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npeqmer: MoxpeTatse nocrynka y 3Babe nCTpaxnBay capaAHMK 

MonMM HayuHo Behe MHCTHTyTa 3a cdn3UKy y 6eorpany Aa noKpeHe nocTynak 3a Moj n36op 

y 3Batse MCTpaxuBay capaAHMK, MMajyhn y BnAy Aa ncnytbasam cBe KpWTepMijyMe 

nponncaHe oA CTpaHe MnHMCTapcTBa npocBeTe, Hayke n TeXHonowKor pa3Boja Peny6nuKe 
Cponje 3a CTHyaH>e TOr 3BaHba. 

Y npunory AoCTaBrbaM: 

1. MMUbeHe pyKOBOAMOLa npojeKTa ca npeanoroM KOMICHje 3a n3õop y 3Babe 

2. CTpy4Hy 6norpacbnjy: 

3. npernen HayyHe akTMBHOCTM; 

4. cnucakW Konuje o6jaBrbeHnx HayuHUx pag0Ba; 

5. yBepeHbe o nocneAHeM ynncaHoM ceMeCTpy Ha goKTOpCKIM CTYAnjaMa,

6. cbOTOKonuje yaepetsa o 3aspuweHM OCHOBHMM MacCTep CTyAvjama;

7. yBepeHe o nonoKEHMM MCnTIMa Ha AOKTOpCKUM CTYAUjaMa, 

8. nOTBPAY O npnXBaTatsy TeMe AoKTOpCKe Auceptauuje.

C nouTOBaHeM,

Mnvja MeaHMuIeByh
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Преглед научне активности

Илија Иванишевић бави се изучавањем бозонске теорије струна. Конкретно, изучавањем
симетрија и њихових веза са Т-дуалношћу. За те потребе, користи се методама
генералисане геометрије, у којој су тангентно и котангентно раслојење описани на
јединствен начин. Илија се до сада бавио одређивањем алгебре симетрија генератора у
почетној, Т-дуалној и дуплој теорији, као и у теорији инваријантној на Т-дуалност.

У првом раду, установљено је да су две заграде на генералисаном тангентном раслојењу
повезане Т-дуалним трансформацијама. Показано је да алгебра набоја струја у сигма
моделу даје Courant-ову заграду. Такође, установљено је да када се набоји
трансформишу тако да се поља замене Т-дуалним пољима уз Т-дуалну трансформацију
канонских варијабли, добија се Roytenberg-ова заграда.

У наредном раду, конструисана је екстензија генератора симетрије, тако што је
генератору дифеоморфизама додат генератор локалних градијентних трансформација. У
почетној теорији, показано је да Poisson-ова алгебра таквог генератора даје Courant-ову
заграду деформисану пољем B, док у Т-дуалној теорији алгебарске релације генератора
дају Courant-ову заграду деформисану пољем , које је Т-дуално пољу B. Резултати суθ
генералисани на дуплу теорију, где је показано да алгебра генератора симетрије даје
C-заграду.

Илија се такође бавио изучавањем генератора инваријантних на Т-дуалност, али тако да
њихова алгебра садржи све флуксеве релевантне за теорију струна. У таквом подухвату,
по први пут одређен је израз за Courant-ову заграда симултано деформисану и са B и са

, што је објављено у трећем раду. Додатно, пронађен је ефикасан метод којим сеθ
Courant-ова заграда може деформисати било којим пољем и репрезентација такве
заграде одредити из Poisson-ових заграда генератора записаног у релевантном базису.

У наставку истраживању, Илија ће се бавити одређивањем Dirac-ових структура за све
за теорију струна релевантне Courant-ове алгеброиде, као и генерализацијом
деформисаних Courant-ових заграда на дупли простор, настојећи да одреди
деформисане С-заграде.
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1 Introduction

The Courant bracket [1, 2] and various generalizations obtained by its twisting had been
relevant to the string theory since its appearance in the algebra of generalized currents [3–
6]. It represents the generalization of the Lie bracket on spaces of generalized vectors,
understood as the direct sum of the elements of the tangent bundle and the elements of
the cotangent bundle. Although the Lie bracket satisfies the Jacobi identity, the Courant
bracket does not. Its Jacobiator is equal to the exterior derivative of the Nijenhuis operator.

It is well known that the commutator of two general coordinate transformations along
two vector fields produces another general coordinate transformation along the vector field
equal to their Lie bracket. Since the Courant bracket represents its generalization, it is
worth considering how it is related to symmetries of the bosonic string σ-model.

In [7], the field theory defined on the double torus, and its symmetries for restricted
parameters were considered. The double space is seen as a direct sum of the initial and
T-dual phase space, and the background fields depend on both of these coordinates. The
symmetry algebra is closed only for restricted parameters, defined on the same isotropic
space, in which case it gives rise to the C-bracket as the T-dual invariant bracket. The
C-bracket [8, 9] is the bracket that generalizes the Lie bracket on double space.

In this paper, we analyze the general classical bosonic string σ-model and algebra of
its symmetries generators, where both the background fields and symmetry parameters
depend only on the coordinates xµ. We firstly consider the closed bosonic string moving

– 1 –
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in the background characterized solely by the metric tensor. We extend the generator of
the general coordinate transformations so that it becomes invariant upon self T-duality,
understood as T-duality realized in the same phase space [6]. We obtain the Courant
bracket in the Poisson bracket algebra of this extended generator. The Courant bracket is
therefore a self T-dual invariant extension of the Lie bracket.

Furthermore, we consider the bosonic string σ-model that includes the antisymmet-
ric Kalb-Ramond field too. The antisymmetric field is introduced by the action of B-
transformation on the generalized metric. We construct the symmetry generator and recog-
nize that it generates both the general coordinate and the local gauge transformations [10].
In this case, the symmetry generator is not invariant upon self T-duality and it gives rise
to the twisted Courant bracket. The matrix that governs this twist is exactly the matrix
of B-shifts.

Next, we consider the self T-dual description of the theory, that we construct in
the analogous manner, this time with the action of θ-transformation, T-dual to the B-
transformation. We obtain the bracket governing the generator algebra that turns out to
be the θ-twisted Courant bracket, also known as the Roytenberg bracket [4, 11]. The twisted
Courant and Roytenberg brackets had been shown to be related by self T-duality [6].

Lastly, we consider the more conventional T-duality, connecting different phase spaces.
We generalize our results, by demanding that the symmetry parameters depend on both
the initial and T-dual coordinates. We consider the symmetry generator that is a sum
of the generator of general coordinate transformations and its analogous generator in the
T-dual phase space. In this case, additional constraints, similar to the ones in [7–9],
have to be imposed on symmetry parameters, in order for the generator algebra to be
closed. We extend the Poisson bracket relations for both initial and T-dual phase spaces
and obtain the generator algebra, which produces the C-bracket. The C bracket is the
generalization of the Courant bracket when parameters depend on both initial and T-dual
coordinates. The invariance upon T-duality is guaranteed from the way how the bracket
is obtained. If parameters do not depend on T-dual coordinates, C-bracket reduces to the
Courant bracket.

2 Bosonic string moving in the background characterized by the metric
field

Consider the closed bosonic string, moving in the background defined by the coordinate
dependent metric field Gµν(x), with the Kalb-Ramond field set to zero Bµν = 0 and the
constant dilaton field Φ = const. In the conformal gauge, the Lagrangian density is given
by [12, 13]

L = κ

2η
αβGµν(x)∂αxµ∂βxν , (2.1)

where xµ(ξ), µ = 0, 1, . . . , D − 1 are coordinates on the D-dimensional space-time, and
ηαβ , α, β = 0, 1 is the worldsheet metric, ε01 = −1 is the Levi-Civita symbol, and κ = 1

2πα′

with α′ being the Regge slope parameter. The Legendre transformation of the Lagrangian

– 2 –
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gives the canonical Hamiltonian

HC = πµẋ
µ − L = 1

2κπµ(G−1)µνπν + κ

2x
′µGµνx

′ν , (2.2)

where πµ are canonical momenta conjugate to coordinates xµ, given by

πµ = ∂L
∂ẋµ

= κGµν(x)ẋν . (2.3)

The Hamiltonian can be rewritten in the matrix notation

HC = 1
2κ(XT )MGMNX

N , (2.4)

where XM is a double canonical variable, given by

XM =
(
κx′µ

πµ

)
, (2.5)

and GMN is the so called generalized metric, that in the absence of the Kalb-Ramond field
takes the diagonal form

GMN =
(
Gµν 0

0
(
G−1)µν

)
. (2.6)

In this paper, we firstly consider the T-duality realized without changing the phase
space, which is called the self T-duality [6]. Two quantities are said to be self T-dual if
they are invariant upon

κx′µ ↔ πµ , Gµν ↔ ?Gµν = (G−1)µν . (2.7)

The first part of (2.7) corresponds to the T-duality interchanging the winding and mo-
mentum numbers, which are respectively obtained by integrating κx′µ and πµ over the
worldsheet space parameter σ [14]. The second part of (2.7) corresponds to swapping the
background fields for the T-dual background fields. Our approach gives the same expres-
sion for the T-dual metric as the usual T-dualization procedure obtained by Buscher in the
special case of zero Kalb-Ramond field [15–17].

2.1 Symmetry generator

Let us consider symmetries of the closed bosonic string. The canonical momenta πµ gen-
erate the general coordinate transformations. The generator is given by [10]

GGCT(ξ) =
∫ 2π

0
dσξµ(x)πµ , (2.8)

with ξµ being a symmetry parameter. The general coordinate transformations of the metric
tensor are given by [7, 10]

δξGµν = LξGµν , (2.9)

where Lξ is the Lie derivative along the vector field ξ. Its action on the metric field is

LξGµν = Dµξν +Dνξµ , (2.10)

– 3 –
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where Dµ are covariant derivatives defined in a usual way

Dµξν = ∂µξν − Γρµνξρ , (2.11)

and Γµνρ = 1
2(G−1)µσ(∂νGρσ + ∂ρGσν − ∂σGνρ) are Christoffel symbols. It is easy to verify,

using the standard Poisson bracket relations

{xµ(σ), πν(σ̄)} = δµνδ(σ − σ̄) , (2.12)

that the Poisson bracket of these generators can be written as{
GGCT(ξ1), GGCT(ξ2)

}
= −GGCT

(
[ξ1, ξ2]L

)
, (2.13)

where [ξ1, ξ2]L is the Lie bracket. The Lie bracket is the commutator of two Lie derivatives

[ξ1, ξ2]L = Lξ1ξ2 − Lξ2ξ1 ≡ Lξ3 , (2.14)

which results in another Lie derivative along the vector ξµ3 , given by

ξµ3 = ξν1∂νξ
µ
2 − ξ

ν
2∂νξ

µ
1 . (2.15)

Let us now construct the symmetry generator that is related to the generator of general
coordinate transformations by self T-duality (2.7)

GLG(λ) =
∫ 2π

0
dσλµ(x)κx′µ , (2.16)

where λµ is a gauge parameter.
The symmetry parameters ξµ and λµ are vector and 1-form components, respectively.

They can be combined in a double gauge parameter, given by

ΛM =
(
ξµ

λµ

)
. (2.17)

The double gauge parameter is a generalized vector, defined on the direct sum of elements
of tangent and cotangent bundle. Combining (2.8) and (2.16), we obtain the symmetry
generator that is self T-dual (2.7)

G(ξ, λ) = GGCT(ξ) + GLG(λ) =
∫ 2π

0
dσ
[
ξµπµ + λµκx

′µ
]

=
∫ 2π

0
dσ(ΛT )MηMNX

N , (2.18)

where ηMN is the O(D,D) invariant metric [18], given by

ηMN =
(

0 1
1 0

)
. (2.19)

The expression (ΛT )MηMNX
N can be recognized as the natural inner product on the space

of generalized vectors
〈ΛM , XN 〉 = (ΛT )MηMNX

N . (2.20)

– 4 –
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We are interested in obtaining the algebra of this extended symmetry generator (2.18),
analogous to (2.13). Using the Poisson bracket relations (2.12), we obtain{
G(ξ1, λ1), G(ξ2, λ2)

}
=
∫
dσ
[
πµ(ξν2∂νξ

µ
1 − ξ

ν
1∂νξ

µ
2 ) + κx′µ(ξν2∂νλ1µ − ξν1∂νλ2µ)

]
(2.21)

+
∫
dσdσ̄κ

[
λ1µ(σ)ξµ2 (σ̄) + λ2µ(σ̄)ξµ1 (σ)

]
∂σδ(σ − σ̄) .

In order to transform the anomalous part, we note that

∂σδ(σ − σ̄) = 1
2∂σδ(σ − σ̄)− 1

2∂σ̄δ(σ − σ̄) , (2.22)

and
f(σ̄)∂σδ(σ − σ̄) = f(σ)∂σδ(σ − σ̄) + f ′(σ)δ(σ − σ̄) . (2.23)

Applying the previous two relations to the right hand side of (2.21), one obtains{
G(ξ1, λ1), G(ξ2, λ2)

}
= −G(ξ, λ) , (2.24)

where the resulting gauge parameters are given by

ξµ = ξν1∂νξ
µ
2 − ξ

ν
2∂νξ

µ
1 , (2.25)

λµ = ξν1 (∂νλ2µ − ∂µλ2ν)− ξν2 (∂νλ1µ − ∂µλ1ν) + 1
2∂µ(ξ1λ2 − ξ2λ1) .

These relations define the Courant bracket [(ξ1, λ1), (ξ2, λ2)]C = (ξ, λ) [1, 2], allowing us
to rewrite the generator algebra (2.24){

G(ξ1, λ1), G(ξ2, λ2)
}

= −G
([

(ξ1, λ1), (ξ2, λ2)
]
C

)
. (2.26)

The Courant bracket represents the self T-dual invariant extension of the Lie bracket.
In the coordinate-free notation, the Courant bracket can be written as[

(ξ1, λ1), (ξ2, λ2)
]
C

=
(
[ξ1, ξ2]L, Lξ1λ2 − Lξ2λ1 −

1
2d (iξ1λ2 − iξ2λ1)

)
, (2.27)

with iξ being the interior product along the vector field ξ, and d being the exterior deriva-
tive. The Lie derivative Lξ can be written as their anticommutator

Lξ = iξd+ diξ . (2.28)

The Courant bracket does not satisfy the Jacobi identity. Nevertheless, the Jacobiator
of the Courant bracket is an exact 1-form [20][

(ξ1, λ1),
[
(ξ2, λ2), (ξ3, λ3)

]
C

]
C

+ cycl. = dϕ, (dϕ)µ = ∂µϕ . (2.29)

However, if one makes the following change of parameters λµ → λµ + ∂µϕ, the genera-
tor (2.18) does not change

G(ξ, λ+ ∂ϕ) = G(ξ, λ) + κ

∫ 2π

0
ϕ′dσ = G(ξ, λ) , (2.30)

– 5 –
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since the total derivative integral vanishes for the closed string. Therefore, the deviation
from Jacobi identity contributes to the trivial symmetry, and we say that the symmetry
is reducible.

The theory with the metric tensor was already discussed in [19], where it was proven
that the invariance under both diffeomorphisms and dual diffeomorphisms requires the
introduction of the Kalb-Ramond field. In our approach, if we want to include the T-dual
of the general coordinate transformation in the same theory, we obtain the local gauge
transformation that constitutes a trivial symmetry, since δλGµν = 0 [7, 10]. Therefore,
it is necessary to include the Kalb-Ramond field, in order to have non-trivial local gauge
transformations, which we do in the next section.

3 Bosonic string moving in the background characterized by the metric
field and the Kalb-Ramond field

In this section, we extend the Hamiltonian so that it includes the antisymmetric Kalb-
Ramond field. It is possible to obtain this Hamiltonian from the transformation of the gen-
eralized metric GMN (2.6) under the so called B-transformations. The B-transformations
(or B-shifts) [20] are realized by eB̂, where

B̂M
N =

(
0 0

2Bµν 0

)
. (3.1)

As a result of B̂2 = 0, the full transformation is easily obtained

(eB̂)MN =
(

δµν 0
2Bµν δνµ

)
. (3.2)

Its transpose is given by

((eB̂)T ) N
M =

(
δνµ −2Bµν
0 δµν

)
, (3.3)

from which it is easy to verify that

((eB̂)T ) K
M ηKL (eB̂)LN = ηMN , (3.4)

meaning they are the elements of the O(D,D) group.
The transformation of generalized metric GMN (2.6) under the B-shifts is given by

GMN → ((eB̂)T ) K
M GKQ (eB̂)QN ≡ HMN , (3.5)

where HMN is the generalized metric

HMN =
(

GEµν −2Bµρ(G−1)ρν

2(G−1)µρBρν (G−1)µν

)
, (3.6)

and GEµν is the effective metric perceived by the open strings, given by

GEµν = Gµν − 4(BG−1B)µν . (3.7)
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It is straightforward to write the canonical Hamiltonian

ĤC = 1
2κ(XT )MHMNX

N (3.8)

= 1
2κπµ(G−1)µνπν + κ

2x
′µGEµνx

′ν − 2x′µBµρ(G−1)ρνπν ,

as well as the Lagrangian in the canonical form

L̂(ẋ, x′, π) = πµẋ
µ − ĤC(x′, π) (3.9)

= πµẋ
µ − 1

2κπµ(G−1)µνπν −
κ

2x
′µGEµνx

′ν + 2x′µBµρ(G−1)ρνπν .

On the equations of motion for πµ, we obtain

πµ = κGµν ẋ
ν − 2κBµνx′ν . (3.10)

Substituting (3.10) into (3.9) we find the well known expression for bosonic string La-
grangian [12, 13]

L̂(ẋ, x′) = κ

2 ẋ
µGµν ẋ

ν − κ

2x
′µGµνx

′ν − 2κẋµBµνx′ν = κ∂+x
µΠ+µν∂−x

ν , (3.11)

Π±µν = Bµν ±
1
2Gµν , ∂±x

µ = ẋµ ± x′µ .

It is possible to rewrite the canonical Hamiltonian (3.8) in terms of the generalized
metric GMN , that characterizes background with the metric only tensor. Substituting (3.5)
into (3.8), we obtain

ĤC = 1
2κ(XT )M ((eB̂)T ) K

M GKL (eB̂)LNXN = 1
2κ(X̂T )M GMN X̂N , (3.12)

where

X̂M = (eB̂)MN XN =
(

κx′µ

πµ + 2κBµνx′ν

)
≡
(
κx′µ

iµ

)
, (3.13)

with iµ being the auxiliary current, given by

iµ = πµ + 2κBµνx′ν . (3.14)

The algebra of auxiliary currents iµ gives rise to the H-flux [6]

{iµ(σ), iν(σ̄)} = −2κBµνρx′ρδ(σ − σ̄) , (3.15)

where the structural constants are the Kalb-Ramond field strength components, given by

Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν . (3.16)
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3.1 Symmetry generator

Let us extend the symmetry transformations of the background fields for the theory with
the non-trivial Kalb-Ramond field. The infinitesimal general coordinate transformations
of the background fields are given by

δξGµν = LξGµν , δξBµν = LξBµν , (3.17)

where the action of the Lie derivative Lξ (2.28) on the Kalb-Ramond field is given by [10]

LξBµν = ξρ∂ρBµν + ∂µξ
ρBρν − ∂νξρBρµ , (3.18)

while its action on the metric field is the same as in (2.10). The local gauge transformations
of the background fields are [10]

δλGµν = 0 , δλBµν = ∂µλν − ∂νλµ . (3.19)

Rewriting the symmetry generator G(ξ, λ) (2.18) in terms of the basis defined by com-
ponents of X̂M (3.13), one obtains

G(ξ, λ) =
∫
dσ(ΛT )MηMNX

N =
∫
dσ(Λ̂T )M ((e−B̂)T ) K

M ηKL(e−B̂)LNX̂N

=
∫
dσ(Λ̂T )MηMNX̂

N , (3.20)

where (3.4) was used in the last step, and Λ̂M is a new double gauge parameter, given by

Λ̂M = (eB̂)MNΛN =
(

δµν 0
2Bµν δνµ

)(
ξν

λν

)
=
(

ξµ

λµ + 2Bµνξν

)
≡
(
ξµ

λ̂µ

)
. (3.21)

We are going to mark the right hand side of (3.20) as a new generator

GB̂(ξ, λ̂) =
∫
dσ
[
ξµiµ + λ̂µκx

′µ
]
, (3.22)

which equals the generator (2.18), when the relations between the gauge parameters (3.21)
are satisfied G(ξ, λ̂ − 2Bµνξν) = GB̂(ξ, λ̂). The expression (3.22) exactly corresponds to
the symmetry generator obtained in [10], where ξµ are parameters of general coordinate
transformations and λ̂µ are parameters of local gauge transformations, that respectively
correspond to transformations of the background fields (3.17) and (3.19).

Our goal is to obtain the algebra in the form{
GB̂(ξ1, λ̂1), GB̂(ξ2, λ̂2)

}
= −GB̂(ξ, λ̂) , (3.23)

where
λiµ = λ̂iµ − 2Bµνξνi , i = 1, 2 ; λµ = λ̂µ − 2Bµνξν , (3.24)

due to (3.21). The Poisson bracket between canonical variables (2.12) remains the same
after the introduction of the Kalb-Ramond field. Therefore the results from previous
section, as well as mutual relations between coefficients in different bases can be used to
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obtain the algebra (3.23). Firstly, substituting (3.24) into the second equation in (2.25),
one obtains

λµ = ξν1 (∂ν λ̂2µ − ∂µλ̂2ν)− ξν2 (∂ν λ̂1µ − ∂µλ̂1ν) + 1
2∂µ(ξ1λ̂2 − ξ2λ̂1) (3.25)

+2Bµνρξν1 ξ
ρ
2 − 2Bµν(ξρ1∂ρξν2 − ξ

ρ
2∂ρξ

ν
1 ) .

