ(tt̄tt̄)SM
int + κ4

tσ(tt̄tt̄)SM
H , (47)

where σ(tt̄tt̄)SM
g/Z,γ, H, int denotes the cross section induced by the pure gauge interaction, Higgs-boson

mediation and the interfere effect, respectively. Note that σSM
H,int is comparable to σ(tt̄tt̄)SM

g/Z,γ as ySM
t ∼

1 in the SM. For example, the leading order calculation with the renormalization/factorization scale (µ)
fixed to the dynamics scale [12] yields

HL− LHC (
√
s = 14 TeV) : σ(tt̄tt̄) = 13.14− 2.01κ2

t + 1.52κ4
t [fb]

HE− LHC (
√
s = 27 TeV) : σ(tt̄tt̄) = 115.10− 15.57κ2

t + 11.73κ4
t [fb] (48)

Clearly, σ(tt̄tt̄) depends only on κt such that it directly probes yt without any assumption on Higgs
boson. The above values suffer from a large µ dependence; when varying the scale by a factor 2, the
cross section varies by about 50%. It is crucial to take the full next-to-leading order corrections [115,617]
into account to get a realistic simulation. Here, the tree level events are generated and the cross section
rescaled to the NLO.

A special signature of the tt̄tt̄ events is the same-sign charged leptons (SSL) from the two same-
sign top quarks. The other two top quarks are demanded to decay hadronically to maximize the event
rate. Therefore, the topology of the signal event consists of two same-sign charged leptons, four b-
quarks, four light-flavor quarks, and two invisible neutrinos. In practice it is challenging to identify four
b-jets. Instead, it is required for at least 5 (6) jets to be tagged and three of them to be identified as b-jets at
the HL(HE)-LHC, respectively. The two invisible neutrinos appear as a missing transverse momentum
EmissT in the detector. The SM backgrounds contain tt̄ + X , W±W±jj and W±W±jj processes.
See Ref. [644] for the details of those kinematic cuts used to disentangle the tt̄tt̄ signal from the huge
backgrounds. It is demanded that EmissT > 100 GeV at the HL-LHC and EmissT > 150 GeV at the
HE-LHC. Table 41 displays the numbers of signal and background events after applying the kinematics
cuts listed in each row sequentially. In Table 41, at the HL-LHC the tt̄tt̄ production cross section is
multiplied by a constant K-factor of 1.27 with uncertainty 27% (see Ref. [617]), while at the HE-LHC
the cross section is rescaled to NLO order of 143.93+17%

−20% fb (see Table 37 in Sec. 6.2.1).

The MC simulation shows that the tt̄tt̄ production (κt = 1) can be discovery at a 5σ confidence
level with an integrated luminosity of 2075 fb−1 at the HL-LHC and 146 fb−1 at the HE-LHC, re-
spectively. The event rate is not enough for measuring yt precisely at the HL/HE-LHC but it is good
for bounding yt; for example, a direct bound κt ≤ 1.41 [1.37, 1.47] is obtained at the HL-LHC and
κt ≤ 1.15 [1.12, 1.17] (1.12 [1.10, 1.13], 1.10 [1.08, 1.12]) with an luminosity of 10 (20, 30) ab−1 at
the HE-LHC, respectively.

39Contributed by Qing-Hong Cao, Shao-Long Chen and Yandong Liu.
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A few words of care on the interpretation of results from this study are however necessary: as it
has been discussed in Sec. 6.2.1, the complete-NLO corrections to tt̄tt̄ are large and can involve terms
proportional to y3

t , y5
t and y6

t (on top of y2
t and y4

t already present at LO). However, since in such
corrections yt is renormalised, an extension of our study will not be immediately possible at NLO.

Table 41: The numbers of signal and background events at the HL-LHC with an integrated luminosity
of 300 fb−1 (left) and at the HE-LHC with an integrated luminosity of 1 ab−1. The cuts listed in the
row are applied sequentially [644].

HL-LHC Basic SSL Jets 6ET mT HT

t̄tt̄tH 577.22 9.82 4.68 2.43 1.33 1.21
t̄tt̄tg/Z/γ 5006.34 78.15 37.02 19.25 11.09 10.16
t̄tt̄tint -764.67 -12.79 -6.19 -3.23 -1.93 -1.77

t̄t 2.5× 108 28802.4 44.1 18.9 0 0
t̄tW+ 32670 2359.5 36.9 17.7 12.3 8.7
t̄tW− 16758 1397.1 49.5 9.9 4.5 4.5
t̄tZ 24516 2309.4 20.1 10.8 10.8 9.3
W±W±jj 4187.7 1147.5 0.11 0 0 0

HE-LHC Basic SSL Jets 6ET mT HT

t̄tt̄tH 15174.4 260.09 84.61 27.92 15.42 15.17
t̄tt̄tg/Z/γ 148898. 2421.08 814.77 268.02 168.55 166.77
t̄tt̄tint -20141.9 -347.81 -117.95 -36.17 -20.14 -19.66

t̄t 3.3× 107 130207 291.9 0 0 0
t̄tW+ 1.3× 106 11488.5 171.0 39.6 27.1 27.1
t̄tW− 7.6× 105 7387.1 99.5 19.9 9.9 9.9
t̄tZ 3.9× 106 20748.7 507.2 129.7 70.8 70.8
W±W±jj 888700 7947.0 4.7 3.5 0 0

6.3.3 Constraining four-fermion operators in the EFT40

The four-top total cross section measurement can be interpreted within the SMEFT framework [646]41.
Following the notation in Refs. [646] and [234], the relevant operators consist of four independent
four-top-quark operator coefficients, C̃tt, C̃

(+)
QQ , C̃

(1)
Qt , C̃

(8)
Qt , and fourteen independent two-light-two-

top-quark (qqtt) operator coefficients, C̃(8)
td , C̃(1)

td , C̃(8)
Qd , C̃(1)

Qd , C̃(8)
tu , C̃(1)

tu , C̃(8)
Qu , C̃(1)

Qu , C̃(8,1)
Qq , C̃(1,1)

Qq ,

C̃
(8,3)
Qq , C̃(1,3)

Qq , C̃(8)
tq , C̃(1)

tq . Here C̃i ≡ Ci/Λ2. OtG is relevant but better constrained by other processes.

To estimate the projected limits on these coefficients, a few simple assumptions are made: 1) the
effective operators do not significantly change the distribution of events, so the sensitivity mainly comes
from inclusive measurements; 2) a kinematic cut Mcut of a few TeV can be applied to the total mass
of the four tops to make sure the SMEFT can be matched to BSM models with scales larger than this
energy (i.e. following Ref. [647]); and 3) Mcut does not significantly change the projected sensitivity on
cross section measurements. By combining the expected experimental sensitivity discussed in Sec. 6.2.2
and the theoretical predictions presented in Sec. 6.2.1 it is estimated that the total cross section can be

40Contributed by Cen Zhang.
41This interpretation is also present in Ref. [628].
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determined with an uncertainty of 102%, 58%, and 40%, at 95% CL level, for the 13, 14 and 27 TeV
runs respectively. The corresponding integrated luminosities are 300 fb−1, 3 ab−1 and 15 ab−1.

For illustration, Fig. 78 shows the signal strength dependence on two operator coefficients: one
four-top coefficient (left) and one qqtt coefficient (right), assuming a 3 TeV Mcut. The cross section
becomes more sensitive to the four-top operator coefficient at larger energies. Together with smaller
uncertainties, the limit on this coefficient is significantly improved with the 27 TeV run. On the other
hand, the cross section becomes less sensitive to the qqtt operator coefficient as the energy increases.
The limits are thus not very much affected by energy. Table 42 presents individual limits on all 18
operator coefficients, assuming Mcut = 3 TeV.
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Fig. 78: Four-top signal strength as a function of operator coefficients, C̃tt (left) and C̃
(1)
tu (right).

Horizontal lines represent the expected measurements at each energy. Mcut = 3 TeV is applied.

6.3.4 Top quark dipole moment in multi-top production42

This paragraph presents the study of the sensitivity of the four top quark production on the strong dipole
moments of the top quark [648]. Within the SM framework, the top quark dipole moments are zero at
tree level, however, higher-order corrections could generate non-zero strong dipole moments for the top
quark. The top quark strong dipole moments have very small values in the SM, so that they would not be
observable at the LHC experiments. However, there are extensions of the SM in which sizable contribu-
tions to these dipole moments arise, making them accessible by the experiments at the LHC [649, 650].
As a result, observation of any significant deviation of dipole moments from zero would point to be-
yond the SM physics. The most general effective Lagrangian describing the gtt̄ coupling considering
dimension-6 operators can be parametrized as [651]:

Lgtt̄ = −gst̄
λa

2
γµtGaµ − gst̄λa

iσµνqν
mt

(dgV + idgAγ5)tGaµ,

where the chromomagnetic and chromoelectric dipole moments of the top quark are denoted by dgV
and dgA (both are zero in the SM at leading order). Direct bounds on both dgV and dgA were obtained
from the top quark pair cross section measurements at the LHC and the Tevatron. The bounds on the
dipole moments using the tt̄ cross section at the LHC and Tevatron were found to be: −0.012 ≤ dgV ≤
0.023 , |dgA| ≤ 0.087 [652]. Four-top quark production is also affected by the gtt̄ effective coupling
and provides a powerful way to probe the chromomagnetic and chromoelectric dipole moments of the
top quark. The representative Feynman diagrams with the effective gtt̄ coupling denoted by filled red
circles are shown in Fig. 79. The contribution of the top quark dipole moments to the tt̄tt̄ production
cross section is determined with the MG5_AMC@NLO package [12]. By taking into account at most

42Contributed by J. Ebadi, H. Khanpour, S. Khatibi and M. Mohammadi Najafabadi.
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Table 42: Limits on 14 qqtt operator coefficients and 4 four-top operator coefficients, expected at the
13, 14 and 27 TeV scenarios, at the 95% CL level.

13 TeV 14 TeV 27 TeV

C̃
(8)
td [-9.8, 6.4] [-8.8, 5.4] [-6.6, 5.4]

C̃
(1)
td [-3.9, 4.1] [-3.3, 3.4] [-3.3, 3.3]

C̃
(8)
Qd [-9.6, 6.2] [-8.8, 5.2] [-7.6, 5.2]

C̃
(1)
Qd [-4., 4.] [-3.3, 3.3] [-3.4, 3.3]

C̃
(8)
tu [-8.2, 4.8] [-6.4, 4.3] [-9.6, 4.5]

C̃
(1)
tu [-3., 3.1] [-2.5, 2.6] [-2.7, 2.7]

C̃
(8)
Qu [-7.8, 4.6] [-7.8, 4.] [-5.8, 4.2]

C̃
(1)
Qu [-3., 3.] [-2.6, 2.6] [-2.7, 2.7]

C̃
(8,1)
Qq [-7.5, 4.2] [-6., 3.6] [-6.5, 3.7]

C̃
(1,1)
Qq [-2.5, 2.7] [-2.1, 2.3] [-2.2, 2.3]

C̃
(8,3)
Qq [-5.8, 4.8] [-4.7, 4.2] [-5.4, 4.]

C̃
(1,3)
Qq [-2.6, 2.6] [-2.1, 2.2] [-2.2, 2.2]

C̃
(8)
tq [-7.1, 3.9] [-6.9, 3.3] [-5.1, 3.4]

C̃
(1)
tq [-2.6, 2.6] [-2.2, 2.2] [-2.3, 2.2]
C̃tt [-1.5, 1.3] [-1.1, 0.96] [-0.81, 0.7]
C̃

(+)
QQ [-1.5, 1.3] [-1.1, 0.96] [-0.81, 0.7]

C̃
(1)
Qt [-2.4, 2.4] [-1.8, 1.8] [-1.3, 1.3]

C̃
(8)
Qt [-5.3, 4.4] [-4.1, 3.1] [-3., 2.3]
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Fig. 79: Representative Feynman diagrams for the tt̄tt̄ production where the effects of the strong dipole moments
are shown as filled red circles.

an effective vertex in each diagram, the total four top cross section at
√
s = 14 TeV has the following

form:

σ(pp→ tt̄tt̄)(fb) = σSM + 154.8× dgV + 3404.4× (dgV )2,

σ(pp→ tt̄tt̄)(fb) = σSM + 2731.3× (dgA)2, (49)

where the SM four top quark cross section is denoted by σSM. The linear terms are due to the interfer-
ence between the new physics and SM with the contribution of the order of Λ−2. The quadratic terms
suppressed by Λ−4 power are the pure contributions of the strong dipole moments. To estimate the
sensitivity of the four top process to dipole moments, the same-sign dilepton channel is the focus here
due to its clean signature and very low background contribution. The main background contributions
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Table 43: Limits at 95% CL on the chromoelectric and chromomagnetic dipole moments dg,ZV at 95% CL for the
HL-LHC and HE-LHC.

Coupling HL-LHC, 14 TeV, 3 ab−1 HE-LHC, 27 TeV, 15 ab−1

dgV [-0.084, 0.009] [-0.063, 0.001]
dgA [-0.030, 0.030] [-0.011, 0.011]

come from the tt̄W and tt̄Z processes. Signal and the background processes are generated with the
MG5_AMC@NLO package at leading order. PYTHIA v6 [653] is used for hadronization, showering
and decay of unstable particles. Jets are reconstructed using the anti-kT algorithm [274]. Signal events
are selected by requiring exactly two same-sign charged leptons with p`T > 25 GeV and |η`| < 2.5. The
missing transverse energy has to be larger than 30 GeV. Each event is required to have at least eight jets
with pT > 30 GeV and |η| < 2.5 from which at least three should be b-tagged jets. All objects in the
final state are required to be well isolated objects by requiring ∆R(i, j) > 0.4. Table 43 presents limits
at 95% CL on the chromoelectric (dgA) and chromomagnetic (dgV ) dipole moments for the HL-LHC and
HE-LHC. The HE-LHC improves the HL-LHC bound on dgA by about a factor of three and the upper
bound on dgV by one order of magnitude. The four top-quark production at the HE-LHC would be able
to tighten the upper limit on dgA (dgV ) by a factor of two (eight) with respect to the top pair production at
the HL-LHC [652].

6.4 The tt̄V production at the HL/HE-LHC
6.4.1 tt̄Z cross sections at NLO QCD and EW43

This section provides the cross section for tt̄Z production at the HL and HE-LHC. The results are ac-
curate up to NLO QCD and NLO EW accuracy [99]. NLO QCD and EW corrections are computed
simultaneously with MG5_AMC@NLO [12], more specifically by using the recently-released version
capable of mixed-coupling expansions [89]. The same setup as in Ref. [186] is used (see in particular
Sec. 1.6.7.a), except for the PDF set, for which the PDF4LHC15_nlo_30_pdfas set [195] is employed.
In fact, at variance with the predictions in Ref. [186], photon-initiated contributions are not included,
since recent studies on the photon distribution became available [222, 223], and the corresponding pho-
ton density gives negligible contributions for tt̄Z. The quoted EW corrections include the LO term
at O(α2αs) and the NLO one at O(α2α2

s). At variance with tt̄W production, for which other contri-
butions, subleading in the couplings, turn instead to be relevant (see Sec. 6.4.2), it has been shown in
Ref. [89] that such contributions can be safely neglected for tt̄Z.

Cross-sections for tt̄Z are quoted in Table 44, together with the NLO/LO QCD K-factor, the
relative impact of EW corrections, and the theory uncertainties. For the latter, the uncertainty coming
from scale variations, the PDF uncertainty and the αs one are quoted separately.

Table 44: Cross section, in pb, for tt̄Z production at the HL and HE-LHC. Uncertainties on the cross
sections are at the per-mil level.

√
s σNLO

QCD σNLO
QCD+EW KQCD δEW [%] scale [%] PDF [%] αs [%]

14 TeV 1.018 1.015 1.40 -0.3 +9.6 -11.2 ±2.7 ± 2.8
27 TeV 4.90 4.81 1.45 -2.0 +9.9 -10.4 ±2.0 ± 2.0

43Contributed by R. Frederix, D. Pagani and M. Zaro.
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6.4.2 The complete-NLO corrections to tt̄W 44

This section presents the so-called “complete”-NLO corrections to tt̄W± production. This process can
proceed through different terms of order αpsα

q+1 with p + q = 2, 3 at LO and at NLO respectively.
The term complete-NLO refers to computation of all terms with p + q ≤ 3, which has been performed
for the first time in Ref. [115] by employing the newly-released version of MG5_AMC@NLO [12]
capable of computing mixed QCD and electroweak corrections [89]. Among the various contributions,
the complete-NLO corrections include the NLO QCD ones (p = 3, q = 0) [418, 419, 654, 655], and the
NLO EW corrections (p = 2, q = 2) [99]. This short paragraph reports inclusive predictions for the
HL and HE-LHC, with a centre-of-mass energy of respectively 14 TeV and 27 TeV. The same setup and
notation of Ref. [115] is used, where the interested reader can find more details as well as predictions
for 13 and 100 TeV.

Table 45: Cross section for tt̄W± production at the HL and HE-LHC, in various approximations, for
µ = HT/2. Number in parentheses are computed with a jet veto. See Ref. [115] for details.

σ[fb] LOQCD LOQCD + NLOQCD LO LO + NLO LO(+NLO)
LOQCD(+NLOQCD)

14 TeV 414+23%
−18% 628+11%

−11% (521+5%
−7%) 418+23%

−17% 670+12%
−11% (548+6%

−7%) 1.07 (1.05)
27 TeV 1182+21%

−16% 2066+14%
−11% (1561+7%

−7%) 1194+21%
−16% 2329+14%

−11% (1750+7%
−7%) 1.13 (1.12)

Table 45 reports the total-cross section for tt̄W± production in different approximations, and
Table 46 the breakdown of the different orders contributing at LO and NLO, as fraction of the O(α2

sα)
LO contribution, LO1. Number in parentheses are computed by vetoing hard central jets, with pT >
100 GeV and η < 2.5. As it can be gathered from the tables, the jet veto is beneficial in order to reduce
the NLO QCD corrections, in particular the large contribution coming from hard real emissions with a
soft or collinear W boson. It can be appreciated how the NLO3 contribution is actually larger than the
NLO2 (the EW corrections) despite the extra power of α, and how such a contribution grows with the
collider energy. As explained in Ref. [115], this is due to the t−W scattering process [656]. Since the
size of NLO3 is not much affected by the jet veto, a measurement of the t−W scattering from the tt̄W
cross section should be possible.

6.5 Top mass

6.5.1 Theoretical issues45

The currently most precise methods for top mass measurements at the LHC are the so called “direct
measurements” which are obtained exploiting information from the kinematic reconstruction of the
measured top quark decay products, and their corresponding combinations. The typical errors cur-
rently quoted for the direct LHC top mass measurements are of the order of 500-600 MeV, and with
the prospect of the high luminosity operations, as can be seen from Fig. 80 of the following section,
the projected future experimental uncertainty is around 200 MeV. Such a high precision entails also a
high level of scrutiny concerning the extracted top mass value. In direct measurements, the measured
top mass is the value of the top mass parameter in the Monte Carlo generator that is used to fit top-mass
sensitive distributions, because the complexity of the measurement is such that the extraction of these
distributions corrected for detector effects, to be compared with analytic calculations, is not feasible. In
this respect, the scrutiny must also regard theoretical aspects dealing with how the Monte Carlo models

44Contributed by R. Frederix, D. Pagani and M. Zaro.
45Contribution by G. Corcella, P. Nason, A. Hoang and H. Yokoya.
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Table 46: tt̄W : σ(N)LOi
/σLOQCD

ratios at 14 and 27 TeV, for different values of µ = µr = µf . LO2 is
identically zero and is not quoted in the table. Number in parentheses are computed with a jet veto. See
Ref. [115] for details.

δ[%]
14 TeV 27 TeV

µ = HT/4 µ = HT/2 µ = HT µ = HT/4 µ = HT/2 µ = HT

LO3 0.8 1.0 1.1 0.9 1.0 1.2
NLO1 37.4 (7.7) 51.8 (25.9) 64.7 (41.9) 67.4 (18.4) 74.8 (32.0) 82.0 (44.3)
NLO2 −4.5 (−4.7) −4.3 (−4.5) −4.1 (−4.3) −5.1 (−5.4) −5.0 (−5.2) −4.8 (−5.1)
NLO3 13.0 (9.7) 13.3 (9.9) 13.6 (10.1) 25.5 (19.8) 26.1 (20.2) 26.6 (20.6)
NLO4 0.02 (−0.00) 0.03 (0.00) 0.05 (0.01) 0.06 (0.01) 0.08 (0.02) 0.10 (0.03)

the relevant mass sensitive distributions, keeping in mind that all effects that can lead to variations of the
result in the 100 MeV range should be considered.

The top mass parameter, as all coupling constants characterizing the underlying field theory, re-
quires renormalization, and its precise value depends upon the adopted renormalization scheme. The
differences in the top mass in different renormalization prescriptions used in the theoretical community
are parametrically of order Rαs(R), with R between about 1 GeV and mt, and thus can amount from a
few hundred MeV to several GeV. It is thus clear that an experimental result, in order to be of any use,
must specify to which scheme the measured value corresponds to.

At present, the experimental collaborations have renounced to qualify direct mass measurements
by also specifying a renormalization scheme. This is a consequence of the fact that no full agreement
has been reached among theorists on this issue. Some authors have argued that, in view of the inherent
leading-order nature of the Monte Carlo generators, no scheme can be specified for the mass measured
in direct measurements, since at leading order all schemes are equivalent. This argument was also used
as part of the motivation in favour of alternative measurements where the mass-sensitive observable is
directly computed in perturbation theory at NLO or NNLO accuracy, and is compared to experimental
distributions already corrected for detector effects [657, 658]. For example, the total cross section for
tt̄ production is sensitive to the top mass, it has been computed up to the NNLO order in QCD [41],
and can be used to extract a top mass value [659–661]. Similarly, in Ref. [657, 658], shape observables
constructed out of the tt̄+ jet kinematics are used.

Several theoretical works have appeared proposing alternative techniques to measure the top mass,
partly to provide predictions with at least NLO precision to allow for a mass determination in a well-
defined mass scheme, and partly to circumvent other aspects of direct measurements that may be consid-
ered problematic. The authors of Ref. [662] presented a method, based upon the charged-lepton energy
spectrum, that is not sensitive to top production kinematics, but only to top decay, and does not make
use of jets. Since top decays have been computed at NNLO accuracy [608, 609], they argue that a very
accurate measurement may be achieved in this way. Other authors have advocated using the invariant
mass of boosted top jets supplemented by light grooming (see Ref. [663] and references therein). In
Ref. [664], the b-jet energy peak position is proposed as mass-sensitive observable, that is claimed to
have a reduced sensitivity to production dynamics. In Ref. [665], the use of lowest Mellin moments of
lepton kinematic distributions is discussed. In the leptonic channel, it is also possible to use distribu-
tions based on the “transverse” mass variable [666], which generalizes the concept of transverse mass
for a system with two identical decay branches [667,668]. Some of these methods have been effectively
exploited by the experimental collaborations [666, 669–672] to yield alternative determinations of mt.
They are consistent within errors with direct measurements, and thus provide valuable checks. It turns
out, however, that at the moment their errors are not competitive with direct measurements, mostly be-
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cause the (less direct) observables of the alternative methods do not have the top mass discriminating
power of the direct method. Furthermore, in view of the larger errors, the assessment of their eventual
theoretical uncertainties is a less demanding task in comparison to the case of direct measurements.

The notion that the Monte Carlo mass parameter cannot be qualified as a field theoretical mass
has extensively permeated the discussions regarding the interpretation of top mass measurements. This
notion, however, oversimplifies the situation, because more precise statements on the Monte Carlo mass
parameter can be made. In reality, the accuracy of Shower Monte Carlo’s depends upon the observables
one considers. As a trivial example, the total cross section for the production of top quarks is predicted
at leading order by standard Shower Monte Carlo’s, so that the value of the top mass extracted by fitting
it to the measured total production cross section would indeed carry a scheme ambiguity of order mtαs,
because the pole or the MS schemes can be used for computing the total cross section at higher orders.
Such measurement cannot be qualified by specifying any particular scheme.46 This is not the case if one
considers as an observable the mass of the top decay products. In Ref. [673], for example, it is pointed
out that, in the narrow width limit, a perturbative calculation of the mass of the top decay products
performed in the pole mass scheme yields the pole mass at any perturbative order. Since Monte Carlo
generators, when performing heavy particle decay, strictly conserve the mass of the decaying particle,
it can be inferred that the Monte Carlo mass parameter should be identified with the pole mass up
to non-perturbative effects47 as far as the mass of the decay products is concerned. From a different
point of view, in Ref. [674] it is argued that since the top-quark decay is treated with a Breit-Wigner
form in the Monte Carlo generators, and due to the infrared shower cutoff Q0 ≈ 1 GeV, the top mass
parameter should be close to top mass schemes that are compatible with the Breit-Wigner form. In
turn, these schemes yield mass values that differ from the pole mass by terms of order αs(R)R, with
R ≈ Γt ≈ Q0. In a subsequent work [675], it is argued that, in the narrow width limit, one can relate
the Monte Carlo mass parameter to a running mass (such as the MSR mass [676]) evaluated at the scale
of the Monte Carlo shower cutoff Q0, as long as Q0 & 1 GeV. These arguments entail that the Monte
Carlo mass parameter differs from the top pole mass by several hundred MeV. It must also be noted
that theoretical papers that make use of the direct top mass (noticeably those on electroweak precision
fits [404, 492], and calculations inherent to the issue of the SM vacuum stability [677–679]) interpret
the direct measurement results as being close to the pole mass, up to a theoretical error of few hundred
MeV.

A problem that has received much attention is the presence of an infrared renormalon in the pole
mass definition. The QCD perturbative series for the difference of the pole mass and the MS mass has
factorially divergent coefficients [680, 681]. This is related to an ambiguity of the order of a typical
hadronic scale in the pole mass. Estimates of this inherent ambiguity vary from 110 to 250 MeV [682–
685]. It should be stressed, however, that the finite width of the top screens the effects of soft radiation, so
that this ambiguity does not affect the physics of top production and decay. This mean that the pole mass
ambiguity does not represent in principle a limitation on the precision of top quark mass measurements,
since short-distance mass schemes that are free of the pole mass ambiguity can be adopted. So in view
of the considerable time to the start of the LHC HL program, the pole mass ambiguity, if it becomes a
limiting factor, can be easily avoided, and is thus not discussed further here.

Accepting the fact that the difference between the top mass in direct measurements and the top
pole mass is of the order of few hundred MeV, and in view of the current and projected accuracy of
the direct measurements, several works have appeared in the literature to better quantify the difference.
In [686] numerical relations between the Monte Carlo mass parameter and the pole mass as well as the

46In fact, at the moment, Monte Carlo generators that achieve NLO accuracy for sufficiently inclusive cross section are
routinely used in top mass studies.

47In the narrow width limit the top can propagate a long time before decay, and long-distance non-perturbative effects can
manifest themselves there, and affect the mass by a few hundred MeV.
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MSR mass [676] were determined from comparing hadron level resummed analytic NNLL calculations
performed in SCET factorization and Monte Carlo output (using PYTHIA v8.2) for the 2-Jettiness distri-
bution at the top mass resonance for boosted top jets in e+e− annihilation.48 In the work of Ref. [675],
exploiting the fact that soft emission effects both in shower Monte Carlo and in full QCD can be com-
puted as long as the shower cut Q0 is a perturbative scale, the analytic structure of angular ordered
shower algorithms was examined in detail and compared to the one of resummed calculations in SCET
factorization for hemisphere masses for boosted top jets in e+e− annihilation. From the analysis an
analytic relation at O(αs) between the shower mass parameter and the pole mass was calculated which
is proportional to Q0 αs(Q0).

The results of Ref. [675, 686] are obtained in the context of global event-shape-type top jets
observables in e+e− annihilation, which are different from observables involving jets of the top decay
product that enter the direct measurements. Furthermore, the findings of Ref. [675] represent parton
level results and refer exclusively to angular ordered parton showers. Future work should be aimed to
lift these limitations and to extend studies of this sort to observables that enter the direct measurements
at the LHC. Such studies are also valuable to expose effects that should be included to eventually match
the experimental accuracy.

Direct measurements are not the only context where theoretical effects in the top mass that are
linear in the strong interaction scale, i.e. of the order of few hundred MeV, do arise. In Ref. [688], the
production and decay of a top quark is considered in a very simplified context, and in a particular ap-
proximation, such that non-perturbative corrections can be examined in relation to the factorial growth
of the coefficients of the perturbative expansions. Linear power corrections are found to affect all ob-
servables that make use of jets. But it was also found that typical leptonic observables are also affected
by linear power corrections. Notice that this implies that the total cross section is also affected by linear
power corrections, as soon as selection cuts are imposed. These kind of studies can also be extended to
more complex measurement procedures, eventually making use of jet calibration, in order to understand
to what extent these theoretical limitations to the precision can be removed.

The discussion carried out so far has highlighted theoretical issues that should be studied in more
depth in order to advance our understanding of the theoretical precision of the measurements. In essence
these issues are related to the physics of different stages of soft emission, where a deeper insight would
allow to draw conclusions motivated by perturbation theory, that may be extrapolated to low scales.
There are also aspects of the event simulations that on the one hand only have to do with relatively
hard scales, and can be reliably computed, and on the other hand are more related to the modeling of
hadronization effects that currently cannot be computed from first principles. There is a current research
effort, aimed at improving the simulation of top production and decay, in both these directions. It
includes both the improvement of perturbative accuracy, and the improvement in the overall shower-
hadronization aspects. Regarding the perturbative accuracy, recent progress has been achieved in the
Monte Carlo implementation of finite width and off-resonance effects [169], whose impact has also
been investigated in Ref. [689]. Regarding the hadronization aspects, the importance of the colour
reconnection models has been recognized and investigated in Ref. [690,691]. Furthermore, studies of the
sensitivity of top-mass sensitive observables to the perturbative accuracy, to the shower implementation
and to the hadronization model, are being carried out. In one such study [692], significant differences
were found when comparing HERWIG v7 and PYTHIA v8, where the former adopts an angular ordered
shower, and the latter has a dipole shower, in the description of top-mass sensitive observables. In
general, there is a range of equally plausible simulation models than can be used to describe heavy quark

48 This procedure is often quoted as a form of calibration of the Monte Carlo top mass parameter. It must be noted that
the same terminology has also been used in a different context in Ref. [687], where it is suggested that the Monte Carlo mass
parameter can be constrained by fitting it from kinematic normalized distributions predicted from the Monte Carlo generator,
simultaneously with an inclusive cross section measurement, that is then compared to a fixed order calculation.
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production and decay, that will include different Monte Carlo generators, different Monte Carlo tunes in
a given generator, and different implementations of some component of a generator, like for example the
colour reconnection model. As more work is done by exploring different options for simulation models,
the range of models may enlarge, and potentially also the error in mass measurement may increase.
This increase in the error should be contrasted by limiting the range of models, typically by requiring
that some key observables are in reasonable agreement with data, or by scrutiny concerning the models
themselves. An example of a study in this direction is given in Ref. [693], where the sensitivity of the
top-mass error upon the uncertainties in key Monte Carlo tuning parameters is studied, and a set of
calibration observables strongly sensitive to the Monte Carlo parameters, but with very mild sensitivity
to the top mass, is considered in order to reduce the parametric uncertainties.

A complementary way of reducing the error is to find variants of measurement methods that re-
duce the dependence of the extracted mass from the range of models. In situ jet calibration is routinely
used by the experimental collaborations in top mass measurement. This procedure not only reduces
the experimental error associated with the jet energy scale, but it may also reduces the theoretical er-
ror, by reducing the sensitivity of the measurements from features of jet simulations in the generators.
More specific proposals in this direction have appeared in Ref. [694], where the impact of adopting jet
grooming techniques to the jets in direct top mass measurements is examined.

As mentioned earlier, alternative techniques for mass measurements are currently explored, and
will become more precise at the HL-LHC. As shown in Fig. 80 in the following subsection, the mass
measurement from single top production will acquire a precision similar to the one available today
from direct measurements. The end-point measurement using the J/Ψ will also reach a precision near
600 MeV. Thus, at the HL-LHC there will likely be one highly precise measurement technique, plus
a number of independent methods supporting its results. It should not be forgotten however, that high
luminosity and/or high energy may also offer opportunities for new techniques. In Ref. [663], the use of
grooming techniques applied to boosted top jets is studied, with the goal of directly extracting a short
distance mass. To what extent the high luminosity phase can make this technique feasible is a matter for
future studies. Another example is given in the work of Ref. [695], where it is argued that a glitch in the
dilepton spectrum should be visible for a dilepton invariant mass near twice the top mass. This effect is
due to the diphoton production subprocess gg → γγ mediated by a top loop. The projected statistical
error for the mass determination using this method is of 2-3 GeV for the High Luminosity LHC, and
0.3-0.6 GeV for the 27 TeV High Energy option. A 1 GeV error systematic from the EM calorimeter
calibration should also accounted for. Furthermore, a complete study of the projected theoretical error
is not yet available. It is nevertheless interesting to remember that “out of the box” thinking may lead to
progress in this area.

In summary, from a theoretical point of view, much work is still needed to put the top mass mea-
surements at the HL-LHC on a solid ground. Such work should comprise more thorough experimental
work aimed at understanding and reduce the sources of errors; theoretical work in the framework of
Monte Carlo studies and simulation; and formal theoretical work aimed at understanding conceptual
aspects. Such work is already under way, and it is expected that much more will be understood by the
time the High Luminosity program starts. Thus, in spite of the many challenges, one can expect that
a theoretical precision matching the foreseeable experimental errors for top mass measurements at the
HL-HLC can be achieved.

6.5.2 Experimental projections

The input material for the experimental summary is collected in Ref [696,697]. The measurement of the
top quark mass mtwith high precision is a crucial task for the expected 3000 fb−1of pp collision data
expected in HL-LHC. The top quark mass is one of the free parameters within the Standard Model and its
Yukawa coupling is predicted to be close to unity. Therefore it may play a special role in the electroweak
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symmetry breaking. The top quark mass dominantly contributes to the quantum corrections of the Higgs
field, which become important for any extrapolation of the Standard Model to extremely high energies,
from a few hundred GeV and above. At these high energies some of the fundamental deficiencies of the
Standard Model can be further investigated, such as the stability of the electroweak vacuum state in the
Higgs potential. Thus, precise measurements of the top quark mass allow for consistency tests of the
Standard Model and to look for signs of new physics beyond.

The top quark mass is measured using various techniques and in different decays channels by
the ATLAS and CMS experiments following two different approaches. Firstly, direct mtmeasurements
are obtained exploiting information from the kinematic reconstruction of the measured top quark de-
cay products, and their corresponding combinations. This information is obtained from Monte Carlo
(MC) simulated events using different assumed values for the top quark mass parameter in the program.
Therefore, such results relate to measurements of the input parameter of MC event generators, and dif-
ferences between different MC are covered by a specific systematic uncertainty. The relation between
the measured Monte-Carlo top quark mass parameter and theoretical mass schemes such as the pole
mass is discussed in detail in Section 6.5.1. Secondly, indirect determinations of mt are obtained based
on the comparison of inclusive or differential tt̄ production cross-section to the corresponding theory
calculations, thus sensitive to mpole

t .

The methods exploited for the measurement of mt directly using the kinematic properties of the
tt̄ (or single-top quark) decay products are the template, the matrix element and the ideogram methods.
In the template method, based on a full (tt̄ →lepton+jets, tt̄ →all-jets) or partial (tt̄ →dilepton and
single-top quark) reconstruction of the kinematics underlying the top-quark(s) decay, probability density
functions (templates) for observables sensitive to the underlying mt, and to additional parameters, are
constructed based on MC simulation. These templates are fitted to functions interpolating between the
different input values of mt, fixing all other parameters of the functions. Finally, an unbinned likelihood
fit to the observed data distribution of the observable is used to obtain the value of mt describing
the data best. Typically, for single top and dilepton events the m(lb) variable is used, whereas for the
lepton+jets events themreco

t obtained from a kinematic fit is more appropriate. The ideogram method can
be considered as a computational effective approximation of a matrix element method. After a kinematic
fit of the decay products to a tt̄ hypothesis, MC-based likelihood functions are exploited for each event
(ideograms) that depend only on the parameters to be determined from the data. The ideograms reflect
the compatibility of the kinematics of the event with a given decay hypothesis. As in the case of the
template method, ideograms can be generalised in multiple dimensions depending on the number of
input observables used.

The latest ATLAS combination of direct mt measurements leads to of top quark mass value of
mt = 172.69 ± 0.48 TeV with a total precision of ∼ 0.28% [698]. The latest CMS combination of
direct mt measurements leads to of top quark mass value of mt = 172.44 ± 0.48 TeV with a total
precision of ∼ 0.28% [arXiv:1509.04044]. The precision in each of these analyses is primarily limited
by systematic effects, in particular by the modelling of top quark production and decay and by the jet
energy scale. Analysis techniques have been developed to use in-situ constraints from the data on a
global jet energy scale factor or light jet and b-jet energy scale (3D fits) [698], which still suffer from
statistical uncertainties, which will be reduced strongly at the HL-LHC. The total amount of 3000 fb−1of
14 TeV data would clearly decrease the statistical uncertainty in these analyses. Therefore, the statistical
precision in each analysis should be traded in various ways for a reduced total systematic uncertainty by
cutting into phase space regions where the systematic uncertainties are high.

A variety of alternative methods are exploited to supplement the top quark mass measurements
from direct mass reconstruction based on jet observables. One source of alternative observables is the
usage of the b-jet information in the tt̄ decay, e.g. via final states featuring J/ψ produced in the b-
hadron decays or secondary vertices in b-jets. With the alternative approaches, a large variety of other
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mMC
t measurements can be done, which have different sensitivities to the top quark production and decay

mechanisms and making therefore different contributions to the systematic uncertainties. Compared to
the template method with the standard final states, the sensitivity to the light-jet and b-jet energy scale
(respectively JES and b-JES) is expected to be reduced. One of the limiting factors of this approach is
the small branching fraction, B(tt̄ → (W+b)(W−b) → (`ν`J/ψ(→ µ+µ−)X)(qq′b) ∼ 4.1 × 10−4,
where ` = e, µ. On the other hand the modelling of b-fragmentation and b-decay are expected to
be among the dominating sources of systematic uncertainties of these two analyses and need to be
studied extensively in a dedicated study to reduce the signal modelling uncertainties. Both measurements
can contribute in different ways to the final combination to improve the precision measurement of mt.
Individual mt results resting on various techniques and tt̄ (or single-top quark) decay channels, have
different sensitivities to statistical and systematic effects, and to the details of the MC simulation. To
exploit the full physics potential of the available measurements, and to profit from their diversity and
complementarity, they are combined, thereby further increasing our knowledge on mt.

In some alternative techniques the top quark mass is extracted by comparing cross sections or
distributions that can be calculated directly in QCD at either NLO or NNLO, to corresponding distribu-
tions extracted from data. The mass parameter used in the NLO or NNLO calculation (either the MS
or the Pole top mass) is obtained by fitting the theoretical cross-section or distribution to the measured
one. In this framework, mass measurements have been performed using as observables the inclusive tt̄
cross-section, the differential decay rate in tt̄+1 jet events, lepton and dilepton differential cross-sections.

Due to the changes of the detector performance for the HL-LHC, it is difficult to estimate precisely
the effects of systematic uncertainties. The sources of uncertainty are assumed to be the same as the cur-
rent ones. The estimated Run-2 uncertainties are scaled to align with HL-LHC extrapolations developed
by the ATLAS and CMS Collaborations and documented in Ref. [699]. The impact of the experimental
systematic uncertainties will likely be reduced relative to their effect on the Run-2 analysis given the
large datasets available, allowing precise performance studies to be conducted. The jet reconstruction
uncertainties on mt are expected to be divided by a factor up to two, while uncertainties related to the
reconstruction of electrons and muons remain the same as in Run-2. The theory modelling uncertainties
are expected to be divided by a factor two compared to existing values. The larger HL-LHC dataset will
allow for dedicated tuning and good understanding of NLO MC generators matched to parton showers,
as already started with Run-2 data [421]. Another large contribution to the uncertainties stems from the
modelling of QCD interactions, which can be investigated and constrained using differential measure-
ments of the mass parameter itself or other ancillary measurements in parts of the phase space not yet
accessible. These measurements are partially already being performed [700–702], but will benefit from
more statistics, therefore strong constraints from the high statistics at the HL-LHC are expected.

For this report, ATLAS Collaboration presents projections for the top quark mass measurement
accuracy using tt̄→ lepton+jets events with J/ψ → µ+µ− in the final state [697]. Samples of simulated
events for signal and background processes are produced at 14 TeV centre-of-mass energy. They include
the production of tt̄ pairs, single-top quarks and W/Z bosons in association with jets. After the event
generation step, a fast simulation of the trigger and detector effects is added with the dedicated ATLAS
software framework. The event selection follows the analysis done at 8 TeV [703]. Events are required
to have at least one charged isolated lepton with pT > 25 GeV and |η| < 4 and at least 4 jets with
pT > 25 GeV and |η| < 4.5. No requirement is applied on the number of b-tagged jets. J/ψ candidates
are reconstructed using all pairs of opposite charge sign soft muons with pT > 4 GeVand |η| < 4.5 The
top quark mass is obtained from a template method with unbinned likelihood maximisation approach.
A statistical uncertainty of 0.14 GeVis expected, with a systematic uncertainty of 0.48 GeV.

This paragraph discusses the potential of selected top quark mass measurements at the HL-LHC
done by the CMS Collaboration, as described in detail in Ref [696]. The extrapolations are based on
measurements performed at 7 and 8 TeV centre-of-mass energy using 5 fb−1and 19.7 fb−1, respectively.
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The numbers presented here do not include the possible ambiguity in the interpretation of the measured
value with respect to a well defined renormalisation scheme. However, also the measurement of the pole
mass from the inclusive tt cross-section cross section is extrapolated to HL-LHC conditions.

Typically, the jet energy scale uncertainties play a dominant role for top quark mass measure-
ments. The contribution from background processes, important only for the measurement using single
top events, is expected to be well under control. For the extrapolation of the extraction of mt from the
total cross-section, the cross-section measurement is assumed to be ultimately limited by the luminosity
uncertainty, here assumed to be 1.5%. For the prediction, no predictions beyond NNLO are assumed,
such that the uncertainty due to scale variations is constant.

The resulting extrapolated uncertainties on the top quark mass measurements are summarised in
Fig. 80. The measurement using J/ψ mesons and using in general secondary vertices benefit the most
from higher statistics. But also the other measurements improve significantly, mostly from more precise
understanding of systematic uncertainties, as discussed above, such that ultimately, the precision will
range between 0.1% (which is of the order of ΛQCD) and 0.7%.
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Fig. 80: The top mass measurement uncertainty for different methods as a function of integrated lumi-
nosity as obtained by CMS.

6.6 Top quark properties and couplings
6.6.1 Top quark charge asymmetries at LHCb
The top quark charge asymmetry present in quark-initiated production is diluted by the presence of
gluon-gluon fusion and the increased quark content in the proton at forward rapidities gives LHCb
additional sensitivity to this observable. As LHCb takes data at a lower rate than ATLAS and CMS,
and has a limited acceptance, a partial reconstruction of the tt̄ final state is anticipated in order to make
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Table 47: Projected total uncertainties on the top quark mass for 3 ab−1 and
√
s=14 TeV obtained with

different methods as obtained by CMS.

Method Statistical Systematic Total (GeV)
tt̄ lepton+jets 0.17 0.02 0.17
single-t t-channel 0.45 0.06 0.45
msv` 0.62 0.02 0.62
J/ψ 0.24 0.53 0.58
σtt̄ 0.4% (exp) 0.4% (theory) 1.2
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Fig. 81: The predicted SM asymmetry at LHCb as a function of lepton pseudorapidity in the `b final
state at 14 TeV. The bands show the uncertainty on the theoretical predictions due to scale variations
(light green) and due to combined scale, PDF and αs variations (dark green). The expected statistical
precision on measurements performed by LHCb using 23 and 300 fb−1 of data is indicated by the error
bars on the points.

optimal use of statistics, as described in Sec. 6.1.4. The expected differential single lepton asymmetry
at LHCb, inferred from the rate of `+b and `−b production as a function of lepton pseudorapidity,
is shown in Fig. 81 [704]. The expected statistical precision of a dataset corresponding to 300 fb−1

of integrated luminosity, the total expected at LHCb during the HL-LHC, is shown, along with the
theoretical uncertainties due to scale, αs and PDF uncertainties. The projection indicates that LHCb
will have sufficient statistics to make a non-zero observation of the tt̄ charge asymmetry at the HL-LHC.
The dominant systematic uncertainty on the measurement is expected to come from the knowledge of the
background contributions, particularly from W production in association with b-jets. Other final states,
where an additional b-jet or lepton are required to be present will provide additional information as,
despite the lower statistical precision, they probe larger values of Bjorken-x and select the data sample
with a higher purity.
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6.6.2 A method to determine |Vcb| at the weak scale in top quark decays
In a recent paper [705], a new method was proposed to measure the |Vcb| element of the Cabibbo
Kobayashi Maskawa (CKM) quark mixing matrix at the scale q ' mW , using top decays at the LHC.
To date, |Vcb| has always been measured in B decays, i.e. at an energy scale q ' mb

2 , far below the weak
scale, and it is currently known to an uncertainty of about 2% [509]:

|Vcb| = (42.2± 0.8)× 10−3. (50)

In the proposed measurement at the LHC, |Vcb| will be measured at the scale q ' mW , more repre-
sentative of the weak scale. The motivation for such a measurement is that the traditional extraction of
|Vcb| in B decays relies heavily on the operator product expansion, and its sensitivity is significantly af-
fected by theoretical uncertainties [509]. In contrast, in dealing with decays of on-shell W s, as here, the
theoretical situation is likely to be much cleaner and the systematic uncertainties will be very different.
Moreover, there could be significant evolution of |Vcb| between q ' mb

2 and q ' mW due to radiative
corrections: e.g. the application (somewhat inappropriately) of the Standard Model (SM) six-quark evo-
lution equations [706] at two-loop order [707] to the CKM matrix between q ' mb

2 and q ' mW yields
a fractional increase in |Vcb| of ' 5%, see Fig. 82. While the correct treatment for SM evolution at such
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Fig. 82: Renomalisation Group evolution of |Vcb| using the six-quark running scheme [706–708] be-
tweenmGUT and mb

2 . Previous publications stop atmt, while a correct procedure would use a five-quark
scheme for q <∼mt. This naive procedure at least suggests the possibility of significant low-energy evo-
lution of |Vcb|.

low energies is rather to use an effective field theory, integrating out the top quark below q ∼ mt [708],
such a calculation of the |Vcb| running has not yet appeared in the literature. Thus the low-energy evolu-
tion of |Vcb| is currently completely uncertain, while the naive calculation outlined above at least opens
the possibility that its running might be observable, if |Vcb| can be measured at or above the weak scale.

The proposed method uses the decays of tagged tt pairs with one semileptonic top decay, (the
tag), t → bW− → b`−ν`, and the other a hadronic decay, t → bW → bqc, where q is a charge 1

3 anti-
quark (charge-conjugate decays will be assumed everywhere unless otherwise stated). The fraction of
these in which q = b is (up to negligible phase-space factors), exactly |Vcb|2. Using this ratio, otherwise
leading experimental uncertainties in most of the tagging efficiencies are cancelled. Thus the required
signal will contain three tagged b-jets and a tagged c-jet, in addition to a charged lepton and missing
transverse momentum.
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Taking as a starting point, efficiencies from existing ATLAS and CMS tt cross-section analy-
ses, already-achieved experimental tagging performances [709–714], and reasonable assumptions about
backgrounds, it is estimated [705], that the fractional uncertainty on |Vcb| which can be obtained at a
single experiment using the Run-2 dataset is:

∆|Vcb|
|Vcb|

∼ 0.07, (51)

which is statistics-limited. Averaging the two experiments would give a fractional error of ∼ 5%.

Since the values of the systematic uncertainties on the tagging performances used to calculate
eq. (51) were based roughly on their present determinations, the result is generalised in Fig. 83, to show
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Fig. 83: Estimated fractional error in |Vcb|2 as a function of the systematic uncertainties δεb in the b-jet
tagging efficiency and δB1

in the light-to-b jet flavour mis-tag probability, and integrated luminosity. For
ease of presentation, we assume δB1

' 3δεb as it is at the time of writing. The top curve represents
the Run-2 statistics and the red point on it indicates the illustrative values used to obtain eq. (51). The
second curve corresponds to luminosity projections for Run-3, while the bottom curve is for the projected
integrated luminosity for HL-LHC. We have allowed for a 15% increase in the tt cross section in the
lower three curves, corresponding to an increase in beam collision energy to 14 TeV.

the dependence of the obtained fractional error on the systematic uncertainties as they vary. Also shown
in Fig. 83 are the results using larger datasets, corresponding to various future LHC luminosity scenarios.
The systematics-limited regime is represented by the linear-sloping region towards the bottom-right
part of the figure, while the statistics-limited regime lies close to the y-axis, where the benefit of more
statistics is most marked. The figure shows that making the measurement with future LHC data promises
further improvements from both increased statistics and if tagging performance uncertainties can be
reduced. E.g. if δB1

= 3δεb can be reduced to ' 0.05, then at the end of Run-3, the uncertainty on
|Vcb| per experiment using this method could be as low as 4.5%, giving a fractional uncertainty on the
average of the two |Vcb| measurements of ∼ 3%. HL-LHC would then deliver a further reduction in
the measurement uncertainty of better than a factor of 2. Either of these higher statistics measurements
could give sensitivity for the first time to the renormalisation group running of |Vcb|.
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6.7 Flavour changing neutral current

Processes with flavour-changing neutral currents (FCNC) are forbidden at tree level and are strongly sup-
pressed in higher orders by the Glashow-Iliopoulos-Maiani (GIM) mechanism [715]. The SM predicts
the branching fractions for top quark FCNC decays of O(10−12–10−16) [716–718]. However, various
extensions of the SM allow a significant enhancement of the FCNC top quark decay rates arising from
possible contributions of new particles [718–720]. Any deviations from heavily suppressed top FCNC
rates would be a clear sign of new physics. The FCNC interactions of the top quark with the SM gauge
and Higgs bosons can be described through the following anomalous coupling Lagrangian:

L =
∑

q=u,c

[√
2gs

κgqt
Λ
t̄σµνTa(f

L
GqPL + fRGqPR)qGaµν +

+
g√
2cW

κzqt
Λ
t̄σµν(fLZqPL + fRZqPR)qZµν +

g

4cW
ζzqtt̄γ

µ(fLZqPL + fRZqPR)qZµ −

−eκγqt
Λ

t̄σµν(fLγqPL + fRγqPR)qAµν +

+
g√
2
t̄κHqt(f

L
HqPL + fRHqPR)qH

]
+ h.c., (52)

where PL and PR are chiral projection operators in spin space, κXqt is the anomalous coupling for tXq
vertex (X = g, Z, γ,H), ζZqt is the additional anomalous coupling for tZq vertex, fLXq and fRXq are the
left and right-handed complex chiral parameters with an unitarity constraint of |fLXq|2 + |fRXq|2 = 1.
Each of the anomalous couplings can be probed in events with the top quark pair production where one
of the top quark decays via FCNC interaction, as well as in events with the associated production of the
single top quark with a gluon, Z boson, γ, or Higgs boson.

Top-gluon

The gqt FCNC process was studied by CMS [721] in single top quark events. The event signature in-
cludes the requirement of one isolated lepton and exactly one b and one non-b jet to be present in the final
state with the dominant background arising from the tt̄+jets and W+jets production. The signal events
are simulated in the SINGLETOP Monte-Carlo (MC) generator [722] based on the COMPHEP v4.5.2
package [723]. The backgrounds processes are estimated with the MG5_AMC@NLO v2.5.2 [393]
package, showered and hadronized with PYTHIA v8.230 [149]. The full detector simulation has been
performed for the signal and background events. A Bayesian neural network technique is used to sep-
arate signal from background events. The shape of the neural networks discriminants are used in the
statistical analysis to estimate the expected sensitivity to the contribution from FCNC. Bayesian infer-
ence is used to obtain the posterior probabilities based on an Asimov data set of the background-only
model. We assume the same systematic scenario as in Ref. [724]. To obtain the individual exclusion
limits on |κtug|/Λ and |κtcg|/Λ we assume the presence of only one corresponding FCNC parameter in
the FCNC signal Monte Carlo model. These individual limits can be used to calculate the upper limits
on the branching fractions B(t→ ug) and B(t→ cg) [725]. The expected exclusion limits at 95% C.L.
on the FCNC couplings and the corresponding branching fractions are given in Table 48. In addition the
two-dimensional contours that reflect the possible simultaneous presence of both FCNC parameters are
shown in Fig. 84. In this case both FCNC couplings are implemented in the FCNC signal Monte Carlo
model. The expected limits can be compared with the recent CMS results [726] for the upper limits on
the branching fractions of 2.0× 10−5 and 4.1× 10−4 for the decays t→ ug and t→ cg, respectively.
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Table 48: The expected exclusion 1D limits at 95% C.L. on the FCNC couplings and the corresponding
branching fractions for an integrated luminosity of 300 fb−1 and 3000 fb−1. In addition, a comparison
with statistic-only uncertainties is shown.

Integrated luminosity B(t → ug) |κtug|/Λ B(t → cg) |κtcg|/Λ
300 fb−1 9.8 · 10−6 0.0029 TeV−1 99 · 10−6 0.0091 TeV−1

3000 fb−1 3.8 · 10−6 0.0018 TeV−1 32 · 10−6 0.0052 TeV−1

3000 fb−1 Stat. only 1.0 · 10−6 0.0009 TeV−1 4.9 · 10−6 0.0020 TeV−1
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Fig. 84: Two-dimensional expected limits on the FCNC couplings and the corresponding branching
fractions at 68% and 95% C.L. for an integrated luminosity of 3000 fb−1.

Top-Z

The ATLAS Collaboration studied the sensitivity to the tqZ interaction, by performing an analysis, de-
tailed in Ref. [727], based on simulated samples and following the strategy detailed in Ref [728] for the
analysis of Run-2 data at 13 TeV centre-of-mass energy and the general recommendations for HL-LHC
studies for this report. The study is performed in the three charged lepton final state of tt̄ events, in which
one of the top quarks decays to qZ, (q = u, c) and the other one decays to bW (tt̄→ bWqZ → b`νq``).
The kinematics of the events are reconstructed through a χ2 minimisation and dedicated control regions
are used to normalize the main backgrounds and constrain systematic uncertainties. The main uncertain-
ties, in both the background and signal estimations, are expected to come from theoretical normalization
uncertainties and uncertainties in the modeling of background processes in the simulation. Different
scenarios for the systematic uncertainties are considered, ranging from the conservative estimations ob-
tained with the 13 TeV data analysis, to those that assume a factor two improvement due to expected
advances in theoretical predictions. Figure 85 shows the χ2 distribution for the events reconstructed in
the signal region, after the combined fit of signal and control regions under the background-only hypoth-
esis. A binned likelihood function L(µ, θ) is used to extract the signal normalisation. An improvement
by a factor of five is expected with respect to the current 13 TeV data analysis results. The limits on the
branching ratio are at the level of 4 to 5 ×10−5 depending on the considered scenarios assumed for the
systematic uncertainties.
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Top-γ

The tγq anomalous interactions have been probed by CMS at 8 TeV in events with single top quarks
produced in association with a photon [729] and the resulting exclusion limits are B(t → γu) <
1.3 (1.9)× 10−4 and B(t→ γc) < 2.0 (1.7)× 10−3.

In this section, the sensitivity of the upgraded CMS detector to tqγ FCNC transitions is estimated
for integrated luminosities of 300 and 3000 fb−1 using single top quark production via q → qγ, with
q being a u or a charm quark [724]. This analysis focuses on subsequent SM decays of the top quark
in a W boson and bottom quark, with the W boson decays leptonically to a muon or electron and a
neutrino. The finale state signature is the presence of a single muon or electron, large missing transverse
momentum, a b-jet, and an isolated high energy photon, with a broad η spectrum. The photon properties
themselves provide good separation with respect to the dominant background processes from W+jets,
and single top or top quark pair production in association with photons. For the discrimination of
signal and background events, and to set the limits on the FCNC couplings, the events are split into two
categories depending on the pseudo-rapidity of the photon (central region with |ηγ | < 1.4 and forward
region with 1.6 < |ηγ | < 2.8). In the central (forward) region the photon pT (energy) is used as a
discriminating distribution: the low pT (energy) is background dominated, while the high pT (energy)
region is populated by signal events. The distributions are shown in Fig. 86.

The limits on the cross section for the single top quark production via tqγ are obtained considering
systematic uncertainties from variations of the renormalization and factorization scale, b-tagging and jet
energy scale corrections and their effects as propagated to missing transverse energy, lepton efficiency
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Fig. 86: Transverse momentum of photon candidates for the central η region (left) and energy of photon
candidates in the forward region (right).

and luminosity.

These studies yield the following upper limite on the branching ratios at 95%C.L.: B(t→ γu) <
8.6× 10−6, B(t→ γc) < 7.4× 10−5.

Top-Higgs

The tHq interactions are studied by ATLAS in top quark pair events with t → qH,H → γγ [730] and
H → WW [731] at 13 TeV. The former analysis explores the final state with two isolated photons. For
leptonic top quark decays the selection criteria includes the requirement of one isolated lepton, exactly
one b jet, and at least one non-b jet. In case of hadronic top quark decays the analysis selects events with
no isolated leptons, at least one b jet, and at least three additional non-b jets. The dominant background
processes are associated with the production of non-resonant γγ+jets, tt̄+jets and W+γγ events. The
resultant limits are B(t → Hu) < 2.4 (1.7) × 10−3 and B(t → Hc) < 2.2 (1.6) × 10−3. The
search for FCNC in H → WW includes the analysis of multilepton final states with either two same-
sign or three leptons. The dominant backgrounds arising from the ttW , ttZ and non-prompt lepton
production are suppressed with a BDT. The obtained limits are B(t → Hu) < 1.9 (1.5) × 10−3 and
B(t → Hc) < 1.6 (1.5) × 10−3. The tHq anomalous couplings are probed by CMS in H → bb̄
channel in top quark pair events, as well as in single top associated production with a Higgs boson, at 13
TeV [732]. The event selection includes the requirement of one isolated lepton, at least two b jets, and
at least one additional non-b jet. The dominant tt̄ background is suppressed with a BDT discriminant
to set the exclusion limits of B(t → Hu) < 4.7 (3.4) × 10−3 and B(t → Hc) < 4.7 (4.4) × 10−3.
Preliminary projections suggest B(t→ Hq) < O(10−4) [733, 734].
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Table 49: Summary of the projected reach for the 95% C.L. limits on the branching ratio for anomalous
flavor changing top couplings.

B limit at 95%C.L. 3 ab−1, 14 TeV 15ab−1, 27 TeV Ref.
t→ gu 3.8× 10−6 5.6× 10−7 [721]
t→ gc 32.1× 10−6 19.1× 10−7 [721]
t→ Zq 2.4− 5.8× 10−5 [733]
t→ γu 8.6× 10−6 [724]
t→ γc 7.4× 10−5 [724]
t→ Hq 10−4 [733]

6.8 Effective coupling interpretations for top quark cross sections and properties49

Effective Field Theory (SMEFT) [615, 616], where the SM is augmented by a set of higher-dimension
operators

LSMEFT = LSM +
∑

i

Ci

Λ2Oi +O(Λ−4). (53)

As an example the relevant operators for the tWb vertex are:

OtW = i
(
Q̄σµν τI t

)
φ̃W I

µν + h.c. (54)

O(3)

φq = i
(
φ†
↔
Dµ τIφ

)(
q̄i γ

µ τ Iqi
)

+ h.c. (55)

in agreement with the notation of [234].

The operators of eq. (54)-(55) modify the Wtb interaction in the following way

Ldim−6
Wtb = − g√

2
b̄(x)γµPLt(x)Wµ(x)


1 +

C
(3)
ϕQv

2

Λ2




+
2 v CtW

Λ2 b̄(x)σµνPRt(x) ∂νWµ(x) + h. c. , (56)

where v = 246 GeV is the Higgs doublet vacuum expectation value, and yt the top quark Yukawa
coupling. Here and below it is assumed Vtb = 1. It must be noted that a slightly different approach
[735–739], not using operators but anomalous couplings, has also been used in the literature. It is
straightforward to connect the operator coefficients with the anomalous couplings description. The
connection between the operator coefficients to the anomalous couplings is discussed in Ref. [651]. The
Wtb vertex can be probed in single top production (t−,Wt, s−channel top production), W helicity
fractions and forward-backward asymmetries.

Similarly the coupling of the top to the Z and photon can be parameterised by the dimension-6
operators as discussed in Ref. [234], where the relevant degrees of freedom are discussed. The relevant
degrees of freedom for the top-Z interaction c−φQ, c

3
φQ, cφt, c

[I]
tZ whilst the photon-top interaction depends

on c[I]
tA as defined in Ref. [234]. Phenomenological studies of top production in association with a vector

boson or a photon exist in the literature [258, 259, 740, 741] including NLO QCD corrections.

This section examines the prospects of probing top charged and neutral couplings at the HL-LHC.

49Contributed by L. Lechner, D. Spitzbart, R. Schöfbeck, D. Azevedo,F. Déliot, A. Ferroglia, M. C. N. Fiolhais, E. Gouveia,
A. Onofre, E. Vryonidou, and M. Moreno Llacer.
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Fig. 87: Limits at 95% CL on the allowed regions for anomalous couplings [752]. The two-dimensional
distributions of the Re versus the Im components of gL (left) and gR (right), are shown.

6.8.1 The top quark couplings to theW boson

The latest and most precise measurements on single top quark production cross sections (t−,Wt−
and s−channels) [614, 742–748], W boson helicity fractions (F0,FL and FR) [749, 750] and forward-
backward asymmetries (A`FB ,ANFB ,ATFB) [751], measured at different centre-of-mass energies i.e., 2 TeV
at Tevatron and 7, 8 and 13 TeV at the LHC, were used to set stringent 95% CL limits on possible new
physics that affect the Wtb vertex structure. The results were extrapolated to the HL-LHC phase of the
LHC, by assuming the full expected luminosity (3000 fb−1) and scaling the uncertainties obtained at the
LHC for

√
s = 13 TeV (the central value of the observables were assumed to be the Standard Model

prediction at 14 TeV). The statistical and simulation related uncertainties were scaled according to the
total integrated luminosity at the HL-LHC. All generator and signal modelling related systematic uncer-
tainties of these observables were extrapolated to be half of their current value, in accordance with the
recent ATLAS and CMS official recommendations for the High-Luminosity studies. All experimental
performance related uncertainties (leptons and jets, efficiencies, energy resolutions, etc.) were consid-
ered to maintain the current value at 13 TeV, at the exception of the efficiency of tagging jets from the
hadronization of b−quarks (b-tagging), which is expected to be reduced by half. These extrapolated
measurements were included in the global fit, in combination with the current measurements, in order
to estimate expected limits on the real and imaginary components of the top quark couplings. The al-
lowed regions of the new couplings are presented in Figure 87 and Table 50. Figure 87 allows also for a
comparison between current LHC results and the HL-LHC projections.

Table 50: Allowed regions for anomalous couplings.

HL-LHC gR gL VR

Allowed Region (Re) [-0.05 , 0.02] [-0.17 , 0.19] [-0.28 , 0.32]
Allowed Region (Im) [-0.11 , 0.10] [-0.19 , 0.18] [-0.30 , 0.30]
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6.8.2 The tt̄γ production
Measurements of tt̄γ production at the HL-LHC are studied by ATLAS in terms of the expected pre-
cision for the measurements of fiducial and differential cross sections in leptonic final states and the
expected limits that can be imposed on the Wilson coefficients of operators relevant to tt̄γ produc-
tion [753]. These operators are the OtB , OtG, and OtW in Ref. [234]. The analysis is performed in
the same way as the 13 TeV tt̄γ analysis [754], by selecting leptonic decay final states of the tt̄ pair
with an isolated high-pT photon. Compared to the 13 TeV analysis, data statistical uncertainty is scaled
down according to the integrated luminosity at the HL-LHC. Monte Carlo (MC) statistical uncertainty is
ignored as it is expected to have enough MC events generated. Theoretical uncertainties are reduced by
a factor of two due to the expected improvement in the theoretical tools and background estimation and
experimental uncertainties are in general kept the same, with respect to the uncertainties in the 13 TeV
analysis. The fiducial cross-section measurement can reach an uncertainty as low as 3% (8%) in the
channel with two (one) leptons and requiring a photon candidate with pT larger than 20 (500) GeV. The
expected uncertainties of differential cross-section measurements, normalised to unity, for several typi-
cal observables like the photon pT and η, are found to be in general below 5%. The expected uncertainty
of the absolute differential cross-section as a function of the photon pT is interpreted as 95% CL limits
for the relevant EFT operators, as shown in Table 51 for single-lepton and dilepton final states.

Table 51: Expected 95 % CL intervals for the three Wilson coefficients relevant to tt̄γ production.

Operator OtB OtG OtW
Single lepton [-0.5,0.3] [-0.1,0.1] [-0.3,0.5]

Dilepton [-0.6,0.4] [-0.1,0.1] [-0.4,0.3]

6.8.3 The tt̄Z production
Many beyond the Standard Model (BSM) predictions include anomalous couplings of the top quark to
the electroweak gauge bosons [649, 755–760]. While this study is restricted to the tt̄Z channel and
the CMS HL-LHC detector with a luminosity scenario of 3 ab−1, it goes beyond earlier work [741]
and studies the sensitivity of the tt̄Z process using differential cross section data [761]. The results
are interpreted in terms of the SM effective field theory [234] and limits are set on the relevant Wilson
coefficients of the Warsaw basis [513] CtZ , C[Im]

tZ , Cφt and CφQ [762, 763].

Events are generated at the parton level at LO using MG5_AMC@NLO v2.3.3 [12], and de-
cay them using MADSPIN [402, 764]. Parton showering and hadronization are done using PYTHIA

v8.2 [149, 292]. Fast detector simulation was performed using DELPHES [273], with the CMS recon-
struction efficiency parameterisation for the HL-LHC upgrade. The mean number of interactions per
bunch crossing (pileup, PU) is varied from 0 to 200. Jets are reconstructed with the FASTJET pack-
age [343] and using the anti-kT algorithm [274] with a cone size R = 0.4. Besides the signals, the main
backgrounds are also generated in the leptonic final states in order to achieve a realistic background
prediction. The WZ, tZq, tWZ, tt̄γ and tt̄Z processes are normalized to cross sections calculated up
to next-to-leading order (NLO) in perturbative QCD.

The results on the inclusive tt̄Z cross section from ATLAS [765, 766] and CMS [767–770] show
that the three lepton channel, where the Z and one of the W bosons originating from a top quark decay
leptonically is the most sensitive. Thus, it is required to have three reconstructed leptons (e or µ) with
pT(l) thresholds of 10, 20, and 40 GeV, respectively, and |η(l)| < 3.0. It is furthermore required
that there is among them a pair of opposite-sign same-flavor leptons consistent with the Z boson by
requiring |m(ll) − mZ| < 10 GeV. Reconstructed leptons are removed within a cone of ∆R < 0.3
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Fig. 88: Differential cross sections of pT(Z) (left) and cos θ∗Z (right) for the in the text mentioned
selection and the HL-LHC scenario. For cos θ∗Z , additionally pT(Z) > 200 GeV is applied.

to any reconstructed jet satisfying pT(j) > 30 GeV. Furthermore, at least 3 jets are required with pT(j)
> 30 GeV and |η(j)| < 4.0, where one of the jets has been identified as a b-tag jet according to the
DELPHES specification.

The distributions of the above-mentioned observables are considered in equally sized bins of the
transverse Z boson momenta pT(Z) [740] and cos θ∗Z , the relative angle of the negatively charged lepton
to the Z boson direction of flight in the rest frame of the boson. The differential cross sections for the
SM (black) and BSM (colored lines) interpretations in tt̄Z with respect to pT(Z) and cos θ∗Z are shown
in Fig. 88 for CtZ = 2 (Λ/TeV)2 and C[Im]

tZ = 2 (Λ/TeV)2. The BSM distributions are normalized to the
SM yield in the plots to visualize the discriminating features of the parameters. The part of the signal
which does not contain information on the Wilson coefficients is shown hatched, backgrounds are shown
in solid colors.

The predicted yields are estimated for the 3 ab−1 HL-LHC scenario at
√
s = 13 TeV and scaled

to 14 TeV, where an additional small background from non-prompt leptons is taken from Ref. [770] and
scaled to 3 ab−1. A profiled maximum likelihood fit of the binned likelihood function L(θ) is performed
and it is considered q(r) = −2 log(L(θ̂)/L(θ̂SM)), where θ̂ and θ̂SM are the set of nuisance parameters
maximizing L(θ) at the BSM and SM point, respectively. Experimental uncertainties are estimated
based on the expected performance of the HL-LHC CMS detector. In Table 52, the 68% and 95% CL
intervals of the likelihood scan for the tt̄Z process are shown, where one non-zero Wilson coefficient is
considered at a time, and all others are set to zero.

Table 53 shows the 68% and 95% CL intervals of the likelihood ratios for two pairs of Wilson
coefficients corresponding to modified neutral current interactions (Cφt and CφQ) and dipole moment
interactions (CtZ and C[Im]

tZ ). The corresponding second Wilson coefficient is included in the profiling
of nuisance parameters.

In Fig. 89, the log-likelihood scan for the tt̄Z process is shown in the CφQ/Cφt parameter plane (left)
and the dipole moment parameter plane CtZ /C[Im]

tZ (right). The green (red) lines show the 68% (95%)
CL contour line and the SM parameter point corresponds to Cφt = CφQ = 0 and CtZ = C[Im]

tZ = 0.
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Table 52: Expected 68 % and 95 % CL intervals, where one Wilson coefficient at a time is considered
non-zero.

Wilson coefficient 68 % CL (Λ/TeV)2 95 % CL (Λ/TeV)2

Cφt [-0.47, 0.47] [-0.89, 0.89]
CφQ [-0.38, 0.38] [-0.75, 0.73]
CtZ [-0.37, 0.36] [-0.52, 0.51]
C[Im]
tZ [-0.38, 0.36] [-0.54, 0.51]

Table 53: Expected 68 % and 95 % CL intervals for the selected Wilson coefficients in a profiled scan
over the 2D parameter planes CφQ/Cφt and CtZ /C[Im]

tZ . The respective second parameter of the scan is
left free.

Wilson coefficient 68 % CL (Λ/TeV)2 95 % CL (Λ/TeV)2

Cφt [-1.65, 3.37] [-2.89, 6.76]
CφQ [-1.35, 2.92] [-2.33, 6.69]
CtZ [-0.37, 0.36] [-0.52, 0.51]
C[Im]
tZ [-0.38, 0.36] [-0.54, 0.51]
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Fig. 89: Scan of the negative likelihood in the CφQ/Cφt (left) and CtZ /C[Im]
tZ parameter planes (right) for

the tt̄Z process under the SM hypothesis. The 68% (95%) CL contour lines are given in green (red).
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Exclusive final state can be produced via three different mechanisms, 
depending on kinematics and quantum numbers of state:

QCD-induced

Photon-inducedFig. 5.31: Di-photon exclusive Standard Model production via QCD (left) and photon induced (right)
processes at the lowest order of pertubation theory.

whereas the photon induced ones (QED processes) dominate at higher diphoton masses [176]. It is
very important to notice that the W loop contribution dominates at high diphoton masses [174, 175, 177]
whereas this contribution is omitted in most studies. This is the first time that we put all terms inside a
MC generator, FPMC [179].

6.1.2 Standard Model WW and ZZ prduction
In the Standard Model (SM) of particle physics, the couplings of fermions and gauge bosons are con-
strained by the gauge symmetries of the Lagrangian. The measurement of W and Z boson pair pro-
ductions via the exchange of two photons allows to provide directly stringent tests of one of the most
important and least understood mechanism in particle physics, namely the electroweak symmetry break-
ing.

The process that we study is the W pair production induced by the exchange of two photons [178].
It is a pure QED process in which the decay products of the W bosons are measured in the central detector
and the scattered protons leave intact in the beam pipe at very small angles and are detected in AFP or
CT-PPS. All these processes as well as theb different diffractive backgrounds were implemented in the
FPMC Monte Carlo [179].

After simple cuts to select exclusive W pairs decaying into leptons, such as a cut on the proton
momentum loss of the proton (0.0015 < x < 0.15) — we assume the protons to be tagged in AFP or
CT-PPS at 210 and 420 m — on the transverse momentum of the leading and second leading leptons at
25 and 10 GeV respectively, on Emiss

T > 20 GeV, Df > 2.7 between leading leptons, and 160 <W < 500
GeV, the diffractive mass reconstructed using the forward detectors, the background is found to be less
than 1.7 event for 30 fb�1 for a SM signal of 51 events [178].

6.2 Triple anomalous gauge couplings
In Ref. [180], we also studied the sensitivity to triple gauge anomalous couplings at the LHC. The
Lagrangian including anomalous triple gauge couplings l

g and Dk

g is the following

L ⇠ (W †
µn

W µAn �W
µn

W †µAn

)

+(1+Dk

g

)W †
µ

W
n

Aµn

+

l

g

M2
W

W †
rµ

W µ

n

Anr

). (5.27)

The strategy is the same as for the SM coupling studies: we first implement this lagrangian in FPMC [179]
and we select the signal events when the Z and W bosons decay into leptons. The difference is that the
signal appears at high mass for l

g and Dk

g only modifies the normalization and the low mass events
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Fig. 5.10: Invariant mass of the J/yJ/y system in (left) exclusive and (right) inclusive events. The
shaded area is the theoretical prediction of Ref. [26]

3 Future measurement at low/medium luminosity: motivation
3.1 Photon–induced processes
3.1.1 Diffractive photoproduction g p !V p
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Fig. 5.11: Diagrams representing the exclusive diffractive g p !V p amplitude.

Two largely equivalent approaches to exclusive diffractive production of a vector meson of mass
MV at g p cms energy W , applicable at small values of x = M2

V/W 2, are the color-dipole approach and the
kT -factorization.

Within the color-dipole framework, the forward diffractive amplitude shown in Fig. 6.8 takes the
form

¡mA(g⇤(Q2
)p !V p;W, t = 0) =

Z 1

0
dz

Z

d2r yV (z,r)y

g

⇤
(z,r,Q2

)s(x,r) , (5.3)

where x = M2
V/W 2, yV and y

g

are the light-cone wave functions for the quark-antiquark Fock states of
the vector meson and photon respectively. The qq̄ separation r is conserved during the interaction (and so
are the longitudinal momentum fractions z,1� z carried by q and q̄). Color dipoles of size r are diagonal
states of the S-matrix and interact with the proton with the cross section

s(x,r) =
4p

3
aS

Z d2
k

k

4
∂xg(x,k2

)

∂ log(k2
)

h

1� exp(ikr)
i

, (5.4)

which in turn is related to the transverse-momentum dependent (or unintegrated) gluon distribution (see
Ref. [35] and references therein). Let us try to understand the behaviour of the amplitude A salient
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C-even, couples to gluons

C-even, Couples to photons

C-odd, couples to photons + gluons

6

 Each one offers different possibilities…

Production Mechanisms

1 Introduction

The use of diffractive processes to study the Standard Model (SM) and New Physics at the
LHC has only been fully appreciated within the last few years; see, for example [1, 2, 3, 4], or
the recent reviews [5, 6, 7], and references therein. By detecting protons that have lost only

about 1-3% of their longitudinal momentum [8, 9], a rich QCD, electroweak, Higgs and BSM
programme becomes accessible experimentally, with the potential to study phenomena which

are unique to the LHC, and difficult even at a future linear collider. Particularly interesting
are the so-called central exclusive production (CEP) processes which provide an extremely

favourable environment to search for, and identify the nature of, new particles at the LHC. The
first that comes to mind are the Higgs bosons, but there is also a potentially rich, more exotic,
physics menu including (light) gluino and squark production, searches for extra dimensions,

gluinonia, radions, and indeed any new object which has 0++ (or 2++) quantum numbers and
couples strongly to gluons, see for instance [2, 10, 11]. By “central exclusive” we mean a process

of the type pp → p +X + p, where the + signs denote the absence of hadronic activity (that
is, the presence of rapidity gaps) between the outgoing protons and the decay products of the
centrally produced system X . The basic mechanism driving the process is shown in Fig. 1.

There are several reasons why CEP is especially attractive for searches for new heavy objects.
First, if the outgoing protons remain intact and scatter through small angles then, to a very

good approximation, the primary active di-gluon system obeys a Jz = 0, C-even, P-even,
selection rule [12]. Here Jz is the projection of the total angular momentum along the proton
beam axis. This selection rule readily permits a clean determination of the quantum numbers

of the observed new (for example, Higgs-like) resonance, when the dominant production is a
scalar state. Secondly, because the process is exclusive, the energy loss of the outgoing protons

is directly related to the mass of the central system, allowing a potentially excellent mass
resolution, irrespective of the decay mode of the centrally produced system. Thirdly, in many

topical cases, in particular, for Higgs boson production, a signal-to-background ratio of order
1 (or even better) is achievable [3, 11], [13]-[18]. In particular, due to Jz = 0 selection, leading-
order QCD bb̄ production is suppressed by a factor (mb/ET )2, where ET is the transverse energy

of the b, b̄ jets. Therefore, for a low mass Higgs, MH
<
∼ 150 GeV, there is a possibility to observe

Figure 1: The basic mechanism for the exclusive process pp → p + X + p. The system X is

produced by the fusion of two active gluons, with a screening gluon exchanged to neutralize
the colour.

2

X = H, jj...

Fig. 90: Schematic diagram of the production of a system X in (left) two–photon (right) QCD–initiated
central exclusive production.

7 Forward physics
7.1 Photon-induced collisions at the HL–LHC50

Central exclusive production (CEP) corresponds to the production of a central system X , and nothing
else, with two outgoing intact protons:

pp→ p + X + p . (57)

Such a process may be mediated by photon exchange, with the elastic photon emission vertex leaving
the protons intact, see Fig. 90 (left). A range of SM (e.g. X = γγ, Zγ, ZZ, `¯̀) and BSM states (e.g.
X = axion–like particles, monopoles, SUSY particles) may be produced in this way. These have the
benefit of:

– The theoretical framework to model the underlying production mechanism, based on the equiva-
lent photon approximation [771], is very well understood. Moreover, due to the peripheral nature
of the interaction the possibility for additional inelastic proton–proton interactions (in other words
of multiple–particle interactions) is very low.

– As the mass of the central system increases, the relative size of any contribution from QCD–
initiated production, see section 7.2, becomes increasingly small [772], due to the strong Sudakov
suppression in vetoing on additional QCD radiation.

CEP therefore offers a unique opportunity at the LHC to observe the purely photon–initiated pro-
duction of electromagnetically charged objects at the LHC in a clean and well understood environment;
in this context the LHC is effectively used as a photon–photon collider. The cross sections for such
processes can be relatively small, in particular at higher mass, and therefore to select such events it is
essential to run during nominal LHC running with tagged protons. The increased statistics available
during the HL–LHC stage will allow these studies to push to higher masses and lower cross sections,
increasing the discovery potential. A detailed study for the example case of anomalous quartic gauge
couplings is discussed below.

7.1.1 Anomalous quartic gauge couplings with proton tagging at the HL–LHC51

This section discusses the discovery potential of anomalous quartic gauge interactions at the LHC via
the measurement of central exclusive production (see Refs. [773–780]). The central system X is recon-
structed in the central detector (CMS, ATLAS) while the outgoing protons, which remain intact due to

50Section edited by L. Harland-Lang.
51Contribution by C. Baldenegro and C. Royon.
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the coherent photon exchange, can be reconstructed with dedicated tracking detectors located in the very
forward region at about ± 210 m (220 m) with respect to the interaction point of the CMS (ATLAS)
experiment. The fractional momentum loss of the outgoing protons ξ = ∆p/p is reconstructed offline.
Central exclusive production processes satisfy mX = mfwd

X =
√
ξ1ξ2s and yX = yfwd

X = 1
2 log

( ξ1
ξ2

)
,

where mX and yX are the mass and rapidity of the system X reconstructed with the central detector,
mfwd
X and yfwd

X are the mass and rapidity of the system X reconstructed with the forward detectors and√
s is the proton-proton centre-of-mass energy. This relationship sets a powerful offline selection tool

for background suppression, since non-exclusive events are not correlated to the forward protons.

In these projections, it is assumed that a similar set-up as with the CT-PPS and AFP detectors is
possible at the HL-LHC. An overview of the physics case for light-by-light scattering is given as the
prototype example, and the quartic γγγZ coupling is given as an instance of other gauge couplings that
could be studied at the HL-LHC. These projections consider also the impact of the difference of the mea-
sured time-of-flight for the intact protons with various timing precisions (on the order of 10 ps), which
can be used to determine the longitudinal coordinate of the event vertex down to∼ 2 mm. Time-of-flight
measurements can help further reduce the background, especially at the HL-LHC where the number of
interactions per bunch crossing will range from 140-200.

Scattering of light-by-light in p-p collisions

Under the assumption that there exists a New Physics energy scale Λ much heavier than the exper-
imentally accessible energy E, new physics manifestations can be described using an effective La-
grangian valid for Λ � E. Among these operators, the pure photon dimension-eight operators L4γ =

ζ4γ
1 FµνF

µνFρσF
ρσ + ζ4γ

2 FµνF
νρFρλF

λµ induce the γγγγ interaction. This coupling can be probed
in pp → p(γγ → γγ)p reactions. This sub-process and the SM light-by-light scattering one are im-
plemented in the Forward Physics Monte Carlo (FPMC) [781] event generator. The Equivalent Photon
Approximation is used to calculate the emitted coherent photon flux off the protons.

With proton tagging, one can probe γγ → γγ collisions from about 300 GeV to 2 TeV. The
mass acceptance on the photon pair is limited mainly by the acceptance of ξ of the proton taggers
(0.015 ≤ ξ ≤ 0.15). The background is dominated by non-exclusive diphoton production events over-
lapped with uncorrelated events with intact protons coming from the secondary collisions occurring in
the same bunch crossing. This background can be suppressed by looking at the central and forward
systems kinematic correlations (the aforementioned mass and rapidity matching). The irreducible back-
ground coming from the SM exclusive diphoton production is negligible at large invariant masses. The
background can be further suppressed if the time-of-flight difference of each of the scattered protons
is measured. The precision of the event vertex longitudinal position determined with the time-of-flight
measurement is given by δz = c δt/

√
2, where c is the speed of light and δt is the timing precision. In

these projections, the average pileup of 200 collisions per bunch crossing was considered.

The expected bounds on the anomalous couplings ζ4γ
1,2 at 95% CL are calculated based on the

total expected background rate and can be seen in Fig. 91. The reach on the quartic couplings ζ4γ
1,2 down
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Fig. 91: Expected bounds at 95% CL on the anomalous quartic coupling for 300 fb−1 and at the HL-
LHC with 3000 fb−1 (no time-of-flight measurement) (left). Expected bounds at 95% CL on the anoma-
lous couplings at the HL-LHC with time-of-flight measurement with precision of 10 ps and without
time-of-flight measurement (right).

to 5 · 10−14 GeV−4 with 300 fb−1 at 14 TeV, and down to 1 · 10−14 GeV−4 at the HL-LHC with a
luminosity of 3000 fb−1 without using time-of-flight information. The last bound can be improved by a
factor of ∼ 1.2 if the timing precision is of 10 ps.

Constraining γγγZ coupling via pp→ p(γγ → γZ)p

The γγγZ interaction is induced at one-loop level in the SM via loops of fermions and W± bosons.
Loops of heavy particles charged under SU(2)L×U(1)Y contribute to the γγγZ couplings. The dimension-
eight effective operators are LγγγZ = ζ3γZ

1 FµνFµνF
ρσZρσ + ζ3γZ

2 FµνF̃µνF
ρσZ̃ρσ , which induce the

γγγZ interaction. This induces the anomalous γγ → γZ scattering and generates the rare SM decay
Z → γγγ. This coupling can be probed in pp→ p(γγ → γZ)p reactions. The sub-process was imple-
mented in the FPMC event generator as well.

Since the exclusive channel is very clean, it allows the possibility of studying exclusive Zγ pro-
duction with theZ boson decaying into a charged lepton pair or to hadrons (dijet or large radius jet signa-
ture). The signature (Z → `¯̀) +γ is much cleaner, but has vastly fewer events than (Z → hadrons) +γ
final states. A similar event selection is applied on the exclusive Zγ production as in the exclusive γγ
case. The sensitivity on the anomalous coupling at 95% CL combining both channels at 14 TeV with
300 fb−1 of data is on the order of 1 · 10−13 GeV −4 (see Fig. 92). For the HL-LHC with 3000 fb−1 it
scales down to 1 · 10−14 GeV−4 when combining both channels. The time-of-flight measurement can
improve the expected bounds by a factor of ∼ 2 .
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Fig. 92: Expected bounds on the anomalous couplings at 95% CL with 300 fb−1 and 3000 fb−1 at the
HL-LHC (no time-of-flight measurement) (left). Expected bounds at 95%CL for timing precisions of
δt = 2, 5, 10 ps at the HL-LHC (right).

7.2 Central exclusive production: QCD prospects52

The CEP process may be mediated purely by the strong interaction, and in such a case if the mass of the
central system is large enough a perturbative approach may be applied, via the diagram shown in Fig. 90
(right), see [782, 783] for reviews. As well as probing QCD in a novel regime, the exclusive nature of
this process has the benefit that the produced object obeys a quantum number selection rule. Namely
the object must be C even, while the production of P even states with Jz = 0 angular momentum
projection on the beam axis is strongly dominant. From the point of view of the production of new
BSM states or the understanding of existing QCD bound states (e.g. exotic quarkonia) this therefore
has the benefit of identifying the produced object quantum numbers. The Jz = 0 selection implies that
only certain helicity configurations in the underlying gg → X production process contribute, which
also leads to unique phenomenological consequences. A detailed discussion of this selection rule can
be found in [783] and the references therein. Two example processes, namely exclusive jet and Higgs
boson production, are discussed briefly below. These represent higher mass test cases relevant to HL–
LHC running with tagged protons at ATLAS or CMS. The possibilities for the observation of lower mass
objects with the ALICE detector will be addressed in section 7.4.

The exclusive production of jets provides a new and unexplored area of QCD phenomenology.
This process has been first observed at the Tevatron [784, 785]. The quantum number selection rule dis-
cussed above has a number of consequences that are quite distinct from the standard inclusive channels.
In particular, the production of purely gluonic dijets is predicted to be strongly dominant, allowing a
study of purely gg jets from a colour–singlet initial state. In the three–jet case the presence of ‘radi-
ation zeros’ [786], that is a complete vanishing in the leading order amplitudes for certain kinematic
configurations, is expected. This phenomena is well known in electroweak processes, but this is the only
known example of a purely QCD process where this occurs. Some representative predictions for the
HL–LHC are shown in Table 54. These are calculated using the SUPERCHIC 2.5 MC generator [787],
which provides the most up to date predictions for CEP processes. The cross sections are suppressed

52Contribution by L. Harland-Lang.
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Table 54: Parton–level predictions for exclusive two and three jet production cross sections (in pb) at the
LHC for different cuts on the minimum central system invariant mass MX at

√
s = 14 TeV. The jets are

required to have transverse momentum pT > 20 GeV for MX(min) = 75, 150 GeV and pT > 40 GeV
for MX(min) = 250 GeV and pseudorapidity |η| < 2.5. The anti-kT algorithm with jet radius R = 0.6
is used in the three jet case and the qq cross sections correspond to one massless quark flavour.

MX(min) gg qq bb ggg gqq

75 130 0.032 0.082 5.0 0.11
150 4.5 6.1× 10−4 1.1× 10−3 0.70 0.019
250 0.15 2.2× 10−5 2.7× 10−5 0.016 4.3× 10−4

relative to the inclusive case, but are nonetheless relatively large. On the other hand, in the three jet
case, in particular in the invariant mass region that may be relevant for the acceptance of proton tagging
detectors, the cross sections are lower and would clearly benefit from as large a data sample as possible
for studies of novel features, such as radiation zeros and other jet shape variables.

The production of the Higgs boson through exclusive gg fusion would represent a completely new
observation channel. As discussed in more detail in [783], this has the potential to shed light on the CP
properties of the state, as well as its coupling to b quarks in a distinct way to inclusive channels. The cross
section for a SM Higgs, as predicted by SUPERCHIC 2.5 [787], is σ(|yH | < 2.5) = (1×÷ 2) fb, where the
dominant uncertainties are due to PDFs and modelling of the soft gap survival probability. The predicted
rate is therefore relatively small, and would again benefit both from the increased statistics available in
HL running, and even more crucially from the potential installation of new tagging detectors at a larger
distance from the ATLAS or CMS interaction points (IPs), see section 7.3, which would extend the
existing mass acceptance into the Higgs region.

7.3 Tagged proton at the HL–LHC: experimental prospects

This section discusses possible locations for movable near-beam detectors along the outgoing beam
lines near IP5, designed for detecting the leading protons from central production processes (Fig. 90,
eq. (57)). While the results which follow consider the possibilities for detectors in association with
the CMS experiment, similar qualitative prospects are expected in the case of the ATLAS detector,
although this is not discussed explicitly here. After identifying the best-suited positions, the proton
detection acceptance and hence the central-mass tagging reach is calculated for each of these positions
as a function of beam parameters and based on present-day assumptions on optics, collimation scheme
and near-beam-detector insertion rules from machine protection arguments. Given that at the time of
this report the crossing-angle plane in IP5 (horizontal as until LS3, or vertical) has not yet been decided,
both options have been investigated. It has to be pointed out that the crossing planes of IP1 and IP5 have
to be different: one will be horizontal, the other vertical.

While in the CT-PPS (later PPS) project [788] in Run-2 the near-beam detectors were Roman Pots
inherited from the TOTEM experiment [789,790] and upgraded for high-luminosity operation [791], no
technological assumptions are made at this early stage of preparation for HL-LHC. The highly demand-
ing engineering and detector physics challenges are not addressed here.
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Possible Locations for Near-Beam Detectors
The search for suitable detector locations around IP5 is driven by the goal to cover the widest possible
range of central masses M to be measured via the fractional momentum losses

ξ1/2 =
∆p1/2

p
(58)

of the two surviving protons using the relation

M2 = ξ1 ξ2 s , (59)

where
√
s = 14 TeV is the centre-of-mass energy.

The minimum accessible ξ of leading protons at a location z 53 along the beam line is given by

ξmin(α, β∗, z) =
[nTCT(β∗) + ∆n]σXRP(β∗, z) + ∆d+ δ

Dx,XRP(α, ξmin, z)
, (60)

where σx is the horizontal beam width depending on the optics (characterised by β∗), Dx is the horizon-
tal dispersion depending on the crossing-angle α, nTCT is the half-gap of the tertiary collimators (TCT)
as defined by the collimation scheme, ∆n = 3 is the retraction of the near-beam detector housings (e.g.
Roman Pots) relative to the TCT position in terms of σx, ∆d = 0.3 mm is an additional safety retraction
to allow for beam orbit fluctuations, and the constant δ, typically 0.5 mm, accounts for any distance
between the outer housing surface closest to the beam and the sensitive detector. The dependence of the
dispersion on ξ implies that eq. (60) has to be resolved for ξmin after parameterising Dx(ξ).

The first step of the study is to plot the z-dependent quantities, σx and Dx, along the outgoing
beam line for one typical HL-LHC optics configuration (Fig. 93, left). The resulting ξmin is shown in
Fig. 93 (right). Note that for vertical crossing smaller values are reached. The locations most suitable for
the measurement of small |ξ| values are marked in red. Closer layout inspection of the region around the
minimum at 232 m (inside the quadrupole Q6) indicated two promising locations: at 220 m (just before
the collimator TCL6) and at 234 m (after the exit of Q6). Even smaller momentum losses can be reached
at 420 m (the “missing magnet” region already studied previously by the FP420 project [792]).

The apparent sign change of ξmin at z ≈ 270 m reflects the sign change of the dispersion at that
location (as seen in the left panel of the figure). It means that the diffractive proton trajectories transition
from x > 0 to x < 0. The implication for the potential detector location at 420 m is that detectors
need to be placed in the confined space between the incoming and the outgoing beam pipes, excluding
conventional Roman Pot technology. A further complication is that in this location the beam pipes are
in a cryostat, necessitating more involved engineering changes.

A region of interest for the detection of higher masses lies at 196 m just upstream of the collima-
tor TCL5 that intercepts protons with large |ξ| (section 7.3). Locations even further upstream, before
TCLX4, would give an even higher upper mass cut but are excluded due to the prohibitively high low-
mass limit leaving no acceptance interval.

In summary, for the more detailed discussions in the following sections, four detector locations
have been retained: 196 m, 220 m, 234 m, 420 m.

53In this article the variable z is used for the longitudinal coordinate instead of s to avoid confusion with the Mandelstam s.
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Fig. 93: Horizontal dispersion and beam width (scaled by 1000) as a function of the distance s from
IP5 for Beam 1, i.e. in LHC Sector 5-6 (left). Minimum accepted ξ as a function of z according to
eq. (60) for (α/2, β∗) = (250µrad, 15 cm) and nTCT = 12.9 (right). The TCL collimator positions are
indicated. In both pictures the continuous and dashed lines represent horizontal and vertical crossing in
IP5, respectively.

Crossing-Angle and Optics Dependence of the Mass Acceptance Limits
In the previous section, only one specific combination of crossing-angle α and beam optics (β∗) was
considered. However, at HL-LHC luminosity levelling will be performed in all fills by changing α and
β∗ in a pre-defined sequence. For the present study the (α/2, β∗) trajectories envisaged in [793] were
used.

Minimum Mass

The minimum mass accepted at a location z for given α and β∗ can be calculated using eq. (59) and (60).
For simplicity, symmetric optics in the two beams, i.e. equal ξmin, are assumed:

Mmin = |ξmin|
√
s . (61)

The α and ξ dependencies of Dx can be parameterised based on simulations with MAD-X [794]. The
α dependence is linear, and the ξ-dependence can be linearly approximated within the ξ-ranges relevant
in practice.

The β∗ dependence of σXRP was calculated analytically, profiting from invariance properties of
the presently planned family of ATS optics. This is likely to change in the future and will need to be
adapted.

The β∗ dependence of nTCT follows the presently foreseen collimation strategy [795] of keeping
the TCT gap constant at dTCT = 12.9σTCT(β∗ = 15 cm) (for nominal emittance εn = 2.5µm rad),
implying nTCT(β∗) = dTCT

σTCT(β
∗
)
, where an analytical expression for σTCT(β∗) can be derived.

The result of this calculation, contour lines of Mmin in the beam parameter space (α/2, β∗),
is shown in Fig. 94 for the four detector locations chosen in the previous section. Some possible
luminosity-levelling trajectories are drawn, too. The start point at the beginning of the fill is always
at the maximum β∗ value.
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Fig. 94: Contour lines for the minimum accepted mass Mmin = |ξ|min

√
s in the crossing-angle/optics

parameter space (α/2, β∗). On the right-hand ordinate the XRP approach distance is calculated from
β∗. The coloured lines represent possible luminosity-levelling trajectories [793]. For horizontal cross-
ing: green corresponds to “baseline”, blue to “relaxed adaptive”, red to “aggressive adaptive”; for ver-
tical crossing: violet corresponds to any trajectory. The labels (1A) – (2Z) in the first panel define the
trajectory start and end points used in Figs. 96 and 97.

From these graphs the following conclusions are drawn:

– The main driving factor for the minimum mass is the dispersion which in turn is fully determined
by the crossing-angle. The optics (via β∗) plays a minor role.

– If the 420 m location can be instrumented, the minimum mass is about 50 GeV with only a very
weak dependence on the optics, the crossing-angle and its plane (horizontal or vertical).

– Without the 420 m location, the vertical crossing gives a much better low-mass acceptance (210 GeV)
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than the horizontal crossing (660 GeV).

Maximum Mass

The maximum mass accepted at a location z is determined by the tightest aperture restriction dA up-
stream of z and the dispersion there:

Mmax = |ξmax|
√
s =

dA
DA(α, ξmax)

. (62)

Fig. 95: Maximum accepted diffractive mass for each detector location as a function of the crossing-
angle. Vertical crossing (left): both horizontal and vertical apertures contribute to the mass limits. The
continuous lines denote the most restrictive, i.e. dominant, limitations. Horizontal crossing (right): only
the horizontal apertures contribute.

In the case of the vertical beam crossing in IP5, both the horizontal and vertical apertures may
impose limitations, whereas in the case of the horizontal crossing there is no substantial vertical disper-
sion and hence no acceptance loss from the vertical aperture. Figure 95 shows the results of a complete
aperture study. It was concluded that even for vertical crossing most limitations come from the hori-
zontal aperture and that for all locations, except 420 m, this horizontal aperture is limited by the TCL
collimators. At 420 m, on the other hand, the beam-pipe absorbs diffractive protons with |ξ| > 0.012.
The highest masses are accepted by the unit at 196 m: up to 2.7 TeV for vertical crossing and up to 4
TeV for horizontal crossing.

Mass-Rapidity Acceptance
The CEP acceptance for a given point in the beam parameter space (α, β∗) can be visualised by drawing
for every instrumented detector location the |ξ|-acceptance bands – whose limits are calculated according
to the previous section – in the mass-rapidity plane

(
ln
M√
s
, y

)
=

(
1

2
(ln ξ1 + ln ξ2),

1

2
(ln ξ1 − ln ξ2)

)
. (63)
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Figure 96 shows these (M,y) contour plots for the start and end points of the two extreme levelling
cases defined in Fig. 94: points (1A) and (1Z) for any trajectory with vertical crossing in IP5, points
(2A) and (2Z) for the “Baseline” trajectory with horizontal crossing. The projections on the mass axis,
under the approximation of flat rapidity distributions, are given in Fig. 97.

Fig. 96: Acceptance for the protons from central diffraction in the mass-rapidity plane. The yel-
low/orange colour tones mark single-arm proton acceptance, the green tones mark double-arm accep-
tance. Top: start and end point of any levelling trajectory for vertical crossing, bottom: start and end
point of the baseline levelling trajectory for horizontal crossing.

The following observations are made:
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Fig. 97: Projection of the (M,y) acceptance on the mass axis, adding up all the double-arm areas of
Fig. 96 for the same points in the (α, β∗) beam parameter space.

– The acceptance zones of the four detector locations are non-overlapping and separated by gaps.
For horizontal crossing the gaps are wider than for vertical crossing.

– Although the double-arm acceptance has mass gaps at central rapidities, the mixed acceptance
zones combining different detector units in the two arms of the experiment (e.g. 420 m left +
234 m right) fill some of these mass gaps by providing acceptance at forward rapidities.

– The gaps between the acceptances of 196 m, 220 m and 234 m can potentially be closed by opening
TCL5 and TCL6 a little further if allowable from machine protection arguments. On the other
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hand, the gap between 234 m and 420 m is caused by the beam pipe at z > 300 m limiting the
aperture. It could only be closed by adding a detector unit near 300 m.

7.4 Low-mass central exclusive production

Central exclusive production of low-mass diffractive states in pp collisions at the LHC may serve as a
valuable source of information on the non-perturbative aspects of strong interaction. At low masses,
CEP is usually described in terms of a double pomeron exchange (DPE) mechanism. DPE is expected
to be an ideal process for the investigation of meson resonances with IG(JPC) = 0+(0++, 2++, . . . )
quantum numbers and gluonic bound states. Glueball searches in CEP are of particular interest because
lattice QCD calculations predict the lightest glueballs to have masses MG(0++) = 1710 MeV and
MG(2++) = 2390 MeV [796]. Pure glueballs are predicted to decay equally well into pair of pions,
kaons or η mesons with suppressed two photon decays. However this simple signature is spoiled by the
fact that glueballs are expected to mix with nearby qq̄ states.

Central-exclusive production of low-mass resonances in ππ and KK channels has been exten-
sively studied in fixed target experiments at CERN and Fermilab (see review in [782]) and recent col-
lider experiments at RHIC [797], Tevatron [798] and the LHC [799]. The partial-wave analysis (PWA)
has been performed in several experiments to investigate the spin-parity nature of the centrally produced
system [800–802]. There is a clear evidence of supernumerous light scalar meson states, not fitting
well into the conventional groundstate qq̄ nonet and suggesting that some of these states have significant
gluonic component. The f0(1370), f0(1500) and f0(1710) mesons are considered as most promising
glueball-meson mixing state candidates but the nature of all these states is still open for discussion [803].
In the tensor sector, the lightest isoscalar qq̄ states f2(1270) and f ′2(1525) are well established however
there are at least four additional reported tensor resonances requiring confirmation.

CEP can be also used to investigate the spin structure of the Pomeron and its coupling to hadrons.
Historically, the Pomeron was considered as effective spin 1 quasiparticle supported by successful fits
of total and differential pp cross sections [804]. Recently, an alternative approach based on the tenso-
rial Pomeron has been developed [805] providing definitive predictions and restrictions of spin-parity,
polarization and rapidity of the produced diffractive system in CEP at the LHC [806–808].

Multidifferential measurements and PWA of ππ, KK and pp̄ final states in a wide range of in-
variant masses in CEP at the LHC would also allow one to constrain poorly known Pomeron-meson
couplings and form-factors in various phenomenological models [806, 809] and also build a transition
to perturbative QCD models of hadron pair production in CEP [810] valid at high invariant masses and
transverse momenta of the produced pair. Another important outcome of CEP measurements would
be a determination of the absorptive corrections, the probability that the rapidity gaps would be filled
with particles from accompanying initial- or final-state interactions. The central exclusive production of
meson pairs therefore represents a process of much phenomenological interest, which can shed light on
both perturbative and non-perturbative aspects of QCD.

Perturbative aspects of QCD can be also investigated in CEP of heavy quarkonium states [783].
Detailed studies of χc resonances in CEP at the LHC would provide a valuable input to test the ideas
and methods of the QCD physics of bound states. Measurements of the outgoing proton momentum
distributions, cross sections and relative abundances of χc0, χc1 and χc2 states would be important for
the test of the overall theoretical formalism.
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Fig. 98: Raw invariant mass spectra of π+π− (left) and K+K− (right) pairs in CEP events collected by
ALICE in proton-proton collisions at

√
s = 13 TeV.

Measurements of CEP processes rely on the selection of events with only few tracks in an other-
wise empty detector, therefore large pseudorapidity coverage and low pileup conditions are essential to
guarantee the event emptiness. The ALICE detector nicely matches these requirements. Low material
budget, access to low transverse momenta and excellent particle identification capabilities in ALICE
serve as additional advantages. First CEP measurements have been already performed by ALICE in the
LHC Run-1 and -2. Figure 98 illustrates raw invariant mass spectra of π+π− and K+K− pairs in CEP
events collected by ALICE in proton-proton collisions at

√
s = 13 TeV, where one can easily identify

several resonance structures. ALICE is going to collect a much larger sample of central exclusive events
and significantly extend the scope of the CEP program in proton-proton collisions in LHC Run-3 with
expected integrated luminosity of about 200 pb−1 at

√
s = 14 TeV and 6 pb−1 at

√
s = 5.5 TeV prof-

iting from much better efficiency in the continuous readout mode. The CEP program includes glueball
searches and precision hadron spectroscopy in π+π−, K+K−, pp̄, 2π2K, 4π and other channels. The
expected high integrated luminosity will also allow ALICE to measure the spectrum of heavy quarko-
nium states in various decay channels, e.g. a yield of at least 50,000 χc0 → π+π− decays is expected in
CEP events by the end of Run-3 based on cross section estimates from SUPERCHIC generator [811].

The LHCb experiment can extend the CEP program to forward rapidities. High luminosity at
moderate pileup and good hadron PID capabilities would be particularly useful for the studies of heavy
quarkonium states in central exclusive events. Measurements of low-mass central exclusive production
processes with proton tagging might be also possible with the ATLAS and CMS detectors during low
pile-up runs at high β∗.
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RECENT PRECISION W/Z MEASUREMENTS AT THE LHC

N. VRANJEŠ, on behalf of ATLAS, CMS and LHCb Collaborations
Institute of Physics, University of Belgrade,

Pregrevica 118, Zemun, Serbia

Recent precision measurements of W and Z bosons obtained at the Large Hadron Collider
with the ATLAS, CMS and LHCb experiments are reviewed.

1 Introduction

In proton-proton collisions at the Large Hadron Collider (LHC), electroweak bosons (W and Z)
are produced via Drell-Yan (DY) process. The DY process was proposed in the paper from 19701,
and served as a milestone in building of the quantum chromodynamics (QCD) as the theory of the
strong interaction. Even now, after 50 years we are still interested in studying it. It is a corner-
stone of the LHC program, crucial for a detailed understanding of LHC data collected by the
ATLAS 2, CMS 3 and LHCb 4 experiments. It allows us to (i) probe the structure of the proton,
determining the valence and sea quark parton distribution functions (PDFs), including placing
constraints on the proton strangeness; (ii) improve Monte Carlo tools, of which a prominent
example is the modelling of the production and decay of these bosons in a regime dominated
by soft gluon radiation; (iii) test the self-consistency of the Standard Model (SM) by measuring
fundamental electroweak parameters: the W -boson mass, mW , and the effective leptonic weak
mixing angle, sin2 θ`eff ; (iv) search for new physics, for example measuring high dilepton mass
final states and probing rare decays (though the latter, strictly speaking, is not DY); and (v)
establish detector performance in situ and control the delivered luminosity by exploiting the
clean leptonic final states of these bosons.

2 Probing proton structure via Drell-Yan production

Hadron collider data together with Deep Inelastic Scattering data (DIS) are used to constrain
PDFs and DY cross sections (integrated and differential) and are an important input to global
fits 5. The range of Bjorken-x and Q2 that can be probed depends on center of mass energy,

√
s,

and rapidity, y, of electroweak bosons. Improved sensitivity to PDFs is achieved by measuring
ratios where correlations suppress many sources of uncertainty. Measuring the production of W
and Z bosons constrains the strange-quark distribution, while the W+/W− ratio and charge
asymmetry are sensitive to uv and dv. Inclusive and differential W and Z cross sections measured
at
√
s = 7 TeV by ATLAS collaboration 6 are included in global PDF fits. The statistical uncer-

tainty of the measurement is at the 0.5% level, while the systematic uncertainty is dominated
by the luminosity (1.9%), out of which the experimental uncertainty is at the 1% level. Results
are compared to predictions using different PDFs, which broadly describe the data. However

Copyright 2019 CERN for the benefit of the ATLAS, CMS and LHCb Collaborations. Reproduction of this
article or parts of it is allowed as specified in the CC-BY-4.0 license



the ATLAS measurement prefers a non-suppressed strange, in contrast to the expectation from
fits to neutrino induced DIS data. Another important example of a measurement sensitive to
PDFs is the ratio of the cross sections for the production of top-quark pairs to the Z boson.
Single cross section ratios as well as double ratios have been measured at

√
s = 13, 8, 7 TeV

energies 7. Data demonstrate significant power to constrain the gluon distribution function for
x values near 0.1 and the light-quark sea for x < 0.02. Results are compared to predictions at
NNLO QCD + NLO EW (Z) and NNLO+NNLL (tt) accuracya.
A measurement of the associated production of a W boson and a charm quark (W + c) at√
s = 13 TeV has been performed using data collected by the CMS experiment8. The W bosons

are identified by their decay into a muon and a neutrino, while the charm quarks are tagged
via the full reconstruction of D∗(2010)± mesons via D∗(2010)± → D0 + π± → K∓ + π± + π±.
The cross section is measured in the fiducial region defined by the muon transverse momen-
tum pµT > 26 GeV, muon pseudorapidity |ηµ| < 2.4, and charm quark transverse momentum
pc

T > 5 GeV. The inclusive cross section for this kinematic range is measured along with the
differential cross section as a function of pseudorapidity of the muon from the W boson decay,
Figure 1 (left). These measurements are compared with theoretical predictions and are used to
probe the strange quark content of the proton.
Recently, cross sections and the associated charge asymmetry of W+ → µ+ν and W+ → µ−ν
as a function of the absolute pseudorapidity of the muon have been published 9. The asymme-
try versus lepton η can provide information on the d/u ratio and sea (anti)quarks (including
strangeness). The data were collected in proton–proton collisions at a centre-of-mass energy of 8
TeV. The precision of the cross section measurements varies between 0.8% to 1.5% as a function
of pseudorapidity (excluding the 1.9% uncertainty on the integrated luminosity). The charge
asymmetry is measured with an absolute uncertainty of between 0.002 and 0.003. The results
are compared with predictions based on NNLO calculations with various PDFs and have the
sensitivity to discriminate between them as shown in Figure 1 (right).

Figure 1 – Left: Differential cross sections of W + c production at 13 TeV as a function of absolute muon
pseudorapidity8. The measurements are compared to the QCD predictions calculated at NLO using different PDF
sets. The error bars represent theoretical uncertainties, which include the PDF and scale variation uncertainties.
Right: The W boson charge asymmetry at 8 TeV as a function of absolute muon pseudorapidity 9. The data are
compared with the central prediction at NNLO produced using a selection of PDFs. The statistical uncertainties
of the predictions are indicated by the error bars. The ratios of the data to the predictions are shown in the lower
panel.

Measurements of W and Z cross sections at different
√
s is important for constraining PDFs.

Measurements of fiducial integrated and differential cross sections for inclusive W+, W− and Z

aDetails of all calculations are given in the relevant measurement publications.



boson production at
√
s = 5.02 TeV are reported by ATLAS 10. The electron and muon chan-

nels are analysed, and combined integrated W+, W− and Z cross sections have been measured
and found to be in good agreement with NNLO QCD cross section calculations. The results
are compared with several PDF predictions and, in general, agreement is found for most of the
PDFs. Significant tension with all PDF sets at very low η (low x) for W− and Z is observed.
The production cross sections for W± and Z bosons have been measured using ATLAS data at√
s = 2.76 TeV 11. The cross sections are presented for a fiducial region defined by the detector

acceptance and are also extrapolated to the full phase space for the total inclusive production
cross section. Measured ratios and asymmetries constructed using these cross sections are also
presented. The results obtained, and the ratios and charge asymmetries constructed from them,
are in agreement with theoretical calculations based on NNLO QCD based on a selection of
different PDF sets.
Measurements of the differential cross section for the DY process in the dimuon and dielectron
channels, at

√
s = 13 TeV, have been performed with data collected by the CMS experiment 12.

The total and fiducial cross section measurements are presented as a function of the dilepton
invariant mass in the range 15 GeV< m`` < 3000 GeV. The result is extrapolated to the full
phase space including Final State Radiation (FSR). For m`` <400 GeV the statistical uncer-
tainty is subleading, and the main systematic uncertainty arises from the lepton efficiencies.
The results are in good agreement with the theoretical predictions at NLO (including PDFs at
the same level of accuracy). Full phase space cross sections are in good agreement with NNLO
QCD + NLO EW predictions. The photon-initiated production of same-flavour lepton pairs is
estimated with an NNLO simulation code with photon PDFs. It is shown that photon-induced
contribution has a sizable effect in the high m`` region.
The W+jets process provides a novel source of input to PDF fits that is sensitive to partons
at higher x than can be accessed by inclusive W and Z data. ATLAS 8 TeV data, have been
used to perform measurements of unfolded cross sections of W → eν+jets and relevant ratios 13.
Jets are reconstructed using the anti-kT algorithm with pjet

T >30 GeV and |yjet| <4.4. Top back-
ground is suppressed by vetoing events containing b-jets. Achieved precision of the measurement
is 5− 16% for W+0/1/2 jets and is limited by the jet energy scale and resolution, and unfold-
ing uncertainties. Precision for the ratio is 0.7 − 4% for 0/1/2 jets. The results are compared
with various models and various versions of the CTEQ, CT and NNPDF PDFs. A QCD analysis
of this ATLAS measurement has also been performed 14. These data are fitted together with
ATLAS inclusive W± production measurements at

√
s = 7 TeV data6 and HERA deep-inelastic

scattering data 15. The parton distribution functions extracted from the resulting fit show an
improved determination of the high-x sea-quark densities, while confirming the unsuppressed
strange-quark density at lower x < 0.023 found by previous ATLAS analyses (Figure 2 (left)).
A better constraint on the d− u distribution is also achieved. The resulting PDF set is labelled
ATLASepWZWjet19.
Similarly to the ATLAS W+jets study, CMS has published a measurement of the production of
Z → `` in association with jets in proton-proton collisions at

√
s = 13 TeV 16. The cross section

has been measured as a function of the jet multiplicity and its dependence on the transverse
momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity),
the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in
transverse momentum between the reconstructed jet recoil and the Z. The measurements are
compared with predictions from four different calculations including fully differential NNLO +
parton shower in the final state and an NNLO+NNLL model without parton showering. A mul-
tiparton NLO prediction provides a very good description for jet multiplicities computed with
NLO accuracy. The NNLO+NNLL predictions fail to describe observables sensitive to extra
jets (Njets >1). At low pZT, the NLO multiparton calculation is better than the NNLO+NNLL
one, while both calculations provide a similar description at high pZT.
Measurements of W and Z boson cross sections at

√
s= 7, 8, 13 TeV, the W boson charge



asymmetry, as well as the production of electroweak bosons in association with jets have been
performed at LHCb 17, 18, 19, 20, exploiting complementary rapidity coverage with respect to
ATLAS and CMS. In addition, differential cross sections are measured as functions of pZT, boson
rapidity and the angular variable φ∗η. Measurements are compared to fixed-order QCD calcula-
tions, and various state of the art PDFs. Typically good agreement with predictions is observed
as demonstrated in Figure 2 (right).

Figure 2 – Left: The Rs = s+s̄
ū+d̄

distribution, evaluated at Q2 = 1.9 GeV2, obtained with the ATLASepWZWjet19

PDF 14. The uncertainty bands are displayed separated in to the experimental, model and parameterisation
uncertainties. Right: The differential cross section as a function of the Z boson rapidity compared to the theory
based on O(α2

s) predictions with different PDF sets, normalised to the central value of the NNPDF3.0 evaluated at
NLO 20.

