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In massless quantum field theories the Landau equations are invariant under graph operations familiar
from the theory of electrical circuits. Using a theorem on the Y-Δ reducibility of planar circuits we prove
that the set of first-type Landau singularities of an n-particle scattering amplitude in any massless planar
theory, at any finite loop order, is a subset of those of a certain n-particle bðn − 2Þ2=4c-loop “ziggurat”
graph. We determine this singularity locus explicitly for n ¼ 6 and find that it corresponds precisely to the
vanishing of the symbol letters familiar from the hexagon bootstrap in supersymmetric Yang-Mills (SYM)
theory. Further implications for SYM theory are discussed.
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Introduction.—For over half a century, much has been
learned from the study of singularities of scattering
amplitudes in quantum field theory, an important class
of which are encoded in the Landau equations [1]. This
Letter combines two simple statements to arrive at a general
result about such singularities. The first is based on the long
appreciated and exploited analogy between Feynman dia-
grams and electrical circuits [2–5]. In massless field
theories, the sets of solutions to the Landau equations
are invariant under the elementary graph operations famil-
iar from circuit theory, including the Y-Δ transformation
that replaces a triangle subgraph with a trivalent vertex or
vice versa. The second is a theorem of Gitler [6], who
proved that all relevant (specified below) planar graphs can
be Y-Δ reduced to a class we call ziggurats (Fig. 2).
We conclude that the n-particle bðn − 2Þ2=4c-loop zig-

gurat graph encodes all possible first-type Landau singu-
larities of any n-particle amplitude at any finite loop order
in any massless planar theory. In Sec. VI, we discuss
several interesting implications of our result for planar
N ¼ 4 supersymmetric Yang-Mills (SYM) theory, which
provided the motivation for this work [7–10].
Landau graphs and singularities.—The Landau equa-

tions encapsulate the singularity structure of scattering
amplitudes via Landau graphs. In planar quantum field
theories, the exclusive focus of this Letter, we need only
consider plane graphs. An L-loop m-point plane Landau
graph is a plane graph with Lþ 1 faces and m distin-
guished vertices, called terminals, that lie on a common

face called the unbounded face. Henceforth, we use
“vertex” only for those that are not terminals, and “face”
only for the L faces that are not the unbounded face.
Each edge j is assigned a four-momentum vector qj, the

analog of electric current. At each vertex, the vector sum of
incoming momenta equals that of the outgoing momenta
(current conservation). This constraint is not applied at
terminals, which are the locations where a circuit can be
probed by connecting external sources or sinks of current.
In field theory, these correspond to the momenta carried by
incoming or outgoing particles. If we label the terminals
a ¼ 1;…; m (in cyclic order around the unbounded face)
and let Pa denote the four-momentum flowing into the
graph at terminal a, then energy-momentum conservation
requires that

P
aPa ¼ 0, and it implies that precisely L of

the qj’s are linearly independent.
Our interest lies in understanding the loci in Pa-space on

which amplitudes may have singularities. A Landau graph
is said to have Landau singularities of the first type (LS) at
values of Pa for which the Landau equations [1]

αjq2j ¼ 0 for each edge j; and ð1Þ
X

edges j∈F
αjqj ¼ 0 for each face F ð2Þ

admit solutions for the Feynman parameters αj (omitting
the trivial solution where all αj ¼ 0). In Eq. (1), we omitted
a term proportional to m2

j that would be present in massive
theories.
The Landau equations generally admit several branches of

solutions. The leading LS of a graph G are those associated
to branches having q2j ¼ 0 for all j (regardless of whether
any of the αj’s are zero). LS associated to branches on which
one or more of the q2j are not zero (in which case the
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correspondingαj’smust necessarily vanish) can be interpreted
as leading singularities of a relaxed graph, obtained from G by
contracting the edges associated to the vanishing αj’s.
A graph is called c connected if it remains connected

after the removal of any c − 1 vertices. The set of LS for a
1-connected graph is the union of those associated to each
2-connected component since the Landau equations com-
pletely decouple. Therefore, we can confine our attention to
2-connected graphs.
Elementary circuit operations.—We call Eq. (2) the

Kirchhoff conditions in recognition of their circuit analog
where the αj’s play the role of resistances. The analog of the
on shell conditions (1) is mysterious, but a remarkable
feature of massless theories is that: The graph moves that
are familiar from elementary electrical circuit theory
preserve the solution sets of Eqs. (1) and (2), and hence,
the sets of LS in any massless field theory.
Series reduction [Fig. 1(a)] removes any vertex of degree

two. Since q2 ¼ q1 by momentum conservation, the
Landau equations are trivially preserved if the two edges
with Feynman parameters α1, α2 are replaced by a single
edge carrying momentum q0 ¼ q1 ¼ q2 and Feynman
parameter α0 ¼ α1 þ α2.
Parallel reduction [Fig. 1(b)] collapses any bubble sub-

graph. It is easy to verify (see e.g., Appendix A.1 of [8]) the
Landau equations are preserved if the two edges of thebubble
are replaced by a single edge carrying momentum q0 ¼
q1 þ q2 and Feynman parameter α0 ¼ α1α2=ðα1 þ α2Þ.
The Y-Δ reduction [Fig. 1(c)] replaces a vertex of degree

three (a “Y”) with a triangle subgraph (a “Δ”) or vice versa.
Generically, the Feynman parameters αi of theΔ are related
to those of the Y, which we call βi, by

β1 ¼
α2α3

α1 þ α2 þ α3
; and cyclic: ð3Þ

On branches where one or more of the parameters vanish,
this relation must be suitably modified. For example, if a
branch of solutions for a graph containing a Y has β1 ¼
β2 ¼ 0 but β3 nonzero, then the corresponding branch for
the reduced graph has α3 ¼ 0 but α1, α2 nonzero.
The invariance of the Kirchhoff conditions (2) under Y-Δ

reduction follows straightforwardly from these Feynman

parameter assignments. The invariance of the on shell
conditions (1) is nontrivial, and it follows from the analysis
in Appendix A.2 of [8].
The proof of the crucial theorem of [6] that we employ in

the next section relies on three additional, relatively simple
moves, that trivially preserve the essential content of the
Landau equations. These are (d) the deletion of a “tadpole”
(edges that connect a vertex or terminal to itself), (e) the
deletion of a “hanging propagator” (a vertex of degree one
and the edge connected to it), and (f) the contraction of an
edge connected to a terminal of degree one (called “FP
assignment” [11]). The last of these is, strictly speaking, not
completely trivial at the level of the Landau equations; it
just removes an otherwise uninteresting bubble singularity.
Reduction of planar graphs.—The reduction of graphs

under circuit operations is a well-studied problem in the
mathematical literature. When it is declared that a certain
subset of vertices are to be considered terminals (which
may not be removed by series or Y-Δ reduction) the
corresponding problem is called terminal Y-Δ reducibility.
Aspects of this problem have been studied in [11–16],
including an application to Feynman diagrams in [17]. For
our purpose, the key result comes from the Ph.D. thesis of I.
Gitler [6], who proved that any planar 2-connected graph
withm terminals lying on the same face can be reduced to a
graph of the kind shown in Fig. 2, which we call ziggurat
graphs, or to a minor thereof. We denote the m-terminal
ziggurat graph by T m, and note that, a minor of a graph G
is any graph that can be obtained from G by a sequence of
edge contractions and/or edge deletions.
An edge contraction corresponds to a relaxation, while

an edge deletion corresponds to setting the associated qj to
zero. Therefore, the LS associated to any minor of a graph
G are a subset of those associated to G. Consequently, we do
not need to explicitly enumerate all minors of T m; their LS
are already contained in the set of singularities of T m itself.
It is conventional to discuss scattering amplitudes for

a fixed number n of external particles, each of which carries
some momentum pi that in massless theories satisfies

(b)

(a)

(c)

1
2

3 12

3

FIG. 1. Elementary circuit moves that preserve solution sets of
the massless Landau equations: (a) series reduction, (b) parallel
reduction, and (c) Y-Δ reduction.

FIG. 2. The four-, six-, five-, and seven-terminal ziggurat
graphs. The open circles are terminals, and the filled circles
are vertices. The pattern continues in the obvious way, but note,
there is an essential difference between ziggurat graphs with an
even or odd number of terminals in that only the latter have a
terminal of degree three.
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p2
i ¼ 0. These individual particles are denoted graphically

by attaching a total of n external edges to the terminals,
with at least one per terminal. Any graph with m ≤ n
terminals is potentially relevant to finding the Landau
singularities of an n-particle amplitude. However, if
m < n, then T m is a minor of T n, so the LS of the former
are a subset of those of the latter. Therefore, to find the LS
of an n-particle amplitude, it suffices to find those of the
n-terminal ziggurat graph T n with precisely one external
edge attached to each terminal. We call this the n-particle
ziggurat graph and finally summarize: The first-type
Landau singularities of an n-particle scattering amplitude
in any massless planar field theory are a subset of those of
the n-particle ziggurat graph.
While the LS of the ziggurat graph exhaust the set of

singularities that may appear in any massless planar theory,
we cannot rule out the possibility that in certain special
theories, the actual set of singularities may be smaller
because of a cancellation between the contributions of
different graphs to a given amplitude.We discuss this further
in Sec. VI.
The Y-Δ reduction changes (and generally reduces) the

number of faces of a graph, so the above statement does not
hold at a fixed loop order L; rather it is an all-order relation
about the full set of LS of n-particle amplitudes. Since
the n-particle ziggurat graph has L ¼ bðn − 2Þ2=4c faces, a
single computation at bðn − 2Þ2=4c-loop order suffices to
expose all possible Landau singularities of any n-particle
amplitude.
This bound is unnecessarily high. Gitler’s theorem does

not imply that ziggurat graphs cannot be reduced to graphs
of a lower loop order, and in general, this is possible:
Figure 3 shows that T 6 can be reduced to a three-loop
wheel graph whose 6-particle avatar we show in Fig. 4.
Ziggurat graphs with more than six terminals can also be
further reduced, but we have not found a lower bound on
the loop order that can be obtained for a general n.
Landau analysis of the wheel.—Here, we analyze

the Landau equations for the graph shown in Fig. 4. The
six external edges carry momenta p1;…; p6 subject toP

ipi ¼ 0 and p2
i ¼ 0 for each i. Using momentum

conservation at each vertex, the momentum qj carried
by each internal edge can be expressed in terms of the pi
and three other linearly independent momenta, which we

take to be lr, for r ¼ 1, 2, 3, as shown in the figure. Initially,
we consider the leading LS, for which we impose the on
shell conditions

ðl1 − p1Þ2 ¼ l21 ¼ ðl1 þ p2Þ2 ¼ 0;

ðl2 − p3Þ2 ¼ l22 ¼ ðl2 þ p4Þ2 ¼ 0;

ðl3 − p5Þ2 ¼ l23 ¼ ðl3 þ p6Þ2 ¼ 0;

ðl1 þ p2 − l2 þ p3Þ2 ¼ 0;

ðl2 þ p4 − l3 þ p5Þ2 ¼ 0;

ðl3 þ p6 − l1 þ p1Þ2 ¼ 0: ð4Þ

For generic pi, there are 16 discrete solutions for the lr’s,
which we denote by l�rðpiÞ. To enumerate these solutions, it
is technically helpful to use momentum twistor variables
[18], in which case the solutions can be associated with on
shell diagrams [19]. Although the analysis is still applicable
to general massless planar theories, in the special context of
SYM theory, two cut solutions have MHV support, twelve
NMHV, and two NNMHV.
The Kirchhoff conditions are

0 ¼ α1ðl1 − p1Þ þ α2l1 þ α3ðl1 þ p2Þ
þ α10ðl3 þ p6 − l1 þ p1Þ þ α11ðl1 þ p2 − l2 þ p3Þ;

0 ¼ α4ðl2 − p3Þ þ α5l2 þ α6ðl2 þ p4Þ
þ α11ðl1 þ p2 − l2 þ p3Þ þ α12ðl2 þ p4 − l3 þ p5Þ;

0 ¼ α7ðl3 − p5Þ þ α8l3 þ α9ðl3 þ p6Þ
þ α12ðl2 þ p4 − l3 þ p5Þ þ α10ðl3 þ p6 − l1 þ p1Þ:

ð5Þ

(c) (f)(c) (c)

FIG. 3. The six-terminal ziggurat graph can be reduced to a three-loop graph by a sequence of three Y-Δ reductions and one FP
assignment. In each case the vertex, edge, or face to be transformed is highlighted in gray.

FIG. 4. The three-loop six-particle wheel graph. The leading LS
of this graph exhaust all possible LS of six-particle amplitudes in
any massless planar field theory, to any finite loop order.

PHYSICAL REVIEW LETTERS 121, 081601 (2018)

081601-3



Nontrivial solutions to this 12 × 12 linear system exist only
if the associated Kirchhoff determinant Kðpi; lrÞ vanishes.
By evaluating K on each solution lr ¼ l�rðpiÞ, the condition
for the existence of a nontrivial solution to the Landau
equations can be expressed entirely in terms of the external
momenta. Using

u ¼ s12s45
s123s345

; v ¼ s23s56
s234s123

; w ¼ s34s61
s345s234

; ð6Þ

where si…j¼ðpiþ���þpjÞ2, we find thatKðpi; l�rðpiÞÞ ¼ 0

can only be satisfied if an element of

S ¼
�
u; v; w; 1 − u; 1 − v; 1 − w;

1

u
;
1

v
;
1

w

�
ð7Þ

vanishes. Therefore, the three-loop six-particle wheel graph
has LS on the locus

S ¼ ⋃
s∈S

fs ¼ 0g: ð8Þ

It is straightforward to analyze all subleading LS
corresponding to relaxations. We refer the reader to
[7,8,10] where this type of analysis has been carried out
in detail in several examples. We find no additional LS
beyond those that appear at leading order. We conclude that
the LS of any six-particle amplitude in any massless planar
field theory, at any finite loop order, are given by Eqs. (7)
and (8), or a proper subset thereof.
Second-type singularities.—The LS studied here do not

exhaust all possible singularities of amplitudes in quantum
field theories. There also exist “second-type” singularities
[20,21], sometimes called “non-Landauian” [22]. These
arise in loop integrals as pinch singularities at infinite loop
momentum, and they are encoded in a modified version of
Eqs. (1) and (2).
In the next section, we consider the special case of the

SYM theory, which possesses a remarkable dual conformal
symmetry [23–25], implying that there is no invariant
notion of “infinity” in momentum space. We therefore
expect that second-type singularities should be absent in
any dual conformal invariant theory [7]. Because ziggurat
graphs are manifestly dual conformal invariant, the LS
of the ziggurat graphs should capture the entire “dual
conformally invariant part” of the singularity structure of all
massless planar theories; this means the singularity loci that
do not involve the infinity twistor.
Planar SYM theory.—In Sec. III, we acknowledged that in

certain theories, the actual set of singularities of amplitudes
may be strictly smaller than that of the ziggurat graphs due to
cancellations. Contrary to the expectation that SYM theory
might seem the most promising candidate to exhibit such
cancellations, we now argue that: Perturbative amplitudes in
SYM theory exhibit first-type Landau singularities on all
such loci that are possible in anymassless planar field theory.

Our results suggest that this statement is true separately
in each helicity sector. Specifically, for any fixed n and any
0 ≤ k ≤ n − 4, there is a finite value of Ln;k, such that the
singularity locus of the L-loop n-particle NkMHV ampli-
tude is identical to that of the n-particle ziggurat graph
for all L ≥ Ln;k. In order to verify this claim, it suffices to
construct an n-particle on shell diagram with NkMHV
support that has the same LS as the n-particle ziggurat
graph; or equivalently, to write down a corresponding
configuration of lines inside the amplituhedron [26]
An;k;L for some sufficiently high L.
To see that this is plausible, note that, the appearance of

a given singularity at some fixed k and L implies the
existence of the same singularity at lower k but higher L by
performing the opposite of parallel reductions—doubling
one or more edges of the relevant graph to make bubbles.
For example, while one-loop MHVamplitudes do not have
singularities of three-mass box type, two-loop MHVampli-
tudes do [27]. Similarly, while two-loopMHVamplitudes do
not have singularities of the four-mass box type, we expect
that three-loop MHV and two-loop NMHV amplitudes do.
(Our analysis is silent on the question of whether the symbol
alphabets of these amplitudes contain square roots; see
Sec. VII of [9].)
It is simple to convert the n-particle ziggurat graph into a

valid on shell diagram with MHV support by doubling
each internal edge into a bubble. In this way, it is easy to
write an explicit mutually positive configuration of lines
inside the MHV amplituhedron. While this construction
suffices to demonstrate the claim, it is overkill; we expect
MHV support to be reached at a much lower loop level than
this argument would require, as can be checked on a case
by case basis for a small n.
Symbol alphabets.—Let us comment on the connection

of our work to symbol alphabets. All of the singularities
tabulated in Eq. (8) are known to appear in both MHVand
NMHV six-particle amplitudes, starting at the two-loop
order [28,29]. Indeed, the hypothesis that there are no new
singularity loci at any higher loop order (which we now
consider to be proven) underlies a bootstrap program that
has made it possible for impressive explicit computations of
six-particle amplitudes in SYM theory [29–35]. An analo-
gous program for n ¼ 7 has allowed for the computation of
symbols of seven-particle amplitudes [36,37].
The hexagon bootstrap involves, in addition to the

quantities appearing in Eq. (7), three particular algebraic
functions yu, yv, yw that also vanish only on the same locus
S. This highlights the fact that the connection between LS
and symbol alphabets is somewhat indirect. Knowledge of
the former tells us about the locus where symbol letters
vanish [38] or have branch points (see Sec. VII of [9]). In
order to determine what the symbol letters of an amplitude
actually are away from these loci, it seems necessary to
invoke some other kind of structure; cluster algebras may
have a role to play here [39,40].
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Conclusion.—We leave several questions for future
work. What is the minimum loop order to which the
n-particle ziggurat graph can be reduced? Can one char-
acterize LS for an arbitrary n, generalizing the result for
n ¼ 6 in Sec. IV? It is possible to classify second-type
singularities, even if only in certain theories? The graph
moves reviewed in Sec. II preserve the LS even for
nonplanar graphs; are there results on nonplanar Y-Δ
reducibility (see e.g., [41,42]) that may be useful for
nonplanar (but still massless) theories?.
The ziggurat graphs, and those to which they can be

reduced, might warrant further study for their own sake.
They generalize those studied in [43,44], and they are
particular cases of the graphs that have attracted recent
interest, e.g., in [45,46], in the context of “fishnet” theories.
We have only looked at their singularity loci; it would be
interesting to explore the structure of their cuts, perhaps in
connection with the coaction studied in [47–51].
In SYM theory, the technology might exist to address

more detailed questions. For a general n and k, what is the
minimum loop order at which the Landau singularities of
the n-particle NkMHV amplitude saturate? Is there a direct
connection between Landau singularities, ziggurat graphs,
and cluster algebras? For amplitudes of a generalized
polylogarithm type, what are the actual symbol letters
for a general n, k, and loop order? How do LS manifest
themselves in general amplitudes that are of more com-
plicated functional type?.
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1 Introduction

It has been a long-standing goal to determine scattering amplitudes in quantum field theory

from knowledge of their analytic structure coupled with other basic physical and mathemat-

ical input. In planar N = 4 super-Yang-Mills theory (which we refer to as SYM theory),

the current state of the art for carrying out explicit computations of multi-loop amplitudes

is a bootstrap program that relies fundamentally on assumptions about the location of

branch points of certain amplitudes.

The aim of the research program initiated in [1, 2] for MHV amplitudes and generalized

to non-MHV amplitudes in [3] (to which this paper should be considered a sequel) is to

– 1 –
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provide an a priori derivation of the set of branch points for any given amplitude. For

sufficiently simple amplitudes in SYM theory1 this information can go a long way by leading

to natural guesses for the symbol alphabets [4] of various amplitudes. The possibility to

do so exists because of the simple fact pointed out in [5] that the locus in the space of

external data Confn(P3) where the symbol letters of a given amplitude vanish should be

the same as the locus where the corresponding Landau equations [6, 7] admit solutions. A

slight refinement of this statement, to account for the fact that amplitudes in general have

algebraic branch cuts in addition to logarithmic cuts, was discussed in section 7 of [3].

The hexagon bootstrap program, which has succeeded in computing all six-point am-

plitudes through five loops [8–12], relies on the hypothesis that these amplitudes can have

branch points only at fifteen specific loci in the space of external data Conf6(P3). Similarly

the heptagon bootstrap [13], which has revealed the symbols of the seven-point four-loop

MHV and three-loop NMHV amplitudes [14], assumes 49 particular branch points. Ulti-

mately we may hope for an all-loop proof of these hypotheses about six- and seven-point

amplitudes, but in this paper we focus on the less ambitious goal of deriving the singularity

loci for all two-loop NMHV amplitudes in SYM theory. The result, summarized in sec-

tion 5.3, leads to a natural conjecture for the symbol alphabets of these amplitudes which

we hope may be employed in the near future by bootstrappers eager to study this class

of amplitudes.

The rest of this paper is organized as follows. In section 2 we develop a procedure

for constructing certain boundaries of two-loop amplituhedra by “merging” one-loop con-

figurations of the type classified in the prequel [3]. In section 3 we organize the results

according to helicity and codimensionality (the number of on-shell conditions satisfied by

each configuration) and discuss some subtleties about overconstrained configurations that

require resolution. Section 4 discusses the connection between branches of solutions to

on-shell conditions and on-shell diagrams, which provides a useful cross-check of our clas-

sification. In section 5 we discuss the analysis of the Landau equations for configurations

relevant for NMHV amplitudes and, in eqs. (5.17) and (5.18), we present a conjecture for

the symbol alphabets of all two-loop NMHV amplitudes.

2 Classification of two-loop boundaries

In this section we classify certain boundaries of two-loop amplituhedra. This analysis builds

heavily on sections 3-5 of [3], and in particular we show how to recycle the one-loop bound-

aries classified there by “merging” pairs of one-loop boundaries into two-loop boundaries.

We find that two different formulations of the amplituhedron — the original formulation

in terms of C and D matrices [18], and the reformulation in terms of sign flips [19] — play

two complementary roles, exactly as in [3]. Specifically, the former is useful for establishing

the existence of boundaries by constructing explicit C and D matrix representatives, while

the latter is useful for establishing the non-existence of any other boundaries.

1General amplitudes lie outside the class of generalized polylogarithm functions that have well-defined

symbols, see for example [15–17] for a discussion of this in the context of SYM theory.
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Before proceeding let us dispense of some important details that would otherwise

overcomplicate our exposition. There is a parity symmetry between An,k,L, the n-point,

NkMHV, L-loop amplitude in SYM theory, and its parity conjugate An,n−k−4,L. For fixed n,

amplitudes become increasingly complicated as k is increased from zero, but after k ∼ n/2
they must begin to decrease in complexity until the upper bound k = n−4. In what follows

we will often make use of lower bounds on k, or on constructions that increment k by 1. In

making these arguments, we always have in mind that k is sufficiently small compared to

n. In other words, unless otherwise stated, we are always working in the “low-k” regime,

to use the terminology of [3]. At the very end of our analysis, once we have all of the

desired results in this regime, we appeal to parity symmetry in order to translate low-k

results into high-k results. However the details of matching these two regimes near the

midpoint k ∼ n/2 can be quite intricate, even moreso at two loops than it was in the

one-loop analysis of [3].

2.1 Identifying the relevant boundaries

In general, a configuration (Y,L(1),L(2)) lies on a boundary of a two-loop amplituhedron

if at least one item on the following menu is satisfied:

(1) Y is such that some four-brackets of the form 〈a a+1 b b+1〉 vanish,

(2) L(1) satisfies some on-shell conditions 〈L(1) a1 a1+1〉 = · · · = 〈L(1) ad1 ad1+1〉 = 0,

(3) L(2) satisfies some on-shell conditions 〈L(2) b1 b1+1〉 = · · · = 〈L(2) bd2 bd2+1〉 = 0,

(4) or 〈L(1) L(2)〉 = 0.

Above and through the remainder of the paper, we always take 〈ABCD〉 ≡ [Y ABCD] —

what we call projected four-brackets following [19].

For the purpose of finding Landau singularities we are always interested only in loop

momenta (L(1),L(2)) that exist for generic projected external data, i.e., for generic Y , so

we disregard possibility (1) in all that follows. Next, we note that for configurations which

do not satisfy (4), the Landau equations decouple into two separate sets of equations on

the two individual loop momenta, so there can be no new Landau singularities beyond

those already found at one loop. Therefore in all that follows we only consider boundaries

on which 〈L(1) L(2)〉 = 0. The Landau equations similarly degenerate if either d1 or d2

(defined in the preceeding paragraph) is zero, so we are only interested in configurations

with d1d2 > 0.

The above considerations motivate us to define an L-boundary of a two-loop ampli-

tuhedron as a configuration (Y,L(1),L(2)) for which Y is such that the projected external

data are generic, 〈L(1) L(2)〉 = 0, and each L satisfies at least one on-shell condition of the

form 〈L a a+1〉 = 0. In particular, these conditions imply that both (Y,L(1)) and (Y,L(2))

must lie on boundaries of some one-loop amplituhedra; each of these must therefore be one

of the 19 branches tabulated in table 1 of [3].

– 3 –
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2.2 Merging one-loop boundaries

The preceding analysis suggests that the boundaries of two-loop amplituhedra can be

understood by merging various one-loop boundaries. Let us now see how this works in

detail. Suppose that (Y (1),L(1)) and (Y (2),L(2)) lie on boundaries of An,k1,1 and An,k2,1,

respectively. Then they can be represented as Y (α) = C(α)Z and L(α) = D(α)Z, where for

each α ∈ {1, 2}, the matrices C(α),
(
D(α)

C(α)

)
, and D(α) (as shown in [3]), are all non-negative.

In order to streamline the argument we initially consider k1 and k2 to be the smallest values

of helicity for which boundaries of the desired class exist, and we take each pair (C(α), D(α))

to have the form of one of the 19 branches shown in sections 4.2 through 4.4 of [3]. We will

show that such a pair of valid one-loop boundary configurations can be uplifted into a valid

two-loop boundary configuration (C,D(1), D(2)) satisfying 〈L(1) L(2)〉 = 0 by constructing

an appropriate matrix C from C(1) and C(2).

The process of merging two boundaries depends on whether the two loop momenta

L(1), L(2) each pass through some common external point Zi. If they do, then we say that

they manifestly intersect and the condition that 〈L(1) L(2)〉 = 0 is automatically satisfied.

In this case we can simply stack the two individual C-matrices on top of each other in

order to form

C =

(
C(1)

C(2)

)
. (2.1)

If, on the other hand, the two loop momenta do not manifestly intersect, then we can still

ensure that 〈L(1) L(2)〉 = [(CZ)L(1) L(2)] = 0 by adding one additional suitably crafted row

to C. Specifically, if A(α), B(α) are any four points in Pn such that L(α) = (A(α)Z, B(α)Z),

then adding a row to C that is any linear combination of these four points will guarantee

that 〈L(1) L(2)〉 = 0.

In this manner we have constructed a candidate for a configuration on the boundary

of An,k,2 with k = k1 + k2 in the case of manifest intersection, or k = k1 + k2 + 1 otherwise.

It remains to verify that this configuration is valid, which means that C can be chosen so

that it and the matrices
(
D(1)

C

)
,
(
D(2)

C

)
, and

(
D(1)

D(2)

C

)
are all non-negative.

2.3 Planarity from positivity

Let us begin by analyzing the non-negativity of the C-matrix shown in eq. (2.1). The

nonzero columns of each C(α) (which may be read off from sections 4.3 and 4.4 of [3])

are grouped into clusters corresponding to the sets of contiguous indices appearing in the

on-shell conditions satisfied by the corresponding L(α). For example, for a boundary on

which the three-mass triangle on-shell conditions 〈L i i+1〉 = 〈L j j+1〉 = 〈L k k+1〉 = 0 are

satisfied, the C-matrix is zero except in six columns grouped into three clusters {i, i+1},
{j, j+1} and {k, k+1}.

When we stack two C-matrices together, the result can be one of two different cases

depending on whether or not the clusters of C(1) are cyclically adjacent compared to the

– 4 –
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clusters of C(2). If so, then the stacked C-matrix has the schematic form

C =

(
C(1)

C(2)

)
=

(
· · · 0 ? 0 ? 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 ? 0 ? 0 · · ·

)
} k1 rows

} k2 rows
(2.2)

which we call planar ; otherwise it is of the form

C =

(
C(1)

C(2)

)
=

(
· · · 0 ? 0 0 0 ? 0 0 0 · · ·
· · · 0 0 0 ? 0 0 0 ? 0 · · ·

)
} k1 rows

} k2 rows .
(2.3)

which we call non-planar. In eqs. (2.2) and (2.3) each ? is shorthand for one or more

contiguous columns (i.e, clusters) of non-zero entries, and we suppress displaying columns

shared by the two C-matrices, which are not relevant to our argument. Also as indicated

the top (bottom) row is shorthand for k1 (k2) rows. Given that our starting point is a

pair of matrices C(1), C(2) that are each non-negative, it is clear that the resulting stacked

C-matrix has a chance to be non-negative (for certain values of its parameters) only for

planar configurations; the minors of eq. (2.3) manifestly have non-definite signs.

In cases when L(1) and L(2) do not manifestly intersect we need to add an additional

row to C as described in the previous section. This additional row can be considered part

of either C(1) or C(2). Since the coefficients in this row can be arbitrary and still preserve

〈L(1) L(2)〉 = 0, the coefficients can always be chosen such that the enlarged C-matrix is

non-negative. The conclusion that only planar C’s can be made positive still holds.

The nomenclature of ‘planar’ and ‘non-planar’ clusters is appropriate in light of the

fact that the locations of the clusters precisely correspond to the sets of indices appearing

in on-shell conditions listed in points (2) and (3) at the beginning of section 2.1. In a

configuration like eq. (2.2) there exist a, b such that all of the on-shell conditions satisfied

by L(1) lie in the range {a, a+1, . . . , b, b + 1} while all of the on-shell conditions satisfied

by L(2) lie in the range {b, b+1, . . . , a, a+1} (as usual, all indices are always understood

mod n). Consequently, the two-loop Landau diagram depicting the merged sets of on-

shell conditions (together with the propagator 〈L(1) L(2)〉 shared between the two loops) is

planar. By the same argument, a nonplanar configuration such as eq. (2.3) is necessarily

associated to a nonplanar Landau diagram.

Now let us consider the non-negative matrices
(
D(α)

C(α)

)
for the two individual initial

boundary configurations (α = 1 or 2). We require that these matrices stay non-negative

when C(α) is replaced by C. By the argument given in section 4.7 of [3], this will be the

case if the rows added to C(α) have nonzero entries only in the gaps between clusters of

C(α). But this is just another way to phrase the planarity condition described above, so

again we see that planarity is enforced, this time by requiring non-negativity of
(
D(α)

C

)
.

The final step in establishing the validity of the configuration (C,D(1), D(2)) is checking

that the matrix

(
D(1)

D(2)

C

)
is non-negative. In the parameterization we have chosen, all of

the maximal minors of this matrix actually vanish. If the two loops manifestly intersect

this can be checked by looking at the form of the (C,D) matrices tabulated in [3]. If they

do not manifestly intersect the analysis is even easier, since in such cases we have included

in C a row that is some linear combination of the four rows of D(1), D(2).

– 5 –
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The argument as presented appears to fail if either of the individual one-loop bound-

aries is MHV, in which case there is no C matrix. However, for MHV boundaries it can be

seen from the expressions tabulated in section 4.2 of [3] that the D-matrix serves the same

role as the C-matrix played in the above argument. For example, if k1 = 0 so that C(1)

is empty, then C = C(2) so the requirement that
(
D(1)

C

)
=
(
D(1)

C(2)

)
must be non-negative

requires that the clusters of D(1) be cyclically adjacent compared to the clusters of C(2).

If both k1 and k2 are zero then C is empty and the same conclusion follows from consider-

ation of the matrix
(
D(1)

D(2)

)
. Therefore, in all cases, the various non-negativity conditions

imply that the Landau diagram must be planar. This emergent planarity was discussed in

context of MHV amplitudes in [20].

In conclusion, we have established that a boundary of An,k,2 can be constructed by

“merging” a boundary of An,k1,1 with a boundary of An,k2,1, with k − k1 − k2 = 0 or 1

depending on whether L(1) and L(2) manifestly intersect. So far we have considered k1

and k2 to saturate the lower bounds shown in table 1 of [3], but once a valid configura-

tion (C,D(1), D(2)) has been constructed as described in this section, it can be lifted to

higher values of k by growing the C-matrix according to a suitably modified version of the

argument given in section 4.7 of that reference.

2.4 Establishing the lower bound on helicity

We have shown that it is possible to merge two one-loop boundaries with (minimal) he-

licities k1 and k2 in order to generate two-loop boundaries with helicities k ≥ k1 + k2.

The merging algorithm we have described cannot generate boundaries with k below this

lower bound. In this section we prove that we have not overlooked any potential two-loop

boundaries. To do so, we use the formulation of amplituhedra in terms of sign flips [19]

(reviewed also in section 2.2 of [3]) in order to prove the lower bound.

The proof is essentially a loop-level version of the factorization argument presented

in section 6 of [19] for tree-level amplituhedra. Let (L(1),L(2)) be some configuration of

loop momenta on some codimension d1 + d2 + 1 boundary of An,k,2, satisfying the on-

shell conditions

〈L(1) a1 a1+1〉 = · · · = 〈L(1) ad1 ad1+1〉 = 0 , (2.4)

〈L(2) b1 b1+1〉 = · · · = 〈L(2) bd2 bd2+1〉 = 〈L(1) L(2)〉 = 0 , (2.5)

with the sets of indices {a1, . . . , ad1} and {b1, . . . , bd2} cyclically ordered and with 1 ≤
d1, d2 ≤ 4 as detailed in [3]. Planarity requires that all of the b’s fall inside an interval

between two consecutive a’s; specifically, there exists some j such that aj ≤ bi ≤ aj+1 for

all i. Once we have identified this value of j, let’s backtrack and consider factorization

(as described in [19]) on the boundary 〈L(1) aj aj+1〉 = 〈L(1) aj+1 aj+1+1〉 = 0. Then

L(1) passes through some point A on the line (aj aj+1) and some point B on the line

(aj+1 aj+1+1). With L(1) = (AB) we consider the sets of momentum twistors

V = {A,Zaj+1, . . . , Zaj+1 , B} , (2.6)

W = {B,Zaj+1+1, . . . , Zaj , A} . (2.7)

– 6 –
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Thinking of V and W separately as “(projected) external data” for sub-amplituhedra

describing two smaller sets of scattering particles,2 it follows using arguments analogous

to those in section 6 of [19] that they lie in the principal domain for helicities kV and kW
satisfying kV + kW = k where k is the original helicity sector of the (projected) external

data {Zi}.
Under the assumption that the two-loop configuration (Y,L(1),L(2)) is a boundary of

An,k,2(Z), we prove below the following statements:

• if L(1) is a solution to the on-shell conditions (2.4) with minimum helicity k1, then

kV ≥ k1, and similarly,

• if L(2) is a solution to the on-shell conditions (2.5) with minimum helicity k2, then

kW ≥ k2.

Once we show this, it follows immediately that the two-loop configuration (L(1),L(2))

cannot be a valid boundary unless

k = kV + kW ≥ k1 + k2 . (2.8)

Proof. The minimum values of helicity kmin for which sets of one-loop one-shell conditions

admit solutions inside the closure of An,k,1 were derived in section 4 of [3]. In that analysis,

the fact that a set of on-shell conditions does not have valid solutions of a certain type

for k < kmin followed from the fact that the non-negativity constraints on the C and
(
D
C

)
matrices required certain sequences of (projected) four-brackets to contain at least kmin sign

flips. In analyzing the constraints on the solution L(1) to eq. (2.4), the relevant sequences

of four-brackets are of the form 〈αβ γ •〉 where α, β and γ are functions of the momentum

twistors belonging to the set S = {Za1 , Za1+1, · · · , Zad1 , Zad1+1} only, and the required sign

flips occur between adjacent entries in S. Note that there are two points (Zaj and Zaj+1+1)

in S that lie outside V , the “(projected) external data” for one of the sub-amplituhedra

under consideration. However, because A lies on the line (aj aj+1) and B lies on the line

(aj+1 aj+1+1), we clearly have (aj aj+1) = (aj A) and similarly (aj+1 aj+1+1) = (aj+1B)

so we can choose to express α, β and γ in terms of momentum twistors belonging to

S′ = {Za1 , Za1+1, . . . Zaj , A,B, Zaj+1+1, . . . , Zad1 , Zad1+1} ⊂ V . (2.9)

Therefore the abovementioned sequences can all be expressed in terms of the “(projected)

external data” associated to the V sub-amplituhedron. Since there are k1 sign flips in S′,

it must be the case that kV ≥ k1. It follows similarly that kW ≥ k2.

In eq. (2.8) we derived an inequality k ≥ k1 + k2, and at the end of section 2.2

we explained that two-loop configurations have support starting from k = k1 + k2 or

k = k1 +k2 +1. In section 2.2 we effectively defined k1 and k2 as the minimum helicities for

configurations of loop momenta satisfying sets of disjoint on-shell conditions, not including

2We put “(projected) external data” in quotation marks when it is (projected) external data only for a

sub-amplituhedron, not for the full amplituhedron.
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the shared propagator. However, in this section the definition of k2 (only) now includes

the shared propagator (cf. eq. (2.5)). Effectively, this means that the k2 here is the same

as in section 2.2 only for manifest intersection, but one greater than the latter in the case

of non-manifest intersection.

3 Presentation of the results

It is now a straightforward exercise to explicitly enumerate all possible pairs of one-loop

boundaries, using those listed in table 1 of [3], and to determine the minimum value of k

such that the merged configuration is a valid boundary of An,k,2. The resulting set is too

large to display in a single figure of the type of figure 1 of [3] (which is a summary of the

analogous results at one loop), so we focus first on the maximal codimension boundaries.

Each involves a total of d = 8 on-shell conditions: the shared condition 〈L(1) L(2)〉 = 0

together with seven conditions on the two loop momenta (d1 + d2 = 7, in the notation

of section 2.1).

We find a total of 14 topologically distinct maximal codimension configurations at

two loops, which are summarized in figure 1. The figure emphasizes the fact that all 14

varieties of L-boundaries can be obtained by some sequence of helicity-increasing operations

K (defined in section 5.2 of [3]) acting on just two primitive diagrams, one at MHV level

and one at NMHV level. The entirety of this figure should be thought of as the two-loop

d = 8 analog of the one-loop d = 4 column of figure 2 of that reference. In the figure,

an arrow labeled by i indicates that the diagram at the end of the arrow can be obtained

by acting with Ki on the diagram at the beginning of the arrow. An arrow carries two

labels if the result of acting with two different instances of K gives topologically equivalent

diagrams, in which case only the diagram corresponding to the first label on the arrow is

shown. Note that for each diagram, the minimal value of k precisely matches the number

of non-MHV intersections.

3.1 Resolutions

In each of the 14 twistor diagrams shown in figure 1, the configuration manifestly exhibits

a total of 2nfilled +nempty = 8 on-shell conditions, where nfilled is the number of filled nodes

and nempty is the number of empty nodes (including, in each diagram, the node at the

intersection of the two loop momenta).

However, on certain sufficiently high codimension boundaries, additional on-shell con-

ditions can be implied by the others and are therefore “accidentally” satisfied. This phe-

nomenon occurs for the four twistor diagrams in figure 1 that have been drawn with a filled

node at the point Zi and two empty nodes in close proximity (grouped in a faint gray circle

in figure 1), representing the four on-shell conditions

〈L(1) i−1 i〉 = 〈L(1) i i+1〉 = 〈L(2) i i+1〉 = 〈L(1) L(2)〉 = 0 . (3.1)

The first three conditions are satisfied by L(1) = (Zi, A) and L(2) = (αZi + (1−α)Zi+1, B)

for any points A, B. Then, for generic A and B, the fourth condition in eq. (3.1) implies
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Ki

Kk

Kj

k i j

i j k j k i

j i k

Ki

Kk
Kj

k, i j

i, k j k, i

j i, k

NkMHV

k ≥ 0

k ≥ 1

k ≥ 2

k ≥ 3

k ≥ 4

Figure 1. The twistor diagrams depicting the 14 distinct maximal codimension boundaries of

two-loop NkMHV amplituhedra. See the text for more details.

that α = 1, so the line L(2) is forced to pass through the point Zi. Therefore, configurations

of this type satisfy the additional on-shell condition 〈L(2) i−1 i〉 = 0.

This phenomenon reflects the fact that in general, the on-shell conditions satisfied by a

given configuration are not independent: some of them may be implied by the others. In [2]

it was found that solving the Landau equations for boundaries of this type was rather subtle,
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and required first identifying a suitable minimal subset of independent on-shell conditions,

a process called resolution. It was suggested that a resolution must satisfy two criteria: (1)

the chosen subset of on-shell conditions must imply the full set of conditions satisfied for

generic (projected) external data, and (2) the Landau diagram corresponding to the subset

must be planar.

The example considered above describes a configuration that satisfies five on-shell

conditions, the four shown in eq. (3.1) and also 〈L(2) i−1 i〉 = 0. There are four possible

resolutions that satisfy criterion (1): we can simply omit any one of the conditions except

for 〈L(1) L(2)〉 = 0. However not all four choices will satisfy criterion (2), depending on the

points A and B. For the four configurations appearing in figure 1 that require resolution,

there are in each case precisely two valid resolutions: we can omit either 〈L(2) i−1 i〉 = 0

(as was done in eq. (3.1)), or we can omit 〈L(1) i i+1〉 = 0.

In figure 1 we have chosen to always draw a resolved configuration in the four cases

where it is necessary. However, in order to avoid clutter we do not draw both resolutions

unless they give rise to inequivalent diagrams. There are at least three reasons for preferring

the resolved configurations. First of all, it becomes somewhat less clear how to see the action

of the three graph operators K, U and R on an unresolved configuration. Also, the need for

resolution is an accident that occurs only when both loop momenta lie in the low-k branch

of solutions to their respective on-shell conditions (or, by parity symmetry, when they both

lie in the high-k branch). If one of them lies in the low-k branch and the other lies in the

high-k branch, then for generic (projected) external data only the resolved configuration(s)

exist; the “extra” on-shell condition would place restrictions on the external data. Finally,

when we turn our attention to finding Landau singularities in section 5, we will always

want to work with resolved diagrams since these give us the independent sets of on-shell

conditions for which we will need to solve the Landau equations [2].

3.2 Relaxations

All lower-codimension L-boundaries are relaxations: they can be generated by releasing

one or more of the seven on-shell conditions (excepting 〈L(1) L(2)〉 = 0, which we always

preserve) satisfied on the maximal boundaries. Boundaries of this type can be generated by

acting on the twistor diagrams in figure 1 with sequences of the graph operators U and R.

In this way one could imagine uplifting the figure to a three-dimensional generalization of

figure 2 of [3], with the top layer being a copy of figure 1 showing the maximal codimension

boundaries (d = 8), the next layer showing those with d = 7, etc. One novelty compared

to the one-loop analysis of [3] is that starting at two loops the relaxation of a boundary is

not necessarily still a boundary — this will only be the case if the Landau diagram of the

relaxation continues to be planar.

Rather than attempting to draw the aforementioned web of interconnected boundaries

in a single figure, we summarize our results in terms of the corresponding Landau diagrams

in tables 1–5 grouped according to the minimum helicity for which the configuration is valid,

i.e. the minimum k for which An,k,2 has boundaries of the type shown in the corresponding

twistor diagram. Because the maximal codimension singularities have d1 + d2 = 7, the

corresponding Landau diagrams always have the topology of a planar pentagon-box.
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Twistor Diagram Landau Diagram

(a)

i

jk
j

k

i

Table 1. The twistor and Landau diagram describing a type (the unique type, for k = 0) of resolved

maximal codimension boundary of Nk≥0MHV amplituhedra.

As mentioned above the lower codimension singularities can be obtained by acting

on the twistor diagrams with sequences of U and R operators. As discussed in section 5.2

of [3], at one loop these operators generate relaxations that respectively preserve or increase,

but can never decrease, the minimum helicity for which a configuration is valid. There is

however a subtlety with the U operator at two loops. Recall that Ui,∓ is the “unpinning”

operator which acts on a loop momentum L passing through some point Zi by relaxing the

on-shell condition 〈L i i±1〉 = 0. This can have the effect of turning what was a manifest

intersection between the two loop momenta into a non-manifest intersection, which requires

increasing the minimum helicity by 1.

In the tables we have introduced a new graphical notation in order to account for this

phenomenon: a propagator with a black dot denotes an on-shell condition that cannot

be relaxed without increasing the minimum helicity for which the configuration is valid.

(We also always draw a black dot on the 〈L(1) L(2)〉 propagator, as a reminder that we

never want to relax it.) Consider for example the twistor diagram in table 1(a). The two

loop momenta manifestly intersect at the point Zi as explained in the previous section,

but this will no longer be the case if we act on this twistor diagram with Ui,−. Instead,

the configuration would become NMHV rather than MHV (in fact, it would become a

relaxation of table 2(d), up to relabeling). For this reason we draw a black dot on the

(i i+1) propagator on the pentagon in the Landau diagram of table 1(a).

3.3 Closing comments

In summary, to get the full list of Landau diagrams at helicity k = 0, 1, 2, 3, 4, one must

therefore consider all of the Landau diagrams in tables. 1 through 5, respectively, together

with the diagrams generated therefrom by collapsing any subset of undotted propagators.

In figure 1 and in the tables we have chosen to always draw the loop momentum satis-

fying d1 = 4 in blue and the one satisfying d2 = 3 in red, but of course the amplituhedron

is symmetric under the exchange of any L’s so in each case both assignments L(1), L(2)

and L(2), L(1)describe valid boundaries.

The Landau diagrams in tables 1–5 are always drawn with the understanding that all

indicated labels are cyclically ordered: i < i′ < j < j′ < j′′ < k < k′ < k′′ < i (mod n).
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Twistor Diagram Landau Diagram

(a)

i

j

k

k′ jk
k′

i

(b)

i

jk′

k

jk

k′

i

(c)

i

j′
k

j

j

j′
k

i

(d)

i

k

j′
j

j

j′

k

i

Table 2. The twistor and Landau diagrams describing types of (resolved, in (a) and (c)) maximal

codimension boundaries of Nk≥1MHV amplituhedra.

However, the ordering of intersections along the red or blue loop momentum lines carries

no significance. Therefore, as described in section 5.1 of [3], there is a second type of

ambiguity between the two classes of diagrams. For example, the twistor diagram in

table 2(a) is agnostic about the cyclic ordering of i, k, and k′; the two independent choices

lead to the Landau diagram shown in the table or to its mirror image. In all of the tables

we use primes (and, when necessary, also double primes) to indicate pairs (or triplets) of

nodes that can be exchanged, as far as the twistor diagram is concerned. Sometimes, as

in the example table 2(a) just considered, an exchange generates a Landau diagram of the

same topology, but in other cases it can generate a new topology. For example, exchanging
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Twistor Diagram Landau Diagram

(a)

i

j
k′′

k

k′

jk
k′

k′′

i

(b)

i

j

j′

k

k′

j

j′k
k′

i

(c)

i

j′

k′

jk
j

j′k

k′

i

(d)

i

j′

k′

j

k

j

j′k
k′

i

(e)

i

j′′

k

j j′

j

j′

j′′
k

i

Table 3. The twistor and Landau diagrams describing types of (resolved, in (b)) maximal codi-

mension boundaries of Nk≥2MHV amplituhedra.
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Twistor Diagram Landau Diagram

(a)

i

j′

j

k′′

k

k′

j

j′k
k′

k′′

i

(b)

i′

i
j

j′

k

k′

j

j′k
k′

i

i′

(c)

i

j j′ j′′

k

k′

j

j′

j′′k
k′

i

Table 4. The twistor and Landau diagrams describing types of maximal codimension boundaries

of Nk≥3MHV amplituhedra.

k and k′ in the twistor diagram of table 2(b) generates the new Landau diagram

j
k′

k

i

,

where it is to be understood that i < j < k′ < k < i.

Let us also note that although when interpreted literally as configurations of intersect-

ing lines in P3 most twistor diagrams only depict the low-k branch of solutions to a given

set of on-shell conditions, it is clear that additional, higher-k boundaries can be generated

by replacing one or both of the L’s with their parity conjugates. The twistor diagrams

appearing in figure 1 and in the five tables can therefore each be thought of as representing

four different types of boundaries corresponding to the same Landau diagram.

Finally, we detail, in appendix B, how a partial edge-to-node duality maps between the

twistor diagrams on the left and the Landau diagrams on the right of these tables, when the
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Twistor Diagram Landau Diagram

(a)

i′

i
j j′ j′′

k

k′

j

j′

j′′k
k′

i

i′

Table 5. The twistor and Landau diagram describing a type of maximal codimension boundary of

Nk≥4MHV amplituhedra.

two diagrams are treated as graphs. On the one hand, it is not surprising that there exists

some map between these two classes of graphs, since both are designed to encode the same

information. On the other hand, it is intriguing that there is a straightforward map between

a generic Landau diagram and the minimum-helicity solution to the on-shell conditions of

said diagram in the very particular choice of loop momentum twistor coordinates. This

observation is also reminiscent of the map from Feynman integrals to their duals that

aided in exploring the dual conformal invariance of SYM theory amplitudes [21–23] but

here, enticingly, this partial edge-to-node map is well-defined even on nonplanar graphs.

4 The connection with on-shell diagrams

So far, we have seen that to each boundary of an amplituhedron one can associate a Landau

diagram which encodes information about the singularities of the associated amplitude. In

this section we explore the connection between Landau diagrams and a class of closely re-

lated diagrams that also encode information about an amplitude’s mathematical structure:

the on-shell diagrams of [24]. We explain and demonstrate in several examples that for a

given amplitude, the information content of certain on-shell diagrams matches the com-

bined information content in the amplituherdon and Landau diagrams. Except possibly for

cases of the type discussed in the paragraph following eq. (5.2), we expect our arguments

to also hold for amplitudes at higher loop order and higher helicity.

One reason to shift focus to on-shell diagrams is that anything that can be formulated

in terms of the on-shell diagrams discussed here potentially generalizes to more general

quantum field theories including less supersymmetric theories as well as the full, non-planar

super-Yang-Mills theory. The major difference is that in the planar theory, the relevant

Landau diagrams can, in principle, be read off from the boundaries of An,k,L for arbitrary

n, k, and L, while in the non-planar sector there is currently no known supplier of this

list of diagrams. Nevertheless, assuming one has a way to generate a representation for a

given non-planar amplitude in terms of Feynman integrals, all of the techniques discussed

in this section apply equally well to those non-planar integrals.

Putting that ambitious motivation aside, in the rest of this section we stick to planar

SYM theory and show in several examples that a given Landau diagram encodes a singu-
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larity of an NkMHV amplitude only if the diagram can be decorated in such a way that

it becomes an on-shell diagram associated with an NkMHV amplitude. We begin with a

brief review of on-shell diagrams.

4.1 On-shell diagrams

An on-shell diagram, as introduced in [24], is a connected trivalent graph with each node

having one of two distinct decorations, traditionally denoted by coloring them black or

white. In the application to scattering amplitudes, each edge of the diagram represents an

on-shell condition (just like in a Landau diagram) and each black (white) node corresponds

to a three-point MHV (MHV) tree-level superamplitude. A straightforward generaliza-

tion allows nodes of higher degree which represent higher-point tree-level superamplitudes.

These we depict by a shaded node.

We refer the reader to [24] for details, recalling here only a few basic facts. A tree-

level superamplitude of Grassmann weight κ is a rational function of (projected) external

data that is a homogeneous polynomial of degree 4κ in certain Grassmann variables (the

fermionic partners of the momentum twistors Zi). Three-point MHV and MHV amplitudes

respectively have κ = 2 and κ = 1 while for n > 3 an n-point amplitude with helicity k

has κ = k + 2. To each on-shell diagram there is an associated differential form that is

obtained by first multiplying together the tree-level superamplitudes represented by each

of the diagram’s nodes, and then sewing them together according to a set of simple rules

that involve integrating over four Grassmann variables for each internal edge (propagator)

in the diagram. Such forms are the values of the residue of the amplitude’s integrand at

specific loci in loop momentum space.

Consider an on-shell diagram δ. Let ι be the number of internal edges of δ, and for

each node ν let κν be the Grassmann weight of the tree-level superamplitude at ν. As a

result of the rules just reviewed, the total Grassmann weight of δ is

κδ =
∑
ν

κν − ι , (4.1)

and the total helicity is kδ = κδ − 2.

To assign a coloring to a Landau diagram depicting some set of on-shell conditions

means to assign to each trivalent node in the diagram either a white or black coloring, and

to assign to each node ν of degree n > 3 some helicity kν = κν − 2 ∈ {0, . . . , n− 4}. Since

ι is fixed by the propagator structure of the diagram, and each κν is positive, it is clear

from eq. (4.1) that the minimal Grassmann weight of a given Landau diagram results from

coloring all trivalent nodes white and from assigning all nodes of higher degree to be MHV

(κν = 2). In this way we see that the Grassmann weight of an arbitrary coloring of a given

Landau diagram is bounded below by

κ ≥ κmin = ntri + 2nhigh − ι , (4.2)

where ntri is the number of trivalent nodes and nhigh is the number of nodes of degree

higher than three. This implies a minimal helicity sector kmin = κmin − 2 for which the

Landau diagram can be relevant.
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If a diagram has ntri trivalent indices, there are 2ntri colorings of the trivalent nodes,

but in general some of these may lead to on-shell diagrams that evaluate to zero. In

practice we count the number of permissible colorings of a diagram by solving the on-

shell conditions implied by the diagram and mapping each resulting solution to a specific

coloring (see [24]). As discussed in [25], solving a set of on-shell conditions in momentum

twistor space amounts to solving a Schubert problem. At one loop these problems have in

general two solutions, while for an L-loop Landau diagram we would in general expect 2L

branches of solutions. Given a solution to a Schubert problem in momentum twistor space,

it is straightforward3 to check if a given trivalent node is MHV or MHV by considering

the rank of the three momentum-twistor lines at the node. For an MHV node, the three

twistors have full rank, while for an MHV node the rank is less than full. This process is

illustrated explicitly in several examples in the following section.

In summary, we have reviewed that a given Landau diagram encodes a set of on-shell

conditions, and the various branches of solutions to those conditions correspond in general

to different minimum helicity sectors. The permissible colorings of a Landau diagram

are in one-one correspondence with those branches, and the Grassmann weight κ of each

such Landau-turned-on-shell diagram is related to the minimum helicity sector k of the

corresponding solution via κ = k + 2.

