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Mpeamer: MokpeTare NOCTyNKa y 38arke UCTPAXUBAY CapagHUK

Monum Hayuro sefhe MHcTUTyTa 3a huauky y Beorpaay Aa nokpeHe noctynak 3a moj usbop
y 38ate UcTpaxusay capagHuk, umajyhv y Buay Aa ucnywaeam CBe kputepujyme
nponucaHe og cTpaHe MUHUCTapCTBa NPOCBETE, HayKe 1 TexHonoLKor pa3eoja Peny6bnuke
Cpbuje 3a ctuyarse Tor 3samba.

Y npunory gocraeram:

1.

O NOOALON

MULWIbEHE PyKOBOAMOLIA NPOojeKTa ca NpeanoroM Komucuje 3a usbop y 3sate;
CTpY4Hy Brorpadujy;

nperneg Hay4dHe akTUBHOCTN;

cnucak u konuje o6jaBrseHUX HayYHUX pafoBa;

yBEPEHE 0 NOCNEAHEM YNUCAHOM CEMECTPY Ha AOKTOPCKUM CTYAMjamMa;
dhoTokonuje yBepera 0 3aBpLUEHUM OCHOBHUM W MacTep cTyaujama;

yBEPEHE O MONOXEHUM UCNNTUMA Ha AOKTOPCKUM CTyaujama;

NoTBPAY O NpuXBaTaky TEMe AOKTOpPCKe Anceprauuje.

C nowtoBamem,

o ——

' Wnwja UesaHnwesuh



HayuyHomMm Behy UHcTUTyTa 3a dm3nky y Beorpaay

MpeameT: Muwbense pykosoguola naboparopuje o n3bopy Unuje BaHnwesmnha
Yy 3Bamb€ UCTpaxunsad capagHuK

NUnnja NeaHuwesnh , pohen 17.07.1991. rognHe y MocTapy, je ynucao
AOKTOpCKe akageMmcke ctyamnje dusunukor dakynteta YHuBep3uTeTa y beorpaay y
wkonckoj 2018/2019. roauHu. MNonoxuo je cee ucnute Ha cMepy KBaHTHa nosba,
yectmue W rpaBuTaumja W ycnewHo oabpaHMo npeanor TemMe AOKTOpCKe
avceptaumje  noa HacnosoMm Courant-oBu anrebpouan y 6030HCKO] Teopujn
cTpyHa npea KonernjymoMm AOKTOPCKUX CTyAnja. MeHTOp AOKTOpCKe AucepTtaunje
je ap Jbybuua Aasngosnh, BULIX HAYYHW CapagHUK VIHCTUTYTa 3a PU3KKY.

Nnnja MeaHnwesuh je oan 2018. roanHe 3anocneH y pynu ca pusumky
rpasutaumje, dyectmua n nosba MHCTUTYTa 3a du3uky rae ce 6asu npobnemMmnma
Be€3aHWMM 3a Teopujy cTpyHa. Nnuja UBaHnwesnh je oo caga objaBno Tpu Hay4Ha
paga kaTteropuje M21. Kao wTo ce BMAM U3 MNPUIOXKEHOr MaTepujana, OH
3aj0BO/baBa CBe npeasuheHe ycnose y cknagy ca lNpaBUIHWMKOM O MNOCTYMKY,
HauMHy BpeAHOBaka W KBAaHTUTAaTUBHOM WCKa3MBakwy HAYYHO-UCTPaKMBAUKUX
pesynTtaTta uctpaxusada MmMHMCTapcTBa NpocBeTe, HayKe U TEXHOOWKOr pa3Boja
Bnagpe Penybnuke Cpbuje, 3a u360p y 3Bambe WUCTpaXmBad capagHuK, Te
npeanaxem HaydHoM Behy WHCTUTYTa 3a GU3MKY Aa nokpeHe wusbop Wnuje
MBaHuweBMha y NOMeHYTO 3Bare. 3a 4YlaHOBe KoMmucuje npeanaxem cnegehe
NUcTpaxupave:

1. op bojaH Hukonuh, BUWK Hay4yHU capagHUK, NHCTUTYT 3a HU3UKY
2. ap Jbybuua fasuaosuh, BUWKM HAYYHU capagHUK, MHCTUTYT 3a pU3UKY

3. npod. ap Boja PagosaHoBuh, penoBHu npodecop dusnykor dakynrtera

Beorpag, 27.12.2021.
Ap bpaHucnas LiBeTkosuh
Pykosogunauy N'pyne 3a ¢pu3unKy rpasmTtaumje, 4yectmua v nosba

NHCTUTYyTa 3a pusunky

C(:} Qs (»uziz (L)r“w( &-4'



buorpadmuja

WNnuja MBanumesuh pohen je 17.07.1991. ronune y Moctapy. 3aBpmmo je MaremaTtinuky
rumHasznjy 2010. rogune. Jumiomupao je Ha Puszmukom dakynrety 2014. roguHe ca
npocedyHoM oreHoM 9.66. Hapenne rogune Ha UCTOM (PaKyaTeTy MacTepUpao je ca TEMOM
“T-myanu3anuja y 3aKpuBJbEHOM TpocTopy”. TOKOM IIKOJIOBama OWO je CTHUTICHAWCTA Ipaja
Bbeorpana (2007-2010), MunucrapcTBa MpoCBeTe, HayKe U TEXHOJOIIKOT pa3Boja Pemybnrke
Cpobuje (2010-2013, 2015-2016) u ®onpna 3a mumane tanente (2014-2015).

Jloktopcke crynuje w3 HaydHe oOmactu KBaHTHa 1osba, YECTHIIE W TpaBHUTAallMja YIUCYje
2015. rogure. [Tonoxuo je WcnuTe Ha JOKTOPCKHUM CTyAHMjaMa ca IMPOCEYHOM oreHoM 9. Ox
2018. 3amocnen je Ha MHCTUTYTY 32 (DU3HKY e o MeHTOpcTBOM ap. Jbyoune JlaBumosuh
paau Ha wu3ydaBamy Teopuje cTpyHa. Jlo cama je 00jaBUO TpuU pana y BPXYHCKHM
MehynaponuuM vaconucuma (M21 xareropuja). IIpen Konerujymom DOKTOpCKHX CTyduja
@usnukor ¢axynrera 010paHUO je TeMY TOKTOpCKe AucepTanuje noa HasuBoM “Courant-oBu
anredpous y 6030HCKO] TEOPHjU CTpyHa .

3a Bpeme cryaumja, Unuja je mpencrtaBibao YHuBep3uTeT y beorpamy Ha melyHapomHum
YHHUBEP3UTETCKUM Je0aTHUM TakmMuuewuma. OcTBapHo je OpojHe ycrexe, MoOeAuBIIN Ha
MIPEKO JIeCeT TaKMHUUEeHha M IUIaCHpaBIIU ce y ¢uHajge EBporckor yHUBEp3UTETCKOT Ae0aTHOT
npBeHcTBa y Tanmuay 2017. ['oBopH €HITIECKH, HEMAuKH U PPAHITYCKH je3HUK.



IIpernen HayyYHe AaKTUBHOCTH

WNnuja NBanumesuh 6aBu ce n3ydaBameM 0030HCKE TeopHje cTpyHa. KOHKpETHO, H3y4daBameM
CUMETpHMja M HHUXOBUX Be3a ca T-nyanHomhy. 3a Te morpebe, KOPUCTH ce MeTonama
reHepajiicaHe TeOMEeTpHje, y KO0joj Cy TAaHTeHTHO M KOTAHI'€HTHO paciiojele OMHMCAaHU Ha
jenuHcTBeH HauwH. Mnuja ce 1o canga 6aBuo onpehuBameM anredpe cuMeTpurja reHeparopa y
no4eTHoj, T-yanaHoj U Tymiioj TEOPUjH, Kao U Yy TEOPUjU MHBAPUjaHTHO] Ha T-IyaqHOCT.

Y npBOM pajy, yCTaHOBJBEHO j€ J1a CY JIBE 3arpajie Ha FTeHepauCaHOM TaHTCHTHOM Paciiojehy
noBe3ane T-gyamHum Tpancdopmarmjama. [Tokazano je ga anreOpa Haboja cTpyja y curma
Moneny naje Courant-oBy 3arpamy. Takohe, ycraHoB/beHO je Ja Kadga ce Haboju
TpaHchOpMHUIILy Tako Ja ce MoJba 3aMeHe T-ayanHuM mosbuMa y3 T-ayanHy TpaHchopMariujy
KaHOHCKHUX Bapujabmu, noduja ce Roytenberg-osa 3arpana.

Y HapemHoM panay, KOHCTpYHCaHa j€ CKCTCH3HMja TEeHeparopa CHMETPHje, TaKO IITO je
re’Heparopy audeomopduzama 101aT reHepaTop JOKATHUX T'paujeHTHUX TpaHcopmalyja. Y
MOYETHO] TEOPpHjH, NoKa3aHo je na Poisson-oa anredpa takBor reHeparopa naje Courant-oBy
3arpagy nedopmucany nojbeM B, nox y T-myanHoj Teopuju anredapcke penaimje reHeparopa
najy Courant-oBy 3arpany nedopmucany mosjseM 6, koje je T-myamHo nosey B. Pesynraru cy
TeHEepaJIMCaHu Ha AYIUTy TEOpH]jy, IJIe j€ MOKa3aHo Jia ajaredpa reHeparopa CUMETpPHje /Iaje
C-3arpany.

Nnwuja ce Takohe 6aBHo M3ydaBameM reHepaTopa MHBApHjaHTHUX Ha T-IyaqHOCT, aju Tako /aa
BUXOBa ajredpa caipku cBe (IIyKCeBE PEIEBAaHTHE 3a TEOPU]y CTPyHA. Y TaKBOM IOIyXBaTy,
1o MpBH IyT ofpeleH je u3pas 3a Courant-oBy 3arpana cumynrano aedopmucany u ca B u ca
0, mTo je ob6jaBsbeHO y Tpehem pany. JomatHo, mponaheH je edukacaH MeTom KOjUM ce
Courant-oBa 3arpaga Moxe nedopMucaTd OWIO KOJUM IOJBEM M peIpe3eHTalja TakBe
3arpajie oapenuTH u3 Poisson-oBux 3arpaja reHeparopa 3anicaHor y peJieBaHTHOM 0a3Hucy.

VY HacraBky uctpaxuBamy, Unmja he ce 6aBut onpehuBamem Dirac-oBux cTpykrypa 3a cBe
3a Teopwjy CTpyHa peneBanTHe Courant-oBe anreOpomae, Kao W TEHEpaIU3alljoM
nepopmucanux Courant-oBux 3arpaja Ha JAyIUIM TNpocTop, HacTojehu pa oxppenu
nedopmucane C-3arpase.
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ABSTRACT: We consider the symmetries of a closed bosonic string, starting with the general
coordinate transformations. Their generator takes vector components £ as its parameter
and its Poisson bracket algebra gives rise to the Lie bracket of its parameters. We are going
to extend this generator in order for it to be invariant upon self T-duality, i.e. T-duality
realized in the same phase space. The new generator is a function of a 2D double symmetry
parameter A, that is a direct sum of vector components {#, and 1-form components \,.
The Poisson bracket algebra of a new generator produces the Courant bracket in a same
way that the algebra of the general coordinate transformations produces Lie bracket. In
that sense, the Courant bracket is T-dual invariant extension of the Lie bracket. When
the Kalb-Ramond field is introduced to the model, the generator governing both general
coordinate and local gauge symmetries is constructed. It is no longer self T-dual and its
algebra gives rise to the B-twisted Courant bracket, while in its self T-dual description, the
relevant bracket becomes the #-twisted Courant bracket. Next, we consider the T-duality
and the symmetry parameters that depend on both the initial coordinates x* and T-dual
coordinates y,. The generator of these transformations is defined as an inner product in a
double space and its algebra gives rise to the C-bracket.
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1 Introduction

The Courant bracket [1, 2] and various generalizations obtained by its twisting had been
relevant to the string theory since its appearance in the algebra of generalized currents [3—
6]. It represents the generalization of the Lie bracket on spaces of generalized vectors,
understood as the direct sum of the elements of the tangent bundle and the elements of
the cotangent bundle. Although the Lie bracket satisfies the Jacobi identity, the Courant
bracket does not. Its Jacobiator is equal to the exterior derivative of the Nijenhuis operator.

It is well known that the commutator of two general coordinate transformations along
two vector fields produces another general coordinate transformation along the vector field
equal to their Lie bracket. Since the Courant bracket represents its generalization, it is
worth considering how it is related to symmetries of the bosonic string o-model.

In [7], the field theory defined on the double torus, and its symmetries for restricted
parameters were considered. The double space is seen as a direct sum of the initial and
T-dual phase space, and the background fields depend on both of these coordinates. The
symmetry algebra is closed only for restricted parameters, defined on the same isotropic
space, in which case it gives rise to the C-bracket as the T-dual invariant bracket. The
C-bracket [8, 9] is the bracket that generalizes the Lie bracket on double space.