3 Improving QCD tools

Precision measurements of specific variables lead to improvement in tools employed to model the
production of electroweak bosons. Notable examples are the boson transverse momentum and
the angular variable φ∗η. The W and Z bosons have non-zero pT due to the intrinsic transverse
momentum of the initial state partons and initial-state radiation of gluons and quarks. Measure-
ments of the pT distributions of W and Z bosons probe various aspects of the strong interaction.
The low pW,ZT can be described using soft-gluon resummation plus a non-perturbative contribu-
tion from the parton intrinsic kT, while the high pT spectrum should be described by fixed order
perturbative QCD. Parton-shower models are used to compensate for missing higher-order cor-
rections in the fixed-order QCD calculations. Measurements of the pZT and φ∗η are possible with
high precision due to well-measured leptons in the final states. CMS and ATLAS have published
these results 21, 22 around the Z-boson peak, |yZ | <2.4, with an uncertainty dominated by the
lepton reconstruction (not counting luminosity). The measurement is compared to the predic-
tions of NNLO QCD calculations and using parton shower modeling (MADGRAPH5 aMC@NLO 23,
POWHEG 24 , POWHEG + MiNLO 25) as well as resummed prediction of Resbos 26 and Geneva 27, see
Figure 3. Measurement of the pWT distribution is a key ingredient for a precise mW measurement,
however it is more difficult than pZT due to the neutrino escaping reconstruction. The resolution
of the hadronic recoil is much worse than that of the lepton momentum. It is planned to directly
measure pWT in events with low-〈µ〉 data with a target precision of 1% precision in 5 GeV-bins
at low pT

28. Promising results are expected from NNLO+ N3LL calculations although still far
from 1% precision.



Figure 3 – Left: The measured absolute Z-boson cross sections in bins of pZT
21. The shaded band around the

data points correspond to the total experimental uncertainty. The measurement is compared to predictions with
MADGRAPH5 aMC@NLO 23, POWHEG 24 and POWHEG-MINLO 25. The error bars around the predictions correspond to the
statistical, PDF, and scale uncertainties. Right: The ratios of the predictions to the unfolded data.

4 Measuring fundamental electroweak parameters

The consistency of the SM can be tested through higher precision measurements of its funda-
mental parameters such as mW and sin2 θ`eff . To achieve ultimate precision in the measurement
of these parameters at the LHC, specific efforts in both the experimental and theory commu-
nity are needed. Precision DY measurements require ultimate performance of the detector for
electrons and muons (including high |y``| events to enhance sensitivity to sin2 θ`eff), as well as
the best possible measurement of the hadronic recoil (to measure directly pWT ). On the theory
side improvement is needed in predictions and on the uncertainties on pWT /pZT and the PDFs.
A challenging measurement of mW at the LHC has been reported by ATLAS some time ago 29,
with a precision matching that from the Tevatron experiments. Recently, both CMS 30 and
ATLAS 31 reported measurements of sin2 θ`eff using data collected at

√
s = 8 TeV. At hadron

colliders sin2 θ`eff is measured via the asymmetry in lepton angular distributions in Z decays
induced by the V-A coupling structure of Z bosons to fermions. In the case of CMS, sin2 θ`eff is
extracted from a template fit to the forward-backward asymmetry using dielectron and dimuon
events, with |y``| <2.4. Templates are built from the POWHEG Monte Carlo 24 and the NNPDF3.0

NLO PDF 32 in 12 m``×6 y`` bins. Experimental systematics are dominated by statistics, in-
cluding limited MC (the situation is similar in ATLAS). The PDFs are constrained by Bayesian
χ2 reweighting and thereby their uncertainties are reduced in the extracted value of sin2 θ`eff . In
the Bayesian χ2 reweighting method, PDF replicas that offer good descriptions of the observed
forward-backward distribution are assigned large weights, and those that poorly describe the
asymmetry are given small weights. Figure 4 (left) shows a scatter plot of χ2

min versus the best-
fit sin2 θ`eff for 100 NNPDF replicas. The extreme PDF replicas from either side are disfavoured.
After the reweighting, the PDF uncertainties are reduced by about a factor of 2. It should be
noted that the Bayesian χ2 reweighting technique works well when the replicas span the optimal
value on both sides. PDFs represented by Hessian eigenvectors using CT10, CT14, and MMHT2014,
are also studied, and the contribution from these uncertainties has been found to be subleading
with respect to the NNPDF3.0 PDF set. The combined result from the dielectron and dimuon
channels is:

sin2 θ`eff = 0.23101± 0.00036(stat)± 0.00018(syst)± 0.00016(theo)± 0.00031(PDF), (1)



or summing the uncertainties in quadrature,

sin2 θ`eff = 0.23101± 0.00053. (2)

The ATLAS measurement is based on a methodology of angular coefficients Ai(m``, p
`
T, y

``) 31.
Here, the pp→ Z → `` cross section in the full lepton phase space is determined by 5 variables
that separate Z production from its decay kinematics. Angular coefficients encapsulate all
QCD production dynamics at all orders. Direct measurement of the angular coefficients A4

and A3 leads to the measurement of sin2 θ`eff , based on the effective linear relation: A4 =
a × sin2 θ`eff + b predicted in each measurement binb. Technically this is more challenging than
the classical approach employed by CMS, but with some advantages: (i) angular variables can
constrain experimental systematics, and (ii) measurements in the full phase space via analytical
extrapolation reduces theory uncertainties. Possibly this is more sensitive to NLO EW effects
that can break harmonic decomposition compared to the extraction from the forward-backward
asymmetry. Results are based on three analysis channels: 6 million dielectron central-central
events (eeCC, both electrons satisfy 0 < |η| < 2.4), 7.5 million dimuon central-central events
(µµCC, both muons satisfy 0 < |η| < 2.4) and 1.5 million dielectron central-forward events (eeCF,
one electron 0 < |η| < 2.5 and the other one in 2.5 < |η| < 4.9). Results are binned in m``

and y``, and the background is found to be small even in the eeCF analysis channel. A test of
the compatibility of all measurement bins (19 bins plus the reference one) have been performed
and an overall p-value of 3.4% is obtained (due to the 3σ pull from the lowest y`` µµCC channel
which has small weight in the final result). In the full combination, the expected statistical
uncertainty is of the same size as the total systematic uncertainty, which arises predominantly
from the PDF uncertainties in the predictions. The fit using MMHT14 provides the best overall
result, i.e. the best fit χ2 and also the smallest uncertainties from PDFs after profiling. The
results are quite close for CT14 and NNPDF31 while their uncertainties are a bit larger compared
to MMHT14 . CT10nnlo is also shown since it fits best the ensemble of ATLAS W/Z precision
data at 7 TeV used for the measurement of mW . The overall range of sin2 θ`eff spanned by all
PDF sets is 28 × 10−5 and it comes predominantly from the CT10 set. This range of values is
consistent with the uncertainty band arising from the uncertainties in the chosen MMHT14 PDF
set and is not considered as an additional uncertainty. The next dominant uncertainty is from
limited MC statistics: 12× 10−5. The combined result is measured to be:

sin2 θ`eff = 0.23140± 0.00021(stat)± 0.00024(PDF)± 0.00016(syst), (3)

where the first uncertainty corresponds to the data statistical uncertainty, the second to the
PDF uncertainties in the MMHT14 PDF set, and the third to all other systematic uncertainties
affecting the measurement and its interpretation. This result agrees within its total uncer-
tainty of ±0.00036 with the current value of 0.23150 ± 0.00006 from global electroweak fits.
Figure 4 (right) compares the ATLAS measurements to previous measurements from the LHC
experiments, to the recently published combined legacy measurement from the CDF and D0
experiments at the Tevatron, and to the most precise legacy individual measurements from
LEP and SLC. The combined ATLAS result has similar precision to that of the most precise
LEP/SLC measurements shown in the plot, and to that of the overall combined legacy result
from the Tevatron. It is also interesting to note that the ATLAS combined result for the eeCC

and µµCC channels has a very similar precision to that of the CMS 8 TeV result which did not
include the channel with forward electrons.

5 Prospects at the HL-LHC and HE-LHC

ATLAS prospects for a measurement of mW at the High Luminosity-LHC and the High Energy-
LHC have been evaluated, as well as ATLAS, CMS and LHCb prospects for the measurement

bA3 is sensitive only at high pZT, not used in the measurement.



Figure 4 – Left: Plot of χ2
min versus the best-fit sin2 θ`eff for 100 NNPDF replicas 30. The lower panel shows the

projected distributions in the best-fit sin2 θ`eff for the nominal (open circles) and weighted (solid circles) replicas.
Right: Comparison of the ATLAS sin2 θ`eff measurement to previous measurements at LEP/SLC, at the Tevatron,
and at the LHC 31. The overall LEP-1/SLD average is represented together with its uncertainty as a vertical
band. The ATLAS combined result for all channels is shown, together with the results for the eeCF channel alone
and for the combined eeCC and µµCC channels.

of sin2 θ`eff at the HL-LHC 33. The increased acceptance provided by the new inner tracker
extends the coverage up to |η| <4 and allows further constraints on PDFs from cross section
measurements, reducing the corresponding uncertainties in mW . Results are obtained assuming
low pile-up data (1 week of 〈µ〉 =2 leads to a statistical precision of δstatmW ≈10 MeV) with
reference PDF CT10 reweighted to various different existing, as well as projected HL-LHC 34 and
LHeC 35 PDFs. The LHeC PDF set represents the impact of a proposed future high-energy and
high-luminosity ep scattering experiment. In the scenario with an extended tracker without an
LHeC, the PDF uncertainty of mW could be halved with respect to the ”central only” selection,
while in the LHeC scenario another factor of ≈3 could be achieved in reducing PDF uncertainties.
ATLAS, CMS and LHCb considered prospects for the sin2 θ`eff measurement at the at HL-LHC.
In these studies sin2 θ`eff is extracted from the measurements of forward-backward asymmetry
in dilepton events at the Z-pole. With the extended rapidity coverage (ATLAS and CMS) or
selection of low-pT events due to flexible full software trigger and real time analysis scheme
(LHCb), as well as improvements in PDFs (from in situ constraint, e.g. ATLAS exploiting CC,
CF and FF configurations), each of the experiments could reach the precision of LEP/SLD.
Including LHeC data, the PDF uncertainty could be reduced by a factor of 5, leading to a total
uncertainty of sin2 θ`eff of 8× 10−5 (half of the LEP/SLD).

Conclusions

Recent precision measurements of W and Z bosons obtained with the ATLAS, CMS and LHCb
experiments are reviewed. There is a very rich experimental program at all these experiments
exploiting large samples of W and Z bosons in their leptonic decay final states. It is a corner-
stone of the LHC program allowing the structure of the proton to be probed, improvements to
MC tools, and tests of the self-consistency of the Standard Model by measuring fundamental
electroweak parameters such as mW and sin2 θ`eff .
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1 Introduction

In the Drell-Yan process [1, 2] qq̄ → Z/γ∗ → `+`−, parity violation in the neutral weak

coupling of the mediator to fermions induces a forward-backward asymmetry, AFB, in the

decay angle distribution of the outgoing lepton (`−) relative to the incoming quark direction

as measured in the dilepton rest frame. This decay angle depends on the sine of the weak

mixing angle, sin2 θW, which enters in the fermionic vector couplings to the Z boson. At

leading order in electroweak (EW) theory it is given by sin2 θW = 1 − m2
W /m

2
Z , where

mW and mZ are the W and Z boson masses, respectively. Higher-order loop corrections

modify this relation depending on the renormalisation scheme used, and so experimental

measurements are often given in terms of the sine of the effective weak mixing angle,

sin2 θeff [3]. High-precision cross-section measurements sensitive to the asymmetry, and

therefore to the effective weak mixing angle, provide a testing ground for EW theory and

could offer some insight into physics beyond the Standard Model (SM).

Previous measurements by ATLAS and CMS of the Drell-Yan (DY) process include

measurements of fiducial cross sections [4–7], and one-dimensional differential cross sections

as a function of rapidity [8, 9], transverse momentum [9–12], and invariant mass [13–15].

Double-differential cross-section measurements as a function of invariant mass and either

rapidity or transverse momentum [16–21] have also been published, as well as Z boson

polarisation coefficients [22, 23] and the forward-backward asymmetry [24, 25]. Extraction

of the effective weak mixing angle in leptonic Z boson decays, sin2 θeff
lept, from AFB mea-

surements has been performed by ATLAS using 5 fb−1 of proton-proton collision data at√
s = 7 TeV [24] — a result in which the largest contribution to the uncertainty was due

to limited knowledge of the parton distribution functions (PDFs) of the proton.

– 1 –
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A complete description of the Drell-Yan cross section to all orders in quantum chro-

modynamics (QCD) depends on five kinematic variables of the Born-level leptons, namely

m``, the invariant mass of the lepton pair; y``, the rapidity of the dilepton system; θ and

φ, the lepton decay angles in the rest frame of the two incident quarks; and pT,Z , the

transverse momentum of the vector boson. In this paper, measurements of the triple-

differential Drell-Yan cross section, d3σ/dm``d|y``|dcosθ∗, are reported as a function of

m``, |y``|, and cos θ∗, where the lepton decay angle is defined in the Collins-Soper (CS)

reference frame [26]. These cross-section measurements are designed to be simultaneously

sensitive to sin2 θeff
lept and to the PDFs, therefore allowing a coherent determination of both.

A simultaneous extraction has the potential to reduce the PDF-induced uncertainty in the

extracted value of the effective weak mixing angle.

At leading order (LO) in perturbative electroweak and QCD theory, the Drell-Yan

triple-differential cross section can be written as

d3σ

dm``dy``d cos θ∗
=

πα2

3m``s

∑
q

Pq
[
fq(x1, Q

2)fq̄(x2, Q
2) + (q ↔ q̄)

]
, (1.1)

where s is the squared proton-proton (pp) centre-of-mass energy; the incoming parton

momentum fractions are x1,2 = (m``/
√
s)e±y`` ; and fq(x1, Q

2) are the PDFs for parton

flavour q. Here, Q2 is the four-momentum transfer squared and is set to the dilepton

centre-of-mass energy, m``, which is equal to the partonic centre-of-mass energy. The q ↔ q̄

term accounts for the case in which the parent protons of the q and q̄ are interchanged.

The function Pq in equation (1.1) is given by

Pq = e2
`e

2
q(1+cos2 θ∗)

+e`eq
2m2

``(m
2
``−m2

Z)

sin2 θW cos2 θW

[
(m2

``−m2
Z)2+Γ2

Zm
2
Z

][v`vq(1+cos2 θ∗)+2a`aq cosθ∗
]

(1.2)

+
m4
``

sin4 θW cos4 θW

[
(m2

``−m2
Z)2+Γ2

Zm
2
Z

][(a2
`+v2

` )(a
2
q+v2

q )(1+cos2 θ∗)+8a`v`aqvq cosθ∗
]
.

In this relation mZ and ΓZ are the Z boson mass and width, respectively; e` and eq are the

lepton and quark electric charges; and v` = −1
4 + sin2 θW, a` = −1

4 , vq = 1
2I

3
q − eq sin2 θW,

and aq = 1
2I

3
q are the vector and axial-vector lepton and quark couplings, respectively

where I3
q is the third component of the weak isospin.

The first term in equation (1.2) corresponds to pure virtual photon, γ∗, exchange in

the scattering process, the second corresponds to the interference of γ∗ and Z exchange,

and the last term corresponds to pure Z exchange. Thus the DY invariant mass spectrum

is characterized by a 1/m2
`` fall-off from γ∗ exchange contribution, an m``-dependent Breit-

Wigner peaking at the mass of the Z boson, and a Z/γ∗ interference contribution which

changes sign from negative to positive as m`` increases across the mZ threshold.

The terms which are linear in cos θ∗ induce the forward-backward asymmetry. The

largest contribution comes from the interference term, except at m`` = mZ where the

interference term is zero, and only the Z exchange term contributes to the asymmetry.

The resulting asymmetry is, however, numerically small due to the small value of v`. The

– 2 –
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net effect is an asymmetry which is negative for m`` < mZ and increases, becoming positive

for m`` > mZ . The point of zero asymmetry occurs slightly below m`` = mZ .

The forward-backward asymmetry varies with |y``|. The incoming quark direction

can only be determined probabilistically: for increasing |y``| the momentum fraction of

one parton reaches larger x where the valence quark PDFs dominate because the valence

quarks typically carry more momentum than the antiquarks. Therefore, the Z/γ∗ is more

likely to be boosted in the quark direction. Conversely, at small boson rapidity, |y``| ∼ 0,

it becomes almost impossible to identify the direction of the quark since the quark and

antiquark have nearly equal momenta.

The sensitivity of the cross section to the PDFs arises primarily from its dependence on

y`` (and therefore x1 and x2) in equation (1.1). Further sensitivity is gained by analysing the

cross section in the m`` dimension, since in the Z resonance peak the partons couple through

the weak interaction and off-peak the electric couplings to the γ∗ dominate. Therefore, the

relative contributions of up-type and down-type quarks vary with m``. Finally, the cos θ∗

dependence of the cross section provides sensitivity to terms containing a`aq and v`vqa`aq in

equation (1.2). Three different combinations of couplings to the incident quarks contribute

to the LO cross section. The magnitude of the asymmetry is proportional to the valence

quark PDFs and offers direct sensitivity to the corresponding PDF component.

The full five-dimensional cross section can also be decomposed into harmonic polyno-

mials for the lepton decay angle scattering amplitudes and their corresponding coefficients

A0−7 [22]. Higher-order QCD corrections to the LO qq̄ process involve qg + q̄g terms

at next-to-leading order (NLO), and gg terms at next-to-next-to-leading order (NNLO).

These higher-order terms modify the decay angle dependence of the cross section. Measur-

ing the | cos θ∗| distribution provides additional sensitivity to the gluon versus sea-quark

PDFs and is related to the measurements of the angular coefficients as a function of the Z

boson transverse momentum [22, 23].

Initial-state QCD radiation can introduce a non-zero transverse momentum for the

final-state lepton pair, leading to quark directions which may no longer be aligned with

the incident proton directions. Hence, in this paper, the decay angle is measured in the

CS reference frame [26] in which the decay angle is measured from an axis symmetric with

respect to the two incoming partons. The decay angle in the CS frame (θ∗) is given by

cos θ∗ =
pz,``

m``|pz,``|
p+

1 p
−
2 − p

−
1 p

+
2√

m2
`` + p2

T,``

,

where p±i = Ei ± pz,i and i = 1 corresponds to the negatively-charged lepton and i = 2

to the positively-charged antilepton. Here, E and pz are the energy and longitudinal z-

components of the leptonic four-momentum, respectively; pz,`` is the dilepton z-component

of the momentum; and pT,`` the dilepton transverse momentum.

The triple-differential cross sections are measured using 20.2 fb−1 of pp collision data

at
√
s = 8 TeV. The measurements are performed in the electron and muon decay channels

for |y``| < 2.4. The electron channel analysis is extended to high rapidity in the region

1.2 < |y``| < 3.6. The measured cross sections cover the kinematic range 46 < m`` <

– 3 –
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200 GeV, 0 < |y``| < 3.6, and −1 < cos θ∗ < +1. For convenience the notation

d3σ ≡ d3σ

dm``d|y``|d cos θ∗

is used. The cross sections are classified as either forward (cos θ∗ > 0) or backward (cos θ∗ <

0) and used to obtain an experimental measurement of AFB differentially in m`` and |y``|:

AFB =
d3σ(cos θ∗ > 0)− d3σ(cos θ∗ < 0)

d3σ(cos θ∗ > 0) + d3σ(cos θ∗ < 0)
. (1.3)

2 ATLAS detector

The ATLAS detector [27] consists of an inner tracking detector (ID) surrounded by a thin

superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spec-

trometer (MS). Charged particles in the pseudorapidity1 range |η| < 2.5 are reconstructed

with the ID, which consists of layers of silicon pixel and microstrip detectors and a straw-

tube transition-radiation tracker having a coverage of |η| < 2.0. The ID is immersed in

a 2 T magnetic field provided by the solenoid. The latter is surrounded by a hermetic

calorimeter that covers |η| < 4.9 and provides three-dimensional reconstruction of particle

showers. The electromagnetic calorimeter is a liquid-argon sampling calorimeter, which

uses lead absorbers for |η| < 3.2. The hadronic sampling calorimeter uses plastic scintil-

lator tiles as the active material and steel absorbers in the region |η| < 1.7. In the region

1.5 < |η| < 3.2, liquid argon is used as the active material, with copper absorbers. A

forward calorimeter covers the range 3.2 < |η| < 4.9 which also uses liquid argon as the

active material, and copper and tungsten absorbers for the EM and hadronic sections of

the subdetector, respectively.

Outside the calorimeters, air-core toroids supply the magnetic field for the MS. There,

three layers of precision chambers allow the accurate measurement of muon track curvature

in the region |η| < 2.7. The majority of these precision chambers is composed of drift tubes,

while cathode-strip chambers provide coverage in the inner layers of the forward region

2.0 < |η| < 2.7. The muon trigger in the range |η| < 2.4 uses resistive-plate chambers

in the central region and thin-gap chambers in the forward region. A three-level trigger

system [28] selects events to be recorded for offline analysis.

3 Simulated event samples

Monte Carlo (MC) simulation samples are used to model the expected signal and back-

ground yields, with the exception of certain data-driven background estimates. The MC

samples are normalised using the highest-order cross-section predictions available in per-

turbation theory.

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the

centre of the detector and the z-axis along the beam pipe. The x-axis points from the interaction point

to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in

the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in

terms of the polar angle θ as η = − ln tan(θ/2).

– 4 –
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The DY process was generated at NLO using Powheg-Box (referred to as Powheg in the

following) [29–32] and the CT10 PDF set [33], with Pythia 8 [34] to model parton showering,

hadronisation, and the underlying event (UEPS). The Z/γ∗ → `+`− differential cross

section as a function of mass has been calculated at NNLO in perturbative QCD (pQCD)

using FEWZ 3.1 [35–37] with the MSTW2008NNLO PDF set [38]. The renormalisation,

µr, and factorisation, µf, scales were both set equal to m``. The calculation includes NLO

EW corrections beyond final-state photon radiation (FSR) using the Gµ EW scheme [39]. A

mass-dependent K-factor used to scale the Z/γ∗ → `+`− MC sample is obtained from the

ratio of the calculated total NNLO pQCD cross section with the additional EW corrections,

to the total cross section from the Powheg sample. This one-dimensional (and therefore

partial) NNLO K-factor is found to vary from 1.035 at the lowest invariant mass values

considered in this analysis to 1.025 at the highest. This factor also improves the modelling

of the Z boson lineshape. The DY production of τ pairs was modelled using Powheg in

the same way as the signal simulation.

The scattering amplitude coefficients describing the distributions of lepton decay angles

are known to be not accurately modelled in Powheg particularly A0 at low pT,Z [22].

For this reason, the signal MC events are reweighted as a function of pT,Z and y`` to

improve their modelling. These weights were calculated using the cross-section calculator

DYNNLO [40].

The photon-induced process, γγ → ``, is simulated at LO using Pythia 8 and

the MRST2004qed PDF set [41]. The expected yield for this process also accounts for

NLO QED/EW corrections from references [42, 43], which decrease the yield by approxi-

mately 30%.

The production of top quark pairs with prompt isolated leptons from electroweak boson

decays constitutes a dominant background. It is estimated at NLO in QCD using Powheg

and the CT10 PDF set, with Pythia 6 [44] for UEPS. The tt̄ sample is normalized using

a cross section calculated at NNLO in QCD including resummation effects [45–50]. Small

compared to the tt̄ contribution, single-top production in association with a W boson (Wt)

is also modelled by Powheg and the CT10 PDF set, with Pythia 6 for UEPS. Both the tt̄

and Wt contributions are summed and collectively referred to as the top quark background.

Further small background contributions are due to diboson (WW , WZ and ZZ) pro-

duction with decays to final states with at least two leptons. The diboson processes were

generated at LO with Herwig, using the CTEQ6L1 PDF set [51]. The samples are scaled

to NLO calculations [52, 53] or to ATLAS measurements as described in reference [17].

Additionally, the background arising from W boson production in association with jets

(W+jets) is studied with MC samples generated with Powheg under identical conditions

as the DY signal samples.

All MC samples used in the analysis include the effects of QED FSR, multiple in-

teractions per bunch crossing (“pile-up”), and detector simulation. QED FSR was sim-

ulated using Photos [54], while the effects of pile-up were accounted for by overlaying

simulated minimum-bias events [55] generated with Pythia8 [34]. The interactions of par-

ticles with the detector were modelled using a full ATLAS detector simulation [55] based

on Geant4 [56]. Finally, several corrections are applied to the simulated samples, ac-
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Process Generator Parton shower & Generator Model parameters

underlying event PDF (“Tune”)

Z/γ∗ → `` Powheg v1(r1556) Pythia 8.162 CT10 AU2 [62]

Z/γ∗ → ττ Powheg v1(r1556) Pythia 8.162 CT10 AU2

γγ → `` Pythia 8.170 Pythia 8.170 MRST2004qed 4C [63]

tt̄ Powheg v1(r1556) Pythia 6.427.2 CT10 AUET2 [64]

Wt Powheg v1(r1556) Pythia 6.427.2 CT10 AUET2

Diboson Herwig 6.520 Herwig 6.520 CTEQ6L1 AUET2

W → `ν Powheg v1(r1556) Pythia 8.162 CT10 AU2

Table 1. Overview of the Monte Carlo samples used in this analysis.

counting for differences between data and simulation in the lepton trigger, reconstruction,

identification, and isolation efficiencies as well as lepton resolution and muon momentum

scale [57–61, 61]. The electron energy scale corrections are applied to the data.

An overview of the simulated event samples is given in table 1.

4 Event selection

Events are required to have been recorded during stable beam condition periods and must

pass detector and data-quality requirements. This corresponds to an integrated luminosity

of 20.2 fb−1 for the muon channel. Small losses in the data processing chain lead to an in-

tegrated luminosity of 20.1 fb−1 for the electron channel. Due to differences in the detector

response to electrons and muons the selection is optimised separately for each channel and

is described in the following.

4.1 Central rapidity electron channel

The electron data were collected using a dilepton trigger which uses calorimetric and track-

ing information to identify compact electromagnetic energy depositions. Identification al-

gorithms use calorimeter shower shape information and the energy deposited in the vicinity

of the electron candidates to find candidate electron pairs with a minimum transverse en-

ergy of 12 GeV for both the leading and subleading electron.

Electrons are reconstructed by clustering energy deposits in the electromagnetic

calorimeter using a sliding-window algorithm. These clusters are then matched to tracks

reconstructed in the inner detector. The calorimeter provides the energy measurement

and the track is used to determine the angular information of the electron trajectory. An

energy scale correction determined from Z → e+e−, W → eν, and J/ψ → e+e− decays [57]

is applied to data. Central electron candidates are required to have |ηe| < 2.4. Further-

more, candidates reconstructed within the transition region between the barrel and endcap

calorimeters, 1.37 < |ηe| < 1.52, are excluded from the measurement. Each candidate is re-

quired to satisfy the “medium” electron identification [58, 59] criteria, based on calorimetric

shower shapes and track parameters. To ensure the selected electrons are on the efficiency

plateau of the trigger, electrons are required to have EeT > 20 GeV. Candidate events are
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required to have exactly one pair of oppositely-charged electrons and their invariant mass

is required to be in the range 46 < mee < 200 GeV.

4.2 High rapidity electron channel

In this channel, the rapidity range of the measurement is extended by selecting one central

electron and one forward electron. Forward electrons are defined as having pseudorapidities

in the range 2.5 < |ηe| < 4.9, reconstructed by the endcap or forward calorimeters. The

data were collected using two single-electron triggers in the central calorimeter region with

EeT > 24 GeV or EeT > 60 GeV. The lower-threshold trigger has additional criteria for

the shower shape and energy deposited in the vicinity of the electron candidate. The

reconstructed central electrons are required to have EeT > 25 GeV, |ηe| < 2.4, and must

satisfy the “tight” identification criteria. Electrons in the calorimeter transition regions

1.37 < |ηe| < 1.52 are rejected. Leptons produced in the Drell-Yan process are expected

to be well isolated from other particles not associated with the lepton. This provides a

good discriminant against the multijet background arising from the semileptonic decays

of heavy quarks or hadrons faking electrons. The track isolation is defined as the scalar

sum of the transverse momenta,
∑
pT, of the additional tracks contained in a cone of

size ∆R =
√

(∆φ)2 + (∆η)2 = 0.2 around the electron (omitting the contribution from

the electron track). Central electrons are required to have a track isolation less than 14%

of EeT.

The forward electron is required to satisfy “tight” identification criteria, EeT > 20 GeV,

and 2.5 < |ηe| < 4.9, excluding the transition region between the endcap and forward

calorimeters, 3.00 < |ηe| < 3.35. Due to insufficient accuracy in the modelling of the

material in front of the endcap calorimeter, forward electrons in the region 2.70 < |ηe| <
2.80 are also rejected.

A dedicated calibration procedure is performed for the forward electrons. Energy scale

and Gaussian resolution corrections are derived in bins of ηe by comparing the peak position

and the width of the mee distributions in data and simulation. The scale and resolution

corrections are the values that bring the peak regions, 80 < mee < 100 GeV, of the data

and simulation into the best agreement.

No isolation criteria are applied to the forward electron and due to the absence of

tracking information in the forward region, no charge requirements are placed on the se-

lected electron pair. Lastly, events in the high rapidity electron channel are required to

have exactly one central-forward pair of electrons with an invariant mass in the range

66 < mee < 150 GeV. Events with more than one possible central-forward pair are not

used in this measurement channel.

4.3 Central rapidity muon channel

Candidate events in the muon channel were collected using two sets of triggers with the set

of triggers used depending on the pµT of the muon with the larger transverse momentum.

For pµT > 25 GeV, two single-muon triggers are used, with transverse momentum thresholds

of 24 GeV and 36 GeV. The low-threshold trigger requires the muon to be isolated. This

combination of triggers collected the majority of the events in the data sample. For pµT <
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25 GeV, a dimuon trigger is used which requires two muons with transverse momentum

thresholds of 18 GeV for one muon and 8 GeV for the other.

Muons are identified by tracks reconstructed in the muon spectrometer matched to

tracks reconstructed in the inner detector, and are required to have pµT > 20 GeV and

|ηµ| < 2.4. Additionally, they must satisfy identification criteria based on the number of

hits in the inner detector and muon spectrometer, and on the consistency between the

charge and momentum measurements in both systems [60]. Backgrounds from multijet

events are efficiently suppressed by imposing an isolation condition requiring that the sum

of the transverse momentum,
∑
pT, of the tracks contained in a cone of size ∆R = 0.2

around the muon (omitting the contribution from the muon track) to be less than 10% of

pµT. A small contribution of cosmic muons is removed by requiring the magnitude of the

longitudinal impact parameter with respect to the primary interaction vertex z0 to be less

than 10 mm. Events are selected if they contain exactly two oppositely-charged muons

satisfying the isolation and impact parameter requirements. Finally, the dilepton invariant

mass must be in the range 46 < mµµ < 200 GeV.

In order to minimise the influence of residual misalignments between the ID and MS,

muon kinematic variables are measured using the ID only. A small residual ηµ- and charge-

dependent bias in the muon momentum was observed, most likely arising from residual ro-

tational misalignments of the inner detector. Such ID misalignments bias the measurement

of the muon track sagitta and have an opposite effect on the momentum of positively- and

negatively-charged muons. Hence, the reconstructed invariant mass or rapidity of muon

pairs are not affected, in contrast to measurements of cos θ∗ which are charge-dependent.

These residual inner detector misalignments are corrected for based on two methods, one

which uses Z → µ+µ− events, and another using Z → e+e− events as described in refer-

ence [65]. Together with a χ2 minimisation technique, the dimuon data sample is used to

determine the corrections binned finely, which are however insensitive to the η-independent

component of the track curvature bias. This bias is corrected for using dielectron data

by comparing the ratio of the calorimeter energy to the track momentum for electrons

and positrons.

4.4 Measurement bins

The measurement bins are chosen by taking into consideration several competing demands

on the analysis such as its sensitivity to the underlying physics, the statistical precision in

each bin, and detector resolution effects particularly in the m`` dimension. The binning

must also match those used in recent ATLAS cross section measurements [13, 18].

The measurement is performed in seven bins of m`` from 46 GeV to 200 GeV with edges

set at 66, 80, 91, 102, 116, and 150 GeV; 12 equidistant bins of |y``| from 0 to 2.4; and

bins of cos θ∗ from −1 to +1, separated at −0.7, −0.4, 0.0, +0.4, +0.7 giving 6 bins. In

total, 504 measurement bins are used for the central rapidity electron and muon channel

measurements.

For the high rapidity electron channel the measurement is restricted to the 5 invariant

mass bins in the region 66 < m`` < 150 GeV. The |y``| region measured in this channel

ranges from 1.2 to 3.6 in 5 bins with boundaries at 1.6, 2.0, 2.4, 2.8. The cos θ∗ binning is
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identical to the binning of the central analyses. A total of 150 measurement bins is used

in this channel.

5 Background estimation

The background from processes with two isolated final-state leptons of the same flavour

is estimated using MC simulation. The processes with non-negligible contributions are

Z/γ∗ → ττ , diboson (WW , WZ and ZZ), and photon-induced dilepton production —

together termed the electroweak background sources. The top quark background arising

from tt̄ and Wt production is also estimated using MC simulation. The samples used for

these estimates are listed in table 1.

Background contributions from events where at least one final state jet satisfies the

electron or muon selection criteria, hereafter referred to as the fake lepton background,

are determined using a combination of data-driven methods and MC simulation. By far

the largest contribution to the fake lepton background comes from light- and heavy-flavour

multijet production, referred to as the multijet background, which is determined from

data. Descriptions on the fake background estimations used in each of the three channels

are given in the following subsections.

5.1 Fake lepton background estimation in the central rapidity electron channel

To separate the signal from the multijet background, the analysis relies on the electron

relative transverse energy isolation distribution (Ie). This is a good discriminant for the

multijet contribution, which has larger values of Ie than the signal process. It is defined as

the ratio of the summed calorimetric transverse energy contained in a cone of size ∆R = 0.2

around the electron to the electron transverse energy: Ie =
∑
ET(∆R = 0.2)/EeT. The

smaller of the Ie values of the two electron candidates is chosen to represent each event,

as it was found to provide optimal discrimination.

The multijet fraction is then estimated from data by fitting this distribution using a

template method. The background template is selected with inverted electron identification

requirements and the signal, electroweak, and W+jet templates are taken from simulation.

The non-isolated sample where the smaller Ie of the two electrons exceeds a certain value

is found to be dominated by multijet background and is used to adjust the normalization

of the background template, taking into account the small signal contamination. Since the

multijet background is not expected to exhibit any parity violating effects and the cos θ∗

background templates in data were found not to show any asymmetry about cos θ∗ = 0,

the method is symmetrised in bins of | cos θ∗|, resulting in a doubling of the sample sizes

and therefore more stable results.

The multijet contribution is found to be largest at low mee and also at large | cos θ∗|
for |yee| ∼ 0, where it reaches 15% of the expected number of signal events. In the pole

region, 80 < mee < 102 GeV, the contribution is less than 0.1%.

The contribution of W+jet production to the fake lepton background is estimated from

MC simulation. It is small compared to the multijet background for all kinematic regions,

and therefore does not introduce any significant charge asymmetry.
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5.2 Fake lepton background estimation in the high rapidity electron channel

The multijet background in the high rapidity electron channel is estimated using a template

method similar to the one used in the central electron channel with, however, some small

adjustments. The isolation variable is used for the normalisation of the multijet background

only for the mass bins in the range 80 < mee < 102 GeV. The size of the isolation cone

in this case is increased to ∆R = 0.3, which was found to improve the stability of the

fits. For the off-peak mass bins, the transverse energy of the forward electron is used as

an alternative discriminating variable, where the multijet background contributes mostly

at low ET. This decreases the statistical uncertainty of the estimation and reduces its

dependence on the W+jet background modelling, as discussed below.

The multijet background is the dominant contribution to the background in this mea-

surement channel and is typically about 5–10% of the expected signal, but increases rapidly

at large | cos θ∗|. It can be as large as 30–60% in some bins at large |yee| where the |AFB|
is large and the signal cross section is suppressed, i.e. cos θ∗ < 0 for mee > mZ .

The W+jet background is estimated using MC simulation. As was the case in the

central electron analysis, it is found to be small under the peak of the Z resonance. It is

found to be more significant off peak, reaching 30% of the fake lepton background.

5.3 Fake lepton background estimation in the central rapidity muon channel

The multijet background remaining after event selection in the muon channel is largely due

to heavy-flavour b- and c-quark decays, and is estimated in two steps. First, the shape as a

function of |yµµ| and | cos θ∗| is estimated in each mµµ bin. Next its overall normalisation

is then determined in each invariant mass region.

Three orthogonal control regions with inverted muon isolation requirements defined

by Iµ =
∑
pT(∆R = 0.2)/pµT > 0.1, and/or inverted muon pair charge requirements are

used to determine the multijet background. In each control region the contamination from

signal and electroweak background is subtracted using simulation.

A comparison of the shape of the Iµ distributions for muons in events with same-charge

and opposite-charge muon pairs shows a small linear deviation from unity of up to +10%

when extrapolated into the isolated signal region Iµ < 0.1. This is found to be independent

of mµµ, and is accounted for in the extrapolation. The |yµµ| and | cos θ∗| dependence of

the background in each mµµ bin is obtained in the multijet enriched data control region

in which pairs of same-charge and opposite-charge muons satisfy Iµ > 0.1. Finally, the

resulting |yµµ| and | cos θ∗| spectra are normalised in the signal region using the constraint

that the yield ratio of opposite-charge to same-charge muon pairs is similar in the isolated

and non-isolated control regions.

This method does not account for a potential W+jets background contribution. This

component is estimated from simulation and found to be negligible.

The estimated fake lepton background contribution in the muon channel is everywhere

smaller than its contribution in the central electron channel, and never more than 5% of

the expected signal yield.
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5.4 Top quark and electroweak backgrounds

These sources of background arise from QCD and EW processes in which two prompt

isolated leptons are produced. Their contributions are estimated using MC simulation.

Background events from top quark processes increase with m`` and are typically below

2% of the expected signal yields. The contribution is largest at the extremes of cos θ∗ where

it can reach 10–20% of the expected signal in the central channels. At high rapidity, this

background source is typically below 5% everywhere.

The diboson background increases with invariant mass and reaches about 6% of the

expected signal yield at large | cos θ∗| in both the central electron and muon channels. In

the high rapidity electron channel it reaches about 3% at moderate |y``|.
The background from Z → ττ is significant only at low m``, where it can reach 7% in

the central rapidity channels and 3% in the high rapidity channel.

Photon-induced production of dilepton pairs gives a small background contribution of

2% or less in all channels. However, for large values of m``, this contribution can reach

about 5%.

6 Cross-section measurement

As defined in section 4.4, the binning scheme used for the triple-differential measurements

consists of 504 bins for the central rapidity electron and muon channels, and 150 bins

in the high rapidity electron channel. The Drell-Yan cross section is measured in the

central rapidity channels within the fiducial region defined by p`T > 20 GeV, |η`| < 2.4,

and 46 < m`` < 200 GeV. In the high rapidity electron channel the fiducial region of the

measurement is defined by p`T > 25 GeV and |η`| < 2.4 for the central electron, p`T > 20 GeV

and 2.5 < |η`| < 4.9 for the forward electron, and 66 < m`` < 150 GeV.

The cross-section results are first unfolded to the “dressed”-level, defined at the par-

ticle-level using leptons after FSR recombined with radiated photons within a cone of

∆R = 0.1. The unfolded data are then corrected to the Born-level, before final-state QED

radiation at the particle-level, using a correction factor obtained from the Powheg MC

sample. This procedure neglects the bin migrations between the dressed- and Born-level

kinematics, an approximation which was verified to have a negligible impact on the central

values and uncertainties of the results presented in this paper.

The triple-differential cross section is calculated as

d3σ

dm`` d|y``| d cos θ∗

∣∣∣∣∣
l,m,n

=Mlmn
ijk ·

Ndata
ijk −N

bkg
ijk

Lint

1

∆m`` · 2∆|y``| · ∆cos θ∗
, (6.1)

where i, j, k are the bin indices for reconstructed final-state kinematics; l,m, n are the bin

indices for the generator-level kinematics; and Lint is the integrated luminosity of the data

set. Quantity Ndata is the number of candidate signal events observed in a given bin of

width ∆m`` , ∆|y``|, and ∆cos θ∗ , while Nbkg is the number of background events in the same

bin. The factor of two in the denominator accounts for the modulus in the rapidity bin
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width. Integrated single- and double-differential cross sections are measured by summing

over the corresponding indices of equation (6.1).

The factor M is the inverted response matrix and takes into account the efficiency

of the signal selection and bin migration effects. It gives the probability that a selected

event reconstructed in some measurement bin was originally generated in a given fiducial

(generator-level) bin. The factorM is obtained from the Drell-Yan signal samples after cor-

recting for differences in the reconstruction, identification, trigger, and isolation efficiencies

between data and simulation, as well as for momentum scale and resolution mismodelling

effects. It also accounts for events originally outside of the fiducial selection that migrate

into the reconstructed event sample. Finally, M also includes extrapolations over the re-

gions that are excluded from the electron selection (1.37 < |ηe| < 1.52, 2.70 < |ηe| < 2.80,

and 3.00 < |ηe| < 3.35 ).

The quality of the simulation and its ability to describe the data are checked in fig-

ures 1–4, comparing data and prediction for the y``, cos θ∗, and m`` distributions in selected

regions of the measured kinematic range, as indicated in the figure captions. The expected

number of events is calculated as the sum of expected signal and background yields. Ac-

ceptable agreement is found in all channels, given that the simulation is only accurate to

NLO for the observables shown in figures 1–3, and to NNLO accuracy for the m`` distri-

bution shown in figure 4.

The background-subtracted data are unfolded to fiducial cross sections using the in-

verse of the response matrix obtained using an iterative Bayesian unfolding method [66]

in which the prior is improved at each iteration. When using such methods the statistical

and systematic uncertainties (discussed in section 7) increase with each unfolding itera-

tion, while the residual bias from the initial prior decreases. A balance between these two

competing effects must be struck when deciding on the number of iterations to be used

to unfold the measurement. Only small changes to the prior are expected, however, since

the lineshape of the Z boson resonance and the PDFs are known to high-precision. More-

over, the prior (Powheg) is enhanced using QCD and EW corrections and describes the

data within experimental uncertainties. An optimum was found using two iterations in

this analysis.

Finally, measurement bins which are predicted by signal MC simulation to have fewer

than 25 signal events are expected to have large statistical uncertainties and therefore these

bins are removed from the analysis. Approximately 50 bins are discarded in each of the

central electron and muon channels. They typically lie at large |y``| and large | cos θ∗|. In

the high rapidity electron channel, 27 bins are removed, all corresponding to small | cos θ∗|.
In all cases the discarded bins correspond to ones for which the signal prediction at LO in

QCD is consistent with zero.
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Figure 1. Distributions of dilepton rapidity (left) and cos θ∗ (right) in the central rapidity electron

channel for mee bins 46–66 GeV (top row), 80–91 GeV (middle), and 116–150 GeV (bottom). The

data (solid markers) and the prediction (stacked histogram) are shown after event selection. The

lower panels in each plot show the ratio of data to prediction. The error bars represent the data

statistical uncertainty while the hatched band represents the systematic uncertainty in the predic-

tion.
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Figure 2. Distributions of dilepton rapidity (left) and cos θ∗ (right) in the high rapidity electron

channel for mee bins 66–80 GeV (top row), 91–102 GeV (middle), and 116–150 GeV (bottom). The

data (solid markers) and the prediction (stacked histogram) are shown after event selection. The

lower panels in each plot show the ratio of data to prediction. The error bars represent the data

statistical uncertainty while the hatched band represents the systematic uncertainty in the predic-

tion.
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Figure 3. Distributions of dilepton rapidity (left) and cos θ∗ (right) in the central rapidity muon

channel for mµµ bins 46–66 GeV (top row), 80–91 GeV (middle), and 116–150 GeV (bottom). The

data (solid markers) and the prediction (stacked histogram) are shown after event selection. The

lower panels in each plot show the ratio of data to prediction. The error bars represent the data

statistical uncertainty while the hatched band represents the systematic uncertainty in the predic-

tion.
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Figure 4. Distributions of invariant mass for all three measurements: the central rapidity electron

(top row), the high rapidity electron channel (middle), and the central rapidity muon (bottom)

channels. For the central measurements, the distributions are plotted for |y``| < 1.0 (left) and

|y``| > 1.0 (right) while for the high rapidity measurement, regions |yee| < 2.4 (left) and |yee| > 2.4

(right) are shown. The data (solid markers) and the prediction (stacked histogram) are shown after

event selection. The lower panels in each plot show the ratio of data to prediction. The error

bars represent the data statistical uncertainty while the hatched band represents the systematic

uncertainty in the prediction.
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7 Measurement uncertainties

The uncertainties in the measurements are discussed separately starting with the sources

relevant to both electron channels, then the sources only appearing in the high rapidity

electron channel. Next, sources of uncertainty specific to the muon channel are given

followed by the sources common to all three measurements. Uncertainties due to statistical

sources from both the data and MC samples, the modelling of the energy and momentum

response to leptons, lepton selection efficiencies, background subtraction, and theoretical

uncertainties are covered in this section. Each source is classified as being correlated or

uncorrelated between measurement bins in a single channel. The sources are propagated

using one of three techniques: the bootstrap method [67], the pseudo-experiment method,

or the offset method.

7.1 Statistical uncertainties

The impact of the statistical uncertainty in the number of events in the data and MC

simulations on the cross-section measurement is quantified using the bootstrap method, a

statistical resampling technique in which each event is reweighted with a random number

drawn from a Poisson distribution with a mean of unity. This reweighting procedure is done

1000 times producing 1000 replicas of the measurement. All replicas are then unfolded and

the uncertainty is taken as the standard deviation of the measured cross sections. In the

case of the signal MC sample the bootstrap replicas are used to produce an ensemble of

1000 response matrices which are used to unfold the measurement. The standard deviation

of the unfolded cross sections is used as the signal MC statistical uncertainty.

7.2 Systematic uncertainties

The pseudo-experiment method is used for correction factors determined in bins of lep-

ton kinematics, typically η and transverse energy/momentum. These correction factors

have statistical and systematic uncertainties which are fluctuated randomly using 1000

pseudo-experiments according to a Gaussian distribution whose mean and standard de-

viation are set to the value and uncertainty of the correction factor, respectively. For

correlated sources, a single set of varied correction factors is used for all measurement bins,

whereas for uncorrelated sources the random shifts are applied separately for each bin.

The uncertainties are propagated via the unfolding procedure yielding 1000 cross-section

results which are used to determine a covariance matrix.

In the offset method the correction factor values from each source are coherently shifted

upwards and downwards by one standard deviation and the measurement is remade using

the varied values. The uncertainty is taken as half the difference between the two unfolded

measurements.

7.3 Central and high rapidity electron channels

The systematic uncertainties in the cross section that are unique to the electron channels

are dominated by the uncertainties in the electron energy scale, and the electron recon-

struction and identification efficiency uncertainties. In addition, a large contribution to the
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uncertainty arises from the electron energy resolution uncertainty in the two neighbouring

mee bins at the Z-peak, 80 < mee < 91 GeV and 91 < mee < 102 GeV.

7.3.1 Energy scale and resolution

The electron energy scale and resolution and their corresponding uncertainties are deter-

mined using Z → e+e−, W → eν, and J/ψ → e+e− decays. The uncertainty in the energy

scale is separated into a statistical component and 14 uncorrelated systematic sources.

Some of these sources are split into fine ηe bins, while others are coarsely binned into

barrel and endcap regions as described in reference [57]. These sources are found to be

strongly anti-correlated between the regions mee < mZ and mee > mZ . The statistical

uncertainty in the energy scale is found to be negligible. Adding the effects of the 14

sources of uncertainty in the energy scale in quadrature after propagating to the measured

cross sections, the combined uncertainty is 1–2% for the mass bins 80 < mee < 91 GeV and

91 < mee < 102 GeV, but is less than 1% at low and high mee. However, in the integrated

mee cross-section measurement the effect of these sources is strongly reduced as a result of

the anti-correlation between these two mee bins.

The uncertainty in the energy resolution is separated into seven uncorrelated system-

atic sources which are propagated to the cross-section measurements individually. This

combined uncertainty is typically 0.1–0.5% except in the invariant mass regions neighbour-

ing the Z-peak where it reaches 1%.

7.3.2 Reconstruction and identification efficiencies

The reconstruction and identification efficiencies of electrons are determined from data

using various tag-and-probe methods in Z and J/ψ decays, following the prescription in

reference [58] with certain improvements and adjustments for the 2012 conditions [68].

The uncertainties arise from variations in the tag-and-probe selection and the background

subtraction methods. The correlated systematic uncertainty is taken from the RMS of

all variations, separately for the reconstruction and identification efficiency sources, and

propagated using the pseudo-experiment method.

The influence of the identification efficiency uncertainty is found to be 0.2–0.4% increas-

ing for larger | cos θ∗|, and up to 2% at low mee. The reconstruction efficiency uncertainty

translates into a variation of the measured cross section which is generally below 0.2% but

as large as 0.4% at low mee.

7.3.3 Trigger efficiency

The trigger efficiency is measured in both the data and MC simulation using a tag-and-

probe method in Z → e+e− decays and is composed of a statistical uncorrelated component

which is small, and a correlated piece which is propagated using the pseudo-experiment

method. The resulting uncertainty in the cross section amounts to approximately 0.5% at

low mee but decreases to approximately 0.1% for mee > 116 GeV.
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7.3.4 Charge misidentification

The electron charge is determined from the sign of the curvature of the associated ID track.

Bremsstrahlung radiation and subsequent conversion of the radiated photons can lead to

misidentification of the charge. This is measured in Z boson decays in which one lepton

has an incorrectly reconstructed charge. Such events are selected by requiring the electron

pair to possess the same electric charge and an invariant mass to be near mZ , consistent

with a Z boson decay. The resulting correlated uncertainty is propagated with the offset

method and found to be less than 0.2% everywhere.

7.3.5 Multijet background

Uncertainties in the multijet estimation arise from the sample size used in the method, the

subtracted signal and EW contamination, the shape of the multijet distribution, and the

range of the isolation distribution used. The subtracted top quark and diboson contamina-

tion is varied coherently within the theoretical cross-section uncertainties. The subtracted

signal contamination is varied by ±5%. The shape of the multijet distribution is varied by

relaxing the same-sign charge requirement in the case of the central electron channel, and

using the transverse energy EeT of the forward electron as an alternative discriminant in

the high rapidity electron channel. The range of the isolation distribution used is varied

by ±15%.

The variations made to account for systematic uncertainties in the method lead to

changes in the estimated multijet yield in the central electron channel. The variations in

the multijet yields range from about 10% at low mee and cos θ∗ ∼ 0, to more than 100%

in regions where the nominal multijet yield is small, e.g. at large | cos θ∗| and high mee.

The uncorrelated statistical component is propagated to the measured cross sections

with the bootstrap replica method. The remaining two correlated components are propa-

gated with the offset method, which when summed in quadrature amount to a measurement

uncertainty of less than 0.1% of the cross section, except at low mee and large | cos θ∗| where

it grows to almost 1% in the central electron channel.

In the high rapidity channel the multijet yields range from 15% to more than 100%

due to systematic uncertainties in the method. At small cos θ∗ and high invariant masses

where the signal contribution is suppressed, the expected multijet background can be very

large, as noted in section 5.2. Here, the systematic uncertainty in the multijet background

is 20–70% depending on |yee|, resulting in a measurement uncertainty of 30% or greater

when propagated to the triple-differential cross section.

7.4 High rapidity electron channel

The high rapidity electron analysis differs from the central electron channel measurement

by requiring one electron to be in the forward region 2.5 < |ηe| < 4.9 where there is no

tracking system, which leads to larger background contamination. This is compensated for

by the addition of an isolation requirement on the central electron, and more restrictive

identification requirements (see section 4.2) on the central and forward electrons. The

technique used to calibrate the forward calorimeters is also different, and the impact of
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potential charge misidentification is different. Since the charge can be measured only for

the central electron, the impact of misidentification is to swap the sign of cos θ∗. Each

of these leads to additional sources of systematic uncertainty which are discussed in the

following.

The energy scale and resolution corrections for forward electrons lead to correlated

sources of uncertainty propagated using the offset method. They arise from changes in the

event selection used to perform the calibration as well as variations of the methodology.

The influence of the scale uncertainty on the measurement is about 1% but can reach 5%

at high | cos θ∗|. The resolution uncertainty amounts to 0.1–0.3% increasing to 3–5% at

large | cos θ∗| and off-peak mass bins.

The uncertainty in the cross-section measurement due to the identification efficiency

of forward electrons is considered to be correlated across the measurement bins and is

estimated using the pseudo-experiment method. It amounts to about 1% uncertainty in

the cross section.

The efficiency of the isolation selection for central electrons is derived using a tag-and-

probe method in central Z → e+e− decays and is well described by the simulation. The

resulting uncertainty in the cross section is negligible.

To verify that the modelling of the W+jet background does not affect the estimation

of the total fake lepton background in the high rapidity channel, its normalisation is varied

by 60% (as motivated by reference [18]) and the fit of the multijet background is repeated.

Since the shape of the ET distribution is similar for the W+jet and multijet backgrounds,

the total fake lepton background remains almost invariant for the off-peak regions while for

the peak mass bins the variation is small compared to the multijet background uncertainty.

7.5 Central rapidity muon channel

Uncertainties related to the muon momentum scale and resolution, and the efficiencies of

the muon trigger, reconstruction, and isolation and impact parameter selections are all

studied using Z → µ+µ− events, and in some cases J/ψ → µ+µ− events are also used.

The efficiencies are determined using a tag-and-probe method. The largest contributions

to the systematic uncertainty in the measurements typically arise from the reconstruction

efficiency and isolation efficiency modelling, and from the muon momentum scale calibra-

tion.

7.5.1 Momentum scale and resolution

Corrections to the muon momentum scale and resolution are obtained from fits to the

Z → µ+µ− and J/ψ → µ+µ− lineshapes with scale and resolution parameters derived

in local detector regions [60]. These sources are separated into 12 correlated components

for the resolution in fine ηµ bins and one correlated component for the momentum scale.

Uncertainties in the momentum scale arising from the methodology, and uncertainties in

the ID material simulation, muon angle reconstruction, and alignment are propagated

using the offset method. They result in a systematic uncertainty correlated in ηµ bins of

the measured cross sections of typically 0.3%, increasing for larger |yµµ|, | cos θ∗|, and mµµ
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to 2%. The correlated resolution uncertainty has a small influence on the measurement

and is also propagated with the offset method.

The influence of residual misalignments is estimated from two sources. The first arises

from the statistical uncertainty of the alignment corrections derived using Z → µ+µ− data

and is considered uncorrelated. This component is propagated to the cross section using

the pseudo-experiment method, and is separated into 84 uncorrelated components. The

second source accounts for biases in the correction method, and is defined as the difference

between the corrections derived for data and simulation in bins of ηµ. This uncertainty is

separated into 40 correlated components. After propagating this correlated source to the

cross section using the pseudo-experiment method, the resulting uncertainty is found to be

about 0.2%, increasing significantly with | cos θ∗| at large |yµµ|.

7.5.2 Reconstruction efficiency

The uncertainty due to the muon reconstruction efficiency is parameterised as a function of

ηµ and pµT [60] and is decomposed into correlated and uncorrelated parts. The uncertainty

is propagated to the cross section using the offset and pseudo-experiment methods for the

correlated and uncorrelated components, respectively. The correlated component has an

uncertainty of 0.1%, which corresponds to an uncertainty in the measured cross section of

0.2–0.4%.

7.5.3 Trigger efficiency

The efficiency corrections for single-muon and dimuon triggers are obtained using the tag-

and-probe method as described in reference [61]. They are parameterised in terms of muon

pseudorapidity ηµ, azimuthal angle φµ, and electric charge. The correlated uncertainty

components arise from the background contamination, a possible residual dependence on

muon pµT, and an uncertainty based on the event topology, which are propagated using

the offset method. The uncorrelated statistical uncertainty is propagated to the cross

section using the pseudo-experiment method. Events selected with the single-muon triggers

(pµT > 25 GeV) cover most of the kinematic range of the measurement, whereas the dimuon

triggers supplement the selection at low mµµ and have somewhat larger uncertainties. This

translates into a correlated uncertainty in the measured cross section which is typically 0.1%

where the single-muon triggers are used, and can reach 0.6% at large | cos θ∗| in the lowest

mµµ bin.

7.5.4 Isolation and impact parameter efficiency

Muon isolation and impact parameter selection efficiencies give rise to additional systematic

uncertainties and are estimated together. The sources considered include the remaining

background contamination, the residual variation in ηµ, and a possible bias from the event

topology estimated by varying the azimuthal opening angle between the two muons used

in the tag-and-probe method. The resulting correlated cross-section uncertainty deter-

mined with the pseudo-experiment method is found to be typically 0.2%, rising to 0.5% at

high mµµ.
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7.5.5 Multijet background

The uncertainty in the multijet background estimate comes from several sources. The

uncorrelated statistical uncertainty of the control regions is propagated using the bootstrap

replica method and can be significant, in particular from the isolated same-charge control

sample. The subtracted top quark and diboson contamination in the control regions is

varied coherently within the theoretical cross-section uncertainties given in section 3. The

subtracted signal contamination is varied by ±5%. The correlated uncertainty in the shape

of the |yµµ| and | cos θ∗| spectra is determined from the RMS of these distributions in five

regions of increasing non-isolation of the muon pairs obtained from the control regions.

The final contribution comes from the fit extrapolation of the background estimate into

the signal region and is assessed by varying the range of the fit. Systematic components

lead to changes in the multijet yields of 15% to 30% of the expected signal contribution.

This is largest in the regions of large | cos θ∗|. The variations can be up to 60% for large

| cos θ∗| and large |y``|.
Both the shape and extrapolation uncertainties are propagated to the cross section

using the offset method and dominate the total uncertainty. The combined uncertainty in

the background estimate when propagated to the cross-section measurement is below 0.1%

in all measurement bins except in the lowest mµµ bin where it reaches 1% at large | cos θ∗|
and small |yµµ|.

7.6 Systematic uncertainties common to all channels

The systematic uncertainties common to all three channels are derived using identical

methods. With the exception of the statistical uncertainties arising from the MC samples

used, which are uncorrelated between the measurement channels, common systematic un-

certainties are assumed to be fully correlated between the channels. The dominant common

uncertainty is the uncertainty in the luminosity measurement.

7.6.1 Top, diboson, W+jet, Z/γ∗ → ττ , and photon-induced background

normalisation

The normalisation uncertainties considered for these background sources arise from vari-

ations in the PDFs, αS , and the QCD scales used in the theoretical predictions. The

normalisation uncertainty in the top quark background, which is dominated by tt̄ produc-

tion, is taken to be 6% following the PDF4LHC prescription [69]. The uncertainty includes

scale and αS variations and also takes into account the uncertainty in the top-quark mass.

Diboson (WW , WZ and ZZ) production is another important background source for which

the normalisation uncertainties are about 10%. See reference [17] for additional information

on the normalisation uncertainties of the various Monte Carlo samples used.

The background contributions from W+jet processes are assigned a normalisation

uncertainty of 5% for the central rapidity measurements. For the high rapidity electron

channel, where W+jet is a dominant background, a variation of 60% is considered (see

section 7.4).

The background contribution from Z/γ∗ → ττ decays is assigned a normalisation

uncertainty of 5%. The photon-induced background is assigned an uncertainty of 40%,
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derived by calculating the photon-induced contribution in a constituent and a current

mass scheme for the quark [41], and taking the magnitude of the difference between either

scheme and their average [13]. In all cases the normalisation uncertainties are propagated

to the final cross sections using the offset method.

7.6.2 Unfolding bias

The simulation used as an initial prior in the unfolding process could lead to a potential bias

in the measured cross sections. This potential bias is quantified by varying the predictions

within theoretical uncertainties. The PDF bias is probed using signal MC events reweighted

to each of the 26 different eigenvector variations of the CT10 PDF set in the determination

of M. For each variation the change in the unfolded cross section is found to be much

smaller than the change in the predicted cross section using each eigenvector PDF set.

Changing the PDF set can alter the predicted cross section by up to a few percent but

the influence on the unfolded result is less than 0.1%. Furthermore, the change in the

unfolded result, using one to five iterations of unfolding, is much smaller than the total

uncertainty in the data. This study is repeated by reweighting the signal MC events to

different values of the scattering amplitude coefficient A4 = 8
3AFB, which is proportional

to sin2 θW . A variation of ±0.01 is used, corresponding to a maximum change of 0.5% in

the cross-section prior, which results in a change in the unfolded cross section of less than

0.1%. These studies show that potential biases are small for five iterations or less.

A potential overestimate or underestimate of the statistical and systematic uncertain-

ties of the measurement due to the chosen number of unfolding iterations is also studied.

Tests of the statistical uncertainty are performed using pseudo-data generated using an

alternative PDF. Ultimately, two unfolding iterations are used for the final cross-section

determination. This number has a negligible bias due to the initial prior and produces a

negligible bias in the data statistical and systematic uncertainties.

7.6.3 MC modelling

The Z boson pT distribution is not well modelled in MC simulation and could influence

the measurement. The potential bias is estimated by reweighting the signal MC events to

the observed data spectrum at reconstruction-level. This reweighted MC sample is used

to unfold the cross section and the difference to the nominal measurement is taken as

the uncertainty, which is typically below 0.1%, rising to about 1% at large | cos θ∗| and

large |y``|.
Adjustments to the reweighting of the scattering amplitude coefficients in the Powheg

MC sample are found to have negligible impact on the measured cross sections.

The MC simulations used for modelling the underlying event and parton shower pro-

cesses are not explicitly studied here, but are only expected to influence this measurement

via the lepton isolation selection efficiencies. Studies presented in reference [18] indicate

that such effects are small.
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7.6.4 PDF uncertainty

As discussed in section 6, the response matrix M also includes a small acceptance inter-

polation from the measured region to the fiducial region. These acceptance corrections

differ in each of the three measurement channels due to ηe,µ gaps in the detector. The cor-

rections are 5–10% but can be larger in certain bins of the triple-differential cross-section

measurement. The PDF uncertainties due to these acceptance corrections are estimated

using the CT10 PDF eigenvector set at 68% confidence level. They are found to be small,

with uncertainties on the order of 0.1% or below for most cross-section measurement bins

in the electron channel. In the high rapidity electron channel the uncertainty is also found

to be small, except at large | cos θ∗| where it can reach 0.6%. The uncertainty evaluated

in the muon channel is found to be about 0.5% at low mµµ, negligible for mµµ at mZ , and

reaches 0.6% for large | cos θ∗| and large |yµµ|.

7.6.5 Luminosity

The uncertainty in the integrated luminosity is 1.9%, which is derived following the method-

ology detailed in reference [70]. This is fully correlated across all measurement bins and

analysis channels.

7.7 Summary of measurement uncertainties

Tables 2–4 present the contributions of the individual uncertainties discussed above for each

channel in selected analysis bins. The influence of the experimental systematic uncertainties

on the measurements of d3σ can be divided into three regions of m`` — below the resonance

peak, on the peak region, and above the resonance. In the electron channels, the largest

measurement uncertainties arise from background and efficiency correction uncertainties

at low and high m``. In the peak region the uncertainty is dominated by the energy scale

sources. The muon channel precision is limited by the background uncertainty at low m``,

and by both the momentum scale and misalignment uncertainties in the peak region. At

larger invariant mass the uncertainties related to the muon reconstruction and isolation

efficiency also become important.
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Bin mee |yee| cos θ∗ δstatunc δsigunc δbkg
unc δmj

unc δbkgcor δmj
cor δsclcor δrescor δreccor δidcor δtrigcor δqmid

cor δkfaccor δzptcor δpdf
cor δtot

[GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

1 46, 66 0.0, 0.2 −1.0,−0.7 6.7 2.4 3.4 3.1 1.9 5.2 0.5 0.7 0.5 2.5 0.7 0.2 0.0 0.9 0.2 10.6

2 46, 66 0.0, 0.2 −0.7,−0.4 2.3 0.8 1.2 0.9 1.1 2.0 0.2 0.2 0.5 2.7 0.9 0.0 0.0 0.0 0.1 4.7

3 46, 66 0.0, 0.2 −0.4, 0.0 1.4 0.5 0.9 0.4 0.9 0.9 0.3 0.1 0.3 1.9 0.3 0.0 0.0 0.0 0.0 2.9

4 46, 66 0.0, 0.2 0.0,+0.4 1.4 0.5 0.8 0.5 0.9 0.9 0.3 0.1 0.3 1.9 0.3 0.0 0.0 0.0 0.1 3.0

5 46, 66 0.0, 0.2 +0.4,+0.7 2.2 0.8 0.9 0.9 1.1 2.0 0.2 0.1 0.5 2.6 0.8 0.0 0.0 0.0 0.1 4.5

6 46, 66 0.0, 0.2 +0.7,+1.0 6.7 2.3 4.8 3.1 1.8 4.9 0.9 0.5 0.5 2.6 0.7 0.1 0.0 0.9 0.2 10.9

79 66, 80 0.2, 0.4 −1.0,−0.7 2.7 1.3 0.5 0.7 0.5 1.6 1.5 1.1 0.6 3.7 1.2 0.1 0.0 0.3 0.2 5.6

80 66, 80 0.2, 0.4 −0.7,−0.4 1.3 0.6 0.4 0.3 0.3 0.3 0.4 0.4 0.3 1.7 0.4 0.1 0.0 0.0 0.0 2.5

81 66, 80 0.2, 0.4 −0.4, 0.0 1.3 0.4 0.4 0.3 0.3 0.1 0.3 0.1 0.1 0.7 0.2 0.0 0.0 0.0 0.0 1.6

82 66, 80 0.2, 0.4 0.0,+0.4 1.2 0.5 0.3 0.4 0.3 0.1 0.3 0.1 0.1 0.7 0.2 0.1 0.0 0.0 0.0 1.7

83 66, 80 0.2, 0.4 +0.4,+0.7 1.4 0.6 0.3 0.3 0.3 0.3 0.6 0.2 0.3 1.7 0.4 0.1 0.0 0.1 0.0 2.6

84 66, 80 0.2, 0.4 +0.7,+1.0 2.7 1.4 0.4 0.7 0.4 1.6 2.8 1.0 0.6 3.8 1.2 0.2 0.0 0.3 0.1 6.1

157 80, 91 0.4, 0.6 −1.0,−0.7 0.6 0.3 0.0 0.1 0.0 0.1 1.4 0.3 0.3 3.2 0.4 0.1 0.0 0.0 0.1 3.6

158 80, 91 0.4, 0.6 −0.7,−0.4 0.4 0.2 0.0 0.0 0.0 0.0 1.0 0.1 0.1 0.5 0.2 0.1 0.0 0.1 0.0 1.2

159 80, 91 0.4, 0.6 −0.4, 0.0 0.4 0.1 0.0 0.0 0.0 0.0 1.0 0.1 0.0 0.3 0.1 0.1 0.0 0.0 0.0 1.1

160 80, 91 0.4, 0.6 0.0,+0.4 0.4 0.1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.3 0.1 0.1 0.0 0.0 0.0 1.2

161 80, 91 0.4, 0.6 +0.4,+0.7 0.4 0.2 0.0 0.0 0.0 0.0 1.0 0.1 0.1 0.5 0.2 0.1 0.0 0.1 0.0 1.2

162 80, 91 0.4, 0.6 +0.7,+1.0 0.6 0.3 0.0 0.0 0.0 0.1 1.6 0.2 0.3 3.2 0.4 0.1 0.0 0.0 0.1 3.7

235 91, 102 0.6, 0.8 −1.0,−0.7 0.5 0.2 0.0 0.1 0.0 0.0 2.1 0.2 0.3 2.6 0.5 0.0 0.0 0.2 0.0 3.5

236 91, 102 0.6, 0.8 −0.7,−0.4 0.4 0.2 0.0 0.0 0.0 0.0 1.3 0.0 0.1 0.5 0.2 0.0 0.0 0.1 0.0 1.5

237 91, 102 0.6, 0.8 −0.4, 0.0 0.4 0.1 0.0 0.0 0.0 0.0 1.0 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 1.1

238 91, 102 0.6, 0.8 0.0,+0.4 0.3 0.1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 1.1

239 91, 102 0.6, 0.8 +0.4,+0.7 0.4 0.2 0.0 0.0 0.0 0.0 1.2 0.0 0.1 0.5 0.2 0.0 0.0 0.1 0.0 1.4

240 91, 102 0.6, 0.8 +0.7,+1.0 0.5 0.2 0.0 0.1 0.0 0.1 2.1 0.1 0.3 2.6 0.5 0.0 0.0 0.2 0.0 3.4

313 102, 116 0.8, 1.0 −1.0,−0.7 2.8 1.2 0.6 0.8 0.5 0.7 2.1 0.9 0.2 1.4 0.3 0.1 0.0 0.1 0.0 4.3

314 102, 116 0.8, 1.0 −0.7,−0.4 2.6 1.2 0.2 0.5 0.2 0.9 2.3 1.0 0.0 0.4 0.2 0.0 0.0 0.1 0.1 4.0

315 102, 116 0.8, 1.0 −0.4, 0.0 2.0 0.8 1.6 0.3 0.2 0.2 1.0 0.3 0.1 0.3 0.1 0.1 0.0 0.0 0.0 2.9

316 102, 116 0.8, 1.0 0.0,+0.4 1.8 0.7 0.1 0.2 0.2 0.1 0.9 0.5 0.1 0.3 0.1 0.0 0.0 0.1 0.1 2.2

317 102, 116 0.8, 1.0 +0.4,+0.7 2.3 1.0 0.5 0.4 0.2 0.7 1.7 1.3 0.0 0.4 0.2 0.1 0.0 0.0 0.1 3.5

318 102, 116 0.8, 1.0 +0.7,+1.0 2.3 1.0 0.2 0.6 0.3 0.6 2.1 0.6 0.2 1.4 0.3 0.0 0.0 0.0 0.1 3.8

391 116, 150 1.0, 1.2 −1.0,−0.7 4.8 1.0 2.8 1.8 1.3 5.1 0.2 0.4 0.1 0.4 0.2 0.1 0.0 0.0 0.1 8.0

392 116, 150 1.0, 1.2 −0.7,−0.4 3.5 0.9 0.4 0.7 0.7 0.6 0.6 0.1 0.1 0.3 0.2 0.1 0.0 0.2 0.1 3.9

393 116, 150 1.0, 1.2 −0.4, 0.0 3.1 0.8 1.3 0.4 0.5 0.8 0.6 0.1 0.1 0.4 0.2 0.1 0.0 0.0 0.2 3.7

394 116, 150 1.0, 1.2 0.0,+0.4 3.0 0.8 0.6 0.5 0.4 0.9 0.6 0.2 0.1 0.4 0.2 0.1 0.0 0.1 0.0 3.5

395 116, 150 1.0, 1.2 +0.4,+0.7 2.8 0.7 0.5 0.5 0.5 0.4 0.6 0.4 0.1 0.3 0.2 0.1 0.0 0.1 0.1 3.2

396 116, 150 1.0, 1.2 +0.7,+1.0 3.7 0.8 2.2 1.1 0.8 3.4 0.4 0.2 0.1 0.4 0.2 0.1 0.0 0.0 0.1 5.7

469 150, 200 1.2, 1.4 −1.0,−0.7 11.9 1.4 2.0 3.6 2.2 1.5 0.4 0.3 0.1 0.5 0.3 0.1 0.0 0.0 0.2 12.9

470 150, 200 1.2, 1.4 −0.7,−0.4 6.6 0.8 1.0 5.9 1.6 0.9 0.9 0.2 0.1 0.5 0.3 0.1 0.0 0.0 0.1 9.2

471 150, 200 1.2, 1.4 −0.4, 0.0 6.6 1.0 3.1 1.9 1.0 0.4 1.0 0.1 0.2 0.6 0.3 0.2 0.0 0.0 0.1 7.8

472 150, 200 1.2, 1.4 0.0,+0.4 5.3 0.9 0.8 0.9 0.6 0.2 0.6 0.2 0.2 0.6 0.3 0.2 0.0 0.1 0.0 5.6

473 150, 200 1.2, 1.4 +0.4,+0.7 4.4 0.6 0.5 1.9 0.7 0.4 0.9 0.2 0.1 0.5 0.3 0.1 0.0 0.0 0.0 5.0

474 150, 200 1.2, 1.4 +0.7,+1.0 7.6 0.9 1.1 2.3 1.1 0.7 0.3 0.2 0.1 0.5 0.3 0.2 0.0 0.0 0.1 8.3

Table 2. Central rapidity electron channel uncertainties in selected bins. All uncertainties quoted

are in units of percent, relative to the measured differential cross section. The uncertainties are

separated into those which are bin-to-bin correlated within a single channel (marked “cor”) and

those which are uncorrelated (marked “unc”). The sources are the uncertainties arising from the

data sample size (δstat
unc ); the signal MC sample size (δsig

unc); the sizes of the background MC samples

(δbkg
unc); the statistical component of the multijet estimation (δmj

unc); the combined correlated (nor-

malisation) component of all background MC samples (δbkg
cor ); the multijet estimation (δmj

cor); the

electron energy scale (δscl
cor) and resolution (δres

cor); the reconstruction (δrec
cor), identification (δid

cor), and

trigger efficiencies (δtrig
cor ); the electron charge misidentification (δqmid

cor ); the K-factors (δkfac
cor ); the Z

boson pT modelling (δzpt
cor ); the PDF variation (δpdf

cor ); and the total measurement uncertainty (δtot).

The luminosity uncertainty is not included in these tables.
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Bin mee |yee| cos θ∗ δstatunc δsigunc δbkg
unc δmj

unc δbkgcor δmj
cor δsclcor δrescor δfsclcor δfrescor δreccor δidcor δtrigcor δisocor δfidcor δqmid

cor δkfaccor δzptcor δpdf
cor δtot

[GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

1 66, 80 1.2, 1.6 −1.0,−0.7 6.4 3.0 6.0 4.5 0.9 11.5 0.4 0.6 3.1 2.1 0.2 0.8 0.3 0.0 0.7 0.0 0.0 0.8 0.6 16.0

2 66, 80 1.2, 1.6 −0.7,−0.4 16.4 8.7 8.0 9.9 0.5 11.4 0.5 1.2 5.8 2.5 0.1 0.2 0.1 0.0 0.8 0.0 0.0 0.8 0.3 26.0

3 66, 80 1.2, 1.6 −0.4, 0.0 — — — — — — — — — — — — — — — — — — — —

4 66, 80 1.2, 1.6 0.0,+0.4 — — — — — — — — — — — — — — — — — — — —

5 66, 80 1.2, 1.6 +0.4,+0.7 15.7 8.0 6.7 7.9 0.5 10.7 0.9 0.8 3.8 5.5 0.1 0.1 0.1 0.0 0.8 0.0 0.0 1.6 1.4 24.1

6 66, 80 1.2, 1.6 +0.7,+1.0 7.9 3.3 8.8 5.8 1.6 15.3 0.7 0.7 2.3 2.9 0.2 0.8 0.3 0.0 0.7 0.0 0.0 0.9 0.3 20.9

19 66, 80 2.4, 2.8 −1.0,−0.7 3.4 2.2 1.4 2.8 0.3 3.4 2.5 0.7 4.3 5.2 0.2 1.6 0.4 0.1 1.4 0.0 0.0 2.4 0.2 10.1

20 66, 80 2.4, 2.8 −0.7,−0.4 2.2 1.3 0.8 1.6 0.3 1.1 1.2 0.6 3.1 3.9 0.1 0.8 0.2 0.0 1.3 0.0 0.0 0.5 0.1 6.4

21 66, 80 2.4, 2.8 −0.4, 0.0 2.3 1.0 0.8 1.4 0.2 1.5 0.4 0.2 0.9 0.3 0.1 0.5 0.2 0.0 0.8 0.0 0.0 0.1 0.0 3.6

22 66, 80 2.4, 2.8 0.0,+0.4 2.8 1.2 1.5 1.9 0.4 2.0 0.4 0.5 1.3 0.3 0.1 0.5 0.2 0.0 0.7 0.0 0.0 0.3 0.1 4.7

23 66, 80 2.4, 2.8 +0.4,+0.7 2.7 1.6 1.3 2.3 0.4 1.7 1.6 0.2 4.0 6.0 0.1 0.8 0.2 0.0 1.4 0.1 0.0 1.1 0.2 8.8

24 66, 80 2.4, 2.8 +0.7,+1.0 4.2 2.7 3.4 3.7 0.7 5.5 2.8 0.9 4.9 6.5 0.2 1.6 0.4 0.1 1.4 0.0 0.0 3.6 0.3 13.2

73 91, 102 2.0, 2.4 −1.0,−0.7 0.9 0.6 0.2 0.3 0.0 0.8 0.8 0.1 1.9 0.1 0.2 0.8 0.2 0.0 1.2 0.0 0.0 0.8 0.1 2.9

74 91, 102 2.0, 2.4 −0.7,−0.4 0.5 0.3 0.0 0.2 0.0 0.7 0.9 0.1 1.5 0.2 0.0 0.4 0.1 0.0 0.8 0.0 0.0 0.1 0.1 2.1

75 91, 102 2.0, 2.4 −0.4, 0.0 0.7 0.3 0.1 0.4 0.0 0.6 0.6 0.1 1.7 0.1 0.0 0.2 0.1 0.0 0.7 0.0 0.0 0.1 0.0 2.2

76 91, 102 2.0, 2.4 0.0,+0.4 0.6 0.3 0.1 0.4 0.0 0.5 0.5 0.1 1.5 0.1 0.0 0.2 0.1 0.0 0.7 0.0 0.0 0.1 0.1 2.0

77 91, 102 2.0, 2.4 +0.4,+0.7 0.5 0.3 0.1 0.1 0.0 0.5 0.9 0.2 1.3 0.3 0.0 0.4 0.1 0.0 0.8 0.0 0.0 0.2 0.1 2.0

78 91, 102 2.0, 2.4 +0.7,+1.0 0.9 0.5 0.2 0.3 0.0 0.3 0.7 0.2 1.6 0.2 0.2 0.7 0.2 0.0 1.2 0.0 0.0 0.8 0.0 2.6

97 102, 116 1.6, 2.0 −1.0,−0.7 3.8 1.8 2.0 2.9 0.7 4.2 0.6 0.3 2.4 2.2 0.1 0.3 0.1 0.0 0.8 0.0 0.0 1.5 0.1 7.9

98 102, 116 1.6, 2.0 −0.7,−0.4 4.4 2.1 2.0 3.4 0.3 3.6 1.2 0.6 2.1 1.2 0.0 0.2 0.0 0.0 0.7 0.0 0.0 1.5 0.2 8.0

99 102, 116 1.6, 2.0 −0.4, 0.0 — — — — — — — — — — — — — — — — — — — —

100 102, 116 1.6, 2.0 0.0,+0.4 — — — — — — — — — — — — — — — — — — — —

101 102, 116 1.6, 2.0 +0.4,+0.7 3.3 1.5 1.6 2.1 0.2 2.2 1.0 0.7 1.7 1.0 0.0 0.2 0.0 0.0 0.7 0.0 0.0 1.1 0.1 5.6

102 102, 116 1.6, 2.0 +0.7,+1.0 2.6 1.4 1.3 1.5 0.3 1.9 0.3 0.1 2.1 1.0 0.1 0.3 0.1 0.0 0.8 0.0 0.0 0.9 0.2 4.9

109 102, 116 2.4, 2.8 −1.0,−0.7 3.7 2.2 2.3 3.4 0.8 6.2 3.3 1.2 6.7 6.6 0.1 0.6 0.1 0.0 1.4 0.0 0.0 3.3 0.3 13.7

110 102, 116 2.4, 2.8 −0.7,−0.4 4.2 2.3 1.0 3.7 0.3 3.3 1.4 1.2 5.5 4.2 0.0 0.2 0.1 0.0 1.2 0.0 0.0 2.0 0.2 10.2

111 102, 116 2.4, 2.8 −0.4, 0.0 3.9 1.9 1.5 4.5 0.2 4.6 0.7 0.9 2.3 1.2 0.1 0.3 0.2 0.0 0.7 0.0 0.0 0.9 0.2 8.5

112 102, 116 2.4, 2.8 0.0,+0.4 3.1 1.5 0.7 2.9 0.1 3.2 0.6 0.4 2.3 1.3 0.1 0.3 0.1 0.0 0.8 0.0 0.0 0.9 0.1 6.3

113 102, 116 2.4, 2.8 +0.4,+0.7 2.7 1.6 1.1 1.7 0.2 1.6 1.2 0.8 4.0 2.1 0.0 0.2 0.1 0.0 1.2 0.0 0.0 1.4 0.2 6.5

114 102, 116 2.4, 2.8 +0.7,+1.0 2.2 1.4 1.3 1.5 0.3 2.4 2.0 0.8 3.3 3.2 0.1 0.6 0.1 0.0 1.3 0.0 0.0 2.2 0.1 7.0

127 116, 150 1.6, 2.0 −1.0,−0.7 8.4 1.7 8.7 7.1 2.9 29.0 0.2 0.4 1.8 1.2 0.0 0.1 0.0 0.0 0.6 0.0 0.0 0.7 0.2 32.5

128 116, 150 1.6, 2.0 −0.7,−0.4 7.6 2.0 4.2 9.0 1.3 8.6 0.6 0.2 0.3 0.5 0.0 0.1 0.0 0.0 0.6 0.0 0.0 0.5 0.2 15.4

129 116, 150 1.6, 2.0 −0.4, 0.0 — — — — — — — — — — — — — — — — — — — —

130 116, 150 1.6, 2.0 0.0,+0.4 — — — — — — — — — — — — — — — — — — — —

131 116, 150 1.6, 2.0 +0.4,+0.7 4.4 1.2 3.1 3.8 0.5 3.1 0.2 0.1 0.3 0.2 0.0 0.1 0.0 0.0 0.6 0.0 0.0 0.3 0.1 7.4

132 116, 150 1.6, 2.0 +0.7,+1.0 3.9 0.9 5.5 2.5 1.2 9.8 0.2 0.1 0.9 0.2 0.0 0.1 0.0 0.0 0.7 0.0 0.0 0.5 0.1 12.3

139 116, 150 2.4, 2.8 −1.0,−0.7 16.3 2.9 11.4 14.0 5.4 29.3 1.3 0.5 5.4 1.7 0.1 0.3 0.1 0.0 1.1 0.1 0.0 1.3 0.3 39.1

140 116, 150 2.4, 2.8 −0.7,−0.4 7.5 3.0 7.5 7.3 1.2 10.7 0.2 0.2 1.2 1.4 0.0 0.2 0.1 0.0 0.9 0.0 0.0 1.6 0.3 17.2

141 116, 150 2.4, 2.8 −0.4, 0.0 6.0 1.7 3.8 5.6 0.5 6.8 0.2 0.1 1.8 0.5 0.1 0.4 0.1 0.0 0.6 0.1 0.0 0.9 0.1 11.6

142 116, 150 2.4, 2.8 0.0,+0.4 4.5 1.4 3.1 3.2 0.5 3.4 0.1 0.5 0.8 0.2 0.1 0.4 0.1 0.0 0.6 0.0 0.0 0.5 0.1 7.4

143 116, 150 2.4, 2.8 +0.4,+0.7 3.8 1.4 2.4 2.4 0.4 3.3 0.3 0.3 0.9 0.7 0.0 0.2 0.1 0.0 1.0 0.0 0.0 0.9 0.1 6.5

144 116, 150 2.4, 2.8 +0.7,+1.0 3.3 1.0 1.7 2.0 0.7 3.8 0.7 0.2 1.8 0.6 0.1 0.3 0.1 0.0 1.1 0.0 0.0 0.2 0.1 6.3

Table 3. High rapidity electron channel uncertainties in selected bins. All uncertainties quoted are

in units of percent, relative to the measured differential cross section. Bins with blank entries (“−”)

are those that have been omitted from the measurement due to a lack of expected events. The un-

certainties are separated into those which are bin-to-bin correlated within a single channel (marked

“cor”) and those which are uncorrelated (marked “unc”). The sources are the uncertainties arising

from the data sample size (δstat
unc ); the signal MC sample size (δsig

unc); the sizes of the background MC

samples (δbkg
unc); the statistical component of the multijet estimation (δmj

unc); the combined correlated

(normalisation) component of all background MC samples (δbkg
cor ); the multijet estimation (δmj

cor);

the electron energy scale (δscl
cor) and resolution (δres

cor); the forward electron energy scale (δfscl
cor ) and

resolution (δfres
cor ); the reconstruction (δrec

cor), identification (δid
cor), trigger (δtrig

cor ), isolation (δiso
cor), and

forward identification efficiencies (δfid
cor); the electron charge misidentification (δqmid

cor ); the K-factors

(δkfac
cor ); the Z boson pT modelling (δzpt

cor ); the PDF variation (δpdf
cor ); and the total measurement

uncertainty (δtot). The luminosity uncertainty is not included in these tables.
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Bin mµµ |yµµ| cos θ∗ δstatunc δsigunc δbkgunc δbkgcor δmj
cor δsclcor δsagcor δrescor δreccor δidcor δtrigcor δkfaccor δzptcor δpdf

cor δtot

[GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

1 46, 66 0.0, 0.2 −1.0,−0.7 5.4 2.0 2.1 1.5 0.5 0.2 0.5 0.6 0.3 0.3 0.7 0.0 0.5 0.3 6.6

2 46, 66 0.0, 0.2 −0.7,−0.4 1.8 0.7 1.1 1.2 0.0 0.0 0.1 0.1 0.2 0.2 0.5 0.2 0.3 0.2 2.7

3 46, 66 0.0, 0.2 −0.4, 0.0 1.5 0.6 0.8 0.9 0.5 0.0 0.1 0.0 0.5 0.4 0.0 0.2 0.4 0.2 2.3

4 46, 66 0.0, 0.2 0.0,+0.4 1.5 0.6 0.9 0.9 0.5 0.0 0.1 0.1 0.5 0.4 0.0 0.2 0.5 0.2 2.3

5 46, 66 0.0, 0.2 +0.4,+0.7 1.9 0.6 1.2 1.2 0.0 0.1 0.1 0.4 0.2 0.2 0.5 0.2 0.3 0.2 2.8

6 46, 66 0.0, 0.2 +0.7,+1.0 5.7 2.0 3.6 1.8 0.5 0.1 1.0 0.1 0.3 0.3 0.8 0.2 0.6 0.8 7.7

79 66, 80 0.2, 0.4 −1.0,−0.7 2.3 1.1 0.5 0.6 0.7 0.1 0.7 0.4 0.2 0.2 0.3 0.0 0.0 0.1 3.0

80 66, 80 0.2, 0.4 −0.7,−0.4 1.3 0.7 0.3 0.4 0.1 0.1 0.2 0.1 0.3 0.3 0.0 0.0 0.0 0.1 1.7

81 66, 80 0.2, 0.4 −0.4, 0.0 1.4 0.7 0.4 0.3 0.2 0.1 0.2 0.2 0.4 0.4 0.0 0.1 0.1 0.3 1.8

82 66, 80 0.2, 0.4 0.0,+0.4 1.4 0.7 0.3 0.3 0.2 0.1 0.1 0.2 0.4 0.4 0.1 0.1 0.1 0.2 1.8

83 66, 80 0.2, 0.4 +0.4,+0.7 1.4 0.7 0.4 0.4 0.1 0.1 0.2 0.2 0.3 0.3 0.0 0.1 0.1 0.1 1.8

84 66, 80 0.2, 0.4 +0.7,+1.0 2.2 1.1 0.4 0.6 0.8 0.2 0.7 0.1 0.2 0.2 0.3 0.0 0.0 0.3 3.0

157 80, 91 0.4, 0.6 −1.0,−0.7 0.4 0.2 0.0 0.0 0.0 0.1 1.0 0.1 0.3 0.3 0.0 0.0 0.0 0.1 1.4

158 80, 91 0.4, 0.6 −0.7,−0.4 0.4 0.2 0.0 0.0 0.0 0.2 0.6 0.1 0.4 0.4 0.1 0.0 0.0 0.0 1.1

159 80, 91 0.4, 0.6 −0.4, 0.0 0.3 0.1 0.0 0.0 0.0 0.2 0.3 0.1 0.3 0.3 0.0 0.0 0.0 0.0 0.9

160 80, 91 0.4, 0.6 0.0,+0.4 0.3 0.1 0.0 0.0 0.0 0.2 0.3 0.1 0.3 0.3 0.0 0.0 0.0 0.0 0.9

161 80, 91 0.4, 0.6 +0.4,+0.7 0.4 0.2 0.0 0.0 0.0 0.2 0.6 0.0 0.4 0.4 0.1 0.0 0.0 0.0 1.1

162 80, 91 0.4, 0.6 +0.7,+1.0 0.4 0.2 0.0 0.0 0.0 0.2 1.1 0.1 0.3 0.3 0.1 0.0 0.1 0.0 1.4

235 91, 102 0.6, 0.8 −1.0,−0.7 0.4 0.2 0.0 0.0 0.0 0.1 0.5 0.0 0.3 0.3 0.1 0.0 0.1 0.0 1.0

236 91, 102 0.6, 0.8 −0.7,−0.4 0.3 0.2 0.0 0.0 0.0 0.1 1.0 0.0 0.4 0.4 0.2 0.0 0.0 0.0 1.3

237 91, 102 0.6, 0.8 −0.4, 0.0 0.3 0.1 0.0 0.0 0.0 0.1 0.3 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.8

238 91, 102 0.6, 0.8 0.0,+0.4 0.3 0.1 0.0 0.0 0.0 0.2 0.3 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.8

239 91, 102 0.6, 0.8 +0.4,+0.7 0.3 0.2 0.0 0.0 0.0 0.2 1.0 0.0 0.4 0.4 0.1 0.0 0.0 0.0 1.3

240 91, 102 0.6, 0.8 +0.7,+1.0 0.4 0.2 0.0 0.0 0.0 0.1 0.5 0.0 0.3 0.3 0.1 0.0 0.1 0.1 1.0

313 102, 116 0.8, 1.0 −1.0,−0.7 2.1 1.0 0.1 0.4 0.0 0.2 0.9 1.4 0.4 0.4 0.2 0.0 0.0 0.1 3.0

314 102, 116 0.8, 1.0 −0.7,−0.4 1.8 0.8 0.0 0.2 0.1 0.2 1.8 0.3 0.3 0.3 0.2 0.0 0.0 0.0 2.8

315 102, 116 0.8, 1.0 −0.4, 0.0 1.7 0.7 0.0 0.1 0.0 0.1 0.4 0.6 0.3 0.3 0.1 0.0 0.0 0.0 2.0

316 102, 116 0.8, 1.0 0.0,+0.4 1.6 0.6 0.0 0.1 0.0 0.2 0.4 0.5 0.3 0.3 0.0 0.0 0.0 0.0 2.0

317 102, 116 0.8, 1.0 +0.4,+0.7 1.6 0.7 0.0 0.2 0.1 0.2 2.0 0.8 0.4 0.3 0.1 0.0 0.0 0.1 2.8

318 102, 116 0.8, 1.0 +0.7,+1.0 2.0 0.9 0.1 0.3 0.0 0.2 0.8 1.5 0.4 0.4 0.0 0.0 0.0 0.0 2.7

391 116, 150 1.0, 1.2 −1.0,−0.7 4.1 1.2 0.3 1.3 0.0 0.1 0.5 0.3 0.5 0.5 0.2 0.1 0.0 0.1 4.8

392 116, 150 1.0, 1.2 −0.7,−0.4 2.9 0.7 0.2 0.7 0.1 0.1 0.7 0.4 0.4 0.3 0.2 0.0 0.1 0.1 3.4

393 116, 150 1.0, 1.2 −0.4, 0.0 2.5 0.6 0.1 0.5 0.1 0.1 0.5 0.1 0.3 0.3 0.2 0.0 0.1 0.1 2.8

394 116, 150 1.0, 1.2 0.0,+0.4 2.2 0.6 0.1 0.4 0.0 0.0 0.5 0.0 0.3 0.3 0.1 0.0 0.1 0.1 2.5

395 116, 150 1.0, 1.2 +0.4,+0.7 2.3 0.6 0.2 0.5 0.0 0.0 0.4 0.3 0.3 0.3 0.0 0.0 0.1 0.0 2.6

396 116, 150 1.0, 1.2 +0.7,+1.0 3.2 0.9 0.3 0.7 0.1 0.1 0.8 0.1 0.5 0.5 0.0 0.0 0.0 0.1 3.8

469 150, 200 1.2, 1.4 −1.0,−0.7 11.1 1.5 1.2 2.9 0.1 0.3 2.7 0.5 0.7 0.5 0.2 0.1 0.0 0.1 13.6

470 150, 200 1.2, 1.4 −0.7,−0.4 5.6 0.8 0.5 1.4 0.0 0.1 1.3 0.1 0.5 0.4 0.2 0.0 0.0 0.1 6.2

471 150, 200 1.2, 1.4 −0.4, 0.0 4.6 0.6 0.3 0.9 0.1 0.0 1.0 0.2 0.4 0.4 0.2 0.0 0.0 0.1 5.1

472 150, 200 1.2, 1.4 0.0,+0.4 4.1 0.5 0.2 0.7 0.1 0.0 1.1 0.0 0.4 0.4 0.1 0.0 0.0 0.0 4.5

473 150, 200 1.2, 1.4 +0.4,+0.7 4.0 0.5 0.2 0.8 0.0 0.1 0.8 0.2 0.4 0.4 0.0 0.0 0.0 0.1 4.3

474 150, 200 1.2, 1.4 +0.7,+1.0 6.6 0.9 0.5 1.2 0.1 0.0 1.7 0.0 0.6 0.5 0.0 0.0 0.1 0.1 8.0

Table 4. Central rapidity muon channel uncertainties in selected bins. All uncertainties quoted

are in units of percent, relative to the measured differential cross section. The uncertainties are

separated into those which are bin-to-bin correlated within a single channel (marked “cor”) and

those which are uncorrelated (marked “unc”). The sources are the uncertainties arising from the

data sample size (δstat
unc ); the signal MC sample size (δsig

unc); the sizes of the background MC sam-

ples (δbkg
unc); the combined correlated (normalisation) component of all background MC samples

(δbkg
cor ); the multijet estimation (δmj

cor); the muon momentum scale (δscl
cor); the sagitta bias corrections

(δsag
cor ); the muon momentum resolution (δres

cor); the reconstruction (δrec
cor), identification (δid

cor), and

trigger efficiencies (δtrig
cor ); the K-factors (δkfac

cor ); the Z boson pT modelling (δzpt
cor ); the PDF variation

(δpdf
cor ); and the total measurement uncertainty (δtot). The luminosity uncertainty is not included in

these tables.
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8 Results

In the two invariant mass bins in the region 80 < m`` < 102 GeV, the measurement of

d3σ in the central electron channel achieves a total uncertainty (excluding the luminosity

contribution) of 1–2% per bin. In the muon channel the precision is better than 1%.

In both cases the measurement precision is dominated by the experimental systematic

uncertainties, compared to a data statistical uncertainty of about 0.5% per bin in this high-

precision region. In the high rapidity electron channel, the precision of the measurement

reaches 2–3% per bin, of which the statistical uncertainty is about 0.5%.

The data tables provided in this paper contain compact summaries of the measurement

uncertainties; however, complete tables with the full breakdown of all systematic uncertain-

ties and their correlated components are provided in HEPData [71, 72]. These complete

tables also include the correction factors used to translate the unfolded measurements from

the dressed-level to the Born-level as discussed in section 6.

8.1 Combination of the central rapidity electron and muon channels

The central rapidity electron and muon measurement channels are defined with a com-

mon fiducial region given in section 6 and therefore are combined to further reduce the

experimental uncertainties. A χ2-minimisation technique is used to combine the cross sec-

tions [73–75]. This method introduces a nuisance parameter for each systematic error source

which contributes to the total χ2. The sources of uncertainty considered are discussed

in section 7. Correlated sources of uncertainty which are propagated with the pseudo-

experiment or bootstrap resampling methods can be represented in covariance matrix form

for each source. The covariance matrices are decomposed into eigenvector representations

as input to the χ2-minimisation function. For each covariance matrix the eigenvectors are

sorted by the magnitude of their corresponding eigenvalues. The largest of the eigenvalues

are added in order of decreasing value until their sum exceeds a certain fraction of the

sum of all eigenvalues, feig. At which point the correlation information for the eigenvectors

whose eigenvalues were not included in the sum is ignored and the eigenvectors are added

in quadrature to form a diagonal uncorrelated uncertainty matrix. The resulting numbers

of nuisance parameters depends on the complexity of the correlation pattern and on feig,

for which values between 99% and 20% are chosen depending on the source.

This method of decomposition can accurately describe the full covariance matrix, and

simultaneously reduce the number of nuisance parameters. The method preserves the total

uncertainty and marginally enhances the uncorrelated component of the uncertainty by

construction. The original and decomposed covariance matrices are compared and found

to agree well such that the combined results are found to be stable in terms of χ2 and

the central values and their uncertainties when feig is varied around the chosen value in a

wide range.

Bin-to-bin correlated sources of uncertainty which are also correlated between the two

measurement channels share common nuisance parameters, and are listed in section 7.6.

In total, 275 nuisance parameters are used in the procedure. The behaviour of the un-

certainties with respect to the combined cross-section values can lead to non-Gaussian
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distributions of the nuisance parameters. For example, sources related to the selection

efficiencies are expected to be proportional to the combined cross-section value, i.e. have

multiplicative behaviour; sources related to background subtraction are expected to be in-

dependent of the combined cross section and therefore have an additive behaviour. Finally,

data statistical sources are expected to be proportional to the square-root of the combined

cross section, and have Poisson-like behaviour even after unfolding.

The combination of the central electron and muon channels introduces shifts and con-

straints to the nuisance parameters. These shifts are propagated to high rapidity electron

channel measurement but only have a small impact on this channel since it is dominated by

the forward calorimeter uncertainties. The combination of the electron and muon channel

cross-section measurements results in a χ2 per degree of freedom (dof) of 489/451 (p-value

of 10%). The pulls of the individual channel measurements to the combined data are found

to be Gaussian-distributed about zero with unit RMS. They do not indicate any trends as

a function of the kinematic variables. The pulls of the nuisance parameters are similarly

found to be Gaussian-distributed about zero with a somewhat larger width of 1.18. Only

six nuisance parameters have shifts exceeding three standard deviations, which are sources

related to the calibration of the electromagnetic calorimeter, and the source describing

the normalisation of the Z → ττ background MC sample. These particular sources have

negligible impact on the measurement.

8.2 Compatibility tests and integrated measurements

In the following subsections, the triple-differential cross sections measured in each of the

three channels are compared to one another. The compatibility of the combined data with

published ATLAS DY measurements made using the same 2012 dataset is briefly discussed.

Moreover, the combined triple-differential cross section is integrated to produce single- and

double-differential cross sections which are then compared to theoretical predictions.

8.2.1 Compatibility of the central and high rapidity measurements

The measurements performed in the central electron and muon channels are compared with

the high rapidity analysis to test for compatibility. The measurements are made in two

different fiducial regions and therefore a common fiducial volume is defined within which the

comparison is made. This volume is chosen to be 66 < m`` < 150 GeV, p`T > 20 GeV, and

no requirement is made on the pseudorapidity of the lepton. The comparison is performed

in the overlapping |y``| bins of the central and high rapidity analyses.

The corresponding acceptance corrections are obtained from the Powheg simulation

for each individual measurement bin. Bins with extrapolation factors smaller than 0.1 are

excluded from this test, since they correspond to very restricted regions of phase space.

Such regions are subject to large modelling uncertainties, in particular the uncertainty

associated with modelling the Z boson transverse momentum. In each bin, the sum of

the extrapolation factors for the central and high rapidity channels are found to be close

to 80%, indicating that the two sets of measurements cover most of the phase space for

66 < m`` < 150 GeV and p`T > 20 GeV. A second calculation of the extrapolation factors

to the full phase space (i.e. p`T > 0 GeV) has an uncertainty of 1.5%. This is assumed to be
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strongly anti-correlated between the factors for the central and high rapidity channels since

the sum of factors is close to unity. Therefore, an additional 1% anti-correlated uncertainty

in the extrapolation factors is used.

The uncertainties arising from electron efficiency corrections are taken to be uncor-

related between the central and high rapidity electron channels since they use different

identification criteria and triggers. The multijet uncertainty is also taken to be uncorre-

lated. The χ2/dof of the compatibility test is found to be 32/30 (p-value of 37%) for the

electron channel and 39/30 (p-value of 13%) for the muon channel.

8.2.2 Compatibility with published data

The cross-section measurements in the central electron and muon channels partially over-

lap with published DY measurements from ATLAS using the same data set. They are

differential measurements of the Z boson transverse momentum spectrum [16] and of the

high-mass DY cross section for m`` > 116 GeV [17]. The compatibility of the data pre-

sented here with these two published measurements has been tested in identical fiducial

regions, separately for the electron and muon channels. The measurements are in good

agreement with each other.

The reader is referred to [16] where the most precise measurements of integrated and

pT-differential Z cross sections were made in the fiducial region p`T > 20 GeV and |η`| < 2.4.

For cross sections differential in m`` and |y``| in the region m`` > 116 GeV, see the

results presented in reference [17]. These measurements are given in the fiducial region of

p`T > 40, 30 GeV for leading and subleading leptons, and |η`| < 2.5. Note that the published

cross sections include the γγ → `+`− process.

For cross sections measured in the region m`` < 116 GeV and differential in m`` and

|y``|, the data presented in this paper should be used.

8.2.3 Integrated cross sections

The combined measurements are integrated over the kinematic variables cos θ∗ and y`` in

order to determine the cross section dσ/dm``. Similarly, the integration is performed in

cos θ∗ to determine the cross section d2σ/dm``d|y``|. The integration is firstly performed

for the electron and muon channels separately to allow a χ2-test for compatibility of the

two channels. The measurements are simply summed in the e and µ channels for the bins

in which both electron and muon measurements are present. Statistical and uncorrelated

uncertainties are added in quadrature, whereas correlated systematic uncertainties are

propagated linearly. The compatibility tests return χ2/dof = 12.8/7 (p-value of 7.7%) for

the one-dimensional cross section, and 103/84 (p-value of 7.4%) for the two-dimensional

cross section.

The integrated cross sections dσ/dm`` and d2σ/dm``d|y``| are determined from the

combined Born-level fiducial triple-differential cross sections. The one-dimensional result

is shown in figure 5. The corresponding table of measurements is given in table 5 located in

the appendix. The data shows that the combined Born-level fiducial cross section falls by

three orders of magnitude in the invariant mass region from the resonant peak to 200 GeV.

The data have an uncertainty of about 2%, dominated by the luminosity uncertainty of
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Figure 5. The combined Born-level fiducial cross section dσ/dm``. The data are shown as solid

markers and the prediction from Powheg including NNLO QCD and NLO EW K-factors is shown

as the solid line. The lower panel shows the ratio of prediction to measurement. The inner error

bars represent the data statistical uncertainty and the solid band shows the total experimental

uncertainty. The contribution to the uncertainty from the luminosity measurement is excluded.

The hatched band represents the statistical and PDF uncertainties in the prediction.

1.9%, while uncertainties from the experimental systematic sources can be as low as 0.5%

for the peak region. The statistical precision is 0.5% or better, even for the highest in-

variant mass bin. The fiducial measurements are well predicted by the NLO QCD and

parton shower simulation from Powheg partially corrected for NNLO QCD and NLO EW

effects, and scattering amplitude coefficients as described in section 3. The uncertainties

in the predictions include those arising from the sample size and the PDF variations. No

renormalization, factorisation and matching scale variation uncertainties are included al-

though they can be sizeable — as large as 5% for NLO predictions. Except in the lowest

mass bin, the predictions underestimate the cross section by about 1–2% (smaller than the

luminosity uncertainty), as seen in the lower panel of the figure which shows the ratio of

prediction to the measurement.

The two-dimensional Born-level fiducial cross section, d2σ/dm``d|y``|, is illustrated

in figure 6 and listed in table 6 of the appendix. In each measured invariant mass bin,

the shape of the rapidity distribution shows a plateau at small |y``| leading to a broad

shoulder followed by a cross section falling to zero at the highest accessible |y``|. The

width of the plateau narrows with increasing m``. In the two high-precision Z-peak mass

bins, the measured cross-section values have a total uncertainty (excluding the common

luminosity uncertainty) of 0.4% for |y``| < 1 rising to 0.7% at |y``| = 2.4. At high in-

variant mass, the statistical and experimental uncertainty components contribute equally
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Figure 6. The combined Born-level fiducial cross section d2σ/dm``d|y``| in the seven invariant

mass bins of the central measurements. The data are shown as solid markers and the prediction from

Powheg including NNLO QCD and NLO EW K-factors is shown as the solid line. The lower panel

shows the ratio of prediction to measurement. The inner error bars represent the data statistical

uncertainty and the solid band shows the total experimental uncertainty. The contribution to

the uncertainty from the luminosity measurement is excluded. The hatched band represents the

statistical and PDF uncertainties in the prediction.

to the total measurement precision in the plateau region, increasing from 0.5% to 1.8%.

The theoretical predictions replicate the features in the data well. The lower panel of

each figure shows the ratio of the prediction to the measurement. Here, in addition to

overall rate difference already observed in the one-dimensional distribution, a small ten-

dency of the data to exceed the predictions at the highest |y``| can be seen in some of the

mass bins.
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8.3 Triple-differential cross sections

The combined triple-differential Born-level cross section is shown in figures 7–10. For each

invariant mass bin, the data are presented as a function of |y``|, with each of the six cos θ∗

regions overlaid in the main panel of the figures. The lower panels show in more detail the

ratio of the prediction to the data for each cos θ∗ bin in turn. The statistical and total,

excluding the contribution from the luminosity, uncertainties in the data are shown in the

ratio panels.

The accessible range of the |y``| distribution is largest for the region close to cos θ∗ ' 0,

and smallest at the extremes of cos θ∗. In the lowest invariant mass bin, the cross-section

measurements in cos θ∗ bins with the same absolute value, e.g. bins −1.0 < cos θ∗ < −0.7

and +0.7 < cos θ∗ < +1.0, are consistent with each other at low |y``| ' 0, but exhibit an

asymmetry which increases with |y``|. At large |y``|, the cross sections for cos θ∗ < 0 are

up to 35% larger than the corresponding measurements at cos θ∗ > 0. In the 66 < m`` <

80 GeV bin, all cross sections are larger, for large | cos θ∗| in particular, due to reduced

influence of the fiducial selection on p`T.

The next two invariant mass bins show the peak of the cross section where the asym-

metry is smallest. In fact, for 80 < m`` < 91 GeV the difference between cos θ∗ > 0 and

cos θ∗ < 0 is close to zero. The dramatic improvement in the overall precision of the mea-

surements in this region is also apparent. For the 91 < m`` < 102 GeV region, the small

asymmetry is observed to change sign, yielding larger cross sections for the cos θ∗ < 0 part

of the phase space. This behaviour is expected from the interference effects between the Z

and γ∗ contributions to the scattering amplitudes. For bins of higher invariant mass the

asymmetry increases albeit with larger uncertainties due to the limited statistical precision

of the data. The combined measurement is listed in table 7 with its uncertainties.

The predictions describe the data very well, as can be seen from the ratio panels, apart

from some bins at large |y``| and | cos θ∗|. These bins correspond to edges of the fiducial

acceptance and may be affected by the pT,`` modelling uncertainties which are not shown

for the predictions.

In figures 11–15 the measured triple differential Born-level cross section for the high

rapidity electron channel analysis is presented as a function of cos θ∗. In this channel the

region of small | cos θ∗| is experimentally accessible only for moderate values of rapidity,

i.e. |y``| ' 2.0–2.8. Nevertheless the same features of the cross section are observed: the

cross sections are largest for the region m`` ∼ mZ ; an asymmetry in the cos θ∗ spectrum

is observed with larger cross sections at negative cos θ∗ for m`` < mZ , and larger cross

sections at positive cos θ∗ for m`` > mZ ; the magnitude of the asymmetry is smallest for

80 < m`` < 91 GeV and increases with m``. The triple-differential measurement is listed

in table 8 with its uncertainties.
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Figure 7. The combined Born-level fiducial cross sections d3σ. The kinematic region shown is

labelled in each plot. The data are shown as solid (cos θ∗ < 0) and open (cos θ∗ > 0) markers

and the prediction from Powheg including NNLO QCD and NLO EW K-factors is shown as the

solid line. The difference, ∆σ, between the predicted cross sections in the two measurement bins

at equal | cos θ∗| symmetric around cos θ∗ = 0 is represented by the hatched shading. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution to the uncertainty from the luminosity measurement is excluded. The crosshatched

band represents the statistical and PDF uncertainties in the prediction.
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Figure 8. The combined Born-level fiducial cross sections d3σ. The kinematic region shown is

labelled in each plot. The data are shown as solid (cos θ∗ < 0) and open (cos θ∗ > 0) markers

and the prediction from Powheg including NNLO QCD and NLO EW K-factors is shown as the

solid line. The difference, ∆σ, between the predicted cross sections in the two measurement bins

at equal | cos θ∗| symmetric around cos θ∗ = 0 is represented by the hatched shading. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution to the uncertainty from the luminosity measurement is excluded. The crosshatched

band represents the statistical and PDF uncertainties in the prediction.
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Figure 9. The combined Born-level fiducial cross sections d3σ. The kinematic region shown is

labelled in each plot. The data are shown as solid (cos θ∗ < 0) and open (cos θ∗ > 0) markers

and the prediction from Powheg including NNLO QCD and NLO EW K-factors is shown as the

solid line. The difference, ∆σ, between the predicted cross sections in the two measurement bins

at equal | cos θ∗| symmetric around cos θ∗ = 0 is represented by the hatched shading. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution to the uncertainty from the luminosity measurement is excluded. The crosshatched

band represents the statistical and PDF uncertainties in the prediction.
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Figure 10. The combined Born-level fiducial cross sections d3σ. The kinematic region shown is

labelled in each plot. The data are shown as solid (cos θ∗ < 0) and open (cos θ∗ > 0) markers

and the prediction from Powheg including NNLO QCD and NLO EW K-factors is shown as the

solid line. The difference, ∆σ, between the predicted cross sections in the two measurement bins

at equal | cos θ∗| symmetric around cos θ∗ = 0 is represented by the hatched shading. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution to the uncertainty from the luminosity measurement is excluded. The crosshatched

band represents the statistical and PDF uncertainties in the prediction.
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Figure 11. The high rapidity electron channel Born-level fiducial cross section d3σ. The kinematic

region shown is labelled in each plot. The data are shown as solid markers and the prediction from

Powheg including NNLO QCD and NLO EW K-factors is shown as the solid line. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution from the uncertainty of the luminosity measurement is excluded. The hatched band

represents the statistical and PDF uncertainties in the prediction.
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Figure 12. The high rapidity electron channel Born-level fiducial cross section d3σ. The kinematic

region shown is labelled in each plot. The data are shown as solid markers and the prediction from

Powheg including NNLO QCD and NLO EW K-factors is shown as the solid line. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution from the uncertainty of the luminosity measurement is excluded. The hatched band

represents the statistical and PDF uncertainties in the prediction.
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Figure 13. The high rapidity electron channel Born-level fiducial cross section d3σ. The kinematic

region shown is labelled in each plot. The data are shown as solid markers and the prediction from

Powheg including NNLO QCD and NLO EW K-factors is shown as the solid line. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution from the uncertainty of the luminosity measurement is excluded. The hatched band

represents the statistical and PDF uncertainties in the prediction.
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Figure 14. The high rapidity electron channel Born-level fiducial cross section d3σ. The kinematic

region shown is labelled in each plot. The data are shown as solid markers and the prediction from

Powheg including NNLO QCD and NLO EW K-factors is shown as the solid line. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution from the uncertainty of the luminosity measurement is excluded. The hatched band

represents the statistical and PDF uncertainties in the prediction.
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Figure 15. The high rapidity electron channel Born-level fiducial cross section d3σ. The kinematic

region shown is labelled in each plot. The data are shown as solid markers and the prediction from

Powheg including NNLO QCD and NLO EW K-factors is shown as the solid line. In each plot,

the lower panel shows the ratio of prediction to measurement. The inner error bars represent the

statistical uncertainty of the data and the solid band shows the total experimental uncertainty. The

contribution from the uncertainty of the luminosity measurement is excluded. The hatched band

represents the statistical and PDF uncertainties in the prediction.
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8.4 Forward-backward asymmetry

The effect of parity violation in Z boson decays is more clearly visible in the forward-

backward asymmetry, AFB, derived from the cross-section measurements of d3σ. The

combined Born-level cross sections are used to determine AFB in the region 0 < |y``| < 2.4

by summing the measurement bins for cos θ∗ > 0 and for cos θ∗ < 0 and calculating the

asymmetry according to equation (1.3).

The uncorrelated uncertainty in AFB is determined using standard error propagation.

The correlated uncertainty is determined for each source in turn by coherently shifting

d3σ by the associated correlated uncertainty and calculating the difference to the nominal

value of AFB. Finally, the total uncertainty in AFB is taken as the sum in quadrature of

the correlated and uncorrelated components. The uncertainties in AFB are significantly

reduced, especially the correlated uncertainties such as the electron energy scale and reso-

lution. The total uncertainty is dominated by the data statistical uncertainty everywhere.

An experimental uncertainty of 1 × 10−3 is reached for the combined measurement, and

4× 10−3 for the high rapidity electron channel measurement. In the high-precision region

of 80 < m`` < 102 GeV the largest systematic uncertainty contributions are from the MC

sample size (which are a factor two smaller than the data statistical uncertainty) and the

lepton scale contributions, which are an order of magnitude smaller. At low m`` the uncor-

related and statistical contributions from the background sources are also of comparable

size. Summary tables of these measurements are given in tables 9 and 10 in the appendix.