This observation provides an alternative way to phrase the Landau-equation-based al-

gorithm we employ to identify singularities of amplitudes, compared for example to the

way it is phrased in the conclusion of [2] or in section 2.5 of [3]. For one thing, it means

we can identify a singularity of a Landau diagram as a singularity of NkMHV amplitudes

only if the diagram admits a coloring with total helicity k (equivalently, Grassmann weight

k + 2). More specifically, when first solving the on-shell conditions (a subset of the Lan-

dau equations) for a given Landau diagram, each solution directly indicates, via the test

reviewed in the previous paragraph, the helicity sector for which the singularity associated

to that solution is relevant. In the on-shell diagram approach this step is the analog in the

amplituhedron approach of identifying the values of k for which the momentum twistor

solution lies on the boundary of the NkMHV amplituhedron. In the amplituhedron-based

approach, there is potential for confusion because solving the Kirchhoff conditions (the

remaining Landau equations) can lead to solutions for loop momenta that lie outside the

NkMHV amplituhedron. The on-shell diagram approach bypasses this confusion because

the Kirchhoff conditions only further localize a loop momentum solution whose helicity

sector has already been identified.

4.2 Examples at one and two loops

We now consider several examples in order to emphasize the following point:

A Landau diagram contributes singularities to an NkMHV amplitude

only if the diagram permits a coloring with total Grassmann weight k + 2.
(4.3)

For each of our examples, we also list the values of the loop momenta corresponding

to the colorings of the correct Grassmann weight. For the one-loop examples the same

3We thank J. Bourjaily for explaining this point to us.
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information can be read off from table 1 of [3]. We will show how the on-shell diagram

and amplituhedron-based methods work in tandem to quickly identify the helicity sector

for which a given solution to the set of on-shell conditions is relevant.

One-loop two-mass easy box. The on-shell conditions

〈L i−1 i〉 = 〈L i i+1〉 = 〈L j−1 j〉 = 〈L j j+1〉 = 0 (4.4)

admit two solutions, called branches (12) and (13) in [3]. In table 6 we pair the momentum

twistor representation of each solution with the associated on-shell diagram, i.e. colored

Landau diagram. Having this information accessible will prove useful when considering

two loops.

In table 6(a) the minimum Grassmann weight is computed according to eq. (4.2) and

found to be

κmin = 1 + 1︸ ︷︷ ︸
white

+ 2 + 2︸ ︷︷ ︸
higher

−4 = 2 (4.5)

so that it is an MHV (k = 2− 2 = 0) coloring.

In table 6(b) the minimum Grassmann weight is

κmin = 2 + 2︸ ︷︷ ︸
black

+ 2 + 2︸ ︷︷ ︸
higher

−4 = 4 (4.6)

so that it is an N2MHV (k = 4− 2 = 2) coloring.

Let us now show how to compute the appropriate node colorings directly from the

momentum twistor solutions in table 6. Consider the trivalent node where external label

i connects to the loop. The three lines in momentum twistor space defining the trivalent

node are (i−1 i), (i i+1), and L∗, where L∗ is either (i j) or i ∩ j. Taking first L∗ = (i j)

, we seek the dimension of the space spanned by the three momentum-twistor lines. One

way to compute this is to ask for the rank of the matrix:

rank

 (i−1 i)

(i i+1)

(i j)

 = rank



i−1 i i+1 j

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1


= 4 (4.7)

which has maximal rank. So the node is MHV, and colored white.
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Coloring NkMHV Twistor Solution

(a)

i

j

k ≥ 0 L = (i j)

(b)

i

j

k ≥ 2 L = i ∩ j

Table 6. Two colorings of the two-mass easy box. Row (a) shows the MHV coloring and momentum

twistor solution to the on-shell conditions, and row (b) shows the same for the N2MHV solution.

In contrast, consider the other solution L∗ = i ∩ j. The analogous matrix is then

rank

 (i−1 i)

(i i+1)

i ∩ j

 = rank



i−1 i i+1

1 0 0

0 1 0

0 1 0

0 0 1

〈i j〉 −〈i−1 j〉 0

0 〈i+1j〉 −〈i j〉


= 3 (4.8)

which does not have maximal rank. Thus the second solution is encoded in an MHV node

at i, colored black. The colorings of the node at j can be computed analogously.

One-loop three-mass box. We perform the same exercise for the three-mass box on-

shell conditions

〈L i−1 i〉 = 〈L i i+1〉 = 〈L j j+1〉 = 〈L k k+1〉 = 0 . (4.9)

The solutions of the on-shell conditions are matched to the two on-shell diagram color-

ings in table 7, and the corresponding minimum Grassmann weights are computed us-

ing eq. (4.2). The colorings are also directly calculable from the momentum twistor solu-

tions as in the previous two-mass easy box example. The three-mass box is worth pointing

out because in this case neither coloring is MHV, in contrast to the previous example.

Two-loop pentagon-box. We can recycle our knowledge of one-loop solutions to de-

termine the helicity sectors to which a given two-loop Landau diagram contributes its

singularities. We consider the pentagon-box of table 2(a) as an exemplar. We solve the

pentagon-box on-shell conditions as follows. We first solve the subsystem of four propaga-

tors that depend on only L(2):

〈L(2) i−1 i〉 = 〈L(2) i i+1〉 = 〈L(2) k k+1〉 = 〈L(2) k′ k′+1〉 = 0 (4.10)
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Coloring NkMHV Twistor Solution

(a)

i
j

k

k ≥ 1 L = (i j j+1) ∩ (i k k+1)

(b)

i
j

k

k ≥ 2

L = (AB)

A = (j j+1) ∩ i
B = (k k+1) ∩ i

Table 7. Two colorings of the three-mass box. Row (a) shows the NMHV coloring and momentum

twistor solution to the on-shell conditions, and row (b) shows the same for the N2MHV solution.

using either of the two three-mass box solutions shown in table 7, after an appropriate

exchange of the external labels in order to match to eq. (4.10). This means there are two

branches of colorings: one were the trivalent node at i is white, and one where it is black.

The two corresponding solutions L(2)
∗ are shown in the first row of table 8. For each choice

of L(2)
∗ we then solve the remaining four on-shell conditions

〈L(1) i i+1〉 = 〈L(1) j−1 j〉 = 〈L(1) j j+1〉 = 〈L(1) L(2)
∗ 〉 . (4.11)

These four conditions constitute a two-mass easy box problem, so we can utilize table 6 to

identify the two solutions L(1)
∗ , which color the trivalent nodes of the box either both white

or both black. These two solutions are tabulated in the first column of table 8. Altogether

the table shows a grid containing a total of four distinct solutions, and the four associated

distinct colorings. From this analysis we conclude that only the solution

L(2)
∗,1 = (i k k+1) ∩ (i k′ k′+1) , L(1)

∗,1 = (j i i+1) ∩ (j L(2)
∗,1) = (i j) (4.12)

shown in the top left of table 8 is relevant to the NMHV sector. This means that when we

turn in the following section to the problem of finding singularities of NMHV amplitudes

by solving the Landau equations, we can disregard the other three solutions. Were we

to attempt an amplituhedron-based answer to this same question, we would find that the

other solutions to the on-shell conditions do not lie on a boundary of An,1,2.

General two-loop pentagon-boxes. By using the same simple counting arguments

applied to the results in tables 1–5, it is a straightforward exercise to show that

• the set of Landau diagrams corresponding to the maximal codimension boundaries

of An,k,2 and

• the set of on-shell diagrams of pentagon-box topology that admit an NkMHV coloring
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L(1)
∗ \L(2)

∗ (i k k+1) ∩ (i k′ k′+1) ((k k+1) ∩ i (k′ k′+1) ∩ i)

(i j)

jk
k′

i

(2) (1)

jk
k′

i

(2) (1)

k ≥ 1 k ≥ 2

ī ∩ j̄

jk
k′

i

(2) (1)

jk
k′

i

(2) (1)

k ≥ 3 k ≥ 4

Table 8. All permissible colorings of the trivalent nodes of the two-loop pentagon-box Landau

diagram from table 2(a). The first row shows the two possible solutions to the three-mass on-shell

conditions (eq. (4.10)) satisfied by L(2), the loop momentum in the pentagon. The first column

shows the two possible solutions to the two-mass easy on-shell conditions (eq. (4.11)) satisfied by

L(1), the loop momentum in the box. The cell at the intersection of a row and a column is the

colored Landau diagram that results from the two solutions. Also indicated in each cell is the

minimum helicity sector of the colored Landau diagram, which is achieved only if the gray nodes

are taken to be MHV.

are the same. Specifically, the second set may be constructed by starting with a pentagon-

box diagram with no external edges or coloring, then placing all possible combinations of

massive and massless edges on nodes of the diagram in all possible ways, and finally enu-

merating all colorings of the resulting Landau diagrams to identify the minimum possible

value of k.

5 Landau singularities of two-loop NMHV amplitudes

Finally we come to step 2 of the algorithm summarized in section 2.5 of [3]: in order

to determine the locations of Landau singularities of the two-loop NkMHV amplitude in

SYM theory, we must identify, for each L-boundary of An,k,2 tabulated in section 3, the

codimension-one loci (if there are any) in Confn(P3) on which the corresponding Landau

equations admit nontrivial solutions.

The ultimate aim of this project has been to derive (or at least to conjecture) symbol

alphabets for two-loop amplitudes. However, as discussed in section7 of [3], guessing a

symbol alphabet from a list of singularity loci can require a nontrivial extrapolation. At

one loop the extrapolation is straightforward for all Landau diagrams except the four-

mass box.
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i

j

k

`

∼

i

j

k

`

Figure 2. The Landau equations of a Landau diagram containing a bubble are identical to the

equations of a Landau diagram with one propagator of the bubble removed. The two-loop four-

mass bubble-box on the left is the only Landau diagram with a four-mass box contributing to the

branch points of the NMHV amplitude. It has the same well-known branch points as the one-loop

four-mass box on the right.

At two loops, four-mass box subdiagrams become prevalent starting at k = 2, where

they appear in the maximal codimension Landau diagram shown in table 2(e), as well as in

many of the relaxations of the other Landau diagrams in table 2. At k = 1 there is a single

four-mass bubble-box Landau diagram, figure 2, relevant to two-loop NMHV amplitudes.

As shown in the appendix of [2], Landau diagrams containing bubble subdiagrams are

equivalent to the same diagram with one of the propagators of the bubble removed. So we

expect the one-loop four-mass box singularity to reappear as a singularity of the two-loop

NMHV amplitude. Though we are only guaranteed from this analysis that the singularities

match, we can throw caution to the wind and conjecture that the same symbol entries that

appear in the one-loop four-mass box integral appear also in two-loop NMHV amplitudes.

Of note here: the four-mass box has support starting at k = 2, so there is shared singularity

structure between the two-loop NMHV and one-loop N2MHV amplitudes.

Having dealt with this single caveat, we restrict our analysis to the remaining NMHV

singularities, where we may hope that our approach allows us to read off symbol alphabets

directly from lists of singularity loci.

5.1 Computational approaches

Section 2.4 of [3] reviews the Landau equations and section 6 of that reference details the

process of solving them in several one-loop examples. Beyond one loop, one approach for

seeking solutions is to perform the analysis “one loop at a time”, by considering each one-

loop subdiagram and writing down the constraints on the values of other loop and external

momenta imposed by the on-shell and Kirchhoff conditions of the subdiagram. After taking

the union of those constraints, one may conclude that a solution exists for generic external

data, or that the solution exists only when the external data satisfy some set of equations.

Solutions of the former type were associated with the infrared singularities of an amplitude

in [1], and solutions of the latter type indicate branch points of the amplitude when they

live on codimension-one loci in Confn(P3).

Here we recall a few basic facts about this loop-by-loop approach, which has been

carried out for several cases in [1, 2].

First, as mentioned above, one edge of a bubble subdiagram can always be removed

without affecting Landau analysis.
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Second, as shown in the appendix of [2], a generic triangle subdiagram has seven

different branches of solutions that should be considered separately. All of the solutions

demand that the squared sum of momenta on “external” edges attached to at least one of

the triangle’s corners vanish, and the seven branches of solutions are classified according

to the number of null corners.4 There are three branches of “codimension-one” solutions

(any one of the three corners vanishing), three branches of “codimension two” (any two

of the three corners vanishing) and one of “codimension three” (all corners vanishing). In

a Landau diagram analysis, it will often be the case that one of a triangle’s corners is

null by fiat; in this case, the solution space will be reduced. For example, a “two-mass”

triangle subdiagram has only one codimension-one solution. In the examples we detail in

section 5.2, all triangle subdiagrams we describe are of this two-mass variety.

Finally, the Kirchhoff conditions associated to a box subdiagram constitute four ho-

mogeneous equations on four Feynman parameters, so the existence of nontrivial solutions

requires the vanishing of a certain four-by-four determinant called the Kirchhoff constraint

for the box. The Kirchhoff constraints for the four different cases of box diagrams are

summarized in eqs. (2.7) through (2.11) of [1].

It is worth noting one detail regarding the “one loop at a time” approach. Because

the method starts by enumerating the constraints imposed by the existence of nontrivial

solutions to the Landau equations of each subdiagram, it will miss the solutions which set

all Feynman parameters corresponding to some one-loop subdiagram to zero. However,

Landau singularities obtained this way will always be those already present at lower loop

order. So the “one loop at a time” approach neglects no novel branch points. We comment

on a specific example of this phenomenon in the next section.

Let us also describe a conceptually simpler but computationally less effective alterna-

tive approach which we have used as a cross-check on our results. For a given branch of

solutions to a set of on-shell conditions, or equivalently, for a given on-shell diagram, one

can reduce the Landau equations “all at once” to see whether they impose codimension-one

constraints on the external data. This approach is of course usually feasible only with the

aid of a computer algebra system such as Mathematica. It also lends itself well to numerical

experimentation: one can probe the presence or absence of a putative singularity at some

locus a = 0 by generating random numeric values for the external data except for one free

parameter z, and then reducing the Landau equations to see if the existence of nontrivial

solutions forces z to take a value that sets a = 0.

Before proceeding to the examples and results, let us address the question: how do we

confirm that we have detected all singularities? Starting from the maximal codimension

boundaries of the NMHV amplituhedron shown in table 2, we determine all corresponding

Landau diagrams keeping in mind the ambiguity mentioned in section 3.3. From there it is

straightforward to produce all possible relaxed Landau diagrams. And from the diagrams

we compute the singularities using the “one loop at a time” approach outlined above.

Once we have a list of potential singularities, we turn to the “all at once” numerical

4These corners can be read off as the factors of the Landau singularity locus, for example in the rightmost

column of table 1, branch (9), of [3].
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probing. Doing so we directly confirm on a diagram-by-diagram basis not only that the

set of singularities is correct, but also that there are no additional singularities. We have

performed these steps to confirm the NMHV singularities presented in section 5.3.

We will focus only on Landau diagrams that have minimally-NMHV coloring, as defined

in section 4.1, or equivalently, diagrams that come from a boundary of a two-loop NMHV

amplituhedron. A priori, we cannot dismiss the possibility that a minimally-MHV diagram

may have novel singularities coming from an NMHV branch of solutions, but we have

explicitly checked that this does not occur in the two-loop NMHV amplitudes we consider

here. We will demonstrate our “one loop at a time” approach to solving Landau equations

on an example in the next section, and then proceed to list the full set of singularities

in section 5.3.

5.2 A sample two-loop diagram

We now turn to the Landau analysis of the boundaries displayed in table 2. The analysis

is very similar to that of the many examples that have been considered in [1, 2], to which

we refer the reader for additional details. Therefore we only carry out the analysis in detail

for the case of table 2(a), and summarize all of the results in the following section.

At maximal codimension the on-shell conditions encapsulated in the Landau diagram

of table 2(a) are shown in eqs. (4.10) and (4.11). These have a total of four discrete

solutions, as summarized in table 8, but the only one relevant at NMHV order is the one

displayed in eq. (4.12). The Landau equations (specifically, the Kirchhoff constraint for

the box subdiagram defined by eq. (4.11)) admit a solution only if [1]

〈j(j−1 j+1)(i i+1)L(2)
∗ 〉 = 0 . (5.1)

Substituting in the lower-helicity solution L(2)
∗,1 and simplifying turns the constraint into

〈i j〉〈i (i+1 j) (k k+1) (k′ k′+1)〉 = 0 . (5.2)

Now we must address a subtlety of the result (5.2) that is analogous to the one encoun-

tered for the maximal codimension MHV configuration under eq. (3.29) of [2]. Like in that

case, the eight-propagator Landau diagram under consideration here, shown in table 2(a),

corresponds to a resolution of a configuration that actually satisfies nine on-shell condi-

tions, as reviewed in section 3.1. It was proposed in [2] that we should trust the resulting

Landau analysis only to the extent that the eight on-shell conditions imply the ninth for

generic external data. Let us note that if we put 〈L(1) L(2)〉 = 0 aside for a moment, the

NMHV solution to the seven other on-shell conditions is

L(2) = (i k k+1) ∩ (i k′ k′+1) , L(1) = (αZi + (1− α)Zi+1, Zj) , (5.3)

from which we find

〈L(1) L(2)〉 = (1− α)〈i(i+1 j)(k k+1)(k′ k′+1)〉 . (5.4)

Therefore the conclusion that α = 1, and hence that the ninth condition 〈L(1) i−1 i〉 = 0

is also satisfied, actually only follows if 〈i(i+1 j)(k k+1)(k′ k′+1)〉 6= 0. This observation
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introduces controversy about whether the second quantity on the left-hand side of eq. (5.2)

is a valid singularity. However, note that from the on-shell diagram point of view there

is no apparent reason why this singularity should be excluded, since the diagram can be

assigned a valid NMHV coloring as shown in table 8. Absent a rigorous argument resolving

the matter, we remain agnostic about the status of this singularity.

It is easy to see that another solution to the Landau equations with L(1) = (i j) and

L(2) = (i k k+1) ∩ (i k′ k′+1) exists if the four Feynman parameters associated to the box

subdiagram are set to zero. In this case the box completely decouples and the pentagon

subdiagram reduces to a three-mass box, so this branch exists if the external data satisfy

the corresponding Kirchhoff constraint

〈i(i−1 i+1)(k k+1)(k′ k′+1)〉 = 0 . (5.5)

This illustrates the point highlighted in the previous section that the “one loop at a time”

approach can miss certain solutions to the Landau equations associated entirely with one-

loop subdiagrams. As mentioned, we are only seeking new singularities, whereas eq. (5.5)

is already known from one loop.

Next we move on to codimension seven. There are four inequivalent relaxations, which

we now discuss in turn. These relaxations result from collapsing any of the undotted

propagators of table 2(a). We list only the minimally-NMHV diagrams; see figure 3.

Relaxing 〈L(2) i−1 i〉 = 0: leads to a double-box Landau diagram, figure 3(a).

There are two Kirchhoff constraints (one per box), one of which is easier to determine

than the other. The easier-to-find Kirchhoff constraint comes from the box formed of the

L(1)-dependent propagators (including the shared propagator). It reads

〈j (j−1 j+1) (i i+1)L(2)
∗ 〉 = 0 , (5.6)

where we write L(2)
∗ to emphasize the loop momentum is on-shell when all Landau equations

are satisfied.

The second Kirchhoff constraint is easiest to find after solving the three L(1)-dependent

on-shell conditions via L(1)
∗,1 = (Zj , B), with B = αZi+ (1−α)Zi+1. Using this form of L(1)

in the L(2)-dependent propagators (including the shared one) results in

〈L(2) i B〉 = 〈L(2) k k+1〉 = 〈L(2) k′ k′+1〉 = 〈L(2) j B〉 = 0 , (5.7)

which are now effectively the propagators of a three-mass box. The second Kirchhoff

constraint is therefore

〈B (i j) (k k+1) (k′ k′+1)〉 = 0 . (5.8)

Solving the remaining on-shell and Kirchhoff constraints (recall that the three L(1)-

dependent conditions were solved already) fixes

L(2)
∗,1 = (Ak k+1) ∩ (Ak′ k′+1) , A = (i i+1) ∩ j̄ , and (5.9)

B = (i i+1) ∩ (j L(2)
∗,1) . (5.10)
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This constraint on B turns eq. (5.8) into a codimension-one constraint on the external data:

〈A (i j) (k k+1) (k′ k′+1)〉 = 0 , A = (i i+1) ∩ j̄ , (5.11)

which is a new, genuinely two-loop, singularity.

Relaxing 〈L(1) j−1 j〉 = 0: leads to a pentagon-triangle Landau diagram, figure 3(b).

There is a single codimension-one branch for the triangle subdiagram since there is an

on-shell line at one of its corners. This branch leads to Landau equations with a solution

locus that is a Kirchhoff constraint of three-mass box type:

〈i (i−1 i+1) (k k+1) (k′ k′+1)〉 = 0 . (5.12)

We do not focus on these already familiar singularities.

Following any codimension-two branch of the triangle subdiagram leads to Landau

singularities that exist only on codimension-two loci in the space of external data, which

are not of interest to us.

Following the single codimension-three branch for the triangle leads to a branch of

solutions to the Landau equations that exists only if

〈i (j j+1) (k k+1) (k′ k′+1)〉 = 0 , (5.13)

which is a new type of singularity.

Relaxing 〈L(1) i i+1〉 = 0: leads to a pentagon-triangle Landau diagram, figure 3(c).

There is again a single codimension-one branch for the triangle subdiagram leading to

an effective decoupling of the two loop momenta and an overall Landau constraint of the

same form (up to relabeling) as eq. (5.12).

Following the codimension-two branches for the triangle subdiagram uncovers con-

straints of codimension higher than one on the external data, which cannot sensibly be

associated with branch points.

Following the codimension-three branch for the triangle subdiagram leads to the same

Landau singularity as in eq. (5.13) (up to relabeling).

At codimension six there are three inequivalent relaxations, shown in figure 4, that

do not reduce the Landau diagram to an MHV one. Collapsing any of the undotted

propagators of a box subdiagram in figure 4 results in a minimally-MHV Landau diagram,

as one of the external labels would necessarily drop out. Any additional relaxations of

a propagator in a triangle subdiagram of figure 4 will yield a bubble subdiagram, which

cannot yield a new singularity as we have already emphasized.

Relaxing both 〈L(1) i i+1〉 = 〈L(2) i−1 i〉 = 0: leads to a box-triangle Landau dia-

gram, figure 4(a).

The single codimension-one branch of the triangle leads to the effective decoupling of

the two loops and results in Landau singularities at Mandelstam-type loci:

〈i i+1 k k+1〉〈i i+1 k′ k′+1〉〈k k+1 k′ k′+1〉 = 0 . (5.14)
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(a) (b) (c)

jk

k′

i

j

k
k′

i

k
k′

i

j

〈L(2) i−1 i〉 6= 0 〈L(1) j−1 j〉 6= 0 〈L(1) i i+1〉 6= 0

Figure 3. These are the unique single-relaxations of table 2(a) that result in NMHV Landau

diagrams. The computation of the associated Landau singularities is discussed in the text.

(a) (b) (c)

kk′

i

j
j

k

k′

i
j

k
k′

i

〈L(2) i−1 i〉 6= 0

〈L(1) i i+1〉 6= 0

〈L(2) i−1 i〉 6= 0

〈L(1) j−1 j〉 6= 0

〈L(1) i i+1〉 6= 0

〈L(1) j−1 j〉 6= 0

Figure 4. These are the unique minimally NMHV relaxations of the diagrams figure 3. As such,

these are also double-relaxations of table 2(a). Computing the associated singularities is discussed

in the text. Any further relaxations of triangles yield bubble subdiagrams. In (c), relaxing either

of 〈L(2) i i±1〉 = 0 yields the four-mass bubble-box of figure 2.

The same Landau singularities are obtained by following the codimension-two branches

for the triangle.

Following the codimension-three branch for the triangle leads to the constraint

〈j (i i+1) (k k+1) (k′ k′+1)〉 = 0 . (5.15)

Relaxing both 〈L(2) i−1 i〉 = 〈L(1) j−1 j〉 = 0: leads to a box-triangle Landau

diagram, figure 4(b). All branches of the triangle subdiagram result in bubble-type singu-

larities, 〈a a+1 b b+1〉, or higher codimension constraints.

Relaxing both 〈L(1) i i+1〉 = 〈L(1) j−1 j〉 = 0: leads to a pentagon-bubble Landau

diagram, figure 4(c), as discussed above and displayed in figure 2, with a singularity on

the locus

〈i (j j+1) (k k+1) (k′ k′+1)〉 = 0 . (5.16)
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(a) (b) (c)

k
k′

i

k
k′

i i

k

k′

〈L(1) j−1 j〉 6= 0

〈L(1) j j+1〉 6= 0
Minimal Coloring After Graph Moves

Figure 5. The Landau diagram (a) appears to have a minimally MHV coloring (b). Yet the

corresponding on-shell function is related by the on-shell diagram moves of [24] to one in the

NMHV helicity sector (c).

Relaxing both 〈L(1) j−1 j〉 = 〈L(1) j j+1〉 = 0: is displayed in figure 5. This

case is interesting because it emphasizes the interplay between on-shell diagrams and the

amplituhedron.

From the on-shell diagram perspective, this diagram naively has a minimally MHV col-

oring, figure 5(b). However the graph moves that preserve on-shell functions (particularly

the “collapse and re-expand” and “bubble deletion” of section 2.6 of [24]) permit redrawing

the coloring as a three-mass box on-shell diagram figure 5(c), colored in its minimal helicity

manner, k ≥ 1 . Since the graph moves preserve the on-shell function, the original on-shell

diagram must also be minimally NMHV.

It is straightforward to check that the momentum twistor solution corresponding to

this minimal coloring figure 5(a) is in fact a boundary of an NMHV amplituhedron, not an

MHV one, and so the on-shell diagram and amplituhedron perspectives align.

For the two-loop amplitude, this diagram does not contribute new possible branch

points, but this phenomenon is something to keep in mind for future studies.

There are no new NMHV triple relaxations, but we revisit a case discussed earlier to

show how it naturally arises in this organizational scheme.

Relaxing all of 〈L(2) i−1 i〉 = 〈L(1) i i+1〉 = 〈L(1) j−1 j〉 = 0: leads to the bubble-

box Landau diagram discussed above and displayed in figure 2. As mentioned above, this

does not contribute a new two-loop singularity but it does indicate that two-loop NMHV

amplitudes inherit the four-mass box singularity that appears at one loop only starting

at k = 2. Our analysis indicates this is a fairly common phenomenon: Landau diagrams

for an L-loop NkMHV amplitude that contain bubble or triangle subdiagrams will often

contain singularities that also contribute to (L− 1)-loop Nk+1MHV amplitudes.

5.3 Two-loop NMHV symbol alphabets

The full set of loci in the external kinematic space Confn(P3) where two-loop NMHV am-

plitudes have Landau singularities is obtained by carrying out the analysis of the previous
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section for all Landau diagrams appearing in tables 1 and 2, together with all of their (still

NMHV) relaxations. Among the set of singularities generated in this way are the two-loop

MHV singularities that arise from the configuration shown in table 1, which live on the loci

〈a a+1 b c〉 = 0 ,

〈a a+1 b ∩ c〉 = 0 ,
(5.17)

for arbitrary indices a, b, c. The set of brackets appearing on the left-hand sides of eq. (5.17)

correspond exactly to the set of symbol letters of two-loop MHV amplitudes originally found

in [26].

For the NMHV configurations shown in table 2 we find additional singularities that

live on loci of the form5

〈i (i±1 `)(j j+1)(k k+1)〉 = 0 ,

〈j (j−1 j+1) (j′ j′+1) (i `)〉 = 0 ,

〈i (j j+1)(k k+1)(` `+1)〉 = 0 ,

〈i i+1 j ∩ (k k′ k′+1)〉 = 0 ,

〈i ∩ (i i′ i′+1) ∩ j ∩ (j j′ j′+1)〉 = 0 ,

⟪(i i+1) ∩ j; (i j)(k k+1)(` `+1)⟫ = 0 ,

(5.18)

using notation explained in appendix A. The indices are restricted (as a consequence of

planarity) to have the cyclic ordering ` ≤ {i, i′} ≤ {j, j′} ≤ {k, k′} ≤ ` (or the reflection of

this, with all ≤’s replaced by ≥’s) where the curly bracket notation means that the relative

ordering of an index with its primed partner is not fixed (tracing back to the ambiguity

discussed in section 3.3).

In addition to singularities of the type listed in eq. (5.18), two-loop NMHV amplitudes

also have four-mass box singularities as discussed in the beginning of section 5 and illus-

trated in figure 2. Although guessing symbol letters from knowledge of singularity loci is in

general nontrivial (see section 7 of [3]), we conjecture that the quantities appearing on the

left-hand sides of eqs. (5.17) and (5.18), together with appropriate symbol letters of four-

mass box type (see the example in the following section), constitute the symbol alphabet

of two-loop NMHV amplitudes in SYM theory. It is to be understood that all degenera-

tions of the indicated forms are meant to be included as well, for example such as taking

j = j′−1 in the first line. For certain values of some indices the expressions can degenerate

into symbol letters (or products of symbol letters) that already appear in eq. (5.17), or

elsewhere in eq. (5.18), but other degenerate cases are valid, new NMHV letters.

It is interesting to note that for arbitrary n the conjectural set of symbol letters

in eq. (5.18) is not closed under parity, unlike the two in eq. (5.17) which are parity

conjugates of each other.6 We know of no a priori reason why the symbol alphabet for

5Out of caution we have included on the first line the singularities of the type shown in eq. (5.2); but

we remind the reader of the discussion in the subsequent paragraph; for n = 8 it happens that the first line

is necessarily a particular case of the second and/or fourth so there is no controversy.
6More precisely, the parity conjugate of the first quantity in eq. (5.17) is 〈a−1 a a+1 a+2〉 times the

second; they become exactly parity conjugate in a gauge where the momentum twistors are scaled so that

all four-brackets of four adjacent indices are set to 1.

– 29 –



J
H
E
P
0
4
(
2
0
1
8
)
0
4
9

a given amplitude in SYM theory should be closed under parity; in principle, the parity

symmetry of the theory requires only that the symbol alphabet of NkMHV amplitudes

must be the parity conjugate of the symbol alphabet of Nn−k−4MHV amplitudes.

The absence of parity symmetry is a simple consequence of the fact that different

branches of solutions to the Landau equations give non-zero support to amplitudes in

different helicity sectors (or, equivalently, overlap boundaries of amplituhedra in different

helicity sectors). From this point of view it appears to be an accident that the two-loop

MHV symbol alphabet is closed under parity; we guess that this will continue to hold at

arbitrary loop order. It is also an interesting consistency check that for n < 8 the symbol

letters in eq. (5.18) necessarily degenerate into letters of the type already present at MHV

order. This is consistent with all results available to date from the hexagon and heptagon

amplitude bootstrap programs, which are based on the hypothesis that the symbol alphabet

for all amplitudes with n < 8 is given by eq. (5.17) to all loop order. Genuinely new NMHV

letters begin to appear only starting at n = 8, to which we now turn our attention.

5.4 Eight-point example

For the sake of illustration let us conclude by explicitly enumerating our conjecture for

the two-loop NMHV symbol alphabet for the case n = 8. First let us recall that the

corresponding MHV symbol alphabet [26] is comprised of 116 letters:

• 68 four-brackets of the form 〈a a+1 b c〉 (there are altogether of
(

8
4

)
= 70 four-brackets

of the more general form 〈a b c d〉, but at n = 8 both 〈1 3 5 7〉 and 〈2 4 6 8〉 are excluded

by the requirement that at least one pair of indices must be adjacent),

• 8 cyclic images of 〈1 2 4 ∩ 6〉,

• and 40 degenerate cases of 〈a a+1 b ∩ c〉 consisting of 8 cyclic images each of

〈1 (2 3)(4 5)(7 8)〉, 〈1 (2 3)(5 6)(7 8)〉, 〈1 (2 8)(3 4)(5 6)〉, 〈1 (2 8)(3 4)(6 7)〉, as well as

〈1 (2 8)(4 5)(6 7)〉.

Referring the reader again to appendix A for details on our notation, we conjecture that

an additional 88 letters appear in the symbol alphabet of the two-loop n = 8 NMHV

amplitude7

• 48 degenerate cases consisting of 16 dihedral images each of 〈1 (2 3)(4 5)(6 7)〉,
〈1 (2 3)(4 5)(6 8)〉, as well as 〈1 (2 8)(3 4)(5 7)〉,

• 8 cyclic images of 〈2 ∩ (2 4 5) ∩ 8 ∩ (8 5 6)〉 (this set is closed under reflections, so

adding all dihedral images would be overcounting),

• the 8 distinct dihedral images of 〈2 ∩ (2 4 5) ∩ 6 ∩ (6 8 1)〉 (which is distinct from its

reflection but comes back to itself after cycling the indices by four),

7The 116+88 = 204 symbol letters of this amplitude can be assembled into 204−8 = 196 dual conformally

invariant cross-ratios in many different ways. We cannot a priori rule out the possibility that the symbol

of this amplitude might be expressible in terms of an even smaller set of carefully chosen multiplicatively

independent cross-ratios, though this type of reduction is not possible in any known six- or seven-point

examples.
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• 16 dihedral images of ⟪(1 2) ∩ 4; (1 4)(5 6)(7 8)⟫,
• and finally 8 four-mass box-type letters.

The last of these were displayed in eq. (7.1) of [3] and take the form

fi`fjk ± (fikfj` − fijfk`)±
√

(fijfk` − fikfj` + fi`fjk)2 − 4fijfjkfk`fi` , (5.19)

where fij ≡ 〈i i+1 j j+1〉 and the signs may be chosen independently. For n = 8 there are

two inequivalent choices {i, j, k, `} = {1, 3, 5, 7} or {2, 4, 6, 8}, for a total of eight possible

symbol letters of this type.

6 Conclusion

The symbol alphabets for all two-loop MHV amplitudes in SYM theory were first found

in [26]. In [9, 27] it was found that two-loop NMHV amplitudes have the same symbol

alphabets as the corresponding MHV amplitudes for n = 6, 7, which is now believed to be

true to all loop order. However, the question of whether two-loop NMHV amplitudes for

n > 7 have the same symbol alphabets as their MHV cousins has remained open. In this

paper we find that the former have branch points (of the type shown in eq. (5.18)) not

shared by the latter, answering this question in the negative.

Our conjectures for the two-loop NMHV symbol alphabets are formulated in terms of

quantities analogous to the cluster A-coordinates of [28], although it is simple to confirm

that at least some of them are not cluster coordinates of the Gr(4, n) cluster algebra (it

is possible that none of them are, but some of them are more difficult to check). For the

purpose of carrying out the amplitude bootstrap, it is however more convenient to assemble

these letters into dual conformally invariant cross-ratios. In the literature considerable

effort (see for example [29–33]) has gone into divining deep mathematical structure of

amplitudes hidden in the particular kinds of cross-ratios that might appear, especially

when they can be taken to cluster X -coordinates (or Fock-Goncharov coordinates) of the

type reviewed in [28]. However, we see no hint in the Landau analysis or inherent to the

twistor or on-shell diagrams employed in this paper that suggests any preferred way of

building such cross-ratios.

It is inherent in the approach taken here following [2, 3] (as well as in the amplitude

bootstrap program itself) that we eschew knowledge of or interest in explicit representations

of amplitudes in terms of local Feynman integrals. However, as mentioned in the conclusion

of [3], the procedure of identifying relevant boundaries of amplituhedra and then solving the

Landau equations associated to each one as if it literally represented some Feynman integral

is suggestive that this approach might be thought of as naturally generating integrand

expansions around the highest codimension amplituhedron boundaries.8 This approach

might lead to a resolution of the controversy regarding the status of Landau singularities

of the type eq. (5.2) obtained from maximal codimension boundaries. This analysis is,

however, beyond the scope of our paper and we remain agnostic about the status of this

8We are grateful to N. Arkani-Hamed for extensive discussions on this point.
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branch point in anticipation of empirical data. If this singularity is shown to be spurious,

this would be an interesting result not easily explainable using on-shell diagram techniques,

and it would signal that boundaries of amplituhedra contain more information waiting to

be explored.

These observations highlight a point that we have emphasized several times in this

paper and the prequel [3]. Namely, several threads in this tapestry, including the connection

to on-shell diagrams reviewed in section 4 and the simple relation between twistor diagrams

and Landau diagrams in appendix B, do not inherently rely on planarity. This hints at

the tantalizing possibility that some of our toolbox may be useful for studying non-planar

amplitudes about which much less is known (see [34–36]).

One of the stronger hints — the relationship between on-shell diagrams and Landau

diagrams — also aids in corroborating results. A vanishing on-shell diagram indicates a

location where the analytic structure of an amplitude is trivial; that is exactly the same

information encoded by the boundaries of the amplituhedron. The simple connection

between the results tabulated in section 3 and those obtained via the on-shell diagram

approach provides an important cross-check supporting the validity of our analysis, as well

as giving additional corroboration to the definition of amplituhedra.
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A Notation

Here we recall some standard momentum twistor notation and define some new notation

used in section 5. The momentum twistors ZIa are n homogeneous coordinates on Confn(P3)

(so I ∈ {1, . . . , 4} and a ∈ {1, . . . , n}) in terms of which we have the natural four-brackets

〈a b c d〉 ≡ εIJKLZIaZJb ZKc ZLd . (A.1)

We use (see for example eq. (2.38) of [25])

〈x y (a b c) ∩ (d e f)〉 ≡ 〈x a b c〉〈y d e f〉 − 〈y a b c〉〈x d e f〉 (A.2)

and in the special case when the two planes (a b c), (d e f) share a common point, say f = c,

we use the shorthand

〈c (x y)(a b)(d e)〉 ≡ 〈x y (a b c) ∩ (d e c)〉 (A.3)
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to emphasize the otherwise non-manifest fact that this quantity is fully antisymmetric

under the exchange of any two of the three lines (x y), (a b), and (d e). In section 5 we

introduce a bracket for the intersection of four planes which is related by the obvious

duality to an intersection of four points. Specifically, if we represent a plane (a b c) by its

dual point

(a b c)I ≡ εIJLKZJaZKb ZLc (A.4)

then we define

〈(a1 a2 a3) ∩ (b1 b2 b3) ∩ (c1 c2 c3) ∩ (d1 d2 d3)〉

≡ εIJKL(a1 a2 a3)I(b1 b2 b3)J(c1 c2 c3)K(d1 d2 d3)L . (A.5)

Our final new definition

⟪(a a+1) ∩ b; (a b)(c d)(e f)⟫ ≡ 〈((a a+1) ∩ b)(a b)(c d)(e f)〉
〈a b〉

(A.6)

requires a little bit of explanation. The first quantity in the numerator recalls that the

intersection of a line (a b) and a plane (c d e) can be represented by the point (see for

example p. 33 of [25])

(a b) ∩ (c d e) ≡ Za〈b c d e〉+ Zb〈c d e a〉 . (A.7)

Using this definition, the (a a+1)∩b in the numerator of eq. (A.6) defines a point that feeds

into “c” in the definition (A.3). By following the trail of definitions it is easy to check that

the resulting bracket in the numerator of eq. (A.6) always has an overall factor of 〈a b〉,
which we divide out in order to make ⟪.⟫ irreducible (for general arguments).

B Twistor diagrams to Landau diagrams

In this appendix, we explain how twistor diagrams and Landau diagrams are partial edge-

to-node duals of each other. This map straightforwardly generalizes to any number of

loops, and is easily inverted to map a Landau diagram into a twistor diagram.

We first note that the edges in a twistor diagram associated with the external labels

are redundant, since the “empty” or “filled” property of the node already tracks the same

information. So we can drop such edges. Then the following steps map a twistor diagram,

τ , to a Landau diagram, λ:

1. For each loop line L(i) in τ , identify one endpoint of L(i) with the other endpoint of

L(i). Since τ are graphs, this identification preserves the order of the nodes along

all L(i).

2. Map each empty τ -node into a λ-edge. Identify the two λ-nodes defining the λ-edge

as massive corners of λ.

– 33 –



J
H
E
P
0
4
(
2
0
1
8
)
0
4
9

i

jk′

k

*

*
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(a) (b) (c)

Figure 6. Figure (a) is momentum twistor diagram (with the superfluous edges associated with

the external labels dropped), with the endpoints of L(1) (denoted with †) identified, and with the

endpoints of L(2) (denoted with *) identified. The resulting graph (b) comes from preserving the

ordering of nodes along the line. Note we have used the ambiguity in ordering between k and k′

to consider the case k < k′ < i. Mapping any empty node to an edge between massive corners and

mapping any filled node to a massless corner with two edges between massive corners, results in

the Landau diagram (c). There would be a massive corner along the top of the Landau diagram,

but the indices fix that corner to be zero.

3. Map each filled τ -node into two λ-edges sharing one common λ-node. Identify the

common λ-node as a massless corner of λ, and the other two λ-nodes as massive

corners of λ.

4. The external labels map from τ to λ such that:

• the label of an empty τ -node maps to one of the two massless corners defining

the new λ-edge, and

• the label of a filled τ -node maps into a massless corner of λ.

This is a partial edge-to-node map because only the empty τ -nodes obey a proper edge-to-

node exchange as they map to a λ-edge, while the filled τ -nodes are effectively unchanged

as they map to λ-nodes. It is always possible to consistently assign the labels of τ to λ,

though so doing may cause a massive corner of λ to completely vanish, as happens in the

following concrete example.

We turn now to detailing how the two-loop twistor diagram, figure 6(a), (also the first

column of table 2(b)) maps into one of its corresponding Landau diagrams, figure 6(c) (the

second column of table 2(b)).

The first step is to identify the two nodes corresponding to the end-points of each L(i),

i = 1, 2. This closes the two lines into loops, and we formally think of the diagram as a

graph, specified by its edges, nodes, and decorations of its nodes. The result is figure 6(b),

with identified endpoints marked by * and †.
In this instance, there is an ambiguity in choosing k′ < k or k < k′. We demonstrate

the latter case here to highlight that k′ and k can be swapped with respect to how they

appear on the loop line. The k′ < k differs from what we detail here by swapping ordering
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of the two nodes along the loop. Then the filled k′ node would be on the bottom of the

box in figure 6(b), while the empty k node would be on the left of the box.

In the k < k′ case we are considering, the resulting graph becomes the Landau diagram,

figure 6(c) under the partial edge-to-node dual map, as described in the steps above. Note

in figure 6(c) that the empty nodes of the original twistor diagram are identified with edges

of the resulting Landau diagram. In contrast, the filled nodes are identified with massless

corners, which are themselves nodes. So this is only a partial edge-to-node map.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1 Introduction

Physical principles impose strong constraints on the scattering amplitudes of elementary

particles. For example, when working at finite order in perturbation theory, unitarity and

locality appear to constrain amplitudes to be holomorphic functions with poles and branch

points at precisely specified locations in the space of complexified kinematic data describing

the configuration of particles. Indeed, it has been a long-standing goal to understand how

to use the tightly prescribed analytic structure of scattering amplitudes to determine them

directly, without relying on traditional (and, often computationally complex) Feynman

diagram techniques.

The connection between the physical and mathematical structure of scattering ampli-

tudes has been especially well studied in planar N = 4 super-Yang-Mills [1] SYM1 theory in

1We use “SYM” to mean the planar limit, unless otherwise specified.
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four spacetime dimensions, where the analytic structure of amplitudes is especially tame.

The overall aim of this paper, its predecessors [2, 3], and its descendant(s), is to ask a

question that might be hopeless in another, less beautiful quantum field theory: can we

understand the branch cut structure of general scattering amplitudes in SYM theory?

The motivation for asking this question is two-fold. The first is the expectation that

the rich mathematical structure that underlies the integrands of SYM theory (the rational

4L-forms that arise from summing L-loop Feynman diagrams, prior to integrating over

loop momenta) is reflected in the corresponding scattering amplitudes. For example, it has

been observed that both integrands [4] and amplitudes [5–7] are deeply connected to the

mathematics of cluster algebras.

Second, on a more practical level, knowledge of the branch cut structure of amplitudes

is the key ingredient in the amplitude bootstrap program, which represents the current

state of the art for high loop order amplitude calculations in SYM theory. In particular

the hexagon bootstrap (see for example [8]), which has succeeded in computing all six-

particle amplitudes through five loops [9], is predicated on the hypothesis that at any

loop order, these amplitudes can have branch points only on 9 specific loci in the space

of external data. Similarly the heptagon bootstrap [10], which has revealed the symbols

of the seven-particle four-loop MHV and three-loop NMHV amplitudes [11], assumes 42

particular branch points. One result we hope follows from understanding the branch cut

structure of general amplitudes in SYM theory is a proof of this counting to all loop order

for six- and seven-particle amplitudes.

It is a general property of quantum field theory (see for example [12, 13]) that the loca-

tions of singularities of an amplitude can be determined from knowledge of the poles of its

integrand by solving the Landau equations [14]. Constructing explicit representations for

integrands can be a challenging problem in general, but in SYM theory this can be side-

stepped by using various on-shell methods [15–18] to efficiently determine the locations

of integrand poles. This problem is beautifully geometrized by amplituhedra [19], which

are spaces encoding representations of integrands in such a way that the boundaries of an

amplituhedron correspond precisely to the poles of the corresponding integrand. There-

fore, as pointed out in [3] (which we now take as our conceptual framework), the Landau

equations can be interpreted as defining a map that associates to any boundary of an am-

plituhedron the locus in the space of external data where the corresponding amplitude has

a singularity.

Only MHV amplitudes were considered in [3]. In this paper we show how to extend the

analysis to amplitudes of arbitrary helicity. This is greatly aided by a recent combinatorial

reformulation of amplituhedra in terms of “sign flips” [20]. As a specific application of

our algorithm we classify the branch points of all one-loop amplitudes in SYM theory.

Although the singularity structure of these amplitudes is of course well-understood (see for

example [21–29]), this exercise serves a useful purpose in preparing a powerful toolbox for

the sequel [30] to this paper where we will see that boundaries of one-loop amplituhedra

are the basic building blocks at all loop order. In particular we find a surprising ‘emergent

positivity’ on boundaries of one-loop amplituhedra that allows boundaries to be efficiently

mapped between different helicity sectors, and recycled to higher loop levels.

– 2 –
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The rest of this paper is organized as follows. In section 2 we review relevant definitions

and background material and summarize the general procedure for finding singularities

of amplitudes. In sections 3 and 4 we classify the relevant boundaries of all one-loop

amplituhedra. Section 5 outlines a simple graphical notation for certain boundaries and

shows that the one-loop boundaries all assemble into a simple graphical hierarchy which

will prove useful for organizing higher-loop computations. In section 6 we show how to

formulate and efficiently solve the Landau equations directly in momentum twistor space,

thereby completing the identification of all branch points of one-loop amplitudes. The

connection between these results and symbol alphabets is discussed in section 7.

2 Review

This section provides a thorough introduction to the problem our work aims to solve. The

concepts and techniques reviewed here will be illuminated in subsequent sections via several

concrete examples.

2.1 The kinematic domain

Scattering amplitudes are (in general multivalued) functions of the kinematic data (the

energies and momenta) describing some number of particles participating in some scattering

process. Specifically, amplitudes are functions only of the kinematic information about the

particles entering and exiting the process, called external data in order to distinguish it

from information about virtual particles which may be created and destroyed during the

scattering process itself. A general scattering amplitude in SYM theory is labeled by three

integers: the number of particles n, the helicity sector 0 ≤ k ≤ n − 4, and the loop order

L ≥ 0, with L = 0 called tree level and L > 0 called L-loop level. Amplitudes with

k = 0 are called maximally helicity violating (MHV) while those with k > 0 are called

(next-to-)kmaximally helicity violating (NkMHV).

The kinematic configuration space of SYM theory admits a particularly simple char-

acterization: n-particle scattering amplitudes2 are multivalued functions on Confn(P3),

the space of configurations of n points in P3 [5]. A generic point in Confn(P3) may be

represented by a collection of n homogeneous coordinates ZI
a on P3 (here I ∈ {1, . . . , 4}

and a ∈ {1, . . . , n}) called momentum twistors [31], with two such collections considered

equivalent if the corresponding 4 × n matrices Z ≡ (Z1 · · ·Zn) differ by left-multiplication

by an element of GL(4). We use the standard notation

〈a b c d〉 = εIJKLZ
I
aZ

J
b Z

K
c Z

L
d (2.1)

for the natural SL(4)-invariant four-bracket on momentum twistors and use the shorthand

〈· · · a · · · 〉 = 〈· · · a−1 a a+1 · · · 〉, with the understanding that all particle labels are always

2Here and in all that follows, we mean components of superamplitudes suitably normalized by dividing

out the tree-level Parke-Taylor-Nair superamplitude [32, 33]. We expect our results to apply equally well

to BDS- [34] and BDS-like [35] regulated MHV and non-MHV amplitudes. The set of branch points of a

non-MHV ratio function [36] should be a subset of those of the corresponding non-MHV amplitude, but

our analysis cannot exclude the possibility that it may be a proper subset due to cancellations.

– 3 –
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taken mod n. We write (a b) to denote the line in P3 containing Za and Zb, (a b c) to

denote the plane containing Za, Zb and Zc, and so a denotes the plane (a−1 a a+1). The

bar notation is motivated by parity, which is a Z2 symmetry of SYM theory that maps

NkMHV amplitudes to Nn−k−4MHV amplitudes while mapping the momentum twistors

according to {Za} 7→ {Wa = ∗(a−1 a a+1)}.
When discussing NkMHV amplitudes it is conventional to consider an enlarged kine-

matic space where the momentum twistors are promoted to homogeneous coordinates Za,

bosonized momentum twistors [19] on Pk+3 which assemble into an n × (k + 4) matrix

Z ≡ (Z1 · · · Zn). The analog of eq. (2.1) is then the SL(k + 4)-invariant bracket which we

denote by [·] instead of 〈·〉. Given some Z and an element of the Grassmannian Gr(k, k+4)

represented by a k×(k+4) matrix Y , one can obtain an element of Confn(P3) by projecting

onto the complement of Y . The four-brackets of the projected external data obtained in

this way are given by

〈a b c d〉 ≡ [Y ZaZbZcZd] . (2.2)

Tree-level amplitudes are rational functions of the brackets while loop-level amplitudes

have both poles and branch cuts, and are properly defined on an infinitely-sheeted cover

of Confn(P3). For each k there exists an open set Dn,k ⊂ Confn(P3) called the principal

domain on which amplitudes are known to be holomorphic and non-singular. Amplitudes

are initially defined only on Dn,k and then extended to all of (the appropriate cover of)

Confn(P3) by analytic continuation.

A simple characterization of the principal domain for n-particle NkMHV amplitudes

was given in [20]: Dn,k may be defined as the set of points in Confn(P3) that can be

represented by a Z-matrix with the properties

1. 〈a a+1 b b+1〉 > 0 for all a and b 6∈ {a−1, a, a+1},3 and

2. the sequence 〈1 2 3 •〉 has precisely k sign flips,

where we use the notation • ∈ {1 , 2 , . . . , n} so that

〈1 2 3 •〉 ≡ {0, 0, 0, 〈1 2 3 4〉, 〈1 2 3 5〉, . . . , 〈1 2 3n〉} . (2.3)

It was also shown that an alternate but equivalent condition is to say that the sequence

〈a a+1 b •〉 has precisely k sign flips for all a, b (omitting trivial zeros, and taking appropriate

account of the twisted cyclic symmetry where necessary). The authors of [20] showed, and

we review in section 2.2, that for Y ’s inside an NkMHV amplituhedron, the projected

external data have the two properties above.

2.2 Amplituhedra. . .

A matrix is said to be positive or non-negative if all of its ordered maximal minors are

positive or non-negative, respectively. In particular, we say that the external data are

positive if the n× (k + 4) matrix Z described in the previous section is positive.

3As explained in [20], the cyclic symmetry on the n particle labels is “twisted”, which manifests itself

here in the fact that if k is even, and if a = n or b = n, then cycling around n back to 1 introduces an extra

minus sign. The condition in these cases is therefore (−1)k+1〈c c+1n 1〉 > 0 for all c 6∈ {1, n−1, n}.

– 4 –
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A point in the n-particle NkMHV L-loop amplituhedron An,k,L is a collection (Y,L(`))

consisting of a point Y ∈ Gr(k, k + 4) and L lines L(1), . . . ,L(L) (called the loop momenta)

in the four-dimensional complement of Y . We represent each L(`) as a 2× (k + 4) matrix

with the understanding that these are representatives of equivalence classes under the

equivalence relation that identifies any linear combination of the rows of Y with zero.

For given positive external data Z, the amplituhedron An,k,L(Z) was defined in [19]

for n ≥ 4 as the set of (Y,L(`)) that can be represented as

Y = CZ , (2.4)

L(`) = D(`)Z , (2.5)

in terms of a k × n real matrix C and L 2 × n real matrices D(`) satisfying the positivity

property that for any 0 ≤ m ≤ L, all (2m+ k)× n matrices of the form
D(i1)

D(i2)

...

D(im)

C

 (2.6)

are positive. The D-matrices are understood as representatives of equivalence classes and

are defined only up to translations by linear combinations of rows of the C-matrix.

One of the main results of [20] was that amplituhedra can be characterized directly by

(projected) four-brackets, eq. (2.2), without any reference to C or D(`)’s, by saying that

for given positive Z, a collection (Y,L(`)) lies inside An,k,L(Z) if and only if

1. the projected external data lie in the principal domain Dn,k,

2. 〈L(`) a a+1〉 > 0 for all ` and a,4

3. for each `, the sequence 〈L(`) 1 •〉 has precisely k + 2 sign flips, and

4. 〈L(`1) L(`2)〉 > 0 for all `1 6= `2.

Here the notation 〈L a b〉 means 〈AB a b〉 if the line L is represented as (AB) for two points

A,B. It was also shown that items 2 and 3 above are equivalent to saying that the sequence

〈L(`) a •〉 has precisely k + 2 sign flips for any ` and a.

2.3 . . . and their boundaries

The amplituhedron An,k,L is an open set with boundaries at loci where one or more of

the inequalities in the above definitions become saturated. For example, there are bound-

aries where Y becomes such that one or more of the projected four-brackets 〈a a+1 b b+1〉
become zero. Such projected external data lie on a boundary of the principal domain

4Again, the twisted cyclic symmetry implies that the correct condition for the case a = n is

(−1)k+1〈L(`) n 1〉 > 0.

– 5 –
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Dn,k. Boundaries of this type are already present in tree-level amplituhedra, which are

well-understood and complementary to the focus of our work.

Instead, the boundaries relevant to our analysis occur when Y is such that the projected

external data are generic, but the L(`) satisfy one or more on-shell conditions of the form

〈L(`) a a+1〉 = 0 and/or 〈L(`1) L(`2)〉 = 0 . (2.7)

We refer to boundaries of this type as L-boundaries.5 The collection of loop momenta

satisfying a given set of on-shell conditions comprises a set whose connected components

we call branches. Consider two sets of on-shell conditions S, S′, with S′ ⊂ S a proper

subset, and B (B′) a branch of solutions to S (S′). Since S′ ⊂ S, B′ imposes fewer

constraints on the degrees of freedom of the loop momenta than B does. In the case

when B ⊂ B′, we say B′ is a relaxation of B. We use An,k,L to denote the closure of the

amplituhedron, consisting of An,k,L together with all of its boundaries. We say that An,k,L

has a boundary of type B if B ∩ An,k,L 6= ∅ and dim(B ∩ An,k,L) = dim(B).