In this paper, we analyze the general classical bosonic string o-model and algebra of
its symmetries generators, where both the background fields and symmetry parameters
depend only on the coordinates x#. We firstly consider the closed bosonic string moving



in the background characterized solely by the metric tensor. We extend the generator of
the general coordinate transformations so that it becomes invariant upon self T-duality,
understood as T-duality realized in the same phase space [6]. We obtain the Courant
bracket in the Poisson bracket algebra of this extended generator. The Courant bracket is
therefore a self T-dual invariant extension of the Lie bracket.

Furthermore, we consider the bosonic string o-model that includes the antisymmet-
ric Kalb-Ramond field too. The antisymmetric field is introduced by the action of B-
transformation on the generalized metric. We construct the symmetry generator and recog-
nize that it generates both the general coordinate and the local gauge transformations [10].
In this case, the symmetry generator is not invariant upon self T-duality and it gives rise
to the twisted Courant bracket. The matrix that governs this twist is exactly the matrix
of B-shifts.

Next, we consider the self T-dual description of the theory, that we construct in
the analogous manner, this time with the action of #-transformation, T-dual to the B-
transformation. We obtain the bracket governing the generator algebra that turns out to
be the §-twisted Courant bracket, also known as the Roytenberg bracket [4, 11]. The twisted
Courant and Roytenberg brackets had been shown to be related by self T-duality [6].

Lastly, we consider the more conventional T-duality, connecting different phase spaces.
We generalize our results, by demanding that the symmetry parameters depend on both
the initial and T-dual coordinates. We consider the symmetry generator that is a sum
of the generator of general coordinate transformations and its analogous generator in the
T-dual phase space. In this case, additional constraints, similar to the ones in [7-9],
have to be imposed on symmetry parameters, in order for the generator algebra to be
closed. We extend the Poisson bracket relations for both initial and T-dual phase spaces
and obtain the generator algebra, which produces the C-bracket. The C bracket is the
generalization of the Courant bracket when parameters depend on both initial and T-dual
coordinates. The invariance upon T-duality is guaranteed from the way how the bracket
is obtained. If parameters do not depend on T-dual coordinates, C-bracket reduces to the
Courant bracket.

2 Bosonic string moving in the background characterized by the metric
field

Consider the closed bosonic string, moving in the background defined by the coordinate
dependent metric field G, (x), with the Kalb-Ramond field set to zero B, = 0 and the
constant dilaton field ® = const. In the conformal gauge, the Lagrangian density is given
by [12, 13]

K

£=3

naﬁGuV(x)aa:EHaﬁfEV > (2.1)

where 2#(&), p = 0,1,...,D — 1 are coordinates on the D-dimensional space-time, and

n*®, «, B = 0,1 is the worldsheet metric, €' = —1 is the Levi-Civita symbol, and x = ﬁ

with o’ being the Regge slope parameter. The Legendre transformation of the Lagrangian



gives the canonical Hamiltonian

1
HC:MW—L:ZfAGﬂWm+gMGW#Q (2.2)

where 7, are canonical momenta conjugate to coordinates x#, given by
oL

= g

The Hamiltonian can be rewritten in the matrix notation
1
2K

= kG (x)T". (2.3)

He XOHMG XN, (2.4)

where XM is a double canonical variable, given by

xM = (”W> : (2.5)

Th

and Gy is the so called generalized metric, that in the absence of the Kalb-Ramond field

GuN = (G(;W (G—Ol);w> . (2.6)

In this paper, we firstly consider the T-duality realized without changing the phase

takes the diagonal form

space, which is called the self T-duality [6]. Two quantities are said to be self T-dual if
they are invariant upon

k't < m,, G o "G = (GTHM (2.7)

The first part of (2.7) corresponds to the T-duality interchanging the winding and mo-
mentum numbers, which are respectively obtained by integrating xz'* and m, over the
worldsheet space parameter o [14]. The second part of (2.7) corresponds to swapping the
background fields for the T-dual background fields. Our approach gives the same expres-
sion for the T-dual metric as the usual T-dualization procedure obtained by Buscher in the
special case of zero Kalb-Ramond field [15-17].

2.1 Symmetry generator

Let us consider symmetries of the closed bosonic string. The canonical momenta 7, gen-
erate the general coordinate transformations. The generator is given by [10]
2

Gaor(§) = A do&t(z)m,, (2.8)

with £ being a symmetry parameter. The general coordinate transformations of the metric
tensor are given by [7, 10]
0¢Guy = LGy (2.9)

where L is the Lie derivative along the vector field £. Its action on the metric field is

LcGhy = Dby + Doy, (2.10)



where D,, are covariant derivatives defined in a usual way

D,ugu = ,ufu - Ffwgpa (2'11)

and I't, = $(GTY(0,Gpe + 8,Gop — 05G,p) are Christoffel symbols. It is easy to verify,
using the standard Poisson bracket relations

{z"(0),m (o)} = 0", 6(c — ), (2.12)
that the Poisson bracket of these generators can be written as

{QGCT(&), QGCT(€2)} = —QGCT([§1,§2]L> , (2.13)

where [£1, &2 is the Lie bracket. The Lie bracket is the commutator of two Lie derivatives

(1, &)L = Le&o — Le&1 = Ley (2.14)

which results in another Lie derivative along the vector &5, given by

é’:: 511/ ufg _£2V I/fil‘ (2.15)

Let us now construct the symmetry generator that is related to the generator of general
coordinate transformations by self T-duality (2.7)

2
Gra(A) = ; da)\u(x)ﬁx’“, (2.16)

where A\, is a gauge parameter.
The symmetry parameters (¥ and A, are vector and 1-form components, respectively.
They can be combined in a double gauge parameter, given by

_ (¢
AM = (A) . (2.17)

The double gauge parameter is a generalized vector, defined on the direct sum of elements
of tangent and cotangent bundle. Combining (2.8) and (2.16), we obtain the symmetry
generator that is self T-dual (2.7)

27 27
G(£,0) = Gaer(€) + Gra(A) = /O da[{“?ru—f—/\umc/“] = /0 do(ATY My n XN, (2.18)

where nyry is the O(D, D) invariant metric [18], given by

NMN = <(1) (1)> . (2.19)

The expression (AT)M nun XY can be recognized as the natural inner product on the space
of generalized vectors
(AMOXNY = (ATYM v XN (2.20)



We are interested in obtaining the algebra of this extended symmetry generator (2.18),
analogous to (2.13). Using the Poisson bracket relations (2.12), we obtain

{06 0). 962 00)} = [ do[mu(es0,60 — 0,860 + ra (€0 M, — 0] (221)
+ / dodar [ My (0)€4(3) + Aou(@)EL ()] D00 — ).
In order to transform the anomalous part, we note that
D,3(c — &) = %806(0 _5)— %aﬁa(a _5), (2.22)

and

[(3)0,6(c —G) = f(0)0s6(c —G) + f(0)d(0 — 7). (2.23)
Applying the previous two relations to the right hand side of (2.21), one obtains
{g(ﬁl, A1), G(&2, >\2)} =-G(&N), (2.24)
where the resulting gauge parameters are given by
" =10,y — E50uEY (2.25)
N = & Do — 0d) — B DM — ) + Lou(E ke — ).

These relations define the Courant bracket [(£1, A1), (&2, A2)]c = (&, ) [1, 2], allowing us
to rewrite the generator algebra (2.24)

{9(51,/\1)7 9(52,/\2)} =-G <[(51,)\1)7 (52,)\2)}6) : (2.26)

The Courant bracket represents the self T-dual invariant extension of the Lie bracket.
In the coordinate-free notation, the Courant bracket can be written as

(€1, 0), (&2, Az)}c = ([60. &z, Ledo — Lehi — %d(i&)@ —ig M) ) s (2.27)

with i¢ being the interior product along the vector field £, and d being the exterior deriva-
tive. The Lie derivative L¢ can be written as their anticommutator

Le =t¢d+ dig . 2.28
§= % 3

The Courant bracket does not satisfy the Jacobi identity. Nevertheless, the Jacobiator
of the Courant bracket is an exact 1-form [20]

(A, [l62.20) (&0, %0)] |+ evd = oy (do)= 0. (2.29)

However, if one makes the following change of parameters A\, — A, + 0,9, the genera-
tor (2.18) does not change

GEA+Op) =G(E,N) + K ; o'do =GN, (2.30)



since the total derivative integral vanishes for the closed string. Therefore, the deviation
from Jacobi identity contributes to the trivial symmetry, and we say that the symmetry
is reducible.

The theory with the metric tensor was already discussed in [19], where it was proven
that the invariance under both diffeomorphisms and dual diffeomorphisms requires the
introduction of the Kalb-Ramond field. In our approach, if we want to include the T-dual
of the general coordinate transformation in the same theory, we obtain the local gauge
transformation that constitutes a trivial symmetry, since 6\G,,, = 0 [7, 10]. Therefore,
it is necessary to include the Kalb-Ramond field, in order to have non-trivial local gauge
transformations, which we do in the next section.

3 Bosonic string moving in the background characterized by the metric
field and the Kalb-Ramond field

In this section, we extend the Hamiltonian so that it includes the antisymmetric Kalb-
Ramond field. It is possible to obtain this Hamiltonian from the transformation of the gen-
eralized metric Gyn (2.6) under the so called B-transformations. The B-transformations
(or B-shifts) [20] are realized by B, where

. 0 0
BM — ) 1
N <2BW 0) (3.1)

As a result of B2 = 0, the full transformation is easily obtained

; 50
(") = <QBW 55) - (3.2)

Its transpose is given by

from which it is easy to verify that
((GB)T)J\f NKL (GB)LN =1MN ; (3.4)

meaning they are the elements of the O(D, D) group.
The transformation of generalized metric Gy (2.6) under the B-shifts is given by

Gun — (e®))) Grq (eP)% = Hun, (3.5)
where Hjsy is the generalized metric

GE —2B,,(G~H)rv
_ mz 1P
HMN — (2(G1)upoy (Gfl)/“, ) (36)
and GE is the effective metric perceived by the open strings, given by

v

Gl =Gu —A(BG™'B) . (3.7)



It is straightforward to write the canonical Hamiltonian

N 1

He = %(XT)MHMNXN (3.8)
1

- %WM(G*)WWV +

R

5 x'“GEVx’” — 2x’”Bup(G*1)p”7r,, ,

as well as the Lagrangian in the canonical form

L(i, 2 7) = mit — Hol(a!, ) (3.9)
K

5 w'“Gfo'” + 2$/NB#p(G_1)pV7T,,.

= m,at — ﬂﬂ#(G_l)ij

On the equations of motion for m,, we obtain
7y = KG i’ — 26B,2" . (3.10)

Substituting (3.10) into (3.9) we find the well known expression for bosonic string La-
grangian [12, 13|

L(i,z') = ga':“GWj;” = gx'“GWx”’ — 2k B2’ = k01 a1, 0-2” (3.11)
1 .
H:I:ul/ = B/,Ll/ + §Gp,V7 a:l:ﬂfu =gt + 1,‘/‘“ .
It is possible to rewrite the canonical Hamiltonian (3.8) in terms of the generalized

metric G sy, that characterizes background with the metric only tensor. Substituting (3.5)
into (3.8), we obtain

Ho = o (X)) Grer (P XY =

1

2E(XT)M Gun XV, (3.12)

where

XM _ (63)% XN _ < Kka'P ) _ </<.'/'1"M> 7 (3.13)

Ty + 26By, "

with 4, being the auxiliary current, given by
iy =Ty + 26B (3.14)
The algebra of auxiliary currents i, gives rise to the H-flux [6]
{in(0),i,(0)} = —26Bp2'Pé(c — 7), (3.15)
where the structural constants are the Kalb-Ramond field strength components, given by

Bywp = 0uByp + 0 Bpy + 9B - (3.16)



3.1 Symmetry generator

Let us extend the symmetry transformations of the background fields for the theory with
the non-trivial Kalb-Ramond field. The infinitesimal general coordinate transformations
of the background fields are given by

0¢Guy = L¢Ghy, 6¢Buy = LeBuy (3.17)
where the action of the Lie derivative £¢ (2.28) on the Kalb-Ramond field is given by [10]
EiB/w = fpapBW + 8u§pov - avprﬂu ) (3'18)

while its action on the metric field is the same as in (2.10). The local gauge transformations
of the background fields are [10]

0NZGu =0, 03By = 0uhy — O\, (3.19)

Rewriting the symmetry generator G(£, A) (2.18) in terms of the basis defined by com-
ponents of XM (3.13), one obtains

A

66 ) = [ do(aT) men XN = [ (AT ()T s () i XN

= /dU(AT)MUMNXN, (3:20)

where (3.4) was used in the last step, and AM is a new double gauge parameter, given by

M _ o B\M AN _ [ 00 0 (&) _ 3 _ (&
AT = (B NAT = <23W 5,3) <Ay> B ()\u +ZBW£”> - (X) ‘ (3:21)

We are going to mark the right hand side of (3.20) as a new generator
OV /da (i + A (3.22)

which equals the generator (2.18), when the relations between the gauge parameters (3.21)
are satisfied G(£, \ — 2B,,£") = gé(g, A). The expression (3.22) exactly corresponds to
the symmetry generator obtained in [10], where £ are parameters of general coordinate
transformations and j‘u are parameters of local gauge transformations, that respectively
correspond to transformations of the background fields (3.17) and (3.19).