The measurements of AFB are shown in figure 16 for the combined data. The data are

compared to a Born-level prediction from Powheg including K-factors for NNLO QCD and

NLO EW corrections. The value of sin2 θeff
lept used in the simulation is 0.23113 [76]. The

measured asymmetry is found to generally increase with m`` from a negative to a positive

asymmetry which is close to zero near m`` = mZ . The magnitude of AFB is smallest for

|y``| = 0 and increases to a maximum in the region 1.0 < |y``| < 2.0, before decreasing at

larger rapidity. This is expected from the effect of dilution and the unknown direction of

the incident q on an event-by-event basis. At larger |y``|, and hence larger x, the influence

of the higher-momentum valence u- and d-quarks becomes increasingly apparent through

the longitudinal boost in the valence direction. This allows a correct determination of the

q direction to be made on average and is well modelled by the Powheg prediction. At even

larger |y``| in the combined measurements the maximum of |AFB| decreases again due to

the limited acceptance of the detector in ηe,µ.

The measurements of AFB in the high rapidity electron channel analysis, which is ex-

pected to be more sensitive to the asymmetry, are presented in figure 17. Qualitatively, the

asymmetry shows behaviour similar to that seen in the combined measurement: the asym-

metry increases with mee and values of |AFB| reaching 0.7 are observed at the highest |yee|
where the influence of dilution is smallest. As was the case in the combined measurement,

the high rapidity AFB measurement is well-described by the Powheg prediction.
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Figure 16. Forward-backward asymmetry, AFB, determined from the combined Born-level fiducial

cross section. The kinematic region shown is labelled in each plot. The data are shown as solid

markers and the error bars represent the total experimental uncertainty. The prediction from

Powheg including NNLO QCD and NLO EW K-factors is shown as the solid line and the hatched

band represents the statistical and PDF uncertainties in the prediction.
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Figure 17. Forward-backward asymmetry, AFB, determined from the high rapidity electron Born-

level fiducial cross section. The kinematic region shown is labelled in each plot. The data are shown

as solid markers and the error bars represent the total experimental uncertainty. The prediction

from Powheg including NNLO QCD and NLO EW K-factors is shown as the solid line and the

hatched band represents the statistical and PDF uncertainties in the prediction.
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9 Conclusion

The triple-differential Drell-Yan production cross section d3σ/dm``d|y``|d cos θ∗ is mea-

sured in the range 46 < m`` < 200 GeV and |y``| < 2.4 for electron and muon pairs. The

measurements are extended to high rapidity in the electron channel up to |yee| = 3.6 in

the mass range 66 < m`` < 150 GeV. The analysis uses 20.2 fb−1 of pp collision data at√
s = 8 TeV collected in 2012 by the ATLAS detector at the LHC. The central rapid-

ity measurement channels are combined taking into account the systematic uncertainty

correlations. Their combination achieves an experimental precision of better than 0.5%,

excluding the overall uncertainty in the luminosity measurement of 1.9%.

The combined cross sections are integrated to produce the single- and dou-

ble-differential cross sections dσ/dm`` and d2σ/dm``d|y``|. The fiducial cross sections

are compared to a theoretical prediction calculated using Powheg at NLO with matched

leading-logarithm parton showers. The calculation is approximately corrected for NNLO

QCD effects and for additional higher-order electroweak effects applied as a function of

m``. The single- and double-differential measurements are well described by the predic-

tion. Having applied corrections to the scattering amplitude coefficients in Powheg the

prediction also provides a good description of the triple-differential measurements.

The measured cross sections are used to determine the forward-backward asymme-

try AFB as a function of dilepton invariant mass and rapidity. The Powheg predictions

enhanced with NNLO QCD and NLO EW K-factors describe the observed behaviour of

AFB well.
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A Data tables

Summary tables of d3σ/dm``d|y``|d cos θ∗ cross sections and AFB are given in this ap-

pendix. Tables containing the complete breakdown of systematic uncertainties are available

in HEPData [71, 72].

A.1 Integrated cross-section tables

m`` dσ/dm`` δstat δsyst
unc δsyst

cor δtotal

[GeV] [pb/GeV] [%] [%] [%] [%]

46, 66 7.61× 10−1 0.2 0.1 0.9 0.9

66, 80 1.13 0.1 0.1 0.4 0.4

80, 91 21.4 0.0 0.0 0.2 0.2

91, 102 25.0 0.0 0.0 0.2 0.2

102, 116 8.25× 10−1 0.2 0.1 0.4 0.4

116, 150 1.64× 10−1 0.3 0.1 0.7 0.7

150, 200 3.66× 10−2 0.5 0.2 1.3 1.4

Table 5. The combined Born-level single-differential cross section dσ/dm``. The measurements

are listed together with the statistical (δstat), uncorrelated systematic (δsyst
unc ), correlated systematic

(δsyst
cor ), and total (δtotal) uncertainties. The luminosity uncertainty of 1.9% is not shown and not

included in the overall systematic and total uncertainties.
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m`` |y``| d2σ/dm``d|y``| δstat δsystunc δsystcor δtotal mee |y``| d2σ/dm``d|y``| δstat δsystunc δsystcor δtotal

[GeV] [pb/GeV] [%] [%] [%] [%] [GeV] [pb/GeV] [%] [%] [%] [%]

46, 66 0.0, 0.2 1.85× 10−1 0.6 0.4 1.0 1.2 46, 66 1.2, 1.4 1.86× 10−1 0.6 0.4 0.9 1.1

46, 66 0.2, 0.4 1.87× 10−1 0.6 0.5 1.0 1.2 46, 66 1.4, 1.6 1.82× 10−1 0.6 0.4 0.9 1.1

46, 66 0.4, 0.6 1.86× 10−1 0.6 0.4 0.9 1.2 46, 66 1.6, 1.8 1.66× 10−1 0.6 0.5 0.9 1.2

46, 66 0.6, 0.8 1.87× 10−1 0.6 0.4 0.9 1.2 46, 66 1.8, 2.0 1.35× 10−1 0.7 0.5 0.8 1.2

46, 66 0.8, 1.0 1.86× 10−1 0.6 0.4 0.9 1.2 46, 66 2.0, 2.2 8.60× 10−2 0.8 0.6 0.8 1.3

46, 66 1.0, 1.2 1.88× 10−1 0.6 0.4 0.9 1.1 46, 66 2.2, 2.4 2.93× 10−2 1.4 1.1 0.9 2.0

66, 80 0.0, 0.2 3.05× 10−1 0.4 0.2 0.4 0.6 66, 80 1.2, 1.4 2.82× 10−1 0.4 0.2 0.4 0.6

66, 80 0.2, 0.4 3.02× 10−1 0.4 0.2 0.4 0.6 66, 80 1.4, 1.6 2.54× 10−1 0.5 0.3 0.4 0.6

66, 80 0.4, 0.6 3.02× 10−1 0.4 0.2 0.4 0.6 66, 80 1.6, 1.8 2.08× 10−1 0.5 0.3 0.4 0.7

66, 80 0.6, 0.8 3.01× 10−1 0.4 0.2 0.4 0.6 66, 80 1.8, 2.0 1.54× 10−1 0.6 0.3 0.5 0.8

66, 80 0.8, 1.0 2.95× 10−1 0.4 0.2 0.4 0.6 66, 80 2.0, 2.2 9.27× 10−2 0.7 0.4 0.6 1.0

66, 80 1.0, 1.2 2.93× 10−1 0.4 0.2 0.4 0.6 66, 80 2.2, 2.4 3.05× 10−2 1.2 0.7 0.9 1.7

80, 91 0.0, 0.2 6.00 0.1 0.0 0.2 0.2 80, 91 1.2, 1.4 5.19 0.1 0.1 0.2 0.3

80, 91 0.2, 0.4 6.00 0.1 0.0 0.2 0.2 80, 91 1.4, 1.6 4.51 0.1 0.1 0.2 0.3

80, 91 0.4, 0.6 5.97 0.1 0.1 0.2 0.2 80, 91 1.6, 1.8 3.66 0.1 0.1 0.3 0.3

80, 91 0.6, 0.8 5.93 0.1 0.0 0.2 0.3 80, 91 1.8, 2.0 2.67 0.1 0.1 0.3 0.3

80, 91 0.8, 1.0 5.87 0.1 0.1 0.2 0.3 80, 91 2.0, 2.2 1.60 0.2 0.1 0.3 0.4

80, 91 1.0, 1.2 5.66 0.1 0.1 0.2 0.3 80, 91 2.2, 2.4 5.20× 10−1 0.3 0.2 0.4 0.5

91, 102 0.0, 0.2 7.08 0.1 0.1 0.2 0.2 91, 102 1.2, 1.4 6.02 0.1 0.0 0.2 0.3

91, 102 0.2, 0.4 7.04 0.1 0.1 0.2 0.2 91, 102 1.4, 1.6 5.21 0.1 0.1 0.2 0.3

91, 102 0.4, 0.6 7.01 0.1 0.1 0.2 0.2 91, 102 1.6, 1.8 4.23 0.1 0.1 0.3 0.3

91, 102 0.6, 0.8 6.98 0.1 0.0 0.2 0.2 91, 102 1.8, 2.0 3.07 0.2 0.1 0.3 0.3

91, 102 0.8, 1.0 6.90 0.1 0.0 0.2 0.2 91, 102 2.0, 2.2 1.83 0.2 0.1 0.3 0.4

91, 102 1.0, 1.2 6.60 0.1 0.1 0.2 0.3 91, 102 2.2, 2.4 5.96× 10−1 0.3 0.2 0.4 0.5

102, 116 0.0, 0.2 2.38× 10−1 0.5 0.2 0.3 0.7 102, 116 1.2, 1.4 1.96× 10−1 0.5 0.3 0.5 0.7

102, 116 0.2, 0.4 2.39× 10−1 0.5 0.2 0.4 0.7 102, 116 1.4, 1.6 1.66× 10−1 0.5 0.3 0.5 0.8

102, 116 0.4, 0.6 2.35× 10−1 0.5 0.2 0.4 0.7 102, 116 1.6, 1.8 1.35× 10−1 0.6 0.4 0.7 1.0

102, 116 0.6, 0.8 2.33× 10−1 0.5 0.3 0.4 0.7 102, 116 1.8, 2.0 9.84× 10−2 0.6 0.4 0.8 1.1

102, 116 0.8, 1.0 2.29× 10−1 0.5 0.3 0.4 0.7 102, 116 2.0, 2.2 5.76× 10−2 0.7 0.5 1.0 1.3

102, 116 1.0, 1.2 2.16× 10−1 0.5 0.3 0.4 0.7 102, 116 2.2, 2.4 1.85× 10−2 1.0 0.9 1.3 1.9

116, 150 0.0, 0.2 4.84× 10−2 0.8 0.3 0.8 1.2 116, 150 1.2, 1.4 3.84× 10−2 0.9 0.4 0.6 1.1

116, 150 0.2, 0.4 4.79× 10−2 0.8 0.3 0.8 1.2 116, 150 1.4, 1.6 3.23× 10−2 0.9 0.4 0.5 1.1

116, 150 0.4, 0.6 4.74× 10−2 0.8 0.3 0.8 1.2 116, 150 1.6, 1.8 2.66× 10−2 1.0 0.5 0.5 1.2

116, 150 0.6, 0.8 4.77× 10−2 0.8 0.3 0.8 1.2 116, 150 1.8, 2.0 1.93× 10−2 1.2 0.7 0.6 1.5

116, 150 0.8, 1.0 4.54× 10−2 0.8 0.3 0.7 1.1 116, 150 2.0, 2.2 1.14× 10−2 1.4 0.7 0.7 1.7

116, 150 1.0, 1.2 4.23× 10−2 0.8 0.4 0.6 1.1 116, 150 2.2, 2.4 3.48× 10−3 2.6 1.7 1.2 3.3

150, 200 0.0, 0.2 1.11× 10−2 1.6 0.6 1.8 2.4 150, 200 1.2, 1.4 8.56× 10−3 1.6 0.6 1.0 2.0

150, 200 0.2, 0.4 1.10× 10−2 1.5 0.7 1.8 2.4 150, 200 1.4, 1.6 7.12× 10−3 1.8 0.9 0.9 2.2

150, 200 0.4, 0.6 1.08× 10−2 1.5 0.6 1.7 2.3 150, 200 1.6, 1.8 5.72× 10−3 1.9 0.7 0.8 2.2

150, 200 0.6, 0.8 1.07× 10−2 1.5 0.5 1.5 2.2 150, 200 1.8, 2.0 4.06× 10−3 2.2 0.7 0.7 2.4

150, 200 0.8, 1.0 9.98× 10−3 1.6 0.5 1.3 2.1 150, 200 2.0, 2.2 2.46× 10−3 2.8 1.0 0.7 3.0

150, 200 1.0, 1.2 9.22× 10−3 1.6 0.6 1.2 2.1 150, 200 2.2, 2.4 8.20× 10−4 4.7 1.3 1.0 5.0

Table 6. The combined Born-level double-differential cross section d2σ/dm``d|y``|. The mea-

surements are listed together with the statistical (δstat), uncorrelated systematic (δsyst
unc ), correlated

systematic (δsyst
cor ), and total (δtotal) uncertainties. The luminosity uncertainty of 1.9% is not shown

and not included in the overall systematic and total uncertainties.
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A.2 Triple-differential cross-section tables

Bin m`` |y``| cos θ∗ d3σ δstat δsystunc δsystcor δtotal Bin m`` |y``| cos θ∗ d3σ δstat δsystunc δsystcor δtotal

[GeV] [pb/GeV] [%] [%] [%] [%] [GeV] [pb/GeV] [%] [%] [%] [%]

1 46, 66 0.0, 0.2 −1.0,−0.7 1.42×10−2 4.0 2.5 1.8 5.1 6 46, 66 0.0, 0.2 +0.7,+1.0 1.37×10−2 4.2 3.4 2.0 5.7

2 46, 66 0.0, 0.2 −0.7,−0.4 1.02×10−1 1.4 1.1 1.2 2.1 5 46, 66 0.0, 0.2 +0.4,+0.7 1.01×10−1 1.4 1.1 1.2 2.1

3 46, 66 0.0, 0.2 −0.4, 0.0 1.45×10−1 1.0 0.8 0.9 1.5 4 46, 66 0.0, 0.2 0.0,+0.4 1.44×10−1 1.0 0.8 0.9 1.6

7 46, 66 0.2, 0.4 −1.0,−0.7 1.48×10−2 3.9 2.1 1.8 4.8 12 46, 66 0.2, 0.4 +0.7,+1.0 1.46×10−2 3.9 1.9 1.8 4.7

8 46, 66 0.2, 0.4 −0.7,−0.4 1.03×10−1 1.4 1.3 1.2 2.2 11 46, 66 0.2, 0.4 +0.4,+0.7 9.99×10−2 1.4 1.1 1.2 2.2

9 46, 66 0.2, 0.4 −0.4, 0.0 1.47×10−1 1.0 0.8 0.9 1.5 10 46, 66 0.2, 0.4 0.0,+0.4 1.46×10−1 1.0 0.9 0.9 1.6

13 46, 66 0.4, 0.6 −1.0,−0.7 1.35×10−2 4.5 3.3 1.9 5.9 18 46, 66 0.4, 0.6 +0.7,+1.0 1.43×10−2 4.2 2.5 1.8 5.2

14 46, 66 0.4, 0.6 −0.7,−0.4 1.08×10−1 1.4 1.1 1.0 2.1 17 46, 66 0.4, 0.6 +0.4,+0.7 9.84×10−2 1.6 1.3 1.2 2.3

15 46, 66 0.4, 0.6 −0.4, 0.0 1.47×10−1 0.9 0.7 0.9 1.5 16 46, 66 0.4, 0.6 0.0,+0.4 1.42×10−1 1.0 0.8 0.9 1.5

19 46, 66 0.6, 0.8 −1.0,−0.7 1.50×10−2 4.0 2.8 1.8 5.2 24 46, 66 0.6, 0.8 +0.7,+1.0 1.46×10−2 4.1 3.0 1.9 5.5

20 46, 66 0.6, 0.8 −0.7,−0.4 1.08×10−1 1.4 1.0 1.1 2.1 23 46, 66 0.6, 0.8 +0.4,+0.7 9.90×10−2 1.5 1.1 1.2 2.2

21 46, 66 0.6, 0.8 −0.4, 0.0 1.48×10−1 0.9 0.7 0.8 1.4 22 46, 66 0.6, 0.8 0.0,+0.4 1.42×10−1 0.9 0.8 0.9 1.5

25 46, 66 0.8, 1.0 −1.0,−0.7 1.63×10−2 4.1 2.7 1.5 5.1 30 46, 66 0.8, 1.0 +0.7,+1.0 1.33×10−2 4.4 3.2 2.0 5.8

26 46, 66 0.8, 1.0 −0.7,−0.4 1.07×10−1 1.5 1.1 1.1 2.1 29 46, 66 0.8, 1.0 +0.4,+0.7 9.57×10−2 1.6 1.1 1.3 2.3

27 46, 66 0.8, 1.0 −0.4, 0.0 1.49×10−1 0.9 0.7 0.8 1.4 28 46, 66 0.8, 1.0 0.0,+0.4 1.41×10−1 1.0 0.8 0.8 1.5

31 46, 66 1.0, 1.2 −1.0,−0.7 1.71×10−2 3.5 2.2 1.4 4.4 36 46, 66 1.0, 1.2 +0.7,+1.0 1.27×10−2 4.2 2.5 1.8 5.2

32 46, 66 1.0, 1.2 −0.7,−0.4 1.12×10−1 1.4 1.0 1.1 2.0 35 46, 66 1.0, 1.2 +0.4,+0.7 9.56×10−2 1.5 1.1 1.2 2.2

33 46, 66 1.0, 1.2 −0.4, 0.0 1.50×10−1 1.0 0.8 0.8 1.5 34 46, 66 1.0, 1.2 0.0,+0.4 1.41×10−1 1.0 0.8 0.8 1.5

37 46, 66 1.2, 1.4 −1.0,−0.7 1.57×10−2 3.8 2.3 1.6 4.7 42 46, 66 1.2, 1.4 +0.7,+1.0 1.13×10−2 4.4 3.3 1.9 5.8

38 46, 66 1.2, 1.4 −0.7,−0.4 1.16×10−1 1.3 0.9 1.0 1.9 41 46, 66 1.2, 1.4 +0.4,+0.7 8.57×10−2 1.6 1.2 1.4 2.4

39 46, 66 1.2, 1.4 −0.4, 0.0 1.53×10−1 1.0 0.7 0.8 1.4 40 46, 66 1.2, 1.4 0.0,+0.4 1.41×10−1 1.0 0.8 0.8 1.5

43 46, 66 1.4, 1.6 −1.0,−0.7 1.04×10−2 4.4 2.4 1.5 5.3 48 46, 66 1.4, 1.6 +0.7,+1.0 8.25×10−3 5.0 3.9 1.7 6.6

44 46, 66 1.4, 1.6 −0.7,−0.4 1.16×10−1 1.3 0.9 0.9 1.8 47 46, 66 1.4, 1.6 +0.4,+0.7 8.55×10−2 1.6 1.3 1.3 2.5

45 46, 66 1.4, 1.6 −0.4, 0.0 1.55×10−1 1.0 0.7 0.7 1.4 46 46, 66 1.4, 1.6 0.0,+0.4 1.35×10−1 1.1 0.8 0.9 1.6

49 46, 66 1.6, 1.8 −1.0,−0.7 4.44×10−3 6.6 3.2 1.8 7.5 54 46, 66 1.6, 1.8 +0.7,+1.0 3.58×10−3 7.8 4.2 2.3 9.1

50 46, 66 1.6, 1.8 −0.7,−0.4 9.59×10−2 1.4 1.0 1.0 2.0 53 46, 66 1.6, 1.8 +0.4,+0.7 7.16×10−2 1.7 1.4 1.3 2.6

51 46, 66 1.6, 1.8 −0.4, 0.0 1.51×10−1 1.0 0.8 0.8 1.5 52 46, 66 1.6, 1.8 0.0,+0.4 1.33×10−1 1.1 0.8 0.9 1.6

55 46, 66 1.8, 2.0 −1.0,−0.7 1.97×10−3 10.0 4.7 2.4 11.4 60 46, 66 1.8, 2.0 +0.7,+1.0 1.38×10−3 12.8 6.6 2.7 14.7

56 46, 66 1.8, 2.0 −0.7,−0.4 4.05×10−2 2.3 1.4 1.0 2.9 59 46, 66 1.8, 2.0 +0.4,+0.7 2.76×10−2 2.8 2.0 1.3 3.6

57 46, 66 1.8, 2.0 −0.4, 0.0 1.51×10−1 1.0 0.8 0.8 1.5 58 46, 66 1.8, 2.0 0.0,+0.4 1.32×10−1 1.1 0.8 0.9 1.6

61 46, 66 2.0, 2.2 −1.0,−0.7 — — — — — 66 46, 66 2.0, 2.2 +0.7,+1.0 — — — — —

62 46, 66 2.0, 2.2 −0.7,−0.4 2.48×10−3 9.7 7.1 3.0 12.3 65 46, 66 2.0, 2.2 +0.4,+0.7 1.64×10−3 11.1 6.4 5.2 13.8

63 46, 66 2.0, 2.2 −0.4, 0.0 1.16×10−1 1.1 0.8 0.7 1.6 64 46, 66 2.0, 2.2 0.0,+0.4 9.58×10−2 1.2 1.0 0.9 1.8

67 46, 66 2.2, 2.4 −1.0,−0.7 — — — — — 72 46, 66 2.2, 2.4 +0.7,+1.0 — — — — —

68 46, 66 2.2, 2.4 −0.7,−0.4 — — — — — 71 46, 66 2.2, 2.4 +0.4,+0.7 — — — — —

69 46, 66 2.2, 2.4 −0.4, 0.0 3.82×10−2 1.9 1.5 0.9 2.6 70 46, 66 2.2, 2.4 0.0,+0.4 3.50×10−2 2.0 1.4 1.0 2.6

73 66, 80 0.0, 0.2 −1.0,−0.7 7.92×10−2 1.6 0.9 0.8 2.0 78 66, 80 0.0, 0.2 +0.7,+1.0 7.70×10−2 1.6 0.9 0.8 2.0

74 66, 80 0.0, 0.2 −0.7,−0.4 1.96×10−1 0.9 0.5 0.4 1.1 77 66, 80 0.0, 0.2 +0.4,+0.7 1.93×10−1 1.0 0.5 0.4 1.1

75 66, 80 0.0, 0.2 −0.4, 0.0 1.74×10−1 0.9 0.6 0.3 1.1 76 66, 80 0.0, 0.2 0.0,+0.4 1.79×10−1 0.9 0.4 0.3 1.0

79 66, 80 0.2, 0.4 −1.0,−0.7 8.29×10−2 1.7 0.9 0.8 2.0 84 66, 80 0.2, 0.4 +0.7,+1.0 7.47×10−2 1.6 0.9 0.8 2.0

80 66, 80 0.2, 0.4 −0.7,−0.4 2.02×10−1 0.9 0.5 0.4 1.1 83 66, 80 0.2, 0.4 +0.4,+0.7 1.85×10−1 1.0 0.5 0.4 1.2

81 66, 80 0.2, 0.4 −0.4, 0.0 1.72×10−1 0.9 0.5 0.3 1.0 82 66, 80 0.2, 0.4 0.0,+0.4 1.74×10−1 0.9 0.5 0.3 1.0

85 66, 80 0.4, 0.6 −1.0,−0.7 7.86×10−2 1.6 0.9 0.9 2.0 90 66, 80 0.4, 0.6 +0.7,+1.0 7.37×10−2 1.7 0.9 0.9 2.1

86 66, 80 0.4, 0.6 −0.7,−0.4 2.02×10−1 1.0 0.5 0.4 1.2 89 66, 80 0.4, 0.6 +0.4,+0.7 1.86×10−1 1.0 0.5 0.4 1.2

87 66, 80 0.4, 0.6 −0.4, 0.0 1.77×10−1 0.8 0.4 0.3 1.0 88 66, 80 0.4, 0.6 0.0,+0.4 1.73×10−1 0.8 0.4 0.3 1.0

91 66, 80 0.6, 0.8 −1.0,−0.7 8.41×10−2 1.6 0.8 0.8 2.0 96 66, 80 0.6, 0.8 +0.7,+1.0 7.03×10−2 1.6 1.0 0.8 2.1

92 66, 80 0.6, 0.8 −0.7,−0.4 2.05×10−1 1.0 0.5 0.4 1.2 95 66, 80 0.6, 0.8 +0.4,+0.7 1.81×10−1 1.0 0.7 0.5 1.3

93 66, 80 0.6, 0.8 −0.4, 0.0 1.78×10−1 0.8 0.4 0.3 1.0 94 66, 80 0.6, 0.8 0.0,+0.4 1.69×10−1 0.9 0.4 0.3 1.0

97 66, 80 0.8, 1.0 −1.0,−0.7 8.08×10−2 1.7 1.0 0.8 2.1 102 66, 80 0.8, 1.0 +0.7,+1.0 6.90×10−2 1.8 1.0 0.9 2.2

98 66, 80 0.8, 1.0 −0.7,−0.4 2.09×10−1 1.0 0.5 0.4 1.2 101 66, 80 0.8, 1.0 +0.4,+0.7 1.72×10−1 1.0 0.6 0.5 1.3

99 66, 80 0.8, 1.0 −0.4, 0.0 1.76×10−1 0.8 0.4 0.3 1.0 100 66, 80 0.8, 1.0 0.0,+0.4 1.63×10−1 0.9 0.5 0.3 1.0

103 66, 80 1.0, 1.2 −1.0,−0.7 8.63×10−2 1.6 0.9 0.7 2.0 108 66, 80 1.0, 1.2 +0.7,+1.0 6.71×10−2 1.7 1.0 0.8 2.1

104 66, 80 1.0, 1.2 −0.7,−0.4 2.05×10−1 0.9 0.5 0.4 1.1 107 66, 80 1.0, 1.2 +0.4,+0.7 1.68×10−1 1.0 0.6 0.5 1.2

105 66, 80 1.0, 1.2 −0.4, 0.0 1.79×10−1 0.9 0.5 0.3 1.0 106 66, 80 1.0, 1.2 0.0,+0.4 1.60×10−1 0.9 0.5 0.4 1.1

109 66, 80 1.2, 1.4 −1.0,−0.7 7.00×10−2 1.6 1.0 0.8 2.1 114 66, 80 1.2, 1.4 +0.7,+1.0 4.86×10−2 1.9 1.0 1.0 2.3

110 66, 80 1.2, 1.4 −0.7,−0.4 2.11×10−1 0.9 0.5 0.4 1.1 113 66, 80 1.2, 1.4 +0.4,+0.7 1.59×10−1 1.0 0.6 0.5 1.2

111 66, 80 1.2, 1.4 −0.4, 0.0 1.79×10−1 0.9 0.5 0.4 1.1 112 66, 80 1.2, 1.4 0.0,+0.4 1.58×10−1 0.9 0.5 0.4 1.2

115 66, 80 1.4, 1.6 −1.0,−0.7 2.74×10−2 2.6 1.5 0.8 3.1 120 66, 80 1.4, 1.6 +0.7,+1.0 1.97×10−2 2.9 2.3 1.1 3.9

116 66, 80 1.4, 1.6 −0.7,−0.4 2.06×10−1 0.9 0.5 0.4 1.1 119 66, 80 1.4, 1.6 +0.4,+0.7 1.45×10−1 1.0 0.6 0.5 1.3

117 66, 80 1.4, 1.6 −0.4, 0.0 1.80×10−1 0.9 0.5 0.4 1.1 118 66, 80 1.4, 1.6 0.0,+0.4 1.57×10−1 0.9 0.5 0.4 1.1

121 66, 80 1.6, 1.8 −1.0,−0.7 6.28×10−3 5.1 3.5 1.8 6.5 126 66, 80 1.6, 1.8 +0.7,+1.0 4.06×10−3 6.1 4.2 1.8 7.7

122 66, 80 1.6, 1.8 −0.7,−0.4 1.47×10−1 1.0 0.6 0.5 1.3 125 66, 80 1.6, 1.8 +0.4,+0.7 9.89×10−2 1.2 0.8 0.6 1.6

123 66, 80 1.6, 1.8 −0.4, 0.0 1.76×10−1 0.9 0.5 0.4 1.1 124 66, 80 1.6, 1.8 0.0,+0.4 1.52×10−1 0.9 0.5 0.5 1.1

127 66, 80 1.8, 2.0 −1.0,−0.7 1.90×10−3 9.4 5.8 3.5 11.6 132 66, 80 1.8, 2.0 +0.7,+1.0 8.82×10−4 11.9 7.4 4.3 14.7

128 66, 80 1.8, 2.0 −0.7,−0.4 5.38×10−2 1.8 1.2 0.9 2.3 131 66, 80 1.8, 2.0 +0.4,+0.7 3.34×10−2 2.1 1.3 1.0 2.7

129 66, 80 1.8, 2.0 −0.4, 0.0 1.72×10−1 0.8 0.5 0.5 1.1 130 66, 80 1.8, 2.0 0.0,+0.4 1.45×10−1 0.9 0.5 0.5 1.2

133 66, 80 2.0, 2.2 −1.0,−0.7 — — — — — 138 66, 80 2.0, 2.2 +0.7,+1.0 — — — — —

134 66, 80 2.0, 2.2 −0.7,−0.4 3.68×10−3 6.5 4.8 3.0 8.6 137 66, 80 2.0, 2.2 +0.4,+0.7 2.62×10−3 7.8 5.4 3.9 10.2

135 66, 80 2.0, 2.2 −0.4, 0.0 1.26×10−1 1.0 0.5 0.6 1.3 136 66, 80 2.0, 2.2 0.0,+0.4 1.01×10−1 1.0 0.6 0.7 1.4

139 66, 80 2.2, 2.4 −1.0,−0.7 — — — — — 144 66, 80 2.2, 2.4 +0.7,+1.0 — — — — —

140 66, 80 2.2, 2.4 −0.7,−0.4 — — — — — 143 66, 80 2.2, 2.4 +0.4,+0.7 — — — — —

141 66, 80 2.2, 2.4 −0.4, 0.0 4.01×10−2 1.6 1.0 1.1 2.2 142 66, 80 2.2, 2.4 0.0,+0.4 3.62×10−2 1.7 1.1 1.1 2.3
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Bin m`` |y``| cos θ∗ d3σ δstat δsystunc δsystcor δtotal Bin m`` |y``| cos θ∗ d3σ δstat δsystunc δsystcor δtotal

[GeV] [pb/GeV] [%] [%] [%] [%] [GeV] [pb/GeV] [%] [%] [%] [%]

145 91, 102 0.0, 0.2 −1.0,−0.7 2.25 0.3 0.2 0.3 0.5 150 91, 102 0.0, 0.2 +0.7,+1.0 2.26 0.3 0.2 0.3 0.5

146 91, 102 0.0, 0.2 −0.7,−0.4 3.58 0.3 0.1 0.2 0.3 149 91, 102 0.0, 0.2 +0.4,+0.7 3.60 0.3 0.1 0.2 0.3

147 91, 102 0.0, 0.2 −0.4, 0.0 3.12 0.3 0.1 0.2 0.4 148 91, 102 0.0, 0.2 0.0,+0.4 3.10 0.3 0.1 0.2 0.4

151 91, 102 0.2, 0.4 −1.0,−0.7 2.26 0.3 0.2 0.3 0.5 156 91, 102 0.2, 0.4 +0.7,+1.0 2.27 0.3 0.2 0.3 0.5

152 91, 102 0.2, 0.4 −0.7,−0.4 3.58 0.3 0.1 0.2 0.3 155 91, 102 0.2, 0.4 +0.4,+0.7 3.61 0.3 0.1 0.2 0.4

153 91, 102 0.2, 0.4 −0.4, 0.0 3.10 0.3 0.1 0.2 0.4 154 91, 102 0.2, 0.4 0.0,+0.4 3.10 0.2 0.1 0.2 0.4

157 91, 102 0.4, 0.6 −1.0,−0.7 2.24 0.3 0.2 0.3 0.5 162 91, 102 0.4, 0.6 +0.7,+1.0 2.24 0.3 0.2 0.3 0.5

158 91, 102 0.4, 0.6 −0.7,−0.4 3.57 0.3 0.1 0.2 0.4 161 91, 102 0.4, 0.6 +0.4,+0.7 3.60 0.3 0.1 0.2 0.4

159 91, 102 0.4, 0.6 −0.4, 0.0 3.08 0.2 0.1 0.2 0.3 160 91, 102 0.4, 0.6 0.0,+0.4 3.10 0.2 0.1 0.2 0.3

163 91, 102 0.6, 0.8 −1.0,−0.7 2.24 0.3 0.2 0.3 0.5 168 91, 102 0.6, 0.8 +0.7,+1.0 2.24 0.3 0.2 0.3 0.5

164 91, 102 0.6, 0.8 −0.7,−0.4 3.54 0.3 0.1 0.3 0.4 167 91, 102 0.6, 0.8 +0.4,+0.7 3.54 0.3 0.1 0.3 0.4

165 91, 102 0.6, 0.8 −0.4, 0.0 3.06 0.2 0.1 0.2 0.3 166 91, 102 0.6, 0.8 0.0,+0.4 3.08 0.2 0.1 0.2 0.3

169 91, 102 0.8, 1.0 −1.0,−0.7 2.21 0.3 0.2 0.3 0.5 174 91, 102 0.8, 1.0 +0.7,+1.0 2.24 0.3 0.2 0.3 0.5

170 91, 102 0.8, 1.0 −0.7,−0.4 3.50 0.3 0.1 0.3 0.4 173 91, 102 0.8, 1.0 +0.4,+0.7 3.49 0.3 0.1 0.3 0.4

171 91, 102 0.8, 1.0 −0.4, 0.0 3.06 0.2 0.1 0.2 0.3 172 91, 102 0.8, 1.0 0.0,+0.4 3.03 0.2 0.1 0.2 0.3

175 91, 102 1.0, 1.2 −1.0,−0.7 1.96 0.4 0.2 0.3 0.5 180 91, 102 1.0, 1.2 +0.7,+1.0 1.96 0.3 0.2 0.3 0.5

176 91, 102 1.0, 1.2 −0.7,−0.4 3.45 0.3 0.1 0.3 0.4 179 91, 102 1.0, 1.2 +0.4,+0.7 3.46 0.2 0.1 0.3 0.4

177 91, 102 1.0, 1.2 −0.4, 0.0 3.01 0.2 0.1 0.3 0.4 178 91, 102 1.0, 1.2 0.0,+0.4 3.00 0.2 0.1 0.3 0.4

181 91, 102 1.2, 1.4 −1.0,−0.7 1.29 0.4 0.2 0.4 0.6 186 91, 102 1.2, 1.4 +0.7,+1.0 1.29 0.4 0.2 0.4 0.6

182 91, 102 1.2, 1.4 −0.7,−0.4 3.41 0.3 0.1 0.3 0.4 185 91, 102 1.2, 1.4 +0.4,+0.7 3.39 0.2 0.1 0.2 0.4

183 91, 102 1.2, 1.4 −0.4, 0.0 2.97 0.3 0.1 0.3 0.4 184 91, 102 1.2, 1.4 0.0,+0.4 2.95 0.2 0.1 0.3 0.4

187 91, 102 1.4, 1.6 −1.0,−0.7 4.87×10−1 0.7 0.4 0.4 0.8 192 91, 102 1.4, 1.6 +0.7,+1.0 4.80×10−1 0.6 0.4 0.4 0.8

188 91, 102 1.4, 1.6 −0.7,−0.4 3.18 0.2 0.1 0.3 0.4 191 91, 102 1.4, 1.6 +0.4,+0.7 3.16 0.2 0.1 0.3 0.4

189 91, 102 1.4, 1.6 −0.4, 0.0 2.90 0.2 0.1 0.3 0.4 190 91, 102 1.4, 1.6 0.0,+0.4 2.90 0.2 0.1 0.3 0.4

193 91, 102 1.6, 1.8 −1.0,−0.7 9.17×10−2 1.5 0.9 0.5 1.8 198 91, 102 1.6, 1.8 +0.7,+1.0 9.08×10−2 1.5 0.9 0.6 1.8

194 91, 102 1.6, 1.8 −0.7,−0.4 2.24 0.3 0.2 0.3 0.5 197 91, 102 1.6, 1.8 +0.4,+0.7 2.22 0.3 0.2 0.3 0.5

195 91, 102 1.6, 1.8 −0.4, 0.0 2.83 0.2 0.1 0.3 0.4 196 91, 102 1.6, 1.8 0.0,+0.4 2.84 0.2 0.1 0.3 0.4

199 91, 102 1.8, 2.0 −1.0,−0.7 2.11×10−2 2.9 1.9 0.7 3.5 204 91, 102 1.8, 2.0 +0.7,+1.0 2.02×10−2 2.9 1.9 1.1 3.6

200 91, 102 1.8, 2.0 −0.7,−0.4 8.08×10−1 0.5 0.3 0.4 0.7 203 91, 102 1.8, 2.0 +0.4,+0.7 7.92×10−1 0.5 0.3 0.4 0.7

201 91, 102 1.8, 2.0 −0.4, 0.0 2.73 0.2 0.1 0.3 0.4 202 91, 102 1.8, 2.0 0.0,+0.4 2.73 0.2 0.1 0.3 0.4

205 91, 102 2.0, 2.2 −1.0,−0.7 2.53×10−3 7.9 6.1 2.2 10.3 210 91, 102 2.0, 2.2 +0.7,+1.0 2.74×10−3 8.3 5.6 3.4 10.6

206 91, 102 2.0, 2.2 −0.7,−0.4 4.99×10−2 2.1 1.5 0.7 2.7 209 91, 102 2.0, 2.2 +0.4,+0.7 5.03×10−2 2.1 1.5 0.7 2.7

207 91, 102 2.0, 2.2 −0.4, 0.0 1.96 0.3 0.2 0.3 0.5 208 91, 102 2.0, 2.2 0.0,+0.4 1.95 0.3 0.2 0.3 0.5

211 91, 102 2.2, 2.4 −1.0,−0.7 — — — — — 216 91, 102 2.2, 2.4 +0.7,+1.0 — — — — —

212 91, 102 2.2, 2.4 −0.7,−0.4 — — — — — 215 91, 102 2.2, 2.4 +0.4,+0.7 — — — — —

213 91, 102 2.2, 2.4 −0.4, 0.0 6.54×10−1 0.4 0.3 0.4 0.7 214 91, 102 2.2, 2.4 0.0,+0.4 6.46×10−1 0.4 0.3 0.4 0.7

217 91, 102 0.0, 0.2 −1.0,−0.7 2.80 0.3 0.2 0.3 0.4 222 91, 102 0.0, 0.2 +0.7,+1.0 2.82 0.3 0.2 0.3 0.4

218 91, 102 0.0, 0.2 −0.7,−0.4 4.17 0.2 0.1 0.2 0.3 221 91, 102 0.0, 0.2 +0.4,+0.7 4.21 0.2 0.1 0.2 0.3

219 91, 102 0.0, 0.2 −0.4, 0.0 3.59 0.2 0.1 0.2 0.4 220 91, 102 0.0, 0.2 0.0,+0.4 3.62 0.2 0.1 0.2 0.4

223 91, 102 0.2, 0.4 −1.0,−0.7 2.78 0.3 0.2 0.3 0.4 228 91, 102 0.2, 0.4 +0.7,+1.0 2.83 0.3 0.2 0.3 0.4

224 91, 102 0.2, 0.4 −0.7,−0.4 4.11 0.3 0.1 0.2 0.3 227 91, 102 0.2, 0.4 +0.4,+0.7 4.17 0.2 0.1 0.2 0.3

225 91, 102 0.2, 0.4 −0.4, 0.0 3.58 0.2 0.1 0.2 0.4 226 91, 102 0.2, 0.4 0.0,+0.4 3.61 0.2 0.1 0.2 0.3

229 91, 102 0.4, 0.6 −1.0,−0.7 2.75 0.3 0.2 0.3 0.5 234 91, 102 0.4, 0.6 +0.7,+1.0 2.84 0.3 0.2 0.3 0.5

230 91, 102 0.4, 0.6 −0.7,−0.4 4.07 0.3 0.1 0.2 0.4 233 91, 102 0.4, 0.6 +0.4,+0.7 4.19 0.3 0.1 0.2 0.4

231 91, 102 0.4, 0.6 −0.4, 0.0 3.55 0.2 0.1 0.2 0.3 232 91, 102 0.4, 0.6 0.0,+0.4 3.59 0.2 0.1 0.2 0.3

235 91, 102 0.6, 0.8 −1.0,−0.7 2.70 0.3 0.2 0.3 0.4 240 91, 102 0.6, 0.8 +0.7,+1.0 2.86 0.3 0.1 0.3 0.4

236 91, 102 0.6, 0.8 −0.7,−0.4 4.05 0.3 0.1 0.3 0.4 239 91, 102 0.6, 0.8 +0.4,+0.7 4.20 0.3 0.1 0.3 0.4

237 91, 102 0.6, 0.8 −0.4, 0.0 3.52 0.2 0.1 0.2 0.3 238 91, 102 0.6, 0.8 0.0,+0.4 3.57 0.2 0.1 0.2 0.3

241 91, 102 0.8, 1.0 −1.0,−0.7 2.64 0.3 0.2 0.3 0.5 246 91, 102 0.8, 1.0 +0.7,+1.0 2.83 0.3 0.2 0.3 0.5

242 91, 102 0.8, 1.0 −0.7,−0.4 3.98 0.3 0.1 0.3 0.4 245 91, 102 0.8, 1.0 +0.4,+0.7 4.17 0.3 0.1 0.3 0.4

243 91, 102 0.8, 1.0 −0.4, 0.0 3.46 0.2 0.1 0.2 0.3 244 91, 102 0.8, 1.0 0.0,+0.4 3.56 0.2 0.1 0.2 0.3

247 91, 102 1.0, 1.2 −1.0,−0.7 2.23 0.3 0.2 0.3 0.5 252 91, 102 1.0, 1.2 +0.7,+1.0 2.42 0.3 0.2 0.3 0.5

248 91, 102 1.0, 1.2 −0.7,−0.4 3.91 0.2 0.1 0.3 0.4 251 91, 102 1.0, 1.2 +0.4,+0.7 4.19 0.2 0.1 0.2 0.4

249 91, 102 1.0, 1.2 −0.4, 0.0 3.41 0.2 0.1 0.3 0.4 250 91, 102 1.0, 1.2 0.0,+0.4 3.52 0.2 0.1 0.2 0.4

253 91, 102 1.2, 1.4 −1.0,−0.7 1.46 0.4 0.2 0.3 0.5 258 91, 102 1.2, 1.4 +0.7,+1.0 1.60 0.4 0.2 0.3 0.5

254 91, 102 1.2, 1.4 −0.7,−0.4 3.79 0.3 0.1 0.2 0.4 257 91, 102 1.2, 1.4 +0.4,+0.7 4.12 0.2 0.1 0.2 0.3

255 91, 102 1.2, 1.4 −0.4, 0.0 3.34 0.2 0.1 0.3 0.4 256 91, 102 1.2, 1.4 0.0,+0.4 3.48 0.2 0.1 0.3 0.4

259 91, 102 1.4, 1.6 −1.0,−0.7 5.29×10−1 0.6 0.3 0.4 0.8 264 91, 102 1.4, 1.6 +0.7,+1.0 5.95×10−1 0.6 0.3 0.4 0.8

260 91, 102 1.4, 1.6 −0.7,−0.4 3.48 0.2 0.1 0.3 0.4 263 91, 102 1.4, 1.6 +0.4,+0.7 3.84 0.2 0.1 0.2 0.4

261 91, 102 1.4, 1.6 −0.4, 0.0 3.27 0.2 0.1 0.3 0.4 262 91, 102 1.4, 1.6 0.0,+0.4 3.42 0.2 0.1 0.3 0.4

265 91, 102 1.6, 1.8 −1.0,−0.7 9.80×10−2 1.5 1.0 0.7 1.9 270 91, 102 1.6, 1.8 +0.7,+1.0 1.13×10−1 1.3 0.9 0.6 1.7

266 91, 102 1.6, 1.8 −0.7,−0.4 2.41 0.3 0.1 0.3 0.5 269 91, 102 1.6, 1.8 +0.4,+0.7 2.70 0.3 0.1 0.3 0.4

267 91, 102 1.6, 1.8 −0.4, 0.0 3.20 0.2 0.1 0.3 0.4 268 91, 102 1.6, 1.8 0.0,+0.4 3.37 0.2 0.1 0.3 0.4

271 91, 102 1.8, 2.0 −1.0,−0.7 2.17×10−2 3.0 1.8 0.9 3.7 276 91, 102 1.8, 2.0 +0.7,+1.0 2.36×10−2 2.8 1.7 0.8 3.4

272 91, 102 1.8, 2.0 −0.7,−0.4 8.61×10−1 0.5 0.3 0.5 0.7 275 91, 102 1.8, 2.0 +0.4,+0.7 9.82×10−1 0.5 0.3 0.4 0.7

273 91, 102 1.8, 2.0 −0.4, 0.0 3.03 0.2 0.1 0.3 0.4 274 91, 102 1.8, 2.0 0.0,+0.4 3.23 0.2 0.1 0.3 0.4

277 91, 102 2.0, 2.2 −1.0,−0.7 2.30×10−3 10.6 8.0 5.2 14.3 282 91, 102 2.0, 2.2 +0.7,+1.0 3.47×10−3 7.6 5.2 2.6 9.6

278 91, 102 2.0, 2.2 −0.7,−0.4 5.15×10−2 2.0 1.3 1.0 2.6 281 91, 102 2.0, 2.2 +0.4,+0.7 6.30×10−2 1.9 1.2 1.0 2.5

279 91, 102 2.0, 2.2 −0.4, 0.0 2.17 0.3 0.1 0.3 0.4 280 91, 102 2.0, 2.2 0.0,+0.4 2.32 0.3 0.1 0.3 0.4

283 91, 102 2.2, 2.4 −1.0,−0.7 — — — — — 288 91, 102 2.2, 2.4 +0.7,+1.0 — — — — —

284 91, 102 2.2, 2.4 −0.7,−0.4 — — — — — 287 91, 102 2.2, 2.4 +0.4,+0.7 — — — — —

285 91, 102 2.2, 2.4 −0.4, 0.0 7.30×10−1 0.4 0.2 0.4 0.7 286 91, 102 2.2, 2.4 0.0,+0.4 7.59×10−1 0.4 0.2 0.4 0.6
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Bin m`` |y``| cos θ∗ d3σ δstat δsystunc δsystcor δtotal Bin m`` |y``| cos θ∗ d3σ δstat δsystunc δsystcor δtotal

[GeV] [pb/GeV] [%] [%] [%] [%] [GeV] [pb/GeV] [%] [%] [%] [%]

289 102, 116 0.0, 0.2 −1.0,−0.7 1.09×10−1 1.4 0.8 0.6 1.7 294 102, 116 0.0, 0.2 +0.7,+1.0 1.09×10−1 1.4 0.8 0.6 1.7

290 102, 116 0.0, 0.2 −0.7,−0.4 1.30×10−1 1.2 0.6 0.4 1.4 293 102, 116 0.0, 0.2 +0.4,+0.7 1.39×10−1 1.2 0.5 0.3 1.4

291 102, 116 0.0, 0.2 −0.4, 0.0 1.15×10−1 1.2 0.5 0.3 1.4 292 102, 116 0.0, 0.2 0.0,+0.4 1.15×10−1 1.2 0.5 0.4 1.4

295 102, 116 0.2, 0.4 −1.0,−0.7 1.03×10−1 1.5 0.8 0.6 1.8 300 102, 116 0.2, 0.4 +0.7,+1.0 1.11×10−1 1.5 0.8 0.6 1.7

296 102, 116 0.2, 0.4 −0.7,−0.4 1.33×10−1 1.2 0.6 0.4 1.4 299 102, 116 0.2, 0.4 +0.4,+0.7 1.39×10−1 1.2 0.5 0.4 1.4

297 102, 116 0.2, 0.4 −0.4, 0.0 1.14×10−1 1.2 0.5 0.4 1.3 298 102, 116 0.2, 0.4 0.0,+0.4 1.19×10−1 1.2 0.5 0.4 1.3

301 102, 116 0.4, 0.6 −1.0,−0.7 1.01×10−1 1.5 0.8 0.6 1.8 306 102, 116 0.4, 0.6 +0.7,+1.0 1.13×10−1 1.4 0.7 0.6 1.7

302 102, 116 0.4, 0.6 −0.7,−0.4 1.25×10−1 1.3 0.7 0.4 1.5 305 102, 116 0.4, 0.6 +0.4,+0.7 1.40×10−1 1.2 0.6 0.4 1.4

303 102, 116 0.4, 0.6 −0.4, 0.0 1.12×10−1 1.1 0.5 0.4 1.3 304 102, 116 0.4, 0.6 0.0,+0.4 1.15×10−1 1.1 0.5 0.3 1.3

307 102, 116 0.6, 0.8 −1.0,−0.7 9.95×10−2 1.4 0.8 0.7 1.8 312 102, 116 0.6, 0.8 +0.7,+1.0 1.14×10−1 1.4 0.7 0.7 1.7

308 102, 116 0.6, 0.8 −0.7,−0.4 1.21×10−1 1.4 0.7 0.5 1.6 311 102, 116 0.6, 0.8 +0.4,+0.7 1.40×10−1 1.3 0.7 0.5 1.6

309 102, 116 0.6, 0.8 −0.4, 0.0 1.12×10−1 1.1 0.5 0.4 1.3 310 102, 116 0.6, 0.8 0.0,+0.4 1.15×10−1 1.1 0.5 0.3 1.3

313 102, 116 0.8, 1.0 −1.0,−0.7 8.72×10−2 1.6 0.9 0.6 1.9 318 102, 116 0.8, 1.0 +0.7,+1.0 1.11×10−1 1.4 0.8 0.6 1.7

314 102, 116 0.8, 1.0 −0.7,−0.4 1.19×10−1 1.3 0.7 0.5 1.6 317 102, 116 0.8, 1.0 +0.4,+0.7 1.47×10−1 1.2 0.6 0.5 1.4

315 102, 116 0.8, 1.0 −0.4, 0.0 1.07×10−1 1.1 0.7 0.4 1.4 316 102, 116 0.8, 1.0 0.0,+0.4 1.18×10−1 1.0 0.5 0.4 1.2

319 102, 116 1.0, 1.2 −1.0,−0.7 6.74×10−2 1.7 1.0 0.7 2.1 324 102, 116 1.0, 1.2 +0.7,+1.0 9.14×10−2 1.5 0.8 0.6 1.8

320 102, 116 1.0, 1.2 −0.7,−0.4 1.13×10−1 1.2 0.7 0.5 1.5 323 102, 116 1.0, 1.2 +0.4,+0.7 1.49×10−1 1.1 0.6 0.5 1.3

321 102, 116 1.0, 1.2 −0.4, 0.0 1.06×10−1 1.1 0.6 0.5 1.4 322 102, 116 1.0, 1.2 0.0,+0.4 1.18×10−1 1.1 0.5 0.5 1.3

325 102, 116 1.2, 1.4 −1.0,−0.7 4.21×10−2 1.9 1.2 1.1 2.5 330 102, 116 1.2, 1.4 +0.7,+1.0 5.84×10−2 1.7 1.0 0.8 2.1

326 102, 116 1.2, 1.4 −0.7,−0.4 1.09×10−1 1.2 0.6 0.6 1.5 329 102, 116 1.2, 1.4 +0.4,+0.7 1.50×10−1 1.0 0.6 0.5 1.3

327 102, 116 1.2, 1.4 −0.4, 0.0 1.01×10−1 1.1 0.6 0.6 1.4 328 102, 116 1.2, 1.4 0.0,+0.4 1.19×10−1 1.1 0.7 0.7 1.5

331 102, 116 1.4, 1.6 −1.0,−0.7 1.39×10−2 2.5 1.9 1.5 3.5 336 102, 116 1.4, 1.6 +0.7,+1.0 2.25×10−2 2.2 1.6 1.5 3.1

332 102, 116 1.4, 1.6 −0.7,−0.4 9.53×10−2 1.2 0.7 0.6 1.5 335 102, 116 1.4, 1.6 +0.4,+0.7 1.37×10−1 1.1 0.6 0.6 1.3

333 102, 116 1.4, 1.6 −0.4, 0.0 9.77×10−2 1.1 0.6 0.7 1.5 334 102, 116 1.4, 1.6 0.0,+0.4 1.17×10−1 1.0 0.6 0.6 1.3

337 102, 116 1.6, 1.8 −1.0,−0.7 2.35×10−3 4.6 4.9 2.8 7.3 342 102, 116 1.6, 1.8 +0.7,+1.0 4.19×10−3 4.2 3.8 2.2 6.1

338 102, 116 1.6, 1.8 −0.7,−0.4 6.43×10−2 1.2 0.9 1.0 1.8 341 102, 116 1.6, 1.8 +0.4,+0.7 1.01×10−1 1.1 0.7 0.9 1.6

339 102, 116 1.6, 1.8 −0.4, 0.0 9.25×10−2 1.1 0.7 1.0 1.6 340 102, 116 1.6, 1.8 0.0,+0.4 1.16×10−1 1.0 0.7 0.8 1.5

343 102, 116 1.8, 2.0 −1.0,−0.7 4.34×10−4 6.1 11.4 3.4 13.4 348 102, 116 1.8, 2.0 +0.7,+1.0 8.65×10−4 8.2 9.1 2.9 12.6

344 102, 116 1.8, 2.0 −0.7,−0.4 2.13×10−2 1.7 1.5 1.6 2.8 347 102, 116 1.8, 2.0 +0.4,+0.7 3.56×10−2 1.5 1.3 1.5 2.5

345 102, 116 1.8, 2.0 −0.4, 0.0 8.89×10−2 1.0 0.6 0.9 1.5 346 102, 116 1.8, 2.0 0.0,+0.4 1.14×10−1 0.9 0.6 0.9 1.4

349 102, 116 2.0, 2.2 −1.0,−0.7 — — — — — 354 102, 116 2.0, 2.2 +0.7,+1.0 — — — — —

350 102, 116 2.0, 2.2 −0.7,−0.4 1.39×10−3 3.3 5.6 3.5 7.4 353 102, 116 2.0, 2.2 +0.4,+0.7 2.22×10−3 3.6 4.9 2.2 6.5

351 102, 116 2.0, 2.2 −0.4, 0.0 6.28×10−2 1.0 0.8 1.3 1.8 352 102, 116 2.0, 2.2 0.0,+0.4 7.95×10−2 0.9 0.7 1.1 1.6

355 102, 116 2.2, 2.4 −1.0,−0.7 — — — — — 360 102, 116 2.2, 2.4 +0.7,+1.0 — — — — —

356 102, 116 2.2, 2.4 −0.7,−0.4 — — — — — 359 102, 116 2.2, 2.4 +0.4,+0.7 — — — — —

357 102, 116 2.2, 2.4 −0.4, 0.0 2.17×10−2 1.4 1.4 1.9 2.7 358 102, 116 2.2, 2.4 0.0,+0.4 2.45×10−2 1.3 1.3 1.6 2.5

361 116, 150 0.0, 0.2 −1.0,−0.7 2.39×10−2 2.4 1.1 1.4 3.0 366 116, 150 0.0, 0.2 +0.7,+1.0 2.59×10−2 2.2 1.0 1.3 2.7

362 116, 150 0.0, 0.2 −0.7,−0.4 2.59×10−2 1.9 0.6 0.8 2.1 365 116, 150 0.0, 0.2 +0.4,+0.7 2.69×10−2 1.9 0.6 0.7 2.1

363 116, 150 0.0, 0.2 −0.4, 0.0 2.16×10−2 1.9 0.9 0.6 2.2 364 116, 150 0.0, 0.2 0.0,+0.4 2.25×10−2 1.8 0.7 0.6 2.0

367 116, 150 0.2, 0.4 −1.0,−0.7 2.29×10−2 2.3 1.2 1.5 3.0 372 116, 150 0.2, 0.4 +0.7,+1.0 2.54×10−2 2.3 1.2 1.3 2.8

368 116, 150 0.2, 0.4 −0.7,−0.4 2.45×10−2 2.1 0.8 0.8 2.4 371 116, 150 0.2, 0.4 +0.4,+0.7 2.88×10−2 1.9 0.6 0.7 2.1

369 116, 150 0.2, 0.4 −0.4, 0.0 2.10×10−2 1.9 0.6 0.7 2.1 370 116, 150 0.2, 0.4 0.0,+0.4 2.25×10−2 1.8 0.5 0.6 2.0

373 116, 150 0.4, 0.6 −1.0,−0.7 2.11×10−2 2.4 1.0 1.6 3.1 378 116, 150 0.4, 0.6 +0.7,+1.0 2.64×10−2 2.3 1.1 1.3 2.8

374 116, 150 0.4, 0.6 −0.7,−0.4 2.44×10−2 2.1 0.7 0.8 2.4 377 116, 150 0.4, 0.6 +0.4,+0.7 2.81×10−2 2.0 0.7 0.7 2.2

375 116, 150 0.4, 0.6 −0.4, 0.0 2.10×10−2 1.8 0.7 0.6 2.0 376 116, 150 0.4, 0.6 0.0,+0.4 2.26×10−2 1.7 0.5 0.6 1.9

379 116, 150 0.6, 0.8 −1.0,−0.7 2.07×10−2 2.4 1.0 1.5 3.0 384 116, 150 0.6, 0.8 +0.7,+1.0 2.69×10−2 2.0 0.8 1.1 2.4

380 116, 150 0.6, 0.8 −0.7,−0.4 2.32×10−2 2.3 0.8 0.9 2.5 383 116, 150 0.6, 0.8 +0.4,+0.7 2.93×10−2 2.0 0.8 0.7 2.3

381 116, 150 0.6, 0.8 −0.4, 0.0 2.06×10−2 1.8 0.6 0.6 2.0 382 116, 150 0.6, 0.8 0.0,+0.4 2.36×10−2 1.7 0.5 0.5 1.9

385 116, 150 0.8, 1.0 −1.0,−0.7 1.69×10−2 2.6 1.2 1.5 3.3 390 116, 150 0.8, 1.0 +0.7,+1.0 2.37×10−2 2.1 0.9 1.1 2.6

386 116, 150 0.8, 1.0 −0.7,−0.4 2.18×10−2 2.3 0.9 0.8 2.6 389 116, 150 0.8, 1.0 +0.4,+0.7 3.03×10−2 1.9 0.7 0.6 2.1

387 116, 150 0.8, 1.0 −0.4, 0.0 2.08×10−2 1.8 0.6 0.6 2.0 388 116, 150 0.8, 1.0 0.0,+0.4 2.30×10−2 1.7 0.6 0.5 1.9

391 116, 150 1.0, 1.2 −1.0,−0.7 1.21×10−2 3.1 1.6 1.3 3.7 396 116, 150 1.0, 1.2 +0.7,+1.0 1.90×10−2 2.4 1.2 1.1 2.9

392 116, 150 1.0, 1.2 −0.7,−0.4 1.99×10−2 2.2 0.9 0.8 2.5 395 116, 150 1.0, 1.2 +0.4,+0.7 3.07×10−2 1.8 0.6 0.6 2.0

393 116, 150 1.0, 1.2 −0.4, 0.0 2.05×10−2 1.9 0.8 0.6 2.1 394 116, 150 1.0, 1.2 0.0,+0.4 2.39×10−2 1.7 0.6 0.6 1.9

397 116, 150 1.2, 1.4 −1.0,−0.7 8.16×10−3 3.6 1.5 1.3 4.1 402 116, 150 1.2, 1.4 +0.7,+1.0 1.38×10−2 2.7 1.0 0.8 3.0

398 116, 150 1.2, 1.4 −0.7,−0.4 1.82×10−2 2.2 1.1 0.8 2.6 401 116, 150 1.2, 1.4 +0.4,+0.7 3.11×10−2 1.7 0.7 0.6 1.9

399 116, 150 1.2, 1.4 −0.4, 0.0 1.87×10−2 2.0 0.8 0.6 2.2 400 116, 150 1.2, 1.4 0.0,+0.4 2.39×10−2 1.8 0.7 0.6 2.0

403 116, 150 1.4, 1.6 −1.0,−0.7 2.40×10−3 6.3 2.9 2.0 7.2 408 116, 150 1.4, 1.6 +0.7,+1.0 4.68×10−3 4.4 2.5 1.2 5.2

404 116, 150 1.4, 1.6 −0.7,−0.4 1.64×10−2 2.2 0.9 0.8 2.6 407 116, 150 1.4, 1.6 +0.4,+0.7 2.96×10−2 1.7 0.7 0.6 1.9

405 116, 150 1.4, 1.6 −0.4, 0.0 1.79×10−2 2.0 0.9 0.7 2.3 406 116, 150 1.4, 1.6 0.0,+0.4 2.30×10−2 1.7 0.8 0.5 2.0

409 116, 150 1.6, 1.8 −1.0,−0.7 3.00×10−4 70.7 18.8 4.6 73.3 414 116, 150 1.6, 1.8 +0.7,+1.0 9.12×10−4 9.2 7.6 2.1 12.2

410 116, 150 1.6, 1.8 −0.7,−0.4 1.09×10−2 2.8 1.2 0.9 3.1 413 116, 150 1.6, 1.8 +0.4,+0.7 2.23×10−2 2.0 0.9 0.7 2.3

411 116, 150 1.6, 1.8 −0.4, 0.0 1.72×10−2 2.0 0.9 0.7 2.3 412 116, 150 1.6, 1.8 0.0,+0.4 2.36×10−2 1.8 0.9 0.6 2.0

415 116, 150 1.8, 2.0 −1.0,−0.7 — — — — — 420 116, 150 1.8, 2.0 +0.7,+1.0 — — — — —

416 116, 150 1.8, 2.0 −0.7,−0.4 3.51×10−3 4.7 2.7 1.8 5.7 419 116, 150 1.8, 2.0 +0.4,+0.7 7.66×10−3 3.5 2.0 1.3 4.2

417 116, 150 1.8, 2.0 −0.4, 0.0 1.66×10−2 2.1 1.2 0.8 2.6 418 116, 150 1.8, 2.0 0.0,+0.4 2.33×10−2 1.8 1.0 0.7 2.2

421 116, 150 2.0, 2.2 −1.0,−0.7 — — — — — 426 116, 150 2.0, 2.2 +0.7,+1.0 — — — — —

422 116, 150 2.0, 2.2 −0.7,−0.4 2.20×10−4 8.3 8.9 6.0 13.5 425 116, 150 2.0, 2.2 +0.4,+0.7 4.66×10−4 9.7 7.6 3.8 12.9

423 116, 150 2.0, 2.2 −0.4, 0.0 1.20×10−2 2.1 1.0 0.9 2.5 424 116, 150 2.0, 2.2 0.0,+0.4 1.65×10−2 1.9 0.9 0.8 2.2

427 116, 150 2.2, 2.4 −1.0,−0.7 — — — — — 432 116, 150 2.2, 2.4 +0.7,+1.0 — — — — —

428 116, 150 2.2, 2.4 −0.7,−0.4 — — — — — 431 116, 150 2.2, 2.4 +0.4,+0.7 — — — — —

429 116, 150 2.2, 2.4 −0.4, 0.0 3.94×10−3 3.8 2.5 1.9 4.9 430 116, 150 2.2, 2.4 0.0,+0.4 4.75×10−3 3.5 2.2 1.9 4.5
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Bin m`` |y``| cos θ∗ d3σ δstat δsystunc δsystcor δtotal Bin m`` |y``| cos θ∗ d3σ δstat δsystunc δsystcor δtotal

[GeV] [pb/GeV] [%] [%] [%] [%] [GeV] [pb/GeV] [%] [%] [%] [%]

433 150, 200 0.0, 0.2 −1.0,−0.7 6.26×10−3 4.2 1.6 2.8 5.3 438 150, 200 0.0, 0.2 +0.7,+1.0 6.55×10−3 4.3 1.7 2.8 5.4

434 150, 200 0.0, 0.2 −0.7,−0.4 5.56×10−3 3.7 1.2 1.6 4.2 437 150, 200 0.0, 0.2 +0.4,+0.7 5.91×10−3 3.6 1.3 1.6 4.1

435 150, 200 0.0, 0.2 −0.4, 0.0 4.77×10−3 3.4 1.3 1.2 3.8 436 150, 200 0.0, 0.2 0.0,+0.4 4.76×10−3 3.5 0.7 1.1 3.7

439 150, 200 0.2, 0.4 −1.0,−0.7 5.66×10−3 4.6 1.7 3.2 5.8 444 150, 200 0.2, 0.4 +0.7,+1.0 6.67×10−3 4.0 2.0 2.7 5.2

440 150, 200 0.2, 0.4 −0.7,−0.4 5.41×10−3 3.9 1.9 1.6 4.7 443 150, 200 0.2, 0.4 +0.4,+0.7 5.96×10−3 3.6 1.9 2.5 4.8

441 150, 200 0.2, 0.4 −0.4, 0.0 4.81×10−3 3.4 0.9 1.2 3.7 442 150, 200 0.2, 0.4 0.0,+0.4 4.97×10−3 3.2 1.0 1.2 3.6

445 150, 200 0.4, 0.6 −1.0,−0.7 4.73×10−3 4.8 2.2 3.3 6.2 450 150, 200 0.4, 0.6 +0.7,+1.0 7.08×10−3 3.7 1.3 2.3 4.6

446 150, 200 0.4, 0.6 −0.7,−0.4 5.52×10−3 3.9 1.0 1.6 4.3 449 150, 200 0.4, 0.6 +0.4,+0.7 6.26×10−3 3.6 1.2 1.4 4.0

447 150, 200 0.4, 0.6 −0.4, 0.0 4.56×10−3 3.4 0.8 1.1 3.7 448 150, 200 0.4, 0.6 0.0,+0.4 4.79×10−3 3.4 1.9 1.1 4.1

451 150, 200 0.6, 0.8 −1.0,−0.7 4.51×10−3 4.7 1.9 3.0 5.9 456 150, 200 0.6, 0.8 +0.7,+1.0 6.21×10−3 3.8 1.3 2.2 4.6

452 150, 200 0.6, 0.8 −0.7,−0.4 5.18×10−3 4.2 1.5 1.7 4.8 455 150, 200 0.6, 0.8 +0.4,+0.7 6.90×10−3 3.5 0.8 1.2 3.8

453 150, 200 0.6, 0.8 −0.4, 0.0 4.26×10−3 3.4 1.2 1.2 3.8 454 150, 200 0.6, 0.8 0.0,+0.4 5.26×10−3 3.1 0.6 1.0 3.3

457 150, 200 0.8, 1.0 −1.0,−0.7 3.32×10−3 5.4 2.3 3.2 6.7 462 150, 200 0.8, 1.0 +0.7,+1.0 6.01×10−3 3.8 1.5 1.8 4.5

458 150, 200 0.8, 1.0 −0.7,−0.4 4.91×10−3 4.3 1.1 1.7 4.8 461 150, 200 0.8, 1.0 +0.4,+0.7 6.43×10−3 3.7 1.3 1.3 4.1

459 150, 200 0.8, 1.0 −0.4, 0.0 4.28×10−3 3.5 0.8 1.1 3.7 460 150, 200 0.8, 1.0 0.0,+0.4 5.18×10−3 3.1 0.7 0.9 3.3

463 150, 200 1.0, 1.2 −1.0,−0.7 2.39×10−3 6.4 2.4 3.0 7.5 468 150, 200 1.0, 1.2 +0.7,+1.0 4.66×10−3 4.2 1.8 1.8 4.9

464 150, 200 1.0, 1.2 −0.7,−0.4 4.03×10−3 4.4 1.7 1.8 5.1 467 150, 200 1.0, 1.2 +0.4,+0.7 6.99×10−3 3.2 1.1 1.0 3.5

465 150, 200 1.0, 1.2 −0.4, 0.0 4.13×10−3 3.7 1.2 1.3 4.1 466 150, 200 1.0, 1.2 0.0,+0.4 5.40×10−3 3.1 1.2 0.9 3.5

469 150, 200 1.2, 1.4 −1.0,−0.7 1.46×10−3 8.1 4.1 2.8 9.5 474 150, 200 1.2, 1.4 +0.7,+1.0 3.19×10−3 5.0 2.4 1.5 5.7

470 150, 200 1.2, 1.4 −0.7,−0.4 3.80×10−3 4.4 2.1 1.8 5.2 473 150, 200 1.2, 1.4 +0.4,+0.7 7.42×10−3 3.0 1.0 0.9 3.3

471 150, 200 1.2, 1.4 −0.4, 0.0 4.04×10−3 3.8 1.3 1.2 4.2 472 150, 200 1.2, 1.4 0.0,+0.4 5.48×10−3 3.3 0.8 0.9 3.5

475 150, 200 1.4, 1.6 −1.0,−0.7 4.78×10−4 24.4 14.5 3.2 28.6 480 150, 200 1.4, 1.6 +0.7,+1.0 1.06×10−3 8.4 5.8 2.2 10.4

476 150, 200 1.4, 1.6 −0.7,−0.4 3.12×10−3 4.9 2.4 2.0 5.9 479 150, 200 1.4, 1.6 +0.4,+0.7 6.69×10−3 3.1 2.0 0.9 3.8

477 150, 200 1.4, 1.6 −0.4, 0.0 3.84×10−3 3.8 1.4 1.2 4.2 478 150, 200 1.4, 1.6 0.0,+0.4 5.48×10−3 3.1 1.1 0.8 3.4

481 150, 200 1.6, 1.8 −1.0,−0.7 — — — — — 486 150, 200 1.6, 1.8 +0.7,+1.0 — — — — —

482 150, 200 1.6, 1.8 −0.7,−0.4 1.96×10−3 5.9 2.0 2.0 6.5 485 150, 200 1.6, 1.8 +0.4,+0.7 5.25×10−3 3.5 1.2 0.9 3.8

483 150, 200 1.6, 1.8 −0.4, 0.0 3.65×10−3 3.9 1.6 1.5 4.5 484 150, 200 1.6, 1.8 0.0,+0.4 5.22×10−3 3.2 1.1 0.8 3.5

487 150, 200 1.8, 2.0 −1.0,−0.7 — — — — — 492 150, 200 1.8, 2.0 +0.7,+1.0 — — — — —

488 150, 200 1.8, 2.0 −0.7,−0.4 5.67×10−4 11.8 4.8 4.4 13.4 491 150, 200 1.8, 2.0 +0.4,+0.7 1.62×10−3 6.4 1.9 1.6 6.9

489 150, 200 1.8, 2.0 −0.4, 0.0 3.36×10−3 3.8 0.9 1.0 4.0 490 150, 200 1.8, 2.0 0.0,+0.4 5.16×10−3 3.0 0.9 0.7 3.2

493 150, 200 2.0, 2.2 −1.0,−0.7 — — — — — 498 150, 200 2.0, 2.2 +0.7,+1.0 — — — — —

494 150, 200 2.0, 2.2 −0.7,−0.4 — — — — — 497 150, 200 2.0, 2.2 +0.4,+0.7 — — — — —

495 150, 200 2.0, 2.2 −0.4, 0.0 2.47×10−3 4.4 1.7 1.3 4.9 496 150, 200 2.0, 2.2 0.0,+0.4 3.68×10−3 3.5 1.2 0.8 3.8

499 150, 200 2.2, 2.4 −1.0,−0.7 — — — — — 504 150, 200 2.2, 2.4 +0.7,+1.0 — — — — —

500 150, 200 2.2, 2.4 −0.7,−0.4 — — — — — 503 150, 200 2.2, 2.4 +0.4,+0.7 — — — — —

501 150, 200 2.2, 2.4 −0.4, 0.0 8.93×10−4 7.0 2.0 1.7 7.5 502 150, 200 2.2, 2.4 0.0,+0.4 1.15×10−3 6.3 1.8 1.3 6.6

Table 7. The combined Born-level triple-differential cross section d3σ/dm``d|y``|d cos θ∗. The

measurements are listed together with the statistical (δstat), uncorrelated systematic (δsyst
unc ), corre-

lated systematic (δsyst
cor ), and total (δtotal) uncertainties. The luminosity uncertainty of 1.9% is not

shown and not included in the overall systematic and total uncertainties.
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Bin mee |yee| cos θ∗ d3σ δstat δsystunc δsystcor δtotal Bin mee |yee| cos θ∗ d3σ δstat δsystunc δsystcor δtotal

[GeV] [pb/GeV] [%] [%] [%] [%] [GeV] [pb/GeV] [%] [%] [%] [%]

1 66, 80 1.2, 1.6 −1.0,−0.7 1.06×10−2 6.4 8.1 12.4 16.1 6 66, 80 1.2, 1.6 +0.7,+1.0 6.29×10−3 7.8 11.0 16.1 21.0

2 66, 80 1.2, 1.6 −0.7,−0.4 9.24×10−4 16.2 15.4 15.3 27.1 5 66, 80 1.2, 1.6 +0.4,+0.7 6.97×10−4 15.7 13.1 15.5 25.7

3 66, 80 1.2, 1.6 −0.4, 0.0 — — — — — 4 66, 80 1.2, 1.6 0.0,+0.4 — — — — —

7 66, 80 1.6, 2.0 −1.0,−0.7 3.89×10−2 3.9 3.8 7.0 8.9 12 66, 80 1.6, 2.0 +0.7,+1.0 2.24×10−2 5.1 6.7 10.4 13.3

8 66, 80 1.6, 2.0 −0.7,−0.4 6.54×10−2 2.8 2.6 5.1 6.4 11 66, 80 1.6, 2.0 +0.4,+0.7 4.27×10−2 3.2 3.5 6.1 7.8

9 66, 80 1.6, 2.0 −0.4, 0.0 — — — — — 10 66, 80 1.6, 2.0 0.0,+0.4 — — — — —

13 66, 80 2.0, 2.4 −1.0,−0.7 4.28×10−2 6.2 6.6 13.1 16.0 18 66, 80 2.0, 2.4 +0.7,+1.0 2.08×10−2 7.3 8.6 25.4 27.8

14 66, 80 2.0, 2.4 −0.7,−0.4 1.89×10−1 2.0 2.1 4.4 5.2 17 66, 80 2.0, 2.4 +0.4,+0.7 9.97×10−2 2.6 3.4 6.0 7.3

15 66, 80 2.0, 2.4 −0.4, 0.0 5.10×10−2 2.5 2.5 5.4 6.5 16 66, 80 2.0, 2.4 0.0,+0.4 3.55×10−2 2.8 3.2 6.3 7.6

19 66, 80 2.4, 2.8 −1.0,−0.7 3.91×10−2 3.5 3.8 19.5 20.2 24 66, 80 2.4, 2.8 +0.7,+1.0 1.65×10−2 4.3 5.7 26.9 27.9

20 66, 80 2.4, 2.8 −0.7,−0.4 1.89×10−1 2.2 2.2 11.3 11.8 23 66, 80 2.4, 2.8 +0.4,+0.7 8.98×10−2 2.7 3.1 17.5 18.0

21 66, 80 2.4, 2.8 −0.4, 0.0 8.40×10−2 2.3 1.9 2.4 3.8 22 66, 80 2.4, 2.8 0.0,+0.4 5.24×10−2 2.8 2.7 3.9 5.5

25 66, 80 2.8, 3.6 −1.0,−0.7 2.14×10−2 3.0 3.1 18.4 18.9 30 66, 80 2.8, 3.6 +0.7,+1.0 7.09×10−3 3.8 7.4 32.7 33.8

26 66, 80 2.8, 3.6 −0.7,−0.4 4.84×10−2 2.1 1.9 10.3 10.7 29 66, 80 2.8, 3.6 +0.4,+0.7 1.79×10−2 2.8 3.2 15.2 15.7

27 66, 80 2.8, 3.6 −0.4, 0.0 — — — — — 28 66, 80 2.8, 3.6 0.0,+0.4 — — — — —

31 80, 91 1.2, 1.6 −1.0,−0.7 5.20×10−1 0.9 0.7 2.4 2.7 36 80, 91 1.2, 1.6 +0.7,+1.0 5.29×10−1 0.9 0.7 2.6 2.8

32 80, 91 1.2, 1.6 −0.7,−0.4 3.07×10−2 3.6 2.6 3.4 5.6 35 80, 91 1.2, 1.6 +0.4,+0.7 3.07×10−2 3.5 2.8 3.6 5.8

33 80, 91 1.2, 1.6 −0.4, 0.0 — — — — — 34 80, 91 1.2, 1.6 0.0,+0.4 — — — — —

37 80, 91 1.6, 2.0 −1.0,−0.7 1.26 0.7 0.4 2.7 2.8 42 80, 91 1.6, 2.0 +0.7,+1.0 1.28 0.6 0.4 2.6 2.7

38 80, 91 1.6, 2.0 −0.7,−0.4 1.04 0.7 0.5 1.7 1.9 41 80, 91 1.6, 2.0 +0.4,+0.7 1.04 0.7 0.5 1.7 1.9

39 80, 91 1.6, 2.0 −0.4, 0.0 5.59×10−3 7.9 4.4 4.4 10.0 40 80, 91 1.6, 2.0 0.0,+0.4 5.05×10−3 7.4 4.6 3.5 9.4

43 80, 91 2.0, 2.4 −1.0,−0.7 1.28 0.9 0.8 2.7 2.9 48 80, 91 2.0, 2.4 +0.7,+1.0 1.24 0.9 0.7 2.6 2.9

44 80, 91 2.0, 2.4 −0.7,−0.4 2.71 0.5 0.4 1.4 1.5 47 80, 91 2.0, 2.4 +0.4,+0.7 2.66 0.5 0.4 1.5 1.6

45 80, 91 2.0, 2.4 −0.4, 0.0 7.32×10−1 0.6 0.6 1.8 2.0 46 80, 91 2.0, 2.4 0.0,+0.4 7.23×10−1 0.6 0.6 1.9 2.1

49 80, 91 2.4, 2.8 −1.0,−0.7 1.14 0.7 0.6 3.2 3.4 54 80, 91 2.4, 2.8 +0.7,+1.0 1.14 0.6 0.6 2.7 2.9

50 80, 91 2.4, 2.8 −0.7,−0.4 2.55 0.6 0.5 2.4 2.5 53 80, 91 2.4, 2.8 +0.4,+0.7 2.52 0.6 0.5 2.5 2.6

51 80, 91 2.4, 2.8 −0.4, 0.0 1.10 0.6 0.5 1.7 1.9 52 80, 91 2.4, 2.8 0.0,+0.4 1.10 0.6 0.5 1.7 1.9

55 80, 91 2.8, 3.6 −1.0,−0.7 6.05×10−1 0.6 0.6 4.1 4.2 60 80, 91 2.8, 3.6 +0.7,+1.0 5.97×10−1 0.6 0.6 4.0 4.1

56 80, 91 2.8, 3.6 −0.7,−0.4 5.95×10−1 0.5 0.5 4.6 4.6 59 80, 91 2.8, 3.6 +0.4,+0.7 5.84×10−1 0.5 0.5 4.5 4.5

57 80, 91 2.8, 3.6 −0.4, 0.0 — — — — — 58 80, 91 2.8, 3.6 0.0,+0.4 — — — — —

61 91, 102 1.2, 1.6 −1.0,−0.7 6.53×10−1 0.8 0.6 2.2 2.4 66 91, 102 1.2, 1.6 +0.7,+1.0 7.55×10−1 0.8 0.6 2.3 2.5

62 91, 102 1.2, 1.6 −0.7,−0.4 3.64×10−2 3.5 2.8 2.7 5.2 65 91, 102 1.2, 1.6 +0.4,+0.7 3.88×10−2 3.5 3.0 3.2 5.6

63 91, 102 1.2, 1.6 −0.4, 0.0 — — — — — 64 91, 102 1.2, 1.6 0.0,+0.4 — — — — —

67 91, 102 1.6, 2.0 −1.0,−0.7 1.52 0.6 0.4 2.2 2.3 72 91, 102 1.6, 2.0 +0.7,+1.0 1.78 0.6 0.4 2.1 2.3

68 91, 102 1.6, 2.0 −0.7,−0.4 1.13 0.7 0.5 1.5 1.7 71 91, 102 1.6, 2.0 +0.4,+0.7 1.29 0.7 0.4 1.4 1.6

69 91, 102 1.6, 2.0 −0.4, 0.0 6.15×10−3 7.6 6.1 6.4 11.6 70 91, 102 1.6, 2.0 0.0,+0.4 5.73×10−3 8.0 6.7 6.3 12.2

73 91, 102 2.0, 2.4 −1.0,−0.7 1.48 0.9 0.7 2.3 2.6 78 91, 102 2.0, 2.4 +0.7,+1.0 1.81 0.8 0.6 2.2 2.4

74 91, 102 2.0, 2.4 −0.7,−0.4 2.94 0.5 0.3 1.6 1.7 77 91, 102 2.0, 2.4 +0.4,+0.7 3.48 0.4 0.3 1.5 1.6

75 91, 102 2.0, 2.4 −0.4, 0.0 8.06×10−1 0.7 0.6 1.6 1.9 76 91, 102 2.0, 2.4 0.0,+0.4 8.97×10−1 0.6 0.6 1.5 1.7

79 91, 102 2.4, 2.8 −1.0,−0.7 1.25 0.7 0.6 2.3 2.5 84 91, 102 2.4, 2.8 +0.7,+1.0 1.65 0.6 0.5 2.3 2.4

80 91, 102 2.4, 2.8 −0.7,−0.4 2.63 0.6 0.5 2.0 2.1 83 91, 102 2.4, 2.8 +0.4,+0.7 3.33 0.5 0.5 1.8 2.0

81 91, 102 2.4, 2.8 −0.4, 0.0 1.24 0.6 1.0 1.7 2.1 82 91, 102 2.4, 2.8 0.0,+0.4 1.41 0.6 0.8 1.5 1.8

85 91, 102 2.8, 3.6 −1.0,−0.7 6.54×10−1 0.6 0.6 3.0 3.1 90 91, 102 2.8, 3.6 +0.7,+1.0 9.09×10−1 0.5 0.6 2.9 3.0

86 91, 102 2.8, 3.6 −0.7,−0.4 5.66×10−1 0.6 0.5 3.3 3.4 89 91, 102 2.8, 3.6 +0.4,+0.7 7.57×10−1 0.5 0.4 2.5 2.6

87 91, 102 2.8, 3.6 −0.4, 0.0 — — — — — 88 91, 102 2.8, 3.6 0.0,+0.4 — — — — —

91 102, 116 1.2, 1.6 −1.0,−0.7 3.09×10−2 4.6 6.3 11.4 13.8 96 102, 116 1.2, 1.6 +0.7,+1.0 5.49×10−2 3.3 4.0 6.5 8.3

92 102, 116 1.2, 1.6 −0.7,−0.4 1.06×10−3 23.7 22.9 33.4 46.9 95 102, 116 1.2, 1.6 +0.4,+0.7 1.64×10−3 20.6 29.7 24.2 43.5

93 102, 116 1.2, 1.6 −0.4, 0.0 — — — — — 94 102, 116 1.2, 1.6 0.0,+0.4 — — — — —

97 102, 116 1.6, 2.0 −1.0,−0.7 5.20×10−2 3.8 4.0 8.5 10.1 102 102, 116 1.6, 2.0 +0.7,+1.0 1.05×10−1 2.6 2.4 5.0 6.2

98 102, 116 1.6, 2.0 −0.7,−0.4 3.15×10−2 4.4 4.4 4.9 8.0 101 102, 116 1.6, 2.0 +0.4,+0.7 5.32×10−2 3.3 3.0 3.5 5.7

99 102, 116 1.6, 2.0 −0.4, 0.0 — — — — — 100 102, 116 1.6, 2.0 0.0,+0.4 — — — — —

103 102, 116 2.0, 2.4 −1.0,−0.7 4.24×10−2 5.3 5.0 15.5 17.1 108 102, 116 2.0, 2.4 +0.7,+1.0 1.06×10−1 3.2 3.1 7.8 9.0

104 102, 116 2.0, 2.4 −0.7,−0.4 6.96×10−2 3.2 3.5 5.9 7.6 107 102, 116 2.0, 2.4 +0.4,+0.7 1.38×10−1 2.4 2.2 4.4 5.4

105 102, 116 2.0, 2.4 −0.4, 0.0 2.42×10−2 4.0 4.4 5.9 8.4 106 102, 116 2.0, 2.4 0.0,+0.4 3.15×10−2 3.5 3.5 4.0 6.3

109 102, 116 2.4, 2.8 −1.0,−0.7 3.05×10−2 3.8 4.6 22.0 22.8 114 102, 116 2.4, 2.8 +0.7,+1.0 9.69×10−2 2.2 2.4 10.5 11.0

110 102, 116 2.4, 2.8 −0.7,−0.4 5.28×10−2 4.3 4.5 11.4 12.9 113 102, 116 2.4, 2.8 +0.4,+0.7 1.36×10−1 2.7 2.6 8.4 9.2

111 102, 116 2.4, 2.8 −0.4, 0.0 3.06×10−2 4.0 5.1 6.9 9.5 112 102, 116 2.4, 2.8 0.0,+0.4 5.19×10−2 3.1 3.3 4.8 6.6

115 102, 116 2.8, 3.6 −1.0,−0.7 1.44×10−2 3.4 3.9 35.9 36.3 120 102, 116 2.8, 3.6 +0.7,+1.0 5.18×10−2 2.0 1.8 19.3 19.4

116 102, 116 2.8, 3.6 −0.7,−0.4 1.00×10−2 4.2 4.6 24.8 25.5 119 102, 116 2.8, 3.6 +0.4,+0.7 3.27×10−2 2.4 2.1 14.2 14.6

117 102, 116 2.8, 3.6 −0.4, 0.0 — — — — — 118 102, 116 2.8, 3.6 0.0,+0.4 — — — — —
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Bin mee |yee| cos θ∗ d3σ δstat δsystunc δsystcor δtotal Bin mee |yee| cos θ∗ d3σ δstat δsystunc δsystcor δtotal

[GeV] [pb/GeV] [%] [%] [%] [%] [GeV] [pb/GeV] [%] [%] [%] [%]

121 116, 150 1.2, 1.6 −1.0,−0.7 6.38×10−3 9.4 13.8 36.2 39.9 126 116, 150 1.2, 1.6 +0.7,+1.0 1.65×10−2 4.7 5.6 14.4 16.1

122 116, 150 1.2, 1.6 −0.7,−0.4 — — — — — 125 116, 150 1.2, 1.6 +0.4,+0.7 4.05×10−4 33.3 55.4 43.5 78.0

123 116, 150 1.2, 1.6 −0.4, 0.0 — — — — — 124 116, 150 1.2, 1.6 0.0,+0.4 — — — — —

127 116, 150 1.6, 2.0 −1.0,−0.7 9.56×10−3 8.4 11.4 29.7 32.9 132 116, 150 1.6, 2.0 +0.7,+1.0 2.91×10−2 3.9 6.2 9.9 12.3

128 116, 150 1.6, 2.0 −0.7,−0.4 4.62×10−3 7.6 10.1 9.1 15.6 131 116, 150 1.6, 2.0 +0.4,+0.7 1.16×10−2 4.4 5.1 3.3 7.5

129 116, 150 1.6, 2.0 −0.4, 0.0 — — — — — 130 116, 150 1.6, 2.0 0.0,+0.4 — — — — —

133 116, 150 2.0, 2.4 −1.0,−0.7 7.42×10−3 11.5 16.3 46.1 50.3 138 116, 150 2.0, 2.4 +0.7,+1.0 3.00×10−2 4.1 5.2 11.3 13.1

134 116, 150 2.0, 2.4 −0.7,−0.4 1.21×10−2 5.5 6.4 11.2 14.0 137 116, 150 2.0, 2.4 +0.4,+0.7 3.03×10−2 3.6 3.8 4.7 7.0

135 116, 150 2.0, 2.4 −0.4, 0.0 3.48×10−3 7.2 12.2 14.1 20.1 136 116, 150 2.0, 2.4 0.0,+0.4 7.29×10−3 4.7 5.9 5.6 9.4

139 116, 150 2.4, 2.8 −1.0,−0.7 3.36×10−3 16.2 18.3 30.4 39.0 144 116, 150 2.4, 2.8 +0.7,+1.0 2.87×10−2 3.3 3.0 4.3 6.2

140 116, 150 2.4, 2.8 −0.7,−0.4 8.13×10−3 7.6 10.9 11.6 17.6 143 116, 150 2.4, 2.8 +0.4,+0.7 2.88×10−2 3.8 3.8 3.9 6.7

141 116, 150 2.4, 2.8 −0.4, 0.0 5.61×10−3 5.9 7.0 7.1 11.6 142 116, 150 2.4, 2.8 0.0,+0.4 1.05×10−2 4.5 4.7 3.8 7.5

145 116, 150 2.8, 3.6 −1.0,−0.7 1.68×10−3 11.1 13.6 32.3 36.8 150 116, 150 2.8, 3.6 +0.7,+1.0 1.21×10−2 3.1 3.6 6.8 8.3

146 116, 150 2.8, 3.6 −0.7,−0.4 1.39×10−3 8.8 11.4 14.1 20.1 149 116, 150 2.8, 3.6 +0.4,+0.7 6.41×10−3 3.7 4.0 3.8 6.6

147 116, 150 2.8, 3.6 −0.4, 0.0 — — — — — 148 116, 150 2.8, 3.6 0.0,+0.4 — — — — —

Table 8. The high rapidity electron channel Born-level triple-differential cross section

d3σ/dm``d|y``|d cos θ∗. The measurements are listed together with the statistical (δstat), uncor-

related systematic (δsyst
unc ), correlated systematic (δsyst

cor ), and total (δtotal) uncertainties. The lu-

minosity uncertainty of 1.9% is not shown and not included in the overall systematic and total

uncertainties.
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A.3 Forward-backward asymmetry tables

|y``| m`` AFB ∆stat ∆syst
unc ∆syst

cor ∆total |y``| m`` AFB ∆stat ∆syst
unc ∆syst

cor ∆total

[GeV] [GeV]

0.0, 0.2 46, 66 −5.97× 10−3 5.6×10−3 4.5×10−3 7.2×10−4 7.3×10−3 0.2, 0.4 46, 66 −8.12× 10−3 5.7×10−3 4.7×10−3 8.7×10−4 7.4×10−3

0.0, 0.2 66, 80 −2.48× 10−4 4.2×10−3 2.3×10−3 7.5×10−4 4.8×10−3 0.2, 0.4 66, 80 −2.61× 10−2 4.2×10−3 2.3×10−3 6.7×10−4 4.9×10−3

0.0, 0.2 80, 91 8.26× 10−4 1.1×10−3 5.6×10−4 3.5×10−4 1.3×10−3 0.2, 0.4 80, 91 1.85× 10−3 1.1×10−3 5.5×10−4 5.5×10−4 1.4×10−3

0.0, 0.2 91, 102 3.78× 10−3 1.1×10−3 5.1×10−4 3.2×10−4 1.2×10−3 0.2, 0.4 91, 102 6.49× 10−3 1.1×10−3 5.0×10−4 5.1×10−4 1.3×10−3

0.0, 0.2 102, 116 1.29× 10−2 5.3×10−3 2.5×10−3 9.1×10−4 5.9×10−3 0.2, 0.4 102, 116 2.59× 10−2 5.3×10−3 2.5×10−3 1.1×10−3 5.9×10−3

0.0, 0.2 116, 150 2.60× 10−2 8.3×10−3 3.3×10−3 1.3×10−3 9.0×10−3 0.2, 0.4 116, 150 5.69× 10−2 8.4×10−3 3.6×10−3 1.5×10−3 9.2×10−3

0.0, 0.2 150, 200 1.88× 10−2 1.6×10−2 5.8×10−3 2.9×10−3 1.7×10−2 0.2, 0.4 150, 200 5.11× 10−2 1.6×10−2 6.9×10−3 4.2×10−3 1.8×10−2

0.4, 0.6 46, 66 −2.71× 10−2 5.9×10−3 4.5×10−3 9.1×10−4 7.5×10−3 0.6, 0.8 46, 66 −2.96× 10−2 5.7×10−3 4.3×10−3 9.5×10−4 7.2×10−3

0.4, 0.6 66, 80 −2.76× 10−2 4.3×10−3 2.3×10−3 7.6×10−4 4.9×10−3 0.6, 0.8 66, 80 −5.27× 10−2 4.4×10−3 2.5×10−3 9.2×10−4 5.1×10−3

0.4, 0.6 80, 91 2.61× 10−3 1.1×10−3 5.5×10−4 6.0×10−4 1.4×10−3 0.6, 0.8 80, 91 1.48× 10−3 1.1×10−3 5.6×10−4 6.6×10−4 1.4×10−3

0.4, 0.6 91, 102 1.23× 10−2 1.1×10−3 5.2×10−4 5.7×10−4 1.3×10−3 0.6, 0.8 91, 102 1.74× 10−2 1.1×10−3 5.1×10−4 6.4×10−4 1.4×10−3

0.4, 0.6 102, 116 4.39× 10−2 5.2×10−3 2.6×10−3 1.2×10−3 6.0×10−3 0.6, 0.8 102, 116 5.37× 10−2 5.2×10−3 2.7×10−3 1.7×10−3 6.1×10−3

0.4, 0.6 116, 150 7.39× 10−2 8.5×10−3 3.3×10−3 1.7×10−3 9.3×10−3 0.6, 0.8 116, 150 1.06× 10−1 8.3×10−3 3.1×10−3 1.8×10−3 9.1×10−3

0.4, 0.6 150, 200 1.01× 10−1 1.6×10−2 5.8×10−3 2.7×10−3 1.7×10−2 0.6, 0.8 150, 200 1.37× 10−1 1.6×10−2 5.3×10−3 3.2×10−3 1.7×10−2

0.8, 1.0 46, 66 −4.28× 10−2 5.8×10−3 4.4×10−3 8.9×10−4 7.3×10−3 1.0, 1.2 46, 66 −5.60× 10−2 5.7×10−3 4.2×10−3 1.2×10−3 7.2×10−3

0.8, 1.0 66, 80 −7.03× 10−2 4.4×10−3 2.4×10−3 9.0×10−4 5.1×10−3 1.0, 1.2 66, 80 −8.76× 10−2 4.3×10−3 2.4×10−3 9.5×10−4 5.0×10−3

0.8, 1.0 80, 91 −7.42× 10−5 1.1×10−3 5.7×10−4 7.5×10−4 1.5×10−3 1.0, 1.2 80, 91 8.90× 10−5 1.1×10−3 5.7×10−4 7.8×10−4 1.5×10−3

0.8, 1.0 91, 102 2.33× 10−2 1.1×10−3 5.2×10−4 6.9×10−4 1.4×10−3 1.0, 1.2 91, 102 2.88× 10−2 1.1×10−3 5.1×10−4 7.4×10−4 1.4×10−3

0.8, 1.0 102, 116 9.15× 10−2 5.2×10−3 2.8×10−3 1.6×10−3 6.1×10−3 1.0, 1.2 102, 116 1.10× 10−1 5.1×10−3 2.7×10−3 1.7×10−3 6.0×10−3

0.8, 1.0 116, 150 1.28× 10−1 8.4×10−3 3.4×10−3 1.8×10−3 9.2×10−3 1.0, 1.2 116, 150 1.68× 10−1 8.4×10−3 3.6×10−3 2.0×10−3 9.3×10−3

0.8, 1.0 150, 200 1.69× 10−1 1.6×10−2 5.3×10−3 4.0×10−3 1.7×10−2 1.0, 1.2 150, 200 2.36× 10−1 1.6×10−2 5.9×10−3 4.2×10−3 1.7×10−2

1.2, 1.4 46, 66 −8.88× 10−2 5.7×10−3 4.2×10−3 1.4×10−3 7.2×10−3 1.4, 1.6 46, 66 −1.03× 10−1 5.8×10−3 4.3×10−3 1.7×10−3 7.5×10−3

1.2, 1.4 66, 80 −1.14× 10−1 4.2×10−3 2.4×10−3 1.1×10−3 5.0×10−3 1.4, 1.6 66, 80 −1.25× 10−1 4.4×10−3 2.6×10−3 1.3×10−3 5.3×10−3

1.2, 1.4 80, 91 −2.23× 10−3 1.1×10−3 5.7×10−4 8.7×10−4 1.5×10−3 1.4, 1.6 80, 91 −2.59× 10−3 1.2×10−3 6.2×10−4 9.2×10−4 1.6×10−3

1.2, 1.4 91, 102 3.38× 10−2 1.1×10−3 5.2×10−4 8.5×10−4 1.5×10−3 1.4, 1.6 91, 102 3.77× 10−2 1.1×10−3 5.7×10−4 8.9×10−4 1.6×10−3

1.2, 1.4 102, 116 1.30× 10−1 5.0×10−3 2.8×10−3 2.0×10−3 6.1×10−3 1.4, 1.6 102, 116 1.44× 10−1 5.1×10−3 3.0×10−3 2.2×10−3 6.3×10−3

1.2, 1.4 116, 150 2.09× 10−1 8.5×10−3 3.7×10−3 2.6×10−3 9.6×10−3 1.4, 1.6 116, 150 2.19× 10−1 8.9×10−3 3.9×10−3 2.8×10−3 1.0×10−2

1.2, 1.4 150, 200 2.68× 10−1 1.6×10−2 6.6×10−3 4.3×10−3 1.8×10−2 1.4, 1.6 150, 200 2.80× 10−1 1.8×10−2 9.0×10−3 4.5×10−3 2.1×10−2

1.6, 1.8 46, 66 −9.35× 10−2 6.1×10−3 4.6×10−3 1.4×10−3 7.8×10−3 1.8, 2.0 46, 66 −9.23× 10−2 6.7×10−3 4.9×10−3 1.5×10−3 8.5×10−3

1.6, 1.8 66, 80 −1.26× 10−1 4.9×10−3 2.8×10−3 1.5×10−3 5.8×10−3 1.8, 2.0 66, 80 −1.20× 10−1 5.6×10−3 3.3×10−3 2.0×10−3 6.8×10−3

1.6, 1.8 80, 91 −7.79× 10−4 1.3×10−3 7.0×10−4 1.0×10−3 1.8×10−3 1.8, 2.0 80, 91 −2.65× 10−3 1.5×10−3 8.1×10−4 1.1×10−3 2.0×10−3

1.6, 1.8 91, 102 3.96× 10−2 1.3×10−3 6.3×10−4 9.6×10−4 1.7×10−3 1.8, 2.0 91, 102 3.97× 10−2 1.5×10−3 7.4×10−4 1.1×10−3 2.0×10−3

1.6, 1.8 102, 116 1.63× 10−1 5.3×10−3 3.6×10−3 2.8×10−3 7.0×10−3 1.8, 2.0 102, 116 1.54× 10−1 5.6×10−3 3.9×10−3 3.5×10−3 7.7×10−3

1.6, 1.8 116, 150 2.43× 10−1 1.0×10−2 4.6×10−3 2.6×10−3 1.2×10−2 1.8, 2.0 116, 150 2.12× 10−1 1.2×10−2 6.8×10−3 3.9×10−3 1.4×10−2

1.6, 1.8 150, 200 3.02× 10−1 1.8×10−2 6.8×10−3 5.6×10−3 2.0×10−2 1.8, 2.0 150, 200 2.66× 10−1 2.1×10−2 6.3×10−3 4.2×10−3 2.3×10−2

2.0, 2.2 46, 66 −9.82× 10−2 8.3×10−3 6.2×10−3 2.6×10−3 1.1×10−2 2.2, 2.4 46, 66 −4.44× 10−2 1.4×10−2 1.1×10−2 3.1×10−3 1.8×10−2

2.0, 2.2 66, 80 −1.10× 10−1 6.9×10−3 4.2×10−3 3.0×10−3 8.6×10−3 2.2, 2.4 66, 80 −5.03× 10−2 1.2×10−2 7.5×10−3 6.1×10−3 1.5×10−2

2.0, 2.2 80, 91 −3.33× 10−3 1.9×10−3 1.1×10−3 1.5×10−3 2.7×10−3 2.2, 2.4 80, 91 −6.44× 10−3 3.1×10−3 1.9×10−3 2.1×10−3 4.2×10−3

2.0, 2.2 91, 102 3.33× 10−2 1.9×10−3 9.8×10−4 1.5×10−3 2.6×10−3 2.2, 2.4 91, 102 1.99× 10−2 3.1×10−3 1.6×10−3 2.3×10−3 4.2×10−3

2.0, 2.2 102, 116 1.20× 10−1 6.5×10−3 5.1×10−3 6.3×10−3 1.0×10−2 2.2, 2.4 102, 116 6.06× 10−2 9.7×10−3 9.3×10−3 1.2×10−2 1.8×10−2

2.0, 2.2 116, 150 1.64× 10−1 1.4×10−2 6.6×10−3 3.9×10−3 1.6×10−2 2.2, 2.4 116, 150 9.40× 10−2 2.6×10−2 1.6×10−2 1.5×10−2 3.4×10−2

2.0, 2.2 150, 200 1.97× 10−1 2.7×10−2 1.0×10−2 7.7×10−3 3.0×10−2 2.2, 2.4 150, 200 1.27× 10−1 4.6×10−2 1.3×10−2 1.0×10−2 4.9×10−2

Table 9. The asymmetry AFB determined from the combined triple-differential cross-section mea-

surements. The measurements are listed together with the statistical (∆stat), uncorrelated system-

atic (∆syst
unc ), correlated systematic (∆syst

cor ), and total (∆total) uncertainties.
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|yee| mee AFB ∆stat ∆syst
unc ∆syst

cor ∆total

[GeV]

1.2, 1.6 66, 80 −2.44× 10−1 4.4× 10−2 5.9× 10−2 2.5× 10−2 7.8× 10−2

1.2, 1.6 80, 91 8.57× 10−3 6.2× 10−3 4.6× 10−3 3.6× 10−3 8.5× 10−3

1.2, 1.6 91, 102 7.03× 10−2 5.7× 10−3 4.1× 10−3 4.9× 10−3 8.6× 10−3

1.2, 1.6 102, 116 2.78× 10−1 2.6× 10−2 3.4× 10−2 2.6× 10−2 5.0× 10−2

1.2, 1.6 116, 150 4.43× 10−1 4.2× 10−2 6.0× 10−2 1.1× 10−1 1.3× 10−1

1.6, 2.0 66, 80 −2.32× 10−1 1.7× 10−2 1.9× 10−2 1.1× 10−2 2.7× 10−2

1.6, 2.0 80, 91 3.08× 10−3 3.3× 10−3 2.3× 10−3 2.5× 10−3 4.7× 10−3

1.6, 2.0 91, 102 7.30× 10−2 3.2× 10−3 2.1× 10−3 1.8× 10−3 4.2× 10−3

1.6, 2.0 102, 116 3.09× 10−1 1.6× 10−2 1.6× 10−2 1.3× 10−2 2.6× 10−2

1.6, 2.0 116, 150 4.83× 10−1 2.6× 10−2 3.7× 10−2 6.5× 10−2 7.9× 10−2

2.0, 2.4 66, 80 −2.89× 10−1 1.2× 10−2 1.4× 10−2 1.3× 10−2 2.3× 10−2

2.0, 2.4 80, 91 −9.15× 10−3 2.8× 10−3 2.1× 10−3 1.7× 10−3 3.9× 10−3

2.0, 2.4 91, 102 8.43× 10−2 2.7× 10−3 1.9× 10−3 2.7× 10−3 4.3× 10−3

2.0, 2.4 102, 116 3.40× 10−1 1.3× 10−2 1.3× 10−2 1.6× 10−2 2.5× 10−2

2.0, 2.4 116, 150 4.93× 10−1 2.1× 10−2 2.7× 10−2 6.5× 10−2 7.3× 10−2

2.4, 2.8 66, 80 −3.26× 10−1 1.1× 10−2 1.1× 10−2 1.7× 10−2 2.3× 10−2

2.4, 2.8 80, 91 −4.68× 10−3 2.6× 10−3 2.2× 10−3 2.4× 10−3 4.2× 10−3

2.4, 2.8 91, 102 1.11× 10−1 2.6× 10−3 2.5× 10−3 2.1× 10−3 4.1× 10−3

2.4, 2.8 102, 116 4.29× 10−1 1.2× 10−2 1.3× 10−2 1.8× 10−2 2.6× 10−2

2.4, 2.8 116, 150 5.98× 10−1 1.8× 10−2 2.3× 10−2 3.3× 10−2 4.4× 10−2

2.8, 3.6 66, 80 −4.73× 10−1 1.1× 10−2 1.4× 10−2 2.7× 10−2 3.2× 10−2

2.8, 3.6 80, 91 −8.07× 10−3 2.8× 10−3 2.7× 10−3 2.3× 10−3 4.5× 10−3

2.8, 3.6 91, 102 1.55× 10−1 2.7× 10−3 2.7× 10−3 5.0× 10−3 6.2× 10−3

2.8, 3.6 102, 116 5.51× 10−1 1.1× 10−2 1.1× 10−2 4.5× 10−2 4.8× 10−2

2.8, 3.6 116, 150 7.15× 10−1 1.9× 10−2 2.3× 10−2 4.8× 10−2 5.7× 10−2

Table 10. The asymmetry AFB determined from the high rapidity electron channel triple-

differential cross-section measurement. The measurement is listed together with the statistical

(∆stat), uncorrelated systematic (∆syst
unc ), correlated systematic (∆syst

cor ), and total (∆total) uncer-

tainties.
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[34] T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput.

Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

[35] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through

O(α2
s), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].

[36] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: A code for hadronic Z

production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388

[arXiv:1011.3540] [INSPIRE].

[37] Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in

FEWZ, Phys. Rev. D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].

[38] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC,

Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

[39] W.F.L. Hollik, Radiative Corrections in the Standard Model and their Role for Precision

Tests of the Electroweak Theory, Fortsch. Phys. 38 (1990) 165 [INSPIRE].

[40] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at

hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009)

082001 [arXiv:0903.2120] [INSPIRE].

[41] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions

incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040]

[INSPIRE].

[42] D. Bardin et al., SANC integrator in the progress: QCD and EW contributions, JETP Lett.

96 (2012) 285 [arXiv:1207.4400] [INSPIRE].

[43] S.G. Bondarenko and A.A. Sapronov, NLO EW and QCD proton-proton cross section

calculations with mcsanc-v1.01, Comput. Phys. Commun. 184 (2013) 2343

[arXiv:1301.3687] [INSPIRE].
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H. Herde25, V. Herget177, Y. Hernández Jiménez147c, H. Herr86, G. Herten51, R. Hertenberger102,

L. Hervas32, T.C. Herwig124, G.G. Hesketh81, N.P. Hessey163a, J.W. Hetherly43, S. Higashino69,

– 65 –



J
H
E
P
1
2
(
2
0
1
7
)
0
5
9

E. Higón-Rodriguez170, K. Hildebrand33, E. Hill172, J.C. Hill30, K.H. Hiller45, S.J. Hillier19,

M. Hils47, I. Hinchliffe16, M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49,

J. Hobbs150, N. Hod163a, M.C. Hodgkinson141, P. Hodgson141, A. Hoecker32, M.R. Hoeferkamp107,

F. Hoenig102, D. Hohn23, T.R. Holmes33, M. Homann46, S. Honda164, T. Honda69, T.M. Hong127,

B.H. Hooberman169, W.H. Hopkins118, Y. Horii105, A.J. Horton144, J-Y. Hostachy58,

A. Hostiuc140, S. Hou153, A. Hoummada137a, J. Howarth87, J. Hoya74, M. Hrabovsky117,

J. Hrdinka32, I. Hristova17, J. Hrivnac119, T. Hryn’ova5, A. Hrynevich96, P.J. Hsu63, S.-C. Hsu140,

Q. Hu36a, S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, F. Huegging23, T.B. Huffman122,

E.W. Hughes38, G. Hughes75, M. Huhtinen32, R.F.H. Hunter31, P. Huo150, N. Huseynov68,b,

J. Huston93, J. Huth59, R. Hyneman92, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143,

L. Iconomidou-Fayard119, Z. Idrissi137e, P. Iengo32, O. Igonkina109,y, T. Iizawa174, Y. Ikegami69,

M. Ikeno69, Y. Ilchenko11,z, D. Iliadis156, N. Ilic145, F. Iltzsche47, G. Introzzi123a,123b,

P. Ioannou9,∗, M. Iodice136a, K. Iordanidou38, V. Ippolito59, M.F. Isacson168, N. Ishijima120,

M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a, F. Ito164, J.M. Iturbe Ponce62a,

R. Iuppa162a,162b, H. Iwasaki69, J.M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1, R.M. Jacobs23,

V. Jain2, K.B. Jakobi86, K. Jakobs51, S. Jakobsen65, T. Jakoubek129, D.O. Jamin116,

D.K. Jana82, R. Jansky52, J. Janssen23, M. Janus57, P.A. Janus41a, G. Jarlskog84, N. Javadov68,b,

T. Jav̊urek51, M. Javurkova51, F. Jeanneau138, L. Jeanty16, J. Jejelava54a,aa, A. Jelinskas173,
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J. Krstic14, U. Kruchonak68, H. Krüger23, N. Krumnack67, M.C. Kruse48, T. Kubota91,

H. Kucuk81, S. Kuday4b, J.T. Kuechler178, S. Kuehn32, A. Kugel60a, F. Kuger177, T. Kuhl45,

V. Kukhtin68, R. Kukla88, Y. Kulchitsky95, S. Kuleshov34b, Y.P. Kulinich169, M. Kuna134a,134b,

T. Kunigo71, A. Kupco129, T. Kupfer46, O. Kuprash155, H. Kurashige70, L.L. Kurchaninov163a,

Y.A. Kurochkin95, M.G. Kurth35a, E.S. Kuwertz172, M. Kuze159, J. Kvita117, T. Kwan172,

D. Kyriazopoulos141, A. La Rosa103, J.L. La Rosa Navarro26d, L. La Rotonda40a,40b,

F. La Ruffa40a,40b, C. Lacasta170, F. Lacava134a,134b, J. Lacey45, D.P.J. Lack87, H. Lacker17,

D. Lacour83, E. Ladygin68, R. Lafaye5, B. Laforge83, T. Lagouri179, S. Lai57, S. Lammers64,
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D. Schaile102, R.D. Schamberger150, V.A. Schegelsky125, D. Scheirich131, M. Schernau166,

C. Schiavi53a,53b, S. Schier139, L.K. Schildgen23, C. Schillo51, M. Schioppa40a,40b, S. Schlenker32,

K.R. Schmidt-Sommerfeld103, K. Schmieden32, C. Schmitt86, S. Schmitt45, S. Schmitz86,

U. Schnoor51, L. Schoeffel138, A. Schoening60b, B.D. Schoenrock93, E. Schopf23, M. Schott86,

J.F.P. Schouwenberg108, J. Schovancova32, S. Schramm52, N. Schuh86, A. Schulte86,

M.J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher51, B.A. Schumm139,

Ph. Schune138, A. Schwartzman145, T.A. Schwarz92, H. Schweiger87, Ph. Schwemling138,

R. Schwienhorst93, J. Schwindling138, A. Sciandra23, G. Sciolla25, M. Scornajenghi40a,40b,

F. Scuri126a,126b, F. Scutti91, J. Searcy92, P. Seema23, S.C. Seidel107, A. Seiden139, J.M. Seixas26a,

G. Sekhniaidze106a, K. Sekhon92, S.J. Sekula43, N. Semprini-Cesari22a,22b, S. Senkin37,

C. Serfon121, L. Serin119, L. Serkin167a,167b, M. Sessa136a,136b, R. Seuster172, H. Severini115,

T. Sfiligoj78, F. Sforza165, A. Sfyrla52, E. Shabalina57, N.W. Shaikh148a,148b, L.Y. Shan35a,

R. Shang169, J.T. Shank24, M. Shapiro16, P.B. Shatalov99, K. Shaw167a,167b, S.M. Shaw87,

A. Shcherbakova148a,148b, C.Y. Shehu151, Y. Shen115, N. Sherafati31, P. Sherwood81, L. Shi153,am,

S. Shimizu70, C.O. Shimmin179, M. Shimojima104, I.P.J. Shipsey122, S. Shirabe73,

M. Shiyakova68,an, J. Shlomi175, A. Shmeleva98, D. Shoaleh Saadi97, M.J. Shochet33,

S. Shojaii94a,94b, D.R. Shope115, S. Shrestha113, E. Shulga100, M.A. Shupe7, P. Sicho129,

A.M. Sickles169, P.E. Sidebo149, E. Sideras Haddad147c, O. Sidiropoulou177, A. Sidoti22a,22b,

F. Siegert47, Dj. Sijacki14, J. Silva128a,128d, S.B. Silverstein148a, V. Simak130, Lj. Simic68,

S. Simion119, E. Simioni86, B. Simmons81, M. Simon86, P. Sinervo161, N.B. Sinev118,

M. Sioli22a,22b, G. Siragusa177, I. Siral92, S.Yu. Sivoklokov101, J. Sjölin148a,148b, M.B. Skinner75,
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(Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA,

United States of America
140 Department of Physics, University of Washington, Seattle WA, United States of America
141 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
142 Department of Physics, Shinshu University, Nagano, Japan
143 Department Physik, Universität Siegen, Siegen, Germany
144 Department of Physics, Simon Fraser University, Burnaby BC, Canada
145 SLAC National Accelerator Laboratory, Stanford CA, United States of America
146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava;

(b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of

Sciences, Kosice, Slovak Republic
147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics,

University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand,

Johannesburg, South Africa
148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
149 Physics Department, Royal Institute of Technology, Stockholm, Sweden
150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY,

United States of America
151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
152 School of Physics, University of Sydney, Sydney, Australia
153 Institute of Physics, Academia Sinica, Taipei, Taiwan
154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv,

Israel
156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
157 International Center for Elementary Particle Physics and Department of Physics, The University

of Tokyo, Tokyo, Japan
158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
160 Tomsk State University, Tomsk, Russia
161 Department of Physics, University of Toronto, Toronto ON, Canada
162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy
163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto

ON, Canada
164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science

and Engineering, University of Tsukuba, Tsukuba, Japan

– 76 –



J
H
E
P
1
2
(
2
0
1
7
)
0
5
9

165 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of

America
167 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento

di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
169 Department of Physics, University of Illinois, Urbana IL, United States of America
170 Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain
171 Department of Physics, University of British Columbia, Vancouver BC, Canada
172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
173 Department of Physics, University of Warwick, Coventry, United Kingdom
174 Waseda University, Tokyo, Japan
175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
176 Department of Physics, University of Wisconsin, Madison WI, United States of America
177 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
178 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität

Wuppertal, Wuppertal, Germany
179 Department of Physics, Yale University, New Haven CT, United States of America
180 Yerevan Physics Institute, Yerevan, Armenia
181 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules
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It has been found that Fig. 30 shows the 68% and 99%
confidence-level contours for the W boson and top quark
mass measurements, instead of the 68% and 95% confidence-
level contours, as stated in the legend. The corrected error
ellipses, corresponding to 68% and 95% confidence level,
are shown in Fig. 1.
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Fig. 1 Replacement of Fig. 30: The 68% and 95% confidence-level
contours of the mW and mt indirect determination from the global
electroweak fit [1] are compared to the 68 and 95% confidence-level
contours of the ATLAS measurements of the top-quark and W -boson
masses. The determination from the electroweak fit uses as input the
LHC measurement of the Higgs-boson mass,mH = 125.09±0.24 GeV
[2]
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Abstract A measurement of the mass of the W boson is
presented based on proton–proton collision data recorded in
2011 at a centre-of-mass energy of 7 TeV with the ATLAS
detector at the LHC, and corresponding to 4.6 fb−1 of
integrated luminosity. The selected data sample consists of
7.8 × 106 candidates in the W → μν channel and 5.9 × 106

candidates in the W → eν channel. The W -boson mass is
obtained from template fits to the reconstructed distributions
of the charged lepton transverse momentum and of the W
boson transverse mass in the electron and muon decay chan-
nels, yielding

mW = 80370 ± 7 (stat.) ± 11(exp. syst.)