2.4 The Landau equations

In [3] it was argued, based on well-known and general properties of scattering amplitudes

in quantum field theory (see in particular [12]), that all information about the locations

of branch points of amplitudes in SYM theory can be extracted from knowledge of the

L-boundaries of amplituhedra via the Landau equations [13, 14]. In order to formulate

the Landau equations we must parameterize the space of loop momenta in terms of 4L

variables dA. For example, we could take6 L(`) = D(`)Z with

D(1) =

(
1 0 d1 d2

0 1 d3 d4

)
, D(2) =

(
1 0 d5 d6

0 1 d7 d8

)
, etc., (2.8)

but any other parameterization works just as well.

Consider now an L-boundary of some An,k,L on which the L lines L(`) satisfy d on-shell

constraints

fJ = 0 (J = 1, 2, . . . , d) , (2.9)

each of which is of the form of one of the brackets shown in eq. (2.7). The Landau equations

for this set of on-shell constraints comprise eq. (2.9) together with a set of equations on d

auxiliary variables αJ known as Feynman parameters :

d∑
J=1

αJ
∂fJ
∂dA

= 0 (A = 1, . . . , 4L) . (2.10)

The latter set of equations are sometimes referred to as the Kirchhoff conditions.

5In the sequel [30] we will strengthen this definition to require that 〈L(1) L(2)〉 = 0 at two loops.
6By writing each L as a 2 × 4 matrix, instead of 2 × (k + 4), we mean to imply that we are effectively

working in a gauge where the last four columns of Y are zero and so the first k columns of each L are

irrelevant and do not need to be displayed.
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We are never interested in the values of the Feynman parameters, we only want to know

under what conditions nontrivial solutions to Landau equations exist. Here, “nontrivial”

means that the αJ must not all vanish.7 Altogether we have d + 4L equations in d + 4L

variables (the d αJ ’s and the 4L dA’s). However, the Kirchhoff conditions are clearly

invariant under a projective transformation that multiplies all of the αJ simultaneously by

a common nonzero number, so the effective number of free parameters is only d + 4L −
1. Therefore, we might expect that nontrivial solutions to the Landau equations do not

generically exist, but that they may exist on codimension-one loci in Confn(P3) — these

are the loci on which the associated scattering amplitude may have a singularity according

to [13, 14].

However the structure of solutions is rather richer than this naive expectation suggests

because the equations are typically polynomial rather than linear, and they may not always

be algebraically independent. As we will see in the examples considered in section 6, it is

common for nontrivial solutions to exist for generic projected external data,8 and it can

happen that there are branches of solutions that exist only on loci of codimension higher

than one. We will not keep track of solutions of either of these types since they do not

correspond to branch points in the space of generic projected external data.

There are two important points about our procedure which were encountered in [3]

and deserve to be emphasized. The first is a subtlety that arises from the fact that the

on-shell conditions satisfied on a given boundary of some amplituhedron are not always

independent. For example, the end of section 3 of [3] discusses a boundary of An,0,2

described by nine on-shell conditions with the property that the ninth is implied by the

other eight. This situation arises generically for L > 1, and a procedure — called resolution

— for dealing with these cases was proposed in [3]. We postpone further discussion of this

point to the sequel as this paper focuses only on one-loop examples.

Second, there is a fundamental asymmetry between the two types of Landau equa-

tions, (2.9) and (2.10), in two respects. When solving the on-shell conditions we are only

interested in branches of solutions that (A1) exist for generic projected external data, and

that (A2) have nonempty intersection with An,k,L with correct dimension. In contrast,

when further imposing the Kirchhoff constraints on these branches, we are interested in

solutions that (B1) exist on codimension-one loci in Confn(P3), and (B2) need not remain

within An,k,L. The origin of this asymmetry was discussed in [3]. In brief, it arises from

Cutkoskian intuition whereby singularities of an amplitude may arise from configurations of

loop momenta that are outside the physical domain of integration (by virtue of being com-

plex; or, in the current context, being outside the closure of the amplituhedron), and are

7Solutions for which some of the Feynman parameters vanish are often called “subleading” Landau

singularities in the literature, in contrast to a “leading” Landau singularity for which all α’s are nonzero.

We will make no use of this terminology and pay no attention to the values of the α’s other than ensuring

they do not all vanish.
8Solutions of this type were associated with infrared singularities in [2]. We do not keep track of these

solutions since the infrared structure of amplitudes in massless gauge theory is understood to all loop

order based on exponentiation [34, 37]. However, if some set of Landau equations has an “IR solution”

at some particular L(`), there may be other solutions, at different values of L(`), that exist only on loci of

codimension one. In such cases we do need to keep track of the latter.

– 7 –
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only accessible after analytic continuation to some higher sheet; whereas the monodromy

of an amplitude around a singularity is computed by an integral over the physical domain

with the cut propagators replaced by delta functions. The resulting monodromy will be

zero, i.e. the branch point doesn’t really exist, if there is no overlap between the physical

domain and the locus where the cuts are satisfied, motivating (A2) above. In summary, it is

important to “solve the on-shell conditions first” and then impose the Kirchhoff conditions

on the appropriate branches of solutions only afterwards.

2.5 Summary: the algorithm

The Landau equations may be interpreted as defining a map which associates to each

boundary of the amplituhedron An,k,L a locus in Confn(P3) on which the corresponding

n-point NkMHV L-loop amplitude has a singularity. The Landau equations themselves

have no way to indicate whether a singularity is a pole or branch point. However, it is

expected that all poles in SYM theory arise from boundaries that are present already in the

tree-level amplituhedra [19]. These occur when some 〈a a+1 b b+1〉 go to zero as discussed

at the beginning of section 2.3. The aim of our work is to understand the loci where

amplitudes have branch points, so we confine our attention to the L-boundaries defined in

that section.

The algorithm for finding all branch points of the n-particle NkMHV L-loop amplitude

is therefore simple in principle:

1. Enumerate all L-boundaries of An,k,L for generic projected external data.

2. For each L-boundary, identify the codimension-one loci (if there are any) in Confn(P3)

on which the corresponding Landau equations admit nontrivial solutions.

However, it remains a difficult and important outstanding problem to fully characterize

the boundaries of general amplituhedra. In the remainder of this paper we focus on the

special case L = 1, since all L-boundaries of An,k,1 (which have been discussed extensively

in [38]) may be enumerated directly for any given n:

1(a). Start with a list of all possible sets of on-shell conditions of the form 〈L a a+1〉 = 0.

1(b). For each such set, identify all branches of solutions that exist for generic projected

external data.

1(c). For each such branch B, determine the values of k for which An,k,1 has a boundary

of type B.

It would be enormously inefficient to carry out this simple-minded algorithm beyond one

loop. Fortunately, we will see in the sequel that the one-loop results of this paper can be

exploited very effectively to generate L-boundaries of L > 1 amplituhedra.

3 One-loop branches

In this section we carry out steps 1(a) and 1(b) listed at the end of section 2.5. To that

end we first introduce a graphical notation for representing sets of on-shell conditions via

– 8 –
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Landau diagrams. Landau diagrams take the form of ordinary Feynman diagrams, with

external lines labeled 1, . . . , n in cyclic order and one internal line (called a propagator)

corresponding to each on-shell condition. Landau diagrams relevant to amplituhedra are

always planar. Each internal face of an L-loop Landau diagram is labeled by a distinct

` ∈ {1, . . . , L}, and each external face may be labeled by the pair (a a+1) of external lines

bounding that face.

The set of on-shell conditions encoded in a given Landau diagram is read off as follows:

• To each propagator bounding an internal face ` and an external face (a a+1) we

associate the on-shell condition 〈L(`) a a+1〉 = 0.

• To each propagator bounding two internal faces `1, `2 we associate the on-shell con-

dition 〈L(`1) L(`2)〉 = 0.

At one loop we only have on-shell conditions of the first type. Moreover, since L only

has four degrees of freedom (the dimension of Gr(2, 4) is four), solutions to a set of on-shell

conditions will exist for generic projected external data only if the number of conditions is

d ≤ 4. Diagrams with d = 1, 2, 3, 4 are respectively named tadpoles, bubbles, triangles and

boxes. The structure of solutions to a set of on-shell conditions can change significantly

depending on how many pairs of conditions involve adjacent indices. Out of abundance of

caution it is therefore necessary to consider separately the eleven distinct types of Landau

diagrams shown in the second column of table 1. For d > 1 their names are qualified

by indicating the number of nodes with valence greater than three, called masses. These

rules suffice to uniquely name each distinct type of diagram except the two two-mass boxes

shown in table 1 which are conventionally called “easy” and “hard”. This satisfies step

1(a) of the algorithm.

Proceeding now to step 1(b), we display in the third column of table 1 all branches

of solutions (as always, for generic projected external data) to the on-shell conditions

associated to each Landau diagram. These expressions are easily checked by inspection

or by a short calculation. More details and further discussion of the geometry of these

problems can be found for example in [39]. The three-mass triangle solution involves

the quantities

ρ(α) = −α〈i j+1 k k+1〉 − (1− α)〈i+1 j+1 k k+1〉 ,
σ(α) = α〈i j k k+1〉+ (1− α)〈i+1 j k k+1〉 ,

(3.1)

and the four-mass box solution is sufficiently messy that we have chosen not to write it

out explicitly.

Altogether there are nineteen distinct types of branches, which we have numbered (1)

through (19) in table 1 for ease of reference. The set of solutions to any set of on-shell

conditions of the form 〈L a a+1〉 must be closed under parity, since each line (a a+1) maps

to itself. Most sets of on-shell conditions have two branches of solutions related to each

other by parity. Only the tadpole, two-mass bubble, and three-mass triangle (branches (1),

(4), and (9) respectively) have single branches of solutions that are closed under parity.
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Name
Landau

Diagram
Branches k-Validity

Low-k

Twistor

Diagram

Singularity

Locus/Loci

tadpole

(n≥ 4)

i
(1) L = (αZi+(1−α)Zi+1,A) 0≤ k≤n−4

i

0

one-mass

bubble

(n≥ 4)
i

(2) L = (Zi,A)

(3) L = i∩P

0 ≤ k≤ n−4

n−4 ≥ k≥ 0

i
0

two-mass

bubble

(n≥ 4)

i

j

(4) L = (αZi+(1−α)Zi+1,

βZj+(1−β)Zj+1)
0≤ k≤n−4

i

j

〈i i+1j j+1〉

one-mass

triangle

(n≥ 4)

i
(5) L = (Zi,αZi+1+(1−α)Zi+2)

(6) L = (Zi+1,αZi−1+(1−α)Zi)

0 ≤ k≤ n−4

n−4 ≥ k≥ 0

i

i+1

0

two-mass

triangle

(n≥ 5)

i

j

(7) L = (Zi,αZj+(1−α)Zj+1)

(8) L = i∩(j j+1A)

0 ≤ k≤ n−5

n−4 ≥ k≥ 1

i

j

0

three-mass

triangle

(n≥ 6)

i

j

k

(9) L = (αZi+(1−α)Zi+1,

ρ(α)Zj+σ(α)Zj+1)
1≤ k≤n−5

i

k

j fijfjkfki

–
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Name
Landau

Diagram
Branches k-Validity

Low-k

Twistor

Diagram

Singularity

Locus/Loci

one-mass

box (n≥ 5)

i
(10) L = (i i+2)

(11) L = i∩i+2

0 ≤ k≤ n−5

n−4 ≥ k≥ 1

i

i+2

〈i i+2〉〈i i+2〉

two-mass

easy box

(n≥ 6)

i

j

(12) L = (ij)

(13) L = i∩j

0 ≤ k≤ n−6

n−4 ≥ k≥ 2

i

j

〈ij〉〈ij〉

two-mass

hard box

(n≥ 6)

i

j

(14) L = i+1∩(ij j+1)

(15) L = i∩(i+1j j+1)

1 ≤ k≤ n−5

n−5 ≥ k≥ 1

i

j

i+1 〈i i+2〉〈i i+1j j+1〉

three-mass

box (n≥ 7)

i
j

k

(16) L= (ij j+1)∩(ik k+1)

(17) L= (i∩(j j+1), i∩(kk+1))

1 ≤ k≤ n−6

n−5 ≥ k≥ 2

i

k

j 〈i(i−1 i+1)(j j+1)(kk+1)〉

four-mass

box (n≥ 8)

i

j

k

`

(18) L=

(19) L=

}
see table 2 of [40]

2 ≤ k≤ n−6

n−6 ≥ k≥ 2

i

`

j

k

(fijfk`−fikfj`+fi`fjk)2

−4fijfjkfk`fi`≡∆ijk`

Table 1. This table shows: the eleven Landau diagrams corresponding to sets of one-loop on-shell conditions that can be satisfied for generic

projected external data; the nineteen branches of solutions to these on-shell conditions; the range of k for which NkMHV amplituhedra have

boundaries of each type; the twistor diagram depicting the low-k solution (or one low-k solution for the one-mass triangle and two-mass hard

box); the loci in Confn(P3) where the Landau equations for each branch admit nontrivial solutions (where the quantity in the last column

vanishes). At one loop it happens that the loci are the same for each branch of solutions to a given set of on-shell conditions. Here α,β are

arbitrary numbers, A is an arbitrary point in P3, P is an arbitrary plane in P3, ρ(α),σ(α) are defined in eq. (3.1), fab≡〈aa+1bb+1〉, and

〈i(i−1 i+1)(j j+1)(kk+1)〉≡ 〈i−1 ij j+1〉〈i i+1kk+1〉−(j↔ k).
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4 One-loop boundaries

We now turn to the last step 1(c) from the end of section 2.5: for each of the nineteen

branches B listed in table 1, we must determine the values of k for which An,k,1 has a

boundary of type B (defined in section 2.3). The results of this analysis are listed in the

fourth column of the table 1. Our strategy for obtaining these results is two-fold.

In order to prove that an amplituhedron has a boundary of type B, it suffices to

write down a pair of matrices C,D such that definitions (2.4) and (2.5) hold, C and
(
D
C

)
are both non-negative, and the external data projected through Y = CZ are generic for

generic positive Z. We call such a pair C,D a valid configuration for B. In the sections

below we present explicit valid configurations for each of the nineteen branches. Initially

we consider for each branch only the lowest value of k for which a valid configuration exists;

in section 4.7 we explain how to grow these to larger values of k and establish the upper

bounds on k shown in table 1.

However, in order to prove that an amplituhedron does not have a boundary of type

B, it does not suffice to find a configuration that is not valid; one must show that no valid

configuration exists. We address this problem in the next section.

4.1 A criterion for establishing absent branches

Fortunately, for L-boundaries of the type under consideration there is a simple criterion

for establishing when no valid configuration can exist. The crucial ingredient is that if

(Y,L) ∈ An,k,1 and 〈L a a+1〉 = 0 for some a, then 〈L a a+2〉 must necessarily be non-

positive;9 the proof of this assertion, which we omit here, parallels that of a closely related

statement proven in section 6 of [20].

Consider now a line of the form L = (αZa + βZa+1, A) for some point A and some

parameters α, β which are not both vanishing. We will show that an L of this form can lie

in the closure of an amplituhedron only if L = (a a+1) or αβ ≥ 0.

First, as just noted, since 〈L a a+1〉 = 0 we must have

0 ≥ 〈L a a+2〉 = β〈a+1Aaa+2〉 . (4.1)

On the other hand, as mentioned at the end of section 2.2, we also have 〈L a a+1〉 ≥ 0 for

all a. Applying this to a+ 1 gives

0 ≤ 〈L a+1 a+2〉 = α〈aAa+1 a+2〉 . (4.2)

If 〈a a+1 a+2A〉 6= 0, then the two inequalities (4.1) and (4.2) imply that αβ ≥ 0.

This is the conclusion we wanted, but it remains to address what happens if

〈a a+1 a+2A〉 = 0. In this case L lies in the plane (a a+1 a+2) so we can take

9 Unless a ∈ {n−1, n}, when one must take into account the twisted cyclic symmetry. In all that follows

we will for simplicity always assume that indices are outside of this range, which lets us uniformly ignore

all sign factors that might arise from the twisted cyclic symmetry; these signs necessarily always conspire

to ensure that all statements about amplitudes are Zn cyclically invariant.
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L = (αZa + βZa+1, γZa+1 + δZa+2). Then we have

0 ≥ 〈L a+1 a+3〉 = −αδ〈a a+1 a+2 a+3〉 ,
0 ≤ 〈L a−1 a〉 = βδ〈a−1 a a+1 a+2〉 .

(4.3)

Both of the four-brackets in these inequalities are positive (for generic projected external

data) since they are of the form 〈a a+1 b b+1〉, so we conclude that either δ = 0, which

means that L = (a a+1), or else we again have αβ ≥ 0.

In conclusion, we have developed a robust test which establishes that

L = (αZa + βZa+1, A) ∈ An,k,1 only if L = (a a+1) or αβ ≥ 0 . (4.4)

This statement is independent of k (and Y ), but when applied to particular branches, we

will generally encounter cases for which αβ is negative unless certain sequences of four-

brackets of the projected external data have a certain number of sign flips; this signals that

the branch may intersect An,k,1 only for certain values of k.

4.2 MHV lower bounds

The fact that MHV amplituhedra only have boundaries of type (1)–(7), (10) and (12)

(referring to the numbers given in the “Branches” column of table 1) follows implicitly

from the results of [3] where all boundaries of one- (and two-) loop MHV amplituhedra

were studied. It is nevertheless useful to still consider these cases since we will need the

corresponding D-matrices below to establish that amplituhedra have boundaries of these

types for all 0 ≤ k ≤ n− 4.

In this and the following two sections we always assume, without loss of generality, that

indices i, j, k, ` are cyclically ordered and non-adjacent (i+1 < j < j+1 < k < k+1 < `),

and moreover that 1 < i and ` < n. In particular, this means that we ignore potential

signs from the twisted cyclic symmetry (see footnote 9).

Branch (4) is a prototype for several other branches, so we begin with it instead of branch

(1). The solution for L shown in table 1 may be represented as L = DZ with

D =

( i i+1 j j+1

α 1− α 0 0

0 0 β 1− β

)
, (4.5)

where we display only the nonzero columns of the 2 × n matrix in the indicated

positions i, i+1, j and j+1. This solves the two-mass bubble on-shell conditions for

all values of the parameters α and β. This branch intersects An,0,1 when they lie in

the range 0 ≤ α, β ≤ 1, where the matrix D is non-negative. Thus we conclude that

MHV amplituhedra have boundaries of type (4).

Branches (5), (6), (7), (10), and (12) can all be represented by special cases

of eq. (4.5) for α and/or β taking values 0 and/or 1, and/or with columns relabeled,

so MHV amplituhedra also have boundaries of all of these types.
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Branch (1) may be represented by

D =

( i−1 i i+1 i+2

· · · 0 α 1− α 0 · · ·
· · · αi−1 αi αi+1 αi+2 · · ·

)
. (4.6)

This provides a solution to the tadpole on-shell condition 〈L i i+1〉 = 0 for all values

of the parameters, and there clearly are ranges for which D is non-negative. Note

that all but two of the parameters in the second row could be gauged away, but this

fact is not relevant at the moment (see footnote 10). If 0 ≤ α ≤ 1, we could have

either αa = 0 for a < i + 1 and αa > 0 for a > i, or α = 0 for a > i and αa < 0 for

a < i+ 1. We conclude that MHV amplituhedra also have boundaries of this type.

Branch (2) is the special case α = 1 of branch (1).

Branch (3) may be represented by

D =

( i−1 i i+1

1 0 α

0 1 β

)
(4.7)

for arbitrary α, β, which is non-negative for α ≤ 0 and β ≥ 0, so MHV amplituhedra

also have boundaries of this type.

4.3 NMHV lower bounds

Branch (8) of the two-mass triangle may be represented as

D =

( i i+1 j j+1

α 1− α 0 0

0 0 −〈i j+1〉 〈i j〉

)
(4.8)

for arbitrary α. For generic projected external data L 6= (j j+1), so criterion (4.4)

shows that this configuration has a chance to lie on the boundary of an amplituhe-

dron only if −〈i j+1〉〈i j〉 ≥ 0. This is not possible for MHV external data, where

the ordered four-brackets are always positive, so MHV amplituhedra do not have

boundaries of this type. But note that the inequality can be satisfied if there is at

least one sign flip in the sequence 〈i •〉, between • = j and • = j+1. This motivates

us to consider k = 1, so let us now check that with

C =
( i−1 i i+1 j j+1

ci−1 ci ci+1 cj cj+1

)
, (4.9)

the pair C,D is a valid configuration. First of all, it is straightforward to check that

L = DZ still satisfies the two-mass triangle on-shell conditions. This statement is

not completely trivial since these conditions now depend on Y = CZ because of the
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projection (2.2). Second, in order for C to be non-negative we need all five of the

indicated ca’s to be non-negative. Moreover, in order to support generic projected

external data, we need them all to be nonzero — if, say, ci were equal to zero, then

〈i−1 i+1 j j+1〉 would vanish, etc. Finally, for
(
D
C

)
to be non-negative we need

0 ≤ α ≤ ci
ci + ci+1

. (4.10)

This branch intersects An,1,1 for α in this range, so we conclude that NMHV ampli-

tuhedra have boundaries of this type.

Branch (9) is the general solution of the three-mass triangle, and is already given in ta-

ble 1 in D-matrix form as

D =

( i i+1 j j+1

α 1− α 0 0

0 0 ρ(α) σ(α)

)
, (4.11)

with ρ(α) and σ(α) defined in eq. (3.1). For generic projected external data this L
can never attain the value (i i+1) or (j j+1). Applying criterion (4.4) for both a = i

and a = j shows that this configuration has a chance to lie on the boundary of an

amplituhedron only if α(1−α) ≥ 0 and ρ(α)σ(α) ≥ 0. This is not possible for MHV

external data, so we conclude that MHV amplituhedra do not have boundaries of

this type. However, the ρ(α)σ(α) ≥ 0 inequality can be satisfied if the sequences

〈i k k+1 •〉 and 〈i+1 k k+1 •〉 change sign between • = j and • = j+1, as long as

the sequences 〈j k k+1 •〉 and 〈j+1 k k+1 •〉 do not flip sign here. Consider for k = 1

the matrix

C =
( i i+1 j j+1 k k+1

αci (1− α)ci cj cj+1 ck ck+1

)
. (4.12)

Then C,D is a valid configuration because (1) L = DZ satisfies the three-mass

triangle on-shell conditions (for all values of α and the c’s), and, (2) for 0 ≤ α ≤ 1 and

all c’s positive, the C-matrix is non-negative and supports generic positive external

data (because it has at least k+4 = 5 nonzero columns), and (3) for this range of

parameters
(
D
C

)
is also non-negative. Since this branch intersects An,1,1 for a range

of α, we conclude that NMHV amplituhedra have boundaries of this type.

Branch (16) is the special case α = 1 of branch (9).

Branch (14) is the special case j → i+ 1, k → j of branch (16).

Branch (15) is equivalent to the mirror image of branch (14), after relabeling.

Branch (11) is the special case j = i+ 2 of branch (15).
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4.4 N2MHV lower bounds

Branch (17) may be represented by

D =

( j j+1 k k+1

0 0 −〈i k+1〉 〈i k〉
−〈i j+1〉 〈i j〉 0 0

)
. (4.13)

For generic projected external data the corresponding L will never attain the value

(j j+1) or (k k+1). We can apply criterion (4.4) for both a = j and a = k, which

reveals that this configuration has a chance to lie on a boundary of an amplituhedron

only if both −〈i j+1〉〈i j〉 ≥ 0 and −〈i k+1〉〈i k〉 ≥ 0. This is impossible for MHV

external data, and it is also impossible in the NMHV case, where some projected

four-brackets may be negative but the sequence 〈i •〉 may only flip sign once, whereas

we need it to flip sign twice, once between • = j and • = j+1, and again between

• = k and • = k+1. We conclude that k < 2 amplituhedra do not have boundaries

of this form. Consider now pairing (4.13) with the k = 2 matrix

C =

( i−1 i i+1 j j+1 k k+1

c11 c12 c13 c14 c15 0 0

c21 c22 c23 0 0 c24 c25

)
. (4.14)

It is straightforward to check that C,D is a valid configuration for a range of values

of c’s, so we conclude that k = 2 amplituhedra have boundaries of this type.

Branch (13) may be represented by

D =

( i−1 i i+1

〈i j〉 −〈i−1 j〉 0

0 −〈i+1 j〉 〈i j〉

)
, (4.15)

which by (4.4) cannot lie on a boundary of an amplituhedron unless the sequence

〈j •〉 flips sign twice, first between • = i−1 and i and again between • = i and

i+1. Therefore, neither MHV nor NMHV amplituhedra have boundaries of this

type. However it is straightforward to verify that with

C =

( i−1 i i+1 j−1 j j+1

c11 c12 0 c13 c14 c15

0 c21 c22 c23 c24 c25

)
(4.16)

the pair C,D is a valid configuration for a range of values of c’s, so k = 2 amplituhedra

do have boundaries of this type.

Branches (18) and (19) of the four-mass box may be represented as

D =

( i i+1 j j+1

α 1− α 0 0

0 0 β 1− β

)
, (4.17)
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where α and β are fixed by requiring that L intersects the lines (k k+1) and (` `+1).

The values of α and β on the two branches were written explicitly in [40]; however, the

complexity of those expressions makes analytic positivity analysis difficult. We have

therefore resorted to numerical testing: using the algorithm described in section 5.4

of [4], we generate a random positive n × (k + 4) Z-matrix and a random positive

k × n C-matrix. After projecting through Y = CZ, we obtain projected external

data with the correct NkMHV sign-flipping properties. We have checked numerically

that both four-mass box branches lie on the boundary of NkMHV amplituhedra only

for k ≥ 2, for many instances of randomly generated external data.

4.5 Emergent positivity

The analysis of sections 4.2, 4.3 and 4.4 concludes the proof of all of the lower bounds on k

shown in the fourth column of table 1. We certainly do not claim to have written down the

most general possible valid C,D configurations; the ones we display for k > 0 have been

specifically chosen to demonstrate an interesting feature we call emergent positivity.

In each k > 0 case we encountered D-matrices that are only non-negative if certain

sequences of projected four-brackets of the form 〈a a+1 b •〉 change sign k times, at certain

precisely specified locations. It is straightforward to check that within the range of validity

of each C,D pair we have written down, the structure of the C matrix is such that it

automatically puts the required sign flips in just the right places to make the D matrix,

on its own, non-negative (provided, of course, that
(
D
C

)
is non-negative). It is not a

priori obvious that it had to be possible to find pairs C,D satisfying this kind of emergent

positivity; indeed, it is easy to find valid pairs for which it does not hold.

4.6 Parity and upper bounds

Parity relates each branch to itself or to the other branch associated with the same Landau

diagram. Since parity is a symmetry of the amplituhedron [20] which relates k to n−k−4,

the lower bounds on k that we have established for various branches imply upper bounds

on k for their corresponding parity conjugates. These results are indicated in the fourth

column of table 1, where the inequalities are aligned so as to highlight the parity symmetry.

Although these k upper bounds are required by parity symmetry, they may seem rather

mysterious from the analysis carried out so far. We have seen that certain branches can be

boundaries of an amplituhedron only if certain sequences of four-brackets have (at least)

one or two sign flips. In the next section, we explain a mechanism which gives an upper

bound to the number of sign flips, or equivalently which gives the upper bounds on k that

are required by parity symmetry.

4.7 Increasing helicity

So far we have only established that NkMHV amplituhedra have boundaries of certain

types for specific low (or, by parity symmetry, high) values of k. It remains to show

that all of the branches listed in table 1 lie on boundaries of amplituhedra for all of the

intermediate helicities. To this end we describe now an algorithm for converting a valid
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configuration C0, D0 at the initial, minimal value of k0 (with C0 being the empty matrix

for those branches with k0 = 0) into a configuration that is valid at some higher value of k.

We maintain the structure of D ≡ D0 and append to C0 a matrix C ′ of dimensions

(k − k0) × n in order to build a configuration for helicity k. Defining C =
(
C0

C′

)
, we look

for a C ′ such that following properties are satisfied:

1. The same on-shell conditions are satisfied.

2. In order for the configuration to support generic projected external data, the C-

matrix must have m ≥ k + 4 nonzero columns, and the rank of any m − 4 of those

columns must be k.

3. Both C and
(
D
C

)
remain non-negative.

Since the C-matrix only has n columns in total, it is manifest from property (2) that

everything shuts off for k > n− 4, as expected.

Let us attempt to preserve the emergent positivity of D. If k0 = 0 then this is

trivial; the D-matrices in section 4.2 do not depend on any brackets, so adding rows to

the empty C0 has no effect on D. For k0 > 0, let A and B be two entries in D0 that

are responsible for imposing a sign flip requirement. The argument applies equally to

all of the k0 > 0 branches, but for the sake of definiteness consider from eq. (4.8) the

two four-bracket dependent entries A = −〈i j+1〉 and B = 〈i j〉. Assuming that C0 is

given by eq. (4.9) so that both A and B are positive with respect to Y0 = C0Z, then

AB = −[Y0 i j+1][Y0 i j] > 0. If we append a second row C ′ and define Y ′ = C ′Z then

we have
A = −[Y0 Y

′Zi−1ZiZi+1Zj+1] = −cj [Zj Y
′ZiZi+1Zj+1] ,

B = [Y0 Y
′Zi−1ZiZi+1Zj ] = cj+1[Zj+1 Y

′ZiZi+1Zj ] .
(4.18)

Since cj and cj+1 are both positive, we see that A and B still satisfy AB > 0, regardless of

the value of Y ′. By the same argument, arbitrary rows can be added to a C-matrix without

affecting the on-shell conditions, so property (1) also holds trivially (and also if k0 = 0).

The structure of the initial D0 of sections 4.2, 4.3 and 4.4 are similar in that the

nonzero columns of this matrix are grouped into at most two clusters.10 For example, for

branch (17) there are two clusters {j, j+1} and {k, k+1} while for branch (3) there is only

a single cluster {i−1, i, i+1}. Property (3) can be preserved most easily if we add suitable

columns only in a gap between clusters. Let us illustrate how this works in the case of

branch (4) where C0 is empty and we can start by taking either

(
D0

C

)
=


i−1 i i+1 i+2 · · · j−1 j j+1 j+2

· · · 0 α 1− α 0 · · · 0 0 0 0 · · ·
· · · 0 0 0 0 · · · 0 β 1− β 0 · · ·
· · · 0 0 ~ci+1 ~ci+2 · · · ~cj−1 ~cj 0 0 · · ·

 (4.19)

10Branch (1) appears to be an exception, but only because eq. (4.6) as written is unnecessarily general:

it is sufficient for the second row to have only three nonzero entries, either in columns {i−3, i−2, i−1} or

in columns {i+1, i+2, i+3}.
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to fill in the gap between clusters {i, i+1} and {j, j+1}, or

(
D0

C

)
=


i−1 i i+1 i+2 · · · j−1 j j+1 j+2

· · · 0 α 1− α 0 · · · 0 0 0 0 · · ·
· · · 0 0 0 0 · · · 0 β 1− β 0 · · ·
· · · ~ci−1 ~ci 0 0 · · · 0 0 ~cj+1 ~cj+2 · · ·

 (4.20)

to fill in the gap between {j, j+1} and {i, i+1} that “wraps around” from n back to 1. In

both (4.19) and (4.20) each ~ca is understood to be a k-component column vector, and in

both cases
(
D0
C

)
can be made non-negative as long as C is chosen to be non-negative.11

In this manner we can trivially increment the k-validity of a given configuration until the

gaps become full. This cutoff depends on the precise positions of the gaps, and is most

stringent when the two clusters are maximally separated from each other, since this forces

the gaps to be relatively small. In this worst case we can fit only dn2 e columns into a

C-matrix of one of the above two types. Keeping in mind property (2) that the C-matrix

should have at least k + 4 nonzero columns, we see that this construction can reach values

of k ≤ dn2 e − 4. In order to proceed further, we can (for example) add additional columns

ci and cj+1 to eq. (4.19), or ci+1 and cj to eq. (4.20). Choosing a non-negative C then no

longer trivially guarantees that
(
D0
C

)
will also be non-negative, but there are ranges of C

for which this is possible to arrange, which is sufficient for our argument.

It is possible to proceed even further by adding additional, specially crafted columns

in both gaps, but the argument is intricate and depends delicately on the particular struc-

ture of each individual branch (as evident from the delicate structure of k upper bounds

in table 1). In the interest of brevity we terminate our discussion of the algorithm here

and note that it is straightforward to check that for all boundaries, even in the worst case

the gaps are always big enough to allow the construction we have described to proceed

up to and including the parity-symmetric midpoint k = bn2 c − 2; then we appeal again to

parity symmetry in order to establish the existence of valid configurations for k between

this midpoint and the upper bound.

This finally concludes the proof of the k-bounds shown in the fourth column of table 1,

and thereby step 1(c) from section 2.5.

5 The hierarchy of one-loop boundaries

Step (1) of our analysis (section 2.5) is now complete at one loop. Before moving on to

step (2) we demonstrate that the boundaries classified in section 4 can be generated by

a few simple graph operations applied to the maximal codimension boundaries of MHV

amplituhedra (table 1 type (12) or, as a special case, (10)). This arrangement will prove

useful in the sequel since one-loop boundaries are the basic building blocks for constructing

boundary configurations at arbitrary loop order.

We call boundaries of type (2), (5)–(7), (10), (12), and (14)–(16) low-k boundaries

since they are valid for the smallest value of k for their respective Landau diagrams. The

11If k is even this is automatic; if k is odd the two rows of D0 should be exchanged.
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branches (8), (11), (13) and (17) are high-k boundaries and are respectively the parity

conjugates of (7), (10), (12) and (16). Branch (3), the parity conjugate of branch (2), is

properly regarded as a high-k boundary since (2) is low-k, but it is accidentally valid for

all k. Branches (1), (4), and (9) are self-conjugate under parity and are considered both

low-k and high-k, as are the parity-conjugate pair (18), (19).

5.1 A graphical notation for low-helicity boundaries

We begin by devising a graphical notation in terms of which the operations between momen-

tum twistor solutions are naturally phrased. These graphs are twistor diagrams12 depicting

various configurations of intersecting lines in P3. The elements of a twistor diagram, an

example of which is shown in panel (a) of figure 1, are:

• The red line depicts an L solving some on-shell conditions, specifically:

• if L and a single line segment labeled i intersect at an empty node, then

〈L i i+1〉 = 0, and

• if L and two line segments intersect at a filled node labeled i, then

〈L i−1 i〉 = 〈L i i+1〉 = 0.

An “empty” node is colored red, indicating the line passing through it. A “filled” node is

filled in solid black, obscuring the line passing through it.

In general a given L can pass through as many as four labeled nodes (for generic

projected external data, which we always assume). If there are four, then none of them

can be filled. If there are three, then at most one of them can be filled, and we choose to

always draw it as either the first or last node along L. If there are more than two, then any

nodes between the first and last are called non-MHV intersections, which are necessarily

empty. This name is appropriate because branches satisfying such on-shell constraints are

not valid boundaries of MHV amplituhedra, and each non-MHV intersection in a twistor

diagram increases the minimum value of k by one.

Although no such diagrams appear in this paper, the extension to higher loops is

obvious: each L is represented by a line of a different color, and the presence of an on-shell

condition of the form 〈L(`1) L(`2)〉 = 0 is indicated by an empty node at the intersection of

the lines L(`1) and L(`2).

To each twistor diagram it is simple to associate one or more Landau diagrams, as

also shown in figure 1. If a twistor diagram has a filled node at i then an associated

Landau diagram has two propagators 〈L i−1 i〉 and 〈L i i+1〉 requiring a massless corner

at i in the Landau diagram. If a twistor diagram has an empty node on the line segment

marked i then an associated Landau diagram only has the single propagator 〈L i i+1〉,
requiring a massive corner in the Landau diagram. Therefore, twistor diagrams should

be thought of as graphical shorthand which both depict the low-k solution to the cut

conditions and simultaneously represent one or more Landau diagrams, as explained in the

caption of figure 1.

12Not to be confused with the twistor diagrams of [41].
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i

k

j

(a)

i
j

k

(b)

i
k

j

(c)

Figure 1. The twistor diagram shown in (a) depicts branch (16) of solutions to the three-mass box

on-shell conditions 〈L i−1 i〉 = 〈L i i+1〉 = 〈L j j+1〉 = 〈L k k+1〉 = 0, which is a valid boundary

for k ≥ 1. This branch passes through the point Zi and intersects the lines (j j+1) and (k k+1).

As drawn, the intersection at j is an example of a non-MHV intersection, but the figure is agnostic

about the relative cyclic ordering of i, j, k and is intended to represent either possibility. Therefore,

the corresponding Landau diagram can be either (b) or (c) depending on whether i < j < k

or i < k < j.

One useful feature of this graphical notation is that the nodes of a twistor diagram

fully encode the total number of propagators, nprops, in the Landau diagram (and so also

the total number of on-shell conditions): each filled node accounts for two propagators,

and each empty node accounts for one propagator:

nprops = 2nfilled + nempty . (5.1)

This feature holds at higher loop order where this counting directly indicates how many

propagators to associate with each loop.

Let us emphasize that a twistor diagram generally contains more information than its

associated Landau diagram, as it indicates not only the set of on-shell conditions satisfied,

but also specifies a particular branch of solutions thereto. The sole exception is the four-

mass box, for which the above rules do not provide the twistor diagram with any way to

distinguish the two branches (18), (19) of solutions. Moreover, the rules also do not provide

any way to indicate that an L lies in a particular plane, such as i. Therefore we can only

meaningfully represent the low-k boundaries defined at the beginning of section 5.

Given a twistor diagram depicting some branch, a twistor diagram corresponding to

a relaxation of that branch may be obtained by deleting a non-MHV intersection of the

type shown in (a) of figure 1, by replacing a filled node and its two line segments with an

empty node and a single segment, or by deleting an empty node. In the associated Landau

diagram, a relaxation corresponds to collapsing an internal edge of the graph. This is

formalized in greater detail in section 5.2.

5.2 A graphical recursion for generating low-helicity boundaries

In figure 2 we organize twistor diagrams representing eight types of boundaries according

to d and k; these are respectively the number of on-shell conditions d satisfied on the

boundary, and the minimum value of k for which the boundary is valid. It is evident from

this data that there is a simple relation between d, k, and the number of filled (nfilled)
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i

j

k

`

k

Kj,+

Ki,+

Uj,+ Ui,+

k

Ki,+
Rk

R`

Ui,+

Rk

RjRj Ki,+

Ui,+
k ≥ 0

k ≥ 0

k ≥ 1

k ≥ 2

N
k
M
H
V

Codimension

d = 4 d = 3 d = 2 d = 1

Figure 2. Twistor diagrams depicting eight types of low-k boundaries of NkMHV amplituhedra,

organized according to the minimum value of k and the codimension d (equivalently, the number

of on-shell conditions satisfied). These correspond respectively to branch types (2), (1), (12), (7),

(4), (16), (9) and (18)/(19). The graph operators K, R, and U are explained in the text and

demonstrated in figures 3–5, respectively. Evidently all eight types of boundaries can be generated

by acting with sequences of these operators on MHV maximal codimension boundaries of the type

shown shaded in gray. There is an analogous parity-conjugated version of this hierarchy which

relates all of the high-k branches to each other. The missing low-k boundary types (5), (6), (10),

(11), (14) and (15) are degenerate cases which can be obtained by starting with j = i + 1 in the

gray blob.

and empty (nempty) nodes. Specifically, we see that an NkMHV amplituhedron can have

boundaries of a type displayed in a given twistor diagram only if

k ≥ 2nempty + 3nfilled − d− 2 = nempty + nfilled − 2 , (5.2)

where we have used eq. (5.1) with nprops = d. In the sequel we will describe a useful map

from Landau diagrams to the on-shell diagrams of [4] which manifests the relation (5.2) and

provides a powerful generalization thereof to higher loop order. The amplituhedron-based

approach has some advantages over that of enumerating on-shell diagrams that will also be

explored in the sequel. First of all, the minimal required helicity of a multi-loop configura-
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i

Ki,−Ki,− Ki,−

i−1

j

i−1 i i+1

Collinear
Limit

i−1 ji
j+1

Figure 3. The graph operation Ki maps an NkMHV twistor diagram into an Nk+1MHV twistor

diagram as shown in the top row. On Landau diagrams, this corresponds to replacing a massless

corner by a massive corner; such an operation is effectively an inverse collinear limit. The shaded

region in the figures represents an arbitrary planar sub-graph. A dashed external line on a Landau

diagram may be either one massless external leg so the whole corner is massive, or completely

removed so the whole corner is massless.

tion can be read off from each loop line separately. Second, we immediately know the rel-

evant solution branches for a given helicity. And finally, compared to enumerating all rele-

vant on-shell diagrams the amplituhedron-based method is significantly more compact since

it can be used to produce a minimal subset of diagrams such that all allowed diagrams are

relaxations thereof, including limits where massive external legs become massless or vanish.

From the data displayed in figure 2 we see that a natural organizational principle

emerges: all NkMHV one-loop twistor diagrams can be obtained from the unique max-

imal codimension MHV diagram (shown shaded in gray) via sequences of simple graph

operations which we explain in turn.

The first graph operation K increments the helicity of the diagram on which it operates.

(The name K is a reminder that it increases k.) Its operation is demonstrated in figure 3.

Specifically, Ki replaces a filled node at a point i along L by two empty nodes, one at i and

a second one on a new non-MHV intersection added to the diagram. Since nfilled decreases

by one but nempty increases by two under this operation, it is clear from eq. (5.2) that

Ki always increases by one the minimal value of k on which the branch indicated by the

twistor diagram has support. From the point of view of Landau diagrams, this operation

replaces a massless node with a massive one, as illustrated in the bottom row of figure 3,

and hence it may be viewed as an “inverse” collinear limit.

The other two graph operations R and U both correspond to relaxations, as defined

in section 2.3, since they each reduce the number of on-shell conditions by one, stepping

thereby one column to the right in figure 2.

The operation Ri simply removes (hence the name R) an empty node i from a twistor

diagram, as shown in figure 4. This corresponds to removing 〈L i i+ 1〉 = 0 from the set of

on-shell conditions satisfied by L.13

13Note that in line with the conventions adopted in section 5.1 we label Ri only with the smaller label

of a pair (i i+1).
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i

Rj
Rj

i

i ji+1 j+1

Collapse
Propagator

i i+1

Figure 4. The graph operation Rj relaxes L by removing the condition that L must pass through

the line (j j+1); this is equivalent to removing the on-shell condition 〈L j j+1〉 = 0. On Landau

diagrams, this corresponds to collapsing the propagator indicated by the filled dot in the bottom

figure on the left. The shaded region in the figures represents an arbitrary planar sub-graph. A

dashed external line on a Landau diagram may be either one massless external leg so the whole

corner is massive, or completely removed so the whole corner is massless. It is to be understood

that the graphical notation implies that j 6= i + 2 and i 6= j + 2; otherwise, the two empty nodes

in the top left diagram would be represented by a single filled node on which the action of R is

undefined; the appropriate graph operation in this case would instead be U.

The last operation, U, corresponds to “un-pinning” a filled node (hence “U”). Un-

pinning means removing one constraint from a pair 〈L i−1 i〉 = 〈L i i+1〉 = 0. The line

L, which was pinned to the point i, is then free to slide along the line segment (i−1 i) or

(i i+1) (for Ui,− or Ui,+, respectively). In the twistor diagram, this is depicted by replacing

the filled node at the point i with a single empty node along the line segment (i i±1)

(see figure 5). Only U+ appears in figure 2 because at one loop, all diagrams generated

by any U− operation are equivalent, up to relabeling, to some diagram generated by a U+.

In general, however, it is necessary to track the subscript ± since both choices are equally

valid relaxations and can yield inequivalent twistor and Landau diagrams. From figure 2,

we read off the following identity among the operators acting on any diagram g:

Uj,+g = RkKj,+g . (5.3)

There was no reason to expect the simple graphical pattern of figure 5 to emerge

among the twistor diagrams. Indeed in section 3 we simply listed all possible sets of on-

shell conditions without taking such an organizational principle into account. At higher

loop order, however, the problem of enumerating all boundaries of NkMHV amplituhedra

benefits greatly from the fact that all valid configurations of each single loop can be it-

eratively generated via these simple rules, starting from the maximal codimension MHV

boundaries. Stated somewhat more abstractly, these graph operations are instructions for

naturally associating boundaries of different amplituhedra.

Before concluding this section it is worth noting (as is evident in figure 2) that relaxing

a low-k boundary can never raise the minimum value of k for which that type of boundary

is valid. In other words, we find that if An,k,1 has a boundary of type B, and if B′ is a
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i

Ui,+ Ui,+

i

i−1 i i+1

Collapse
Propagator

i i+1

Figure 5. The graph operation Ui,+ relaxes a line L constrained to pass through the point i,

shifting it to lie only along the line (i i+1). This is equivalent to removing the on-shell constraint

〈L i−1 i〉 = 0. (The equally valid relaxation Ui,−, not pictured here, lets the intersection point slide

onto (i−1 i).) On Landau diagrams, this corresponds to collapsing the propagator indicated by the

filled dot in the bottom figure on the left. The shaded region in the figures represents an arbitrary

planar sub-graph. A dashed external line on a Landau diagram may be either one massless external

leg so the whole corner is massive, or completely removed so the whole corner is massless. As

explained in the caption of figure 4, the U operation can be thought of as a special case of the R
operation, and we distinguish the two because only the latter can change the helicity sector k.

relaxation of B, then An,k,1 also has boundaries of type B′. This property does not hold in

general beyond one loop; a counterexample involving two-loop MHV amplitudes appears

in figure 4 of [3].

6 Solving Landau equations in momentum twistor space

As emphasized in section 2.5, the Landau equations naturally associate to each boundary

of an amplituhedron a locus in Confn(P3) on which the corresponding amplitude has a

singularity. In this section we review the results of solving the Landau equations for each

of the one-loop branches classified in section 3, thereby carrying out step 2 of the algorithm

summarized in section 2.5. The results of this section were already tabulated in [2], but we

revisit the analysis, choosing just two examples, in order to demonstrate the simplicity and

efficiency of these calculations when carried out directly in momentum twistor space. The

utility of this method is on better display in the higher-loop examples to be considered in

the sequel.

As a first example, we consider the tadpole on-shell condition

f1 ≡ 〈L i i+1〉 = 0 . (6.1)

We choose any two other points Zj , Zk (which generically satisfy 〈i i+1 j k〉 6= 0) in terms

of which to parameterize

L = (Zi + d1Zj + d2Zk, Zi+1 + d3Zj + d4Zk) . (6.2)
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Then the on-shell condition (6.1) admits solutions when

d1d4 − d2d3 = 0 , (6.3)

while the four Kirchhoff conditions (2.10) are

α1d4 = −α1d3 = −α1d2 = α1d1 = 0 . (6.4)

The only nontrivial solution (that means α1 6= 0; see section 2.4) to the equations (6.3)

and (6.4) is to set all four dA = 0. Since this solution exists for all (generic) projected

external data, it does not correspond to a branch point of an amplitude and is uninteresting

to us. In other words, in this case the locus we associate to a boundary of this type is all

of Confn(P3).

As a second example, consider the two on-shell conditions corresponding to the two-

mass bubble

f1 ≡ 〈L i i+1〉 = 0 , f2 ≡ 〈L j j+1〉 = 0 . (6.5)

In this case a convenient parameterization is

L = (Zi + d1Zi+1 + d2Zk, Zj + d3Zi+1 + d4Zk) . (6.6)

Note that an asymmetry between i and j is necessarily introduced because we should not

allow more than four distinct momentum twistors to appear in the parameterization, since

they would necessarily be linearly dependent, and we assume of course that Zk is generic

(meaning, as before, that 〈i i+1 j k〉 6= 0). Then

f1 = −d2〈i i+1 j k〉 ,
f2 = d3〈i i+1 j j+1〉+ d4〈i j j+1 k〉+ (d1d4 − d2d3)〈i+1 j j+1 k〉 (6.7)

and the Kirchhoff conditions are
0 d4〈i+1 j j+1 k〉

−〈i i+1 j k〉 −d3〈i+1 j j+1 k〉
0 〈i i+1 j j+1〉 − d2〈i+1 j j+1 k〉
0 〈i j j+1 k〉+ d1〈i+1 j j+1 k〉


(
α1

α2

)
= 0 . (6.8)

Nontrivial solutions exist only if all 2 × 2 minors of the 4 × 2 coefficient matrix vanish.

Three minors are trivially zero, and the one computed from the second and third rows

evaluates simply to

−〈i i+1 j k〉〈i i+1 j j+1〉 = 0 (6.9)

using the on-shell condition f1 = −d2〈i i+1 j k〉 = 0. If this quantity vanishes, then the

four remaining constraints (the two on-shell conditions f1 = f2 = 0 and the two remaining

minors) can be solved for the four dA, and then eq. (6.8) can be solved to find the two
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αJ ’s. Since 〈i i+1 j k〉 6= 0 by assumption, we conclude that the Landau equations admit

nontrivial solutions only on the codimension-one locus in Confn(P3) where

〈i i+1 j j+1〉 = 0 . (6.10)

These two examples demonstrate that in some cases (e.g. the tadpole example) the

Landau equations admit solutions for any (projected) external data, while in other cases

(e.g. the bubble example) the Landau equations admit solutions only when there is a

codimension-one constraint on the external data. A common feature of these examples is

that some care must be taken in choosing how to parameterize L. In particular, one must

never express L in terms of four momentum twistors (Zi, Zj , etc.) that appear in the

specification of the on-shell conditions; otherwise, it can be impossible to disentangle the

competing requirements that these satisfy some genericity (such as 〈i i+1 j k〉 6= 0 in the

above examples) while simultaneously hoping to tease out the constraints they must satisfy

in order to have a solution (such as eq. (6.10)). For example, although one might have

been tempted to preserve the symmetry between i and j, it would have been a mistake to

use the four twistors Zi, Zi+1, Zj and Zj+1 in eq. (6.6).

Instead, it is safest to always pick four completely generic points Za, . . . , Zd in terms

of which to parameterize

L =

(
1 0 d1 d2

0 1 d3 d4

)
Za

Zb

Zc

Zd

 . (6.11)

The disadvantage of being so careful is that intermediate steps in the calculation become

much more lengthy, a problem we avoid in practice by using a computer algebra system

such as Mathematica.

The results of this analysis for all one-loop branches are summarized in table 1. Nat-

urally these are in accord with those of [14] (as tabulated in [2]). At one loop it happens

that the singularity locus is the same for each branch of solutions to a given set of on-shell

conditions, but this is not generally true at higher loop order.

7 Singularities and symbology

As suggested in the introduction (and explicit even in the title of this paper), one of the

goals of our research program is to provide a priori derivations of the symbol alphabets of

various amplitudes. We refer the reader to [42] for more details, pausing only to recall that

the symbol alphabet of a generalized polylogarithm function F is a finite list of symbol

letters {z1, . . . , zr} such that F has logarithmic branch cuts (i.e., the cover has infinitely

many sheets)14 between zi = 0 and zi =∞ for each i = 1, . . . , r.

To date, symbol alphabets have been determined by explicit computation only for two-

loop MHV amplitudes [43]; all other results on multi-loop SYM amplitudes in the literature

14These branch cuts usually do not all live on the same sheet; the symbol alphabet provides a list of all

branch cuts that can be accessed after analytically continuing F to arbitrary sheets.
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are based on a conjectured extrapolation of these results to higher loop order. Throughout

the paper we have however been careful to phrase our results in terms of branch points,

rather than symbol letters, for two reasons.

First of all, amplitudes in SYM theory are expected to be expressible as generalized

polylogarithm functions, with symbol letters that have a familiar structure like those of

the entries in the last column of table 1, only for sufficiently low (or, by parity conjugation,

high) helicity. In contrast, the Landau equations are capable of detecting branch points of

even more complicated amplitudes, such as those containing elliptic polylogarithms, which

do not have traditional symbols.15

Second, even for amplitudes which do have symbols, determining the actual symbol

alphabet from the singularity loci of the amplitude may require nontrivial extrapolation.

Suppose that the Landau equations reveal that some amplitude has a branch point at

z = 0 (where, for example, z may be one of the quantities in the last column of table 1).

Then the symbol alphabet should contain a letter f(z), where f in general could be an

arbitrary function of z, with branch points arising in two possible ways. If f(0) = 0, then

the amplitude will have a logarithmic branch point at z = 0 [44], but even if f(0) 6= 0, the

amplitude can have an algebraic branch point (so the cover has finitely many sheets) at

z = 0 if f(z) has such a branch point there.

We can explore this second notion empirically since all one-loop amplitudes in SYM

theory, and in particular their symbol alphabets, are well-known (following from one-loop

integrated amplitudes in for example, [21–29]). According to our results from table 1, we

find that one-loop amplitudes only have branch points on loci of the form

• 〈i i+1 j j+1〉 = 0 or 〈i j〉 = 0 for 0 ≤ k ≤ n− 4,

• 〈i(i−1 i+1)(j j+1)(k k+1)〉 = 0 for 1 ≤ k ≤ n− 5, and

• ∆ijk` = 0 (defined in table 1) for 2 ≤ k ≤ n− 6,

where i, j, k, ` can all range from 1 to n. Happily, the first two of these are in complete

accord with the symbol letters of one-loop MHV and NMHV amplitudes, but the third

reveals the foreshadowed algebraic branching since ∆ijk` is not a symbol letter of the four-

mass box integral contribution to N2≤k≤n−6MHV amplitudes. Rather, the symbol alphabet

of this amplitude consists of quantities of the form

fij ≡ 〈i i+1 j j+1〉 and fi`fjk ± (fikfj` − fijfk`)±
√

∆ijk` , (7.1)

where the signs may be chosen independently. Since no symbol letter vanishes on the locus

∆ijk` = 0, amplitudes evidently do not have logarithmic branch points on this locus. Yet

it is evident from the second expression of (7.1) that amplitudes with these letters have al-

gebraic (in this instance, square-root- or double-sheet-type) branch points when ∆ijk` = 0.

Although we have only commented on the structure of various potential symbol en-

tries and branch point loci here, let us emphasize that the methods of this paper can

15It would be interesting to understand how the “generalized symbols” of such amplitudes capture the

singularity loci revealed by the Landau equations.
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be used to determine precisely which symbol entries can appear in any given amplitude.

For example, table 1 can be used to determine values of i, j and k for which the letter

〈i(i−1 i+1)(j j+1)(k k+1)〉 can appear, as well as in which one-loop amplitudes, indexed

by n and k, such letters will appear. An example of a fine detail along these lines evident

already in table 1 is the fact that all NMHV amplitudes have branch points of two-mass

easy type except for the special case n = 6, in accord with eq. (2.7) of [45].

We conclude this section by remarking that the problem of deriving symbol alphabets

from the Landau singularity loci may remain complicated in general, but we hope that

the simple, direct correspondence we have observed for certain one-loop amplitudes (and

which was also observed for the two-loop MHV amplitudes studied in [3]) will continue to

hold at arbitrary loop order for sufficiently simple singularities.