Secondly, substituting the previous equation in (3.21), one obtains

ξµ = ξν1∂νξ
µ
2 − ξ

ν
2∂νξ

µ
1 , (3.26)

λ̂µ = ξν1 (∂ν λ̂2µ − ∂µλ̂2ν)− ξν2 (∂ν λ̂1µ − ∂µλ̂1ν) + 1
2∂µ(ξ1λ̂2 − ξ2λ̂1) + 2Bµνρξν1 ξ

ρ
2 .

The above relations define the twisted Courant bracket [(ξ1, λ̂1), (ξ2, λ̂2)]CB = (ξ, λ̂) [21].
This is the bracket of the symmetry transformations{

GB̂(ξ1, λ̂1), GB̂(ξ2, λ̂2)
}

= −GB̂
([

(ξ1, λ̂1), (ξ2, λ̂2)
]
CB

)
, (3.27)

in the theory defined by both metric and Kalb-Ramond field.
In the coordinate free notation, the twisted Courant bracket is given by[
(ξ1, λ̂1),(ξ2, λ̂2)

]
CB

=
(

[ξ1, ξ2]L,Lξ1 λ̂2−Lξ2 λ̂1−
1
2d(iξ1 λ̂2−iξ2 λ̂1)+H(ξ1, ξ2, .)

)
, (3.28)

where H(ξ1, ξ2, .) represents the contraction of the H-flux H = dB (3.16) with two gauge
parameters ξ1 and ξ2. This term is the corollary of the non-commutativity of the auxiliary
currents iµ (3.15), due to twisting of the Courant bracket with the Kalb-Ramond field. In
special case when the Kalb-Ramond field B is a closed form dB = 0, the twisted Courant
bracket (3.28) reduces to the Courant bracket (2.27). This can also be seen from the well
known fact that B-shifts (3.2) are symmetries of the Courant bracket when B is a closed
form [20].

4 Courant bracket twisted by θµν

When both the metric and the Kalb-Ramond field are present in the theory, the expressions
for T-dual fields are given by [15]

?Gµν = (G−1
E )µν , ?Bµν = κ

2 θ
µν , (4.1)

where θµν is the non-commutativity parameter for the string endpoints on a D-brane [22],
given by

θµν = −2
κ

(G−1
E )µρBρσ(G−1)σν . (4.2)

We say that two quantities are self T-dual, if they are invariant under the interchange [6]

πµ ↔ κx′µ , Gµν ↔ (G−1
E )µν , Bµν ↔

κ

2 θ
µν . (4.3)

When the Kalb-Ramond field is set to zero Bµν = 0, (4.3) reduces to the self T-duality
transformation laws in the background without the B field (2.7).
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From the relations (4.3), it is apparent that the introduction of Kalb-Ramond field
breaks down the self T-duality invariance of the symmetry generator (3.22). To find a
new self T-dual invariant generator, we will analogously to the prior construction start
with the background containing only T-dual metric. The Hamiltonian in the metric only
background, similar to (2.2), reads

?HC = 1
2κπµ(G−1

E )µνπν + κ

2x
′µGEµνx

′ν = (XT )M ?GMNX
N , (4.4)

where ?GMN is the T-dual generalized metric for the above Hamiltonian, given by

?GMN =
(
GEµν 0

0 (G−1
E )µν

)
. (4.5)

Note that the self T-duality is realized as the joint action of the permutation of the coor-
dinate σ-derivatives with the canonical momenta and the swapping all the fields in (2.6)
for their T-duals. This is equivalent to the Buscher’s procedure [15–17], when it is done in
the same phase space.

In order to construct the Hamiltonian in the self T-dual description, we consider
how the T-dual generalized metric (4.5) is transformed with respect to the so called θ-
transformations eθ̂, where

θ̂MN =
(

0 κθµν

0 0

)
=
(

0 2 ?Bµν

0 0

)
. (4.6)

The full exponential eθ̂ is given by

(eθ̂)MN =
(
δµν κθ

µν

0 δνµ

)
, (4.7)

and its transpose by

((eθ̂)T ) N
M =

(
δνµ 0
−κθµν δµν

)
. (4.8)

They are elements of the O(D,D) group as well, i.e.

((eθ̂)T ) L
M ηLK (eθ̂)KN = ηMN . (4.9)

Under (4.7), the T-dual generalized metric (4.5) transforms in the following way
?GMN → ((eθ̂)T ) L

M
?GLK(eθ̂)KN ≡ ?HMN , (4.10)

where
?HMN =

(
GEµν −2Bµρ(G−1)ρν

2(G−1)µρBρν (G−1)µν

)
, (4.11)

which is exactly equal to the generalized metric (3.6). From it we can write the T-dual
Hamiltonian

?HC = 1
2κ(XT )M ?HMNX

N (4.12)

= 1
2κπµ(G−1)µνπν + κ

2x
′µGEµνx

′ν − 2x′µBµρ(G−1)ρνπν ≡ ĤC .
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The canonical Lagrangian is given by

?L(π, ẋ, x) = πµẋ
µ − ?HC(x′, π) (4.13)

= πµẋ
µ − 1

2κπµ(G−1)µνπν −
κ

2x
′µGEµνx

′ν + 2x′µBµρ(G−1)ρνπν ,

from which one easily obtains

πµ = κGµν ẋ
ν − 2κBµνx′ν . (4.14)

We see that the canonical momentum remains the same, which is expected, since the self
T-duality is realized in the same phase space. Substituting (4.14) into (4.13), one obtains

?L(ẋ, x) = κ

2 ẋ
µGµν ẋ

ν − κ

2x
′µGµνx

′ν − 2κẋµBµνx′ν = κ∂+x
µΠ+µν∂−x

ν . (4.15)

It is obvious that both the Hamiltonian and the Lagrangian are invariant under the
self T-duality.

In the same manner as in the previous section, substituting (4.10) into (4.12), we
rewrite the Hamiltonian

?ĤC = 1
2κ(XT ) L

M ((eθ̂)T ) K
L

?GKJ (eθ̂)JN XN = 1
2κX̃

M?GMNX̃
N , (4.16)

where

X̃M = (eθ̂)MNXN =
(
δµν κθ

µν

0 δνµ

)(
κx′ν

πν

)
=
(
κx′µ + κθµνπν

πµ

)
≡
(
kµ

πµ

)
, (4.17)

and kµ is an auxiliary current, given by

kµ = κx′µ + κθµνπν . (4.18)

The Poisson bracket algebra of these currents is obtained in [6]

{kµ(σ), kν(σ̄)} = −κQ µν
ρ kρδ(σ − σ̄)− κ2Rµνρπρδ(σ − σ̄) , (4.19)

where Q and R are non-geometric fluxes [23], given by

Q µν
ρ = ∂ρθ

µν , Rµνρ = θµσ∂σθ
νρ + θνσ∂σθ

ρµ + θρσ∂σθ
µν . (4.20)

We now define a new double gauge parameter

Λ̃M = (eθ̂)MNΛN =
(
δµν κθ

µν

0 δνµ

)(
ξν

λν

)
=
(
ξµ + κθµνλν

λµ

)
≡
(
ξ̂µ

λµ

)
. (4.21)

The generator (2.18) written in terms of new gauge parameters G(ξ̂− κθλ, λ) ≡ G θ̂(ξ̂, λ) is
given by

G θ̂(ξ̂, λ) =
∫
dσ
[
ξ̂µπµ + λµk

µ
]
. (4.22)
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The auxiliary currents iµ (3.14) and kµ (4.18) are related by the self T-duality rela-
tions (4.3). Moreover, one easily demonstrates that the self T-dual image of the generator
GB̂ (3.22) is the generator G θ̂ (4.22).

Like in a previous case, we want to obtain the algebra in the form{
G θ̂(ξ̂1, λ1), G θ̂(ξ̂2, λ2)

}
= −G θ̂(ξ̂, λ) , (4.23)

where from (4.21) we read the relations between the old and new gauge parameters

ξµi = ξ̂µi − κθ
µνλiν , i = 1, 2; ξµ = ξ̂µ − κθµνλν . (4.24)

Combining (4.24), (2.25) and (4.21), one obtains

ξ̂µ = ξ̂ν1∂ν ξ̂
µ
2 − ξ̂

ν
2∂ν ξ̂

µ
1 + (4.25)

+κθµν
(
ξ̂ρ1(∂νλ2ρ − ∂ρλ2ν)− ξ̂ρ2(∂νλ1ρ − ∂ρλ1ν)− 1

2∂ν(ξ̂1λ2 − ξ̂2λ1)
)

+κξ̂ν1∂ν(λ2ρθ
ρµ)− κξ̂ν2∂ν(λ1ρθ

ρµ) + κ(λ1νθ
νρ)∂ρξ̂µ2 − κ(λ2νθ

νρ)∂ρξ̂µ1
+κ2Rµνρλ1νλ2ρ ,

λµ = ξ̂ν1 (∂νλ2µ − ∂µλ2ν)− ξ̂ν2 (∂νλ1µ − ∂µλ1ν) + 1
2∂µ(ξ̂1λ2 − ξ̂2λ1)

+κθνρ(λ1ν∂ρλ2µ − λ2ν∂ρλ1µ) + κλ1ρλ2νQ
ρν
µ .

The relations (4.25) define a bracket [(ξ̂1, λ1), (ξ̂2, λ2)]Cθ = (ξ̂, λ) that is known as the
θ-twisted Courant bracket, or Roytenberg bracket. It is related by self T-duality with the
twisted Courant bracket, when the relations between the fields (4.1) hold [6].

In the coordinate free notation, the θ-twisted Courant bracket is given by[
(ξ̂1, λ1), (ξ̂2, λ2)

]
Cθ

=
(

[ξ̂1, ξ̂2]L − κ[ξ̂2, λ1θ]L + κ[ξ̂1, λ2θ]L + κ2

2 [θ, θ]S(λ1, λ2, .) (4.26)

+ κ

(
Lξ̂2

λ1 − Lξ̂1
λ2 + 1

2d(iξ̂1
λ2 − iξ̂2

λ1)
)
θ

Lξ̂1
λ2 − Lξ̂2

λ1 −
1
2d(iξ̂1

λ2 − iξ̂2
λ1)− κ[λ1, λ2]θ

)
,

where [θ, θ]S(λ1, λ2, .) represents the Schouten-Nijenhuis bracket [24] contracted with two
1-forms, that when having bi-vectors as domain is given by

[θ, θ]S |µνρ = εµνραβγθ
σα∂σθ

βγ = 3Rµνρ , (4.27)

where

εµνραβγ =

∣∣∣∣∣∣∣
δµα δ

ν
β δ

ρ
γ

δνα δ
ρ
β δ

µ
γ

δρα δ
µ
β δ

ν
γ

∣∣∣∣∣∣∣ , (4.28)

and [λ1, λ2]θ is the Koszul bracket [25] given by

[λ1, λ2]θ = Lθλ1λ2 − Lθλ2λ1 + d(θ(λ1, λ2)) . (4.29)

The Koszul bracket is a generalization of the Lie bracket on the space of differential forms,
while the Schouten-Nijenhuis bracket is a generalization of the Lie bracket on the space of
multi-vectors.
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5 C-bracket

In this section, we will show how our results can be generalized, so that they give rise to
the C-bracket [8, 9] as the T-dual invariant bracket, in the accordance with [7]. Consider
that T-dual theory is defined in the T-dual phase space, characterized by T-dual coordi-
nates yµ and the T-dual momenta ?πµ. They are related with the initial phase space by
T-duality relations [15]

πµ ' κy′µ , ?πµ ' κx′µ . (5.1)

We can define a double phase space obtained as a sum of two canonical phase spaces. Let
us introduce the double coordinate

XM =
(
xµ

yµ

)
, (5.2)

as well as the double canonical momentum

ΠM =
(
πµ
?πµ

)
. (5.3)

In this notation, the T-duality laws (5.1) take a form

ΠM ' κ ηMNX
′M , (5.4)

where ηMN is the O(D,D) metric (2.19).

5.1 Poisson brackets of canonical variables

The standard Poisson bracket algebra is assumed for both initial and T-dual phase space

{xµ(σ), πν(σ̄)} = δµν δ(σ − σ̄) , {yµ(σ), ?πν(σ̄)} = δνµδ(σ − σ̄) , (5.5)

with other bracket of canonical variables within the same phase space being zero.
For the remaining Poisson bracket relations, one must use the consistency with T-

duality relations. Firstly, applying the T-dualization along all initial coordinates xµ, i.e.
the second relation of (5.1) on the Poisson bracket algebra between coordinates derivatives,
one obtains

{κx′µ(σ), κy′ν(σ̄)} ' {?πµ(σ), κy′ν(σ̄)} = κδµν δ
′(σ − σ̄) . (5.6)

Similarly, applying the T-dualization along all T-dual coordinates yµ, i.e. the first relation
of (5.1), one obtains

{κx′µ(σ), κy′ν(σ̄)} ' {κx′µ(σ), πν(σ̄)} = κδµν δ
′(σ − σ̄) . (5.7)

Hence, we conclude
{κx′µ(σ), κy′ν(σ̄)} = κδµν δ

′(σ − σ̄) . (5.8)

The successive integration along both σ and σ̄ for the appropriate choice of the integration
constant produces the relation [26]

{κxµ(σ), κyν(σ̄)} = −κδµν θ(σ − σ̄) , (5.9)
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where

θ(σ) =


−1

2 σ = −π
0 −π < σ < π
1
2 σ = π

. (5.10)

Secondly, taking into the account T-duality (5.1), the Poisson bracket algebra of mo-
menta is easily transformed into

{πµ(σ), ?πν(σ̄)} ' κ{πµ(σ), x′ν(σ̄)} = κδνµδ
′(σ − σ̄) , (5.11)

when T-dualization is applied along the coordinates yµ, and

{πµ(σ), ?πν(σ̄)} ' κ{y′µ(σ), ?πν(σ̄)} = κδνµδ
′(σ − σ̄) , (5.12)

when it is applied along the coordinates xµ. As in the previous case, we obtain

{πµ(σ), ?πν(σ̄)} = κδνµδ
′(σ − σ̄) . (5.13)

In a same manner, it is easy to demonstrate that

{xµ(σ), ?πν(σ̄)} = 0 , {yµ(σ), πν(σ̄)} = 0 . (5.14)

In a double space, the above relations can be simply written as{
κXM (σ), κXN (σ̄)

}
= −κηMNθ(σ − σ̄) , {ΠM (σ),ΠN (σ̄)} = κ ηMNδ

′(σ − σ̄) . (5.15)

5.2 Generator in double space

Now let us extend the generator of general coordinate transformations, so that it includes
the T-dual version of that generator

G(ξ, λ) =
∫
dσG(ξ, λ) =

∫
dσ
[
ξµ(x, y)πµ + λµ(x, y)?πµ

]
, (5.16)

where the symmetry parameters ξ and λ depend on both initial coordinates xµ and
T-dual coordinates yµ. The generator G(ξ, λ) can be rewritten in terms of double canonical
variables as

G(Λ) = ΛM (x, y)ηMNΠN ⇐⇒ GΛ = 〈Λ,Π〉 , (5.17)

where
ΛM (X) =

(
ξµ(xµ, yµ)
λµ(xµ, yµ)

)
. (5.18)

This generator is manifestly O(D,D) invariant.
We are interested in the algebra of the form

{G(Λ1), G(Λ2)} = −G(Λ) . (5.19)

To obtain it, it is convenient to introduces double derivative

∂M =
(
∂µ
∂̃µ

) (
∂µ ≡

∂

∂xµ
, ∂̃µ ≡ ∂

∂yµ

)
, (5.20)
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so that the following Poisson bracket relations can be written{
ΛM (σ),ΠN (σ̄)

}
= ∂NΛMδ(σ− σ̄),

{
ΛM (σ),ΛN (σ̄)

}
= −1

κ
∂PΛM1 ∂PΛN2 θ(σ− σ̄) . (5.21)

The second relation makes the situation more complicated, since it would result in the
symmetry algebra not closing on another generator. However, in the accordance with [7, 9],
we can consider restricted parameters on isotropic spaces, for which ∆ = ηPQ∂P∂Q = ∂Q∂Q
anihilates all gauge parameters, as well as their products. Therefore, we write

∆
(
ΛM1 ΛN2

)
= ∆ΛM1 ΛN2 + 2∂QΛM1 ∂QΛN2 + ΛM1 ∆ΛN2 = 0 , (5.22)

from which one obtains
∂QΛM1 ∂QΛN2 = 0 . (5.23)

Substituting (5.23) into (5.21), we obtain{
ΛM (σ),ΛN (σ̄)

}
= 0 . (5.24)

We see that the restriction of gauge parameters to isotropic spaces is necessary for the
algebra of generator (5.16) to be closed.

Now we are ready to calculate the algebra. Using the second relation of (5.15), the
first relation of (5.21), and (5.24), we have

{GΛ1(σ),GΛ2(σ̄)} = −
(
ΛN1 ∂NΛM2 − ΛN2 ∂NΛM1

)
ΠMδ(σ − σ̄) + κ〈Λ1(σ),Λ2(σ̄)〉δ′(σ − σ̄) .

(5.25)
Using (2.23), the anomalous term can be rewritten as

κ〈Λ1(σ),Λ2(σ̄)〉δ′(σ − σ̄) = κ〈Λ1(σ),Λ2(σ)〉δ′(σ − σ̄) + κ〈Λ1(σ),Λ′2(σ)〉δ(σ − σ̄) , (5.26)

which with the help of (2.22) can be further transformed into

κ〈Λ1(σ),Λ2(σ̄)〉δ′(σ − σ̄) = κ

2
(
〈Λ1,Λ′2〉 − 〈Λ′1,Λ2〉

)
δ(σ − σ̄)

+ κ

2
(
〈Λ1,Λ2〉(σ) + 〈Λ1,Λ2〉(σ̄)

)
δ′(σ − σ̄) , (5.27)

where the dependence of σ has been omitted, where all terms depend solely on it.
Next, we write

κΛ′M = κX ′N∂NΛM , (5.28)

and with the help of (5.4)
κΛ′M ' ηNRΠR∂NΛM . (5.29)

The full anomalous term can now be written as

κ〈Λ1(σ),Λ2(σ̄)〉δ′(σ − σ̄) = 1
2ηPQ η

MN
(
ΛP1 ∂NΛQ2 − ΛP2 ∂NΛQ1

)
ΠMδ(σ − σ̄)

+ κ

2
(
〈Λ1,Λ2〉(σ) + 〈Λ1,Λ2〉(σ̄)

)
δ′(σ − σ̄) . (5.30)
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The second line of the previous equation disappears after the integration with respect to
σ and σ̄.

Consequently,
{
GΛ1(σ), GΛ2(σ̄)

}
= −

[
ΛN1 ∂NΛM2 − ΛN2 ∂NΛM1 (5.31)

−1
2ηPQ η

MN
(
ΛP1 ∂NΛQ2 − ΛP2 ∂NΛQ1

)]
ΠMδ(σ − σ̄) .

We recognize that we can write the relation (5.19) as

{G(Λ1), G(Λ2)} = −G
(
[Λ1,Λ2]C

)
, (5.32)

where [Λ1,Λ2]C is the C-bracket, given by

[Λ1,Λ2]CM = ΛN1 ∂NΛM2 − ΛN2 ∂NΛM1 −
1
2
(
ΛN1 ∂MΛ2N − ΛN2 ∂MΛ1N

)
. (5.33)

The C-bracket was firstly obtained in [8, 9] as the generalization of the Lie derivative in
the double space. For ?πµ = 0, and y = 0 the double phase space reduces to the initial
one, while the generator (5.17) reduces to the generator of general coordinate transforma-
tions (2.8), which gives rise to the Lie bracket.

We could have obtained C-bracket within the framework of self T-duality as well, by
demanding that the parameters depend on both x and y, substituting ?πµ = κx′µ in (5.17)

G(ξ, λ) = ξµ(x, y)πµ + κλµ(x, y)x′µ . (5.34)

If we additionally demand that the symmetry parameters do not depend on the T-dual
coordinates yµ, this generator turns out to be exactly the Courant bracket generator (3.20).
It is in the accordance with [7] that the C-bracket reduces to the Courant bracket, in case
when there is no dependence on y.

6 Conclusion

In this paper, we firstly considered the bosonic string moving in the background defined
solely by the metric tensor, in which the generalized metric GMN has a simple diagonal
form (2.6). The general coordinate transformations are generated by canonical momenta
πµ, parametrised with vector components ξµ. We have extended this generator, so that it is
self T-dual, adding the symmetry generated by coordinate σ-derivative x′µ, that are T-dual
to the canonical momenta πµ (2.7). The extended generator of both of these symmetries is
a function of a double gauge parameter ΛM (2.17). The latter is a generalized vector, i.e.
an element of a space obtained from a direct sum of vectors and 1-forms. The symmetry
generator G(Λ) = G(ξ, λ) of both of aforementioned symmetries was expressed as the
standard O(D,D) inner product of two generalized vectors (2.18). The Poisson bracket
between the extended generators G(Λ1) and G(Λ2) resulted up to a sign in the generator
G(Λ), with its argument being equal to the Courant bracket of the double gauge parameters
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Λ = [Λ1,Λ2]C . As this is analogous to an appearance of the Lie bracket in the algebra of
general coordinate transformations generators, we concluded that the Courant bracket is
the self T-dual extension of the Lie bracket.