Our goal is to obtain the algebra in the form

> ~

{93(517 A, 93(52,5\2)} =GB, N, (3.23)
where
Nip = Nip — 2B €Y i=1,2; A\, =X\, —2B,¢", (3.24)

due to (3.21). The Poisson bracket between canonical variables (2.12) remains the same
after the introduction of the Kalb-Ramond field. Therefore the results from previous
section, as well as mutual relations between coefficients in different bases can be used to



obtain the algebra (3.23). Firstly, substituting (3.24) into the second equation in (2.25),
one obtains

~ ~ ~ ~ 1 ~ ~
A = & (Ao = Oudar) = & (DA = Oudi) + 50u(E1he — ©A1) (3.25)
+23;wp£1V§§ - QB;W(flpanQV - ggaﬂgly) .

Secondly, substituting the previous equation in (3.21), one obtains
6“ = ‘511/81/65 - 512/81151L s (3-26)
E\ v 1 B\ v E\ N 1 B\ B\ v
)\;4 = 51 (au)\2u - a[l,AQV) - §2 (auAlu - 8,u)\ll/) + iaﬁb({l)\Q - 62)\1) + 2Buup§1 55 .

The above relations define the twisted Courant bracket [(£1, A1), (€2, A2)]e, = (£, ) [21].
This is the bracket of the symmetry transformations

{93(51,5\1), 93(52,5\2)} S ({(51,5\1), (52,5\2)}63) ; (3.27)

in the theory defined by both metric and Kalb-Ramond field.
In the coordinate free notation, the twisted Courant bracket is given by

(€802 h)], = (1661 Lo da—Ladi—jdli ha-igh) +H(E.6.) ) . (329

where H (&1, &2, .) represents the contraction of the H-flux H = dB (3.16) with two gauge
parameters &1 and &. This term is the corollary of the non-commutativity of the auxiliary
currents i, (3.15), due to twisting of the Courant bracket with the Kalb-Ramond field. In
special case when the Kalb-Ramond field B is a closed form dB = 0, the twisted Courant
bracket (3.28) reduces to the Courant bracket (2.27). This can also be seen from the well
known fact that B-shifts (3.2) are symmetries of the Courant bracket when B is a closed
form [20].

4 Courant bracket twisted by 6+

When both the metric and the Kalb-Ramond field are present in the theory, the expressions
for T-dual fields are given by [15]

K
G o= (GZY )M, *BM = o, 4.1
Gz : (4.1)
where 0" is the non-commutativity parameter for the string endpoints on a D-brane [22],
given by
2 - _ g
0 = —= (G5 By (G (4.2)

We say that two quantities are self T-dual, if they are invariant under the interchange [6]
0 K, Gy (G5, By ¢ gew. (4.3)

When the Kalb-Ramond field is set to zero B,, = 0, (4.3) reduces to the self T-duality
transformation laws in the background without the B field (2.7).



From the relations (4.3), it is apparent that the introduction of Kalb-Ramond field
breaks down the self T-duality invariance of the symmetry generator (3.22). To find a
new self T-dual invariant generator, we will analogously to the prior construction start
with the background containing only T-dual metric. The Hamiltonian in the metric only
background, similar to (2.2), reads

1
“He = 5-mu(G5)"m + gxl“nyx/V = (XTYM *G oy XN, (4.4)
where *G sy is the T-dual generalized metric for the above Hamiltonian, given by
GE, 0
*G = M . 4.5

Note that the self T-duality is realized as the joint action of the permutation of the coor-
dinate o-derivatives with the canonical momenta and the swapping all the fields in (2.6)
for their T-duals. This is equivalent to the Buscher’s procedure [15-17], when it is done in
the same phase space.

In order to construct the Hamiltonian in the self T-dual description, we consider
how the T-dual generalized metric (4.5) is transformed with respect to the so called 6-

. 0 KoM 02 *BH
N <0 0 ) (0 0 ) (4.6)

The full exponential ef is given by

; 51 ROM
()% @ %>, (4.7)

transformations e’, where

and its transpose by

«&ﬁ$:<55‘j. (4.8)

—KOMY K
They are elements of the O(D, D) group as well, i.e.
(") af mx (€)= nmuw - (4.9)

Under (4.7), the T-dual generalized metric (4.5) transforms in the following way

*Gun = (7)) *Grr(e”)y = "Hun, (4.10)
where . ,
G —2B,,,(G=)PY
*Hyn = v e 4.11
un @w*wmy G )’ ()
which is exactly equal to the generalized metric (3.6). From it we can write the T-dual
Hamiltonian
1
"He = 5 (XM “Hyn XY (4.12)
1 N
= ooml(GT)m, + S G — 207 B, (G m, = e

~10 -



The canonical Lagrangian is given by

“L(m, i, x) = 7@t — Ho(a,7) (4.13)
=m,at — iﬂ'u(G_l)'uVﬂ'V -

P 2$’“GEV:B'” + 2$'“Bup(G_1)p”7r,,,

from which one easily obtains
7y = KGui” — 26B,2" . (4.14)

We see that the canonical momentum remains the same, which is expected, since the self
T-duality is realized in the same phase space. Substituting (4.14) into (4.13), one obtains

Lk, x) = gj:“Gw,:t” — gx'“GW:L"” — 2ki" By, a’’ = kOpaM L4, 0_a" . (4.15)

It is obvious that both the Hamiltonian and the Lagrangian are invariant under the
self T-duality.

In the same manner as in the previous section, substituting (4.10) into (4.12), we
rewrite the Hamiltonian

*77 1 ) * ) 1 - o
?wziﬁxﬁﬁaﬁﬁw(GKmJﬂNXN:Z?W%mmXN, (4.16)
where
N 5 B Quy v I [ B
XM:@%%XNzé?w R\ _ (Rt R0 (R (4.17)
0 4, Ty Ty Ty

and k" is an auxiliary current, given by
k' = ko' + k0" 7, . (4.18)
The Poisson bracket algebra of these currents is obtained in [6]
{kH(0), k" (0)} = —kQ K é(0 — T) — K2RMPT,6(0 — 7)), (4.19)
where ) and R are non-geometric fluxes [23], given by
Q)" = 0,0M, RHFYP = 019 0,0"P + 0Y7 0,0PF + 6P 0,01 . (4.20)
We now define a new double gauge parameter

M _ 0\M AN _ [0 KOMY (€ (& ROA\ _ gr
S R

A~

The generator (2.18) written in terms of new gauge parameters G(§ — KO\, \) = gé(é, A) is
given by

f@mszﬁ%ﬂﬂwﬂ. (4.22)

~11 -



The auxiliary currents i, (3.14) and k* (4.18) are related by the self T-duality rela-
tions (4.3). Moreover, one easily demonstrates that the self T-dual image of the generator
Gb (3.22) is the generator o (4.22).

Like in a previous case, we want to obtain the algebra in the form

{0 M), G (6o, 20) b = —G"(€ ), (4.23)
where from (4.21) we read the relations between the old and new gauge parameters
EF =g kN, i =1,2; EF =P — ROV, (4.24)
Combining (4.24), (2.25) and (4.21), one obtains
¥ = §10,8) — 0,80 + (4.25)
O (éi’(auxgp ~0h) — (0N~ Oph) — gOb(ENs - ém))
+RE D (Map0™) — KES DL (Mpb™) + k(A1) B,pEh — k(A2 0"7) D€L
+RPRMP AL Ao
Aa = & (D Aoy — Budan) — &0, Mu — uhiv) + %%(&Az — &)
+1077(AMpOp Aoy — A2wOpA1p) + KA1pA2 QL7

The relations (4.25) define a bracket [(£1, A1), (€2,A2)]e, = (€, A) that is known as the
f-twisted Courant bracket, or Roytenberg bracket. It is related by self T-duality with the
twisted Courant bracket, when the relations between the fields (4.1) hold [6].

In the coordinate free notation, the #-twisted Courant bracket is given by

52

[(517 M), (&2, )\2)}69 =<[£1,£2}L — K[€a, MO]L + K[Er, Aob]L + ?[9, 05 (A1, A2,.)  (4.26)
1 . .
+ K (,652)\1 - ['51 Ao + Qd(lél)\g — Z&)\l)> 0
1. )
Leda— Lo — pilig da — ig M) — A, AQ]Q) ,

where [0, 0]s(A1, A2, .) represents the Schouten-Nijenhuis bracket [24] contracted with two
1-forms, that when having bi-vectors as domain is given by

[0,60]5"7 = et 07%0,677 = 3R, (4.27)
where
Sk 8% o8
et = |0y o5 ok (4.28)
o8, &t oY

and [A1, A2]g is the Koszul bracket [25] given by
A1, A2o = Lox, A2 — Loa, A1+ d(0(A1, A2)) - (4.29)

The Koszul bracket is a generalization of the Lie bracket on the space of differential forms,
while the Schouten-Nijenhuis bracket is a generalization of the Lie bracket on the space of
multi-vectors.

- 12 —



5 C-bracket

In this section, we will show how our results can be generalized, so that they give rise to
the C-bracket [8, 9] as the T-dual invariant bracket, in the accordance with [7]. Consider
that T-dual theory is defined in the T-dual phase space, characterized by T-dual coordi-
nates y, and the T-dual momenta *m#. They are related with the initial phase space by
T-duality relations [15]

Ty =~ KY,, *rh o~ k't (5.1)

We can define a double phase space obtained as a sum of two canonical phase spaces. Let
us introduce the double coordinate

as well as the double canonical momentum

My = (f;*;) : (5.3)

In this notation, the T-duality laws (5.1) take a form
HM >~ HnMNX/M, (5.4)
where nyry is the O(D, D) metric (2.19).

5.1 DPoisson brackets of canonical variables

The standard Poisson bracket algebra is assumed for both initial and T-dual phase space
{z(0),m (o)} = 6)6(0c —a),  {yulo),"n"(0)} = 6,6(0c — o), (5.5)

with other bracket of canonical variables within the same phase space being zero.

For the remaining Poisson bracket relations, one must use the consistency with T-
duality relations. Firstly, applying the T-dualization along all initial coordinates x*, i.e.
the second relation of (5.1) on the Poisson bracket algebra between coordinates derivatives,
one obtains

{ka' (o), Ky, (o)} = {*"(0), ky,,(0)} = Kd}d' (0 — 7). (5.6)
Similarly, applying the T-dualization along all T-dual coordinates y,,, i.e. the first relation
of (5.1), one obtains

{ka™ (o), kyl, ()} ~ {ka"(0), m,(0)} = k6! (0 — 7). (5.7)

Hence, we conclude
{ra"™(0), kyl,(5)} = noliS' (0 — ). (5.8)

The successive integration along both ¢ and & for the appropriate choice of the integration
constant produces the relation [26]

{kat (o), ky, (o)} = —kdLl(c — ), (5.9)

~13 -



where

6(c) =40 —T<o<T. (5.10)
: o=m7

Secondly, taking into the account T-duality (5.1), the Poisson bracket algebra of mo-
menta is easily transformed into

{mu(0), 7 (0)} = ~{mu(0), 2" (5)} = kL8 (0 — &), (5.11)
when T-dualization is applied along the coordinates y,,, and
{mu(0), 7 (3)} = w{y (@), " (5)} = w343 (0 — &), (5.12)
when it is applied along the coordinates xz*. As in the previous case, we obtain
{mu(0),*7"(6)} = K60/ (0 — 7). (5.13)
In a same manner, it is easy to demonstrate that
{2"(0),*7"(5)} = 0, {yu(0), m, ()} = 0. (5.14)
In a double space, the above relations can be simply written as
{HXM(U), mXN(é)} = —kn™N9(c —5), {Uy(0),IIN(5)} = knund' (0 —F). (5.15)

5.2 Generator in double space

Now let us extend the generator of general coordinate transformations, so that it includes
the T-dual version of that generator

G = [ doG(eN) = [ o6 (w.y)m+ Mty ] (5.16)

where the symmetry parameters £ and A depend on both initial coordinates x* and
T-dual coordinates y,. The generator G(£, \) can be rewritten in terms of double canonical
variables as

GA) = AM(z,y)nunIlY = Gy = (ATD), (5.17)
where
Moy [ §H (@ yu)
AM(x) = (Au (W’yu)). (5.18)

This generator is manifestly O(D, D) invariant.
We are interested in the algebra of the form

(G(M), G(As)} = —G(A). (5.19)

To obtain it, it is convenient to introduces double derivative

_ (On _ 9 a9
ou = (5#) <8u = g ot = ayu> ; (5.20)

— 14 —



so that the following Poisson bracket relations can be written
_ _ _ 1 _
{AY(0),TIn(5)} = OnAMo(0 — ), {AM (0), AN (3) } = —— 0"V opAY (0 ~a). (5.21)

The second relation makes the situation more complicated, since it would result in the
symmetry algebra not closing on another generator. However, in the accordance with [7, 9],
we can consider restricted parameters on isotropic spaces, for which A = n’’ QapaQ = 8Q8Q
anihilates all gauge parameters, as well as their products. Therefore, we write

A (AMTAY) = AMTAY + 200A1T09AY + AV ANY =0, (5.22)
from which one obtains
dAYO9AY =0, (5.23)

Substituting (5.23) into (5.21), we obtain
{AY(0),AV(@)} = 0. (5.24)

We see that the restriction of gauge parameters to isotropic spaces is necessary for the
algebra of generator (5.16) to be closed.