8 Conclusion

This paper presents first steps down the path of understanding the branch cut structure

of SYM amplitudes for general helicity, following the lead of [3] and using the recent

“unwound” formulation of the amplituhedron from [20]. Our algorithm is conceptually

simple: we first enumerate the boundaries of an amplituhedron, and from there, without

resorting to integral representations, we use the Landau equations directly to determine

the locations of branch points of the corresponding amplitude.

One might worry that each of these steps grows rapidly in computational complexity at

higher loop order. Classifying boundaries of amplituhedra is on its own a highly nontrivial

problem, aspects of which have been explored in [38, 46–49]. In that light, the graphical

tools presented in section 5.2, while already useful for organizing results as in figure 2, hint

at the more enticing possibility of a method to enumerate twistor diagrams corresponding

to all L-boundaries of any given An,k,L. Such an algorithm would start with the maximal

codimension twistor diagrams at a given loop order, and apply the operators of section 5.2

in all ways until no further operations are possible. From these twistor diagrams come

Landau diagrams, and from these come the branch points via the Landau equations. We

saw in [3] and section 6 that analyzing the Landau equations can be made very simple in

momentum twistor space.

Configurations of loop momenta in (the closure of) MHV amplituhedra are represented

by non-negative D-matrices. In general, non-MHV configurations must be represented by

indefinite D-matrices, but we observed in section 4.5 that even for non-MHV amplituhe-

dra, D may always be chosen non-negative for all configurations on L-boundaries. This

‘emergent positivity’ plays a crucial role by allowing the one-loop D-matrices presented in

sections 4.2, 4.3 and 4.4 to be trivially recycled at higher values of helicity. One way to

think about this is to say that going beyond MHV level introduces the C-matrix which

“opens up” additional configuration space in which an otherwise indefinite D-matrix can

become positive.

While the one-loop all-helicity results we obtain are interesting in their own right as

first instances of all-helicity statements, this collection of information is valuable because

it provides the building blocks for the two-loop analysis in the sequel. There we will argue
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that the two-loop twistor diagrams with helicity k can be viewed as compositions of two

one-loop diagrams with helicities k1 and k2 satisfying k = k1 + k2 or k1 + k2 + 1. We will

also explore in detail the relation to on-shell diagrams, which are simply Landau diagrams

with decorated nodes.

More speculatively, the ideas that higher-loop amplitudes can be constructed from

lower-loop amplitudes, and that there is a close relation to on-shell diagrams, suggests the

possibility that this toolbox may also be useful for finding symbols in the full, nonplanar

SYM theory. For example, enumerating the on-shell conditions as we do here in the planar

sector is similar in spirit to the nonplanar examples of [50] where certain integral represen-

tations were found such that individual integrals had support on only certain branches.16

There are of course far fewer known results in the nonplanar SYM theory, though there

have been some preliminary studies [52–56].
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1 Introduction

Ever since its conception, the Feynman diagram approach has been the standard paradigm

for perturbative calculations in quantum field theory. While the method can, in principle,

be used at any order in perturbation theory, the calculations get more and more demanding

at each new loop order. Alternately one can seek hidden symmetries and new underlying

principles which motivate new calculational approaches where the most basic features of

Feynman diagrams, such as unitarity and locality, are emergent instead of manifest. Recent

years have seen tremendous success in “reverse engineering” such new symmetries and

principles from properties of scattering amplitudes. This approach has been particularly

fruitful in simple quantum field theories such as the planar maximally supersymmetric

N = 4 super-Yang-Mills (SYM) theory [1].

In particular, it has been realized that the unitarity and locality of the integrands [2] of

loop-level amplitudes in SYM theory can be seen to emerge from a very simple geometric

principle of positivity [3]. Moreover, it has been proposed that all information about

arbitrary integrands in this theory is encapsulated in objects called amplituhedra [4, 5] that
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have received considerable recent attention; see for example [6–13]. Unfortunately, there

remains a huge gap between our understanding of integrands and our understanding of the

corresponding integrated amplitudes. Despite great advances in recent years we of course

don’t have a magic wand that can be waved at a general integrand to “do the integrals”.

Indeed, modern approaches to computing multi-loop amplitudes in SYM theory, such as

the amplitude bootstrap [14, 15] even eschew knowledge of the integrand completely. It

would be enormously valuable to close this gap between our understanding of integrands

and amplitudes.

As a step in that direction, and motivated by [16], we began in [17] to systematically

explore how integrands encode the singularities of integrated amplitudes, in particular

their branch points. Scattering amplitudes in quantum field theory generally have very

complicated discontinuity structure. The discontinuities across branch cuts are given by

sums of unitarity cuts [18–23]. These discontinuities may appear on the physical sheet

or after analytic continuation to other sheets; these higher discontinuities are captured by

multiple unitarity cuts (see for example [24, 25]). A long-standing goal of the S-matrix

program, in both its original and modern incarnations, has been to construct expressions

for the scattering amplitudes of a quantum field theory based solely only on a few physical

principles and a thorough knowledge of their analytic structure.

In [17] we studied the branch cut structure of one- and two-loop MHV amplitudes

in SYM theory starting from certain representations of their integrands in terms of lo-

cal Feynman integrals [26]. We recovered all of their known branch points, but we also

encountered many other, spurious branch points that are artifacts of the particular rep-

resentations used. Indeed, the analysis of [17] was completely insensitive to numerator

factors in the integrand, but the numerators are really where all of the action is — in any

standard quantum field theory the denominator of a loop integrand is a product of local

propagators; the numerator is where all of the magic lies.

Our goal in this paper is to improve greatly on the analysis of [17]. We do this

by presenting a method for asking the amplituhedron to directly provide a list of the

physical branch points of a given amplitude. In the remainder of section 1 we briefly

review the necessary background on momentum twistor notation, the MHV amplituhedron,

and Landau singularities. In section 2 we demonstrate how to refine the analysis of [17]

by scanning through the list of putative branch points found in that paper, and asking

the amplituhedron to identify each one as physical or spurious. This is an ultimately

inefficient approach, but armed with experience from that exercise we turn in section 3

to the development of a general, geometric algorithm for reading off the physical branch

points of MHV amplitudes directly from the amplituhedron.

1.1 Momentum twistors

We begin by reviewing the basics of momentum twistor notation [27], which we use through-

out our calculations. Momentum twistors are based on the correspondence between null

rays in (complexified, compactified) Minkowski space and points in twistor space (P3), or

equivalently, between complex lines in P3 and points in Minkowski space. We use Za, Zb,

etc. to denote points in P3, which may be represented using four-component homogeneous
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coordinates ZIa = (Z1
a , Z

2
a , Z

3
a , Z

4
a) subject to the identification ZIa ∼ tZIa for any non-zero

complex number t. We use (a b) as shorthand for the bitwistor εIJKLZ
K
a Z

L
b . Geometri-

cally, we can think of (a b) as the (oriented) line containing the points Za and Zb. Similarly

we use (a b c) as shorthand for εIJKLZ
J
aZ

K
b Z

L
c , which represents the (oriented) plane con-

taining Za, Zb and Zc. Analogously, (a b c)∩ (d e f) stands for εIJKL(a b c)K(d e f)L, which

represents the line where the two indicated planes intersect. In planar SYM theory we al-

ways focus on color-ordered partial amplitudes so an n-point amplitude is characterized by

a set of n momentum twistors ZIi , i ∈ {1, . . . , n} with a specified cyclic ordering. Thanks

to this implicit cyclic ordering we can use ī as shorthand for the plane (i−1 i i+1), where

indices are always understood to be mod n.

The natural SL(4,C) invariant is the four-bracket denoted by

〈a b c d〉 ≡ εI J K LZ
I
aZ

J
b Z

K
c Z

L
d . (1.1)

We will often be interested in a geometric understanding of the locus where such four-

brackets might vanish, which can be pictured in several ways. For example, 〈a b c d〉 = 0

only if the two lines (a b) and (c d) intersect, or equivalently if the lines (a c) and (b d)

intersect, or if the point a lies in the plane (b c d), or if the point c lies on the plane (a b d),

etc. Computations of four-brackets involving intersections may be simplified via the formula

〈(a b c) ∩ (d e f) g h〉 = 〈a b c g〉〈d e f h〉 − 〈a b c h〉〈d e f g〉 . (1.2)

In case the two planes are specified with one common point, say f = c, it is convenient to

use the shorthand notation

〈(a b c) ∩ (d e c) g h〉 ≡ 〈c (a b)(d e)(g h)〉 (1.3)

which highlights the fact that this quantity is antisymmetric under exchange of any two of

the three lines (a b), (d e), and (g h).

1.2 Positivity and the MHV amplituhedron

In this paper we focus exclusively on MHV amplitudes. The integrand of an L-loop MHV

amplitude is a rational function of the n momentum twistors Zi specifying the kinematics

of the n external particles, as well as of L loop momenta, each of which corresponds to

some line L(`) in P3; ` ∈ {1, . . . , L}. The amplituhedron [4, 5] purports to provide a simple

characterization of the integrand when the ZIi take values in a particular domain called

the positive Grassmannian G+(4, n). In general G+(k, n) may be defined as the set of

k × n matrices for which all ordered maximal minors are positive; that is, 〈ai1 · · · aik〉 > 0

whenever i1 < · · · < ik.

Each line L(`) may be characterized by specifying a pair of points L(`)1 , L(`)2 that it

passes through. We are always interested in n ≥ 4, so the Zi generically provide a basis

for C4. In the MHV amplituhedron a pair of points specifying each L(`) may be expressed

in the Zi basis via an element of G+(2, n) called the D-matrix:

L(`)Iα =
n∑
i=1

D
(`)
αi Z

I
i , α = 1, 2 . (1.4)

For n > 4 the Zi are generically overcomplete, so the map eq. (1.4) is many-to-one.

– 3 –
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The L-loop n-point MHV amplituhedron is a 4L-dimensional subspace of the 2L(n−2)-

dimensional space of L D-matrices. We will not need a precise characterization of that

subspace, but only its grossest feature, which is that it is a subspace of the space of L

mutually positive points in G+(2, n). This means that it lives in the subspace for which

all ordered maximal minors of the matrices

(
D(`)

)
,

(
D(`1)

D(`2)

)
,

D(`1)

D(`2)

D(`3)

 , etc.

are positive.

A key consequence of the positivity of the D-matrices is that, for positive external data

ZIi ∈ G+(4, n), all loop variables L(`) are oriented positively with respect to the external

data and to each other: inside the amplituhedron,

〈L(`) i i+1〉 > 0 for all i and all `, and (1.5)

〈L(`1) L(`2)〉 > 0 for all `1, `2. (1.6)

The boundaries of the amplituhedron coincide with the boundaries of the space of positive

D-matrices, and occur for generic Z when one or more of these quantities approach zero.

It is worth noting that the above definition of positivity depends on the arbitrary choice

of a special point Z1, since for example 〈L 1 2〉 > 0 but the cyclically related quantity 〈Ln 1〉
is negative. The choice of special point is essentially irrelevant: it just means that some

special cases need to be checked. In calculations we can sidestep this subtlety by always

choosing to analyze configurations involving points satisfying 1 ≤ i < j < k < l ≤ n, which

can be done without loss of generality. The geometric properties of figures 2–5 below are

insensitive to the choice and always have full cyclic symmetry.

The integrand of an MHV amplitude is a canonical form dΩ defined by its having

logarithmic singularities only on the boundary of the amplituhedron. The numerator of

dΩ conspires to cancel all singularities that would occur outside this region (see [9] for some

detailed examples). Our analysis will require no detailed knowledge of this form. Instead,

we will appeal to “the amplituhedron” to tell us whether or not any given configuration

of lines L(`) overlaps the amplituhedron or its boundaries by checking whether eqs. (1.5)

and (1.6) are satisfied (possibly with some = instead of >).

1.3 Landau singularities

The goal of this paper is to understand the singularities of (integrated) amplitudes. For

standard Feynman integrals, which are characterized by having only local propagators in

the denominator, it is well-known that the locus in kinematic space where a Feynman

integral can potentially develop a singularity is determined by solving the Landau equa-

tions [20, 28, 29] which we now briefly review.

After Feynman parameterization any L-loop scattering amplitude in D spacetime di-

mensions may be expressed as a linear combination of integrals of the form∫ L∏
r=1

dDlr

∫
αi≥0

dνα δ

(
1−

ν∑
i=1

αi

)
N (lµr , p

µ
i , . . .)

Dν
(1.7)

– 4 –
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where ν is the number of propagators in the diagram, each of which has an associated

Feynman parameter αi, N is some numerator factor which may depend on the L loop

momenta lµr as well as the external momenta pµi , and finally the denominator involves

D =
ν∑
i=1

αi(q
2
i −m2

i ) , (1.8)

where qµi is the momentum flowing along propagator i which carries mass mi. The integral

can be viewed as a multidimensional contour integral in the LD + ν integration variables

(lµr , αi), where the αi contours begin at αi = 0 and the lµr contours are considered closed by

adding a point at infinity. Although the correct contour for a physical scattering process

is dictated by an appropriate iε prescription in the propagators, a complete understanding

of the integral, including its analytic continuation off the physical sheet, requires arbitrary

contours to be considered.

An integral of the above type can develop singularities when the denominator D van-

ishes in such a way that the contour of integration cannot be deformed to avoid the singu-

larity. This can happen in two distinct situations:

(1) The surface D = 0 can pinch the contour simultaneously in all integration variables

(lµr , αi). This is called the “leading Landau singularity”, though it is important to

keep in mind that it is only a potential singularity. The integral may have a branch

point instead of a singularity, or it may be a completely regular point, depending on

the behavior of the numerator factor N .

(2) The denominator may vanish on the boundary when one or more of the αi = 0 and

pinch the contour in the other integration variables. These are called subleading

Landau singularities.

The Landau conditions encapsulating both possible situations are∑
i∈loop

αiq
µ
i = 0 for each loop, and (1.9)

αi(q
2
i −m2

i ) = 0 for each i. (1.10)

For leading singularities eq. (1.10) is satisfied by q2i −m2
i = 0 for each i, while subleading

singularities have one or more i for which q2i −m2
i 6= 0 but the corresponding αi = 0. We

will always refer to equations of type q2i −m2
i as “cut conditions” since they correspond to

putting some internal propagators on-shell. It is important to emphasize that the Landau

equations themselves have no knowledge of the numerator factor N , which can alter the

structure of a singularity or even cancel a singularity entirely.

Sometimes (i.e., for some diagram topologies), the Landau equations (1.9) and (1.10)

may admit solutions for arbitrary external kinematics pµi . This usually indicates an infrared

divergence in the integral (we will not encounter ultraviolet divergences in SYM theory),

which may or may not be visible by integration along the physical contour.

In other cases, solutions to the Landau equations might exist only when the pµi lie

on some subspace of the external kinematic space. MHV amplitudes in SYM theory are

– 5 –
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expected to have only branch point type singularities (after properly normalizing them by

dividing out a tree-level Parke-Taylor [30] factor), so for these amplitudes we are partic-

ularly interested in solutions which exist only on codimension-one slices of the external

kinematic space. Even when the pµi live on a slice where solutions of the Landau equations

exist, the solutions generally occur for values of the integration variables αi and lµr that are

off the physical contour (for example, the αi could be complex). This indicates a branch

point of the integral that is not present on the physical sheet but only becomes apparent

after suitable analytic continuation away from the physical contour.

Finally let us note that we have ignored a class of branch points called “second-type

singularities” [28, 31, 32] which arise from pinch singularities at infinite loop momentum.

As argued in [17], these should be absent in planar SYM theory when one uses a regulator

that preserves dual conformal symmetry.

2 Eliminating spurious singularities of MHV amplitudes

In principle one can write explicit formulas for any desired integrand in planar SYM theory

by triangulating the interior of the amplituhedron and constructing the canonical form

dΩ with logarithmic singularities on its boundary. However, general triangulations may

produce arbitrarily complicated representations for dΩ. In particular, these may have no

semblance to standard Feynman integrals with only local propagators in the denominator

(see [6] for some explicit examples). It is therefore not immediately clear that the Landau

equations have any relevance to the amplituhedron. The connection will become clear in

the following section; here we begin by revisiting the analysis of [17] with the amplituhedron

as a guide.

In [17] we analyzed the potential Landau singularities of one- and two-loop MHV am-

plitudes by relying on the crutch of representations of these amplitudes in terms of one- and

two-loop chiral pentagon and double-pentagon integrals [26]. The solutions to the various

sets of Landau equations for these integral topologies represent potential singularities of the

amplitudes, but this set of potential singularities is too large for two reasons. First of all,

the chiral integrals are dressed with very particular numerator factors to which the Landau

equations are completely insensitive. Scalar pentagon and double pentagon integrals cer-

tainly have singularities that are eliminated by the numerator factors of their chiral cousins.

Second, some actual singularities of individual chiral integrals may be spurious in the full

amplitude due to cancellations when all of the contributing chiral integrals are summed.

It is a priori highly non-trivial to see which singularities of individual integrals survive

the summation to remain singularities of the full amplitude. However, the amplituhedron

hypothesis provides a quick way to detect spurious singularities from simple considerations

of positive geometry. In this section we refine our analysis of [17] to determine which

potential singularities identified in that paper are actual singularities by appealing to the

amplituhedron as an oracle to tell us which cuts of the amplitude have zero or non-zero

support on the (boundary of the) amplituhedron.

Specifically, we propose a check that is motivated by the Cutkosky rules [21], which tell

us that to compute the cut of an amplitude with respect to some set of cut conditions, one

– 6 –
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(a) (b) (c)

Figure 1. Three examples of cuts on which MHV amplitudes have no support; these appeared

as spurious singularities in the Landau equation analysis of [17] since scalar pentagon and double

pentagon integrals do have these cuts.

replaces the on-shell propagators in the integrand corresponding to those cut conditions by

delta-functions, and integrates the resulting quantity over the loop momenta. The result of

such a calculation has a chance to be non-zero only if the locus where the cut conditions are

all satisfied has non-trivial overlap with the domain of integration of the loop momentum

variables. In the present context, that domain is the space of mutually positive lines, i.e.,

the interior of the amplituhedron. This principle will lead to a fundamental asymmetry

between the two types of Landau equations in our analysis. The full set of Landau equations

including both eqs. (1.9) and (1.10) should be solvable only on a codimension-one locus in

the space of external momenta in order to obtain a valid branch point. However, guided

by Cutkosky, we claim that the cut conditions (1.10) must be solvable inside the positive

domain for arbitrary (positive) external kinematics; otherwise the discontinuity around the

putative branch point is zero and we should discard it as spurious.

In the remainder of this section we will demonstrate this hypothesis by means of the

examples shown in figure 1. The leading Landau singularities of each of these diagrams were

found to be singularities of the scalar pentagon and double-pentagon integrals analyzed

in [17], but it is clear that MHV amplitudes have no support on these cut configurations.

In the next three subsections we will see how to understand their spuriousness directly

from the amplituhedron. This will motivate us to seek a better, more direct algorithm to

be presented in the following section.

2.1 The spurious pentagon singularity

The first spurious singularity of MHV amplitudes arising from the integral representation

used in [17] is the leading Landau singularity of the pentagon shown in figure 1a, which is

located on the locus where

〈i j k k+1〉〈̄i ∩ j̄ k k+1〉 = 0 . (2.1)

It was noted already in [21] that this solution of the Landau equations does not correspond

to a branch point of the pentagon integral. It arises from cut conditions that put all five

– 7 –
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propagators of the pentagon on-shell:

0 = 〈L i−1 i〉 = 〈L i i+1〉 = 〈L j−1 j〉 = 〈L j j+1〉 = 〈L k k+1〉 , (2.2)

where L is the loop momentum. The first four of these cut conditions admit two discrete

solutions [26]: either L = (i j) or L = ī∩ j̄. The second of these cannot avoid lying outside

the amplituhedron. We see this by representing its D-matrix as

D =

( i−1 i i+1

〈i j̄〉 −〈i−1 j̄〉 0

0 〈i+1 j̄〉 −〈i j̄〉

)
, (2.3)

where we indicate only the nonzero columns of the 2 × n matrix in positions i−1, i and

i+1, per the labels above the matrix. The non-zero 2 × 2 minors of this matrix,

〈i j̄〉〈i+1 j̄〉, 〈i−1 j̄〉〈i j̄〉, −〈i j̄〉2 (2.4)

have indefinite signs for general positive external kinematics, so this L lies discretely outside

the amplituhedron.

We proceed with the first solution L = (i j) which can be represented by the trivial

D-matrix

D =

( i j

1 0

0 1

)
. (2.5)

Although this is trivially positive, upon substituting L = (i j) into eq. (2.2) we find that

the fifth cut condition can only be satisfied for special kinematics satisfying

〈i j k k+1〉 = 0 . (2.6)

Therefore, according to the Cutkosky-inspired rule discussed three paragraphs ago, the

monodromy around this putative singularity vanishes for general kinematics and hence it

is not a valid branch point at one loop. Indeed this conclusion is easily verified by looking

at the explicit results of [33].

2.2 The spurious three-mass box singularity

The second spurious one-loop singularity encountered in [17] is a subleading singularity of

the pentagon which lives on the locus

〈j (j−1 j+1)(i i+1)(k k+1)〉 = 0 (2.7)

and arises from the cut conditions shown in figure 1b:

0 = 〈L i i+1〉 = 〈L j−1 j〉 = 〈L j j+1〉 = 〈L k k+1〉 . (2.8)

These are of three-mass box type and have the two solutions [4]

L = (j i i+1) ∩ (j k k+1) or L = (j̄ ∩ (i i+1), j̄ ∩ (k k+1)). (2.9)

– 8 –
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The two solutions may be represented respectively by the D-matrices

D =

( i i+1 j

0 0 1

〈i+1 j k k+1〉 −〈i j k k+1〉 0

)
(2.10)

and

D =

( i i+1 k k+1

〈i+1 j̄〉 −〈i j̄〉 0 0

0 0 −〈j̄ k + 1〉 〈j̄ k〉

)
. (2.11)

Neither matrix is non-negative definite when the Z’s are in the positive domain G+(4, n),

so we again reach the (correct) conclusion that one-loop MHV amplitudes do not have

singularities on the locus where eq. (2.7) is satisfied (for generic i, j and k).

2.3 A two-loop example

The two-loop scalar double-pentagon integral considered in [17] has a large number of

Landau singularities that are spurious singularities of two-loop MHV amplitudes. It would

be cumbersome to start with the full list and eliminate the spurious singularities one at a

time using the amplituhedron. Here we will be content to consider one example in detail

before abandoning this approach in favor of one more directly built on the amplituhedron.

We consider the Landau singularities shown in eq. (4.12) of [17] which live on the locus

〈j (j−1 j+1)(i−1 i) (k l)〉〈j (j−1 j+1)(i−1 i) k̄ ∩ l̄〉 = 0 . (2.12)

We consider the generic case when the indices i, j, k, l are well-separated; certain degenerate

cases do correspond to non-spurious singularities. This singularity is of pentagon-box type

shown in figure 1c since it was found in [17] to arise from the eight cut conditions

〈L(1) i−1 i〉 = 〈L(1) j−1 j〉 = 〈L(1) j j+1〉 = 〈L(1) L(2〉 = 0 ,

〈L(2) k−1 k〉 = 〈L(2) k k+1〉 = 〈L(2) l−1 l〉 = 〈L(2) l l+1〉 = 0 .
(2.13)

The last four equations have two solutions L(2) = (k l) or L(2) = k̄∩ l̄, but as in the previous

subsection, only the first of these has a chance to avoid being outside the amplituhedron.

Taking L(2) = (k l), the two solutions to the first four cut conditions are then

L(1) = (j i−1 i) ∩ (j k l) = (Zj , Zi−1〈i j k l〉 − Zi〈i−1 j k l〉) or (2.14)

L(1) =
(

(i−1 i) ∩ j̄, (k l) ∩ j̄
)

=
(
Zi−1〈i j̄〉 − Zi〈i−1 j̄〉, Zk〈lj̄〉 − Zl〈k j̄〉

)
. (2.15)

The D-matrices corresponding to the first solution can be taken as

(
D(1)

D(2)

)
=


i−1 i j k l

0 0 1 0 0

〈i j k l〉 −〈i−1 j k l〉 0 0 0

0 0 0 1 0

0 0 0 0 1

 . (2.16)
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Evidently two of its 4 × 4 minors are −〈i j k l〉 and 〈i−1 j k l〉, which have opposite signs

for generic Z in the positive domain. D-matrices corresponding to the second solution can

be written as

(
D(1)

D(2)

)
=


i−1 i k l

〈i j̄〉 −〈i−1 j̄〉 0 0

0 0 〈lj̄〉 −〈k j̄〉
0 0 1 0

0 0 0 1

 , (2.17)

which again has minors of opposite signs.

We conclude that the locus where the cut conditions (2.13) are satisfied lies strictly

outside the amplituhedron, and therefore that there is no discontinuity around the putative

branch point at (2.12). Indeed, this is manifested by the known fact [34] that two-loop MHV

amplitudes do not have symbol entries which vanish on this locus. Actually, while correct,

we were slightly too hasty in reaching this conclusion, since we only analyzed one set of

cut conditions. Although it doesn’t happen in this example, in general there may exist

several different collections of cut conditions associated to the same Landau singularity,

and the discontinuity around that singularity would receive additive contributions from

each distinct set of associated cut contributions.

2.4 Summary

We have shown, via a slight refinement of the analysis carried out in [17], that the spurious

branch points of one- and two-loop MHV amplitudes encountered in that paper can be

eliminated simply on the basis of positivity constraints in the amplituhedron. It is simple

to see that the cuts considered above have no support for MHV amplitudes so it may

seem like overkill to use the fancy language of the amplituhedron. However we wanted to

highlight the following approach:

(1) First, consider a representation of an amplitude as a sum over a particular type of

Feynman integrals. Find the Landau singularities of a generic term in the sum. These

tell us the loci in Z-space where the amplitude may have a singularity.

(2) For each potential singularity obtained in (1), check whether the corresponding on-

shell conditions have a non-zero intersection with the (closure of) the amplituhedron.

If the answer is no, for all possible sets of cut conditions associated with a given

Landau singularity, then the singularity must be spurious.

This approach is conceptually straightforward but inefficient. One manifestation of this

inefficiency is that although double pentagon integrals are characterized by four free indices

i, j, k, l, we will see in the next section the vast majority of the resulting potential singular-

ities are spurious. Specifically we will see that in order for the solution to a given set of cut

conditions to have support inside the (closure of the) amplituhedron, the conditions must

be relaxed in such a way that they involve only three free indices. In other words, most of

the O(n4) singularities of individual double pentagon integrals must necessarily cancel out

when they are summed, leaving only O(n3) physical singularities of the full two-loop MHV
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amplitudes. (The fact that these amplitudes have only O(n3) singularities is manifest in

the result of [34].) This motivates us to seek a more “amplituhedrony” approach to find-

ing singularities where we do not start by considering any particular representation of the

amplitude, but instead start by thinking directly about positive configurations of loops L(`).

3 An amplituhedrony approach

The most significant drawback of the approach taken in the previous section is that it relies

on having explicit representations of an integrand in terms of local Feynman integrals.

These have been constructed for all two-loop amplitudes in SYM theory [35], but at higher

loop order even finding such representations becomes a huge computational challenge that

we would like to be able to bypass. Also, as the loop order increases, the number of potential

Landau singularities grows rapidly, and the vast majority of these potential singularities

will fail the positivity analysis and hence turn out to be spurious. We would rather not

have to sift through all of this chaff to find the wheat.

Let’s begin by taking a step back to appreciate that the only reason we needed the

crutch of local Feynman integrals in the previous section is that each Feynman diagram

topology provides a set of propagators for which we can solve the associated Landau equa-

tions (1.9) and (1.10) to find potential singularities. Then, for each set of cut conditions,

we can determine whether the associated Landau singularity is physical or spurious by

asking the amplituhedron whether or not the set of loops L(`) satisfying the cut conditions

has any overlap with the amplituhedron.

In this section we propose a more “amplituhedrony” approach that does not rely on

detailed knowledge of integrands. We invert the logic of the previous section: instead of

using Feynman diagrams to generate sets of cut conditions that we need to check one by

one, we can ask the amplituhedron itself to directly identify all potentially “valid” sets of

cut conditions that are possibly relevant to the singularities of an amplitude.

To phrase the problem more abstractly: for a planar n-particle amplitude at L-loop

order, there are in general nL+L(L−1)/2 possible local cut conditions one can write down:

〈L(`) i i+1〉 = 0 for all `, i and 〈L(`1) L(`2)〉 = 0 for all `1 6= `2. (3.1)

We simply need to characterize which subsets of these cut conditions can possibly be simul-

taneously satisfied for loop momenta L(`) living in the closure of the amplituhedron. Each

such set of cut conditions is a subset of one or more maximal subsets, and these maximal

subsets are just the maximal codimension boundaries of the amplituhedron.

Fortunately, the maximal codimension boundaries of the MHV amplituhedron are

particularly simple, as explained in [5]. Each loop momentum L(`) must take the form (i j)

for some i and j (that can be different for different `), and the condition of mutual positivity

enforces an emergent planarity: if all of the lines L(`) are drawn as chords on a disk between

points on the boundary labeled 1, 2, . . . , n, then positivity forbids any two lines to cross in

the interior of the disk. In what follows we follow a somewhat low-brow analysis in which

we systematically consider relaxations away from the maximum codimension boundaries,
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(a) (b)

Figure 2. (a) A maximum codimension boundary of the one-loop MHV amplituhedron. The

circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1) connecting the n cycli-

cally ordered external kinematic points Zi ∈ G+(4, n) and the red line shows the loop momentum

L = (i j). (b) The corresponding Landau diagram, which is a graphical depiction of the four cut

conditions (3.3) that are satisfied on this boundary.

but the procedure can be streamlined by better harnessing this emergent planarity, which

certainly pays off at higher loop order [36].

In the next few subsections we demonstrate this “amplituhedrony” approach explicitly

at one and two loops before summarizing the main idea at the end of the section.

3.1 One-loop MHV amplitudes

The maximum codimension boundaries of the one-loop MHV amplituhedron occur when

L = (i j) , (3.2)

as depicted in figure 2a. On this boundary four cut conditions of “two-mass easy” type [33]

are manifestly satisfied:

〈L i−1 i〉 = 〈L i i+1〉 = 〈L j−1 j〉 = 〈L j j+1〉 = 0 , (3.3)

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider i and

j to be well separated so there are no accidental degenerations.) The Landau analysis of

eq. (3.3) has been performed long ago [20, 28] and reviewed in the language of momentum

twistors in [17]. A leading solution to the Landau equations exists only if

〈i j̄〉〈̄i j〉 = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell con-

ditions. This leads to cuts of two-mass triangle type, which are uninteresting (they exist

for generic kinematics, so don’t correspond to branch points of the amplitude). At sub-

subleading order we reach cuts of bubble type. For example if we relax the second and

fourth condition in eq. (3.3) then we encounter a Landau singularity which lives on the locus

〈i−1 i j−1 j〉 = 0 . (3.5)
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(a) (b)

Figure 3. (a) A maximum codimension boundary of the two-loop MHV amplituhedron. (b) The

corresponding Landau diagram (which, it should be noted, does not have the form of a standard

Feynman integral) depicting the nine cut conditions (3.7)–(3.9) that are satisfied on this boundary.

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i→ i+1 and/or j → j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop MHV

amplitudes occur on loci of the form

〈a b̄〉 = 0 or 〈a a+1 b b+1〉 = 0 (3.6)

for various a, b. (Note that whenever we say there is a branch point at x = 0, we mean

more specifically that there is a branch cut between x = 0 and x = ∞.) Indeed, these

exhaust the branch points of the one-loop MHV amplitudes (first computed in [33]) except

for branch points arising as a consequence of infrared regularization, which are captured

by the BDS ansatz [37].

3.2 Two-loop MHV amplitudes: configurations of positive lines

We divide the two-loop analysis into two steps. First, in this subsection, we classify valid

configurations of mutually non-negative lines. This provides a list of the sets of cut condi-

tions on which two-loop MHV amplitudes have nonvanishing support. Then in the following

subsection we solve the Landau equations for each set of cut conditions, to find the actual

location of the corresponding branch point.

At two loops the MHV amplituhedron has two distinct kinds of maximum codimension

boundaries [5]. The first type has L(1) = (i j) and L(2) = (k l) for distinct cyclically ordered

i, j, k, l. Since 〈L(1) L(2)〉 is non-vanishing (inside the positive domain G+(4, n)) in this

case, this boundary can be thought of as corresponding to a cut of a product of one-loop

Feynman integrals, with no common propagator 〈L(1) L(2)〉. Therefore we will not learn

anything about two-loop singularities beyond what is already apparent at one loop.

The more interesting type of maximum codimension boundary has L(1) = (i j) and

L(2) = (i k), as depicted in figure 3a. Without loss of generality i < j < k, and for

now we will moreover assume that i, j and k are well-separated to avoid any potential

degenerations. (These can be relaxed at the end of the analysis, in particular to see that
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the degenerate case j = k gives nothing interesting.) On this boundary the following nine

cut conditions shown in the Landau diagram of figure 3b are simultaneously satisfied:

〈L(1) i−1 i〉 = 〈L(1) i i+1〉 = 〈L(2) i−1 i〉 = 〈L(2) i i+1〉 = 0 , (3.7)

〈L(1) j−1 j〉 = 〈L(1) j j+1〉 = 〈L(2) k−1 k〉 = 〈L(2) k k+1〉 = 0 , (3.8)

〈L(1) L(2)〉 = 0 . (3.9)

This is the maximal set of cuts that can be simultaneously satisfied while keeping the L(`)’s
inside the closure of the amplituhedron for generic Z ∈ G+(4, n). We immediately note that

since only three free indices i, j, k are involved, this set of cuts manifestly has size O(n3),

representing immediate savings compared to the larger O(n4) set of double-pentagon cut

conditions as discussed at the end of the previous section.

We can generate other, smaller sets of cut conditions by relaxing some of the nine shown

in eqs. (3.7)–(3.9). This corresponds to looking at subleading singularities, in the language

of the Landau equations. However, it is not interesting to consider relaxations that lead

to 〈L(1) L(2)〉 6= 0 because, as mentioned above, it essentially factorizes the problem into

a product of one-loop cuts. Therefore in what follows we only consider cuts on which

〈L(1) L(2)〉 = 0.

By relaxing various subsets of the other 8 conditions we can generate 28 subsets of cut

conditions. In principle each subset should be analyzed separately, but there is clearly a

natural stratification of relaxations which we can exploit to approach the problem system-

atically. In fact, we will see that the four cut conditions in eq. (3.7) that involve the point i

play a special role. Specifically, we will see that the four cut conditions in eq. (3.8) involv-

ing j and k can always be relaxed, or un-relaxed, “for free”, with no impact on positivity.

Therefore, we see that whether a configuration of loops may be positive or not depends

only on which subset of the four cut conditions (3.7) is relaxed.

In this subsection we will classify the subsets of eq. (3.7) that lead to valid configu-

rations of positive lines L(`), and in the next subsection we will find the locations of the

corresponding Landau singularities.

Relaxing none of eq. (3.7) [figure 3a]. At maximum codimension we begin with the

obviously valid pair of mutually non-negative lines represented trivially by

(
D(1)

D(2)

)
=


i j k

1 0 0

0 1 0

1 0 0

0 0 1

 . (3.10)

Relaxing any one of eq. (3.7). The four cases are identical up to relabeling so we

consider relaxing the condition 〈L(2) i i+1〉 = 0, shown in figure 4a. In this case the

remaining seven cut conditions on the first two lines of eqs. (3.7) and (3.8) admit the

one-parameter family of solutions

L(1) = (i j), L(2) = (Zk, αZi−1 + (1− α)Zi) . (3.11)
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(a)

〈L(2) i i+1〉 6= 0

(b)

〈L(2) i i+1〉, 〈L(1) i−1 i〉 6= 0

(c)

〈L(1) i i+1〉, 〈L(2) i−1 i〉 6= 0

Figure 4. Three different invalid relaxations of the maximal codimension boundary shown in

figure 3.

We recall that the parity conjugate solutions having L(1) = ī ∩ j̄ lie discretely outside the

amplituhedron as seen in eq. (2.3). The corresponding D-matrices

(
D(1)

D(2)

)
=


i− 1 i j k

0 1 0 0

0 0 1 0

α 1− α 0 0

0 0 0 1

 (3.12)

are mutually non-negative for 0 ≤ α ≤ 1. It remains to impose the final cut condition that

L(1) and L(2) intersect:

〈L(1)L(2)〉 = α〈i−1 i j k〉 = 0 . (3.13)

For general positive external kinematics this will only be satisfied when α = 0, which brings

us back to the maximum codimension boundary. We conclude that the loop configurations

of this type do not generate branch points.

Relaxing 〈L(1) i−1 i〉 = 0 and 〈L(2) i i+1〉 = 0 [figure 4b]. In this case the six

remaining cut conditions in eqs. (3.7) and (3.8) admit the two-parameter family of solutions

L(1) = (αZi + (1− α)Zi+1, Zj), L(2) = (βZi + (1− β)Zi−1, Zk) . (3.14)

The corresponding D-matrices

(
D(1)

D(2)

)
=


i− 1 i i+ 1 j k

0 α 1− α 0 0

0 0 0 1 0

1− β β 0 0 0

0 0 0 0 1

 (3.15)
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(a)

〈L(2) i i+1〉, 〈L(1) i i+1〉 6= 0

(b)

〈L(2) i−1 i〉, 〈L(2) i i+1〉 6= 0

Figure 5. Two valid double relaxations of figure 3. The other two possibilities are obtained by

taking i→ i+1 in (a) or L(2) → L(1) and j ↔ k in (b).

are mutually non-negative if 0 ≤ α, β ≤ 1. Imposing that the two loops intersect gives the

constraint

〈L(1)L(2)〉 = α(1−β)〈i−1 i j k〉+(1−α)β〈i i+1 j k〉+(1−α)(1−β)〈i−1 i+1 j k〉 = 0 , (3.16)

which is not satisfied for general positive kinematics unless α = β = 1, which again brings

us back to the maximum codimension boundary.

Relaxing the two conditions 〈L(1) i i+1〉 = 〈L(2) i i−1〉 = 0, depicted in figure 4c, is

easily seen to lead to the same conclusion.

Relaxing 〈L(1) i i+1〉 = 0 and 〈L(2) i i+1〉 = 0 [figure 5a]. In this case there is a

one-parameter family of solutions satisfying all seven remaining cut conditions including

〈L(1) L(2)〉 = 0:

L(1) = (αZi + (1− α)Zi+1, Zj), L(2) = (αZi + (1− α)Zi+1, Zk) . (3.17)

The D-matrices can be represented as

(
D(1)

D(2)

)
=


i i+1 j k

α 1− α 0 0

0 0 1 0

α 1− α 0 0

0 0 0 1

 , (3.18)

which is a valid mutually non-negative configuration for 0 ≤ α ≤ 1. We conclude that

these configurations represent physical branch points of two-loop MHV amplitudes by

appealing to Cutkoskian intuition, according to which we would compute the discontinuity

of the amplitude around this branch point by integrating over 0 ≤ α ≤ 1 (in figure 5a

this corresponds to integrating the intersection point of the two L’s over the line segment

between Zi−1 and Zi).

Relaxing the two conditions 〈L(1) i i−1〉 = 〈L(2) i i−1〉 = 0 is clearly equivalent up to

relabeling.
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Relaxing 〈L(2) i−1 i〉 = 0 and 〈L(2) i i+1〉 = 0 [figure 5b]. The seven remaining

cut conditions admit a one-parameter family of solutions

L(1) = (i j), L(2) = (αZi + (1− α)Zj , Zk) , (3.19)

which can be represented by

(
D(1)

D(2)

)
=


i j k

1 0 0

0 1 0

α 1− α 0

0 0 1

 . (3.20)

This is a valid configuration of mutually non-negative lines for 0 ≤ α ≤ 1 so we expect it

to correspond to a physical branch point. Clearly the same conclusion holds if we were to

completely relax L(1) at i instead of L(2).

Higher relaxations of eq. (3.7). So far we have considered the relaxation of any one

or any two of the conditions shown in eq. (3.7). We have found that single relaxations do

not yield branch points of the amplitude, and that four of the six double relaxations are

valid while the two double relaxations shown in figures 4b and 4c are invalid.

What about triple relaxations? These can be checked by explicit construction of the

relevant D-matrices, but it is also easy to see graphically that any triple relaxation is valid

because they can all be reached by relaxing one of the valid double relaxations. For example,

the triple relaxation where we relax all of eq. (3.7) except 〈L(1) i−1 i〉 = 0 can be realized

by rotating L(2) in figure 5a clockwise around the point k so that it continues to intersect

L(1). As a second example, the triple relaxation where we relax all but 〈L(2) i−1 i〉 = 0

can be realized by rotating L(1) in figure 5a counter-clockwise around the point j so that

it continues to intersect L(2).
Finally we turn to the case when all four cut conditions in eq. (3.7) are relaxed. These

relaxed cut conditions admit two branches of solutions, represented by D-matrices of the

form

(
D(1)

D(2)

)
=


j j + 1 · · · k − 1 k

1 0 · · · 0 0

αj αj+1 · · · αk−1 αk
αj αj+1 · · · αk−1 αk
0 0 · · · 0 1

 (3.21)

or a similar form with α parameters wrapping the other way around from k to j:

(
D(1)

D(2)

)
=


· · · j−1 j k k+1 · · ·
· · · αj−1 αj −αk −αk+1 · · ·
· · · 0 1 0 0 · · ·
· · · αj−1 αj −αk −αk+1 · · ·
· · · 0 0 1 0 · · ·

 . (3.22)

Both of these parameterize valid configuration of mutually non-negative lines as long as all

of the α’s are positive.
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Relaxing L(1) at j and/or L(2) at k. All of the configurations we have considered so

far keep the four propagators in eq. (3.8) on shell. However it is easy to see that none of

these conditions have any bearing on positivity one way or the other. For example, there is

no way to render the configuration shown in figure 4b positive by moving L(1) away from

the vertex j while maintaining all of the other cut conditions. On the other hand, there is

no way to spoil the positivity of the configuration shown in figure 5b by moving L(2) away

from the vertex k while maintaining all other cut conditions.

Summary. We call a set of cut conditions “valid” if the m ≥ 0-dimensional locus in

L-space where the conditions are simultaneously satisfied has non-trivial m-dimensional

overlap with the closure of the amplituhedron. (The examples shown in figures 5a and 5b

both have m = 1, but further relaxations would have higher-dimensional solution spaces.)

As mentioned above, this criterion is motivated by Cutkoskian intuition that the discon-

tinuity of the amplitude would be computed by an integral over the intersection of this

locus with the (closure of the) amplituhedron. If this intersection is empty (or lives on a

subspace that is less than m-dimensional) then such an integral would vanish, signalling

that the putative singularity is actually spurious.

The nine cut conditions shown in eqs. (3.7)–(3.9) are solved by the configuration of

lines shown in figure 3a that is a zero-dimensional boundary of the amplituhedron. We have

systematically investigated relaxing various subsets of these conditions (with the exception

of eq. (3.9), to stay within the realm of genuine two-loop singularities) to determine which

relaxations are “valid” in the sense just described.

Conclusion. The most general valid relaxation of the configuration shown in figure 3a is

either an arbitrary relaxation at the points j and k, or an arbitrary relaxation of figure 5a

(or the same with i 7→ i+1), or an arbitrary relaxation of figure 5b (or the same with

j ↔ k). The configurations shown in figure 4, and further relaxations thereof that are not

relaxations of those shown in figure 5, are invalid.

3.3 Two-loop MHV amplitudes: Landau singularities

In the previous subsection we asked the amplituhedron directly to tell us which possible sets

of cut conditions are valid for two-loop MHV amplitudes, rather than starting from some

integral representation and using the amplituhedron to laboriously sift through the many

spurious singularities. We can draw Landau diagrams for each valid relaxation to serve as

a graphical indicator of the cut conditions that are satisfied. The Landau diagram with

nine propagators corresponding to the nine cut conditions satisfied by figure 3a was already

displayed in figure 3b. The configurations shown in figures 5a and 5b satisfy the seven cut

conditions corresponding to the seven propagators in figures 6a and 6b, respectively. We

are now ready to determine the locations of the branch points associated to these valid cut

configurations (and their relaxations) by solving the Landau equations.

The following calculations follow very closely those done in [17]. Note that throughout

this section, in solving cut conditions we will always ignore branches of solutions (for

example those of the type L = ī ∩ j̄) which cannot satisfy positivity.
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(a) (b)

Figure 6. The Landau diagrams showing the seven cut conditions satisfied by figures 5a and 5b,

respectively.

The double-box. For the double-box shown in figure 6a let us use A ∈ P3 to denote

the point on the line (i−1, i) where the two loop lines L(`) intersect. These can then be

parameterized as L(1) = (A,Zj) and L(2) = (A,Zk). The quickest way to find the location

of the leading Landau singularity is to impose eq. (1.9) for each of the two loops. These

are both of two-mass easy type, so we find that the Landau singularity lives on the locus

(see [17])

〈i−1 i j k〉〈A j̄〉 = 〈i−1 i j k〉〈A k̄〉 = 0 . (3.23)

These can be solved in two ways; either by

〈i−1 i j k〉 = 0 (3.24)

or by solving the first condition for A = j̄ ∩ (i−1 i) and substituting this into the second

condition to find

〈i−1 i j̄ ∩ k̄〉 = 0 . (3.25)

The astute reader may recall that in (2.6) we discarded a singularity of the same

type as in eq. (3.24). This example highlights that it is crucial to appreciate the essential

asymmetry between the roles of the two types of Landau equations. The on-shell condi-

tions (1.9) by themselves only provide information about discontinuities. We discarded

eq. (2.6) because the solution has support on a set of measure zero inside the closure of the

amplituhedron, signalling that there is no discontinuity around the branch cut associated

to the cut conditions shown in eq. (2.1). Therefore we never needed to inquire as to the

actual location where the corresponding branch point might have been. To learn about the

location of a branch point we have to solve also the second type of Landau equations (1.10).

Indeed (3.24) does correspond to a branch point that lies outside the positive domain, but

we don’t discard it because the discontinuity of the amplitude around this branch point is

nonzero. As mentioned above, according to the Cutkosky rules it would be computed by

an integral over the line segment between Zi−1 and Zi in figure 5a. When branch points

lie outside G+(4, n), as in this case, it signals a discontinuity that does not exist on the

physical sheet but on some other sheet; see the comments near the end of section 1.
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Additional (subk-leading, for various k) Landau singularities are exposed by setting

various sets of α’s to zero in the Landau equations and relaxing the associated cut condi-

tions. Although these precise configurations were not analyzed in [17], the results of that

paper, together with some very useful tricks reviewed in appendix A, are easily used to

reveal branch points at the loci

〈j(j−1, j+1)(k, k±1)(i−1, i)〉 = 0 (3.26)

together with the same for j ↔ k, as well as 〈a a+1 b b+1〉 = 0 for a, b drawn from the set

{i−1, j−1, j, k−1, k}.

The pentagon-triangle. With the help of appendix A and the results of [17] it is easily

seen that the leading singularity of the pentagon-triangle shown in figure 6b is located on

the locus where

〈ij̄〉〈̄ij〉 = 0 . (3.27)

The computation of additional singularities essentially reduces to the same calculation for a

three-mass pentagon, which was carried out in [17]. Altogether we find that branch points

live on the loci

〈i j k−1 k〉 = 0 ,

〈i(i−1 i+1)(j−1 j)(k−1 k)〉 = 0 ,

〈i(i−1 i+1)(j j+1)(k−1 k)〉 = 0 ,

〈j(j−1 j+1)(i−1 i)(k−1 k)〉 = 0 ,

〈j(j−1 j+1)(i i+1)(k−1 k)〉 = 0 ,

〈i i±1 j k〉 = 0 ,

〈i j j±1 k〉 = 0 ,

(3.28)

together with the same collection with (k−1 k)→ (k k+1), as well as all 〈a a+1 b b+1〉 = 0

for a, b drawn from the set {i−1, i, j−1, j, k−1, k}.

The maximum codimension boundaries. We left this case for last because it is

somewhat more subtle. It is known that the final entries of the symbols of MHV amplitudes

always have the form 〈a b̄〉 [34]. We expect the leading Landau singularity of the maximum

codimension boundary to expose branch points at the vanishing loci of these final entries.

However, if we naively solve the Landau equations for the diagram shown in 3b, we

run into a puzzle. The first type of Landau equations (1.9) correspond to the nine cut

conditions (3.7)–(3.9), which of course are satisfied by L(1) = (i j) and L(2) = (i k). The

second type of Landau equations (1.10) does not impose any constraints for pentagons

because it is always possible to find a vanishing linear combination of the five participating

four-vectors. This naive Landau analysis therefore suggests that there is no leading branch

point associated to the maximum codimension boundary.

This analysis is questionable because, as already noted above, the Landau diagram

associated to the maximal codimension boundary, shown in figure 2b, does not have the

form of a valid Feynman diagram. Therefore it makes little sense to trust the associated
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(a) (b)

Figure 7. Landau diagrams corresponding to all of the cut conditions (3.7)–(3.9) except for

(a) 〈L(1) i−1 i〉 = 0, and (b) 〈L(2) i i+1〉 = 0. These are the only two cut conditions that are

redundant (each is implied by the other eight, for generic kinematics) and, when omitted, lead to

Landau diagrams that have the form of a standard Feynman integral. (In both figures L(1) is the

momentum in the right loop and L(2) is the momentum in the left loop.)

Landau analysis. Instead let us note that the nine cut conditions (3.7)–(3.9) are not

independent; indeed they cannot be as there are only eight degrees of freedom in the loop

momenta.

We are therefore motivated to identify which of the nine cut conditions (1) is redundant,

in the sense that it is implied by the other eight for generic external kinematics, and (2)

has the property that when omitted, the Landau diagram for the remaining eight takes the

form of a valid planar Feynman diagram. None of the conditions involving j and k shown in

eq. (3.8) are redundant; all of them must be imposed to stay on the maximum codimension

boundary. The remaining five conditions in eqs. (3.7) and (3.9) are redundant for general

kinematics, but only two of them satisfy the second property. The corresponding Landau

diagrams are shown in figure 7. Being valid planar Feynman diagrams, the integrand

definitely receives contributions with these topologies (unlike figure 2b), and will exhibit

the associated Landau singularities.

It remains to compute the location of the leading Landau singularities for these dia-

grams. For figure 7a the on-shell conditions for the pentagon set L(2) = (i k) while the

Kirkhoff condition for the box is

0 = 〈j (j−1 j+1)L(2)(i i+1)〉 = 〈i j̄〉〈i i+1 j k〉 . (3.29)

The Landau equations associated to this topology therefore have solutions when 〈i j̄〉 = 0 or

when 〈i i+1 j k〉 = 0. However, on the locus 〈i i+1 j k〉 = 0 it is no longer true that the eight

on-shell conditions shown in figure 7a imply the ninth condition 〈L(1) i−1 i〉 = 0. There-

fore, this solution of the Landau equations is not relevant to the maximum codimension

boundary.

We conclude that the leading Landau singularity of the maximum codimension bound-

ary is located on the locus where 〈i j̄〉 = 0 or (from figure 7b) 〈i k̄〉 = 0. These results are

in agreement with our expectation about the final symbol entries of MHV amplitudes [34].

Relaxations of figures 7a, 7b at j, k will not produce any symbol entries.
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Conclusion. In conclusion, our analysis has revealed that two-loop MHV amplitudes

have physical branch points on the loci of the form

〈a b̄〉 = 0 ,

〈a b c c+1〉 = 0 ,

〈a a+1 b̄ ∩ c̄〉 = 0 ,

〈a (a−1 a+1)(b b+1)(c c+1)〉 = 0 ,

(3.30)

for arbitrary indices a, b, c. Again let us note that when we say there is a branch point at

x = 0, we mean a branch cut between x = 0 and x = ∞. Indeed, this result is in precise

accord with the known symbol alphabet of two-loop MHV amplitudes in SYM theory [34].

4 Discussion

In this paper we have improved greatly on the analysis of [17] by asking the amplituhedron

directly to tell us which branch points of an amplitude are physical. This analysis requires

no detailed knowledge about how to write formulas for integrands by constructing the

canonical “volume” form on the amplituhedron. We only used the amplituhedron’s grossest

feature, which is that it is designed to guarantee that integrands have no poles outside the

space of positive loop configurations. We have shown in several examples how to use this

principle to completely classify the sets of cut conditions on which integrands can possibly

have support. Let us emphasize that our proposal is a completely well-defined geometric

algorithm:

• Input: a list of the maximal codimension boundaries of the amplituhedron; for MHV

amplitudes these are known from [5].

• Step 1: for a given maximal codimension boundary, identify the list of all cut con-

ditions satisfied on this boundary. For example, at the two-loop boundary shown in

figure 3a, these would be the nine cut conditions satisfied by the Landau diagram in

figure 3b, shown in eqs. (3.7)–(3.9). Consider all lower codimension boundaries that

can be obtained by relaxing various subsets of these cut conditions, and eliminate

those which do not overlap the closure of the amplituhedron, i.e. those which do not

correspond to mutually non-negative configurations of lines L(`).

• Step 2: for each valid set of cut conditions obtained in this manner, solve the corre-

sponding Landau equations (1.9) and (1.10) to determine the location of the corre-

sponding branch point of the amplitude.

• Output: a list of the loci in external kinematic space where the given amplitude has

branch points.

As we have mentioned a few times in the text, this algorithm is motivated by intuition

from the Cutkosky rules, according to which an amplitude’s discontinuity is computed by

replacing some set of propagators with delta-functions. This localizes the integral onto the
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intersection of the physical contour and the locus where the cut conditions are satisfied.

Now is the time to confess that this intuitive motivation is not a proof of our algorithm,

most notably because the positive kinematic domain lives in unphysical (2, 2) signature and

there is no understanding of how to make sense of the physical iε contour in momentum

twistor space (see however [38] for work in this direction). Nevertheless, the prescription

works and it warrants serious further study, in part because it would be very useful to

classify the possible branch points of more general amplitudes in SYM theory.

For amplitudes belonging to the class of generalized polylogarithm functions (which is

believed to contain at least all MHV, NMHV and NNMHV amplitudes in SYM theory) the

path from knowledge of branch points to amplitudes is fairly well-trodden. Such functions

can be represented as iterated integrals [39] and analyzed using the technology of symbols

and coproducts [40, 41]. It was emphasized in [16] that the analytic structure of an am-

plitude is directly imprinted on its symbol alphabet. In particular, the locus in external

kinematic space where the letters of an amplitude’s symbols vanish (or diverge) must ex-

actly correspond to the locus where solutions of the Landau equations exist. The above

algorithm therefore provides direct information about the zero locus of an amplitude’s

symbol alphabet. For example, the symbol alphabet of one-loop MHV amplitudes must

vanish on the locus (3.6), and that of two-loop amplitudes must vanish on the locus (3.30).

Strictly speaking this analysis does not allow one to actually determine symbol letters

away from their vanishing locus, but it is encouraging that in both eqs. (3.6) and (3.30)

the amplituhedron analysis naturally provides the correct symbol letters on the nose.