± 14 (mod. syst.) MeV

= 80370 ± 19 MeV,

where the first uncertainty is statistical, the second corre-
sponds to the experimental systematic uncertainty, and the
third to the physics-modelling systematic uncertainty. A mea-
surement of the mass difference between the W+ and W−
bosons yields mW+ − mW− = − 29 ± 28 MeV.

1 Introduction

The Standard Model (SM) of particle physics describes the
electroweak interactions as being mediated by the W boson,
the Z boson, and the photon, in a gauge theory based on
the SU(2)L × U(1)Y symmetry [1–3]. The theory incorpo-
rates the observed masses of the W and Z bosons through a
symmetry-breaking mechanism. In the SM, this mechanism
relies on the interaction of the gauge bosons with a scalar
doublet field and implies the existence of an additional phys-
ical state known as the Higgs boson [4–7]. The existence of
the W and Z bosons was first established at the CERN SPS in
1983 [8–11], and the LHC collaborations ATLAS and CMS
reported the discovery of the Higgs boson in 2012 [12,13].

� e-mail: atlas.publications@cern.ch

At lowest order in the electroweak theory, the W -boson
mass, mW , can be expressed solely as a function of the Z -
boson mass,mZ , the fine-structure constant, α, and the Fermi
constant, Gμ. Higher-order corrections introduce an addi-
tional dependence of the W -boson mass on the gauge cou-
plings and the masses of the heavy particles of the SM. The
mass of the W boson can be expressed in terms of the other
SM parameters as follows:

m2
W

(
1 − m2

W

m2
Z

)
= πα√

2Gμ

(1 + �r),

where �r incorporates the effect of higher-order correc-
tions [14,15]. In the SM, �r is in particular sensitive to the
top-quark and Higgs-boson masses; in extended theories, �r
receives contributions from additional particles and interac-
tions. These effects can be probed by comparing the mea-
sured and predicted values of mW . In the context of global
fits to the SM parameters, constraints on physics beyond the
SM are currently limited by the W -boson mass measurement
precision [16]. Improving the precision of the measurement
of mW is therefore of high importance for testing the overall
consistency of the SM.

Previous measurements of the mass of the W boson were
performed at the CERN SPS proton–antiproton (p p̄) collider
with the UA1 and UA2 experiments [17,18] at centre-of-
mass energies of

√
s = 546 GeV and

√
s = 630 GeV, at

the Tevatron p p̄ collider with the CDF and D0 detectors at√
s = 1.8 TeV [19–21] and

√
s = 1.96 TeV [22–24], and at

the LEP electron–positron collider by the ALEPH, DELPHI,
L3, and OPAL collaborations at

√
s = 161–209 GeV [25–

28]. The current Particle Data Group world average value
of mW = 80385 ± 15 MeV [29] is dominated by the CDF
and D0 measurements performed at

√
s = 1.96 TeV. Given

the precisely measured values of α, Gμ and mZ , and taking
recent top-quark and Higgs-boson mass measurements, the
SM prediction of mW is mW = 80358 ± 8 MeV in Ref. [16]
and mW = 80362 ± 8 MeV in Ref. [30]. The SM prediction
uncertainty of 8 MeV represents a target for the precision of
future measurements of mW .
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At hadron colliders, the W -boson mass can be determined
in Drell–Yan production [31] from W → �ν decays, where �

is an electron or muon. The mass of the W boson is extracted
from the Jacobian edges of the final-state kinematic distribu-
tions, measured in the plane perpendicular to the beam direc-
tion. Sensitive observables include the transverse momenta
of the charged lepton and neutrino and the W -boson trans-
verse mass.

The ATLAS and CMS experiments benefit from large sig-
nal and calibration samples. The numbers of selected W -
and Z -boson events, collected in a sample corresponding to
approximately 4.6 fb−1 of integrated luminosity at a centre-
of-mass energy of 7 TeV, are of the order of 107 for the
W → �ν, and of the order of 106 for the Z → �� pro-
cesses. The available data sample is therefore larger by an
order of magnitude compared to the corresponding samples
used for the CDF and D0 measurements. Given the precisely
measured value of the Z -boson mass [32] and the clean lep-
tonic final state, the Z → �� processes provide the primary
constraints for detector calibration, physics modelling, and
validation of the analysis strategy. The sizes of these samples
correspond to a statistical uncertainty smaller than 10 MeV
in the measurement of the W -boson mass.

Measurements of mW at the LHC are affected by signif-
icant complications related to the strong interaction. In par-
ticular, in proton–proton (pp) collisions at

√
s = 7 TeV,

approximately 25% of the inclusive W -boson production
rate is induced by at least one second-generation quark, s
or c, in the initial state. The amount of heavy-quark-initiated
production has implications for the W -boson rapidity and
transverse-momentum distributions [33]. As a consequence,
the measurement of the W -boson mass is sensitive to the
strange-quark and charm-quark parton distribution functions
(PDFs) of the proton. In contrast, second-generation quarks
contribute only to approximately 5% of the overall W -boson
production rate at the Tevatron. Other important aspects of
the measurement of the W -boson mass are the theoretical
description of electroweak corrections, in particular the mod-
elling of photon radiation from the W - and Z -boson decay
leptons, and the modelling of the relative fractions of helicity
cross sections in the Drell–Yan processes [34].

This paper is structured as follows. Section 2 presents an
overview of the measurement strategy. Section 3 describes
the ATLAS detector. Section 4 describes the data and simula-
tion samples used for the measurement. Section 5 describes
the object reconstruction and the event selection. Section 6
summarises the modelling of vector-boson production and
decay, with emphasis on the QCD effects outlined above.
Sections 7 and 8 are dedicated to the electron, muon, and
recoil calibration procedures. Section 9 presents a set of val-
idation tests of the measurement procedure, performed using
the Z -boson event sample. Section 10 describes the analysis

of the W -boson sample. Section 11 presents the extraction
of mW . The results are summarised in Sect. 12.

2 Measurement overview

This section provides the definition of the observables used in
the analysis, an overview of the measurement strategy for the
determination of the mass of the W boson, and a description
of the methodology used to estimate the systematic uncer-
tainties.

2.1 Observable definitions

ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the centre of the detec-
tor and the z-axis along the beam pipe. The x-axis points
from the IP to the centre of the LHC ring, and the y-axis
points upward. Cylindrical coordinates (r, φ) are used in the
transverse plane, φ being the azimuth around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as
η = − ln tan(θ/2).

The kinematic properties of charged leptons from W - and
Z -boson decays are characterised by the measured transverse
momentum, p�

T, pseudorapidity, η�, and azimuth, φ�. The
mass of the lepton, m�, completes the four-vector. For Z -
boson events, the invariant mass, m��, the rapidity, y��, and
the transverse momentum, p��

T , are obtained by combining
the four-momenta of the decay-lepton pair.

The recoil in the transverse plane, �uT, is reconstructed
from the vector sum of the transverse energy of all clusters
reconstructed in the calorimeters (Sect. 3), excluding energy
deposits associated with the decay leptons. It is defined as:

�uT =
∑
i

�ET,i ,

where �ET,i is the vector of the transverse energy of cluster
i . The transverse-energy vector of a cluster has magnitude
ET = E/ cosh η, with the energy deposit of the cluster E and
its pseudorapidity η. The azimuth φ of the transverse-energy
vector is defined from the coordinates of the cluster in the
transverse plane. In W - and Z -boson events, −�uT provides
an estimate of the boson transverse momentum. The related
quantities ux and uy are the projections of the recoil onto the
axes of the transverse plane in the ATLAS coordinate system.
In Z -boson events, uZ‖ and uZ⊥ represent the projections of
the recoil onto the axes parallel and perpendicular to the Z -
boson transverse momentum reconstructed from the decay-
lepton pair. Whereas uZ‖ can be compared to −p��

T and probes
the detector response to the recoil in terms of linearity and
resolution, the uZ⊥ distribution satisfies

〈
uZ⊥

〉 = 0 and its width
provides an estimate of the recoil resolution. In W -boson
events, u�‖ and u�⊥ are the projections of the recoil onto the
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axes parallel and perpendicular to the reconstructed charged-
lepton transverse momentum.

The resolution of the recoil is affected by additional event
properties, namely the per-event number of pp interactions
per bunch crossing (pile-up) μ, the average number of pp
interactions per bunch crossing 〈μ〉, the total reconstructed
transverse energy, defined as the scalar sum of the transverse
energy of all calorimeter clusters, �ET ≡ ∑

i ET,i , and the
quantity �E∗

T ≡ �ET − |�uT|. The latter is less correlated
with the recoil than �ET, and better represents the event
activity related to the pile-up and to the underlying event.

The magnitude and direction of the transverse-momentum
vector of the decay neutrino, �p ν

T , are inferred from the vector
of the missing transverse momentum, �pmiss

T , which corre-
sponds to the momentum imbalance in the transverse plane
and is defined as:

�pmiss
T = −

(
�p �

T + �uT

)
.

The W -boson transverse mass, mT, is derived from pmiss
T

and from the transverse momentum of the charged lepton as
follows:

mT =
√

2p�
T p

miss
T (1 − cos �φ),

where �φ is the azimuthal opening angle between the
charged lepton and the missing transverse momentum.

All vector-boson masses and widths are defined in the
running-width scheme. Resonances are expressed by the rel-
ativistic Breit–Wigner mass distribution:

dσ

dm
∝ m2

(m2 − m2
V )2 + m42

V /m2
V

, (1)

wherem is the invariant mass of the vector-boson decay prod-
ucts, and mV and V , with V = W, Z , are the vector-boson
masses and widths, respectively. This scheme was introduced
in Ref. [35], and is consistent with earlier measurements of
the W - and Z -boson resonance parameters [24,32].

2.2 Analysis strategy

The mass of the W boson is determined from fits to the trans-
verse momentum of the charged lepton, p�

T, and to the trans-
verse mass of the W boson, mT. For W bosons at rest, the
transverse-momentum distributions of the W decay leptons
have a Jacobian edge at a value of m/2, whereas the distri-
bution of the transverse mass has an endpoint at the value of
m [36], where m is the invariant mass of the charged-lepton
and neutrino system, which is related to mW through the
Breit–Wigner distribution of Eq. (1).

The expected final-state distributions, referred to as tem-
plates, are simulated for several values of mW and include
signal and background contributions. The templates are com-
pared to the observed distribution by means of a χ2 com-

patibility test. The χ2 as a function of mW is interpolated,
and the measured value is determined by analytical minimi-
sation of the χ2 function. Predictions for different values
of mW are obtained from a single simulated reference sam-
ple, by reweighting the W -boson invariant mass distribution
according to the Breit–Wigner parameterisation of Eq. (1).
The W -boson width is scaled accordingly, following the SM
relation W ∝ m3

W .
Experimentally, the p�

T and pmiss
T distributions are affected

by the lepton energy calibration. The latter is also affected
by the calibration of the recoil. The p�

T and pmiss
T distribu-

tions are broadened by the W -boson transverse-momentum
distribution, and are sensitive to the W -boson helicity states,
which are influenced by the proton PDFs [37]. Compared
to p�

T, the mT distribution has larger uncertainties due to
the recoil, but smaller sensitivity to such physics-modelling
effects. Imperfect modelling of these effects can distort the
template distributions, and constitutes a significant source of
uncertainties for the determination of mW .

The calibration procedures described in this paper rely
mainly on methods and results published earlier by ATLAS
[38–40], and based on W and Z samples at

√
s = 7 TeV

and
√
s = 8 TeV. The Z → �� event samples are used

to calibrate the detector response. Lepton momentum cor-
rections are derived exploiting the precisely measured value
of the Z -boson mass, mZ [32], and the recoil response is
calibrated using the expected momentum balance with p��

T .
Identification and reconstruction efficiency corrections are
determined from W - and Z -boson events using the tag-and-
probe method [38,40]. The dependence of these corrections
on p�

T is important for the measurement of mW , as it affects
the shape of the template distributions.

The detector response corrections and the physics mod-
elling are verified in Z -boson events by performing mea-
surements of the Z -boson mass with the same method used
to determine the W -boson mass, and comparing the results
to the LEP combined value of mZ , which is used as input
for the lepton calibration. The determination of mZ from
the lepton-pair invariant mass provides a first closure test
of the lepton energy calibration. In addition, the extraction
of mZ from the p�

T distribution tests the p�
T-dependence of

the efficiency corrections, and the modelling of the Z -boson
transverse-momentum distribution and of the relative frac-
tions of Z -boson helicity states. The pmiss

T and mT variables
are defined in Z -boson events by treating one of the recon-
structed decay leptons as a neutrino. The extraction of mZ

from the mT distribution provides a test of the recoil cali-
bration. The combination of the extraction of mZ from the
m��, p�

T and mT distributions provides a closure test of the
measurement procedure. The precision of this validation pro-
cedure is limited by the finite size of the Z -boson sample,
which is approximately ten times smaller than the W -boson
sample.
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Table 1 Summary of categories and kinematic distributions used in the mW measurement analysis for the electron and muon decay channels

Decay channel W → eν W → μν

Kinematic distributions p�
T, mT p�

T, mT

Charge categories W+, W− W+, W−

|η�| categories [0, 0.6], [0.6, 1.2], [1.8, 2.4] [0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]

The analysis of the Z -boson sample does not probe dif-
ferences in the modelling of W - and Z -boson production
processes. Whereas W -boson production at the Tevatron is
charge symmetric and dominated by interactions with at least
one valence quark, the sea-quark PDFs play a larger role at the
LHC, and contributions from processes with heavy quarks in
the initial state have to be modelled properly. The W+-boson
production rate exceeds that of W− bosons by about 40%,
with a broader rapidity distribution and a softer transverse-
momentum distribution. Uncertainties in the modelling of
these distributions and in the relative fractions of the W -
boson helicity states are constrained using measurements
of W - and Z -boson production performed with the ATLAS
experiment at

√
s = 7 TeV and

√
s = 8 TeV [41–45].

The final measured value of the W -boson mass is obtained
from the combination of various measurements performed
in the electron and muon decay channels, and in charge- and
|η�|-dependent categories, as defined in Table 1. The bound-
aries of the |η�| categories are driven mainly by experimental
and statistical constraints. The measurements of mW used in
the combination are based on the observed distributions of p�

T
and mT, which are only partially correlated. Measurements
of mW based on the pmiss

T distributions are performed as con-
sistency tests, but they are not used in the combination due
to their significantly lower precision. The consistency of the
results in the electron and muon channels provide a further
test of the experimental calibrations, whereas the consistency
of the results for the different charge and |η�| categories tests
the W -boson production model.

Further consistency tests are performed by repeating the
measurement in three intervals of 〈μ〉, in two intervals of
uT and u�‖, and by removing the pmiss

T selection requirement,
which is applied in the nominal signal selection. The con-
sistency of the values of mW in these additional categories
probes the modelling of the recoil response, and the mod-
elling of the transverse-momentum spectrum of theW boson.
Finally, the stability of the result with respect to the charged-
lepton azimuth, and upon variations of the fitting ranges is
verified.

Systematic uncertainties in the determination of mW are
evaluated using pseudodata samples produced from the nom-
inal simulated event samples by varying the parameters cor-
responding to each source of uncertainty in turn. The differ-
ences between the values of mW extracted from the pseudo-
data and nominal samples are used to estimate the uncer-

tainty. When relevant, these variations are applied simul-
taneously in the W -boson signal samples and in the back-
ground contributions. The systematic uncertainties are esti-
mated separately for each source and for fit ranges of 32 <

p�
T < 45 GeV and 66 < mT < 99 GeV. These fit ranges

minimise the total expected measurement uncertainty, and
are used for the final result as discussed in Sect. 11.

In Sects. 6, 7, 8, and 10, which discuss the systematic
uncertainties of the mW measurement, the uncertainties are
also given for combinations of measurement categories. This
provides information showing the reduction of the systematic
uncertainty obtained from the measurement categorisation.
For these cases, the combined uncertainties are evaluated
including only the expected statistical uncertainty in addi-
tion to the systematic uncertainty being considered. However,
the total measurement uncertainty is estimated by adding all
uncertainty contributions in quadrature for each measure-
ment category, and combining the results accounting for cor-
relations across categories.

During the analysis, an unknown offset was added to the
value of mW used to produce the templates. The offset was
randomly selected from a uniform distribution in the range
[−100, 100] MeV, and the same value was used for the W+
and W− templates. The offset was removed after the mW

measurements performed in all categories were found to be
compatible and the analysis procedure was finalised.

3 The ATLAS detector

The ATLAS experiment [46] is a multipurpose particle detec-
tor with a forward-backward symmetric cylindrical geome-
try. It consists of an inner tracking detector surrounded by a
thin superconducting solenoid, electromagnetic and hadronic
calorimeters, and a muon spectrometer incorporating three
large superconducting toroid magnets.

The inner-detector system (ID) is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the
range |η| < 2.5. At small radii, a high-granularity silicon
pixel detector covers the vertex region and typically provides
three measurements per track. It is followed by the silicon
microstrip tracker, which usually provides eight measure-
ment points per track. These silicon detectors are comple-
mented by a gas-filled straw-tube transition radiation tracker,
which enables radially extended track reconstruction up to

123



Eur. Phys. J. C (2018) 78 :110 Page 5 of 61 110

|η| = 2.0. The transition radiation tracker also provides elec-
tron identification information based on the fraction of hits
(typically 35 in total) above a higher energy-deposit thresh-
old corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range
|η| < 4.9. Within the region |η| < 3.2, electromagnetic (EM)
calorimetry is provided by high-granularity lead/liquid-argon
(LAr) calorimeters, with an additional thin LAr presampler
covering |η| < 1.8 to correct for upstream energy-loss fluc-
tuations. The EM calorimeter is divided into a barrel sec-
tion covering |η| < 1.475 and two endcap sections covering
1.375 < |η| < 3.2. For |η| < 2.5 it is divided into three lay-
ers in depth, which are finely segmented in η and φ. Hadronic
calorimetry is provided by a steel/scintillator-tile calorime-
ter, segmented into three barrel structures within |η| < 1.7
and two copper/LAr hadronic endcap calorimeters covering
1.5 < |η| < 3.2. The solid-angle coverage is completed
with forward copper/LAr and tungsten/LAr calorimeter mod-
ules in 3.1 < |η| < 4.9, optimised for electromagnetic and
hadronic measurements, respectively.

The muon spectrometer (MS) comprises separate trigger
and high-precision tracking chambers measuring the deflec-
tion of muons in a magnetic field generated by supercon-
ducting air-core toroids. The precision chamber system cov-
ers the region |η| < 2.7 with three layers of monitored
drift tubes, complemented by cathode strip chambers in the
forward region. The muon trigger system covers the range
|η| < 2.4 with resistive plate chambers in the barrel, and
thin gap chambers in the endcap regions.

A three-level trigger system is used to select events for
offline analysis [47]. The level-1 trigger is implemented in
hardware and uses a subset of detector information to reduce
the event rate to a design value of at most 75 kHz. This is
followed by two software-based trigger levels which together
reduce the event rate to about 300 Hz.

4 Data samples and event simulation

The data sample used in this analysis consists of W - and Z -
boson candidate events, collected in 2011 with the ATLAS
detector in proton–proton collisions at the LHC, at a centre-
of-mass energy of

√
s = 7 TeV. The sample for the electron

channel, with all relevant detector systems operational, cor-
responds to approximately 4.6 fb−1 of integrated luminosity.
A smaller integrated luminosity of approximately 4.1 fb−1 is
used in the muon channel, as part of the data was discarded
due to a timing problem in the resistive plate chambers, which
affected the muon trigger efficiency. The relative uncertainty
of the integrated luminosity is 1.8% [48]. This data set pro-
vides approximately 1.4 ×107 reconstructedW -boson events
and 1.8 ×106 Z -boson events, after all selection criteria have
been applied.

The Powheg MC generator [49–51] (v1/r1556) is used
for the simulation of the hard-scattering processes of W - and
Z -boson production and decay in the electron, muon, and tau
channels, and is interfaced to Pythia 8 (v8.170) for the mod-
elling of the parton shower, hadronisation, and underlying
event [52,53], with parameters set according to the AZNLO
tune [44]. The CT10 PDF set [54] is used for the hard-
scattering processes, whereas the CTEQ6L1 PDF set [55] is
used for the parton shower. In the Z -boson samples, the effect
of virtual photon production (γ ∗) and Z/γ ∗ interference is
included. The effect of QED final-state radiation (FSR) is
simulated with Photos (v2.154) [56]. Tau lepton decays are
handled byPythia8, taking into account polarisation effects.
An alternative set of samples for W - and Z -boson production
is generated with Powheg interfaced toHerwig (v6.520) for
the modelling of the parton shower [57], and to Jimmy (v4.31)
for the underlying event [58]. The W - and Z -boson masses
are set to mW = 80.399 GeV and mZ = 91.1875 GeV,
respectively. During the analysis, the value of the W -boson
mass in the W → �ν and W → τν samples was blinded
using the reweighting procedure described in Sect. 2.

Top-quark pair production and the single-top-quark pro-
cesses are modelled using the MC@NLO MC generator
(v4.01) [59–61], interfaced to Herwig and Jimmy. Gauge-
boson pair production (WW , WZ , Z Z ) is simulated with
Herwig (v6.520). In all the samples, the CT10 PDF set
is used. Samples of heavy-flavour multijet events (pp →
bb̄ + X and pp → cc̄ + X ) are simulated with Pythia 8
to validate the data-driven methods used to estimate back-
grounds with non-prompt leptons in the final state.

Whereas the extraction ofmW is based on the shape of dis-
tributions, and is not sensitive to the overall normalisation of
the predicted distributions, it is affected by theoretical uncer-
tainties in the relative fractions of background and signal.
The W - and Z -boson event yields are normalised according
to their measured cross sections, and uncertainties of 1.8%
and 2.3% are assigned to the W+/Z and W−/Z production
cross-section ratios, respectively [41]. The t t̄ sample is nor-
malised according to its measured cross section [62] with an
uncertainty of 3.9%, whereas the cross-section predictions
for the single-top production processes of Refs. [63–65] are
used for the normalisation of the corresponding sample, with
an uncertainty of 7%. The samples of events with massive
gauge-boson pair production are normalised to the NLO pre-
dictions calculated with MCFM [66], with an uncertainty of
10% to cover the differences to the NNLO predictions [67].

The response of the ATLAS detector is simulated using a
program [68] based on Geant 4 [69]. The ID and the MS
were simulated assuming an ideal detector geometry; align-
ment corrections are applied to the data during event recon-
struction. The description of the detector material incorpo-
rates the results of extensive studies of the electron and pho-
ton calibration [39]. The simulated hard-scattering process

123



110 Page 6 of 61 Eur. Phys. J. C (2018) 78 :110

is overlaid with additional proton–proton interactions, sim-
ulated with Pythia 8 (v8.165) using the A2 tune [70]. The
distribution of the average number of interactions per bunch
crossing 〈μ〉 spans the range 2.5–16.0, with a mean value of
approximately 9.0.

Simulation inaccuracies affecting the distributions of the
signal, the response of the detector, and the underlying-event
modelling, are corrected as described in the following sec-
tions. Physics-modelling corrections, such as those affect-
ing the W -boson transverse-momentum distribution and the
angular decay coefficients, are discussed in Sect. 6. Cali-
bration and detector response corrections are presented in
Sects. 7 and 8.

5 Particle reconstruction and event selection

This section describes the reconstruction and identification
of electrons and muons, the reconstruction of the recoil, and
the requirements used to select W - and Z -boson candidate
events. The recoil provides an event-by-event estimate of
the W -boson transverse momentum. The reconstructed kine-
matic properties of the leptons and of the recoil are used
to infer the transverse momentum of the neutrino and the
transverse-mass kinematic variables.

5.1 Reconstruction of electrons, muons and the recoil

Electron candidates are reconstructed from clusters of energy
deposited in the electromagnetic calorimeter and associated
with at least one track in the ID [38,39]. Quality requirements
are applied to the associated tracks in order to reject poorly
reconstructed charged-particle trajectories. The energy of
the electron is reconstructed from the energy collected in
calorimeter cells within an area of size �η ×�φ = 0.075 ×
0.175 in the barrel, and 0.125 × 0.125 in the endcaps. A
multivariate regression algorithm, developed and optimised
on simulated events, is used to calibrate the energy recon-
struction. The reconstructed electron energy is corrected to
account for the energy deposited in front of the calorimeter
and outside the cluster, as well as for variations of the energy
response as a function of the impact point of the electron in the
calorimeter. The energy calibration algorithm takes as inputs
the energy collected by each calorimeter layer, including the
presampler, the pseudorapidity of the cluster, and the local
position of the shower within the cell of the second layer,
which corresponds to the cluster centroid. The kinematic
properties of the reconstructed electron are inferred from
the energy measured in the EM calorimeter, and from the
pseudorapidity and azimuth of the associated track. Electron
candidates are required to have pT > 15 GeV and |η| < 2.4
and to fulfil a set of tight identification requirements [38].
The pseudorapidity range 1.2 < |η| < 1.82 is excluded

from the measurement, as the amount of passive material in
front of the calorimeter and its uncertainty are largest in this
region [39], preventing a sufficiently accurate description of
non-Gaussian tails in the electron energy response. Addi-
tional isolation requirements on the nearby activity in the
ID and calorimeter are applied to improve the background
rejection. These isolation requirements are implemented by
requiring the scalar sum of the pT of tracks in a cone of size
�R ≡ √

(�η)2 + (�φ)2 < 0.4 around the electron, pe,cone
T ,

and the transverse energy deposited in the calorimeter within
a cone of size �R < 0.2 around the electron, Econe

T , to be
small. The contribution from the electron candidate itself is
excluded. The specific criteria are optimised as a function
of electron η and pT to have a combined efficiency of about
95% in the simulation for isolated electrons from the decay
of a W or Z boson.

The muon reconstruction is performed independently in
the ID and in the MS, and a combined muon candidate is
formed from the combination of a MS track with an ID track,
based on the statistical combination of the track parame-
ters [40]. The kinematic properties of the reconstructed muon
are defined using the ID track parameters alone, which allows
a simpler calibration procedure. The loss of resolution is
small (10–15%) in the transverse-momentum range relevant
for the measurement of the W -boson mass. The ID tracks
associated with the muons must satisfy quality requirements
on the number of hits recorded by each subdetector [40].
In order to reject muons from cosmic rays, the longitudinal
coordinate of the point of closest approach of the track to the
beamline is required to be within 10 mm of the collision ver-
tex. Muon candidates are required to have pT > 20 GeV and
|η| < 2.4. Similarly to the electrons, the rejection of multijet
background is increased by applying an isolation require-
ment : the scalar sum of the pT of tracks in a cone of size
�R < 0.2 around the muon candidate, pμ,cone

T , is required
to be less than 10% of the muon pT.

The recoil, �uT, is reconstructed from the vector sum of the
transverse energy of all clusters measured in the calorimeters,
as defined in Sect. 2.1. The ATLAS calorimeters measure
energy depositions in the range |η| < 4.9 with a topologi-
cal clustering algorithm [71], which starts from cells with an
energy of at least four times the expected noise from elec-
tronics and pile-up. The momentum vector of each cluster is
determined by the magnitude and coordinates of the energy
deposition. Cluster energies are initially measured assuming
that the energy deposition occurs only through electromag-
netic interactions, and are then corrected for the different
calorimeter responses to hadrons and electromagnetic parti-
cles, for losses due to dead material, and for energy which
is not captured by the clustering process. The definition of
�uT and the inferred quantities pmiss

T and mT do not involve
the explicit reconstruction of particle jets, to avoid possible
threshold effects.

123



Eur. Phys. J. C (2018) 78 :110 Page 7 of 61 110

Clusters located a distance �R < 0.2 from the recon-
structed electron or muon candidates are not used for the
reconstruction of �uT. This ensures that energy deposits orig-
inating from the lepton itself or from accompanying pho-
tons (from FSR or Bremsstrahlung) do not contribute to
the recoil measurement. The energy of any soft particles
removed along with the lepton is compensated for using
the total transverse energy measured in a cone of the same
size �R = 0.2, placed at the same absolute pseudorapid-
ity as the lepton with randomly chosen sign, and at dif-
ferent φ. The total transverse momentum measured in this
cone is rotated to the position of the lepton and added to
�uT.

5.2 Event selection

The W -boson sample is collected during data-taking with
triggers requiring at least one muon candidate with trans-
verse momentum larger than 18 GeV or at least one electron
candidate with transverse momentum larger than 20 GeV.
The transverse-momentum requirement for the electron can-
didate was raised to 22 GeV in later data-taking periods
to cope with the increased instantaneous luminosity deliv-
ered by the LHC. Selected events are required to have a
reconstructed primary vertex with at least three associated
tracks.

W -boson candidate events are selected by requiring
exactly one reconstructed electron or muon with p�

T >

30 GeV. The leptons are required to match the correspond-
ing trigger object. In addition, the reconstructed recoil is
required to be uT < 30 GeV, the missing transverse momen-
tum pmiss

T > 30 GeV and the transverse mass mT > 60 GeV.
These selection requirements are optimised to reduce the
multijet background contribution, and to minimise model
uncertainties from W bosons produced at high transverse
momentum. A total of 5.89 ×106 W -boson candidate events
are selected in the W → eν channel, and 7.84 ×106 events
in the W → μν channel.

As mentioned in Sect. 2, Z -boson events are extensively
used to calibrate the response of the detector to electrons
and muons, and to derive recoil corrections. In addition, Z -
boson events are used to test several aspects of the mod-
elling of vector-boson production. Z -boson candidate events
are collected with the same trigger selection used for the
W -boson sample. The analysis selection requires exactly
two reconstructed leptons with p�

T > 25 GeV, having the
same flavour and opposite charges. The events are required
to have an invariant mass of the dilepton system in the range
80 < m�� < 100 GeV. In both channels, selected leptons are
required to be isolated in the same way as in the W -boson
event selection. In total, 0.58 ×106 and 1.23 ×106 Z -boson
candidate events are selected in the electron and muon decay
channels, respectively.

6 Vector-boson production and decay

Samples of inclusive vector-boson production are produced
using the Powheg MC generator interfaced to Pythia 8,
henceforth referred to as Powheg+Pythia 8. The W - and
Z -boson samples are reweighted to include the effects of
higher-order QCD and electroweak (EW) corrections, as well
as the results of fits to measured distributions which improve
the agreement of the simulated lepton kinematic distribu-
tions with the data. The effect of virtual photon production
and Z/γ ∗ interference is included in both the predictions
and the Powheg+Pythia 8 simulated Z -boson samples. The
reweighting procedure used to include the corrections in the
simulated event samples is detailed in Sect. 6.4.

The correction procedure is based on the factorisation of
the fully differential leptonic Drell–Yan cross section [31]
into four terms:

dσ

dp1 dp2
=

[
dσ(m)

dm

] [
dσ(y)

dy

] [
dσ(pT, y)

dpT dy

(
dσ(y)

dy

)−1
]

×
[
(1+ cos2 θ)+

7∑
i=0

Ai (pT, y)Pi (cos θ, φ)

]
,

(2)

where p1 and p2 are the lepton and anti-lepton four-
momenta; m, pT, and y are the invariant mass, transverse
momentum, and rapidity of the dilepton system; θ and φ are
the polar angle and azimuth of the lepton1 in any given rest
frame of the dilepton system; Ai are numerical coefficients,
and Pi are spherical harmonics of order zero, one and two.

The differential cross section as a function of the invari-
ant mass, dσ(m)/dm, is modelled with a Breit–Wigner
parameterisation according to Eq. (1). In the case of the
Z -boson samples, the photon propagator is included using
the running electromagnetic coupling constant; further elec-
troweak corrections are discussed in Sect. 6.1. The dif-
ferential cross section as a function of boson rapidity,
dσ(y)/dy, and the coefficients Ai are modelled with pertur-
bative QCD fixed-order predictions, as described in Sect. 6.2.
The transverse-momentum spectrum at a given rapidity,
dσ(pT, y)/(dpT dy) · (dσ(y)/dy)−1, is modelled with pre-
dictions based on the Pythia 8 MC generator, as discussed
in Sect. 6.3. An exhaustive review of available predictions for
W - and Z -boson production at the LHC is given in Ref. [72].

Measurements of W - and Z -boson production are used
to validate and constrain the modelling of the fully differen-
tial leptonic Drell–Yan cross section. The PDF central values
and uncertainties, as well as the modelling of the differential
cross section as a function of boson rapidity, are validated

1 Here, lepton refers to the negatively charged lepton from a W− or Z
boson, and the neutrino from a W+ boson.
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by comparing to the 7 TeV W - and Z -boson rapidity mea-
surements [41], based on the same data sample. The QCD
parameters of the parton shower model were determined by
fits to the transverse-momentum distribution of the Z boson
measured at 7 TeV [44]. The modelling of the Ai coefficients
is validated by comparing the theoretical predictions to the
8 TeV measurement of the angular coefficients in Z -boson
decays [42].

6.1 Electroweak corrections and uncertainties

The dominant source of electroweak corrections toW - and Z -
boson production originates from QED final-state radiation,
and is simulated with Photos. The effect of QED initial-state
radiation (ISR) is also included through the Pythia 8 par-
ton shower. The uncertainty in the modelling of QED FSR
is evaluated by comparing distributions obtained using the
default leading-order photon emission matrix elements with
predictions obtained using NLO matrix elements, as well
as by comparing Photos with an alternative implementation
based on the Yennie–Frautschi–Suura formalism [73], which
is available inWinhac [74]. The differences are small in both
cases, and the associated uncertainty is considered negligi-
ble.

Other sources of electroweak corrections are not included
in the simulated event samples, and their full effects are con-
sidered as systematic uncertainties. They include the inter-
ference between ISR and FSR QED corrections (IFI), pure
weak corrections due to virtual-loop and box diagrams, and
final-state emission of lepton pairs. Complete O(α) elec-
troweak corrections to the pp → W + X , W → �ν pro-
cess were initially calculated in Refs. [75,76]. Combined
QCD and EW corrections are however necessary to evaluate
the effect of the latter in presence of a realistic pWT distri-
bution. Approximate O(αsα) corrections including parton
shower effects are available from Winhac, Sanc [77] and
in the Powheg framework [78–80]. A complete, fixed-order
calculation of O(αsα) corrections in the resonance region
appeared in Ref. [81].

In the present work the effect of the NLO EW corrections
are estimated using Winhac, which employs the Pythia
6 MC generator for the simulation of QCD and QED ISR.

The corresponding uncertainties are evaluated comparing the
final state distributions obtained including QED FSR only
with predictions using the complete NLO EW corrections
in the α(0) and Gμ renormalisation schemes [82]. The lat-
ter predicts the larger correction and is used to assign the
systematic uncertainty.

Final-state lepton pair production, through γ ∗ → �� radi-
ation, is formally a higher-order correction but constitutes an
significant additional source of energy loss for the W -boson
decay products. This process is not included in the event
simulation, and the impact on the determination of mW is
evaluated using Photos and Sanc.

Table 2 summarises the effect of the uncertainties associ-
ated with the electroweak corrections on the mW measure-
ments. All comparisons described above were performed
at particle level. The impact is larger for the p�

T distri-
bution than for the mT distribution, and similar between
the electron and muon decay channels. A detailed eval-
uation of these uncertainties was performed in Ref. [83]
using Powheg [78], and the results are in fair agreement
with Table 2. The study of Ref. [83] also compares, at
fixed order, the effect of the approximate O(αsα) cor-
rections with the full calculation of Ref. [81], and good
agreement is found. The same sources of uncertainty affect
the lepton momentum calibration through their impact on
the m�� distribution in Z -boson events, as discussed in
Sect. 7.

6.2 Rapidity distribution and angular coefficients

At leading order, W and Z bosons are produced with zero
transverse momentum, and the angular distribution of the
decay leptons depends solely on the polar angle of the lepton
in the boson rest frame. Higher-order corrections give rise
to sizeable boson transverse momentum, and to azimuthal
asymmetries in the angular distribution of the decay leptons.
The angular distribution of the W - and Z -boson decay lep-
tons is determined by the relative fractions of helicity cross
sections for the vector-boson production. The fully differen-
tial leptonic Drell–Yan cross section can be decomposed as
a weighted sum of nine harmonic polynomials, with weights
given by the helicity cross sections. The harmonic polyno-

Table 2 Impact on the mW
measurement of systematic
uncertainties from higher-order
electroweak corrections, for the
p�

T and mT distributions in the
electron and muon decay
channels

Decay channel W → eν W → μν

Kinematic distribution p�
T mT p�

T mT

δmW [MeV]

FSR (real) < 0.1 < 0.1 < 0.1 < 0.1

Pure weak and IFI corrections 3.3 2.5 3.5 2.5

FSR (pair production) 3.6 0.8 4.4 0.8

Total 4.9 2.6 5.6 2.6
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mials depend on the polar angle, θ , and the azimuth, φ, of
the lepton in a given rest frame of the boson. The helicity
cross sections depend, in their most general expression, on
the transverse momentum, pT, rapidity, y, and invariant mass,
m, of the boson. It is customary to factorise the unpolarised,
or angular-integrated, cross section, dσ/(dp2

T dy dm), and
express the decomposition in terms of dimensionless angu-
lar coefficients, Ai , which represent the ratios of the helic-
ity cross sections with respect to the unpolarised cross sec-
tion [34], leading to the following expression for the fully
differential Drell–Yan cross section:

dσ

dp2
T dy dm d cos θ dφ

= 3

16π

dσ

dp2
T dy dm

×
[
(1 + cos2 θ) + A0

1

2
(1 − 3 cos2 θ)

+A1 sin 2θ cos φ + A2
1

2
sin2 θ cos 2φ

+A3 sin θ cos φ + A4 cos θ

+A5 sin2 θ sin 2φ + A6 sin 2θ sin φ

+A7 sin θ sin φ

]
. (3)

The angular coefficients depend in general on pT, y and m.
The A5–A7 coefficients are non-zero only at order O(α2

s )

and above. They are small in the pT region relevant for the
present analysis, and are not considered further. The angles
θ and φ are defined in the Collins–Soper (CS) frame [84].

The differential cross section as a function of boson rapid-
ity, dσ(y)/dy, and the angular coefficients, Ai , are modelled
with fixed-order perturbative QCD predictions, at O(α2

s ) in
the perturbative expansion of the strong coupling constant
and using the CT10nnlo PDF set [85]. The dependence of
the angular coefficients on m is neglected; the effect of this
approximation on the measurement of mW is discussed in
Sect. 6.4. For the calculation of the predictions, an opti-
mised version of DYNNLO [86] is used, which explicitly
decomposes the calculation of the cross section into the dif-
ferent pieces of the qT-subtraction formalism, and allows the
computation of statistically correlated PDF variations. In this
optimised version of DYNNLO, the Cuba library [87] is used
for the numerical integration.

The values of the angular coefficients predicted by the
Powheg+Pythia 8 samples differ significantly from the
corresponding NNLO predictions. In particular, large dif-
ferences are observed in the predictions of A0 at low values
of pW,Z

T . Other coefficients, such as A1 and A2, are affected

by significant NNLO corrections at high pW,Z
T . In Z -boson

production, A3 and A4 are sensitive to the vector couplings
between the Z boson and the fermions, and are predicted
assuming the measured value of the effective weak mixing
angle sin2 θ�

eff [32].

6.3 Transverse-momentum distribution

Predictions of the vector-boson transverse-momentum spec-
trum cannot rely solely on fixed-order perturbative QCD.
Most W -boson events used for the analysis have a low
transverse-momentum value, in the kinematic region pWT <

30 GeV, where large logarithmic terms of the type
log(mW /pWT ) need to be resummed, and non-perturbative
effects must be included, either with parton showers or
with predictions based on analytic resummation [88–92].
The modelling of the transverse-momentum spectrum of
vector bosons at a given rapidity, expressed by the term
dσ(pT, y)/(dpT dy) · (dσ(y)/dy)−1 in Eq. (2), is based on
the Pythia 8 parton shower MC generator. The predictions
of vector-boson production in the Pythia 8 MC genera-
tor employ leading-order matrix elements for the qq̄ ′ →
W, Z processes and include a reweighting of the first par-
ton shower emission to the leading-order V+jet cross sec-
tion [93]. The resulting prediction of the boson pT spec-
trum is comparable in accuracy to those of an NLO plus
parton shower generator setup such as Powheg+Pythia 8,
and of resummed predictions at next-to-leading logarithmic
order [94].

The values of the QCD parameters used in Pythia
8 were determined from fits to the Z -boson transverse
momentum distribution measured with the ATLAS detec-
tor at a centre-of-mass energy of

√
s = 7 TeV [44]. Three

QCD parameters were considered in the fit: the intrin-
sic transverse momentum of the incoming partons, the
value of αs(mZ ) used for the QCD ISR, and the value
of the ISR infrared cut-off. The resulting values of the
Pythia 8 parameters constitute the AZ tune. The Pythia
8 AZ prediction was found to provide a satisfactory descrip-
tion of the pZT distribution as a function of rapidity, con-
trarily to Powheg+Pythia 8 AZNLO; hence the former
is chosen to predict the pWT distribution. The good con-
sistency of the mW measurement results in |η�| cate-
gories, presented in Sect. 11, is also a consequence of this
choice.

To illustrate the results of the parameters optimisation, the
Pythia 8 AZ and 4C [95] predictions of the pZT distribution
are compared in Fig. 1a to the measurement used to determine
the AZ tune. Kinematic requirements on the decay leptons are
applied according to the experimental acceptance. For further
validation, the predicted differential cross-section ratio,

RW/Z (pT) =
(

1

σW
· dσW (pT)

dpT

) (
1

σZ
· dσZ (pT)

dpT

)−1

,

is compared to the corresponding ratio of ATLAS measure-
ments of vector-boson transverse momentum [44,45]. The
comparison is shown in Fig. 1b, where kinematic require-
ments on the decay leptons are applied according to the exper-
imental acceptance. The measured Z -boson pT distribution is
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Fig. 1 a Normalised differential cross section as a function of p��
T in

Z -boson events [44] and b differential cross-section ratio RW/Z (pT) as
a function of the boson pT [44,45]. The measured cross sections are

compared to the predictions of the Pythia 8 AZ tune and, in a, of
the Pythia 8 4C tune. The shaded bands show the total experimental
uncertainties
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Fig. 2 Ratios of the reconstruction-level a p�
T and bmT normalised distributions obtained using Powheg+Pythia 8AZNLO, DYRes and Powheg

MiNLO+Pythia 8 to the baseline normalised distributions obtained using Pythia 8 AZ

rebinned to match the coarser bins of the W -boson pT distri-
bution, which was measured using only 30 pb−1 of data. The
theoretical prediction is in agreement with the experimental
measurements for the region with pT < 30 GeV, which is
relevant for the measurement of the W -boson mass.

The predictions of RESBOS [89,90], DYRes [91] and
Powheg MiNLO+Pythia 8 [96,97] are also considered.
All predict a harder pWT distribution for a given pZT dis-
tribution, compared to Pythia 8 AZ. Assuming the latter
can be adjusted to match the measurement of Ref. [44], the
corresponding pWT distribution induces a discrepancy with
the detector-level uT and u�‖ distributions observed in the
W -boson data, as discussed in Sect. 11.2. This behaviour is
observed using default values for the non-perturbative param-
eters of these programs, but is not expected to change signif-

icantly under variations of these parameters. These predic-
tions are therefore not used in the determination of mW or its
uncertainty.

Figure 2 compares the reconstruction-level p�
T and mT

distributions obtained with Powheg+Pythia 8 AZNLO,
DYRes and Powheg MiNLO+Pythia 8 to those of
Pythia 8 AZ.2 The effect of varying the pWT distribution
is largest at high p�

T, which explains why the uncertainty due
to the pWT modelling is reduced when limiting the p�

T fitting
range as described in Sect. 11.3.

2 Reconstruction-level distributions are obtained from the
Powheg+Pythia 8 signal sample by reweighting the particle-
level pWT distribution according to the product of the pZT distribution
in Pythia 8 AZ, and of RW/Z (pT) as predicted by Powheg+Pythia
8 AZNLO, DYRes and Powheg MiNLO+Pythia 8.
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6.4 Reweighting procedure

The W and Z production and decay model described above is
applied to the Powheg+Pythia 8 samples through an event-
by-event reweighting. Equation (3) expresses the factorisa-
tion of the cross section into the three-dimensional boson
production phase space, defined by the variables m, pT,
and y, and the two-dimensional boson decay phase space,
defined by the variables θ and φ. Accordingly, a predic-
tion of the kinematic distributions of vector bosons and their
decay products can be transformed into another prediction
by applying separate reweighting of the three-dimensional
boson production phase-space distributions, followed by a
reweighting of the angular decay distributions.

The reweighting is performed in several steps. First, the
inclusive rapidity distribution is reweighted according to the
NNLO QCD predictions evaluated with DYNNLO. Then, at a
given rapidity, the vector-boson transverse-momentum shape
is reweighted to the Pythia 8 prediction with the AZ tune.
This procedure provides the transverse-momentum distribu-
tion of vector bosons predicted by Pythia 8, preserving the
rapidity distribution at NNLO. Finally, at given rapidity and
transverse momentum, the angular variables are reweighted
according to:

w(cos θ, φ, pT, y) = 1 + cos2 θ + ∑
i A′

i (pT, y) Pi (cos θ, φ)

1 + cos2 θ + ∑
i Ai (pT, y) Pi (cos θ, φ)

,

where A′
i are the angular coefficients evaluated at O(α2

s ),
and Ai are the angular coefficients of the Powheg+Pythia
8 samples. This reweighting procedure neglects the small
dependence of the two-dimensional (pT,y) distribution and

of the angular coefficients on the final state invariant mass.
The procedure is used to include the corrections described
in Sects. 6.2 and 6.3, as well as to estimate the impact of the
QCD modelling uncertainties described in Sect. 6.5.

The validity of the reweighting procedure is tested at
particle level by generating independent W -boson samples
using the CT10nnlo and NNPDF3.0 [98] NNLO PDF sets,
and the same value of mW . The relevant kinematic distribu-
tions are calculated for both samples and used to reweight
the CT10nnlo sample to the NNPDF3.0 one. The procedure
described in Sect. 2.2 is then used to determine the value of
mW by fitting the NNPDF3.0 sample using templates from
the reweighted CT10nnlo sample. The fitted value agrees
with the input value within 1.5 ± 2.0 MeV. The statistical
precision of this test is used to assign the associated system-
atic uncertainty.

The resulting model is tested by comparing the pre-
dicted Z -boson differential cross section as a function of
rapidity, the W -boson differential cross section as a func-
tion of lepton pseudorapidity, and the angular coefficients
in Z -boson events, to the corresponding ATLAS measure-
ments [41,42]. The comparison with the measured W and
Z cross sections is shown in Fig. 3. Satisfactory agree-
ment between the measurements and the theoretical pre-
dictions is observed. A χ2 compatibility test is performed
for the three distributions simultaneously, including the cor-
relations between the uncertainties. The compatibility test
yields a χ2/dof value of 45/34. Other NNLO PDF sets
such as NNPDF3.0, CT14 [99], MMHT2014 [100], and
ABM12 [101] are in worse agreement with these distribu-
tions. Based on the quantitative comparisons performed in

|
ll

|y
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

| [
pb

]
ll

/d
|y

σd

20

40

60

80

100

120

140

160

180

200

Data
Prediction (CT10nnlo)

ATLAS
-1 = 7 TeV, 4.6 fbs

Z+X→pp

(a) |
l

η|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

| [
pb

]
lη

/d
|

σd

250

300

350

400

450

500

550

600

650

700

750

)+Data (W
)−Data (W

Prediction (CT10nnlo)

ATLAS
-1 = 7 TeV, 4.6 fbs

+X±W→pp

(b)

Fig. 3 a Differential Z -boson cross section as a function of boson
rapidity, and b differential W+ and W− cross sections as a function of
charged decay-lepton pseudorapidity at

√
s = 7 TeV [41]. The mea-

sured cross sections are compared to the Powheg+Pythia 8 predic-

tions, corrected to NNLO using DYNNLO with the CT10nnlo PDF
set. The error bars show the total experimental uncertainties, including
luminosity uncertainty, and the bands show the PDF uncertainties of
the predictions
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Ref. [41], only CT10nnlo, CT14 and MMHT2014 are consid-
ered further. The better agreement obtained with CT10nnlo
can be ascribed to the weaker suppression of the strange quark
density compared to the u- and d-quark sea densities in this
PDF set.

The predictions of the angular coefficients in Z -boson
events are compared to the ATLAS measurement at

√
s =

8 TeV [42]. Good agreement between the measurements and
DYNNLO is observed for the relevant coefficients, except
for A2, where the measurement is significantly below the
prediction. As an example, Fig. 4 shows the comparison
for A0 and A2 as a function of pZT . For A2, an additional
source of uncertainty in the theoretical prediction is consid-
ered to account for the observed disagreement with data, as
discussed in Sect. 6.5.3.

6.5 Uncertainties in the QCD modelling

Several sources of uncertainty related to the perturbative
and non-perturbative modelling of the strong interaction
affect the dynamics of the vector-boson production and
decay [33,102–104]. Their impact on the measurement of
mW is assessed through variations of the model parameters of
the predictions for the differential cross sections as functions
of the boson rapidity, transverse-momentum spectrum at a
given rapidity, and angular coefficients, which correspond to
the second, third, and fourth terms of the decomposition of
Eq. (2), respectively. The parameter variations used to esti-
mate the uncertainties are propagated to the simulated event
samples by means of the reweighting procedure described in
Sect. 6.4. Table 3 shows an overview of the uncertainties due
to the QCD modelling which are discussed below.
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Fig. 4 The a A0 and b A2 angular coefficients in Z -boson events as
a function of p��

T [42]. The measured coefficients are compared to the
DYNNLO predictions using the CT10nnlo PDF set. The error bars show

the total experimental uncertainties, and the bands show the uncertain-
ties assigned to the DYNNLO predictions

Table 3 Systematic uncertainties in the mW measurement due to
QCD modelling, for the different kinematic distributions and W -boson
charges. Except for the case of PDFs, the same uncertainties apply
to W+ and W−. The fixed-order PDF uncertainty given for the sepa-

rate W+ and W− final states corresponds to the quadrature sum of the
CT10nnlo uncertainty variations; the charge-combined uncertainty also
contains a 3.8 MeV contribution from comparing CT10nnlo to CT14
and MMHT2014

W -boson charge W+ W− Combined
Kinematic distribution p�

T mT p�
T mT p�

T mT

δmW [MeV]

Fixed-order PDF uncertainty 13.1 14.9 12.0 14.2 8.0 8.7

AZ tune 3.0 3.4 3.0 3.4 3.0 3.4

Charm-quark mass 1.2 1.5 1.2 1.5 1.2 1.5

Parton shower μF with heavy-flavour decorrelation 5.0 6.9 5.0 6.9 5.0 6.9

Parton shower PDF uncertainty 3.6 4.0 2.6 2.4 1.0 1.6

Angular coefficients 5.8 5.3 5.8 5.3 5.8 5.3

Total 15.9 18.1 14.8 17.2 11.6 12.9
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6.5.1 Uncertainties in the fixed-order predictions

The imperfect knowledge of the PDFs affects the differential
cross section as a function of boson rapidity, the angular coef-
ficients, and the pWT distribution. The PDF contribution to the
prediction uncertainty is estimated with the CT10nnlo PDF
set by using the Hessian method [105]. There are 25 error
eigenvectors, and a pair of PDF variations associated with
each eigenvector. Each pair corresponds to positive and nega-
tive 90% CL excursions along the corresponding eigenvector.
Symmetric PDF uncertainties are defined as the mean value
of the absolute positive and negative excursions correspond-
ing to each pair of PDF variations. The overall uncertainty
of the CT10nnlo PDF set is scaled to 68% CL by applying a
multiplicative factor of 1/1.645.

The effect of PDF variations on the rapidity distributions
and angular coefficients are evaluated with DYNNLO, while
their impact on the W -boson pT distribution is evaluated
using Pythia 8 and by reweighting event-by-event the PDFs
of the hard-scattering process, which are convolved with the
LO matrix elements. Similarly to other uncertainties which
affect the pWT distribution (Sect. 6.5.2), only relative varia-
tions of the pWT and pZT distributions induced by the PDFs are
considered. The PDF variations are applied simultaneously
to the boson rapidity, angular coefficients, and transverse-
momentum distributions, and the overall PDF uncertainty is
evaluated with the Hessian method as described above.

Uncertainties in the PDFs are the dominant source of
physics-modelling uncertainty, contributing about 14 and
13 MeV when averaging p�

T and mT fits for W+ and W−,
respectively. The PDF uncertainties are very similar when
using p�

T or mT for the measurement. They are strongly
anti-correlated between positively and negatively charged W
bosons, and the uncertainty is reduced to 7.4 MeV on average
for p�

T and mT fits, when combining opposite-charge cate-
gories. The anti-correlation of the PDF uncertainties is due to
the fact that the total light-quark sea PDF is well constrained
by deep inelastic scattering data, whereas the u-, d-, and s-
quark decomposition of the sea is less precisely known [106].
An increase in the ū PDF is at the expense of the d̄ PDF, which
produces opposite effects in the longitudinal polarisation of
positively and negatively charged W bosons [37].

Other PDF sets are considered as alternative choices. The
envelope of values ofmW extracted with the MMHT2014 and
CT14 NNLO PDF sets is considered as an additional PDF
uncertainty of 3.8 MeV, which is added in quadrature after
combining the W+ and W− categories, leading to overall
PDF uncertainties of 8.0 MeV and 8.7 MeV for p�

T and mT

fits, respectively.
The effect of missing higher-order corrections on the

NNLO predictions of the rapidity distributions of Z bosons,
and the pseudorapidity distributions of the decay leptons of
W bosons, is estimated by varying the renormalisation and

factorisation scales by factors of 0.5 and 2.0 with respect to
their nominal value μR = μF = mV in the DYNNLO pre-
dictions. The corresponding relative uncertainty in the nor-
malised distributions is of the order of 0.1–0.3%, and signif-
icantly smaller than the PDF uncertainties. These uncertain-
ties are expected to have a negligible impact on the measure-
ment of mW , and are not considered further.

The effect of the LHC beam-energy uncertainty of
0.65% [107] on the fixed-order predictions is studied. Rela-
tive variations of 0.65% around the nominal value of 3.5 TeV
are considered, yielding variations of the inclusive W+ and
W− cross sections of 0.6 and 0.5%, respectively. No signif-
icant dependence as a function of lepton pseudorapidity is
observed in the kinematic region used for the measurement,
and the dependence as a function of p�

T and mT is expected
to be even smaller. This uncertainty is not considered further.

6.5.2 Uncertainties in the parton shower predictions

Several sources of uncertainty affect the Pythia 8 parton
shower model used to predict the transverse momentum of the
W boson. The values of the AZ tune parameters, determined
by fits to the measurement of the Z -boson transverse momen-
tum, are affected by the experimental uncertainty of the mea-
surement. The corresponding uncertainties are propagated
to the pWT predictions through variations of the orthogonal
eigenvector components of the parameters error matrix [44].
The resulting uncertainty in mW is 3.0 MeV for the p�

T dis-
tribution, and 3.4 MeV for the mT distribution. In the present
analysis, the impact of pWT distribution uncertainties is in
general smaller when using p�

T than when using mT, as a
result of the comparatively narrow range used for the p�

T
distribution fits.

Other uncertainties affecting predictions of the transverse-
momentum spectrum of the W boson at a given rapidity, are
propagated by considering relative variations of the pWT and
pZT distributions. The procedure is based on the assumption
that model variations, when applied to pZT , can be largely
reabsorbed into new values of the AZ tune parameters fit-
ted to the pZT data. Variations that cannot be reabsorbed by
the fit are excluded, since they would lead to a significant
disagreement of the prediction with the measurement of pZT .
The uncertainties due to model variations which are largely
correlated between pWT and pZT cancel in this procedure. In
contrast, the procedure allows a correct estimation of the
uncertainties due to model variations which are uncorrelated
between pWT and pZT , and which represent the only relevant
sources of theoretical uncertainties in the propagation of the
QCD modelling from pZT to pWT .

Uncertainties due to variations of parton shower parame-
ters that are not fitted to the pZT measurement include vari-
ations of the masses of the charm and bottom quarks, and
variations of the factorisation scale used for the QCD ISR.
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The mass of the charm quark is varied in Pythia 8, conser-
vatively, by ± 0.5 GeV around its nominal value of 1.5 GeV.
The resulting uncertainty contributes 1.2 MeV for the p�

T fits,
and 1.5 MeV for the mT fits. The mass of the bottom quark
is varied in Pythia 8, conservatively, by ± 0.8 GeV around
its nominal value of 4.8 GeV. The resulting variations have a
negligible impact on the transverse-momentum distributions
of Z and W bosons, and are not considered further.

The uncertainty due to higher-order QCD corrections to
the parton shower is estimated through variations of the fac-
torisation scale, μF, in the QCD ISR by factors of 0.5 and 2.0
with respect to the central choice μ2

F = p2
T,0+p2

T, where pT,0

is an infrared cut-off, and pT is the evolution variable of the
parton shower [108]. Variations of the renormalisation scale
in the QCD ISR are equivalent to a redefinition of αs(mZ )

used for the QCD ISR, which is fixed from the fits to the pZT
data. As a consequence, variations of the ISR renormalisa-
tion scale do not apply when estimating the uncertainty in
the predicted pWT distribution.

Higher-order QCD corrections are expected to be largely
correlated betweenW -boson and Z -boson production induced
by the light quarks, u, d, and s, in the initial state. How-
ever, a certain degree of decorrelation between W - and Z -
boson transverse-momentum distributions is expected, due
to the different amounts of heavy-quark-initiated production,
where heavy refers to charm and bottom flavours. The physi-
cal origin of this decorrelation can be ascribed to the presence
of independent QCD scales corresponding to the three-to-
four flavours and four-to-five flavours matching scales μc

and μb in the variable-flavour-number scheme PDF evolu-
tion [109], which are of the order of the charm- and bottom-
quark masses, respectively. To assess this effect, the varia-
tions of μF in the QCD ISR are performed simultaneously
for all light-quark qq̄ → W, Z processes, with q = u, d, s,
but independently for each of the cc̄ → Z , bb̄ → Z ,
and cq̄ → W processes, where q = d, s. The effect of
the cq̄ → W variations on the determination of mW is
reduced by a factor of two, to account for the presence of
only one heavy-flavour quark in the initial state. The result-
ing uncertainty in mW is 5.0 MeV for the p�

T distribution,
and 6.9 MeV for the mT distribution. Since the μF varia-
tions affect all the branchings of the shower evolution and
not only vertices involving heavy quarks, this procedure is
expected to yield a sufficient estimate of the μc,b-induced
decorrelation between the W - and Z -boson pT distributions.
Treating the μF variations as correlated between all quark
flavours, but uncorrelated between W - and Z -boson produc-
tion, would yield a systematic uncertainty in mW of approx-
imately 30 MeV.

The predictions of the Pythia 8 MC generator include a
reweighting of the first parton shower emission to the leading-
order W+jet cross section, and do not include matching cor-
rections to the higher-orderW+jet cross section. As discussed

in Sect. 11.2, predictions matched to the NLO W+jet cross
section, such asPowheg MiNLO+Pythia 8 and DYRes, are
in disagreement with the observed u�‖ distribution and cannot
be used to provide a reliable estimate of the associated uncer-
tainty. The u�‖ distribution, on the other hand, validates the
Pythia 8 AZ prediction and its uncertainty, which gives con-
fidence that missing higher-order corrections to the W -boson
pT distribution are small in comparison to the uncertainties
that are already included, and can be neglected at the present
level of precision.

The sum in quadrature of the experimental uncertainties
of the AZ tune parameters, the variations of the mass of the
charm quark, and the factorisation scale variations, leads to
uncertainties on mW of 6.0 and 7.8 MeV when using the
p�

T distribution and the mT distribution, respectively. These
sources of uncertainty are taken as fully correlated between
the electron and muon channels, the positively and negatively
charged W -boson production, and the |η�| bins.

The Pythia 8 parton shower simulation employs the
CTEQ6L1 leading-order PDF set. An additional independent
source of PDF-induced uncertainty in the pWT distribution
is estimated by comparing several choices of the leading-
order PDF used in the parton shower, corresponding to the
CT14lo, MMHT2014lo and NNPDF2.3lo [110] PDF sets.
The PDFs which give the largest deviation from the nominal
ratio of the pWT and pZT distributions are used to estimate the
uncertainty. This procedure yields an uncertainty of about
4 MeV for W+, and of about 2.5 MeV for W−. Similarly to
the case of fixed-order PDF uncertainties, there is a strong
anti-correlation between positively and negatively charged
W bosons, and the uncertainty is reduced to about 1.5 MeV
when combining positive- and negative-charge categories.

The prediction of the pWT distribution relies on the pT-
ordered parton shower model of the Pythia 8 MC generator.
In order to assess the impact of the choice of parton shower
model on the determination of mW , the Pythia 8 prediction
of the ratio of the pWT and pZT distributions is compared to
the corresponding prediction of the Herwig 7 MC genera-
tor [111,112], which implements an angular-ordered parton
shower model. Differences between the Pythia 8 and Her-
wig 7 predictions are smaller than the uncertainties in the
Pythia 8 prediction, and no additional uncertainty is con-
sidered.

6.5.3 Uncertainties in the angular coefficients

The full set of angular coefficients can only be measured pre-
cisely for the production of Z bosons. The accuracy of the
NNLO predictions of the angular coefficients is validated by
comparison to the Z -boson measurement, and extrapolated to
W -boson production assuming that NNLO predictions have
similar accuracy for the W - and Z -boson processes. The
ATLAS measurement of the angular coefficients in Z -boson
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production at a centre-of-mass energy of
√
s = 8 TeV [42]

is used for this validation. The O(α2
s ) predictions, evaluated

with DYNNLO, are in agreement with the measurements
of the angular coefficients within the experimental uncer-
tainties, except for the measurement of A2 as a function of
Z -boson pT.

Two sources of uncertainty affecting the modelling of the
angular coefficients are considered, and propagated to the W -
boson predictions. One source is defined from the experimen-
tal uncertainty of the Z -boson measurement of the angular
coefficients which is used to validate the NNLO predictions.
The uncertainty in the corresponding W -boson predictions
is estimated by propagating the experimental uncertainty of
the Z -boson measurement as follows. A set of pseudodata
distributions are obtained by fluctuating the angular coeffi-
cients within the experimental uncertainties, preserving the
correlations between the different measurement bins for the
different coefficients. For each pseudoexperiment, the dif-
ferences in the Ai coefficients between fluctuated and nomi-
nal Z -boson measurement results are propagated to the cor-
responding coefficient in W -boson production. The corre-
sponding uncertainty is defined from the standard deviation
of the mW values as estimated from the pseudodata distribu-
tions.

The other source of uncertainty is considered to account
for the disagreement between the measurement and the
NNLO QCD predictions observed for the A2 angular coef-
ficient as a function of the Z -boson pT (Fig. 4). The cor-
responding uncertainty in mW is estimated by propagating
the difference in A2 between the Z -boson measurement and
the theoretical prediction to the corresponding coefficient in
W -boson production. The corresponding uncertainty in the
measurement ofmW is 1.6 MeV for the extraction from the p�

T
distribution. Including this contribution, total uncertainties of
5.8 and 5.3 MeV due to the modelling of the angular coef-
ficients are estimated in the determination of the W -boson
mass from the p�

T and mT distributions, respectively. The
uncertainty is dominated by the experimental uncertainty of
the Z -boson measurement used to validate the theoretical
predictions.

7 Calibration of electrons and muons

Any imperfect calibration of the detector response to elec-
trons and muons impacts the measurement of the W -boson
mass, as it affects the position and shape of the Jacobian
edges reflecting the value of mW . In addition, the p�

T and mT

distributions are broadened by the electron-energy and muon-
momentum resolutions. Finally, the lepton-selection efficien-
cies depend on the lepton pseudorapidity and transverse
momentum, further modifying these distributions. Correc-
tions to the detector response are derived from the data, and

presented below. In most cases, the corrections are applied
to the simulation, with the exception of the muon sagitta bias
corrections and electron energy response corrections, which
are applied to the data. Backgrounds to the selected Z → ��

samples are taken into account using the same procedures
as discussed in Sect. 9. Since the Z samples are used sep-
arately for momentum calibration and efficiency measure-
ments, as well as for the recoil response corrections discussed
in Sect. 8, correlations among the corresponding uncertain-
ties can appear. These correlations were investigated and
found to be negligible.

7.1 Muon momentum calibration

As described in Sect. 5.1, the kinematic parameters of
selected muons are determined from the associated inner-
detector tracks. The accuracy of the momentum measurement
is limited by imperfect knowledge of the detector alignment
and resolution, of the magnetic field, and of the amount of
passive material in the detector.

Biases in the reconstructed muon track momenta are
classified as radial or sagitta biases. The former originate
from detector movements along the particle trajectory and
can be corrected by an η-dependent, charge-independent
momentum-scale correction. The latter typically originate
from curl distortions or linear twists of the detector around
the z-axis [113], and can be corrected with η-dependent cor-
rection factors proportional to q × p�

T, where q is the charge
of the muon. The momentum scale and resolution corrections
are applied to the simulation, while the sagitta bias correction
is applied to the data:

pMC,corr
T = pMC

T × [1 + α(η, φ)]

×
[
1 + βcurv(η) · G(0, 1) · pMC

T

]
,

pdata,corr
T = pdata

T

1 + q · δ(η, φ) · pdata
T

,

where pdata,MC
T is the uncorrected muon transverse momen-

tum in data and simulation, G(0, 1) are normally distributed
random variables with mean zero and unit width, and α, βcurv,
and δ represent the momentum scale, intrinsic resolution
and sagitta bias corrections, respectively. Multiple-scattering
contributions to the resolution are relevant at low pT, and the
corresponding corrections are neglected.

Momentum scale and resolution corrections are derived
using Z → μμ decays, following the method described in
Ref. [40]. Template histograms of the dimuon invariant mass
are constructed from the simulated event samples, includ-
ing momentum scale and resolution corrections in narrow
steps within a range covering the expected uncertainty. The
optimal values of α and βcurv are determined by means of
a χ2 minimisation, comparing data and simulation in the
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range of twice the standard deviation on each side of the
mean value of the invariant mass distribution. In the first
step, the corrections are derived by averaging over φ, and
for 24 pseudorapidity bins in the range − 2.4 < η� < 2.4.
In the second iteration, φ-dependent correction factors are
evaluated in coarser bins of η�. The typical size of α varies
from −0.0005 to −0.0015 depending on η�, while βcurv val-
ues increase from 0.2 TeV−1 in the barrel to 0.6 TeV−1 in the
high η� region. Before the correction, the φ-dependence has
an amplitude at the level of 0.1%.

The α and βcurv corrections are sensitive to the following
aspects of the calibration procedure, which are considered
for the systematic uncertainty: the choice of the fitting range,
methodological biases, background contributions, theoreti-
cal modelling of Z -boson production, non-linearity of the
corrections, and material distribution in the ID. The uncer-
tainty due to the choice of fitting range is estimated by vary-
ing the range by ± 10%, and repeating the procedure. The
uncertainty due to the fit methodology is estimated by com-
paring the template fit results with an alternative approach,
based on an iterative χ2 minimisation. Background contribu-
tions from gauge-boson pair and top-quark pair production
are estimated using the simulation. The uncertainty in these
background contributions is evaluated by varying their nor-
malisation within the theoretical uncertainties on the produc-
tion cross sections. The uncertainty in the theoretical mod-
elling of Z -boson production is evaluated by propagating the
effect of electroweak corrections to QED FSR, QED radia-
tion of fermion pairs, and other NLO electroweak corrections
described in Sect. 6.1. The experimental uncertainty in the
value of the Z -boson mass used as input is also accounted
for. These sources of uncertainty are summed in quadrature,
yielding an uncertainty δα in the muon momentum scale
correction of approximately 0.5 × 10−4; these sources are
considered fully correlated across muon pseudorapidity.

The systematic uncertainty in the muon momentum scale
due to the extrapolation from the Z → μμ momentum range
to the W → μν momentum range is estimated by evaluating
momentum-scale corrections as a function of 1/pT for muons
in various |η| ranges. The extrapolation uncertainty δα is
parameterised as follows:

δα = p0 + p1〈
p�

T(W )
〉 ,

where
〈
p�

T(W )
〉

is the average pT of muons in W -boson
events, and p0 and p1 are free parameters. If the momentum-
scale corrections are independent of 1/pT, the fitting param-
eters are expected to be p0 = 1 and p1 = 0. Deviations
of p1 from zero indicate a possible momentum dependence.
The fitted values of δα are shown in Fig. 5a, and are consis-
tent with one, within two standard deviations of the statisti-
cal error. The corresponding systematic uncertainty in mW

is defined assuming, in each bin of |η|, a momentum non-

linearity given by the larger of the fitted value of p1 and its
uncertainty. This source of uncertainty is considered uncor-
related across muon pseudorapidity given that p1 is domi-
nated by statistical fluctuations. The effect of the imperfect
knowledge of the material in the ID is studied using simu-
lated event samples including an increase of the ID material
by 10%, according to the uncertainty estimated in Ref. [114].
The impact of this variation is found to be negligible in com-
parison with the uncertainties discussed above.

Two methods are used for the determination of the sagitta
bias δ. The first method exploits Z → μμ events. Muons
are categorised according to their charge and pseudorapid-
ity, and for each of these categories, the position of the peak
in the dimuon invariant mass distribution is determined for
data and simulation. The procedure allows the determina-
tion of the charge dependence of the momentum scale for
pT values of approximately 42 GeV, which corresponds to
the average transverse momentum of muons from Z -boson
decays. The second method exploits identified electrons in
a sample of W → eν decays. It is based on the ratio of the
measured electron energy deposited in the calorimeter, E , to
the electron momentum, p, measured in the ID. A clean sam-
ple of W → eν events with tightly identified electrons [38]
is selected. Assuming that the response of the electromag-
netic calorimeter is independent of the charge of the incom-
ing particle, charge-dependent ID track momentum biases
are extracted from the average differences in E/p for elec-
trons and positrons [113]. This method benefits from a larger
event sample compared to the first method, and allows the
determination of charge-dependent corrections for pT values
of approximately 38 GeV, which corresponds to the average
transverse momentum of muons in W -boson decays. The
sagitta bias correction factors are derived using both methods
separately in 40 η bins and 40 φ bins. The results are found to
agree within uncertainties and are combined, as illustrated in
Fig. 5b. The combined correction uncertainty is dominated
by the finite size of the event samples.

Figure 6 shows the dimuon invariant mass distribution
of Z → μμ decays in data and simulation, after applying
all corrections. Table 4 summarises the effect of the muon
momentum scale and resolution uncertainties on the deter-
mination of mW . The dominant systematic uncertainty in the
momentum scale is due to the extrapolation of the correction
from the Z -boson momentum range to the W -boson momen-
tum range. The extrapolation uncertainty δα is (2–5)×10−5

for |η�| < 2.0, and (4–7) × 10−4 for |η�| > 2.0. System-
atic uncertainties from other sources are relatively small. The
systematic uncertainty of the resolution corrections is domi-
nated by the statistical uncertainty of the Z -boson event sam-
ple, and includes a contribution from the imperfect closure of
the method. The latter is defined from the residual difference
between the standard deviations of the dimuon invariant mass
in data and simulation, after applying resolution corrections.
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Fig. 5 a Residual muon momentum scale corrections as a function
of muon 1/pT in four pseudorapidity regions, obtained with Z → μμ

events. The points are fitted using a linear function which parameterises
the extrapolation of the muon momentum scale correction from Z to
W events, as explained in the text. The error bars on the points show
statistical uncertainties only. b Sagitta bias, δ, as a function of η� aver-

aged over φ�. The results are obtained with the Z → μμ and E/p
methods and the combination of the two. The results obtained with the
Z → μμ method are corrected for the global sagitta bias. The E/p
method uses electrons from W → eν decays. The two measurements
are combined assuming they are uncorrelated. The error bars on the
points show statistical uncertainties only
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Fig. 6 Dimuon invariant mass distribution in Z → μμ events. The
data are compared to the simulation including signal and background
contributions. Corrections for momentum scale and resolution, and
for reconstruction, isolation, and trigger efficiencies are applied to the
muons in the simulated events. Background events contribute less than
0.2% of the observed distribution. The lower panel shows the data-to-
prediction ratio, with the error bars showing the statistical uncertainty

7.2 Muon selection efficiency

The selection of muon candidates in W → μν and Z → μμ

events requires an isolated track reconstructed in the inner
detector and in the muon spectrometer. In addition, the events
are required to pass the muon trigger selection. Differences
in the efficiency of the reconstruction and selection require-
ments between data and simulation can introduce a system-
atic shift in the measurement of the W -boson mass, and have

to be corrected. In particular, the extraction of mW is sen-
sitive to the dependence of the trigger, reconstruction and
isolation efficiencies on the muon pT and on the projection
of the recoil on the lepton transverse momentum, u�‖.

For muons with pT larger than approximately 15 GeV the
detector simulation predicts constant efficiency as a function
of p�

T, both for the muon trigger selection and the track recon-
struction. In contrast, the efficiency of the isolation require-
ment is expected to vary as a function of p�

T and u�‖. The effi-
ciency corrections also affect the muon selection inefficiency,
and hence the estimation of the Z → μμ background, which
contributes to the W → μν selection when one of the decay
muons fails the muon reconstruction or kinematic selection
requirements.

Corrections to the muon reconstruction, trigger and isola-
tion efficiencies are estimated by applying the tag-and-probe
method [40] to Z → μμ events in data and simulation.
Efficiency corrections are defined as the ratio of efficiencies
evaluated in data to efficiencies evaluated in simulated events.
The corrections are evaluated as functions of two variables,
p�

T and u�‖, and in various regions of the detector. The detec-
tor is segmented into regions corresponding to the η and φ

coverage of the muon spectrometer. The subdivision accounts
for the geometrical characteristics of the detector, such as the
presence of uninstrumented or transition regions. The depen-
dence of the efficiencies on u�‖ agree in data and simulation.
Therefore, the muon efficiency corrections are evaluated only
as a function of p�

T and η�, separately for positive and nega-
tive muon charges. The final efficiency correction factors are
linearly interpolated as a function of muon pT. No significant
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Table 4 Systematic uncertainties in the mW measurement from muon
calibration and efficiency corrections, for the different kinematic
distributions and |η�| categories, averaged over lepton charge. The

momentum-scale uncertainties include the effects of both the momen-
tum scale and linearity corrections. Combined uncertainties are evalu-
ated as described in Sect. 2.2

|η�| range [0.0, 0.8] [0.8, 1.4] [1.4, 2.0] [2.0, 2.4] Combined
Kinematic distribution p�

T mT p�
T mT p�

T mT p�
T mT p�

T mT

δmW [MeV]

Momentum scale 8.9 9.3 14.2 15.6 27.4 29.2 111.0 115.4 8.4 8.8

Momentum resolution 1.8 2.0 1.9 1.7 1.5 2.2 3.4 3.8 1.0 1.2

Sagitta bias 0.7 0.8 1.7 1.7 3.1 3.1 4.5 4.3 0.6 0.6

Reconstruction and isolation efficiencies 4.0 3.6 5.1 3.7 4.7 3.5 6.4 5.5 2.7 2.2

Trigger efficiency 5.6 5.0 7.1 5.0 11.8 9.1 12.1 9.9 4.1 3.2

Total 11.4 11.4 16.9 17.0 30.4 31.0 112.0 116.1 9.8 9.7
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Fig. 7 a Scale factors for the muon reconstruction, trigger and isola-
tion efficiency obtained with the tag and probe method as a function of
the muon pT. Scale factors for the trigger efficiency are averaged over
two data-taking periods as explained in the text. The error bars on the
points show statistical uncertainties only. b Distribution of the recon-
structed muons η in Z → μμ events. The data are compared to the

simulation including signal and background contributions. Corrections
for momentum scale and resolution, and for reconstruction, isolation,
and trigger efficiencies are applied to the muons in the simulated events.
Background events contribute less than 0.2% of the observed distribu-
tion. The lower panel shows the data-to-prediction ratio, with the error
bars showing the statistical uncertainty

pT-dependence of the corrections is observed in any of the
detector regions.

The selection of tag-and-probe pairs from Z → μμ

events is based on the kinematic requirements described in
Sect. 5.2. The tag muon is required to be a combined and
energy-isolated muon candidate (see Sect. 5.1) which fulfils
the muon trigger requirements. The selection requirements
applied to the probe muon candidate differ for each efficiency
determination: the selection requirement for which the effi-
ciency is determined is removed from the set of requirements
applied to the probe muon. All the efficiency corrections are
derived inclusively for the full data set, with the exception
of the trigger, for which they are derived separately for two
different data-taking periods. The resulting scale factors are
shown as a function of p�

T and averaged over η� in Fig. 7a.

The trigger and isolation efficiency corrections are typically
below 0.3%, while the reconstruction efficiency correction is
on average about 1.1%. The corresponding impact on muon
selection inefficiency reaches up to about 20%.

The quality of the efficiency corrections is evaluated by
applying the corrections to the Z → μμ simulated sample,
and comparing the simulated kinematic distributions to the
corresponding distributions in data. Figure 7b illustrates this
procedure for the η� distribution. Further distributions are
shown in Sect. 9.

The dominant source of uncertainty in the determination
of the muon efficiency corrections is the statistical uncer-
tainty of the Z -boson data sample. The largest sources of
systematic uncertainty are the multijet background contribu-
tion and the momentum-scale uncertainty. The correspond-
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ing uncertainty in the measurement of mW is approximately
5 MeV. The ID tracking efficiencies for muon candidates are
above 99.5% without any significant pT dependence, and
the associated uncertainties are not considered further. An
overview of the uncertainties associated with the muon effi-
ciency corrections is shown in Table 4.

7.3 Electron energy response

The electron-energy corrections and uncertainties are largely
based on the ATLAS Run 1 electron and photon calibration
results [39]. The correction procedure starts with the intercal-
ibration of the first and second layers of the EM calorimeter
for minimum-ionising particles, using the energy deposits of
muons in Z → μμ decays. After the intercalibration of the
calorimeter layers, the longitudinal shower-energy profiles
of electrons and photons are used to determine the presam-
pler energy scale and probe the passive material in front of
the EM calorimeter, leading to an improved description of
the detector material distribution and providing estimates of
the residual passive material uncertainty. Finally, a depen-
dence of the cell-level energy measurement on the read-out
gain is observed in the second layer and corrected for. After
these preliminary corrections, an overall energy-scale cor-
rection is determined as a function of η� from Z → ee
decays, by comparing the reconstructed mass distributions
in data and simulation. Simultaneously, an effective constant
term for the calorimeter energy resolution is extracted by
adjusting the width of the reconstructed dielectron invariant
mass distribution in simulation to match the distribution in
data.

Uncertainties in the energy-response corrections arise
from the limited size of the Z → ee sample, from the physics
modelling of the resonance and from the calibration algo-
rithm itself. Physics-modelling uncertainties include uncer-
tainties from missing higher-order electroweak corrections
(dominated by the absence of lepton-pair emissions in the
simulation) and from the experimental uncertainty in mZ ;
these effects are taken fully correlated with the muon channel.
Background contributions are small and the associated uncer-
tainty is considered to be negligible. Uncertainties related to
the calibration procedure are estimated by varying the invari-
ant mass range used for the calibration, and with a closure
test. For the closure test, a pseudodata sample of Z → ee
events is obtained from the nominal sample by rescaling
the electron energies by known η-dependent factors; the
calibration algorithm is then applied, and the measured
energy corrections are compared with the input rescaling
factors.

These sources of uncertainty constitute a subset of those
listed in Ref. [39], where additional variations were consid-
ered in order to generalise the applicability of the Z -boson
calibration results to electrons and photons spanning a wide

energy range. The effect of these uncertainties is averaged
within the different η� categories. The overall relative energy-
scale uncertainty, averaged over η�, is 9.4 × 10−5 for elec-
trons from Z -boson decays.

In addition to the uncertainties in the energy-scale cor-
rections arising from the Z -boson calibration procedure,
possible differences in the energy response between elec-
trons from Z -boson and W -boson decays constitute a signif-
icant source of uncertainty. The linearity of the response is
affected by uncertainties in the intercalibration of the layers
and in the passive material and calorimeter read-out correc-
tions mentioned above. Additional uncertainties are assigned
to cover imperfect electronics pedestal subtraction affecting
the energy measurement in the cells of the calorimeter, and
to the modelling of the interactions between the electrons
and the detector material in Geant4. The contribution from
these sources to the relative energy-scale uncertainty is (3–
12) × 10−5 in each η bin, and 5.4 × 10−5 when averaged
over the full η range after taking into account the correlation
between the η bins.

Azimuthal variations of the electron-energy response are
expected from gravity-induced mechanical deformations of
the EM calorimeter, and are observed especially in the end-
caps, as illustrated in Fig. 8. As the Z -boson calibration aver-
ages over φ� and the azimuthal distributions of the selected
electrons differ in the two processes, a small residual effect
from this modulation is expected when applying the cal-
ibration results to the W → eν sample. Related effects
are discussed in Sect. 8. A dedicated correction is derived
using the azimuthal dependence of the mean of the electron
energy/momentum ratio, 〈E/p〉, after correcting p for the
momentum scale and curvature bias discussed in Sect. 7.1.
The effect of this correction is a relative change of the aver-
age energy response of 3.8 × 10−5 in W -boson events, with
negligible uncertainty.

The E/p distribution is also used to test the modelling
of non-Gaussian tails in the energy response. An excess of
events is observed in data at low values of E/p, and inter-
preted as the result of the mismodelling of the lateral devel-
opment of EM showers in the calorimeter. Its impact is evalu-
ated by removing the electrons with E/p values in the region
where the discrepancy is observed. The effect of this removal
is compatible for electrons from W - and Z -boson decays
within 4.9×10−5, which corresponds to the statistical uncer-
tainty of the test and is considered as an additional systematic
uncertainty.

The result of the complete calibration procedure is illus-
trated in Fig. 9, which shows the comparison of the dielec-
tron invariant mass distribution for Z → ee events in data
and simulation. The impact of the electron-energy calibra-
tion uncertainties on the mW measurement is summarised in
Table 5.
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Fig. 8 Azimuthal variation of the data-to-prediction ratio of 〈E/p〉 in
W and Z events, for electrons in a |η�| < 1.2 and (b) 1.8 < |η�| < 2.4.
The electron energy calibration based on Z → ee events is applied, and

the track p is corrected for the momentum scale, resolution and sagitta
bias. The mean for the E/p distribution integrated in φ is normalised
to unity. The error bars are statistical only
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Fig. 9 Dielectron invariant mass distribution in Z → ee events. The
data are compared to the simulation including signal and backgrounds.
Corrections for energy resolution, and for reconstruction, identification,
isolation and trigger efficiencies are applied to the simulation; energy-
scale corrections are applied to the data. Background events contribute
less than 0.2% of the observed distribution. The lower panel shows
the data-to-prediction ratio, with the error bars showing the statistical
uncertainty

7.4 Electron selection efficiency

Electron efficiency corrections are determined using samples
of W → eν, Z → ee, and J/ψ → ee events, and measured
separately for electron reconstruction, identification and trig-
ger efficiencies [38], as a function of electron η and pT. In
the pT range relevant for the measurement of the W -boson
mass, the reconstruction and identification efficiency correc-
tions have a typical uncertainty of 0.1–0.2% in the barrel, and
0.3% in the endcap. The trigger efficiency corrections have
an uncertainty smaller than 0.1%, and are weakly dependent
on p�

T.

For a data-taking period corresponding to approximately
20% of the integrated luminosity, the LAr calorimeter suf-
fered from six front-end board failures. During this period,
electrons could not be reconstructed in the region of 0 <

η < 1.475 and − 0.9 < φ < − 0.5. The data-taking con-
ditions are reflected in the simulation for the correspond-
ing fraction of events. However, the trigger acceptance loss
is not perfectly simulated, and dedicated efficiency correc-
tions are derived as a function of η and φ to correct the
mismodelling, and applied in addition to the initial correc-
tions.

As described in Sect. 5, isolation requirements are applied
to the identified electrons. Their efficiency is approximately
95% in the simulated event samples, and energy-isolation
efficiency corrections are derived as for the reconstruc-
tion, identification, and trigger efficiencies. The energy-
isolation efficiency corrections deviate from unity by less
than 0.5%, with an uncertainty smaller than 0.2% on aver-
age.

Finally, as positively and negatively charged W -boson
events have different final-state distributions, the W+ con-
tamination in the W− sample, and vice versa, constitutes
an additional source of uncertainty. The rate of electron
charge mismeasurement in simulated events rises from about
0.2% in the barrel to 4% in the endcap. Estimates of charge
mismeasurement in data confirm these predictions within
better than 0.1%, apart from the high |η| region where
differences up to 1% are observed. The electron charge
mismeasurement induces a systematic uncertainty in mW

of approximately 0.5 MeV in the regions of |η�| < 0.6
and 0.6 < |η�| < 1.2, and of 5 MeV in the region of
1.8 < |η�| < 2.4, separately for W+ and W−. Since the
W+ and W− samples contaminate each other, the effect
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Table 5 Systematic
uncertainties in the mW
measurement due to electron
energy calibration, efficiency
corrections and charge
mismeasurement, for the
different kinematic distributions
and |η�| regions, averaged over
lepton charge. Combined
uncertainties are evaluated as
described in Sect. 2.2

|η�| range [0.0, 0.6] [0.6, 1.2] [1.8, 2.4] Combined
Kinematic distribution p�

T mT p�
T mT p�

T mT p�
T mT

δmW [MeV]

Energy scale 10.4 10.3 10.8 10.1 16.1 17.1 8.1 8.0

Energy resolution 5.0 6.0 7.3 6.7 10.4 15.5 3.5 5.5

Energy linearity 2.2 4.2 5.8 8.9 8.6 10.6 3.4 5.5

Energy tails 2.3 3.3 2.3 3.3 2.3 3.3 2.3 3.3

Reconstruction efficiency 10.5 8.8 9.9 7.8 14.5 11.0 7.2 6.0

Identification efficiency 10.4 7.7 11.7 8.8 16.7 12.1 7.3 5.6

Trigger and isolation efficiencies 0.2 0.5 0.3 0.5 2.0 2.2 0.8 0.9

Charge mismeasurement 0.2 0.2 0.2 0.2 1.5 1.5 0.1 0.1

Total 19.0 17.5 21.1 19.4 30.7 30.5 14.2 14.3
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Fig. 10 Distribution of reconstructed electrons η in Z → ee events.
The data are compared to the simulation including signal and back-
ground contributions. Corrections for energy resolution, and for recon-
struction, identification, isolation and trigger efficiencies are applied to
the simulation; energy-scale corrections are applied to the data. Back-
ground events contribute less than 0.2% of the observed distribution.
The lower panel shows the data-to-prediction ratio, with the error bars
showing the statistical uncertainty

is anti-correlated for the mW measurements in the two
different charge categories, and cancels in their combi-
nation, up to the asymmetry in the W+/W− production
rate. After combination, the residual uncertainty in mW is
0.2 MeV for |η�| < 1.2, and 1.5 MeV for 1.8 < |η�| <

2.4, for both the p�
T and mT distributions. The uncertain-

ties are considered as uncorrelated across pseudorapidity
bins.

Figure 10 compares the η� distribution in data and simu-
lation for Z → ee events, after applying the efficiency cor-
rections discussed above. The corresponding uncertainties in
mW due to the electron efficiency corrections are shown in
Table 5.

8 Calibration of the recoil

The calibration of the recoil, uT, affects the measurement of
the W -boson mass through its impact on the mT distribution,
which is used to extractmW . In addition, the recoil calibration
affects the p�

T andmT distributions through the pmiss
T ,mT, and

uT event-selection requirements. The calibration procedure
proceeds in two steps. First, the dominant part of the uT reso-
lution mismodelling is addressed by correcting the modelling
of the overall event activity in simulation. These corrections
are derived separately in the W - and Z -boson samples. Sec-
ond, corrections for residual differences in the recoil response
and resolution are derived using Z -boson events in data, and
transferred to the W -boson sample.

8.1 Event activity corrections

The pile-up of multiple proton–proton interactions has a sig-
nificant impact on the resolution of the recoil. As described in
Sect. 4, the pile-up is modelled by overlaying the simulated
hard-scattering process with additional pp interactions sim-
ulated using Pythia 8 with the A2 tune. The average number
of interactions per bunch crossing is defined, for each event,
as 〈μ〉 = Lσin/ fBC, whereL is the instantaneous luminosity,
σin is the total pp inelastic cross section and fBC is the aver-
age bunch-crossing rate. The distribution of 〈μ〉 in the simu-
lated event samples is reweighted to match the corresponding
distribution in data. The distribution of 〈μ〉 is affected in par-
ticular by the uncertainty in the cross section and properties
of inelastic collisions. In the simulation, 〈μ〉 is scaled by a
factor α to optimise the modelling of observed data distri-
butions which are relevant to the modelling of uT. A value
of α = 1.10 ± 0.04 is determined by minimising the χ2

function of the compatibility test between data and simula-
tion for the �E∗

T and uZ⊥ distributions, where the uncertainty
accounts for differences in the values determined using the
two distributions.
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Fig. 11 Distributions of a �E∗
T and b azimuth φ of the recoil in data

and simulation for Z → μμ events. The �E∗
T distribution is shown

before and after applying the Smirnov-transform correction, and the

φ distribution is shown before and after the ux,y correction. The lower
panels show the data-to-prediction ratios, with the vertical bars showing
the statistical uncertainty

After the correction applied to the average number of pile-
up interactions, residual data-to-prediction differences in the
�E∗

T distribution are responsible for most of the remain-
ing uT resolution mismodelling. The �E∗

T distribution is
corrected by means of a Smirnov transform, which is a
mapping x → x ′(x) such that a function f (x) is trans-
formed into another target function g(x) through the rela-
tion f (x) → f (x ′) ≡ g(x) [115]. Accordingly, a mapping
�E∗

T → �E∗
T

′ is defined such that the distribution of �E∗
T

in simulation, hMC(�E∗
T), is transformed into hMC(�E∗

T
′)

to match the �E∗
T distribution in data, hdata(�E∗

T). The cor-
rection is derived for Z -boson events in bins of p��

T , as the
observed differences in the �E∗

T distribution depend on the
Z -boson transverse momentum. The result of this procedure
is illustrated in Fig. 11a. The modified distribution is used to
parameterise the recoil response corrections discussed in the
next section.

InW -boson events, the transverse momentum of the boson
can only be inferred from uT, which has worse resolution
compared to p��

T in Z -boson events. To overcome this lim-
itation, a pT-dependent correction is defined assuming that
the pT dependence of differences between data and simula-
tion in the �E∗

T distribution in W -boson events follows the
corresponding differences observed in Z -boson events. The
�E∗

T distribution to be matched by the simulation is defined
as follows for W -boson events:

h̃Wdata(�E∗
T, pWT )

≡ hZ
data(�E∗

T, p��
T )

(
hWdata(�E∗

T)

hWMC(�E∗
T)

/ hZ
data(�E∗

T)

hZ
MC(�E∗

T)

)
, (4)

where pWT is the particle-level W -boson transverse momen-
tum, and p��

T the transverse momentum measured from the
decay-lepton pair, used as an approximation of the particle-

level pZT . The superscripts W and Z refer to W - or Z -
boson event samples, and the double ratio in the second term
accounts for the differences between the inclusive distribu-
tions in W - and Z -boson events. This correction is defined
separately for positively and negatively charged W bosons,
so as to incorporate the dependence of the pWT distribution on
the charge of the W boson. Using h̃Wdata(�E∗

T, pWT ) defined in
Eq. (4) as the target distribution, the pWT -dependent Smirnov
transform of the �E∗

T distribution in W -boson events is
defined as follows:

hWMC(�E∗
T; pWT ) → hWMC(�E∗

T
′; pWT ) ≡ h̃Wdata(�E∗

T; pWT ).

The validity of the approximation introduced in Eq. (4)
is verified by comparing hWdata(�E∗

T)/hWMC(�E∗
T) and hZ

data
(�E∗

T)/hZ
MC(�E∗

T) in broad bins of uT. The associated sys-
tematic uncertainties are discussed in Sect. 8.3.

8.2 Residual response corrections

In the ideal case of beams coinciding with the z-axis, the
physical transverse momentum of W and Z bosons is uni-
formly distributed in φ. However, an offset of the interac-
tion point with respect to the detector centre in the trans-
verse plane, the non-zero crossing angle between the pro-
ton beams, and φ-dependent response of the calorimeters
generate anisotropies in the reconstructed recoil distribution.
Corresponding differences between data and simulation are
addressed by effective corrections applied to ux and uy in
simulation:

u′
x = ux + ( 〈ux 〉data − 〈ux 〉MC ) ,

u′
y = uy + ( 〈

uy
〉
data − 〈

uy
〉
MC

)
,
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where 〈 ux,y 〉 data and 〈 ux,y 〉 MC are the mean values of
these distributions in data and simulation, respectively. The
corrections are evaluated in Z -boson events and parame-
terised as a function of �E∗

T. The effect of these corrections
on the recoil φ distribution is illustrated in Fig. 11b.

The transverse momentum of Z bosons can be recon-
structed from the decay-lepton pair with a resolution of 1–
2 GeV, which is negligible compared to the recoil energy res-
olution. The recoil response can thus be calibrated from com-
parisons with the reconstructed p��

T in data and simulation.
Recoil energy scale and resolution corrections are derived in
bins of �E∗

T and p��
T at reconstruction level, and are applied

in simulation as a function of the particle-level vector-boson
momentum pVT in both the W - and Z -boson samples. The
energy scale of the recoil is calibrated by comparing the
uZ‖ + p��

T distribution in data and simulation, whereas res-

olution corrections are evaluated from the uZ⊥ distribution.
Energy-scale corrections b(pVT , �E∗

T
′) are defined as the dif-

ference between the average values of the uZ‖ + p��
T dis-

tributions in data and simulation, and the energy-resolution
correction factors r(pVT , �E∗

T
′) as the ratio of the standard

deviations of the corresponding uZ⊥ distributions.
The parallel component of uT in simulated events is cor-

rected for energy scale and resolution, whereas the perpen-
dicular component is corrected for energy resolution only.
The corrections are defined as follows:

uV,corr
‖ =

[
uV,MC

‖ −
〈
uZ ,data

‖
〉
(pVT , �E∗

T
′
)
]

· r(pVT , �E∗
T

′
)

+
〈
uZ ,data

‖
〉
(pVT , �E∗

T
′
) + b(pVT , �E∗

T
′
), (5)

uV,corr
⊥ = uV,MC

⊥ · r(pVT , �E∗
T

′
), (6)

where V = W, Z , uV,MC
‖ and uV,MC

⊥ are the parallel and per-

pendicular components of uT in the simulation, and uV,corr
‖

and uV,corr
⊥ are the corresponding corrected values. As for b

and r , the average
〈
uZ ,data

‖
〉

is mapped as a function of the

reconstructed p��
T in Z -boson data, and used as a function of

pVT in both W - and Z -boson simulation. Since the resolution
of uT has a sizeable dependence on the amount of pile-up,
the correction procedure is defined in three bins of 〈μ〉, cor-
responding to low, medium, and high pile-up conditions, and
defined by the ranges of 〈μ〉 ∈ [2.5, 6.5], 〈μ〉 ∈ [6.5, 9.5],
and 〈μ〉 ∈ [9.5, 16.0], respectively. Values for b(pVT , �E∗

T
′)

are typically O(100 MeV), and r(pVT , �E∗
T

′) deviates from
unity by 2% at most. The effect of the calibration is shown in
Fig. 12 for Z → μμ events. The level of agreement obtained
after corrections is satisfactory, and similar performance is
observed for Z → ee events.

A closure test of the applicability of Z -based corrections
to W production is performed using W and Z samples sim-
ulated with Powheg+Herwig 6, which provide an alter-
native model for the description of hadronisation and the

underlying event. The procedure described above is used
to correct the recoil response from Powheg+Pythia 8 to
Powheg+Herwig 6, where the latter is treated as pseudo-
data. As shown in Fig. 13, the corrected W recoil distribu-
tions in Powheg+Pythia 8 match the corresponding distri-
butions in Powheg+Herwig 6. For this study, the effect of
the different particle-level pWT distributions in both samples
is removed by reweighting thePowheg+Pythia 8 prediction
to Powheg+Herwig 6. This study is performed applying the
standard lepton selection cuts, but avoiding further kinematic
selections in order to maximize the statistics available for the
test.

8.3 Systematic uncertainties

The recoil calibration procedure is sensitive to the following
sources of systematic uncertainty: the uncertainty of the scale
factor applied to the 〈μ〉 distribution, uncertainties due to the
Smirnov transform of the �E∗

T distribution, uncertainties in
the correction of the average value of the ux,y distributions,
statistical uncertainties in the residual correction factors and
their pT dependence, and expected differences in the recoil
response between Z - and W -boson events.

The uncertainty from the 〈μ〉 scale-factor α is evaluated
by varying it by its uncertainty and repeating all steps of
the recoil calibration procedure. These variations affect the
determination of mW by less than 1 MeV.

The systematic uncertainty related to the dependence of
the �E∗

T correction on pT is estimated by comparing with the
results of a pT-inclusive correction. This source contributes,
averaging over W -boson charges, an uncertainty of approx-
imately 1 MeV for the extraction of mW from the p�

T distri-
bution, and 11 MeV when using the mT distribution.

The recoil energy scale and resolution corrections of
Eqs. (5) and (6) are derived from the Z -boson sample
and applied to W -boson events. Differences in the detector
response to the recoil between W - and Z -boson processes
are considered as a source of systematic uncertainty for these
corrections. Differences between theuW⊥ anduZ⊥ distributions
originating from different vector-boson kinematic properties,
different ISR and FSR photon emission, and from different
selection requirements are, however, discarded as they are
either accurately modelled in the simulation or already incor-
porated in the correction procedure.

To remove the effect of such differences, the two-
dimensional distribution hWMC(pT, �E∗

T) in W -boson sim-
ulated events is corrected to match the corresponding dis-
tribution in Z -boson simulated events, treating the neutri-
nos in W -boson decays as charged leptons to calculate uT

as in Z -boson events. Finally, events containing a particle-
level photon from final-state radiation are removed. After
these corrections, the standard deviation of the u⊥ distribu-
tion agrees within 0.03% between simulatedW - and Z -boson
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Fig. 12 Recoil distributions for a uZ‖ , b uZ‖ + p��
T , (c) uZ⊥, and (d) uT in Z → μμ events. The data are compared to the simulation before and

after applying the recoil corrections described in the text. The lower panels show the data-to-prediction ratios, with the vertical bars showing the
statistical uncertainty

events. This difference is equivalent to 6% of the size of the
residual resolution correction, which increases the standard
deviation of the u⊥ distribution by 0.5%. Accordingly, the
corresponding systematic uncertainty due to the extrapola-
tion of the recoil calibration from Z - to W -boson events is
estimated by varying the energy resolution parameter r of
Eqs. (5) and (6) by 6%. The impact of this uncertainty on the
extraction of mW is approximately 0.2 MeV for the p�

T dis-
tribution, and 5.1 MeV for the mT distribution. The extrapo-
lation uncertainty of the energy-scale correction b was found
to be negligible in comparison.

In addition, the statistical uncertainty of the correction
factors contributes 2.0 MeV for the p�

T distribution, and
2.7 MeV for the mT distribution. Finally, instead of using
a binned correction, a smooth interpolation of the correc-
tion values between the bins is performed. Comparing the

binned and interpolated correction parameters b(pVT , �E∗
T

′)
and r(pVT , �E∗

T
′) leads to a systematic uncertainty in mW of

1.4 and 3.1 MeV for the p�
T andmT distributions, respectively.

Systematic uncertainties in the ux,y corrections are found to
be small compared to the other systematic uncertainties, and
are neglected.

The impact of the uncertainties of the recoil calibra-
tion on the extraction of the W -boson mass from the p�

T
and mT distributions are summarised in Table 6. The deter-
mination of mW from the p�

T distribution is only slightly
affected by the uncertainties of the recoil calibration, whereas
larger uncertainties are estimated for themT distribution. The
largest uncertainties are induced by the �E∗

T corrections and
by the extrapolation of the recoil energy-scale and energy-
resolution corrections from Z - to W -boson events. The sys-
tematic uncertainties are in general smaller for W− events
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Fig. 13 Distributions of a uT and b u�‖ in W events simulated using
Powheg+Pythia 8 and Powheg+Herwig 6. The recoil response in
Powheg+Pythia 8 is corrected to the Powheg+Herwig 6 response
using simulated Z events following the method described in the

text. The pWT distribution in Powheg+Pythia 8 is reweighted to
the Powheg+Herwig 6 prediction. The lower panels show the ratios
of Powheg+Herwig 6 to Powheg+Pythia 8, with and without the
response correction in the Powheg+Pythia 8 sample

Table 6 Systematic
uncertainties in the mW
measurement due to recoil
corrections, for the different
kinematic distributions and
W -boson charge categories.
Combined uncertainties are
evaluated as described in
Sect. 2.2

W -boson charge W+ W− Combined
Kinematic distribution p�

T mT p�
T mT p�

T mT

δmW [MeV]

〈μ〉 scale factor 0.2 1.0 0.2 1.0 0.2 1.0

�E∗
T correction 0.9 12.2 1.1 10.2 1.0 11.2

Residual corrections (statistics) 2.0 2.7 2.0 2.7 2.0 2.7

Residual corrections (interpolation) 1.4 3.1 1.4 3.1 1.4 3.1

Residual corrections (Z → W extrapolation) 0.2 5.8 0.2 4.3 0.2 5.1

Total 2.6 14.2 2.7 11.8 2.6 13.0

than for W+ events, as the �E∗
T distribution in W− events is

closer to the corresponding distribution in Z -boson events.

9 Consistency tests with Z-boson events

The Z → �� event sample allows several validation and
consistency tests of the W -boson analysis to be performed.
All the identification requirements of Sect. 5.1, the calibra-
tion and efficiency corrections of Sects. 7 and 8, as well as
the physics-modelling corrections described in Sect. 6, are
applied consistently in the W - and Z -boson samples. The Z -
boson sample differs from the W -boson sample in the selec-
tion requirements, as described in Sect. 5.2. In addition to
the event-selection requirements described there, the trans-
verse momentum of the dilepton system, p��

T , is required to
be smaller than 30 GeV.

The missing transverse momentum in Z -boson events is
defined by treating one of the two decay leptons as a neu-

trino and ignoring its transverse momentum when defining
the event kinematics. This procedure allows the pmiss

T and
mT variables to be defined in the Z -boson sample in close
analogy to their definition in the W -boson sample. The pro-
cedure is repeated, removing the positive and negative lepton
in turn.

In the Z -boson sample, the background contribution aris-
ing from top-quark and electroweak production is estimated
using Monte Carlo samples. Each process is normalised
using the corresponding theoretical cross sections, evaluated
at NNLO in the perturbative expansion of the strong cou-
pling constant. This background contributes a 0.12% frac-
tion in each channel. In the muon channel, the background
contribution from multijet events is estimated to be smaller
than 0.05% using simulated event samples of bb̄ and cc̄
production, and neglected. In the electron channel, a data-
driven estimate of the multijet background contributes about
a 0.1% fraction, before applying the isolation selections,
which reduce it to a negligible level.
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Fig. 14 The a,b p��
T and c,d y�� distributions in Z -boson events for the

a, c electron and b, d muon decay channels. The data are compared to
the simulation including signal and backgrounds. Detector calibration
and physics-modelling corrections are applied to the simulated events.

Background events contribute less than 0.2% of the observed distribu-
tions. The lower panels show the data-to-prediction ratios, with the error
bars showing the statistical uncertainty

Figure 14 shows the reconstructed distributions of p��
T

and y�� in selected Z -boson events; these distributions are
not sensitive to the value of mZ . Figure 15 shows the cor-
responding distributions for p�

T and mT, variables which are
sensitive to mZ . Data and simulation agree at the level of
1–2% percent in all the distributions.

The mass of the Z boson is extracted with template fits
to the m��, p�

T, and mT kinematic distributions. The extrac-
tion of the Z -boson mass from the dilepton invariant mass
distribution is expected to yield, by construction, the value
of mZ used as input for the muon-momentum and electron-
energy calibrations, providing a closure test of the lepton cal-
ibration procedures. The p�

T distribution is very sensitive to
the physics-modelling corrections described in Sect. 6. The
comparison of the value of mZ extracted from the p�

T distri-
bution with the value used as input for the calibration tests

the physics modelling and efficiency corrections. Finally,mZ

measurements from the mT distribution provides a test of the
recoil calibration.

Similarly to the W -boson mass, the value of mZ is deter-
mined by minimising the χ2 function of the compatibility
test between the templates and the measured distributions.
The templates are generated with values of mZ in steps of 4
to 25 MeV within a range of ± 450 MeV, centred around a
reference value corresponding to the LEP combined value,
mZ = 91187.5 MeV [32]. The χ2 function is interpolated
with a second order polynomial. The minimum of the χ2

function yields the extracted value of mZ , and the difference
between the extracted value of mZ and the reference value
is defined as �mZ . The ranges used for the extraction are
[80, 100] GeV for the m�� distributions, [30, 55] GeV for the
p�

T distribution, and [40, 120] GeV for the mT distribution.
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Fig. 15 The p�
T distribution in the a electron and bmuon channels, and

mT distributions in the c, e electron and d, f muon decay channels for Z
events when the c,d negatively charged, or e, f positively charged lepton
is removed. The data are compared to the simulation including signal
and backgrounds. Detector calibration and physics-modelling correc-

tions are applied to the simulated events. Background events contribute
less than 0.2% of the observed distributions. The lower panels show
the data-to-prediction ratios, with the error bars showing the statistical
uncertainty
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Fig. 16 Summary of the mZ
determinations from the p�

T and
mT distributions in the muon
and electron decay channels.
The LEP combined value of mZ ,
which is used as input for the
detector calibration, is also
indicated. The horizontal and
vertical bands show the
uncertainties of the mZ
determinations and of the LEP
combined value, respectively
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Table 7 Difference between Z -boson mass, extracted from p�
T and mT

distributions, and the LEP combined value. The results are shown sepa-
rately for the electron and muon decay channels, and their combination.
The first quoted uncertainty is statistical, the second is the experimental

systematic uncertainty, which includes lepton efficiency and recoil cali-
bration uncertainties where applicable. Physics-modelling uncertainties
are neglected

Lepton charge �+ �− Combined
Kinematic distribution p�

T mT p�
T mT p�

T mT

�mZ [MeV]

Z → ee 13 ± 31 ± 10 − 93 ± 38 ± 15 − 20 ± 31 ± 10 4 ± 38 ± 15 − 3 ± 21 ± 10 − 45 ± 27 ± 15

Z → μμ 1 ± 22 ± 8 − 35 ± 28 ± 13 − 36 ± 22 ± 8 − 1 ± 27 ± 13 − 17 ± 14 ± 8 − 18 ± 19 ± 13

Combined 5 ± 18 ± 6 − 58 ± 23 ± 12 − 31 ± 18 ± 6 1 ± 22 ± 12 − 12 ± 12 ± 6 − 29 ± 16 ± 12

The extraction of mZ from the mT distribution is performed
separately for positively and negatively charged leptons in
the event, by reconstructing mT from the kinematic prop-
erties of one of the two charged leptons and of the recoil
reconstructed by treating the other as a neutrino.

Z -boson mass fits are performed using the mT and p�
T

distributions in the electron and muon decay channels, inclu-
sively in η and separately for positively and negatively
charged leptons. The results of the fits are summarised in
Fig. 16 and Table 7. The p�

T fit results include all lepton
reconstruction systematic uncertainties except the Z -based
energy or momentum scale calibration uncertainties; the mT

fit results include recoil calibration systematic uncertainties
in addition. Physics-modelling uncertainties are neglected.

The value ofmZ measured from positively charged leptons
is correlated with the corresponding extraction from the neg-
atively charged leptons. The p�

T distributions for positively
and negatively charged leptons are statistically independent,
but the mT distributions share the same reconstructed recoil
event by event, and are statistically correlated. In both cases,
the decay of the Z -boson induces a kinematical correla-
tion between the distributions of positively and negatively
charged leptons. The correlation is estimated by construct-
ing two-dimensional �+ and �− distributions, separately for
p�

T and mT, fluctuating the bin contents of these distribu-
tions within their uncertainties, and repeating the fits for

each pseudodata sample. The correlation values are − 7%
for the p�

T distributions, and −12% for the mT distribu-
tions.

Accounting for the experimental uncertainties as described
above, the combined extraction of mZ from the p�

T distri-
bution yields a result compatible with the reference value
within 0.9 standard deviations. The difference between the
mZ extractions from positively and negatively charged lep-
ton distributions is compatible with zero within 1.4 standard
deviations. For the extraction from the mT distribution, the
compatibility with the reference value of mZ is at the level of
1.5 standard deviations. Fits using the lepton pair invariant
mass distribution agree with the reference, yielding �mZ =
1 ± 3 MeV in the muon channel and �mZ = 3 ± 5 MeV in
the electron channel, as expected from the calibration proce-
dure. In summary, the consistency tests based on the Z -boson
sample agree with the expectations within the experimental
uncertainties.

10 Backgrounds in the W -boson sample

TheW -boson event sample, selected as described in Sect. 5.2,
includes events from various background processes. Back-
ground contributions from Z -boson, W → τν, boson pair,
and top-quark production are estimated using simulation.
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Contributions from multijet production are estimated with
data-driven techniques.

10.1 Electroweak and top-quark backgrounds

The dominant sources of background contribution in the
W → �ν sample are Z → �� events, in which one of the
two leptons escapes detection, and W → τν events, where
the τ decays to an electron or muon. These background con-
tributions are estimated using the Powheg+Pythia 8 sam-
ples after applying the modelling corrections discussed in
Sect. 6, which include NNLO QCD corrections to the angu-
lar coefficients and rapidity distributions, and corrections to
the vector-boson transverse momentum. The Z → ee back-
ground represents 2.9% of the W+ → eν sample and 4.0%
of the W− → eν sample. In the muon channel, the Z → μμ

background represents 4.8 and 6.3% of the W+ → μν and
W− → μν samples, respectively. The W → τν background
represents 1.0% of the selected sample in both channels, and
the Z → ττ background contributes approximately 0.12%.
The normalisation of these processes relative to the W -boson
signal and the corresponding uncertainties are discussed in
Sect. 4. A relative uncertainty of 0.2% is assigned to the
normalisation of the W → τν samples with respect to the
W -boson signal sample, to account for the uncertainty in the
τ -lepton branching fractions to electrons and muons. In the
determination of the W -boson mass, the variations of mW

are propagated to the W → τν background templates in the
same way as for the signal.

Similarly, backgrounds involving top-quark (top-quark
pairs and single top-quark) production, and boson-pair pro-
duction are estimated using simulation, and normalisation
uncertainties are assigned as discussed in Sect. 4. These pro-
cesses represent 0.11 and 0.07% of the signal event selection,
respectively.

Uncertainties in the distributions of the W → τν and
Z → �� processes are described by the physics-modelling
uncertainties discussed in Sect. 6, and are treated as fully cor-
related with the signal. Shape uncertainties for boson-pair
production and top-quark production are considered negli-
gible compared to the uncertainties in their cross sections,
given the small contributions of these processes to the signal
event selection.

10.2 Multijet background

Inclusive multijet production in strong-interaction processes
constitutes a significant source of background. A fraction
of multijet events contains semileptonic decays of bottom
and charm hadrons to muons or electrons and neutrinos, and
can pass the W -boson signal selection. In addition, inclu-
sive jet production contributes to the background if one
jet is misidentified as electron or muon, and sizeable miss-

ing transverse momentum is reconstructed in the event. In-
flight decays of pions or kaons within the tracking region
can mimic the W -boson signal in the muon channel. In
the electron channel, events with photon conversions and
hadrons misidentified as electrons can be selected as W -
boson events. Due to the small selection probability for mul-
tijet events, their large production cross section, and the rela-
tively complex modelling of the hadronisation processes, the
multijet background contribution cannot be estimated pre-
cisely using simulation, and a data-driven method is used
instead.