Afterwards, we added the Kalb-Ramond field Bµν to the background, transforming the
diagonal generalized metric GMN acting by the B-transformation eB̂ (3.2). The standard
generalized metric for bosonic string HMN was obtained (3.6), as well as the well known
expressions for the Hamiltonian (3.8) and the Lagrangian (3.11). We noted that it is
possible to express the Hamiltonian in terms of the diagonal generalized metric GMN , on
the expense of transforming the double canonical variable XM by the B-shift. This newly
obtained canonical variable X̂ was suitable for rewriting the symmetry generator G as GB̂,
which is no longer self T-dual. This is the generator of both general coordinate, and local
gauge transformations. The Poisson bracket algebra of this new generator was calculated
and as an argument of the resulting generator the Courant bracket twisted by the Kalb-
Ramond field was obtained. It deviates from the Courant bracket by the term related to
the H-flux, which is the term that breaks down the self T-duality invariance.

We considered the self T-dual description of the bosonic string σ-model. Analogously
as in the first description, the complete Hamiltonian was constructed starting from the
background characterized only by the T-dual metric ?Gµν = (G−1

E )µν . We applied the
θ-transformations eθ̂ (4.7), T-dual to B-shifts, and obtained the same canonical Hamilto-
nian. Similarly to the previous case, the action of θ-transformation on the double canonical
variable was chosen for an appropriate basis. In this basis, the symmetry generator de-
pendent upon some new gauge parameters was constructed and its algebra gave rise to the
θ-twisted Courant bracket. This bracket is characterized by the presence of terms related
to non-geometric Q and R fluxes.

It would be interesting to obtain the bracket that includes all of the fluxes, while
remaining invariant upon the self T-duality. The natural candidate for this is the Courant
bracket twisted by both the Kalb-Ramond field and the non-commutativity parameter.
This could be done by the matrix eB̆, where

B̆ = B̂ + θ̂ =
(

0 κθµν

2Bµν 0

)
. (6.1)

This transformation is not trivial, as the square of the matrix B̆ is not zero. Nevertheless,
the transformation is also an element of the O(D,D) group, and it remains an interesting
idea for future research [27].

Lastly, we considered the symmetry generator in the double phase space that is a sum
of the initial and T-dual phase space. The generator of general coordinate transformations
is extended so that it includes the analogous generator in the T-dual phase space, generated
by T-dual momenta ?πµ. Both symmetry parameters were taken to depend on both the
initial and T-dual coordinates, in which case the C-bracket is obtained as the bracket of
the algebra of those generators. The C bracket has already been established as the T-
dual invariant bracket [7–9], from the gauge algebra in the double space. We obtain its
Poisson bracket representation, using the T-duality relations between canonical variables
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of different, mutually T-dual, phase spaces. These T-duality relations gave rise to the non-
trivial Poisson bracket between the initial and T-dual momenta, which makes a crucial step
in obtaining C-bracket.

We conclude that both Courant and C-bracket are T-dual invariant extension of the
Lie bracket. The former is their extension in the initial phase space, that governs both
the local gauge and general coordinate transformations. The latter is the extension of Lie
bracket in the double phase space, that is a direct sum of the initial and T-dual phase
space. Though the algebra of the generators that gives rise to the Courant bracket always
closes, the algebra of generators in a double phase space that produces C-bracket only
closes on a restricted parameters on an isotropic space. If all variables are independent
of T-dual coordinates yµ, the C-bracket reduces to the Courant bracket, which confirms
results from our paper.

Acknowledgments

Work supported in part by the Serbian Ministry of Education and Science and Technolog-
ical Development, under contract No. 171031.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] G.P.L. Courant, Dirac manifolds, Trans. Am. Math. Soc. 319 (1990) 631.

[2] Z.-J. Liu, A. WEinstein and P. Xu, Manin Triples for Lie Bialgebroids, J. Diff. Geom. 45
(1997) 547 [dg-ga/9508013] [INSPIRE].

[3] A. Alekseev and T. Strobl, Current algebras and differential geometry, JHEP 03 (2005) 035
[hep-th/0410183] [INSPIRE].

[4] N. Halmagyi, Non-geometric String Backgrounds and Worldsheet Algebras, JHEP 07 (2008)
137 [arXiv:0805.4571] [INSPIRE].

[5] N. Halmagyi, Non-geometric Backgrounds and the First Order String Sigma Model,
arXiv:0906.2891 [INSPIRE].

[6] I. Ivanišević, Lj. Davidović and B. Sazdović, Courant bracket found out to be T-dual to
Roytenberg bracket, Eur. Phys. J. C 80 (2020) 571 [arXiv:1903.04832] [INSPIRE].

[7] C. Hull and B. Zwiebach, The Gauge algebra of double field theory and Courant brackets,
JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

[8] W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47
(1993) 5453 [hep-th/9302036] [INSPIRE].

[9] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826
[hep-th/9305073] [INSPIRE].

[10] Lj. Davidović and B. Sazdović, The T-dual symmetries of a bosonic string, Eur. Phys. J. C
78 (2018) 600 [arXiv:1806.03138] [INSPIRE].

– 18 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2307/2001258
https://doi.org/10.4310/jdg/1214459842
https://doi.org/10.4310/jdg/1214459842
https://arxiv.org/abs/dg-ga/9508013
https://inspirehep.net/search?p=find+J%20%22J.Diff.Geom.%2C45%2C547%22
https://doi.org/10.1088/1126-6708/2005/03/035
https://arxiv.org/abs/hep-th/0410183
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0503%2C035%22%20and%20year%3D2005
https://doi.org/10.1088/1126-6708/2008/07/137
https://doi.org/10.1088/1126-6708/2008/07/137
https://arxiv.org/abs/0805.4571
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0807%2C137%22%20and%20year%3D2008
https://arxiv.org/abs/0906.2891
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.2891
https://doi.org/10.1140/epjc/s10052-020-8129-x
https://arxiv.org/abs/1903.04832
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC80%2C571%22
https://doi.org/10.1088/1126-6708/2009/09/090
https://arxiv.org/abs/0908.1792
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0909%2C090%22%20and%20year%3D2009
https://doi.org/10.1103/PhysRevD.47.5453
https://doi.org/10.1103/PhysRevD.47.5453
https://arxiv.org/abs/hep-th/9302036
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD47%2C5453%22
https://doi.org/10.1103/PhysRevD.48.2826
https://arxiv.org/abs/hep-th/9305073
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD48%2C2826%22
https://doi.org/10.1140/epjc/s10052-018-6076-6
https://doi.org/10.1140/epjc/s10052-018-6076-6
https://arxiv.org/abs/1806.03138
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC78%2C600%22


J
H
E
P
0
3
(
2
0
2
1
)
1
0
9

[11] D. Roytenberg, A Note on quasi Lie bialgebroids and twisted Poisson manifolds, Lett. Math.
Phys. 61 (2002) 123 [math/0112152] [INSPIRE].

[12] K. Becker, M. Becker and J. Schwarz, String Theory and M-Theory: A Modern Introduction,
Cambridge University Press, Cambridge, U.K. (2007).

[13] B. Zwiebach, A First Course in String Theory, Cambridge University Press, Cambridge,
U.K. (2004).

[14] Lj. Davidović and B. Sazdović, T-duality in a weakly curved background, Eur. Phys. J. C 74
(2014) 2683 [arXiv:1205.1991] [INSPIRE].

[15] T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194
(1987) 59 [INSPIRE].

[16] E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, An Introduction to T duality in string theory,
Nucl. Phys. B Proc. Suppl. 41 (1995) 1 [hep-th/9410237] [INSPIRE].

[17] A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept.
244 (1994) 77 [hep-th/9401139] [INSPIRE].

[18] A. Giveon, E. Rabinovici and G. Veneziano, Duality in String Background Space, Nucl. Phys.
B 322 (1989) 167 [INSPIRE].

[19] C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664]
[INSPIRE].

[20] M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, U.K. (2003)
math/0401221 [INSPIRE].

[21] P. Ševera and A. WEinstein, Poisson geometry with a 3 form background, Prog. Theor. Phys.
Suppl. 144 (2001) 145 [math/0107133] [INSPIRE].

[22] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032
[hep-th/9908142] [INSPIRE].

[23] J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005)
085 [hep-th/0508133] [INSPIRE].

[24] J.A. de Azcarraga, A.M. Perelomov and J.C. Perez Bueno, The Schouten-Nijenhuis bracket,
cohomology and generalized Poisson structures, J. Phys. A 29 (1996) 7993 [hep-th/9605067]
[INSPIRE].

[25] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Annales Inst.
Fourier 46 (1996) 1243.

[26] Lj. Davidović, B. Nikolic and B. Sazdović, Canonical approach to the closed string
non-commutativity, Eur. Phys. J. C 74 (2014) 2734 [arXiv:1307.6158] [INSPIRE].

[27] Lj. Davidović, I. Ivanišević, B. Sazdović, Courant bracket twisted both by a 2-form B and by
a bi-vector θ, in preparation.

– 19 –

https://doi.org/10.1023/A:1020708131005
https://doi.org/10.1023/A:1020708131005
https://arxiv.org/abs/math/0112152
https://inspirehep.net/search?p=find+J%20%22Lett.Math.Phys.%2C61%2C123%22
https://doi.org/10.1140/epjc/s10052-013-2683-4
https://doi.org/10.1140/epjc/s10052-013-2683-4
https://arxiv.org/abs/1205.1991
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC74%2C2683%22
https://doi.org/10.1016/0370-2693(87)90769-6
https://doi.org/10.1016/0370-2693(87)90769-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB194%2C59%22
https://doi.org/10.1016/0920-5632(95)00429-D
https://arxiv.org/abs/hep-th/9410237
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9410237
https://doi.org/10.1016/0370-1573(94)90070-1
https://doi.org/10.1016/0370-1573(94)90070-1
https://arxiv.org/abs/hep-th/9401139
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C244%2C77%22
https://doi.org/10.1016/0550-3213(89)90489-6
https://doi.org/10.1016/0550-3213(89)90489-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB322%2C167%22
https://doi.org/10.1088/1126-6708/2009/09/099
https://arxiv.org/abs/0904.4664
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0909%2C099%22%20and%20year%3D2009
https://arxiv.org/abs/math/0401221
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0401221
https://doi.org/10.1143/PTPS.144.145
https://doi.org/10.1143/PTPS.144.145
https://arxiv.org/abs/math/0107133
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.Suppl.%2C144%2C145%22
https://doi.org/10.1088/1126-6708/1999/09/032
https://arxiv.org/abs/hep-th/9908142
https://inspirehep.net/search?p=find+J%20%22JHEP%2C9909%2C032%22%20and%20year%3D1999
https://doi.org/10.1088/1126-6708/2005/10/085
https://doi.org/10.1088/1126-6708/2005/10/085
https://arxiv.org/abs/hep-th/0508133
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0510%2C085%22%20and%20year%3D2005
https://doi.org/10.1088/0305-4470/29/24/023
https://arxiv.org/abs/hep-th/9605067
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA29%2C7993%22
https://doi.org/10.5802/aif.1547
https://doi.org/10.5802/aif.1547
https://doi.org/10.1140/epjc/s10052-014-2734-5
https://arxiv.org/abs/1307.6158
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC74%2C2734%22


Eur. Phys. J. C (2021) 81:685
https://doi.org/10.1140/epjc/s10052-021-09447-4

Regular Article - Theoretical Physics

Courant bracket twisted both by a 2-form B and by a bi-vector θ
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Abstract We obtain the Courant bracket twisted simulta-
neously by a 2-form B and a bi-vector θ by calculating the
Poisson bracket algebra of the symmetry generator in the
basis obtained acting with the relevant twisting matrix. It is
the extension of the Courant bracket that contains well known
Schouten–Nijenhuis and Koszul bracket, as well as some new
star brackets. We give interpretation to the star brackets as
projections on isotropic subspaces.

1 Introduction

The Courant bracket [1,2] represents the generalization of
the Lie bracket on spaces of generalized vectors, understood
as the direct sum of the elements of the tangent bundle and
the elements of the cotangent bundle. It was obtained in the
algebra of generalized currents firstly in [3]. Generalized cur-
rents are arbitrary functionals of the fields, parametrized by
a pair of vector field and covector field on the target space.
Although the Lie bracket satisfies the Jacobi identity, the
Courant bracket does not.

In bosonic string theory, the Courant bracket is govern-
ing both local gauge and general coordinate transformations,
invariant upon T-duality [4,5]. It is a special case of the more
general C-bracket [6,7]. The C-bracket is obtained as the
T-dual invariant bracket of the symmetry generator algebra,
when the symmetry parameters depend both on the initial and
T-dual coordinates. It reduces to the Courant bracket once
when parameters depend solely on the coordinates from the
initial theory.

It is possible to obtain the twisted Courant bracket, when
the self T-dual generator algebra is considered in the basis

Work supported in part by the Serbian Ministry of Education and
Science, under Contract no. 171031.

a e-mail: ljubica@ipb.ac.rs
b e-mail: ivanisevic@ipb.ac.rs (corresponding author)
c e-mail: sazdovic@ipb.ac.rs

obtained from the action of the appropriate O(D, D) trans-
formation [8]. The Courant bracket is usually twisted by a
2-form B, giving rise to what is known as the twisted Courant
bracket [9], and by a bi-vector θ , giving rise to the θ -twisted
Courant bracket [10]. In [3,8,11,12], the former bracket was
obtained in the generalized currents algebra, and it was shown
to be related to the latter by self T-duality [13], when the T-
dual of the B field is the bi-vector θ .

The B-twisted Courant bracket contains H flux, while the
θ -twisted Courant bracket contains non-geometric Q and R
fluxes. The fluxes are known to play a crucial role in the
compactification of additional dimensions in string theory
[14]. Non-geometric fluxes can be used to stabilize moduli. In
this paper, we are interested in obtaining the Poisson bracket
representation of the twisted Courant brackets that contain
all fluxes from the generators algebra. Though it is possible
to obtain various twists of the C-bracket as well [15], we do
not deal with them in this paper.

The realization of all fluxes using the generalized geom-
etry was already considered, see [16] for a comprehensive
review. In [17], one considers the generalized tetrads origi-
nating from the generalized metric of the string Hamiltonian.
As the Lie algebra of tetrads originating from the initial met-
ric defines the geometric flux, it is suggested that all the
other fluxes can be extracted from the Courant bracket of
the generalized tetrads. Different examples of O(D, D) and
O(D) × O(D) transformations of generalized tetrads lead
to the Courant bracket algebras with different fluxes as its
structure constants.

In [18], one considers the standard Lie algebroid defined
with the Lie bracket and the identity map as an anchor on the
tangent bundle, as well as the Lie algebroid with the Koszul
bracket and the bi-vector θ as an anchor on the cotangent
bundle. The tetrad basis in these Lie algebroids is suitable
for defining the geometric f and non-geometric Q fluxes.
It was shown that by twisting both of these Lie algebroids
by H -flux one can construct the Courant algebroid, which
gives rise to all of the fluxes in the Courant bracket algebra.

123
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Unlike previous approaches where generalized fluxes were
defined using the Courant bracket algebra, in a current paper
we obtain them in the Poisson bracket algebra of the sym-
metry generator.

Firstly, we consider the symmetry generator of local gauge
and global coordinate transformations, defined as a standard
inner product in the generalized tangent bundle of a dou-
ble gauge parameter and a double canonical variable. The
O(D, D) group transforms the double canonical variable
into some other basis, in terms of which the symmetry gen-
erator can be expressed. We demonstrate how the Poisson
bracket algebra of this generator can be used to obtain twist
of the Courant bracket by any such transformation. We give a

brief summary of how eB̂ and eθ̂ produce respectively the B-
twisted and θ -twisted Courant bracket in the Poisson bracket
algebra of generators [8].

Secondly, we consider the matrix eB̆ used for twisting the
Courant bracket simultaneously by a 2-form and a bi-vector.
The argument B̆ is defined simply as a sum of the arguments
B̂ and θ̂ . Unlike B̂ or θ̂ , the square of B̆ is not zero. The
full Taylor series gives rise to the hyperbolic functions of the
parameter depending on the contraction of the 2-form with
the bi-vector α

μ
ν = 2κθμρBρν . We represent the symme-

try generator in the basis obtained acting with the twisting
matrix eB̆ on the double canonical variable. This generator is
manifestly self T-dual and its algebra closes on the Courant
bracket twisted by both B and θ .

Instead of computing the B − θ twisted Courant bracket
directly, we introduce the change of basis in which we define
some auxiliary generators, in order to simplify the calcula-
tions. This change of basis is also realized by the action of
an element of the O(D, D) group. The structure constants
appearing in the Poisson bracket algebra have exactly the
same form as the generalized fluxes obtained in other papers
[16–18]. The expressions for fluxes is given in terms of new
auxiliary fields B̊ and θ̊ , both being the function of αμ.

The algebra of these new auxiliary generators closes on
another bracket, that we call C̊-twisted Courant bracket. We
obtain its full Poisson bracket representation, and express
it in terms of generalized fluxes. We proceed with rewrit-
ing it in the coordinate free notation, where many terms are
recognized as the well known brackets, such as the Koszul
or Schouten–Nijenhuis bracket, but some new brackets, that
we call star brackets, also appear. These star brackets as a
domain take the direct sum of tangent and cotangent bun-
dle, and as a result give the graph of the bi-vector θ̊ in the
cotangent bundle, i.e. the sub-bundle for which the vector
and 1-form components are related as ξμ = κθ̊μνλν . We
show that they can be defined in terms of the projections on
isotropic subspaces acting on different twists of the Courant
bracket.

Lastly, we return to the previous basis and obtain the full
expression for the Courant bracket twisted by both B and θ .
It has a similar form as C̊-twisted Courant bracket, but in this
case the other brackets contained within it are also twisted.
The Courant bracket twisted by both B and θ and the one
twisted by C̊ are directly related by a O(D, D) transforma-
tion represented with the block diagonal matrix.

2 The bosonic string essentials

The canonical Hamiltonian for closed bosonic string, moving
in the D-dimensional space-time with background charac-
terized by the metric field Gμν and the antisymmetric Kalb–
Ramond field Bμν is given by [19,20]

HC = 1

2κ
πμ(G−1)μνπν + κ

2
x ′μGE

μνx
′ν

−2x ′μBμρ(G−1)ρνπν, (2.1)

where πμ are canonical momenta conjugate to coordinates
xμ, and

GE
μν = Gμν − 4(BG−1B)μν (2.2)

is the effective metric. The Hamiltonian can be rewritten in
the matrix notation

HC = 1

2κ
(XT )MHMN XN , (2.3)

where XM is a double canonical variable given by

XM =
(

κx ′μ
πμ

)
, (2.4)

and HMN is the so called generalized metric, given by

HMN =
(

GE
μν −2Bμρ(G−1)ρν

2(G−1)μρBρν (G−1)μν

)
, (2.5)

with M, N ∈ {0, 1}. In the context of generalized geometry
[21], the double canonical variable XM represents the gen-
eralized vector. The generalized vectors are 2D structures
that combine both vector and 1-form components in a single
entity.

The standard T-duality [22,23] laws for background fields
have been obtained by Buscher [24]


Gμν = (G−1
E )μν, 
Bμν = κ

2
θμν, (2.6)
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where (G−1
E )μν is the inverse of the effective metric (2.2),

and θμν is the non-commutativity parameter, given by

θμν = − 2

κ
(G−1

E )μρBρσ (G−1)σν. (2.7)

The T-duality can be realized without changing the phase
space, which is called the self T-duality [13]. It has the
same transformation rules for the background fields like T-
duality (2.6), with additionally interchanging the coordinate
σ -derivatives κx ′μ with canonical momenta πμ

κx ′μ ∼= πμ. (2.8)

Since momenta and winding numbers correspond to σ inte-
gral of respectively πμ and κx ′μ, we see that the self T-
duality, just like the standard T-duality, swaps momenta and
winding numbers.

2.1 Symmetry generator

We consider the symmetry generator that at the same time
governs the general coordinate transformations, parametrized
by ξμ, and the local gauge transformations, parametrized by
λμ. The generator is given by [25]

G(ξ, λ) =
∫ 2π

0
dσG(ξ, λ) =

∫ 2π

0
dσ

[
ξμπμ + λμκx ′μ]

.

(2.9)

It has been shown that the general coordinate transformations
and the local gauge transformations are related by self T-
duality [25], meaning that this generator is self T-dual. If one
makes the following change of parameters λμ → λμ + ∂μϕ,
the generator (2.9) does not change

G(ξ, λ + ∂ϕ) = G(ξ, λ) + κ

∫ 2π

0
ϕ′dσ = G(ξ, λ), (2.10)

since the total derivative integral vanishes for the closed
string. Therefore, the symmetry is reducible.

Let us introduce the double gauge parameter �M , as the
generalized vector, given by

�M =
(

ξμ

λμ

)
, (2.11)

where ξμ represent the vector components, and λμ represent
the 1-form components. The space of generalized vectors is
endowed with the natural inner product

〈�1,�2〉 = (�T
1 )MηMN�N

2 ⇔ 〈(ξ1, λ1), (ξ2, λ2)〉
= iξ1λ2 + iξ2λ1 = ξ

μ
1 λ2μ + ξ

μ
2 λ1μ, (2.12)

where iξ is the interior product along the vector field ξ , and
ηMN is O(D, D) metric, given by

ηMN =
(

0 1
1 0

)
. (2.13)

Now it is possible to rewrite the generator (2.9) as

G(�) =
∫

dσ 〈�, X〉. (2.14)

In [8], the Poisson bracket algebra of generator (2.9) was
obtained in the form

{
G(�1), G(�2)

}
= −G

(
[�1,�2]C

)
, (2.15)

where the standard Poisson bracket relations between coor-
dinates and canonical momenta were assumed

{xμ(σ ), πν(σ̄ )} = δμ
νδ(σ − σ̄ ). (2.16)

The bracket [�1,�2]C is the Courant bracket [1], defined by

[�1,�2]C = � ⇔ [(ξ1, λ1), (ξ2, λ2)]C = (ξ, λ), (2.17)

where

ξμ = ξν
1 ∂νξ

μ
2 − ξν

2 ∂νξ
μ
1 ,

and

λμ = ξν
1 (∂νλ2μ − ∂μλ2ν) − ξν

2 (∂νλ1μ − ∂μλ1ν)

+1

2
∂μ(ξ1λ2 − ξ2λ1). (2.18)

It is the generalization of the Lie bracket on spaces of gener-
alized vectors.