Now we are ready to calculate the algebra. Using the second relation of (5.15), the
first relation of (5.21), and (5.24), we have

{G0,(0),00,(@)} = = (AYOn A} — AYONAL ) TTasd(0 — &) + k(A1 (0), A2(3))d (0 — 7).
(5.25)
Using (2.23), the anomalous term can be rewritten as

k{A1(0),A2(5))0 (0 — &) = k{A1(0), A2(0))d' (0 — &) + k{A1(0), Ay(0))d(0c —T), (5.26)
which with the help of (2.22) can be further transformed into

A(A1(0), 42(9))0' (0 = &) = (A1, A%) — (A}, A2)) 3o — &)
+ 5 (A1, 42)(0) + (A1, 42)(2)) ' (0 = 7). (5.27)

where the dependence of o has been omitted, where all terms depend solely on it.

Next, we write

KA = g X'NoyAM | (5.28)

and with the help of (5.4)
KA™M ~ pNEITpoN AM (5.29)

The full anomalous term can now be written as

_ 1 _
R(A1(0), A2(0))8' (0= 5) = Fnpe ™™ (APONAS — AT ONAT ) TTard(0 — )

+ 5 (A1, 29)(0) + (A1, A2)(0) ) (0 = ). (5.30)
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The second line of the previous equation disappears after the integration with respect to
o and 0.
Consequently,

{Ga,(0),Gr,(0)} = —[A{V ONAY — AY oA (5.31)

1
g™ (APonAT — AgaNA?)] 0(c — 7).

We recognize that we can write the relation (5.19) as
{G(A), G(A9)} = =G ([A1, Adle) (5:32)
where [A1, As]c is the C-bracket, given by

(A1, Ag)c™ = ANONAY — AY On A — % (A{VaMAgN - AévaMAlN) : (5.33)

The C-bracket was firstly obtained in [8, 9] as the generalization of the Lie derivative in

the double space. For *n# = 0, and y = 0 the double phase space reduces to the initial

one, while the generator (5.17) reduces to the generator of general coordinate transforma-
tions (2.8), which gives rise to the Lie bracket.

We could have obtained C-bracket within the framework of self T-duality as well, by

demanding that the parameters depend on both z and y, substituting *7# = kz/** in (5.17)

G(&,N) = &Mz, y)mu + kA, y)z™. (5.34)

If we additionally demand that the symmetry parameters do not depend on the T-dual
coordinates y,,, this generator turns out to be exactly the Courant bracket generator (3.20).
It is in the accordance with [7] that the C-bracket reduces to the Courant bracket, in case
when there is no dependence on y.

6 Conclusion

In this paper, we firstly considered the bosonic string moving in the background defined
solely by the metric tensor, in which the generalized metric Gs;n has a simple diagonal
form (2.6). The general coordinate transformations are generated by canonical momenta
7., parametrised with vector components £#. We have extended this generator, so that it is
self T-dual, adding the symmetry generated by coordinate o-derivative 2’#, that are T-dual
to the canonical momenta 7, (2.7). The extended generator of both of these symmetries is
a function of a double gauge parameter AM (2.17). The latter is a generalized vector, i.e.
an element of a space obtained from a direct sum of vectors and 1-forms. The symmetry
generator G(A) = G(&, A) of both of aforementioned symmetries was expressed as the
standard O(D, D) inner product of two generalized vectors (2.18). The Poisson bracket
between the extended generators G(A;) and G(Az) resulted up to a sign in the generator
G(A), with its argument being equal to the Courant bracket of the double gauge parameters

~16 -



A = [A1, As]e. As this is analogous to an appearance of the Lie bracket in the algebra of
general coordinate transformations generators, we concluded that the Courant bracket is
the self T-dual extension of the Lie bracket.

Afterwards, we added the Kalb-Ramond field B,,, to the background, transforming the
diagonal generalized metric G;n acting by the B-transformation B (3.2). The standard
generalized metric for bosonic string Hysn was obtained (3.6), as well as the well known
expressions for the Hamiltonian (3.8) and the Lagrangian (3.11). We noted that it is
possible to express the Hamiltonian in terms of the diagonal generalized metric Gy, on
the expense of transforming the double canonical variable X by the B-shift. This newly
obtained canonical variable X was suitable for rewriting the symmetry generator G as QB ,
which is no longer self T-dual. This is the generator of both general coordinate, and local
gauge transformations. The Poisson bracket algebra of this new generator was calculated
and as an argument of the resulting generator the Courant bracket twisted by the Kalb-
Ramond field was obtained. It deviates from the Courant bracket by the term related to
the H-flux, which is the term that breaks down the self T-duality invariance.

We considered the self T-dual description of the bosonic string o-model. Analogously
as in the first description, the complete Hamiltonian was constructed starting from the
background characterized only by the T-dual metric *G* = (G;JI)‘“’ . We applied the
f-transformations ¢’ (4.7), T-dual to B-shifts, and obtained the same canonical Hamilto-
nian. Similarly to the previous case, the action of #-transformation on the double canonical
variable was chosen for an appropriate basis. In this basis, the symmetry generator de-
pendent upon some new gauge parameters was constructed and its algebra gave rise to the
f-twisted Courant bracket. This bracket is characterized by the presence of terms related
to non-geometric @) and R fluxes.

It would be interesting to obtain the bracket that includes all of the fluxes, while
remaining invariant upon the self T-duality. The natural candidate for this is the Courant
bracket twisted by both the Kalb-Ramond field and the non-commutativity parameter.

This could be done by the matrix e, where

o PO 0 kOH
B g B frg . .1
n (m ! ) 6.1)

This transformation is not trivial, as the square of the matrix B is not zero. Nevertheless,
the transformation is also an element of the O(D, D) group, and it remains an interesting
idea for future research [27].

Lastly, we considered the symmetry generator in the double phase space that is a sum
of the initial and T-dual phase space. The generator of general coordinate transformations
is extended so that it includes the analogous generator in the T-dual phase space, generated
by T-dual momenta *7#. Both symmetry parameters were taken to depend on both the
initial and T-dual coordinates, in which case the C-bracket is obtained as the bracket of
the algebra of those generators. The C bracket has already been established as the T-
dual invariant bracket [7-9], from the gauge algebra in the double space. We obtain its
Poisson bracket representation, using the T-duality relations between canonical variables
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of different, mutually T-dual, phase spaces. These T-duality relations gave rise to the non-
trivial Poisson bracket between the initial and T-dual momenta, which makes a crucial step
in obtaining C-bracket.

We conclude that both Courant and C-bracket are T-dual invariant extension of the
Lie bracket. The former is their extension in the initial phase space, that governs both
the local gauge and general coordinate transformations. The latter is the extension of Lie
bracket in the double phase space, that is a direct sum of the initial and T-dual phase
space. Though the algebra of the generators that gives rise to the Courant bracket always
closes, the algebra of generators in a double phase space that produces C-bracket only
closes on a restricted parameters on an isotropic space. If all variables are independent
of T-dual coordinates y,, the C-bracket reduces to the Courant bracket, which confirms
results from our paper.
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Abstract We obtain the Courant bracket twisted simulta-
neously by a 2-form B and a bi-vector 6 by calculating the
Poisson bracket algebra of the symmetry generator in the
basis obtained acting with the relevant twisting matrix. It is
the extension of the Courant bracket that contains well known
Schouten—Nijenhuis and Koszul bracket, as well as some new
star brackets. We give interpretation to the star brackets as
projections on isotropic subspaces.

1 Introduction

The Courant bracket [1,2] represents the generalization of
the Lie bracket on spaces of generalized vectors, understood
as the direct sum of the elements of the tangent bundle and
the elements of the cotangent bundle. It was obtained in the
algebra of generalized currents firstly in [3]. Generalized cur-
rents are arbitrary functionals of the fields, parametrized by
a pair of vector field and covector field on the target space.
Although the Lie bracket satisfies the Jacobi identity, the
Courant bracket does not.

In bosonic string theory, the Courant bracket is govern-
ing both local gauge and general coordinate transformations,
invariant upon T-duality [4,5]. It is a special case of the more
general C-bracket [6,7]. The C-bracket is obtained as the
T-dual invariant bracket of the symmetry generator algebra,
when the symmetry parameters depend both on the initial and
T-dual coordinates. It reduces to the Courant bracket once
when parameters depend solely on the coordinates from the
initial theory.

It is possible to obtain the twisted Courant bracket, when
the self T-dual generator algebra is considered in the basis

Work supported in part by the Serbian Ministry of Education and
Science, under Contract no. 171031.

2e-mail: ljubica@ipb.ac.rs
b e-mail: ivanisevic@ipb.ac.rs (corresponding author)
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obtained from the action of the appropriate O (D, D) trans-
formation [8]. The Courant bracket is usually twisted by a
2-form B, giving rise to what is known as the twisted Courant
bracket [9], and by a bi-vector 6, giving rise to the 6-twisted
Courant bracket [10]. In [3,8,11,12], the former bracket was
obtained in the generalized currents algebra, and it was shown
to be related to the latter by self T-duality [13], when the T-
dual of the B field is the bi-vector 6.

The B-twisted Courant bracket contains H flux, while the
0-twisted Courant bracket contains non-geometric Q and R
fluxes. The fluxes are known to play a crucial role in the
compactification of additional dimensions in string theory
[14]. Non-geometric fluxes can be used to stabilize moduli. In
this paper, we are interested in obtaining the Poisson bracket
representation of the twisted Courant brackets that contain
all fluxes from the generators algebra. Though it is possible
to obtain various twists of the C-bracket as well [15], we do
not deal with them in this paper.

The realization of all fluxes using the generalized geom-
etry was already considered, see [16] for a comprehensive
review. In [17], one considers the generalized tetrads origi-
nating from the generalized metric of the string Hamiltonian.
As the Lie algebra of tetrads originating from the initial met-
ric defines the geometric flux, it is suggested that all the
other fluxes can be extracted from the Courant bracket of
the generalized tetrads. Different examples of O(D, D) and
O(D) x O(D) transformations of generalized tetrads lead
to the Courant bracket algebras with different fluxes as its
structure constants.

In [18], one considers the standard Lie algebroid defined
with the Lie bracket and the identity map as an anchor on the
tangent bundle, as well as the Lie algebroid with the Koszul
bracket and the bi-vector 6 as an anchor on the cotangent
bundle. The tetrad basis in these Lie algebroids is suitable
for defining the geometric f and non-geometric Q fluxes.
It was shown that by twisting both of these Lie algebroids
by H-flux one can construct the Courant algebroid, which
gives rise to all of the fluxes in the Courant bracket algebra.

@ Springer
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Unlike previous approaches where generalized fluxes were
defined using the Courant bracket algebra, in a current paper
we obtain them in the Poisson bracket algebra of the sym-
metry generator.

Firstly, we consider the symmetry generator of local gauge
and global coordinate transformations, defined as a standard
inner product in the generalized tangent bundle of a dou-
ble gauge parameter and a double canonical variable. The
O (D, D) group transforms the double canonical variable
into some other basis, in terms of which the symmetry gen-
erator can be expressed. We demonstrate how the Poisson
bracket algebra of this generator can be used to obtain twist
of the Courant bracket by any such transformation. We give a
brief summary of how e? and ¢ produce respectively the B-
twisted and 6-twisted Courant bracket in the Poisson bracket
algebra of generators [8]. ]

Secondly, we consider the matrix ¢? used for twisting the
Courant bracket simultaneously by a 2-form and a bi-vector.
The argument B is defined simply as a sum of the arguments
B and 6. Unlike B or 6, the square of B is not zero. The
full Taylor series gives rise to the hyperbolic functions of the
parameter depending on the contraction of the 2-form with
the bi-vector &, = 2k0"” B,,. We represent the symme-
try generator in the basis obtained acting with the twisting
matrix e? on the double canonical variable. This generator is
manifestly self T-dual and its algebra closes on the Courant
bracket twisted by both B and 6.

Instead of computing the B — 6 twisted Courant bracket
directly, we introduce the change of basis in which we define
some auxiliary generators, in order to simplify the calcula-
tions. This change of basis is also realized by the action of
an element of the O (D, D) group. The structure constants
appearing in the Poisson bracket algebra have exactly the
same form as the generalized fluxes obtained in other papers
[16—18]. The expressions for fluxes is given in terms of new
auxiliary fields B and 6, both being the function of o”*.