The estimation of the multijet background contribution
follows similar procedures in the electron and muon decay
channels, and relies on template fits to kinematic distribu-
tions in background-dominated regions. The analysis uses
the distributions of pmiss

T , mT, and the p�
T/mT ratio, where

jet-enriched regions are obtained by relaxing a subset of
the signal event-selection requirements. The first kinematic
region, denoted FR1, is defined by removing the pmiss

T
and mT requirements from the event selection. A second
kinematic region, FR2, is defined in the same way as
FR1, but by also removing the requirement on uT. Mul-
tijet background events, which tend to have smaller val-
ues of pmiss

T and mT than the signal, are enhanced by this
selection. The p�

T/mT distribution is sensitive to the angle
between the p�

T and pmiss
T vectors in the transverse plane.

Whereas W -boson events are expected to peak at values of
p�

T/mT = 0.5, relatively large tails are observed for multijet
events.

Templates of the multijet background distributions for
these observables are obtained from data by inverting the lep-
ton energy-isolation requirements. Contamination of these
control regions by electroweak and top production is esti-
mated using simulation and subtracted. In the muon channel,
the anti-isolation requirements are defined from the ratio of
the scalar sum of the pT of tracks in a cone of size �R < 0.2
around the reconstructed muon to the muon pT. The iso-
lation variable pμ,cone

T , introduced in Sect. 5.1, is required
to satisfy c1 < pμ,cone

T /p�
T < c2, where the anti-isolation

boundaries c1 and c2 are varied as discussed below. In order
to avoid overlap with the signal region, the lower boundary
c1 is always larger than 0.1. In the electron channel, the scalar
sum of the pT of tracks in a cone of size �R < 0.4 around
the reconstructed electron, defined as pe,cone

T in Sect. 5.1, is
used to define the templates, while the requirements on the
calorimeter isolation are omitted.

The multijet background normalisation is determined by
fitting each of the pmiss

T , mT, and p�
T/mT distributions in

the two kinematic regions FR1 and FR2, using templates of
these distributions based on multijet events and obtained with
several ranges of the anti-isolation variables. The multijet
background in the signal region is determined by correcting
the multijet fraction fitted in the FR1 and FR2 for the different
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efficiencies of the selection requirements of the signal region.
In the electron channel, c1 is varied from 4 to 9 GeV in steps
of 1 GeV, and c2 is set to c2 = c1 + 1 GeV. In the muon
channel, c1 is varied from 0.1 to 0.37 in steps of 0.03, and
c2 is set to c2 = c1 + 0.03. Example results of template fits
in the electron and muon channels are shown in Fig. 17. The
results corresponding to the various observables and to the
different kinematic regions are linearly extrapolated in the
isolation variables to the signal regions, denoted by c1 = 0.
Figure 18 illustrates the extrapolation procedure.

The systematic uncertainty in the multijet background
fraction is defined as half of the largest difference between
the results extrapolated from the different kinematic regions
and observables. The multijet background contribution is
estimated separately in all measurement categories. In the
electron channel, the multijet background fraction rises from
0.58±0.08% at low |η�| to 1.73 ± 0.19% in the last measure-
ment bin, averaging the W+ and W− channels. In the muon
channel, the charge-averaged multijet background fraction
decreases from 0.72 ± 0.07% to 0.49 ± 0.03%, when going
from low to high |η�|. The uncertainties in the multijet back-
ground fractions are sufficient to account for the observed
residual discrepancies between the fitted distributions and
the data (see Fig. 17). The estimated multijet background
yields are consistent between W+ and W−, but the multijet
background fraction is smaller in the W+ channels due to the
higher signal yield.

Corrections to the shape of the multijet background con-
tributions and corresponding uncertainties in the distribu-
tions used to measure the W -boson mass are estimated with
a similar procedure. The kinematic distributions in the con-
trol regions are obtained for a set of anti-isolation ranges, and
parameterised with linear functions of the lower bound of the
anti-isolation requirement. The distributions are extrapolated
to the signal regions accordingly. Uncertainties in the extrap-
olated distributions are dominated by the statistical uncer-
tainty, which is determined with a toy MC method by fluctu-
ating within their statistical uncertainty the bin contents of the
histograms in the various anti-isolation ranges. The resulting
multijet background distribution is propagated to the tem-
plates, and the standard deviation of the determined values
of mW yields the estimated uncertainty due to the shape of
the multijet background. Uncertainties due to the choice of
parameterisation are small in comparison and neglected.

Uncertainties in the normalisation of multijet, elec-
troweak, and top-quark background processes are considered
correlated across decay channels, boson charges and rapidity
bins, whereas the uncertainty in the shape of multijet back-
ground is considered uncorrelated between decay channels
and boson charges. The impact of the background systematic
uncertainties on the determination of mW is summarised in
Table 8.

11 Measurement of the W -boson mass

This section presents the determination of the mass of the
W boson from template fits to the kinematic distributions of
the W -boson decay products. The final measured value is
obtained from the combination of measurements performed
using the lepton transverse momentum and transverse mass
distributions in categories corresponding to the electron and
muon decay channels, positively and negatively charged W
bosons, and absolute pseudorapidity bins of the charged lep-
ton, as illustrated in Table 1. The number of selected events
in each category is shown in Table 9.

11.1 Control distributions

The detector calibration and the physics modelling are val-
idated by comparing data with simulated W -boson signal
and backgrounds for several kinematic distributions that are
insensitive to the W -boson mass. The comparison is based
on a χ2 compatibility test, including statistical and system-
atic uncertainties, and the bin-to-bin correlations induced by
the latter. The systematic uncertainty comprises all sources of
experimental uncertainty related to the lepton and recoil cali-
bration, and to the background subtraction, as well as sources
of modelling uncertainty associated with electroweak cor-
rections, or induced by the helicity fractions of vector-boson
production, the vector-boson transverse-momentum distribu-
tion, and the PDFs. Comparisons of data and simulation for
the η�, uT, and u�‖ distributions, in positively and negatively
charged W -boson events, are shown in Figs. 19 and 20 for
the electron and muon decay channels, respectively.

Data and simulation agree within uncertainties for all dis-
tributions, as confirmed by the satisfactory χ2/dof values.
The effect of the residual discrepancies in the uT distributions
for W− → �ν, visible at low values in Figs. 19d and 20d, is
discussed in Sect. 11.5.

11.2 Data-driven check of the uncertainty in the pWT
distribution

The uncertainty in the prediction of the u�‖ distribution is

dominated by pWT distribution uncertainties, especially at
negative values of u�‖ in the kinematic region correspond-

ing to u�‖ < −15 GeV. This is illustrated in Fig. 21, which
compares the recoil distributions in the Powheg+Pythia
8 and Powheg+Herwig 6 samples, before and after the
corrections described in Sect. 8.2 (the pWT distribution pre-
dicted by Powheg+Pythia 8 is not reweighted to that of
Powheg+Herwig 6). As can be seen, the recoil corrections
and the different pWT distributions have a comparable effect
on the uT distribution. In contrast, the effect of the recoil
corrections is small at negative values of u�‖, whereas the
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Fig. 17 Example template fits to the a, b pmiss
T , c, d mT, and e, f

p�
T/mT distributions in the FR1 kinematic region, in the a, c, e electron

and b, d, f muon decay channels. Multijet templates are derived from
the data requiring 4 GeV < pe,cone

T < 8 GeV in the electron channel,

and 0.2 < pμ,cone
T /p�

T < 0.4 in the muon channel. The data are com-
pared to the simulation including signal and background contributions
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Fig. 18 Estimated number of multijet-background events as a func-
tion of the lower bound of the isolation-variable range used to define
the control regions, for a electron and b muon decay channel. The
estimation is performed for the two regions FR1 and FR2 and three
distributions pmiss

T , mT, and p�
T/mT, as described in the text. The linear

extrapolations are indicated by the solid lines. The thick crosses show
the results of the linear extrapolation of the background estimate to the
signal region, including uncertainties from the extrapolation only. The
thin crosses also include the uncertainty induced by the contamination
of the control regions by EW and top-quark processes

Table 8 Systematic
uncertainties in the mW
measurement due to
electroweak, top-quark, and
multijet background estimation,
for fits to the p�

T and mT
distributions, in the electron and
muon decay channels, with
positively and negatively
charged W bosons

Kinematic distribution p�
T mT

Decay channel W → eν W → μν W → eν W → μν

W -boson charge W+ W− W+ W− W+ W− W+ W−

δmW [ MeV]

W → τν (fraction, shape) 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.3

Z → ee (fraction, shape) 3.3 4.8 – – 4.3 6.4 – –

Z → μμ (fraction, shape) – – 3.5 4.5 – – 4.3 5.2

Z → ττ (fraction, shape) 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.3

WW , WZ , Z Z (fraction) 0.1 0.1 0.1 0.1 0.4 0.4 0.3 0.4

Top (fraction) 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3

Multijet (fraction) 3.2 3.6 1.8 2.4 8.1 8.6 3.7 4.6

Multijet (shape) 3.8 3.1 1.6 1.5 8.6 8.0 2.5 2.4

Total 6.0 6.8 4.3 5.3 12.6 13.4 6.2 7.4

Table 9 Numbers of selected
W+ and W− events in the
different decay channels in data,
inclusively and for the various
|η�| categories

|η�| range 0–0.8 0.8–1.4 1.4–2.0 2.0–2.4 Inclusive

W+ → μ+ν 1 283 332 1 063 131 1 377 773 885 582 4 609 818

W− → μ−ν̄ 1 001 592 769 876 916 163 547 329 3 234 960

|η�| range 0–0.6 0.6–1.2 1.8–2.4 Inclusive

W+ → e+ν 1 233 960 1 207 136 956 620 3 397 716

W− → e−ν̄ 969 170 908 327 610 028 2 487 525

difference in the pWT distributions has a large impact in this
region.

The sensitivity of the u�‖ distribution is exploited to vali-

date the modelling of the pWT distribution by Pythia 8 AZ,
and its theory-driven uncertainty, described in Sect. 6.5.2,
with a data-driven procedure. The parton-shower factorisa-
tion scale μF associated with the cq̄ → W processes consti-

tutes the main source of uncertainty in the modelling of the
pWT distribution. Variations of the u�‖ distribution induced
by changes in the factorisation scale of the cq̄ → W pro-
cesses are parameterised and fitted to the data. The u�‖ dis-
tribution is predicted for the two boundary values of μF,
and assumed to vary linearly as a function of μF. Variations
induced by changes in μF are parameterised using a variable
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Fig. 19 The a, b η�, (c,d) uT, and e, f u�‖ distributions for a, c, e W+
events and b, d, f W− events in the electron decay channel. The data
are compared to the simulation including signal and background con-
tributions. Detector calibration and physics-modelling corrections are
applied to the simulated events. The lower panels show the data-to-

prediction ratios, the error bars show the statistical uncertainty, and the
band shows the systematic uncertainty of the prediction. The χ2 val-
ues displayed in each figure account for all sources of uncertainty and
include the effects of bin-to-bin correlations induced by the systematic
uncertainties
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Fig. 20 The a, b η�, (c,d) uT, and e, f u�‖ distributions for a, c, e W+
events and b, d, f W− events in the muon decay channel. The data
are compared to the simulation including signal and background con-
tributions. Detector calibration and physics-modelling corrections are
applied to the simulated events. The lower panels show the data-to-

prediction ratios, the error bars show the statistical uncertainty, and the
band shows the systematic uncertainty of the prediction. The χ2 val-
ues displayed in each figure account for all sources of uncertainty and
include the effects of bin-to-bin correlations induced by the systematic
uncertainties
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Fig. 21 Distributions of a uT and b u�‖ in W → μν events sim-
ulated using Powheg+Pythia 8 and Powheg+Herwig 6 after all
analysis selection cuts are applied. The Powheg+Pythia 8 distribu-
tions are shown before and after correction of the recoil response

to that of Powheg+Herwig 6. The lower panels show the ratios of
Powheg+Herwig 6 to Powheg+Pythia 8, with and without the recoil
response correction in the Powheg+Pythia 8 sample. The discrepancy
remaining after recoil corrections reflects the different pWT distributions

s defined in units of the initially allowed range, i.e. values
of s = −1, 0,+1 correspond to half the effect3 of chang-
ing from μF = mV to μF = mV /2,mV , 2mV respectively.
The optimal value of s is determined by fitting the fraction
of events in the kinematic region −30 < u�‖ < −15 GeV.
The fit accounts for all experimental and modelling uncer-
tainties affecting the u�‖ distribution, and gives a value of
s = − 0.22 ± 1.06. The best-fit value of s confirms the
good agreement between the the Pythia 8 AZ prediction
and the data; its uncertainty is dominated by PDF and recoil-
calibration uncertainties, and matches the variation range
of μF used for the initial estimation of the pWT distribution
uncertainty.

This validation test supports the Pythia 8 AZ predic-
tion of the pWT distribution and the theory-driven associ-
ated uncertainty estimate. On the other hand, as shown in
Fig. 22, the data disagree with the DYRes and Powheg
MiNLO+Pythia 8 predictions. The latter are obtained
reweighting the initial pWT distribution in Powheg+Pythia
8 according to the product of the pZT distribution of
Pythia 8 AZ, which matches the measurement of Ref. [44],
and RW/Z (pT) as predicted by DYRes and
Powheg MiNLO+Pythia 8. The uncertainty bands in
the DYRes prediction are calculated using variations of
the factorisation, renormalisation and resummation scales
μF, μR and μRes following the procedure described in
Ref. [116,117]. The uncertainty obtained applying corre-
lated scale variations in W and Z production does not

3 Half the effect is used because only one of the two quarks in the initial
state is heavy, as discussed in Sect. 6.5.2.

cover the observed difference with the data. The potential
effect of using RW/Z (pT) as predicted by DYRes instead of
Pythia 8 AZ for the determination of mW is discussed in
Sect. 11.5.

11.3 Results for mW in the measurement categories

Measurements ofmW are performed using the p�
T andmT dis-

tributions, separately for positively and negatively chargedW
bosons, in three bins of |η�| in the electron decay channel,
and in four bins of |η�| in the muon decay channel, leading to
a total of 28 mW determinations. In each category, the value
of mW is determined by a χ2 minimisation, comparing the
p�

T and mT distributions in data and simulation for different
values of mW . The templates are generated with values of
mW in steps of 1 to 10 MeV within a range of ± 400 MeV,
centred around the reference value used in the Monte Carlo
signal samples. The statistical uncertainty is estimated from
the half width of the χ2 function at the value corresponding to
one unit above the minimum. Systematic uncertainties due to
physics-modelling corrections, detector-calibration correc-
tions, and background subtraction, are discussed in Sects. 6–
8 and 10, respectively.

The lower and upper bounds of the range of the p�
T distri-

bution used in the fit are varied from 30 to 35 GeV, and from
45 to 50 GeV respectively, in steps of 1 GeV. For the mT

distribution, the boundaries are varied from 65 to 70 GeV,
and from 90 to 100 GeV. The total measurement uncer-
tainty is evaluated for each range, after combining the mea-
surement categories as described in Sect. 11.4 below. The

123



110 Page 36 of 61 Eur. Phys. J. C (2018) 78 :110

  [GeV]Tu
0 5 10 15 20 25 30

P
re

d.
 / 

D
at

a

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

Pythia 8 AZ

Powheg MiNLO + Pythia 8

 corr.)Z
QCD

μ,W
QCD

μDYRes (

ATLAS
-1 = 7 TeV, 4.1-4.6 fbs

ν l→±W

(a)   [GeV] lu

30− 20− 10− 0 10 20 30

P
re

d.
 / 

D
at

a

0.98

1

1.02

1.04

1.06

1.08 ATLAS
-1 = 7 TeV, 4.1-4.6 fbs

ν l→±W

Pythia 8 AZ

Powheg MiNLO + Pythia 8

 corr.)Z
QCD

μ,W
QCD

μDYRes (

(b)

Fig. 22 Ratio between the predictions of Pythia 8 AZ, DYRes and
Powheg MiNLO+Pythia 8 and the data for the a uT and b u�‖ dis-
tributions in W → �ν events. The W -boson rapidity distribution is
reweighted according to the NNLO prediction. The error bars on the data
points display the total experimental uncertainty, and the band around

the Pythia 8 AZ prediction reflects the uncertainty in the pWT distri-
bution. The uncertainty band around the DYRes prediction assumes
that uncertainties induced by variations of the QCD scales μF, μR and
μRes, collectively referred to as μQCD, are fully correlated in W and Z
production

smallest total uncertainty in mW is found for the fit ranges
32 < p�

T < 45 GeV and 66 < mT < 99 GeV. The optimi-
sation is performed before the unblinding of the mW value
and the optimised range is used for all the results described
below.

The final measurement uncertainty is dominated by mod-
elling uncertainties, with typical values in the range 25–
35 MeV for the various charge and |η�| categories. Lepton-
calibration uncertainties are the dominant sources of experi-
mental systematic uncertainty for the extraction of mW from
the p�

T distribution. These uncertainties vary from about
15 MeV to about 35 MeV for most measurement categories,
except the highest |η| bin in the muon channel where the
total uncertainty of about 120 MeV is dominated by the muon
momentum linearity uncertainty. The uncertainty in the cal-
ibration of the recoil is the largest source of experimental
systematic uncertainty for the mT distribution, with a typical
contribution of about 15 MeV for all categories. The determi-
nation ofmW from the p�

T andmT distributions in the various
categories is summarised in Table 10, including an overview
of statistical and systematic uncertainties. The results are also
shown in Fig. 23. No significant differences in the values of
mW corresponding to the different decay channels and to the
various charge and |η�| categories are observed.

The comparison of data and simulation for kinematic dis-
tributions sensitive to the value of mW provides further vali-
dation of the detector calibration and physics modelling. The
comparison is performed in all measurement categories. The
η-inclusive p�

T, mT and pmiss
T distributions for positively and

negatively charged W bosons are shown in Figs. 24 and 25
for the electron and muon decay channels, respectively. The

value of mW used in the predictions is set to the overall mea-
surement result presented in the next section. The χ2 values
quantifying the comparison between data and prediction are
calculated over the full histogram range and account for all
sources of uncertainty. The bin-to-bin correlations induced
by the experimental and physics-modelling systematic uncer-
tainties are also accounted for. Overall, satisfactory agree-
ment is observed. The deficit of data visible for p�

T ∼ 40–
42 GeV in the W+ → eν channel does not strongly affect
the mass measurement, as the observed effect differs from
that expected from mW variations. Cross-checks of possible
sources of this effect were performed, and its impact on the
mass determination was shown to be within the correspond-
ing systematic uncertainties.

11.4 Combination and final results

The measurements of mW in the various categories are com-
bined accounting for statistical and systematic uncertainties
and their correlations. The statistical correlation of the mW

values determined from the p�
T and mT distributions is eval-

uated with the bootstrap method [118], and is approximately
50% for all measurement categories.

The systematic uncertainties have specific correlation
patterns across the mW measurement categories. Muon-
momentum and electron-energy calibration uncertainties
are uncorrelated between the different decay channels, but
largely correlated between the p�

T and mT distributions.
Recoil-calibration uncertainties are correlated between elec-
tron and muon decay channels, and they are small for p�

T
distributions. The PDF-induced uncertainties are largely cor-
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(b)

Fig. 23 Overview of the mW measurements in the a electron and b
muon decay channels. Results are shown for the p�

T and mT distri-
butions, for W+ and W− events in the different |η�| categories. The

coloured bands and solid lines show the statistical and total uncertain-
ties, respectively. The horizontal line and band show the fully combined
result and its uncertainty

related between electron and muon decay channels, but sig-
nificantly anti-correlated between positively and negatively
charged W bosons, as discussed in Sect. 6. Due to the differ-
ent balance of systematic uncertainties and to the variety of
correlation patterns, a significant reduction of the uncertain-
ties in the measurement of mW is achieved by combining the
different decay channels and the charge and |η�| categories.

As discussed in Sect. 2, the comparison of the results from
the p�

T and mT distributions, from the different decay chan-
nels, and in the various charge and |η�| categories, provides
a test of the experimental and physics modelling corrections.
Discrepancies between the positively and negatively charged
lepton categories, or in the various |η�| bins would primarily
indicate an insufficient understanding of physics-modelling
effects, such as the PDFs and the pWT distribution. Inconsis-
tencies between the electron and muon channels could indi-
cate problems in the calibration of the muon-momentum and
electron-energy responses. Significant differences between
results from the p�

T and mT distributions would point to
either problems in the calibration of the recoil, or to an
incorrect modelling of the transverse-momentum distribu-
tion of the W boson. Several measurement combinations are
performed, using the best linear unbiased estimate (BLUE)
method [119,120]. The results of the combinations are ver-
ified with the HERAverager program [121], which gives
very close results.

Table 11 shows an overview of partial mW measurement
combinations. In the first step, determinations of mW in the
electron and muon decay channels from the mT distribu-
tion are combined separately for the positive- and negative-
charge categories, and together for both W -boson charges.
The results are compatible, and the positively charged, nega-
tively charged, and charge-inclusive combinations yield val-
ues of χ2/dof corresponding to 2/6, 7/6, and 11/13, respec-

tively. Compatibility of the results is also observed for the
corresponding combinations from the p�

T distribution, with
values of χ2/dof of 5/6, 10/6, and 19/13, for positively
charged, negatively charged, and charge-inclusive combina-
tions, respectively. The χ2 compatibility test validates the
consistency of the results in theW → eν andW → μν decay
channels. The precision of the determination of mW from the
mT distribution is slightly worse than the result obtained from
the p�

T distribution, due to the larger uncertainty induced by
the recoil calibration. In addition, the impact of PDF- and
pWT -related uncertainties on the p�

T fits is limited by the opti-
misation of the fitting range. In the second step, determina-
tions of mW from the p�

T and mT distributions are combined
separately for the electron and the muon decay channels. The
results are compatible, with values of χ2/dof of 4/5 and 8/5 in
the electron channel for the p�

T and mT distributions, respec-
tively, and values of 7/7 and 3/7 in the muon channel for the
p�

T and mT distributions, respectively. The mW determina-
tions in the electron and in the muon channels agree, further
validating the consistency of the electron and muon cali-
brations. Agreement between the mW determinations from
the p�

T and mT distributions supports the calibration of the
recoil, and the modelling of the transverse momentum of the
W boson.

The results are summarised in Fig. 26. The combination
of all the determinations of mW reported in Table 10 has a
value of χ2/dof of 29/27, and yields a final result of

mW = 80369.5 ± 6.8(stat.) ± 10.6(exp. syst.)

±13.6(mod. syst.) MeV

= 80369.5 ± 18.5 MeV,

where the first uncertainty is statistical, the second corre-
sponds to the experimental systematic uncertainty, and the
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Fig. 24 The a, b p�
T, c, d mT, and e, f pmiss

T distributions for a, c, e
W+ events and b, d, f W− events in the electron decay channel. The
data are compared to the simulation including signal and background
contributions. Detector calibration and physics-modelling corrections
are applied to the simulated events. For all simulated distributions, mW
is set according to the overall measurement result. The lower panels

show the data-to-prediction ratios, the error bars show the statistical
uncertainty, and the band shows the systematic uncertainty of the pre-
diction. The χ2 values displayed in each figure account for all sources
of uncertainty and include the effects of bin-to-bin correlations induced
by the systematic uncertainties
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Fig. 25 The a, b p�
T, c, d mT, and e, f pmiss

T distributions for a, c, e
W+ events and b, d, f W− events in the muon decay channel. The data
are compared to the simulation including signal and background con-
tributions. Detector calibration and physics-modelling corrections are
applied to the simulated events. For all simulated distributions, mW is
set according to the overall measurement result. The lower panels show

the data-to-prediction ratios, the error bars show the statistical uncer-
tainty, and the band shows the systematic uncertainty of the prediction.
The χ2 values displayed in each figure account for all sources of uncer-
tainty and include the effects of bin-to-bin correlations induced by the
systematic uncertainties
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Fig. 26 Overview of the mW
determinations from the p�

T and
mT distributions, and for the
combination of the p�

T and mT
distributions, in the muon and
electron decay channels and for
W+ and W− events. The
horizontal lines and bands show
the statistical and total
uncertainties of the individual
mW determinations. The
combined result for mW and its
statistical and total uncertainties
are also indicated (vertical line
and bands)
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third to the physics-modelling systematic uncertainty. The
latter dominates the total measurement uncertainty, and it
itself dominated by strong interaction uncertainties. The
experimental systematic uncertainties are dominated by the
lepton calibration; backgrounds and the recoil calibration
have a smaller impact. In the final combination, the muon
decay channel has a weight of 57%, and the p�

T fit dominates
the measurement with a weight of 86%. Finally, the charges
contribute similarly with a weight of 52% for W+ and of
48% for W−.

The result is in agreement with the current world average
of mW = 80385 ± 15 MeV [29], and has a precision compa-
rable to the currently most precise single measurements of
the CDF and D0 collaborations [22,23].

11.5 Additional validation tests

The final combination ofmW , presented above, depends only
on template fits to the p�

T andmT distributions. As a validation
test, the value of mW is determined from the pmiss

T distribu-
tion, performing a fit in the range 30 < pmiss

T < 60 GeV.
Consistent results are observed in all measurement cate-
gories, leading to combined results of 80364±26 (stat) MeV
and 80367 ± 23 (stat) MeV for the electron and muon chan-
nels, respectively.

Several additional studies are performed to validate the
stability of the mW measurement. The stability of the result
with respect to different pile-up conditions is tested by divid-
ing the event sample into three bins of 〈μ〉, namely [2.5, 6.5],
[6.5, 9.5], and [9.5, 16]. In each bin, mW measurements are
performed independently using the p�

T and mT distributions.
This categorisation also tests the stability ofmW with respect
to data-taking periods, as the later data-taking periods have
on average more pile-up due to the increasing LHC luminos-
ity.

The calibration of the recoil and the modelling of the pWT
distribution are tested by performing mW fits in two bins
of the recoil corresponding to [0, 15] GeV and [15, 30] GeV,
and in two regions corresponding to positive and negative
values of u�‖. The analysis is also repeated with the pmiss

T
requirement removed from the signal selection, leading to
a lower recoil modelling uncertainty but a higher multijet
background contribution. The stability of the mW measure-
ments upon removal of this requirement is studied, and con-
sistent results are obtained. All mW determinations are con-
sistent with the nominal result. An overview of the validation
tests is shown in Table 12, where only statistical uncertain-
ties are given. Fitting ranges of 30 < p�

T < 50 GeV and
65 < mT < 100 GeV are used for all these validation tests,
to minimise the statistical uncertainty.

The lower and upper bounds of the range of the p�
T and

mT distributions are varied as in the optimisation procedure
described in Sect. 11.3. The statistical and systematic uncer-
tainties are evaluated for each range, and are only partially
correlated between different ranges. Figure 27 shows mea-
sured values of mW for selected ranges of the p�

T and mT dis-
tributions, where only the uncorrelated statistical and system-
atic uncertainties with respect to the optimal range are shown.
The observed variations are all within two standard devia-
tions of the uncorrelated uncertainties, and small compared
to the overall uncertainty of the measurement, which is illus-
trated by the band on Fig. 27. The largest dependence on the
kinematic ranges used for the fits is observed for variations
of the upper bound of the p�

T distribution in the W+ → eν
channel, and is related to the shape of the data-to-prediction
ratio for this distribution in the region 40 < p�

T < 42 GeV,
as discussed in Sect. 11.3.

The effect of the residual discrepancies in the uT distri-
butions for W− → �ν, visible at low values in Figs. 19-
(d) and 20-(d), is estimated by adjusting, in turn, the
particle-level pWT distribution and the recoil calibration
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Table 12 Summary of consistency tests for the determination of mW
in several additional measurement categories. The �mW values cor-
respond to the difference between the result for each category and the
inclusive result for the corresponding observable (p�

T ormT). The uncer-

tainties correspond to the statistical uncertainty of the fit to the data
of each category alone. Fitting ranges of 30 < p�

T < 50 GeV and
65 < mT < 100 GeV are used

Decay channel W → eν W → μν Combined
Kinematic distribution p�

T mT p�
T mT p�

T mT

�mW [MeV]

〈μ〉 in [2.5, 6.5] 8 ± 14 14 ± 18 − 21 ± 12 0 ± 16 − 9 ± 9 6 ± 12

〈μ〉 in [6.5, 9.5] − 6 ± 16 6 ± 23 12 ± 15 − 8 ± 22 4 ± 11 − 1 ± 16

〈μ〉 in [9.5, 16] − 1 ± 16 3 ± 27 25 ± 16 35 ± 26 12 ± 11 20 ± 19

uT in [0, 15] GeV 0 ± 11 − 8 ± 13 5 ± 10 8 ± 12 3 ± 7 − 1 ± 9

uT in [15, 30] GeV 10 ± 15 0 ± 24 − 4 ± 14 − 18 ± 22 2 ± 10 − 10 ± 16

u�‖ < 0 GeV 8 ± 15 20 ± 17 3 ± 13 − 1 ± 16 5 ± 10 9 ± 12

u�‖ > 0 GeV − 9 ± 10 1 ± 14 − 12 ± 10 10 ± 13 − 11 ± 7 6 ± 10

No pmiss
T -cut 14 ± 9 − 1 ± 13 10 ± 8 − 6 ± 12 12 ± 6 − 4 ± 9
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Fig. 27 Stability of the combined measurement of mW with respect
to variations of the kinematic ranges of a p�

T and b mT used for the
template fits. The optimal mT range is used for the p�

T variations, and
the optimal p�

T range is used for the mT variations. The effect on the
result of symmetric variations of the fitting range boundaries, and its

dependence on variations of the lower (upper) boundary for two values
of the upper (lower) boundary for p�

T (mT) are shown. The bands and
solid lines respectively show the statistical and total uncertainty on the
difference with the optimal result

corrections to optimize the agreement between data and
simulation. The impact of these variations on the deter-
mination of mW is found to be small compared to the
assigned pWT modelling and recoil calibration uncertainties,
respectively.

When assuming RW/Z (pT) as predicted by DYRes,
instead of Pythia 8 AZ, to model the pWT distribution, devia-
tions of about 3% appear in the distribution ratios of Figs. 24
and 25. This degrades the quality of the mass fits, and shifts
the fitted values of mW by about − 20 to − 90 MeV, depend-
ing on the channels, compared to the results of Table 11.
Combining all channels, the shift is about − 60 MeV. Since
DYRes does not model the data distributions sensitive to pWT ,
as shown in Fig. 22, these shifts are given for information only
and are not used to estimate the uncertainty in mW .

11.6 Measurement of mW+ − mW−

The results presented in the previous sections can be used
to derive a measurement of the mass difference between the
positively and negatively charged W bosons, mW+ − mW− .
Starting from the mW measurement results in the 28 cate-
gories described above, 14 measurements of mW+ − mW−
can be constructed by subtraction of the results obtained from
the W+ and W− samples in the same decay channel and
|η| category. In practice, the mW values measured in W+
and W− events are subtracted linearly, as are the effects of
systematic uncertainties on these measurements, while the
uncertainty contributions of a statistical nature are added
in quadrature. Contrarily to the mW measurement discussed
above, no blinding procedure was applied for the measure-
ment of mW+ − mW− .
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Table 13 Results of the mW+ − mW− measurements in the electron
and muon decay channels, and of the combination. The table shows
the statistical uncertainties; the experimental uncertainties, divided into
muon-, electron-, recoil- and background-uncertainties; and the mod-

elling uncertainties, separately for QCD modelling including scale vari-
ations, parton shower and angular coefficients, electroweak corrections,
and PDFs. All uncertainties are given in MeV

Channel mW+ − mW−
[MeV]

Stat. Unc. Muon Unc. Elec. Unc. Recoil Unc. Bckg. Unc. QCD Unc. EW Unc. PDF Unc. Total Unc.

W → eν −29.7 17.5 0.0 4.9 0.9 5.4 0.5 0.0 24.1 30.7

W → μν −28.6 16.3 11.7 0.0 1.1 5.0 0.4 0.0 26.0 33.2

Combined −29.2 12.8 3.3 4.1 1.0 4.5 0.4 0.0 23.9 28.0

 [MeV]Wm
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Fig. 28 The measured value of mW is compared to other published
results, including measurements from the LEP experiments ALEPH,
DELPHI, L3 and OPAL [25–28], and from the Tevatron collider exper-
iments CDF and D0 [22,23]. The vertical bands show the statistical
and total uncertainties of the ATLAS measurement, and the horizontal
bands and lines show the statistical and total uncertainties of the other
published results. Measured values of mW for positively and negatively
charged W bosons are also shown

In this process, uncertainties that are anti-correlated
betweenW+ andW− and largely cancel for themW measure-
ment become dominant when measuringmW+−mW− . On the
physics-modelling side, the fixed-order PDF uncertainty and
the parton shower PDF uncertainty give the largest contribu-
tions, while other sources of uncertainty only weakly depend
on charge and tend to cancel. Among the sources of uncer-
tainty related to lepton calibration, the track sagitta correc-
tion dominates in the muon channel, whereas several residual
uncertainties contribute in the electron channel. Most lep-
ton and recoil calibration uncertainties tend to cancel. Back-
ground systematic uncertainties contribute as the Z and mul-
tijet background fractions differ in the W+ and W− channels.
The dominant statistical uncertainties arise from the size of
the data and Monte Carlo signal samples, and of the control
samples used to derive the multijet background.

The mW+ − mW− measurement results are shown in
Table 13 for the electron and muon decay channels, and for
the combination. The electron channel measurement com-
bines six categories (p�

T and mT fits in three |η�| bins), while

 [MeV]Wm
80320 80340 80360 80380 80400 80420

LEP Comb. 33 MeV±80376

Tevatron Comb. 16 MeV±80387

LEP+Tevatron 15 MeV±80385

ATLAS 19 MeV±80370

Electroweak Fit 8 MeV±80356

Wm
Stat. Uncertainty

Full Uncertainty

ATLAS

Fig. 29 The present measurement of mW is compared to the SM pre-
diction from the global electroweak fit [16] updated using recent mea-
surements of the top-quark and Higgs-boson masses, mt = 172.84 ±
0.70 GeV [122] and mH = 125.09 ± 0.24 GeV [123], and to the com-
bined values of mW measured at LEP [124] and at the Tevatron col-
lider [24]

the muon channel has four |η�| bins and eight categories in
total. The fully combined result is

mW+ − mW− = −29.2 ± 12.8(stat.)

± 7.0(exp. syst.)

± 23.9(mod. syst.) MeV

= −29.2 ± 28.0 MeV,

where the first uncertainty is statistical, the second corre-
sponds to the experimental systematic uncertainty, and the
third to the physics-modelling systematic uncertainty.

12 Discussion and conclusions

This paper reports a measurement of the W -boson mass with
the ATLAS detector, obtained through template fits to the
kinematic properties of decay leptons in the electron and
muon decay channels. The measurement is based on proton–
proton collision data recorded in 2011 at a centre-of-mass
energy of

√
s = 7 TeV at the LHC, and corresponding to an

integrated luminosity of 4.6 fb−1. The measurement relies
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Fig. 30 The 68 and 95% confidence-level contours of the mW and mt
indirect determination from the global electroweak fit [16] are compared
to the 68 and 95% confidence-level contours of the ATLAS measure-
ments of the top-quark and W -boson masses. The determination from
the electroweak fit uses as input the LHC measurement of the Higgs-
boson mass, mH = 125.09 ± 0.24 GeV [123]

on a thorough detector calibration based on the study of Z -
boson events, leading to a precise modelling of the detector
response to electrons, muons and the recoil. Templates for the
W -boson kinematic distributions are obtained from the NLO
MC generator Powheg, interfaced to Pythia8 for the par-
ton shower. The signal samples are supplemented with sev-
eral additional physics-modelling corrections allowing for
the inclusion of higher-order QCD and electroweak correc-
tions, and by fits to measured distributions, so that agreement
between the data and the model in the kinematic distribu-
tions is improved. The W -boson mass is obtained from the
transverse-momentum distribution of charged leptons and
from the transverse-mass distributions, for positively and
negatively chargedW bosons, in the electron and muon decay
channels, and in several kinematic categories. The individ-
ual measurements of mW are found to be consistent and their
combination yields a value of

mW = 80370 ± 7 (stat.) ± 11 (exp. syst.)

± 14 (mod. syst.) MeV

= 80370 ± 19 MeV,

where the first uncertainty is statistical, the second corre-
sponds to the experimental systematic uncertainty, and the
third to the physics-modelling systematic uncertainty. A
measurement of the W+ and W− mass difference yields
mW+ − mW− = −29 ± 28 MeV.

The W -boson mass measurement is compatible with the
current world average of mW = 80385 ± 15 MeV [29], and
similar in precision to the currently leading measurements
performed by the CDF and D0 collaborations [22,23]. An
overview of the different mW measurements is shown in
Fig. 28. The compatibility of the measured value of mW

in the context of the global electroweak fit is illustrated
in Figs. 29 and 30. Figure 29 compares the present mea-

surement with earlier results, and with the SM prediction
updated with regard to Ref. [16] using recent measurements
of the top-quark and Higgs boson masses, mt = 172.84 ±
0.70 GeV [122] and mH = 125.09 ± 0.24 GeV [123]. This
update gives a numerical value for the SM prediction of
mW = 80356±8 MeV. The corresponding two-dimensional
68 and 95% confidence limits for mW and mt are shown in
Fig. 30, and compared to the present measurement ofmW and
the average of the top-quark mass determinations performed
by ATLAS [122].

The determination of theW -boson mass from the global fit
of the electroweak parameters has an uncertainty of 8 MeV,
which sets a natural target for the precision of the experimen-
tal measurement of the mass of the W boson. The modelling
uncertainties, which currently dominate the overall uncer-
tainty of the mW measurement presented in this paper, need
to be reduced in order to fully exploit the larger data samples
available at centre-of-mass energies of 8 and 13 TeV. Better
knowledge of the PDFs, as achievable with the inclusion in
PDF fits of recent precise measurements of W - and Z -boson
rapidity cross sections with the ATLAS detector [41], and
improved QCD and electroweak predictions for Drell–Yan
production, are therefore crucial for future measurements of
the W -boson mass at the LHC.
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The mass of the Higgs boson is measured in the H → Z Z∗ → 4� and in the H → γ γ decay channels 
with 36.1 fb−1 of proton–proton collision data from the Large Hadron Collider at a centre-of-mass 
energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The measured value in the 
H → Z Z∗ → 4� channel is mZ Z∗

H = 124.79 ± 0.37 GeV, while the measured value in the H → γ γ channel 
is mγ γ

H = 124.93 ±0.40 GeV. Combining these results with the ATLAS measurement based on 7 and 8 TeV 
proton–proton collision data yields a Higgs boson mass of mH = 124.97 ± 0.24 GeV.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The observation of a Higgs boson, H , by the ATLAS and CMS 
experiments [1,2] with the Large Hadron Collider (LHC) Run 1 
proton–proton (pp) collision data at centre-of-mass energies of √

s = 7 and 8 TeV was a major step towards understanding the 
mechanism of electroweak (EW) symmetry breaking [3–5]. The 
mass of the Higgs boson was measured to be 125.09 ±0.24 GeV [6]
based on the combined Run 1 data samples of the ATLAS and CMS 
Collaborations, who also reported individual mass measurements 
in Refs. [7,8]. Recently, the CMS Collaboration measured the Higgs 
boson mass in the H → Z Z∗ → 4� channel using 35.9 fb−1 of 
13 TeV pp collision data [9]. The measured value of the mass is 
125.26 ± 0.21 GeV.

This Letter presents a measurement of the Higgs boson mass, 
mH , with 36.1 fb−1 of 

√
s = 13 TeV pp collision data recorded with 

the ATLAS detector. The measurement is derived from a combined 
fit to the four-lepton and diphoton invariant mass spectra in the 
decay channels H → Z Z∗ → 4� (� = e, μ) and H → γ γ . A combi-
nation with the ATLAS Run 1 data is also presented.

2. ATLAS detector

The ATLAS experiment [10] at the LHC is a multi-purpose par-
ticle detector with nearly 4π coverage in solid angle.1 It consists 

� E-mail address: atlas .publications @cern .ch.
1 ATLAS uses a right-handed coordinate system with its origin at the nominal 

interaction point (IP) in the centre of the detector and the z-axis along the beam 
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis 

of an inner tracking detector (ID) surrounded by a 2 T supercon-
ducting solenoid, electromagnetic (EM) and hadronic calorimeters, 
and a muon spectrometer (MS) incorporating three large super-
conducting toroidal magnets. The ID provides tracking for charged 
particles for |η| < 2.5. The calorimeter system covers the pseudo-
rapidity range |η| < 4.9. Its electromagnetic part is segmented into 
three shower-depth layers for |η| < 2.5 and includes a presampler 
for |η| < 1.8. The MS includes high-precision tracking chambers 
(|η| < 2.7) and fast trigger chambers (|η| < 2.4). Online event se-
lection is performed by a first-level trigger with a maximum rate 
of 100 kHz, implemented in custom electronics, followed by a 
software-based high-level trigger with a maximum rate of 1 kHz.

3. Data and simulated samples

This measurement uses data from pp collisions with a centre-
of-mass energy of 13 TeV collected during 2015 and 2016 using 
single-lepton, dilepton, trilepton and diphoton triggers, with looser 
identification, isolation and transverse momentum (pT) require-
ments than those applied offline. The combined efficiency of the 
lepton triggers is about 98% for the H → Z Z∗ → 4� events (as-
suming mH = 125 GeV) passing the offline selection. The diphoton 
trigger efficiency is higher than 99% for selected H → γ γ events 
(assuming mH = 125 GeV). After trigger and data-quality require-
ments, the integrated luminosity of the data sample is 36.1 fb−1. 

points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms 
of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of 
	R ≡ √

(	η)2 + (	φ)2.
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0370-2693/© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The mean number of proton–proton interactions per bunch cross-
ing (integrated luminosity) is 14 (3.2 fb−1) in the 2015 data set 
and 25 (32.9 fb−1) in the 2016 data set.

Monte Carlo (MC) simulation is used in the analysis to model 
the detector response for signal and background processes. For the 
H → Z Z∗ → 4� measurement, a detailed list and description of the 
MC-simulated samples used can be found in Ref. [11] and only a 
few differences specific to the mass analysis are mentioned here. 
For the gluon–gluon fusion (ggF) signal, the NNLOPS sample gen-
erated at next-to-next-to-leading order (NNLO) in QCD [12] with 
mH = 123, 125, 126 GeV and the PDF4LHC NLO parton distribu-
tion function (PDF) set [13] was used. Additional samples gener-
ated at different mH values (120, 122, 124, 125, 126, 128, 130 GeV) 
at next-to-leading order (NLO) were also used. The NLO ggF sim-
ulation was performed with Powheg-Box v2 [14] interfaced to
Pythia 8 [15] for parton showering and hadronisation, and to Evt-

Gen [16] for the simulation of b-hadron decays. The CT10NLO [17]
PDF set was used for the hard process and the CTEQ6L1 [18] set 
for the parton shower. The non-perturbative effects were modelled 
using the AZNLO set of tuned parameters [19].

The Z Z∗ continuum background from quark–antiquark annihi-
lation was modelled at NLO in QCD using Powheg-Box v2 and 
interfaced to Pythia 8 for parton showering and hadronisation, and 
to EvtGen for b-hadron decays. The PDF set used is the same as 
for the NLO ggF signal. NNLO QCD [20,21] and NLO EW correc-
tions [22,23] were applied as a function of the invariant mass of 
the Z Z∗ system (mZ Z∗ ).

For the H → γ γ measurement, the same H → γ γ signal (gen-
erated for mH = 125 GeV) and background simulated events used 
for the measurements of the Higgs boson couplings and fiducial 
cross-sections in the diphoton final state [24] were used. In ad-
dition, signal samples with alternative mH values (110, 122, 123, 
124, 126, 127, 130, 140 GeV) were produced, with the same gen-
erators and settings as the mH = 125 GeV samples, but only for 
the four Higgs boson production modes with largest cross-section: 
gluon–gluon fusion, vector–boson fusion (VBF), and associated pro-
duction with a vector boson V = W , Z (V H), for qq̄′ → V H and 
gg → Z H . For rarer processes, such as associated production of 
the Higgs boson with a top-quark pair (tt̄ H) or a single top-quark 
(t H), contributing to less than 2% of the total cross-section, only 
samples at mH = 125 GeV were used.

Except for the γ γ background sample, whose modelling re-
quires a large MC sample obtained through a fast parametric sim-
ulation of the calorimeter response [25], the generated events for 
all processes were passed through a Geant4 [26] simulation of the 
response of the ATLAS detector [25]. For both detector emulation 
methods, events were reconstructed with the same algorithms as 
the data. Additional proton–proton interactions (pile-up) were in-
cluded in both the parametric and the Geant4 simulations, match-
ing the average number of interactions per LHC bunch crossing to 
the spectrum observed in the data.

The Standard Model (SM) expectations for the Higgs boson pro-
duction cross-section times branching ratio, in the various produc-
tion modes and final states under study and at each value of mH , 
were taken from Refs. [27–30] and used to normalise the simu-
lated samples, as described in Refs. [11,24].

4. Muon reconstruction, identification and calibration

Muon track reconstruction is first performed independently in 
the ID and the MS. Hit information from the individual subde-
tectors is then used in a combined muon reconstruction, which 
includes information from the calorimeters.

Corrections to the reconstructed momentum are applied in or-
der to match the simulation to data precisely. These corrections 

to the simulated momentum resolution and momentum scale are 
parameterised as a power expansion in the muon pT, with each co-
efficient measured separately for the ID and MS, as a function of η
and φ, from large data samples of J/ψ → μ+μ− and Z → μ+μ−
decays. The scale corrections range from 0.1% to 0.5% for the pT
of muons originating from J/ψ → μ+μ− and Z → μ+μ− decays 
and account for inaccurate measurement of the energy lost in the 
traversed material, local magnetic field inaccuracies and geometri-
cal distortions. The corrections to the muon momentum resolution 
for muons from J/ψ → μ+μ− and Z → μ+μ− are at the percent 
level. After detector alignment, there are residual local misalign-
ments that bias the muon track sagitta, leaving the track χ2 in-
variant [31,32], and introduce a small charge-dependent resolution 
degradation. The bias in the measured momentum of each muon 
is corrected by an iterative procedure derived from Z → μ+μ−
decays and checked against the E/p ratio measured in Z → e+e−
decays. The residual effect after correction is reduced to the per 
mille level at the scale of the Z boson mass. This correction im-
proves the resolution of the dimuon invariant mass in Z boson 
decays by 1% to 5%, depending on η and φ of the muon. The sys-
tematic uncertainty associated with this correction is estimated for 
each muon using simulation and is found to be about 0.4 × 10−3

for the average momentum of muons from Z → μ+μ− decays.
For muons from Z → μ+μ− decays, with momenta of about 

45 GeV, the momentum scale is determined to a precision of 0.05%
for muons with |η| < 2, and about 0.2% for muons with |η| ≥ 2. 
Similarly, the resolution is known with a precision ranging from 
1% to 2% for muons with |η| < 2 and around 10% for muons with 
|η| ≥ 2 [33]. Both the momentum scale and momentum resolution 
uncertainties in the corrections to simulation are taken as fully cor-
related between the Run 1 and Run 2 measurements.

5. Photon and electron reconstruction, identification and 
calibration

Photon and electron candidates are reconstructed from clus-
ters of electromagnetic calorimeter cells [34]. Clusters without a 
matching track or reconstructed conversion vertex in the inner de-
tector are classified as unconverted photons. Those with a match-
ing reconstructed conversion vertex or a matching track, consistent 
with originating from a photon conversion, are classified as con-
verted photons [35]. Clusters matched to a track consistent with 
originating from an electron (based on transition radiation in the 
ID) produced in the beam interaction region are considered elec-
tron candidates.

The energy measurement for reconstructed electrons and pho-
tons is performed by summing the energies measured in the EM 
calorimeter cells belonging to the candidate cluster. The energy is 
measured from a cluster size of 	η × 	φ = 0.075 × 0.175 in the 
barrel region of the calorimeter and 	η × 	φ = 0.125 × 0.125
in the calorimeter endcaps. The procedure for the energy mea-
surement of electrons and photons closely follows that used in 
Run 1 [36], with updates to reflect the 2015 and 2016 data-taking 
conditions:

• The different layers of the electromagnetic calorimeter are in-
tercalibrated by applying methods similar to those described 
in Ref. [36]. The first and second calorimeter layers are in-
tercalibrated using the energy deposited by muons from Z →
μ+μ− decays, with a typical uncertainty of 0.7% to 1.5% (1.5% 
to 2.5%) as a function of η in the barrel (endcap) calorime-
ter, for |η| < 2.4. This uncertainty is added in quadrature to 
the uncertainty in the modelling of the muon ionisation in 
the simulation (1% to 1.5% depending on η). The energy scale 
of the presampler is estimated using electrons from Z boson 
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decays, after correcting the simulation on the basis of the cor-
relations between the amount of detector material and the 
ratio of the energies deposited in the first and second layers 
of the calorimeter. The uncertainty in the presampler energy 
scale varies between 1.5% and 3% depending on η.

• The cluster energy is corrected for energy loss in the inactive 
materials in front of the calorimeter, the fraction of energy de-
posited outside the area of the cluster in the η–φ plane, the 
amount of energy lost behind the electromagnetic calorimeter, 
and to account for the variation of the energy response as a 
function of the impact point in the calorimeter. The calibration 
coefficients used to apply these corrections are obtained from 
a detailed simulation of the detector response to electrons and 
photons, and are optimised with a boosted decision tree (BDT). 
The algorithm, described in Ref. [37], has been trained on sim-
ulated samples corresponding to the data-taking conditions of 
2015 and 2016. The response is calibrated separately for elec-
tron candidates, converted photon candidates and unconverted 
photon candidates. In data, small corrections are applied for 
the φ-dependent energy loss in the gaps between the bar-
rel calorimeter modules (corrections up to 2%, in about 5% 
of the calorimeter acceptance) and for inhomogeneities due to 
sectors operated at non-nominal high voltage (corrections be-
tween 1% and 7%, in about 2% of the calorimeter acceptance).

• The global calorimeter energy scale is determined in situ with 
a large sample of Z → e+e− events selected in the 2015 and 
2016 datasets. The energy response in data and simulation is 
equalised by applying η-dependent correction factors to match 
the invariant mass distributions of Z → e+e− events. The un-
certainty in these energy scale correction factors ranges from 
0.02% to 0.1% as a function of η, except for the barrel–endcap 
transition region (1.37 < |η| < 1.52), where it reaches a few 
per mille. In this procedure, the simulated width of the recon-
structed Z boson mass distribution is matched to the width 
observed in data by adding in the simulation a contribution 
to the constant term c of the electron energy resolution, σE

E =
a√
E

⊕ b
E ⊕ c. This constant term varies between 0.7% and 2% 

for |η| < 2.4 with an uncertainty of 0.03%–0.3%, except for the 
barrel–endcap transition region, where the constant term is 
slightly higher (2.5%–2.9%) with an uncertainty reaching 0.6%.

The main sources of systematic uncertainties in the calibration 
procedure discussed in Ref. [36] have been revisited. These sources 
include uncertainties in the method used to extract the energy 
scale correction factors, as well as uncertainties due to the extrap-
olation of the energy scale from Z → e+e− events to photons, and 
also to electrons with energies different from those produced in 
Z → e+e− decays. The latter arise from the uncertainties in the 
linearity of the response due to the relative calibration of the dif-
ferent gains used in the calorimeter readout, in the knowledge 
of the material in front of the calorimeter (inside and outside of 
the ID, referred to as ID and non-ID material in the following), in 
the intercalibration of the different calorimeter layers, in the mod-
elling of the lateral shower shapes and in the reconstruction of 
photon conversions. The total calibration uncertainty for photons 
with transverse energy (ET) around 60 GeV is 0.2%–0.3% in the bar-
rel and 0.45%–0.8% in the endcap. These uncertainties are close to 
those quoted in Ref. [36], but typically about 10% larger. The small 
increase in the uncertainty arises mostly from a larger uncertainty 
in the relative calibration of the first and second calorimeter lay-
ers with muons because of a worse ratio of signal to pile-up noise 
in Run 2 data. In the case of electrons with ET around 40 GeV, 
the total uncertainty ranges between 0.03% and 0.2% in most of 
the detector acceptance. For electrons with ET around 10 GeV the 
uncertainty ranges between 0.3% and 0.8%.

The accuracy of the energy calibration for low-energy elec-
trons (5–20 GeV) is checked by computing residual energy cali-
bration corrections (after applying the corrections extracted from 
the Z → e+e− sample) for an independent sample of J/ψ → e+e−
events. These residual correction factors are found to be compati-
ble with one within uncertainties. A similar check is performed by 
computing residual corrections for photons in a sample of radiative 
Z boson decays. They are found to be compatible with one within 
uncertainties which are given by the combination of the statisti-
cal uncertainty of the radiative Z boson decays sample and of the 
systematic uncertainty from the extrapolation of the energy scale 
from electrons to photons.

Systematic uncertainties in the calorimeter energy resolution 
arise from uncertainties in the modelling of the sampling term 
a/

√
E and in the measurement of the constant term in Z boson 

decays, in the amount of material in front of the calorimeter, which 
affects electrons and photons differently, and in the modelling of 
the contribution to the resolution from fluctuations in the pile-up 
from additional proton–proton interactions in the same or neigh-
bouring bunch crossings. The uncertainty of the energy resolution 
for electrons and photons with transverse energy between 30 and 
60 GeV varies between 5% and 10%.

The identification of photons and the rejection of background 
from hadrons is based primarily on shower shapes in the calorime-
ter. The two levels of selection, loose and tight, are described in 
Ref. [35]. To further reduce the background from jets, two comple-
mentary isolation selection criteria are used, based on topological 
clusters of energy deposits in the calorimeter and on reconstructed 
tracks in a direction close to that of the photon candidate, as de-
scribed in Ref. [24].

Electrons are identified using a likelihood-based method com-
bining information from the electromagnetic calorimeter and the 
ID. As in the case of photons, electrons are required to be iso-
lated using both the calorimeter-based and track-based isolation 
variables as described in Ref. [38].

6. Statistical methods

The mass measurement is based on the maximisation of the 
profile likelihood ratio [39,40]

(mH ) = L
(
mH ,

ˆ̂
θ(mH )

)
L
(
m̂H , θ̂

) ,

where the vectors θ̂ and m̂H denote the unconditional-maximum 
likelihood estimates of the parameters of the likelihood function 
L, while ˆ̂

θ is the conditional maximum-likelihood estimate of the 
parameters θ for a fixed value of the parameter mH . Systematic 
uncertainties and their correlations are modelled by introducing 
nuisance parameters θ described by likelihood functions associated 
with the estimate of the corresponding effect [6].

The statistical uncertainty of mH is estimated by fixing all nui-
sance parameters to their best-fit values, all remaining parameters 
are thus left unconstrained. This approach yields a lower bound 
on the statistical uncertainty, when the combination of the differ-
ent event categories discussed in the next sections is performed 
neglecting the different impact of the systematic uncertainties in 
each category. The upper bound on the total systematic uncertainty 
is estimated by subtracting in quadrature the statistical uncertainty 
from the total uncertainty.

Alternatively, the decomposition of the uncertainty into sta-
tistical and systematic components is performed using the BLUE 
method [41–43]. The two approaches may lead to different results 
from the decomposition of the uncertainty for a combination of 
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measurements with significant and uncorrelated systematic uncer-
tainties.

7. Mass measurement in the H → Z Z∗ → 4� channel

7.1. Event selection

Events are required to contain at least four isolated leptons 
(� = e, μ) that emerge from a common vertex, form two pairs of 
oppositely charged same-flavour leptons. Electrons are required to 
be within the full pseudorapidity range of the inner tracking de-
tector (|η| < 2.47) and have transverse energy ET > 7 GeV, while 
muons are required to be within the pseudorapidity range of the 
muon spectrometer (|η| < 2.7) and have transverse momentum 
pT > 5 GeV. The three higher-pT (ET) leptons in each quadruplet 
are required to pass thresholds of 20, 15, and 10 GeV, respec-
tively. A detailed description of the event selection can be found 
in Refs. [11,44].

The lepton pair with an invariant mass closest to the Z boson 
mass in each quadruplet is referred to as the leading dilepton pair, 
while the remaining pair is referred to as the subleading dilep-
ton pair. The selected events are split according to the flavour of 
the leading and subleading pairs; ordered according to the ex-
pected selection efficiency, they are 4μ, 2e2μ, 2μ2e, 4e. Recon-
structed photon candidates passing final-state radiation selections 
are searched for in all the events [45]. Such photons are found in 
4% of the events and their energy is included in the mass com-
putation. In addition, a kinematic fit is performed to constrain the 
invariant mass of the leading lepton pair to the Z boson mass, 
improving the m4� resolution by about 15% [7]. The improvement 
brought by the correction of the local tracker misalignments, as 
discussed in Section 4, is at the percent level for the m4� resolu-
tion of signal events. After event selection, the m4� resolution for 
the signal (at mH = 125 GeV), estimated with a Gaussian fit around 
the peak, is expected to be about 1.6, 1.8, 2.2 and 2.4 GeV for 
the 4μ, 2e2μ, 2μ2e and 4e channels respectively. In the fit range 
of 110 < m4� < 135 GeV, 123 candidate events are observed. The 
yield is in agreement with an expectation of 107 ±6 events, 53% of 
which are expected to be from the signal, assuming mH = 125 GeV.

The dominant contribution to the background is non-resonant 
Z Z∗ production (about 84% of the total background yield). Events 
with hadrons, or hadron decay products, misidentified as prompt 
leptons also contribute (about 15%). Events originating from tt̄+Z , 
Z Z Z , W Z Z , and W W Z production are estimated to contribute 
less than 1% of the total background. The residual combinatorial 
background, originating from events with additional prompt lep-
tons, was found to be negligibly small [44].

The precision of the mass measurement is further improved by 
categorising events with a multivariate discriminant which distin-
guishes the signal from the Z Z∗ background. The BDT described in 
Ref. [7], based on the same input variables, is trained on simulated 
signal events with different mass values simultaneously (124, 125 
and 126 GeV) and Z Z∗ background events that pass the event se-
lection. For each final state, four equal-size exclusive bins in the 
BDT response are used. This improves the precision of the mH

measurement in the 4� decay channel by about 6%.

7.2. Signal and background model

The invariant mass in each category is described by the sum of 
a signal and a background distribution.

Non-resonant Z Z∗ production is estimated using simulation 
normalised to the most accurate predictions and validated in the 
sidebands of the selected 4� mass range. Smaller contributions 
to the background from tt̄+Z , Z Z Z , W Z Z and W W Z production 

are also estimated using simulation while the contributions from 
Z +jets, W Z , and tt̄ production where one or more hadrons, or 
hadron decay products, are misidentified as a prompt lepton are 
estimated from data using minimal input from simulation follow-
ing the methodology described in Ref. [11]. For each contribution 
to the background, the probability density function (pdf) is esti-
mated with the kernel density estimation.

For the determination of the signal distribution, an approach 
based on the event-by-event response of the detector is em-
ployed. The measured m4� signal distribution is modelled as the 
convolution of a relativistic Breit–Wigner distribution, of 4.1 MeV
width [27–30] and a peak at mH , with a four-lepton invariant 
mass response distribution which is derived event-by-event from 
the expected response distributions of the individual leptons. The 
lepton energy response distributions are derived from simulation 
as a function of the lepton energy and detector region. The lepton 
energy response is modelled as a weighted sum of three Gaus-
sian distributions. For an observed event, the m4� pdf is derived 
from the convolution of the response distributions of the four 
measured leptons. The direct convolution of the four leptons dis-
tributions, leading to 34 = 81 Gaussian distributions, is simplified 
to a weighted sum of four Gaussian pdfs following an iterative 
merging procedure as performed with the Gaussian-sum filter pro-
cedure [46,47]. An additional correction is applied to remove the 
residual differences which arise from the correlation between the 
lepton energy measurements introduced by the kinematic con-
strained fit on the leading dilepton pair and the BDT categorisation 
of events. These are corrected by a fit of scaling modifiers of the 
reduced response parameters to the simulated four-lepton resolu-
tion. These modifiers are about 0.1% for the means and up to 10% 
for the widths of the Gaussians of the reduced response.

Finally, the mass of the Higgs boson mH is determined by a 
simultaneous unbinned fit of signal-plus-background distributions 
to data over the sixteen categories.2 The per-event component of 
the signal pdf is added to the background distribution which is in-
tegrated over all kinematic configurations of the four final state 
leptons. In each of the four BDT categories, the signal yield is fac-
torised by a floating normalisation modifier independent for each 
BDT category. The measured Higgs boson mass depends on the 
lepton energy resolution and the lepton energy scale. Uncertain-
ties in these quantities are accounted for in the fit by Gaussian-
distributed penalty terms whose widths are obtained from auxil-
iary data or simulation control samples. The expected uncertainty, 
with mH = 125 GeV and production rates predicted by the SM, for 
a data sample of the size of the experimental set, evaluated using 
simulation-based pseudo-experiments, is ±0.35 GeV.

A validation with data is performed with Z → 4� events to test 
the performance of the method on a known resonance with similar 
topology. In this test, the peak and width of the relativistic Breit–
Wigner function are set to those of the Z boson. The measured 
Z boson mass was found to be 91.62 ± 0.35 GeV including sta-
tistical and systematic uncertainty. The observed uncertainty is in 
agreement with the expectation of ±0.34 GeV, as evaluated from 
simulation. The measured value is in agreement with the world 
average of 91.1876 ± 0.0021 GeV [48].

As an independent check, the template method [7] is also used 
to measure mH . The simulated distributions of the samples gen-
erated for mH values between 110 and 130 GeV are smoothed 
with a kernel density estimate technique, and then parametrised 
as a function of mH by means of a B-spline interpolation to ob-
tain the signal model for any value of mH . The expected statistical 
uncertainty of mH obtained with the per-event method from a 

2 Four per final state for each of the four BDT categories.
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Fig. 1. (a) Invariant mass distribution for the data (points with error bars) shown together with the simultaneous fit result to H → Z Z∗ → 4� candidates (continuous line). 
The background component of the fit is also shown (filled area). The signal probability density function is evaluated per-event and averaged over the observed data. (b) Value 
of −2 ln as a function of mH for the combined fit to all H → Z Z∗ → 4� categories. The intersection of the −2 ln curve with the horizontal lines labelled 1σ and 2σ
provide the 68.3% and 95.5% confidence intervals.
sample equal in size to the experimental data set is, on average, 3%
smaller than the statistical uncertainty obtained with the template 
method. Both methods are found to be unbiased within the statis-
tical uncertainty of the simulated samples used of about 8 MeV on 
mH .

7.3. Results

The estimate of mH for the per-event and template methods 
is extracted with a simultaneous profile likelihood fit to the six-
teen categories. The free parameters of the fit are mH , the nor-
malisation modifiers of each BDT category, and the nuisance pa-
rameters associated with systematic uncertainties. The measured 
value of mH from the per-event method is found to be mZ Z∗

H =
124.79 ± 0.36 (stat) ± 0.05 (syst) GeV = 124.79 ± 0.37 GeV.

The total uncertainty is in agreement with the expectation 
and is dominated by the statistical component. The root-mean-
square of the expected uncertainty due to statistical fluctuations 
in the event yields of each category was estimated to be 40 MeV. 
The p-value of the uncertainty being as high or higher than the 
observed value, estimated with pseudo-experiments, is found to 
be 0.47. The total systematic uncertainty is 50 MeV, the lead-
ing sources being the muon momentum scale (40 MeV) and the 
electron energy scale (26 MeV), with other sources (background 
modelling and simulation statistics) being smaller than 10 MeV.

For the template method, the total uncertainty is found to be 
+0.41
−0.39 GeV, larger by 35 MeV than for the per-event method. The 
observed difference for the mH estimates of the two methods is 
found to be 0.16 GeV, which is compatible with the expected vari-
ance estimated with pseudo-experiments and corresponds to a one 
sided p-value of 0.19. Fig. 1(a) shows the m4� distribution of the 
data together with the result of the fit to the H → Z Z∗ → 4�

candidates when using the per-event method. The fit is also per-
formed independently for each decay channel, fitting all BDT cate-
gories simultaneously; the resulting likelihood profile is compared 
with the combined fit in Fig. 1(b). The combined measured value 
of mH is found to be compatible with the value measured inde-
pendently for each channel, with the largest deviation being 1.4σ
for the 2μ2e channel and the others being within 1σ .

The Higgs boson mass in the four-lepton channel is also mea-
sured by using a profile likelihood ratio to combine the informa-
tion from the Run 1 analysis [6], where mH = 124.51 ± 0.52 GeV, 
and the Run 2 analysis, keeping each individual signal normalisa-
tion parameter independent. The systematic uncertainties taken to 
be correlated between the two runs are the muon momentum and 
electron energy scales, while all other systematic uncertainties are 
considered uncorrelated. The combined Run 1 and Run 2 result is 
mZ Z∗

H = 124.71 ±0.30 (stat) ±0.05 (syst) GeV = 124.71 ±0.30 GeV. 
The difference between the measured values of mH in the four-
lepton channel in the two runs is 	mZ Z∗

H = 0.28 ± 0.63 GeV, with 
the two results being compatible, with a p-value of 0.84.

8. Mass measurement in the H → γ γ channel

In the diphoton channel, the Higgs boson mass is measured 
from the position of the narrow resonant peak in the mγ γ distri-
bution due to the Higgs boson decay to two photons. Such a peak 
is observed over a large, monotonically decreasing, mγ γ distribu-
tion from continuum background events. The diphoton invariant 
mass is computed from the measured photon energies and from 
their directions relative to the diphoton production vertex, cho-
sen among all reconstructed primary vertex candidates using a 
neural-network algorithm based on track and primary vertex in-
formation, as well as the directions of the two photons measured 
in the calorimeter and inner detector [49].

Events are selected and divided into categories with differ-
ent mass resolutions and signal-to-background ratios, optimised 
for the measurement of simplified template cross-sections [30,50]
and of production mode signal strengths of the Higgs boson in 
the diphoton decay channel. The event selection and classifica-
tion are described in Ref. [24]. A potential reduction of the total 
expected uncertainty by 4% could have been obtained using the 
same event categories chosen for the mass measurement with the 
Run 1 data [7]. Given the small expected improvement, a choice 
was made to use the same categorisation for the measurement of 
the mass and of the production mode signal strengths.
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Fig. 2. (a) Invariant mass distributions (circles) of simulated H → γ γ events reconstructed in two categories with one of the best (“ggH 0J Cen”: open circles) and one of the 
worst (“ggH 0J Fwd”: solid circles) experimental resolutions. The signal model derived from a fit of the simulated events is superimposed (solid lines). (b) Diphoton invariant 
mass distribution of all selected data events, overlaid with the result of the fit (solid red line). Both for data and for the fit, each category is weighted by a factor ln(1 + S/B), 
where S and B are the fitted signal and background yields in a mγ γ interval containing 90% of the expected signal. The dotted line describes the background component of 
the model. The bottom inset shows the difference between the sum of weights and the background component of the fitted model (dots), compared with the signal model 
(black line). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
8.1. Event selection and categorisation

After an initial preselection, described in Ref. [24], requiring the 
presence of at least two loosely identified photon candidates with 
|η| < 1.37 or 1.52 < |η| < 2.37, events are selected if the leading 
and the subleading photon candidates have ET/mγ γ > 0.35 and 
0.25 respectively, and satisfy the tight identification criteria and 
isolation criteria based on calorimeter and tracking information. 
Only events with invariant mass of the leading and subleading 
photon in the range 105 GeV < mγ γ < 160 GeV are kept.

The events passing the previous selection are then classified, 
according to the properties of the two selected photons and of jets, 
electrons, muons and missing transverse momentum, into 31 mu-
tually exclusive categories [24]. The most populated class, targeting 
gluon–gluon fusion production without reconstructed jets, is split 
into two categories of events with very different energy resolution: 
the first (“ggH 0J Cen”) requires both photons to have |η| < 0.95, 
while the second (“ggH 0J Fwd”) retains the remaining events.

8.2. Signal and background models

For each category, the shape of the diphoton invariant mass 
distribution of the signal is modelled with a double-sided Crys-
tal Ball function [51], i.e. a Gaussian function in the peak region 
with power-law functions in both tails. The dependence of the pa-
rameters on the Higgs boson mass mH is described by first-order 
polynomials, whose parameters are fixed by fitting simultaneously 
all the simulated signal samples generated for different values of 
mH .

The quantity σ68, defined as half of the smallest range contain-
ing 68% of the expected signal events, is an estimate of the signal 
mγ γ resolution and for mH = 125 GeV it ranges between 1.41 GeV
and 2.10 GeV depending on the category, while for the inclusive 
case its value is 1.84 GeV. Fig. 2(a) shows an example of the signal 
model for a category with one of the best invariant mass resolu-
tions and for a category with one of the worst resolutions.

The expected signal yield is expressed as the product of in-
tegrated luminosity, production cross-section, diphoton branching 
ratio, acceptance and efficiency. The cross-section is parameterised 
as a function of mH separately for each production mode. Similarly, 
the branching ratio is parameterised as a function of mH . The prod-
uct of acceptance and efficiency is evaluated separately for each 
production mode using only the samples with mH = 125 GeV. Its 
dependence on the mass is weak (relative variation below 1% when 
varying the Higgs boson mass by ±1 GeV) and is thus neglected. 
The cross-sections are fixed to the SM values multiplied by a sig-
nal modifier for each production mode: μggF, μVBF, μV H and μtt̄ H . 
The expected yield for mH = 125 GeV varies between about one 
event in categories sensitive to rare production modes (tt̄ H , t H) to 
almost 500 events in the most populated event category (“ggH 0J 
Fwd”).

The background invariant mass distribution of each category is 
parameterised with an empirical continuous function of the dipho-
ton system invariant mass value. The parameters of these functions 
are fitted directly to data. The functional form used to describe the 
background in each category is chosen among several alternatives 
according to the three criteria described in Ref. [24]: (i) the fitted 
signal yield in a test sample representative of the data background, 
built by combining simulation and control regions in data, must 
be minimised; (ii) the χ2 probability for the fit of this background 
control sample must be larger than a certain threshold; (iii) the 
quality of the fit to data sidebands must not improve significantly 
when adding an extra degree of freedom to the model. The models 
selected by this procedure are exponential or power-law functions 
with one degree of freedom for the categories with few events, 
while exponential functions of a second-order polynomial are used 
for the others.

From the extrapolation of a background-only fit to the side-
bands of the mγ γ distribution in data, excluding events with 
121 GeV < mγ γ < 129 GeV, the expected signal-to-background ra-
tio in a mγ γ window containing 90% of the signal distribution for 
mH = 125 GeV varies between 2% in the “ggH 0J Fwd” category 
and 100% in a high-purity, low-yield (about 12 events) category 



The ATLAS Collaboration / Physics Letters B 784 (2018) 345–366 351

targeting H+2jet, VBF-like events with low transverse momentum 
of the H+2jet system.

8.3. Systematic uncertainties

The main sources of systematic uncertainty in the measured 
Higgs boson mass in the diphoton channel are the uncertainties 
in the photon energy scale (PES), the uncertainty arising from 
the background model, and the uncertainty in the selection of 
the diphoton production vertex. They are described in detail in 
Ref. [24].

For each source of uncertainty in the PES described in Section 5, 
the diphoton invariant mass distribution for each category is re-
computed after varying the photon energy by its uncertainty and is 
then compared with the nominal distribution. The sum in quadra-
ture of the positive or negative shifts of the mγ γ peak position due 
to such variations ranges from ±260 MeV in the “ggH 0J Cen” cat-
egory to ±470 MeV in the “jet BSM” category, which requires at 
least one jet with pT > 200 GeV. All the PES effects are considered 
as fully correlated across categories.

The uncertainty due to the background modelling is evaluated 
following the procedure described in Ref. [7]. The expected sig-
nal contribution as predicted by the signal model is added to the 
background control sample. The bias in the estimated Higgs boson 
mass from a signal-plus-background fit to the test sample relative 
to the injected mass is considered as a systematic uncertainty due 
to the background modelling. Its value is around ±60 MeV for the 
most relevant categories for the mass measurement. In the other 
categories it can assume larger values, which are compatible with 
statistical fluctuations of the background control sample. For this 
reason this systematic uncertainty is ignored in the poorly pop-
ulated tt̄ H categories, which give a negligible contribution to the 
mass measurement. This systematic uncertainty is assumed to be 
uncorrelated between different categories.

The systematic uncertainty related to the selection of the 
diphoton production vertex is evaluated using Z → ee events, as 
described in Ref. [7]. An expected uncertainty of ±40 MeV in mH

is used for all the categories and assumed to be fully correlated 
across different categories.

Systematic uncertainties in the diphoton mass resolution due to 
uncertainties in the photon energy resolution vary between ±6%
(for the “ggH 0J Cen” category) and 11% (for the “jet BSM” cate-
gory), and are expected to have a negligible impact on the mass 
measurement.

Systematic uncertainties in the yield and in the migration of 
events between categories described in Ref. [24] have a negligible 
impact on the mass measurement.

The uncertainty due to the signal modelling is evaluated sim-
ilarly to that due to the background modelling. A sample is built 
using the expected background distribution and the simulated sig-
nal events at mH = 125 GeV. The bias in the fitted Higgs boson 
mass is considered as a systematic uncertainty and is assumed to 
be correlated between different categories. The relative bias is be-
low 10−4 in most of the categories, and at most a few times 10−4

in the other categories.

8.4. Results

The Higgs boson mass in the diphoton channel is estimated 
with a simultaneous binned maximum-likelihood fit to the mγ γ

distributions of the selected event categories. In each category, the 
distribution is modelled with a sum of the background and sig-
nal models. The free parameters of the fit are mH , the four signal 
strengths, the number of background events and the parameters 

describing the shape of the background invariant mass distribu-
tion in each category, and all the nuisance parameters associated 
with systematic uncertainties. Fig. 2(b) shows the distribution of 
the data overlaid with the result of the simultaneous fit. All event 
categories are included. For illustration purposes, events in each 
category are weighted by a factor ln(1 + S/B), where S and B are 
the fitted signal and background yields in a mγ γ interval contain-
ing 90% of the signal.

The measured mass of the Higgs boson in the diphoton chan-
nel is mγ γ

H = 124.93 ± 0.21 (stat) ± 0.34 (syst) GeV = 124.93 ±
0.40 GeV where the first error is the statistical uncertainty while 
the second is the total systematic uncertainty, dominated by the 
photon energy scale uncertainty.

Assuming signal strengths as in the SM and the signal model 
determined from the simulation, the expected statistical uncer-
tainty is 0.25 GeV and the expected total uncertainty is 0.41 GeV, 
with a root-mean-square, estimated from pseudo-experiments, of 
about 40 MeV. Compared to the expectation, the slightly larger 
systematic uncertainty and smaller statistical uncertainty observed 
in data are due to a lower than expected signal yield in some cat-
egories with large expected yield and small photon energy scale 
uncertainty, and to the fitted resolution in data being a few per-
cent better than in the simulation (but still agreeing with it within 
one standard deviation).

To check if the measurement is sensitive to the assumption 
about the splitting of the production modes, the measurement is 
repeated using one common signal strength for all the processes. 
A small shift of the measured mH by 20 MeV is observed. The 
mass measurement is also performed by allowing the overall sig-
nal yield in each analysis category to float independently in the fit. 
The measured value of mH changes by less than 30 MeV.

Other checks targeting possible miscalibration due to detector 
effects for some specific category of photons are performed by par-
titioning the entire data sample into detector-oriented categories, 
different from those used for the nominal result, and determin-
ing the probability that mH measured in one of these categories is 
compatible with the average mH from the other categories. A first 
categorisation is based on whether the photons are reconstructed 
as converted or not, a second is based on the photons’ impact 
points in the calorimeter (either in the barrel region, |η| < 1.37, or 
in the endcap region, |η| > 1.52), and a third is based on the num-
ber of interactions per bunch crossing. For each of these categories 
a new background model, a new signal model and new systematic 
uncertainty values are computed. For each category the compati-
bility of its mH value with the combined mH value is tested by 
considering as an additional likelihood parameter the quantity 	i
equal to the difference between that category’s mH value and the 
combined value. No value of 	i significantly different from zero is 
found. A similar test is performed to assess the global compatibil-
ity of all the different categories with a common value of mH . In 
the three categorisations considered the smallest global p-value is 
12%. The same procedure is applied to the categories used in the 
analysis: the smallest p-value computed on single categories is 7% 
while the global p-value is 94%.

A combination of the Higgs boson mass measured in the dipho-
ton channel by ATLAS in Run 1, 126.02 ± 0.51 GeV [6], and in 
Run 2 is performed using a profile likelihood ratio. The signal 
strengths are treated as independent parameters. The systematic 
uncertainties considered correlated between the two LHC run pe-
riods are most of the photon energy scale and resolution uncer-
tainties and those in the pile-up modelling, while all the other 
systematic uncertainties are considered uncorrelated. The photon 
energy calibration uncertainties that are treated as uncorrelated 
between the two LHC data-taking periods are a few uncertain-
ties included only in the Run 2 measurement, the uncertainty 
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Fig. 3. The value of −2 ln as a function of mH for (a) H → γ γ , H → Z Z∗ → 4� channels and their combination (red, blue and black, respectively) using Run 2 data only and 
for (b) Run 1, Run 2 and their combination (red, blue and black, respectively). The dashed lines show the mass measurement uncertainties assuming statistical uncertainties 
only.
in the photon energy leakage outside the reconstructed clus-
ter, whose measurement is limited by the statistical accuracy of 
Z → ��γ , and the uncertainty in the electromagnetic calorimeter 
response non-linearity, which is estimated with different proce-
dures in the two LHC run periods. The result is mγ γ

H = 125.32 ±
0.19 (stat) ± 0.29 (syst) GeV = 125.32 ± 0.35 GeV. The differ-
ence between the measured values of mH in the diphoton chan-
nel in the two LHC run periods is 	mγ γ

H = 1.09 ± 0.46 (stat) ±
0.34 (syst) GeV = 1.09 ± 0.57 GeV. The probability that the two 
results are compatible is 5.1%.

9. Combined mass measurement

The Higgs boson mass is measured by combining information 
from both the H → Z Z∗ → 4� and H → γ γ channels. The correla-
tions between the systematic uncertainties in the two channels are 
accounted for in the profile likelihood function. The main sources 
of correlated systematic uncertainty include the calibrations of 
electrons and photons, the pile-up modelling, and the luminosity. 
Signal yield normalisations are treated as independent free param-
eters in the fit to minimise model-dependent assumptions in the 
measurement of the Higgs boson mass.

The combined value of the mass measured using Run 2 data is 
mH = 124.86 ± 0.27 GeV. Assuming statistical uncertainties only, 
the uncertainty in the combined value is ±0.18 GeV. The cor-
responding profile likelihood, for the two channels and for their 
combination, is shown in Fig. 3(a). This result is in good agree-
ment with the ATLAS+CMS Run 1 measurement [6], mH = 125.09 ±
0.24 GeV.

The combined mass measurement from the ATLAS Run 1 (mH =
125.36 ± 0.41 GeV) and Run 2 results is mH = 124.97 ± 0.24 GeV. 
Assuming statistical uncertainties only, the measurement uncer-
tainty amounts to 0.16 GeV. Fig. 3(b) shows the value of −2 ln 

as a function of mH for the two channels combined, separately for 
the ATLAS Run 1 and Run 2 data sets, as well as for their combi-
nation.

The contributions of the main sources of systematic uncertainty 
to the combined mass measurement, using both ATLAS Run 1 and 
Run 2 data, are summarised in Table 1. The impact of each source 
of systematic uncertainty is evaluated starting from the contribu-
tion of each individual nuisance parameter to the total uncertainty. 
This contribution is defined as the mass shift δmH observed when 

Table 1
Main sources of systematic uncertainty in the Higgs boson mass mH measured with 
the 4� and γ γ final states using Run 1 and Run 2 data. The sum in quadrature 
of the individual contributions is not expected to reproduce the total systematic 
uncertainty due to the different methodologies employed to derive them.

Source Systematic uncertainty in mH [MeV]

EM calorimeter response linearity 60
Non-ID material 55
EM calorimeter layer intercalibration 55
Z → ee calibration 45
ID material 45
Lateral shower shape 40
Muon momentum scale 20
Conversion reconstruction 20
H → γ γ background modelling 20
H → γ γ vertex reconstruction 15
e/γ energy resolution 15
All other systematic uncertainties 10

re-evaluating the profile likelihood ratio after fixing the nuisance 
parameter in question to its best-fit value increased or decreased 
by one standard deviation, while all remainder nuisance param-
eters remain free to float. The sum in quadrature of groups of 
nuisance parameter variations gives the impact of each category 
of systematic uncertainties. The nuisance parameter values from 
the unconditional maximum-likelihood fit are consistent with the 
pre-fit values within one standard deviation.

The probability that the mH results from the four measure-
ments (in the 4� and γ γ final states, using Run 1 or Run 2 ATLAS 
data) are compatible is 12.3%. Due to the impact of the corre-
lated systematic uncertainties, the correlation between mH in the 
H → γ γ channel over the two runs is 23%. The residual correla-
tion between H → Z Z∗ → 4� and H → γ γ is typically 1%. The 
results from each of the four individual measurements, as well as 
various combinations, along with the LHC Run 1 result, are sum-
marised in Fig. 4.

The combination of the four ATLAS measurements using the 
BLUE approach as an alternative method, assuming two uncor-
related channels,3 is found to be mH = 124.97 ± 0.23 GeV =

3 The combination of the two LHC run periods for each channel was used as 
input.
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Fig. 4. Summary of the Higgs boson mass measurements from the individual and 
combined analyses performed here, compared with the combined Run 1 measure-
ment by ATLAS and CMS [6]. The statistical-only (horizontal yellow-shaded bands) 
and total (black error bars) uncertainties are indicated. The (red) vertical line and 
corresponding (grey) shaded column indicate the central value and the total uncer-
tainty of the combined ATLAS Run 1 + 2 measurement, respectively.

124.97 ± 0.19 (stat) ± 0.13 (syst) GeV. The splitting of the errors 
takes into account the relative weight of the two channels in the 
combined measurement.

10. Conclusion

The mass of the Higgs boson has been measured from a com-
bined fit to the invariant mass spectra of the decay channels 
H → Z Z∗ → 4� and H → γ γ . The results are obtained from a 
Run 2 pp collision data sample recorded by the ATLAS experiment 
at the CERN Large Hadron Collider at a centre-of-mass energy of 
13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. 
The measurements are based on the latest calibrations of muons, 
electrons, and photons, and on improvements to the analysis tech-
niques used to obtain the previous results from ATLAS Run 1 data.

The measured values of the Higgs boson mass for the H →
Z Z∗ → 4� and H → γ γ channels are

mH = 124.79 ± 0.37 GeV,

mH = 124.93 ± 0.40 GeV.

From the combination of these two channels, the mass is measured 
to be

mH = 124.86 ± 0.27 GeV.

This result is in good agreement with the average of the ATLAS and 
CMS Run 1 measurements. The combination of the ATLAS Run 1 
and Run 2 measurements yields

mH = 124.97 ± 0.24 GeV.
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Abstract The production cross-sections for W± and Z
bosons are measured using ATLAS data corresponding to
an integrated luminosity of 4.0 pb−1 collected at a centre-of-
mass energy

√
s = 2.76 TeV. The decay channels W → �ν

and Z → �� are used, where � can be an electron or a muon.
The cross-sections are presented for a fiducial region defined
by the detector acceptance and are also extrapolated to the full
phase space for the total inclusive production cross-section.
The combined (average) total inclusive cross-sections for the
electron and muon channels are:
σ tot
W+→�ν

= 2312 ± 26 (stat.)

± 27 (syst.) ± 72 (lumi.) ± 30 (extr.) pb,

σ tot
W−→�ν

= 1399 ± 21 (stat.) ± 17 (syst.)

± 43 (lumi.) ± 21 (extr.) pb,

σ tot
Z→�� = 323.4 ± 9.8 (stat.) ± 5.0 (syst.)

± 10.0 (lumi.) ± 5.5(extr.) pb.

Measured ratios and asymmetries constructed using these
cross-sections are also presented. These observables benefit
from full or partial cancellation of many systematic uncer-
tainties that are correlated between the different measure-
ments.
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1 Introduction

The processes that produceW and Z bosons1 in pp collisions
via Drell–Yan annihilation are two of the simplest at hadron
colliders to describe theoretically. At lowest order in quantum
chromodynamics (QCD), W -boson production proceeds via
qq̄ ′ → W and Z -boson production via qq̄ → Z . Therefore,
precision measurements of these production cross-sections
yield important information about the parton distribution
functions (PDFs) for quarks inside the proton. Factorisation
theory allows PDFs to be treated separately from the pertur-
bative QCD high-scale collision calculation as functions of
the event energy scale, Q, and the momentum fraction of the
parton, x , for each parton flavour. Usually PDFs are defined
for a particular starting scale Q0 and can be evolved to other
scales via the DGLAP equations [1–7]. Measurements of on-
shell W/Z -boson production probe the PDFs in a range of
Q2 that lies close to m2

W/Z . The range of x that is probed

depends on the centre-of-mass energy,
√
s, of the protons

and the rapidity coverage of the detector. Each measurement
of these production cross-sections at a new value of

√
s thus

provides information complementary to previous measure-
ments. The combinations of initial partons participating in
the production processes of W+,W−, and Z bosons are dif-
ferent, so each process provides complementary information
about the products of different quark PDFs.

This paper presents the first measurements of the produc-
tion cross-sections for W+, W− and Z bosons in pp col-
lisions at

√
s = 2.76 TeV. The data were collected by the

ATLAS detector at the Large Hadron Collider (LHC) [8] in
2013 and correspond to an integrated luminosity of 4.0 pb−1.
To provide further sensitivity to PDFs, and to reduce the sys-
tematic uncertainty in the predictions, ratios of these cross-
sections and the charge asymmetry for W -boson production
are also presented. The measurements are performed for lep-
tonic (electron or muon) decays of the W and Z bosons, in

1 In this paper it is implicit that Z boson refers to Z/γ ∗ bosons.
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a defined fiducial region, and also extrapolated to the total
cross-section.

Previous measurements of the W -boson and Z -boson pro-
duction cross-sections in pp collisions at the LHC were
performed by the ATLAS, CMS and LHCb Collaborations
at

√
s = 5.02 TeV [9], 7 TeV [10–14], 8 TeV [15–19]

and 13 TeV [20–22], and by the PHENIX and STAR Col-
laborations at the RHIC at

√
s = 500 GeV [23,24] and

510 GeV [25]. This is the first measurement at 2.76 TeV.
Other measurements of these processes were performed in
p p̄ collisions at

√
s = 1.8 TeV and 1.96 TeV by the CDF [26–

30] and D0 [31] Collaborations, and at
√
s = 546 GeV and

630 GeV by the UA1 [32] and UA2 [33] Collaborations.

2 ATLAS detector

The ATLAS detector [34] at the LHC covers nearly the
entire solid angle around the collision point. It consists of an
inner tracking detector surrounded by a thin superconduct-
ing solenoid, electromagnetic (EM) and hadronic calorime-
ters, and a muon spectrometer (MS) incorporating three large
superconducting toroid magnets. The inner-detector system
(ID) is immersed in a 2 T axial magnetic field and pro-
vides charged-particle tracking in the pseudorapidity range
|η| < 2.5.2

The high-granularity silicon pixel detector covers the ver-
tex region and typically provides three measurements per
track. It is followed by the silicon microstrip tracker, which
usually provides eight measurements from eight strip lay-
ers. These silicon detectors are complemented by the transi-
tion radiation tracker (TRT), which enables radially extended
track reconstruction up to |η| = 2.0. The TRT also provides
electron identification information based on the fraction of
hits (typically 30 in total) above a higher energy-deposit
threshold associated with the presence of transition radia-
tion.

The calorimeter system covers the pseudorapidity range
|η| < 4.9. Within the region |η| < 3.2, EM calorimetry is
provided by barrel and endcap high-granularity lead/liquid-
argon (LAr) sampling calorimeters, with an additional thin
LAr presampler covering |η| < 1.8 that is used to cor-
rect for energy loss in material upstream of the calorime-
ters. Hadronic calorimetry in this region is provided by the
steel/scintillator-tile calorimeter, segmented into three barrel

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2). Angular distance is measured in units of

R ≡ √

(
η)2 + (
φ)2.

structures with |η| < 1.7, and two copper/LAr hadronic end-
cap calorimeters. The solid angle coverage is completed with
forward copper/LAr and tungsten/LAr calorimeter modules
optimised for EM and hadronic measurements, respectively.

The muon spectrometer comprises separate trigger and
high-precision tracking chambers measuring the deflection
of muons in a magnetic field generated by superconduct-
ing air-core toroids. The precision chamber system covers
the region |η| < 2.7 with three layers of monitored drift
tubes, complemented by cathode strip chambers in the for-
ward region, where the backgrounds are highest. The muon
trigger system covers the range |η| < 2.4 with resistive plate
chambers in the barrel and thin gap chambers in the endcap
regions.

The ATLAS detector selected events using a three-level
trigger system [35]. The first-level trigger is implemented in
hardware and used a subset of detector information to reduce
the event rate to a design value of at most 75 kHz. This
was followed by two software-based triggers that together
reduced the event rate to about 200 Hz.

3 Data and simulation samples

The data used in this measurement were collected in Febru-
ary 2013 during a period when proton beams at the LHC
were collided at a centre-of-mass energy of 2.76 TeV. Dur-
ing this running period a typical value of the instantaneous
luminosity was 1 × 1032 cm−2 s−1, significantly lower than
in 7, 8 and 13 TeV data-taking conditions. The typical value
of the mean number of collisions per proton bunch crossing
(pile-up) 〈μ〉 was 0.3. Only data from stable collisions when
the ATLAS detector was fully operational are used, yielding
a data sample corresponding to an integrated luminosity of
4.0 pb−1.

Samples of Monte Carlo (MC) simulated events are used
to estimate the signals from W -boson and Z -boson pro-
duction, and the backgrounds containing prompt leptons:
electroweak-diboson production and top-quark pair (t t̄) pro-
duction. Background contributions arising from multijet
events that do not contain prompt leptons are estimated
directly from data, with simulated events used to cross-check
these estimations in the muon channel.

Production of single W and Z bosons was simulated using
Powheg- Box v1 r1556 [36–39]. The parton showering was
performed using Pythia 8.17 [40]. The PDF set used for the
simulation was CT10 [41], and the parton shower parameter
values were those of the AU2 tune [42]. Additional quantum
electrodynamics (QED) emissions from electroweak (EW)
vertices and charged leptons were simulated using Pho-
tos++ v3.52 [43]. Additional samples of simulated W -boson
events generated with Sherpa 2.1 [44] are used to esti-
mate uncertainties arising from the choice of event generator

123



Eur. Phys. J. C (2019) 79 :901 Page 3 of 29 901

model. In these Sherpa samples, simulation of W -boson
production in association with up to two additional partons
was performed at next-to-leading order (NLO) in QCD while
production of W bosons in association with three or four
additional partons was performed at leading order (LO) in
QCD. The sample cross-sections were normalised to next-
to-next-to-leading-order (NNLO) QCD predictions for the
total cross-sections described in Sect. 8.

Powheg- Box v1 r2330 was used to generate t t̄ sam-
ples [45]. These samples had parton showering performed
using Pythia 6.428 [46] with parameters corresponding
to the Perugia2011C tune [47]. The CT10 PDF set was
used. Additional QED final-state radiative corrections were
applied using Photos++ v3.52 and τ -lepton decays were
performed using Tauola v25feb06 [48]. Single production
of top quarks is a negligible contribution to this analysis,
compared with t t̄ production, so no such samples were gen-
erated.

Production of two massive electroweak bosons
(WW, Z Z ,WZ ) was simulated usingHerwig 6.5 [49], with
multiparton interactions modelled using Jimmy 4.13 [50].
The CTEQ6L1 PDF set [51] and AUET2 tune [52] were
used for these samples.

Multijet production containing heavy-flavour final states,
arising from the production of bb̄ or cc̄ pairs, were simulated
using Pythia 8.186. The CTEQ6L1 PDF set and AU2 tune
were used. Events were required to contain an electron or
muon with transverse momentum pT >10 GeV and |η|<2.8.

The detector response to generated events was simulated
by passing the events through a model of the ATLAS detec-
tor [53] based on Geant4 [54]. Additional minimum-bias
events generated using Pythia 8.17 and the A2 set of tuned
parameters, were overlaid in such a way that the distribu-
tion of 〈μ〉 for simulated events reproduced that in the real
data. The resulting events were then passed through the same
reconstruction software as the real data.

The simulated samples used for the baseline analysis are
summarised in Table 1, which shows the generator used for
each process together with the order in QCD at which they
were generated.

4 Event selection

This section describes the selection of events consistent with
the production ofW bosons or Z bosons. TheW -boson selec-
tion requires events to contain a single charged lepton and
large missing transverse momentum. The Z -boson selection
requires events to contain two charged leptons with opposite
charge and the same flavour.

Events were selected by triggers that required at least one
charged electron (muon) with pT > 15 GeV (10 GeV). These
thresholds yield an event sample with a uniform efficiency

as a function of the ET and pT requirements used subse-
quently to select the final event sample. The hard-scatter ver-
tex, defined as the vertex with highest sum of squared track
transverse momenta (for tracks with pT > 400 MeV), is
required to have at least three associated tracks.

Electrons are reconstructed from clusters of energy in the
EM calorimeter that are matched to a track reconstructed in
the ID. The electron is required to have pT > 20 GeV and
|η| < 2.4 (excluding the transition region between barrel
and endcap calorimeters of 1.37 < |η| < 1.52). Each elec-
tron must satisfy a set of identification criteria designed to
suppress misidentified photons or jets. Electrons are required
to satisfy the medium selection, following the definition pro-
vided in Ref. [55]. This includes requirements on the shower
shape in the EM calorimeter, the leakage of the shower into
the hadronic calorimeter, the number of hits measured along
the track in the ID, and the quality of the cluster-track match-
ing. A Gaussian sum filter [56] algorithm is used to re-fit the
tracks and improve the estimated electron track parameters.
To suppress background from misidentified objects such as
jets, the electron is required to be isolated using calorimeter-
based criteria. The sum of the transverse energies of clusters
lying within a cone of size 
R = 0.2 around the centroid
of the electron cluster and excluding the core3 must be less
than 10% of the electron pT.

Muon candidates are reconstructed by combining tracks
reconstructed in the ID with tracks reconstructed in the
MS [57]. They are required to have pT > 20 GeV and
|η| < 2.4. The muon candidates are also required to be iso-
lated, by requiring that the scalar sum of the pT of additional
tracks within a cone of size 
R = 0.4 around the muon is
less than 80% of the muon pT.

The missing transverse momentum vector [58] (Emiss
T )

is calculated as the negative vector sum of the transverse
momenta of electrons and muons, and of the transverse
momentum of the recoil. The magnitude of this vector is
denoted by Emiss

T . The recoil vector is obtained by summing
the transverse momenta of all clusters of energy measured
in the calorimeter, excluding those within 
R = 0.2 of
the lepton candidate. The momentum vector of each clus-
ter is determined by the magnitude and coordinates of the
energy deposits; the cluster is assumed to be massless. Clus-
ter energies are initially measured assuming that the energy
deposition occurs only through EM interactions, and are then
corrected for the different calorimeter responses to hadrons
and electromagnetically interacting particles, for losses due
to dead material, and for energy that is not captured by the
clustering process [59]. The definition of the recoil does not
make use of reconstructed jets, to avoid threshold effects.
The procedure used to calibrate the recoil closely follows

3 The core of the shower is the contribution within 
η×
φ = 0.125×
0.175 around the cluster barycentre.
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Table 1 Summary of the
baseline simulated samples used

Process Generator Generator QCD precision

Signal samples

W → �ν Powheg- Box +Pythia 8 NLO

Z → �+�− Powheg- Box +Pythia 8 NLO

Background samples

W → τν Powheg- Box +Pythia 8 NLO

Z → τ+τ− Powheg- Box +Pythia 8 NLO

t t̄ Powheg- Box +Pythia 6 NLO

WW Herwig LO

Z Z Herwig LO

WZ Herwig LO

bb̄ Pythia 8 LO

cc̄ Pythia 8 LO

that used in the recent ATLAS measurement of the W -boson
mass [60], first correcting the modelling of the overall recoil
in simulation and then applying corrections for residual dif-
ferences in the recoil response and resolution that are derived
from Z -boson data and transferred to the W -boson sample.

The W -boson selection requires events to contain exactly
one lepton (electron or muon) candidate and have
Emiss

T > 25 GeV. The lepton must match a lepton candidate
that met the trigger criteria. The transverse mass, mT, of the
W -boson candidate in the event is calculated using the
lepton candidate and Emiss

T according to

mT =
√

2p�
TE

miss
T (1 − cos(φ� − φEmiss

T
)). The transverse

mass in W -boson production events is expected to exhibit
a Jacobian peak around the W -boson mass. Thus, requiring
that mT > 40 GeV suppresses background processes. After
these requirements there are 3914 events in the W → e+ν

channel, 2209 events in the W → e−ν̄ channel, 4365 events
in the W → μ+ν channel, and 2460 events in the W → μ−ν̄

channel.
The Z -boson selection requires events to contain exactly

two lepton candidates with the same flavour and opposite
charge. At least one lepton must match a lepton candidate that
met the trigger criteria. Background processes are suppressed
by requiring that the invariant mass of the lepton pair satisfies
66 < m�� < 116 GeV. After these requirements there are
430 events in the Z → e+e− channel, and 646 events in the
Z → μ+μ− channel.

5 Background estimation

The background processes that contribute to the sample of
events passing the W -boson and Z -boson selections can
be separated into two categories: those estimated from MC
simulation and theoretical calculations, and those estimated
directly from data. The main backgrounds that contribute

to the event sample passing the W -boson selection are pro-
cesses with a τ -lepton decaying into an electron or muon plus
neutrinos, leptonic Z -boson decays where only one lepton is
reconstructed, and multijet processes. The main background
contribution to the event sample passing the Z -boson selec-
tion is production of two massive electroweak bosons.

The backgrounds arising from W → τν, Z → �+�−,
diboson production, and t t̄ production are estimated from
the simulated samples described in Sect. 3. Predictions of
the backgrounds to the W -boson and Z -boson production
measurements arising from multijet production suffer from
large theoretical uncertainties, and therefore the contribution
to this background in the W -boson measurement is estimated
from data. This is achieved by constructing a shape template
for the background using a discriminating variable in a con-
trol region and then performing a template fit to the same
distribution in the signal region to extract the background
contribution. The choice of template variable is motivated
by the difference between signal and background and by the
available number of events. Previous ATLAS measurements
at 7 TeV [10] and 13 TeV [21] found that multijet produc-
tion makes a background contribution of less than 0.1% for
Z -boson measurements; this is therefore neglected.

Electron candidates in multijet background events are typ-
ically misidentified candidates produced when jets mimic the
signature of an electron, for example when a neutral pion and
a charged pion overlap in the detector. Additional candidates
can arise from ’non-prompt’ electrons produced when a pho-
ton converts, and in decays of heavy-flavour hadrons. To con-
struct a control region for the multijet template, a selection
is used that differs from the W -boson selection described in
Sect. 4 in only two respects: the medium electron identifi-
cation criteria are inverted (while keeping the looser identi-
fication criteria) and the Emiss

T requirement is removed. By
construction, this control region is statistically independent
of the W -boson signal region. A template for the shape of the
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multijet background in the Emiss
T distribution is then obtained

from that distribution in the control region after subtraction
of expected contributions from the signal and other back-
grounds determined using MC samples. The normalisation
of the multijet background template in the signal region is
extracted by performing a χ2 fit of the Emiss

T distribution
(applying all signal criteria except the requirement on Emiss

T )
to a sum of the templates for the multijet background, the
signal, and all other backgrounds. The normalisation of the
signal is allowed to vary freely in the fit as is the multijet back-
ground; however, the other backgrounds are only allowed to
vary from their expected values by up to 5%, correspond-
ing to the largest level of variation in predicted electroweak-
boson production cross-sections obtained from varying the
choice of PDF. The normalisation from this fit can then be
used together with the inverted selection to construct multi-
jet background distributions in any other variable that is not
correlated with the electron identification criteria.

Muon candidates in multijet background events are typi-
cally ‘non-prompt’ muons produced in the decays of hadrons.
The multijet background contribution to the W → μν selec-
tion is estimated by using the same method as described for
the W → eν selection. In this case the control region is
defined by inverting the isolation requirement and removing
the requirement on mT. The distribution used for the fits is
mT.

The overall number of multijet background events is esti-
mated from a fit to the total W -boson sample. Comparisons
between the fitted distributions and data for W → eν and
W → μν are shown in Fig. 1. Fits to the separate W+-boson
and W−-boson samples are used in the evaluation of the sys-
tematic uncertainties, as described in Sect. 7. The final esti-
mated multijet contributions are 30±11 events forW → e+ν

and W → e−ν and 2.5 ± 1.9 events for W+ → μ+ν and
W− → μ−ν. The relative contribution of the multijet events
(1%) is lower than in 13 TeV (4%) and 7 TeV (3%) data. This
is in agreement with expectations for this lower pile-up run-
ning, where the resolution in Emiss

T is improved compared to
the higher pile-up running.

6 Correction for detector effects

The measurements in this paper are performed within specific
fiducial regions and extrapolated to the total W -boson or Z -
boson phase space. The fiducial regions are defined by the
kinematic and geometric selection criteria given in Table 2;
in simulations these are applied at the generator level before
the emission of QED final-state radiation from the decay
lepton(s) (QED Born level).

The fiducial W -boson/Z -boson production cross-section
is obtained from the number of observed events meeting
the selection criteria after background contributions are sub-

tracted, N sig
W,Z , using the following formula:

σ fid
W,Z→�ν,�� = N sig

W,Z

CW,Z · Lint
,

where Lint is the total integrated luminosity of the data sam-
ples used for the analysis. The factor CW,Z is the ratio of the
number of generated events that satisfy the final selection
criteria after event reconstruction to the number of gener-
ated events within the fiducial region. It includes the effi-
ciency for triggering, reconstruction and identification of
W, Z → �ν, �+�− events falling within the acceptance. The
different components of the efficiency are calculated using a
mixture of MC simulation and measurements from data.

The totalW -boson and Z -boson production cross-sections
are obtained using the following formula:

σ tot
W,Z→�ν,�� ≡ σ tot × B(W, Z → �ν, ��)

= N sig
W,Z

AW,Z · CW,Z · Lint
.

The factor B(W, Z → �ν, ��) is the per-lepton branching
fraction of the vector boson. The factor AW,Z is the accep-
tance for W/Z -boson events being studied. It is defined
as the fraction of generated events that satisfy the fiducial
requirements. This acceptance is determined using MC sig-
nal samples, corrected to the generator QED Born level, and
is used to extrapolate the measured cross-section in the fidu-
cial region to the full phase space. The central values of AW,Z

are around 0.6 for these measurements, compared with 0.5
at

√
s = 7 TeV and 0.4 at

√
s = 13 TeV, so the fiducial

region is closer to the full phase space in this measurement
than for those at higher centre-of-mass energies. This is due
to a combination of higher pT thresholds for leptons in other
measurements, and more-central production of vector bosons
at lower

√
s. The values ofCW are approximately 0.67 for the

W → eν channels and 0.75 for the W → μν channels. The
values of CZ are 0.55 for the Z → e+e− channel and 0.79
for Z → μ+μ−. The CW,Z values are a little higher than for
previous measurements at

√
s = 7 TeV and

√
s = 13 TeV.

7 Systematic uncertainties

The systematic uncertainty in the electron reconstruction
and identification efficiency is estimated using the tag-and-
probe method in 8 TeV data [55,61] and extrapolated to the
2.76 TeV dataset. The extrapolation procedure results in abso-
lute increases of ±2%, due to uncertainties in the effect of
the differing pile-up conditions in 2.76 TeV data relative to
the 8 TeV data, as well as a different setting of the noise fil-
tering in the LAr calorimeter of the 2.76 TeV data relative to
the 8 TeV data. These uncertainties were estimated using a
comparison between 7 TeV and 8 TeV data and MC samples,
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Fig. 1 Distributions used to
estimate the multijet
background contribution in (a)
the W → eν channel, and (b)
the W → μν channel. The data
is compared to the fit result
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after having established that the central values of the efficien-
cies are the same for different centre-of-mass energies when
the same LAr filter settings are used. A similar methodology
had been used for internal estimates of the electron efficiency
performance at 13 TeV before the start of Run-2 data taking
and was found to give a good prediction of the efficiencies in
data as well as a conservative estimate of the uncertainties.
Transverse-momentum-dependent isolation corrections, cal-
culated with the tag-and-probe method in 2.76 TeV data, are
very close to 1, so the systematic uncertainty in the elec-
tron isolation requirement is set to the size of the correction

itself, that is ±1% for low pT and ±0.3% for higher pT. The
electron energy scale has associated statistical uncertainties
and systematic uncertainties arising from a possible bias in
the calibration method, the choice of generator, the presam-
pler energy scale, and imperfect knowledge of the material
in front of the EM calorimeter [62]. The total energy-scale
uncertainty is calculated as the sum in quadrature of these
components.

Systematic uncertainties associated with the muon momen-
tum can be divided into three major independent categories:
momentum resolution of the MS track, momentum resolution
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Table 2 Summary of the selection criteria that define the measured
fiducial regions

W -boson fiducial region Z -boson fiducial region

p�
T > 20 GeV p�+,−

T > 20 GeV

|η�| < 2.4 |η�+,− | < 2.4

Emiss
T > 25 GeV 66 < m�+�− < 116 GeV

mT > 40 GeV

of the ID track, and an overall scale uncertainty [57]. The total
momentum scale/resolution uncertainty is the sum in quadra-
ture of these components. An η-independent uncertainty of
approximately ±1.1% in the muon trigger efficiency, deter-
mined using the tag-and-probe method [57] in 2.76 TeV data,
is taken into account. Furthermore, a pT- and η- dependent
uncertainty in the identification and reconstruction efficien-
cies of approximately ±0.3 %, derived using the tag-and-
probe method on 8 TeV data is applied. The uncertainty in
the pT-dependent isolation correction in the muon channel,
calculated with the tag-and-probe method in 2.76 TeV data,
is about ±0.6% for low pT and ±0.5% for higher pT.

The luminosity uncertainty for the 2.76 TeV data is
±3.1%. This is determined, following the same methodol-
ogy as was used for the 7 TeV data recorded in 2011 [63],
from a calibration of the luminosity scale derived from beam-
separation scans performed during the 2.76 TeV operation of
the LHC in 2013.

Systematic uncertainties in the Emiss
T arising from the

smearing and bias corrections applied to obtain satisfactory
modelling of the recoil [58] affect the CW factors in the
W → �ν measurement, and are taken into account.

Uncertainties arising from the choice of PDF set are eval-
uated using the error sets of the initial CT10 PDF set (at 90%
confidence level (CL)) and from comparison with the results
obtained using the central PDF sets from ABKM09 [64],
NNPDF23 [65], and ATLAS-epWZ12 [66]. The effect of
this uncertainty on AW+ (AW− ) is estimated to be ±1.0%
(1.2%), and the effect on AZ is estimated to be ±1.4%. The

effect on CW,Z is between ±0.05% and ±0.4% depending
on the channel.

A summary of the systematic uncertainties in the CW,Z

factors is shown in Table 3. The muon trigger, and electron
reconstruction and identification uncertainties are dominant.

Uncertainties arising from the choice of event generator
and parton shower models are estimated by comparing results
obtained when using Sherpa 2.1 signal samples instead of
the (nominal) Powheg- Box +Pythia 8. The effect of this
uncertainty on AW,Z is estimated to be ±0.9%.

The systematic uncertainty in the multijet background
estimation can be divided into several components: the nor-
malisation uncertainty from the χ2 fit, the uncertainty in the
modelling of electroweak processes by simulated samples
in the fitted region, uncertainty from fit bias due to bin-
ning choice, and uncertainty from template shape. The scale
normalisation uncertainty from the χ2 fit is approximately
±13% for theW → eν channel. This uncertainty is neglected
in the W → μν channel where the template bias is dominant.
The mismodelling uncertainty is estimated by comparison of
the fit results for �+ and �−, and for the combined �± candi-
dates. The central value used is 0.5N± with the uncertainties
N+ −0.5N± and N− −0.5N±, where N+ is the fitted num-
ber of �+ background events, N− is the fitted number of �−
and N± is the fitted total number of �± background events. In
the W → eν channel this leads to an uncertainty of ±28%
in the multijet background. In the W → μν channel the
multijet template normalisation is derived from the fit in the
small-mT region, where electroweak contributions are neg-
ligible and there are many data events, and this source of
systematic error is found to be negligible. The fit-bias uncer-
tainty arising from the choice of bin width is estimated by
repeating the fit with different binnings. This component is
negligible in the W → μν case and ±15% in the W → eν
case. The uncertainty due to a potential bias from template
choice is estimated by employing different template selec-
tions. For the W → eν channel, different inverted-isolation
criteria were investigated. The overall differences are con-
sidered negligible. For the W → μν channel, template vari-

Table 3 Relative systematic uncertainties (%) in the correction factors CW,Z in different channels

δC/C (%) W+→e+ν W−→e−ν Z→e+e− W+→μ+ν W−→μ−ν Z→μ+μ−

Lepton trigger 0.14 0.13 < 0.01 1.07 1.07 0.03

Lepton reconstr. and ident. 2.31 2.33 4.55 0.30 0.32 0.62

Lepton isolation 0.71 0.71 1.41 0.51 0.51 1.01

Lepton scale and resolution 0.44 0.43 0.34 0.05 0.05 0.04

Recoil scale and resolution 0.25 0.20 – 0.22 0.22 –

PDF 0.22 0.29 0.11 0.11 0.20 0.06

MC statistical uncertainty 0.24 0.31 0.30 0.24 0.34 0.43

Total 2.5 2.5 4.8 1.3 1.3 1.3
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Table 4 The correlation model
for the grouped systematic
uncertainties for the
measurements of W -boson and
Z -boson production. The entries
in different rows are
uncorrelated with each other.
Entries in a row with the same
letter are fully correlated.
Entries in a row with a starred
letter are mostly correlated with
the entries with the same letter
(most of the individual sources
of uncertainties within a group
are taken as correlated). Entries
with different letters in a row are
either fully or mostly
uncorrelated with each other

Source Muon channel Electron channel

Z W+ W− Z W+ W−

Muon trigger A A A – – –

Muon reconstruction/ID A A A – – –

Muon energy scale/resolution A A A – – –

Muon isolation A A A – – –

Electron trigger – – – A∗ A∗ A∗

Electron reconstruction/ID – – – A A A

Electron energy scale/resolution – – – A A A

Electron isolation – – – A A A

Recoil related – A A – A A

EW background A B B A B B

Top-quark background A A A A A A

Multijet background – A A – A A

PDF A A A A A A

Table 5 The numbers of observed candidate events with the estimated
numbers of selected electroweak (EW) plus top, and multijet back-
ground events, together with their total uncertainty. In addition, the
number of background-subtracted signal events is shown with the first

uncertainty given being statistical and the second uncertainty being the
total systematic uncertainty, obtained by summing in quadrature the
EW+top and multijet uncertainties. Uncertainties shown as ±0.0 have
a magnitude less than 0.05.

Measurement Observed Background Background Background-subtracted
Channel candidates (EW + top) (multijet) data N sig

W

W+ → e+ν 3914 108 ± 6 30 ± 11 3776 ± 63 ± 12

W− → e−ν̄ 2209 74.2 ± 3.3 30 ± 11 2105 ± 47 ± 12

W+ → μ+ν 4365 152 ± 7 2.5 ± 1.9 4210 ± 66 ± 7

W− → μ−ν̄ 2460 108 ± 4 2.5 ± 1.9 2350 ± 50 ± 5

Z → e+e− 430 1.3 ± 0.0 – 428.7 ± 20.7 ± 0.0

Z → μ+μ− 646 1.6 ± 0.1 – 644.4 ± 25.4 ± 0.1

ations were estimated from fits that use bb̄ + cc̄ MC samples
as the multijet templates, leading to an uncertainty of ±75%;
this is the largest uncertainty in the multijet background in
the W → μν channel.

Combining results and building ratios or asymmetries of
results require a model for the correlations of particular sys-
tematic uncertainties between different measurements. Cor-
relations arise mostly due to the fact that electrons, muons,
and the recoil are reconstructed identically in the different
measurements. Further correlations occur due to similarities
in the analysis methodology such as the methods of signal
and background estimation.

The systematic uncertainties from the electroweak back-
ground estimations are treated as uncorrelated between the
W -boson and Z -boson measurements, and fully correlated
among different flavour decay channels of the W and Z
boson. The top-quark background is treated as fully corre-
lated across all W -boson and Z -boson decay channels. The
multijet background and recoil-related systematic uncertain-
ties are also treated as fully correlated between all four W -

boson decay channels despite there being an expected uncor-
related component, since the statistical uncertainty is domi-
nant in this case.

The systematic uncertainties due to the choice of PDF are
treated as fully correlated between all W -boson and Z -boson
channels. The uncertainties in electron and muon selection,
reconstruction and efficiency are treated as fully correlated
between all W -boson and Z -boson channels.

A simplified form of the correlation model with the
grouped list of the sources of systematic errors is presented
in Table 4.

8 Results

The numbers of events passing the event selections described
in Sect. 4 are presented in Table 5, together with the estimated
background contributions described in Sect. 5. The distribu-
tion of mT for W → �ν candidate events is shown in Fig. 2,
compared with the expected distribution for signal plus back-
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Fig. 2 The distribution of mT for W → �ν candidate events. The
expected signal, normalised to the NNLO theoretical predictions, is
shown as an unfilled histogram on top of the stacked background pre-
dictions. Backgrounds that do not originate from W production are
grouped together into the ‘Others’ histogram. Systematic uncertainties

for the signal and background distributions are combined in the shaded
band. Systematic uncertainties from the measurement of the integrated
luminosity are not included. The lower panel shows the ratio of the data
to the prediction

grounds, where the signal is normalised to the NNLO QCD
prediction. Similarly, Fig. 3 shows the distribution of m��

for Z → �+�− candidate events compared with the expec-
tations for signal. In this case, the background contributions
are not shown, because they would not be visible in the figure
if included.