In general we expect that only letters of the type 〈a a+1 b b+1〉 may appear in the

first entry of the symbol of any amplitude [42]. At one loop, new letters of the type 〈a b̄〉
begin to appear in the second entry. At two loops, additional new letters of the type

〈a (a−1 a+1)(b b+1)(c c+1)〉 also begin to appear in the second entry, and new letters of

the type 〈a b c c+1〉 and 〈a a+1 b̄∩ c̄〉 begin to appear in the third. As discussed at the end

of section 3, the final entries of MHV amplitudes are always 〈a b̄〉 [34]. In our paper we

have given almost no thought to the question of where in the symbol a given type of letter

may begin to appear. However, it seems clear that our geometric algorithm can be taken

much further to expose this stratification of branch points, since the relationship between

boundaries of the amplituhedron and Landau singularities is the same as the relationship

between discontinuities and their branch points. For example it is clear that at any loop

order, the lowest codimension boundaries of the amplituhedron that give rise to branch cuts

are configurations where one of the lines L intersects two lines (i i+1) and (j j+1), with all

other lines lying in generic mutually positive position. These configurations give rise to the

expected first symbol entries 〈i i+1 j j+1〉. By systematically following the degeneration of

configurations of lines onto boundaries of higher and higher codimension we expect there

should be a way to derive the symbol alphabet of an amplitude entry by entry.

In many examples, mere knowledge of an amplitude’s symbol alphabet, together with

some other physical principles, has allowed explicit formulas for the amplitude to be con-

structed via a bootstrap approach. This approach has been particularly powerful for 6- [43–

48], and 7-point [49] amplitudes, in which case the symbol alphabet is believed to be given,

to all loop order, by the set of cluster coordinates on the kinematic configuration space [50].
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It would be very interesting to use the algorithm outlined above to prove this conjecture, or

to glean information about symbol alphabets for more general amplitudes, both MHV and

non-MHV. One simple observation we can make in parting is to note that although maxi-

mum codimension boundaries of the L-loop MHV amplitude involve as many as 2L distinct

points, the singularities that arise from genuinely L-loop configurations (rather than prod-

ucts of lower loop order) involve at most L+1 points. Therefore we predict that the size of

the symbol alphabet of L-loop MHV amplitudes should grow with n no faster thanO(nL+1).

It would be very interesting to extend our results to non-MHV amplitudes. For the

NK amplitude, singularities should still be found only on the boundary of the NKMHV

amplituhedron, so the presented approach should still be applicable, albeit more compli-

cated. An important difference would be the existence of poles, in addition to branch

points, due to the presence of rational prefactors. We are not certain our approach would

naturally distinguish these two types of singularities. However, the singularities of rational

prefactors can be found using other means, for example by considering the boundaries of

the tree-level amplituhedron.
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A Elimination of bubbles and triangles

Here we collect a few comments on the elimination of bubble and triangle sub-diagrams in

the Landau analysis. These tricks, together with the results of [17], can be used to easily

obtain all of the Landau singularities reported in section 3.3.

A.1 Bubble sub-diagrams

The Landau equation for a bubble with propagators ` and ` + p, which may be a sub-

diagram of a larger diagram, are

`2 = (`+ p)2 = 0 , (A.1)

α1`
µ + α2(`+ p)µ = 0 , (A.2)

where α1 and α2 are the Feynman parameters associated to the two propagators. The loop

equation has solution

`µ = − α2

α1 + α2
pµ (A.3)
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so that

α1`
µ = − α1α2

α1 + α2
pµ, α2(`+ p)µ =

α1α2

α1 + α2
pµ, (A.4)

while the on-shell conditions simply impose p2 = 0. Therefore, we see that any Landau

diagram containing this bubble sub-diagram is equivalent to the same diagram with the

bubble replaced by a single on-shell line with momentum pµ and modified Feynman parame-

ter α′ = α1α2/(α1+α2). We do not need to keep track of the modified Feynman parameter;

we simply move on to the rest of the diagram using the new Feynman parameter α′.

In conclusion, any bubble sub-diagram can be collapsed to a single edge, as far as the

Landau analysis is concerned.

A.2 Triangle sub-diagrams

Similarly, we will now discuss the various branches associated to a triangle sub-diagram.

The Landau equations for a triangle with edges carrying momenta q1 = `, q2 = `+ p1 + p2
and q3 = `+ p2, and with corresponding Feynman parameters α1, α2 and α3, are

`2 = (`+ p2)
2 = (`+ p1 + p2)

2 = 0 , (A.5)

α1`
µ + α2(`+ p1 + p2)

µ + α3(`+ p2)
µ = 0 . (A.6)

The solution to the loop equation is

`µ = −(α2 + α3)p
µ
2 + α2p

µ
1

α1 + α2 + α3
(A.7)

while eqs. (A.5) impose the two conditions

0 = p21 p
2
2 p

2
3 , (A.8)

(α1 : α2 : α3) =
(
p21(−p21 + p22 + p23) : p22(p

2
1 − p22 + p23) : p23(p

2
1 + p22 − p23)

)
(A.9)

where p3 = −p1 − p2. Suppose we follow the branch p21 = 0. In this case α1 is forced to

vanish, effectively reducing the triangle to a bubble with edges

α2q
µ
2 =

α3p
2
2

p22 − p23
pµ1 , α3q

µ
3 = − α3p

2
2

p22 − p23
pµ1 . (A.10)

This is equivalent (by appendix A.1) to a single on-shell line carrying momentum pµ1 . A

similar conclusion clearly holds for the branches p22 = 0 or p23 = 0. If any two of p21, p
2
2 or

p23 simultaneously vanish, then the two corresponding Feynman parameters must vanish.

Finally, if all three p2i vanish, then the Landau equations are identically satisfied for any

values of the three αi. In conclusion, triangle sub-diagrams of a general Landau diagram

can be analyzed by considering separately each of the seven branches outlined here.
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Abstract
We discuss how systems which evolve manifestly asymmetrically in time can
be described within the framework of the time-symmetrized quantum
mechanics. An obvious case of asymmetry arises when a pure state evolves
into a mixed state via effectively non-unitary evolution. A two-state method
for finding the intermediate probability in postselected systems under such
evolution is developed and the time-symmetry aspects of the method are
explicitly considered. A specific feature is the existence of the so-called sec-
ond scenario in which the state originating from the postselection measure-
ment evolves under different evolution superoperator than the state from the
preselection measurement. The evolution of the second scenario is explicitly
defined. We illustrate the method with two characteristic examples: the
spontaneous deexcitation of atoms and the systems approaching thermal
equilibrium. We consider the systems with two energy levels and calculate the
time-symmetrized probability of finding the system in excited state, under
general preselection and postselection conditions. The consequences of the
asymmetry of the time evolution on this probability are discussed. It is
demonstrated that the arrow of time can be reconstructed in some special cases
of postselected systems, while, for a general system, this is not the case.

Keywords: time-symmetrized, nonunitary, postselection, spontaneous deexci-
tation, thermalization, arrow of time, two-state method

1. Introduction

Within the framework of quantum mechanics, one standardly considers the systems which
evolve unitarily. However, there are several important physical situations where the evolution
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is effectively nonunitary, in a sense that a pure state evolves into a mixed state. Such
situations arise when description of a subsystem is considered, under the influence of the
environment. A typical case is the spontaneous radiative decay of atoms interacting with the
field of emitted photons. A very general case is the interaction of the system with a thermal
reservoir; in this case the pure state of the system evolves towards the mixed state of thermal
equilibrium.

The fact that in quantum mechanics there is a nondeterministic reduction of state in the
act of measurement, gives us the possibility to consider the so-called postselected (time-
symmetrized, teleological) systems. Such systems are prepared in a given initial quantum
state Yin (preselection), but also in a final time the system must collapse into a given
quantum state Yfin due to the instantaneous and selective measurement. The quantum events
considered within the framework of the postselected systems are related to the measurement
in the instant of time *=t t between the initial time =t tin and the final time =t tfin. It has
been shown that the probability of a strong measurement in a case of unitary evolution in a
postselected system can be expressed in a time symmetric way by the Aharonov–Bergmann–
Lebowitz (ABL) formula [1]. That is, the probability is given in terms of two different states
Y t1( ) and Y t2( ) , where the first one is the result of evolution of the initial state Yin , while
the second state is introduced in such a way that it would evolve into the given final state Yfin

[2–6]. The weak measurement on a postselected system leads to the so called weak value of
the observable [7, 8].

An intriguing question arises whether the postselected systems which evolve non-uni-
tarily (from pure state to mixed state) can be described within the framework of an ABL-like
two-state method (TSM). That is, there are many nonunitarily evolving systems, which are
time asymmetric in a sense that if we are to observe such systems, we would be able to
reconstruct a direction of time. For example, spontaneous deexcitation of atoms is effectively
nonunitary evolving system and a direction of time can be defined as the direction in which
the survival probability of the excited state decreases. The use of the TSM means that we
perform the time-symmetrization procedure, but the obtained theory is not necessarily time
symmetric under the standard use of the term.

In the present paper we first consider the case of the non-unitary evolution of the pure
state into a pure state. The TSM closely follows the ABL procedure, but an important
difference is that the states Y t1( ) and Y t2( ) evolve under different evolution operators U1

ˆ
and U2

ˆ , respectively, such that =U U I1 2
ˆ ˆ ˆ†

. The main result of this work is the development of
the TSM description of postselected systems with non-unitary pure state → mixed state
evolution. A modification of the ABL procedure is necessary in this case due to the fact that
the evolution can no longer be described by the evolution operator Û . That is, we have two
mixed states r t1ˆ ( ) and r t2ˆ ( ) in the expression for the probability of strong measurement on

postselected systems. These states evolve differently, governed by the superoperators U1
ˆ̂ and

U2
ˆ̂ , and the explicit connection between these evolutions is found.

In order to illustrate the developed TSM for non-unitary evolutions, we consider two
characteristic examples: the spontaneous deexcitation of atoms and a model of systems
approaching thermal equilibrium. In the absence of postselection, these systems evolve
asymmetrically in time, since in the first case the system always approaches the ground state,
while in the second case the system approaches the state of thermal equilibrium. For both of
the considered systems, we are able to operationally define the arrow of time, as a direction of
time in which a given measurable test quantity decreases monotonously in time. When we
introduce the postselection measurement, we have an extra state r t2ˆ ( ), which describes the
influence of the postselection on the system, in addition to the state r t1ˆ ( ), which describes the
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effect of the preselection. When the postselection condition is present, the same operational
definition can be used to analyze the existence of the arrow of time. We demonstrate that
when the TSM probability is used, the test quantity still decreases in time for the first system,
while for the second one, monotonous behaviour exists only in special cases. Thus, some
systems show time-asymmetry even after postselection, although in a general case the arrow
of time does not necessarily exist within the framework of the TSM.

This article is organized as follows. In section 2 we present the general considerations of
strong measurements on the teleological system with nonunitary time evolution. In section 3,
we study the characteristic examples of the nonunitary pure state→mixed state evolutions.
Finally, in section 4, we conclude with some general considerations, and we present some
possibilities for further research.

2. TSM for postselected systems with nonunitary evolution

2.1. Pure state → pure state case

In the present paper we perform the time-symmetrization procedure, i.e. we develop an
appropriate TSM for postselected quantum systems with effectively nonunitarily evolving
states. The simplest situation is in the case when the initial pure state Yin remains pure
throughout the time evolution. In that case the state of the system Y t1( ) evolves towards the
future according to the standard quantum-mechanical law

Y = Yt U t t, , 11 1 in in( ) ˆ ( ) ( )

but where U t t,1 in
ˆ ( ) is assumed to be a nonunitary operator, see the first scenario in figure 1.

We analyze the probability of the measurement results for an observable å= PA a
k k k

ˆ ˆ at the
time * >t tin, under the condition that at the time *= >t t tfin the system is postselected in
the state Yfin . The quantities ak are the eigenvalues of the measured observable, which can be
degenerate, while Pk

ˆ are the corresponding eigenprojecting operators. We consider the
quantum event, represented by the projecting operator Pj

ˆ , i.e. we consider the probability of
obtaining the eigenvalue aj of the observable Â. The observable Â defines a unit operator
decomposition å= PI

k k
ˆ ˆ , where Pk

ˆ are the distinguishable quantum events of the given
experimental setup.

For the corresponding conditional probability * * = Y Y Pt t AProb ; ,j j1 fin( )( ) ( ) ˆ ˆ we
have

*
*

*





=t

t

t
a, 2j

j

0
( ) ( )

( )
˜

( )

where

* * * = Y P Y Y Yt t t t b2j j j1 1 fin fin
2( ) ( ) ( )˜ ˆ ( ) ( )

and

* * å=t t c, 2
k

k0( ) ( )˜ ( )

where summation is over all projecting operators Pk
ˆ of the measured observable Â. In (2b),

the first factor is the probability for obtaining the eigenvalue aj at the time *t , while the
second factor is the probability for the system to collapse into Yfin from the state Y tj fin( )
due to the postselection measurement at the time tfin. We note that a specific feature of the
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considered nonunitary evolution is the fact that the particle can leave the system, i.e. the norm
of its quantum state does not have to be conserved in time. Therefore, in the expression for the
probability we only assume that Y Y = 1in in and Y Y = 1fin fin , but do not impose the
conditions * *Y Y =t t 11 1( ) ( ) and Y Y =t t 1k kfin fin( ) ( ) for all k. The quantity * t0( )
represents the probability of formation of the postselected ensemble (under the nonselective
intermediate measurement of the observable Â, corresponding to the assumed unit
decomposition).

In (2b) and (2c), the vector Y tj fin( ) is the state of the system at the time tfin. This state is
a result of the (nonunitary) time evolution of the state of the system from the time *= +t t 0
to the final time =t tfin. The measurement of the observable Â at the time *=t t with a

‘result’ Pj
ˆ leads to the reduction Y  P Y Y P Yt t t tj j1 1 1 1( ) ˆ ( ) ( ) ˆ ( ) , which also

represents a normalized pure state. Thus, the state of the system at the time tfin is given by

* * * *Y = P Y Y P Yt U t t t t t, ;j j jfin 1 fin 1 1 1( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) therefore

* * * = Y P Yt t U t t, . 3j j1 1 fin fin

2

( ) ( ) ( )˜ ˆ ˆ ( )†

To follow the basic assumption of the TSM [1], it is necessary to express the probability in
terms of the states depending exclusively on *t . This can be achieved by introducing the
second state Y t2( ) and an evolution operator U2

ˆ by the relation

Y = YU t t t, , 4fin 2 fin 2ˆ ( ) ( ) ( )

where U2
ˆ can be considered as a time evolution operator in the second scenario, see figure 1.

With the introduced quantities Y2 and U2
ˆ of the second scenario, the expression for the

probability can be ‘time symmetrized’ (expressed only via *Y t1( ) , *Y t2( ) andPj
ˆ ) under the

following condition:

=U t t U t t I, , , 51 fin 2 finˆ ( ) ˆ ( ) ˆ ( )†

where Î is the unit operator. Under these assumptions the probability is given by the
following expression:

Figure 1. Schematic presentation of the two scenarios, with nonunitary evolutions of
the states Y t1( ) and Y t2( ) .
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*
* *

* *


å
=

Y P Y

Y P Y
t

t t

t t
. 6j

j

k k

1 2
2

1 2
2( )

( ) ( )
( ) ( )

ˆ

ˆ
( )

The probability (6) is invariant to the transformations Y  Yt f t t1 1 1( ) ( ) ( ) and
Y  Yt f t t2 2 2( ) ( ) ( ) , for arbitrary complex functions f t1 ( ) and f t2 ( ), such that

=f t 11 in( ) and =f t 12 fin( ) . It is most natural to take = "f t t1,1 ( ) , since this choice
corresponds to the case of the evolution in the absence of postselection. However, there is no
obvious choice of the function f t2 ( ), because the second scenario has no interpretation
outside the TSM. This ambiguity is closely related to the fact that we could have obtained the
same result using the condition =U t t U t t f t I, , 11 fin 2 fin 2

ˆ ( ) ˆ ( ) ( ( )) ˆ†
instead of the condition (5).

For the standard case of unitary evolution of the first scenario, =
-

U U1 1
1ˆ ˆ†
, the evolution

operator of the second scenario is given by the relation =U f U12 2 1
ˆ ( ) ˆ , which, for the choice

of =f 12 , coincides with the evolution operator of the first scenario, as is usually implicitly
presumed.

The probability (6) has the same form as the ABL probability [1], but the state *Y t2( ) is
differently defined. As in the ABL expression, all the eigenprojectors of the observable Â are
present in (6). This reflects the well-known fact that the TSM probability of a considered
quantum event depends on all distinguishable quantum events of the given experimental setup
(corresponding to a given unit decomposition). This is different than in the absence of
postselection, when the probability depends exclusively on the considered quantum event.

2.2. Pure state → mixed state case

In the formerly considered pure state → pure state case, the initial state can be expressed via
statistical operator r = Y Yin in inˆ . This operator evolves into the pure state with (in general)

nonunit norm, so that the state operator r r= º Y Y
+

t U t t U t t t t, ,1 1 in in 1 in 1 1ˆ ( ) ˆ ( ) ˆ ˆ ( ) ( ) ( ) is no
longer a statistical operator ( r ¹tTr 11ˆ ( ) ), but it is still positive (self-adjoint) operator.

In the most general case, the initial pure state operator rinˆ could evolve into the mixed
state operator r t1ˆ ( ) at the time t, for example, when the considered system represents a
subsystem of some closed quantum system. This fact cannot be expressed via evolution
operator U1

ˆ in the form r r=
+

t U t t U t t, ,1 1 in in 1 inˆ ( ) ˆ ( ) ˆ ˆ ( ). Instead, one can introduce a linear

superoperator r rU t t t, :1 in in 1
ˆ̂ ( ) ˆ ˆ ( ), which can be written as

r r=t U t t, . 71 1 in inˆ ( ) ˆ̂ ( ) ˆ ( )

In order for the mixed state operator to describe the physical system it must remain positive
(self-adjoint) operator at all times.

Again, we consider the measurement on the postselected quantum systems (time-sym-
metrized ensemble within the framework of nonunitary evolution) with given initial and final
states Yin and Yfin , respectively, i.e. r = Y Yin in inˆ and r = Y Yfin fin finˆ ( r =Tr 1inˆ ,

r =Tr 1finˆ ). The probability * * r= Y Pt t AProb ; ,j j1 fin( )( ) ˆ ( ) ˆ ˆ is given by

* * *  =t t tj j 0( ) ˜ ( ) ( ). The quantity * tj
˜ ( ) is expressed by

* * r r= P P⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦t t t aTr Tr , 8j j j1 fin fin( ) ( )˜ ˆ ˆ ˆ ( ) ˆ ( )

where * *r r=t U t t,1 1 in inˆ ( ) ˆ̂ ( ) ˆ and * *r r=t U t t t,j jfin 1 finˆ ( ) ˆ̂ ( ) ˆ ( ), while

* * *r r r= P P Pt t tTrj j j j1 1ˆ ( ) ˆ ˆ ( ) ˆ [ ˆ ( ) ˆ ] and rP =fin fin
ˆ ˆ . The probability 0 is the sum of all

probabilities * tk
˜ ( ) as in the pure state → pure state case. Inserting the expression for r tj finˆ ( )
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in equation (8a), we get

* * * r r= P P⎡
⎣⎢

⎤
⎦⎥t U t t t bTr , . 8j j jfin 1 fin 1{ }( ) ( ) ( )˜ ˆ ˆ̂ ˆ ˆ ˆ ( )

In the analogy to the TSM for pure state → pure state case, we introduce the operator
r t2ˆ ( ) by the relation

r r= U t t t, , 9fin 2 fin 2ˆ ˆ̂ ( ) ˆ ( ) ( )

where the superoperatorU t t,2 fin
ˆ̂ ( ) governs the time evolution in the second scenario. In terms

of the operator r t2ˆ ( ) and superoperator U t t,2 fin
ˆ̂ ( ) we have

* * * * * r r= P P⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥t U t t t U t t tTr , , . 10j j j2 fin 2 1 fin 1{ }( ) ( ) ( ) ( ) ( )˜ ˆ̂ ˆ ˆ̂ ˆ ˆ ˆ ( )

In order to complete the procedure, we need to define the adjoint operation for the
superoperators. For the scalar product of hermitian operators Â and B̂, needed for the
definition of the adjoint operation, we take ABTr( ˆ ˆ). The adjoint superoperator is defined by

the relation =U A B A UBTr Tr[( ˆ̂ ˆ ) ˆ] [ ˆ ( ˆ̂ ˆ)]
†

, which has to be satisfied for all hermitian operators Â
and B̂. By applying this definition to expression (10), we obtain

* * * * * r r= P P
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭t t U t t U t t tTr , , . 11j j j2 2 fin 1 fin 1( ) ( ) ( ) ( ) ( )˜ ˆ ˆ̂ ˆ̂ ˆ ˆ ˆ ( )
†

Under the composition condition * * =U t t U t t I, ,2 fin 1 fin
ˆ̂ ( )◦ ˆ̂ ( ) ˆ̂†

, equivalent to

=U t t U t t I, , , 121 fin 2 finˆ̂ ( )◦ ˆ̂ ( ) ˆ̂ ( )
†

we get the expression

* * * r r= P P⎡⎣ ⎤⎦t t tTr . 13j j j2 1( ) ( ) ( )˜ ˆ ˆ ˆ ˆ ( )

The corresponding expression for the probability * tj( ) is given by:

*
* *

* *


å

r r

r r
=

P P

P P

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

t
t t

t t

Tr

Tr
. 14j

j j

k k k

1 2

1 2

( ) ( ) ( )
( ) ( )

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

( )

Even though we have formally completed the time-symmetrization procedure, it is still
difficult to operate directly with the evolution superoperators, and to find their adjoints, which
are necessary for the calculations of mixed states r1ˆ and r2ˆ . In order to computationally
simplify the procedure, we represent the mixed state operators by vectors, or more concretely,
by the appropriate vector columns, while the superoperators are represented by linear
operators in this space. That is, in the vector representation, for a given finite-dimensional
basis a a a, ,..., N1 2{ }, the selfadjoint operator Â is expressed by

 =

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

A A

A
A

A
A

A

...

...

, 15N

NN

11

12

1

21

ˆ ˆ ( )
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where a a=A Aij ji
ˆ are the matrix elements of the operator Â. Within the introduced

representation, for two self-adjoint operators Â and B̂, the scalar product
*å å= = =A B A B

i

N

j

N
ji ji1 1

ˆ ˆ . Taking into account that * =A Aji ij, we see that the trace of the

product of two self-adjoint operators Â and B̂ can be expressed via scalar product in the
considered vector space:

=AB A BTr . 16( )ˆ ˆ ˆ ˆ ( )

Using the former relation, the probability * tj
˜ ( ) given by (10) can be written as a scalar

product:

* * * * * r r= P Pt U t t t U t t t, , . 17j j j2 fin 2 1 fin 1( ) ( ) ( ) ( ) ( )˜ ˆ̂ ˆ ˆ̂ ˆ ˆ ˆ ( )

Within the proposed representation the operators rU t t t,2 fin 2
ˆ̂ ( ) ˆ ( ) and rU t t t, j1 fin

ˆ̂ ( ) ˆ ( ), where
r rº P Pt tj j j1ˆ ( ) ˆ ˆ ( ) ˆ , are represented by the vectors

r r=U t t t t t t a, , 182 fin 2 2 fin 2
ˆ̂ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

and

r r=U t t t t t t b, , , 18j j1 fin 1 finˆ̂ ( ) ( ) ˆ ( ) ˆ ( ) ( )

respectively. The operators 1
ˆ and 2

ˆ are the representations of the superoperatorsU1
ˆ̂ andU2

ˆ̂ ,
respectively, in the considered vector space of mixed states. With the so defined evolution
operators 1

ˆ and 2
ˆ , we have

* * * * *  r r= P Pt t t t t t t, , . 19j j j2 2 fin 1 fin 1( ) ( ) ( ) ( ) ( )˜ ˆ ˆ ˆ ˆ ˆ ˆ ( )
†

According to (19), we see that the time symmetrized expression for the probability, i.e.
the probability expressed only via *r t1ˆ ( ), *r t2ˆ ( ) and Pj

ˆ , can be obtained if the operators 1
ˆ

and 2
ˆ satisfy the relation

  =t t t t, , , 201 fin 2 fin
ˆ ( ) ˆ ( ) ˆ ( )

†

which is of the same form as the condition (5) obtained in the pure state → pure state case.
Note that the condition (20) for the evolution operators is isomorphic to the condition (12) for
the evolution superoperators. Under the requirement (20), the expression for the probability
* tj

˜ ( ) has the following form:

* * * r r= P Pt t t . 21j j j2 1( ) ( ) ( )˜ ˆ ˆ ˆ ˆ ( )

In order to recover the expression (13), and thus the probability * tj( ) (14) (given via
operators r t1ˆ ( ) and r t2ˆ ( ) instead via vectors r t1ˆ ( ) and r t2ˆ ( ) ), we use the relation (16).

The probability (14) reduces to the expression (6), for the pure state → pure state
evolution. In this case the action of a superoperator Û̂ can be expressed via operator Û :

r r=U t t U t t U t t, , ,1 2 1 2 1 2
ˆ̂ ( ) ˆ ˆ ( ) ˆ ˆ ( )† . Similarly to the pure state→ pure state case, expression
(14) is invariant to the transformations r rt f t t1 1 1ˆ ( ) ( ) ˆ ( ) and r rt f t t2 2 2ˆ ( ) ( ) ˆ ( ), under the
condition = =f t f t 11 in 2 fin( ) ( ) . If we want to have any interpretation of r1ˆ and r2ˆ as mixed
state operators within their respective scenarios, the functions f t1 ( ) and f t2 ( ) must be real,
positive functions. In the following examples, we will use the simplest
choice, = =f t f t 11 2( ) ( ) .
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2.3. Time symmetry aspects of the TSM

Based on the expression (14) for the probability, we can answer the question in what sense is
a postselected system with nonunitary evolution time-symmetric. That is, although we per-
formed the time-symmetrization procedure by using the TSM, it is not clear whether the
theory is time symmetric under the standard use of the term.

Any time-symmetric quantum theory must be invariant to the inversion of time. Both in
the standard case of unitary evolution and in the considered case of non-unitary evolution, the
inversion of time direction replaces the initial time with the final time ( «t tin fin), and the
initial condition with the final condition (r r«in finˆ ˆ ). If we also include the exchange of the

evolution operators of the first and second scenario «U U1 2
ˆ̂ ˆ̂ to the definition of the time

direction inversion operation, we have that r r«1 2ˆ ˆ . This can be interpreted as the exchange
of roles of the first and the second scenario under the reversal of time (see figure 1). The
probability * tj( ) remains invariant under the so defined inversion of time, since this prob-
ability is obviously invariant to r r«1 2ˆ ˆ .

To understand the physical implications of the introduced transformations, let us consider
two separate systems: the first system is prepared in the state rinˆ at the time tin and evolves

towards the future under the superoperatorU1
ˆ̂ , while the second system is prepared in the state

rfinˆ at the time tfin and evolves under the superoperator U2
ˆ̂ backwards in time (towards the

past); the validity of the relation =U U I1 2
ˆ̂ ◦ ˆ̂ ˆ̂†

is presumed. We can additionally postselect the
two systems: the postselection in the first of the two considered systems is at the time =t tfin

in the state rfinˆ , while the postselection in the second one is at the time =t tin in the state rinˆ .
At the time *=t t , within the framework of the first scenario of the first and the second

system, we have the states * *r r=U t t t,1 in in 1
ˆ̂ ( ) ˆ ˆ ( ) and * *r r=U t t t,2 fin fin 2

ˆ̂ ( ) ˆ ˆ ( ), respectively.
The second scenario is standardly introduced, and its evolution superoperator is deter-

mined by the evolution in the first scenario, which is the same as the time evolution in the
absence of postselection. In the first system the evolution in the absence of postselection is

given by the superoperator U1
ˆ̂ , while the second scenario superoperator = -U U2 1

1ˆ̂ ( ˆ̂ )
†

is
introduced as ‘auxiliary’ operator to obtain time symmetrization. On the other hand, in the

second system, the ‘real’ evolution is given by the superoperator U2
ˆ̂ , and the superoperator

=-U U2
1

1( ˆ̂ ) ˆ̂†
is now auxiliary. Therefore, at the time *=t t , in the second scenarios of the

first and the second system we get the states * *r r=U t t t,2 fin fin 2
ˆ̂ ( ) ˆ ˆ ( )

and * *r r=U t t t,1 in in 1
ˆ̂ ( ) ˆ ˆ ( ).
The intermediate probability of the quantum event Pj

ˆ at the time *=t t is the same in
both systems. In that sense, one can say that the theory for nonunitary evolution can be time-
symmetrized, i.e. for every system and its direction of time there exists a different (dual)
system with different direction of time, such that it is impossible to distinguish between them

by measurements with postselection. However, the existence of two different evolutions U1
ˆ̂

and U2
ˆ̂ in the first scenarios of the considered two systems means that we are actually

considering two different physical systems. For that reason, presented theory is not time-
symmetrized in a standard way.
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3. Examples

3.1. Spontaneous deexcitation of postselected atoms

Spontaneous radiative deexcitation of atomic systems is standardly considered as a con-
sequence of the coupling of these systems to the field of photons. From the standpoint of the
atomic subsystem this can be effectively described as a nonunitary evolution from pure
state→mixed state. The simplest case is when we consider only the ground state a and the
first excited atomic (electronic) energy eigenstate b , corresponding to the energies Eα and

>b aE E , respectively. The characteristic quantity for this system (initially in the state b ) is
the survival probability corresponding to the quantum event b bP =bˆ .

From the time-dependent perturbative theory of radiative transitions, a pure state Y t( )
describing the total system can be obtained. The effective description of the atomic subsystem
is obtained by taking a partial trace of the state Y Yt t( ) ( ) over the photon states. It follows
that the excited atomic state b b exponentially decays into the mixture of the excited and
the ground state:

b b b b a a= + --G D -G Db bU t t a, e 1 e , 221 1 2 12 12( )ˆ̂ ( )∣ ∣ ∣ ∣ ∣ ∣ ( )

where D = -t t12 2 1. The quantity Gb has the meaning of the transition rate; its reciprocal
value, t = Gb b1 , is the lifetime of the level bE . On the other hand, the ground state remains
stationary, i.e.

a a a a=U t t b, . 221 1 2ˆ̂ ( )∣ ∣ ∣ ∣ ( )

In order to fully define the evolution superoperator U t t,1 1 2
ˆ̂ ( ) we need to define the action on

a b and b a , which directly gives its action on their Hermitian linear combinations.
This action cannot be easily obtained from the mentioned theory. In the most general case we
have the following linear combinations:

a b a a a b b a b b= + + +U t t a b c d c, , 221 1 2 12 12 12 12ˆ̂ ( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

b a a a a b b a b b= + + +U t t A B C D d, , 221 1 2 12 12 12 12ˆ̂ ( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

where = Da a12 12( ), = Db b12 12( ) etc. From the condition that the result of the action of the
superoperator on a Hermitian operator is again a Hermitian operator, we get the relations:

*=a A , *=d D , *=B c and *=C b . It can be shown that the survival probability in
presence of arbitrary postselection does not depend on the choice of these parameters.
However, we will use the model which satisfies the physical composition condition:

= ¢ ¢U t t U t t U t t, , ,1 1 2 1 2 1 1
ˆ̂ ( ) ˆ̂ ( )◦ ˆ̂ ( ). This is satisfied for the choice of parameters = = =a c d 0
( = = =A B D 0) and - = - ¢ ¢ -b t t b t t b t t2 1 2 1( ) ( ) ( ), i.e. * k= = - Db C exp12 12 12( ),
where κ is an arbitrary complex constant.

In the vector-representation of the mixed states for the basis a b,{ } we have

a a a b 

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪
a

1
0
0
0

,

0
1
0
0

23∣ ∣ ∣ ∣ ( )
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and

b a b b 

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪
b

0
0
1
0

,

0
0
0
1

. 23∣ ∣ ∣ ∣ ( )

Based on the expressions (22a)–(22d) we directly obtain the operator  t t,1 1 2
ˆ ( ) (representation

of the superoperator U t t,1 1 2
ˆ̂ ( )):

*
 =

-
k

k

-G D

- D

- D

-G D

b

b

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

t t,

1 0 0 1 e
0 e 0 0
0 0 e 0
0 0 0 e

. 241 1 2

12

12

12

12

ˆ ( ) ( )

The operators  t t,1 in
ˆ ( ) and  t t,1 fin

ˆ ( ) follow from (24) for D  D = -t t12 i in and
D  D = -t t12 f fin , respectively. By using the condition (20) we get

*
 = =

-

k

k

- - D

- D

-G D -G Db b

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

t t t t, ,

1 0 0 0
0 e 0 0
0 0 e 0

1 e 0 0 e

. 252
1

fin 1 fin
f

f

f f

ˆ ( ) ˆ ( ) ( )
†

We consider the spontaneous deexcitation for which at the initial time tin the atomic electronic
state b is occupied; the corresponding statistical operator is r b b=inˆ . The mixed state
r t1ˆ ( ) of the system is given by

r b b=t U t t, . 261 1 inˆ ( ) ˆ̂ ( )(∣ ∣) ( )

Using (23b) and (24), we get the expression for the vector r t1ˆ ( ) . According to (15), the
corresponding operator is given by:

r = - -G D

-G D

b

b

⎧⎨⎩
⎫⎬⎭t 1 e 0

0 e
; 271

i

i
ˆ ( ) ( )

in the considered case the operator r t1ˆ ( ) satisfies the condition r =tTr 11ˆ ( ) . In the absence of
postselection, the survival probability for the atomic system in the mixed state r t1ˆ ( ) at the

time t is given by  r= P = - G Db b
⎡⎣ ⎤⎦t tTr expS

I
1 i( ) ˆ ( ) ˆ ( )( ) , i.e. we get the well known

exponential decay law. Since this probability monotonously decreases in time, it allows us to
operationally define the arrow of time as such direction in which the survival probability
decreases. In that sense, for this system, we can consider the evolution to be asymmetrical in
time. The mean energy in the absence of postselection,

 = + -b aE t t E t E1S
I

S
I( ) ( ) [ ( )]( ) ( ) , behaves in the same manner. The simple exponential

form of the survival probability will not be preserved in the case of postselected atomic
systems.

The introduction of a postselection condition requires that the state r = Y Yfin fin finˆ is
obtained by a measurement performed on the atomic system at the final time =t tfin. By the
choice of the particular postselection, we can control the time-symmetrized survival prob-
ability. We consider the most general postselection:

d a bY = - +q q a1 , 28fin ∣ ∣ ( )

where d j= exp i( ) is a phase factor. The state Yfin ‘contains’ the state a with probability
- q1 and the state b with probability q. The final mixed state operator is given by
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*r a a d a b d b a b b= - + - + - +q q q q q q b1 1 1 ; 28finˆ ( )∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )

the corresponding vector-representation is

*
r

d

d
=

-

-

-

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

q

q q

q q
q

c

1

1

1
. 28finˆ

( )

( )
( )

For a given postselection, it remains to calculate the mixed state operator r t2ˆ ( ). In the vector

representation r r=
-

t t t t,2 2
1

fin finˆ ( ) ˆ ( ) ˆ ( ) , where 
-

t t,2
1

fin
ˆ ( ) is given by expression (25)

and r tfinˆ ( ) by (28c). We get the vector r t2ˆ ( ) and the corresponding operator

*
r =

-
- - +

⎧⎨⎩
⎫⎬⎭t

q D

D p q pq

1

1 1
, 292ˆ ( )

( )( )
( )

where = -G Dbp exp f( ) and *d k= - - DD q q1 exp f( ) ( ).
The survival probability * tS( ) at the time *=t t for the considered time-symmetrized

system is expressed by (14), where b bP =j
ˆ , the distinguishable quantum events are

a aP =aˆ and b bP =bˆ , and the states r t1ˆ ( ) and r t2ˆ ( ) are given by (27) and (29),
respectively. We get

*



 =

+ -

+ -

G D

G D

b

b
t

1 e 1

1 e 1
, 30S

2

2

f( )
( )( ) ∣ ∣

∣ ∣
( )

where D = -t tfin in and  = - q q12 ( ) . We note that the probability * tS( ) is

independent on the quantity D, which means that the action of the superoperator U1
ˆ̂ on

a b and b a can be taken in somewhat arbitrary form. The obtained survival probability
 tS( ) decreases in time in a similar manner as the probability  = -G Dbt expS

I
i( ) ( )( ) , for all

postselection conditions. The fact that the survival probability monotonously decreases in
time even in the presence of arbitrary postselection means that, by using the same criterion for
establishing the direction of time as in the absence of postselection, we are able to reconstruct
the arrow of time in the considered system. We note that this conclusion also remains valid
for arbitrary preselection, as will be demonstrated as a special case of the TSM treatment of
thermalization.

A specific postselection of the atomic system is what we will call the ‘natural’ post-
selection. It is expressed by the relation  = 12 , which corresponds to =q 1 2. In this case
we obtain

 = =-G Dbt te , 31S S
Ii( ) ( ) ( )( )

i.e. the survival probability of the postselected system coincides with the survival probability
in the absence of postselection (the postselection has no effect). We note that the value
=q 1 2, which corresponds to the natural postselection, is exactly the critical value for

which the diagonal elements of the operator r2ˆ are independent of time.

3.2. Thermalization within the TSM

As a second example we consider the quantum system in contact with a reservoir at a
temperature T. We assume that, at the time =t tin, the quantum system is in a pure state,
given by a statistical operator rinˆ . At the time t, the considered system is in the mixed state
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described by the operator r t1ˆ ( ), such that at the time  ¥t the system reaches the thermal
equilibrium.

According to the general theory of pure state → mixed state evolution, the (mixed) state
operator at the time t is given by

r r=t U t t, , 321 1 in inˆ ( ) ˆ̂ ( ) ˆ ( )

where U1
ˆ̂ is the evolution superoperator. Equilibrium statistical physics cannot be used to

determine this operator; we only have information for the time  ¥t . That is, considering
the system as a canonic ensemble, we have that

r r =  ¥¥

-

-
t t

e

Tr e
, , 33

H T

H T
1

k

k( )ˆ ( ) ˆ ( )
ˆ

ˆ

where Ĥ is the Hamiltonian of the system and k is the Boltzmann constant. We study the
quantum system with two orthonormal energy eigenstates a and b , corresponding to the
energies Eα and >b aE E . In the considered case a a b b= +a bH E Eˆ ∣ ⟩⟨ ∣ , so that

r a a b b= +¥ A B a, 34ˆ ∣ ∣ ∣ ∣ ( )

where

º =
+a

¥
-

- -

a

a b
A b

e

e e
34

E T

E T E T

k

k k
( )( )

and

º =
+b

¥
-

- -

b

a b
B c

e

e e
34

E T

E T E T

k

k k
( )( )

are the probabilities of finding the system in the states a and b , respectively, for  ¥t .
Obviously, A and B are real positive constants satisfying the relation + =A B 1, and
also <B A.

The aim of the example is not to analyze the details of the process of thermalization; we
only want to demonstrate that, in principle, the thermal evolution of postselected systems can
be considered within the framework of the TSM. For that purpose, we construct a ‘toy-model’
linear superoperator U t t,1 in

ˆ̂ ( ), such that

r r  ¥¥U t t t a, , , 351 in in
ˆ̂ ( ) ˆ ˆ ( )

for any rinˆ , where r¥ˆ is given by (34a). Another condition that we use in modelling the
considered superoperator is

r = >⎡
⎣⎢

⎤
⎦⎥U t t t t bTr , 1, , 351 in in inˆ̂ ( ) ˆ ( )

which has to be satisfied for all rinˆ . Obviously, we must also have:

= =U t t I t t c, , . 351 in inˆ̂ ( ) ˆ̂ ( )

The effective construction will be performed in the vector representation of the mixed
state operators. We take that
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r =

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

a
b
c
d

36inˆ ( )

describes an initial state; from the relations r r=in inˆ ˆ† and r =Tr 1inˆ we get that a and d are
real quantities, *=c b and + =a d 1. In the same representation, the condition (35a) reads
as follows:

 ¥ =

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪
t

a
b
c
d

A

B

, 0
0

, 371 in
ˆ ( ) ( )

which has to be satisfied for all a b c, , and d satisfying the former relations. As the
appropriate 4×4 matrix we take the matrix of the following form at  ¥t :

 =
¥

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪
t t

A A

B B

lim ,

0 0
0 0 0 0
0 0 0 0

0 0

. 38
t

1 in
ˆ ( ) ( )

This condition, as well as the condition  = t tlim ,t t 1 inin
ˆ ( ) ˆ , which is a direct consequence

of (35c), is satisfied for the following operator:

 =

+ - -

- + -

⎧

⎨
⎪⎪

⎩
⎪⎪

⎫

⎬
⎪⎪

⎭
⎪⎪

t t

p p A p A

p

p

p B p p B

,

1 0 0 1

0 0 0

0 0 0

1 0 0 1

, 391 in

i i i

i

i

i i i

( ) ( )

( ) ( )

ˆ ( ) ( )

where = Dp pi i( ) is an arbitrary continuous function of the time interval D = -t ti in,
satisfying the conditions =p 0 1( ) and ¥ =p 0( ) . The composition law
  = ¢ ¢t t t t t t, , ,1 in 1 1 in
ˆ ( ) ˆ ( ) ˆ ( ) can be used to obtain the operator  ¢t t,1

ˆ ( ) for two arbitrary
instants of time ¢t and t. The simplest solution of the problem is to generalize the expression
(39) to arbitrary instants of time; namely, we take that  ¢t t,1

ˆ ( ) is given by expression (39) in
which = D  ¢ = D¢p p p pi i( ) ( ), where D¢ = - ¢t t . This is possible providing that

- ¢ = -GD¢p t t exp( ) ( ), where Γ is an arbitrary constant, with a positive real part. We
take that Γ is real, so that any (Hermitian) state operator remains Hermitian during the time
evolution. In that case, the operators  t t,1 in

ˆ ( ) and  t t,1 fin
ˆ ( ) are given by the expression (39)

for = -GDp expi i( ) and for  = -GDp p expi f f( ), where D = -t tf fin , respectively.
We assume the most general preselection in a pure state

d a bY = - +q q a1 , 40in i i i∣ ∣ ( )

where d j= exp ii i( ) is a phase factor. The corresponding initial mixed state operator is given
by

*r a a d a b d b a b b= - + - + - +q q q q q q

b

1 1 1 .

40
in i i i i i i i( ) ( ) ( )ˆ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( )
Comparing (40b) with the expression (36) we get the values: = -a q1 i, d= -b q q1i i i( ) ,

*=c b and =d qi. At the time t we have r r=t t t,1 1 in inˆ ( ) ˆ ( ) ˆ , where  t t,1 in
ˆ ( ) is

explicitly given by (39); finally, we obtain the mixed state operator r t1ˆ ( ) in the following
form:
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*
r =

⎧⎨⎩
⎫⎬⎭t

A D

D B
, 411

in in

in in
ˆ ( ) ( )

where = - + -A q p A p1 1in i i i( ) ( ), = + -B q p B p1in i i i( ) and d= -D q q p1in i i i i( ) .
The obtained operator describes the approach of the system towards the thermal equilibrium.
By construction, for  ¥t , p 0i , so that r r ¥t1ˆ ( ) ˆ , where r¥ˆ is given by (34a). In the
absence of postselection, the probability for the system to be found in the state a ,

 r= Pa a
⎡⎣ ⎤⎦t tTrI

1( ) ˆ ( ) ˆ( ) , is equal to A ;in for the state b ,  r= P =b b
⎡⎣ ⎤⎦t t BTrI

1 in( ) ˆ ( ) ˆ( ) . The

eigenprojectors present in these probabilities are a aP =aˆ and b bP =bˆ . Obviously,
 = ºb b¥

¥t Blimt
I ( )( ) ( ), where B is given by (34c). The evolution of the state r1ˆ is

asymmetric in time; namely, a simple criterion for the determination of direction of time is to
find whether the probability b tI ( )( ) reaches b

¥( ) at distant future (forward orientation of time)
or at distant past (backward orientation of time). However, this criterion cannot be applied in
the presence of postselection, since we are limited to the measurements between the initial
and final time. A suitable test that can be easily generalized to the case with postselection, is
the time behaviour of the function  -b b

¥tI ( )( ) ( ) . We can say that the time ‘flows’ in the

direction in which this function monotonously decreases. Since  =b t BI
in( )( ) does indeed

monotonously approach  =b
¥ B( ) , within the first scenario one can recognize, under both

criteria, the ‘thermodynamical’ arrow of time from the past towards the future.
What happens with the arrow of time within the framework of the TSM for the post-

selected quantum system in thermal contact with a reservoir represents an open and intriguing
question. To resolve the problem, we again consider the most general postselection condition,
i.e. we take that

d a bY = - +q q1 , 42fin f f f∣ ∣ ( )

where d j= exp if f( ) is another phase factor. The corresponding quantities rfinˆ and rfinˆ are
given by (28b) and (28c), respectively, for =q qf . The time-symmetrization procedure is the
same as in the first example. First, using the explicit expression for the operator  t t,1 fin

ˆ ( ) and
the condition (20), we obtain the operator  =

-
t t t t, ,2

1
fin 1 fin

ˆ ( ) ˆ ( )†
and the vector

r r=
-

t t t,2 2
1

fin finˆ ( ) ˆ ( ) . Secondly, we get the mixed state operator r t2ˆ ( ) in the following
form:

*
r =

⎧⎨⎩
⎫⎬⎭t

A D

D B
, 432

fin fin

fin fin
ˆ ( ) ( )

where = - + - - - -A q p A p q p A B1 1 1fin f f f f f( ) ( ) ( )( ),
= + - - - -B q p A p q p A B1 1fin f f f f f( ) ( )( ) and d= -D q q p1fin f f f f( ) .
Finally, we calculate the TSM probability for the quantum event of interest. Again, we

analyze the probability *b t( ) at the time *=t t , which is given by (14), whereP = Pbj
ˆ ˆ , and

r t1ˆ ( ) and r t2ˆ ( ) are given by (40b) and (43), respectively. The distinguishable quantum events
are again Paˆ and Pbˆ . In the expression for the probability only the reductions rP Ptj j1

ˆ ˆ ( ) ˆ and
rP Ptj j2

ˆ ˆ ( ) ˆ , a b=j , are present, so the calculation is direct. We get

* =
+

b t
B B

A A B B
. 44in fin

in fin in fin
( ) ( )

This expression allows us to analyze the status of the ‘arrow of time’ in the considered
example. As we have previously defined, the direction of time exists if the quantity
 -b b

¥t( ) ( ) is a monotonous function of time. The behaviour of this function can be easily
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obtained numerically, for any values of the preselection and postselection parameters,
Îq 0, 1i [ ] and Îq 0, 1f [ ], as well as arbitrary temperature Î ¥T 0,( ), i.e.
º Îb

¥B 0, 1 2( )( ) , and the interval D = -t tfin in. We have found that, for almost all of
the analyzed cases, the considered function is not monotonous. Thus, in general, the arrow of
time, as defined, cannot be reconstructed in a postselected system, with the given evolution.
The monotonous behaviour has been observed only for the following special cases. The first
such situation is the natural postselection, which is again obtained for =q 1 2f , for any
temperature. In this case we have  =b bt tI( ) ( )( ) for all times between the initial and the final
instant of time. Obviously, in this case the arrow of time is the same as in the absence of the
postselection. Note that this existence of the arrow of time is not a purely thermodynamical
property, since it requires a special postselection condition.

The other special case is the choice º =b
¥B 0( ) (and thus A= 1), which corresponds

to the absolutely cold reservoir ( T 0). Under this assumption, the evolution operator
 t t,1 in
ˆ ( ) given by (39) is of the same form as the expression (24) for the evolution operator
for the spontaneous deexcitation, considered in the previous example. The probability in this
case is given by

* =
- + -

- + -
b

D

D

t
q p q q p q

q q p q

1 2 1 2

1 2 1 2
, 45i i f i f

f i f
( ) ( ) ( )

( ) ( )

where = -GDDp exp( ), D = -t tfin in. The time dependence of the probability (45) comes
only from the factor -q p q1i i f( ), which depends both on the preselection and the
postselection condition. The probability monotonously decreases in time, regardless of the
preselection and the postselection condition, except for =q 0i or =q 1f , for which the
probability is constant. Therefore, the obtained monotonous decrease in time is a purely
thermodynamical phenomenon. Since in this case   - =b b b

¥t t( ) ( )( ) , this fact can be
used to operationally define the thermodynamical arrow of time in the considered system.
That is, if the postselected system is in contact with the reservoir of the near zero absolute
temperature, the thermodynamical arrow of time points to the direction in which the
probability of finding the system in the higher energy state decreases. This direction is the
same as in the absence of postselection.

4. Concluding remarks

The main result of the present paper is the derivation of a general TSM for obtaining the
corresponding probabilities for postselected systems, in the case of nonunitary, pure state →
mixed state evolution. In order to achieve this aim, it is necessary to introduce two different
scenarios. That is, the system must be described by two different (mixed) states r t1ˆ ( ) and
r t2ˆ ( ), which evolve from the preselected and the postselected state, rinˆ and rfinˆ , respectively,

under the action of two different evolution superoperators,U1
ˆ̂ andU2

ˆ̂ . The superoperatorU1
ˆ̂ is

identical to the evolution operator in the absence of postselection, while U2
ˆ̂ can be obtained

from the condition =U t t U t t I, ,1 fin 2 fin
ˆ̂ ( )◦ ˆ̂ ( ) ˆ̂†

. For computational simplicity, we have also
used a representation in which the mixed states are given as vector columns, while the
superoperators are represented as matrices. In the sense discussed in section 2.3, one can say
that the presented theory is time-symmetrized; however, it is not time-symmetrized under the
standard use of the term.

The formalism of the two scenarios can give us more insight into the interplay of the
preselection and the postselection condition at the time of intermediate measurement. The
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developed method allows us to consider many significant systems which evolve nonunitarily,
from the standpoint of the TSM. An interesting property of many of such systems is that they
show an explicit time-asymmetry in the absence of postselection, in a sense that an arrow of
time can be defined. Even in the presence of postselection, we are able to discuss the status of
the arrow of time, from the standpoint of measurable TSM probabilities.

Two important and characteristic examples of nonunitary pure state → mixed state
evolving systems are spontaneously emitting atoms and the systems approaching thermal
equilibrium. Both of the considered systems are relevant in many different areas of physics.
We have analyzed these two systems in the approximation of two nondegenerate energy

levels. In the case of spontaneous deexcitation of atoms, the evolution superoperator U1
ˆ̂

follows from the theory of radiative transitions, while in the case of thermalization process, a
toy-model of this superoperator has been constructed on physical grounds. By using the

vector representation of the mixed states, we have found the superoperatorU2
ˆ̂ and the states of

the two scenarios, r t1ˆ ( ) and r t2ˆ ( ). We have calculated the TSM probability of finding the
system in the excited state, with a most general preselection and postselection condition. For
the atomic decaying system in the absence of postselection, the probability of finding the
atom in the excited state decays exponentially to zero. Operationally, the arrow of time can be
defined as the direction of time in which this probability monotonously decreases. In the
presence of arbitrary postselection, the corresponding survival probability also monotonously
decreases in time; thus, the existence of the arrow of time persists. For the thermalization
process in the absence of postselection, the probability of finding the system in the higher
energy state exponentially approaches a given equilibrium value. This allows us to oper-
ationally define the arrow of time as a monotonous approach of this probability to the
equilibrium value. However, the corresponding TSM probability does not satisfy this con-
dition, except for the special cases such as the zero temperature, and the so-called natural
postselection. This means that, in general, the thermodynamical arrow of time does not exist
(under the given definition) in the postselected theory.

In this paper we focused on the so-called strong measurements in postselected systems.
In the act of such a measurement, the state of the system collapses due to a strong coupling to
the measuring device. While the strong postselected measurements are actively researched
[9, 10], the results are mostly theoretical. The framework of postselected systems and time-
symmetrized quantum mechanics allows for another nontrivial type of measurement, the so-
called weak measurement [7, 8]. The coupling with the measuring device is weak, and thus,
there is no reduction of the quantum state; the result of the measurement procedure is the so-
called weak value of the observable. Recently, the concept of weak values has not only been
applied for theoretical considerations [11, 12], but has also enabled an entire new class of
experiments. The weak measurements have been applied to significantly enhance the mea-
sured experimental signal [13], but also to probe quantities fundamentally unaccessible to the
strong measurements [14, 15]. The generalization of the formalism of the weak measurements
to the case of nonunitary pure state → mixed state evolution, analogously to the presented
method, is a natural continuation of this work.

There are many open theoretical problems related to the nonunitary evolution. For
example, the process of thermalization itself is not completely understood; another example is
the well-known black hole information paradox. The TSM presented in this work allows us to
consider such problems from a standpoint of postselected systems. It might be possible to
gain new insight into these phenomena, especially if we indeed generalize the method to the
weak measurements.
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EFFECTIVE LIFETIMES OF THE
POSTSELECTED HYDROGEN ATOMS

I. P. Prlina and N. N. Nedeljković

University of Belgrade, Faculty of Physics, P.O.Box 368, Belgrade, Serbia

Abstract. The time symmetrized two-state vector model is adapted for
postselected quantum systems with effectively non-unitary evolutions. We
study the radiative decay 2p → 1s of the postselected hydrogen atom. The
effective lifetime ¿eff(t) is obtained for a model postselection, and accelera-
tion or attenuation of the decay due to the postselection is briefly discussed,
with emphases on the possible experimental applications.

1. INTRODUCTION

In recent times, some interesting systems and phenomena based on
the time-symmetrized two-state vector model (TVM) [1, 2, 3, 4] have been
considered theoretically; for example, the weak trace describing the past
of a quantum particle [5]. The practical applications of the so called weak
measurements on the postselected systems have also been demonstrated,
based on the their ability to enhance the measured experimental signal
[6]. Some intriguing experiments based on the TVM, such as determining
the ”trajectories” of individual photons [8] and the wave function of the
photon itself [7], have been recently performed. In the cited experiments,
the weak measurements have been used, because in that case the reduction
of quantum state can be avoided. The ”strong” measurements, which could
also produce a series of intriguing results, have not gained such attention.

In the present article we apply the TVM to the quantum decay of
the postselected atomic systems. To concretize the problem, we analyze the
(radiative) decay of the hydrogen atoms, considering the 2p → 1s transi-
tions. That is, we derive the time-symmetrized survival probability PS(t).
As a consequence of postselection, we obtain a modified ”decay law” in

comparison to the exponential decay P(0)
S (t) = exp(−t/¿), where ¿ is the

radiative lifetime in the absence of postselection. The survival probability
PS(t) decreases in time with the effective lifetime ¿eff(t) different than ¿ .
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2. THEORETICAL MODEL

We assume that the atomic system is preselected at the time tin in
the state ½̂in = ∣¯⟩⟨¯∣, where ∣¯⟩ is the first excited atomic electronic state of
energy E¯ ; the ground state will be denoted by ∣®⟩. For the postselection we

choose the ”measurement” Π̂fin ≡ ½̂fin = ∣Ψfin⟩⟨Ψfin∣. We analyze the inter-
mediate survival probability PS(t

∗) at the time t = t∗, on the postselected
(teleological) ensemble.