3 O(D, D) group

Consider the orthogonal transformation O, i.e. the transfor-
mation that preserves the inner product (2.12)

〈O�1,O�2〉 = 〈�1,�2〉 ⇔ (O�1)
T η (O�2) = �T

1 η�2,

(3.19)

which is satisfied for the condition

OT η O = η. (3.20)
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There is a solution for the above equation in the formO = eT ,
see Sec. 2.1 of [21], where

T =
(
A θ

B −AT

)
, (3.21)

with θ : T 
M → T M and B : T M → T 
M being anti-
symmetric, and A : T M → T M being the endomorphism.
In general case, B and θ can be independent for O to satisfy
condition (3.20).

Consider now the action of some element of O(D, D) on
the double coordinate X (2.4) and the double gauge parameter
� (2.11)

X̂ M = OM
N XN , �̂M = OM

N �N , (3.22)

and note that the relation (2.15) can be written as

∫
dσ

{
〈�1, X〉, 〈�2, X〉

}
= −

∫
dσ 〈[�1,�2]C, X〉,

(3.23)

and using (3.19) and (3.22) as

∫
dσ

{
〈�̂1, X̂〉, 〈�̂2, X̂〉

}
= −

∫
dσ 〈[�1,�2]C, X〉

= −
∫

dσ 〈[�̂1, �̂2]CT , X̂〉,
(3.24)

where we expressed the right hand side in terms of some new
bracket [�̂1, �̂2]CT . Moreover, using (3.19) and (3.22), the
right hand side of (3.23) can be written as

〈[�1,�2]C, X〉 = 〈[O−1�̂1,O−1�̂2]C,O−1 X̂〉
= 〈O[O−1�̂1,O−1�̂2]C, X̂〉. (3.25)

Using (3.24) and (3.25), one obtains

[�̂1, �̂2]CT =O[O−1�̂1,O−1�̂2]C =eT [e−T �̂1, e
−T �̂2]C .

(3.26)

This is a definition of a T -twisted Courant bracket. Through-
out this paper, we use the notation where [, ]C is the Courant
bracket, while when C has an additional index, it represents
the twist of the Courant bracket by the indexed field, e.g.
[, ]CB is the Courant bracket twisted by B.

In a special case, when A = 0, θ = 0, the bracket (3.26)
becomes the Courant bracket twisted by a 2-form B [9]

[�1,�2]CB = eB̂[e−B̂�1, e
−B̂�2]C, (3.27)

where eB̂ is the twisting matrix, given by

eB̂ =
(

δ
μ
ν 0

2Bμν δν
μ

)
, B̂M

N =
(

0 0
2Bμν 0

)
. (3.28)

This bracket has been obtained in the algebra of generalized
currents [11,13].

In case of A = 0, B = 0, the bracket (3.26) becomes the
Courant bracket twisted by a bi-vector θ

[�1,�2]Cθ
= eθ̂ [e−θ̂�1, e

−θ̂�2]C, (3.29)

where eθ̂ is the twisting matrix, given by

eθ̂ =
(

δ
μ
ν κθμν

0 δν
μ

)
, θ̂M

N =
(

0 κθμν

0 0

)
. (3.30)

The B-twisted Courant bracket (3.27) and θ -twisted Courant
bracket (3.29) are related by self T-duality [13]. It is easy to

demonstrate that both eB̂ and eθ̂ satisfy the condition (3.20).
We can now deduce a simple algorithm for finding the

Courant bracket twisted by an arbitrary O(D, D) transfor-
mation. One rewrites the double symmetry generator G(ξ, λ)

in the basis obtained by the action of the matrix eT on the
double coordinate (2.4). Then, the Poisson bracket algebra
between these generators gives rise to the appropriate twist
of the Courant bracket. In this paper, we apply this algorithm
to obtain the Courant bracket twisted by both B and θ .

4 Twisting matrix

The transformations eB̂ and eθ̂ do not commute. That is why
we define the transformations that simultaneously twists the
Courant bracket by B and θ as eB̆ , where

B̆ = B̂ + θ̂ =
(

0 κθμν

2Bμν 0

)
. (4.1)

The Courant bracket twisted at the same time both by a 2-
form B and by a bi-vector θ is given by

[�1,�2]CBθ
= eB̆[e−B̆�1, e

−B̆�2]C . (4.2)

The full expression for eB̆ can be obtained from the well
known Taylor series expansion of exponential function

eB̆ =
∞∑
n=0

B̆n

n! . (4.3)
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The square of the matrix B̆ is easily obtained

B̆2 = 2

(
κ(θB)

μ
ν 0

0 κ(Bθ) ν
μ

)
, (4.4)

as well as its cube

B̆3 = 2

(
0 κ2(θBθ)μν

2κ(BθB)μν 0

)
. (4.5)

The higher degree of B̆ are given by

B̆2n =
(

(αn)
μ
ν 0

0 ((αT )n) ν
μ

)
, (4.6)

for even degrees, and for odd degrees by

B̆2n+1 =
(

0 κ(αnθ)μν

2(Bαn)μν 0

)
, (4.7)

where we have marked

αμ
ν = 2κθμρBρν. (4.8)

Substituting (4.6) and (4.7) into (4.3), we obtain the twisting
matrix

eB̆ =
⎛
⎜⎝

( ∑∞
n=0

αn

(2n)!
)μ

ν
κ
(∑∞

n=0
αn

(2n+1)!
)μ

ρ
θρν

2Bμρ

( ∑∞
n=0

αn

(2n+1)!
)ρ

ν

( ∑∞
n=0

(αT )n

(2n)!
) ν

μ

⎞
⎟⎠ .

(4.9)

Taking into the account the Taylor’s expansion of hyperbolic
functions

cosh(x) =
∞∑
n=0

x2k

(2k)! , sinh(x) =
∞∑
n=0

x2k+1

(2k + 1)! , (4.10)

the twisting matrix (4.9) can be rewritten as

eB̆ =
( Cμ

ν κSμ
ρθρν

2BμρSρ
ν (CT ) ν

μ

)
, (4.11)

with Sμ
ν =

(
sinh

√
α√

α

)μ

ν
and Cμ

ν =
(

cosh
√

α
)μ

ν
. Its deter-

minant is given by

det(eB̆) = eTr(B̆) = 1, (4.12)

and the straightforward calculations show that its inverse is
given by

e−B̆ =
( Cμ

ν −κSμ
ρθρν

−2BμρSρ
ν (CT ) ν

μ

)
. (4.13)

One easily obtains the relation

(eB̆)T η eB̆ = η, (4.14)

therefore the transformation (4.11) is indeed an element of
O(D, D).

It is worth pointing out characteristics of the matrix α
μ
ν .

It is easy to show that α
μ
ρθρν = θμρ(αT ) ν

ρ and Bμρα
ρ
ν =

(αT )
ρ
μ Bρν , which is further generalized to

( f (α))μρθρν = θμρ( f (αT )) ν
ρ , Bμρ( f (α))ρν

= ( f (αT )) ρ
μ Bρν, (4.15)

for any analytical function f (α). Moreover, the well known
hyperbolic identity cosh(x)2 − sinh(x)2 = 1 can also be
expressed in terms of newly defined tensors

(C2)μν − αμ
ρ(S2)ρν = δμ

ν . (4.16)

Lastly, the self T-duality relates the matrix α to its transpose
α ∼= αT , due to (2.6). Consequently, we write the following
self T-duality relations

C ∼= CT , S ∼= ST . (4.17)

5 Symmetry generator in an appropriate basis

The direct computation of the bracket (4.2) would be difficult,
given the form of the matrix eB̆ . Therefore, we use the indi-
rect computation of the bracket, by computing the Poisson
bracket algebra of the symmetry generator (2.9), rewritten in
the appropriate basis. As elaborated at the end of the Chapter
3, this basis is obtained by the action of the matrix (4.11) on
the double coordinate (2.4)

X̆ M = (eB̆)MN XN =
(
k̆μ

ῐμ

)
, (5.18)

where

k̆μ = κCμ
νx

′ν + κ(Sθ)μνπν,

ῐμ = 2(BS)μνx
′ν + (CT ) ν

μ πν, (5.19)

are new currents. Applying (2.6), (2.8) and (4.17) to currents
k̆μ and ῐμ we obtain ῐμ and k̆μ respectively, meaning that
these currents are directly related by self T-duality. Multi-
plying the Eq. (5.18) with the matrix (4.13), we obtain the
relations inverse to (5.19)

κx ′μ = Cμ
ν k̆

ν − κ(Sθ)μν ῐν,

πμ = −2(BS)μν k̆
ν + (CT ) ν

μ ῐν . (5.20)
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Applying the transformation (4.11) to a double gauge param-
eter (2.11), we obtain new gauge parameters

�̆M =
(

ξ̆ μ

λ̆μ

)
= (eB̆)MN �N =

( Cμ
νξ

ν + κ(Sθ)μνλν

2(BS)μνξ
ν + (CT ) ν

μ λν

)
.

(5.21)

The symmetry generator (2.9) rewritten in a new basisG(Cξ+
κSθλ, 2(BS)ξ + CT λ) ≡ Ğ(ξ̆ , λ̆) is given by

Ğ(�̆) =
∫

dσ 〈�̆, X̆〉 ⇔ Ğ(ξ̆ , λ̆) =
∫

dσ
[
ξ̆ μῐμ + λ̆μk̆

μ
]
.

(5.22)

Substituting (5.18) and (5.21) into (5.22), the symmetry gen-
erator in the initial canonical basis (2.9) is obtained. Due
to mutual self T-duality between basis currents (5.19), this
generator is invariant upon self T-duality.

Rewriting the Eq. (2.15) in terms of new gauge parameters
(5.21) in the basis of auxiliary currents (5.19), the Courant
bracket twisted by both a 2-form Bμν and by a bi-vector θμν

is obtained in the new generator (5.22) algebra

{
Ğ(�̆1), Ğ(�̆2)

}
= −Ğ

(
[�̆1, �̆2]CBθ

)
. (5.23)

5.1 Auxiliary generator

Let us define a new auxiliary basis, so that both the matri-
ces C and S are absorbed in some new fields, giving rise to
the generator algebra that is much more readable. When the
algebra in this basis is obtained, simple change of variables
back to the initial ones will provide us with the bracket in
need.

Multiplying the second equation of (5.19) with the matrix
C−1, we obtain

ῐν (C−1)νμ = πμ + 2κ(BSC−1)μνx
′ν, (5.24)

where we have used (BS)νρ(C−1)νμ = −(BSC−1)ρμ =
(BSC−1)μρ , due to tensor BS being antisymmetric, and
properties (4.15). We will mark the result as a new auxil-
iary current, given by

ι̊μ = πμ + 2κ B̊μνx
′ν, (5.25)

where B̊ is an auxiliary B-field, given by

B̊μν = BμρSρ
σ (C−1)σν. (5.26)

On the other hand, multiplying the first equation of (5.19)
with the matrix C, we obtain

Cμ
ν k̆

ν = (C2)μνκx
′ν + κ(CSθ)μνπν. (5.27)

Substituting (4.16) in the previous equation, and keeping in
mind that C, S and θ commute (4.15), we obtain

Cμ
ν k̆

ν = κx ′μ + κ(CSθ)ρν(πν + 2κ(BSC−1)νσ x
′σ ). (5.28)

Using (5.25), the results are marked as a new auxiliary current

k̊μ = κx ′μ + κθ̊μν ι̊ν, (5.29)

where θ̊ is given by

θ̊μν = Cμ
ρSρ

σ θσν. (5.30)

There is no explicit dependence on either C nor S in rede-
fined auxiliary currents, rather only on canonical variables
and new background fields. From (5.29), it is easy to express
the coordinate σ -derivative in the basis of new auxiliary cur-
rents

κx ′μ = k̊μ − κθ̊μν ι̊ν . (5.31)

The first equation of (5.19) could have been multiplied
with C, instead of C−1, given that the latter would also pro-
duce a current that would not explicitly depend on C. How-
ever, the expression for coordinate σ -derivative κx ′μ would
explicitly depend on C2 in that case, while with our choice
of basis it does not (5.31).

Substituting (5.24) and (5.28) in the expression for the
generator (5.22), we obtain

Ğ(ξ̆ , λ̆) =
∫

dσ
[
λ̆μ(C−1)μν k̊

ν + ξ̆ μ(CT ) ν
μ ι̊ν

]
, (5.32)

from which it is easily seen that the generator (5.22) is equal
to an auxiliary generator

G̊(�̊) =
∫

dσ 〈X̊ , �̊〉 ⇔ G̊(ξ̊ , λ̊) =
∫

dσ
[
λ̊μk̊

μ + ξ̊ μι̊μ

]
,

(5.33)

provided that

�̊M =
(

ξ̊ μ

λ̊μ

)
, λ̊μ = λ̆ν(C−1)νμ, ξ̊μ = Cμ

νξ̆
ν, (5.34)

and

X̊ M =
(
k̊μ

ι̊μ

)
. (5.35)

Once that the algebra of (5.33) is known, the algebra of gen-
erator (5.22) can be easily obtained using (5.34).
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The change of basis to the one suitable for the auxiliary
generator (5.33) corresponds to the transformation

AM
N =

(
(C)

μ
ν 0

0 ((C−1)T ) ν
μ

)
, �̊M = AM

N �̆N , X̊ M = AM
N X̆ N ,

(5.36)

that can be rewritten as

X̊ M = (AeB̆)MN XN , �̊M = (AeB̆)MN �N , (5.37)

where (5.18) and (5.21) were used. It is easy to show that
the transformation AM

N , and consequentially (AeB̆)MN , is the
element of O(D, D) group

AT η A = η, (AeB̆)T η (AeB̆) = η, (5.38)

which means that there is C̊ , for which [21]

eC̊ = AeB̆ . (5.39)

The generator (5.33) gives rise to algebra that closes on C̊-
twisted Courant bracket

{
G̊(�̊1), G̊(�̊1)

}
= −G̊

(
[�̊1, �̊2]CC̊

)
, (5.40)

where the C̊-twisted Courant bracket is defined by

[�̊1, �̊2]CC̊ = eC̊ [e−C̊�̊1, e
−C̊�̊2]C . (5.41)

In the next chapter, we will obtain this bracket by direct com-
putation of the generators Poisson bracket algebra.

Lastly, let us briefly comment on reducibility conditions
for the C̊-twisted Courant bracket. Since we are working
with the closed strings, the total derivatives vanishes when
integrated out over the worldsheet. Using (5.31), we obtain

∫
dσκϕ′ =

∫
dσκx ′μ∂μϕ=

∫
dσ

(
k̊μ∂μϕ + κι̊μθ̊μν∂νϕ

)
= 0,

(5.42)

for any parameter λ. Hence, the generator (5.33) remains
invariant under the following change of parameters

ξ̊ μ → ξ̊ μ + κθ̊μν∂νϕ, λ̊μ → λ̊μ + ∂μϕ. (5.43)

These are reducibility conditions (2.10) in the basis spanned
by k̊μ and ι̊μ.

6 Courant bracket twisted by C̊ from the generator
algebra

In order to obtain the Poisson bracket algebra for the genera-
tor (5.33), let us firstly calculate the algebra of basis vectors,
using the standard Poisson bracket relations (2.16). The aux-
iliary currents ι̊μ algebra is

{ι̊μ(σ ), ι̊ν(σ̄ )} = −2B̊μνρ k̊
ρδ(σ − σ̄ ) − F̊ ρ

μν ι̊ρδ(σ − σ̄ ),

(6.1)

where B̊μνρ is the generalized H-flux, given by

B̊μνρ = ∂μ B̊νρ + ∂ν B̊ρμ + ∂ρ B̊μν, (6.2)

and F̊ρ
μν is the generalized f-flux, given by

F̊ ρ
μν = −2κ B̊μνσ θ̊σρ. (6.3)

The algebra of currents k̊μ is given by

{k̊μ(σ ), k̊ν(σ̄ )}=−κQ̊ μν
ρ k̊ρδ(σ − σ̄ )−κ2R̊μνρ ι̊ρδ(σ − σ̄ ),

(6.4)

where

Q̊ νρ
μ = Q̊ νρ

μ + 2κθ̊νσ θ̊ρτ B̊μστ , Q̊ νρ
μ = ∂μθ̊νρ (6.5)

and

R̊μνρ = R̊μνρ + 2κθ̊μλθ̊νσ θ̊ρτ B̊λστ ,

R̊μνρ = θ̊μσ ∂σ θ̊νρ + θ̊ νσ ∂σ θ̊ρμ + θ̊ ρσ ∂σ θ̊μν. (6.6)

The terms in (6.4) containing both θ̊ and B̊ are the conse-
quence of non-commutativity of auxiliary currents ι̊μ. The
remaining algebra of currents k̊μ and ι̊μ can be as easily
obtained

{ι̊μ(σ ), k̊ν(σ̄ )} = κδν
μδ′(σ − σ̄ )

+ F̊ ν
μρ k̊ρδ(σ − σ̄ ) − κQ̊ νρ

μ ι̊ρδ(σ − σ̄ ).

(6.7)

The basic algebra relations can be summarized in a sin-
gle algebra relation where the structure constants contain all
generalized fluxes

{X̊ M , X̊ N } = −F̊ MN
P X̊ Pδ(σ − σ̄ )+κηMN δ′(σ − σ̄ ), (6.8)
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with

FMNρ =
(

κ2R̊μνρ −κQ̊ μρ
ν

κQ̊ νρ
μ F̊ ρ

μν

)
,

FMN
ρ =

(
κQ̊ μν

ρ F̊ μ
νρ

−F̊ ν
μρ 2B̊μνρ

)
. (6.9)

The form of the generalized fluxes is the same as the ones
already obtained using the tetrad formalism [16–18]. In our
approach, the generalized fluxes are obtained in the Pois-
son bracket algebra, only from the fact that the generalized
canonical variable XM is transformed with an element of the
O(D, D) group that twists the Courant bracket both by B
and θ at the same time. Consequentially, the fluxes obtained
in this paper are functions of some new effective fields, B̊μν

(5.26) and θ̊μν (5.30).
We now proceed to obtain the full bracket. Let us rewrite

the generator (5.33) algebra

{
G̊(ξ̊1, λ̊1)(σ ), G̊(ξ̊2, λ̊2)(σ̄ )

}

=
∫

dσdσ̄
[{

ξ̊
μ
1 (σ )ι̊μ(σ ), ξ̊ ν

2 (σ̄ )ι̊ν(σ̄ )
}

+
{
λ̊1μ(σ )k̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

+
{
ξ̊

μ
1 (σ )ι̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

+
{
λ̊1μ(σ )k̊μ(σ ), ξ̊ ν

2 (σ̄ )ι̊ν(σ̄ )
}]

. (6.10)

The first term of (6.10) is obtained, using (6.1)

∫
dσdσ̄

{
ξ̊

μ
1 (σ )ι̊μ(σ ), ξ̊ ν

2 (σ̄ )ι̊ν(σ̄ )
}

=
∫

dσ
[
ι̊μ

(
ξ̊ ν

2 ∂ν ξ̊
μ
1 − ξ̊ ν

1 ∂ν ξ̊
μ
2 − F̊ μ

νρ ξ̊ ν
1 ξ̊

ρ
2

)

−2B̊μνρ k̊
μξ̊ ν

1 ξ̊
ρ
2

]
. (6.11)

The second term is obtained, using (6.4)

∫
dσdσ̄

{
λ̊1μ(σ )k̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

=
∫

dσ
[
k̊μ

(
κθ̊νρ(λ̊2ν∂ρλ̊1μ − λ̊1ν∂ρλ̊2μ) − κQ̊ νρ

μ

λ̊1νλ̊2ρ

)
− ι̊μκ2R̊μνρλ̊1νλ̊2ρ

]
. (6.12)

The remaining terms are antisymmetric with respect to 1 ↔
2, σ ↔ σ̄ interchange. Therefore, it is sufficient to calculate

only the first term in the last line of (6.10)∫
dσdσ̄

{
ξ̊

μ
1 (σ )ι̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

=
∫

dσ
[
k̊μ

(
− ξ̊ ν

1 ∂νλ̊2μ − F̊ ν
μρ ξ̊

ρ
1 λ̊2ν

)

+ι̊μ

(
κ(λ̊2ν θ̊

νρ)∂ρ ξ̊
μ
1 − κQ̊ νμ

ρ ξ̊
ρ
1 λ̊2ν

)]

+
∫

dσdσ̄ κξ̊ ν
1 (σ )λ̊2ν(σ̄ )∂σ δ(σ − σ̄ ). (6.13)

In order to transform the anomalous part, we note that

∂σ δ(σ − σ̄ ) = 1

2
∂σ δ(σ − σ̄ ) − 1

2
∂σ̄ δ(σ − σ̄ ), (6.14)

and

f (σ̄ )∂σ δ(σ − σ̄ ) = f (σ )∂σ δ(σ − σ̄ ) + f ′(σ )δ(σ − σ̄ ).