The measured fiducial (σ fid) and total (σ tot) cross-sections
in the electron and muon channels are presented separately
in Table 6. For these measurements, the dominant contribu-
tion to the systematic uncertainty arises from the luminosity
determination.

The results obtained from the electron and muon final
states are consistent. The fiducial measurements from elec-
tron and muon final states are combined following the pro-
cedure described in Ref. [67] and the result is extrapolated
to the full phase space to obtain the total cross-section. The
total W -boson cross-section is calculated by summing the
separate W+ and W− cross-sections. The results are shown
in Table 7.

Theoretical predictions of the fiducial and total cross-
sections are computed for comparison with the measured
cross-sections using Dynnlo 1.5 [68] which provides cal-
culations at NNLO in the strong-coupling constant, O(α2

s ),
including the boson decays into leptons (�+ν, �−ν̄ or �+�−)
with full spin correlations, finite width and interference

effects. These calculations allow kinematic requirements to
be implemented for direct comparison with experimental
data. The procedure used follows that used for the previous
ATLAS measurement at

√
s = 7 TeV [10].

Corrections for NLO EW effects are calculated with Fewz
3.1 [69–72], for the Z bosons and with Sanc [73,74] for
the W bosons. The calculation was done in the Gμ EW
scheme [75]. The following input parameters are taken from
the Particle Data Group’s Review of Particle Properties 2014
edition [76]: the Fermi constant, the masses and widths of W
and Z bosons as well as the elements of the CKM matrix. The
cross-sections for vector bosons decaying into these leptonic
final states are calculated such that they match the defini-
tion of the measured cross-sections in the data. Thus, from
complete NLO EW corrections, the following components
are included: virtual QED and weak corrections, real initial-
state radiation (ISR), and interference between ISR and real
final-state radiation (FSR) [77]. The calculated effect of these
corrections on the cross-sections is (−0.26±0.02)% forσ fid

W+ ,
(−0.21 ± 0.03)% for σ fid

W− , and (−0.25 ± 0.12)% for σ fid
Z .

Dynnlo is used for the central values of the predictions while
Fewz is used for the PDF variations and all other system-
atic variations such as QCD scale and αs. The predictions
are calculated using the CT14nnlo [78], NNPDF3.1 [79],
MMHT14nnlo68cl [80], ABMP16 [81], HERAPDF2.0 [82],
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Fig. 3 The distribution of m�� for Z → �+�− candidate events. The
expected signal, normalised to the NNLO theoretical predictions, is
shown as an unfilled histogram. Systematic uncertainties for the signal
and background distributions are combined in the shaded band. System-

atic uncertainties from the measurement of the integrated luminosity
are not included. The background distributions are neglected here, but
would not be visible if included. The lower panel shows the ratio of the
data to the prediction

Table 6 Results of the fiducial
and total cross-sections
measurements of the W+-boson,
W−-boson, and Z -boson
production cross-sections in the
electron and muon channels.
The cross-sections are shown
with their statistical, systematic
and luminosity uncertainties
(and extrapolation uncertainty
for total cross-section)

Value ± stat. ± syst. ± lumi. (± extr.) Value ± stat. ± syst. ± lumi. (± extr.)

W+ → eν W+ → μν

σ fid
W+ [pb] 1416 ± 24 ± 36 ± 44 1438 ± 23 ± 19 ± 45

σ tot
W+ [pb] 2284 ± 38 ± 58 ± 71 (±30) 2319 ± 36 ± 30 ± 72 (±30)

W− → eν W− → μν

σ fid
W− [pb] 789 ± 18 ± 20 ± 25 799 ± 17 ± 11 ± 25

σ tot
W− [pb] 1385 ± 31 ± 36 ± 43 (±21) 1402 ± 30 ± 19 ± 44 (±21)

Z → ee Z → μμ

σ fid
Z [pb] 197.6 ± 9.6 ± 9.5 ± 6.1 205.6 ± 8.1 ± 2.6 ± 6.4

σ tot
Z [pb] 313.6 ± 15.2 ± 15.0 ± 9.7 (±5.3) 326.3 ± 12.9 ± 4.1 ± 10.1 (±5.5)

Table 7 Combined fiducial and
total cross-section
measurements for W+-boson,
W−-boson and Z -boson
production. The cross-sections
are shown with their statistical,
systematic and luminosity
uncertainties (and extrapolation
uncertainty for total
cross-section)

Value ± stat. ± syst. ± lumi. (± extr.) Value ± stat. ± syst. ± lumi. (± extr.)

W+ → �ν W− → �ν

σ fid
W [pb] 1433 ± 16 ± 17 ± 44 798 ± 12 ± 10 ± 25

σ tot
W [pb] 2312 ± 26 ± 27 ± 72(±30) 1399 ± 21 ± 17 ± 43(±21)

W → �ν

σ fid
W [pb] 2231 ± 20 ± 26 ± 69

σ tot
W [pb] 3711 ± 34 ± 43 ± 115(±51)

Z → ��

σ fid
Z [pb] 203.7 ± 6.2 ± 3.2 ± 6.3

σ tot
Z [pb] 323.4 ± 9.8 ± 5.0 ± 10.0(±5.5)
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Table 8 The predictions, using the CT14nnlo PDF set, for the cross-
sections measured. The calculations are performed using Dynnlo 1.5
and Fewz 3.1 as described in the text. The errors represent the PDF and
scale uncertainties

Quantity Predicted cross-section (pb)

σ fid
W+ 1379 +39

−40
+6
−6

σ fid
W− 757.3 +20.5

−24.5
+3.1
−3.1

σ fid
Z 196.0 +5.0

−5.8
+1.1
−1.3

σ tot
W+ 2115 +57

−60
+9
−11

σ tot
W− 1266 +32

−38
+5
−6

σ tot
Z 304.1+7.3

−8.2
+1.1
−1.4

and ATLAS-epWZ12nnlo PDF sets. The dynamic scale,m��,
and fixed scale,mW , are used as the nominal renormalisation,
μR, and factorisation, μF, scales for Z and W predictions,
respectively.

Theoretical uncertainties in the predictions are also
derived from the following sources:

PDF: these uncertainties are evaluated from the variations
of the NNLO PDFs according to the recommended proce-
dure for each PDF set. A table with all PDF uncertainties
and their central values is shown in Appendix A; the PDF
uncertainty from CT14nnlo was rescaled from 90% CL
to 68% CL.
Scales: the scale uncertainties are defined by the envelope
of the variations in which the scales are changed by fac-
tors of two subject to the constraint 0.5 ≤ μR/μF ≤ 2.
αs: the uncertainty due to αs was estimated by varying
the value of αs used in the CT14nnlo PDF set by ±0.001,
corresponding to a 68% CL variation.

The statistical uncertainties in these theoretical predictions
are negligible.

The numerical values of the predictions for the CT14nnlo
PDF set are presented in Table 8. The predictions for the
acceptance factor AW,Z can differ by a few percent from
those derived from simulated signal samples, this may be due
to a poorer description of production of low pT W -bosons
by the fixed-order calculations. The predictions are shown in
comparison with the combined W -boson and Z -boson pro-
duction measurements, and with results from pp and p p̄
collisions at other centre-of-mass energies in Fig. 4. A com-
parison of the measurements with predictions from various
different PDF sets is presented in Figs. 5 and 6. Overall there
is good agreement.

Taking ratios of measurements leads to results that have
significantly reduced systematic uncertainties due to full or
partial cancellation of correlated systematic uncertainties, as
discussed in Sect. 7. The ratios of the fiducial cross-sections
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Fig. 4 The measured values of (a) σW × B(W → �ν) for W+ bosons,
W− bosons and their sum and (b) σZ/γ ∗ × B(Z/γ ∗ → ��) for proton–
proton and proton–antiproton collisions as a function of

√
s. Data points

at the same
√
s are staggered to improve readability. All data points are

shown together with their total uncertainty. The theoretical calculations
are performed at NNLO in QCD using Dynnlo 1.5 and Fewz 3.1 as
described in the text. The theoretical uncertainties are not shown

for W -boson and Z -boson production are presented, together
with the ratio for W+-boson and W−-boson production, in
Fig. 7. It can be seen that the predictions from the differ-
ent PDF sets are mostly in good agreement with the mea-
surements. There is a slight (less than two standard devia-
tions) tension between the data and the prediction using the
ABMP16 PDF set. The measured values of the ratios are:

RW/Z = 10.95 ± 0.35 (stat.) ± 0.10 (syst.);
RW+/W− = 1.797 ± 0.034 (stat.) ± 0.009 (syst.).

The measurement of the ratio RW+/W− is sensitive to the
uv and dv valence quark distributions, while the ratio RW/Z

can place constraints on the strange quark distributions. A
common alternative way of presenting this information is in
terms of the charge asymmetry, A�, in W -boson production:
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Fig. 5 NNLO predictions for the fiducial cross-section (a) σ fid
W+

and (b) σ fid
W− for the six PDFs CT14nnlo, MMHT2014, NNPDF3.1,

ATLASepWZ12, ABMP16 and, HERApdf2.0 compared with the mea-
sured fiducial cross-section as given in Table 7. The inner shaded band

represents the statistical uncertainty only, the outer band corresponds
to the experimental uncertainty (including the luminosity uncertainty).
The theory predictions are given with the corresponding PDF (total)
uncertainty shown by inner (outer) error bar
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Fig. 6 NNLO predictions for the fiducial cross-sections (a) σ fid
W

and (b) σ fid
Z for the six PDFs CT14nnlo, MMHT2014, NNPDF3.1,

ATLASepWZ12, ABMP16 and HERApdf2.0 compared with the mea-
sured fiducial cross-section as given in Table 7. The inner shaded band

represents the statistical uncertainty only, the outer band corresponds
to the experimental uncertainty (including the luminosity uncertainty).
The theory predictions are given with the corresponding PDF (total)
uncertainty shown by inner (outer) error bar

A� = σ fid
W+ − σ fid

W−

σ fid
W+ + σ fid

W−
.

This observable also benefits from the cancellation of sys-
tematic uncertainties in the same way as the cross-section
ratios. The measured value is:

A� = 0.285 ± 0.009(stat.) ± 0.002(syst.).

The ratio of measured cross-sections in the electron and
muon decay channels provides a test of lepton universality
in W -boson decays. The measured ratios are:

RW+ = σ fid
W+→e+ν

σ fid
W+→μ+ν

= 0.985 ± 0.023 (stat.) ± 0.028 (syst.)

RW− = σ fid
W−→e−ν̄

σ fid
W−→μ−ν̄

= 0.988 ± 0.030 (stat.) ± 0.028 (syst.)

RW = σ fid
W→eν

σ fid
W→μν

= 0.986 ± 0.018 (stat.) ± 0.028 (syst.)

RZ = σ fid
Z→e+e−

σ fid
Z→μ+μ−

= 0.96 ± 0.06 (stat.) ± 0.05 (syst.)

These results lie within one standard deviation of the
Standard Model prediction and previous measurements by
ATLAS.
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Fig. 7 The measured ratio of fiducial cross-sections for (a) W -boson
production to Z -boson production, (b) W+-boson production to W−-
boson production. The measurements are compared with theoretical
predictions at NNLO in QCD based on a selection of different PDF

sets. The inner shaded band corresponds to statistical uncertainty while
the outer band shows statistical and systematic uncertainties added in
quadrature. The theory predictions are given with the corresponding
PDF (total) uncertainty shown by inner (outer) error bar

9 Conclusion

This paper presents measurements of the W → �ν and
Z → �� production cross-sections based on about 12 400 W -
boson and 1100 Z -boson candidates, after subtracting back-
ground events, reconstructed from

√
s = 2.76 TeV proton–

proton collision data recorded by the ATLAS detector at the
LHC, corresponding to integrated luminosity of 4.0 pb−1.
The total inclusive W -boson production cross-sections for
the combined electron and muon channels are

σ tot
W+→�ν

= 2312 ± 26 (stat.) ± 27 (syst.) ± 72 (lumi.)

±30 (extr.) pb,

σ tot
W−→�ν

= 1399 ± 21 (stat.) ± 17 (syst.) ± 43 (lumi.)

±21 (extr.) pb,

and the total inclusive Z -boson cross-section in the combined
electron and muon channels is:

σ tot
Z→�� = 323.4 ± 9.8 (stat.) ± 5.0 (syst.) ± 10.0 (lumi.)

±5.5(extr.) pb.

The results obtained, and the ratios and charge asymmetries
constructed from them, are in agreement with theoretical cal-
culations based on NNLO QCD.
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Table 9 The predictions at
NNLO in QCD, using the
MMHT14nnlo68cl,
NNPDF31_nnlo_as_0118,
ATLASepWZ12,
HERAPDF2.0, and ABMP16
PDF sets, for the cross-sections
measured in this study

Predicted cross-section ± PDF uncertainty (pb)

Quantity MMHT14 NNPDF31 ATLASepWZ12 HERAPDF20 ABMP16

σ fid
W+ 1397+29

−30 1428+24
−24 1375+34

−30 1429+91
−49 1397+14

−14

σ fid
W− 773+17

−20 778+14
−14 784+19

−19 806+31
−21 746+9

−9

σ fid
Z 199+4

−4 203+4
−4 199+4

−4 199+11
−5 198.6+2.0

−2.0

σ tot
W+ 2138+43

−45 2271+36
−36 2086+54

−47 2140+140
−70 2214+21

−21

σ tot
W− 1295+28

−33 1330+22
−22 1296+48

−29 1338+52
−32 1283+16

−16

σ tot
Z 308+6

−6 313+5
−5 308+6

−5 312+16
−7 305.7+3.0

−3.0
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Appendix

A Theoretical predictions

This appendix presents the theoretical predictions used
for comparison with the measurements in the main body
of the paper. Table 9 shows the predictions using the
MMHT14nnlo68cl, NNPDF31_nnlo_as_0118, ATLASep
WZ12, HERAPDF2.0, and ABMP16 PDF sets with asso-
ciated PDF uncertainties.
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It has been found that the theoretical predictions for W and Z
boson cross sections, and for the W boson charge asymmetry,
which are labelled as NNPDF3.1 [1] have in fact been calcu-
lated using the NNPDF3.0 PDF set [2] instead. The reported
experimental results are not affected.

The corrected versions of Figs. 11, 12 and 13 of the paper
are presented below.
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Fig. 11 Differential cross sections for aW+ and bW− boson produc-
tion as a function of absolute decay lepton pseudorapidity compared
with theoretical predictions. Statistical and systematic errors are shown
as corresponding bars and shaded bands on the data points. The lumi-
nosity uncertainty is not included. Only the dominant uncertainty (PDF)

is displayed for the theory. The lower panel shows the ratio of predic-
tions to the measured differential cross section in each bin, and the
shaded band shows the sum in quadrature of statistical and systematic
uncertainties of the data

The original article can be found online at https://doi.org/10.1140/
epjc/s10052-019-6622-x.

� e-mail: atlas.publications@cern.ch

The corrected text discussing the comparison of predicted
cross sections to data in Sect. 9.2 of the paper should read:

A comparison of the differential cross sections shows that
the predictions obtained with the NNPDF3.1 PDF set are in
good agreement with the measured values, mainly because
the NNPDF3.1 global fit includes high precision LHC mea-
surements of W/Z boson production [3,4]. On the other
hand, the predictions obtained with other recent PDF sets
systematically deviate from the measured values.
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Fig. 12 Differential cross section for Z boson production as a func-
tion of absolute lepton-pair rapidity compared with theoretical predic-
tions. Statistical and systematic errors are shown as corresponding bars
and shaded bands on the data points. The luminosity uncertainty is not
included. Only the dominant uncertainty (PDF) is displayed for the the-
ory. The lower panel shows the ratio of predictions to the measured
differential cross section in each bin, and the shaded band shows the
sum in quadrature of statistical and systematic uncertainties of the data
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Fig. 13 Charge asymmetry for W bosons as a function of absolute
decay lepton pseudorapidity compared with theoretical predictions.
Statistical and systematic errors are shown as corresponding bars and
shaded bands on the data points. Only the dominant uncertainty (PDF)
is displayed for the theory. The lower panel shows the ratio of pre-
dictions to the measured differential cross section in each bin, and the
shaded band shows the sum in quadrature of statistical and systematic
uncertainties of the data
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Abstract Measurements of fiducial integrated and differ-
ential cross sections for inclusive W+, W− and Z boson
production are reported. They are based on 25.0 ± 0.5 pb−1

of pp collision data at
√
s = 5.02 TeV collected with the

ATLAS detector at the CERN Large Hadron Collider. Elec-
tron and muon decay channels are analysed, and the com-
bined W+, W− and Z integrated cross sections are found
to be σW+ = 2266 ± 9 (stat) ± 29 (syst) ± 43 (lumi) pb,
σW− = 1401 ± 7 (stat) ± 18 (syst) ± 27 (lumi) pb, and
σZ = 374.5 ± 3.4 (stat) ± 3.6 (syst) ± 7.0 (lumi) pb, in good
agreement with next-to-next-to-leading-order QCD cross-
section calculations. These measurements serve as references
for Pb+Pb interactions at the LHC at

√
sNN = 5.02 TeV.

1 Introduction

Measurements of W± and Z boson1 production at hadron
colliders provide a benchmark for the understanding of quan-
tum chromodynamics (QCD) and electroweak (EW) pro-
cesses. Predictions for the differential and fiducial cross
sections are available up to next-to-next-to-leading-order
(NNLO) accuracy in QCD and include EW corrections at
next-to-leading-order (NLO) accuracy [1–3]. The rapidity
distribution of EW boson production is sensitive to the under-
lying QCD dynamics and, in particular, to the parton distri-
bution functions (PDFs) which define the initial kinematics
of the hard process. Therefore, measurements of weak-boson
production offer an excellent opportunity to test models of
parton dynamics.

The ATLAS, CMS and LHCb collaborations have mea-
sured W± and Z boson production in proton–proton (pp)
collisions at centre-of-mass energies of

√
s = 7, 8 and 13

TeV [4–7]. These measurements provide precision tests of
the QCD theory and PDFs, which can be complemented

1 Throughout this paper, Z/γ ∗ boson production is referred to as Z
boson production.

� e-mail: atlas.publications@cern.ch

with measurements at the additional centre-of-mass energy√
s = 5.02 TeV.
This paper describes measurements of the production

cross sections times leptonic branching ratios for the inclu-
sive W+ → �+ν, W− → �−ν and Z → �+�− (� = e, μ)

processes. Integrated and differential cross sections are mea-
sured in a fiducial phase space defined by detector accep-
tance and lepton kinematics. ForW± bosons the decay lepton
charge asymmetry is also determined. All measurements are
performed with pp collision data corresponding to an inte-
grated luminosity of 25.0 pb−1, collected at

√
s = 5.02 TeV

with the ATLAS detector. The data were recorded during the
autumn of 2015. The peak instantaneous luminosity deliv-
ered by the LHC was L = 3.8 × 1032 cm−2 s−1 and the
mean number of pp interactions per bunch crossing (hard
scattering and pile-up events) was 1.5. Therefore, this dataset
is characterised by a relatively low pile-up contribution as
compared to the measurements of weak-boson production
performed at higher centre-of-mass energies by ATLAS.

In addition, the measurement of W± and Z boson pro-
duction in pp collisions at the centre-of-mass energy

√
s =

5.02 TeV is an important reference for weak-boson produc-
tion in heavy-ion collisions. The LHC has provided both
proton–lead (p+Pb) and lead–lead (Pb+Pb) collisions at the
centre-of-mass energy per nucleon pair

√
sNN = 5.02 TeV.

Published results from the ATLAS and CMS collaborations
are currently available for W± and Z boson production [8–
11] in Pb+Pb collisions at

√
sNN = 2.76 TeV and Z boson

production [12,13] in the p+Pb system at
√
sNN = 5.02 TeV.

2 The ATLAS detector

The ATLAS experiment [14] is a multipurpose particle detec-
tor with a forward–backward symmetric cylindrical geome-
try.2 It consists of an inner tracking detector surrounded by a

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
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thin superconducting solenoid, electromagnetic and hadronic
calorimeters, and a muon spectrometer incorporating three
large superconducting air-core toroid magnets with eight
coils each.

The inner-detector system (ID) is immersed in a 2 T
axial magnetic field and provides charged-particle tracking
in the pseudorapidity range |η| < 2.5. At small radii, a
high-granularity silicon pixel detector covers the interaction
region and typically provides four measurements per track.
It is followed by the silicon microstrip tracker, which usually
provides eight measurement points per track. These silicon
detectors are complemented by a gas-filled straw-tube transi-
tion radiation tracker, which enables track reconstruction up
to |η| = 2.0. The transition radiation tracker also provides
electron identification information based on the fraction of
hits (out of ∼ 35 in total) with an energy deposit above a
threshold indicative of transition radiation.

The calorimeter system covers the pseudorapidity range
|η| < 4.9. Within the region |η| < 3.2, electromagnetic (EM)
calorimetry is provided by high-granularity lead/liquid-argon
(LAr) calorimeters, with an additional thin LAr presampler
covering |η| < 1.8 to correct for upstream energy-loss fluc-
tuations. The EM calorimeter is divided into a barrel sec-
tion covering |η| < 1.475 and two endcap sections covering
1.375 < |η| < 3.2. For |η| < 2.5 it is divided into three lay-
ers in depth, which are finely segmented in η and φ. Hadronic
calorimetry is provided by a steel/scintillator-tile calorime-
ter, segmented into three barrel structures within |η| < 1.7
and two copper/LAr hadronic endcap calorimeters covering
1.5 < |η| < 3.2. The solid-angle coverage is completed
with forward copper/LAr and tungsten/LAr calorimeter mod-
ules in 3.1 < |η| < 4.9, optimised for electromagnetic and
hadronic measurements, respectively.

The muon spectrometer (MS) comprises separate trigger
and high-precision tracking chambers measuring the deflec-
tion of muons in the magnetic field generated by the toroid
magnets. The precision chamber system covers the region
|η| < 2.7 with three layers of monitored drift tubes, com-
plemented by cathode strip chambers in the forward region.
The muon trigger system covers the range |η| < 2.4 with
resistive plate chambers in the barrel, and thin gap chambers
in the endcap regions.

In 2015, the ATLAS detector had a two-level trigger sys-
tem [15]. The level-1 trigger is implemented in hardware and
uses a subset of detector information to reduce the event rate
to a value of at most 75 kHz. This is followed by a software-

Footnote 2 continued
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
z-axis. The pseudorapidity is defined in terms of the polar angle θ as
η = − ln tan(θ/2), while the rapidity is defined as y = 1

2 ln E+pz
E−pz

.

based high-level trigger which reduces the event rate to about
1 kHz.

3 Simulated event samples

Samples of Monte Carlo (MC) simulated events are used
to evaluate the selection efficiency for signal events and the
contribution of several background processes to the analysed
dataset. All of the samples are processed with the Geant4-
based simulation [16,17] of the ATLAS detector. Dedicated
efficiency and calibration studies with data are used to derive
correction factors to account for residual differences between
experiment and simulation, as is subsequently described.

The processes of interest, specifically events containing
W± or Z bosons, were generated with the Powheg-Box
v2 MC program [18] interfaced to the Pythia 8.186 par-
ton shower model [19]. The CT10 PDF set [20] was used in
the matrix element, while the CTEQ6L1 PDF set [21] was
used with the AZNLO [22] set of generator-parameter val-
ues (tune) for the modelling of non-perturbative effects in
the initial-state parton shower. The Photos++ v3.52 pro-
gram [23] was used for QED radiation from electroweak
vertices and charged leptons. Samples of top-quark pair (t t̄)
and single-top-quark production were generated with the
Powheg-Box v2 generator, which uses NLO matrix ele-
ment calculations together with the CT10f4 PDF set [24].
Top-quark spin correlations were preserved for all top-quark
processes. The parton shower, fragmentation, and underly-
ing event were simulated using Pythia 6.428 [25] with the
CTEQ6L1 PDF set and the corresponding Perugia 2012 tune
(P2012) [26]. The top-quark mass was set to 172.5 GeV. The
EvtGen v1.2.0 program [27] was used to model bottom and
charm hadron decays for all versions of Pythia. Diboson
processes were simulated using the Sherpa v2.1.1 genera-
tor [28]. They were calculated for up to one (Z Z ) or zero
(WW , WZ ) additional partons at NLO QCD accuracy and
up to three additional partons at LO. In addition, the Sherpa
diboson sample cross section is scaled to account for the cross
section change when the Gμ scheme [29] is used instead of
the native one for the EW parameters, resulting in an effective
value of α ≈ 1/132. Multiple overlaid pp collisions were
simulated with the soft QCD processes of Pythia v8.186
using the A2 tune [30] and the MSTW2008LO PDF set [31].
For the comparison with data in differential distributions and
the evaluation of single-boson EW backgrounds for the cross-
section calculations, the single-boson simulations are nor-
malised to the results of NNLO QCD calculations obtained
with a modified version of DYNNLO 1.5 [2,3] optimised for
speed of computation, with uncertainties of 3%. The simula-
tions of all other processes are normalised to the predictions
of NLO QCD calculations, with uncertainties of 10% for the
diboson and top-quark processes.
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4 Object definitions and event selection

This section describes the reconstruction of electrons, muons
and hadronic recoil objects, and the selection of W and Z
bosons. Candidate events are required to have at least one pri-
mary vertex reconstructed from at least three tracks with pT >
400 MeV and to pass a trigger selection, which requires a sin-
gle electron or muon candidate with a pT threshold of 15 GeV
or 14 GeV, respectively. In addition, a loose likelihood-based
identification requirement [32,33] is applied in the electron
trigger.

Electron candidates are required to have pT > 20 (25)

GeV in the Z (W ) boson analysis and |η| < 2.47. Candi-
dates within the transition region between barrel and endcap
calorimeters (1.37 < |η| < 1.52) are rejected. In addition,
medium likelihood-based identification and tight isolation
requirements are applied [32,33]. Muon candidates must sat-
isfy pT > 20 (25) GeV in the Z (W ) boson analysis and
|η| < 2.4 and pass the requirements of medium identifica-
tion and tight isolation [34]; both criteria were optimised for
2015 analysis conditions.

Additional requirements are imposed on the significance
of the transverse impact parameter, d0, such that |d0|/σd0 <

5 (3) for electron (muon) candidates. To ensure that lepton
candidates originate from the primary vertex, a requirement
is also placed on the longitudinal impact parameter, z0, mul-
tiplied by the sine of the track polar angle, θ , such that the
absolute value is smaller than 0.5 mm.

Events with Z boson candidates are selected by requiring
exactly two opposite-charge electrons or muons, at least one
of which is matched to a lepton selected at trigger level. The
dilepton invariant mass must satisfy the fiducial requirement
66 < m�� < 116 GeV.

Events with W boson candidates are selected by requir-
ing exactly one electron or muon that is matched to a lepton
selected at trigger level. The (anti-)neutrinos from W± →
�±ν decays escape direct detection. A measure of the neu-
trino transverse momentum, pν

T, can be inferred from infor-
mation about the hadronic system recoiling against the W
boson. The hadronic recoil is the vector sum of all calorime-
ter energy clusters excluding the deposits from the decay
muon or electron, and is further described below. The trans-
verse projection of the recoil onto the r–φ plane, �uT, is used
together with the decay lepton transverse momentum �p �

T for
the calculation of the missing transverse momentum vector,

�E miss
T = −

(
�uT + �p �

T

)
,

whose magnitude is denoted Emiss
T . The transverse mass of

the lepton-Emiss
T system is defined as mT =√

2p�
TE

miss
T

(
1 − cos �φ�,Emiss

T

)
where �φ�,Emiss

T
is the

azimuthal angle between �p �
T and �E miss

T . The W boson can-

didate events are selected by requiring Emiss
T > 25 GeV

and mT > 40 GeV. These event selection requirements are
optimised to reduce background contributions from multi-jet
processes.

The general structure of the algorithm used for hadronic
recoil reconstruction is introduced in Ref. [35], where
three-dimensional topological clusters [36] calibrated at the
hadronic scale are used as inputs to the algorithm. In this
measurement, the hadronic recoil is reconstructed using par-
ticle flow objects [37] as inputs. The ATLAS particle flow
algorithm provides an improved Emiss

T resolution compared
to the algorithm using only topological clusters, and makes
the measurement less sensitive to pile-up by separating the
charged-hadron contribution from the neutral hadronic activ-
ity [37]. The charged activity is measured by the ID and the
related tracks from charged hadrons can be matched to a
vertex. From all charged hadrons, only calorimetric clusters
associated with a track originating from the reconstructed
primary vertex are retained as input to the hadronic recoil
algorithm. The neutral hadronic activity is represented by
clusters without an associated track, and is also used in the
recoil algorithm.

5 Detector performance corrections

5.1 Lepton calibration and efficiency

The electron energy calibration is primarily obtained from the
simulation by employing multivariate techniques [38]. The
signal Z → ee MC simulation is used for deriving the data
energy scale calibration and resolution corrections for the
simulation. The energy resolution is corrected with additional
factors no larger than about 1% in the barrel and up to 2%
in the endcap region of the detector in order to account for
a slightly worse resolution observed in the data. The energy
scale is corrected by applying a per-electron energy scale
factor to the data derived from a comparison of the electron-
pair invariant mass between the simulation and the data. This
procedure was found to be sensitive to the pile-up distribution
in data due to different settings used for the signal readout
from the EM calorimeters [39]. Therefore, a special set of
scale correction factors was derived for this dataset.

Measurements of muon momenta can be biased by the
detector alignment and resolution, distortions of the mag-
netic field or imprecise estimates of the amount of passive
material in the detector. Corrections of the muon momentum
scale and resolution, which are applied to the simulation, are
derived as a function of the muon η and φ using Z → μ+μ−
events [34]. The correction factors are chosen such that they
minimise the χ2 between the muon-pair invariant mass dis-
tributions in data and simulation.
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Fig. 1 Efficiencies of
reconstruction, identification,
isolation and trigger
requirements as a function of
lepton pseudorapidity for
a electrons and b muons
measured using the
tag-and-probe method. The
efficiency of each selection is
defined with respect to leptons
selected in the previous step
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Electron candidates used for the analysis are required to
satisfy selection criteria related to reconstruction, identifica-
tion, isolation and trigger. For each of these requirements,
the efficiency of the selection is measured in data with the
tag-and-probe method in Z → e+e− events, as described
in Ref. [33], and compared with the simulation. Data-to-
simulation ratios of efficiencies are used as scale factors to
correct the simulation for the observed differences. Measure-
ments are performed as a function of the electron pT and η

for electrons selected in the analysis. All uncertainties related
to efficiency are classified as either correlated or uncorre-
lated, and are propagated accordingly to the final measure-
ment uncertainty.

The electron reconstruction efficiency is in the range 95–
99% both in the data and simulation and is typically mea-
sured with a precision of 2%. The data-to-simulation ratio
is up to 2% (5%) different from unity in the barrel (endcap)
calorimeter and is measured typically with 2% precision for
pT in the range ∼30 to 50 GeV and 5% for pT > 60 GeV.
The efficiency of an electron to further pass the medium iden-
tification definition varies from 85 to 95% and is measured
with 2% precision. This efficiency differs from the efficiency
measured in the MC simulation by up to 5%. The isolation
efficiency is measured with a precision of 5% and agrees
with the simulated value within 2%. Data-to-simulation cor-
rection factors for identification and isolation efficiencies
are measured with a precision of 2–6%. Finally, the trigger
efficiency data-to-simulation ratio is found to deviate from
unity by 0.5–3% and is measured with a precision of up to
2%.

Various selection requirements related to muon trigger,
reconstruction, identification and isolation are imposed on
muon candidates used in the analysis. The efficiency of the
selection criteria is measured in data with the tag-and-probe
method in Z → μ+μ− events [15,34] and compared with
the simulation. Ratios of the efficiencies determined in data
and simulation are applied as scale factors to correct the sim-
ulated events. For muons with pT > 20 GeV, the correction
factors measured as a function of muon pT have typically
an uncertainty of 1–2% and do not deviate from a constant

value by more than 3%. Therefore, the pT dependence of the
scale factors is neglected, and they are evaluated only as a
function of muon η.

The muon trigger efficiency in the endcap region of the
detector (1.05 < |η| < 2.4) is measured to be around 90%,
and the values obtained in data and simulation agree well.
However, in the barrel region (|η| < 1.05) the trigger effi-
ciency determined in the simulation varies from 70 to 85%,
while the efficiency measured in data is lower by 5–15%,
which results in sizeable scale factors. The combined recon-
struction and identification efficiency for medium-quality
muons typically exceeds 99% in both the data and simulation
with good agreement between the two measurements. The
efficiency of the isolation selection is found to be 97–98%
in the MC simulation and it differs from the efficiency mea-
sured in the data by about 2% in the most central (|η| < 0.6)
and most forward detector regions (1.74 < |η| < 2.4).

All measurements of lepton efficiency corrections are lim-
ited in their precision by the number of Z → �+�− candi-
dates available in the

√
s = 5.02 TeV dataset.

Figure 1 summarises the reconstruction, identification,
isolation and trigger efficiencies for electron and muon can-
didates obtained from the tag-and-probe method.

Figure 2 shows the invariant mass distribution of the
dilepton system for electron and muon candidates from
Z → �+�− boson decays after applying scale factors to the
MC simulation. The data points are compared with simula-
tion including Z boson signal and background components.
The electron candidates in the data, shown on the left panel,
are calibrated using calorimeter settings and calibration cor-
rection factors optimised for low-pile-up conditions. Good
agreement between the data and the simulation is found for
both channels.

5.2 Recoil calibration

In events with W or Z boson production, the hadronic
recoil gives a measure of the boson transverse momentum.
The calibration of the recoil is performed using dilepton
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Fig. 2 Detector-level invariant
mass distribution of a dielectron
and b dimuon pairs from Z
boson decays together with EW
background contributions.
Background contributions are
too small to be visible on a
linear scale. Only the statistical
uncertainties of the data are
shown
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Fig. 3 Distributions of
a u‖ + pZT and b u⊥ in data and
Z → μ+μ− MC simulation
before (squares) and
after (circles) recoil calibration.
The shaded band in the ratio
panels represents the statistical
uncertainty of the data sample,
while the error bars represent
the systematic uncertainty
associated with the calibration
procedure
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events from decays of Z bosons produced in pp collisions
at

√
s = 5.02 TeV, as information about the Z boson trans-

verse momentum can be obtained with high precision from
the measurements of lepton momenta and compared with
the measurement from hadronic recoil. The recoil resolution
is studied using u⊥, the projection of �uT onto the axis – in
the transverse plane – perpendicular to the Z boson �pT. The
resolution is given by the standard deviation of the u⊥ distri-
bution, σu⊥ . The transverse momentum scale response of the
recoil can be studied using the bias defined as u‖+ pZT , where
u‖ is the projection of �uT onto the axis defined by �pZT , and
is quantified via the average of the bias distribution. Differ-
ences between the responses in data and simulation are less
than ∼2 GeV, while up to ∼20% differences in the resolution
are observed.

Following the procedure described in Ref. [35], in situ
corrections to the resolution and the scale of uT are obtained
in Z events and are applied to the W boson event candidates,
as a function of pWT . The corrections applied to the simulation
are obtained as a function of pZT :

uW,corr
‖ =

〈
uZ‖ + pZT

〉data −
〈
uZ‖ + pZT

〉MC +
〈
uZ ,data

‖
〉

+
(
uW,MC

‖ −
〈
uZ ,data

‖
〉)

· σ data
u⊥

σMC
u⊥

; (1)

uW,corr
⊥ = uW,MC

⊥ · σ data
u⊥

σMC
u⊥

. (2)

Equation (1) describes corrections applied to the recoil
response in simulation. It includes a shift which brings the
average value of u‖ in the simulation closer to the one in data,
taking into account differences in the bias. In addition, it cor-
rects the response distribution for resolution differences (last
term in the equation). The resolution correction is directly
described by Eq. (2) where it is applied to the u⊥ distribu-
tion in the simulation. The impact of the calibration on the
scale and resolution in events where a Z boson decays to a
dimuon pair is shown in Fig. 3. The distributions are shown
for the simulation before and after applying the corrections
and for data. Agreement of the distributions from simulation
with data distributions is improved after applying the calibra-
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tion, and residual differences are covered by the systematic
uncertainties described in Sect. 8.

6 Background determination

6.1 W channels

The reported cross-section measurements correspond to
inclusive Drell–Yan production of single vector bosons
which decay leptonically. Background processes that con-
tribute to the W± boson production measurement are EW
processes producing W± → τ±ν, Z → �+�−, Z → τ+τ−
decays, EW diboson (WW , WZ , Z Z ) production, as well as
top-quark production and multi-jet processes. The multi-jet
background includes various processes such as semileptonic
decays of heavy-flavour hadrons or in-flight decays of kaons
and pions for the muon channel, as well as photon conver-
sions or misidentified hadrons for the electron channel. The
background contributions from EW and top-quark produc-
tion are evaluated using simulated event samples, while the
multi-jet contribution is estimated with a data-driven method
similar to the one described in Ref. [5].

Although multi-jet background events are well rejected
by the lepton isolation requirements, their contribution to the
signal region is still sizeable because of the very large produc-
tion cross sections for multi-jet processes. This contribution
is estimated from template fits to data in kinematic distribu-
tions: lepton pT, Emiss

T and mT. The fits are performed in a
phase-space region defined by the full event selection with
a looser lepton pT requirement of pT > 20 GeV and with
the requirements on Emiss

T and mT removed. An additional
requirement on the transverse component of the hadronic
recoil, uT < 30 GeV, is placed to ensure better agreement
of the event kinematics between the fit region and the signal
region.

Template distributions for signal, EW and top-quark back-
ground processes are constructed by applying the fit-region
selection to samples of simulated events. Templates enriched
in contributions from multi-jet processes are built using

events in data with non-isolated leptons selected by inverting
the isolation requirement described in Sect. 4. The normal-
isation factors of template distributions for signal, EW and
top-quark backgrounds, as well as the multi-jet background,
are extracted from a fit to the data. The fits are repeated with
multi-jet background templates constructed from different
intervals in a track-based (muon channel) or calorimeter-
based (electron channel) isolation variable. Finally, a lin-
ear extrapolation to the signal region is performed as a
function of the selected isolation variable, accounting also
for the difference in kinematic selections between the fit
region and the signal region. Examples of post-fit tem-
plate Emiss

T distributions, which are used to extract multi-jet
yields in the electron and muon channels, are presented in
Fig. 4.

Following this procedure, multi-jet background processes
are estimated to contribute around 0.9% of the W+ →
e+ν sample and 1.4% of the W− → e−ν sample, while
in the muon channel they represent around 0.1% of the
W+ → μ+ν sample and 0.2% of the W− → μ−ν sam-
ple.

The largest background contributions to the decay modes
studied come from the production of single EW bosons
decaying via other decay channels. The Z → e+e− back-
ground represents 0.1% of the W+ → e+ν sample and 0.2%
of the W− → e−ν sample, while the Z → μ+μ− back-
ground amounts to 2.8% and 3.8% in the W+ → μ+ν and
W− → μ−ν samples, respectively. The W± → τ±ν back-
ground contributes around 1.8% to the samples selected in
both channels and the Z → τ+τ− background contributes
approximately 0.1%. Contributions from top-quark produc-
tion (t t̄ and single top quarks) are estimated to be at the
level of 0.1–0.2% in both channels. Similarly, diboson pro-
cesses represent approximately 0.1% of the selected event
samples.

Figures 5 and 6 show detector-level lepton pseudorapid-
ity distributions for positive and negative electron and muon
candidates from W boson decays. Good agreement is found
between the data and the sum of signal and background con-
tributions.

Fig. 4 Distributions of Emiss
T

used to extract multi-jet yields
in the a electron and b muon
channels after performing the
template fits. Only the statistical
uncertainties of the data are
shown
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Fig. 5 Distribution of
detector-level lepton
pseudorapidity for
a W+ → e+ν and
b W− → e−ν. Only the
statistical uncertainties of the
data are shown
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Fig. 6 Distribution of
detector-level lepton
pseudorapidity for
a W+ → μ+ν and
b W− → μ−ν. Only the
statistical uncertainties of the
data are shown
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Fig. 7 Detector-level
lepton-pair rapidity distributions
in the a electron and b muon
channels. Background
contributions are negligible
using a linear scale. Only the
statistical uncertainties of the
data are shown
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6.2 Z channels

Background contributions to the Z boson sample are expected
from Z → τ+τ−, diboson and W boson decay pro-
cesses, top-quark pair production, and the multi-jet back-
ground. The EW and top-quark contributions are evalu-
ated from dedicated simulation samples, whereas the upper
limit on the amount of the multi-jet background is esti-
mated.

Diboson background contributes 0.08% in the muon chan-
nel and 0.14% in the electron channel. The Z → τ+τ− back-
ground is found to be at the level of 0.07% in both decay
channels. The top-quark background is at the level of 0.06%
in the electron channel and 0.08% in the muon channel. The
W boson background is found to be below 0.01% in both
channels.

The contribution of the multi-jet background in the muon
channel is estimated from samples that simulate bb̄ and cc̄
production. The study yields an estimate at the level of <

0.01%. A previous ATLAS measurement at
√
s = 7 TeV [4]

estimated the multi-jet contribution at the level of 0.02–
0.15% for the electron channel and 0.09% for the muon chan-
nel. As it is expected that this contribution increases with
pile-up and since that measurement was done with higher
pile-up than the current analysis, the multi-jet background is
considered to be negligible in this analysis.

Figure 7 shows detector-level dilepton rapidity distribu-
tions for electron and muon candidates from Z boson decays.
Good agreement is found between the data and the sum of
signal and background contributions.

Table 1 summarises background contributions to the W+,
W− and Z boson candidate samples.
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Table 1 Background contributions as a percentage of the total for the W+, W− and Z candidate samples in the electron (muon) channels

Background W+ → e+ν (W+ → μ+ν) W− → e−ν (W− → μ−ν) Z → e+e−(Z → μ+μ−)
[%] [%] [%]

Z → �+�−, � = e, μ 0.1 (2.8) 0.2 (3.8) –

W± → �±ν, � = e, μ – – <0.01 (<0.01)

W± → τ±ν 1.8 (1.8) 1.8 (1.8) <0.01 (<0.01)

Z → τ+τ− 0.1 (0.1) 0.1 (0.1) 0.07 (0.07)

Multi-jet 0.9 (0.1) 1.4 (0.2) <0.01 (<0.01)

Top quark 0.1–0.2 (0.1–0.2) 0.1–0.2 (0.1–0.2) 0.06 (0.08)

Diboson 0.1 (0.1) 0.1 (0.1) 0.14 (0.08)

7 Measurement procedure

The integrated and differential W and Z boson production
cross sections are measured within a fiducial phase space
defined as follows:

• for W production: p�
T > 25 GeV, pν

T > 25 GeV, |η�| <

2.5, mT > 40 GeV.
• for Z production: p�

T > 20 GeV, |η�| < 2.5, 66 < m�� <

116 GeV.

Integrated fiducial cross sections in the electron and muon
channels are calculated using:

σ fid
W±→�±ν[Z→�+�−] = NW [Z ] − BW [Z ]

CW [Z ] · L int
, (3)

where NW [Z ] and BW [Z ] are the number of selected events in
data and the expected number of background events, respec-
tively. The integrated luminosity of the sample is L int =
25.0 ± 0.5 pb−1, determined with the method described in
Ref. [40]. A correction for the event detection efficiency is
applied with the factor CW [Z ] , which is obtained from the
signal simulation described in Sect. 3 as:

CW [Z ] = NMC,sel
W [Z ]

NMC,fid
W [Z ]

.

Here, NMC,sel
W [Z ] is the number of events which pass the sig-

nal selection at the detector level, corrected for the observed
differences between data and simulation such as in recon-
struction, identification, isolation, and trigger efficiencies.
The denominator NMC,fid

W [Z ] is computed applying the fiducial
requirements to the generator-level leptons originating from
W and Z boson decays. The measurement is corrected for
QED final-state radiation effects by applying these require-
ments to the lepton momenta before photon radiation. The
CW [Z ] factors also account for the difference in acceptance
between detector-level requirements on lepton |η| and the
fiducial selection of |η�| < 2.5.

The procedure described above is extended to the mea-
surement of differential cross sections as a function of the
decay lepton pseudorapidity in W boson production, and as
a function of the lepton-pair rapidity in Z boson production.
The dependence of cross sections on these kinematic vari-
ables is particularly sensitive to the choice of PDFs. For the
measurement of differential cross sections, the formula given
in Eq. (3) is adjusted so that the cross sections are divided
by the width of the corresponding interval in absolute pseu-
dorapidity or rapidity. For W production, following Ref. [4],
the lepton |η| boundaries are defined as:

• 0 – 0.21 – 0.42 – 0.63 – 0.84 – 1.05 – 1.37 – 1.52 – 1.74
– 1.95 – 2.18 – 2.50;

for Z boson production, the lepton-pair |y��| boundaries are
defined as:

• 0 – 0.5 – 1.0 – 1.5 – 2.0 – 2.5.

For the measurement of these cross sections, the CW [Z ] fac-
tors are computed separately for each lepton |η| or |y��|
interval by applying the corresponding requirements on the
reconstructed lepton kinematics in the numerator, and on the
generator-level kinematics in the denominator. Migrations
between rapidity intervals are negligible due to the very good
angular resolution with which charged-particle tracks asso-
ciated with leptons are reconstructed, and the good lepton
momentum and energy resolutions. The CW [Z ] factors for
the measurements of integrated and differential cross sec-
tions are summarised in Table 2.

The uncertainty associated with the CW [Z ] correction is
dominated by experimental systematic uncertainties,
described in Sect. 8. For the differential CW factors, the rel-
ative size of statistical and systematic uncertainties added
in quadrature varies in the range 1.1–2.5% (1.7–3%), while
the uncertainties in differential CZ factors are in the range
1.6–3.5% (0.9–1.2%) in the electron (muon) channel.
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Table 2 Correction factors CW [Z ] used to calculate integrated and dif-
ferential W and Z boson production cross sections. The integrated
CW [Z ] factors are shown with the sum in quadrature of statistical and

systematic uncertainties. For the differential CW [Z ] factors, the spread
of values across lepton |η| or |y��| intervals is shown, while their uncer-
tainties are described in the text

Channel CW (W+ → �+ν) CW (W− → �−ν) CZ

Integrated cross-section measurements

Electron channel 0.657 ± 0.006 0.667 ± 0.005 0.522 ± 0.007

Muon channel 0.723 ± 0.011 0.720 ± 0.010 0.780 ± 0.007

Differential cross-section measurements

Electron channel 0.55–0.80 0.52–0.62

Muon channel 0.55–0.85 0.60–0.82

Uncertainties in CW [Z ] of theoretical origin comprise
uncertainties induced by the PDFs, by the description of the
W and Z boson transverse momentum distributions, by the
implementation of the NLO QCD matrix element and its
matching to the parton shower, and by the modelling of the
parton shower, hadronisation and underlying event. These
uncertainties are discussed in Ref. [4], where they are eval-
uated to be smaller than 0.2% and thus are negligible at the
present level of precision. The size of acceptance corrections
included in the integrated correction factors is 7% (3%) for
the W boson measurements and 14% (5%) for the Z boson
measurements in the electron (muon) channel. In the case
of differential W boson measurements, only the CW factor
in the interval 2.18 < |η�| < 2.5 includes an acceptance
correction of 9% for W± → e±ν processes and 40% for
W± → μ±ν processes. On the other hand, all differential
CZ factors include an acceptance correction which varies
from 6% to 28% for the Z → e+e− channel and up to 53%
for the Z → μ+μ− channel.

8 Measurement uncertainties

8.1 Lepton calibration and efficiency corrections

Uncertainties in the determination of lepton trigger, recon-
struction, identification and isolation efficiency scale fac-
tors affect the measurements through the correction factors
CW [Z ].

The uncertainties of the electron efficiency measurements
are divided into contributions correlated across electron η

and pT intervals and uncorrelated ones, and are propa-
gated to the cross-section measurements accordingly. For
the W± → e±ν channels the efficiency determination con-
tributes a systematic uncertainty of 0.8% to the fiducial cross-
section measurements, while for the Z → e+e− channel this
contribution is 1.3%. Systematic effects related to the elec-
tron pT scale and resolution are subdominant, yielding an
uncertainty at the level of 0.3% for the W± → e±ν channels
and less than 0.2% for the Z → e+e− channel. Uncertainties

in the modelling of the electron charge identification are at
the level of 0.1%, and neglected for the cross section mea-
surements. Their impact on the asymmetry measurements is
however sizeable and included in the final results.

In the muon channels, the statistical components of the
scale factor uncertainties are propagated to the measurements
via MC pseudo-experiments, while systematic components
are propagated as a single variation fully correlated across all
muon |η| intervals. The single largest contribution to the sys-
tematic uncertainty of fiducial cross-section measurements in
the W± → μ±ν channels is 1.4% and comes from the deter-
mination of the muon trigger efficiency. For measurements in
the Z → μ+μ− channel the largest systematic uncertainty
is contributed by the muon isolation efficiency measurement
and amounts to 0.7%. Uncertainties coming from the muon
pT scale and resolution are below 0.2% for both W± → μ±ν

channels and the Z → μ+μ− channel.

8.2 Hadronic recoil corrections

The uncertainty assigned to the hadronic recoil calibration is
conservatively defined from the full size of the corrections,
which are derived using events with Z boson production.
In these events, the impact of the correction on the u⊥ and
u‖+pZT distributions varies between a few percent and ∼20%
in the range [−15,+15] GeV, which dominates the reported
cross-section measurements. After applying this correction
to events with W+ and W− production, the resulting uncer-
tainties on the cross-section measurements are at the level of
0.5% for both the muon and electron channels.

8.3 Background evaluation

Uncertainties in the evaluation of EW and top-quark back-
grounds in the W± → e±ν and W± → μ±ν channels
are estimated by varying the respective normalisation cross
sections. For single-boson production, the size of the cross-
section variations is obtained from higher-order QCD cal-
culations, while for diboson and top-quark processes the
uncertainty in the cross sections is conservatively taken as
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Table 3 Measured fiducial W+ → �+ν differential and integrated cross sections for electron and muon channels

|η�|min |η�|max W+ → e+ν W+ → μ+ν

dσ/d|η�| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb] dσ/d|η�| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb]
0.00 0.21 448 8 10 8 473 9 15 9

0.21 0.42 463 8 10 9 472 8 11 9

0.42 0.63 453 8 10 9 493 8 11 9

0.63 0.84 460 8 10 9 460 9 12 9

0.84 1.05 466 9 11 9 478 9 13 9

1.05 1.37 469 7 10 9 478 6 10 9

1.37 1.52 – – – – 482 9 12 9

1.52 1.74 460 9 14 9 482 7 10 9

1.74 1.95 454 9 14 8 472 8 10 9

1.95 2.18 453 9 14 8 443 7 10 9

2.18 2.50 370 7 14 7 371 7 9 7

0.00 2.50 2243 13 27 42 2303 12 36 44

10%. The resulting uncertainties in the measurements in
both the W± → e±ν and W± → μ±ν channels are below
0.2%. Uncertainties related to the multi-jet background eval-
uation arise from the statistical precision of the multi-jet
templates and uncertainty in the normalisations of the sub-
tracted EW and top-quark contamination. These contribu-
tions are propagated through linear extrapolations over the
isolation variables to the signal region. The related uncer-
tainties in the measurements are evaluated to be 0.7–0.8%
in the W± → e±ν channels and not more than 0.2% in the
W± → μ±ν channels.

In both the Z → μ+μ− and Z → e+e− channels, the
uncertainty associated with the background subtraction is
negligible, since all individual background contributions are
below 0.2% of the selected data sample.

8.4 Luminosity calibration

Luminosity measurements in ATLAS are calibrated using
dedicated van der Meer scans [40]. The analysis of data from
the scan performed in pp collisions at

√
s = 5.02 TeV,

which uses the LUCID-2 detector for the baseline luminosity
measurements [41], yields a relative systematic uncertainty
of 1.9% in the measured luminosity. The largest sources of
uncertainty are systematic effects related to the van der Meer
scan procedure and the long-term stability of the luminosity
calibration

9 Results

9.1 Channel combination

Results of measurements in the electron and muon channels
are summarised in Table 3 for W+ boson production, Table 4

for W− boson production and Table 5 for Z boson pro-
duction. In these tables, the statistical uncertainty is defined
from the variance of the background-subtracted number of
observed events, and the systematic uncertainty includes
all uncertainty components described above, except for the
luminosity uncertainty, which is given separately. The sys-
tematic uncertainties coming from lepton efficiency correc-
tions are measured as a function of lepton η and pT, and
include a significant statistical component due to the number
of Z events used to derive the corrections. This statistical
component is substantially reduced for the integrated cross
sections compared to the differential ones.

The data tables provided in this paper contain compact
summaries of the measurement uncertainties. A complete
breakdown of systematic uncertainties and their correlated
components is provided in HEPData [42].

The electron and muon channel measurements are com-
bined using the Best Linear Unbiased Estimate (BLUE)
method [43], accounting for the correlations of the systematic
uncertainties across the channels and measurement bins. The
|η�| and |y��| distributions for the electron channel, muon
channel and combined results are shown in Figs. 8 and 9
for W and Z bosons, respectively, and the results are listed
in Tables 6, 7 and 8. In the interval 1.37 < |η�| < 1.52,
only the muon channel measurements for W boson produc-
tion are used. The combination yields χ2/d.o.f= 19.3/10
for the W+ boson results, χ2/d.o.f= 15.1/10 for the W−
boson results, and χ2/d.o.f= 3.0/5 for the Z boson results. A
simultaneous combination of all measurements, accounting
for the correlation of the experimental systematic uncertain-
ties between the W and Z measurement results for a given
lepton flavour, gives χ2/d.o.f = 37.5/25, corresponding to
a probability of 5.2%. In view of this remaining discrepancy
and of the general trend of the muon channel cross sections
to be higher than the electron channel ones, the systematic
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Table 4 Measured fiducial W− → �−ν differential and integrated cross sections for electron and muon channels

|η�|min |η�|max W− → e−ν W− → μ−ν

dσ/d|η�| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb] dσ/d|η�| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb]
0.00 0.21 322 7 7 6 341 8 10 6

0.21 0.42 316 7 7 6 314 7 6 6

0.42 0.63 303 7 7 6 327 7 6 6

0.63 0.84 294 7 7 6 303 7 7 6

0.84 1.05 300 7 7 6 306 7 8 6

1.05 1.37 280 5 6 5 290 5 5 6

1.37 1.52 – – – – 276 7 6 5

1.52 1.74 270 7 9 5 272 6 5 5

1.74 1.95 260 7 9 5 245 6 5 5

1.95 2.18 255 7 9 5 253 5 5 5

2.18 2.50 220 6 10 4 219 5 5 4

0.00 2.50 1393 10 17 26 1412 9 22 28

Table 5 Measured fiducial Z → �+�− differential and integrated cross sections for electron and muon channels

|y��|min |y��|max Z → e+e− Z → μ+μ−

dσ/d|y��| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb] dσ/d|y��| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb]
0.0 0.5 99.9 2.5 1.6 1.9 105.2 2.4 1.1 2.0

0.5 1.0 100.3 2.7 1.6 1.9 101.9 2.3 1.0 1.9

1.0 1.5 89.2 2.7 1.4 1.7 89.8 2.1 0.8 1.7

1.5 2.0 59.6 2.4 1.2 1.1 61.0 1.8 0.6 1.1

2.0 2.5 19.6 1.3 0.7 0.4 20.3 1.2 0.2 0.4

0.0 2.5 369.0 5.3 4.7 6.9 377.9 4.4 3.4 7.1
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Fig. 8 Differential a W+ and b W− boson production cross sections
as a function of absolute decay lepton pseudorapidity, for the electron,
muon and combined results. Statistical and systematic errors are shown
as corresponding bars and shaded bands. The luminosity uncertainty is
not included. The lower panel shows the ratio of channels to the com-

bined differential cross section in each bin. In the lower panel, error
bars represent statistical uncertainties in the ratio, while the shaded
band represents systematic uncertainties in the combined differential
cross sections

uncertainties in the efficiency corrections are scaled such that
χ2/d.o.f = 1; the correction uncertainties are scaled by a
common factor, preserving the uncertainty correlations as a
function of lepton pT and η for this source. Tables 6, 7 and

8 include this scaling. The measured ratio of fiducial W+
and W− production cross sections, as well as ratios of fidu-
cial W± and Z production cross sections, are summarised in
Table 9.
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Fig. 9 Differential Z boson production cross section as a function
of absolute lepton-pair rapidity, for the electron, muon and combined
results. Statistical and systematic errors are shown as corresponding
bars and shaded bands. The luminosity uncertainty is not included.
The lower panel shows the ratio of channels to the combined differen-
tial cross section in each bin. In the lower panel, error bars represent
statistical uncertainties in the ratio, while the shaded band represents
systematic uncertainties in the combined differential cross sections

Table 6 Combined fiducial W+ → �+ν differential and integrated
cross sections

|η�|min |η�|max W+ → �+ν

dσ/d|η�| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb]
0.00 0.21 456 6 11 9

0.21 0.42 467 6 9 9

0.42 0.63 471 6 9 9

0.63 0.84 460 6 10 9

0.84 1.05 471 6 11 9

1.05 1.37 474 5 9 9

1.37 1.52 482 9 15 9

1.52 1.74 474 6 11 9

1.74 1.95 465 6 11 9

1.95 2.18 446 6 10 9

2.18 2.50 371 5 10 7

0.00 2.50 2266 9 29 43

The measurements of differential W+ and W− production
cross sections allow the extraction of the W boson charge
asymmetry, as a function of the absolute pseudorapidity of
the decay lepton:

A�(|η�|) = dσW+/d|η�| − dσW−/d|η�|
dσW+/d|η�| + dσW−/d|η�| .

Uncertainties in A� are calculated considering all sources of
correlated and uncorrelated systematic uncertainties in the
differential cross sections. The resulting dependence of A�

on |η�| measured in the electron and muon channels is pre-

Table 7 Combined fiducial W− → �−ν differential and integrated
cross sections

|η�|min |η�|max W− → �−ν

dσ/d|η�| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb]
0.00 0.21 329 5 8 6

0.21 0.42 315 5 6 6

0.42 0.63 315 5 6 6

0.63 0.84 298 5 6 6

0.84 1.05 303 5 7 6

1.05 1.37 286 4 5 6

1.37 1.52 276 7 7 5

1.52 1.74 272 4 6 5

1.74 1.95 249 4 5 5

1.95 2.18 253 4 6 5

2.18 2.50 219 4 6 4

0.00 2.50 1401 7 18 27

Table 8 Combined fiducial Z → �+�− differential and integrated
cross sections

|y��|min |y��|max Z → �+�−

dσ/d|y��| [pb] δσstat [pb] δσsyst [pb] δσlumi [pb]
0.0 0.5 103.0 1.7 1.2 1.9

0.5 1.0 101.3 1.8 1.1 1.9

1.0 1.5 89.6 1.7 0.9 1.7

1.5 2.0 60.5 1.4 0.7 1.1

2.0 2.5 20.0 0.9 0.4 0.4

0.0 2.5 374.5 3.4 3.6 7.0

Table 9 Ratios of integrated W and Z production cross sections

Rfid
W+/W− 1.617 ± 0.012 (stat) ± 0.003 (syst)

Rfid
W/Z 9.81 ± 0.13 (stat) ± 0.01 (syst)

Rfid
W+/Z 6.06 ± 0.08 (stat) ± 0.01 (syst)

Rfid
W−/Z 3.75 ± 0.05 (stat) ± 0.01 (syst)

sented in Fig. 10 together with the combined values, while
the combined results are summarised with the corresponding
uncertainties in Table 10. Good agreement between the two
channels is found.

9.2 Comparison with theoretical predictions

The measured cross sections are compared with theo-
retical predictions obtained using a modified version of
DYNNLO 1.5 [2,3] optimised for speed of computation. The
calculation is performed at O(α2

S) in QCD and at leading
order in the EW theory, with parameters set according to the
Gμ scheme [29]. The input parameters (the Fermi constant
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Fig. 10 Charge asymmetry for W bosons as a function of absolute
decay lepton pseudorapidity, for the electron, muon and combined
results. Statistical and systematic errors are shown as corresponding
bars and shaded bands (not visible for most points). The lower panel
shows the ratio of channels to the combined charge asymmetry in each
bin. In the lower panel, error bars represent statistical uncertainties in
the ratio, while the shaded band represents systematic uncertainties in
the combined charge asymmetry

Table 10 Charge asymmetry for W bosons as a function of absolute
pseudorapidity of the decay lepton

|η�|min |η�|max A� δAstat δAsyst

0.00 0.21 0.163 0.010 0.001

0.21 0.42 0.195 0.009 0.001

0.42 0.63 0.201 0.009 0.001

0.63 0.84 0.213 0.010 0.001

0.84 1.05 0.218 0.010 0.001

1.05 1.37 0.248 0.008 0.001

1.37 1.52 0.272 0.014 0.002

1.52 1.74 0.271 0.009 0.001

1.74 1.95 0.300 0.010 0.001

1.95 2.18 0.276 0.010 0.001

2.18 2.50 0.256 0.010 0.001

GF, the masses and widths of W and Z bosons, and the CKM
matrix elements) are taken from Ref. [44]. The DYNNLO
predictions are calculated using the NNLO PDF sets from
CT14nnlo [45],NNPDF3.1 [46],MMHT14nnlo68cl [47],
HERAPDF2.0 [48] and ABMP16 [49]. All considered PDF
sets except HERAPDF2.0 are evaluated from global fits
which include to varying extents the LHC measurements of
W/Z boson, Drell–Yan, top-quark and inclusive jet produc-
tion. The renormalisation and factorisation scales, respec-
tively denoted as μr and μf, are set equal to the decay lepton-
pair invariant mass, m�ν or m��.

Uncertainties in these predictions are derived as fol-
lows. PDF uncertainties are evaluated from the variations
of the NNLO PDFs (the PDF uncertainties of CT14nnlo

are rescaled from 90% confidence level to 68% confidence
level). Scale uncertainties are defined by the envelope of
the variations obtained by changing μr and μf by a fac-
tor of two with respect to their nominal values and imposing
0.5 ≤ μr/μf ≤ 2. The uncertainty induced by the strong
coupling constant is estimated by varying αS by ±0.001
around the central value of αS(mZ ) = 0.118, following
the prescription of Ref. [45]; the effect of these variations
is estimated by comparing the CT14nnlo_as_0117 and
CT14nnlo_as_0119PDF sets toCT14nnlo. Finally, intrin-
sic limitations of the NNLO calculations for fiducial cross-
section predictions lead to systematic differences between
results from different programs, as explained in Ref. [50].
Therefore, an additional uncertainty of 0.7%, estimated from
a comparison of predictions calculated with Fewz 3.1 and
DYNNLO, is assigned. Theory uncertainties are dominated
by our knowledge of the proton PDFs.

The uncertainty of the LHC proton beam energy is esti-
mated to be 0.1% [51] and induces typically an uncertainty
of 0.1% in the cross-section predictions, which is negligible
compared to other theoretical uncertainties discussed above.

Differential cross sections for W and Z boson produc-
tion are shown in Figs. 11 and 12 as a function of |η�| and
|y��|, respectively. The cross sections are compared for the
combined measurement and theoretical predictions calcu-
lated with theCT14nnlo,NNPDF3.1,MMHT14nnlo68cl,
HERAPDF2.0 and ABMP16 PDF sets, with uncertainties
assigned as described above. In some regions of phase space,
a comparison of the differential cross sections shows system-
atic deviations of the predictions obtained with recent PDF
sets from the measured values. These deviations are largest
for W+ boson production and at central rapidity for Z boson
production.

The measured lepton charge asymmetry for W bosons
shown in Fig. 13 is compared with predictions calculated
with the PDF sets mentioned previously. In most of the |η�|
range considered, the predictions from all PDF sets tend to
underestimate the measured asymmetry by a few percent.

10 Summary

Fiducial cross sections are reported for inclusive W+, W−
and Z boson production in pp collisions at the centre-of-
mass energy

√
s = 5.02 TeV. The measurement is based on

data taken by the ATLAS detector at the LHC correspond-
ing to an integrated luminosity of 25.0 pb−1. Cross sections
are reported in the electron and muon decay channels, inte-
grated over the fiducial regions and differentially. The fidu-
cial region is defined using lepton kinematics and detector
acceptance. The differential cross sections for W± → �±ν

boson production are measured as a function of absolute lep-
ton pseudorapidity while for Z → �+�− bosons they are
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Fig. 11 Differential cross sections for aW+ and bW− boson produc-
tion as a function of absolute decay lepton pseudorapidity compared
with theoretical predictions. Statistical and systematic errors are shown
as corresponding bars and shaded bands on the data points. The lumi-
nosity uncertainty is not included. Only the dominant uncertainty (PDF)

is displayed for the theory. The lower panel shows the ratio of predic-
tions to the measured differential cross section in each bin, and the
shaded band shows the sum in quadrature of statistical and systematic
uncertainties of the data
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Fig. 12 Differential cross section for Z boson production as a func-
tion of absolute lepton-pair rapidity compared with theoretical predic-
tions. Statistical and systematic errors are shown as corresponding bars
and shaded bands on the data points. The luminosity uncertainty is not
included. Only the dominant uncertainty (PDF) is displayed for the the-
ory. The lower panel shows the ratio of predictions to the measured
differential cross section in each bin, and the shaded band shows the
sum in quadrature of statistical and systematic uncertainties of the data

reported as a function of absolute dilepton rapidity in the
mass window 66 < m�� < 116 GeV. For W± bosons the
decay lepton charge asymmetry as a function of absolute
lepton pseudorapidity is also measured.

The electron and muon channel results are found to agree
within the measurement precision, and are therefore com-
bined considering all sources of correlated and uncorrelated
uncertainties. The combined fiducial W+, W−, and Z cross
sections are measured with a precision of 1.2–1.7%, exclud-
ing the luminosity uncertainty. Both the integrated and dif-
ferential cross sections are compared with next-to-next-to-
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Fig. 13 Charge asymmetry for W bosons as a function of absolute
decay lepton pseudorapidity compared with theoretical predictions.
Statistical and systematic errors are shown as corresponding bars and
shaded bands on the data points. Only the dominant uncertainty (PDF)
is displayed for the theory. The lower panel shows the ratio of pre-
dictions to the measured differential cross section in each bin, and the
shaded band shows the sum in quadrature of statistical and systematic
uncertainties of the data

leading-order QCD calculations using various PDF sets. A
comparison of the differential cross sections shows 1–2σ

deviations from the predictions obtained with many of the
recent PDF sets.

These results provide the first measurement of W± and Z
boson production cross sections at the centre-of-mass energy√
s = 5.02 TeV and complement previous measurements

at
√
s = 7, 8 and 13 TeV. They constitute a reference for

measurements of W± and Z boson production in heavy-ion
collisions collected at

√
sNN = 5.02 TeV by the LHC exper-

iments.
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L. Manhaes de Andrade Filho78a, J. Manjarres Ramos46, K. H. Mankinen94, A. Mann112, A. Manousos74, B. Mansoulie142,
J. D. Mansour15a, M. Mantoani51, S. Manzoni66a,66b, G. Marceca30, L. March52, L. Marchese132, G. Marchiori133,
M. Marcisovsky138, C. A. Marin Tobon35, M. Marjanovic37, D. E. Marley103, F. Marroquim78b, Z. Marshall18,
M. U. F Martensson169, S. Marti-Garcia171, C. B. Martin123, T. A. Martin175, V. J. Martin48, B. Martin dit Latour17,
M. Martinez14,aa, V. I. Martinez Outschoorn100, S. Martin-Haugh141, V. S. Martoiu27b, A. C. Martyniuk92, A. Marzin35,
L. Masetti97, T. Mashimo160, R. Mashinistov108, J. Masik98, A. L. Maslennikov120a,120b, L. H. Mason102, L. Massa71a,71b,
P. Massarotti67a,67b, P. Mastrandrea5, A. Mastroberardino40a,40b, T. Masubuchi160, P. Mättig179, J. Maurer27b,

123



Eur. Phys. J. C (2019) 79 :128 Page 21 of 29 128
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Abstract This paper presents measurements of the W+ →
μ+ν and W− → μ−ν cross-sections and the associated
charge asymmetry as a function of the absolute pseudora-
pidity of the decay muon. The data were collected in proton–
proton collisions at a centre-of-mass energy of 8 TeV with the
ATLAS experiment at the LHC and correspond to a total inte-
grated luminosity of 20.2 fb−1. The precision of the cross-
section measurements varies between 0.8 and 1.5% as a func-
tion of the pseudorapidity, excluding the 1.9% uncertainty on
the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are
compared with predictions based on next-to-next-to-leading-
order calculations with various parton distribution functions
and have the sensitivity to discriminate between them.

1 Introduction

Measurements of the W+ and W− boson cross-sections in
hadron collisions are a sensitive probe of quantum chromody-
namics (QCD). High-precision predictions at next-to-next-
to-leading-order (NNLO) accuracy in QCD are available to
compare with data. Of particular interest is the ability of
such measurements to discriminate between different parton
distribution functions (PDFs) [1–7], because the W boson
rapidity1 y is strongly correlated with the initial-state parton

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the centre of the detector and the z-axis
coinciding with the axis of the beam pipe. The x-axis points from the
interaction point to the centre of the LHC ring, and the y-axis points
upward. Polar coordinates (r , φ) are used in the transverse plane, φ

being the azimuthal angle around the beam pipe. The pseudorapidity is
defined in terms of the polar angle θ as η = − ln tan(θ/2). The rapidity
y of a system is defined in terms of its energy E and its longitudinal
momentum pz as y = (1/2) ln[(E+pz)/(E−pz)]. Angular separations
between particles or reconstructed objects are measured in η–φ space
using �R = √

(�η)2 + (�φ)2.

�e-mail: atlas.publications@cern.ch

momentum fractions x . In high-energy proton–proton colli-
sions, the main production mechanism of single W bosons
is a valence quark annihilating with a sea antiquark. The W
bosons are preferentially produced with a boost in the direc-
tion of the incoming valence quark, as the quark is more
likely to be at a higher x than the corresponding antiquark.
Since the PDFs of u and d quarks in the proton differ (largely
due to there being two valence u quarks and one valence d
quark), there is a production asymmetry between W+ and
W− bosons (referred to in this paper as the W boson charge
asymmetry), which also varies as a function of rapidity. The
boson rapidity cannot be determined unambiguously in lep-
tonic decays of the W boson because the decay neutrino
passes through the detector unobserved. The charge asym-
metry can instead be measured as a function of the decay
lepton’s pseudorapidity η�, which is strongly correlated with
the W boson rapidity.

The W boson charge asymmetry was measured in proton–
antiproton collisions by the CDF and D0 collaborations [8–
10]. It was also measured, along with the individual cross-
sections, in proton–proton collisions at the LHC by the
ATLAS Collaboration at centre-of-mass energies of

√
s =

5 TeV [11] and 7 TeV [2], by the CMS Collaboration at
√
s =

7 and 8 TeV [12–14], and by the LHCb Collaboration at
√
s

= 7 and 8 TeV [15–17].
This paper presents measurements of the integrated fidu-

cial cross-sections for W+ → μ+ν and W− → μ−ν̄,
as well as the differential cross-sections, dσWμ+ /dημ and
dσWμ− /dημ, as a function of |ημ|, where ημ is the pseudo-
rapidity of the decay muon. The data used were collected
in proton–proton collisions at a centre-of-mass energy of√
s = 8 TeV with the ATLAS experiment at the LHC and cor-

respond to a total integrated luminosity of 20.2 fb−1 [18]. The
muon decay channel (W → μν) is particularly well suited
for this measurement due to good lepton identification and
small contributions from background processes. In addition,
a measurement of the W boson charge asymmetry Aμ is pre-
sented, also as a function of |ημ|. The asymmetry is defined
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in terms of the W+ and W− differential cross-sections as

Aμ = dσWμ+ /dημ − dσWμ− /dημ

dσWμ+ /dημ + dσWμ− /dημ

. (1)

The measurements are performed in a fiducial phase space,
which is defined by the kinematics and geometrical accep-
tance of the muon. All measurements are compared with
predictions from a calculation performed at NNLO accuracy
using the DYNNLO program [19]. The DYNNLO predic-
tions are produced with six different PDF sets.

2 The ATLAS detector

The ATLAS detector [20] at the LHC covers nearly the entire
solid angle around the collision point. It consists of an inner
tracking detector (ID) surrounded by a thin superconducting
solenoid, electromagnetic and hadronic calorimeters, and a
muon spectrometer (MS) incorporating three large supercon-
ducting toroid magnets. The ID is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the
range |η| < 2.5. A high-granularity silicon pixel detector
typically provides three measurements per track and is fol-
lowed by a silicon microstrip tracker, which usually provides
four three-dimensional measurement points per track. These
silicon detectors are complemented by a transition radiation
tracker, which enables radially extended track reconstruction
up to |η| = 2.0.

The calorimeter system covers the pseudorapidity range
|η| < 4.9. Electromagnetic calorimetry is provided by barrel
and endcap high-granularity lead/liquid-argon (LAr) sam-
pling calorimeters in the |η| < 3.2 region. A thin LAr pre-
sampler, covering |η| < 1.8, corrects for energy loss in the
material upstream of the calorimeters. Hadronic calorimetry
is provided in the |η| < 1.7 region by the steel/scintillator
tile calorimeter, segmented into three barrel structures, and
in the endcap region by two copper/LAr calorimeters. The
forward regions 3.1 < |η| < 4.9 are covered by copper/LAr
and tungsten/LAr calorimeter modules optimised for elec-
tromagnetic and hadronic measurements, respectively.

The MS has separate trigger and precision tracking cham-
bers measuring the deflection of muons in a magnetic field
generated by superconducting air-core toroids. The precision
chamber system covers the region |η| < 2.7 with three lay-
ers of monitored drift tubes, complemented by cathode-strip
chambers in the forward regions 2.0 < |η| < 2.7, where the
background is highest. There is a transition between the bar-
rel and endcap muon detectors around |η| = 1.05. The muon
trigger system covers the range of |η| < 2.4 with resistive-
plate chambers in the barrel and thin-gap chambers in the
endcap regions.

A three-level trigger system [21,22] selected candidate
events in 2012. The level-1 trigger was implemented in hard-
ware and used a subset of detector information to reduce the
event rate to a design value of at most 75 kHz. This was fol-
lowed by two software-based trigger levels which together
reduced the event rate to about 400 Hz.

3 Analysis methodology

3.1 Description of the measurements

The integrated cross-sections for W+ → μ+ν and W− →
μ−ν̄ production are measured in a fiducial phase space
defined at the particle level by requiring the muon transverse
momentum pμ

T to be greater than 25 GeV and the neutrino
transverse momentum pν

T to be greater than 25 GeV. The
absolute muon pseudorapidity is required to be less than 2.4.
The W boson transverse mass is

mT =
√

2pμ
T pν

T (1 − cos (φμ − φν)) , (2)

where φμ and φν are the azimuthal angles of the muon and
neutrino, respectively. For this analysis, mT must be at least
40 GeV, both at reconstruction and particle level. The require-
ments on fiducial quantities are defined before the emission
of final-state photon radiation (i.e. at the ‘Born level’).

The differential cross-sections and charge asymmetry are
measured in the same fiducial phase space as for the inte-
grated measurement. These are measured in 11 bins of abso-
lute muon pseudorapidity between 0 and 2.4 with bin edges at
0, 0.21, 0.42, 0.63, 0.84, 1.05, 1.37, 1.52, 1.74, 1.95, 2.18, and
2.4. The bin edges are identical to those used in the ATLAS
7 TeV measurement [2].

3.2 Data and simulated event samples

The data for this analysis comprise the entire ATLAS
√
s =

8 TeV data set recorded between April and December 2012,
corresponding to an integrated luminosity of 20.2 fb−1. The
average number of proton–proton interactions per bunch
crossing 〈μ〉 was 20.7. Only events recorded with stable
beams and the detector operating well are selected. The
relative uncertainty of the LHC proton beam energy of
±0.1% [23] has no significant effect on the results.

Events from Monte Carlo (MC) simulations, including
simulation of the ATLAS detector, are used for the back-
ground estimation and to correct the measured data for detec-
tor acceptance, efficiency, and resolution effects.

The W → μν signal process was simulated using
Powheg- Box [24,25] at next-to-leading order (NLO) in
perturbative QCD using the CT10 set of PDFs [26] and
interfaced to Pythia 8.170 [27] with the AU2 set of tuned
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parameters [28] to simulate the parton shower, hadroni-
sation, and underlying event and to Photos [29] to sim-
ulate final-state photon radiation (FSR). This is referred
to as Powheg+Pythia8 in this paper. An alternative sig-
nal sample was simulated using NLO Sherpa 1.4 [30]
and the CT10 PDF set to cross-check the results obtained
using Powheg+Pythia8 and to evaluate systematic uncer-
tainties in the signal modelling.

Powheg+Pythia8 with the CT10 PDF set was used to
simulate the background processes W → τν and Z → μμ

(with the AU2 tune set) and Powheg+Pythia6 [31,32] also
with the CT10 PDF set was used to simulate the t t̄ pro-
cess (with the P2011C tune set [33]). The Z → ττ pro-
cess was simulated using Alpgen [34] with the CTEQ6L1
PDF set [35] interfaced to Herwig [36] to simulate the par-
ton shower and Jimmy [37] to model the underlying event.
The single-top process in the s-channel and Wt-channels was
simulated with MC@NLO [38] interfaced to Jimmy. The
t-channel was generated with AcerMC [39] interfaced to
Pythia. The backgrounds from the diboson processes WW ,
WZ , and Z Z were simulated using Herwig at leading order
with the CTEQ6L1 PDF set. In all cases, the Geant4 [40]
program was used to simulate the passage of particles through
the ATLAS detector [41]. The multijet background is esti-
mated using a data-driven technique, described in Sect. 3.4.
A bb̄ → μX MC sample, simulated using Pythia8 with the
AU2 tune set, is used to cross-check the data-driven estima-
tion.

Differences in reconstruction, trigger, and isolation effi-
ciencies for muons between MC simulations and data are
evaluated using a tag-and-probe method [42] and are cor-
rected by reweighting the MC simulated events. The muon
reconstruction efficiencies are parameterised versus η and
φ, the muon isolation efficiencies versus η and transverse
momentum pT, and the muon trigger efficiencies versus η,
φ, and pT. The reconstruction, trigger and isolation effi-
ciencies are evaluated separately for positive and negative
muons. This separate evaluation is particularly necessary in
the case of the trigger efficiencies, which differ by up to
3% (depending on η) between positive and negative muons,
much greater than the total uncertainty in the cross-section
from other sources. Corrections are also applied to MC events
for the description of the muon momentum scales and reso-
lution, which are determined from fits to the observed mass
distributions of Z → μμ candidates in data and MC simu-
lations [42]. To correct for charge-dependent biases of the
muon momentum scale due to residual misalignments in
the ID and MS, an additional momentum-dependent correc-
tion parameterised versus η and φ is applied. An associated
uncertainty corresponding to the full size of the correction is
included.

All simulated samples are normalised using their respec-
tive inclusive cross-sections at higher orders in perturbative

QCD. The W and Z predictions are scaled to the NNLO
calculation obtained with DYNNLO v1.5 [19,43] and the
MSTW2008 PDF set [44]. The production of top quarks is
normalised using the prediction at NNLO+NNLL precision
from the Top++2.0 program for t t̄ [45–51], to the calcula-
tions in Refs. [52–54] for single top quarks, and for diboson
production to the NLO calculations following the procedure
described in Ref. [55].

The effect of multiple interactions per bunch crossing
(pile-up) is simulated by overlaying minimum-bias MC
events generated with Pythia8 (with the A2 tune set) [41].
The simulated event samples are reweighted to describe the
distribution of the number of pile-up events in the data. The
MC simulations are also reweighted to better describe the dis-
tribution of the longitudinal position of the primary proton–
proton collision vertex [56] in data.

3.3 Event selection

Candidate W → μν events are selected with the requirement
that at least one of two single-muon triggers are satisfied. A
high-threshold trigger requires muons to have pT > 36 GeV,
whilst a low-threshold trigger requires pT > 24 GeV along-
side the requirement that the muon must be isolated from
additional nearby tracks.

Muon candidates are reconstructed by combining tracks
measured in both the ID and the MS [42]. The pT of the ID
track is required to be greater than 25 GeV and the absolute
pseudorapidity to be less than 2.4. Track quality require-
ments are imposed for muon identification and background
suppression. The transverse impact parameter significance is
required to be less than 3 to ensure that the muon candidates
originate from a primary proton–proton interaction vertex.
The muon candidates are also required to be isolated, satis-
fying Iμ < 0.1, where Iμ is the scalar sum of the pT of tracks
within a cone of size �R = 0.4 around the muon (excluding
the muon track) divided by the pT of the muon. Events are
required to contain exactly one muon candidate satisfying
the above criteria.

To reduce background contamination, in particular from
multijet processes, events are required to have missing trans-
verse momentum Emiss

T greater than 25 GeV. The Emiss
T is

reconstructed using energy depositions in the calorimeters
and tracks reconstructed in the inner detector and muon spec-
trometer [57]. It is defined as the absolute value of the nega-
tive of the vectorial sum of the transverse momenta of recon-
structed objects (e.g. electrons, muons, jets) and tracks not
associated with these objects. These are labelled the hard and
soft terms, respectively.

The W boson transverse mass mT is required to be larger
than 40 GeV. This variable is defined analogously to Eq. (2)
with pν

T replaced by Emiss
T and φν replaced by the azimuthal

angle related to the Emiss
T .
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3.4 Estimation of backgrounds

The backgrounds from all sources other than multijet pro-
cesses are estimated using the MC samples detailed in
Sect. 3.2. The Z → μμ process with one of the muons not
identified contributes between 1% and 8% of selected data
events, depending on the value of |ημ|. This is the largest
background for |ημ| � 1.4. The contribution from W → τν

where the τ -lepton decays into a muon is 2% of the selected
data events and approximately constant as a function of |ημ|.
The backgrounds from Z → ττ , t t̄ , and the diboson pro-
cesses WW , WZ , and Z Z each amount to less than 0.3% of
the selected data.

Multijet processes contribute between 2% and 4% of the
selected data and are the largest sources of background for
|ημ| � 1.4. The number and properties of the background
events arising from multijet processes are estimated using
a data-driven template-fit technique, similar to that used in
Ref. [58]. A multijet-dominated sample is obtained from
data by selecting events passing the nominal selection except
that the muon fails the isolation criterion. For this purpose,
events satisfying a trigger without an isolation requirement
are used. Multijet templates are constructed from this sam-
ple, in a series of mutually exclusive slices in muon isola-
tion, for each distribution of interest. The residual contri-
bution from signal and other background sources, estimated
from MC simulations, is subtracted. The normalisations of
the multijet templates in the signal region are obtained by
fitting the templates to data in three discriminating variables:
Emiss

T ,mT, and the ratio pμ
T /mT. The fits are performed in two

phase-space regions (fitting regions) in which the selections
on Emiss

T and mT are relaxed in order to enrich the multijet
background contribution. A requirement that the W trans-
verse momentum be less than 30 GeV is introduced in one
fitting region to remove a region poorly modelled by signal
MC simulations. The normalisation of the multijet template
is allowed to float in each of the fits and the total MC-based
signal plus background is kept constant. The multijet normal-
isation in the signal selection is extracted using each discrimi-
nating variable in both fitting regions (a total of six estimates).
It is assumed that the normalisations of the templates in the
fitting regions are the same as for the signal selection. The fits
described above are performed for each muon-isolation slice
(i.e. six fits per slice). The normalisation estimate extracted
in each muon-isolation slice (for a particular discriminating
variable and fitting region) is used to linearly extrapolate to
an isolation value of 0.05, which is the average isolation of
multijet events in the signal region as estimated using the
bb̄ → μX MC simulation.

The central value of the multijet background is chosen
to be the average of the extrapolated curves at Iμ = 0.05,
and the spread gives one component of the systematic uncer-
tainty, which is estimated to be bin-to-bin correlated and 50%

Table 1 The number of data events after event selection for W+ →
μ+ν and W− → μ−ν̄ and the percentage of selected data that each of
the three major backgrounds constitutes

W+ → μ+ν W− → μ−ν̄

Number of events 50 390 184 34 877 365

Percentage of data

Multijet 2.4 ± 0.3 3.1 ± 0.3

W → τν 1.9 ± 0.1 2.0 ± 0.1

Z → μμ 3.1 ± 0.2 4.0 ± 0.2

Others 0.62 ± 0.02 0.82 ± 0.03

charge correlated. This uncertainty component includes the
effects from the choice of the discriminating variable and the
definition of the fitting regions. Another component arises
from the effect of the cross-section uncertainty on the sig-
nal simulation contribution in the fitting regions (±5%). The
fit is repeated varying this and the deviation from the nom-
inal normalisation is taken as an uncertainty, which is again
treated as being charge and bin-to-bin correlated. The fit also
has a statistical uncertainty, which is treated as being uncor-
related between charges and bins. This is largely due to the
limited number of data events for the multijet templates pass-
ing the signal selection in each muon-isolation slice. The size
of the multijet systematic uncertainty is reported in Sect. 4.
The above procedure is performed separately in each bin
of muon pseudorapidity. A summary of the most important
backgrounds including systematic uncertainties is given in
Table 1.

Figure 1 shows the muon η, muon pT, and W transverse
mass distributions of selected events with positive muons
(left) and with negative muons (right). The data are com-
pared with the sum of MC and data-based estimates for the
signal and the backgrounds. The predictions are normalised
to the luminosity of the data, after first normalising each
MC cross-section to a corresponding higher-order predic-
tion. A normalisation shift between data and MC simula-
tions of approximately 1% is observed for the positive muon
plots. This is covered by the uncertainty in the MC signal
prediction due to the cross-section uncertainty. Otherwise,
the combined prediction describes the data well and within
the uncertainties.

3.5 Obtaining the fiducial cross-sections

The fiducial W± differential cross-sections in bin i of pseu-
dorapidity (dσWμ± /dημ)i are obtained from

(dσWμ±

dημ

)

i
= Ndata,i − Nbkg,i

�ηi · CW±,i · ∫ Ldt
,

123



Eur. Phys. J. C (2019) 79 :760 Page 5 of 25 760

μ
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

nt
s 

/ Δ
η

2

4

6

8

10

12

14

16

18

20

22

610×

Data multi-jet

νμ→W ντ→W

μμ→Z Other

ATLAS
-1 = 8 TeV, 20.2 fbs

+μ

μ
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

4

6

8

10

12

14

16

610×

Data multi-jet

νμ→W ντ→W

μμ→Z Other

ATLAS
-1 = 8 TeV, 20.2 fbs

−μ

 [GeV]
μT,

p
30 40 50 60 70 80

E
ve

nt
s 

/ G
eV

1000

2000

3000

4000

5000
310×

Data multi-jet

νμ→W ντ→W

μμ→Z Other

ATLAS
-1 = 8 TeV, 20.2 fbs

+μ

 [GeV]
μT,

p
30 40 50 60 70 80

E
ve

nt
s 

/ G
eV

500

1000

1500

2000

2500

3000

3500
310×

Data multi-jet

νμ→W ντ→W

μμ→Z Other

ATLAS
-1 = 8 TeV, 20.2 fbs

−μ

 [GeV]T, Wm
40 50 60 70 80 90 100 110 120

E
ve

nt
s 

/ G
eV

500

1000

1500

2000

2500

310×

Data multi-jet

νμ→W ντ→W

μμ→Z Other

ATLAS
-1 = 8 TeV, 20.2 fbs

+μ

 [GeV]T, Wm
40 50 60 70 80 90 100 110 120

E
ve

nt
s 

/ G
eV

200

400

600

800

1000

1200

1400

1600

1800

310×

Data multi-jet

νμ→W ντ→W

μμ→Z Other

ATLAS
-1 = 8 TeV, 20.2 fbs

−μ

E
ve

nt
s 

/ Δ
η

Fig. 1 The muon η (top), muon pT (centre), and W boson transverse mass (bottom) distributions of selected events with positive muons (left) and
negative muons (right). The statistical uncertainties of the data points are smaller than the size of the markers

where Ndata,i is the number of selected candidate events in
data, Nbkg,i is the number of background events estimated
using the methods described in Sect. 3.4, �ηi is the width

of bin i , and
∫ Ldt is the integrated luminosity. The results

are provided as a function of absolute pseudorapidity, where
�|ηi | = 2 · �ηi . The term CW±,i is a factor (different for
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Table 2 The CW±,i values with their associated systematic uncertain-
ties as a function of |ημ| and the integrated global correction factor
CW± , each for W+ and W−

|ημ| W+ → μ+ν W+ → μ+ν

0.00–0.21 0.508 ± 0.004 0.505 ± 0.004

0.21–0.42 0.684 ± 0.004 0.679 ± 0.004

0.42–0.63 0.702 ± 0.005 0.702 ± 0.005

0.63–0.84 0.611 ± 0.004 0.613 ± 0.005

0.84–1.05 0.603 ± 0.004 0.601 ± 0.005

1.05–1.37 0.795 ± 0.006 0.796 ± 0.007

1.37–1.52 0.848 ± 0.008 0.845 ± 0.007

1.52–1.74 0.861 ± 0.009 0.856 ± 0.007

1.74–1.95 0.856 ± 0.009 0.855 ± 0.008

1.95–2.18 0.792 ± 0.008 0.794 ± 0.009

2.18–2.40 0.802 ± 0.008 0.812 ± 0.011

Integrated 0.736 ± 0.003 0.727 ± 0.003

positive and negative channels) which corrects for the vari-
ous detector inefficiencies and resolution effects. This is esti-
mated using W → μν signal MC simulations and defined
for each bin i as the number of reconstructed events satisfy-
ing the same selection criteria as data divided by the number
of generated events in the fiducial phase space. The charge
asymmetry is then evaluated in each absolute pseudorapidity
bin using Eq. (1). A bin-by-bin correction method is used as
the purity of each bin is 99% or larger, where the bin purity
is defined as the ratio of events generated and reconstructed
in a certain bin to all events reconstructed in that bin (where
all events are in the generator-level fiducial phase space).

The integrated fiducial cross-sections (σWμ± ) are obtained
using one global correction factor,CW± , (i.e. the total number
of reconstructed events satisfying the same selection criteria
as data divided by the total number of generated events in the
integrated fiducial phase space). The values are also obtained
by summing the differential cross-sections as a function of

|ημ|, and the results are consistent. Table 2 lists theCW±,i val-
ues with their associated systematic uncertainties as a func-
tion of |ημ| and gives the integrated global correction factor
CW± , each for W+ and W−.

4 Systematic uncertainties

This section describes the sources of systematic uncertainty
considered for the cross-section and the asymmetry measure-
ments. The size of these uncertainties as a function of |ημ| is
provided in Figs. 2 and 3. The data statistical uncertainties are
also shown and are small compared with the total systematic
uncertainty. Table 3 lists the W+ → μ+ν and W− → μ−ν̄

cross-sections and the asymmetry as a function of the abso-
lute pseudorapidity of the muon, along with the data sta-
tistical uncertainties and dominant systematic uncertainties.
Most sources of systematic uncertainty, described below, are
treated as being correlated between the positive and negative
muon channels unless otherwise noted, and therefore their
relative impact is reduced for the asymmetry measurement.

Experimental sources of uncertainty are possible mis-
modelling of the muon momentum scale, resolution, or
charge-dependent sagitta bias as well as of the reconstruc-
tion, trigger, and isolation efficiencies. Such uncertainties
form a small but non-negligible fraction of the total uncer-
tainty, 0.5% or less of the differential cross-section. A test
is performed to check the compatibility of the cross-sections
measured separately in positive and negative muon pseudo-
rapidity; this is an important cross-check of the correction
procedure as the detector is not forward-backward symmet-
ric with respect to the trajectory of a charged particle. A
further small uncertainty (up to 0.4% depending on the |ημ|
bin) is added to cover the small differences observed. This
uncertainty is treated as being uncorrelated between charges
and propagated to the asymmetry measurement. The above
uncertainties are combined in the column labelled ‘Muon

Fig. 2 The relative systematic
uncertainty from each source for
the W+ (left) and W− (right)
differential cross-sections as a
percentage of the differential
cross-section. Also shown are
the total systematic and
statistical uncertainties
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Fig. 3 The systematic uncertainty from each source for the W boson
charge asymmetry as an absolute difference from the central value. Also
shown are the total systematic and statistical uncertainties

Reconstruction’ in Table 3. Additional sources of uncertainty
are the mis-modelling of the pile-up event activity and of the
primary vertex longitudinal position, both of which are small.

Uncertainties from the mis-modelling of the missing trans-
verse momentum also contribute substantially to the total
systematic uncertainty in the cross-section, although they
are reduced for the asymmetry measurements. These include
mis-modelling in the jet energy scale and resolution, as well
as of the momentum balance between the soft term and the
total transverse momentum of the hard objects in Z → μμ

calibration events [57]. The muon-related uncertainties in the
missing transverse momentum are treated as being fully cor-
related with those of the signal muon and are part of the muon
systematic uncertainties. The sum of all soft-term uncertain-
ties is the largest or second largest contributor (depending on
the |ημ| bin) to the total uncertainty in the differential cross-
sections but is significantly less important for the asymmetry
measurement. The hard-term uncertainties are small for both
the cross-section and asymmetry measurements. The soft-
term and hard-term uncertainties are assumed to be uncorre-
lated with each other.

Uncertainties due to the mis-modelling of the background
processes are also considered. For the backgrounds modelled
with MC simulations, these are estimated by varying their
normalisation within theoretical uncertainties and observing
the effect on the final measurements. The cross-section uncer-
tainty for the Z → μμ process and the W → τν process is
5% [59]. The cross-section uncertainty for t t̄ production is
6% [45–51], and for single top production 7% [52–54]. The
cross-section uncertainty for diboson production is 5% for
WW and Z Z production and 7% for WZ production [55].

As mentioned in Sect. 3.4, there are three components of
the uncertainty in the multijet background normalisation. The

two correlated uncertainties are larger for the cross-section
measurements (totalling around 0.5%), whilst the effect of
the statistical component is larger for the asymmetry mea-
surement.

The statistical uncertainty due to the limited number of
MC events for the other backgrounds and for the signal pro-
cess is small for the cross-section measurement (less than
0.2%) but becomes significant for the asymmetry measure-
ment (around one third of the total uncertainty), as it is com-
pletely uncorrelated between positive and negative channels.

Theoretical sources of uncertainty arise from the choice
of PDF interfaced to the Powheg+Pythia8 signal MC sim-
ulations (the CT10 PDF set). This uncertainty is estimated
by reweighting the Powheg+Pythia8 events to the nominal
values of the CT14 [1] and MSTW2008nlo68cl [44] PDF
sets using the LHAPDF interface [60], taking the difference
to the nominal values and adding in quadrature. The PDF
uncertainty is small for both the fiducial cross-section and
asymmetry measurements.

The alternative Sherpa signal sample is used to esti-
mate an uncertainty from Powheg+Pythia8 related to the
modelling of the matrix elements that impact kinematics,
as well as the underlying event activity and hadronisa-
tion (which affects the Emiss

T measurement). The difference
between the dressed-level CW values obtained using the
Powheg+Pythia8 and Sherpa simulations is statistically
significant and assigned as a systematic uncertainty. This
is labelled as ‘Modelling’ in Table 3. The dressed-level is
defined by combining the four-momentum of each muon
after photon FSR with that of photons radiated within a cone
defined by �R = 0.1 around the muon. This is one of the
largest systematic uncertainties for both the cross-section (up
to 1% at large |ημ|) and the asymmetry measurements. The
uncertainty in the luminosity is 1.9% [18]. For the asymme-
try, the uncertainty in the luminosity only affects the asym-
metry measurement through negligible effects in the back-
ground estimation, and it is therefore considered fully corre-
lated between the W+ and W− samples.

5 Theoretical predictions

The W+ and W− integrated and differential cross-sections
and the W boson charge asymmetry are compared with
theoretical predictions from an optimised version of the
DYNNLO generator [19], which simulates initial-state QCD
corrections to NNLO accuracy at leading order in the
electroweak couplings with parameters set according to
the Gμ scheme [61]. The input parameters (the Fermi
constant GF, the masses and widths of the W and Z
bosons, and the CKM matrix elements) are taken from
Ref. [62]. The DYNNLO predictions are calculated with the
PDF sets from CT14 NNLO [1], ATLASepWZ2016 [2],
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Table 3 Cross-sections
(differential in ημ) and
asymmetry, as a function of
|ημ|. The central values are
provided along with the
statistical and dominant
systematic uncertainties: the
data statistical uncertainty (Data
Stat.), the Emiss

T uncertainty, the
uncertainties related to muon
reconstruction (Muon Reco.),
those related to the background,
those from MC statistics (MC
Stat.), and modelling
uncertainties. The uncertainties
of the cross-sections are given in
percent and those of the
asymmetry as an absolute
difference from the nominal

|ημ| Data stat. Emiss
T Muon reco. Background MC stat. Modelling

dσWμ+ /dημ [pb]

0.00–0.21 630.3 0.06 0.45 0.40 0.48 0.17 0.67

0.21–0.42 635.2 0.05 0.48 0.21 0.42 0.13 0.40

0.42–0.63 641.6 0.05 0.48 0.45 0.40 0.13 0.31

0.63–0.84 638.1 0.06 0.52 0.23 0.44 0.14 0.31

0.84–1.05 642.8 0.06 0.60 0.32 0.42 0.14 0.37

1.05–1.37 654.7 0.04 0.56 0.34 0.39 0.09 0.57

1.37–1.52 661.0 0.06 0.56 0.22 0.42 0.12 0.86

1.52–1.74 662.3 0.05 0.62 0.27 0.40 0.10 0.97

1.74–1.95 661.8 0.05 0.61 0.43 0.39 0.10 0.85

1.95–2.18 657.5 0.05 0.54 0.48 0.43 0.10 0.76

2.18–2.40 641.5 0.05 0.48 0.42 0.41 0.10 0.88

dσWμ− /dημ [pb]

0.00–0.21 493.7 0.07 0.41 0.40 0.49 0.18 0.47

0.21–0.42 489.6 0.06 0.43 0.20 0.44 0.14 0.47

0.42–0.63 485.8 0.06 0.49 0.45 0.43 0.14 0.48

0.63–0.84 474.3 0.07 0.57 0.23 0.46 0.16 0.55

0.84–1.05 465.0 0.07 0.56 0.31 0.42 0.16 0.67

1.05–1.37 455.7 0.05 0.62 0.34 0.43 0.10 0.73

1.37–1.52 439.7 0.07 0.63 0.23 0.47 0.14 0.68

1.52–1.74 427.3 0.06 0.61 0.28 0.55 0.12 0.65

1.74–1.95 410.2 0.06 0.68 0.44 0.58 0.12 0.74

1.95–2.18 389.1 0.06 0.67 0.49 0.51 0.13 0.95

2.18–2.40 368.3 0.07 0.65 0.40 0.58 0.13 1.21

Aμ

0.00–0.21 0.1215 0.0005 0.0004 0.0007 0.0012 0.0012 0.0010

0.21–0.42 0.1294 0.0004 0.0004 0.0003 0.0008 0.0010 0.0003

0.42–0.63 0.1383 0.0004 0.0002 0.0027 0.0008 0.0009 0.0008

0.63–0.84 0.1473 0.0004 0.0004 0.0005 0.0009 0.0010 0.0012

0.84–1.05 0.1605 0.0004 0.0007 0.0016 0.0009 0.0011 0.0015

1.05–1.37 0.1792 0.0003 0.0004 0.0017 0.0009 0.0007 0.0008

1.37–1.52 0.2011 0.0004 0.0008 0.0005 0.0009 0.0009 0.0008

1.52–1.74 0.2156 0.0004 0.0006 0.0012 0.0015 0.0007 0.0015

1.74–1.95 0.2347 0.0004 0.0007 0.0023 0.0015 0.0007 0.0005

1.95–2.18 0.2565 0.0004 0.0008 0.0026 0.0010 0.0008 0.0009

2.18–2.40 0.2706 0.0004 0.0010 0.0005 0.0014 0.0008 0.0015

HERAPDF2.0 [3], NNPDF3.1 [4], PDF4LHC15 [5] and
MMHT2014 NNLO [6]. The renormalisation and factorisa-
tion scales are set equal to the invariant mass of the muon–
neutrino pair.

Uncertainties in the DYNNLO prediction due the choice
of scales are evaluated by varying the factorisation and renor-
malisation scales independently by factors of 0.5 and 2 from
their nominal values. The uncertainty on the CT14 NNLO
prediction is evaluated using the corresponding PDF error
sets.

6 Results

The measured integrated fiducial cross-sections multiplied
by the branching fraction for the decay into a muon and a
neutrino are listed in Table 4, along with the associated uncer-
tainties which are dominated by the 1.9% uncertainty in the
luminosity. Also provided is the sum of the W+ → μ+ν

and W− → μ−ν̄ integrated cross-sections and their ratio,
the total uncertainties on which are 2.1% and 0.3% respec-
tively. The data are compared with the NNLO predictions
from DYNNLO, the total uncertainties on which are dom-
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Table 4 The measured fiducial
production cross-sections times
branching ratio for W+ → μ+ν

and W− → μ−ν̄, their sum, and
their ratio for both data and the
predictions from DYNNLO
(CT14 NNLO PDF set)

Data

σ (W+ → μ+ν) [pb] 3110 ± 0.5 (stat.) ± 28 (syst.) ± 59 (lumi.)

σ (W− → μ−ν̄) [pb] 2137 ± 0.4 (stat.) ± 21 (syst.) ± 41 (lumi.)

Sum [pb] 5247 ± 0.6 (stat.) ± 49 (syst.) ± 100 (lumi.)

Ratio 1.4558 ± 0.0004 (stat.) ± 0.0040 (syst.)

DYNNLO (CT14 NNLO PDF set)

σ (W+ → μ+ν) [pb] 3015 ± 92 (PDF) ± 15 (scale)

σ (W− → μ−ν̄) [pb] 2105 ± 53 (PDF) ± 10 (scale)

Sum [pb] 5120 ± 140 (PDF) ± 23 (scale)

Ratio 1.4320 ± 0.0100 (PDF) ± 0.0007 (scale)
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Fig. 4 The W+ (left) and W− (right) fiducial cross-sections, differ-
ential in muon pseudorapidity multiplied by the branching fraction for
the decay into a muon and a neutrino are shown as a function of the
absolute muon pseudorapidity. The data are presented with systematic
and total uncertainties (the data statistical uncertainties are smaller than
the size of the markers) and are compared with the predictions from

DYNNLO. In the top two plots, the CT14 NNLO PDF set is used, and
DYNNLO is shown with its associated total theoretical uncertainty. In
the bottom two plots, the data are compared with the central values of
six different PDF sets described in the text. The statistical uncertainties
of the DYNNLO predictions are indicated by error bars. The ratios of
the data to the corresponding prediction are shown in the lower panels
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Fig. 5 The W boson charge asymmetry as a function of absolute muon
pseudorapidity. The data are presented with systematic and total uncer-
tainties (the data statistical uncertainties are smaller than the size of
the markers). In the left plot, the data are compared with the predic-
tion from DYNNLO in which the CT14 NNLO PDF set is used. The
DYNNLO prediction is also shown with its associated total theoretical

uncertainty, along with the component from the PDF set. In the right
plot, the data are compared with the central prediction from DYNNLO
produced using a selection of PDFs. The statistical uncertainties of the
DYNNLO predictions are indicated by error bars. The ratios of the data
to the corresponding prediction are shown in the lower panels

inated by the component from the PDF uncertainty. Data
and theory agree well and within the uncertainties, although
the ratio measurements differ by approximately two standard
deviations. The results presented in Table 4 are consistent,
within about one standard deviation, with those measured
using W boson decays in the electron channel in data at a
centre-of-mass energy of 8 TeV [63].

The W+ and W− fiducial cross-sections, differential in
muon pseudorapidity, multiplied by the branching fraction
for the decay into a muon and a neutrino, are shown as a
function of absolute muon pseudorapidity in Fig. 4. These
are presented with systematic and total uncertainties. The
data statistical uncertainties are smaller than the size of the
markers. The cross-section values are detailed in Table 3.
The measured cross-sections are compared with theoretical
predictions obtained using DYNNLO.

In the top plots of Fig. 4, DYNNLO is shown with its
associated total theoretical uncertainty, and from the PDF
uncertainty (evaluated with the CT14 NNLO error sets). The
component from the PDF uncertainty dominates the total and
is shown separately. The data precision is similar to the intrin-
sic theoretical uncertainty from scale variations but is much
higher than the uncertainty from the PDF. Therefore the data
are useful for constraining and evaluating the performance of
different PDF sets. In the bottom plots the data are compared
with the central values of each PDF set described above.
The statistical uncertainties of the DYNNLO predictions are
indicated by error bars.

The measured W boson charge asymmetry as a function
of absolute muon pseudorapidity is presented in Fig. 5. The
values are detailed in Table 3. Again the data are shown with

its total systematic uncertainty. In Fig. 5 (left) the data are
compared with the prediction from DYNNLO in which the
CT14 NNLO PDF set is used. The DYNNLO prediction is
also shown with its associated total theoretical uncertainty,
along with the component from the PDF set, which domi-
nates. In Fig. 5 (right) the data are compared with the central
prediction from the six PDF sets considered. The statistical
uncertainties of the DYNNLO predictions are indicated by
error bars. The ratios of the data to the corresponding pre-
diction are shown in the lower panels. The comparison with
ATLASepWZ2016 and NNPDF3.1 is of particular interest
as both include information from the ATLAS 7 TeV measure-
ment [2], which is expected to be largely uncorrelated with
the current data being presented. It is observed that its cen-
tral value is generally closer to the data than the alternatives,
other than HERAPDF2.0 which performs about as well.

7 Conclusion

Fiducial cross-sections for W+ → μ+ν and W− → μ−ν̄

and the W boson charge asymmetry are measured differ-
entially as a function of the absolute muon pseudorapidity
using 20.2 fb−1 of data from proton–proton collisions at a
centre-of-mass energy of 8 TeV with the ATLAS experiment
at the LHC. The muon and neutrino transverse momenta are
required to be greater than 25 GeV and the W boson trans-
verse mass to be greater than 40 GeV. A precision of 0.8–
1.5% is achieved for the cross-section values, depending on
the pseudorapidity, whilst an uncertainty between 0.002 and
0.003 (in absolute units) is obtained for the asymmetry. The
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integrated fiducial W± production cross-sections are also
determined. The measurements are compared to predictions
at NNLO accuracy in QCD computed with the DYNNLO
program. The precision of the measurement is better than
both the uncertainties on the PDF sets as well as the spread
between different sets, showing the sensitivity of the mea-
surement to discriminate between them and serve as input to
improve the knowledge on the proton structure.
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Abstract The inclusive cross-section for jet production
in association with a Z boson decaying into an electron–
positron pair is measured as a function of the transverse
momentum and the absolute rapidity of jets using 19.9 fb−1

of
√
s = 8 TeV proton–proton collision data collected with

the ATLAS detector at the Large Hadron Collider. The mea-
sured Z + jets cross-section is unfolded to the particle level.
The cross-section is compared with state-of-the-art Stan-
dard Model calculations, including the next-to-leading-order
and next-to-next-to-leading-order perturbative QCD calcu-
lations, corrected for non-perturbative and QED radiation
effects. The results of the measurements cover final-state
jets with transverse momenta up to 1 TeV, and show good
agreement with fixed-order calculations.
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1 Introduction

The measurement of the production cross-section of jets, a
collimated spray of hadrons, in association with a Z boson
(Z + jets), is an important process for testing the predictions
of perturbative quantum chromodynamics (pQCD). It pro-
vides a benchmark for fixed-order calculations and predic-
tions from Monte Carlo (MC) simulations, which are often
used to estimate the Z + jets background in the measure-
ments of Standard Model processes, such as Higgs boson
production, and in searches for new physics beyond the Stan-
dard Model.

Various properties of Z + jets production have been mea-
sured in proton–antiproton collisions at

√
s = 1.96 TeV at

the Tevatron [1–4]. The differential Z + jets cross-section is
measured as functions of the Z boson transverse momentum
and the jets’ transverse momenta and rapidities, and as a func-
tion of the angular separation between the Z boson and jets in
final states with different jet multiplicities. The experiments
at the Large Hadron Collider (LHC) [5] have an increased
phase space compared to previous measurements by using
proton–proton collision data at

√
s = 7, 8 and 13 TeV [6–15].

The measurements at the LHC allow state-of-the-art theoreti-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7321-3&domain=pdf
mailto:atlas.publications@cern.ch


847 Page 2 of 47 Eur. Phys. J. C (2019) 79 :847

cal Z + jets predictions to be tested. These have recently been
calculated to next-to-next-to-leading-order (NNLO) accu-
racy in pQCD [16,17].

This paper studies the double-differential cross-section of
inclusive jet production in association with a Z boson which
decays into an electron–positron pair. The cross-section is
measured as a function of absolute jet rapidity, |yjet|, and

jet transverse momentum, pjet
T , using the proton–proton (pp)

collision data at
√
s = 8 TeV collected by the ATLAS exper-

iment. The measured cross-section is unfolded to the particle
level.

The cross-section calculated at fixed order for Z + jets
production in pp collisions at

√
s = 8 TeV is dominated by

quark–gluon scattering. The Z + jets cross-section is sensi-
tive to the gluon and sea-quark parton distribution functions
(PDFs) in the proton. In the central |yjet| region the Z + jets
cross-section probes the PDFs in the low x range, where x
is the proton momentum fraction, while in the forward |yjet|
region it examines the intermediate and high x values. The
scale of the probe is set by pjet

T .
The measured cross-section is compared with the next-to-

leading-order (NLO) and NNLO Z + jets fixed-order calcu-
lations, corrected for hadronisation and the underlying event.
In addition, the data are compared with the predictions from
multi-leg matrix element (ME) MC event generators supple-
mented with parton shower simulations.

The structure of the paper is as follows. The ATLAS detec-
tor is briefly described in Sect. 2. This is followed by a
description of the data in Sect. 3 and the simulated sam-
ples in Sect. 4. The definition of the object reconstruction,
calibration and identification procedures and a summary of
the selection criteria are given in Sect. 5. The Z + jets back-
grounds are discussed in Sect. 6. The correction of the mea-
sured spectrum to the particle level is described in Sect. 7. The
experimental uncertainties are discussed in Sect. 8. The fixed-
order calculations together with parton-to-particle-level cor-
rections are presented in Sect. 9. Finally, the measured cross-
section is presented and compared with the theory predictions
in Sect. 10. The quantitative comparisons with the fixed-order
pQCD predictions are summarised in Sect. 11.

2 The ATLAS detector

The ATLAS experiment [18] at the LHC is a multipurpose
particle detector with a forward–backward symmetric cylin-
drical geometry and nearly 4π coverage in solid angle.1

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle

It consists of an inner tracking detector surrounded by a
thin superconducting solenoid, electromagnetic and hadronic
calorimeters, and a muon spectrometer incorporating three
large superconducting toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the
range |η| < 2.5. A high-granularity silicon pixel detector
covers the pp interaction region and typically provides three
measurements per track. It is followed by a silicon microstrip
tracker (SCT), which usually provides four two-dimensional
measurement points per track. These silicon detectors are
complemented by a transition radiation tracker (TRT), which
provides electron identification information.

The calorimeter system covers the pseudorapidity range
|η| < 4.9. In the region |η| < 3.2, electromagnetic calorime-
try is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) electromagnetic calorimeters, with
an additional thin LAr presampler covering |η| < 1.8 to
correct for energy loss in material upstream of the calorime-
ters. Hadronic calorimetry is provided by a steel/scintillator-
tile calorimeter, segmented into three barrel structures for
|η| < 1.7, and two copper/LAr hadronic endcap calorime-
ters in the range 1.5 < |η| < 3.2. The calorimetry in the
forward pseudorapidity region, 3.1 < |η| < 4.9, is provided
by the copper-tungsten/LAr calorimeters.

The muon spectrometer surrounds the calorimeters and
contains three large air-core toroidal superconducting mag-
nets with eight coils each. The field integral of the toroids
ranges between 2.0 and 6.0 T m across most of the detec-
tor. The muon spectrometer includes a system of precision
tracking chambers and fast detectors for triggering.

A three-level trigger [19] was used to select events for
offline analysis. The first-level trigger is implemented in
hardware and used a subset of the detector information to
reduce the accepted rate to at most 75 kHz. This was followed
by two software-based trigger levels that together reduced the
average accepted event rate to 400 Hz.

3 Data sample

The data used for this analysis are from proton–proton colli-
sions at

√
s = 8 TeV that were collected by the ATLAS detec-

tor in 2012 during stable beam conditions. Events recorded
when any of the ATLAS subsystems were defective or non-
operational are excluded. Data were selected with a dielec-
tron trigger, which required two reconstructed electron can-
didates with transverse momenta greater than 12 GeV. Only

Footnote 1 continued
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
�R ≡ √

(�η)2 + (�φ)2.
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events with electron energy leakage of less than 1 GeV into
the hadronic calorimeter were accepted. The trigger required
that reconstructed electron candidates were identified using
the ‘loose1’ criteria [20], which are discussed in Sect. 5.1.

The integrated luminosity of the analysis data sample after
the trigger selection is 19.9 fb−1 measured with an uncer-
tainty of ±1.9% [21]. The average number of simultaneous
proton–proton interactions per bunch crossing is 20.7.

In addition, a special data sample was selected for a data-
driven study of multijet and W+ jets backgrounds. For this
purpose, the analysis data sample was enlarged by includ-
ing auxiliary events selected by a logical OR of two single-
electron triggers.

The first single-electron trigger required events with at
least one reconstructed electron candidate with a transverse
momentum greater than 24 GeV and hadronic energy leak-
age less than 1 GeV. The electron candidate satisfied the
‘medium1’ identification criteria [20], a tightened subset of
‘loose1’. The reconstructed electron track was required to be
isolated from other tracks in the event. The isolation require-
ment rejected an event if the scalar sum of reconstructed track
transverse momenta in a cone of size �R = 0.2 around the
electron track exceeded 10% of the electron track’s transverse
momentum.