The algebra of these new auxiliary generators closes on
another bracket, that we call C-twisted Courant bracket. We
obtain its full Poisson bracket representation, and express
it in terms of generalized fluxes. We proceed with rewrit-
ing it in the coordinate free notation, where many terms are
recognized as the well known brackets, such as the Koszul
or Schouten—Nijenhuis bracket, but some new brackets, that
we call star brackets, also appear. These star brackets as a
domain take the direct sum of tangent and cotangent bun-
dle, and as a result give the graph of the bi-vector 6 in the
cotangent bundle, i.e. the sub-bundle for which the vector
and 1-form components are related as £ = k6 1,. We
show that they can be defined in terms of the projections on
isotropic subspaces acting on different twists of the Courant
bracket.

@ Springer

Lastly, we return to the previous basis and obtain the full
expression for the Courant bracket twisted by both B and 6.
It has a similar form as C-twisted Courant bracket, but in this
case the other brackets contained within it are also twisted.
The Courant bracket twisted by both B and 6 and the one
twisted by C are directly related by a O(D, D) transforma-
tion represented with the block diagonal matrix.

2 The bosonic string essentials

The canonical Hamiltonian for closed bosonic string, moving
in the D-dimensional space-time with background charac-
terized by the metric field G, and the antisymmetric Kalb—
Ramond field By, is given by [19,20]

1
He = —m, (G}
¢ ZKTFM(

—2x"" B, (G,

YW, + %x’“Gﬁvx’”
2.1)

where 7, are canonical momenta conjugate to coordinates
x*, and

GE =Gy —4BG™'B),,

v

2.2)

is the effective metric. The Hamiltonian can be rewritten in
the matrix notation

1
He = - (XY Hyn x¥, 23)
2k
where XM is a double canonical variable given by
7z
xM = (” ) : 2.4)
Tu
and Hyy is the so called generalized metric, given by
GE,  —2B,, (G Hr
H 1o 2.
= <2<G Warg,, Gy ) 2

with M, N € {0, 1}. In the context of generalized geometry
[21], the double canonical variable X" represents the gen-
eralized vector. The generalized vectors are 2D structures
that combine both vector and 1-form components in a single
entity.

The standard T-duality [22,23] laws for background fields
have been obtained by Buscher [24]

G = (G, *BMY = 39“”, 2.6)
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where (Ggl)/“’ is the inverse of the effective metric (2.2),
and OV is the non-commutativity parameter, given by

2
01’ = — (G5 )" Bpo (GH7. 2.7)

K
The T-duality can be realized without changing the phase
space, which is called the self T-duality [13]. It has the
same transformation rules for the background fields like T-
duality (2.6), with additionally interchanging the coordinate
o-derivatives kx"* with canonical momenta
kx™ =, (2.8)
Since momenta and winding numbers correspond to o inte-
gral of respectively 7, and kx"*, we see that the self T-
duality, just like the standard T-duality, swaps momenta and
winding numbers.

2.1 Symmetry generator

We consider the symmetry generator that at the same time
governs the general coordinate transformations, parametrized
by £/, and the local gauge transformations, parametrized by
Ay- The generator is given by [25]

21 2
G(E. 1) = f doG(&. 1) = f do &, + dex™].
0 0
2.9)

It has been shown that the general coordinate transformations
and the local gauge transformations are related by self T-
duality [25], meaning that this generator is self T-dual. If one
makes the following change of parameters A,, — A, + 9,9,
the generator (2.9) does not change

27
G(E, A+ 3p) = G(E, 1) +K/ ¢do = G(€, 1), (2.10)
0

since the total derivative integral vanishes for the closed
string. Therefore, the symmetry is reducible.

Let us introduce the double gauge parameter AM | as the
generalized vector, given by

m_ (&
w=(3):

where £/ represent the vector components, and A, represent
the 1-form components. The space of generalized vectors is
endowed with the natural inner product

@2.11)

(A1, A2y = (ADMpun ALY & (51, 1), (B2, 12))

= ig o +igh = & Aoy + 8 Ay, (2.12)

where i¢ is the interior product along the vector field &, and
nmny is O(D, D) metric, given by

01
NMN = <1 O)' (2.13)
Now it is possible to rewrite the generator (2.9) as
G(A) = /da(A, X). (2.14)

In [8], the Poisson bracket algebra of generator (2.9) was
obtained in the form

[can, 6o} =—6(1a1, Azle), 2.15)

where the standard Poisson bracket relations between coor-
dinates and canonical momenta were assumed
{x*(0), my(6)} = 81 8(0 — 7). (2.16)

The bracket [A1, Az]c is the Courant bracket [1], defined by

(A Azle = A & [, 4D, (52, 22)]c = (5, 2),  (2.17)

where

B =008 — 5 g,

and

Do = EV (o — Buhan) — EY (ki — Buhiy)
+%aﬂ(glxz — &A1) (2.18)

It is the generalization of the Lie bracket on spaces of gener-
alized vectors.

3 O(D, D) group

Consider the orthogonal transformation O, i.e. the transfor-
mation that preserves the inner product (2.12)

(OA1, OA2) = (A1, A2) & (OADT n(OA2) = AT 1 As,
(3.19)

which is satisfied for the condition

o no=n. (3.20)

@ Springer
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There is a solution for the above equation in the form O = e,
see Sec. 2.1 of [21], where

A 0
=)

with6 : T"M — TM and B : TM — T*M being anti-
symmetric, and A : TM — T M being the endomorphism.
In general case, B and 6 can be independent for O to satisfy
condition (3.20).

Consider now the action of some element of O(D, D) on
the double coordinate X (2.4) and the double gauge parameter
A (2.11)

(3.21)

XM =M xN AM = oM AN, (3.22)

and note that the relation (2.15) can be written as

[ dofiar 0. a2 30) = = [ dotinr, aste. x),
(3.23)

and using (3.19) and (3.22) as

/do{uh,fm (ha X)) = —/da<[A1,A21c,X>

—/dd([j\l, Adley, X),
(3.24)

where we expressed the right hand side in terms of some new
bracket [A1, Az]c,. Moreover, using (3.19) and (3.22), the
right hand side of (3.23) can be written as

(A1, Adde, X) = ([O7'Ay, 071 As)e, O71X)

= (O[07'A1, 07 Az)e, X). (3.25)

Using (3.24) and (3.25), one obtains

[A1, Azle, =O[O07 AL, O Asle=eT[e"T Ay, e T Adle.

(3.26)

This is a definition of a 7 -twisted Courant bracket. Through-
out this paper, we use the notation where [, ]¢ is the Courant
bracket, while when C has an additional index, it represents
the twist of the Courant bracket by the indexed field, e.g.
[, I¢, is the Courant bracket twisted by B.

In a special case, when A = 0, 6 = 0, the bracket (3.26)
becomes the Courant bracket twisted by a 2-form B [9]

[A1, Adle, = ePle B AL, e B Asle, (3.27)

@ Springer

where e? is the twisting matrix, given by

- Y0\« 0 0
B _ v M _
¢ _<23,w 5;)’ BN‘(sz 0)'

This bracket has been obtained in the algebra of generalized
currents [11,13].

In case of A = 0, B = 0, the bracket (3.26) becomes the
Courant bracket twisted by a bi-vector 0

(3.28)

[A1 Adle, = e At e Adle (3.29)
where ¢? is the twisting matrix, given by

5 8t ko A 0 xO*Y

0 _ [9v M _
e_<0 6;)’9N_(0 0). (3.30)

The B-twisted Courant bracket (3.27) and 6-twisted Courant
bracket (3.29) are related by self T-duality [13]. It is easy to
demonstrate that both ® and e’ satisfy the condition (3.20).

We can now deduce a simple algorithm for finding the
Courant bracket twisted by an arbitrary O (D, D) transfor-
mation. One rewrites the double symmetry generator G (€, A)
in the basis obtained by the action of the matrix e’ on the
double coordinate (2.4). Then, the Poisson bracket algebra
between these generators gives rise to the appropriate twist
of the Courant bracket. In this paper, we apply this algorithm
to obtain the Courant bracket twisted by both B and 6.

4 Twisting matrix

The transformations e? and ¢? do not commute. That is why
we define the transformations that simultaneously twists the

Courant bracket by B and 9 as eB where

o AA 0 ko™
B_B+9—<ZBMV 0 )

The Courant bracket twisted at the same time both by a 2-
form B and by a bi-vector 6 is given by

“.n

[A1, Adley, = ePle B A1, e B Aslc. 4.2)

The full expression for e? can be obtained from the well
known Taylor series expansion of exponential function

B =32 (4.3)
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The square of the matrix Bis easily obtained

o (kOB 0
B _2< 0 K(BG)M” , 4.4)
as well as its cube
y 0 K20 BOY

3 _
B =2 <2K(BQB)W 0 . 4.5)
The higher degree of B are given by
5 @)’ 0 )
B = : 4.6

< 0 ((OtT)”); (4.6)

for even degrees, and for odd degrees by
- 0 Kk (a"O)*rY

2n+1 __
B = <2(Ba"),w 0 ) , ()
where we have marked
all =2k0"°B,,. 4.8)

Substituting (4.6) and (4.7) into (4.3), we obtain the twisting
matrix
n /"l’ n l’(/
. (Tosm),  «(Zowim) o
e = P Tyn\ VY
n ( )
2B (S wim), (0 &),

(4.9)

Taking into the account the Taylor’s expansion of hyperbolic
functions

00 2k 00 x 2k+1
cosh(x) = o sinh(x) = Tt (4.10)
n=0 n=0

the twisting matrix (4.9) can be rewritten as

. Clt ICS” QPrv
B — v 4 , 4.11
¢ <2BW,S"V (CT);> @10

. n I
with S, = (%) and Cy = (cosh ﬁ) . Its deter-
v v

minant is given by

det(e?) = "B =1, (4.12)
and the straightforward calculations show that its inverse is
given by

e—é — < ch _KS%QPV>

2B, (€ (4.13)

One easily obtains the relation

)T pef =, (4.14)

therefore the transformation (4.11) is indeed an element of
O(D, D).

It is worth pointing out characteristics of the matrix o).
It is easy to show that /,6”" = 6 (a”) )} and B, =
() ,f B, which is further generalized to

(flanhor” =60 (f@),), Bup(f (@),
= (f@"))/Bp,
for any analytical function f («). Moreover, the well known

hyperbolic identity cosh(x)? — sinh(x)?> = 1 can also be
expressed in terms of newly defined tensors

(4.15)

CHE — (S, = 8. (4.16)
Lastly, the self T-duality relates the matrix « to its transpose
a = o, due to (2.6). Consequently, we write the following
self T-duality relations

cxzcl, s=st. (4.17)

5 Symmetry generator in an appropriate basis

The direct computation of the b}racket (4.2) would be difficult,
given the form of the matrix eB . Therefore, we use the indi-
rect computation of the bracket, by computing the Poisson
bracket algebra of the symmetry generator (2.9), rewritten in
the appropriate basis. As elaborated at the end of the Chapter
3, this basis is obtained by the action of the matrix (4.11) on
the double coordinate (2.4)

. , Az

XM = (5™ xN = <]f ) (5.18)
"

where

k* = kCF X" + k(SO

lw =2(BS)x™ + (") /7y, (5.19)

are new currents. Applying (2.6), (2.8) and (4.17) to currents
k" and i, we obtain [, and k" respectively, meaning that
these currents are directly related by self T-duality. Multi-
plying the Eq. (5.18) with the matrix (4.13), we obtain the
relations inverse to (5.19)

Kkx'* = C‘f)l;v — k(SOH*T,,

T = —2(BS)wk” + (C") 1, (5.20)

@ Springer
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Applying the transformation (4.11) to a double gauge param-
eter (2.11), we obtain new gauge parameters

s (EMN o v ChEV+ k(SO A,
A= (i,) =@ AT = (2(38%5” + (cmm)'
(5.21)

The symmetry generator (2.9) rewritten in anew basis G (C&+
kSO, 2(BS)E +CT 1) = G(E, M) is given by

Substituting (5.18) and (5.21) into (5.22), the symmetry gen-
erator in the initial canonical basis (2.9) is obtained. Due
to mutual self T-duality between basis currents (5.19), this
generator is invariant upon self T-duality.

Rewriting the Eq. (2.15) in terms of new gauge parameters
(5.21) in the basis of auxiliary currents (5.19), the Courant
bracket twisted by both a 2-form B,,, and by a bi-vector 6"
is obtained in the new generator (5.22) algebra

{6, 6Ao} ==G(1A1, Azley, ) (5.23)

5.1 Auxiliary generator

Let us define a new auxiliary basis, so that both the matri-
ces C and S are absorbed in some new fields, giving rise to
the generator algebra that is much more readable. When the
algebra in this basis is obtained, simple change of variables
back to the initial ones will provide us with the bracket in
need.