(6.15)

Applying (6.14) and (6.15) to the last row of (6.13), we obtain∫
dσdσ̄ κξ̊ ν

1 (σ )λ̊2ν(σ̄ )∂σ δ(σ − σ̄ )

= 1

2

∫
dσκx ′μ(

ξ̊ ν
1 ∂μλ̊2ν − ∂μξ̊ ν

1 λ̊2ν

)

+κ

2

∫
dσdσ̄

(
ξ̊ ν

1 (σ )λ̊2ν(σ )∂σ δ(σ − σ̄ )

−ξ̊ ν
1 (σ̄ )λ̊2ν(σ̄ )∂σ̄ δ(σ − σ̄ )

)

= 1

2

∫
dσ

[
k̊μ

(
ξ̊ ν

1 ∂μλ̊2ν − ∂μξ̊ ν
1 λ̊2ν

)

+ι̊μκθ̊μρ
(
ξ̊ ν

1 ∂ρλ̊2ν − ∂ρξ̊ ν
1 λ̊2ν

)]
, (6.16)

where (5.31) was used, as well as antisymmetry of θ̊ . Sub-
stituting (6.16) to (6.13), we obtain∫

dσdσ̄
{
ξ̊

μ
1 (σ )ι̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

=
∫

dσ
[
k̊μ

(
ξ̊ ν

1 (∂μλ̊2ν − ∂νλ̊2μ)

−1

2
∂μ(ξ̊1λ̊2) − F̊ ν

μρ ξ̊
ρ
1 λ̊2ν

)

+ι̊μ

(
κ(λ̊2ν θ̊

νρ)∂ρ ξ̊
μ
1 + κθ̊μρ

(
ξ̊ ν

1 ∂ρλ̊2ν − 1

2
∂ρ(ξ̊1λ̊2)

)

−κQ̊ νμ
ρ ξ̊

ρ
1 λ̊2ν

)]
. (6.17)

Substituting (6.11), (6.12) and (6.17) into (6.10), we write
the full algebra of generator in the form

{
G̊(�̊1), G̊(�̊2)

}

= −G̊(�̊) ⇔
{
G̊(ξ̊1, λ̊1), G̊(ξ̊2, λ̊2)

}
= −G̊(ξ̊ , λ̊),

(6.18)

123
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where

ξ̊ μ = ξ̊ ν
1 ∂ν ξ̊

μ
2 − ξ̊ ν

2 ∂ν ξ̊
μ
1 − κθ̊μρ

×
(
ξ̊ ν

1 ∂ρλ̊2ν − ξ̊ ν
2 ∂ρλ̊1ν − 1

2
∂ρ(ξ̊1λ̊2 − ξ̊2λ̊1)

)

+κθ̊νρ(λ̊1ν∂ρ ξ̊
μ
2 − λ̊2ν∂ρ ξ̊

μ
1 )

+κ2R̊μνρλ̊1νλ̊2ρ + F̊ μ
ρσ ξ̊

ρ
1 ξ̊ σ

2

+κQ̊ νμ
ρ (ξ̊

ρ
1 λ̊2ν − ξ̊

ρ
2 λ̊1ν), (6.19)

and

λ̊μ = ξ̊ ν
1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν

2 (∂νλ̊1μ − ∂μλ̊1ν)

+1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1)

+κθ̊νρ(λ̊1ν∂ρλ̊2μ − λ̊2ν∂ρλ̊1μ)

+2B̊μνρ ξ̊ ν
1 ξ̊

ρ
2 + κQ̊ νρ

μ λ̊1νλ̊2ρ + F̊ ν
μσ

×(ξ̊ σ
1 λ̊2ν − ξ̊ σ

2 λ̊1ν). (6.20)

It is possible to rewrite the previous two equations, if we
note the relations between the generalized fluxes

R̊μνρ = R̊μνρ + θ̊μσ θ̊ ντ F̊ ρ
στ , Q̊ νρ

μ = Q̊ νρ
μ + θ̊ νσ F̊ ρ

μσ .

(6.21)

Now we have

ξ̊ μ = ξ̊ ν
1 ∂ν ξ̊

μ
2 − ξ̊ ν

2 ∂ν ξ̊
μ
1

+κθ̊μρ
(
ξ̊ ν

1 (∂νλ̊2ρ − ∂ρλ̊2ν) − ξ̊ ν
2 (∂νλ̊1ρ − ∂ρλ̊1ν)

+1

2
∂ρ(ξ̊1λ̊2 − ξ̊2λ̊1)

)

+κξ̊
ρ
1 ∂ρ(λ̊2ν θ̊

νμ) − κ(λ̊2ν θ̊
νρ)∂ρ ξ̊

μ
1 − κξ̊

ρ
2 ∂ρ(λ̊1ν θ̊

νμ)

+κ(λ̊1ν θ̊
νρ)∂ρ ξ̊

μ
2 + κ2 R̊μνρλ̊1νλ̊2ρ

+F̊ μ
ρσ ξ̊

ρ
1 ξ̊ σ

2 + κθ̊μσ F̊ ν
σρ (ξ̊

ρ
1 λ̊2ν − ξ̊

ρ
2 λ̊1ν)

+κ2θ̊μσ θ̊ ντ F̊ ρ
στ λ̊1νλ̊2ρ, (6.22)

and

λ̊μ = ξ̊ ν
1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν

2 (∂νλ̊1μ − ∂μλ̊1ν)

+1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1)

+κθ̊νρ(λ̊1ν∂ρλ̊2μ − λ̊2ν∂ρλ̊1μ) + κ Q̊ νρ
μ λ̊1νλ̊2ρ

+2B̊μνρ ξ̊ ν
1 ξ̊

ρ
2 + F̊ ν

μσ

×(ξ̊ σ
1 λ̊2ν − ξ̊ σ

2 λ̊1ν) + κθ̊νσ F̊ ρ
μσ λ̊1νλ̊2ρ, (6.23)

where the partial integration was used in the equation (6.22).
The relation (6.18) defines the C̊-twisted Courant bracket

[�̊1, �̊2]CC̊ = �̊ ⇔ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]CC̊ = (ξ̊ , λ̊), (6.24)

that gives the same bracket as (5.41). Both (6.19)–(6.20)
and (6.22)–(6.23) are the products of C̊-twisted Courant
bracket. The former shows explicitly how the gauge parame-
ters depend on the generalized fluxes. In the latter, similarities
between the expressions for two parameters is easier to see.

6.1 Special cases and relations to other brackets

Even though the non-commutativity parameter θ and the
Kalb Ramond field B are not mutually independent, while
obtaining the bracket (6.24) the relation between these fields
(2.7) was not used. Therefore, the results stand even if a
bi-vector and a 2-form used for twisting are mutually inde-
pendent. This will turn out to be convenient to analyze the
origin of terms appearing in the Courant bracket twisted by
C̊ .

Primarily, consider the case of zero bi-vector θμν = 0
with the 2-form Bμν arbitrary. Consequently, the parameter
α (4.8) is zero, while the hyperbolic functions C and S are
identity matrices. Therefore, the auxiliary fields (5.26) and
(5.30) simplify in a following way

B̊μν → Bμν θ̊μν → 0, (6.25)

and the twisting matrix eB̆ (4.11) becomes the matrix eB̂

(3.28). The expressions (6.19) and (6.20) respectively reduce
to

ξ̊ μ = ξ̊ ν
1 ∂ν ξ̊

μ
2 − ξ̊ ν

2 ∂ν ξ̊
μ
1 , (6.26)

and

λ̊μ = ξ̊ ν
1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν

2 (∂νλ̊1μ − ∂μλ̊1ν)

+ 1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1) + 2Bμνρ ξ̊ ν

1 ξ̊
ρ
2 , (6.27)

where Bμνρ is the Kalb–Ramond field strength, given by

Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν. (6.28)

The equations (6.26) and (6.27) define exactly the B-twisted
Courant bracket (3.27) [9].

Secondarily, consider the case of zero 2-form Bμν = 0
and the bi-vector θμν arbitrary. Similarly, α = 0 and C and
S are identity matrices. The auxiliary fields B̊μν and θ̊μν are
given by

B̊μν → 0 θ̊μν → θμν. (6.29)

The twisting matrix eB̆ becomes the matrix of θ -transformations

eθ̂ (3.30). The gauge parameters (6.19) and (6.20) are respec-
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tively given by

ξ̊ μ = ξ̊ ν
1 ∂ν ξ̊

μ
2 − ξ̊ ν

2 ∂ν ξ̊
μ
1

+ κθμρ
(
ξ̊ ν

1 (∂νλ̊2ρ − ∂ρλ̊2ν) − ξ̊ ν
2 (∂νλ̊1ρ − ∂ρλ̊1ν)

+ 1

2
∂ρ(ξ̊1λ̊2 − ξ̊2λ̊1)

)

+ κξ̊ ν
1 ∂ν(λ̊2ρθρμ) − κξ̊ ν

2 ∂ν(λ̊1ρθρμ)

+ κ(λ̊1νθ
νρ)∂ρ ξ̊

μ
2 − κ(λ̊2νθ

νρ)∂ρ ξ̊
μ
1

+ κ2Rμνρλ̊1νλ̊2ρ, (6.30)

and

λ̊μ = ξ̊ ν
1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν

2 (∂νλ̊1μ − ∂μλ̊1ν)

+ 1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1)

+ κθνρ(λ̊1ν∂ρλ̊2μ − λ̊2ν∂ρλ̊1μ) + κλ̊1ρλ̊2νQ
ρν
μ ,

(6.31)

where by Q νρ
μ and Rμνρ we have marked the non-geometric

fluxes, given by

Q νρ
μ = ∂μθνρ, Rμνρ = θμσ ∂σ θνρ+θνσ ∂σ θρμ+θρσ ∂σ θμν.

(6.32)

The bracket defined by these relations is θ -twisted Courant
bracket (3.29) [8] and it features the non-geometric fluxes
only.

Let us comment on terms in the obtained expressions for
gauge parameters (6.22) and (6.23). The first line of (6.22)
appears in the Courant bracket and in all brackets that can be
obtained from its twisting by either a 2-form or a bi-vector.
The next two lines correspond to the terms appearing in the
θ -twisted Courant bracket (6.30). The other terms do not
appear in either B- or θ -twisted Courant bracket.

Similarly, the first line of (6.20) appears in the Courant
bracket (2.18) and in all other brackets obtained from its
twisting, while the terms in the second line appear exclusively
in the θ twisted Courant bracket (6.27). The first term in the
last line appear in the B-twisted Courant bracket (6.31), while
the rest are some new terms. We see that all the terms that do
not appear in neither of two brackets are the terms containing
F̊ flux.

6.2 Coordinate free notation

In order to obtain the formulation of the C̊-twisted Courant
bracket in the coordinate free notation, independent of the
local coordinate system that is used on the manifold, let us
firstly provide definitions for a couple of well know brackets
and derivatives.

The Lie derivative along the vector field ξ is given by

L
ξ̊

= i
ξ̊
d + di

ξ̊
, (6.33)

with i
ξ̊

being the interior product along the vector field ξ̊ and
d being the exterior derivative. Using the Lie derivative one
easily defines the Lie bracket

[ξ̊1, ξ̊2]L = L
ξ̊1

ξ̊2 − L
ξ̊2

ξ̊1. (6.34)

The generalization of the Lie bracket on a space of 1-forms
is a well known Koszul bracket [26]

[λ̊1, λ̊2]θ = L
θ̊ λ̊1

λ̊2 − L
θ̊ λ̊2

λ̊1 + d(θ̊(λ̊1, λ̊2)). (6.35)

The expressions (6.19) and (6.20) in the coordinate free
notation are given by

ξ̊ = [ξ̊1, ξ̊2]L − [ξ̊2, λ̊1κθ̊]L + [ξ̊1, λ̊2κθ̊]L
−

(
L

ξ̊1
λ̊2 − L

ξ̊2
λ̊1 − 1

2
d(i

ξ̊1
λ̊2 − i

ξ̊2
λ̊1)

)
κθ̊

+F̊(ξ̊1, ξ̊2, .) − κθ̊F̊(λ̊1, ., ξ̊2) + κθ̊F̊(λ̊2, ., ξ̊1)

+R̊(λ̊1, λ̊2, .), (6.36)

and

λ̊ = L
ξ̊1

λ̊2 − L
ξ̊2

λ̊1 − 1

2
d(i

ξ̊1
λ̊2 − i

ξ̊2
λ̊1) − [λ̊1, λ̊2]κθ̊

+ H̊(ξ̊1, ξ̊2, .) − F̊(λ̊1, ., ξ̊2) + F̊(λ̊2, ., ξ̊1)

+ κθ̊F̊(λ̊1, λ̊2, .), (6.37)

where

H̊ = 2d B̊. (6.38)

We have marked the geometric H flux as H̊ , so that it is
distinguished from the 2-form B̊. In the local basis, the full
term containing H -flux is given by

H̊(ξ̊1, ξ̊2, .)

∣∣∣
μ

= 2B̊μνρ ξ̊ ν
1 ξ̊

ρ
2 . (6.39)

Similarly are defined the terms containing F̊ flux

F̊(ξ̊1, ξ̊2, .)

∣∣∣μ = F̊ μ
νρ ξ̊ ν

1 ξ̊
ρ
2 , (6.40)

and the non-geometric R̊ flux

R̊(λ̊1, λ̊2, .)

∣∣∣μ = R̊μνρλ̊1νλ̊2ρ, (6.41)

as well as

θ̊F̊(λ̊1, ., ξ̊2)

∣∣∣μ = θ̊ νσ F̊ μ
σρ λ̊1ν ξ̊

ρ
2 . (6.42)
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It is possible to rewrite the coordinate free notation in
terms of the H̊ -flux and θ̊ bi-vector only. The geometric F̊
flux is just the contraction of the H̊ -flux with a bi-vector

F̊ = κθ̊ H̊ . (6.43)

The non-geometric R̊ flux can be rewritten as

R̊ = 1

2
[θ̊ , θ̊ ]S + ∧3(κθ̊)H̊ , (6.44)

where ∧ is the wedge product, and by [θ̊ , θ̊ ]S we have marked
the Schouten–Nijenhuis bracket [27], given by

[θ̊ , θ̊ ]S
∣∣∣μνρ = ε

μνρ
αβγ θ̊σα∂σ θ̊βγ = 2R̊μνρ, (6.45)

where

ε
μνρ
αβγ =

∣∣∣∣∣∣∣
δ
μ
α δν

β δ
ρ
γ

δν
α δ

ρ
β δ

μ
γ

δ
ρ
α δ

μ
β δν

γ

∣∣∣∣∣∣∣
. (6.46)

Expressing both F̊ and R̊ fluxes in terms of the bi-vector θ̊

and 3-form H̊ , we obtain

ξ̊ = [ξ̊1, ξ̊2]L − [ξ̊2, λ̊1κθ̊]L + [ξ̊1, λ̊2κθ̊]L
−

(
L

ξ̊1
λ̊2 − L

ξ̊2
λ̊1 − 1

2
d(i

ξ̊1
λ̊2 − i

ξ̊2
λ̊1)

)
κθ̊

+κ2

2
[θ̊ , θ̊ ]S(λ̊1, λ̊2, .)

+κθ̊ H̊(., ξ̊1, ξ̊2) − ∧2κθ̊ H̊(λ̊1, ., ξ̊2)

+ ∧2 κθ̊ H̊(λ̊2, ., ξ̊1) + ∧3κθ̊ H̊(λ̊1, λ̊2, .), (6.47)

and

λ̊ = L
ξ̊1

λ̊2 − L
ξ̊2

λ̊1 − 1

2
d(i

ξ̊1
λ̊2 − i

ξ̊2
λ̊1) − [λ̊1, λ̊2]κθ̊

+H̊(ξ̊1, ξ̊2, .) − κθ̊ H̊(λ̊1, ., ξ̊2)

+κθ̊ H̊(λ̊1, ., ξ̊2) + ∧2κθ̊ H̊(λ̊1, λ̊2, .). (6.48)

The term κθ̊ H̊(., ξ̊1, ξ̊2) is the wedge product of a bi-
vector with a 3-form, contracted with two vectors, given by

(
κθ̊ H̊(., ξ̊1, ξ̊2)

)μ = 2κθ̊μν B̊νρσ ξ̊
ρ
1 ξ̊ σ

2 , (6.49)

and κθ̊ H̊(λ̊1, ., ξ̊2) is similarly defined, with the 1-form con-
tracted instead of one vector field
(
κθ̊ H̊(λ̊1, ., ξ̊2)

)
μ

= 2κθ̊νρ B̊ρμσ λ̊1ν ξ̊
σ
2 . (6.50)

The terms like ∧2κθ̊ H̊(λ̊1, ., ξ̊2) are the wedge product of
two bi-vectors with a 3-form, contracted with the 1-form λ̊1

and the vector ξ̊2

(
∧2 κθ̊ H̊(λ̊1, ., ξ̊2)

)μ = 2κ2θ̊ νσ θ̊μρ B̊σρτ λ̊1ν ξ̊
τ
2 , (6.51)

and similarly when contraction is done with two forms

(
∧2 κθ̊ H̊(λ̊1, λ̊2, .)

)
μ

= 2κ2θ̊ τρ θ̊ νσ B̊ρσμλ̊1τ λ̊2ν. (6.52)

Lastly, the term ∧3κθ̊ H̊(λ̊1, λ̊2, .) is obtained by taking a
wedge product of three bi-vectors with a 3-form and than
contracting it with two 1-forms. It is given by

(
∧3 κθ̊ H̊(λ̊1, λ̊2, .)

)μ = 2κ3θ̊ νσ θ̊ρτ θ̊μλ B̊στλλ̊1ν λ̊2ρ,

(6.53)

7 Star brackets

The expressions for gauge parameters (6.36) and (6.37) pro-
duce some well known bracket, such as Lie bracket and
Koszul bracket. The remaining terms can be combined so that
they are expressed by some new brackets, acting on pairs of
generalized vectors. It turns out that these brackets produce a
generalized vector, where the vector part ξ̊ μ and the 1-form
part λ̊μ are related by ξ̊ μ = κθ̊μνλ̊ν , effectively resulting
in the graphs in the generalized cotangent bundle T 
M of
the bi-vector θ̊ , i.e. ξ = κθ(., λ). The star brackets can be
interpreted in terms of projections on isotropic subspaces.

7.1 θ -star bracket

Let us firstly consider the second line of (6.22) and the first
line of (6.23). When combined, they define a bracket acting
on a pair of generalized vectors

[�̊1, �̊2]
θ̊ = �̊
 ⇔ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]
θ̊ = (ξ̊
, λ̊

), (7.1)

where

ξ̊
μ

 = κθ̊μρ

(
ξ̊ ν

1 (∂νλ̊2ρ − ∂ρλ̊2ν) − ξ̊ ν
2 (∂νλ̊1ρ − ∂ρλ̊1ν)

+ 1

2
∂ρ(ξ̊1λ̊2 − ξ̊2λ̊1)

)
, (7.2)

and

λ̊

μ = ξ̊ ν

1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν
2 (∂νλ̊1μ − ∂μλ̊1ν)

+1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1), (7.3)

from which one easily reads the relation

ξ̊
μ

 = κθ̊μρλ̊


ρ. (7.4)
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In a coordinate free notation, this bracket can be written as

[�̊1, �̊2]
θ̊ = [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]
θ̊
=

(
κθ̊

(
.,L

ξ̊1
λ̊2 − L

ξ̊2
λ̊1

)
,L

ξ̊1
λ̊2 − L

ξ̊2
λ̊1

)
.

(7.5)

7.2 Bθ -star bracket

The remaining terms contain geometric H̊ and F̊ fluxes. Note
that they are the only terms that depend on the new effective
Kalb–Ramond field B̊. Firstly, we mark the last line of (6.23)
as

λ̊∗
μ = 2B̊μνρξ̊ ν

1 ξ̊
ρ
2 +F̊ ν

μσ

(
ξ̊ σ

1 λ̊2ν−ξ̊ σ
2 λ̊1ν)+κθ̊νσ F̊ ρ

μσ λ̊1νλ̊2ρ.