The second single-electron trigger accepted events with
at least one electron candidate with a transverse momentum
greater than 60 GeV and identified as ‘medium1’. This trig-
ger reduced inefficiencies in events with high-pT electrons
that resulted from the isolation requirement used in the first
trigger.

Events selected by single-electron triggers include a large
number of background events that are normally rejected by
the Z + jets selection requirements, but these events are used
in the data-driven background studies.

4 Monte Carlo simulations

Simulated Z + jets signal events were generated using the
Sherpa v. 1.4 [22] multi-leg matrix element MC generator.
The MEs were calculated at NLO accuracy for the inclusive Z
production process, and additionally with LO accuracy for
up to five partons in the final state, using Amegic++ [23].
Sherpa MEs were convolved with the CT10 [24] PDFs.
Sherpa parton showers were matched to MEs following the
CKKW scheme [25]. The MENLOPS [26] prescription was
used to combine different parton multiplicities from matrix
elements and parton showers. Sherpa predictions were nor-
malised to the inclusive Z boson production cross-section
calculated at NNLO [27–29] and are used for the unfolding
to particle level and for the evaluation of systematic uncer-
tainties.

An additional Z + jets signal sample with up to five par-
tons in the final state at LO was generated using Alp-
gen v. 2.14 [30]. The parton showers were generated using
Pythia v. 6.426 [31] with the Perugia 2011C [32] set of
tuned parameters to model the underlying event’s contribu-
tion. The Alpgen MEs were matched to the parton showers
following the MLM prescription [30]. The proton structure
was described by the CTEQ6L1 [33] PDF. Referred to as the
Alpgen+Pythia sample, these predictions were normalised
to the NNLO cross-section. This sample is used in the analy-
sis for the unfolding uncertainty evaluation and for compar-
isons with the measurement.

The five-flavour scheme with massless quarks was used
in both the Sherpa and Alpgen+Pythia predictions.

Backgrounds from the Z → ττ , diboson (WW , WZ
and Z Z ), t t̄ and single-top-quark events are estimated using
MC simulations. The Z → ττ events were generated
using Powheg- Box v. 1.0 [34,35] interfaced to Pythia v.
8.160 [36] for parton showering using the CT10 PDFs and
the AU2 [37] set of tuned parameters. The Z → ττ pre-
diction was normalised to the NNLO cross-section [27–
29]. The WW , WZ and Z Z events were generated using
Herwig v. 6.520.2 [38] with the CTEQ6L1 PDFs and the
AUET2 [39] set of tuned parameters. The diboson predic-
tions were normalised to the NLO cross-sections [40,41].
Samples of single-top-quark events, produced via the s-,
t- and Wt-channels, and t t̄ events were generated with
Powheg- Box v. 1.0 interfaced to Pythia v. 6.426, which
used the CTEQ6L1 PDFs and the Perugia 2011C set of
tuned parameters. The prediction for single-top-quark pro-
duction in s-channel were normalised to the NNLO cal-
culations matched to the next-to-next-to-leading-logarithm
(NNLL) calculations (NNLO+NNLL) [42], while predic-
tions in t- andWt-channel are normalised to the NLO+NNLL
calculations [43,44]. The t t̄ samples were normalised to the
NNLO+NNLL calculations [45].

The Photos [46] and Tauola [47] programs were interfaced
to the MC generators, excluding Sherpa, to model electro-
magnetic final-state radiation and τ -lepton decays, respec-
tively.

Additional proton–proton interactions, generally called
pile-up, were simulated using the Pythia v. 8.160 gener-
ator with the MSTW2008 [48] PDFs and the A2 [37] set
of tuned parameters. The pile-up events were overlaid onto
the events from the hard-scattering physics processes. MC
simulated events were reweighted to match the distribution
of the average number of interactions per bunch crossing in
data.

All MC predictions were obtained from events processed
with the ATLAS detector simulation [49] that is based on
Geant 4 [50].

123



847 Page 4 of 47 Eur. Phys. J. C (2019) 79 :847

5 Object definitions and event selection

The measured objects are the electrons and jets reconstructed
in ATLAS. The methods used to reconstruct, identify and cal-
ibrate electrons are presented in Sect. 5.1. The reconstruction
of jets, their calibration, and background suppression meth-
ods are discussed in Sect. 5.2. Finally, all selection require-
ments are summarised in Sect. 5.3.

5.1 Electron reconstruction and identification

Electron reconstruction in the central region, |η| < 2.5, starts
from energy deposits in calorimeter cells. A sliding-window
algorithm scans the central volume of the electromagnetic
calorimeter in order to seed three-dimensional clusters. The
window has a size of 3 × 5 in units of 0.025 × 0.025 in η–
φ space. Seeded cells have an energy sum of the constituent
calorimeter cells greater than 2.5 GeV. An electron candidate
is reconstructed if the cluster is matched to at least one track
assigned to the primary vertex, as measured in the inner detec-
tor. The energy of a reconstructed electron candidate is given
by the energy of a cluster that is enlarged to a size of 3 × 7
(5 × 5) in η–φ space in the central (endcap) electromagnetic
calorimeter in order to take into account the shape of elec-
tromagnetic shower energy deposits in different calorimeter
regions. The η and φ coordinates of a reconstructed electron
candidate are taken from the matched track. The details of
the electron reconstruction are given in Ref. [51].

A multistep calibration is used to correct the electron
energy scale to that of simulated electrons [52]. Cluster ener-
gies in data and in MC simulation are corrected for energy
loss in the material upstream of the electromagnetic calorime-
ter, energy lost outside of the cluster volume and energy
leakage beyond the electromagnetic calorimeter. The recon-
structed electron energy in data is corrected as a function
of electron pseudorapidity using a multiplicative scale factor
obtained from a comparison of Z → ee mass distributions
between data and simulation. In addition, the electron energy
in the MC simulation is scaled by a random number taken
from a Gaussian distribution with a mean value of one and
an η-dependent width, equal to the difference between the
electron energy resolution in data and MC simulation, deter-
mined in situ using Z → ee events.

A set of cut-based electron identification criteria, which
use cluster shape and track properties, is applied to recon-
structed electrons to suppress the residual backgrounds
from photon conversions, jets misidentified as electrons and
semileptonic heavy-hadron decays. There are three types
of identification criteria, listed in the order of increas-
ing background-rejection strength but diminishing electron
selection efficiency: ‘loose’, ‘medium’ and ‘tight’ [51]. The
‘loose’ criteria identify electrons using a set of thresholds
applied to cluster shape properties measured in the first

and second LAr calorimeter layers, energy leakage into the
hadronic calorimeter, the number of hits in the pixel and
SCT detectors, and the angular distance between the cluster
position in the first LAr calorimeter layer and the extrapo-
lated track. The ‘medium’ selection tightens ‘loose’ require-
ments on shower shape variables. In addition, the ‘medium’
selection sets conditions on the energy deposited in the third
calorimeter layer, track properties in the TRT detector and the
vertex position. The ‘tight’ selection tightens the ‘medium’
identification criteria thresholds, sets conditions on the mea-
sured ratio of cluster energy to track momentum and rejects
reconstructed electron candidates matched to photon conver-
sions.

Each MC simulated event is reweighted by scale factors
that make the trigger, reconstruction and identification effi-
ciencies the same in data and MC simulation. The scale fac-
tors are generally close to one and are calculated in bins of
electron transverse momenta and pseudorapidity [20,51].

5.2 Jet reconstruction, pile-up suppression and quality
criteria

Jets are reconstructed using the anti-kt algorithm [53] with
a radius parameter R = 0.4, as implemented in the Fast-
Jet software package [54]. Jet reconstruction uses topo-
logically clustered cells from both the electromagnetic
and hadronic calorimeters [55]. The topological clustering
algorithm groups cells with statistically significant energy
deposits as a method to suppress noise. The energy scale of
calorimeter cells is initially established for electromagnetic
particles. The local cell weighting (LCW) [56] calibration
is applied to topological clusters to correct for the differ-
ence between the detector responses to electromagnetic and
hadronic particles, energy losses in inactive material and out-
of-cluster energy deposits. The LCW corrections are derived
using the MC simulation of the detector response to single
pions.

The jet energy scale (JES) calibration [57] corrects the
energy scale of reconstructed jets to that of simulated
particle-level jets. The JES calibration includes origin cor-
rection, pile-up correction, MC-based correction of the jet
energy and pseudorapidity (MCJES), global sequential cali-
bration (GSC) and residual in situ calibration.

The origin correction forces the four-momentum of the jet
to point to the hard-scatter primary vertex rather than to the
centre of the detector, while keeping the jet energy constant.

Pile-up contributions to the measured jet energies are
accounted for by using a two-step procedure. First, the recon-
structed jet energy is corrected for the effect of pile-up by
using the average energy density in the event and the area of
the jet [58]. Second, a residual correction is applied to remove
the remaining dependence of the jet energy on the number of
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reconstructed primary vertices, NPV, and the expected aver-
age number of interactions per bunch crossing, 〈μ〉.

The MCJES corrects the reconstructed jet energy to the
particle-level jet energy using MC simulation. In addition, a
correction is applied to the reconstructed jet pseudorapidity
to account for the biases caused by the transition between dif-
ferent calorimeter regions and the differences in calorimeter
granularity.

Next, the GSC corrects the jet four-momenta to reduce
the response’s dependence on the flavour of the parton that
initiates the jet. The GSC is determined using the number of
tracks assigned to a jet, the pT-weighted transverse distance
in the η–φ space between the jet axis and all tracks assigned to
the jet (track width), and the number of muon track segments
assigned to the jet.

Finally, the residual in situ correction makes the jet
response the same in data and MC simulation as a func-
tion of detector pseudorapidity by using dijet events (η-
intercalibration), and as a function of jet transverse momen-
tum by using well-calibrated reference objects in Z/γ and
multijet events.

Jets originating from pile-up interactions are suppressed
using the jet vertex fraction (JVF) [58]. The JVF is calculated
for each jet and each primary vertex in the event as a ratio of
the scalar sum of pT of tracks, matched to a jet and assigned
to a given vertex, to the scalar sum of pT of all tracks matched
to a jet.

Applying jet quality criteria suppresses jets from non-
collision backgrounds that arise from proton interactions
with the residual gas in the beam pipe, beam interactions
with the collimator upstream of the ATLAS detector, cosmic
rays overlapping in time with the proton–proton collision
and noise in the calorimeter. Jet quality criteria are used to
distinguish jets by using the information about the quality of
the energy reconstruction in calorimeter cells, the direction of
the shower development and the properties of tracks matched
to jets. There are four sets of selection criteria that establish
jet quality: ‘looser’, ‘loose’, ‘medium’ and ‘tight’. They are
listed in the order of increasing suppression of non-collision
jet background but decreasing jet selection efficiency. The
‘medium’ jet selection is used in the paper due to its high
background rejection rate together with about 100% jet selec-
tion efficiency in the pjet

T > 60 GeV region [57].

5.3 Event selection

Events are required to have a primary vertex with at least three
assigned tracks that have a transverse momentum greater than
400 MeV. When several reconstructed primary vertices sat-
isfy this requirement, the hard-scatter vertex is taken to be
the one with the highest sum of the squares of the transverse
momenta of its assigned tracks.

Each event is required to have exactly two reconstructed
electrons, each with transverse momentum greater than
20 GeV and an absolute pseudorapidity less than 2.47,
excluding the detector transition region, 1.37 < |ηe| < 1.52,
between barrel and endcap electromagnetic calorimeters.
The electrons are required to have opposite charges, be iden-
tified using the ‘medium’ [51] criteria and be matched to
electron candidates that were selected by the trigger. The
‘medium’ identification ensures the electrons originate from
the hard-scatter vertex. The electron-pair invariant mass,mee,
is required to be in the 66 GeV < mee < 116 GeV range.

Jets are required to have a transverse momentum greater
than 25 GeV and an absolute jet rapidity less than 3.4. Jets
with pjet

T < 50 GeV, |ηdet| < 2.4, where ηdet is recon-
structed relative to the detector centre, and |JVF| < 0.25 are
considered to be from pile-up. Jets originating from pile-up
are removed from the measurement. MC simulations poorly
describe the effects of high pile-up in the pjet

T < 50 GeV
and |yjet| > 2.4 region, so this region is not included in
the measurement. Jets reconstructed within �R = 0.4 of
selected electrons are rejected in order to avoid overlap. Jets
are required to satisfy the ‘medium’ [57] quality criteria. In
addition, jets in regions of the detector that are poorly mod-
elled are rejected in data and MC simulations in order to avoid
biasing the measured jet energy [57]. Each jet that meets the
selection requirements is used in the measurement.

As a result, 1,486,415 events with two electrons and at
least one jet were selected for the analysis.

6 Backgrounds

The majority of irreducible backgrounds in this measure-
ment are studied using MC samples that simulate Z → ττ ,
diboson, t t̄ and single top-quark production. The Z → ττ

process is a background if both τ -leptons decay into an elec-
tron and neutrino. Diboson production constitutes a back-
ground to the Z + jets signal if the W and/or Z boson decays
into electrons. Since the top-quark decays predominantly via
t → Wb, the t t̄ and single top-quark constitute a background
to the Z + jets signal when W bosons decay into an electron
or jets are misidentified as electrons.

Multijet production constitutes a background to the
Z + jets signal when two jets are misidentified as electrons.
The W+ jets background is due to an electron from W boson
decay and a jet misidentified as electron. A combined back-
ground from multijet and W+ jets events is studied using a
data-driven technique, thus providing a model-independent
background estimate.

A background-enriched data sample is used for the com-
bined multijet and W+ jets background control region. Its
selection requires two reconstructed electrons with at least
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one electron that satisfies the ‘medium’ identification criteria,
but not the ‘tight’ ones. This allows selection of events with
at least one jet misidentified as an electron. No identification
criteria are applied to the second reconstructed electron, in
order to allow for the possibility ofW+ jets events with a gen-
uine electron from W boson decay, and multijet events with
a jet misidentified as another electron. Both selected elec-
trons are required to have the same charge to suppress the
Z + jets signal events. The combined multijet and W+ jets
background template is constructed by subtracting the MC
simulated Z + jets signal events and Z → ττ , diboson, t t̄
and single-top-quark background events in the control region
from data.

The purity of the template is calculated as the fraction of
multijet and W+ jets events in the data control region. The
purity is about 98% in the tails of the mee distribution and is
about 80% near the mee peak at 91 GeV. The template purity
is above 90% in all |yjet| and pjet

T bins.
The combined multijet and W+ jets background template

is normalised to data using the invariant mass distribution
of reconstructed electron pairs. A maximum-likelihood fit
is used to adjust the normalisation of the combined multijet
and W+ jets background template relative to the measured
Z + jets distribution. The normalisations of MC simulated
samples are fixed in the fit: the Z → ττ , diboson, t t̄ and
single-top-quark distributions are normalised by their fixed-
order cross-sections, whereas the normalisation of the MC
simulated Z + jets signal events is scaled to data to give the
same total number of events near the peak of the Z mass spec-
trum in the 90 GeV < mee < 92 GeV range. The combined
multijet and W+ jets background is fit to data in an extended
mee region, 60 GeV < mee < 140 GeV, excluding the bins
under the Z peak within the 80 GeV < mee < 100 GeV
region. The extended mee region is used for the normalisa-
tion extraction only, as it allows more background events in
the tails of the Z mass spectrum. The normalisation of the
multijet and W+ jets background template, calculated in the
fit, is used to adjust the templates, obtained in the |yjet| and

pjet
T bins, to the Z + jets signal region.

The total number of jets in Z + jets events are shown as a
function of |yjet| and pjet

T bins in Fig. 1. Data are compared
with the sum of signal MC events and all backgrounds.

The Sherpa Z + jets simulation, normalised to the NNLO
cross-section, is lower than data by about 10% in the pjet

T <

200 GeV region. These differences are mostly covered by the
variations within electron and jet uncertainties introduced
in Sect. 8. In the pjet

T > 200 GeV region, agreement with
data is within the statistical uncertainties.

The Alpgen+Pythia predictions are in agreement with
data within 10% for jets with transverse momenta below
100 GeV. However, the level of disagreement increases as

a function of the jet transverse momenta, reaching 30% in
the 400 GeV < pjet

T < 1050 GeV region.
The dominant background in the measurement is from

t t̄ events. It is 0.3–0.8% in the 25 GeV < pjet
T < 50 GeV

region and 1–2.5% in the 50 GeV < pjet
T < 100 GeV region,

with the largest contribution in the central rapidity region. In
the 100 GeV < pjet

T < 200 GeV region, this background is

approximately 3%, while in the 200 GeV < pjet
T < 1050 GeV

region it is 1.8–8%, increasing for forward rapidity jets.
The combined multijet and W+ jets background and the

diboson background are similar in size. The contributions of
these backgrounds are 0.5–1%.

The Z → ττ and single-top-quark backgrounds are below
0.1%.

7 Unfolding of detector effects

The experimental measurements are affected by the detector
resolution and reconstruction inefficiencies. In order to com-
pare the measured cross-sections with the theoretical Z + jets
predictions at the particle level, the reconstructed spectrum
is corrected for detector effects using the iterative Bayesian
unfolding method [59]. The unfolding is performed using the
Sherpa Z + jets simulation.

The particle-level phase space in the MC simulation is
defined using two dressed electrons and at least one jet. For
the dressed electron, the four-momenta of any photons within
a cone of �R = 0.1 around its axis are added to the four-
momentum of the electron. Electrons are required to have
|η| < 2.47 and pT > 20 GeV. The electron pair’s invariant
mass is required to be within the range 66 GeV < mee <

116 GeV.
Jets at the particle level are built by using the anti-kt jet

algorithm with a radius parameter R = 0.4 to cluster stable
final-state particles with a decay length of cτ > 10 mm,
excluding muons and neutrinos. Jets are selected in the
|yjet| < 3.4 and pjet

T > 25 GeV region. Jets within �R = 0.4
of electrons are rejected.

The closest reconstructed and particle-level jets are con-
sidered matched if �R between their axes satisfies �R <

0.4.
The input for the unfolding is the transfer matrix, which

maps reconstructed jets to the particle-level jets in the |yjet|–
pjet

T plane, taking into account the bin-to-bin migrations that

arise from limited detector resolution. An additional pjet
T bin,

17 GeV < pjet
T < 25 GeV, is included in the reconstructed

and particle-level jet spectra to account for the migrations
from the low pjet

T range. This bin is not reported in the mea-
surement.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 The total number of jets in Z + jets events as a function of |yjet|
in pjet

T bins for the integrated luminosity of 19.9 fb−1. Data are presented
with markers. The filled areas correspond to the backgrounds stacked.
All backgrounds are added to the Z + jetsSherpa andAlpgen+Pythia

predictions. Lower panels show ratios of MC predictions to data. The
grey band shows the sum in quadrature of the electron and jet uncer-
tainties. The statistical uncertainties are shown with vertical error bars.
In the lower panels the total data + MC statistical uncertainty is shown
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Given the significant amount of migration between jet
transverse momentum bins, the unfolding is performed in all
|yjet| and pjet

T bins simultaneously. The migration between
adjacent |yjet| bins is found to be small.

The transfer matrix is defined for matched jets. There-
fore, the reconstructed jet spectrum must be corrected to
account for matching efficiencies prior to unfolding. The
reconstruction-level matching efficiency is calculated as the
fraction of reconstructed jets matching particle-level jets.
This efficiency is 80–90% in the 25 GeV < pjet

T < 100 GeV

region and is above 99% in the pjet
T > 100 GeV region. The

particle-level jet matching efficiency is calculated as the frac-
tion of particle-level jets matching reconstructed jets. This
efficiency is 45–55% in all bins of the measurement due to
the inefficiency of the Z boson reconstruction.

The backgrounds are subtracted from data prior to unfold-
ing. The unfolded number of jets in data, NP

i , in each bin i
of the measurement is obtained as

NP
i = 1

EP
i

∑

j

Ui jER
j N

R
j , (1)

where NR
j is the number of jets reconstructed in bin j after

the background subtraction, Ui j is an element of the unfold-
ing matrix, and ER

j and EP
i are the reconstruction-level and

particle-level jet matching efficiencies, respectively.
The transfer matrix and the matching efficiencies are

improved using three unfolding iterations to reduce the
impact of the particle-level jet spectra mis-modelling on the
unfolded data.

8 Experimental uncertainties

8.1 Electron uncertainties

The electron energy scale has associated statistical uncertain-
ties and systematic uncertainties arising from a possible bias
in the calibration method, the choice of generator, the pre-
sampler energy scale, and imperfect knowledge of the mate-
rial in front of the EM calorimeter. The total energy-scale
uncertainty is calculated as the sum in quadrature of these
components. It is varied by ±1σ in order to propagate the
electron energy scale uncertainty into the measured Z + jets
cross-sections.

The electron energy resolution has uncertainties associ-
ated to the extraction of the resolution difference between
data and simulation using Z → ee events, to the knowledge
of the sampling term of the calorimeter energy resolution and
to the pile-up noise modelling. These uncertainties are evalu-
ated in situ using the Z → ee events, and the total uncertainty
is calculated as the sum in quadrature of the different uncer-

tainties. The scale factor for electron energy resolution in MC
simulation is varied by ±1σ in the total uncertainty in order
to propagate this uncertainty into the Z + jets cross-section
measurements.

The uncertainties in calculations of the electron trigger,
reconstruction and identification efficiencies are propagated
into the measurements by ±1σ variations of the scale factors,
used to reweight the MC simulated events, within the total
uncertainty of each efficiency [20,51].

For each systematic variation a new transfer matrix and
new matching efficiencies are calculated, and data unfold-
ing is performed. The deviation from the nominal unfolded
result is assigned as the systematic uncertainty in the mea-
surements.

8.2 Jet uncertainties

The uncertainty in the jet energy measurement is described
by 65 uncertainty components [57]. Of these, 56 JES uncer-
tainty components are related to detector description, physics
modelling and sample sizes of the Z/γ and multijet MC sam-
ples used for JES in situ measurements. The single-hadron
response studies are used to describe the JES uncertainty in
high-pT jet regions, where the in situ studies have few events.
The MC non-closure uncertainty takes into account the dif-
ferences in the jet response due to different shower mod-
els used in MC generators. Four uncertainty components are
due to the pile-up corrections of the jet kinematics, and take
into account mis-modelling of NPV and 〈μ〉 distributions, the
average energy density and the residual pT dependence of the
NPV and 〈μ〉 terms. Two flavour-based uncertainties take into
account the difference between the calorimeter responses to
the quark- and gluon-initiated jets. One uncertainty compo-
nent describes the correction for the energy leakage beyond
the calorimeter (‘punch-through’ effect). All JES uncertain-
ties are treated as bin-to-bin correlated and independent of
each other.

A reduced set of uncertainties, which combines the uncer-
tainties of the in situ methods into six components with a
small loss of correlation information, is used in this measure-
ment. The JES uncertainties are propagated into the measure-
ments in the same way as done for electron uncertainties.

The uncertainty that accounts for the difference in JVF
requirement efficiency between data and MC simulation
is evaluated by varying the nominal JVF requirement in
MC simulation to represent a few percent change in effi-
ciency [60]. The unfolding transfer matrix and the matching
efficiencies are re-derived, and the results of varying the JVF
requirement are propagated to the unfolded data. The devi-
ations from the nominal results are used as the systematic
uncertainty.

Pile-up jets are effectively suppressed by the selection
requirements. The jet yields in events with low 〈μ〉 and
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high 〈μ〉 are compared with the jet yields in events without
any requirements on 〈μ〉. These jet yields agree with each
other within the statistical uncertainties. The same result is
achieved by comparing the jet yields in events that have low
or high numbers of reconstructed primary vertices with the
jet yields in events from the nominal selection. Consequently,
no additional pile-up uncertainty is introduced.

The jet energy resolution (JER) uncertainty accounts for
the mis-modelling of the detector jet energy resolution by
the MC simulation. To evaluate the JER uncertainty in the
measured Z + jets cross-sections, the energy of each jet in
MC simulation is smeared by a random number taken from
a Gaussian distribution with a mean value of one and a
width equal to the quadratic difference between the varied
resolution and the nominal resolution [61]. The smearing is
repeated 100 times and then averaged. The transfer matrix
determined from the averaged smearing is used for unfolding.
The result is compared with the nominal measurement and
the symmetrised difference is used as the JER uncertainty.

The uncertainty that accounts for the mis-modelling of the
‘medium’ jet quality criteria is evaluated using jets, selected
with the ‘loose’ and ‘tight’ criteria. The data-to-MC ratios
of the reconstructed Z + jets distributions, obtained with dif-
ferent jet quality criteria, is compared with the nominal. An
uncertainty of 1%, which takes the observed differences into
account, is assigned to the measured Z + jets cross-section
in all bins of |yjet| and pjet

T .

8.3 Background uncertainties

The uncertainties in each background estimation are propa-
gated to the measured Z + jets cross-sections.

The data contamination by the Z → ττ , diboson, t t̄ and
single-top-quark backgrounds is estimated using simulated
spectra scaled to the corresponding total cross-sections. Each
of these background cross-sections has an uncertainty. The
normalisation of each background is independently varied
up and down by its uncertainty and propagated to the final
result. The MC simulation of the dominant t t̄ background
describes the shapes of the jet pjet

T and yjet distributions in
data to within a few percent [62], such that possible shape
mis-modellings of the jet kinematics in t t̄ events are covered
by the uncertainty in the total t t̄ cross-section. The shape
mis-modellings in other backgrounds have negligible effect
on the final results. Therefore, no dedicated uncertainties due
to the background shape mis-modelling are assigned.

The uncertainties in the combined multijet and W+ jets
background arise from assumptions about the template shape
and normalisation. The shape of the template depends on the
control region selection and the control region contamina-
tions by the other backgrounds. The template normalisation
depends on the mee range, used to fit the template to the mea-

sured Z + jets events, due to different amounts of background
contamination in the tails of the mee distribution.

To evaluate the template shape uncertainty due to the con-
trol region selection, a different set of electron identification
criteria is used to derive a modified template. The selection
requires two reconstructed electrons with at least one elec-
tron that satisfies the ‘loose’ identification criteria, but not
the ‘medium’ ones. The difference between the nominal and
modified templates is used to create a symmetric template
to provide up and down variations of this systematic uncer-
tainty.

To estimate the template shape uncertainty due to the con-
trol region contaminations by the other backgrounds, the
Z → ττ , diboson, t t̄ and single-top-quark cross-sections
are varied within their uncertainties. The dominant change
in the template shape is due to t t̄ cross-section variation,
while the contributions from the variation of the other back-
ground cross-sections are small. The templates varied within
the t t̄ cross-section uncertainties are used to propagate this
uncertainty into the measurement.

The uncertainty in the multijet and W+ jets background
template normalisation to the measured Z + jets events is
evaluated by fitting the template in the 66 GeV < mee <

140 GeV and 60 GeV < mee < 116 GeV regions, excluding
the bins under the Z boson peak within the 80 GeV < mee <

100 GeV region, and in the 60 GeV < mee < 140 GeV
region, excluding the bins within the 70 GeV < mee <

110 GeV. As a result, the normalisation varies up and down
depending on the number of background events in both tails
of themee distribution. The templates with the largest change
in the normalisation are used to propagate this uncertainty
into the measurement.

The data unfolding is repeated for each systematic varia-
tion of the backgrounds. The differences relative to the nom-
inal Z + jets cross-section are used as the systematic uncer-
tainties.

8.4 Unfolding uncertainty

The accuracy of the unfolding procedure depends on the qual-
ity of the description of the measured spectrum in the MC
simulation used to build the unfolding matrix. Two effects
are considered in order to estimate the influence of MC mod-
elling on the unfolding results: the shape of the particle-level
spectrum and the parton shower description.

The impact of the particle-level shape mis-modelling on
the unfolding is estimated using a data-driven closure test. For
this test, the particle-level (|yjet|, pjet

T ) distribution in Sherpa
is reweighted using the transfer matrix, such that the shape
of the matched reconstructed (|yjet|, pjet

T ) distribution agrees
with the measured spectrum corrected for the matching effi-
ciency. The reweighted reconstructed (|yjet|, pjet

T ) distribu-
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tions are then unfolded using the nominal Sherpa trans-
fer matrix. The results are compared with the reweighted
particle-level (|yjet|, pjet

T ) spectrum and the relative differ-
ences are assigned as the uncertainty.

The impact of the differences in the parton shower
description between Sherpa and Alpgen+Pythia on the
unfolding results is estimated using the following test.
The Alpgen+Pythia particle-level (|yjet|, pjet

T ) spectrum is
reweighted using the Alpgen+Pythia transfer matrix, such
that its reconstruction-level distribution agrees with the one
in Sherpa. The original reconstructed (|yjet|, pjet

T ) distribu-
tion in Sherpa is then unfolded using the reweighted Alp-
gen+Pythia transfer matrix. The results are compared with
the original particle-level (|yjet|, pjet

T ) spectrum in Sherpa
and the differences are assigned as the uncertainty.

Both unfolding uncertainties are symmetrised at the cross-
section level.

8.5 Reduction of statistical fluctuations in systematic
uncertainties

The systematic uncertainties suffer from fluctuations of a
statistical nature.

The statistical components in the electron and jet uncer-
tainties are estimated using toy MC simulations with 100
pseudo-experiments. Each Z + jets event in the systemati-
cally varied configurations is reweighted by a random num-
ber taken from a Poisson distribution with a mean value of
one. As a result, 100 replicas of transfer matrix and match-
ing efficiencies are created for a given systematic uncertainty
variation, and are used to unfold the data. The replicas of
unfolded spectra are then divided by the nominal Z + jets
distributions to create an ensemble of systematic uncertainty
spectra. The statistical component in the systematic uncer-
tainties is calculated as the RMS across all replicas in an
ensemble.

The pseudo-experiments are not performed for the JER
systematic uncertainty. The statistical errors in the JER sys-
tematic uncertainty are calculated, considering the unfolded
data in the nominal and JER varied configurations to be inde-
pendent of each other.

Each component of the unfolding uncertainty is derived
using 100 pseudo-experiments to calculate the statistical
error.

To reduce the statistical fluctuations, the bins are com-
bined iteratively starting from both the right and left sides of
each systematic uncertainty spectrum until their significance
satisfies σ > 1.5. The result with the most bins remaining
is used as the systematic uncertainty. A Gaussian kernel is
then applied to regain the fine binning and smooth out any
additional statistical fluctuations.

If up and down systematic variations within a bin result in
uncertainties with the same sign, then the smaller uncertainty
is set to zero.

8.6 Statistical uncertainties

Statistical uncertainties are derived using toy MC simulations
with 100 pseudo-experiments performed in both data and
MC simulation. The data portion of the statistical uncertainty
is evaluated by unfolding the replicas of the data using the
nominal transfer matrix and matching efficiencies. The MC
portion is calculated using the replicas of the transfer matrix
and matching efficiencies to unfold the nominal data. To cal-
culate the total statistical uncertainty in the measurement,
the Z + jets distributions, obtained from pseudo-experiments
drawn from the data yields, are unfolded using the transfer
matrices and efficiency corrections, calculated using pseudo-
experiments in the MC simulation. The covariance matrices
between bins of the measurement are computed using the
unfolded results. The total statistical uncertainties are calcu-
lated using the diagonal elements of the covariance matrices.

8.7 Summary of experimental uncertainties

The Z + jets cross-section measurement has 39 systematic
uncertainty components. All systematic uncertainties are
treated as being uncorrelated with each other and fully cor-
related among |yjet| and pjet

T bins.
The systematic uncertainties in the electron energy scale,

electron energy resolution, and electron trigger, reconstruc-
tion and identification efficiencies are found to be below 1%.

The JES in situ methods uncertainty is 2–5% in most bins
of the measurement. The η-intercalibration uncertainty is
below 1% in the |yjet| < 1.0 and pjet

T < 200 GeV regions, but
it increases with |yjet|, reaching 6–14% in the most forward
rapidity bins. The η-intercalibration uncertainty is below
1.5% for jets with pjet

T > 200 GeV. The flavour-based JES
uncertainties are below 3%. The pile-up components of the
JES uncertainty are 0.5–1.5%. Other components of the JES
uncertainty are below 0.2%.

The JVF uncertainty is below 1%.
The JER is the dominant source of uncertainty in the

Z + jets cross-section in the 25 GeV < pjet
T < 50 GeV region

with a 3–10% contribution. In the 50 GeV < pjet
T < 100 GeV

region the JER uncertainty is 1–3%, and below 1% for jets
with higher transverse momenta.

The jet quality uncertainty is set constant at 1%, as dis-
cussed in Sect. 8.2.

The unfolding uncertainty due to the shape of the particle-
level spectrum is 2–5% in the first pjet

T bin, 25 GeV < pjet
T <

50 GeV. In the 50 GeV < pjet
T < 200 GeV region, this

uncertainty is about 1.5% for central jets below |yjet| = 2,
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while for forward jets this uncertainty increases to 5%. In the
pjet

T > 200 GeV region, this uncertainty is below 1.5%. The
unfolding uncertainty due to the parton shower description
is 0.7% in the 400 GeV < pjet

T < 1050 GeV region, while
for jets with smaller transverse momenta this uncertainty is
negligible.

The t t̄ background uncertainty is 0.02–0.6% in all bins
of the measurement. The Z → ττ , diboson and single-top-
quark background uncertainties are below 0.05%.

The multijet and W+ jets background uncertainty is 0.1–
1.2% depending on |yjet| and pjet

T . The uncertainty in the
background template normalisation is asymmetric due to dif-
ferent background contributions in the tails of the mee dis-
tribution in the background normalisation evaluation proce-
dure. This uncertainty is +0.1

−0.4% in the low pjet
T bins, increasing

to +0.4
−1.2% in the high pjet

T bins. The uncertainty in the multijet
and W+ jets background control region selection increases
from 0.03% to 0.6% as a function of pjet

T . The contribution
of the t t̄ cross-section variation to the multijet and W+ jets
background uncertainty is below 0.1%.

The statistical uncertainties are 0.5–4% in the pjet
T <

100 GeV region, 2–14% in the 100 GeV < pjet
T < 300 GeV

region, 8–39% in the 300 GeV < pjet
T < 400 GeV region and

11–18% in the last pjet
T bin, 400 GeV < pjet

T < 1050 GeV.
The smallest statistical uncertainty corresponds to central
rapidity regions, while the largest uncertainty corresponds to
forward rapidity regions.

The experimental uncertainties are shown in Fig. 2. The
largest total systematic uncertainty of 7–12% is in the
25 GeV < pjet

T < 50 GeV region, where the uncertainty
increases from central rapidity jets to the forward rapid-
ity jets, and up to 15% for the forward rapidity jets in
the 100 GeV < pjet

T < 200 GeV region. The total sys-

tematic uncertainty decreases with increasing pjet
T . In the

400 GeV < pjet
T < 1050 GeV region the total systematic

uncertainty is 2–5%. The luminosity uncertainty of 1.9% is
not shown and not included in the total uncertainty and its
components.

9 Fixed-order predictions and theoretical uncertainties

9.1 Fixed-order calculations

Theoretical Z + jets predictions at NLO are calculated using
MCFM [40] interfaced to APPLgrid [63] for fast convolution
with PDFs. The renormalisation and factorisation scales, μR

and μF, are set to

μR = μF =
√
m2

ee + p2
T,Z + ∑

pT, partons

2
,

where mee is the electron pair’s invariant mass, pT,Z is the
transverse momentum of the Z boson and

∑
pT, partons is the

sum of the transverse momenta of the partons.
The NLO Z + jets predictions are obtained using the

CT14 NLO [64], NNPDF3.1 [65], JR14 NLO [66], HERA-
PDF2.0 [67], MMHT2014 [68], ABMP16 [69] and ATLAS-
epWZ16 [70] PDF sets. The PDFs are determined by various
groups using the experimental data and are provided with the
uncertainties. The PDF uncertainties in the Z + jets cross-
sections are calculated at the 68% confidence level accord-
ing to the prescription recommended by the PDF4LHC
group [71].

The following variations of factorisation and renor-
malisation scales are performed to assess the uncertainty
due to missing higher-order terms: {μR/2, μF}, {2μR, μF},
{μR, μF/2}, {μR, 2μF}, {μR/2, μF/2}, {2μR, 2μF}. The
envelope of the cross-sections calculated with different scales
is used as the uncertainty.

The uncertainty due to the strong coupling is estimated
using additional PDF sets, calculated with αS(m2

Z ) = 0.116
and αS(m2

Z ) = 0.120. The resulting uncertainty is scaled
to the uncertainty of the world average αS(m2

Z ) = 0.118 ±
0.0012, as recommended by the PDF4LHC group [71].

The state-of-the-art NNLO Z + jets cross-section is cal-
culated by the authors of Ref. [16] using NNLOJET [72].
The NNLO predictions are convolved with the CT14 PDF.
The renormalisation and factorisation scales are set similarly
to those in NLO calculations.

9.2 Non-perturbative correction

The fixed-order predictions are obtained at the parton level.
Bringing fixed-order predictions to the particle level for com-
parisons with the measured Z + jets cross-sections requires
a non-perturbative correction (NPC) that accounts for both
the hadronisation and underlying-event effects.

The NPCs are studied using several MC generators to
account for differences in the modelling of hadronisation
and the underlying event. The studies are done using the
leading-logarithm parton shower MC generators Pythia v.
8.210 with the A14 [73] underlying-event tune and Her-
wig++ v. 2.7.1 with the UE-EE5 tune [74], and the multi-
leg matrix element MC generators Sherpa v. 1.4.5 with the
CT10 PDF, Sherpa v. 2.2.0 with NNPDF 2.3 [75] and Mad-
Graph v. 2.2.3 [76], supplemented with parton showers from
Pythia v. 8.210 with the A14 tune.

The NPCs are calculated using the ratios of Z + jets cross-
sections obtained at the particle level to those at the par-
ton level. The correction derived using Sherpa v. 1.4.5 is
the nominal one in this analysis. The envelope of the non-
perturbative corrections, calculated with other MC gener-
ators, is used as the systematic uncertainty. The NPCs in
different MC generators are shown in Fig. 3. The nominal
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Fig. 2 Experimental uncertainties in the measured double-differential
Z + jets production cross-section as a function of |yjet| in pjet

T bins.
The jet energy scale, jet energy resolution, unfolding, ‘other’ and total
systematic uncertainties are shown with different colours overlaid. The
jet energy scale uncertainty is the sum in quadrature of the jet energy
scale uncertainty components. The unfolding uncertainty is the sum

in quadrature of two unfolding uncertainties. The ‘other’ systematic
uncertainty is the sum in quadrature of the electron uncertainties, back-
ground uncertainties, JVF and jet quality uncertainties. The total sys-
tematic uncertainty is the sum in quadrature of all systematic uncer-
tainty components except for the luminosity uncertainty of 1.9%. The
total statistical uncertainties are shown with vertical error bars
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Fig. 3 The non-perturbative correction for the Z + jets production cross-section as a function of |yjet| in pjet
T bins. The spread of predictions

represents the uncertainty
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correction for jets with low transverse momenta, 25 GeV <

pjet
T < 50 GeV, in the central rapidity regions, |yjet| < 1.5, is

small, but it increases to 5% in the forward rapidity bins. The
nominal correction for jets with higher transverse momenta
is below 2%. These corrections together with uncertainties
are provided in HEPData [77].

9.3 QED radiation correction

The fixed-order Z + jets cross-section predictions must be
corrected for the QED radiation in order to be compared
with data. The correction is determined as the ratio of two
Z + jets cross-sections, one calculated using dressed elec-
trons after QED final-state radiation (FSR), with all pho-
tons clustered within a cone of �R = 0.1 around the elec-
tron axis, and the other calculated using Born-level electrons
at the lowest order in the electromagnetic coupling αQED

prior to QED FSR radiation. The baseline correction is cal-
culated using the Sherpa MC samples, while the correc-
tion calculated using Alpgen+Pythia is used to estimate
the uncertainty. The uncertainty is calculated as the width
of the envelope of corrections obtained with these two MC
generators. The results are shown in Fig. 4. The QED cor-
rection is largest in the 25 GeV < pjet

T < 50 GeV region. It is
about 5% for jets in the central absolute rapidity regions. In
the pjet

T > 50 GeV regions the QED correction is 1.5–2.5%,
decreasing as a function of jet transverse momentum. The
QED corrections calculated using Alpgen+Pythia are in
good agreement with those from Sherpa. These corrections
together with uncertainties are provided in HEPData.

9.4 Summary of theoretical uncertainties

The total theoretical uncertainties are calculated as the sum in
quadrature of the effects of the PDF, scale, and αS uncertain-
ties, and the uncertainties due to non-perturbative and QED
radiation effects.

The uncertainties for the Z + jets cross-section calculated
at NLO using the CT14 PDF as a function of |yjet| in pjet

T bins
are shown in Fig. 5. The total uncertainties are dominated
by the scale and NPC uncertainties in the pjet

T < 100 GeV
region, where they reach ±15% and −10%, respectively. In
the pjet

T > 100 GeV region, the scale uncertainty alone domi-
nates, as the NPC uncertainty decreases for high jet transverse
momenta. The total uncertainty in this region is 10–20%.
Other uncertainties are below 5%.

The NNLO uncertainties are shown in Fig. 6. The scale
uncertainty at NNLO is significantly reduced. This uncer-
tainty is below 1% in the 25 GeV < pjet

T < 50 GeV bin,

increasing to 5% in the 400 GeV < pjet
T < 1050 GeV bin.

In the pjet
T < 200 GeV region, the negative part of the total

uncertainty is dominated by the NPC uncertainty and its abso-

lute value reaches 7–15% depending on the jet rapidity. The
positive part of the total uncertainty is within 5%, with about
equal contributions from PDF, scale and αS uncertainties. In
the pjet

T > 200 GeV region, both the negative and positive
parts of the total uncertainty are within 6% in most bins.

The uncertainty in the QED correction is below 0.5% and
is negligible in the fixed-order theory predictions.

10 Results

The double-differential Z + jets cross-section as a function
of |yjet| and pjet

T is calculated as

d2σ

dpjet
T d|yjet|

= 1

L
NP
i

�pjet
T �|yjet|

,

whereL is the integrated luminosity, NP
i is the number of jets

in data at the particle level as given in Eq. (1), and �pjet
T and

�|yjet| are the widths of the jet transverse momentum and
absolute jet rapidity ranges for bin i , respectively. The back-
grounds are subtracted before data unfolding is performed to
obtain NP

i .
The measured Z + jets cross-section covers five orders

of magnitude and falls steeply as a function of |yjet| and

pjet
T . A summary of measured cross-sections, together with

the systematic and statistical uncertainties, is provided
in Appendix A. The measured cross-sections with the full
breakdown of all uncertainties are provided in HEPData.

The comparisons with the theoretical predictions are
shown in Figs. 7, 8, 9, 10, 11 and 12. The fixed-order theo-
retical predictions are corrected for the non-perturbative and
QED radiation effects. The NLO predictions are lower than
the data by approximately 5–10%. However, this difference
is covered by the uncertainties. The NNLO calculations com-
pensate for the NLO-to-data differences in most bins of the
measurement and show better agreement with the central val-
ues of the cross-sections in data. The Sherpa v. 1.4 and Alp-
gen+Pythia MC-to-data ratios are approximately constant
across all |yjet| bins, but a dependence on pjet

T is observed.
The Sherpa v. 1.4 predictions are lower than the data by
about 10% in the 25 GeV < pjet

T < 200 GeV region, but

in the pjet
T > 200 GeV region they agree within a few per-

cent. The Alpgen+Pythia predictions agree with data in the
25 GeV < pjet

T < 100 GeV region, but exceed the data as a

function of pjet
T , the largest difference being about 20% in

the highest pjet
T bin, 400 GeV < pjet

T < 1050 GeV.
Additionally, data is compared to the Sherpa v. 2.2 pre-

diction. In this prediction, the matrix elements are calcu-
lated with NLO accuracy for the inclusive Z production
process up to two additional partons in the final state, and
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Fig. 4 The correction for QED radiation effects for the Z + jets production cross-section as a function of |yjet| in pjet
T bins. The spread of predictions

represents the uncertainty
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Fig. 5 The uncertainties in NLO pQCD predictions as a function of
|yjet| in pjet

T bins. Total pQCD uncertainty is the sum in quadrature of
the PDF, scale and αS uncertainties. Total theory uncertainty is the sum

in quadrature of the total pQCD uncertainty and the uncertainties from
the non-perturbative and QED radiation corrections. The CT14 PDF is
used in the calculations
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Fig. 6 The uncertainties in NNLO pQCD predictions as a function of
|yjet| in pjet

T bins. Total pQCD uncertainty is the sum in quadrature of
the PDF, scale and αS uncertainties. Total theory uncertainty is the sum

in quadrature of the total pQCD uncertainty and the uncertainties from
the non-perturbative and QED radiation corrections. The CT14 PDF is
used in the calculations
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Fig. 7 The double-differential Z + jets production cross-section as a
function of |yjet| in the 25 GeV < pjet

T < 50 GeV range. The data are
compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia
parton shower MC generator predictions and with the fixed-order theory
predictions. The fixed-order theory predictions are corrected for the non-
perturbative and QED radiation effects. The fixed-order calculations are
performed using the CT14 PDF. The total statistical uncertainties are
shown with error bars. The total uncertainties in the measurement and
in the fixed-order theory predictions are represented with shaded bands.
The total uncertainty in the measurement is the sum in quadrature of
the statistical and systematic uncertainties except for the luminosity
uncertainty of 1.9%. The total uncertainty in the fixed-order theory
predictions is the sum in quadrature of the effects of the PDF, scale, and
αS uncertainties, and the uncertainties from the non-perturbative and
QED radiation corrections. Lower panels show the ratios of predictions
to data

with LO accuracy in the final states with up to four partons.
Sherpa v. 2.2 MEs are convolved with the NNPDF 3.0 [65]
PDFs. The MEs are merged with Sherpa parton shower
using the ME+PS@NLO [78] prescription. This prediction
shows a good agreement with data in all bins of the measure-
ment.

The ratios between the measured Z + jets production
cross-sections and the NLO predictions, calculated with var-
ious PDF sets, are shown in Figs. 13, 14 and 15. The cal-
culations with MMHT2014 and NNPDF3.1 predict 1–2%
larger cross-sections compared to those using the CT14 PDF.
The cross-sections calculated with ATLAS-epWZ16 PDF
are larger by 2–3%. The ABMP16 and HERAPDF2.0 cross-
section predictions in the |yjet| < 2.0 and pjet

T < 100 GeV
regions are 3–5% larger than those from the CT14 PDF, while
in other bins of the measurement their predictions are up
to 5% lower than those obtained with the CT14 PDF. The
JR14 PDF predictions are 2–5% lower than those from the
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Fig. 8 The double-differential Z + jets production cross-section as a
function of |yjet| in the 50 GeV < pjet

T < 100 GeV range. The data are
compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia
parton shower MC generator predictions and with the fixed-order theory
predictions. The fixed-order theory predictions are corrected for the non-
perturbative and QED radiation effects. The fixed-order calculations are
performed using the CT14 PDF. The total statistical uncertainties are
shown with error bars. The total uncertainties in the measurement and
in the fixed-order theory predictions are represented with shaded bands.
The total uncertainty in the measurement is the sum in quadrature of
the statistical and systematic uncertainties except for the luminosity
uncertainty of 1.9%. The total uncertainty in the fixed-order theory
predictions is the sum in quadrature of the effects of the PDF, scale, and
αS uncertainties, and the uncertainties from the non-perturbative and
QED radiation corrections. Lower panels show the ratios of predictions
to data

CT14 PDF in the 25 GeV < pjet
T < 200 GeV region and

higher by 2% in the pjet
T > 200 GeV region. The differences

between the cross-sections calculated at NLO accuracy with
various PDF sets are covered by the theoretical uncertain-
ties. In the NNLO calculations, the difference between CT14
PDF and NNPDF3.1 predictions is 2–5%, which is compa-
rable to the size of the theoretical uncertainties, as shown
in Fig. 16.

11 Quantitative data and theory comparison

The fixed-order pQCD predictions at NNLO accuracy, cor-
rected for electroweak and non-perturbative effects, are quan-
titatively compared with the measured cross-section using a
χ2 function that accounts for both the experimental and the-
oretical uncertainties
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Fig. 9 The double-differential Z + jets production cross-section as a
function of |yjet| in the 100 GeV < pjet

T < 200 GeV range. The data are
compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia
parton shower MC generator predictions and with the fixed-order theory
predictions. The fixed-order theory predictions are corrected for the non-
perturbative and QED radiation effects. The fixed-order calculations are
performed using the CT14 PDF. The total statistical uncertainties are
shown with error bars. The total uncertainties in the measurement and
in the fixed-order theory predictions are represented with shaded bands.
The total uncertainty in the measurement is the sum in quadrature of
the statistical and systematic uncertainties except for the luminosity
uncertainty of 1.9%. The total uncertainty in the fixed-order theory
predictions is the sum in quadrature of the effects of the PDF, scale, and
αS uncertainties, and the uncertainties from the non-perturbative and
QED radiation corrections. Lower panels show the ratios of predictions
to data
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and their influence on the data and the the-

ory predictions is described by the respective �l;ρ matrices.
The Latin indices run over bins of measurements and the
Greek indices render sources of uncertainties. The measured
cross-sections and their theory predictions in each bin are
represented by σ data

i and σ
theory
i , respectively. Uncorrelated

uncertainties in data are denoted by�i . The theoretical uncer-
tainties include those arising from renormalisation and fac-
torisation scales variations, PDF uncertainties, uncertainties
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Fig. 10 The double-differential Z + jets production cross-section as a
function of |yjet| in the 200 GeV < pjet

T < 300 GeV range. The data are
compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia
parton shower MC generator predictions and with the fixed-order theory
predictions. The fixed-order theory predictions are corrected for the non-
perturbative and QED radiation effects. The fixed-order calculations are
performed using the CT14 PDF. The total statistical uncertainties are
shown with error bars. The total uncertainties in the measurement and
in the fixed-order theory predictions are represented with shaded bands.
The total uncertainty in the measurement is the sum in quadrature of
the statistical and systematic uncertainties except for the luminosity
uncertainty of 1.9%. The total uncertainty in the fixed-order theory
predictions is the sum in quadrature of the effects of the PDF, scale, and
αS uncertainties, and the uncertainties from the non-perturbative and
QED radiation corrections. Lower panels show the ratios of predictions
to data

in calculations of non-perturbative and electroweak effects as
well as from the αS(mZ ) uncertainty. All experimental and
theoretical systematic uncertainties are assumed to be inde-
pendent of each other, and fully correlated across the bins
of the measurement. The negligible correlations of statistical
uncertainties are not included in the χ2 tests presented here.

The minimisation of Eq. (2), for the case of symmetric sys-
tematic uncertainties, results in a system of linear equations
for the shifts of systematic uncertainties, βρ . The asymme-
tries in systematic uncertainties are accounted for using an
iterative procedure. Here, the influences �l;ρ are recalculated
as

�l;ρ → �l;ρ + �l;ρβρ,

where �l;ρ = 1
2

(
�+
l;ρ − �−

l;ρ
)

and �l;ρ = 1
2

(
�+
l;ρ + �−

l;ρ
)

,

after each iteration using the shifts βρ from the previous itera-
tion. The �+

l;ρ and �−
l;ρ are positive and negative components
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Fig. 11 The double-differential Z + jets production cross-section as a
function of |yjet| in the 300 GeV < pjet

T < 400 GeV range. The data are
compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia
parton shower MC generator predictions and with the fixed-order theory
predictions. The fixed-order theory predictions are corrected for the non-
perturbative and QED radiation effects. The fixed-order calculations are
performed using the CT14 PDF. The total statistical uncertainties are
shown with error bars. The total uncertainties in the measurement and
in the fixed-order theory predictions are represented with shaded bands.
The total uncertainty in the measurement is the sum in quadrature of
the statistical and systematic uncertainties except for the luminosity
uncertainty of 1.9%. The total uncertainty in the fixed-order theory
predictions is the sum in quadrature of the effects of the PDF, scale, and
αS uncertainties, and the uncertainties from the non-perturbative and
QED radiation corrections. Lower panels show the ratios of predictions
to data

of systematic uncertainties, respectively. The χ2 values at the
minimum provide a measure of the probability of compati-
bility between the measurements and the predictions.

Table 1 shows a summary of the calculated χ2
uncorr, the first

term in Eq. (2), together with χ2
corr, the sum of squared shifts

of nuisance parameters, for each pjet
T bin separately. A good

agreement between measurements and theory is seen for the
fits in individual pjet

T bins in the pjet
T > 50 GeV range, with

not so good agreement in the 25 < pjet
T < 50 GeV range.

The level of agreement between data and predictions is very
similar for different PDF sets.

In addition to fits of the predictions to measured cross-
sections in the individual pjet

T bins, all measured data points

are fitted simultaneously. Several ranges of pjet
T are consid-

ered. The results of the global fits are presented in Table 2.
Very good agreement between measurement and calculation
is observed when using the pjet

T > 50 GeV bins, while not so
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Fig. 12 The double-differential Z + jets production cross-section as a
function of |yjet| in the 400 GeV < pjet

T < 1050 GeV range. The data are
compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia
parton shower MC generator predictions and with the fixed-order theory
predictions. The fixed-order theory predictions are corrected for the non-
perturbative and QED radiation effects. The fixed-order calculations are
performed using the CT14 PDF. The total statistical uncertainties are
shown with error bars. The total uncertainties in the measurement and
in the fixed-order theory predictions are represented with shaded bands.
The total uncertainty in the measurement is the sum in quadrature of
the statistical and systematic uncertainties except for the luminosity
uncertainty of 1.9%. The total uncertainty in the fixed-order theory
predictions is the sum in quadrature of the effects of the PDF, scale, and
αS uncertainties, and the uncertainties from the non-perturbative and
QED radiation corrections. Lower panels show the ratios of predictions
to data

good agreement is observed when the 25 < pjet
T < 50 GeV

bin is included in the global fit.
The results of the χ2 tests strongly depend on what is

assumed about the correlation of systematic uncertainties. In
general, the correlations of uncertainties related to detector
measurements are carefully studied and well known [57,79].
In contrast, the assumption of 100% correlations of uncer-
tainties resulting from simple comparisons of two (or more)
different MC simulations (two-point systematic uncertain-
ties) are less justified. In order to investigate the impact of
these assumptions on the results of χ2 tests performed in
this section, the uncertainties that are derived from compar-
isons of two different MC models, namely uncertainties in
the jet flavour composition and jet flavour response, were
split into two subcomponents [80,81]. The first subcompo-
nent is derived by multiplying the original nuisance parame-
ter with a linear function of pjet

T and jet absolute rapidity and
the second subcomponent is constructed such that the sum
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Fig. 13 Ratio of the measured Z + jets production cross-section and
the NLO QCD predictions, obtained using MCFM, corrected for the
non-perturbative and QED radiation effects as a function of |yjet| and

pjet
T bins. Theoretical predictions are calculated using various PDF sets.

The coloured error bars represent the sum in quadrature of the effects

of the PDF, scale, and αS uncertainties, and the uncertainties from the
non-perturbative and QED radiation corrections. The grey band shows
the sum in quadrature of the statistical and systematic uncertainties in
the measurement except for the luminosity uncertainty of 1.9%
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Fig. 14 Ratio of the measured Z + jets production cross-section and
the NLO QCD predictions, obtained using MCFM, corrected for the
non-perturbative and QED radiation effects as a function of |yjet| and

pjet
T bins. Theoretical predictions are calculated using various PDF sets.

The coloured error bars represent the sum in quadrature of the effects

of the PDF, scale, and αS uncertainties, and the uncertainties from the
non-perturbative and QED radiation corrections. The grey band shows
the sum in quadrature of the statistical and systematic uncertainties in
the measurement except for the luminosity uncertainty of 1.9%

in quadrature of both subcomponents is equal to the original
nuisance parameter. These decorrelations did not result in a
large improvement in the χ2 values.

12 Conclusions

The double-differential Z + jets cross-section, with the Z
boson decaying into an electron–positron pair, is measured

using proton–proton collision data with an integrated lumi-
nosity 19.9 fb−1 collected by the ATLAS experiment at the
LHC in 2012 at

√
s = 8 TeV centre-of-mass energy. The

measurement is performed as a function of the absolute jet
rapidity and the jet transverse momentum.

The measured cross-section is corrected for detector
effects and the results are provided at the particle level.
The measurements are compared with theory predictions,
calculated using the multi-leg matrix element MC genera-
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Fig. 15 Ratio of the measured Z + jets production cross-section and
the NLO QCD predictions, obtained using MCFM, corrected for the
non-perturbative and QED radiation effects as a function of |yjet| and

pjet
T bins. Theoretical predictions are calculated using various PDF sets.

The coloured error bars represent the sum in quadrature of the effects

of the PDF, scale, and αS uncertainties, and the uncertainties from the
non-perturbative and QED radiation corrections. The grey band shows
the sum in quadrature of the statistical and systematic uncertainties in
the measurement except for the luminosity uncertainty of 1.9%
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Fig. 16 Ratio of the measured Z + jets production cross-section and
the NNLO QCD predictions, obtained using NNLOJET, corrected for
the non-perturbative and QED radiation effects as a function of |yjet| and

pjet
T bins. Theoretical predictions are calculated using various PDF sets.

The coloured error bars represent the sum in quadrature of the effects

of the PDF, scale, and αS uncertainties, and the uncertainties from the
non-perturbative and QED radiation corrections. The grey band shows
the sum in quadrature of the statistical and systematic uncertainties in
the measurement except for the luminosity uncertainty of 1.9%

tors Sherpa and Alpgen+Pythia, supplemented with par-
ton shower simulations. Sherpa v. 1.4 and Alpgen+Pythia
describe well the shape of the Z + jets distribution as a func-
tion of |yjet|, but not so well as a function of pjet

T . Sherpa v.
2.2 is in good agreement with data in all bins of the measure-
ment.

The parton-level fixed-order Z + jets predictions, cor-
rected for hadronisation, underlying-event and QED radi-
ation effects, agree with the data within the uncertainties.

The uncertainties in the measured cross-sections are about
half of the theoretical uncertainties in the NLO calculations in
most bins of the measurement and are approximately similar
to the uncertainties in the NNLO calculations.

The measured double-differential Z + jets cross-section
provides a precision input to constrain the parton distribution
functions.
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Table 1 Values of χ2
uncorr and χ2

corr evaluated for theory predictions
corrected for non-perturbative and electroweak effects and measured
Z + jets cross-sections. The total χ2 is equal to the sum of χ2

uncorr and

χ2
corr. The fits are performed individually in each pjet

T bin. The predic-
tions are calculated using several NNLO QCD PDF sets and one NLO
QCD PDF set, CT14nlo

CT14nlo CT14 NNPDF3.1 MMHT2014 ABMP16
pjet

T range (GeV) nbins χ2
uncorr χ2

corr χ2
uncorr χ2

corr χ2
uncorr χ2

corr χ2
uncorr χ2

corr χ2
uncorr χ2

corr

25 < pjet
T < 50 12 31.5 14.7 32.2 15.6 33.6 15.7 32.7 15.9 31.8 13.8

50 < pjet
T < 100 17 23.6 2.6 24.2 2.3 27.1 2.3 26.3 2.1 24.9 2.5

100 < pjet
T < 200 17 24.9 3.6 24.8 2.5 26.1 1.8 27.2 2.8 22.6 1.5

200 < pjet
T < 300 7 3.1 0.9 2.9 0.7 3.6 0.1 4.5 0.5 2.7 0.2

300 < pjet
T < 400 6 2.7 0.1 2.7 0.1 2.9 0.1 3.2 0.0 2.5 0.3

400 < pjet
T < 1050 4 1.9 0.4 1.9 0.4 1.9 0.5 2.0 0.3 1.7 0.8

Table 2 Values of χ2 evaluated
from the comparison of theory
predictions corrected for
non-perturbative and
electroweak effects with the
measured Z + jets
cross-sections. The fits are
performed globally in all bins of
the measurement within several
pjet

T ranges. The predictions are
calculated using several
NNLO QCD PDF sets and one
NLO QCD PDF set, CT14nlo

pjet
T range (GeV) CT14nlo CT14 NNPDF3.1 MMHT2014 ABMP16

pjet
T > 25 GeV

χ2
uncorr 25 < pjet

T < 50 38.9 40.5 42.3 41.3 38.7

50 < pjet
T < 100 32.1 33.0 37.5 39.2 31.6

100 < pjet
T < 200 26.4 27.8 31.0 31.7 27.8

200 < pjet
T < 300 6.3 6.3 5.1 5.6 4.1

300 < pjet
T < 400 2.9 3.0 2.9 3.1 2.5

400 < pjet
T < 1050 2.2 2.4 2.2 2.3 1.7

χ2
corr 21.2 19.8 19.3 18.7 17.8

χ2/nbins 129.9/63 132.6/63 140.0/63 141.9/63 124.3/63

pjet
T > 50 GeV

χ2
uncorr 50 < pjet

T < 100 24.4 24.8 26.9 27.1 24.8

100 < pjet
T < 200 24.4 24.6 26.6 27.7 22.7

200 < pjet
T < 300 4.4 4.2 4.4 4.7 3.4

300 < pjet
T < 400 2.7 2.8 3.0 3.1 2.5

400 < pjet
T < 1050 3.6 4.0 3.8 3.9 2.9

χ2
corr 6.5 4.7 4.3 5.1 4.1

χ2/nbins 66.1/51 65.2/51 69.0/51 71.6/51 60.4/51

pjet
T > 100 GeV

χ2
uncorr 100 < pjet

T < 200 24.8 25.0 25.9 26.6 22.4

200 < pjet
T < 300 3.2 3.3 4.1 4.4 3.3

300 < pjet
T < 400 2.7 2.8 3.0 3.1 2.6

400 < pjet
T < 1050 3.4 3.8 3.6 3.6 3.3

χ2
corr 4.9 3.7 2.7 4.1 2.3

χ2/nbins 39.0/34 38.5/34 39.3/34 41.8/34 33.8/34
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Appendix

A Tables of measured cross-sections

Table 3 The measured double-differential Z + jets production cross-
sections as a function of |yjet| in the 25 GeV < pjet

T < 50 GeV range.
δstat

data and δstat
MC are the statistical uncertainties in data and MC simulation,

respectively. δsys
tot is the total systematic uncertainty and includes the fol-

lowing components: uncertainties due to electron reconstruction (δel
rec),

identification (δel
ID) and trigger (δel

trig) efficiencies; electron energy scale

(δel
scale) and energy resolution (δel

res) uncertainties; sum in quadrature
of the uncertainties from JES in situ methods (δJES

in situ); sum in quadra-
ture of the uncertainties from JES η-intercalibration methods (δJES

η-int); an

uncertainty of the measured single-hadron response (δJES
hadron); MC non-

closure uncertainty (δJES
closure); sum in quadrature of the uncertainties due

to pile-up corrections of the jet kinematics (δJES
pile-up); sum in quadra-

ture of the flavour-based uncertainties (δJES
flavour); punch-through uncer-

tainty (δJES
pthrough); JER uncertainty (δJER); JVF uncertainty (δJVF); sum

in quadrature of the unfolding uncertainties (δunf); sum in quadrature
of the uncertainties due to MC generated backgrounds normalisation
(δbg

MC); sum in quadrature of the uncertainty due to combined multijet

and W+ jets backgrounds (δbg
mult); uncertainty due to jet quality selec-

tion (δqual). All uncertainties are given in %. The luminosity uncertainty
of 1.9% is not shown and not included in the total uncertainty and its
components

|yjet| d2σ

d|yjet|dpjet
T

δstat
data δstat

MC δ
sys
tot δel

rec δel
ID δel

trig δel
scale δel

res δJES
in situ δJES

η−int

(fb/GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.2 1643.603 0.42 0.51 + 6.70 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.04 + 0.30

− 6.80 − 0.08 − 0.27 − 0.44 + 0.14 − 0.01 − 3.04 − 0.49

0.2–0.4 1595.690 0.34 0.60 + 6.72 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.16 + 0.30

− 6.70 − 0.08 − 0.27 − 0.44 + 0.14 − 0.01 − 3.02 − 0.49

0.4–0.6 1587.440 0.37 0.60 + 7.01 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.17 + 0.30

− 7.14 − 0.08 − 0.27 − 0.44 + 0.14 − 0.01 − 3.14 − 0.49

0.6–0.8 1569.884 0.38 0.60 + 7.02 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.19 + 0.30

− 7.24 − 0.08 − 0.27 − 0.44 + 0.14 − 0.01 − 3.25 − 0.49

0.8–1.0 1520.883 0.36 0.59 + 6.98 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.33 + 0.30

− 7.04 − 0.08 − 0.27 − 0.33 + 0.14 − 0.01 − 3.25 − 0.49

1.0–1.2 1393.139 0.38 0.64 + 8.49 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.60 + 0.76

− 8.32 − 0.08 − 0.27 − 0.33 + 0.14 − 0.01 − 3.35 − 0.49

1.2–1.4 1377.328 0.47 0.57 + 11.78 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.69 + 0.76

− 11.50 − 0.08 − 0.27 − 0.33 + 0.14 − 0.01 − 3.29 − 0.69

1.4–1.6 1228.213 0.42 0.60 + 12.01 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.65 + 1.44

− 11.69 − 0.08 − 0.27 − 0.33 + 0.14 − 0.01 − 3.22 − 1.14

1.6–1.8 987.654 0.48 0.64 + 12.09 + 0.08 + 0.23 + 0.31 − 0.16 + 0.01 + 3.37 + 1.42

− 11.95 − 0.08 − 0.27 − 0.33 + 0.14 − 0.01 − 3.10 − 1.25
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Table 3 continued

|yjet| d2σ

d|yjet|dpjet
T

δstat
data δstat

MC δ
sys
tot δel

rec δel
ID δel

trig δel
scale δel

res δJES
in situ δJES

η−int

(fb/GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1.8–2.0 944.560 0.45 0.65 + 10.24 + 0.08 + 0.23 + 0.40 − 0.16 + 0.01 + 3.38 + 1.58

− 10.02 − 0.08 − 0.27 − 0.33 + 0.14 − 0.01 − 3.09 − 1.25

2.0–2.2 871.035 0.49 0.85 + 10.30 + 0.08 + 0.23 + 0.40 − 0.16 + 0.01 + 3.65 + 1.96

− 10.18 − 0.08 − 0.27 − 0.33 + 0.14 − 0.01 − 3.41 − 1.74

2.2–2.4 749.498 0.54 0.80 + 11.14 + 0.08 + 0.23 + 0.40 − 0.16 + 0.01 + 4.23 + 2.57

− 10.92 − 0.08 − 0.27 − 0.33 + 0.14 − 0.01 − 3.95 − 2.33

|yjet| δJES
hadron δJES

closure δJES
pile-up δJES

flavour δJES
pthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.2 + 0.00 + 0.01 + 1.63 + 2.95 + 0.00 − 3.83 + 0.47 + 2.84 + 0.06 + 0.14 + 1.00

− 0.01 − 0.01 − 1.68 − 3.04 − 0.02 + 3.83 − 0.72 − 2.84 − 0.05 − 0.38 − 1.00

0.2–0.4 + 0.00 + 0.01 + 1.65 + 3.04 + 0.00 − 3.89 + 0.47 + 2.55 + 0.06 + 0.14 + 1.00

− 0.01 − 0.01 − 1.60 − 3.05 − 0.02 + 3.89 − 0.72 − 2.55 − 0.05 − 0.39 − 1.00

0.4–0.6 + 0.00 + 0.01 + 1.59 + 3.08 + 0.00 − 4.17 + 0.46 + 2.86 + 0.06 + 0.15 + 1.00

− 0.01 − 0.01 − 1.72 − 3.23 − 0.02 + 4.17 − 0.67 − 2.86 − 0.05 − 0.39 − 1.00

0.6–0.8 + 0.00 + 0.01 + 1.62 + 3.26 + 0.00 − 3.74 + 0.46 + 3.22 + 0.05 + 0.15 + 1.00

− 0.01 − 0.01 − 1.82 − 3.46 − 0.02 + 3.74 − 0.67 − 3.22 − 0.05 − 0.40 − 1.00

0.8–1.0 + 0.00 + 0.01 + 1.80 + 3.54 + 0.00 − 2.88 + 0.46 + 3.48 + 0.05 + 0.15 + 1.00

− 0.01 − 0.01 − 1.88 − 3.61 − 0.02 + 2.88 − 0.56 − 3.48 − 0.05 − 0.39 − 1.00

1.0–1.2 + 0.00 + 0.01 + 1.97 + 3.93 + 0.00 − 5.18 + 0.46 + 3.32 + 0.05 + 0.16 + 1.00

− 0.01 − 0.01 − 1.81 − 3.87 − 0.02 + 5.18 − 0.56 − 3.32 − 0.05 − 0.41 − 1.00

1.2–1.4 + 0.00 + 0.01 + 2.04 + 4.49 + 0.00 − 8.88 + 0.46 + 4.47 + 0.05 + 0.17 + 1.00

− 0.01 − 0.01 − 1.78 − 4.14 − 0.02 + 8.88 − 0.56 − 4.47 − 0.05 − 0.41 − 1.00

1.4–1.6 + 0.00 + 0.01 + 2.00 + 4.37 + 0.00 − 9.07 + 0.71 + 4.67 + 0.05 + 0.18 + 1.00

− 0.01 − 0.01 − 1.74 − 4.02 − 0.02 + 9.07 − 0.69 − 4.67 − 0.05 − 0.42 − 1.00

1.6–1.8 + 0.00 + 0.01 + 1.83 + 3.60 + 0.00 − 10.46 + 0.71 + 2.32 + 0.06 + 0.17 + 1.00

− 0.01 − 0.01 − 1.62 − 3.51 − 0.02 + 10.46 − 0.69 − 2.32 − 0.05 − 0.43 − 1.00

1.8–2.0 + 0.00 + 0.01 + 1.90 + 3.38 + 0.00 − 8.31 + 0.55 + 2.32 + 0.05 + 0.16 + 1.00

− 0.01 − 0.01 − 1.66 − 3.23 − 0.02 + 8.31 − 0.55 − 2.32 − 0.05 − 0.43 − 1.00

2.0–2.2 + 0.00 + 0.01 + 2.05 + 3.56 + 0.00 − 6.74 + 0.55 + 5.01 + 0.05 + 0.17 + 1.00

− 0.01 − 0.01 − 1.94 − 3.60 − 0.02 + 6.74 − 0.55 − 5.01 − 0.05 − 0.43 − 1.00

2.2–2.4 + 0.00 + 0.01 + 2.70 + 3.91 + 0.00 − 7.48 + 0.55 + 4.42 + 0.05 + 0.18 + 1.00

− 0.01 − 0.01 − 2.50 − 3.85 − 0.02 + 7.48 − 0.55 − 4.42 − 0.05 − 0.42 − 1.00
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Table 4 The measured double-differential Z + jets production cross-
sections as a function of |yjet| in the 50 GeV < pjet

T < 100 GeV range.
δstat

data and δstat
MC are the statistical uncertainties in data and MC simulation,

respectively. δsys
tot is the total systematic uncertainty and includes the fol-

lowing components: uncertainties due to electron reconstruction (δel
rec),

identification (δel
ID) and trigger (δel

trig) efficiencies; electron energy scale

(δel
scale) and energy resolution (δel

res) uncertainties; sum in quadrature
of the uncertainties from JES in situ methods (δJES

in situ); sum in quadra-
ture of the uncertainties from JES η-intercalibration methods (δJES

η-int); an

uncertainty of the measured single-hadron response (δJES
hadron); MC non-

closure uncertainty (δJES
closure); sum in quadrature of the uncertainties due

to pile-up corrections of the jet kinematics (δJES
pile-up); sum in quadra-

ture of the flavour-based uncertainties (δJES
flavour); punch-through uncer-

tainty (δJES
pthrough); JER uncertainty (δJER); JVF uncertainty (δJVF); sum

in quadrature of the unfolding uncertainties (δunf); sum in quadrature
of the uncertainties due to MC generated backgrounds normalisation
(δbg

MC); sum in quadrature of the uncertainty due to combined multijet

and W+ jets backgrounds (δbg
mult); uncertainty due to jet quality selec-

tion (δqual). All uncertainties are given in %. The luminosity uncertainty
of 1.9% is not shown and not included in the total uncertainty and its
components

|yjet| d2σ

d|yjet|dpjet
T

δstat
data δstat

MC δ
sys
tot δel

rec δel
ID δel

trig δel
scale δel

res δJES
in situ δJES

η−int

(fb/GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.2 349.964 0.56 0.80 + 3.75 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 2.67 + 0.31

− 3.71 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.61 − 0.26

0.2–0.4 352.217 0.71 0.80 + 3.68 + 0.03 + 0.15 + 0.24 v0.25 + 0.00 + 2.56 + 0.31

− 3.77 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.70 − 0.26

0.4–0.6 338.924 0.74 0.81 + 3.78 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 2.52 + 0.31

− 3.99 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.86 − 0.26

0.6–0.8 328.606 0.72 0.93 + 3.99 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 2.75 + 0.31

− 4.15 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.86 − 0.26

0.8–1.0 303.475 0.69 0.87 + 4.05 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 2.98 + 0.31

− 3.89 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.76 − 0.26

1.0–1.2 274.407 0.71 1.05 + 3.85 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 2.74 + 0.31

− 4.09 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.83 − 0.96

1.2–1.4 261.553 0.81 0.84 + 4.14 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 2.86 + 1.25

− 4.31 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.86 − 0.96

1.4–1.6 233.170 0.75 1.02 + 4.48 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 2.82 + 1.25

− 4.38 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.74 − 0.96

1.6–1.8 192.405 0.92 1.16 + 5.11 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.09 + 2.10

− 4.80 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.92 − 1.97

1.8–2.0 174.081 0.90 1.18 + 5.75 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.38 + 2.61

− 5.14 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 3.05 − 2.27

2.0–2.2 145.578 0.94 1.11 + 5.92 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.48 + 2.80

− 5.31 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 3.02 − 2.36

2.2–2.4 117.333 1.08 1.37 + 5.99 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.56 + 2.78

− 5.18 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.83 − 2.23

2.4–2.6 98.813 1.31 1.42 + 5.65 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.32 + 2.56

− 5.25 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.87 − 2.20

2.6–2.8 75.900 1.47 1.67 + 6.65 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.21 + 2.88

− 6.11 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.85 − 2.20

2.8–3.0 58.038 1.59 2.21 + 6.49 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.08 + 2.88

− 6.76 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.85 − 3.79

3.0–3.2 44.324 1.58 2.56 + 7.78 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.08 + 4.36

− 7.26 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.72 − 3.79

3.2–3.4 32.909 2.09 2.91 + 8.34 + 0.03 + 0.15 + 0.24 − 0.25 + 0.00 + 3.08 + 4.91

− 9.23 − 0.08 − 0.21 − 0.29 + 0.19 − 0.05 − 2.72 − 6.55
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Table 4 continued

|yjet| δJES
hadron δJES

closure δJES
pile-up δJES

flavour δJES
pthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.2 + 0.00 + 0.00 + 1.02 + 0.81 + 0.00 − 1.47 − 0.46 + 1.28 + 0.17 + 0.15 + 1.00

− 0.03 − 0.02 − 0.92 − 0.77 − 0.02 + 1.47 + 0.49 − 1.28 − 0.15 − 0.42 − 1.00

0.2–0.4 + 0.00 + 0.00 + 1.02 + 0.81 + 0.00 − 1.47 − 0.46 + 1.28 + 0.16 + 0.15 + 1.00

− 0.03 − 0.02 − 0.92 − 0.77 − 0.02 + 1.47 + 0.49 − 1.28 − 0.15 − 0.42 − 1.00

0.4–0.6 + 0.00 + 0.00 + 1.07 + 0.81 + 0.00 − 1.60 − 0.46 + 1.43 + 0.16 + 0.15 + 1.00

− 0.03 − 0.02 − 0.92 − 0.77 − 0.02 + 1.60 + 0.49 − 1.43 − 0.15 − 0.43 − 1.00

0.6–0.8 + 0.00 + 0.00 + 1.07 + 1.28 + 0.00 − 1.47 − 0.46 + 1.41 + 0.16 + 0.16 + 1.00

− 0.03 − 0.02 − 1.08 − 1.44 − 0.02 + 1.47 + 0.49 − 1.41 − 0.14 − 0.43 − 1.00

0.8–1.0 + 0.00 + 0.00 + 1.07 + 1.50 + 0.00 − 1.21 − 0.46 + 1.07 + 0.15 + 0.17 + 1.00

− 0.03 − 0.02 − 1.08 − 1.44 − 0.02 + 1.21 + 0.49 − 1.07 − 0.14 − 0.45 − 1.00

1.0–1.2 + 0.00 + 0.00 + 1.01 + 1.49 + 0.00 − 1.21 − 0.46 + 1.07 + 0.15 + 0.19 + 1.00

− 0.03 − 0.02 − 1.19 − 1.44 − 0.02 + 1.21 + 0.49 − 1.07 − 0.14 − 0.46 − 1.00

1.2–1.4 + 0.00 + 0.00 + 1.01 + 1.54 + 0.00 − 1.21 − 0.46 + 1.07 + 0.14 + 0.21 + 1.00

− 0.03 − 0.02 − 1.19 − 1.94 − 0.02 + 1.21 + 0.49 − 1.07 − 0.13 − 0.49 − 1.00

1.4–1.6 + 0.00 + 0.00 + 1.01 + 1.78 + 0.00 − 1.42 − 0.46 + 1.73 + 0.13 + 0.37 + 1.00

− 0.03 − 0.02 − 1.05 − 1.69 − 0.02 + 1.42 + 0.40 − 1.73 − 0.12 − 0.60 − 1.00

1.6–1.8 + 0.00 + 0.00 + 1.34 + 2.01 + 0.00 − 1.42 − 0.46 + 1.73 + 0.13 + 0.19 + 1.00

− 0.03 − 0.02 − 1.05 − 1.69 − 0.02 + 1.42 + 0.40 − 1.73 − 0.12 − 0.51 − 1.00

1.8–2.0 + 0.00 + 0.00 + 1.34 + 2.25 + 0.00 − 1.89 − 0.34 + 1.73 + 0.12 + 0.20 + 1.00

− 0.03 − 0.02 − 1.05 − 1.66 − 0.02 + 1.89 + 0.40 − 1.73 − 0.11 − 0.55 − 1.00

2.0–2.2 + 0.00 + 0.00 + 1.40 + 1.91 + 0.00 − 1.89 − 0.34 + 2.16 + 0.11 + 0.20 + 1.00

− 0.03 − 0.02 − 0.92 − 1.66 − 0.02 + 1.89 + 0.40 − 2.16 − 0.10 − 0.56 − 1.00

2.2–2.4 + 0.00 + 0.00 + 1.40 + 1.91 + 0.00 − 0.76 − 0.34 + 2.83 + 0.11 + 0.21 + 1.00

− 0.03 − 0.02 − 0.92 − 1.66 − 0.02 + 0.76 + 0.40 − 2.83 − 0.10 − 0.58 − 1.00

2.4–2.6 + 0.00 + 0.00 + 0.87 + 1.91 + 0.00 − 0.76 − 0.34 + 2.83 + 0.11 + 0.23 + 1.00

− 0.03 − 0.02 − 0.92 − 1.82 − 0.02 + 0.76 + 0.40 − 2.83 − 0.10 − 0.64 − 1.00

2.6–2.8 + 0.00 + 0.00 + 0.87 + 2.25 + 0.00 − 0.76 − 0.34 + 4.23 + 0.10 + 0.24 + 1.00

− 0.03 − 0.02 − 0.92 − 1.82 − 0.02 + 0.76 + 0.40 − 4.23 − 0.10 − 0.67 − 1.00

2.8–3.0 + 0.00 + 0.00 + 0.87 + 2.25 + 0.00 − 0.76 − 0.34 + 4.08 + 0.10 + 0.25 + 1.00

− 0.03 − 0.02 − 0.92 − 1.82 − 0.02 + 0.76 + 0.40 − 4.08 − 0.09 − 0.69 − 1.00

3.0–3.2 + 0.00 + 0.00 + 0.87 + 2.25 + 0.00 − 0.76 − 0.34 + 4.94 + 0.09 + 0.26 + 1.00

− 0.03 − 0.02 − 0.92 − 1.82 − 0.02 + 0.76 + 0.40 − 4.94 − 0.09 − 0.70 − 1.00

3.2–3.4 + 0.00 + 0.00 + 0.87 + 2.25 + 0.00 − 0.76 − 0.34 + 5.32 + 0.09 + 0.25 + 1.00

− 0.03 − 0.02 − 0.92 − 1.82 − 0.02 + 0.76 + 0.40 − 5.32 − 0.09 − 0.70 − 1.00

123
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Table 5 The measured double-differential Z + jets production cross-
sections as a function of |yjet| in the 100 GeV < pjet

T < 200 GeV range.
δstat

data and δstat
MC are the statistical uncertainties in data and MC simulation,

respectively. δsys
tot is the total systematic uncertainty and includes the fol-

lowing components: uncertainties due to electron reconstruction (δel
rec),

identification (δel
ID) and trigger (δel

trig) efficiencies; electron energy scale

(δel
scale) and energy resolution (δel

res) uncertainties; sum in quadrature
of the uncertainties from JES in situ methods (δJES

in situ); sum in quadra-
ture of the uncertainties from JES η-intercalibration methods (δJES

η-int); an

uncertainty of the measured single-hadron response (δJES
hadron); MC non-

closure uncertainty (δJES
closure); sum in quadrature of the uncertainties due

to pile-up corrections of the jet kinematics (δJES
pile-up); sum in quadra-

ture of the flavour-based uncertainties (δJES
flavour); punch-through uncer-

tainty (δJES
pthrough); JER uncertainty (δJER); JVF uncertainty (δJVF); sum

in quadrature of the unfolding uncertainties (δunf); sum in quadrature
of the uncertainties due to MC generated backgrounds normalisation
(δbg

MC); sum in quadrature of the uncertainty due to combined multijet

and W+ jets backgrounds (δbg
mult); uncertainty due to jet quality selec-

tion (δqual). All uncertainties are given in %. The luminosity uncertainty
of 1.9% is not shown and not included in the total uncertainty and its
components

|yjet| d2σ

d|yjet|dpjet
T

δstat
data δstat

MC δ
sys
tot δel

rec δel
ID δel

trig δel
scale δel

res δJES
in situ δJES

η−int

(fb/GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.2 45.769 1.28 1.29 + 2.58 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.44 + 0.50

− 3.54 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 2.11 − 0.67

0.2–0.4 46.342 1.22 1.39 + 2.58 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.44 + 0.50

− 3.54 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 2.11 − 0.67

0.4–0.6 43.964 1.25 1.47 + 2.58 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.44 + 0.50

− 3.21 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.93 − 0.67

0.6–0.8 40.076 1.40 1.67 + 2.58 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.44 + 0.50

− 3.15 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.93 − 0.67

0.8–1.0 37.981 1.40 1.38 + 2.50 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.44 + 0.50

− 3.15 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.93 − 0.67

1.0–1.2 32.122 1.63 1.68 + 2.74 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.44 + 0.50

− 3.08 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.82 − 0.67

1.2–1.4 31.772 1.33 1.53 + 2.99 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.87 + 0.50

− 3.09 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.82 − 0.67

1.4–1.6 27.737 1.34 1.85 + 3.19 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.87 + 0.50

− 3.15 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.82 − 0.67

1.6–1.8 21.873 1.85 2.01 + 3.16 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.87 + 0.50

− 3.10 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.82 − 0.67

1.8–2.0 17.806 1.88 2.00 + 3.33 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.98 + 0.50

− 3.29 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.95 − 0.67

2.0–2.2 13.820 2.26 2.26 + 3.33 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 1.98 + 0.50

− 3.30 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.95 − 0.67

2.2–2.4 10.613 2.55 2.81 + 3.98 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 2.23 + 0.50

− 4.38 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.95 − 2.96

2.4–2.6 8.152 3.12 2.94 + 5.72 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 2.23 + 4.14

− 4.41 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.95 − 2.96

2.6–2.8 5.663 3.22 3.91 + 5.73 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 2.23 + 4.14

− 4.45 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.95 − 2.96

2.8–3.0 3.248 3.91 4.78 + 9.42 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 2.23 + 8.54

− 9.46 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.95 − 7.71

3.0–3.2 2.169 5.43 5.73 + 9.48 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 2.47 + 8.54

− 9.46 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.95 − 7.71

3.2–3.4 1.234 7.36 9.27 + 15.87 − 0.04 + 0.02 + 0.11 − 0.29 + 0.06 + 2.47 + 15.33

− 13.57 + 0.00 − 0.08 − 0.15 + 0.38 + 0.00 − 1.95 − 12.42

123
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Table 5 continued

|yjet| δJES
hadron δJES

closure δJES
pile-up δJES

flavour δJES
pthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.2 + 0.00 + 0.00 + 0.83 + 1.51 + 0.00 − 0.36 − 0.04 + 0.14 + 0.19 + 0.18 + 1.00

− 0.06 − 0.03 − 1.13 − 2.20 − 0.06 + 0.36 + 0.00 − 0.14 − 0.18 − 0.43 − 1.00

0.2–0.4 + 0.00 + 0.00 + 0.83 + 1.51 + 0.00 − 0.36 − 0.04 + 0.14 + 0.18 + 0.18 + 1.00

− 0.06 − 0.03 − 1.13 − 2.20 − 0.06 + 0.36 + 0.00 − 0.14 − 0.17 − 0.44 − 1.00

0.4–0.6 + 0.00 + 0.00 + 0.83 + 1.51 + 0.00 − 0.36 − 0.04 + 0.14 + 0.19 + 0.17 + 1.00

− 0.06 − 0.03 − 1.13 − 1.84 − 0.06 + 0.36 + 0.00 − 0.14 − 0.17 − 0.43 − 1.00

0.6–0.8 + 0.00 + 0.00 + 0.83 + 1.51 + 0.00 − 0.36 − 0.04 + 0.14 + 0.18 + 0.20 + 1.00

− 0.06 − 0.03 − 1.13 − 1.73 − 0.06 + 0.36 + 0.00 − 0.14 − 0.17 − 0.47 − 1.00

0.8–1.0 + 0.00 + 0.00 + 0.83 + 1.37 + 0.00 − 0.36 − 0.04 + 0.14 + 0.17 + 0.17 + 1.00

− 0.06 − 0.03 − 1.13 − 1.73 − 0.06 + 0.36 + 0.00 − 0.14 − 0.16 − 0.46 − 1.00

1.0–1.2 + 0.00 + 0.00 + 0.83 + 1.37 + 0.00 − 0.36 − 0.04 + 1.13 + 0.18 + 0.18 + 1.00

− 0.06 − 0.03 − 0.92 − 1.45 − 0.06 + 0.36 + 0.00 − 1.13 − 0.16 − 0.48 − 1.00

1.2–1.4 + 0.00 + 0.00 + 0.83 + 1.37 + 0.00 − 0.36 − 0.04 + 1.13 + 0.17 + 0.19 + 1.00

− 0.06 − 0.03 − 0.92 − 1.45 − 0.06 + 0.36 + 0.00 − 1.13 − 0.15 − 0.53 − 1.00

1.4–1.6 + 0.00 + 0.00 + 0.83 + 1.70 + 0.00 − 0.36 − 0.04 + 1.13 + 0.17 + 0.52 + 1.00

− 0.06 − 0.03 − 0.92 − 1.45 − 0.06 + 0.36 + 0.00 − 1.13 − 0.16 − 0.79 − 1.00

1.6–1.8 + 0.00 + 0.00 + 0.83 + 1.70 + 0.00 − 0.36 − 0.04 + 1.13 + 0.16 + 0.24 + 1.00

− 0.06 − 0.03 − 0.92 − 1.45 − 0.06 + 0.36 + 0.00 − 1.13 − 0.15 − 0.60 − 1.00

1.8–2.0 + 0.00 + 0.00 + 1.17 + 1.70 + 0.00 − 0.36 − 0.04 + 1.13 + 0.15 + 0.26 + 1.00

− 0.06 − 0.03 − 0.92 − 1.66 − 0.06 + 0.36 + 0.00 − 1.13 − 0.14 − 0.68 − 1.00

2.0–2.2 + 0.00 + 0.00 + 1.17 + 1.70 + 0.00 − 0.36 − 0.04 + 1.13 + 0.15 + 0.26 + 1.00

− 0.06 − 0.03 − 0.92 − 1.66 − 0.06 + 0.36 + 0.00 − 1.13 − 0.14 − 0.70 − 1.00

2.2–2.4 + 0.00 + 0.00 + 1.17 + 2.57 + 0.00 − 0.36 − 0.04 + 1.13 + 0.15 + 0.25 + 1.00

− 0.06 − 0.03 − 0.92 − 1.66 − 0.06 + 0.36 + 0.00 − 1.13 − 0.14 − 0.70 − 1.00

2.4–2.6 + 0.00 + 0.00 + 1.17 + 2.57 + 0.00 − 0.36 − 0.04 + 1.13 + 0.15 + 0.32 + 1.00

− 0.06 − 0.03 − 0.92 − 1.66 − 0.06 + 0.36 + 0.00 − 1.13 − 0.14 − 0.87 − 1.00

2.6–2.8 + 0.00 + 0.00 + 1.17 + 2.57 + 0.00 − 0.36 − 0.04 + 1.13 + 0.17 + 0.44 + 1.00

− 0.06 − 0.03 − 0.92 − 1.66 − 0.06 + 0.36 + 0.00 − 1.13 − 0.16 − 1.04 − 1.00

2.8–3.0 + 0.00 + 0.00 + 1.17 + 2.57 + 0.00 − 0.36 − 0.04 + 1.13 + 0.18 + 0.40 + 1.00

− 0.06 − 0.03 − 0.92 − 4.65 − 0.06 + 0.36 + 0.00 − 1.13 − 0.17 − 1.07 − 1.00

3.0–3.2 + 0.00 + 0.00 + 1.17 + 2.57 + 0.00 − 0.36 − 0.04 + 1.13 + 0.18 + 0.46 + 1.00

− 0.06 − 0.03 − 0.92 − 4.65 − 0.06 + 0.36 + 0.00 − 1.13 − 0.17 − 1.09 − 1.00

3.2–3.4 + 0.00 + 0.00 + 1.17 + 2.57 + 0.00 − 0.36 − 0.04 + 1.13 + 0.15 + 0.41 + 1.00

− 0.06 − 0.03 − 0.92 − 4.65 − 0.06 + 0.36 + 0.00 − 1.13 − 0.13 − 1.07 − 1.00
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Table 6 The measured double-differential Z + jets production cross-
sections as a function of |yjet| in the 200 GeV < pjet

T < 300 GeV range.
δstat

data and δstat
MC are the statistical uncertainties in data and MC simulation,

respectively. δsys
tot is the total systematic uncertainty and includes the fol-

lowing components: uncertainties due to electron reconstruction (δel
rec),

identification (δel
ID) and trigger (δel

trig) efficiencies; electron energy scale

(δel
scale) and energy resolution (δel

res) uncertainties; sum in quadrature
of the uncertainties from JES in situ methods (δJES

in situ); sum in quadra-
ture of the uncertainties from JES η-intercalibration methods (δJES

η-int); an

uncertainty of the measured single-hadron response (δJES
hadron); MC non-

closure uncertainty (δJES
closure); sum in quadrature of the uncertainties due

to pile-up corrections of the jet kinematics (δJES
pile-up); sum in quadra-

ture of the flavour-based uncertainties (δJES
flavour); punch-through uncer-

tainty (δJES
pthrough); JER uncertainty (δJER); JVF uncertainty (δJVF); sum

in quadrature of the unfolding uncertainties (δunf); sum in quadrature
of the uncertainties due to MC generated backgrounds normalisation
(δbg

MC); sum in quadrature of the uncertainty due to combined multijet

and W+ jets backgrounds (δbg
mult); uncertainty due to jet quality selec-

tion (δqual). All uncertainties are given in %. The luminosity uncertainty
of 1.9% is not shown and not included in the total uncertainty and its
components

|yjet| d2σ

d|yjet|dpjet
T

δstat
data δstat

MC δ
sys
tot δel

rec δel
ID δel

trig δel
scale δel

res δJES
in situ δJES

η−int

(fb/GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.4 5.561 2.50 2.63 + 3.55 − 0.05 + 0.12 + 0.10 − 0.18 − 0.06 + 2.62 + 0.39

− 4.33 + 0.04 + 0.00 − 0.01 + 0.18 + 0.05 − 3.10 − 0.77

0.4–0.8 4.889 2.36 2.93 + 3.55 − 0.05 + 0.12 + 0.10 − 0.18 − 0.06 + 2.62 + 0.39

− 4.33 + 0.04 + 0.00 − 0.01 + 0.18 + 0.05 − 3.10 − 0.77

0.8–1.2 4.260 3.18 3.41 + 3.54 − 0.05 + 0.12 + 0.10 − 0.18 − 0.06 + 2.62 + 0.39

− 4.33 + 0.04 + 0.00 − 0.01 + 0.18 + 0.05 − 3.10 − 0.77

1.2–1.6 3.055 3.61 3.17 + 3.55 − 0.05 + 0.12 + 0.10 − 0.18 − 0.06 + 2.62 + 0.39

− 4.35 + 0.04 + 0.00 − 0.01 + 0.18 + 0.05 − 3.10 − 0.77

1.6–2.0 1.780 4.43 4.42 + 3.56 − 0.05 + 0.12 + 0.10 − 0.18 − 0.06 + 2.62 + 0.39

− 4.38 + 0.04 + 0.00 − 0.01 + 0.18 + 0.05 − 3.10 − 0.77

2.0–2.4 0.831 6.45 7.17 + 3.60 − 0.05 + 0.12 + 0.10 − 0.18 − 0.06 + 2.62 + 0.39

− 6.26 + 0.04 + 0.00 − 0.01 + 0.18 + 0.05 − 5.37 − 0.77

2.4–3.4 0.136 9.48 11.75 + 3.58 − 0.05 + 0.12 + 0.10 − 0.18 − 0.06 + 2.62 + 0.39

− 6.25 + 0.04 + 0.00 − 0.01 + 0.18 + 0.05 − 5.37 − 0.77

|yjet| δJES
hadron δJES

closure δJES
pile-up δJES

flavour δJES
pthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.4 + 0.04 + 0.15 +0.36 + 1.40 + 0.20 − 0.58 − 0.04 + 1.40 + 0.09 + 0.28 + 1.00

+ 0.00 + 0.00 −0.75 − 2.08 − 0.06 + 0.58 + 0.09 − 1.40 − 0.08 − 0.54 − 1.00

0.4–0.8 + 0.04 + 0.15 +0.36 + 1.40 + 0.20 − 0.58 − 0.04 + 1.40 + 0.10 + 0.25 + 1.00

+ 0.00 + 0.00 −0.75 − 2.08 − 0.06 + 0.58 + 0.09 − 1.40 − 0.09 − 0.55 − 1.00

0.8–1.2 + 0.04 + 0.15 +0.36 + 1.40 + 0.20 − 0.58 − 0.04 + 1.40 + 0.11 + 0.21 + 1.00

+ 0.00 + 0.00 −0.75 − 2.08 − 0.06 + 0.58 + 0.09 − 1.40 − 0.10 − 0.57 − 1.00

1.2–1.6 + 0.04 + 0.15 +0.36 + 1.40 + 0.20 − 0.58 − 0.04 + 1.40 + 0.14 + 0.27 + 1.00

+ 0.00 + 0.00 −0.75 − 2.08 − 0.06 + 0.58 + 0.09 − 1.40 − 0.13 − 0.71 − 1.00

1.6–2.0 + 0.04 + 0.15 +0.36 + 1.40 + 0.20 − 0.58 − 0.04 + 1.40 + 0.17 + 0.39 + 1.00

+ 0.00 + 0.00 −0.75 − 2.08 − 0.06 + 0.58 + 0.09 − 1.40 − 0.16 − 0.84 − 1.00

2.0–2.4 + 0.04 + 0.15 +0.36 + 1.40 + 0.20 − 0.58 − 0.04 + 1.40 + 0.22 + 0.65 + 1.00

+ 0.00 + 0.00 −0.75 − 2.08 − 0.06 + 0.58 + 0.09 − 1.40 − 0.20 − 1.19 − 1.00

2.4–3.4 + 0.04 + 0.15 +0.36 + 1.40 + 0.20 − 0.58 − 0.04 + 1.40 + 0.32 + 0.42 + 1.00

+ 0.00 + 0.00 −0.75 − 2.08 − 0.06 + 0.58 + 0.09 − 1.40 − 0.29 − 1.12 − 1.00
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Table 7 The measured double-differential Z + jets production cross-
sections as a function of |yjet| in the 300 GeV < pjet

T < 400 GeV range.
δstat

data and δstat
MC are the statistical uncertainties in data and MC simulation,

respectively. δsys
tot is the total systematic uncertainty and includes the fol-

lowing components: uncertainties due to electron reconstruction (δel
rec),

identification (δel
ID) and trigger (δel

trig) efficiencies; electron energy scale

(δel
scale) and energy resolution (δel

res) uncertainties; sum in quadrature
of the uncertainties from JES in situ methods (δJES

in situ); sum in quadra-
ture of the uncertainties from JES η-intercalibration methods (δJES

η-int); an

uncertainty of the measured single-hadron response (δJES
hadron); MC non-

closure uncertainty (δJES
closure); sum in quadrature of the uncertainties due

to pile-up corrections of the jet kinematics (δJES
pile-up); sum in quadra-

ture of the flavour-based uncertainties (δJES
flavour); punch-through uncer-

tainty (δJES
pthrough); JER uncertainty (δJER); JVF uncertainty (δJVF); sum

in quadrature of the unfolding uncertainties (δunf); sum in quadrature
of the uncertainties due to MC generated backgrounds normalisation
(δbg

MC); sum in quadrature of the uncertainty due to combined multijet

and W+ jets backgrounds (δbg
mult); uncertainty due to jet quality selec-

tion (δqual). All uncertainties are given in %. The luminosity uncertainty
of 1.9% is not shown and not included in the total uncertainty and its
components

|yjet| d2σ

d|yjet|dpjet
T

δstat
data δstat

MC δ
sys
tot δel

rec δel
ID δel

trig δel
scale δel

res δJES
in situ δJES

η−int

[fb/GeV] (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.4 1.190 5.83 6.75 + 5.95 + 0.74 + 0.56 + 0.00 + 0.00 + 0.76 + 4.03 + 1.41

− 2.33 + 0.00 + 0.00 + 0.51 + 0.72 + 0.00 − 1.63 + 0.00

0.4–0.8 1.083 5.52 5.50 + 5.94 + 0.74 + 0.56 + 0.00 + 0.00 + 0.76 + 4.03 + 1.41

− 2.30 + 0.00 + 0.00 + 0.51 + 0.72 + 0.00 − 1.63 + 0.00

0.8–1.2 0.946 6.68 6.87 + 5.95 + 0.74 + 0.56 + 0.00 + 0.00 + 0.76 + 4.03 + 1.41

− 2.34 + 0.00 + 0.00 + 0.51 + 0.72 + 0.00 − 1.63 + 0.00

1.2–1.6 0.628 8.15 8.34 + 5.96 + 0.74 + 0.56 + 0.00 + 0.00 + 0.76 + 4.03 + 1.41

− 2.43 + 0.00 + 0.00 + 0.51 + 0.72 + 0.00 − 1.63 + 0.00

1.6–2.0 0.322 11.56 11.42 + 5.97 + 0.74 + 0.56 + 0.00 + 0.00 + 0.76 + 4.03 + 1.41

− 2.46 + 0.00 + 0.00 + 0.51 + 0.72 + 0.00 − 1.63 + 0.00

2.0–3.0 0.032 26.98 24.63 + 6.01 + 0.74 + 0.56 + 0.00 + 0.00 + 0.76 + 4.03 + 1.41

− 2.64 + 0.00 + 0.00 + 0.51 + 0.72 + 0.00 − 1.63 + 0.00

|yjet| δJES
hadron δJES

closure δJES
pile-up δJES

flavour δJES
pthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.4 +0.68 +0.46 + 2.42 + 2.24 + 0.54 − 1.16 + 0.79 + 0.08 + 0.10 + 0.30 + 1.00

+0.00 +0.00 − 0.13 + 0.00 + 0.00 + 1.16 + 0.00 − 0.08 − 0.09 − 0.65 − 1.00

0.4–0.8 +0.68 +0.46 + 2.42 + 2.24 + 0.54 − 1.16 + 0.79 + 0.08 + 0.11 + 0.23 + 1.00

+0.00 +0.00 − 0.13 + 0.00 + 0.00 + 1.16 + 0.00 − 0.08 − 0.10 − 0.55 − 1.00

0.8–1.2 +0.68 +0.46 + 2.42 + 2.24 + 0.54 − 1.16 + 0.79 + 0.08 + 0.12 + 0.30 + 1.00

+0.00 +0.00 − 0.13 + 0.00 + 0.00 + 1.16 + 0.00 − 0.08 − 0.11 − 0.68 − 1.00

1.2–1.6 +0.68 +0.46 + 2.42 + 2.24 + 0.54 − 1.16 + 0.79 + 0.08 + 0.19 + 0.45 + 1.00

+0.00 +0.00 − 0.13 + 0.00 + 0.00 + 1.16 + 0.00 − 0.08 − 0.17 − 0.95 − 1.00

1.6–2.0 +0.68 +0.46 + 2.42 + 2.24 + 0.54 − 1.16 + 0.79 + 0.08 + 0.26 + 0.51 + 1.00

+0.00 +0.00 − 0.13 + 0.00 + 0.00 + 1.16 + 0.00 − 0.08 − 0.24 − 1.00 − 1.00

2.0–3.0 +0.68 +0.46 + 2.42 + 2.24 + 0.54 − 1.16 + 0.79 + 0.08 + 0.69 + 0.63 + 1.00

+0.00 +0.00 − 0.13 + 0.00 + 0.00 + 1.16 + 0.00 − 0.08 − 0.63 − 1.25 − 1.00

123



847 Page 32 of 47 Eur. Phys. J. C (2019) 79 :847

Table 8 The measured double-differential Z + jets production cross-
sections as a function of |yjet| in the 400 GeV < pjet

T < 1050 GeV range.
δstat

data and δstat
MC are the statistical uncertainties in data and MC simulation,

respectively. δsys
tot is the total systematic uncertainty and includes the fol-

lowing components: uncertainties due to electron reconstruction (δel
rec),

identification (δel
ID) and trigger (δel

trig) efficiencies; electron energy scale

(δel
scale) and energy resolution (δel

res) uncertainties; sum in quadrature
of the uncertainties from JES in situ methods (δJES

in situ); sum in quadra-
ture of the uncertainties from JES η-intercalibration methods (δJES

η-int); an

uncertainty of the measured single-hadron response (δJES
hadron); MC non-

closure uncertainty (δJES
closure); sum in quadrature of the uncertainties due

to pile-up corrections of the jet kinematics (δJES
pile-up); sum in quadra-

ture of the flavour-based uncertainties (δJES
flavour); punch-through uncer-

tainty (δJES
pthrough); JER uncertainty (δJER); JVF uncertainty (δJVF); sum

in quadrature of the unfolding uncertainties (δunf); sum in quadrature
of the uncertainties due to MC generated backgrounds normalisation
(δbg

MC); sum in quadrature of the uncertainty due to combined multijet

and W+ jets backgrounds (δbg
mult); uncertainty due to jet quality selec-

tion (δqual). All uncertainties are given in %. The luminosity uncertainty
of 1.9% is not shown and not included in the total uncertainty and its
components

|yjet| d2σ

d|yjet|dpjet
T

δstat
data δstat

MC δ
sys
tot δel

rec δel
ID δel

trig δel
scale δel

res δJES
in situ δJES

η−int

[fb/GeV] (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.4 0.110 6.84 8.88 + 2.79 − 0.34 + 0.00 + 0.00 − 0.82 − 0.41 + 2.01 + 0.22

− 5.82 + 0.00 − 0.26 − 0.43 + 0.00 + 0.00 − 4.74 − 0.50

0.4–0.8 0.076 9.45 9.66 + 2.76 − 0.34 + 0.00 + 0.00 − 0.82 − 0.41 + 2.01 + 0.22

− 5.81 + 0.00 − 0.26 − 0.43 + 0.00 + 0.00 − 4.74 − 0.50

0.8–1.2 0.058 11.67 11.68 + 2.78 − 0.34 + 0.00 + 0.00 − 0.82 − 0.41 + 2.01 + 0.22

− 5.83 + 0.00 − 0.26 − 0.43 + 0.00 + 0.00 − 4.74 − 0.50

1.2–2.6 0.012 12.84 13.36 + 2.84 − 0.34 + 0.00 + 0.00 − 0.82 − 0.41 + 2.01 + 0.22

− 5.90 + 0.00 − 0.26 − 0.43 + 0.00 + 0.00 − 4.74 − 0.50

|yjet| δJES
hadron δJES

closure δJES
pile-up δJES

flavour δJES
pthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0–0.4 +0.00 +0.00 +0.10 + 0.33 + 0.13 − 0.14 + 0.01 + 1.47 + 0.15 + 0.59 + 1.00

−0.36 −0.33 −0.91 − 2.13 − 0.58 + 0.14 − 0.32 − 1.47 − 0.14 − 0.84 − 1.00

0.4–0.8 +0.00 +0.00 +0.10 + 0.33 + 0.13 − 0.14 + 0.01 + 1.47 + 0.18 + 0.42 + 1.00

−0.36 −0.33 −0.91 − 2.13 − 0.58 + 0.14 − 0.32 − 1.47 − 0.16 − 0.71 − 1.00

0.8–1.2 +0.00 +0.00 +0.10 + 0.33 + 0.13 − 0.14 + 0.01 + 1.47 + 0.21 + 0.54 + 1.00

−0.36 −0.33 −0.91 − 2.13 − 0.58 + 0.14 − 0.32 − 1.47 − 0.20 − 0.86 − 1.00

1.2–2.6 +0.00 +0.00 +0.10 + 0.33 + 0.13 − 0.14 + 0.01 + 1.47 + 0.37 + 0.73 + 1.00

−0.36 −0.33 −0.91 − 2.13 − 0.58 + 0.14 − 0.32 − 1.47 − 0.34 − 1.24 − 1.00
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Abstract This paper describes precision measurements of
the transverse momentum p��

T (� = e, μ) and of the angular
variable φ∗

η distributions of Drell–Yan lepton pairs in a mass
range of 66–116 GeV. The analysis uses data from 36.1 fb−1

of proton–proton collisions at a centre-of-mass energy of√
s = 13 TeV collected by the ATLAS experiment at the

LHC in 2015 and 2016. Measurements in electron-pair and
muon-pair final states are performed in the same fiducial vol-
umes, corrected for detector effects, and combined. Com-
pared to previous measurements in proton–proton collisions
at

√
s = 7 and 8 TeV, these new measurements probe per-

turbative QCD at a higher centre-of-mass energy with a dif-
ferent composition of initial states. They reach a precision
of 0.2% for the normalized spectra at low values of p��

T . The
data are compared with different QCD predictions, where it
is found that predictions based on resummation approaches
can describe the full spectrum within uncertainties.
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1 Introduction

In high-energy hadron–hadron collisions, the vector bosons
W and Z/γ ∗ are produced via quark–antiquark annihila-
tion [1], and can be observed with very small backgrounds
by using their leptonic decay modes. The vector bosons have
non-zero momentum transverse to the beam direction due
to the emission of quarks and gluons from the initial-state
partons as well as to the intrinsic transverse momentum
of the initial-state partons in the proton. Phenomenologi-
cally, the spectrum at low transverse momentum of the Z
boson, p��

T , reconstructed through the decay into a pair of
charged leptons, can be described using soft-gluon resum-
mation [2–7] and non-perturbative models to account for the
intrinsic transverse momentum of partons. At high p��

T the
spectrum can be calculated by fixed-order perturbative quan-
tum chromodynamics (QCD) predictions [8–12], and next-
to-leading-order electroweak (NLO EW) effects are expected
to be important [13–15]. Parton-shower models [16–18] or
resummation may be matched to fixed-order calculations to
describe the full spectrum.

A precise measurement of the p��
T spectrum provides an

important input to the background prediction in searches
for beyond the Standard Model (SM) processes, e.g. in the
monojet signature [19], as well as to SM precision measure-
ments. In particular, the measurement of the mass of the W
boson [20] relies on the measurement of the p��

T distribu-
tion to constrain the transverse momentum spectrum of the
W boson, pWT , since a direct measurement of the transverse
momentum distribution of W bosons is experimentally chal-
lenging [21]. The p��

T spectrum was measured previously in
proton–proton (pp) collisions at the Large Hadron Collider
(LHC) by the ATLAS Collaboration at centre-of-mass ener-
gies of

√
s = 7 TeV and 8 TeV [22,23], including several

mass regions near and away from the Z -boson resonance.
Related measurements were also made by the CMS [24–28]
and the LHCb [29–31] collaborations at the LHC and by the
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CDF [32] and D0 [33,34] collaborations in p p̄ collisions at
the TeVatron.

Compared to measurements at lower
√
s, Z -boson produc-

tion at 13 TeV is characterized by a smaller parton momentum
fraction of the colliding protons, leading to a different flavour
composition and a larger phase space for hard QCD radia-
tion. A precise measurement will test this energy dependence
and play an important role in future studies of the W -boson
mass using the 13 TeV data.

The granularity of the measurement in the low-p��
T domain

is limited by the lepton momentum resolution. To overcome
this limitation, the φ∗

η observable was introduced [35] as an

alternative probe of p��
T . It is defined as

φ∗
η = tan

(
π − �φ

2

)
× sin(θ∗

η ) ,

where �φ is the azimuthal angle in radians between the
two leptons. The angle θ∗

η is a measure of the scattering
angle of the leptons relative to the proton beam direction
in the rest frame of the dilepton system and is defined by
cos(θ∗

η ) = tanh[(η− − η+)/2], where η− and η+ are the
pseudorapidities1 of the negatively and positively charged
lepton, respectively. Therefore, φ∗

η depends exclusively on
the directions of the two leptons, which are measured more
precisely than their momenta.

In this paper, measurements of the p��
T and the φ∗

η spec-
tra are presented using pp collision data at

√
s = 13 TeV

collected in 2015 and 2016 with the ATLAS detector, corre-
sponding to an integrated luminosity of 36.1 fb−1. Both the
dielectron and dimuon final states Z/γ ∗ → �� (� = e or
μ) are analysed in a dilepton mass window of m�� = 66–
116 GeV. The measurement is performed in a fiducial phase
space that is close to the detector acceptance for leptons in
transverse momentum p�

T and pseudorapidity η�.

2 The ATLAS detector

The ATLAS experiment uses a multipurpose detector [36–
38] with a cylindrical geometry and almost 4π coverage
in solid angle. The collision point is surrounded by track-
ing detectors, collectively referred to as the inner detector
(ID), followed by a superconducting solenoid providing a 2 T

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
�R = √

(�η)2 + (�φ)2.

axial magnetic field, a calorimeter system and a muon spec-
trometer. The ID provides precise measurements of charged-
particle tracks in the pseudorapidity range |η| < 2.5. It
consists of three subdetectors arranged in a coaxial geom-
etry around the beam axis: a silicon pixel detector, a silicon
microstrip detector and a transition radiation tracker.

The electromagnetic calorimeter covers the region |η| <

3.2 and is based on a high-granularity, lead/liquid- argon
(LAr) sampling technology. The hadronic calorimeter uses
a steel/scintillator-tile detector in the region |η| < 1.7 and a
copper/LAr detector in the region 1.5 < |η| < 3.2. The for-
ward calorimeter (FCAL) covers the range 3.2 < |η| < 4.9
and also uses LAr as the active material and copper or tung-
sten absorbers for the EM and hadronic sections, respectively.

The muon spectrometer (MS) consists of separate trig-
ger and high-precision tracking chambers to measure the
deflection of muons in a magnetic field generated by three
large superconducting toroids arranged with an eightfold
azimuthal coil symmetry around the calorimeters. The high-
precision chambers cover a range of |η| < 2.7. The muon
trigger system covers the range |η| < 2.4 with resistive-plate
chambers in the barrel and thin-gap chambers in the endcap
regions.

A two-level trigger system is used to select events in real
time [39]. It consists of a hardware-based first-level trigger
and a software-based high-level trigger. The latter employs
algorithms similar to those used offline and is used to identify
electrons and muons.

3 Analysis methodology

3.1 Description of the measurements

The Z -boson differential cross-sections are measured as a
function of p��

T and φ∗
η separately for the dielectron and

dimuon decay channels. Only small background contribu-
tions are expected. The results are reported within a fidu-
cial phase space chosen to be close to the experimental
acceptance defined by the lepton transverse momenta p�

T >

27 GeV, the absolute lepton pseudorapidity |η�| < 2.5 and
the dilepton invariant mass m�� = 66–116 GeV.

The lepton kinematics can be described at different lev-
els regarding the effects of final-state photon radiation (QED
FSR). Cross-sections at Born level employ the lepton kine-
matics before QED FSR, while the bare level is defined by
leptons after emission of QED FSR. A dressed lepton is
defined by combining the bare four-momenta of each lep-
ton with that of QED FSR photons radiated from the lepton
within a cone of size �R = 0.1 around the lepton. The results
in this paper are reported at the dressed and Born levels.

The differential cross-sections in p��
T and φ∗

η are measured
and their normalized spectra derived. The total systematic
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uncertainty of the latter is significantly reduced due to large
correlations in many sources of uncertainty between the mea-
surement bins.

3.2 Simulated event samples

Events simulated by Monte Carlo (MC) generators are used
to predict the detector response to the signal process in order
to correct the data for detector inefficiencies and resolution
as well as to estimate most of the background from processes
other than Z/γ ∗ → �� in the selected data sample.