Multiplying the second equation of (5.19) with the matrix
C~1, we obtain

L€YY, =+ 2(BSCT 1) x", (5.24)
where we have used (BS)Up(C_l)”M = —(BSC_I)W =
(BSC_I)W), due to tensor BS being antisymmetric, and
properties (4.15). We will mark the result as a new auxil-
iary current, given by

L =7 + 26 Byyx”, (5.25)
where B is an auxiliary B-field, given by
B, = B,,S”.(C™H7. (5.26)

On the other hand, multiplying the first equation of (5.19)
with the matrix C, we obtain

CrE” = (CH" kx4 k(CSO* . (5.27)
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Substituting (4.16) in the previous equation, and keeping in
mind that C, S and & commute (4.15), we obtain

CrE" = kcx™ + 1 (CSO)P” (1w, + 26 (BSC™ 1) 6 x7). (5.28)

Using (5.25), the results are marked as a new auxiliary current

B = kex™ 4 k6™, (5.29)
where 6 is given by
o1 = CHSh oY, (5.30)

There is no explicit dependence on either C nor S in rede-
fined auxiliary currents, rather only on canonical variables
and new background fields. From (5.29), it is easy to express
the coordinate o -derivative in the basis of new auxiliary cur-
rents
ox™ = k" — k6, (5.31)

The first equation of (5.19) could have been multiplied
with C, instead of C~!, given that the latter would also pro-
duce a current that would not explicitly depend on C. How-
ever, the expression for coordinate o -derivative «x* would
explicitly depend on C? in that case, while with our choice
of basis it does not (5.31).

Substituting (5.24) and (5.28) in the expression for the
generator (5.22), we obtain

GE L) = /da[iu(c”)“vé” +§“(CT);2U], (5.32)

from which it is easily seen that the generator (5.22) is equal
to an auxiliary generator

G(h) = / do(X.R) & GE ) = / do[f, R + 814,

provided that

. En e v 1 . .
AM = <)°\'M> ’ )‘4;,L = )‘*U(C 1) we Elt = Clt)s ’ (534)

and
i (
iy )

Once that the algebra of (5.33) is known, the algebra of gen-
erator (5.22) can be easily obtained using (5.34).

(5.35)
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The change of basis to the one suitable for the auxiliary
generator (5.33) corresponds to the transformation

o' 0
A“fv:(()

SM_ oM XN vM_ M 3N
0 ((C_l)T)J>,A =AM KN, XM =AM XN

(5.36)
that can be rewritten as
XM = (ABHYM XV AM = (AeB)M AN, (5.37)
where (5.18) and (5.21) were used. It is easy to show that

the transformation AAI’IV, and consequentially (AeB )M , 18 the
element of O(D, D) group

ATy A =1, (Ae)T 3 (AeB) =, (5.38)
which means that there is C, for which [21]
€ = AP, (5.39)

The generator (5.33) gives rise to algebra that closes on C-
twisted Courant bracket

{6hn. 6An} =—6(1hr Aale, ), (5:40)
where the C-twisted Courant bracket is defined by
(A1, Asle, = eCle €Ay, e € Asle. (5.41)

C

In the next chapter, we will obtain this bracket by direct com-
putation of the generators Poisson bracket algebra.

Lastly, let us briefly comment on reducibility conditions
for the C-twisted Courant bracket. Since we are working
with the closed strings, the total derivatives vanishes when
integrated out over the worldsheet. Using (5.31), we obtain

/dma/:/dcr/(x/ﬂawp:/dcr(lzﬂau(p —I—Kfué‘“’av(p) =0,
(5.42)

for any parameter A. Hence, the generator (5.33) remains
invariant under the following change of parameters

EM s BN 4101 8,0, Ay — Ayt 4. (5.43)

These are reducibility conditions (2.10) in the basis spanned
by k* and i,.

6 Courant bracket twisted by ¢ from the generator
algebra

In order to obtain the Poisson bracket algebra for the genera-
tor (5.33), let us firstly calculate the algebra of basis vectors,
using the standard Poisson bracket relations (2.16). The aux-
iliary currents {,, algebra is

{i0(0). 1,(3)} = 2B pkP8(c — &) — F 5y 1,8(0 — &),

6.1)
where B?Wp is the generalized H-flux, given by
Buvp = 3uBup + 8B,y + 8, B, (6.2)
and F, [ZU is the generalized f-flux, given by
Fh = —2kBye b 6.3)

The algebra of currents e is given by

(k" (0), k" (3)} ==Kk Q[ Vk 8 (0 — 5)—k*RIP1,8(0 — &),

6.4)
where
O = 0 + 2l Bye, O =,0%  (6.5)
and
RIW = RIVP 4 270007 B
R = 17 5,6"° + 677 950PH + 6P 95017, (6.6)

The terms in (6.4) containing both 6 and B are the conse-
quence of non-commutativity of auxiliary currents I,,. The
remaining algebra of currents k* and i, can be as easily
obtained

{in(0). k" ()} = k8),8' (0 — &)
+F )y kPs(o — ) — k Q" 1,8(0 — ).
6.7)

The basic algebra relations can be summarized in a sin-
gle algebra relation where the structure constants contain all
generalized fluxes

(XM XNy = —FMN XPs(o —5)+xnN§ (0 —5), (6.8)
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with

PMNp _ <K27:3“W’ _KOQ"VMP>
Q" FhH )
FMN | — (" Q" Fup ) . (6.9)
—F . 2Buup
The form of the generalized fluxes is the same as the ones
already obtained using the tetrad formalism [16—18]. In our
approach, the generalized fluxes are obtained in the Pois-
son bracket algebra, only from the fact that the generalized
canonical variable X is transformed with an element of the
O (D, D) group that twists the Courant bracket both by B
and 6 at the same time. Consequentially, the fluxes obtained
in this paper are functions of some new effective fields, éuv
(5.26) and 61 (5.30).
We now proceed to obtain the full bracket. Let us rewrite
the generator (5.33) algebra

[6¢. 100, 6. i@
= [aoas[{E @) B @0
HA @k @), 20 )8 @)

{
+
{

EH @)iu(0). )2 @R @)

+Hin @k ). @)@ (6.10)
The first term of (6.10) is obtained, using (6.1)
[ dods g @@ B
= [ aofu(Gad - &rag - 2y &)
~2B, R VL | ©6.11)

The second term is obtained, using (6.4)

°

/dad&{xw(a)lé“(a), iz,,((%)é”(&)}
- /da[lé“ (Kéi”ﬂ(izvapim — Favdphan) — kO

vy ) = Lk RAP A, . (6.12)

The remaining terms are antisymmetric with respect to 1 <>
2, 0 < o interchange. Therefore, it is sufficient to calculate
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only the first term in the last line of (6.10)
/dad5{gf‘(o)zﬂ(a),ih(a)lé”(a)}
- / do [k ( = &io, — £, 852,
+ip, <K (i2vévp)8p§fl - Képvug—fj@y)]
+/dad5xéf(a)izv(5)aga(a —&). (6.13)

In order to transform the anomalous part, we note that

0s8(0 —0) = %858(0 —0)— %858(0 —0), (6.14)

and

f(3)3s8(0c —0) = f(0)3,:8(0 — &)+ f'(0)8(0 —&).
(6.15)

Applying (6.14) and (6.15) to the last row of (6.13), we obtain
/dadaxéf(o)izv(a)aga(a —5)
1 c -
=3 / dokx™ (Sl"BMXZU — BMSI"AQU)

K — (2 o —
+§/dad0(§1 (632 (0)058(0 — &)
~£/(6)42)56(0 — 5))

1 o e -
_ E/do[k“(él"aukz,, _ augfxzv)
ik He (éfapigv - apéfXZV)], (6.16)

where (5.31) was used, as well as antisymmetry of 6. Sub-
stituting (6.16) to (6.13), we obtain

/ dodi (£ ©)i,(0), f2 GF )]
= v/dﬁ[lzu(éi)(auin _av)o\ZM)
i — £ 5
7 0uErha) = Fyp §1 A2y
T PAUNPR B
-HM(K()QVQ )0, + Kcf (gl 9phay — Eap(glxz))
—/cép”"é{’izv)].

Substituting (6.11), (6.12) and (6.17) into (6.10), we write
the full algebra of generator in the form

(6.17)

{6, 6]
(6.18)
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where

B =E0E) — 0.8
x (ko — 80k, — 59,k - B10)
+10" (Go18,EY — G2y dpEl")
R hvap + Py 6787
QP (EL Koy — ED ),

— ke

(6.19)
and
how = E @vhay — uhan) — 8 @uhiy — duki)
+%3u(§15»2 — &)
+16" (e1vBphop — havdphiy)
+2B,,EVE) + KQo,f")a»lu)o»zp +F
x (B0 oy — E501,). (6.20)

It is possible to rewrite the previous two equations, if we
note the relations between the generalized fluxes

R = RIP 4 Guogur e QY = QU 46 F .
(6.21)

Now we have
2 = él‘)avé; - ézvavg]u
+K9°,up (51‘)(3115‘2,0 - ap)o\Zu) - é;(avilp - 8,05\11))
1 o o o o
50,1k b))
€0, (Dau0") — ke (Ron0"P) 38" — k€D, (R1,0"H)
i (R10,0"P) 3,65 + K2Ry,
+ﬁp‘é éioég + Ké”’gjz—g‘:) (élp)o‘Zv - éfilv)

+1 291GV L Ryhap, (6.22)
and
M = & (Buhay — Bpdan) — EY (v — uk1n)

1 .. ..

+§3u($1)»2 — &A1)

+Kél)p(5hlvap5¥2u - inap)o\lu) + KQQ/:pilvjﬁp

+2é/wp§f§2p + ]i—;)jy

x (7 Ay — E510) + k0" F L Rivhap, (6.23)

where the partial integration was used in the equation (6.22).
The relation (6.18) defines the C-twisted Courant bracket

[A1, Adle, = A &[G, A, G h)le, = €.3), (6.24)

that gives the same bracket as (5.41). Both (6.19)-(6.20)
and (6.22)—(6.23) are the products of C-twisted Courant
bracket. The former shows explicitly how the gauge parame-
ters depend on the generalized fluxes. In the latter, similarities
between the expressions for two parameters is easier to see.

6.1 Special cases and relations to other brackets

Even though the non-commutativity parameter 6 and the
Kalb Ramond field B are not mutually independent, while
obtaining the bracket (6.24) the relation between these fields
(2.7) was not used. Therefore, the results stand even if a
bi-vector and a 2-form used for twisting are mutually inde-
pendent. This will turn out to be convenient to analyze the
oori gin of terms appearing in the Courant bracket twisted by
C.

Primarily, consider the case of zero bi-vector 6" = 0
with the 2-form By, arbitrary. Consequently, the parameter
a (4.8) is zero, while the hyperbolic functions C and S are
identity matrices. Therefore, the auxiliary fields (5.26) and
(5.30) simplify in a following way

o*Y — 0, (6.25)

and the twisting matrix e (4.11) becomes the matrix e
(3.28). The expressions (6.19) and (6.20) respectively reduce
to

EM = EYD,E) — £)0,E", (6.26)
and
iu = é_lu(avjﬂu - 8#5\21)) - é;(avilu - 8uilv)
1 o o o o oo
+ zau(fl?\z — &A1) + 2Bkl €Y (6.27)

where B, is the Kalb-Ramond field strength, given by

By = 0y Bup + 0y By + 0By (6.28)
The equations (6.26) and (6.27) define exactly the B-twisted
Courant bracket (3.27) [9].

Secondarily, consider the case of zero 2-form By, = 0
and the bi-vector 6V arbitrary. Similarly, « = 0 and C and
& are identity matrices. The auxiliary fields B, and 61 are
given by
By — 0 01 — o1, (6.29)
The twisting matrix ¢B becomes the matrix of -transformations
¢? (3.30). The gauge parameters (6.19) and (6.20) are respec-
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tively given by
Er = E10,E) — E)a &'
+ KOHP (é]v(aviz,o - apXZV) - ézu(av)o\lp - 8;75\1\;)
1 o o o o
+ 500k —Bad))
+ k&) 8, (RapBP™) — K€Y 3, (R1,67")
+ 1 (K100 EY — K (32,0"7)0,E]"

+ K2 RMP Ry, (6.30)

and
)o‘-p. = é]u(avj)\Z/L - auj"-Zu) - gzv(av)o\ly, - auilu)
1 o o o o
+ Eau(fllz — &A1)

+ Kewo()o\-]vapilu - 5\21)8;)5\1;1) + Kilp)onQlfva
(6.31)

where by Q,,” and R*"? we have marked the non-geometric
fluxes, given by

Q;ﬂ — aMQVﬂ’ RMVP — 9#‘7869”/’_}_6”0309»0#_’_0,00309!“).
(6.32)

The bracket defined by these relations is 6-twisted Courant
bracket (3.29) [8] and it features the non-geometric fluxes
only.