(7.6)

Secondly, using the definition of F̊ (6.3) and the fact that θ̊

is antisymmetric, the last line of (6.22) can be rewritten as

ξ̊
μ∗ = 2κθ̊μν B̊νρσ ξ̊

ρ
1 ξ̊ σ

2 + κθ̊μσ F̊ ν
σρ (ξ̊

ρ
1 λ̊2ν − ξ̊

ρ
2 λ̊1ν)

+κ2θ̊μν θ̊ τσ F̊ ρ
νσ λ̊1τ λ̊2ρ

= κθ̊μνλ̊∗
ν. (7.7)

Now relations (7.6) and (7.7) define the Bθ -star bracket
by

[�̊1, �̊2]∗B̊θ̊
= �̊∗ ⇔ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]∗B̊θ̊

= (ξ̊∗, λ̊∗),
(7.8)

We can write the full bracket (6.24) as

[(ξ̊1, λ̊1), (ξ̊2, λ̊2)]CC̊
=

(
[ξ̊1, ξ̊2]L − [ξ̊2, λ̊1κθ̊]L + [ξ̊1, λ̊2κθ̊]L

+ κ2

2
[θ̊ , θ̊ ]S(λ̊1, λ̊2, .),−[λ̊1, λ̊2]κθ̊

)

+ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]∗B̊,θ̊
+ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]
θ̊ . (7.9)

7.3 Isotropic subspaces

In order to give an interpretation to newly obtained starred
brackets, it is convenient to consider isotropic subspaces. A
subspace L is isotropic if the inner product (2.12) of any two
generalized vectors from that sub-bundle is zero

〈�1,�2〉 = 0, �1,�2 ∈ L . (7.10)

From (2.12), one easily finds that

ξ
μ
i = κ θμνλiν . (i = 1, 2) θμν = −θνμ, (7.11)

for any bi-vector θ , and

λiμ = 2Bμνξ
μ
i . (i = 1, 2) Bμν = −Bνμ, (7.12)

for any 2-form B satisfy the condition (7.10).
Furthermore, it is straightforward to introduce projections

on these isotropic subspaces by

Iθ (�M ) = Iθ (ξμ, λμ) = (κ θμνλν, λμ), (7.13)

and

IB(�M ) = IB(ξμ, λμ) = (ξμ, 2Bμνξ
ν). (7.14)

Now it is easy to give an interpretation to star brackets. The
θ -star bracket (7.1) can be defined as the projection of the
Courant bracket (3.29) on the isotropic subspace (7.13)

[�̊1, �̊2]
θ̊ = I θ̊
(
[�̊1, �̊2]C

)
. (7.15)

Similarly, note that all the terms in (6.37) that do not appear
in the θ -twisted Courant bracket, contribute exactly to the
Bθ -star bracket. From that, it is easy to obtain the definition
of the Bθ -star bracket (7.8)

[�̊1, �̊2]∗B̊θ̊
= I θ̊

(
[�̊1, �̊2]CC̊

)
− I θ̊

(
[�̊1, �̊2]C

θ̊

)
. (7.16)

8 Courant bracket twisted by B and θ

Now it is possible to write down the expression for the
Courant bracket twisted by B and θ (4.2), using the expres-
sion for C̊-twisted Courant bracket

[�̆1, �̆2]CBθ
= A−1[A�̆1, A�̆2]CC̊ , (8.1)

where A is defined in (5.36). Substituting (8.1) into (6.36),
we obtain

ξ̆ = C−1[Cξ̆1, Cξ̆2]L
−C−1[Cξ̆2, λ̆1κC−1θ̊]L + C−1[Cξ̆1, λ̆2κC−1θ̊ ]L
−

(
LCξ̆1

(λ̆2C−1) − LCξ̆2
(λ̆1C−1)

−1

2
d(iξ̆1

λ̆2 − iξ̆2
λ̆1)

)
κθ̊C−1

+κ2

2
C−1[θ̊ , θ̊ ]S(λ̆1C−1, λ̆2C−1, .)

+κC−1θ̊ H̊(., Cξ̆1, Cξ̆2)

−C−1 ∧2 κθ̊ H̊(λ̆1C−1, ., Cξ̆2)

+C−1 ∧2 κθ̊ H̊(λ̆2C−1, ., Cξ̆1)

+C−1 ∧3 κθ̊ H̊(λ̆1C−1, λ̆2C−1, .), (8.2)

123



Eur. Phys. J. C (2021) 81 :685 Page 13 of 15 685

and similarly, substituting (8.1) into (6.37), we obtain

λ̆ =
(
LCξ̆1

(λ̆2C−1) − LCξ̆2
(λ̆1C−1) − 1

2
d(iξ̆1

λ̆2 − iξ̆2
λ̆1)

)
C

+H̊(Cξ̆1, Cξ̆2, .)C
−[λ̆1C−1, λ̆2C−1]

κθ̊
C − κθ̊ H̊(λ̆1C−1, ., Cξ̆2)C

+κθ̊ H̊(λ̆2C−1, ., Cξ̆1)C
+ ∧2 κθ̊ H̊(λ̆1C−1, λ̆2C−1, .)C, (8.3)

where Cμ
ν =

(
cosh

√
α
)μ

ν
and �̆ = (ξ̆ , λ̆) (5.21). This is

somewhat a cumbersome expression, making it difficult to
work with. To simplify it, with the accordance of our con-
vention, we define the twisted Lie bracket by

[ξ̆1, ξ̆2]LC = C−1[Cξ̆1, Cξ̆2]L , (8.4)

as well as the twisted Schouten–Nijenhuis bracket

(
[θ̆ , θ̆ ]SC

)μνρ = (C−1)μσ (C−1)νλ(C−1)ρτ

(
[Cθ̆ , Cθ̆ ]S

)σλτ

,

(8.5)

and twisted Koszul bracket

[λ̆1, λ̆2]θC = (CT )−1[CT λ̆1, CT λ̆2]θC, (8.6)

where the transpose of the matrix is necessary because the
Koszul bracket acts on 1-forms. Now, the first three terms of
(8.2) can be written as

[ξ̆1, ξ̆2]LC − [ξ̆2, λ̆1κC−1θ̆]LC + [ξ̆1, λ̆2κC−1θ̆]LC , (8.7)

where

θ̆μν = (C−1)μρθ̊ρν = Sμ
ρθρν. (8.8)

The second line of (8.2) and the first line of (8.3) originating
from θ̊ star bracket (7.1) can be easily combined into

[(Cξ̆1, λ̆1C−1), (Cξ̆2, λ̆2C−1)]
C−1θ̆
C. (8.9)

The terms originating from B̊θ̊ star bracket (7.8) are com-
bined into

[(ξ̆1, λ̆1), (ξ̆2, λ̆2]∗B̆,C−1 θ̆
, (8.10)

where

B̆μνρ = B̊αβγ Cα
μCβ

νCγ
ρ =

(
∂α(BSC−1)βγ

+ ∂β(BSC−1)γα + ∂γ (BSC−1)αβ

)
Cα

μCβ
νCγ

ρ. (8.11)

The expressions for the Courant bracket twisted by both B
and θ can be written in a form

[(ξ̆1, λ̆1), (ξ̆2, λ̆2)]CBθ

=
(
[ξ̆1, ξ̆2]LC − [ξ̆2, λ̆1κC−1θ̆ ]LC + [ξ̆1, λ̆2κC−1θ̆]LC

+ κ2

2
[θ̆ , θ̆ ]SC (λ̆1, λ̆2, .),−[λ̆1, λ̆2]θC

)

+ [(Cξ̆1, λ̆1C−1), (Cξ̆2, λ̆2C−1)]
C−1 θ̆
C

+ [(ξ̆1, λ̆1), (ξ̆2, λ̆2]∗B̆,C−1 θ̆
. (8.12)

When the Courant bracket is twisted by both B and θ , it
results in a bracket similar to C̊-twisted Courant bracket,
where Lie brackets, Schouten Nijenhuis bracket and Koszul
bracket are all twisted as well.

9 Conclusion

We examined various twists of the Courant bracket, that
appear in the Poisson bracket algebra of symmetry gener-
ators written in a suitable basis, obtained acting on the dou-
ble canonical variable (2.4) by the appropriate elements of
O(D, D) group. In this paper, we considered the transfor-
mations that twists the Courant bracket simultaneously by
a 2-form B and a bi-vector θ . When these fields are mutu-
ally T-dual, the generator obtained by this transformation is
invariant upon self T-duality.

We obtained the matrix elements of this transformation,
that we denoted eB̆ (4.11), expressed in terms of the hyper-
bolic functions of a parameter α (4.8). In order to avoid
working with such a complicated expression, we considered
another O(D, D) transformation A (5.36) and introduced
a new generator, written in a basis of auxiliary currents ι̊μ
and k̊μ. The Poisson bracket algebra of a new generator was
obtained and it gave rise to the C̊-twisted Courant bracket,
which contains all of the fluxes.

The generalized fluxes were obtained using different
methods [10–12,16–18]. In our approach, we started by
an O(D, D) transformation that twists the Courant bracket
simultaneously by a 2-form B and bi-vector θ , making it
manifestly self T-dual. We obtained the expressions for all
fluxes, written in terms of the effective fields

B̊μν = Bμρ

( tanh
√

2κθB√
2κθB

)ρ

ν,

θ̊μν =
( sinh 2

√
2κθB

2
√

2κθB

)μ

σ θσν. (9.1)

The fluxes, as a function of these effective fields, appear nat-
urally in the Poisson bracket algebra of such generators.
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Similar bracket was obtained in the algebra of general-
ized currents in [11,12] and is sometimes referred to as the
Roytenberg bracket [10]. In that approach, phase space has
been changed, so that the momentum algebra gives rise to the
H -flux, after which the generalized currents were defined in
terms of the open string fields. The bracket obtained this way
corresponds to the Courant bracket that was firstly twisted
by B field, and then by a bi-vector θ . The matrix of that twist
is given by

eR = eθ̂eB̂ =
(

δ
μ
ν + α

μ
ν κθμν

2Bμν δν
μ

)
. (9.2)

In our approach, we obtained the transformations that twists
the Courant bracket at the same time by B and θ , resulting in a
C̊-twisted Courant bracket. As a consequence, the C̊-twisted
Courant bracket is defined in terms of auxiliary fields B̊ (5.26)
and θ̊ (5.30), that are themselves function of α. This is not the
case in [11,12]. The Roytenberg bracket calculated therein
can be also obtained following our approach by twisting with
the matrix

eC = AeB̆ =
( C2 κ(CSθ)

2BCS 1

)
, (9.3)

demanding that the background fields are infinitesimal B ∼
ε, θ ∼ ε and keeping the terms up to ε2. With these con-
ditions, eC (9.3) becomes exactly eR (9.2), and the bracket
becomes the Roytenberg bracket.

Analyzing the C̊-twisted Courant bracket, we recognized
that certain terms can be seen as new brackets on the space of
generalized vectors, that we named star brackets. We demon-
strated that they are closely related to projections on isotropic
spaces. It is well established that the Courant bracket does not
satisfy the Jacobi identity in general case. The sub-bundles
on which the Jacobi identity is satisfied are known as Dirac
structures, which as a necessary condition need to be sub-
sets of isotropic spaces. Therefore, the star brackets might
provide future insights into integrability conditions for the
C̊-twisted Courant bracket [28].

In the end, we obtained the Courant bracket twisted at the
same time by B and θ by considering the generator in the
basis spanned by ῐ and k̆, equivalent to undoing A transfor-
mation, used to simplify calculations. With the introduction
of new fields B̆μν and θ̆μν , this bracket has a similar form
as C̊-twisted Courant bracket, whereby the Lie, Schouten–
Nijenhuis and Koszul brackets became their twisted counter-
parts.

It has already been established that B-twisted and θ -
twisted Courant brackets appear in the generator algebra
defined in bases related by self T-duality [13]. When the
Courant bracket is twisted by both B and θ , it is self T-dual,
and as such, represent the self T-dual extension of the Lie

bracket that includes all fluxes. It has been already shown
[8] how the Hamiltonian can be obtained acting with B-
transformations on diagonal generalized metric. The same
method could be replicated with the twisting matrix eB̆ , that
would give rise to a different Hamiltonian, whose further
analysis can provide interesting insights in the role that the
Courant bracket twisted by both B and θ plays in understand-
ing T-duality.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: No data was used
for this paper.]
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Abstract Bosonic string moving in coordinate dependent
background fields is considered. We calculate the generalized
currents Poisson bracket algebra and find that it gives rise
to the Courant bracket, twisted by a 2-form 2Bμν . Further-
more, we consider the T-dual generalized currents and obtain
their Poisson bracket algebra. It gives rise to the Roytenberg
bracket, equivalent to the Courant bracket twisted by a bi-
vector �μν , in case of �μν = 2�Bμν = κθμν . We conclude
that the twisted Courant and Roytenberg brackets are T-dual,
when the quantities used for their deformations are mutually
T-dual.

1 Introduction

Non-geometric backgrounds [1–3] include various duali-
ties. Duality symmetry is a way to show the equivalence
between two apparently different theories. Specifically, T-
duality [4,5] is a symmetry between two theories corre-
sponding to different geometries and topologies. It was firstly
noticed as the spectrum equivalence of the bosonic closed
string with one dimension compactified to a radius R, with
the bosonic closed string with one dimension compactified
to a radius α′/R.

The Courant bracket [6,7] is the generalization of the Lie
bracket so that it includes both vectors and 1-forms. It is a
fundamental structure of the generalized complex geometry.
Vectors and 1-forms are treated on equal footing in the gen-
eralized complex structures. Many for string theory relevant
geometries, such as complex, symplectic and Kähler geom-
etry, are integrated into the framework of generalized com-
plex structures. Moreover, the generalized complex geometry

Work supported in part by the Serbian Ministry of Education and
Science, under contract No. 171031.

a e-mail: ivanisevic@ipb.ac.rs (corresponding author)
b e-mail: ljubica@ipb.ac.rs
c e-mail: sazdovic@ipb.ac.rs

provides a framework for a unified description of diffeomor-
phisms and gauge transformations of the Kalb–Ramond field.
Hitchin was the first one to introduce the generalized Calabi–
Yau manifolds, that unified the concept of a Calabi–Yau man-
ifold with the one of a symplectic manifold [8]. Gualtieri in
his PhD thesis contributed further to the mathematical devel-
opment of generalized complex geometry [9].

In generalized complex geometry, closure under the
Courant bracket represents the integrability condition, in a
same way that closure under the Lie bracket represents the
integrability condition of almost complex structures. More-
over, the Courant bracket governs the gauge transformation
in the double field string theory [10].

The Roytenberg bracket is the generalization of the
Courant bracket, so that it includes a bi-vector. It was firstly
introduced by Roytenberg [11]. In [12], the σ -model with
both 2-form and a bi-vector was considered. The Poisson
bracket algebra of the generalized currents was obtained. It
has been observed that, while the current algebra is anoma-
lous, the algebra of charges is closed and gives rise to the
Roytenberg bracket. In [13], the Roytenberg bracket was
obtained by lifting the topological sector of the first order
action for the NS string σ -model to three dimensions. In [14],
the higher order Roytenberg bracket is realized, by twisting
by a p-vector.

In this paper, we consider the closed bosonic string mov-
ing in the coordinate dependent background fields. Gener-
alized currents are defined as linear combinations of world-
sheet basis vectors with arbitrary coordinate dependent coef-
ficients, and their Poisson bracket algebra is calculated. We
follow the work of [15], that analyzed the most general
currents of the general σ model, where it has been shown
that the algebra of most general currents gives rise to the
Courant bracket, twisted by the Kalb–Ramond field. More-
over, we consider the self T-duality, that is to say T-duality
realized in the same phase space. The self T-duality inter-
changes momenta with coordinate derivatives, as well as
the background fields with their T-dual background fields.
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Another set of generalized currents, T-dual to the aforemen-
tioned ones, are constructed and their algebra obtained. We
find that their algebra gives rise to the Roytenberg bracket
obtained by twisting the Courant bracket by the T-dual of
the Kalb–Ramond field. Hence, we show that the twisted
Courant bracket is T-dual to the corresponding Roytenberg
one, obtaining the relation that connects the mathematically
relevant structures with the T-duality.

2 Hamiltonian of the bosonic string

Consider the closed bosonic string in the nontrivial back-
ground defined by the symmetric metric tensor field Gμν and
the Kalb-Ramond antisymmetric tensor field Bμν , as well as
the constant dilaton field 	 = const . In the conformal gauge,
the propagation is described by the action [16,17]

S =
∫




d2ξL

= κ

∫



d2ξ

[
1

2
ηαβGμν(x) + εαβBμν(x)

]
∂αx

μ∂βx
ν,

(2.1)

where integration goes over a two-dimensional world-sheet

 parametrized by ξα(ξ0 = τ, ξ1 = σ) with the worldsheet
metric ηαβ . Coordinates of the D-dimensional space-time are
xμ(ξ), μ = 0, 1, . . . , D − 1, ε01 = −1 and κ = 1

2πα′ .
It is convenient to rewrite the action (2.1) using the light-

cone coordinates ξ± = ξ0 ±ξ1 and derivatives ∂± = 1
2 (∂0 ±

∂1) as

S = κ

∫



d2ξ∂+xμ�+μν(x)∂−xν, (2.2)

where

�±μν(x) = Bμν(x) ± 1

2
Gμν(x). (2.3)

The canonical momenta are given by

πμ = ∂L
∂ ẋμ

= κGμν(x)ẋ
ν − 2κBμν(x)x

′ν . (2.4)

The Hamiltonian is obtained in a usual way,

HC = πμ ẋ
μ − L

= 1

2κ
πμ(G−1)μνπν − 2x ′μBμν(G

−1)νρπρ

+κ

2
x ′μGE

μνx
′ν, (2.5)

where

GE
μν = Gμν − 4(BG−1B)μν (2.6)

is the effective metric.
Energy-momentum tensor components can be written as

T± = ∓ 1

4κ
(G−1)μν j±μ j±ν, (2.7)

where the currents j±μ are given by

j±μ(x) = πμ + 2κ�±μν(x)x
′ν . (2.8)

In terms of the energy-momentum tensor components (2.7),
the Hamiltonian is given by

HC = T− − T+ = 1

4κ
(G−1)μν

[
j+μ j+ν + j−μ j−ν

]
. (2.9)

In this paper, we are interested in these currents, currents T-
dual to them, their generalizations, as well as their Poisson
bracket algebra. Before that, let us present a short overview
of T-duality.

2.1 Lagrangian approach to T-duality

In the Lagrangian approach to T-duality, the Buscher proce-
dure of T-dualization has been developed [18–21]. It provides
us with the procedure of transforming coordinates from one
theory to the coordinates from its T-dual theory, when there
is a global Abelian isometry of coordinates along which T-
dualization is applied. The T-dualization rules for coordinates
are given by [22,23]

∂±xμ ∼= −κ�
μν
± ∂±yν, ∂±yμ ∼= −2�∓μν∂±xν, (2.10)

where we have introduced the T-dual coordinate yμ and new
fields �

μν
± , defined by

�
μν
± = − 2

κ
(G−1

E �±G−1)μν = θμν ∓ 1

κ
(G−1

E )μν, (2.11)

where θμν is the non-commutativity parameter, that first
appeared in the context of open string coordinates non-
commutativity in the presence of non-zero Kalb Ramond
field [24], given by

θμν = − 2

κ
(G−1

E BG−1)μν, (2.12)

where (G−1
E )μν is the inverse of the effective metric defined

in (2.6). It is straightforward to verify that �
μν
± fields are

inverse to �∓μν fields

�
μρ
± �∓ρν = 1

2κ
δμ

ν. (2.13)
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Successive application of the T-dualization (2.10) is involu-
tive

∂±xμ ∼= −κ�
μν
± ∂±yν ∼= 2κ�

μν
± �∓νρ∂±xρ = ∂±xμ,

(2.14)

where in the last step we have used (2.13).
Applying the T-dualization laws (2.10) to the action (2.2),

we obtain the T-dual action

�S =
∫

d2ξ �L = κ2

2

∫
d2ξ∂+yμ�

μν
− ∂−yν . (2.15)

Expressing the action (2.15) in the form of the initial action
(2.2), we obtain

��
μν
+ = κ

2
�

μν
− , (2.16)

which allows us to read the T-dual background fields

�Gμν = (G−1
E )μν, �Bμν = κ

2
θμν. (2.17)

These relations correspond exactly to the expressions for T-
dual background fields obtained by Buscher [18–21] in case
of the existence of Abelian group of isometries along coor-
dinates along which we perform T-duality.

2.2 Hamiltonian formulation of T-duality

Let us rewrite the T-dualization laws (2.10) in terms of phase
space variables. Firstly, we need the expression for the T-dual
canonical momentum. It is given by

�πμ = ∂ �L
∂ ẏμ

= κ(G−1
E )μν ẏν − κ2θμν y′

ν . (2.18)

Secondly, let us rewrite equations (2.10), separating the part
that changes the sign from the part that does not. For the
coordinates of the initial theory, we obtain

ẋμ ∼= −κθμν ẏν+(G−1
E )μν y′

ν, x ′μ ∼= (G−1
E )μν ẏν−κθμν y′

ν,

(2.19)

and for the coordinates of the T-dual theory, we obtain

ẏμ ∼= −2Bμν ẋ
ν +Gμνx

′ν, y′
μ

∼= Gμν ẋ
ν −2Bμνx

′ν . (2.20)

Comparing the second relation of (2.19) with (2.4), as
well as the second relation of (2.20) with (2.18), we obtain
the T-dualization laws (2.10) formulated in terms of the phase
space variables

κx ′μ ∼= �π
μ
, πμ

∼= κy′
μ. (2.21)

When coordinate σ -derivatives and canonical momenta are
integrated over the worldsheet space parameter σ , the wind-
ing numbers and momenta are respectively obtained [25].
Hence, we see that the T-dualization transforms the momenta
of the initial theory into the winding numbers in its T-dual
theory, and vice versa.

The T-duality can be considered as the canonical transfor-
mation generated by the type I functional [26,27]

F = κ

∫
dσ xμy′

μ, (2.22)

which gives rise to momenta

πμ = δF

δxμ
= κy′

μ, �πμ = −δF

δyμ
= κx ′μ. (2.23)

This is exactly the relation (2.21). The T-duality does not
change the Hamiltonian, since the generating function (2.22)
does not depend explicitly on time HC → HC + ∂F

∂t = HC .
In order to obtain the T-dual Hamiltonian, we apply rela-

tions (2.21)–(2.5), and obtain

�HC = 1

2κ

�πμ GE
μν

�πν − 2 �πμ(BG−1) ν
μ y′

ν + κ

2
y′
μ(G−1)μν y′

ν .

(2.24)

Expressing the T-dual Hamiltonian in the form of the initial
one (2.5), as

�HC = 1

2κ

�πμ �G−1
μν

�πν − 2y′
μ(�B �G−1)μν

�πν + κ

2
y′
μ

�Gμν
E y′

ν .

(2.25)

We are able to read once again the expressions for the T-dual
background fields (2.17).

Given that we were able to write the Hamiltonian in terms
of currents j±μ, we would like to write the T-dual Hamilto-
nian (2.25) in terms of T-dual currents. By analogy with the
initial theory (2.7), we write the T-dual energy momentum
tensor components as

�T± = ∓ 1

4κ

�G−1
μν

� jμ± � jν±, (2.26)

where � jμ± are T-dual currents, given by

� jμ± = �π
μ + 2κ��

μν
± y′

ν . (2.27)

The T-dual Hamiltonian is then given by

�HC = �T− − �T+ = 1

4κ

�G−1
μν

(
� jμ+� jν+ + � jμ−� jν−

)
,

(2.28)
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We can check that substituting (2.27) into (2.28), the T-dual
Hamiltonian in the form (2.25) is obtained. Therefore,

HC ∼= �HC , T± ∼= �T±. (2.29)

2.3 T-dual currents

Let us consider the transformation of the currents under T-
duality. Applying (2.21)–(2.8), we obtain

j±μ
∼= κy′

μ + 2�±μν
�π

ν = 2�±μν
� jν±, (2.30)

where we have used (2.13). Similarly, the T-dualization
applied on the T-dual currents is as easily obtained

� jμ± ∼= κx ′μ + κ�
μν
∓ πν = κ�

μν
∓ j±ν . (2.31)

The successive application of T-dualization on any current
returns exactly that current.