The probability PS(t
∗) is given by

PS(t
∗) =

Tr
(
½̂1(t

∗)Π̂¯

)
Tr

(
½̂¯(tfin)Π̂fin

)

Tr
(
½̂0(tfin)Π̂fin

) , (1)

for Π̂¯ = ∣¯⟩⟨¯∣. In Eq. (1), ½̂1(t
∗) is the result of the time evolution

of the initial state ½̂in at the time of the intermediate measurement. By
considering the radiative transitions in the atomic systems standardly as
a consequence of the coupling of these systems to the field of photons,
we get: ½̂1(t

∗) = e−Γ¯Δi ∣¯⟩⟨¯∣ + ∣a(Δi)∣2∣®⟩⟨®∣, where Δi = t∗ − tin and
∣a(Δi)∣ =

√
1− e−Γ¯Δi . The quantity Γ¯ has the meaning of the transition

rate; the quantity ¿ = 1/Γ¯ is the lifetime of the level E¯ . For the explicit
calculation of the survival probability we also need the expression ½̂¯(tfin) =
½̂1(t

∗)/Δi→Δf
, where Δf = tfin − t∗. In general, the quantity ½̂0(tfin) in Eq.

(1) depends on the particular experimental setup. In the considered case
we have ½̂0(tfin) = exp (−Γ¯Δi)½̂¯(tfin) + ∣a(Δi)∣2∣®⟩⟨®∣.

The postselection condition requires that the state ∣Ψfin⟩ is obtained
by measurement performed on the atomic system at the final time t = tfin.
By the choice of the particular postselection, providing that the teleological
ensemble could exist, we modify the dynamics of the radiative decay. We
consider the following postselection:

∣Ψfin⟩ = ∣¯⟩+ ²∣®⟩√
1 + ∣²∣2 , (2)

where ² is a complex parameter. By this kind of postselection, via the
parameter ², we can choose the desired fraction (percentage) of survived
excited atoms at the final time t = tfin, and analyze their behavior in the
time t = t∗ < tfin.

Finally, for the survival probability PS(t
∗) we have:

PS(t
∗) =

1 + ∣²∣2 (eΓ¯Δf − 1
)

1 + ∣²∣2 (eΓ¯Δ − 1)
, (3)

where Δ = tfin − tin. To simplify the presentation of our results, we express
the parameter ² in terms of the final survival probability PSf , namely we
take that PS(tfin) = PSf ; from this we get ∣²∣ =

√
(1/PSf − 1) / (eΓ¯Δ − 1).
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3. EFFECTIVE LIFETIME

We define the effective decay rate Γeff(t) by the following relation:
Γeff(t) = − [dPS(t)/dt] /PS(t); the effective lifetime can be introduced as
¿eff(t) = 1/Γeff(t). The quantity ¿eff(t) can be obtained in the analytic
form; namely, for the survival probability given by Eq. (3), we get

¿eff = ¿

[
1 + et/¿

PSf − P(0)
Sf

1− PSf

]
. (4)

The effective lifetime can be easily controlled by choosing the PSf by the
appropriate postselection condition; also, the effective lifetime depends on

the time of postselection tfin via the probability P(0)
Sf = P(0)

S (tfin).

Figure 1. Effective lifetimes ¿eff .

In Fig. 1 we present the quantity ¿eff(t) obtained from Eq. (4)
for the hydrogen atom postselected at different final times tfin. For a given

27th SPIG Atomic Collision Processes 

28



final time, the effective lifetimes are considered for the atomic system post-
selected for PSf = 0.2, 0.5 and 0.8, as well as for PSf = 0, and for ”natural

postselection” PSf = P(0)
Sf , i.e., for ∣²∣ = 1. For PSf = 1, ¿eff = ∞. For the

natural postselection ¿eff(t) = ¿ ; in other cases, the quantity ¿eff(t) could
be less or greater than ¿ depending on the postselection and the final time.
This circumstance can be interpreted as acceleration and attenuation of the
decay, respectively, due to the postselection.

This conclusion could be of importance for the spectroscopy. That
is, if the measurement of the spectral line is performed in the postselected

atomic system such that ¿eff > ¿ , which is the case for PSf > P(0)
Sf =

exp (−tfin/¿), we could obtain more precise values of the atomic energies
than in the absence of postselection, since the line width Γeff < Γ¯ . Also,
the same effect potentially allows to gain better monochromaticity of radia-
tion, by collecting only those photons which originate from the postselected
atoms. Detailed analysis of these applications requires an additional work.
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POPULATION DYNAMICS OF THE
SVI, ClVII AND ArVIII IONS IN THE

GRAZING INCIDENCE ON SOLID SURFACE

M. D Majkić, S. M. D. Galijaš, I. P. Prlina and N. N. Nedeljković

University of Belgrade, Faculty of Physics, P.O.Box 368, Belgrade, Serbia

Abstract. We apply the two-state vector model recently adapted to the
grazing incidence geometry to investigate the population dynamics of the
SVI, ClVII and ArVIII ions interacting with solid surface. We calculate
the corresponding intermediate population probabilities and rates, as well
as the neutralization distances. The effect of the ionic core polarization
is demonstrated: the magnitude of the population probability maxima in-
creases and the neutralization distances decrease in respect to the point-like
ionic core case. The population probabilities for the grazing incidence are
shifted toward the smaller ion-surface distances com-pared to the escaping
geometry.

1. INTRODUCTION

Recently, the population dynamics of the multiply charged ions
ArVIII, KrVIII and XeVIII impinging the conducting solid surface in the
grazing incidence geometry has been analyzed within the framework of the
two-state vector model (TVM) [1, 2]. The effective modification of the
Fermi-Dirac distribution of the electron momenta in solid due to the par-
allel ionic velocity v∣∣ has been taken into account. The results have been
used to produce a complete quantum explanation of the classical trajectory
of these ions during the cascade neutralization in the interaction with the
solid surface. The ions ArVIII, KrVIII and XeVIII have the same ionic core
charge Z = 8; their difference originated from different polarization of their
cores.

In the present article we use the TVM to investigate the popula-
tion of the Rydberg states of the SVI, ClVII and ArVIII ions under the
grazing incidence. The intermediate population probabilities for these ions
are known only for the ions escaping solid surfaces in the perpendicular di-
rection [3], for small velocities v = v⊥ ≪ 1 a.u. The ions SVI, ClVII and
ArVIII have different core charges Z = 6, 7 and 8, and different core polar-
izations. The effect of the parallel velocity, observed for the ions ArVIII,
KrVIII and XeVIII is also expected for the ions SVI and ClVII.

27th SPIG Particle and Laser Beam Interaction with Solids 
                                                    

178



2. POPULATION PROCESS IN THE SCATTERING
GEOMETRY

The TVM is the time-symmetrized quantum model of the postse-
lected systems: characteristic feature is the use of the two state vectors for
describing the state of a single active electron. In the process of population
of the Rydberg states of the considered ions, the first state vector evolves
from the given initial state (electron in solid in the kinematically modified
state ¹′

M at the time t = tin) toward the future. Simultaneously, the sec-
ond state vector evolves toward the given final state (electron captured by
the ion in a given ionic state ºA = (nA, lA,mA)). The TVM population
probabilities for the grazing geometry and for the ions escaping the sur-
face perpendicularly are based on the same general expressions; however,
the parallel velocity has a nontrivial effect [1, 2]. Within the framework of
the TVM the intermediate population probability PºA(t) is defined for the
electron capture by the ion at the time t, when the ion is at the distance
R = R(t). The possibility that the captured electron can be recaptured by
the solid is taken into account.

The basic physical quantity of our TVM is the so called mixed flux
I¹′

M
,ºA

[1, 4]. Using the mixed flux, we directly calculate the intermediate
transition probability per unit energy parameter °′

M at the time t

T¹′
M
,ºA

(t) =

∣∣∣∣
∫ t

tin

I¹′
M
,ºA

(t′)dt′
∣∣∣∣
2

, (1)

and the corresponding (velocity dependent) transition probability TºA(t).
We note that the energies E′

M = −°′2
M/2 are shifted due to the parallel

velocity v∥ ∕= 0. This shift can be calculated by applying the necessary
Galilean transformations. Finally, we get the neutralization and population
probabilities, which can be expressed as

PºA(t) = 1− exp [−TºA(t)] . (2)

3. RESULTS

In Fig. 1 we present the population probabilities of the ions SVI,
ClVII and ArVIII, for the polarized ionic cores and in the absence of core
polarization (thick- and thin-solid curves, respectively). In the same figure
we also present the corresponding rates ΓºA = dPºA(t)/dt. The popula-
tion probabilities with polarized cores are positioned closer to the surface in
comparison to the same quantities obtained in the point-like core approx-
imation; the same effect has been observed in the case of normal escaping
geometry in Ref. [3]. Population probabilities exhibit maxima at the dis-
tance R = Rmax. The decrease of these probabilities closer to the surface is
a consequence of the reionization process (electron recapture by the solid).
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Figure 1. Population and neutralization probabilities and rates.

Neutralization distances RN
c represent the position of maxima of

the population rates ΓºA ; these distances can be considered as distances at
which the population process is mainly localized.

In Fig. 2 we present the neutralization distances RN
c of the con-

sidered ions (obtained from the population rates) as a function of principal
quantum number nA (thick-solid curves), and compare the results with those
obtained in Ref. [3] for the normal escaping geometry (dashed curves). The
neutralization distances in the point-like case are presented by thin-solid
curves. We see that the neutralization distances corresponding to the same
ion and the same quantum state obtained in the present article in the case
of grazing geometry are smaller in comparison to normal escaping geometry
case. This means that the effect of the parallel velocity shifted the process
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Figure 2. Neutralization distances RN
c .

closer to the surface. This effect is more pronounced for greater quantum
numbers.

From Fig. 2 we also recognize that the neutralization distances for
polarized cores are smaller than in the case of point-like core approximation.
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vi

In this work we present our contribution to thme method of using Landau singularities

for probing scattering amplitudes in planar massles quantum field theories. We start

by proposing a simple geometric algorithm for determining the complete set of branch

points of amplitudes in planar N = 4 super-Yang-Mills theory directly from the ampli-

tuhedron, without resorting to any particular representation in terms of local Feynman

integrals. This represents a step towards translating integrands directly into integrals.

In particular, the algorithm provides information about the symbol alphabets of general

amplitudes. First we illustrate the algorithm applied to the one- and two-loop MHV

amplitudes. Then we demonstrate how to use the recent reformulation of amplituhe-

dra in terms of ‘sign flips’ in order to streamline the application of this algorithm to

amplitudes of any helicity. In this way we recover the known branch points of all one-

loop amplitudes, and we find an ‘emergent positivity’ on boundaries of amplituhedra.

Lastly, we look beyond planar N = 4 super-Yang-Mills theory, and analyze Landau

singularities of general massless planar theories. In massless quantum field theories

the Landau equations are invariant under graph operations familiar from the theory of

electrical circuits. Using a theorem on the Y-∆ reducibility of planar circuits we prove

that the set of first-type Landau singularities of an n-particle scattering amplitude in any

massless planar theory, in any spacetime dimension D, at any finite loop order in per-

turbation theory, is a subset of those of a certain n-particle b(n−2)2/4c-loop “ziggurat”

graph. We determine this singularity locus explicitly for D = 4 and n = 6 and find that

it corresponds precisely to the vanishing of the symbol letters familiar from the hexagon

bootstrap in SYM theory. Further implications for SYM theory are discussed.
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Chapter 1

Introduction

Ever since its conception, the Feynman diagram approach has been the standard paradigm

for perturbative calculations in quantum field theory. While the method can, in princi-

ple, be used at any order in perturbation theory, the calculations get more and more de-

manding at each new loop order. Alternately one can seek hidden symmetries and new

underlying principles which motivate new calculational approaches where the most ba-

sic features of Feynman diagrams, such as unitarity and locality, are emergent instead

of manifest. Recent years have seen tremendous success in “reverse engineering” such

new symmetries and principles from properties of scattering amplitudes. This approach

has been particularly fruitful in simple quantum field theories such as the planar maxi-

mally supersymmetric N = 4 super-Yang-Mills (SYM) theory [1].

In particular, it has been realized that the unitarity and locality of the integrands [2]

of loop-level amplitudes in SYM theory can be seen to emerge from a very simple ge-

ometric principle of positivity [3]. Moreover, it has been proposed that all information

about arbitrary integrands in this theory is encapsulated in objects called amplituhe-

dra [4, 5] that have received considerable recent attention; see for example [6, 7, 8, 9,

10, 11, 12, 13]. Unfortunately, there remains a huge gap between our understanding of

integrands and our understanding of the corresponding integrated amplitudes. Despite

great advances in recent years we of course don’t have a magic wand that can be waved

at a general integrand to “do the integrals”. Indeed, modern approaches to computing

multi-loop amplitudes in SYM theory, such as the amplitude bootstrap [14, 15] even es-

chew knowledge of the integrand completely. It would be enormously valuable to close
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this gap between our understanding of integrands and amplitudes.

Physical principles impose strong constraints on the scattering amplitudes of ele-

mentary particles. For example, when working at finite order in perturbation theory,

unitarity and locality appear to constrain amplitudes to be holomorphic functions with

poles and branch points at precisely specified locations in the space of complexified

kinematic data describing the configuration of particles. Indeed, it has been a long-

standing goal to understand how to use the tightly prescribed analytic structure of scat-

tering amplitudes to determine them directly, without relying on traditional (and, often

computationally complex) Feynman diagram techniques.

The connection between the physical and mathematical structure of scattering am-

plitudes has been especially well studied in planar N = 4 super-Yang–Mills [1] SYM1

theory in four spacetime dimensions, where the analytic structure of amplitudes is es-

pecially tame. One of the overall aims of this work, its predecessors [16, 17], and its

descendant(s), is to ask a question that might be hopeless in another, less beautiful

quantum field theory: can we understand the branch cut structure of general scatter-

ing amplitudes in SYM theory?

The motivation for asking this question is two-fold. The first is the expectation that

the rich mathematical structure that underlies the integrands of SYM theory (the rational

4L-forms that arise from summing L-loop Feynman diagrams, prior to integrating over

loop momenta) is reflected in the corresponding scattering amplitudes. For example,

it has been observed that both integrands [3] and amplitudes [18, 15, 19] are deeply

connected to the mathematics of cluster algebras.

Second, on a more practical level, knowledge of the branch cut structure of ampli-

tudes is the key ingredient in the amplitude bootstrap program, which represents the

current state of the art for high loop order amplitude calculations in SYM theory. In par-

ticular the hexagon bootstrap (see for example [14]), which has succeeded in computing

all six-particle amplitudes through five loops [20], is predicated on the hypothesis that

at any loop order, these amplitudes can have branch points only on 9 specific loci in the

1We use “SYM” to mean the planar limit, unless otherwise specified.
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space of external data. Similarly the heptagon bootstrap [21], which has revealed the

symbols of the seven-particle four-loop MHV and three-loop NMHV amplitudes [22],

assumes 42 particular branch points. One result we hope follows from understanding

the branch cut structure of general amplitudes in SYM theory is a proof of this counting

to all loop order for six- and seven-particle amplitudes.

As a step in that direction, and motivated by [23], a systematic exploration of how

integrands encode the singularities of integrated amplitudes,in particular their branch

points, has been performed in [16]. Scattering amplitudes in quantum field theory gen-

erally have very complicated discontinuity structure. The discontinuities across branch

cuts are given by sums of unitarity cuts [24, 25, 26, 27, 28, 29]. These discontinuities

may appear on the physical sheet or after analytic continuation to other sheets; these

higher discontinuities are captured by multiple unitarity cuts (see for example [30, 31]).

A long-standing goal of the S-matrix program, in both its original and modern incarna-

tions, has been to construct expressions for the scattering amplitudes of a quantum field

theory based solely only on a few physical principles and a thorough knowledge of their

analytic structure. In [16] the branch cut structure of one- and two-loop MHV ampli-

tudes in SYM theory starting from certain representations of their integrands in terms

of local Feynman integrals [32] has been studied. In [16] all of their known branch

points have been found, but many other, spurious branch points that are artifacts of the

particular representations used, were also encountered. Indeed, the analysis of [16] was

completely insensitive to numerator factors in the integrand, but the numerators are re-

ally where all of the action is—in any standard quantum field theory the denominator

of a loop integrand is a product of local propagators; the numerator is where all of the

magic lies.

One of the goals in this work is to improve greatly on the analysis of [16]. We do

this by presenting a method for asking the amplituhedron to directly provide a list of

the physical branch points of a given amplitude.

It is a general property of quantum field theory (see for example [27, 33]) that the

locations of singularities of an amplitude can be determined from knowledge of the
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poles of its integrand by solving the Landau equations [26]. Constructing explicit rep-

resentations for integrands can be a challenging problem in general, but in SYM theory

this can be side-stepped by using various on-shell methods [28, 34, 35, 36] to efficiently

determine the locations of integrand poles. This problem is beautifully geometrized by

amplituhedra [4], which are spaces encoding representations of integrands in such a

way that the boundaries of an amplituhedron correspond precisely to the poles of the

corresponding integrand. Therefore, as pointed out in [17], the Landau equations can be

interpreted as defining a map that associates to any boundary of an amplituhedron the

locus in the space of external data where the corresponding amplitude has a singularity.

Only MHV amplitudes were considered in [17]. In this paper we also show how to

extend the analysis to amplitudes of arbitrary helicity. This is greatly aided by a recent

combinatorial reformulation of amplituhedra in terms of “sign flips” [37]. As a specific

application of our algorithm we classify the branch points of all one-loop amplitudes in

SYM theory. Although the singularity structure of these amplitudes is of course well-

understood (see for example [38, 39, 40, 41, 42, 43, 44, 45, 46]), this exercise serves a

useful purpose in preparing a powerful toolbox for the sequel [47] to this paper where

we will see that boundaries of one-loop amplituhedra are the basic building blocks at

all loop order. In particular we find a surprising ‘emergent positivity’ on boundaries of

one-loop amplituhedra that allows boundaries to be efficiently mapped between differ-

ent helicity sectors, and recycled to higher loop levels.

While we have found an efficient method to obtain non-spurious singularities in

planar N = 4 super-Yang-Mills (SYM) theory, we have also analyzed the potential sin-

gularity structure of an arbitrary planar massless theory. For over half a century much

has been learned from the study of singularities of scattering amplitudes in quantum

field theory, an important class of which are encoded in the Landau equations [26]. This

work combines two simple statements to arrive at a general result about such singu-

larities. The first is based on the analogy between Feynman diagrams and electrical

circuits, which also has been long appreciated and exploited; see for example [48, 49,

50] and chapter 18 of [51]. Here we use the fact that in massless field theories, the sets
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of solutions to the Landau equations are invariant under the elementary graph opera-

tions familiar from circuit theory, including in particular the Y-∆ transformation which

replaces a triangle subgraph with a tri-valent vertex, or vice versa. The second is a theo-

rem of Gitler [52], who proved that any planar graph (of the type relevant to the analysis

of Landau equations, specified below) can be Y-∆ reduced to a class we call ziggurats.

We conclude that the n-particle b(n−2)2/4c-loop ziggurat graph encodes all possible

first-type Landau singularities of any n-particle amplitude at any finite loop order in any

massless planar theory. Although this result applies much more generally, our original

motivation arose from related work [16, 17, 53, 47] on planar N = 4 supersymmetric

Yang-Mills (SYM) theory, for which our result has several interesting implications.

This work is organized as follows. In 2 we apply the Amplituhedron to directly

obtain non-spurious singularities of MHV amplitudes, and we explicitely conduct the

procedure at one and two loops [17]. In 3 we generalize the procedure to non MHV

amplitudes and present the procedure at the one loop example [53]. Finally, in 4 we

describe a method for finding all-loop singularities in general planar massless theories

[54].
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Chapter 2

Landau Singularities from the

Amplituhedron

2.1 Introduction

2.1.1 Momentum Twistors

We begin by reviewing the basics of momentum twistor notation [55], which we use

throughout our calculations. Momentum twistors are based on the correspondence be-

tween null rays in (complexified, compactified) Minkowski space and points in twistor

space (P3), or equivalently, between complex lines in P3 and points in Minkowski

space. We use Za, Zb, etc. to denote points in P3, which may be represented using

four-component homogeneous coordinates ZI
a = (Z1

a , Z2
a , Z3

a , Z4
a) subject to the identifi-

cation ZI
a ∼ tZI

a for any non-zero complex number t. We use (a b) as shorthand for the

bitwistor εI JKLZK
a ZL

b . Geometrically, we can think of (a b) as the (oriented) line contain-

ing the points Za and Zb. Similarly we use (a b c) as shorthand for εI JKLZ J
aZK

b ZL
c , which

represents the (oriented) plane containing Za, Zb and Zc. Analogously, (a b c) ∩ (d e f )

stands for εI JKL(a b c)K(d e f )L, which represents the line where the two indicated planes

intersect. In planar SYM theory we always focus on color-ordered partial amplitudes so

an n-point amplitude is characterized by a set of n momentum twistors ZI
i , i ∈ {1, . . . , n}

with a specified cyclic ordering. Thanks to this implicit cyclic ordering we can use ī as

shorthand for the plane (i−1 i i+1), where indices are always understood to be mod n.
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The natural SL(4, C) invariant is the four-bracket denoted by

〈a b c d〉 ≡ εI J K LZI
aZ J

bZK
c ZL

d . (2.1)

We will often be interested in a geometric understanding of the locus where such four-

brackets might vanish, which can be pictured in several ways. For example, 〈a b c d〉 = 0

only if the two lines (a b) and (c d) intersect, or equivalently if the lines (a c) and (b d)

intersect, or if the point a lies in the plane (b c d), or if the point c lies on the plane (a b d),

etc. Computations of four-brackets involving intersections may be simplified via the

formula

〈(a b c) ∩ (d e f ) g h〉 = 〈a b c g〉〈d e f h〉 − 〈a b c h〉〈d e f g〉 . (2.2)

In case the two planes are specified with one common point, say f = c, it is convenient

to use the shorthand notation

〈(a b c) ∩ (d e c) g h〉 ≡ 〈c (a b)(d e)(g h)〉 (2.3)

which highlights the fact that this quantity is antisymmetric under exchange of any two

of the three lines (a b), (d e), and (g h).

2.1.2 Positivity and the MHV Amplituhedron

In this paper we focus exclusively on MHV amplitudes. The integrand of an L-loop

MHV amplitude is a rational function of the n momentum twistors Zi specifying the

kinematics of the n external particles, as well as of L loop momenta, each of which cor-

responds to some line L(`) in P3; ` ∈ {1, . . . , L}. The amplituhedron [4, 5] purports to

provide a simple characterization of the integrand when the ZI
i take values in a par-

ticular domain called the positive Grassmannian G+(4, n). In general G+(k, n) may be

defined as the set of k× n matrices for which all ordered maximal minors are positive;

that is, 〈ai1 · · · aik〉 > 0 whenever i1 < · · · < ik.

Each line L(`) may be characterized by specifying a pair of points L(`)
1 , L(`)

2 that

it passes through. We are always interested in n ≥ 4, so the Zi generically provide a
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basis for C4. In the MHV amplituhedron a pair of points specifying each L(`) may be

expressed in the Zi basis via an element of G+(2, n) called the D-matrix:

L(`)I
α =

n

∑
i=1

D(`)
αi ZI

i , α = 1, 2 . (2.4)

For n > 4 the Zi are generically overcomplete, so the map eq. (2.4) is many-to-one.

The L-loop n-point MHV amplituhedron is a 4L-dimensional subspace of the 2L(n−
2)-dimensional space of L D-matrices. We will not need a precise characterization of that

subspace, but only its grossest feature, which is that it is a subspace of the space of L

mutually positive points in G+(2, n). This means that it lives in the subspace for which

all ordered maximal minors of the matrices

(
D(`)

)
,

D(`1)

D(`2)

 ,


D(`1)

D(`2)

D(`3)

 , etc.

are positive.

A key consequence of the positivity of the D-matrices is that, for positive external

data ZI
i ∈ G+(4, n), all loop variables L(`) are oriented positively with respect to the

external data and to each other: inside the amplituhedron,

〈L(`) i i+1〉 > 0 for all i and all `, and (2.5)

〈L(`1) L(`2)〉 > 0 for all `1, `2. (2.6)

The boundaries of the amplituhedron coincide with the boundaries of the space of posi-

tive D-matrices, and occur for generic Z when one or more of these quantities approach

zero.

It is worth noting that the above definition of positivity depends on the arbitrary

choice of a special point Z1, since for example 〈L 1 2〉 > 0 but the cyclically related

quantity 〈L n 1〉 is negative. The choice of special point is essentially irrelevant: it just

means that some special cases need to be checked. In calculations we can sidestep this
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subtlety by always choosing to analyze configurations involving points satisfying 1 ≤
i < j < k < l ≤ n, which can be done without loss of generality. The geometric

properties of figures 2.2–2.5 below are insensitive to the choice and always have full

cyclic symmetry.

The integrand of an MHV amplitude is a canonical form dΩ defined by its having

logarithmic singularities only on the boundary of the amplituhedron. The numerator of

dΩ conspires to cancel all singularities that would occur outside this region (see [9] for

some detailed examples). Our analysis will require no detailed knowledge of this form.

Instead, we will appeal to “the amplituhedron” to tell us whether or not any given

configuration of lines L(`) overlaps the amplituhedron or its boundaries by checking

whether eqs. (2.5) and (2.6) are satisfied (possibly with some = instead of >).

2.1.3 Landau Singularities

The goal of this paper is to understand the singularities of (integrated) amplitudes. For

standard Feynman integrals, which are characterized by having only local propagators

in the denominator, it is well-known that the locus in kinematic space where a Feyn-

man integral can potentially develop a singularity is determined by solving the Landau

equations [26, 56, 33] which we now briefly review.

After Feynman parameterization any L-loop scattering amplitude in D spacetime

dimensions may be expressed as a linear combination of integrals of the form

∫ L

∏
r=1

dDlr
∫

αi≥0
dνα δ

(
1−

ν

∑
i=1

αi

)
N (lµ

r , pµ
i , ...)

Dν
(2.7)

where ν is the number of propagators in the diagram, each of which has an associated

Feynman parameter αi, N is some numerator factor which may depend on the L loop

momenta lµ
r as well as the external momenta pµ

i , and finally the denominator involves

D =
ν

∑
i=1

αi(q2
i −m2

i ) , (2.8)
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where qµ
i is the momentum flowing along propagator i which carries mass mi. The in-

tegral can be viewed as a multidimensional contour integral in the LD + ν integration

variables (lµ
r , αi), where the αi contours begin at αi = 0 and the lµ

r contours are consid-

ered closed by adding a point at infinity. Although the correct contour for a physical

scattering process is dictated by an appropriate iε prescription in the propagators, a

complete understanding of the integral, including its analytic continuation off the phys-

ical sheet, requires arbitrary contours to be considered.

An integral of the above type can develop singularities when the denominator D
vanishes in such a way that the contour of integration cannot be deformed to avoid the

singularity. This can happen in two distinct situations:

(1) The surface D = 0 can pinch the contour simultaneously in all integration vari-

ables (lµ
r , αi). This is called the “leading Landau singularity”, though it is important

to keep in mind that it is only a potential singularity. The integral may have a branch

point instead of a singularity, or it may be a completely regular point, depending on the

behavior of the numerator factor N .

(2) The denominator may vanish on the boundary when one or more of the αi = 0

and pinch the contour in the other integration variables. These are called subleading

Landau singularities.

The Landau conditions encapsulating both possible situations are

∑
i∈loop

αiq
µ
i = 0 for each loop, and (2.9)

αi(q2
i −m2

i ) = 0 for each i. (2.10)

For leading singularities eq. (2.10) is satisfied by q2
i −m2

i = 0 for each i, while subleading

singularities have one or more i for which q2
i −m2

i 6= 0 but the corresponding αi = 0. We

will always refer to equations of type q2
i −m2

i as “cut conditions” since they correspond

to putting some internal propagators on-shell. It is important to emphasize that the

Landau equations themselves have no knowledge of the numerator factor N , which

can alter the structure of a singularity or even cancel a singularity entirely.
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Sometimes (i.e., for some diagram topologies), the Landau equations (2.9) and (2.10)

may admit solutions for arbitrary external kinematics pµ
i . This usually indicates an in-

frared divergence in the integral (we will not encounter ultraviolet divergences in SYM

theory), which may or may not be visible by integration along the physical contour.

In other cases, solutions to the Landau equations might exist only when the pµ
i lie

on some subspace of the external kinematic space. MHV amplitudes in SYM theory

are expected to have only branch point type singularities (after properly normalizing

them by dividing out a tree-level Parke-Taylor [57] factor), so for these amplitudes we

are particularly interested in solutions which exist only on codimension-one slices of the

external kinematic space. Even when the pµ
i live on a slice where solutions of the Landau

equations exist, the solutions generally occur for values of the integration variables αi

and lµ
r that are off the physical contour (for example, the αi could be complex). This

indicates a branch point of the integral that is not present on the physical sheet but only

becomes apparent after suitable analytic continuation away from the physical contour.

Finally let us note that we have ignored a class of branch points called “second-type

singularities” [58, 59, 33] which arise from pinch singularities at infinite loop momen-

tum. As argued in [16], these should be absent in planar SYM theory when one uses a

regulator that preserves dual conformal symmetry.

2.2 Eliminating Spurious Singularities of MHV Amplitudes

In principle one can write explicit formulas for any desired integrand in planar SYM

theory by triangulating the interior of the amplituhedron and constructing the canoni-

cal form dΩ with logarithmic singularities on its boundary. However, general triangu-

lations may produce arbitrarily complicated representations for dΩ. In particular, these

may have no semblance to standard Feynman integrals with only local propagators in

the denominator (see [6] for some explicit examples). It is therefore not immediately

clear that the Landau equations have any relevance to the amplituhedron. The connec-

tion will become clear in the following section; here we begin by revisiting the analysis

of [16] with the amplituhedron as a guide.
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In [16] we analyzed the potential Landau singularities of one- and two-loop MHV

amplitudes by relying on the crutch of representations of these amplitudes in terms of

one- and two-loop chiral pentagon and double-pentagon integrals [32]. The solutions

to the various sets of Landau equations for these integral topologies represent poten-

tial singularities of the amplitudes, but this set of potential singularities is too large for

two reasons. First of all, the chiral integrals are dressed with very particular numerator

factors to which the Landau equations are completely insensitive. Scalar pentagon and

double pentagon integrals certainly have singularities that are eliminated by the nu-

merator factors of their chiral cousins. Second, some actual singularities of individual

chiral integrals may be spurious in the full amplitude due to cancellations when all of

the contributing chiral integrals are summed.

It is a priori highly non-trivial to see which singularities of individual integrals sur-

vive the summation to remain singularities of the full amplitude. However, the ampli-

tuhedron hypothesis provides a quick way to detect spurious singularities from simple

considerations of positive geometry. In this section we refine our analysis of [16] to de-

termine which potential singularities identified in that paper are actual singularities by

appealing to the amplituhedron as an oracle to tell us which cuts of the amplitude have

zero or non-zero support on the (boundary of the) amplituhedron.

Specifically, we propose a check that is motivated by the Cutkosky rules [27], which

tell us that to compute the cut of an amplitude with respect to some set of cut condi-

tions, one replaces the on-shell propagators in the integrand corresponding to those cut

conditions by delta-functions, and integrates the resulting quantity over the loop mo-

menta. The result of such a calculation has a chance to be non-zero only if the locus

where the cut conditions are all satisfied has non-trivial overlap with the domain of in-

tegration of the loop momentum variables. In the present context, that domain is the

space of mutually positive lines, i.e., the interior of the amplituhedron. This principle

will lead to a fundamental asymmetry between the two types of Landau equations in

our analysis. The full set of Landau equations including both eqs. (2.9) and (2.10) should

be solvable only on a codimension-one locus in the space of external momenta in order
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(A) (B) (C)

FIGURE 2.1: Three examples of cuts on which MHV amplitudes have no
support; these appeared as spurious singularities in the Landau equation
analysis of [16] since scalar pentagon and double pentagon integrals do

have these cuts.

to obtain a valid branch point. However, guided by Cutkosky, we claim that the cut

conditions (2.10) must be solvable inside the positive domain for arbitrary (positive) ex-

ternal kinematics; otherwise the discontinuity around the putative branch point is zero

and we should discard it as spurious.

In the remainder of this section we will demonstrate this hypothesis by means of

the examples shown in figure 2.1. The leading Landau singularities of each of these

diagrams were found to be singularities of the scalar pentagon and double-pentagon

integrals analyzed in [16], but it is clear that MHV amplitudes have no support on these

cut configurations. In the next three subsections we will see how to understand their

spuriousness directly from the amplituhedron. This will motivate us to seek a better,

more direct algorithm to be presented in the following section.

2.2.1 The Spurious Pentagon Singularity

The first spurious singularity of MHV amplitudes arising from the integral representa-

tion used in [16] is the leading Landau singularity of the pentagon shown in figure 2.1a,

which is located on the locus where

〈i j k k+1〉〈ī ∩ j̄ k k+1〉 = 0 . (2.11)
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It was noted already in [27] that this solution of the Landau equations does not corre-

spond to a branch point of the pentagon integral. It arises from cut conditions that put

all five propagators of the pentagon on-shell:

0 = 〈L i−1 i〉 = 〈L i i+1〉 = 〈L j−1 j〉 = 〈L j j+1〉 = 〈L k k+1〉 , (2.12)

where L is the loop momentum. The first four of these cut conditions admit two discrete

solutions [32]: either L = (i j) or L = ī ∩ j̄. The second of these cannot avoid lying

outside the amplituhedron. We see this by representing its D-matrix as

D =


i−1 i i+1

〈i j̄〉 −〈i−1 j̄〉 0

0 〈i+1 j̄〉 −〈i j̄〉

 , (2.13)

where we indicate only the nonzero columns of the 2× n matrix in positions i−1, i and

i+1, per the labels above the matrix. The non-zero 2× 2 minors of this matrix,

〈i j̄〉〈i+1 j̄〉, 〈i−1 j̄〉〈i j̄〉, −〈i j̄〉2 (2.14)

have indefinite signs for general positive external kinematics, so this L lies discretely

outside the amplituhedron.

We proceed with the first solution L = (i j) which can be represented by the trivial

D-matrix

D =


i j

1 0

0 1

 . (2.15)

Although this is trivially positive, upon substituting L = (i j) into eq. (2.12) we find that

the fifth cut condition can only be satisfied for special kinematics satisfying

〈i j k k+1〉 = 0 . (2.16)
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Therefore, according to the Cutkosky-inspired rule discussed three paragraphs ago, the

monodromy around this putative singularity vanishes for general kinematics and hence

it is not a valid branch point at one loop. Indeed this conclusion is easily verified by

looking at the explicit results of [40].

2.2.2 The Spurious Three-Mass Box Singularity

The second spurious one-loop singularity encountered in [16] is a subleading singular-

ity of the pentagon which lives on the locus

〈j (j−1 j+1)(i i+1)(k k+1)〉 = 0 (2.17)

and arises from the cut conditions shown in figure 2.1b:

0 = 〈L i i+1〉 = 〈L j−1 j〉 = 〈L j j+1〉 = 〈L k k+1〉 . (2.18)

These are of three-mass box type and have the two solutions [4]

L = (j i i+1) ∩ (j k k+1) or L = ( j̄ ∩ (i i+1), j̄ ∩ (k k+1)). (2.19)

The two solutions may be represented respectively by the D-matrices

D =


i i+1 j

0 0 1

〈i+1 j k k+1〉 −〈i j k k+1〉 0

 (2.20)

and

D =


i i+1 k k+1

〈i+1 j̄〉 −〈i j̄〉 0 0

0 0 −〈 j̄ k + 1〉 〈 j̄ k〉

 . (2.21)

Neither matrix is non-negative definite when the Z’s are in the positive domain G+(4, n),

so we again reach the (correct) conclusion that one-loop MHV amplitudes do not have
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singularities on the locus where eq. (2.17) is satisfied (for generic i, j and k).

2.2.3 A Two-Loop Example

The two-loop scalar double-pentagon integral considered in [16] has a large number of

Landau singularities that are spurious singularities of two-loop MHV amplitudes. It

would be cumbersome to start with the full list and eliminate the spurious singularities

one at a time using the amplituhedron. Here we will be content to consider one example

in detail before abandoning this approach in favor of one more directly built on the

amplituhedron.

We consider the Landau singularities shown in eq. (4.12) of [16] which live on the

locus

〈j (j−1 j+1)(i−1 i) (k l)〉〈j (j−1 j+1)(i−1 i) k̄ ∩ l̄〉 = 0 . (2.22)

We consider the generic case when the indices i, j, k, l are well-separated; certain degen-

erate cases do correspond to non-spurious singularities. This singularity is of pentagon-

box type shown in figure 2.1c since it was found in [16] to arise from the eight cut con-

ditions
〈L(1) i−1 i〉 = 〈L(1) j−1 j〉 = 〈L(1) j j+1〉 = 〈L(1) L(2〉 = 0 ,

〈L(2) k−1 k〉 = 〈L(2) k k+1〉 = 〈L(2) l−1 l〉 = 〈L(2) l l+1〉 = 0 .
(2.23)

The last four equations have two solutions L(2) = (k l) or L(2) = k̄ ∩ l̄, but as in the

previous subsection, only the first of these has a chance to avoid being outside the am-

plituhedron. Taking L(2) = (k l), the two solutions to the first four cut conditions are

then

L(1) = (j i−1 i) ∩ (j k l) = (Zj, Zi−1〈i j k l〉 − Zi〈i−1 j k l〉) or (2.24)

L(1) =
(
(i−1 i) ∩ j̄, (k l) ∩ j̄

)
=
(

Zi−1〈i j̄〉 − Zi〈i−1 j̄〉, Zk〈l j̄〉 − Zl〈k j̄〉
)

. (2.25)
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The D-matrices corresponding to the first solution can be taken as

D(1)

D(2)

 =



i−1 i j k l

0 0 1 0 0

〈i j k l〉 −〈i−1 j k l〉 0 0 0

0 0 0 1 0

0 0 0 0 1


. (2.26)

Evidently two of its 4× 4 minors are −〈i j k l〉 and 〈i−1 j k l〉, which have opposite signs

for generic Z in the positive domain. D-matrices corresponding to the second solution

can be written as

D(1)

D(2)

 =



i−1 i k l

〈i j̄〉 −〈i−1 j̄〉 0 0

0 0 〈l j̄〉 −〈k j̄〉
0 0 1 0

0 0 0 1


, (2.27)

which again has minors of opposite signs.

We conclude that the locus where the cut conditions (2.23) are satisfied lies strictly

outside the amplituhedron, and therefore that there is no discontinuity around the pu-

tative branch point at (2.22). Indeed, this is manifested by the known fact [60] that

two-loop MHV amplitudes do not have symbol entries which vanish on this locus. Ac-

tually, while correct, we were slightly too hasty in reaching this conclusion, since we

only analyzed one set of cut conditions. Although it doesn’t happen in this example, in

general there may exist several different collections of cut conditions associated to the

same Landau singularity, and the discontinuity around that singularity would receive

additive contributions from each distinct set of associated cut contributions.
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2.2.4 Summary

We have shown, via a slight refinement of the analysis carried out in [16], that the spu-

rious branch points of one- and two-loop MHV amplitudes encountered in that paper

can be eliminated simply on the basis of positivity constraints in the amplituhedron. It

is simple to see that the cuts considered above have no support for MHV amplitudes so

it may seem like overkill to use the fancy language of the amplituhedron. However we

wanted to highlight the following approach:

(1) First, consider a representation of an amplitude as a sum over a particular type

of Feynman integrals. Find the Landau singularities of a generic term in the sum. These

tell us the loci in Z-space where the amplitude may have a singularity.

(2) For each potential singularity obtained in (1), check whether the corresponding

on-shell conditions have a non-zero intersection with the (closure of) the amplituhe-

dron. If the answer is no, for all possible sets of cut conditions associated with a given

Landau singularity, then the singularity must be spurious.

This approach is conceptually straightforward but inefficient. One manifestation of

this inefficiency is that although double pentagon integrals are characterized by four

free indices i, j, k, l, we will see in the next section the vast majority of the resulting po-

tential singularities are spurious. Specifically we will see that in order for the solution to

a given set of cut conditions to have support inside the (closure of the) amplituhedron,

the conditions must be relaxed in such a way that they involve only three free indices.

In other words, most of the O(n4) singularities of individual double pentagon integrals

must necessarily cancel out when they are summed, leaving onlyO(n3) physical singu-

larities of the full two-loop MHV amplitudes. (The fact that these amplitudes have only

O(n3) singularities is manifest in the result of [60].) This motivates us to seek a more

“amplituhedrony" approach to finding singularities where we do not start by consider-

ing any particular representation of the amplitude, but instead start by thinking directly

about positive configurations of loops L(`).
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2.3 An Amplituhedrony Approach

The most significant drawback of the approach taken in the previous section is that it

relies on having explicit representations of an integrand in terms of local Feynman inte-

grals. These have been constructed for all two-loop amplitudes in SYM theory [61], but

at higher loop order even finding such representations becomes a huge computational

challenge that we would like to be able to bypass. Also, as the loop order increases, the

number of potential Landau singularities grows rapidly, and the vast majority of these

potential singularities will fail the positivity analysis and hence turn out to be spurious.

We would rather not have to sift through all of this chaff to find the wheat.

Let’s begin by taking a step back to appreciate that the only reason we needed the

crutch of local Feynman integrals in the previous section is that each Feynman diagram

topology provides a set of propagators for which we can solve the associated Landau

equations (2.9) and (2.10) to find potential singularities. Then, for each set of cut condi-

tions, we can determine whether the associated Landau singularity is physical or spuri-

ous by asking the amplituhedron whether or not the set of loops L(`) satisfying the cut

conditions has any overlap with the amplituhedron.

In this section we propose a more “amplituhedrony” approach that does not rely on

detailed knowledge of integrands. We invert the logic of the previous section: instead

of using Feynman diagrams to generate sets of cut conditions that we need to check one

by one, we can ask the amplituhedron itself to directly identify all potentially “valid”

sets of cut conditions that are possibly relevant to the singularities of an amplitude.

To phrase the problem more abstractly: for a planar n-particle amplitude at L-loop

order, there are in general nL + L(L− 1)/2 possible local cut conditions one can write

down:

〈L(`) i i+1〉 = 0 for all `, i and 〈L(`1) L(`2)〉 = 0 for all `1 6= `2. (2.28)

We simply need to characterize which subsets of these cut conditions can possibly be

simultaneously satisfied for loop momenta L(`) living in the closure of the amplituhe-

dron. Each such set of cut conditions is a subset of one or more maximal subsets, and
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(A) (B)

FIGURE 2.2: (a) A maximum codimension boundary of the one-loop
MHV amplituhedron. The circle is a schematic depiction of the n line
segments (1 2), (2 3), . . . , (n 1) connecting the n cyclically ordered exter-
nal kinematic points Zi ∈ G+(4, n) and the red line shows the loop mo-
mentum L = (i j). (b) The corresponding Landau diagram, which is a
graphical depiction of the four cut conditions (2.30) that are satisfied on

this boundary.

these maximal subsets are just the maximal codimension boundaries of the amplituhe-

dron.

Fortunately, the maximal codimension boundaries of the MHV amplituhedron are

particularly simple, as explained in [5]. Each loop momentum L(`) must take the form

(i j) for some i and j (that can be different for different `), and the condition of mutual

positivity enforces an emergent planarity: if all of the lines L(`) are drawn as chords on

a disk between points on the boundary labeled 1, 2, . . . , n, then positivity forbids any

two lines to cross in the interior of the disk. In what follows we follow a somewhat low-

brow analysis in which we systematically consider relaxations away from the maximum

codimension boundaries, but the procedure can be streamlined by better harnessing this

emergent planarity, which certainly pays off at higher loop order [62].

In the next few subsections we demonstrate this “amplituhedrony” approach explic-

itly at one and two loops before summarizing the main idea at the end of the section.
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2.3.1 One-Loop MHV Amplitudes

The maximum codimension boundaries of the one-loop MHV amplituhedron occur

when

L = (i j) , (2.29)

as depicted in figure 2.2a. On this boundary four cut conditions of “two-mass easy”

type [40] are manifestly satisfied:

〈L i−1 i〉 = 〈L i i+1〉 = 〈L j−1 j〉 = 〈L j j+1〉 = 0 , (2.30)

as depicted in the Landau diagram shown in figure 2.2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (2.30) has been performed long ago [26, 33] and reviewed in the language

of momentum twistors in [16]. A leading solution to the Landau equations exists only if

〈i j̄〉〈ī j〉 = 0 . (2.31)

Subleading Landau equations are obtained by relaxing one of the four on-shell con-

ditions. This leads to cuts of two-mass triangle type, which are uninteresting (they exist

for generic kinematics, so don’t correspond to branch points of the amplitude). At sub-

subleading order we reach cuts of bubble type. For example if we relax the second and

fourth condition in eq. (2.30) then we encounter a Landau singularity which lives on the

locus

〈i−1 i j−1 j〉 = 0 . (2.32)

Other relaxations either give no constraint on kinematics, or the same as eq. (2.32) with

i→ i+1 and/or j→ j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop MHV

amplitudes occur on loci of the form

〈a b̄〉 = 0 or 〈a a+1 b b+1〉 = 0 (2.33)
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for various a, b. (Note that whenever we say there is a branch point at x = 0, we mean

more specifically that there is a branch cut between x = 0 and x = ∞.) Indeed, these

exhaust the branch points of the one-loop MHV amplitudes (first computed in [40])

except for branch points arising as a consequence of infrared regularization, which are

captured by the BDS ansatz [63].

2.3.2 Two-Loop MHV Amplitudes: Configurations of Positive Lines

We divide the two-loop analysis into two steps. First, in this subsection, we classify

valid configurations of mutually non-negative lines. This provides a list of the sets of

cut conditions on which two-loop MHV amplitudes have nonvanishing support. Then

in the following subsection we solve the Landau equations for each set of cut conditions,

to find the actual location of the corresponding branch point.

At two loops the MHV amplituhedron has two distinct kinds of maximum codimen-

sion boundaries [5]. The first type has L(1) = (i j) and L(2) = (k l) for distinct cyclically

ordered i, j, k, l. Since 〈L(1) L(2)〉 is non-vanishing (inside the positive domain G+(4, n))

in this case, this boundary can be thought of as corresponding to a cut of a product of

one-loop Feynman integrals, with no common propagator 〈L(1) L(2)〉. Therefore we will

not learn anything about two-loop singularities beyond what is already apparent at one

loop.

The more interesting type of maximum codimension boundary has L(1) = (i j) and

L(2) = (i k), as depicted in figure 2.3a. Without loss of generality i < j < k, and for

now we will moreover assume that i, j and k are well-separated to avoid any potential

degenerations. (These can be relaxed at the end of the analysis, in particular to see that

the degenerate case j = k gives nothing interesting.) On this boundary the following

nine cut conditions shown in the Landau diagram of figure 2.3b are simultaneously



24 Chapter 2. Landau Singularities from the Amplituhedron

(A) (B)

FIGURE 2.3: (a) A maximum codimension boundary of the two-loop
MHV amplituhedron. (b) The corresponding Landau diagram (which,
it should be noted, does not have the form of a standard Feynman inte-
gral) depicting the nine cut conditions (2.34)–(2.36) that are satisfied on

this boundary.

satisfied:

〈L(1) i−1 i〉 = 〈L(1) i i+1〉 = 〈L(2) i−1 i〉 = 〈L(2) i i+1〉 = 0 , (2.34)

〈L(1) j−1 j〉 = 〈L(1) j j+1〉 = 〈L(2) k−1 k〉 = 〈L(2) k k+1〉 = 0 , (2.35)

〈L(1) L(2)〉 = 0 . (2.36)

This is the maximal set of cuts that can be simultaneously satisfied while keeping the

L(`)’s inside the closure of the amplituhedron for generic Z ∈ G+(4, n). We immediately

note that since only three free indices i, j, k are involved, this set of cuts manifestly has

sizeO(n3), representing immediate savings compared to the largerO(n4) set of double-

pentagon cut conditions as discussed at the end of the previous section.

We can generate other, smaller sets of cut conditions by relaxing some of the nine

shown in eqs. (2.34)–(2.36). This corresponds to looking at subleading singularities, in

the language of the Landau equations. However, it is not interesting to consider relax-

ations that lead to 〈L(1) L(2)〉 6= 0 because, as mentioned above, it essentially factorizes

the problem into a product of one-loop cuts. Therefore in what follows we only consider

cuts on which 〈L(1) L(2)〉 = 0.

By relaxing various subsets of the other 8 conditions we can generate 28 subsets

of cut conditions. In principle each subset should be analyzed separately, but there
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is clearly a natural stratification of relaxations which we can exploit to approach the

problem systematically. In fact, we will see that the four cut conditions in eq. (2.34)

that involve the point i play a special role. Specifically, we will see that the four cut

conditions in eq. (2.35) involving j and k can always be relaxed, or un-relaxed, “for free”,

with no impact on positivity. Therefore, we see that whether a configuration of loops

may be positive or not depends only on which subset of the four cut conditions (2.34) is

relaxed.

In this subsection we will classify the subsets of eq. (2.34) that lead to valid configu-

rations of positive lines L(`), and in the next subsection we will find the locations of the

corresponding Landau singularities.

Relaxing none of eq. (2.34) [figure 2.3a]. At maximum codimension we begin with the

obviously valid pair of mutually non-negative lines represented trivially by

D(1)

D(2)

 =



i j k

1 0 0

0 1 0

1 0 0

0 0 1


. (2.37)

Relaxing any one of eq. (2.34). The four cases are identical up to relabeling so we

consider relaxing the condition 〈L(2) i i+1〉 = 0, shown in figure 2.4a. In this case the

remaining seven cut conditions on the first two lines of eqs. (2.34) and (2.35) admit the

one-parameter family of solutions

L(1) = (i j), L(2) = (Zk, αZi−1 + (1− α)Zi) . (2.38)
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(A)
〈L(2) i i+1〉 6= 0

(B)
〈L(2) i i+1〉, 〈L(1) i−1 i〉 6= 0

(C)
〈L(1) i i+1〉, 〈L(2) i−1 i〉 6= 0

FIGURE 2.4: Three different invalid relaxations of the maximal codimen-
sion boundary shown in figure 2.3.
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We recall that the parity conjugate solutions having L(1) = ī∩ j̄ lie discretely outside the

amplituhedron as seen in eq. (2.13). The corresponding D-matrices

D(1)

D(2)

 =



i− 1 i j k

0 1 0 0

0 0 1 0

α 1− α 0 0

0 0 0 1


(2.39)

are mutually non-negative for 0 ≤ α ≤ 1. It remains to impose the final cut condition

that L(1) and L(2) intersect:

〈L(1)L(2)〉 = α〈i−1 i j k〉 = 0 . (2.40)

For general positive external kinematics this will only be satisfied when α = 0, which

brings us back to the maximum codimension boundary. We conclude that the loop

configurations of this type do not generate branch points.

Relaxing 〈L(1) i−1 i〉 = 0 and 〈L(2) i i+1〉 = 0 [figure 2.4b]. In this case the six remain-

ing cut conditions in eqs. (2.34) and (2.35) admit the two-parameter family of solutions

L(1) = (αZi + (1− α)Zi+1, Zj), L(2) = (βZi + (1− β)Zi−1, Zk) . (2.41)

The corresponding D-matrices

D(1)

D(2)

 =



i− 1 i i + 1 j k

0 α 1− α 0 0

0 0 0 1 0

1− β β 0 0 0

0 0 0 0 1


(2.42)
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(A)
〈L(2) i i+1〉, 〈L(1) i i+1〉 6= 0

(B)
〈L(2) i−1 i〉, 〈L(2) i i+1〉 6= 0

FIGURE 2.5: Two valid double relaxations of figure 2.3. The other two
possibilities are obtained by taking i → i+1 in (a) or L(2) → L(1) and

j↔ k in (b).

are mutually non-negative if 0 ≤ α, β ≤ 1. Imposing that the two loops intersect gives

the constraint

〈L(1)L(2)〉 = α(1− β)〈i−1 i j k〉+ (1− α)β〈i i+1 j k〉+ (1− α)(1− β)〈i−1 i+1 j k〉 = 0 ,

(2.43)

which is not satisfied for general positive kinematics unless α = β = 1, which again

brings us back to the maximum codimension boundary.

Relaxing the two conditions 〈L(1) i i+1〉 = 〈L(2) i i−1〉 = 0, depicted in figure 2.4c,

is easily seen to lead to the same conclusion.

Relaxing 〈L(1) i i+1〉 = 0 and 〈L(2) i i+1〉 = 0 [figure 2.5a]. In this case there is a one-

parameter family of solutions satisfying all seven remaining cut conditions including

〈L(1) L(2)〉 = 0:

L(1) = (αZi + (1− α)Zi+1, Zj), L(2) = (αZi + (1− α)Zi+1, Zk) . (2.44)
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The D-matrices can be represented as

D(1)

D(2)

 =



i i+1 j k

α 1− α 0 0

0 0 1 0

α 1− α 0 0

0 0 0 1


, (2.45)

which is a valid mutually non-negative configuration for 0 ≤ α ≤ 1. We conclude that

these configurations represent physical branch points of two-loop MHV amplitudes by

appealing to Cutkoskian intuition, according to which we would compute the discon-

tinuity of the amplitude around this branch point by integrating over 0 ≤ α ≤ 1 (in

figure 2.5a this corresponds to integrating the intersection point of the two L’s over the

line segment between Zi−1 and Zi).

Relaxing the two conditions 〈L(1) i i−1〉 = 〈L(2) i i−1〉 = 0 is clearly equivalent up

to relabeling.

Relaxing 〈L(2) i−1 i〉 = 0 and 〈L(2) i i+1〉 = 0 [figure 2.5b]. The seven remaining cut

conditions admit a one-parameter family of solutions

L(1) = (i j), L(2) = (αZi + (1− α)Zj, Zk) , (2.46)

which can be represented by

D(1)

D(2)

 =



i j k

1 0 0

0 1 0

α 1− α 0

0 0 1


. (2.47)
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This is a valid configuration of mutually non-negative lines for 0 ≤ α ≤ 1 so we expect

it to correspond to a physical branch point. Clearly the same conclusion holds if we

were to completely relax L(1) at i instead of L(2).

Higher relaxations of eq. (2.34). So far we have considered the relaxation of any one

or any two of the conditions shown in eq. (2.34). We have found that single relaxations

do not yield branch points of the amplitude, and that four of the six double relaxations

are valid while the two double relaxations shown in figures 2.4b and 2.4c are invalid.

What about triple relaxations? These can be checked by explicit construction of the

relevant D-matrices, but it is also easy to see graphically that any triple relaxation is

valid because they can all be reached by relaxing one of the valid double relaxations.