Let us comment on terms in the obtained expressions for
gauge parameters (6.22) and (6.23). The first line of (6.22)
appears in the Courant bracket and in all brackets that can be
obtained from its twisting by either a 2-form or a bi-vector.
The next two lines correspond to the terms appearing in the
O-twisted Courant bracket (6.30). The other terms do not
appear in either B- or 6-twisted Courant bracket.

Similarly, the first line of (6.20) appears in the Courant
bracket (2.18) and in all other brackets obtained from its
twisting, while the terms in the second line appear exclusively
in the 6 twisted Courant bracket (6.27). The first term in the
lastline appear in the B-twisted Courant bracket (6.31), while
the rest are some new terms. We see that all the terms that do
not appear in neither of two brackets are the terms containing
F flux.

6.2 Coordinate free notation

In order to obtain the formulation of the C-twisted Courant
bracket in the coordinate free notation, independent of the
local coordinate system that is used on the manifold, let us
firstly provide definitions for a couple of well know brackets
and derivatives.
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The Lie derivative along the vector field £ is given by

’Cé = iéd + dié, (6.33)

with i; being the interior product along the vector field £ and
d being the exterior derivative. Using the Lie derivative one
easily defines the Lie bracket

(&1, 6] = L’gléz - £§2§]~

The generalization of the Lie bracket on a space of 1-forms
is a well known Koszul bracket [26]

(6.34)

(M1, Aale = Lys, 02 — Lys,h1 +d(0Cur, 32)). (6.35)

The expressions (6.19) and (6.20) in the coordinate free
notation are given by

o

E =16, 561 — & L0 + [&1. Aakd]L
o 0 1 L o
—(ﬁél)\z — 552)»1 — Ed(lé_l)»z — zéle))xe
+’¢°.(€:17 éQA ) - Kéﬁ()o\'lv . éz) +K9°ﬁ()c"27 ) él)

+RG, A2, ), (6.36)

and
o o o 1 Lo o o
A= ,Cél)»z — ,ng)ul — Ed(lgl)nz — lé'z)“l) — [A1, Xz]Ké

+HE L E, ) — FOa, . &)+ FOa, ., &)

+kBF G, k2. ), (6.37)

where
H =2dB. (6.38)
We have marked the geometric H flux as H, so that it is

distinguished from the 2-form B. In the local basis, the full
term containing H -flux is given by

b | =28, 8. (6.39)
Similarly are defined the terms containing F flux

Fénb | =20 88, (6.40)
and the non-geometric R flux

R0, fa, .)(“ = RMP3 1,50, (6.41)
as well as

6FCa. 52)‘“ = BV F ) R E (6.42)



Eur. Phys. J. C (2021) 81:685

Page 11 of 15 685

It is possible to rewrite the coordinate free notation in
terms of the H-flux and 6 bi-vector only. The geometric F
flux is just the contraction of the H-flux with a bi-vector

F=«bH. (6.43)
The non-geometric R flux can be rewritten as

A 3 s
R = 5[9, Ols + AN (k0)H, (6.44)

where A is the wedge product, and by [6, 615 we have marked
the Schouten—Nijenhuis bracket [27], given by

o o nvp ° ° o
0,615 = eg/;ﬁe““a(,eﬂy = 2RMP, (6.45)
where
8y 8% 8
€hgy = | 8 8y | (6.46)
8 8 8y

Expressing both F and R fluxes in terms of the bi-vector 6
and 3-form H , we obtain

£ =[£, &1L — (&, MkO1L + [E1, Aokb]y
o o 1 L o
_<‘C§| Ay — ‘Cézkl — Ed(lgl Ay — léz)\l))lce
K2 o o ° °
+KOH (. €1, &) — NPKOH (L, ., &)
+ A2 kBH G, . E1) + AkBHG, X2, ), (6.47)
and
A= ﬁél)nz — ,Céz)nl — zd(lélkz — léz)nl) — [Aq, }“2];(90
+HE &, ) —kOH(, . &)
+.kBHG, . E) + N2 kOH (K1, Ao, ). (6.48)

The term K@oﬁ(., él,éz) is the wedge product of a bi-
vector with a 3-form, contracted with two vectors, given by

o o °o o 23 o o oo
(0161 8))" = 26" BpoblES (6.49)

and k6 H ()Oq . é‘z) is similarly defined, with the 1-form con-
tracted instead of one vector field

(€0 Gr. &) =26 ByohnbS. (6.50)
nw

The terms like AZx6 H (5»1, . 52) are the wedge product of
two bi-vectors with a 3-form, contracted with the 1-form A

and the vector éz
(A2kbHG, . &))" =220"76" Bypinnd],  (6.51)
and similarly when contraction is done with two forms

= 2268 B i,
"

( A2 BE G, b, .)) (6.52)
Lastly, the term N3O H ()oq, 512, .) is obtained by taking a
wedge product of three bi-vectors with a 3-form and than
contracting it with two 1-forms. It is given by

3 o o o ° " 32 ° L ° °
</\ KGH Gy, o, .)) = 230" 0PI By o v,
(6.53)

7 Star brackets

The expressions for gauge parameters (6.36) and (6.37) pro-
duce some well known bracket, such as Lie bracket and
Koszul bracket. The remaining terms can be combined so that
they are expressed by some new brackets, acting on pairs of
generalized vectors. It turns out that these brackets produce a
generalized vector, where the vector part £ and the 1-form
part iu are related by EN = kM, effectively resulting
in the graphs in the generalized cotangent bundle 7*M of
the bi-vector é, i.e. £ = k6(., 1). The star brackets can be
interpreted in terms of projections on isotropic subspaces.

7.1 O-star bracket

Let us firstly consider the second line of (6.22) and the first
line of (6.23). When combined, they define a bracket acting
on a pair of generalized vectors

[Ar, Aoly = A" &[G A, B, )] = G A9, (7))

where

éff = Ké#p (é;)(avilo - 3,05\21;) - é;(avilp - 8,05\11))

1. oo -
+ Eap(E])LZ - Ez)»l)), (7.2)
and
5‘; = élu(avilu - auj)LZv) - ézlj(avil,u - aﬂj‘-l\))
1 o o o o

+§3M($1K2 — &A1), (7.3)
from which one easily reads the relation
§l =11l (7.4)
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In a coordinate free notation, this bracket can be written as

(A1, Aaly = 11, A, (B2, 42T
= (K@o (., ﬁéliz — Eézj‘l)’ [:él)o»z — ‘Cézil)‘
(7.5)

7.2 B6-star bracket

The remaining terms contain geometric H and F fluxes. Note
that they are the only terms that depend on the new effective
Kalb—Ramond field B. Firstly, we mark the last line of (6.23)
as

Kt = 2B Bl EL+E Y (é;’izu—ég}’\w)JrKé”"ﬁ‘Mf; Jivizp.

(7.6)

Secondly, using the definition of F (6.3) and the fact that 6
is antisymmetric, the last line of (6.22) can be rewritten as
é;f = ZKélwévpoéfég + Kéﬂdj—g];) (éio)on - ééoilv)
+K29°,uvéraj}vg 5\‘1'[5\‘2/)
= kb5, (1.7)

Now relations (7.6) and (7.7) define the B6-star bracket
by

[A1, Aol = A & 1 ), B2, ATy = G A9,

(7.8)
We can write the full bracket (6.24) as
[G1, A1), 2, A)le,
= ([517 E2]1 — [&2, AikB]L + [E1, Kakb]L
K2 o o o ° ° °
+ 10, 015G Ao )~ Aol )
+1Er A, G ATy, + 1 A, G AT (79)

7.3 Isotropic subspaces

In order to give an interpretation to newly obtained starred
brackets, it is convenient to consider isotropic subspaces. A
subspace L is isotropic if the inner product (2.12) of any two
generalized vectors from that sub-bundle is zero

(A1, A2) =0, A, ArelL. (7.10)
From (2.12), one easily finds that
EN =k 0"y, (i=1,2) 0" =—0"", (7.11)
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for any bi-vector 6, and

Mip =2BuE!". (i=1,2) By, = —By,, (7.12)
for any 2-form B satisfy the condition (7.10).

Furthermore, it is straightforward to introduce projections
on these isotropic subspaces by

Z0AMY = Z0 (M h) = (K 6™ 0y, M), (7.13)
and
Ip(AM) = Tp(E", hy) = (6", 2B,0E"). (7.14)

Now it is easy to give an interpretation to star brackets. The
f-star bracket (7.1) can be defined as the projection of the
Courant bracket (3.29) on the isotropic subspace (7.13)

(A1 Aaly =77 (11, Azle). (7.15)

Similarly, note that all the terms in (6.37) that do not appear
in the 6-twisted Courant bracket, contribute exactly to the
B6-star bracket. From that, it is easy to obtain the definition
of the B6-star bracket (7.8)

(A Aoy, =7 (141, Asle, ) = 7 (1A1, Aslg, ). (7.16)

8 Courant bracket twisted by B and 0

Now it is possible to write down the expression for the
Courant bracket twisted by B and 6 (4.2), using the expres-
sion for C-twisted Courant bracket

[A1, Azley, = A7 [AAL, AR, @.1)

where A is defined in (5.36). Substituting (8.1) into (6.36),
we obtain

E=C7[CE, CEIL
—CYCE, X ikCT18]L + CTCE, hakC ],

~(£eg 2™ = L5,Ghe™)
1 N
—3dig J2 iéle))/(ec”

K2

+76*1[é’, 61s(C 1 xC )
+xC7Y0H (., C&, C&y)

—C VA2 kOHGCTY, ., CE)
+C VAT KBHGLCTY, L CE)

+C VA bEGGCTY KT ), (8.2)
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and similarly, substituting (8.1) into (6.37), we obtain

y . . 1. . .

K= (Leg 0aC™) = Lz, CaC™h = Sdlig A2 — ig A0 )C
+H(CE, CE, )C
(e R gC = kOH G CT, L CE)C
+k6H(oC7Y, . CENC

+AZkBHOGCTY e e, (8.3)

" o v v
where C* = (cosh ﬁ) and & = (£,%) (5.21). This is
v
somewhat a cumbersome expression, making it difficult to
work with. To simplify it, with the accordance of our con-

vention, we define the twisted Lie bracket by

[€1. &1L = C'[CEL CEL. (8.4)

as well as the twisted Schouten—Nijenhuis bracket

(18.615.)"" = €y ey (1ed.cans) ™
(8.5)

and twisted Koszul bracket

[, Ralee = (€D 7MCT R, C Rz lge (8.6)

where the transpose of the matrix is necessary because the
Koszul bracket acts on 1-forms. Now, the first three terms of
(8.2) can be written as

[£1, &1L — [E2, Mk C 10110 + [E1, XokC 1L, (8.7)
where

YA —1 5pv v

o1’ = (CTHLOP" = SHorY. (8.8)

The second line of (8.2) and the first line of (8.3) originating
from 6 star bracket (7.1) can be easily combined into

[(Célv i'1C71)9 (6527 5\2(371)]2_1@' C. (89)

The terms originating from B6 star bracket (7.8) are com-
bined into

(€1, 20, (B2 A2l oo (8.10)
where
Buwp = Bapy CCACY, = (0,(BSC™ g,

+ 0p(BSC )y + 8, (BSC™ap )C4,CHCY,. B.11)

The expressions for the Courant bracket twisted by both B
and 6 can be written in a form

[E1, A1), (B2, 32)]ey,
= ([51, Exlre — [E2, Ak CT 011, + [£1, Aok C ™01,

K2 v v v v v v
+ 10,015, Chr. ), 1, dalee )
+ [(CE&1, 1Ch, (CE, 2T

c-10
+ [(élsil)a (5275"2]:}‘6_19" (812)
When the Courant bracket is twisted by both B and 6, it
results in a bracket similar to C-twisted Courant bracket,
where Lie brackets, Schouten Nijenhuis bracket and Koszul
bracket are all twisted as well.

9 Conclusion

We examined various twists of the Courant bracket, that
appear in the Poisson bracket algebra of symmetry gener-
ators written in a suitable basis, obtained acting on the dou-
ble canonical variable (2.4) by the appropriate elements of
O (D, D) group. In this paper, we considered the transfor-
mations that twists the Courant bracket simultaneously by
a 2-form B and a bi-vector 6. When these fields are mutu-
ally T-dual, the generator obtained by this transformation is
invariant upon self T-duality.

We obtained the matrix elements of this transformation,
that we denoted e® (4.11), expressed in terms of the hyper-
bolic functions of a parameter o (4.8). In order to avoid
working with such a complicated expression, we considered
another O (D, D) transformation A (5.36) and introduced
a new generator, written in a basis of auxiliary currents 7,
and k*. The Poisson bracket al gebra of a new generator was
obtained and it gave rise to the C-twisted Courant bracket,
which contains all of the fluxes.