Although the initial and T-dual theories are equivalent
(2.29), the currents j±μ and � jμ± do not transform exactly
one into another by the T-dualization laws (2.21). There are
couple of ways to see the nature of this fact. Firstly, the current
j±μ has the lower indices, while � jμ± has the upper indices.

Secondly, substituting (2.30) into (2.7), we obtain the T-
dual transformation of the energy momentum tensor

T± ∼= ± 1

κ

� jμ±(�∓G−1�±)μν
� jν±

= ∓ 1

4κ

� jμ±GE
μν

� jν± = �T±, (2.32)

where in the second step we used (2.3) and (2.6). The direct
transformation of currents under T-duality j±μ

∼= � jμ± would
violate invariance of the energy momentum tensor. The effec-
tive metric GE

μν in the expression for T-dual energy momen-

tum tensor is obtained from −�∓G−1�± = 1
4GE , which is

only possible due to the non-trivial T-duality relation between
currents (2.30).

Lastly, let us rewrite the expressions for currents in terms
of coordinates, by substituting (2.4) into (2.8) and (2.18) into
(2.27)

j±μ = κGμν∂±xν, � jμ± = κ(G−1
E )μν∂±yν . (2.33)

Hence, in the same way that coordinates ∂±xμ do not trans-
form into T-dual coordinates ∂±yμ under (2.10), in the same
way the currents j±μ do not transform into T-dual currents
� jμ± . The transformation of variables under T-duality (2.21)
is presented in the Table 1.

Lastly, let us define for future convenience the right hand
side of (2.31), as a new current lμ±

lμ± = κ�
μν
∓ j±ν = κx ′μ + κ�

μν
∓ πν. (2.34)

Table 1 Transformations under the T-dualization

Initial theory T-dual theory

πμ
∼= κy′

μ

κx ′μ ∼= �πμ

j±μ
∼= 2�±μν

� jν±
κ�

μν
∓ j±ν

∼= � jμ±

In the next chapter, we will see how we can avoid working in
two phase spaces, and the currents lμ± will have an important
role throughout the rest of the paper.

2.4 Self T-duality

So far we considered the case when two mutually T-dual
theories are defined in two different phase spaces, that we
have marked by {xμ, πμ}, and {yμ, �πμ}. It is in fact possible
to realize T-duality in the same phase space, that we will call
self T-duality.

To realize self T-duality, let us rewrite the second relation
of (2.19), using (2.17)

κx ′μ ∼= κ �Gμν ẏν − 2κ �Bμν y′
ν . (2.35)

Comparing it with the expression for momenta (2.4), we
conclude that the exchange of coordinate with its T-dual
xμ ↔ yμ is equivalent to

πμ ↔ κx ′μ, Bμν ↔ �Bμν = κ

2
θμν,

Gμν ↔ �Gμν = (G−1
E )μν. (2.36)

These are transformation rules for what we call self T-duality.
Note that unlike in (2.21), here the background fields are
transformed, as well.

The self T-duality gives the same expressions for T-dual
background fields (2.17) as in case of Buscher procedure. It
swaps the winding numbers with momenta as well, therefore
preserving all features of T-duality, with the only difference
being that it is realized in the same phase space.

The two currents j±μ and lμ± transform into each other
under the self T-duality (2.36)

j±μ = πμ + 2κ�±μνx
′ν ↔ κx ′μ + κ�

μν
∓ πν = lμ±. (2.37)

On the other hand, under (2.36) the energy-momentum tensor
is invariant

T± = ∓ 1

4κ
(G−1)μν j±μ j±ν ↔ ∓ 1

4κ
GE

μνl
μ
±lν± = T±.

(2.38)

With the help of (2.9), we see that the Hamiltonian does not
change under (2.36). Nevertheless, the Hamiltonian can be
expressed in terms of new currents lμ±
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Table 2 Transformations under the self T-duality

Initial theory Self T-dual theory

πμ ↔ κx ′
μ

κx ′μ ↔ πμ

Bμν ↔ κ
2 θμν

Gμν ↔ (G−1
E )μν

j±μ ↔ lμ±

HC = 1

4κ
GE

μν

(
lμ+lν+ + lμ−lν−

)
, (2.39)

but with the effective metric instead of the inverse metric.
Substituting (2.6) and (2.34) into the previous equation, we
obtain the initial form of the Hamiltonian (2.9).

It is important to point out that although the energy-
momentum tensor components T± and the Hamiltonian HC

remain invariant under the self T-duality, the currents j±μ

and lμ± do not. Therefore although both currents j±μ and
lμ± are defined in terms of the initial theory variables, they
have to change under self T-duality, due to the invariance of
energy momentum tensor components (2.38). We summa-
rize its transformation rules in the Table 2. Our next goal is
to generalize these two currents and obtain the algebra of
their generalizations.

3 Generalized currents in a new basis

In this chapter, we will construct two types of generalized
currents. Generalized currents are arbitrary functionals of
the fields, parametrized by a pair of vector field and covector
field on the target space, treating both vectors and 1-forms
on equal footing [9]. The convenient bases in which these
generalized currents are defined are components of currents
j±μ and lμ±.

Firstly, we will generalize the currents j±μ. From (2.8)
we extract its τ and σ components

j0μ = j+μ + j−μ

2
= πμ + 2κBμν(x)x

′ν,

j1μ = j+μ − j−μ

2
= κGμν(x)x

′ν . (3.1)

We will mark

iμ = πμ + 2κBμν(x)x
′ν, (3.2)

as a new, auxiliary current. Therefore, {κx ′μ, iμ} is a new
convenient basis on the world-sheet. We can now write cur-
rents (2.8) in this basis as

j±μ = iμ ± κGμνx
′ν . (3.3)

In the same way as in [15], we define the generalized
currents in the new basis, as the linear combination of both
coordinate σ−derivatives and auxiliary currents

JC(u,a) = uμ(x)iμ + aμ(x)κx ′μ, (3.4)

where uμ(x) and aμ(x) are the arbitrary coefficients. The
charges of these currents are

QC(u,a) =
∫

dσ JC(u,a). (3.5)

The charges exhibit additional symmetry. In order to see
that, let us firstly rewrite the integral of the total derivative of
an arbitrary function λ

∫ 2π

0
dσ(λ)′ =

∫ 2π

0
dσ∂μλx ′μ = 0, (3.6)

which goes to zero for closed strings. From this fact, we
obtain the reducibility relations for the charges

QC(u,a+∂λ) = QC(u,a). (3.7)

The expression of the form (3.4) is particularly interest-
ing, since it gives rise to many for string theory relevant
structures. Firstly, for the special case of coefficients relation
aμ = ±Gμνuν , we obtain

JC(u,±Gu) = uμ j±μ. (3.8)

Hence, the currents (2.8) indeed can be obtained from the
generalized currents (3.4). On the other hand, for special
case aμ = −2Bμνuν , we obtain

JC(u,−2Bu) = uμπμ, (3.9)

as well as for uμ = 0, we obtain

JC(0,a) = aμκx ′ν . (3.10)

We see that the general current algebra for the appropriate
coefficients reduces to non-commutativity relations of both
coordinates and momenta.

We are also interested in another type of generalized cur-
rent, that in analogous way generalizes lμ±, in the basis related
to its τ and σ components

lμ0 = lμ+ + lμ−
2

= κx ′μ + κθμνπν, lμ1 = lμ+ − lμ−
2

= (G−1
E )μνπν.

(3.11)

The second set of generalized currents is defined by

JR(v,b) = vμ(x)πμ + bμ(x)kμ, (3.12)
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where vμ(x) and bμ(x) are the arbitrary coefficients, and we
have introduced another auxiliary current by

kμ = κx ′μ + κθμνπν. (3.13)

Their charges are

QR(v,b) =
∫

dσ JR(v,b). (3.14)

Similarly as in (3.7), these charges also exhibit additional
symmetry. In order to see that, let us write the total derivative
integral (3.6), using (3.13), in terms of new basis vectors

∫ 2π

0
dσκ∂μλx ′μ =

∫ 2π

0
dσ∂μλ(kμ − κθμνπν). (3.15)

As a result, we obtain the non-uniqueness of the charges

QR(v+κθ∂λ,b+∂λ) = QR(v,b). (3.16)

In a special case of vμ = ±(G−1
E )μνbν , the generalized

current (3.12) reduces to the current (2.30)

JR(±G−1
E b,b) = bμl

μ
±, (3.17)

thus justifying calling it generalized current. Momenta πμ

and auxiliary currents kμ can also be as easily obtained from
it.

The two new bases transform into each other under (2.36):

iμ = πμ+2κBμνx
′ν ↔ κx ′μ+κθμνπν = kμ, πμ ↔ κx ′μ.

(3.18)

Therefore, the generalized currents are defined in the mutu-
ally T-dual bases, and their respective algebras are also going
to be mutually T-dual.

At the end of this chapter, let us obtain the relations for
coefficients when two generalized currents are equal. This
will enable us to obtain the algebra of currents JR(v,b), pro-
vided that we have the algebra of JC(u,a), and vice versa. Let
us start with rewriting the expressions for both generalized
currents in the basis {πμ, x ′μ}. Substituting the expression
(3.2) into (3.4) we obtain

JC(u,a) = uμπμ + κ(aμ − 2Bμνu
ν)x ′μ, (3.19)

while substituting the expression (3.13) into (3.12) we obtain

JR(v,b) = (vμ − κθμνbν)πμ + κbμx
′μ. (3.20)

Comparing (3.19)–(3.20), we see that generalized currents
are equal when coefficients satisfy following relations

uμ = vμ − κθμνbν,

aμ = 2Bμνv
ν + (GG−1

E ) ν
μ bν . (3.21)

The above relations can be easily inversed. We obtain

vμ = (G−1
E G)μνu

ν + κθμνaν,

bμ = aμ − 2Bμνu
ν . (3.22)

4 Courant bracket

We are interested in calculating the Poisson bracket algebra
of the most general currents JC(u,a), defined in (3.4), as well
as of their charges QC(u,a), defined in (3.5). We will start with
the generators iμ and x ′μ algebra, that we calculate using the
standard Poisson bracket relations

{xμ(σ, τ ), πν(σ̄ , τ )} = δμ
νδ(σ − σ̄ ),

{xμ(σ, τ ), xν(σ̄ , τ )} = 0,

{πμ(σ, τ ), πν(σ̄ , τ )} = 0. (4.1)

In the accordance with [15], we will obtain that the algebra
of generalized charges (3.5) gives rise to the twisted Courant
bracket [6].

We obtain the algebra of generators (3.2)

{iμ(σ ), iν(σ̄ )} = −2κBμνρx
′ρδ(σ − σ̄ ), (4.2)

where the structural constants are the Kalb–Ramond field
strength components, given by

Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν. (4.3)

The rest of the generators algebra is given by

{iμ(σ ), κx ′ν(σ̄ )} = κδ ν
μ ∂σ δ(σ − σ̄ ), {κx ′μ(σ ), κx ′ν(σ̄ )} = 0.

(4.4)

The Poisson bracket of the most general currents (3.4) is
obtained using (4.2) and (4.4). It reads

{JC(u,a)(σ ), JC(v,b)(σ̄ )}
= (vν∂νu

μ − uν∂νv
μ)iμδ(σ − σ̄ ) − 2κBμνρx

′μuνvρδ(σ − σ̄ )

− κ
(
(∂μaν − ∂νaμ)vν − (∂μbν − ∂νbμ)uν

)
x ′μδ(σ − σ̄ )

+ κ
(
uμ(σ)bμ(σ) + vμ(σ̄ )aμ(σ̄ )

)
∂σ δ(σ − σ̄ ). (4.5)

We can modify the anomalous part in the following manner

(
uμ(σ )bμ(σ ) + vμ(σ̄ )aμ(σ̄ )

)
∂σ δ(σ − σ̄ )
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= 1

2
((ub)(σ ) + (va)(σ̄ )) ∂σ δ(σ − σ̄ )

− 1

2
(ub)(σ )∂σ̄ δ(σ − σ̄ ) + 1

2
(va)(σ̄ )∂σ δ(σ − σ̄ )

= 1

2
((ub)(σ ) + (ub)(σ̄ ) + va(σ ) + (va)(σ̄ )) ∂σ δ(σ − σ̄ )

+ 1

2
∂μ(va − ub)x ′μδ(σ − σ̄ ), (4.6)

where we have used the notation (ub)(σ ) = uμ(σ )bμ(σ ),
and the relation f (σ̄ )∂σ δ(σ − σ̄ ) = f ′(σ )δ(σ − σ̄ ) +
f (σ )∂σ δ(σ − σ̄ ) in the last step. Substituting the previous
equation in (4.5) we obtain

{JC(u,a)(σ ), JC(v,b)(σ̄ )}
= −JC(w̄,c̄)(σ )δ(σ − σ̄ )

+κ

2
((ub)(σ ) + (ub)(σ̄ ) + (va)(σ )

+(va)(σ̄ )) ∂σ δ(σ − σ̄ ), (4.7)

where the coefficients in the resulting current are

w̄μ = uν∂νv
μ − vν∂νu

μ, (4.8)

and

c̄μ = 2Bμνρu
νvρ + (∂μaν − ∂νaμ)vν − (∂μbν − ∂νbμ)uν

+1

2
∂μ(ub − va). (4.9)

The minus sign in front of the JC(w̄,c̄) is included for the
future convenience. We see that w̄μ does not depend on back-
ground fields, while the coefficient c̄μ does, because of the
H -flux term Bμνρ .

The relation (4.7) defines the bracket, that acts on a pair
of two ordered pairs consisting of a vector and a 1-form, that
as a result has another ordered pair, that we can write like

[(u, a), (v, b)]C = (w̄, c̄). (4.10)

The bracket that we have obtained is the twisted Courant
bracket [6]. The Courant bracket represents the generaliza-
tion of the Lie bracket on spaces that contain both vectors
and 1-forms. As a result, it gives an ordered pair of a vector
w = wμ∂μ and a 1-form c = cμdxμ.

Let us confirm the equivalence between the twisted
Courant bracket and the bracket that we have obtained in
(4.10). The coordinate free expression for the twisted Courant
bracket is given by

[(u, a), (v, b)]C =
(
[u, v]L ,Lub − Lva − 1

2
d(iub − iva)

+H(u, v, .)
)

≡ (w, c), (4.11)

where [u, v]L is the Lie bracket and H(u, v, .) is a 1-form
obtained by contracting a three form. The Lie derivative Lu

is defined in a usual way Lu = iud + diu , where d is the

exterior derivative and iu the interior derivative. Their action
on 1-forms is given by da = ∂μaνdxμdxν and iua = uμaμ.

The Lie bracket is given by

[u, v]L |μ = uν∂νv
μ − vν∂νu

μ. (4.12)

Using the definition of Lie derivative, we furthermore obtain(
Lub − Lva − 1

2
d(iub − iva)

)∣∣∣∣
μ

= uν(∂νbμ − ∂μbν) − vν(∂νaμ − ∂μaν)

+1

2
∂μ(ub − va). (4.13)

As for the last term in (4.11), it is given by

H(u, v, .)|μ = 2Bμνρu
νvρ. (4.14)

The expression for the generalized current corresponding to
the Courant bracket is obtained by substituting (4.12), (4.13)
and (4.14) in (4.11)

[(u, a), (v, b)]C = (w, c), (4.15)

where wμ and cμ are exactly the same as w̄μ and c̄μ

defined in (4.8) and (4.9), respectively. Therefore, we see that
the bracket defined in (4.10) is indeed the twisted Courant
bracket.

Besides the current algebra, we are interested in the alge-
bra of charges (3.5). The anomalous term is canceled when
integrated. For example, consider the first term in anomaly∫

dσdσ̄ (ub)(σ )∂σ δ(σ − σ̄ )

= −
∫

dσ̄ ∂σ̄

∫
dσ(ub)(σ )δ(σ − σ̄ )

= −
∫

dσ̄ ∂σ̄ (ub(σ̄ )) = 0, (4.16)

since we are working with the closed strings. The other terms
cancel in a similar manner. Integrating the generalized cur-
rents (4.7) over σ and σ̄ we obtain

{QC(u,a), QC(v,b)} = −QC[(u,a),(v,b)]C . (4.17)

We see that the algebra of charges is anomaly free. The rela-
tion (4.17) was firstly obtained in [15] for the general case
of the Hamiltonian formulation of string σ -model, in which
momenta and coordinates satisfy the same Poisson bracket
relations as auxiliary currents and coordinates in our theory.

Let us check whether the algebra (4.7) is consistent with
the known results for the Poisson bracket algebra of the cur-
rents j±μ [28]

{ j±μ(σ ), j±ν(σ̄ )} = ±2κ�μ,νρx
′ρδ(σ − σ̄ )
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− 2κBμνρx
′ρδ(σ − σ̄ )

± 2κGμνδ
′(σ − σ̄ ),

{ j±μ(σ ), j∓ν(σ̄ )} = ±2κ�μ,νρx
′ρδ(σ − σ̄ )

− 2κBμνρx
′ρδ(σ − σ̄ ), (4.18)

where �μ,νρ = 1
2 (∂νGρμ + ∂ρGνμ − ∂μGνρ) are Christoffel

symbols. If we substitute aμ = ±Gμνuν and bμ = ±Gμνv
ν

for constants uμ and vμ in (4.7), with the help of (3.8) we
obtain

{uμ j±μ(σ), vν j±ν(σ̄ )}
= uμvν

(−2κBμνρ ± κ(∂νGρμ − ∂μGνρ)
)
x ′ρδ(σ − σ̄ )

± κuμvν(Gμν(σ ) + Gμν(σ̄ ))∂σ δ(σ − σ̄ )

= uμvν
(−2κBμνρ ± κ(∂νGρμ + ∂ρGμν − ∂μGνρ)

)
x ′ρδ(σ − σ̄ )

± 2κuμvνGμν(σ )∂σ δ(σ − σ̄ )

= uμvν{ j±μ, j±ν}. (4.19)

The consistency with the second relation in (4.18) can be as
easily obtained.

5 Roytenberg bracket

The Roytenberg bracket appeared as a result of the current
algebra firstly in [12], where the author twisted the Poisson
structure by trading the 2-form Bμν with the bi-vector�μν . In
this paper, we firstly calculate the Poisson bracket algebra for
the generalized currents JR(v,b) (3.12), in order to calculate
the T-dual Poisson structure of the twisted Courant bracket.

While the currents (3.12) have the same form as the cur-
rents giving the Roytenberg bracket in [12], in [12] the
momenta are redefined so that they are equal to the auxil-
iary currents iμ (3.2) in our paper. As a result of this dif-
ference, the currents JR(v,b) and JC(u,a) are related by self
T-duality, which is not the case for corresponding currents
in [12]. Therefore, we will show that the Courant bracket
twisted by a 2-form 2Bμν is T-dual to the Roytenberg bracket,
obtained by twisting the Courant bracket by a bi-vector κθμν .
When the fluxes are turned off, both of them reduce to the
untwisted Courant bracket, that is T-dual to itself.

We will start with the algebra of auxiliary currents kμ

(3.13). Using (4.1), we obtain

{kμ(σ ), kν(σ̄ )} = −κ∂ρθμνx ′ρδ(σ − σ̄ ) − κ2(θμσ ∂σ θνρ

−θνσ ∂σ θμρ)πρδ(σ − σ̄ ), (5.1)

where θμν is the non-commutativity parameter (2.12). From
(3.13) we express the coordinate in terms of algebra genera-
tors and obtain

{kμ(σ ), kν(σ̄ )} = −κQ μν
ρ kρδ(σ−σ̄ )−κ2Rμνρπρδ(σ−σ̄ ),

(5.2)

where we expressed the structure constants as fluxes

Q μν
ρ = ∂ρθμν, Rμνρ = θμσ ∂σ θνρ + θνσ ∂σ θρμ + θρσ ∂σ θμν.

(5.3)

These are the non-geometric fluxes [29]. They were firstly
obtained by applying the Buscher rules [18–21] on the three-
torus with non-trivial Kalb-Ramond field strength (4.3). After
the T-duality transformations are applied along two isometry
directions, one obtains the space that is locally geometric,
but globally non-geometric. The flux for this background
is Q μν

ρ . After the T-duality transformation is applied along
all directions, one obtains the space that is neither locally,
nor globally geometric, characterized with the Rμνρ flux.
When considering a generalized T-dualization, the R flux is
obtained when performing T-dualization over the arbitrary
coordinate on which the background fields depend [30].