For example, the triple relaxation where we relax all of eq. (2.34) except 〈L(1) i−1 i〉 = 0

can be realized by rotating L(2) in figure 2.5a clockwise around the point k so that it

continues to intersect L(1). As a second example, the triple relaxation where we relax

all but 〈L(2) i−1 i〉 = 0 can be realized by rotating L(1) in figure 2.5a counter-clockwise

around the point j so that it continues to intersect L(2).

Finally we turn to the case when all four cut conditions in eq. (2.34) are relaxed.

These relaxed cut conditions admit two branches of solutions, represented by D-matrices

of the form

D(1)

D(2)

 =



j j + 1 · · · k− 1 k

1 0 · · · 0 0

αj αj+1 · · · αk−1 αk

αj αj+1 · · · αk−1 αk

0 0 · · · 0 1


(2.48)
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or a similar form with α parameters wrapping the other way around from k to j:

D(1)

D(2)

 =



· · · j−1 j k k+1 · · ·

· · · αj−1 αj −αk −αk+1 · · ·
· · · 0 1 0 0 · · ·
· · · αj−1 αj −αk −αk+1 · · ·
· · · 0 0 1 0 · · ·


. (2.49)

Both of these parameterize valid configuration of mutually non-negative lines as long

as all of the α’s are positive.

Relaxing L(1) at j and/or L(2) at k. All of the configurations we have considered so

far keep the four propagators in eq. (2.35) on shell. However it is easy to see that none

of these conditions have any bearing on positivity one way or the other. For example,

there is no way to render the configuration shown in figure 2.4b positive by moving L(1)

away from the vertex j while maintaining all of the other cut conditions. On the other

hand, there is no way to spoil the positivity of the configuration shown in figure 2.5b by

moving L(2) away from the vertex k while maintaining all other cut conditions.

Summary. We call a set of cut conditions “valid” if the m ≥ 0-dimensional locus in L-

space where the conditions are simultaneously satisfied has non-trivial m-dimensional

overlap with the closure of the amplituhedron. (The examples shown in figures 2.5a

and 2.5b both have m = 1, but further relaxations would have higher-dimensional so-

lution spaces.) As mentioned above, this criterion is motivated by Cutkoskian intuition

that the discontinuity of the amplitude would be computed by an integral over the in-

tersection of this locus with the (closure of the) amplituhedron. If this intersection is

empty (or lives on a subspace that is less than m-dimensional) then such an integral

would vanish, signalling that the putative singularity is actually spurious.

The nine cut conditions shown in eqs. (2.34)–(2.36) are solved by the configuration

of lines shown in figure 2.3a that is a zero-dimensional boundary of the amplituhedron.

We have systematically investigated relaxing various subsets of these conditions (with
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the exception of eq. (2.36), to stay within the realm of genuine two-loop singularities) to

determine which relaxations are “valid” in the sense just described.

Conclusion: The most general valid relaxation of the configuration shown in figure 2.3a

is either an arbitrary relaxation at the points j and k, or an arbitrary relaxation of fig-

ure 2.5a (or the same with i 7→ i+1), or an arbitrary relaxation of figure 2.5b (or the same

with j↔ k). The configurations shown in figure 2.4, and further relaxations thereof that

are not relaxations of those shown in figure 2.5, are invalid.

2.3.3 Two-Loop MHV Amplitudes: Landau Singularities

In the previous subsection we asked the amplituhedron directly to tell us which pos-

sible sets of cut conditions are valid for two-loop MHV amplitudes, rather than start-

ing from some integral representation and using the amplituhedron to laboriously sift

through the many spurious singularities. We can draw Landau diagrams for each valid

relaxation to serve as a graphical indicator of the cut conditions that are satisfied. The

Landau diagram with nine propagators corresponding to the nine cut conditions satis-

fied by figure 2.3a was already displayed in figure 2.3b. The configurations shown in

figures 2.5a and 2.5b satisfy the seven cut conditions corresponding to the seven propa-

gators in figures 2.6a and 2.6b, respectively. We are now ready to determine the locations

of the branch points associated to these valid cut configurations (and their relaxations)

by solving the Landau equations.

The following calculations follow very closely those done in [16]. Note that through-

out this section, in solving cut conditions we will always ignore branches of solutions

(for example those of the type L = ī ∩ j̄) which cannot satisfy positivity.

The double-box. For the double-box shown in in figure 2.6a let us use A ∈ P3 to

denote the point on the line (i−1, i) where the two loop lines L(`) intersect. These can

then be parameterized as L(1) = (A, Zj) and L(2) = (A, Zk). The quickest way to find

the location of the leading Landau singularity is to impose eq. (2.9) for each of the two

loops. These are both of two-mass easy type, so we find that the Landau singularity



2.3. An Amplituhedrony Approach 33

(A) (B)

FIGURE 2.6: The Landau diagrams showing the seven cut conditions sat-
isfied by figures 2.5a and 2.5b, respectively.

lives on the locus (see [16])

〈i−1 i j k〉〈A j̄〉 = 〈i−1 i j k〉〈A k̄〉 = 0 . (2.50)

These can be solved in two ways; either by

〈i−1 i j k〉 = 0 (2.51)

or by solving the first condition for A = j̄∩ (i−1 i) and substituting this into the second

condition to find

〈i−1 i j̄ ∩ k̄〉 = 0 . (2.52)

The astute reader may recall that in (2.16) we discarded a singularity of the same

type as in eq. (2.51). This example highlights that it is crucial to appreciate the essential

asymmetry between the roles of the two types of Landau equations. The on-shell condi-

tions (2.9) by themselves only provide information about discontinuities. We discarded

eq. (2.16) because the solution has support on a set of measure zero inside the closure of

the amplituhedron, signalling that there is no discontinuity around the branch cut asso-

ciated to the cut conditions shown in eq. (2.11). Therefore we never needed to inquire

as to the actual location where the corresponding branch point might have been. To

learn about the location of a branch point we have to solve also the second type of Lan-

dau equations (2.10). Indeed (2.51) does correspond to a branch point that lies outside
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the positive domain, but we don’t discard it because the discontinuity of the amplitude

around this branch point is nonzero. As mentioned above, according to the Cutkosky

rules it would be computed by an integral over the line segment between Zi−1 and Zi

in figure 2.5a. When branch points lie outside G+(4, n), as in this case, it signals a dis-

continuity that does not exist on the physical sheet but on some other sheet; see the

comments near the end of section 1.

Additional (subk-leading, for various k) Landau singularities are exposed by setting

various sets of α’s to zero in the Landau equations and relaxing the associated cut con-

ditions. Although these precise configurations were not analyzed in [16], the results of

that paper, together with some very useful tricks reviewed in appendix A, are easily

used to reveal branch points at the loci

〈j(j−1, j+1)(k, k±1)(i−1, i)〉 = 0 (2.53)

together with the same for j ↔ k, as well as 〈a a+1 b b+1〉 = 0 for a, b drawn from the

set {i−1, j−1, j, k−1, k}.

The pentagon-triangle. With the help of appendix A and the results of [16] it is easily

seen that the leading singularity of the pentagon-triangle shown in figure 2.6b is located

on the locus where

〈i j̄〉〈ī j〉 = 0 . (2.54)

The computation of additional singularities essentially reduces to the same calculation

for a three-mass pentagon, which was carried out in [16]. Altogether we find that branch
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points live on the loci

〈i j k−1 k〉 = 0 ,

〈i(i−1 i+1)(j−1 j)(k−1 k)〉 = 0 ,

〈i(i−1 i+1)(j j+1)(k−1 k)〉 = 0 ,

〈j(j−1 j+1)(i−1 i)(k−1 k)〉 = 0 ,

〈j(j−1 j+1)(i i+1)(k−1 k)〉 = 0 ,

〈i i±1 j k〉 = 0 ,

〈i j j±1 k〉 = 0 ,

(2.55)

together with the same collection with (k−1 k)→ (k k+1), as well as all 〈a a+1 b b+1〉 =
0 for a, b drawn from the set {i−1, i, j−1, j, k−1, k}.

The maximum codimension boundaries. We left this case for last because it is some-

what more subtle. It is known that the final entries of the symbols of MHV amplitudes

always have the form 〈a b̄〉 [60]. We expect the leading Landau singularity of the maxi-

mum codimension boundary to expose branch points at the vanishing loci of these final

entries.

However, if we naively solve the Landau equations for the diagram shown in 2.3b,

we run into a puzzle. The first type of Landau equations (2.9) correspond to the nine

cut conditions (2.34)–(2.36), which of course are satisfied by L(1) = (i j) and L(2) =

(i k). The second type of Landau equations (2.10) does not impose any constraints for

pentagons because it is always possible to find a vanishing linear combination of the

five participating four-vectors. This naive Landau analysis therefore suggests that there

is no leading branch point associated to the maximum codimension boundary.

This analysis is questionable because, as already noted above, the Landau diagram

associated to the maximal codimension boundary, shown in figure (2.2b), does not have

the form of a valid Feynman diagram. Therefore it makes little sense to trust the asso-

ciated Landau analysis. Instead let us note that the nine cut conditions (2.34)–(2.36) are
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(A) (B)

FIGURE 2.7: Landau diagrams corresponding to all of the cut condi-
tions (2.34)–(2.36) except for (a) 〈L(1) i−1 i〉 = 0, and (b) 〈L(2) i i+1〉 = 0.
These are the only two cut conditions that are redundant (each is im-
plied by the other eight, for generic kinematics) and, when omitted, lead
to Landau diagrams that have the form of a standard Feynman integral.
(In both figures L(1) is the momentum in the right loop and L(2) is the

momentum in the left loop.)

not independent; indeed they cannot be as there are only eight degrees of freedom in

the loop momenta.

We are therefore motivated to identify which of the nine cut conditions (1) is redun-

dant, in the sense that it is implied by the other eight for generic external kinematics,

and (2) has the property that when omitted, the Landau diagram for the remaining eight

takes the form of a valid planar Feynman diagram. None of the conditions involving j

and k shown in eq. (2.35) are redundant; all of them must be imposed to stay on the max-

imum codimension boundary. The remaining five conditions in eqs. (2.34) and (2.36) are

redundant for general kinematics, but only two of them satisfy the second property. The

corresponding Landau diagrams are shown in fig. 2.7. Being valid planar Feynman di-

agrams, the integrand definitely receives contributions with these topologies (unlike

fig. 2.2b), and will exhibit the associated Landau singularities.

It remains to compute the location of the leading Landau singularities for these di-

agrams. For fig. 2.7a the on-shell conditions for the pentagon set L(2) = (i k) while the

Kirkhoff condition for the box is

0 = 〈j (j−1 j+1)L(2)(i i+1)〉 = 〈i j̄〉〈i i+1 j k〉 . (2.56)

The Landau equations associated to this topology therefore have solutions when 〈i j̄〉 =
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0 or when 〈i i+1 j k〉 = 0. However, on the locus 〈i i+1 j k〉 = 0 it is no longer true that

the eight on-shell conditions shown in fig. 2.7a imply the ninth condition 〈L(1) i−1 i〉 =
0. Therefore, this solution of the Landau equations is not relevant to the maximum

codimension boundary.

We conclude that the leading Landau singularity of the maximum codimension

boundary is located on the locus where 〈i j̄〉 = 0 or (from fig. 2.7b) 〈i k̄〉 = 0. These

results are in agreement with our expectation about the final symbol entries of MHV

amplitudes [60]. Relaxations of Figures 7a, 7b at j, k will not produce any symbol en-

tries.

Conclusion. In conclusion, our analysis has revealed that two-loop MHV amplitudes

have physical branch points on the loci of the form

〈a b̄〉 = 0 ,

〈a b c c+1〉 = 0 ,

〈a a+1 b̄ ∩ c̄〉 = 0 ,

〈a (a−1 a+1)(b b+1)(c c+1)〉 = 0 ,

(2.57)

for arbitrary indices a, b, c. Again let us note that when we say there is a branch point

at x = 0, we mean a branch cut between x = 0 and x = ∞. Indeed, this result is in

precise accord with the known symbol alphabet of two-loop MHV amplitudes in SYM

theory [60].

2.4 Discussion

In this paper we have improved greatly on the analysis of [16] by asking the ampli-

tuhedron directly to tell us which branch points of an amplitude are physical. This

analysis requires no detailed knowledge about how to write formulas for integrands by

constructing the canonical “volume” form on the amplituhedron. We only used the am-

plituhedron’s grossest feature, which is that it is designed to guarantee that integrands
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have no poles outside the space of positive loop configurations. We have shown in sev-

eral examples how to use this principle to completely classify the sets of cut conditions

on which integrands can possibly have support. Let us emphasize that our proposal is

a completely well-defined geometric algorithm:

• Input: a list of the maximal codimension boundaries of the amplituhedron; for

MHV amplitudes these are known from [5].

• Step 1: For a given maximal codimension boundary, identify the list of all cut con-

ditions satisfied on this boundary. For example, at the two-loop boundary shown

in figure 2.3a, these would be the nine cut conditions satisfied by the Landau di-

agram in figure 2.3b, shown in eqs. (2.34)–(2.36). Consider all lower codimension

boundaries that can be obtained by relaxing various subsets of these cut condi-

tions, and eliminate those which do not overlap the closure of the amplituhedron,

i.e. those which do not correspond to mutually non-negative configurations of

lines L(`).

• Step 2: For each valid set of cut conditions obtained in this manner, solve the

corresponding Landau equations (2.9) and (2.10) to determine the location of the

corresponding branch point of the amplitude.

• Output: a list of the loci in external kinematic space where the given amplitude

has branch points.

As we have mentioned a few times in the text, this algorithm is motivated by in-

tuition from the Cutkosky rules, according to which an amplitude’s discontinuity is

computed by replacing some set of propagators with delta-functions. This localizes the

integral onto the intersection of the physical contour and the locus where the cut con-

ditions are satisfied. Now is the time to confess that this intuitive motivation is not a

proof of our algorithm, most notably because the positive kinematic domain lives in

unphysical (2, 2) signature and there is no understanding of how to make sense of the

physical iε contour in momentum twistor space (see however [64] for work in this direc-

tion). Nevertheless, the prescription works and it warrants serious further study, in part
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because it would be very useful to classify the possible branch points of more general

amplitudes in SYM theory.

For amplitudes belonging to the class of generalized polylogarithm functions (which

is believed to contain at least all MHV, NMHV and NNMHV amplitudes in SYM theory)

the path from knowledge of branch points to amplitudes is fairly well-trodden. Such

functions can be represented as iterated integrals [65] and analyzed using the technol-

ogy of symbols and coproducts [66, 67]. It was emphasized in [23] that the analytic

structure of an amplitude is directly imprinted on its symbol alphabet. In particular, the

locus in external kinematic space where the letters of an amplitude’s symbols vanish (or

diverge) must exactly correspond to the locus where solutions of the Landau equations

exist. The above algorithm therefore provides direct information about the zero locus of

an amplitude’s symbol alphabet. For example, the symbol alphabet of one-loop MHV

amplitudes must vanish on the locus (2.33), and that of two-loop amplitudes must van-

ish on the locus (2.57). Strictly speaking this analysis does not allow one to actually

determine symbol letters away from their vanishing locus, but it is encouraging that

in both eqs. (2.33) and (2.57) the amplituhedron analysis naturally provides the correct

symbol letters on the nose.

In general we expect that only letters of the type 〈a a+1 b b+1〉 may appear in the

first entry of the symbol of any amplitude [68]. At one loop, new letters of the type

〈a b̄〉 begin to appear in the second entry. At two loops, additional new letters of the

type 〈a (a−1 a+1)(b b+1)(c c+1)〉 also begin to appear in the second entry, and new

letters of the type 〈a b c c+1〉 and 〈a a+1 b̄∩ c̄〉 begin to appear in the third. As discussed

at the end of section 3, the final entries of MHV amplitudes are always 〈a b̄〉 [60]. In

our paper we have given almost no thought to the question of where in the symbol a

given type of letter may begin to appear. However, it seems clear that our geometric

algorithm can be taken much further to expose this stratification of branch points, since

the relationship between boundaries of the amplituhedron and Landau singularities

is the same as the relationship between discontinuities and their branch points. For

example it is clear that at any loop order, the lowest codimension boundaries of the
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amplituhedron that give rise to branch cuts are configurations where one of the lines

L intersects two lines (i i+1) and (j j+1), with all other lines lying in generic mutually

positive position. These configurations give rise to the expected first symbol entries

〈i i+1 j j+1〉. By systematically following the degeneration of configurations of lines

onto boundaries of higher and higher codimension we expect there should be a way to

derive the symbol alphabet of an amplitude entry by entry.

In many examples, mere knowledge of an amplitude’s symbol alphabet, together

with some other physical principles, has allowed explicit formulas for the amplitude to

be constructed via a bootstrap approach. This approach has been particularly powerful

for 6- [69, 70, 71, 72, 73, 20], and 7-point [21] amplitudes, in which case the symbol

alphabet is believed to be given, to all loop order, by the set of cluster coordinates on

the kinematic configuration space [18]. It would be very interesting to use the algorithm

outlined above to prove this conjecture, or to glean information about symbol alphabets

for more general amplitudes, both MHV and non-MHV. One simple observation we can

make in parting is to note that although maximum codimension boundaries of the L-

loop MHV amplitude involve as many as 2L distinct points, the singularities that arise

from genuinely L-loop configurations (rather than products of lower loop order) involve

at most L + 1 points. Therefore we predict that the size of the symbol alphabet of L-loop

MHV amplitudes should grow with n no faster than O(nL+1).

It would be very interesting to extend our results to non-MHV amplitudes. For the

NK amplitude, singularities should still be found only on the boundary of the NKMHV

amplituhedron, so the presented approach should still be applicable, albeit more com-

plicated. An important difference would be the existence of poles, in addition to branch

points, due to the presence of rational prefactors. We are not certain our approach

would naturally distinguish these two types of singularities. However, the singulari-

ties of rational prefactors can be found using other means, for example by considering

the boundaries of the tree-level amplituhedron.
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2.5 Elimination of Bubbles and Triangles

Here we collect a few comments on the elimination of bubble and triangle sub-diagrams

in the Landau analysis. These tricks, together with the results of [16], can be used to

easily obtain all of the Landau singularities reported in section 2.3.3.

2.5.1 Bubble sub-diagrams

The Landau equation for a bubble with propagators ` and `+ p, which may be a sub-

diagram of a larger diagram, are

`2 = (`+ p)2 = 0 , (2.58)

α1`
µ + α2(`+ p)µ = 0 , (2.59)

where α1 and α2 are the Feynman parameters associated to the two propagators. The

loop equation has solution

`µ = − α2

α1 + α2
pµ (2.60)

so that

α1`
µ = − α1α2

α1 + α2
pµ, α2(`+ p)µ =

α1α2

α1 + α2
pµ, (2.61)

while the on-shell conditions simply impose p2 = 0. Therefore, we see that any Landau

diagram containing this bubble sub-diagram is equivalent to the same diagram with the

bubble replaced by a single on-shell line with momentum pµ and modified Feynman pa-

rameter α′ = α1α2/(α1 + α2). We do not need to keep track of the modified Feynman

parameter; we simply move on to the rest of the diagram using the new Feynman pa-

rameter α′.

In conclusion, any bubble sub-diagram can be collapsed to a single edge, as far as

the Landau analysis is concerned.
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2.5.2 Triangle sub-diagrams

Similarly, we will now discuss the various branches associated to a triangle sub-diagram.

The Landau equations for a triangle with edges carrying momenta q1 = `, q2 = `+ p1 +

p2 and q3 = `+ p2, and with corresponding Feynman parameters α1, α2 and α3, are

`2 = (`+ p2)
2 = (`+ p1 + p2)

2 = 0 , (2.62)

α1`
µ + α2(`+ p1 + p2)

µ + α3(`+ p2)
µ = 0 . (2.63)

The solution to the loop equation is

`µ = − (α2 + α3)pµ
2 + α2 pµ

1
α1 + α2 + α3

(2.64)

while eqs. (4.1) impose the two conditions

0 = p2
1 p2

2 p2
3 , (2.65)

(α1 : α2 : α3) =
(

p2
1(−p2

1 + p2
2 + p2

3) : p2
2(p2

1 − p2
2 + p2

3) : p2
3(p2

1 + p2
2 − p2

3)
)

(2.66)

where p3 = −p1 − p2. Suppose we follow the branch p2
1 = 0. In this case α1 is forced to

vanish, effectively reducing the triangle to a bubble with edges

α2qµ
2 =

α3 p2
2

p2
2 − p2

3
pµ

1 , α3qµ
3 = − α3 p2

2

p2
2 − p2

3
pµ

1 . (2.67)

This is equivalent (by appendix A.1) to a single on-shell line carrying momentum pµ
1 .

A similar conclusion clearly holds for the branches p2
2 = 0 or p2

3 = 0. If any two of p2
1,

p2
2 or p2

3 simultaneously vanish, then the two corresponding Feynman parameters must

vanish. Finally, if all three p2
i vanish, then the Landau equations are identically satisfied

for any values of the three αi. In conclusion, triangle sub-diagrams of a general Landau

diagram can be analyzed by considering separately each of the seven branches outlined

here.
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Chapter 3

All-Helicity Symbol Alphabets from

Unwound Amplituhedra

3.1 Review

This section provides a thorough introduction to the problem our work aims to solve.

The concepts and techniques reviewed here will be illuminated in subsequent sections

via several concrete examples.

3.1.1 The Kinematic Domain

Scattering amplitudes are (in general multivalued) functions of the kinematic data (the

energies and momenta) describing some number of particles participating in some scat-

tering process. Specifically, amplitudes are functions only of the kinematic information

about the particles entering and exiting the process, called external data in order to dis-

tinguish it from information about virtual particles which may be created and destroyed

during the scattering process itself. A general scattering amplitude in SYM theory is la-

beled by three integers: the number of particles n, the helicity sector 0 ≤ k ≤ n− 4, and

the loop order L ≥ 0, with L = 0 called tree level and L > 0 called L-loop level. Ampli-

tudes with k = 0 are called maximally helicity violating (MHV) while those with k > 0

are called (next-to-)kmaximally helicity violating (NkMHV).
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The kinematic configuration space of SYM theory admits a particularly simple char-

acterization: n-particle scattering amplitudes1 are multivalued functions on Confn(P3),

the space of configurations of n points in P3 [18]. A generic point in Confn(P3) may be

represented by a collection of n homogeneous coordinates ZI
a on P3 (here I ∈ {1, . . . , 4}

and a ∈ {1, . . . , n}) called momentum twistors [55], with two such collections consid-

ered equivalent if the corresponding 4 × n matrices Z ≡ (Z1 · · · Zn) differ by left-

multiplication by an element of GL(4). We use the standard notation

〈a b c d〉 = εI JKLZI
aZ J

bZK
c ZL

d (3.1)

for the natural SL(4)-invariant four-bracket on momentum twistors and use the short-

hand 〈· · · a · · · 〉 = 〈· · · a−1 a a+1 · · · 〉, with the understanding that all particle labels

are always taken mod n. We write (a b) to denote the line in P3 containing Za and

Zb, (a b c) to denote the plane containing Za, Zb and Zc, and so a denotes the plane

(a−1 a a+1). The bar notation is motivated by parity, which is a Z2 symmetry of SYM

theory that maps NkMHV amplitudes to Nn−k−4MHV amplitudes while mapping the

momentum twistors according to {Za} 7→ {Wa = ∗(a−1 a a+1)}.
When discussing NkMHV amplitudes it is conventional to consider an enlarged

kinematic space where the momentum twistors are promoted to homogeneous coordi-

natesZa, bosonized momentum twistors [4] on Pk+3 which assemble into an n× (k+ 4)

matrix Z ≡ (Z1 · · · Zn). The analog of Eq. (3.1) is then the SL(k + 4)-invariant bracket

which we denote by [·] instead of 〈·〉. Given some Z and an element of the Grassman-

nian Gr(k, k + 4) represented by a k× (k + 4) matrix Y, one can obtain an element of

Confn(P3) by projecting onto the complement of Y. The four-brackets of the projected

external data obtained in this way are given by

〈a b c d〉 ≡ [YZa Zb Zc Zd] . (3.2)

1Here and in all that follows, we mean components of superamplitudes suitably normalized by dividing
out the tree-level Parke-Taylor-Nair superamplitude [57, 74]. We expect our results to apply equally well
to BDS- [63] and BDS-like [75] regulated MHV and non-MHV amplitudes. The set of branch points of a
non-MHV ratio function [76] should be a subset of those of the corresponding non-MHV amplitude, but
our analysis cannot exclude the possibility that it may be a proper subset due to cancellations.
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Tree-level amplitudes are rational functions of the brackets while loop-level ampli-

tudes have both poles and branch cuts, and are properly defined on an infinitely-sheeted

cover of Confn(P3). For each k there exists an open setDn,k ⊂ Confn(P3) called the prin-

cipal domain on which amplitudes are known to be holomorphic and non-singular. Am-

plitudes are initially defined only on Dn,k and then extended to all of (the appropriate

cover of) Confn(P3) by analytic continuation.

A simple characterization of the principal domain for n-particle NkMHV amplitudes

was given in [37]: Dn,k may be defined as the set of points in Confn(P3) that can be

represented by a Z-matrix with the properties

1. 〈a a+1 b b+1〉 > 0 for all a and b 6∈ {a−1, a, a+1}2, and

2. the sequence 〈1 2 3 •〉 has precisely k sign flips,

where we use the notation • ∈ {1 , 2 , . . . , n} so that

〈1 2 3 •〉 ≡ {0, 0, 0, 〈1 2 3 4〉, 〈1 2 3 5〉, . . . , 〈1 2 3 n〉} . (3.3)

It was also shown that an alternate but equivalent condition is to say that the sequence

〈a a+1 b •〉 has precisely k sign flips for all a, b (omitting trivial zeros, and taking ap-

propriate account of the twisted cyclic symmetry where necessary). The authors of [37]

showed, and we review in Sec. 3.1.2, that for Y’s inside an NkMHV amplituhedron, the

projected external data have the two properties above.

3.1.2 Amplituhedra ...

A matrix is said to be positive or non-negative if all of its ordered maximal minors are

positive or non-negative, respectively. In particular, we say that the external data are

positive if the n× (k + 4) matrix Z described in the previous section is positive.

A point in the n-particle NkMHV L-loop amplituhedron An,k,L is a collection (Y,L(`))

consisting of a point Y ∈ Gr(k, k+ 4) and L lines L(1), . . . ,L(L) (called the loop momenta)

2As explained in [37], the cyclic symmetry on the n particle labels is “twisted”, which manifests itself
here in the fact that if k is even, and if a = n or b = n, then cycling around n back to 1 introduces an extra
minus sign. The condition in these cases is therefore (−1)k+1〈c c+1 n 1〉 > 0 for all c 6∈ {1, n−1, n}.
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in the four-dimensional complement of Y. We represent each L(`) as a 2× (k+ 4) matrix

with the understanding that these are representatives of equivalence classes under the

equivalence relation that identifies any linear combination of the rows of Y with zero.

For given positive external data Z , the amplituhedron An,k,L(Z) was defined in [4]

for n ≥ 4 as the set of (Y,L(`)) that can be represented as

Y = CZ , (3.4)

L(`) = D(`)Z , (3.5)

in terms of a k× n real matrix C and L 2× n real matrices D(`) satisfying the positivity

property that for any 0 ≤ m ≤ L, all (2m + k)× n matrices of the form



D(i1)

D(i2)

...

D(im)

C


(3.6)

are positive. The D-matrices are understood as representatives of equivalence classes

and are defined only up to translations by linear combinations of rows of the C-matrix.

One of the main results of [37] was that amplituhedra can be characterized directly

by (projected) four-brackets, Eq. (3.2), without any reference to C or D(`)’s, by saying

that for given positive Z , a collection (Y,L(`)) lies inside An,k,L(Z) if and only if

1. the projected external data lie in the principal domain Dn,k,

2. 〈L(`) a a+1〉 > 0 for all ` and a3,

3. for each `, the sequence 〈L(`) 1 •〉 has precisely k + 2 sign flips, and

4. 〈L(`1) L(`2)〉 > 0 for all `1 6= `2.

3Again, the twisted cyclic symmetry implies that the correct condition for the case a = n is
(−1)k+1〈L(`) n 1〉 > 0.
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Here the notation 〈L a b〉 means 〈A B a b〉 if the line L is represented as (A B) for two

points A, B. It was also shown that items 2 and 3 above are equivalent to saying that the

sequence 〈L(`) a •〉 has precisely k + 2 sign flips for any ` and a.

3.1.3 ... and their Boundaries

The amplituhedronAn,k,L is an open set with boundaries at loci where one or more of the

inequalities in the above definitions become saturated. For example, there are bound-

aries where Y becomes such that one or more of the projected four-brackets 〈a a+1 b b+1〉
become zero. Such projected external data lie on a boundary of the principal domain

Dn,k. Boundaries of this type are already present in tree-level amplituhedra, which are

well-understood and complementary to the focus of our work.

Instead, the boundaries relevant to our analysis occur when Y is such that the pro-

jected external data are generic, but the L(`) satisfy one or more on-shell conditions of the

form

〈L(`) a a+1〉 = 0 and/or 〈L(`1) L(`2)〉 = 0 . (3.7)

We refer to boundaries of this type as L-boundaries4. The collection of loop momenta sat-

isfying a given set of on-shell conditions comprises a set whose connected components

we call branches. Consider two sets of on-shell conditions S, S′, with S′ ⊂ S a proper

subset, and B (B′) a branch of solutions to S (S′). Since S′ ⊂ S, B′ imposes fewer con-

straints on the degrees of freedom of the loop momenta than B does. In the case when

B ⊂ B′, we say B′ is a relaxation of B. We use An,k,L to denote the closure of the ampli-

tuhedron, consisting of An,k,L together with all of its boundaries. We say that An,k,L has

a boundary of type B if B ∩An,k,L 6= ∅ and dim(B ∩An,k,L) = dim(B).

3.1.4 The Landau Equations

In [17] it was argued, based on well-known and general properties of scattering am-

plitudes in quantum field theory (see in particular [27]), that all information about the

4In the sequel [47] we will strengthen this definition to require that 〈L(1) L(2)〉 = 0 at two loops.
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locations of branch points of amplitudes in SYM theory can be extracted from knowl-

edge of the L-boundaries of amplituhedra via the Landau equations [26, 33]. In order

to formulate the Landau equations we must parameterize the space of loop momenta in

terms of 4L variables dA. For example, we could take5 L(`) = D(`)Z with

D(1) =

1 0 d1 d2

0 1 d3 d4

 , D(2) =

1 0 d5 d6

0 1 d7 d8

 , etc., (3.8)

but any other parameterization works just as well.

Consider now an L-boundary of some An,k,L on which the L lines L(`) satisfy d on-

shell constraints

f J = 0 (J = 1, 2, . . . , d) , (3.9)

each of which is of the form of one of the brackets shown in Eq. (3.7). The Landau

equations for this set of on-shell constraints comprise Eq. (3.9) together with a set of

equations on d auxiliary variables αJ known as Feynman parameters:

d

∑
J=1

αJ
∂ f J

∂dA
= 0 (A = 1, . . . , 4L) . (3.10)

The latter set of equations are sometimes referred to as the Kirchhoff conditions.

We are never interested in the values of the Feynman parameters, we only want

to know under what conditions nontrivial solutions to Landau equations exist. Here,

“nontrivial” means that the αJ must not all vanish6. Altogether we have d + 4L equa-

tions in d + 4L variables (the d αJ’s and the 4L dA’s). However, the Kirchhoff conditions

are clearly invariant under a projective transformation that multiplies all of the αJ simul-

taneously by a common nonzero number, so the effective number of free parameters is

5By writing each L as a 2× 4 matrix, instead of 2× (k + 4), we mean to imply that we are effectively
working in a gauge where the last four columns of Y are zero and so the first k columns of each L are
irrelevant and do not need to be displayed.

6Solutions for which some of the Feynman parameters vanish are often called “subleading” Landau
singularities in the literature, in contrast to a “leading” Landau singularity for which all α’s are nonzero.
We will make no use of this terminology and pay no attention to the values of the α’s other than ensuring
they do not all vanish.
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only d + 4L − 1. Therefore, we might expect that nontrivial solutions to the Landau

equations do not generically exist, but that they may exist on codimension-one loci in

Confn(P3) — these are the loci on which the associated scattering amplitude may have

a singularity according to [26, 33].

However the structure of solutions is rather richer than this naive expectation sug-

gests because the equations are typically polynomial rather than linear, and they may

not always be algebraically independent. As we will see in the examples considered

in Sec. 3.5, it is common for nontrivial solutions to exist for generic projected external

data7, and it can happen that there are branches of solutions that exist only on loci of

codimension higher than one. We will not keep track of solutions of either of these types

since they do not correspond to branch points in the space of generic projected external

data.

There are two important points about our procedure which were encountered in [17]

and deserve to be emphasized. The first is a subtlety that arises from the fact that the

on-shell conditions satisfied on a given boundary of some amplituhedron are not al-

ways independent. For example, the end of Sec. 3 of [17] discusses a boundary of An,0,2

described by nine on-shell conditions with the property that the ninth is implied by

the other eight. This situation arises generically for L > 1, and a procedure — called

resolution — for dealing with these cases was proposed in [17]. We postpone further

discussion of this point to the sequel as this paper focuses only on one-loop examples.

Second, there is a fundamental asymmetry between the two types of Landau equa-

tions, (3.9) and (3.10), in two respects. When solving the on-shell conditions we are only

interested in branches of solutions that (A1) exist for generic projected external data, and

that (A2) have nonempty intersection with An,k,L with correct dimension. In contrast,

when further imposing the Kirchhoff constraints on these branches, we are interested

in solutions that (B1) exist on codimension-one loci in Confn(P3), and (B2) need not

7Solutions of this type were associated with infrared singularities in [16]. We do not keep track of these
solutions since the infrared structure of amplitudes in massless gauge theory is understood to all loop
order based on exponentiation [77, 63]. However, if some set of Landau equations has an “IR solution”
at some particular L(`), there may be other solutions, at different values of L(`), that exist only on loci of
codimension one. In such cases we do need to keep track of the latter.
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remain within An,k,L. The origin of this asymmetry was discussed in [17]. In brief, it

arises from Cutkoskian intuition whereby singularities of an amplitude may arise from

configurations of loop momenta that are outside the physical domain of integration (by

virtue of being complex; or, in the current context, being outside the closure of the am-

plituhedron), and are only accessible after analytic continuation to some higher sheet;

whereas the monodromy of an amplitude around a singularity is computed by an inte-

gral over the physical domain with the cut propagators replaced by delta functions. The

resulting monodromy will be zero, i.e. the branch point doesn’t really exist, if there is

no overlap between the physical domain and the locus where the cuts are satisfied, mo-

tivating (A2) above. In summary, it is important to “solve the on-shell conditions first”

and then impose the Kirchhoff conditions on the appropriate branches of solutions only

afterwards.

3.1.5 Summary: The Algorithm

The Landau equations may be interpreted as defining a map which associates to each

boundary of the amplituhedronAn,k,L a locus in Confn(P3) on which the corresponding

n-point NkMHV L-loop amplitude has a singularity. The Landau equations themselves

have no way to indicate whether a singularity is a pole or branch point. However, it

is expected that all poles in SYM theory arise from boundaries that are present already

in the tree-level amplituhedra [4]. These occur when some 〈a a+1 b b+1〉 go to zero as

discussed at the beginning of Sec. 3.1.3. The aim of our work is to understand the loci

where amplitudes have branch points, so we confine our attention to the L-boundaries

defined in that section.

The algorithm for finding all branch points of the n-particle NkMHV L-loop ampli-

tude is therefore simple in principle:

1. Enumerate all L-boundaries of An,k,L for generic projected external data.

2. For eachL-boundary, identify the codimension-one loci (if there are any) in Confn(P3)

on which the corresponding Landau equations admit nontrivial solutions.
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However, it remains a difficult and important outstanding problem to fully charac-

terize the boundaries of general amplituhedra. In the remainder of this paper we focus

on the special case L = 1, since all L-boundaries of An,k,1 (which have been discussed

extensively in [10]) may be enumerated directly for any given n:

1(a). Start with a list of all possible sets of on-shell conditions of the form 〈L a a+1〉 = 0.

1(b). For each such set, identify all branches of solutions that exist for generic projected

external data.

1(c). For each such branch B, determine the values of k for whichAn,k,1 has a boundary

of type B.

It would be enormously inefficient to carry out this simple-minded algorithm beyond

one loop. Fortunately, we will see in the sequel that the one-loop results of this paper

can be exploited very effectively to generate L-boundaries of L > 1 amplituhedra.

3.2 One-Loop Branches

In this section we carry out steps 1(a) and 1(b) listed at the end of Sec. 3.1.5. To that end

we first introduce a graphical notation for representing sets of on-shell conditions via

Landau diagrams. Landau diagrams take the form of ordinary Feynman diagrams, with

external lines labeled 1, . . . , n in cyclic order and one internal line (called a propagator)

corresponding to each on-shell condition. Landau diagrams relevant to amplituhedra

are always planar. Each internal face of an L-loop Landau diagram is labeled by a dis-

tinct ` ∈ {1, . . . , L}, and each external face may be labeled by the pair (a a+1) of external

lines bounding that face.

The set of on-shell conditions encoded in a given Landau diagram is read off as

follows:

• To each propagator bounding an internal face ` and an external face (a a+1) we

associate the on-shell condition 〈L(`) a a+1〉 = 0.
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• To each propagator bounding two internal faces `1, `2 we associate the on-shell

condition 〈L(`1) L(`2)〉 = 0.

At one loop we only have on-shell conditions of the first type. Moreover, since L
only has four degrees of freedom (the dimension of Gr(2, 4) is four), solutions to a set

of on-shell conditions will exist for generic projected external data only if the number

of conditions is d ≤ 4. Diagrams with d = 1, 2, 3, 4 are respectively named tadpoles,

bubbles, triangles and boxes. The structure of solutions to a set of on-shell conditions

can change significantly depending on how many pairs of conditions involve adjacent

indices. Out of abundance of caution it is therefore necessary to consider separately

the eleven distinct types of Landau diagrams shown in the second column of Tab. 3.1.

For d > 1 their names are qualified by indicating the number of nodes with valence

greater than three, called masses. These rules suffice to uniquely name each distinct type

of diagram except the two two-mass boxes shown in Tab. 3.1 which are conventionally

called “easy” and “hard”. This satisfies step 1(a) of the algorithm.

Proceeding now to step 1(b), we display in the third column of Tab. 3.1 all branches

of solutions (as always, for generic projected external data) to the on-shell conditions

associated to each Landau diagram. These expressions are easily checked by inspection

or by a short calculation. More details and further discussion of the geometry of these

problems can be found for example in [32]. The three-mass triangle solution involves

the quantities

ρ(α) = −α〈i j+1 k k+1〉 − (1− α)〈i+1 j+1 k k+1〉 ,

σ(α) = α〈i j k k+1〉+ (1− α)〈i+1 j k k+1〉 ,
(3.11)

and the four-mass box solution is sufficiently messy that we have chosen not to write it

out explicitly.

Altogether there are nineteen distinct types of branches, which we have numbered

(1) through (19) in Tab. 3.1 for ease of reference. The set of solutions to any set of on-shell

conditions of the form 〈L a a+1〉 must be closed under parity, since each line (a a+1)

maps to itself. Most sets of on-shell conditions have two branches of solutions related
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to each other by parity. Only the tadpole, two-mass bubble, and three-mass triangle

(branches (1), (4), and (9) respectively) have single branches of solutions that are closed

under parity.
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Name Landau Diagram Branches k-Validity

Low-k

Twistor

Diagram

Singularity

Locus/Loci

tadpole

(n ≥ 4)

i

(1) L = (αZi + (1−α)Zi+1, A) 0 ≤ k ≤ n−4

i

0

one-mass

bubble

(n ≥ 4)

i (2) L = (Zi, A)

(3) L = i ∩ P

0 ≤ k ≤ n−4

n−4 ≥ k ≥ 0

i

0

two-mass

bubble

(n ≥ 4)

i

j

(4) L = (αZi + (1−α)Zi+1,

βZj + (1−β)Zj+1)

0 ≤ k ≤ n−4

i

j

〈i i+1 j j+1〉

one-mass

triangle

(n ≥ 4)

i

(5) L = (Zi, αZi+1 + (1−α)Zi+2)

(6) L = (Zi+1, αZi−1 + (1−α)Zi)

0 ≤ k ≤ n−4

n−4 ≥ k ≥ 0

i

i+1

0

two-mass

triangle

(n ≥ 5)

i

j

(7) L = (Zi, αZj + (1−α)Zj+1)

(8) L = i ∩ (j j+1 A)

0 ≤ k ≤ n−5

n−4 ≥ k ≥ 1

i

j

0

three-mass

triangle

(n ≥ 6)

i

j

k
(9) L = (αZi + (1−α)Zi+1,

ρ(α)Zj + σ(α)Zj+1)

1 ≤ k ≤ n−5

i

k

j fij f jk fki
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Name Landau Diagram Branches k-Validity

Low-k

Twistor

Diagram

Singularity

Locus/Loci

one-mass

box (n ≥ 5)

i

(10) L = (i i+2)

(11) L = i ∩ i+2

0 ≤ k ≤ n−5

n−4 ≥ k ≥ 1

i

i+2
〈i i+2〉〈i i+2〉

two-mass

easy box

(n ≥ 6)

i

j

(12) L = (i j)

(13) L = i ∩ j

0 ≤ k ≤ n−6

n−4 ≥ k ≥ 2

i

j
〈i j〉〈i j〉

two-mass

hard box

(n ≥ 6)

i

j

(14) L = i+1∩ (i j j+1)

(15) L = i ∩ (i+1 j j+1)

1 ≤ k ≤ n−5

n−5 ≥ k ≥ 1

i

j

i+1 〈i i+2〉〈i i+1 j j+1〉

three-mass

box (n ≥ 7)

i
j

k

(16) L = (i j j+1) ∩ (i k k+1)

(17) L = (i ∩ (j j+1), i ∩ (k k+1))

1 ≤ k ≤ n−6

n−5 ≥ k ≥ 2

i

k

j 〈i(i−1 i+1)(j j+1)(k k+1)〉

four-mass

box (n ≥ 8)

i

j

k

`

(18) L =

(19) L =

 see Tab. 2 of [78]
2 ≤ k ≤ n−6

n−6 ≥ k ≥ 2

i

`

j

k
( fij fk` − fik f j` + fi` f jk)

2

−4 fij f jk fk` fi` ≡ ∆ijk`
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TABLE 3.1: This table shows: the eleven Landau diagrams corresponding to sets of one-loop on-shell conditions that can be
satisfied for generic projected external data; the nineteen branches of solutions to these on-shell conditions; the range of k for
which NkMHV amplituhedra have boundaries of each type; the twistor diagram depicting the low-k solution (or one low-k
solution for the one-mass triangle and two-mass hard box); the loci in Confn(P3) where the Landau equations for each branch
admit nontrivial solutions (where the quantity in the last column vanishes). At one loop it happens that the loci are the same
for each branch of solutions to a given set of on-shell conditions. Here α, β are arbitrary numbers, A is an arbitrary point in
P3, P is an arbitrary plane in P3, ρ(α), σ(α) are defined in Eq. (3.11), fab ≡ 〈a a+1 b b+1〉, and 〈i(i−1 i+1)(j j+1)(k k+1)〉 ≡

〈i−1 i j j+1〉〈i i+1 k k+1〉 − (j↔ k).
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3.3 One-Loop Boundaries

We now turn to the last step 1(c) from the end of Sec. 3.1.5: for each of the nineteen

branches B listed in Tab. 3.1, we must determine the values of k for which An,k,1 has a

boundary of type B (defined in Sec. 3.1.3). The results of this analysis are listed in the

fourth column of the Tab. 3.1. Our strategy for obtaining these results is two-fold.

In order to prove that an amplituhedron has a boundary of type B, it suffices to write

down a pair of matrices C, D such that definitions (3.4) and (3.5) hold, C and
(

D
C
)

are

both non-negative, and the external data projected through Y = CZ are generic for

generic positive Z . We call such a pair C, D a valid configuration for B. In the sections be-

low we present explicit valid configurations for each of the nineteen branches. Initially

we consider for each branch only the lowest value of k for which a valid configuration

exists; in Sec. 3.3.7 we explain how to grow these to larger values of k and establish the

upper bounds on k shown in Tab. 3.1.

However, in order to prove that an amplituhedron does not have a boundary of type

B, it does not suffice to find a configuration that is not valid; one must show that no valid

configuration exists. We address this problem in the next section.

3.3.1 A Criterion for Establishing Absent Branches

Fortunately, for L-boundaries of the type under consideration there is a simple criterion

for establishing when no valid configuration can exist. The crucial ingredient is that

if (Y,L) ∈ An,k,1 and 〈L a a+1〉 = 0 for some a, then 〈L a a+2〉 must necessarily be

non-positive8; the proof of this assertion, which we omit here, parallels that of a closely

related statement proven in Sec. 6 of [37].

Consider now a line of the form L = (αZa + βZa+1, A) for some point A and some

parameters α, β which are not both vanishing. We will show that an L of this form can

lie in the closure of an amplituhedron only if L = (a a+1) or αβ ≥ 0.

8 Unless a ∈ {n− 1, n}, when one must take into account the twisted cyclic symmetry. In all that follows
we will for simplicity always assume that indices are outside of this range, which lets us uniformly ignore
all sign factors that might arise from the twisted cyclic symmetry; these signs necessarily always conspire
to ensure that all statements about amplitudes are Zn cyclically invariant.
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First, as just noted, since 〈L a a+1〉 = 0 we must have

0 ≥ 〈L a a+2〉 = β〈a+1 A a a+2〉 . (3.12)

On the other hand, as mentioned at the end of Sec. 3.1.2, we also have 〈L a a+1〉 ≥ 0 for

all a. Applying this to a + 1 gives

0 ≤ 〈L a+1 a+2〉 = α〈a A a+1 a+2〉 . (3.13)

If 〈a a+1 a+2 A〉 6= 0, then the two inequalities (3.12) and (3.13) imply that αβ ≥ 0.

This is the conclusion we wanted, but it remains to address what happens if 〈a a+1 a+2 A〉 =
0. In this case L lies in the plane (a a+1 a+2) so we can take L = (αZa + βZa+1, γZa+1 +

δZa+2). Then we have

0 ≥ 〈L a+1 a+3〉 = −αδ〈a a+1 a+2 a+3〉 ,

0 ≤ 〈L a−1 a〉 = βδ〈a−1 a a+1 a+2〉 .
(3.14)

Both of the four-brackets in these inequalities are positive (for generic projected external

data) since they are of the form 〈a a+1 b b+1〉, so we conclude that either δ = 0, which

means that L = (a a+1), or else we again have αβ ≥ 0.

In conclusion, we have developed a robust test which establishes that

L = (αZa + βZa+1, A) ∈ An,k,1 only if L = (a a+1) or αβ ≥ 0 . (3.15)

This statement is independent of k (and Y), but when applied to particular branches, we

will generally encounter cases for which αβ is negative unless certain sequences of four-

brackets of the projected external data have a certain number of sign flips; this signals

that the branch may intersect An,k,1 only for certain values of k.
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3.3.2 MHV Lower Bounds

The fact that MHV amplituhedra only have boundaries of type (1)–(7), (10) and (12)

(referring to the numbers given in the “Branches” column of Tab. 3.1) follows implicitly

from the results of [17] where all boundaries of one- (and two-) loop MHV amplituhedra

were studied. It is nevertheless useful to still consider these cases since we will need

the corresponding D-matrices below to establish that amplituhedra have boundaries of

these types for all 0 ≤ k ≤ n− 4.

In this and the following two sections we always assume, without loss of generality,

that indices i, j, k, ` are cyclically ordered and non-adjacent (i+1 < j < j+1 < k <

k+1 < `), and moreover that 1 < i and ` < n. In particular, this means that we ignore

potential signs from the twisted cyclic symmetry (see footnote 8).

Branch (4) is a prototype for several other branches, so we begin with it instead of

branch (1). The solution for L shown in Tab. 3.1 may be represented as L = DZ with

D =


i i+1 j j+1

α 1− α 0 0

0 0 β 1− β

 , (3.16)

where we display only the nonzero columns of the 2 × n matrix in the indicated po-

sitions i, i+1, j and j+1. This solves the two-mass bubble on-shell conditions for all

values of the parameters α and β. This branch intersects An,0,1 when they lie in the

range 0 ≤ α, β ≤ 1, where the matrix D is non-negative. Thus we conclude that MHV

amplituhedra have boundaries of type (4).

Branches (5), (6), (7), (10), and (12) can all be represented by special cases of Eq. (3.16)

for α and/or β taking values 0 and/or 1, and/or with columns relabeled, so MHV am-

plituhedra also have boundaries of all of these types.
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Branch (1) may be represented by

D =


i−1 i i+1 i+2

· · · 0 α 1− α 0 · · ·

· · · αi−1 αi αi+1 αi+2 · · ·

 . (3.17)

This provides a solution to the tadpole on-shell condition 〈L i i+1〉 = 0 for all values of

the parameters, and there clearly are ranges for which D is non-negative. Note that all

but two of the parameters in the second row could be gauged away, but this fact is not

relevant at the moment (see footnote 9). If 0 ≤ α ≤ 1, we could have either αa = 0 for

a < i + 1 and αa > 0 for a > i, or α = 0 for a > i and αa < 0 for a < i + 1. We conclude

that MHV amplituhedra also have boundaries of this type.

Branch (2) is the special case α = 1 of branch (1).

Branch (3) may be represented by

D =


i−1 i i+1

1 0 α

0 1 β

 (3.18)

for arbitrary α, β, which is non-negative for α ≤ 0 and β ≥ 0, so MHV amplituhedra

also have boundaries of this type.

3.3.3 NMHV Lower Bounds

Branch (8) of the two-mass triangle may be represented as

D =


i i+1 j j+1

α 1− α 0 0

0 0 −〈i j+1〉 〈i j〉

 (3.19)
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for arbitrary α. For generic projected external data L 6= (j j+1), so criterion (3.15) shows

that this configuration has a chance to lie on the boundary of an amplituhedron only

if −〈i j+1〉〈i j〉 ≥ 0. This is not possible for MHV external data, where the ordered

four-brackets are always positive, so MHV amplituhedra do not have boundaries of

this type. But note that the inequality can be satisfied if there is at least one sign flip in

the sequence 〈i •〉, between • = j and • = j+1. This motivates us to consider k = 1, so

let us now check that with

C =

( i−1 i i+1 j j+1

ci−1 ci ci+1 cj cj+1

)
, (3.20)

the pair C, D is a valid configuration. First of all, it is straightforward to check that

L = DZ still satisfies the two-mass triangle on-shell conditions. This statement is not

completely trivial since these conditions now depend on Y = CZ because of the projec-

tion (3.2). Second, in order for C to be non-negative we need all five of the indicated ca’s

to be non-negative. Moreover, in order to support generic projected external data, we

need them all to be nonzero — if, say, ci were equal to zero, then 〈i−1 i+1 j j+1〉 would

vanish, etc. Finally, for
(

D
C
)

to be non-negative we need

0 ≤ α ≤ ci

ci + ci+1
. (3.21)

This branch intersects An,1,1 for α in this range, so we conclude that NMHV amplituhe-

dra have boundaries of this type.

Branch (9) is the general solution of the three-mass triangle, and is already given

in Tab. 3.1 in D-matrix form as

D =


i i+1 j j+1

α 1− α 0 0

0 0 ρ(α) σ(α)

 , (3.22)
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with ρ(α) and σ(α) defined in Eq. (3.11). For generic projected external data this L
can never attain the value (i i+1) or (j j+1). Applying criterion (3.15) for both a =

i and a = j shows that this configuration has a chance to lie on the boundary of an

amplituhedron only if α(1− α) ≥ 0 and ρ(α)σ(α) ≥ 0. This is not possible for MHV

external data, so we conclude that MHV amplituhedra do not have boundaries of this

type. However, the ρ(α)σ(α) ≥ 0 inequality can be satisfied if the sequences 〈i k k+1 •〉
and 〈i+1 k k+1 •〉 change sign between • = j and • = j+1, as long as the sequences

〈j k k+1 •〉 and 〈j+1 k k+1 •〉 do not flip sign here. Consider for k = 1 the matrix

C =

( i i+1 j j+1 k k+1

αci (1− α)ci cj cj+1 ck ck+1

)
. (3.23)

Then C, D is a valid configuration because (1) L = DZ satisfies the three-mass triangle

on-shell conditions (for all values of α and the c’s), and, (2) for 0 ≤ α ≤ 1 and all

c’s positive, the C-matrix is non-negative and supports generic positive external data

(because it has at least k+4 = 5 nonzero columns), and (3) for this range of parameters(
D
C
)

is also non-negative. Since this branch intersectsAn,1,1 for a range of α, we conclude

that NMHV amplituhedra have boundaries of this type.

Branch (16) is the special case α = 1 of branch (9).

Branch (14) is the special case j→ i + 1, k→ j of branch (16).

Branch (15) is equivalent to the mirror image of branch (14), after relabeling.

Branch (11) is the special case j = i + 2 of branch (15).
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3.3.4 N2MHV Lower Bounds

Branch (17) may be represented by

D =


j j+1 k k+1

0 0 −〈i k+1〉 〈i k〉

−〈i j+1〉 〈i j〉 0 0

 . (3.24)

For generic projected external data the corresponding L will never attain the value

(j j+1) or (k k+1). We can apply criterion (3.15) for both a = j and a = k, which reveals

that this configuration has a chance to lie on a boundary of an amplituhedron only if

both −〈i j+1〉〈i j〉 ≥ 0 and −〈i k+1〉〈i k〉 ≥ 0. This is impossible for MHV external data,

and it is also impossible in the NMHV case, where some projected four-brackets may be

negative but the sequence 〈i •〉 may only flip sign once, whereas we need it to flip sign

twice, once between • = j and • = j+1, and again between • = k and • = k+1. We

conclude that k < 2 amplituhedra do not have boundaries of this form. Consider now

pairing (3.24) with the k = 2 matrix

C =


i−1 i i+1 j j+1 k k+1

c11 c12 c13 c14 c15 0 0

c21 c22 c23 0 0 c24 c25

 . (3.25)

It is straightforward to check that C, D is a valid configuration for a range of values of

c’s, so we conclude that k = 2 amplituhedra have boundaries of this type.

Branch (13) may be represented by

D =


i−1 i i+1

〈i j〉 −〈i−1 j〉 0

0 −〈i+1 j〉 〈i j〉

 , (3.26)
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which by (3.15) cannot lie on a boundary of an amplituhedron unless the sequence 〈j •〉
flips sign twice, first between • = i−1 and i and again between • = i and i+1. Therefore,

neither MHV nor NMHV amplituhedra have boundaries of this type. However it is

straightforward to verify that with

C =


i−1 i i+1 j−1 j j+1

c11 c12 0 c13 c14 c15

0 c21 c22 c23 c24 c25

 (3.27)

the pair C, D is a valid configuration for a range of values of c’s, so k = 2 amplituhedra

do have boundaries of this type.

Branches (18) and (19) of the four-mass box may be represented as

D =


i i+1 j j+1

α 1− α 0 0

0 0 β 1− β

 , (3.28)

where α and β are fixed by requiring that L intersects the lines (k k+1) and (` `+1).