The Z/γ ∗ → �� signal process was generated with the
Powheg-Box V1 MC event generator [40–43] at next-to-
leading order in αS interfaced to Pythia 8.186 [17] for the
modelling of the parton shower, hadronization, and under-
lying event, with parameters set according to the AZNLO
tune [22]. The CT10 (NLO) set of parton distribution func-
tions (PDF) [44] was used for the hard-scattering processes,
whereas the CTEQ6L1 PDF set [45] was used for the parton
shower. The effect of final-state photon radiation was sim-
ulated with Photos++ v3.52 [46,47]. The EvtGen v1.2.0
program [48] was used to decay bottom and charm hadrons.

Powheg+Pythia8 was also used to simulate the major-
ity of the background processes considered. The Z → ττ

and the diboson processes WW , WZ and Z Z [49] (requir-
ing m�� > 4 GeV for any pair of same-flavour opposite-
charge leptons) used the same tune and PDF as the sig-
nal process. The t t̄ and single-top-quark [50,51] back-
grounds to the dielectron channel were simulated with
Powheg+Pythia6 [52] with the P2012 tune [53] and CT10
PDF, while for the dimuon channel Powheg+Pythia8 with
the A14 tune [54] and the NNPDF3.0 PDF [55] was used. It
was found that the prediction of the t t̄ background is in very
good agreement for both generators. The photon-induced
background γ γ → �� was generated with Pythia8 using
the NNPDF2.3 QED PDF [56].

The effect of multiple interactions in the same and neigh-
bouring bunch crossings (pile-up) was modelled by overlay-
ing the hard-scattering event with simulated minimum-bias
events generated withPythia8.186 using the MSTW2008LO
set of PDFs [57] and the A2 tune [58]. The simulated event
samples were reweighted to describe the distribution of
the number of pile-up interactions in the data, and further
reweighted such that the distribution of the longitudinal posi-
tion of the primary pp collision vertex matches that in data.
The primary vertex is defined as the vertex with at least two
reconstructed tracks with pT > 0.4 GeV and with the high-
est sum of squared transverse momenta of associated tracks.
The Geant4 program was used to simulate the passage of
particles through the ATLAS detector [59,60]. The simulated
events are reconstructed with the same analysis procedure as
the data. The reconstruction, trigger and isolation efficien-
cies as well as lepton momentum scale and resolution in the

MC simulation are corrected to match those determined in
data [61–63].

3.3 Event selection

Candidate Z → ee events are triggered requiring at least one
identified electron with pT > 24 GeV in 2015 and pT >

26 GeV in 2016 data [64]. In addition to the increased pT

threshold, the electron also has to satisfy isolation criteria
in the 2016 data. Candidate Z → μμ events were recorded
with triggers that require at least one isolated muon with
pT > 20 GeV in 2015 and pT > 26 GeV in 2016 data.

Electron candidates are reconstructed from clusters of
energy in the electromagnetic calorimeter matched to ID
tracks [62]. They are required to have pT > 27 GeV and
|η| < 2.47 (excluding the transition regions between the
barrel and the endcap electromagnetic calorimeters, 1.37 <

|η| < 1.52). Electron candidates are required to pass the
‘medium‘ identification requirement, and are also required to
be isolated according to the ‘gradient’ isolation criterion [62].

Muon candidates are reconstructed by combining tracks
reconstructed in the inner detector with tracks reconstructed
in the MS [61]. They are required to have pT > 27 GeV and
|η| < 2.5 and satisfy identification criteria corresponding to
the ‘medium’ working point [61]. Track quality requirements
are imposed to suppress backgrounds, and the muon candi-
dates are required to be isolated according to the ‘gradient’
isolation criterion [61], which is pT- and η-dependent and
based on the calorimeter and track information.

Electron and muon candidates are required to originate
from the primary vertex. Thus, the significance of the track’s
transverse impact parameter calculated relative to the beam
line, |d0/σd0 |, must be smaller than 3.0 for muons and less
than 5.0 for electrons. Furthermore, the longitudinal impact
parameter, z0 (the difference between the z-coordinate of the
point on the track at which d0 is defined and the longitudinal
position of the primary vertex), is required to satisfy |z0 ·
sin(θ)| < 0.5 mm.

Events are required to contain exactly two same-flavour
leptons passing the lepton selection. The two leptons must
be of opposite electric charge and their invariant mass must
satisfy 66 < m�� < 116 GeV. No additional veto on the
presence of leptons of different flavour is applied. Table 1
shows the number of events satisfying the above selection
criteria in the electron channel and the muon channel. Also
given are the estimated contributions from the background
sources described below in Sect. 3.4.

3.4 Estimation of backgrounds

The backgrounds from all sources other than multijet pro-
cesses are estimated using the MC samples detailed in
Sect. 3.2. The number and properties of the background
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Table 1 Selected signal
candidate events in data for both
decay channels as well as the
expected background
contributions including their
total uncertainties

Z/γ ∗ → ee Z/γ ∗ → μμ

Two reconstructed leptons within fiducial volume 13 649 239 18 162 641

Electroweak background (Z → ττ , WW , WZ , Z Z ) 40 000 ± 2000 50 000 ± 2500

Photon-induced background 2900 ± 140 4100 ± 200

Top-quark background 38 000 ± 1900 45 400 ± 2200

Multijet background 8500 ± 4900 1000 ± 200

Total background 89 400 ± 5600 100 500 ± 3300

events where one or two reconstructed lepton candidates orig-
inate from hadrons or hadron decay products, i.e. multijet
processes as well as W+jets, are estimated using the data-
driven techniques described in the following for both decay
channels.

In the electron channel, a multijet-dominated sample is
selected from data with two same-charge electron candi-
dates satisfying the ‘loose’ identification criteria, but not
the ‘medium’ criteria [62], i.e. they are more likely to be
caused by misidentified jets. This sample is collected by a di-
electron trigger without isolation criteria [64]. In the muon
channel, a multijet sample is obtained by selecting two same-
charge muons. The residual contamination from processes
with prompt leptons is estimated using the simulation and
subtracted.

The normalization of the multijet template in the electron
channel is determined in a fit to the distribution of the elec-
tron isolation using all event-selection criteria except those
for the isolation variables. Systematic uncertainties in the
normalization are estimated by varying the fit range on the
electron isolation distribution.

In the muon channel, the normalization is obtained using
the ratio of number of opposite-charge dimuon events to the
number of same-charge dimuon events where the muons fail
to satisfy the isolation criterion. Assuming no correlation
between the isolation of muons in multijet events and their
charge, this ratio can be applied to a control sample, defined
by pairs of isolated same-charge muons passing the signal-
kinematic selection, to determine the multijet contamination
in the signal region. The systematic uncertainty in the esti-
mate is obtained by varying the isolation criterion for the
muons.

The total fraction of selected data events originating from
background processes is about 0.6% in both the electron and
muon channels. The background is dominated by contribu-
tions from diboson and t t̄ processes. An overview of the
estimated number of background events is given in Table 1,
together with the corresponding total uncertainties.

Figure 1 shows the dilepton invariant mass and the lep-
ton pseudorapidity distribution, for the electron and muon
channels separately. The predictions are in fair agreement
with the data. The impact of the residual differences between

these distributions on the p��
T and φ∗

η measurements is esti-
mated by reweighting the MC signal sample to data and then
repeating the measurement procedure. Figure 2 compares the
measured p��

T and φ∗
η distributions for both channels with the

signal MC predictions. The disagreement between the data
and the predictions for large values of p��

T and φ∗
η is expected

because Powheg+Pythia8 is effectively a computation at
leading-order in αS in this region.

3.5 Correction for detector effects

The production cross-section times the branching ratio for
decays into a single lepton flavour are measured in fiducial
volumes as defined in Sect. 3.1. Integrated fiducial cross-
sections in the electron and muon channels are computed
following the equation

σ fid
Z/γ ∗→�� = NData − NBkg

CZ · L ,

where NData is the number of observed signal candidates
and NBkg is the number of background events expected in
the selected sample. The integrated luminosity of the sam-
ple is L = 36.1 fb−1. A correction for the event detection
efficiency is applied with the factor CZ , which is obtained
from the simulation of signal events as the ratio of the sum
of event weights after simulation, reconstruction and selec-
tion, to the sum of MC event weights for events satisfying
the fiducial requirements. The factorCZ is affected by exper-
imental uncertainties, described in Sect. 4, while theory and
modelling uncertainties are negligible.

The differential distributions within the fiducial volume
are corrected for detector effects and bin-to-bin migrations
using an iterative Bayesian unfolding method [65–67]. First,
the data are corrected for events that pass the detector-level
selection but not the particle-level selection. Then, the iter-
ative Bayesian unfolding technique is used as a regular-
ized way to correct for the detector resolution in events
that pass both the detector-level and particle-level selections.
The method is applied with four iterations implemented in
the RooUnfold framework [67]. After the application of the
response matrix, a final correction is applied to account for
events that pass the particle-level but not detector-level selec-
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Fig. 1 The distribution of events passing the selection requirements
in the electron channel (left) and muon channel (right) as a function
of dilepton invariant mass m�� (upper row) and lepton pseudorapidity
η (lower row), the latter with one entry for each lepton per event. The
MC signal sample is simulated using Powheg+Pythia8. The statistical

uncertainties of the data points are generally smaller than the size of
the markers. The predictions of the MC signal sample together with the
MC background samples are normalized to the integral of the data and
the total experimental uncertainty of the predicted values is shown as a
grey band in the ratio of the prediction to data

tion, resulting in unfolded distributions on Born and dressed
particle level. The response matrices, which connect the dis-
tributions at reconstruction and particle level, as well as the
correction factors are derived using the Powheg+Pythia
signal MC sample.

4 Statistical and systematic uncertainties

Uncertainties in the measurement are assessed for each
aspect of the analysis, including the background subtraction,
event detection efficiencies, response matrix, and unfolding
method. The entire analysis procedure is repeated for each
systematic uncertainty. Each source of uncertainty is varied
to estimate the effect on the final result.

The effect on the measurement from the size of the
data and MC samples is estimated by generating pseudo-
experiment variations of the respective samples. The result-
ing statistical uncertainties are considered as uncorrelated
between bins and between channels.

Uncertainties in the scale and resolution of the electron
energy scale [63] and muon momentum scale [61] are among
the dominant uncertainties in the p��

T measurement. Further-
more, uncertainties related to lepton reconstruction and selec-
tion efficiencies are considered [39,61,62,64], covering the
lepton identification, reconstruction, isolation, triggering and
track-to-vertex matching processes. The lepton related sys-
tematic uncertainties have only a small statistical compo-
nent. There is an additional uncertainty in the muon channel
to cover charge-dependent biases in the muon momentum
measurement. The majority of these experimental uncertain-
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Fig. 2 The distribution of events passing the selection requirements
in the electron channel (left) and muon channel (right) as a function
of dilepton transverse momentum (upper row) and φ∗

η (lower row). The
MC signal sample is simulated using Powheg+Pythia8. The statistical

uncertainties of the data points are generally smaller than the size of the
markers. The predictions are normalized to the integral of the data and
the total experimental uncertainty of the predicted values is shown as a
grey band in the ratio of the prediction to data

ties are considered correlated between bins of p��
T and φ∗

η .
An exception are the components of the reconstruction and
identification efficiencies which have a significant statistical
component due to the limited number of events in the data
samples used to derive the efficiency corrections. Uncertain-
ties related to electron or muon reconstruction and identifica-
tion are always assumed to be uncorrelated with each other.
They dominate the uncertainty in the fiducial cross-section
measurement.

The uncertainties in the MC background estimates are
obtained by independently varying the theory cross-sections
used to normalize the corresponding samples and observing
the effect on the measured p��

T and φ∗
η cross-sections. These

background uncertainties are considered correlated between
bins of p��

T and φ∗
η and between the electron and muon chan-

nels. As described in Sect. 3.4, the uncertainty in the multijet
background in the electron channel is obtained by changing
the input range of the template used to estimate the multijet

background. For the muon channel, the measurement is per-
formed again with a modified isolation variable used in the
normalization procedure. The differences between the nomi-
nal and modified measurements are used as uncertainty. The
estimated multijet backgrounds are assumed to be uncorre-
lated between the channels.

An uncertainty is derived to cover the mis-modelling of
the simulated pile-up activity following the measurement of
the cross-section of inelastic pp collisions [68]. Also, the
uncertainty in modelling the distribution of the longitudinal
position of the primary vertex is considered. These uncertain-
ties are treated as correlated between the electron channel and
muon channel.

The uncertainty from the unfolding method is determined
by repeating the procedure with a different simulation where
the nominal particle-level spectrum is reweighted so that the
simulated detector-level spectrum is in good agreement with
the data. The modified detector-level distribution is unfolded
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Table 2 Overview of the detector efficiency correction factors,CZ , for the electron and muon channels and their systematic uncertainty contributions

Electron channel Muon channel

Born Dressed Born Dressed

CZ 0.509 ± 0.005 0.522 ± 0.005 0.685 ± 0.011 0.702 ± 0.011

Trigger efficiencies ±0.0004 ±0.0004

Identification & reconstruction efficiencies ±0.0049 ±0.0102

Isolation efficiencies ±0.0009 ±0.0029

Energy/momentum scale and resolution ±0.0014 ±0.0010

Pile-up ±0.0011 ±0.0019

Model uncertainties ±0.0001 ±0.0001

with the nominal response matrix and the difference between
the result and the reweighted particle-level spectrum is taken
as the bias of the unfolding method due to the choice of prior.
The closure of the unfolding procedure is also tested using
the generator-level distributions of the Sherpa MC sample
described in Sect. 5.2, where consistent results within the
assigned unfolding uncertainties are found.

The uncertainty from the choice of PDF used in the sig-
nal MC generator is evaluated by reweighting the signal MC
simulation to the 52 error sets of the CT10 PDF set and com-
puting the resulting variation of the results [44,69]. The dif-
ferences found in this way are negligible, similar to scale-
choice uncertainties. The uncertainty in the combined 2015–
2016 integrated luminosity is 2.1% [70], obtained using the
LUCID-2 detector [71] for the primary luminosity measure-
ments. This uncertainty only applies to the absolute cross-
section measurements.

The experimental uncertainties of CZ for the integrated
fiducial cross-section measurements in the electron and muon
channels are summarized in Table 2. The electron identifi-
cation efficiency and muon reconstruction efficiency con-
tribute a large fraction of the total systematic uncertainty
for both the integrated and absolute differential measure-
ments. These uncertainties are greatly reduced for the nor-
malized measurement of differential distributions. A sum-
mary of the uncertainties in the normalized differential
cross-section measurements is provided in Fig. 3 as a func-
tion of p��

T and φ∗
η for both decay channels. The statisti-

cal uncertainties for the electron and muon channel mea-
surements are a combination of the uncertainties due to
limited data and MC sample sizes. The systematic uncer-
tainties are divided into categories and originate from lep-
ton scales and resolutions, reconstruction and identifica-
tion efficiencies, as well as the MC signal modelling in the
unfolding procedure and further smaller uncertainty sources
such as the subtraction of background contributions. These
smaller contributions are summarized as “other” uncertain-
ties.

5 Results and discussion

5.1 Combination

The fiducial cross-sections measured in the Z/γ ∗ → ee and
Z/γ ∗ → μμ channels are presented in Table 3 including
statistical, systematic and luminosity uncertainties. When
correcting for the more restrictive fiducial volume defini-
tion, these results are in good agreement with the previ-
ous ATLAS measurements at 13 TeV [72]. The electron-
and muon-channel cross-sections are combined using χ2

minimization, following the best linear unbiased estima-
tor prescription (Blue) [73–75]. The combination is per-
formed on Born level, resulting in a combined cross-section
of σfid(pp → Z/γ ∗ → ��) = 736.2 ± 0.2(stat) ± 6.4
(sys) ± 14.7 (lumi) pb (Table 3).2 There is a reduction of
the uncertainty compared to individual electron- and muon-
channel measurements since the dominant detector-related
systematic uncertainty sources are largely uncorrelated. The
uncertainties due to pile-up, physics modelling and luminos-
ity are treated as correlated between the two decay chan-
nels.

The normalized differential cross-sections 1/σfid × d
σfid/dp��

T and 1/σfid × dσfid/dφ∗
η measured in the two decay

channels as well as their combination are illustrated in Fig. 4.
When building the χ2 for combination procedure, the mea-
surement uncertainties are separated into those from bin-
to-bin uncorrelated sources and those from bin-to-bin cor-
related sources, the latter largely reduced due to the nor-
malization by the fiducial cross-section. The normalized dif-
ferential measurements are combined at Born level follow-
ing the Blue prescription. The resulting χ2/Ndof = 47/44
for the combination for p��

T and the χ2/Ndof = 32/36
for φ∗

η indicate good agreement between the two chan-

2 The results on dressed level are about 2.4% lower compared to the
Born level definition
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Fig. 3 The systematic uncertainties for the electron channel measure-
ment (left) and muon channel measurement (right) for the normalized
p��

T (upper row) and normalized φ∗
η (lower row). The statistical uncer-

tainties are a combination of the uncertainties due to limited data and

MC sample sizes. The p��
T distribution is split into linear and logarithmic

scales at 30 GeV. Some uncertainties are larger than 2% for p��
T > 200

GeV and hence cannot be displayed. The corresponding uncertainties
are also summarized in Table 4

Table 3 Measured integrated
cross-section in the fiducial
volume in the electron and muon
decay channels at Born level
and their combination as well as
the theory prediction at NNLO
in αS using the CT14 PDF set

Channel Measured cross-section × B(Z/γ ∗ → ��) Predicted cross-section × B(Z/γ ∗ → ��)
(value ± stat. ± syst. ± lumi.) (value ± PDF ± αS ± scale ± intrinsic)

Z/γ ∗ → ee 738.3 ± 0.2 ± 7.7 ± 15.5 pb

Z/γ ∗ → μμ 731.7 ± 0.2 ± 11.3 ± 15.3 pb

Z/γ ∗ → �� 736.2 ± 0.2 ± 6.4 ± 15.5 pb 703+19
−24

+6
−8

+4
−6

+5
−5 pb [72]

nels.3 The combined precision is between 0.1% and 0.5%
for p��

T < 100 GeV, rising to 10% towards the high end
of the spectrum, where the overall precision is limited by
the data and MC sample size. The combined results for
both distributions are presented in Table 4 including sta-
tistical and bin-to-bin uncorrelated and correlated system-
atic uncertainties. The measurement results are reported at
Born level and factors kdr, the binwise ratio of dressed and

3 The χ2/Ndof is still good when taking into account only bins with
p��

T > 50 GeV.

born level results, are given to transfer to the dressed particle
level.

5.2 Comparison with predictions

The integrated fiducial cross-section is compared with a
fixed-order theory prediction that is computed in the same
way as in Ref. [76]. The speed-optimized DYTurbo [77]
version of the DYNNLO 1.5 [10] program with the CT14
NNLO set of PDFs [78] is used to obtain a prediction at
next-to-next-to-leading order (NNLO) in αS in the Gμ EW
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Fig. 4 The measured normalized cross section as a function of p��
T

(left) and φ∗
η (right) for the electron and muon channels and the com-

bined result as well as their ratio together with the total uncertainties,
shown as a blue band. The pull distribution between the electron and

muon channels, defined as the difference between the two channels
divided by the combined uncorrelated uncertainty, is also shown. The
p��

T distribution is split into linear and logarithmic scales at 30 GeV

Table 4 The measured combined normalized differential cross-sections, divided by the bin-width, in the fiducial volume at Born level as well as a
factor kdr to translate from the Born particle level to the dressed particle level

Bin [GeV] 1/σfid × dσ/dp��
T[1/GeV]

Corr.
uncert.

Uncorr.
uncert.

kdr Bin 1/σfid × dσ/dφ∗
η Corr.

uncert.
Uncorr.
uncert.

kdr

0–2 0.024189 ± 0.15% ± 0.18% 0.978 0–0.004 8.8053 ± 0.03% ± 0.13% 0.992

2–4 0.051144 ± 0.06% ± 0.08% 0.985 0.004–0.008 8.6969 ± 0.03% ± 0.13% 0.993

4–6 0.053232 ± 0.05% ± 0.08% 0.994 0.008–0.012 8.5624 ± 0.02% ± 0.13% 0.993

6–8 0.047383 ± 0.05% ± 0.08% 1.000 0.012–0.016 8.3378 ± 0.02% ± 0.13% 0.994

8–10 0.040568 ± 0.04% ± 0.09% 1.010 0.016–0.02 8.0881 ± 0.03% ± 0.14% 0.994

10–12 0.034317 ± 0.06% ± 0.11% 1.010 0.02–0.024 7.7920 ± 0.03% ± 0.14% 0.995

12–14 0.029157 ± 0.07% ± 0.12% 1.010 0.024–0.029 7.4174 ± 0.02% ± 0.12% 0.995

14–16 0.024804 ± 0.06% ± 0.14% 1.010 0.029–0.034 7.0360 ± 0.02% ± 0.13% 0.996

16–18 0.021268 ± 0.05% ± 0.15% 1.010 0.034–0.039 6.5989 ± 0.02% ± 0.13% 0.998

18–20 0.018325 ± 0.04% ± 0.16% 1.010 0.039–0.045 6.1608 ± 0.02% ± 0.12% 0.998

20–22.5 0.015605 ± 0.03% ± 0.14% 1.010 0.045–0.051 5.7085 ± 0.01% ± 0.13% 0.999

22.5–25 0.013180 ± 0.03% ± 0.15% 1.000 0.051–0.057 5.2791 ± 0.02% ± 0.14% 1.000

25–27.5 0.011207 ± 0.04% ± 0.17% 1.000 0.057–0.064 4.8488 ± 0.02% ± 0.13% 1.000

27.5–30 0.0095568 ± 0.05% ± 0.19% 0.999 0.064–0.072 4.4139 ± 0.01% ± 0.12% 1.000

30–33 0.0081029 ± 0.06% ± 0.17% 0.998 0.072–0.081 3.9705 ± 0.01% ± 0.12% 1.000

33–36 0.0067881 ± 0.08% ± 0.19% 0.996 0.081–0.091 3.5515 ± 0.01% ± 0.12% 1.000

36–39 0.0057563 ± 0.09% ± 0.21% 0.994 0.091–0.102 3.1421 ± 0.02% ± 0.13% 1.000

39–42 0.0048769 ± 0.12% ± 0.23% 0.993 0.102–0.114 2.7659 ± 0.01% ± 0.13% 1.000

42–45 0.0041688 ± 0.12% ± 0.25% 0.992 0.114–0.128 2.4125 ± 0.01% ± 0.13% 1.000

45–48 0.0035213 ± 0.14% ± 0.28% 0.993 0.128–0.145 2.0648 ± 0.01% ± 0.12% 1.000

48–51 0.0029751 ± 0.17% ± 0.31% 0.991 0.145–0.165 1.7299 ± 0.02% ± 0.13% 1.000

51–54 0.0025433 ± 0.18% ± 0.35% 0.992 0.165–0.189 1.4282 ± 0.02% ± 0.13% 1.000

54–57 0.0021832 ± 0.20% ± 0.38% 0.994 0.189–0.219 1.1469 ± 0.02% ± 0.12% 1.000

57–61 0.0018779 ± 0.15% ± 0.31% 0.994 0.219–0.258 0.8848 ± 0.02% ± 0.12% 1.000

61–65 0.0015932 ± 0.17% ± 0.35% 0.994 0.258–0.312 0.6470 ± 0.03% ± 0.11% 1.000

65–70 0.0013519 ± 0.16% ± 0.32% 0.995 0.312–0.391 0.4387 ± 0.03% ± 0.11% 1.000

70–75 0.0011323 ± 0.17% ± 0.37% 0.995 0.391–0.524 0.2610 ± 0.03% ± 0.10% 1.000
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Table 4 continued

Bin [GeV] 1/σfid × dσ/dp��
T[1/GeV]

Corr.
uncert.

Uncorr.
uncert.

kdr Bin 1/σfid × dσ/dφ∗
η Corr.

uncert.
Uncorr.
uncert.

kdr

75–80 0.0009574 ± 0.20% ± 0.43% 0.995 0.524–0.695 0.1414 ± 0.04% ± 0.13% 1.000

80–85 0.0008150 ± 0.22% ± 0.49% 0.995 0.695–0.918 0.07462 ± 0.07% ± 0.17% 1.000

85–95 0.0006537 ± 0.14% ± 0.29% 0.996 0.918–1.153 0.04047 ± 0.12% ± 0.27% 1.000

95–105 0.0004849 ± 0.18% ± 0.37% 0.995 1.153–1.496 0.02167 ± 0.14% ± 0.30% 1.000

105–125 0.0003291 ± 0.12% ± 0.25% 0.996 1.496–1.947 0.01084 ± 0.18% ± 0.42% 1.000

125–150 0.0001861 ± 0.16% ± 0.32% 0.994 1.947–2.522 0.005386 ± 0.23% ± 0.59% 1.000

150–175 0.0001050 ± 0.24% ± 0.51% 0.993 2.522–3.277 0.002738 ± 0.31% ± 0.79% 1.000

175–200 6.1279·10−5 ± 0.30% ± 0.78% 0.992 3.277–5.000 0.0011730 ± 0.29% ± 0.72% 1.000

200–250 3.0584·10−5 ± 0.22% ± 0.66% 0.995 5.000–10.00 0.0003372 ± 0.30% ± 0.78% 0.997

250–300 1.2211·10−5 ± 0.34% ± 1.4% 0.997

300–350 5.9026·10−6 ± 0.56% ± 2.3% 0.994

350–400 2.7742·10−6 ± 0.90% ± 3.8% 0.991

400–470 1.2513·10−6 ± 0.82% ± 4.9% 0.991

470-550 5.5219·10−7 ± 1.2% ± 7.9% 0.994

550–650 2.0165·10−7 ± 1.5% ± 13% 0.995

650–900 5.1153·10−8 ± 1.8% ± 16% 0.990

900–2500 1.5735·10−9 ± 6.3% ± 60% 0.964

scheme [79]. The FEWZ 3.1 [9] program is used to com-
pute next-to-leading-order (NLO) electroweak corrections
and to cross-check the DYNNLO calculation. The predic-
tion is shown in Table 3 together with its uncertainties esti-
mated as follows. The dominant uncertainty is from lim-
ited knowledge of the proton PDFs and is estimated using
the eigenvectors of the respective CT14 PDF set, rescaled
from 90% to 68% confidence level. The uncertainties due
to the strong coupling constant are estimated by varying αS

by ±0.001. Missing higher-order QCD corrections are esti-
mated by variations of the renormalization (μr) and factor-
ization (μf) scales by factors of two with an additional con-
straint of 0.5 ≤ μr/μf ≤ 2 around the nominal value of
m��. The deviation from the FEWZ calculation is taken as an
intrinsic uncertainty in the NNLO QCD calculation. A more
detailed discussion of the agreement with theory predictions
using different PDF sets is given in Ref. [72].

The differential measurements are compared with a vari-
ety of predictions of the p��

T and φ∗
η spectra that are based on

different theoretical approaches to take into account both the
soft and hard emissions from the initial state (ISR). Unless
stated otherwise, the predictions do not consider NLO EW
effects. The comparisons between the combined result cor-
rected to QED Born level and the various predictions are
shown in Figs. 5 and 6. Systematic uncertainties in the the-
oretical predictions are evaluated for this comparison where
feasible.

The first prediction is obtained from Pythia8 with matrix
elements at LO in αS supplemented with a parton shower with

the AZ set of tuned parameters [22]. The AZ tune optimized
the intrinsic kT and parton shower ISR parameters to opti-
mally describe the ATLAS 7 TeV p��

T and φ∗
η data [22,80]. It

was later used in the measurement of theW -boson mass using
7 TeV data [20], which requires a high-precision description
of the W -boson transverse momentum spectrum at low pT.

The second prediction is based on Powheg+Pythia8
using NLO matrix elements with the Pythia8 parton shower
parameters set according to the AZNLO tune [22] derived
using the same data as the Pythia8 AZ tune. The predic-
tions using the AZ and AZNLO tunes describe the 13 TeV
data to within 2–4% in the region of low p��

T < 40 GeV and
φ∗

η < 0.5, and in this region the prediction using the Pythia8
AZ tune is the one that agrees best with the data. This shows
that predictions based on tunes to 7 TeV collision data can
also provide a good description at significantly higher centre-
of-mass energies for low p��

T . At high p��
T these predictions

are well below the data due to missing higher-order matrix
elements, similar to the situation observed at lower

√
s.

The third prediction is simulated with the Sherpa v2.2.1
[18] generator. In this set-up, NLO-accurate matrix elements
for up to two partons, and LO-accurate matrix elements for
up to four partons are calculated with the Comix [81] and
OpenLoops [82,83] libraries. The default Sherpa parton
shower [84] based on Catani–Seymour dipole factorisation
and the cluster hadronization model [85] is used with the
dedicated set of tuned parameters developed by the authors
for the NNPDF3.0nnlo PDF set [55]. The NLO matrix ele-
ments of a given parton multiplicity are matched to the parton
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shower using a colour-exact variant of the MC@NLO algo-
rithm [86]. Different parton multiplicities are then merged
into an inclusive sample using an improved CKKW matching
procedure [87,88] which is extended to NLO accuracy using
the MEPS@NLO prescription [89]. The merging threshold
is set to 20 GeV. Uncertainties from missing higher orders
are evaluated [90] using seven variations of the QCD factor-
ization and renormalization scales in the matrix elements by
factors of 0.5 and 2, avoiding variations in opposite direc-
tions. For the computation of uncertainties in the normalized
spectra the effect of a certain variation is fully correlated
across the full spectrum and an envelope of all variations is
taken at the end, which results in uncertainties of 3–4% at low

p��
T and up to 25% at high p��

T . The effects of uncertainties in
the PDF set are evaluated using 100 replica variations and are
found to be very small, typically < 1% up to p��

T < 100 GeV
and a few percent above. Sherpa does describe the data in
the high p��

T > 30 GeV and φ∗
η > 0.1 region to within about

4% up to the point where statistical uncertainties in the data
exceed that level, which is better than the uncertainty esti-
mate obtained from scale variations. On the other hand, the
Sherpa prediction disagrees with the shape of the data at
low p��

T < 25 GeV and somewhat less with the φ∗
η distribu-

tion. The data may be useful in improving the parton shower
settings in this regime.

Finally a prediction based on the RadISH program
[91,92] is presented that combines a fixed-order NNLO
prediction of Z+jet production (O(α3

S)) from NNLO-
jet [93] with resummation of log(m��/p��

T ) terms at next-to-
next-to-next-to-leading-logarithm (N3LL) accuracy [7]. The
NNPDF3.1nnlo set of PDFs [94] is used with QCD scales

set to μr = μf =
√

(m��)2 + (p��
T )2 and the resummation

scale set to Q = m��/2. Uncertainties in this prediction are
derived from variations of μr and μf in the same way as for
the Sherpa prediction described above and, in addition, two
variations of Q by a factor of two up and down, assuming
that the effects of scale variations are fully correlated across
the full spectrum. Within the uncertainties of typically 1–
3% the RadISH prediction agrees with the data over the full
spectrum of p��

T and φ∗
η , apart from a small tension in the

very low p��
T and φ∗

η region where non-perturbative effects
are relevant, highlighting the benefits of this state-of-the-art
prediction.

Figure 6 compares the p��
T measurement with predictions

in the range of p��
T > 10 GeV. In addition to the Sherpa

prediction described above, the data are compared with the
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fixed-order NNLOjet prediction described above both with
and without NLO EW corrections [13]. The NNLOjet pre-
diction is only expected to describe the data at sufficiently
large p��

T � 15 GeV, while deviations for smaller values are
expected due to large logarithms ln(m��/p��

T ) [93]. At the
highest p��

T values probed, the application of NLO EW leads
to a suppression of up to 20% due to large Sudakov loga-
rithms. The theoretical uncertainties on these corrections are
not shown, but have been elsewhere estimated to be up to
5% for p��

T ≈ 1 TeV [15]. In this region, NNLOjet without
NLO EW corrections is generally above the data, and when
including these corrections it tends to be lower than the data.
However, the difference is not significantly larger than the
uncertainties in the measurements.

6 Conclusion

Measurements of the Z/γ ∗ → ee and Z/γ ∗ → μμ

cross-sections, differential in the transverse momentum and
φ∗

η , have been performed in a fiducial volume defined by

p�
T > 27 GeV, |η�| < 2.5 and 66 < m�� < 116 GeV, using

36.1 fb−1of data from proton–proton collisions recorded in
2015 and 2016 at a centre-of-mass energy of 13 TeV with the
ATLAS experiment at the LHC. This data-set allows cov-
erage of a kinematic range up to the TeV-range. The cross-
section results from the individual channels were combined
and good agreement between the two was observed. The rel-
ative precision of the combined result is better than 0.2%
for p��

T < 30 GeV, which provides crucial information to
validate and tune MC event generators and will constrain
models of vector-boson production in future measurements
of the W -boson mass.

The integrated fiducial cross-section measurements are
compared with fixed-order perturbative QCD predictions.
Differential spectra in p��

T and φ∗
η are compared with a selec-

tion of calculations implementing resummation and non-
perturbative effects through parton showers or analytic calcu-
lations. The predictions based on the Pythia8 parton shower
with parameters tuned to 7 TeV data are found to describe the
13 TeV data well at low p��

T and φ∗
η . The Sherpa prediction

based on merging of higher-order, high-multiplicity matrix
elements gives an excellent description of the data at high
p��

T , while the very accurate RadISH NNLO+N3LL predic-
tion agrees with data for the full spectrum. The fixed-order
NNLOjet prediction with and without NLO EW effects
describes the data well for high p��

T .
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1 Introduction

The measurement of the production rate of a Z boson in association with jets originating

from b-quarks1 (Z + b-jets) in proton-proton (pp) collisions provides an important test of

perturbative quantum chromodynamics (pQCD). Current predictions for Z+b-jets produc-

tion are known at next-to-leading-order (NLO) accuracy in pQCD, and they can be derived

in either a 4-flavour number scheme (4FNS) or a 5-flavour number scheme (5FNS) [1–4].

1Unless otherwise mentioned, it is implicitly assumed that b-quark refers to both b-quark and b̄-antiquark.
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In the 4FNS, b-quarks do not contribute to the parton distribution functions (PDFs) of

the proton and, in QCD, they only appear in a massive final state due to gluon splitting

(g → bb). In the 5FNS, b-quark density is allowed in the initial state via a b-quark PDF,

with the b-quark typically being massless. Therefore, in the 5FNS the Z + b-jets cross-

section is sensitive to the b-quark PDF and can be used to constrain it. The ambiguity

among the schemes is an intrinsic property of the calculation and is expected to reduce

with the inclusion of higher order perturbative corrections [3].

Furthermore, the measurement of Z + b-jets production provides a benchmark to test

predictions from Monte Carlo (MC) simulations. These are commonly used to estimate

the background contribution of Z+ b-jet events to other topologies, such as the production

of a Higgs boson decaying into a b-quark pair in association with a Z boson, or in searches

for physics beyond the SM with signatures containing leptons and b-jets in the final state.

The Z+b-jets processes occur more rarely than the production of Z-boson events with

inclusive jets (Z+jets) and they are more challenging to measure. The b-jets are identified

by exploiting the long lifetime of b-hadrons produced in the quark hadronisation, and a

higher level of background affects the measurement. The background is mainly composed

of events with a Z boson associated with light-flavour jets or c-jets,2 misidentified as b-jets,

and events from the dileptonic decay of a tt̄ pair.

Inclusive and differential cross-sections of Z + b-jets production have been measured

in proton-antiproton collisions at the centre-of-mass energy of
√
s = 1.96 TeV by the CDF

and D0 experiments [5–8] and at the Large Hadron Collider (LHC) [9] in
√
s = 7 TeV

pp collisions by the ATLAS and CMS experiments [10–15], as well as in
√
s = 8 TeV pp

collisions by the CMS experiment [16, 17]. The CMS experiment also recently released a

measurement of the ratio of Z + b-jets to Z+jets cross-sections and the ratio of Z + c-jets

to Z + b-jets cross-sections for events with at least one b-jet or one c-jet in
√
s = 13 TeV

pp collisions [18].

This paper presents a measurement of the inclusive and differential production cross-

sections of a Z boson, decaying into electrons or muons, in association with at least one or

at least two b-jets using 35.6 fb−1 of pp collision data collected by the ATLAS experiment

at
√
s = 13 TeV in 2015 and 2016. For events with at least one b-jet, the differential cross-

sections are presented as a function of the transverse momentum3 (pT) and the absolute

value of the rapidity (|y|) of the leading b-jet, the pT and the |y| of the Z boson (Z pT
and Z |y|), and as a function of observables correlating the Z boson with the leading b-jet,

namely the azimuthal angle between them (∆φZb), the absolute value of their rapidity

difference (∆yZb), and their angular separation (∆RZb). For events with at least two b-

jets, the differential cross-sections are presented as a function of the pT of the Z boson

2A c-jet is a jet originating from a c-quark.
3ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2). Angular separation is measured in units of ∆R ≡
√

(∆η)2 + (∆φ)2. When

dealing with massive jets and particles, the rapidity y = 1
2

ln E+pz
E−pz

is used, in which E is the jet or particle

energy and pz is the z-component of the jet or particle momentum.

– 2 –
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and as a function of observables built using the two leading b-jets, namely their pT (pT,bb),

their invariant mass (mbb), pT,bb divided by their invariant mass (pT,bb/mbb), the azimuthal

angle between them (∆φbb), the absolute value of their rapidity difference (∆ybb), and

their angular separation (∆Rbb). The higher
√
s leads to a large increase in the measured

cross-section in comparison with previous ATLAS publications. This allows more extreme

regions of phase space to be explored and new measurements to be performed in the rare

two-b-jets configuration (i.e. pT,bb and pT,bb/mbb). Previous ATLAS measurements were

compared with MC predictions based on leading-order matrix elements interfaced with

a parton-shower simulation, which showed substantial mismodelling. Recent advances in

this field permit this paper to compare the data with the latest MC predictions using

next-to-leading-order matrix elements, which are expected to provide a better description

of the data.

The experimental apparatus is described in section 2, and details of the data sample and

the MC simulations are provided in section 3. The object definitions and the event selection

at detector level are presented in section 4. Backgrounds that do not contain a real Z boson

are estimated via MC simulations and validated in control regions in data or via data-driven

techniques, while backgrounds containing a real Z boson and jets not originating from b-

quarks are estimated with a fit to data distributions sensitive to the flavour of the jet

(flavour fit); both are described in section 5. Distributions of the kinematic variables are

presented in section 6. After background subtraction, the data are unfolded to particle

level in a fiducial phase space, which is detailed in section 7. Systematic uncertainties in

the unfolded data are discussed in section 8. The results are presented in section 9, and

conclusions are drawn in section 10.

2 The ATLAS detector

The ATLAS detector [19] at the LHC covers nearly the entire solid angle around the colli-

sion point. It consists of an inner tracking detector surrounded by a thin superconducting

solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporat-

ing three large superconducting toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides

charged-particle tracking in the range |η| < 2.5. The high-granularity silicon pixel detec-

tor covers the vertex region and provides four measurements for most tracks, the first hit

normally being in the insertable B-layer [20, 21]. It is followed by the silicon microstrip

tracker, which provides eight measurements per track. These silicon detectors are comple-

mented by the transition radiation tracker (TRT), which enables radially extended track

reconstruction up to |η| = 2.0. The TRT also provides electron identification informa-

tion based on the fraction of hits (typically 30 in total) with an energy deposit above the

transition-radiation threshold.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region

|η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity

lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering

|η| < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadronic
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calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three bar-

rel structures within |η| < 1.7, and two copper/LAr hadronic endcap calorimeters. The

solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter

modules optimised for electromagnetic and hadronic measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking

chambers measuring the deflection of muons in a magnetic field generated by the supercon-

ducting air-core toroid magnets. The field integral of the toroid magnets ranges between 2.0

and 6.0 T m across most of the detector. The precision chambers cover the region |η| < 2.7

with three layers of monitored drift tubes, complemented by cathode-strip chambers in

the forward region, where the background is highest. The muon trigger system covers the

range |η| < 2.4 with resistive-plate chambers in the barrel, and thin-gap chambers in the

endcap regions.

Interesting events are accepted by the first-level trigger system implemented in custom

hardware, followed by selections made by algorithms implemented in software in the high-

level trigger [22]. The first-level trigger accepts events from the 40 MHz bunch crossings at

a rate below 100 kHz, which the high-level trigger further reduces in order to record events

to disk at about 1 kHz rate.

3 Data set and simulated event samples

3.1 Data set description

The data used in this measurement were recorded in 2015 and 2016 with the ATLAS

detector at the LHC in pp collisions at
√
s = 13 TeV. The candidate events were selected

by either a single-electron or single-muon trigger that imposed a minimum transverse energy

(transverse momentum) threshold for the electron (muon) channel and quality and isolation

requirements, which depended on the LHC running conditions. The threshold in 2015 was

24 (20) GeV for the electrons (muons), satisfying loose isolation requirements. Due to the

higher instantaneous luminosity in 2016, the threshold was increased to 26 GeV for both the

electrons and the muons, and a more restrictive isolation requirement was imposed on both

leptons along with more restrictive identification requirements for electrons. Triggers with

higher thresholds but with no isolation requirement or with loosened identification criteria

were also used to increase the efficiency. Crossings of proton bunches occurred every 25 ns,

the collisions achieved a peak instantaneous luminosity of 1.37× 1034 cm−2s−1, and the

mean number of pp interactions per bunch crossing (pile-up) was 〈µ〉 = 24. After applying

criteria to ensure good ATLAS detector operation, the total integrated luminosity amounts

to 35.6 fb−1. The uncertainty in the combined 2015-2016 integrated luminosity is 2.1% [23],

obtained using the LUCID-2 detector [24] for the primary luminosity measurements.

3.2 Simulated event samples for signal and background processes

MC simulations are used to describe signal events, to estimate the contribution of back-

ground processes, to unfold the data yield to the particle level, to estimate systematic

uncertainties, and to compare predictions with the unfolded data distributions.
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An overview of all signal and background processes and the generators used for the

production of nominal results is given in table 1 together with the theory uncertainty in

the normalisation cross-sections corresponding to PDFs and scale variations.

Inclusive Z(→ ``, ` = e, µ) production in association with both light- and heavy-flavour

jets was simulated using the Sherpa v2.2.1 [25] generator. In this set-up, matrix elements

at NLO for up to two partons, and matrix elements at LO for up to four partons, were

calculated with the Comix [26] and OpenLoops [27, 28] libraries. They were matched

with the Sherpa parton shower [29] using the MEPS@NLO prescription [30–33]. Sherpa

uses the 5FNS with massless b- and c-quarks in the matrix element, but massive quarks

in the parton shower. Samples were generated using the NNPDF3.0nnlo PDF set [34],

along with the dedicated set of tuned parton-shower parameters developed by the Sherpa

authors. In section 9, where several predictions are compared with the unfolded data, these

samples are shown with their uncertainties and are referred to as Sherpa 5FNS (NLO).

The uncertainties account for missing higher orders and are evaluated [35] using seven

variations of the QCD factorisation and renormalisation scales in the matrix elements by

factors of 0.5 and 2 and avoiding variations in opposite directions.

Additional Z(→ ``) samples were produced with the LO matrix-element generator

Alpgen v2.14 [36], interfaced with Pythia v6.426 [37] to model parton showers, using the

parameter values of the Perugia2011C tune [38] for simulating the underlying event, and

the CTEQ6L1 PDF set [39]. Matrix elements were calculated for up to five partons, and

merged using the MLM prescription [40] with a matching scale of 15 GeV. Alpgen uses

the 4FNS with massive b- and c-quarks in the matrix element and in the parton shower of

Pythia. The matrix elements for the production of Z+ bb̄ and Z+ cc̄ events are explicitly

included and a heavy-flavour overlap procedure is used to remove the double counting,

between the matrix element and the parton shower, of heavy quarks from gluon splitting.

The properties of b- and c-hadron decays were simulated with EvtGen v1.2.0 [41], as was

done in all generated samples where the parton shower was simulated with Pythia. Pho-

tos++ v3.52 [42, 43] was used to simulate QED final-state radiation (FSR). The Alpgen

samples are used in the analysis to estimate systematic uncertainties in the unfolding pro-

cedure and in backgrounds containing a genuine Z boson. In section 9 these samples are

referred to as Alpgen + Py6 4FNS (LO). Samples of Z(→ ττ), W (→ `ν), and W (→ τν)

events were simulated with Sherpa, using the same set-up adopted for the signal samples.

The Z-boson and W -boson samples are normalised to the inclusive next-to-next-to-

leading-order (NNLO) cross-section predictions provided by the FEWZ 3.1 program [44–

47] with the CT14 PDF set. The K-factor applied to the Z samples to match the NNLO

prediction is 0.975 for Sherpa and 1.196 for Alpgen.

The production of tt̄ events with at least one W boson decaying leptonically was mod-

elled using the Powheg-Box [48–51] v2 generator at NLO with the NNPDF3.0NLO [34]

PDF set. The hdamp parameter, which regulates the high-pT emissions against which the tt̄

system recoils, is set to 1.5 mtop [52]. The events were interfaced with Pythia v8.230 [53]

using the A14 tune [54]. The tt̄ sample is normalised to the theory prediction at NNLO

in QCD including the resummation of next-to-next-to-leading logarithmic (NNLL) soft-

gluon terms [55–61]. Four additional tt̄ samples were simulated to evaluate the un-
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certainty in this process, as described in [52]. One sample was produced with Mad-

Graph5 aMC@NLO [62] and the same parton-shower model of the nominal tt̄ sample in

order to estimate the uncertainty due to the modelling of the hard scattering process. A

second Powheg-Box sample showered with Herwig 7.13 [63, 64] was generated to evalu-

ate the uncertainty due to the modelling of the parton shower and hadronization processes.

A third sample was produced to simulate higher energy radiation with the factorisation

and renormalisation scales changed by a factor of 0.5 while simultaneously increasing the

hdamp value to 3.0 mtop and using the upper variation of the initial state radiation (ISR)

from the A14 tune. The last sample simulates the lower energy radiation. It was generated

with the renormalisation and factorisation scales varied by a factor of 2.0 while keeping the

hdamp value at 1.5 mtop and using the ISR downward variation in the parton shower. The

last two samples are also used to estimate the impact of FSR with parton-shower weights

that vary the renormalisation scale for QCD emission in the FSR by factors of 0.5 and 2.0.

Single-top-quark events in the Wt-, s- and t-channels were generated using the

Powheg-Box v1 generator interfaced with Pythia v6.4 [37]; the latter simulates par-

ton showers, fragmentation, and the underlying event using the Perugia 2012 tune [38].

The CT10 PDF set was used [65]. The single-top samples for the t- and s-channels are

normalised to cross-sections from NLO predictions [66, 67], while the Wt-channel sample

is normalised to cross-sections from approximate NNLO predictions [68].

Diboson processes (WW , WZ, and ZZ) with one of the bosons decaying hadronically

and the other leptonically were generated using Sherpa v2.2.1 with the CT10nlo PDF set.

The matrix element includes up to one parton at NLO and up to three additional partons

at LO. The samples are normalised to the NLO predictions [69].

Simulated events for qq → V H(→ bb̄) with V = W or Z plus zero or one jet production

at NLO were generated with the Powheg-Box v2 + GoSam + MiNLO generator [51, 70–

72] with the NNPDF3.0NLO PDF set. The contribution from gg → ZH(→ bb̄) production

was simulated using the LO Powheg-Box v2 matrix-element generator. The samples

of simulated events include all final states where the Higgs boson decays into bb̄ and the

vector boson into a leptonic final state. The mass of the Higgs boson is set to 125 GeV

and the H → bb̄ branching fraction is set to 58%. The qq → V H(→ bb̄) cross-section is

calculated at NNLO (QCD) and NLO (EW), while the gg → ZH cross-section is calculated

at NLO+NLL (QCD).

Generated events were processed with the ATLAS detector simulation [76], based on

Geant4 [77], to simulate the detector response to final-state particles. To account for

the effects of pile-up, multiple overlaid pp collisions were simulated with the soft QCD

processes of Pythia v8.186 using the A2 tune [78] and the MSTW2008LO PDF set [79].

The distribution of the average number of interactions per bunch crossing in the simulation

is weighted to reflect that in the data. Simulated events are processed with the same

reconstruction algorithms as for the data.

3.3 Theoretical predictions

In addition to particle-level predictions from the fully simulated Sherpa and Alpgen sam-

ples described above, unfolded results from data are compared with six other predictions

listed in table 2.
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Process Generator Order of Reference Normalisation

cross-section normalisation cross-section

calculation uncertainty

Z → `` (` = e, µ, τ ) Sherpa NNLO [44–47] 5%

with 66 < m`` < 116 GeV

W → `ν (` = e, µ, τ ) Sherpa NNLO [44–47] 5%

tt̄ Powheg-Box NNLO + NNLL [55–61] 6%

(mtop = 172.5 GeV)

Single top Powheg-Box NLO 6%

(t-, Wt-, s-channel) (mtop = 172.5 GeV)

Dibosons

Z(→ ``) + Z(→ qq), Sherpa NLO [69] 5%

W (→ `ν) +W (→ qq) )

Higgs

qq → Z(→ ``) +H(→ bb̄) Powheg-Box NNLO QCD + NLO EW [73–75] 3%

gg → Z(→ ``) +H(→ bb̄) NLO + NLL

qq →W (→ `ν) +H(→ bb̄) NNLO QCD + NLO EW

Table 1. Signal and background MC samples: the generator programs used in the simulation

are listed in the second column, the order of the QCD calculation and the reference used for

the calculations of the normalisation cross section are reported in the third and fourth columns.

The normalisation cross-section uncertainty in the final column corresponds to PDFs and scale

variations.

Two particle-level predictions (using specific parton-shower and matching predictions)

were produced with the Sherpa v2.2.7 generator using NLO matrix elements [80]. The

first sample, referred to as Sherpa Zbb 4FNS (NLO), includes Z + bb̄ events generated

in the 4FNS at NLO with massive b-quarks. It is interesting to compare this sample,

which contains two b-quarks in the matrix elements, with the unfolded data even in the

case of distributions with at least one b-jet, to understand if there are regions of the phase

space that can be described with such a configuration. The second sample, referred to as

Sherpa Fusing 4FNS+5FNS (NLO), contains the matrix elements at NLO for up to two

partons, and matrix elements at LO for up to three partons. It includes both Z+ bb̄ events

generated in the 4FNS at NLO with massive b-quarks, and Z+jets events generated in the

5FNS at NLO. They are combined according to the procedure described in ref. [81]. The

combination is achieved by means of a dedicated heavy-flavour overlap removal procedure,

the fusing technique, that acts as an additional step after the multijet merging algorithms.

This procedure combines the advantages of inclusive 5FNS calculations with the higher

precision of 4FNS calculations in regions of phase space where the b-quark mass sets a

relevant scale. The two Sherpa samples use the NNPDF3.0nnlo PDF set with αS(mZ) =

0.118 and the corresponding number of active quark flavours. Masses of c- and b-quarks

are taken into account in the parton shower in all Sherpa samples.

Results are also compared with predictions from the LO matrix-element generator

MadGraph5 aMC@NLO v2.2.2 [62] interfaced with Pythia v8.186 [53] with the A14

tune [54] to model the parton shower and underlying event. The matrix element includes up
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Generator Npartons
max FNS PDF Parton

NLO LO set Shower

Z+jets (including Z+b and Z+bb)

Sherpa 5FNS (NLO) 2 4 5 NNPDF3.0nnlo Sherpa

Sherpa Fusing 4FNS+5FNS (NLO) 2 3 5 (*) NNPDF3.0nnlo Sherpa

Alpgen + Py6 4FNS (LO) — 5 4 CTEQ6L1 Pythia v6.426

Alpgen + Py6 (rew. NNPDF3.0lo) — 5 4 NNPDF3.0lo Pythia v6.426

MGaMC + Py8 5FNS (LO) — 4 5 NNPDF3.0nlo Pythia v8.186

MGaMC + Py8 5FNS (NLO) 1 — 5 NNPDF3.0nnlo Pythia v8.186

Z+bb

Sherpa Zbb 4FNS (NLO) 2 — 4 NNPDF3.0nnlo Sherpa

MGaMC + Py8 Zbb 4FNS (NLO) 2 — 4 NNPDF3.0nnlo Pythia v8.186

Table 2. Summary of theoretical predictions for the signal, including the maximum number of

partons at each order in αS, the flavour number scheme (FNS), the PDFs set and the parton

shower. (*) Details of the merging between 4FNS and 5FNS in Sherpa Fusing 4FNS+5FNS

(NLO) are available in ref. [81].

to four partons. Additional jets are produced by the parton shower, which uses the CKKW-

L merging procedure [82], with a matching scale of 30 GeV. MadGraph5 aMC@NLO

uses the 5FNS with massless b- and c-quarks in the matrix element, and massive quarks

in the parton shower. The NNPDF3.0nlo PDF set is used with αS(mZ) = 0.118. This

prediction is referred to as MGaMC + Py8 5FNS (LO).

Two additional predictions were produced with MadGraph5 aMC@NLO v2.6.2, us-

ing matrix-element calculations with NLO accuracy. The first sample includes Z+jets

events generated in the 5FNS with up to one parton at NLO, and massless b- and c-

quarks; the second sample includes Z + bb̄ events generated in the 4FNS at NLO, and

massive b-quarks. Both samples were generated using the NNPDF3.0nnlo PDF set with

αS = 0.118. They were interfaced to the Pythia v8.186 parton shower using the FxFx

merging scheme [83], with a matching scale of 25 GeV. As in the previous case, massive

c- and b-quarks are produced in the parton shower. The first sample is referred to as

MGaMC + Py8 5FNS (NLO); the second is referred to as MGaMC + Py8 Zbb 4FNS

(NLO).

An additional Alpgen prediction is used to test the sensitivity of the measurements

to the parton structure of the proton. The Alpgen samples presented in section 3.2 are

reweighted to the NNPDF3.0lo PDF set, using the prescriptions reported in ref. [84]. These

predictions are referred to as Alpgen + Py6 (rew. NNPDF3.0lo). The predictions of LO

MC generators, such as Alpgen + Py6 4FNS (LO) and MGaMC + Py8 5FNS (LO),

with up to four or five partons in the matrix element, are still an interesting case to study as

they allow comparison with the predictions of MC generators at NLO accuracy and with a

smaller number of partons in the matrix element. Furthermore, they provide a benchmark

in common with past analyses, such as in ref. [11].
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4 Event selection

Events selected in this analysis are required to have a signature consistent with a Z boson,

decaying into two electrons or two muons, in association with at least one or at least two

b-jets. Candidate events are required to have a primary vertex (PV), defined as the vertex

with the highest sum of track p2T with at least two associated tracks measured in the ID

(ID tracks), each with pT > 400 MeV.

Electron candidates are reconstructed by matching a cluster of energy deposited in

the EM calorimeter to a well-reconstructed ID track. Electrons are identified using a

likelihood function based on variables describing the shape of the electromagnetic showers

in the calorimeter, track properties, and track-to-cluster matching quantities [85]. Electrons

must satisfy the ‘tight’ likelihood requirement. Electron candidates are required to have

pT > 27 GeV and |η| < 2.47. Candidates in the transition region between the barrel and

endcap electromagnetic calorimeters, 1.37 < |η| < 1.52, are excluded.

Muon candidates are reconstructed by fitting a unique trajectory through the hits

associated with a pair of matching tracks which are reconstructed separately in the ID

and the MS; the energy loss in the calorimeter is taken into account in the combination

procedure. Muons must satisfy the ‘medium’ identification criterion based on requirements

on the number of hits and on the quality of the combined fit [86]. Muon candidates are

required to have pT > 27 GeV and |η| < 2.5.

To select leptons originating from the primary pp interaction, the lepton tracks are

required to have a longitudinal impact parameter (z0) satisfying |z0 sin(θ)| < 0.5 mm

relative to the PV. The transverse impact parameter significance (d0/σd0) of the electron

(muon) candidates must satisfy d0/σd0 < 5 (3). In order to further suppress leptons

from non-prompt processes or leptons from hadrons in jets, both the electron and muon

candidates are required to satisfy pT-dependent cone-based isolation requirements [86],

which use information from ID tracks. The isolation requirements are set so that the scalar

sum of the transverse momenta of the tracks in the isolation cone4 around the lepton is

less than 6% of the lepton pT.

Jets are reconstructed, using the anti-kt algorithm [87, 88] with radius parameter

R = 0.4, from topological clusters of energy deposits in the calorimeter [89]. Jets are

calibrated using a simulation-based calibration scheme, followed by in situ corrections to

account for differences between simulation and data [90]. Events with jets arising from

detector noise or other non-collision sources are discarded [91]. Furthermore, to eliminate

jets containing a large energy contribution from pile-up, jets with pT < 60 GeV and |η| < 2.4

are required to have a significant fraction of their tracks with origin compatible with the

primary vertex, as defined by a jet vertex tagger discriminant (JVT) [92]. Selected jets

must have pT > 20 GeV and rapidity |y| < 2.5.

An overlap removal procedure is applied to electron, muon and jet candidates to pre-

vent double counting. Any jet whose axis lies within ∆R = 0.2 of an electron is removed.

If a jet is reconstructed within ∆R = 0.2 of a muon and the jet has fewer than three associ-

4The ∆R parameter of the isolation cone is defined by ∆R = min(10 GeV/pT, 0.3) where pT is the

transverse momentum of the lepton candidate.
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ated tracks or the muon energy constitutes most of the jet energy, then the jet is removed.

Any electron or muon of a given pT reconstructed within ∆R = min(0.4, 0.04+10 GeV/pT)

of the axis of any surviving jet is removed. Jets that survive the overlap removal procedure

are removed if they are within ∆R = 0.4 of the selected leptons.

The b-jets, defined as the jets containing at least one b-hadron, are identified using

a multivariate algorithm, MV2c10 [93, 94]. This algorithm uses the impact parameter

and reconstructed secondary vertex information of the tracks associated with the jets. Its

output lies in the range [−1,+1]. A value close to +1 denotes a higher probability for

the jet to be a b-jet. The b-jet candidates are selected if their MV2c10 output is greater

than 0.8244. This selection corresponds to an efficiency of 70% for selecting jets containing

b-hadrons, and misidentification rates of 0.26% and 8.3%, respectively, for light-flavour (u-,

d-, s-quark and gluon) jets and c-jets, as estimated from a sample of simulated tt̄ events.

Other working points are defined by different b-tagging discriminant output thresholds;

they are used to define control regions and to define the bins used in the flavour fit, as

detailed in section 5.1.

In simulation, reconstructed jets are labelled as b-jets if they lie within ∆R = 0.3

of one or more weakly decaying b-hadrons with pT > 5 GeV. Reconstructed jets not

identified as b-jets are considered to be c-jets if they lie within ∆R = 0.3 of any c-hadron

with pT > 5 GeV. All other jets are classified as light-jets. Simulated Z+jets events are

sequentially categorised depending on the labels of the jets, starting from b-jets, as follows:

Z+b when they have exactly one b-jet, Z+bb when they have at least two b-jets, Z+c when

they have at least one c-jet, Z + l when they have only light-jets. A similar classification

is adopted for simulated W+jets events. In the distributions with at least one b-jet, the

sum of Z + b and Z + bb samples is used to define the signal, and the Z+jets background

is constituted by the sum of the Z+ c and Z+ l samples. In the distributions with at least

two b-jets, the Z+bb samples alone constitute the signal, while the sum of the Z+b, Z+c,

and Z + l samples form the Z+jets background.

The missing transverse momentum (Emiss
T ), which may correspond to a neutrino escap-

ing interaction with the detector, is defined as the negative vector sum of the transverse

momentum of all identified hard physics objects (electrons, muons, jets), as well as an

additional track-based soft term defined in ref. [95].

Events are required to have exactly two leptons5 of the same flavour (ee or µµ) but of

opposite charge with their dilepton invariant mass in the range 76 GeV< m`` <106 GeV.

Events with p``T < 150 GeV must also have Emiss
T < 60 GeV. The requirement on the Emiss

T

value reduces by about 55% the background from tt̄ events with dileptonic decay, while

the signal is reduced by about 5%. Events passing the above selection and having at least

one or at least two jets belong to the region referred to as the pre-tag region. The signal

region is a subset of the pre-tag region. Events belonging to the signal region are assigned

to two regions: those with at least one b-jet, referred to as the 1-tag region; and those with

at least two b-jets, referred to as the 2-tag region, which is a subset of the 1-tag region.

A summary of the object selection and the event selection used in the analysis to define

5At least one of the lepton candidates is required to match the lepton that triggered the event.
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Electron channel Muon channel

Trigger Single electron Single muon

Tight Medium

Isolated Isolated

Leptons PV association: |d0/σd0
| < 5, |z0 sin θ| < 0.5 mm PV association: |d0/σd0

| < 3, |z0 sin θ| < 0.5 mm

pT > 27 GeV pT > 27 GeV

|η| < 1.37 or 1.52 < |η| < 2.47 |η| < 2.5

Jets pT > 20 GeV and |y| < 2.5

∆R(jet, `) > 0.4

b-jet pT > 20 GeV and |y| < 2.5

Regions

Pre-tag Signal Z+jets tt̄

region regions Validation Region Validation Region

Leptons 2 same-flavour, opposite-charge 1 e, 1 µ, opposite-charge

m`` 76 GeV < m`` < 106 GeV

Emiss
T Emiss

T < 60 GeV if p``T < 150 GeV

Jets ≥ 1 or ≥ 2 jets

b-tagging efficiency — 70% ≥ 1 b-jet at 77%–70% 70%

working point selection

Number of — ≥ 1 b-jets (1-tag region) ≥ 1 b-jets

b-jets ≥ 2 b-jets (2-tag region) ≥ 2 b-jets

Table 3. Summary of object and event selections defining the signal regions and the validation

regions for the main backgrounds of the analysis at detector level.

the signal regions and the validation regions for the main backgrounds, which are presented

in section 5, is given in table 3.

4.1 Correction factors applied to simulation and corresponding uncertainties

Corrections are applied to simulated samples in order to ensure that the object selection

efficiencies and the energy and momentum calibrations agree with data within the uncer-

tainties associated with the corrections.

The electron and muon trigger efficiencies are estimated in data and simulation in order

to determine simulation-to-data correction factors and their corresponding uncertainties.

The average per-event correction factor is about 0.98 (0.93) for electron (muon) triggers;

they are known with an uncertainty below 1% [85, 86]. Corrections to efficiencies for lepton

reconstruction, identification, isolation and association with the PV in simulated samples

are derived from data. Each per-lepton correction factor is close to unity and known with

a precision that is better than 1% in the kinematic range considered [85, 86].

The energy scale of the electrons and the momentum scale of the muons in simulation

are adjusted with correction factors that deviate from unity at the per-mil level and the

resolutions are adjusted with correction factors that deviate from unity at the per-cent level

in order to match lepton pT and m`` distributions in data; the corresponding uncertainties

are negligible.

– 11 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
4

The jet energy scale (JES) is calibrated on the basis of the simulation including in

situ corrections obtained from data [90]. The JES uncertainties are estimated using a

decorrelation scheme comprising a set of 21 independent parameters, the largest of which

may reach several per cent in specific corners of the phase space. The jet energy resolution

(JER) uncertainty is derived by over-smearing the jet energy in the simulation by about

4% at pT = 20 GeV to about 0.5% at a pT of several hundred GeV [96]. Simulation-

to-data corrections and relative uncertainties are also applied to adjust the efficiency of

the JVT requirement following the prescriptions of ref. [97]. The uncertainty in the scale

and resolution of Emiss
T is estimated by propagating the uncertainties in the transverse

momenta of reconstructed objects and an uncertainty to account for soft hadronic activity

in the event, as described in ref. [95].

Flavour-tagging efficiencies in simulation are scaled to match those measured in data

for jets of all flavours as a function of the different b-tagging discriminant output thresholds,

and of the jet pT (and η for light-jets), using weights derived from control samples enriched

in jets of each flavour [98]. In the case of b-jets, correction factors and their uncertainties

are estimated from data using dileptonic tt̄ events [98]. The correction factors for b-jets

are close to unity. The uncertainties, described by a set of 28 independent parameters, are

as low as 3% for jet pT of about 60 GeV, but reach 10% for jet pT of about 20 GeV and

up to 20% beyond 300 GeV. In the case of c-jets, correction factors are derived using jets

from W -boson decays in tt̄ events [99]. The correction factors for c-jets range from about

1.2 to about 1.6. Their uncertainties, described by a set of 28 independent parameters, are

about 20%–30% in the bulk of the phase space, but up to 100% for large jet pT and for

the b-tagging discriminant output threshold closest to +1. In the case of light-flavour jets,

correction factors are derived using dijet events [100]. The correction factors for light-jets

range from about 2 to about 3, with uncertainties described by a set of 36 independent

parameters and ranging from 50% to 100%. An additional uncertainty of 30% is applied

to the efficiency of b-tagging for simulated jets originating from pile-up interactions, which

are less than 1% of the selected jets.

A variation in the pile-up reweighting of simulated events (referred to as pile-up uncer-

tainty) is included to account for the uncertainty in the ratio of the predicted and measured

inelastic cross-sections in the fiducial volume [101].

5 Background estimation

The main background in the 1-tag region is constituted by events with a Z boson produced

in association with jets, where either a light-jet or a c-jet is misidentified as a b-jet; it is

determined using a fit to data as detailed in section 5.1. Dileptonic tt̄ events dominate

in the 2-tag region. Smaller background contributions from the production of dibosons, a

Higgs boson, a single top quark, a Z → ττ , or a W → `ν are estimated using simulation,

as described in section 3.2. Uncertainties in the normalisation cross-section of these predic-

tions range from 4% to 6% depending on the process, as detailed in table 1. Background

contributions from multijet events are estimated with a data-driven technique and found

to be negligible, as described below.
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Figure 1. Transverse momentum (left) and invariant mass (right) of the di-b-jet system built with

the two highest-pT b-jets for events with at least two b-jets in the tt̄ validation region. Systematic

uncertainties of the predicted distributions are combined with the statistical ones in the hatched

band, and the statistical uncertainty of the data is shown as error bars. The systematic uncertainties

for the predictions account only for the yield and the shape of tt̄ events.

The tt̄ contribution is estimated using simulated events generated with Powheg-

Box + Pythia normalised to the theoretically predicted cross-section, as discussed in

section 3.2. An uncertainty of about 6% is assigned to the inclusive tt̄ cross-section (see

table 1), following the variation of the renormalisation and factorisation scales by a factor

of 2.0, and the variation of the PDFs within their uncertainties. In addition, uncorrelated

systematic uncertainties in the modelling of the distributions are derived by comparing

the predictions from the nominal tt̄ sample with the ones from the alternative samples

described in section 3.2.

The modelling of tt̄ production in the simulation is validated using a tt̄-enriched region,

which is selected by requiring that events have two leptons of different flavour (eµ); all other

selections are the same as in the signal region. As an example, figure 1 shows the pT,bb

and the mbb distributions for events with at least two b-jets. The total background from

top quarks is the sum of tt̄ and single-top events, where the latter are about 3% of the

tt̄ component in the validation region, and other backgrounds are negligible. Data and

simulation agree well within the uncertainties which account for both the yield and shape

uncertainties of simulated tt̄ events and the statistical uncertainties of predictions and data.

Background contributions from multijet events in the electron and muon channels are

estimated using a data-driven technique. Multijet-enriched control regions without b-tag

and m`` requirements are used to derive the expected shape of this background. In the

electron channel, the multijet-enriched control region is defined by applying the full signal

event selection except for the electron identification and the d0/σd0 cuts, and inverting

the isolation selection for both electron candidates. In the muon channel, the multijet-

enriched control region is defined by applying the full signal event selection but requiring
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both muon candidates to have the same charge. In both channels, contributions from

non-multijet sources in the control regions are estimated from simulation and subtracted

from the data, with the remaining distributions used as shape templates. A fit of the

m`` distribution to data is then performed within the window of 60 GeV < m`` < 160 GeV

in the one-jet and two-jets pre-tag regions separately and leaving the normalisation of

the signal and of the multijet background templates free to float in the fit, while the

normalisation of the other processes is fixed in the fit. The multijet background estimate

in the pre-tag region is then extrapolated to the two signal regions using normalisation

factors equal to the fraction of events in the multijet control region that satisfy the 1-tag

and 2-tag requirements. Contributions from non-multijet processes are subtracted before

estimating this fraction. Systematic uncertainties are assessed by varying the m`` range

and the binning of the fit, excluding the Z-boson peak from the fit, performing the fit in

the tagged regions in place of the pre-tag ones, and by allowing the other processes to be

varied independently in the fit. The estimated size of the multijet background is consistent

with zero within the statistical uncertainty even after considering all sources of systematic

uncertainty. It is therefore neglected in the analysis.

5.1 Extraction of the cross-section for Z-boson production in association with

light-jets and c-jets

The flavour fit used for the extraction of the yields of Z + light-jets and Z + c-jets

backgrounds for the 1-tag and 2-tag selections is a maximum-likelihood fit to data based

on flavour-sensitive distributions. The fit is done simultaneously in the electron and muon

channels with templates derived from simulation.

In the 1-tag region, the b-tagging discriminant output of the leading b-jet is used as the

flavour-sensitive distribution. This observable for events belonging to the signal region is

distributed into three intervals that define the bins of the discriminant output distribution.

Each bin corresponds to a certain range of b-tagging efficiency. The bins are numbered

from 1 to 3, corresponding respectively to efficiencies of 60%–70% (bin 1), 50%–60% (bin

2) and <50% (bin 3) as estimated from simulated tt̄ events. The light-flavour jet (c-jet)

misidentification rates for the three bins are respectively 0.195% (5.4%), 0.048% (1.96%),

and <0.017% (<0.94%). The signal template is built with simulated Z+ ≥ 1b events. The

template shapes of the Z+l and Z+c samples are very similar (as shown in figure 2), hence

those samples are combined to form a single template. All non-Z+jets backgrounds are

combined into a single template, determined from the sum of their predicted contributions.

The normalisations of the signal and of the Z+jets background are free to float in the fit,

while the normalisation of the sum of the non-Z+jets backgrounds is fixed to their estimate.

In the 2-tag region the combination of the three bins of the b-tagging discriminant

outputs of the leading and sub-leading b-jets produces a distribution with six bins that

is used for the fit to data. The signal template is built with simulated Z + bb events.

Templates built with Z + b, Z + c and Z + l simulated events are combined into a single

template. Because of the large rejection of light-flavour jets achieved in the 2-tag selection,

the simulated Z + l events in this region are not subjected to the b-tagging requirement.

Instead they are weighted by a per-event probability that the jets pass the two-b-tags
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Generator Signal Z+jets background Signal Z+jets background Signal + Z+jets

SF SF post-fit yield post-fit yield post-fit yield

Sherpa 1.109 ± 0.003 0.861 ± 0.004 309 650 ± 810 166 640 ± 650 476 290 ± 750

Alpgen 1.480 ± 0.004 1.015 ± 0.002 297 670 ± 740 178 100 ± 400 475 810 ± 480

Table 4. Scale factors obtained for the fitted signal and Z+jet background for Sherpa and Alpgen

fits, the total post-fit yields, and the statistical uncertainty, estimated with pseudo-experiments,

from the fit for the 1-tag signal region.

Generator Signal Z+ jets background Signal Z+ jets background Signal + Z+jets

SF SF post-fit yield post-fit yield post-fit yield

Sherpa 1.18 ± 0.01 1.08 ± 0.04 23 440 ± 250 4780 ± 180 28 220 ± 200

Alpgen 1.18 ± 0.01 1.30 ± 0.05 23 650 ± 240 4550 ± 180 28 200 ± 200

Table 5. Scale factors obtained for the fitted signal and Z+jet background for Sherpa and Alpgen

fits, the total post-fit yields, and the statistical uncertainty, estimated with pseudo-experiments,

from the fit for the 2-tag signal region.

selection (procedure referred to as the truth-tagging). This probability is computed on the

basis of the per-jet probabilities, which are assumed to be independent of each other [102].

As for the fit in the 2-tag region, the normalisations of the signal and of the Z+jets

background are also free to float, while the normalisation of the other backgrounds is fixed

to their estimate.

Tables 4 and 5 show the normalisation scale factors in the 1- and 2-tag regions obtained

from the fit, together with the post-fit yields for the signal and Z+jet background samples

generated with Sherpa or Alpgen. There is good agreement between the sum of the signal

and background post-fit yields of Sherpa and Alpgen. The differences between Sherpa

and Alpgen in the modelling of the Z+jet backgrounds after the flavour fit are taken into

account in the systematic uncertainties as described below. The statistical uncertainty is

estimated with pseudo-experiments.

Figure 2 shows the b-tagging discriminant bins after the fit in the 1-tag and 2-tag

regions. In the upper panel of each figure, data are compared with the fit results obtained

using templates derived from Sherpa samples for signal and Z+jet backgrounds. The

lower panel shows the ratio of post-fit predictions to data using the Sherpa or Alpgen

samples for signal and Z+jet backgrounds.

The Z+jets backgrounds predicted by Sherpa and corrected for the normalisation

factor obtained from the fit are used as the nominal estimate in this analysis. System-

atic uncertainties due to the object selection efficiencies and calibrations, discussed in

section 4.1, affect the normalisation and the shape of Z+jets backgrounds. They are as-

sessed by repeating the fit with the templates varied according to each of the systematic

uncertainties. The fit is also repeated for each of the uncertainties affecting the tt̄ and

other backgrounds detailed above. An additional systematic uncertainty (referred to as

the flavour fit uncertainty) in the normalisation of the Z+jets backgrounds is estimated

by repeating the fit after separating the Z + c from the Z + l template in the 1-tag region,
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Figure 2. Post-fit b-tagging discriminant distributions for the electron (left) and muon (right)

channels in the 1-tag (top) and 2-tag (bottom) signal regions. The lower panels display the ratios

of the predictions to data using the signal and Z+jet background simulation either from Sherpa

(red) or Alpgen (blue). Systematic and statistical uncertainties for the predicted distributions are

combined in the hatched band, and the statistical uncertainty, estimated with pseudo-experiments,

is shown on the data points. The systematic uncertainties account for both the detector-level

uncertainties and the theory uncertainty of the non-Z backgrounds.

and after separating the Z + b from the Z + c and Z + l templates in the 2-tag region.

An uncertainty affecting the shape and rate of the Z+jets background is derived by taking

the difference between the post-fit Z+jets background evaluations using Sherpa and Alp-

gen samples. Another uncertainty accounts for potential jet-jet correlations that are not

covered by the truth-tagging procedure which mitigates the large statistical fluctuations in

the 2-tag region for Z + l. A 20% uncertainty is derived by taking the largest difference

between the double-tagged event yields obtained with or without the weighting procedure
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Figure 3. The pT of the leading b-jet (left) and of the Z boson (right) for events with at least one

b-jet in the Z+jets validation region defined in table 3. Post-fit distributions for signal and Z +

jets backgrounds are shown. Systematic and statistical uncertainties for the predicted distributions

are combined in the hatched band, and the statistical uncertainty is shown on the data points. The

uncertainty in the predictions includes only the flavour-tagging efficiency uncertainty and flavour-fit

uncertainty.

being applied to simulated samples of Z + bb, Z + cc, W + bb, and W + cc.6 These sam-

ples suffer less from statistical limitations. The test is done with both the Sherpa and

Alpgen samples.

The post-fit estimate of the Sherpa Z+jets background is validated in a region defined

by applying the full signal event selection with the exception of b-tagging requirements.

Events with at least one b-jet, with the b-tagging discriminant output in the b-jet efficiency

range of 70%–77% and light-flavour jet (c-jet) misidentification rates of 0.51% (7.7%), are

selected to provide a sample enriched in c-jets and light-flavour jets. As an example, figure 3

shows the pT of the leading b-jet and the pT of the Z boson in this region. The Z + l and

Z + c backgrounds constitute 50% and 28% of the total prediction, respectively. Agree-

ment between data and estimated backgrounds is observed within uncertainties. These

include the uncertainties due to the flavour fit and b-tagging efficiency, and the statistical

uncertainties of the predictions and data.

The normalisation factors of the signal samples, shown in tables 4 and 5, are applied in

figures 2 and 3 in this section to demonstrate the robustness of this procedure, while in the

following sections, post-fit normalisation factors are applied only to Z+jets background.

6 Kinematic distributions

After the signal selection criteria are applied, the measured and expected distributions are

compared at the detector level. The Z+jets background is shown for the normalisation

factors derived from the flavour fit. Pre-fit distributions are used for the signal samples.

6Simulated Z+jets events are categorised as Z+cc (W +cc) if they belong to the Z+c (W +c) category

and have at least two c-jets.
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Figure 4. Distribution of events passing the signal selection as a function of m`` (left) and pT,Z

(right) for events with at least one b-jet. The lower panels display the ratio of the predictions for

signal plus background to data using either Sherpa (red) or Alpgen + Pythia6 (blue) as the

signal simulation. The statistical uncertainty of the data is shown as black error bars and the total

uncertainty of the prediction as a hatched band. The latter consists of the statistical uncertainty

and all systematic uncertainties from the predictions.

Figure 4 shows, as an example, the distributions of the m`` and pT of the Z boson for

events in the 1-tag region. Figure 5 shows the pT of the Z boson and the ∆Rbb distributions

for events in the 2-tag region. The uncertainty bands include the statistical uncertainties of

the simulated sample, the event-selection uncertainties described in section 4 (omitting the

common luminosity uncertainty), and the background uncertainties described in section 5.

Both generators do not describe precisely the data in the full range of the measurement,

although the Sherpa generator provides the best agreement with data.

The total numbers of selected events in data and in predictions are presented in table 6,

together with the prediction of each process, expressed as a fraction of the total number of

predicted events.

7 Correction to particle level

The signal event yields are determined by subtracting the estimated background contri-

butions from the data. The resulting distributions are corrected for detector-level effects

to the fiducial phase space at particle level defined in table 7. The procedure, based on

simulated samples, corrects for Z-boson, jet, and b-jet selection efficiencies, resolution ef-

fects, and small differences between the fiducial and detector-level phase spaces. The pre-fit

distributions of the Sherpa signal samples are used to perform the unfolding procedure.

The signal samples for the simulation of Z events with at least one or at least two b-jets

are defined in section 4. Particle-level objects are selected with requirements close to the

corresponding requirements for reconstructed signal candidate objects, in order to limit
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Figure 5. Distribution of events passing the signal selection as a function of pT,Z (left) and ∆Rbb

(right) for events with at least two b-jets. The lower panels display the ratio of the predictions for

signal plus background to data using either Sherpa (red) or Alpgen + Pythia6 (blue) as the

signal simulation. The statistical uncertainty of the data is shown as black error bars and the total

uncertainty of the prediction as the hatched band. The latter consists of the statistical uncertainty

and all systematic uncertainties from the predictions.

1-tag region

Signal

Z + b, Z + bb 59%

Backgrounds

Z + c 18%

Z + l 18%

Top 4%

Diboson, V H 1%

Others < 1%

Total predicted 470 000 ± 650

Data 499 645

2-tag region

Signal

Z + bb 60%

Backgrounds

Z + b 9%

Z + c 5%

Z + l < 1%

Top 23%

Diboson, V H 2%

Others 1%

Total predicted 33 070 ± 180

Data 36 548

Table 6. The expected size of the signal and backgrounds, expressed as a fraction of the total

number of predicted events for inclusive b-jet multiplicities for the signal selection. The signal

and Z+jets background predictions are from the Sherpa generator, with the Z+jets background

estimate obtained after applying the normalisation scale factors obtained from the flavour fit. The

total numbers of predicted and observed events are also shown. The uncertainty in the total

predicted number of events is statistical only.

the dependence of the measurement on theoretical predictions. In this definition, the lep-

ton kinematic variables are computed using final-state leptons from the Z-boson decay.

Photons radiated by the boson decay products within a cone of size ∆R = 0.1 around the

direction of a final-state lepton are added to the lepton, and the sum is referred to as the

‘dressed’ lepton. Particle-level jets are identified by applying the anti-kt algorithm with
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Kinematic variable Acceptance cut

Lepton pT pT > 27 GeV

Lepton η |η| < 2.5

m`` m`` = 91± 15 GeV

b-jet pT pT > 20 GeV

b-jet rapidity |y| < 2.5

b-jet-lepton angular distance ∆R(b-jet, `)> 0.4

Table 7. Kinematic criteria defining the fiducial phase space of the measurement at particle level.

R = 0.4 to all final-state particles with a lifetime longer than 30 ps, excluding the dressed

Z-boson decay products. A jet is identified as b-tagged if it lies within ∆R = 0.3 of one or

more weakly decaying b-hadrons with pT > 5 GeV. If a b-hadron matches more than one

jet, only the closest jet in ∆R is labelled as a b-jet.

The correction of differential distributions is implemented using an iterative Bayesian

method of unfolding [103] with two iterations. Simulated events are used to generate a

response matrix for each distribution to account for bin-to-bin migration effects between

the detector-level and particle-level distributions. The matrix is filled with the events that

pass both the detector-level and particle-level selections. The particle-level prediction is

used as the initial prior to determine the first estimate of the unfolded data distribution. For

the second iteration, the new estimate of unfolded data is obtained using the background-

subtracted data and an unfolding matrix, which is derived on the basis of the Bayes’

theorem from the response matrix and the current prior. The background-subtracted data

are corrected for the expected fraction of events which pass the detector-level selection,

but not the particle-level one (unmatched-events), before entering the iterative unfolding.

For each bin of each differential distribution, the unfolded event yields are divided by the

integrated luminosity of the data sample and by the bin width, to obtain the cross-section

measurement. The differential cross-section measurement of a given observable in the i-th

bin is given by:

σi =
1

εiL

∑
UijfjN

bsD
j ,

where L is the integrated luminosity, εi is the reconstruction efficiency in i-th bin, NbsD
j

is the number of background-subtracted data events in the j-th bin, fj is the factor that

corrects for unmatched events in the j-th bin, and Uij is the element (i, j) of the unfolding

matrix calculated after two iterations, using the updated prior from the first iteration and

the response matrix.

The measurement of the inclusive cross-section for Z-boson events with at least one

or at least two b-jets is obtained by applying a particle-level correction to the number of

events in data with at least one or at least two b-jets, after background subtraction. The

correction, which is applied as a divisor of the background-subtracted data, is derived from

the ratio of the total number of reconstructed events in the detector-level phase space to

the number of particle-level events in the fiducial phase space. It is 0.399 ± 0.001 for Z-

– 20 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
4

Source of uncertainty Z(→ ``) + ≥ 1 b-jet Z(→ ``) + ≥ 2 b-jets

[%] [%]

b-jet tagging efficiency 7.0 14

b-jet mistag rate 2.4 1.1

Jet 2.4 5.0

Lepton 0.8 1.2

Emiss
T 0.6 1.3

Z + c and Z + l backgrounds 4.5 1.1

Top background 0.5 3.8

Other backgrounds < 0.1 0.1

Pile-up 1.7 2.6

Unfolding 3.8 4.1

Luminosity 2.3 2.9

Total [%] 10 16

Table 8. Relative systematic uncertainties in the measured production cross-sections of Z(→
``) + ≥ 1 b-jet and Z(→ ``) + ≥ 2 b-jets events. The “Jet” term includes the JES, JER and

JVT uncertainties. The “Lepton” term includes the lepton trigger, efficiency, scale and resolution

uncertainties. The “Z + c and Z + l backgrounds” term also includes the Z + 1b background in the

Z + ≥ 2 b-jets measurement.

boson events with at least one b-jet and 0.258± 0.002 for Z-boson events with at least two

b-jets, using Sherpa signal samples and quoting the statistical error.

Since the electron and muon decay channels are combined to increase the precision of

the signal fits to data, the corrections and response matrices are made using electron and

muon signal samples to obtain combined particle-level yields. To validate this procedure,

the analysis is performed for each of the two lepton channels separately. The results ob-

tained from the individual channels are compatible within 1.4σ and 1.6σ with the inclusive

cross-section of Z-boson events with at least one b-jet and at least two b-jets, respectively.

This comparison uses only the sum in quadrature of the statistical and uncorrelated sys-

tematic uncertainties. The differential cross-section measurements in the two channels also

agree over the full range of each distribution.

8 Uncertainties in the cross-section measurements

Table 8 summarises the systematic uncertainties of the inclusive Z + b-jets cross-sections

in the one- and two-b-tag regions. Figure 6 shows as an example the breakdown of the

systematic uncertainties in the cross-section as a function of Z-boson pT for events with at

least one b-jet and as a function of ∆Rbb for events with at least two b-jets.

The systematic uncertainties in the cross-sections associated with the detector-level

uncertainty sources described in section 4.1 are derived for each observable by propagating

systematic shifts from each source through both the response matrices (unfolding factor)

and the subtracted background contributions into the unfolded data for the differential (in-
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Figure 6. Relative systematic uncertainties in the fiducial cross-section as a function of the Z-

boson pT in events with at least one b-jet (left) and as a function of the ∆R between the two leading

b-jets in events with at least two b-jets (right). The total uncertainty is shown in black while the

different components listed in table 8 are shown in different colours.

clusive) cross-section measurements. The dominant source of uncertainty is the modelling

of the b-tagging efficiency. Its impact on the inclusive cross-section ranges from 7.0% for

Z-boson events with at least one b-jet to 14% for Z-boson events with at least two b-jets.

Its effect on differential cross-section measurements ranges from 5% to 10% for Z-boson

events with at least one b-jet and from 10% to 15% for Z-boson events with at least two

b-jets. The impact of the mistag rate of c- and light-jets is smaller; it is 2.4% for Z-boson

events with at least one b-jet and 1% for Z-boson events with at least two b-jets.

The uncertainty from each background source is determined by applying shifts to the

subtracted background contributions and to the nominal response matrices or unfolding

factors. The sources of uncertainty considered for Z + l and Z + c (and Z + 1b in the

Z + ≥ 2b-jets measurement), tt̄ and single-top, diboson and other minor backgrounds

are described in section 5. The dominant uncertainty in the background to events with

at least one b-jet originates from Z+jets events. This uncertainty contributes 4.5% to

the uncertainty in the inclusive cross-section. An uncertainty of 3.7% derives from the

difference between the modelling in Alpgen and Sherpa, while 2.6% is due to the flavour

fit uncertainty. The impact of this uncertainty on the differential cross-sections ranges

from a few per cent up to 25% in the extreme corners of the phase space. For a Z-boson

pT value of about 500 GeV, the difference between the modelling in Alpgen and Sherpa

contributes 18% to this uncertainty, and the flavour fit uncertainty is 12%.

In contrast, the uncertainty in the estimation of background from tt̄ events is the

dominant source of uncertainty in the background to Z-boson events with at least two

b-jets. It contributes 3.8% to the inclusive cross-section and ranges from 1% to 9% in the

differential cross-sections.

The uncertainty due to modelling of the Z+ b-jets signal samples in the events with at

least one and at least two b-jets are also accounted for. This is evaluated for each observable
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by reweighting the generator-level distribution in the Sherpa samples to provide a better

description of the data at detector level. The modified Sherpa samples are then used to

emulate data and are unfolded with the nominal simulated sample. An additional source

accounts for the possible mismodelling of an observable that is not one of the unfolded

observables (i.e. a hidden variable). This uncertainty is evaluated by reweighting, in the

Sherpa samples, the generator-level distribution of the leading lepton’s pT, which is one of

the observables showing the largest mismodelling, to provide a better description of the data

at detector level. The modified Sherpa samples are used to unfold the data. The effect of

the hidden variable’s mismodelling is negligible for all considered variables and all bins. A

third uncertainty source accounts for the different hadronisation and parton-shower models

used for the signal simulation. This uncertainty is evaluated by unfolding the Alpgen

signal samples, which emulate the background-subtracted data, with the Sherpa signal

samples. The generator-level distributions from the Alpgen samples are first reweighted

to agree with Sherpa in order to remove effects related to shape differences. The difference

between the generator-level distribution and the unfolded Alpgen reweighted distribution

is taken as the uncertainty. For the inclusive cross-section, the modelling uncertainty is

estimated by replacing the unfolding factor computed with Sherpa with the one computed

with Alpgen. The dependence on the size of the simulated sample is derived using pseudo-

experiments, and the spread of the results is taken as an uncertainty. The statistical term

is typically less than a few per cent. It reaches 5% in the last bin of the ∆Rbb distribution

and 15% only in the last bin of the ∆ybb distribution.

The total unfolding uncertainty in the inclusive cross-sections is at the level of 4% in

each of the two signal regions. In the differential distributions it is less than 5% in the 1-tag

region and at a level of 5%–10% in the 2-tag region, except in some bins of the angular

variables and in the tail of the pT and mbb distributions, where it reaches 20%.

9 Results

The inclusive and differential cross-section measurements for Z + ≥ 1 b-jet and Z + ≥
2 b-jets are shown in figures 7–15. The statistical uncertainty of the data is propagated

through the unfolding by using 1000 pseudo-experiments, repeating the flavour fit for each

of them. The statistical uncertainty in the inclusive cross-sections of Z + ≥ 1 b-jet and

Z + ≥ 2 b-jets is 0.3% and 0.8% respectively. As mentioned in section 8, the systematic

uncertainties are propagated through the unfolding via the response matrices or the un-

folding factors and via the variation of the subtracted background. The measurements are

compared with the predictions from Sherpa 5FNS (NLO), Alpgen + Py6 4 FNS (LO),

Sherpa Fusing 4FNS+5FNS (NLO), Sherpa Zbb 4FNS (NLO), MGaMC + Py8

5FNS (LO), MGaMC + Py8 Zbb 4FNS (NLO) and MGaMC + Py8 5FNS (NLO).

Theoretical uncertainties of Sherpa 5FNS (NLO), computed as described in section 3,

are shown in the comparison with data. In this section, all predictions are normalised to

their own cross-section to allow an unbiased comparison among different generators.7

7The NNLO cross-section K-factor applied to the inclusive Alpgen and Sherpa samples in previous

sections is removed.
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Figure 7. Measured cross-sections for Z + ≥ 1 b-jet (left) and Z + ≥ 2 b-jets (right). The data

are compared with the predictions from Sherpa 5FNS (NLO), Alpgen + Py6 4 FNS (LO),

Sherpa Fusing 4FNS+5FNS (NLO), Sherpa Zbb 4FNS (NLO), MGaMC + Py8 5FNS

(LO), MGaMC + Py8 Zbb 4FNS (NLO) and MGaMC + Py8 5FNS (NLO). The yellow

band corresponds to the statistical uncertainty of the data, and the green band to statistical and

systematic uncertainties of the data, added in quadrature. The error bars on the Sherpa 5FNS

(NLO) predictions correspond to the statistical and theoretical uncertainties added in quadrature.

Only statistical uncertainties are shown for the other predictions.

9.1 Inclusive cross-sections

The measured inclusive cross-sections for Z + ≥ 1 b-jet and Z + ≥ 2 b-jets, shown in

figure 7, are 10.90 ± 0.03(stat.) ± 1.08(syst.) ± 0.25(lumi.) pb and 1.32 ± 0.01(stat.) ±
0.21(syst.) ± 0.04(lumi.) pb, respectively. The 4FNS MC predictions are systematically

lower than data in the inclusive one-b-jet case, both for MC generators with LO matrix

elements, as implemented in Alpgen + Py6 4FNS (LO), and for Zbb predictions at

NLO, as implemented in Sherpa Zbb 4FNS (NLO) and MGaMC + Py8 Zbb 4FNS

(NLO). The 4FNS predictions agree well with data in the inclusive two-b-jet case. Even

though the LO Alpgen + Py6 4FNS (LO) underestimates the data, the predictions and

data agree within two standard deviations (2σ) of the experimental uncertainty. Use of the

NNPDF3.0lo PDF set in Alpgen predictions gives better agreement with data because of

a higher acceptance in the fiducial region. The 5FNS simulations, in general, adequately

predict the inclusive cross-sections for both Z + ≥ 1 b-jet and Z + ≥ 2 b-jets. Overall, this

is consistent with the results presented in the ATLAS measurement at
√
s = 7 TeV [11].

9.2 Differential cross-sections for Z + ≥ 1 b-jet

The differential cross-section measurements for the Z + ≥ 1 b-jet process are shown in

figures 8–11. Each distribution is presented and discussed in detail in this section.

The distributions of the transverse momentum of the Z boson and of the jets probe

pQCD over a wide range of scales and provide important input to the background prediction

for other SM processes, including Higgs boson production and searches beyond the SM. The

differential cross-section as a function of the Z-boson pT for events with at least one b-jet

is shown in figure 8 (left). In the low pT region, up to 100 GeV, where soft radiative effects
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Figure 8. Measured cross-section as a function of Z-boson pT (left) and leading b-jet pT (right)

in events with at least one b-jet. The data are compared with the predictions from Sherpa 5FNS

(NLO), Alpgen + Py6 4 FNS (LO), Sherpa Fusing 4FNS+5FNS (NLO), Sherpa Zbb 4FNS

(NLO), MGaMC + Py8 5FNS (LO), MGaMC + Py8 Zbb 4FNS (NLO) and MGaMC + Py8

5FNS (NLO). The error bars correspond to the statistical uncertainty, and the hatched bands to

the data statistical and systematic uncertainties added in quadrature. The red band corresponds to

the statistical and theoretical uncertainties of Sherpa 5FNS (NLO) added in quadrature. Only

statistical uncertainties are shown for the other predictions.

play a role, all the predicted shapes except that of MGaMC + Py8 Zbb 4FNS (NLO)

exhibit trends different from those in the data. Overall, the predictions from Sherpa 5FNS

(NLO) and Sherpa Fusing 4FNS+5FNS (NLO) show the best agreement with data.

Predictions from MGaMC + Py8 5FNS (LO) and MGaMC + Py8 5FNS (NLO) are

within the experimental uncertainty band for most of the bins. The harder Z-boson pT in

Alpgen predictions than in data has already been reported by ATLAS for data collected at√
s = 7 TeV [11]. Figure 8 (right) shows the leading b-jet pT. MGaMC + Py8 5FNS (LO)

provides a satisfactory description within the uncertainty of the data, while MGaMC +

Py8 5FNS (NLO) underestimates the data in the high pT region. This region is populated

by additional hard radiation, which in MGaMC + Py8 5FNS (NLO) is simulated only

via parton shower. Sherpa 5FNS (NLO) exhibits the best agreement with data. The

contrasting behaviour of Sherpa Fusing 4FNS+5FNS (NLO), which underestimates

the data at high pT, may be interesting to investigate further in the future. The NLO

4FNS predictions of Zbb, as implemented in Sherpa and MGaMC, show a softer leading

b-jet pT, while the inclusive LO 4FNS prediction, as implemented in Alpgen, describes
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Figure 9. Measured cross-section as a function of Z-boson |y| (left) and leading b-jet |y| (right)

in events with at least one b-jet. The data are compared with the predictions from Sherpa 5FNS

(NLO), Alpgen + Py6 4 FNS (LO), Sherpa Fusing 4FNS+5FNS (NLO), Sherpa Zbb 4FNS

(NLO), MGaMC + Py8 5FNS (LO), MGaMC + Py8 Zbb 4FNS (NLO) and MGaMC + Py8

5FNS (NLO). The error bars correspond to the statistical uncertainty, and the hatched bands to

the data statistical and systematic uncertainties added in quadrature. The red band corresponds to

the statistical and theoretical uncertainties of Sherpa 5FNS (NLO) added in quadrature. Only

statistical uncertainties are shown for the other predictions.

the shape of the data quite well despite the large underestimation of the normalisation

already discussed for figure 7.

The distributions of the Z-boson rapidity, the leading b-jet rapidity, and their sep-

aration, ∆yZb, are directly sensitive to the b-quark PDFs and to higher-order diagram

contributions, and they may show differences for different flavour schemes. The differential

cross-sections as a function of the Z-boson rapidity and of the leading b-jet rapidity for

events with at least one b-jet are shown in figure 9. All MC predictions provide a satis-

factory description of the shape of the data. Some modulation relative to data is observed

in the leading b-jet |y| distribution, in some cases beyond the experimental uncertainty.

Figure 10 (right) shows the differential cross-section as a function of ∆yZb. Sherpa 5FNS

(NLO) and Sherpa Fusing 4FNS+5FNS (NLO) describe the data quite well, while all

other predictions exhibit a slightly smaller rapidity separation than data, even if within

the uncertainty of the data. Use of a different PDF set as in Alpgen predictions leads to

a change in the distribution, but the differences are small compared with the experimental

uncertainties.
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Figure 10. Measured cross-section as a function of ∆φ (left) and ∆y between the Z-boson

candidate and the leading b-jet (right) in events with at least one b-jet. The data are compared

with the predictions from Sherpa 5FNS (NLO), Alpgen + Py6 4 FNS (LO), Sherpa Fusing

4FNS+5FNS (NLO), Sherpa Zbb 4FNS (NLO), MGaMC + Py8 5FNS (LO), MGaMC +

Py8 Zbb 4FNS (NLO) and MGaMC + Py8 5FNS (NLO). The error bars correspond to the

statistical uncertainty, and the hatched bands to the data statistical and systematic uncertainties

added in quadrature. The red band corresponds to the statistical and theoretical uncertainties of

Sherpa 5FNS (NLO) added in quadrature. Only statistical uncertainties are shown for the other

predictions.

The distribution of ∆φZb is sensitive to the presence of additional radiation in the

event. In fixed order calculations of the Z + 1b process, the LO matrix element provides

contributions only for ∆φZb = π, while the NLO matrix element is the first order which

populates the region of ∆φZb < π. In MC simulations the region below π is populated

via parton shower and via merging of parton shower with multi-parton matrix elements.

Therefore the region of small azimuthal separation between the Z boson and the leading

b-jet is the most sensitive to additional QCD radiation and soft corrections. It is also

sensitive to the presence of boosted particles decaying into a Z boson and b-quarks. The

differential cross-section as a function of ∆φZb for events with at least one b-jet is shown

in figure 10 (left). The Sherpa 5FNS (NLO) generator provides the best agreement

with data. Sherpa Fusing 4FNS+5FNS (NLO) is still consistent with data within

the experimental uncertainty in most of the bins, but a small difference between the two

simulations is observed for small values. This result is highly correlated with the difference

observed in the leading b-jet pT distribution. It confirms that the current performance
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the leading b-jet in events with at least one b-jet. The data are compared with the predictions from

Sherpa 5FNS (NLO), Alpgen + Py6 4 FNS (LO), Sherpa Fusing 4FNS+5FNS (NLO),

Sherpa Zbb 4FNS (NLO), MGaMC + Py8 5FNS (LO), MGaMC + Py8 Zbb 4FNS (NLO)

and MGaMC + Py8 5FNS (NLO). The error bars correspond to the statistical uncertainty, and

the hatched bands to the statistical and systematic uncertainties of the data, added in quadrature.

The red band corresponds to the statistical and theoretical uncertainties of Sherpa 5FNS (NLO)

added in quadrature. Only statistical uncertainties are shown for the other predictions.

of Sherpa Fusing 4FNS+5FNS (NLO) in the regime of high-pT jets with a Z boson

emitted collinearly is slightly worse than the Sherpa 5FNS (NLO) configuration. All

MGaMC simulations predict too many large azimuthal separations, with a consequent

deficit at small angles. Also, in this case the modelling in MGaMC + Py8 5FNS (NLO)

is slightly worse than in MGaMC + Py8 5FNS (LO). The differential cross-section as a

function of ∆RZb, as shown in figure 11, contains the convolution of effects discussed for

the ∆yZb and ∆φZb distributions.
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Figure 12. Measured cross-section as a function of ∆φ (left) and ∆y between the two leading

b-jets (right) in events with at least two b-jets. The data are compared with the predictions from

Sherpa 5FNS (NLO), Alpgen + Py6 4 FNS (LO), Sherpa Fusing 4FNS+5FNS (NLO),

Sherpa Zbb 4FNS (NLO), MGaMC + Py8 5FNS (LO), MGaMC + Py8 Zbb 4FNS (NLO)

and MGaMC + Py8 5FNS (NLO). The error bars correspond to the statistical uncertainty, and

the hatched bands to the data statistical and systematic uncertainties added in quadrature. The red

band corresponds to the statistical and theoretical uncertainties of Sherpa 5FNS (NLO) added

in quadrature. Only statistical uncertainties are shown for the other predictions.

9.3 Differential cross-sections for Z + ≥ 2 b-jets

Events with a Z boson produced in association with two b-jets constitute an important

background to other SM and beyond-SM processes. Furthermore, they probe the mecha-

nism of a gluon splitting into heavy quarks. The differential cross-section measurements

for Z + ≥ 2 b-jet are shown in figures 12–15. Each distribution is presented and discussed

in detail in this section.

The distributions of angular separation between the two leading b-jets allow character-

isation of the hard radiation at large angles and the soft radiation for collinear emissions.

The differential cross-sections as a function of ∆φbb and of ∆ybb are shown in figure 12.

Most of the predictions provide satisfactory descriptions of the data within the large ex-

perimental uncertainties. Disagreement between data and MGaMC + Py8 Zbb 4FNS

(NLO) is observed at low values of ∆φbb. Mismodelling of ∆ybb is observed for Alpgen.

This observable has some sensitivity to PDFs, but that is below the experimental uncer-

tainties. The ∆Rbb observable is sensitive to the various production mechanisms of the Zbb
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Figure 13. Measured cross-section as a function of ∆R between the two leading b-jets (left)

and invariant mass of the two leading b-jets (right) in events with at least two b-jets. The data

are compared with the predictions from Sherpa 5FNS (NLO), Alpgen + Py6 4 FNS (LO),

Sherpa Fusing 4FNS+5FNS (NLO), Sherpa Zbb 4FNS (NLO), MGaMC + Py8 5FNS

(LO), MGaMC + Py8 Zbb 4FNS (NLO) and MGaMC + Py8 5FNS (NLO). The error bars

correspond to the statistical uncertainty, and the hatched bands to the data statistical and system-

atic uncertainties added in quadrature. The red band corresponds to the statistical and theoretical

uncertainties of Sherpa 5FNS (NLO) added in quadrature. Only statistical uncertainties are

shown for the other predictions.

final state. The region at low ∆Rbb is dominated by the production of two b-jets from gluon

splitting. Probing this region requires two b-jets in the final state, so it is not sensitive

to very small angles of the splitting. The interplay of the modelling of ∆φbb and ∆ybb in

Alpgen + Py6 4 FNS (LO) influences the prediction of the ∆Rbb distribution shown in

figure 13 (left). All Sherpa predictions describe the shape of this observable quite well,

featuring a substantial improvement at low ∆Rbb relative to the LO version reported by

ATLAS using data at
√
s = 7 TeV. Overall, this is consistent with the results presented in

the ATLAS measurement of gluon-splitting properties at
√
s = 13 TeV [11]. MGaMC +

Py8 Zbb 4FNS (NLO) presents a large mismodelling at low ∆Rbb, which is the part of

the phase space dominated by gluon splitting.

The invariant mass of the two leading b-jets is an important observable in the mea-

surement of associated ZH production with Higgs boson decays into bb̄, and in searches

for physics beyond the SM in the same final state. The differential cross-section as a func-

tion of mbb for events with at least two b-jets is shown in figure 13 (right). All Sherpa
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Figure 14. Measured cross-section as a function of pT of the Z boson (left) and of the di-b-jet system

(pT,bb) (right) in events with at least two b-jets. The data are compared with the predictions from

Sherpa 5FNS (NLO), Alpgen + Py6 4 FNS (LO), Sherpa Fusing 4FNS+5FNS (NLO),

Sherpa Zbb 4FNS (NLO), MGaMC + Py8 5FNS (LO), MGaMC + Py8 Zbb 4FNS (NLO)

and MGaMC + Py8 5FNS (NLO). The error bars correspond to the statistical uncertainty, and

the hatched bands to the data statistical and systematic uncertainties added in quadrature. The red

band corresponds to the statistical and theoretical uncertainties of Sherpa 5FNS (NLO) added

in quadrature. Only statistical uncertainties are shown for the other predictions.

predictions provide a quite good model of the shape of this observable’s distribution up

to about 300 GeV, while the other predictions show various discrepancies in this region.

This is particularly evident for MGaMC + Py8 Zbb 4FNS (NLO), and it is consistent

with the mismodelling observed at low ∆Rbb, the region dominated by gluon splitting. In

the high mass range all predictions underestimate the data, resulting in a sizeable mis-

modelling. Hence the use of these predictions for the background estimate in searches for

physics beyond the SM in this final state could be problematic.

The differential cross-sections as a function of the Z-boson pT and of the pT of the

di-b-jet system (pT,bb) for events with at least two b-jets are shown in figure 14. Most of the

predictions agree with data within the large experimental uncertainties, which are about

25% in most of the bins, and large statistical uncertainties of the predictions, which for

some MC samples reach 25% in the highest bins. Alpgen shows a harder Z-boson pT
spectrum than data, as was observed in the distribution of events with at least one b-jet.

The Zbb simulation at NLO with 4FNS, as implemented in MGaMC + Py8 Zbb 4FNS

(NLO) and Sherpa Zbb 4FNS (NLO), shows better agreement with data with respect
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its invariant mass (pT,bb/mbb) in events with at least two b-jets. The data are compared with

the predictions from Sherpa 5FNS (NLO), Alpgen + Py6 4 FNS (LO), Sherpa Fusing

4FNS+5FNS (NLO), Sherpa Zbb 4FNS (NLO), MGaMC + Py8 5FNS (LO), MGaMC +

Py8 Zbb 4FNS (NLO) and MGaMC + Py8 5FNS (NLO). The error bars correspond to the

statistical uncertainty, and the hatched bands to the statistical and systematic uncertainties of the

data, added in quadrature. The red band corresponds to the statistical and theoretical uncertainties

of Sherpa 5FNS (NLO) added in quadrature. Only statistical uncertainties are shown for the

other predictions.

to the pT distributions for events with at least one b-jet, but significant disagreement is

still observed.

Finally, the ratio of the pT of the di-b-jet system to its invariant mass (pT,bb/mbb) is

sensitive to gluon splitting: a small value indicates a hard splitting and a large value is

a consequence of soft splitting. The differential cross-section as a function of pT,bb/mbb is

shown in figure 15. Sherpa 5FNS (NLO) and Sherpa Fusing 4FNS+5FNS (NLO)

show quite good agreement with data, while MGaMC + Py8 Zbb 4FNS (NLO) agrees

less well.
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10 Conclusion

This paper presents a measurement of the cross-sections for Z-boson production in associa-

tion with one or more b-jets in pp collisions at
√
s = 13 TeV. The analysed data correspond

to an integrated luminosity of 35.6 fb−1 recorded by the ATLAS detector at the LHC.

The cross-sections are measured using the electron and muon decay modes of the Z

boson in a fiducial phase space. In addition to the inclusive cross-sections, differential cross-

sections of several kinematic observables are measured, extending the range of jet transverse

momenta to higher values than reported in previous ATLAS publications, which used data

at lower centre-of-mass energies.

The measurements are compared with predictions from a variety of Monte Carlo gen-

erators. In general, 5-flavour number scheme (5FNS) calculations at NLO accuracy predict

the inclusive cross-sections well, while inclusive 4-flavour number scheme (4FNS) LO cal-

culations largely underestimate the data. Predictions of Zbb at NLO accuracy agree with

data only in the two-b-jets case, and underestimate the data in the case of events with at

least one b-jet. Overall, Sherpa 5FNS (NLO), a 5FNS generator with matrix elements

at NLO for up to two partons and matrix elements at LO for up to four partons, describes

the various differential distributions within the experimental uncertainties. A significant

discrepancy, common to all generators, is found for large values of mbb. The Sherpa Fus-

ing 4FNS+5FNS (NLO) simulation, which combines 4FNS with 5FNS at NLO accuracy

using a novel technique, agrees with Sherpa 5FNS (NLO), showing that in general at the

scales tested by this measurement the effects of this merging are minor. A disagreement of

about 20 30% is observed for large values of the leading b-jet transverse momentum, and

for small angular separations between the Z boson and the leading b-jet.

The 5FNS simulation with matrix elements for up to four partons at LO, as imple-

mented in MGaMC + Py8 (LO), describes the data within the experimental uncertainties

in most cases. In some cases this simulation is even better than predictions from MGaMC

+ Py8 5FNS (NLO), which has matrix elements with only one parton at NLO. This

indicates the importance of simulations with several partons in the matrix element for a

fair description of the data. The pure Zbb simulation at NLO in the 4FNS, as generated by

Sherpa and MGaMC, shows significant deviations from the data even in the two-b-jets

configuration, and this is more pronounced in MGaMC.

This measurement provides essential input for the improvement of theoretical predic-

tions and Monte Carlo generators of Z-boson production in association with b-jets, allowing

a better quantitative understanding of perturbative QCD.
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A.V. Akimov111, K. Al Khoury65, G.L. Alberghi23b,23a, J. Albert175, M.J. Alconada Verzini160,

S. Alderweireldt36, M. Aleksa36, I.N. Aleksandrov80, C. Alexa27b, T. Alexopoulos10, A. Alfonsi120,

F. Alfonsi23b,23a, M. Alhroob128, B. Ali141, S. Ali157, M. Aliev165, G. Alimonti69a, C. Allaire36,

B.M.M. Allbrooke155, B.W. Allen131, P.P. Allport21, A. Aloisio70a,70b, F. Alonso89,

C. Alpigiani147, A.A. Alshehri57, E. Alunno Camelia74a,74b, M. Alvarez Estevez99,

M.G. Alviggi70a,70b, Y. Amaral Coutinho81b, A. Ambler104, L. Ambroz134, C. Amelung26,

D. Amidei106, S.P. Amor Dos Santos139a, S. Amoroso46, C.S. Amrouche54, F. An79,

C. Anastopoulos148, N. Andari144, T. Andeen11, C.F. Anders61b, J.K. Anders20,

S.Y. Andrean45a,45b, A. Andreazza69a,69b, V. Andrei61a, C.R. Anelli175, S. Angelidakis38,

A. Angerami39, A.V. Anisenkov122b,122a, A. Annovi72a, C. Antel54, M.T. Anthony148,

E. Antipov129, M. Antonelli51, D.J.A. Antrim170, F. Anulli73a, M. Aoki82, J.A. Aparisi Pozo173,

M.A. Aparo155, L. Aperio Bella15a, V. Araujo Ferraz81b, R. Araujo Pereira81b, C. Arcangeletti51,

A.T.H. Arce49, F.A. Arduh89, J-F. Arguin110, S. Argyropoulos52, J.-H. Arling46,

A.J. Armbruster36, A. Armstrong170, O. Arnaez166, H. Arnold120, Z.P. Arrubarrena Tame114,

G. Artoni134, S. Artz100, S. Asai162, T. Asawatavonvanich164, N. Asbah59,

E.M. Asimakopoulou171, L. Asquith155, J. Assahsah35d, K. Assamagan29, R. Astalos28a,

R.J. Atkin33a, M. Atkinson172, N.B. Atlay19, H. Atmani65, K. Augsten141, G. Avolio36,

M.K. Ayoub15a, G. Azuelos110,am, H. Bachacou144, K. Bachas161, M. Backes134,

F. Backman45a,45b, P. Bagnaia73a,73b, M. Bahmani85, H. Bahrasemani151, A.J. Bailey173,

V.R. Bailey172, J.T. Baines143, C. Bakalis10, O.K. Baker182, P.J. Bakker120, D. Bakshi Gupta8,

S. Balaji156, E.M. Baldin122b,122a, P. Balek179, F. Balli144, W.K. Balunas134, J. Balz100,

E. Banas85, M. Bandieramonte138, A. Bandyopadhyay24, Sw. Banerjee180,i, L. Barak160,

W.M. Barbe38, E.L. Barberio105, D. Barberis55b,55a, M. Barbero102, G. Barbour95, T. Barillari115,

M-S. Barisits36, J. Barkeloo131, T. Barklow152, R. Barnea159, B.M. Barnett143, R.M. Barnett18,

Z. Barnovska-Blenessy60a, A. Baroncelli60a, G. Barone29, A.J. Barr134,

L. Barranco Navarro45a,45b, F. Barreiro99, J. Barreiro Guimarães da Costa15a, U. Barron160,
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L. Duflot65, M. Dührssen36, C. Dülsen181, M. Dumancic179, A.E. Dumitriu27b, A.K. Duncan57,

M. Dunford61a, A. Duperrin102, H. Duran Yildiz4a, M. Düren56, A. Durglishvili158b,
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B.P. Kerševan92, S. Ketabchi Haghighat166, M. Khader172, F. Khalil-Zada13, M. Khandoga144,

A. Khanov129, A.G. Kharlamov122b,122a, T. Kharlamova122b,122a, E.E. Khoda174, A. Khodinov165,

T.J. Khoo54, G. Khoriauli176, E. Khramov80, J. Khubua158b, S. Kido83, M. Kiehn54, C.R. Kilby94,

E. Kim164, Y.K. Kim37, N. Kimura95, O.M. Kind19, B.T. King91,∗, D. Kirchmeier48, J. Kirk143,

A.E. Kiryunin115, T. Kishimoto162, D.P. Kisliuk166, V. Kitali46, C. Kitsaki10, O. Kivernyk24,

T. Klapdor-Kleingrothaus52, M. Klassen61a, C. Klein34, M.H. Klein106, M. Klein91, U. Klein91,

K. Kleinknecht100, P. Klimek121, A. Klimentov29, T. Klingl24, T. Klioutchnikova36,

F.F. Klitzner114, P. Kluit120, S. Kluth115, E. Kneringer77, E.B.F.G. Knoops102, A. Knue52,

D. Kobayashi88, T. Kobayashi162, M. Kobel48, M. Kocian152, T. Kodama162, P. Kodys142,

– 45 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
4

D.M. Koeck155, P.T. Koenig24, T. Koffas34, N.M. Köhler36, M. Kolb144, I. Koletsou5,
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R.P. Middleton143, L. Mijović50, G. Mikenberg179, M. Mikestikova140, M. Mikuž92, H. Mildner148,
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Roma; Italy

– 53 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
4

75 INFN Sezione di Roma Tre(a); Dipartimento di Matematica e Fisica(b), Università Roma Tre,
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University of Ljubljana, Ljubljana; Slovenia
93 School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom
94 Department of Physics, Royal Holloway University of London, Egham; United Kingdom
95 Department of Physics and Astronomy, University College London, London; United Kingdom
96 Louisiana Tech University, Ruston LA; United States of America
97 Fysiska institutionen, Lunds universitet, Lund; Sweden
98 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules
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