The rest of the generators algebra is calculated in a similar
way

{kμ(σ ), πν(σ̄ )} = κδμ
ν∂σ δ(σ − σ̄ ) + κQ μρ

ν πρδ(σ − σ̄ ),

{πμ(σ), πν(σ̄ )} = 0. (5.4)

We obtain the Poisson bracket of the most general currents
JR(u,a), using (5.2) and (5.4). It reads

{JR(u,a)(σ ), JR(v,b)(σ̄ )}
= (vν∂νu

μ − uν∂νv
μ)πμδ(σ − σ̄ ) − κ2Rμνρπμaνbρδ(σ − σ̄ )

− κ
(
θνρ∂ρvμaν − vρ∂νaρθνμ − ∂νθ

ρμvνaρ

)
πμδ(σ − σ̄ )

− κ
(
uρ∂νbρθνμ + κuρ∂ρθνμbν − κθνρ∂ρu

μbν

)
πμδ(σ − σ̄ )

+ (
uν(∂μbν − ∂νbμ) − vν(∂μaν − ∂νaμ)

)
kμδ(σ − σ̄ )

− κ
(
aρbν∂μθρν − θνρ(∂ρaμbν − ∂ρbμaν)

)
kμδ(σ − σ̄ )

+ κ
(
uμ(σ )bμ(σ ) + vμ(σ̄ )aμ(σ̄ )

)
∂σ δ(σ − σ̄ ). (5.5)

Using (4.6) and (3.13) we can transform the anomaly in the
following way

κ ((ub)(σ ) + (va)(σ̄ )) ∂σ δ(σ − σ̄ )

= κ

2
((ub)(σ ) + (ub)(σ̄ ) + (va)(σ ) + (va)(σ̄ ))∂σ δ(σ − σ̄ )

+ 1

2
∂μ(va − ub)(σ )(kμ − θμρπρ)δ(σ − σ̄ ). (5.6)

Substituting the last equation in (5.5), we obtain

{JR(u,a)(σ ), JR(v,b)(σ̄ )}
= −JR(w̄,c̄)(σ )δ(σ − σ̄ )

+κ

2
((ub)(σ ) + (ub)(σ̄ ) + (va)(σ )

+(va)(σ̄ )) ∂σ δ(σ − σ̄ ), (5.7)

where

w̄μ = uν∂νv
μ − vν∂νu

μ + κθνρ∂ρvμaν

− κvρ∂νaρθνμ − κQ ρμ
ν vνaρ
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+ κuρ∂νbρθνμ + κuρQ νμ
ρ bν − κθνρ∂ρu

μbν

− κ

2
θμν∂ν(va − ub) + κ2Rμνρaνbρ, (5.8)

and

c̄μ = vν(∂μaν − ∂νaμ) − uν(∂μbν − ∂νbμ)

−1

2
∂μ(va − ub) + κaρbνQ

ρν
μ

−κθνρ(∂ρaμbν − ∂ρbμaν), (5.9)

where we have substituted Q and R fluxes (5.3). Unlike
the coefficients in the previous case, here both coefficients
depend on backgrounds, due to the presence of fluxes.

As expected, algebra is not closed due to the anomalous
part. This Poisson bracket defines a new bracket

[(u, a), (v, b)]R = (w̄, c̄), (5.10)

which is equal to the Roytenberg bracket [11]. In case of
only R and Q flux present in the generators algebra (5.3), the
Roytenberg bracket is given by

[(u, a), (v, b)]R
=

(
[u, v]L − [v, a�]L + [u, b�]L + 1

2
[�,�]S(a, b, .)

−
(
Lva − Lub + 1

2
d(iub − iva)

)
�,

+ Lub − Lva − 1

2
d(iub − iva) − [a, b]�

)
, (5.11)

where � = �μν∂μ∂ν is the bi-vector. The expression
[�,�]S(a, b, .) represents the Schouten–Nijenhuis bracket
[31] contracted with two 1-forms and [a, b]� is the Koszul
bracket [32] given by

[a, b]� = La�b − Lb�a + d(�(a, b)). (5.12)

The Koszul bracket is a generalization of the Lie bracket on
the space of differential forms, while the Schouten-Nijenhuis
bracket is a generalization of the Lie bracket on the space of
multi-vectors.

The terms in (5.11) that we have not calculated yet can be
written, using (4.13), as(

(Lva − Lub + 1

2
d(iub − iva))�

)∣∣∣∣
μ

= (
uν(∂νbρ − ∂ρbν) − vν(∂νaρ − ∂ρaν)

+1

2
∂ρ(ub − va)

)
�ρμ. (5.13)

The Koszul bracket (5.12) can be further transformed in a
following way

[a, b]�|μ = �ρν(bρ∂νaμ − aρ∂νbμ) + ∂ν�
νρaρbμ, (5.14)

while the remaining terms linear in � become

([−v, a�]L + [u, b�]L)|μ
= vν(∂νaρ�μρ + aρ∂ν�

μρ) + aρ�ρν∂νv
μ

− uν(∂νbρ�μρ + bρ∂ν�
μρ) − bρ�ρν∂νu

μ. (5.15)

Lastly, we write the expression for the Schouten-Nijenhuis
bracket for bi-vectors

[�,�]S|μνρ = ε
μνρ
αβγ �σα∂σ �βγ , (5.16)

where

ε
μνρ
αβγ =

∣∣∣∣∣∣∣
δ
μ
α δν

β δ
ρ
γ

δν
α δ

ρ
β δ

μ
γ

δ
ρ
α δ

μ
β δν

γ

∣∣∣∣∣∣∣
. (5.17)

Thus, we get

([�,�]S(a, b, .))|μ = 2Rμνρaνbρ, (5.18)

where Rμνρ is the flux defined in (5.3).
Combining the previously obtained terms, we obtain

the expression for the generalized current corresponding to
the Roytenberg bracket twisted by the non-commutativity
parameter as a bi-vector

[(u, a), (v, b)]R = (w, c), (5.19)

where wμ and cμ are equal to w̄μ and c̄μ, defined in (5.8)
and (5.9), respectively, provided that �μν = κθμν .

Integrating the previous equation over σ and σ̄ , we see
that charges satisfy

{QR(u,a), QR(v,b)} = −QR[(u,a),(v,b)]R . (5.20)

The bases in which these generalized currents have been
defined are mutually T-dual (2.36). This means that the gen-
eralized currents also transform into each other

JC(u,a) ↔ JR(v,b), (5.21)

provided that we swap also coefficients uμ ↔ bμ, aμ ↔ vμ.
We say that two types of brackets, one obtained by twisting
the Courant bracket by a 2-form 2Bμν , another obtained by
twisting the Courant bracket by a bi-vector �μν , are mutually
T-dual, as long as the aforementioned 2-form Bμν is T-dual
to the bi-vector �μν .

In [33] it has been proposed that T-duality can be under-
stood as the isomorphism ϕ between two Courant algebroids
[7,9]. The relations connecting coefficients of two sets of
generalized currents (3.21) can in fact be rewritten as

ϕ(u, a) = (u − κθa, 2Bu + (G−1
E G)a), (5.22)
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which can be interpreted as the isomorphism ϕ(u, a) =
(v, b) between two Courant algebroids with the trivial bun-
dles over a point and with the twisted Courant and Royten-
berg brackets as brackets that act on the Cartesian product of
sections of these bundles, as well as the natural inner product
〈., .〉 between generalized vectors, given by

〈(u, a), (v, b)〉 = 1

2
(ub + va). (5.23)

In order for ϕ to be the isomorphism that corresponds to
T-duality, it has to satisfy the following conditions:

〈ϕ(u, a), ϕ(v, b)〉 = 〈(u, a), (v, b)〉,
[ϕ(u, a), ϕ(v, b)]C = ϕ ([(u, a), (v, b)]R) . (5.24)

To prove that the first condition is satisfied, using (5.22), we
obtain

〈ϕ(u, a), ϕ(v, b)〉
= 〈(u − κθa, 2Bu + (G−1

E G)a), (v − κθb, 2Bv

+ (G−1
E G)b)〉

= 1

2

(
2Bμνu

μvν + 2κ(Bθ) ν
μ vμaν + (G−1

E G)μνbμu
ν

−κ(G−1
E G)μνθ

νρbμaρ

+2Bμνv
μuν + 2κ(Bθ) ν

μ uμbν + (G−1
E G)μνaμvν

−κ(G−1
E G)μνθ

νρaμbρ

)

= 1

2
(uμbν + vμaν)

(
(G−1

E G)νμ + 2κ(θB)νμ

)

= 〈(u, a), (v, b)〉, (5.25)

where we have used the fact that Bμν and (G−1
E Gθ)μν are

both antisymmetric, as well as

(G−1
E G)μν + 2κ(θB)μν = δμ

ν, (5.26)

which is the identity easily obtained from (2.6) and (2.12). As
for the second relation of (5.24), it can be shown by writing
the relation (4.17) for ϕ-transformed coefficients

{QCϕ(u,a), QCϕ(v,b)} = −QC[ϕ(u,a),ϕ(v,b)]C . (5.27)

On the other hand, due to QCϕ(u,a) = QR(u,a), the terms
on the right-hand sides of (5.27) and (5.20) are equal. By
equating them, one obtains

QR[(u,a),(v,b)]R = QC[ϕ(u,a),ϕ(v,b)]C . (5.28)

Lastly, using (5.22), we write the above relation in the form

QCϕ([(u,a),(v,b)]R) = QC[ϕ(u,a),ϕ(v,b)]C , (5.29)

from which the second condition of (5.24) is easily read.
Therefore, we have shown that the relations connecting

two types of generalized currents (5.22) define the isomor-
phism between two Courant algebroids, characterized by
twisted Courant and Roytenberg bracket, that according to
[33] is interpreted as T-duality.

6 Conclusion

In this paper, we used the T-dualization rules (2.10) for coor-
dinates in the Lagrangian approach, and (2.21) for the canon-
ical variables in the Hamiltonian approach. The relation for
T-dual background fields (2.17) stands in both approaches.
These relations between the fields provide correct relations
between the Courant and Roytenberg bracket.

The T-dualization rules we used, correspond exactly to
Buscher’s rules obtained in its original procedure [18–21]
when there is an Abelian group of isometries of coordi-
nates xa along which one T-dualizes: B(xa) = B(xa + ba),
G(xa) = G(xa + ba). In the Buscher procedure the sym-
metry is gauged and the new action is obtained. Integrat-
ing out the gauge fields from that action, one obtains the
T-dual Lagrangian. From that, the T-dual transformation law
between the T-dual coordinate σ -derivatives and the canoni-
cal momenta of the initial theory can be obtained κy′

μ
∼= πμ.

This is exactly the relation (2.21) in our paper.
The most interesting case is when we try to perform the T-

dualization along non-isometry directions xa , such that back-
ground fields do depend on them. Then we should apply the
generalized Buscher’s procedure, developed in [25,34]. In
this case, the expression for the T-dual background fields
(2.17) remain the same but the argument of the T-dual back-
ground fields is not simply the T-dual variable ya . It is
the line integral V that is a function of the world-sheet
gauge fields va+ and va−, namely V a[v+, v−] ≡ ∫

P dξαvaα =∫
P (dξ+va+ + dξ−va−). The expressions for gauge fields can

be obtained by varying the Lagrangian with respect to gauge
fields and the expression for the argument of background
fields has the form V a = −κ θab yb+G−1ab

E ỹb, where ỹa is a
double of T-dual variable ya , which satisfy relations ˙̃ya = y′

a
and ỹ′

a = ẏa . Let us point out that in such case the T-dual
theory becomes locally non-geometric because the argument
of the background fields is the line integral.

For example, in case of the weakly curved background
[25] the initial theory is geometric and T-dual theory is non-
geometric. In the initial theory the generalized current alge-
bra gives rise to the twisted Courant bracket. However, in
the T-dual theory, the presence of double variable ỹa , makes
the calculation of T-dual current algebra much more com-
plicated. It is hard to believe that such a bracket or its cor-
responding self T-duality version will be equivalent to the
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Roytenberg one. Therefore, in case of non-geometric theo-
ries, one might expect some new form of brackets.

Next, we introduced the T-duality in the same phase space,
that we call self T-duality. It interchanges the momenta and
coordinate σ -derivatives, as well as the background fields
with the T-dual ones. The Hamiltonian was expressed in
terms of currents j±μ and metric tensor Gμν , as well as
in terms of its T-dual currents lμ± and T-dual metric tensor
�Gμν = (G−1

E )μν . We considered two types of general-
ized currents, JC(u,a) and JR(v,b), that generalize currents
j±μ and lμ± respectively. The suitable basis for the current
JC(u,a) consists of coordinate σ -derivatives x ′μ and the aux-
iliary currents iμ = πμ + 2κBμνx ′ν , and for the current
JR(v,b), it consists of momenta πμ and auxiliary currents
kμ = κx ′μ +κθμνπν . These bases transform into each other
under the self T-duality (2.36).

In this paper, we obtained two types of brackets, extracted
from the generalized current Poisson bracket algebra. We
have shown that one of them is equal to the twisted Courant
bracket, while the other equals the Roytenberg bracket. The
former can be obtained by twisting the Courant bracket by
a 2-form, in our paper 2Bμν , resulting in the appearance
of H−flux in generators algebra. The latter bracket can be
obtained by twisting the Courant bracket by a bi-vector �μν ,
resulting in the appearance of Q− and R−fluxes, but not
H−flux, in generators algebra. Since bases in which gener-
alized currents are defined are mutually T-dual, we conclude
that the brackets are mutually T-dual, when the bi-vector �μν

equals to the non-commutativity parameter κθμν .
We find these results important in itself. Both the Courant

and the Roytenberg bracket are well understood mathemat-
ical structures. Relation between them and T-duality has a
potential to help understand the T-duality better. Moreover,
by analyzing characteristics of these brackets we can exam-
ine how certain aspects of the mutually T-dual theories relate
to each other.

Suppose we turn off all the fluxes. That is equivalent to
setting Bμν = 0 and �μν = 0, which reduce the auxiliary
currents to canonical momentum and coordinate σ deriva-
tive: iμ → πμ and kμ → κx ′μ. The generalized currents
now reduce to JC(u,a) = uμπμ + aμκx ′μ and JR(v,b) =
vμπμ+κbμx ′μ. It is easy to verify that these currents remain
invariant under exchange of momenta and winding numbers,
provided that we also change the coefficients in the particular
way JC(u,a) ↔ ũμκx ′μ + ãμπμ = JC(ã,ũ). Therefore, we
conclude that these currents are T-dual to themselves. They
give rise to the Courant bracket, the untwisted one, which
does not contain any fluxes.

It is interesting that both charges QC(u,a) and QR(v,b) can
be expressed as the self T-dual symmetry generators in the
form

G =
∫

dσ
[
ξμπμ + �̃μκx ′μ]

. (6.1)

It is easy to show that if we define the new gauge param-
eter �μ = �̃μ + 2Bμνξ

ν , the generators (6.1) are charges
QC(ξ,�); if we define ξ̃ μ = ξμ + κθμν�̃ν the generators
are charges QR(ξ̃ ,�̃). Momenta πμ are generators of general
coordinate transformations and x ′μ generators of local gauge
transformations δ�̃Bμν = ∂μ�̃ν − ∂ν�̃μ, while ξμ and �̃μ

are their corresponding parameters. These generators were
studied in [28], where it was shown that general coordinate
transformations are T-dual to gauge transformations.
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dH3MKa. 

iporpaM: 

lIpema CTaTyTy ¢aky.1TeTa cTy/11je Tpajy (6poj roiuna): TpH. 
POR 3a 3aspiiieTak CTY1ja: y ABOCTPykOM Tpajalby CTyAuja. 

OBO ce yBepe»e MOxe ynorpeQHTH 3a pery.nncane BojHe oÑaBese, H3naBatse BH3e, npaBa Ha aeunjH no1aTak. I1opoiHuHe 
ICH3Mje. 1HBaim1CKOr a01aTKa. 1061jaba 3apaBCTBeHe Kib1*nue, nerwTuMauje 3a no.1auheny BOK»y H CTHIeHAJe. 

OB1auheno iHue þaxynTeTa 
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bpoj 2472015 

beorpa, 29.10.2015. roanHe 

Ha ocHOBy 4/1aHa 99. 3akOHa o BHcOKOM 06pa30Basy ("CA. r1acHHK Penyönnke 
Cponje» Qpoj 76/05). u Y1aHa 9. n 184. CTaTyTa Du3nKor haky.IreTa (Qpoj 442/1l on 
10.10.2006 1aTe carnacHOCTH YHHBep3HTeTa y beorpaiy opoj 02 612-1852 on 
29.01.2007). y cKiany ca lIpaBM.IHHKOMO caipxajy n oóHKy oÑpa3aua jaBix HcnpaBa koje 
1'3/1ajy BucoKouIKOJCke ycTaHOBe ("C1. riacHHK Peny6iHke Cpõuje» Qpoj 21/06, 66/06 n 
8/07) 13naje ce cieiehe 

BEPE H» E 

MBAHMIIIEBHh (30PAH) MIH1JA poheln-a 17.07. 1991. roMIey Mocrapy. 
Mocrap. Penyónuka bocHa n XepiueroB1na ynuca1-a lkO.ICKe 2014/2015. roanHe, 
3aBpuino-1aje AuiOMCKe akaiemCke CTYAHJe CTYAHJe Apyror CTenena (MacTep) Ha 
CTyAMJCKOM IIporpaMy D13HIKOr (paky ITETa yHMBep3HTeTa y beorpany, cMep: 

TEOPHJCKA H EKCTIEPHMEHTAJIHA DM3HKA. 1aHa 16. oKTO6pa 2015. roawHe, ca 
npoceyHoM OUeHOM 9,67 (1eBeT H 67/100) y TOKy CTYHja H noCTHrHyTHM YKyIHMM OpojeM 
60 ECITB (uie31eceT ECTI 6o1OBa) 1 TIMe CTeKaO0-1a BHCOKO OÑpa30Balbe n akajeMckH 

Ha3HB: 

MACTEP ÞM3HYAP 

BepeHe ce n3naje Ha nnuHH 3aXTeB, a cay*M kao AoKa3 o 3aBpweHoj cTpyyHOj 

cnpeMn AO H3JaBaHa AunnoMe. 

AEKA H 

o. ap JaÑnaH AojuunoBuh 



EY6 Peny onKa Cpõuja 
7 7 HHBep3HTeT y beorpa1y 

T H3HYKH ÞakyTeT 

/8016 e bpoJ Bpoj HHJeKca: 

KH O JaryM: 24.11.2017. 

Ha ocHoBy HiaHa 29, 3akOHa o onUTeM }IpaBHOM noCTynKy Ciy KoeHe EBHAeHLIMJE H31aje ce 

YBEPEHbE O IOJIOKEHMM MCIIHTHMA 

M.mja HBannwesnh, MMe je1Hor ponuresba 3opaH. poheH 17.07.1991.roauHe, MoCTap. PenyQnHKa Cpncka, bocHa 

XepueroBIHa. y nucan wkoacke 2015/2016. roauHe Ha aoKTopCKe akaaemcke cTyaHje. ukonCKe 20 17/2018. ronMHe 
yIMCaH Ha craryc duHaHcupaHbe H3 QyueTa. CTy2njcKH nporpam Du3HKa, TOKOM CTyAnja nonoxHo Je HenHTe H3 

Cnenehnx npenMeTa: 

P.6p. Illuopa Wasis peIMeTa Oueua ECNb doma qacoßa** laryM 

15:8-0+0) 
8 (oca) 15 1:(8+0+0) 

30(0+0+ 12) 
l1:(0+0+12) 

15 l::8+0+0) 
15 IV8+0+0) 

I:(0+0+12) 

01:0-0+12) 

8 (ocaM) 30.09.2016. IC1511E4 
2 IC15ITF8 

BaHTHa Teopnja i pi.ijeHiiuIN 0bil 

CyiepcnMCTpHJe 01.11.2016. 

3/1C1SoPHI Pal Ha iOKTOpary .1eo |. 

C15tE9 
CISTIFl0 

09.10.2017. 
27.10.2017 

Teopuja eTpyHa 10 (1eceT) 

HeroMy TaT MBIa rCOMeipuja H npuMeHe) þinsiiu 10 (1eceT) 

1C15PI: Pl H KIopaT) 2. ic 

eKBBaTeiiupan/upiuHar ICr 
** - DOH TCOBa Jey tþopmaary (npeaBait»itBexierc rLnu) 

OnuTH yenex: 9,00 (neBeT H 00/100), no roalHaMa CTy1ja (8.00. 10.00. ). 

G 
OB1heHO nHue ¢aky.nTeTa 

Tpana I o1 | 



AOKTOPCKE CTYAMJE 
ELillilITi 

WKOnCKa rogMHa NPEANOr TEME AOKTOPCKE AMCEPTALMJE 

KONETIVMY AOKTOPCKMX CTYAMJA 20 20/202 

nogauM o CTYAeHTy

Mme 
HayuHa obnaCT AMcePTaunje

npe3nme MBAHHLUEBu BA HTHA nOJbtG uLE u TPhS4 Tekwa 6poj mwaexca8016/2015 

Nogaun O MeHTOpy AOKTOpCKe AMceptaynje 

HayyHa oónaCT 
TAGuiPLu)A UbyuLA Mme 

3Bate oLTOP 
pe3nme ARup, 03u5 

IHCTHTYMja |VHCTUTYr 1A puey_ 
Npeanor TeMe AOKTOopcke AMcepraunje 

Hacno8 

CoURANT ALGEBROIDS IN BOsONIC STRiNG THEoRY 

(wvRT ofsn tureGpbua y 5o3oHCh T GOMJ u Cipy n4) 

Ya npujaøy TeMe aoKTOpcke aucepTaunje Konerujymy AoKTOpcKMx CTyAMja, noTpe6Ho je npwnoWTM 
Chegeha AOkyMeHTa: 

1. CeMnHapckn paA (Ay*MHe Ao 10 CTpaHMua)

2. KpaTKy cTpy4Hy 6norpaowjy nMcaHy y Tpehem nnuy jeaHMHe 
3. DOTOKonnjy wHAeKca ca AoKTOPCKMX CTyAMja 



NOTnc MeHTOpaAue t ataipbK 
Aarym 0. O9. 2021 lOTnnc cTyAeHTa Ct ee 

MMubekbe Konernjyma gOKTopCKMx CTYAMja 

HaxoH 06pa3nokeHba Teme AOKTOpCKe AuceprauMje KonernjyM AOKTOpCKMX CTYAMja je TEMy 

npxBaTHO HMje npuxBaTno 
aryM 

popekaH 3a Hayky Dn3nKor paxynreTa 