The values of α and β on the two branches were written explicitly in [78]; however, the

complexity of those expressions makes analytic positivity analysis difficult. We have

therefore resorted to numerical testing: using the algorithm described in Sec. 5.4 of [3],

we generate a random positive n × (k + 4) Z-matrix and a random positive k× n C-

matrix. After projecting through Y = CZ , we obtain projected external data with the

correct NkMHV sign-flipping properties. We have checked numerically that both four-

mass box branches lie on the boundary of NkMHV amplituhedra only for k ≥ 2, for

many instances of randomly generated external data.
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3.3.5 Emergent Positivity

The analysis of Secs. 3.3.2, 3.3.3 and 3.3.4 concludes the proof of all of the lower bounds

on k shown in the fourth column of Tab. 3.1. We certainly do not claim to have written

down the most general possible valid C, D configurations; the ones we display for k > 0

have been specifically chosen to demonstrate an interesting feature we call emergent

positivity.

In each k > 0 case we encountered D-matrices that are only non-negative if certain

sequences of projected four-brackets of the form 〈a a+1 b •〉 change sign k times, at cer-

tain precisely specified locations. It is straightforward to check that within the range of

validity of each C, D pair we have written down, the structure of the C matrix is such

that it automatically puts the required sign flips in just the right places to make the D

matrix, on its own, non-negative (provided, of course, that
(

D
C
)

is non-negative). It is

not a priori obvious that it had to be possible to find pairs C, D satisfying this kind of

emergent positivity; indeed, it is easy to find valid pairs for which it does not hold.

3.3.6 Parity and Upper Bounds

Parity relates each branch to itself or to the other branch associated with the same Lan-

dau diagram. Since parity is a symmetry of the amplituhedron [37] which relates k to

n − k − 4, the lower bounds on k that we have established for various branches im-

ply upper bounds on k for their corresponding parity conjugates. These results are

indicated in the fourth column of Tab. 3.1, where the inequalities are aligned so as to

highlight the parity symmetry.

Although these k upper bounds are required by parity symmetry, they may seem

rather mysterious from the analysis carried out so far. We have seen that certain branches

can be boundaries of an amplituhedron only if certain sequences of four-brackets have

(at least) one or two sign flips. In the next section, we explain a mechanism which gives

an upper bound to the number of sign flips, or equivalently which gives the upper

bounds on k that are required by parity symmetry.
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3.3.7 Increasing Helicity

So far we have only established that NkMHV amplituhedra have boundaries of certain

types for specific low (or, by parity symmetry, high) values of k. It remains to show

that all of the branches listed in Tab. 3.1 lie on boundaries of amplituhedra for all of the

intermediate helicities. To this end we describe now an algorithm for converting a valid

configuration C0, D0 at the initial, minimal value of k0 (with C0 being the empty matrix

for those branches with k0 = 0) into a configuration that is valid at some higher value

of k.

We maintain the structure of D ≡ D0 and append to C0 a matrix C′ of dimensions

(k− k0)× n in order to build a configuration for helicity k. Defining C =
(

C0
C′

)
, we look

for a C′ such that following properties are satisfied:

1. The same on-shell conditions are satisfied.

2. In order for the configuration to support generic projected external data, the C-

matrix must have m ≥ k + 4 nonzero columns, and the rank of any m− 4 of those

columns must be k.

3. Both C and
(

D
C
)

remain non-negative.

Since the C-matrix only has n columns in total, it is manifest from property (2) that

everything shuts off for k > n− 4, as expected.

Let us attempt to preserve the emergent positivity of D. If k0 = 0 then this is trivial;

the D-matrices in Sec. 3.3.2 do not depend on any brackets, so adding rows to the empty

C0 has no effect on D. For k0 > 0, let A and B be two entries in D0 that are responsible

for imposing a sign flip requirement. The argument applies equally to all of the k0 > 0

branches, but for the sake of definiteness consider from Eq. (3.19) the two four-bracket

dependent entries A = −〈i j+1〉 and B = 〈i j〉. Assuming that C0 is given by Eq. (3.20) so

that both A and B are positive with respect to Y0 = C0Z , then AB = −[Y0 i j+1][Y0 i j] >
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0. If we append a second row C′ and define Y′ = C′Z then we have

A = −[Y0 Y′ Zi−1Zi Zi+1Zj+1] = −cj[Zj Y′ Zi Zi+1Zj+1] ,

B = [Y0 Y′ Zi−1Zi Zi+1Zj] = cj+1[Zj+1 Y′ Zi Zi+1Zj] .
(3.29)

Since cj and cj+1 are both positive, we see that A and B still satisfy AB > 0, regardless

of the value of Y′. By the same argument, arbitrary rows can be added to a C-matrix

without affecting the on-shell conditions, so property (1) also holds trivially (and also if

k0 = 0).

The structure of the initial D0 of Secs. 3.3.2, 3.3.3 and 3.3.4 are similar in that the

nonzero columns of this matrix are grouped into at most two clusters9. For example,

for branch (17) there are two clusters {j, j+1} and {k, k+1} while for branch (3) there is

only a single cluster {i−1, i, i+1}. Property (3) can be preserved most easily if we add

suitable columns only in a gap between clusters. Let us illustrate how this works in the

case of branch (4) where C0 is empty and we can start by taking either

D0

C

 =



i−1 i i+1 i+2 · · · j−1 j j+1 j+2

· · · 0 α 1− α 0 · · · 0 0 0 0 · · ·

· · · 0 0 0 0 · · · 0 β 1− β 0 · · ·

· · · 0 0 ~ci+1 ~ci+2 · · · ~cj−1 ~cj 0 0 · · ·

 (3.30)

to fill in the gap between clusters {i, i+1} and {j, j+1}, or

D0

C

 =



i−1 i i+1 i+2 · · · j−1 j j+1 j+2

· · · 0 α 1− α 0 · · · 0 0 0 0 · · ·

· · · 0 0 0 0 · · · 0 β 1− β 0 · · ·

· · · ~ci−1 ~ci 0 0 · · · 0 0 ~cj+1 ~cj+2 · · ·

 (3.31)

to fill in the gap between {j, j+1} and {i, i+1} that “wraps around” from n back to 1. In

9Branch (1) appears to be an exception, but only because Eq. (3.17) as written is unnecessarily general:
it is sufficient for the second row to have only three nonzero entries, either in columns {i−3, i−2, i−1} or
in columns {i+1, i+2, i+3}.
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both (3.30) and (3.31) each~ca is understood to be a k-component column vector, and in

both cases
( D0

C

)
can be made non-negative as long as C is chosen to be non-negative10.

In this manner we can trivially increment the k-validity of a given configuration until

the gaps become full. This cutoff depends on the precise positions of the gaps, and is

most stringent when the two clusters are maximally separated from each other, since

this forces the gaps to be relatively small. In this worst case we can fit only d n
2 e columns

into a C-matrix of one of the above two types. Keeping in mind property (2) that the

C-matrix should have at least k + 4 nonzero columns, we see that this construction can

reach values of k ≤ d n
2 e − 4. In order to proceed further, we can (for example) add

additional columns ci and cj+1 to Eq. (3.30), or ci+1 and cj to Eq. (3.31). Choosing a non-

negative C then no longer trivially guarantees that
( D0

C

)
will also be non-negative, but

there are ranges of C for which this is possible to arrange, which is sufficient for our

argument.

It is possible to proceed even further by adding additional, specially crafted columns

in both gaps, but the argument is intricate and depends delicately on the particular

structure of each individual branch (as evident from the delicate structure of k upper

bounds in Tab. 3.1). In the interest of brevity we terminate our discussion of the algo-

rithm here and note that it is straightforward to check that for all boundaries, even in the

worst case the gaps are always big enough to allow the construction we have described

to proceed up to and including the parity-symmetric midpoint k = b n
2 c− 2; then we ap-

peal again to parity symmetry in order to establish the existence of valid configurations

for k between this midpoint and the upper bound.

This finally concludes the proof of the k-bounds shown in the fourth column of Tab. 3.1,

and thereby step 1(c) from Sec. 3.1.5.

10If k is even this is automatic; if k is odd the two rows of D0 should be exchanged.
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3.4 The Hierarchy of One-Loop Boundaries

Step (1) of our analysis (Sec. 3.1.5) is now complete at one loop. Before moving on

to step (2) we demonstrate that the boundaries classified in Sec. 3.3 can be generated

by a few simple graph operations applied to the maximal codimension boundaries of

MHV amplituhedra (Tab. 3.1 type (12) or, as a special case, (10)). This arrangement will

prove useful in the sequel since one-loop boundaries are the basic building blocks for

constructing boundary configurations at arbitrary loop order.

We call boundaries of type (2), (5)–(7), (10), (12), and (14)–(16) low-k boundaries since

they are valid for the smallest value of k for their respective Landau diagrams. The

branches (8), (11), (13) and (17) are high-k boundaries and are respectively the parity

conjugates of (7), (10), (12) and (16). Branch (3), the parity conjugate of branch (2), is

properly regarded as a high-k boundary since (2) is low-k, but it is accidentally valid for

all k. Branches (1), (4), and (9) are self-conjugate under parity and are considered both

low-k and high-k, as are the parity-conjugate pair (18), (19).

3.4.1 A Graphical Notation for Low-helicity Boundaries

We begin by devising a graphical notation in terms of which the operations between

momentum twistor solutions are naturally phrased. These graphs are twistor diagrams11

depicting various configurations of intersecting lines in P3. The elements of a twistor

diagram, an example of which is shown in panel (a) of Fig. 3.1, are:

• The red line depicts an L solving some on-shell conditions, specifically:

• if L and a single line segment labeled i intersect at an empty node, then

〈L i i+1〉 = 0, and

• if L and two line segments intersect at a filled node labeled i, then

〈L i−1 i〉 = 〈L i i+1〉 = 0.

An “empty” node is colored red, indicating the line passing through it. A “filled” node

is filled in solid black, obscuring the line passing through it.

11Not to be confused with the twistor diagrams of [Hodges:2005bf].
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FIGURE 3.1: The twistor diagram shown in (a) depicts branch (16) of so-
lutions to the three-mass box on-shell conditions 〈L i−1 i〉 = 〈L i i+1〉 =
〈L j j+1〉 = 〈L k k+1〉 = 0, which is a valid boundary for k ≥ 1. This
branch passes through the point Zi and intersects the lines (j j+1) and
(k k+1). As drawn, the intersection at j is an example of a non-MHV in-
tersection, but the figure is agnostic about the relative cyclic ordering of
i, j, k and is intended to represent either possibility. Therefore, the corre-
sponding Landau diagram can be either (b) or (c) depending on whether

i < j < k or i < k < j.

In general a given L can pass through as many as four labeled nodes (for generic

projected external data, which we always assume). If there are four, then none of them

can be filled. If there are three, then at most one of them can be filled, and we choose

to always draw it as either the first or last node along L. If there are more than two,

then any nodes between the first and last are called non-MHV intersections, which are

necessarily empty. This name is appropriate because branches satisfying such on-shell

constraints are not valid boundaries of MHV amplituhedra, and each non-MHV inter-

section in a twistor diagram increases the minimum value of k by one.

Although no such diagrams appear in this paper, the extension to higher loops is

obvious: each L is represented by a line of a different color, and the presence of an

on-shell condition of the form 〈L(`1) L(`2)〉 = 0 is indicated by an empty node at the

intersection of the lines L(`1) and L(`2).

To each twistor diagram it is simple to associate one or more Landau diagrams, as

also shown in Fig. 3.1. If a twistor diagram has a filled node at i then an associated Lan-

dau diagram has two propagators 〈L i−1 i〉 and 〈L i i+1〉 requiring a massless corner at

i in the Landau diagram. If a twistor diagram has an empty node on the line segment

marked i then an associated Landau diagram only has the single propagator 〈L i i+1〉,
requiring a massive corner in the Landau diagram. Therefore, twistor diagrams should
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be thought of as graphical shorthand which both depict the low-k solution to the cut

conditions and simultaneously represent one or more Landau diagrams, as explained

in the caption of Fig. 3.1.

One useful feature of this graphical notation is that the nodes of a twistor diagram

fully encode the total number of propagators, nprops, in the Landau diagram (and so also

the total number of on-shell conditions): each filled node accounts for two propagators,

and each empty node accounts for one propagator:

nprops = 2nfilled + nempty . (3.32)

This feature holds at higher loop order where this counting directly indicates how many

propagators to associate with each loop.

Let us emphasize that a twistor diagram generally contains more information than

its associated Landau diagram, as it indicates not only the set of on-shell conditions

satisfied, but also specifies a particular branch of solutions thereto. The sole exception

is the four-mass box, for which the above rules do not provide the twistor diagram with

any way to distinguish the two branches (18), (19) of solutions. Moreover, the rules

also do not provide any way to indicate that an L lies in a particular plane, such as

i. Therefore we can only meaningfully represent the low-k boundaries defined at the

beginning of Sec. 3.4.

Given a twistor diagram depicting some branch, a twistor diagram corresponding to

a relaxation of that branch may be obtained by deleting a non-MHV intersection of the

type shown in (a) of Fig. 3.1, by replacing a filled node and its two line segments with

an empty node and a single segment, or by deleting an empty node. In the associated

Landau diagram, a relaxation corresponds to collapsing an internal edge of the graph.

This is formalized in greater detail in Sec. 3.4.2.

3.4.2 A Graphical Recursion for Generating Low-helicity Boundaries

In Fig. 3.2 we organize twistor diagrams representing eight types of boundaries accord-

ing to d and k; these are respectively the number of on-shell conditions d satisfied on
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FIGURE 3.2: Twistor diagrams depicting eight types of low-k boundaries
of NkMHV amplituhedra, organized according to the minimum value of
k and the codimension d (equivalently, the number of on-shell conditions
satisfied). These correspond respectively to branch types (2), (1), (12), (7),
(4), (16), (9) and (18)/(19). The graph operatorsK,R, and U are explained
in the text and demonstrated in Figs. 3.3-3.5, respectively. Evidently all
eight types of boundaries can be generated by acting with sequences of
these operators on MHV maximal codimension boundaries of the type
shown shaded in gray. There is an analogous parity-conjugated version
of this hierarchy which relates all of the high-k branches to each other.
The missing low-k boundary types (5), (6), (10), (11), (14) and (15) are
degenerate cases which can be obtained by starting with j = i + 1 in the

gray blob.
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the boundary, and the minimum value of k for which the boundary is valid. It is evi-

dent from this data that there is a simple relation between d, k, and the number of filled

(nfilled) and empty (nempty) nodes. Specifically, we see that an NkMHV amplituhedron

can have boundaries of a type displayed in a given twistor diagram only if

k ≥ 2nempty + 3nfilled − d− 2 = nempty + nfilled − 2 , (3.33)

where we have used Eq. (3.32) with nprops = d. In the sequel we will describe a useful

map from Landau diagrams to the on-shell diagrams of [3] which manifests the rela-

tion (3.33) and provides a powerful generalization thereof to higher loop order. The

amplituhedron-based approach has some advantages over that of enumerating on-shell

diagrams that will also be explored in the sequel. First of all, the minimal required he-

licity of a multi-loop configuration can be read off from each loop line separately. Sec-

ond, we immediately know the relevant solution branches for a given helicity. And fi-

nally, compared to enumerating all relevant on-shell diagrams the amplituhedron-based

method is significantly more compact since it can be used to produce a minimal subset of

diagrams such that all allowed diagrams are relaxations thereof, including limits where

massive external legs become massless or vanish.

From the data displayed in Fig. 3.2 we see that a natural organizational principle

emerges: all NkMHV one-loop twistor diagrams can be obtained from the unique maxi-

mal codimension MHV diagram (shown shaded in gray) via sequences of simple graph

operations which we explain in turn.

The first graph operation K increments the helicity of the diagram on which it op-

erates. (The name K is a reminder that it increases k.) Its operation is demonstrated

in Fig. 3.3. Specifically, Ki replaces a filled node at a point i along L by two empty

nodes, one at i and a second one on a new non-MHV intersection added to the diagram.

Since nfilled decreases by one but nempty increases by two under this operation, it is clear

from Eq. (3.33) that Ki always increases by one the minimal value of k on which the

branch indicated by the twistor diagram has support. From the point of view of Landau

diagrams, this operation replaces a massless node with a massive one, as illustrated in



74 Chapter 3. All-Helicity Symbol Alphabets from Unwound Amplituhedra

i

Ki,−Ki,− Ki,−

i−1

j
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FIGURE 3.3: The graph operation Ki maps an NkMHV twistor diagram
into an Nk+1MHV twistor diagram as shown in the top row. On Landau
diagrams, this corresponds to replacing a massless corner by a massive
corner; such an operation is effectively an inverse collinear limit. The
shaded region in the figures represents an arbitrary planar sub-graph. A
dashed external line on a Landau diagram may be either one massless
external leg so the whole corner is massive, or completely removed so

the whole corner is massless.

the bottom row of Fig. 3.3, and hence it may be viewed as an “inverse” collinear limit.

The other two graph operationsR and U both correspond to relaxations, as defined

in Sec. 3.1.3, since they each reduce the number of on-shell conditions by one, stepping

thereby one column to the right in Fig. 3.2.

The operation Ri simply removes (hence the name R) an empty node i from a

twistor diagram, as shown in Fig. 3.4. This corresponds to removing 〈L i i + 1〉 = 0

from the set of on-shell conditions satisfied by L12.

The last operation, U, corresponds to “un-pinning” a filled node (hence “U”). Un-

pinning means removing one constraint from a pair 〈L i−1 i〉 = 〈L i i+1〉 = 0. The line

L, which was pinned to the point i, is then free to slide along the line segment (i−1 i) or

(i i+1) (for Ui,− or Ui,+, respectively). In the twistor diagram, this is depicted by replac-

ing the filled node at the point i with a single empty node along the line segment (i i±1)

(see Fig. 3.5). Only U+ appears in Fig. 3.2 because at one loop, all diagrams generated

by any U− operation are equivalent, up to relabeling, to some diagram generated by

a U+. In general, however, it is necessary to track the subscript ± since both choices

12Note that in line with the conventions adopted in Sec. 3.4.1 we label Ri only with the smaller label of
a pair (i i+1).
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i ji+1 j+1
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Propagator

i i+1

FIGURE 3.4: The graph operation Rj relaxes L by removing the condi-
tion that L must pass through the line (j j+1); this is equivalent to re-
moving the on-shell condition 〈L j j+1〉 = 0. On Landau diagrams, this
corresponds to collapsing the propagator indicated by the filled dot in the
bottom figure on the left. The shaded region in the figures represents an
arbitrary planar sub-graph. A dashed external line on a Landau diagram
may be either one massless external leg so the whole corner is massive,
or completely removed so the whole corner is massless. It is to be un-
derstood that the graphical notation implies that j 6= i + 2 and i 6= j + 2;
otherwise, the two empty nodes in the top left diagram would be repre-
sented by a single filled node on which the action of R is undefined; the

appropriate graph operation in this case would instead be U.

are equally valid relaxations and can yield inequivalent twistor and Landau diagrams.

From Fig. 3.2, we read off the following identity among the operators acting on any

diagram g:

Uj,+g = RkKj,+g . (3.34)

There was no reason to expect the simple graphical pattern of Fig. 3.5 to emerge

among the twistor diagrams. Indeed in Sec. 3.2 we simply listed all possible sets of

on-shell conditions without taking such an organizational principle into account. At

higher loop order, however, the problem of enumerating all boundaries of NkMHV am-

plituhedra benefits greatly from the fact that all valid configurations of each single loop

can be iteratively generated via these simple rules, starting from the maximal codimen-

sion MHV boundaries. Stated somewhat more abstractly, these graph operations are

instructions for naturally associating boundaries of different amplituhedra.
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FIGURE 3.5: The graph operation Ui,+ relaxes a line L constrained to pass
through the point i, shifting it to lie only along the line (i i+1). This is
equivalent to removing the on-shell constraint 〈L i−1 i〉 = 0. (The equally
valid relaxation Ui,−, not pictured here, lets the intersection point slide
onto (i−1 i).) On Landau diagrams, this corresponds to collapsing the
propagator indicated by the filled dot in the bottom figure on the left. The
shaded region in the figures represents an arbitrary planar sub-graph. A
dashed external line on a Landau diagram may be either one massless
external leg so the whole corner is massive, or completely removed so
the whole corner is massless. As explained in the caption of Fig. 3.4, the
U operation can be thought of as a special case of theR operation, and we
distinguish the two because only the latter can change the helicity sector

k.
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Before concluding this section it is worth noting (as is evident in Fig. 3.2) that re-

laxing a low-k boundary can never raise the minimum value of k for which that type

of boundary is valid. In other words, we find that if An,k,1 has a boundary of type B,

and if B′ is a relaxation of B, then An,k,1 also has boundaries of type B′. This property

does not hold in general beyond one loop; a counterexample involving two-loop MHV

amplitudes appears in Fig. 4 of [17].

3.5 Solving Landau Equations in Momentum Twistor Space

As emphasized in Sec. 3.1.5, the Landau equations naturally associate to each boundary

of an amplituhedron a locus in Confn(P3) on which the corresponding amplitude has

a singularity. In this section we review the results of solving the Landau equations for

each of the one-loop branches classified in Sec. 3.2, thereby carrying out step 2 of the

algorithm summarized in Sec. 3.1.5. The results of this section were already tabulated

in [16], but we revisit the analysis, choosing just two examples, in order to demonstrate

the simplicity and efficiency of these calculations when carried out directly in momen-

tum twistor space. The utility of this method is on better display in the higher-loop

examples to be considered in the sequel.

As a first example, we consider the tadpole on-shell condition

f1 ≡ 〈L i i+1〉 = 0 . (3.35)

We choose any two other points Zj, Zk (which generically satisfy 〈i i+1 j k〉 6= 0) in terms

of which to parameterize

L = (Zi + d1Zj + d2Zk, Zi+1 + d3Zj + d4Zk) . (3.36)

Then the on-shell condition (3.35) admits solutions when

d1d4 − d2d3 = 0 , (3.37)
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while the four Kirchhoff conditions (3.10) are

α1d4 = −α1d3 = −α1d2 = α1d1 = 0 . (3.38)

The only nontrivial solution (that means α1 6= 0; see Sec. 3.1.4) to the equations (3.37)

and (3.38) is to set all four dA = 0. Since this solution exists for all (generic) projected

external data, it does not correspond to a branch point of an amplitude and is uninter-

esting to us. In other words, in this case the locus we associate to a boundary of this

type is all of Confn(P3).

As a second example, consider the two on-shell conditions corresponding to the

two-mass bubble

f1 ≡ 〈L i i+1〉 = 0 , f2 ≡ 〈L j j+1〉 = 0 . (3.39)

In this case a convenient parameterization is

L = (Zi + d1Zi+1 + d2Zk, Zj + d3Zi+1 + d4Zk) . (3.40)

Note that an asymmetry between i and j is necessarily introduced because we should

not allow more than four distinct momentum twistors to appear in the parameteriza-

tion, since they would necessarily be linearly dependent, and we assume of course that

Zk is generic (meaning, as before, that 〈i i+1 j k〉 6= 0). Then

f1 = −d2〈i i+1 j k〉 ,

f2 = d3〈i i+1 j j+1〉+ d4〈i j j+1 k〉+ (d1d4 − d2d3)〈i+1 j j+1 k〉 (3.41)
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and the Kirchhoff conditions are



0 d4〈i+1 j j+1 k〉
−〈i i+1 j k〉 −d3〈i+1 j j+1 k〉

0 〈i i+1 j j+1〉 − d2〈i+1 j j+1 k〉
0 〈i j j+1 k〉+ d1〈i+1 j j+1 k〉


α1

α2

 = 0 . (3.42)

Nontrivial solutions exist only if all 2× 2 minors of the 4× 2 coefficient matrix vanish.

Three minors are trivially zero, and the one computed from the second and third rows

evaluates simply to

−〈i i+1 j k〉〈i i+1 j j+1〉 = 0 (3.43)

using the on-shell condition f1 = −d2〈i i+1 j k〉 = 0. If this quantity vanishes, then

the four remaining constraints (the two on-shell conditions f1 = f2 = 0 and the two

remaining minors) can be solved for the four dA, and then Eq. (3.42) can be solved to

find the two αJ’s. Since 〈i i+1 j k〉 6= 0 by assumption, we conclude that the Landau

equations admit nontrivial solutions only on the codimension-one locus in Confn(P3)

where

〈i i+1 j j+1〉 = 0 . (3.44)

These two examples demonstrate that in some cases (e.g. the tadpole example) the

Landau equations admit solutions for any (projected) external data, while in other cases

(e.g. the bubble example) the Landau equations admit solutions only when there is a

codimension-one constraint on the external data. A common feature of these examples

is that some care must be taken in choosing how to parameterize L. In particular, one

must never express L in terms of four momentum twistors (Zi, Zj, etc.) that appear in

the specification of the on-shell conditions; otherwise, it can be impossible to disentan-

gle the competing requirements that these satisfy some genericity (such as 〈i i+1 j k〉 6= 0

in the above examples) while simultaneously hoping to tease out the constraints they
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must satisfy in order to have a solution (such as Eq. (3.44)). For example, although one

might have been tempted to preserve the symmetry between i and j, it would have been

a mistake to use the four twistors Zi, Zi+1, Zj and Zj+1 in Eq. (3.40).

Instead, it is safest to always pick four completely generic points Za, . . . , Zd in terms

of which to parameterize

L =

1 0 d1 d2

0 1 d3 d4




Za

Zb

Zc

Zd


. (3.45)

The disadvantage of being so careful is that intermediate steps in the calculation become

much more lengthy, a problem we avoid in practice by using a computer algebra system

such as Mathematica.

The results of this analysis for all one-loop branches are summarized in Tab. 3.1.

Naturally these are in accord with those of [26] (as tabulated in [16]). At one loop it

happens that the singularity locus is the same for each branch of solutions to a given set

of on-shell conditions, but this is not generally true at higher loop order.

3.6 Singularities and Symbology

As suggested in the introduction (and explicit even in the title of this paper), one of the

goals of our research program is to provide a priori derivations of the symbol alphabets

of various amplitudes. We refer the reader to [67] for more details, pausing only to

recall that the symbol alphabet of a generalized polylogarithm function F is a finite list

of symbol letters {z1, . . . , zr} such that F has logarithmic branch cuts (i.e., the cover has

infinitely many sheets)13 between zi = 0 and zi = ∞ for each i = 1, . . . , r.

To date, symbol alphabets have been determined by explicit computation only for

two-loop MHV amplitudes [60]; all other results on multi-loop SYM amplitudes in the

13These branch cuts usually do not all live on the same sheet; the symbol alphabet provides a list of all
branch cuts that can be accessed after analytically continuing F to arbitrary sheets.
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literature are based on a conjectured extrapolation of these results to higher loop order.

Throughout the paper we have however been careful to phrase our results in terms of

branch points, rather than symbol letters, for two reasons.

First of all, amplitudes in SYM theory are expected to be expressible as generalized

polylogarithm functions, with symbol letters that have a familiar structure like those of

the entries in the last column of Tab. 3.1, only for sufficiently low (or, by parity conju-

gation, high) helicity. In contrast, the Landau equations are capable of detecting branch

points of even more complicated amplitudes, such as those containing elliptic polylog-

arithms, which do not have traditional symbols14.

Second, even for amplitudes which do have symbols, determining the actual symbol

alphabet from the singularity loci of the amplitude may require nontrivial extrapolation.

Suppose that the Landau equations reveal that some amplitude has a branch point at

z = 0 (where, for example, z may be one of the quantities in the last column of Tab. 3.1).

Then the symbol alphabet should contain a letter f (z), where f in general could be an

arbitrary function of z, with branch points arising in two possible ways. If f (0) = 0, then

the amplitude will have a logarithmic branch point at z = 0 [23], but even if f (0) 6= 0,

the amplitude can have an algebraic branch point (so the cover has finitely many sheets)

at z = 0 if f (z) has such a branch point there.

We can explore this second notion empirically since all one-loop amplitudes in SYM

theory, and in particular their symbol alphabets, are well-known (following from one-

loop integrated amplitudes in for example, [38, 39, 40, 41, 42, 43, 44, 45, 46]). According

to our results from Tab. 3.1, we find that one-loop amplitudes only have branch points

on loci of the form

• 〈i i+1 j j+1〉 = 0 or 〈i j〉 = 0 for 0 ≤ k ≤ n− 4,

• 〈i(i−1 i+1)(j j+1)(k k+1)〉 = 0 for 1 ≤ k ≤ n− 5, and

• ∆ijk` = 0 (defined in Tab. 3.1) for 2 ≤ k ≤ n− 6,

14It would be interesting to understand how the “generalized symbols" of such amplitudes capture the
singularity loci revealed by the Landau equations.
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where i, j, k, ` can all range from 1 to n. Happily, the first two of these are in complete

accord with the symbol letters of one-loop MHV and NMHV amplitudes, but the third

reveals the foreshadowed algebraic branching since ∆ijk` is not a symbol letter of the

four-mass box integral contribution to N2≤k≤n−6MHV amplitudes. Rather, the symbol

alphabet of this amplitude consists of quantities of the form

fij ≡ 〈i i+1 j j+1〉 and fi` f jk ± ( fik f j` − fij fk`)±
√

∆ijk` , (3.46)

where the signs may be chosen independently. Since no symbol letter vanishes on the

locus ∆ijk` = 0, amplitudes evidently do not have logarithmic branch points on this

locus. Yet it is evident from the second expression of (3.46) that amplitudes with these

letters have algebraic (in this instance, square-root- or double-sheet-type) branch points

when ∆ijk` = 0.

Although we have only commented on the structure of various potential symbol

entries and branch point loci here, let us emphasize that the methods of this paper can

be used to determine precisely which symbol entries can appear in any given ampli-

tude. For example, Tab. 3.1 can be used to determine values of i, j and k for which the

letter 〈i(i−1 i+1)(j j+1)(k k+1)〉 can appear, as well as in which one-loop amplitudes,

indexed by n and k, such letters will appear. An example of a fine detail along these lines

evident already in Tab. 3.1 is the fact that all NMHV amplitudes have branch points of

two-mass easy type except for the special case n = 6, in accord with Eq. (2.7) of [79].

We conclude this section by remarking that the problem of deriving symbol alpha-

bets from the Landau singularity loci may remain complicated in general, but we hope

that the simple, direct correspondence we have observed for certain one-loop ampli-

tudes (and which was also observed for the two-loop MHV amplitudes studied in [17])

will continue to hold at arbitrary loop order for sufficiently simple singularities.
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3.7 Conclusion

This paper presents first steps down the path of understanding the branch cut structure

of SYM amplitudes for general helicity, following the lead of [17] and using the recent

“unwound” formulation of the amplituhedron from [37]. Our algorithm is conceptu-

ally simple: we first enumerate the boundaries of an amplituhedron, and from there,

without resorting to integral representations, we use the Landau equations directly to

determine the locations of branch points of the corresponding amplitude.

One might worry that each of these steps grows rapidly in computational complex-

ity at higher loop order. Classifying boundaries of amplituhedra is on its own a highly

nontrivial problem, aspects of which have been explored in [5, 7, 10, 13, 80]. In that light,

the graphical tools presented in Sec. 3.4.2, while already useful for organizing results as

in Fig. 3.2, hint at the more enticing possibility of a method to enumerate twistor dia-

grams corresponding to all L-boundaries of any given An,k,L. Such an algorithm would

start with the maximal codimension twistor diagrams at a given loop order, and apply

the operators of Sec. 3.4.2 in all ways until no further operations are possible. From these

twistor diagrams come Landau diagrams, and from these come the branch points via

the Landau equations. We saw in [17] and Sec. 3.5 that analyzing the Landau equations

can be made very simple in momentum twistor space.

Configurations of loop momenta in (the closure of) MHV amplituhedra are rep-

resented by non-negative D-matrices. In general, non-MHV configurations must be

represented by indefinite D-matrices, but we observed in Sec. 3.3.5 that even for non-

MHV amplituhedra, D may always be chosen non-negative for all configurations on

L-boundaries. This ‘emergent positivity’ plays a crucial role by allowing the one-loop

D-matrices presented in Secs. 3.3.2, 3.3.3 and 3.3.4 to be trivially recycled at higher val-

ues of helicity. One way to think about this is to say that going beyond MHV level

introduces the C-matrix which “opens up” additional configuration space in which an

otherwise indefinite D-matrix can become positive.

While the one-loop all-helicity results we obtain are interesting in their own right
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as first instances of all-helicity statements, this collection of information is valuable be-

cause it provides the building blocks for the two-loop analysis in the sequel. There we

will argue that the two-loop twistor diagrams with helicity k can be viewed as com-

positions of two one-loop diagrams with helicities k1 and k2 satisfying k = k1 + k2 or

k1 + k2 + 1. We will also explore in detail the relation to on-shell diagrams, which are

simply Landau diagrams with decorated nodes.

More speculatively, the ideas that higher-loop amplitudes can be constructed from

lower-loop amplitudes, and that there is a close relation to on-shell diagrams, suggests

the possibility that this toolbox may also be useful for finding symbols in the full, non-

planar SYM theory. For example, enumerating the on-shell conditions as we do here

in the planar sector is similar in spirit to the nonplanar examples of [12] where certain

integral representations were found such that individual integrals had support on only

certain branches15. There are of course far fewer known results in the nonplanar SYM

theory, though there have been some preliminary studies [82, 83, 84, 85, 86].

15Already in the planar case, one might interpret our algorithm as applying the Landau equations to
integrands constructed in expansions around boundaries of amplituhedra, which is reminiscent of the
prescriptive unitarity of [81].
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Chapter 4

All-loop singularities of scattering

amplitudes in massless planar

theories

4.1 Landau Graphs and Singularities

We begin by reviewing the Landau equations, which encode the constraint of locality

on the singularity structure of scattering amplitudes in perturbation theory via Landau

graphs. We aim to connect the standard vocabulary used in relativistic field theory to

that of network theory in order to streamline the rest of our discussion.

In planar quantum field theories, which will be the exclusive focus of this paper, we

can restrict our attention to plane Landau graphs. An L-loop m-point plane Landau graph

is a plane graph with L+1 faces and m distinguished vertices called terminals that must

lie on a common face called the unbounded face. Henceforth we use the word “vertex”

only for those that are not terminals, and the word “face” only for the L faces that are

not the unbounded face.

Each edge j is assigned an arbitrary orientation and a four-component (or, more

generally, a D-component) (energy-)momentum vector qj, the analog of electric current.

Reversing the orientation of an edge changes the sign of the associated qj. At each vertex

the vector sum of incoming momenta must equal the vector sum of outgoing momenta
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(current conservation). This constraint is not applied at terminals, which are the loca-

tions where a circuit can be probed by connecting external sources or sinks of current. In

field theory these correspond to the momenta carried by incoming or outgoing particles.

If we label the terminals by a = 1, . . . , m (in cyclic order around the unbounded face)

and let Pa denote the D-momentum flowing into the graph at terminal a, then energy-

momentum conservation requires that ∑a Pa = 0 and implies that precisely L of the qj’s

are linearly independent.

Scattering amplitudes are (in general multivalued) functions of the Pa’s which can be

expressed as a sum over all Landau graphs, followed by a DL-dimensional integral over

all components of the linearly independent qj’s. Amplitudes in different quantum field

theories differ in how the various graphs are weighed (by Pa- and qj-dependent factors)

in that linear combination. These differences are indicated graphically by decorating

each Landau graph (usually in many possible ways) with various embellishments, in

which case they are called Feynman diagrams. We return to this important point later,

but for now we keep our discussion as general as possible.

Our interest lies in understanding the loci in Pa-space on which amplitudes may

have singularities, which are highly constrained by general physical principles. A Lan-

dau graph is said to have Landau singularities of the first type at values of Pa for which the

Landau equations [26]

αjq2
j = 0 for each edge j, and (4.1)

∑
edges j∈F

αjqj = 0 for each face F (4.2)

admit nontrivial solutions for the Feynman parameters αj (that means, omitting the trivial

solution where all αj = 0). In the first line we have indicated our exclusive focus on

massless field theories by omitting a term proportional to m2
j which would normally be

present.

The Landau equations generally admit several branches of solutions. The leading

Landau singularities of a graph G are those associated to branches having q2
j = 0 for

all j (regardless of whether any of the αj’s are zero). This differs slightly from the more
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conventional usage of the term “leading”, which requires all of the αj’s to be nonzero.

However, we feel that our usage is more natural in massless theories, where it is typical

to have branches of solutions on which q2
j and αj are both zero for certain edges j. Lan-

dau singularities associated to branches on which one or more of the q2
j are not zero (in

which case the corresponding αj’s must necessarily vanish) can be interpreted as lead-

ing singularities of a relaxed Landau graph obtained from G by contracting the edges

associated to the vanishing αj’s.

A graph is called c-connected if it remains connected after removal of any c−1 ver-

tices. It is easy to see that the set of Landau singularities for a 1-connected graph (some-

times called a “kissing graph” in field theory) is the union of Landau singularities asso-

ciated to each 2-connected component since the Landau equations completely decouple.

Therefore, without loss of generality we can confine our attention to 2-connected Lan-

dau graphs.

4.2 Elementary Circuit Operations

We refer to Eq. (4.2) as the Kirchhoff conditions in recognition of their circuit analog where

the αj’s play the role of resistances. The analog of the on-shell conditions (4.1) on the other

hand is rather mysterious, but a very remarkable feature of massless theories is that:

The graph moves familiar from elementary electrical circuit theory preserve the

solution sets of Eqs. (4.1) and (4.2), and hence, the sets of first-type Landau singu-

larities in any massless field theory.

Let us now demonstrate this feature, beginning with the three elementary circuit

moves shown in Fig. 4.1.

Series reduction (Fig. 4.1(a)) allows one to remove any vertex of degree two. Since

q2 = q1 by momentum conservation, the structure of the Landau equations is trivially

preserved if the two edges with Feynman parameters α1, α2 are replaced by a single

edge carrying momentum q′ = q1 = q2 and Feynman parameter α′ = α1 + α2.

Parallel reduction (Fig. 4.1(b)) allows one to collapse any bubble subgraph. It is

easy to verify (see for example Appendix A.1 of [17]) that the structure of the Landau
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(b)

(a)

(c)

1
2

3 12

3

FIGURE 4.1: Elementary circuit moves that preserve solution sets of the
massless Landau equations: (a) series reduction, (b) parallel reduction,

and (c) Y-∆ reduction.

equations is preserved if the two edges of the bubble are replaced by a single edge

carrying momentum q′ = q1 + q2 and Feynman parameter α′ = α1α2/(α1 + α2).

The Y-∆ reduction (Fig. 4.1(c)) replaces a vertex of degree three (a “Y”) with a trian-

gle subgraph (a “∆”), or vice versa. Generically the Feynman parameters αi of the ∆ are

related to those of the Y, which we call βi, by

β1 =
α2α3

α1 + α2 + α3
, and cyclic. (4.3)

On branches where one or more of the parameters vanish, this relation must be suitably

modified. For example, if a branch of solutions for a graph containing a Y has β1 =

β2 = 0 but β3 nonzero, then the corresponding branch for the reduced graph has α3 = 0

but α1, α2 nonzero.

The invariance of the Kirchhoff conditions (4.2) under Y-∆ reduction follows straight-

forwardly from these Feynman parameter assignments. The invariance of the on-shell

conditions (4.1) is nontrivial, and follows from the analysis in Appendix A.2 of [17] by

checking that the on-shell conditions before and after the reduction are equivalent for

each branch of solutions to the Landau equations. Actually [17] mentions only seven of
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FIGURE 4.2: The four-, six-, five- and seven-terminal ziggurat graphs.
The open circles are terminals and the filled circles are vertices. The pat-
tern continues in the obvious way, but note an essential difference be-
tween ziggurat graphs with an even or odd number of terminals in that

only the latter have a terminal of degree three.

(c) (f)(c) (c)

FIGURE 4.3: The six-terminal ziggurat graph can be reduced to a three
loop graph by a sequence of three Y-∆ reductions and one FP assignment.
In each case the vertex, edge, or face to be transformed is highlighted in

gray.
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the eight different types of branches. The eighth branch has α1 = α2 = α3 = 0, corre-

sponding to β1 = β2 = β3 = 0, but in this relatively trivial case both the Y and the ∆

can effectively be collapsed to a single vertex.

The proof of the crucial theorem of [52] that we employ in the next section relies

on three additional relatively simple moves that either have no analog in field theory

or trivially preserve the essential content of the Landau equations. These are (d) the

deletion of a “tadpole” (edges that connect a vertex or terminal to itself), (e) the deletion

of a “hanging propagator” (a vertex of degree one and the edge connected to it), and

(f) the contraction of an edge connected to a terminal of degree one (called “FP assign-

ment” [87]). The last of these is strictly speaking not completely trivial at the level of the

Landau equations; it just removes an otherwise uninteresting bubble singularity.

4.3 Reduction of Planar Graphs

The reduction of general graphs under the operations reviewed in the previous section

is a well-studied problem in the mathematical literature. When it is declared that a cer-

tain subset of vertices are to be considered terminals (which may not be removed by

series or Y-∆ reduction) the corresponding problem is called terminal Y-∆ reducibility.

Aspects of terminal Y-∆ reducibility have been studied in [88, 89, 90, 91, 87, 92], in-

cluding an application to Feynman diagrams in [93]. For our purpose the key result

comes from the Ph.D. thesis of I. Gitler [52], who proved that any planar 2-connected

graph with m terminals lying on the same face can be reduced to a graph of the kind

shown in Fig. 4.2, which we call ziggurat graphs, or to a minor thereof. We denote the

m-terminal ziggurat graph by Tm, and note that a minor of a graph G is any graph that

can be obtained from G by any sequence of edge contractions and/or edge deletions.

At the level of Landau equations an edge contraction corresponds, as discussed

above, to a relaxation (setting the associated αj to zero), while an edge deletion cor-

responds to setting the associated qj to zero. It is clear that the Landau singularities as-

sociated to any minor of a graph G are a subset of those associated to G. Consequently
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we don’t need to worry about explicitly enumerating all minors of Tm; their Landau

singularities are already contained in the set of singularities of Tm itself.

It is conventional to discuss scattering amplitudes for a fixed number n of external

particles, each of which carries some momentum pi that in massless theories satisfies

p2
i = 0. The total momentum flowing into each terminal is not arbitrary, but must be a

sum of one or more null vectors. The momenta carried by these individual particles are

denoted graphically by attaching a total of n external edges to the terminals, with at least

one per terminal. In this way it is clear that any Landau graph with m ≤ n terminals

is potentially relevant to finding the Landau singularities of an n-particle amplitude.

However, it is also clear that if m < n then Tm is a minor of Tn, so again the Landau sin-

gularities of the former are a subset of those of the latter. Therefore, to find the Landau

singularities of an n-particle amplitude it suffices to find those of the n-terminal ziggu-

rat graph Tn with precisely one external edge attached to each terminal. We call this the

n-particle ziggurat graph and finally summarize:

The first-type Landau singularities of an n-particle scattering amplitude in any

massless planar field theory are a subset of those of the n-particle ziggurat graph.

While the Landau singularities of the ziggurat graph exhaust the set of singulari-

ties that may appear in any massless planar theory, we cannot rule out the possibility

that in certain special theories the actual set of singularities may be smaller because of

nontrivial cancellation between the contributions of different Landau graphs to a given

amplitude. We return to this important point in Sec. 4.6.

Let us also emphasize that Y-∆ reduction certainly changes the number of faces of a

graph, so the above statement does not hold at fixed loop order L; rather it is an all-order

relation about the full set of Landau singularities of n-particle amplitudes at any finite

order in perturbation theory. Since the n-particle ziggurat graph has L = b(n−2)2/4c
faces, we can however predict that a single computation at only b(n−2)2/4c-loop order

suffices to expose all possible Landau singularities of any n-particle amplitude.

In fact this bound is unnecessarily high. Gitler’s theorem does not imply that ziggu-

rat graphs cannot be further reduced to graphs of lower loop order, and it is easy to see
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that in general this is possible. For example, as shown in Fig. 4.3, the six-terminal graph

can be reduced by a sequence of Y-∆ reductions and one FP assignment to a particularly

beautiful three-loop wheel graph whose 6-particle avatar we display in Fig. 4.4. Ziggu-

rat graphs with more than six terminals can also be further reduced, but we have not

been able to prove a lower bound on the loop order that can be obtained for general n.

4.4 Landau Analysis of the Wheel

In this section we analyze the Landau equations for the graph shown in Fig. 4.4. The six

external edges carry momenta p1, . . . , p6 into the graph, subject to ∑i pi = 0 and p2
i = 0

for each i. Using momentum conservation at each vertex, the momentum qj carried by

each of the twelve edges can be expressed in terms of the six pi and three other linearly

independent momenta, which we can take to be lr, for r = 1, 2, 3, assigned as shown in

the figure. Initially we consider the leading Landau singularities, for which we impose

the twelve on-shell conditions

(l1 − p1)
2 = l2

1 = (l1 + p2)
2 = 0 ,

(l2 − p3)
2 = l2

2 = (l2 + p4)
2 = 0 ,

(l3 − p5)
2 = l2

3 = (l3 + p6)
2 = 0 ,

(l1 + p2 − l2 + p3)
2 = 0 ,

(l2 + p4 − l3 + p5)
2 = 0 ,

(l3 + p6 − l1 + p1)
2 = 0 .

(4.4)

So far we have not needed to commit to any particular spacetime dimension. We now

fix D = 4, which simplifies the analysis because for generic pi there are precisely 16

discrete solutions for the lr’s, which we denote by l∗r (pi). To enumerate and explicitly

exhibit these solutions it is technically helpful to parameterize the momenta in terms

of momentum twistor variables [55], in which case the solutions can be associated with

on-shell diagrams as described in [3]. Although so far the analysis is still applicable to
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l3

l1 l2

p2 p3

p1 p4

p5p6

FIGURE 4.4: The three-loop six-particle wheel graph. The leading first-
type Landau singularities of this graph exhaust all possible first-type Lan-
dau singularities of six-particle amplitudes in any massless planar field

theory, to any finite loop order.

general massless planar theories, we note that in the special context of SYM theory, two

cut solutions have MHV support, twelve NMHV, and two NNMHV.

With these solutions in hand, we next turn our attention to the Kirchhoff conditions

0 =α1(l1 − p1) + α2l1 + α3(l1 + p2)+

α10(l3 + p6 − l1 + p1) + α11(l1 + p2 − l2 + p3) ,

0 =α4(l2 − p3) + α5l2 + α6(l2 + p4)+

α11(l1 + p2 − l2 + p3) + α12(l2 + p4 − l3 + p5) ,

0 =α7(l3 − p5) + α8l3 + α9(l3 + p6)+

α12(l2 + p4 − l3 + p5) + α10(l3 + p6 − l1 + p1) .

(4.5)

Nontrivial solutions to this 12 × 12 linear system exist only if the associated Kirch-

hoff determinant K(pi, lr) vanishes. By evaluating this determinant on each of the so-

lutions lr = l∗r (pi) the condition for the existence of a non-trivial solution to the Landau

equations can be expressed entirely in terms of the external momenta pi. Using vari-

ables u, v, w, yu, yv, yw that are very familiar in the literature on six-particle amplitudes

(their definition in terms of the pi’s can be found for example in [20]), we find that
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K(pi, l∗r (pi)) = 0 can only be satisfied if an element of the set

S6 = {u , v , w , 1−u , 1−v , 1−w ,
1
u

,
1
v

,
1
w
} (4.6)

vanishes. We conclude that the three-loop n = 6 wheel graph has first-type Landau

singularities on the locus

S6 ≡
⋃

s∈S6

{s = 0} . (4.7)

It is straightforward, if somewhat tedious, to analyze all subleading Landau singular-

ities corresponding to relaxations, as defined above. We refer the reader to [16, 17, 47]

where this type of analysis has been carried out in detail in several examples. We find

no additional first-type singularities beyond those that appear at leading order. Let us

emphasize that this unusual feature does not occur for any of the examples in [16, 17,

47], which typically have many additional subleading singularities.

To summarize, we conclude that any six-particle amplitude in any four-dimensional

massless planar field theory, at any finite loop order, can have first-type Landau singu-

larities only on the locus S6 given by Eqs. (4.6) and (4.7), or a proper subset thereof.

4.5 Second-Type Singularities

The first-type Landau singularities that we have classified, which by definition are those

encapsulated in the Landau equations (4.1), (4.2), do not exhaust all possible singulari-

ties of amplitudes in general quantum field theories. There also exist “second-type” sin-

gularities (see for example [58, 33]) which are sometimes called “non-Landauian” [27].

These arise in Feynman loop integrals as pinch singularities at infinite loop momentum

and must be analyzed by a modified version of Eqs. (4.1), (4.2).

In the next section we turn our attention to the special case of SYM theory, which

possesses a remarkable dual conformal symmetry [94, 95, 76] implying that there is no

invariant notion of “infinity” in momentum space. As pointed out in [16], we therefore
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expect that second-type singularities should be absent in any dual conformal invariant

theory. Because ziggurat graphs are manifestly dual conformal invariant when D = 4,

this would imply that the first-type Landau singularities of the ziggurat graphs should

capture the entire “dual conformally invariant part” of the singularity structure of all

massless planar theories in four spacetime dimensions. By this we mean, somewhat

more precisely, the singularity loci that do not involve the infinity twistor.

4.6 Planar SYM Theory

In Sec. 4.3 we acknowledged that in certain special theories, the actual set of singularities

of amplitudes may be strictly smaller than that of the ziggurat graphs due to cancella-

tions. SYM theory has been shown to possess such rich mathematical structure that it

would seem the most promising candidate to exhibit such cancellations. Contrary to

this expectation, we now argue that:

Perturbative amplitudes in SYM theory exhibit first-type Landau singularities on

all such loci that are possible in any massless planar field theory.

Moreover, our results suggest that this all-order statement is true separately in each

helicity sector. Specifically: for any fixed n and any 0 ≤ k ≤ n − 4, there is a finite

value of Ln,k such that the singularity locus of the L-loop n-particle NkMHV amplitude

is identical to that of the n-particle ziggurat graph for all L ≥ Ln,k. In order to verify this

claim, it suffices to construct an n-particle on-shell diagram with NkMHV support that

has the same Landau singularities as the n-particle ziggurat graph; or (conjecturally)

equivalently, to write down an appropriate valid configuration of lines inside the am-

plituhedron [4] An,k,L for some sufficiently high L.

To see that this is plausible, note that in general the appearance of a given singular-

ity at some fixed k and L can be shown to imply the existence of the same singularity at

lower k but higher L by performing the opposite of a parallel reduction—doubling one

or more edges of the relevant Landau graph to make bubbles (see for example Fig. 2

of [47]). For example, while one-loop MHV amplitudes do not have singularities of
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three-mass box type, it is known by explicit computation [60] that two-loop MHV am-

plitudes do. Similarly, while two-loop MHV amplitudes do not have singularities of

four-mass box type, we expect that three-loop MHV and two-loop NMHV amplitudes

do. (To be clear, our analysis is silent on the question of whether the symbol alphabets

of these amplitudes contain square roots; see the discussion in Sec. 7 of [53].)

It is indeed simple to check that the n-particle ziggurat graph can be converted into

a valid on-shell diagram with MHV support by doubling each internal edge to form a

bubble. Moreover, in this manner it is relatively simple to write an explicit mutually

positive configuration of positive lines inside the MHV amplituhedron. However, we

note that while this construction is sufficient to demonstrate the claim, it is certainly

overkill; we expect MHV support to be reached at much lower loop level than this

argument would require, as can be checked on a case by case basis for relatively small

n.

4.7 Symbol Alphabets

Let us comment on the connection of our work to symbol alphabets. In general, the

presence of some letter a in the symbol of an amplitude indicates that there exists some

sheet on which the analytically continued amplitude has a branch cut from a = 0 to a =

∞. The symbols of all known six-particle amplitudes in SYM theory can be expressed in

terms of a nine-letter alphabet [67] which may be chosen as [69]

A6 = {u, v, w, 1−u, 1−v, 1−w, yu, yv, yw} , (4.8)

where z = {yu, 1/yu} are the two roots of

u(1−v)(1−w)(z2+1) =
[
u2−2uvw+(1−v−w)2] z (4.9)

and yv and yw are defined by cycling u → v → w → u. It is evident from Eq. (4.9) that

yu can attain the value 0 or ∞ only if u = 0 or v = 1 or w = 1. We therefore see that the

singularity locus encoded in the hexagon alphabet A6 is precisely equivalent to S6 given
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by Eqs. (4.6) and (4.7). Indeed, the hypothesis that six-particle amplitudes in SYM theory

do not exhibit singularities on any other loci at any higher loop order (which we now

consider to be proven), and the apparently much stronger ansatz that the nine quantities

shown in Eq. (4.8) provide a symbol alphabet for all such amplitudes, lies at the heart of

a bootstrap program that has made possible impressive explicit computations to high

loop order (see for example [69, 96, 70, 14, 72, 73, 20]). An analogous ansatz for n = 7

has similarly allowed for the computation of symbols of seven-particle amplitudes [21,

22].

Unfortunately, as the yu, yv, yw letters demonstrate, the connection between Landau

singularity loci and symbol alphabets is somewhat indirect. It is not possible to derive

A6 from S6 alone as knowledge of the latter only tells us about the locus where symbol

letters vanish [23] or have branch points (see Sec. 7 of [53]). In order to determine what

the symbol letters actually are away from these loci it seems necessary to invoke some

other kind of structure; for example, cluster algebras may have a role to play here [18,

19].

4.8 Conclusion

We leave a number of open questions for future work. What is the minimum loop order

Ln to which the n-particle ziggurat graph can be reduced? Can one characterize its

Landau singularities for arbitrary n, generalizing the result for n = 6 in Sec. 4.4? Does

there exist a similar framework for classifying second-type singularities, even if only in

certain theories? The graph moves reviewed in Sec. 4.2 preserve the (sets of solutions

to the) Landau equations even for non-planar graphs; are there results on non-planar

Y-∆ reducibility (see for example [97, 98]) that may be useful for non-planar (but still

massless) theories?

In Sec. 4.4 we saw that the wheel is a rather remarkable graph. The ziggurat graphs,

and those to which they can be reduced, might warrant further study for their own

sake. Intriguingly they generalize those studied in [99, 100] and are particular cases of

the graphs that have attracted recent interest, for example in [101, 102], in the context of
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“fishnet” theories. We have only looked at their singularity loci; it would be interesting

to explore the structure of their cuts, perhaps in connection with the coaction studied

in [30, 103, 104, 105, 106].

In the special case of SYM theory the technology might exist to address more de-

tailed questions. For general n and k, what is the minimum loop order Ln,k at which

the Landau singularities of the n-particle NkMHV amplitude saturate? Is there a direct

connection between Landau singularities, ziggurat graphs, and cluster algebras? For

amplitudes of generalized polylogarithm type, now that we know (in principle) the rel-

evant singularity loci, what are the actual symbol letters for general n, and can the sym-

bol alphabet depend on k (even though the singularity loci do not)? How do Landau

singularities manifest themselves in general amplitudes that are of more complicated

(non-polylogarithmic) functional type?
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