The generalized fluxes were obtained using different
methods [10-12,16-18]. In our approach, we started by
an O (D, D) transformation that twists the Courant bracket
simultaneously by a 2-form B and bi-vector 6, making it
manifestly self T-dual. We obtained the expressions for all
fluxes, written in terms of the effective fields

i _p (tanh«/2/<93>p
e Vake )Y
o (sinh2«/2/c9B)# g

-0°".

o = (———m——— 9.1
2+/2k6B e

The fluxes, as a function of these effective fields, appear nat-
urally in the Poisson bracket algebra of such generators.
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Similar bracket was obtained in the algebra of general-
ized currents in [11,12] and is sometimes referred to as the
Roytenberg bracket [10]. In that approach, phase space has
been changed, so that the momentum algebra gives rise to the
H -flux, after which the generalized currents were defined in
terms of the open string fields. The bracket obtained this way
corresponds to the Courant bracket that was firstly twisted
by B field, and then by a bi-vector 8. The matrix of that twist
is given by

R 6B (81’)‘ +afy K@f‘}). ©2)
2By 8y

e =e e =

In our approach, we obtained the transformations that twists
the Courant bracket at the same time by B and 6, resulting in a
C-twisted Courant bracket. As a consequence, the C-twisted
Courantbracket is defined in terms of auxiliary fields B (5.26)
and 6 (5.30), that are themselves function of «. This is not the
case in [11,12]. The Roytenberg bracket calculated therein
can be also obtained following our approach by twisting with
the matrix

5 C? k(CSH)
C _ B __
e =den= (2303 1 )

9.3)
demanding that the background fields are infinitesimal B ~
€, 0 ~ € and keeping the terms up to €. With these con-
ditions, €€ (9.3) becomes exactly e® (9.2), and the bracket
becomes the Roytenberg bracket.

Analyzing the C-twisted Courant bracket, we recognized
that certain terms can be seen as new brackets on the space of
generalized vectors, that we named star brackets. We demon-
strated that they are closely related to projections on isotropic
spaces. Itis well established that the Courant bracket does not
satisfy the Jacobi identity in general case. The sub-bundles
on which the Jacobi identity is satisfied are known as Dirac
structures, which as a necessary condition need to be sub-
sets of isotropic spaces. Therefore, the star brackets might
provide future insights into integrability conditions for the
C-twisted Courant bracket [28].

In the end, we obtained the Courant bracket twisted at the
same time by B and 6 by considering the generator in the
basis spanned by 7 and k, equivalent to undoing A transfor-
mation, used to simplify calculations. With the introduction
of new fields éuv and é’“’, this bracket has a similar form
as C-twisted Courant bracket, whereby the Lie, Schouten—
Nijenhuis and Koszul brackets became their twisted counter-
parts.

It has already been established that B-twisted and 6-
twisted Courant brackets appear in the generator algebra
defined in bases related by self T-duality [13]. When the
Courant bracket is twisted by both B and 6, it is self T-dual,
and as such, represent the self T-dual extension of the Lie

@ Springer

bracket that includes all fluxes. It has been already shown
[8] how the Hamiltonian can be obtained acting with B-
transformations on diagonal generalized metric. The same

method could be replicated with the twisting matrix e?, that
would give rise to a different Hamiltonian, whose further
analysis can provide interesting insights in the role that the
Courant bracket twisted by both B and 0 plays in understand-
ing T-duality.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: No data was used
for this paper.]
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Abstract Bosonic string moving in coordinate dependent
background fields is considered. We calculate the generalized
currents Poisson bracket algebra and find that it gives rise
to the Courant bracket, twisted by a 2-form 2B,,,,. Further-
more, we consider the T-dual generalized currents and obtain
their Poisson bracket algebra. It gives rise to the Roytenberg
bracket, equivalent to the Courant bracket twisted by a bi-
vector T4V, in case of [T#¥ = 2* B*¥ = xH"V. We conclude
that the twisted Courant and Roytenberg brackets are T-dual,
when the quantities used for their deformations are mutually
T-dual.

1 Introduction

Non-geometric backgrounds [1-3] include various duali-
ties. Duality symmetry is a way to show the equivalence
between two apparently different theories. Specifically, T-
duality [4,5] is a symmetry between two theories corre-
sponding to different geometries and topologies. It was firstly
noticed as the spectrum equivalence of the bosonic closed
string with one dimension compactified to a radius R, with
the bosonic closed string with one dimension compactified
to a radius «’/R.

The Courant bracket [6,7] is the generalization of the Lie
bracket so that it includes both vectors and 1-forms. It is a
fundamental structure of the generalized complex geometry.
Vectors and 1-forms are treated on equal footing in the gen-
eralized complex structures. Many for string theory relevant
geometries, such as complex, symplectic and Kéhler geom-
etry, are integrated into the framework of generalized com-
plex structures. Moreover, the generalized complex geometry

Work supported in part by the Serbian Ministry of Education and
Science, under contract No. 171031.

2 e-mail: ivanisevic@ipb.ac.rs (corresponding author)
b e-mail: ljubica@ipb.ac.rs

¢ e-mail: sazdovic@ipb.ac.rs

provides a framework for a unified description of diffeomor-
phisms and gauge transformations of the Kalb—Ramond field.
Hitchin was the first one to introduce the generalized Calabi—
Yau manifolds, that unified the concept of a Calabi—Yau man-
ifold with the one of a symplectic manifold [8]. Gualtieri in
his PhD thesis contributed further to the mathematical devel-
opment of generalized complex geometry [9].

In generalized complex geometry, closure under the
Courant bracket represents the integrability condition, in a
same way that closure under the Lie bracket represents the
integrability condition of almost complex structures. More-
over, the Courant bracket governs the gauge transformation
in the double field string theory [10].

The Roytenberg bracket is the generalization of the
Courant bracket, so that it includes a bi-vector. It was firstly
introduced by Roytenberg [11]. In [12], the o-model with
both 2-form and a bi-vector was considered. The Poisson
bracket algebra of the generalized currents was obtained. It
has been observed that, while the current algebra is anoma-
lous, the algebra of charges is closed and gives rise to the
Roytenberg bracket. In [13], the Roytenberg bracket was
obtained by lifting the topological sector of the first order
action for the NS string o -model to three dimensions. In [14],
the higher order Roytenberg bracket is realized, by twisting
by a p-vector.

In this paper, we consider the closed bosonic string mov-
ing in the coordinate dependent background fields. Gener-
alized currents are defined as linear combinations of world-
sheet basis vectors with arbitrary coordinate dependent coef-
ficients, and their Poisson bracket algebra is calculated. We
follow the work of [15], that analyzed the most general
currents of the general o model, where it has been shown
that the algebra of most general currents gives rise to the
Courant bracket, twisted by the Kalb—Ramond field. More-
over, we consider the self T-duality, that is to say T-duality
realized in the same phase space. The self T-duality inter-
changes momenta with coordinate derivatives, as well as
the background fields with their T-dual background fields.

@ Springer
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Another set of generalized currents, T-dual to the aforemen-
tioned ones, are constructed and their algebra obtained. We
find that their algebra gives rise to the Roytenberg bracket
obtained by twisting the Courant bracket by the T-dual of
the Kalb—-Ramond field. Hence, we show that the twisted
Courant bracket is T-dual to the corresponding Roytenberg
one, obtaining the relation that connects the mathematically
relevant structures with the T-duality.

2 Hamiltonian of the bosonic string

Consider the closed bosonic string in the nontrivial back-
ground defined by the symmetric metric tensor field G, and
the Kalb-Ramond antisymmetric tensor field B,,,, as well as
the constant dilaton field ® = const. In the conformal gauge,
the propagation is described by the action [16,17]

S:/ d’eL
>

1
- K/ d’¢ [Eno"gG,w(x) + e“ﬂB,w(x)} dox"dpx",
=
.1

where integration goes over a two-dimensional world-sheet
¥ parametrized by £%(£0 = 7, £! = &) with the worldsheet
metric 7*#. Coordinates of the D-dimensional space-time are
xHE), n=0,1,....,D— 1" = —landk = 5.

It is convenient to rewrite the action (2.1) using the light-
cone coordinates £+ = €04 ¢! and derivatives 94 = %(80 +
d1) as

S = K/ d?E0, XM Ty 0 (x)0_x", (2.2)
b
where
1
Hi;w(x) = B;w(x) + EGMV(X)' (2.3)
The canonical momenta are given by
a‘c -V v
Ty = Py =kGpuy(X)x" — 2k By (x)x". 2.4)
The Hamiltonian is obtained in a usual way,
He = mpit — L
1 _ _
= 5.u(G Y, —2x"" B, (G™HYPr,
K
+5x"G X", (2.5)
where
Gl,=Gu —4BG 'B) (2.6)

@ Springer

is the effective metric.
Energy-momentum tensor components can be written as

1 —1\pv .

Ty =F7— (G " jrpjtvs 2.7
4k

where the currents j, are given by

Jp(x) = 1y + 26y (X)x. (2.8)

In terms of the energy-momentum tensor components (2.7),
the Hamiltonian is given by

1 o
He=T-—Ti= (G )" [jrpito + jopin]. 29

In this paper, we are interested in these currents, currents T-
dual to them, their generalizations, as well as their Poisson
bracket algebra. Before that, let us present a short overview
of T-duality.

2.1 Lagrangian approach to T-duality

In the Lagrangian approach to T-duality, the Buscher proce-
dure of T-dualization has been developed [18-21]. It provides
us with the procedure of transforming coordinates from one
theory to the coordinates from its T-dual theory, when there
is a global Abelian isometry of coordinates along which T-
dualization is applied. The T-dualization rules for coordinates
are given by [22,23]

Apxt = —k@ "y, dpyy = —2TM400x”, (2.10)

where we have introduced the T-dual coordinate y, and new
fields ®%", defined by

2 1
O = — (G MLG™HW = 5 —(GH™,  (2.11)
K K

where 6"V is the non-commutativity parameter, that first
appeared in the context of open string coordinates non-
commutativity in the presence of non-zero Kalb Ramond
field [24], given by

2
o1 = —=(G,'BGHM, (2.12)
K

where (Ggl)‘“’ is the inverse of the effective metric defined
in (2.6). It is straightforward to verify that ®%" fields are
inverse to Iy, fields

1
O Mgpy = -8,

. 2.13
2V 2.13)
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Successive application of the T-dualization (2.10) is involu-
tive

dpxt = —k@Y 3y, = 2O T4, 00 x” = dpxt,
(2.14)
where in the last step we have used (2.13).

Applying the T-dualization laws (2.10) to the action (2.2),
we obtain the T-dual action

/ d*e* L =

Expressing the action (2.15) in the form of the initial action
(2.2), we obtain

2
> /dzgawﬂ(a" A_yy. (2.15)

K
v
_8_ ,

*HMU —
t T2

(2.16)

which allows us to read the T-dual background fields

GRY = (G, BM = ge*”. 2.17)
These relations correspond exactly to the expressions for T-
dual background fields obtained by Buscher [18-21] in case
of the existence of Abelian group of isometries along coor-

dinates along which we perform T-duality.
2.2 Hamiltonian formulation of T-duality

Let us rewrite the T-dualization laws (2.10) in terms of phase
space variables. Firstly, we need the expression for the T-dual
canonical momentum. It is given by

0L

—1\uv ¢ 20V 7
=k(GL )"y, — k7 O"
a).)u ( E) v yu

(2.18)

Secondly, let us rewrite equations (2.10), separating the part
that changes the sign from the part that does not. For the
coordinates of the initial theory, we obtain

M= kM, (G

)yl A Z(GEY k0",

(2.19)
and for the coordinates of the T-dual theory, we obtain

Yu = =2Buyx” +Gupx", y, = Gupi =2Bx". (2.20)

Comparing the second relation of (2.19) with (2.4), as
well as the second relation of (2.20) with (2.18), we obtain
the T-dualization laws (2.10) formulated in terms of the phase

space variables

ex't =rght g, = KY),- 2.21)

When coordinate o-derivatives and canonical momenta are
integrated over the worldsheet space parameter o, the wind-
ing numbers and momenta are respectively obtained [25].
Hence, we see that the T-dualization transforms the momenta
of the initial theory into the winding numbers in its T-dual
theory, and vice versa.

The T-duality can be considered as the canonical transfor-
mation generated by the type I functional [26,27]

F = K/dax“y;u (2.22)
which gives rise to momenta
SF —S5F
T, =— =ky, ‘nt= = kx*. (2.23)
SxH H Syu

This is exactly the relation (2.21). The T-duality does not
change the Hamiltonian, since the generating function (2.22)
does not depend explicitly on time H¢ — Hce + %—f =Hc.
In order to obtain the T-dual Hamiltonian, we apply rela-
tions (2.21)—(2.5), and obtain
* l *
He = o

Tk Gﬁv*nV—Z*n’”(BG ) yv+ yll-(G )/w/

(2.24)

Expressing the T-dual Hamiltonian in the form of the initial
one (2.5), as

1
*HC — JTM*G—I* v

o K
5 p: 2yl/L(*B G l)p; *JTV+7

59 GE ¥

(2.25)

We are able to read once again the expressions for the T-dual
background fields (2.17).

Given that we were able to write the Hamiltonian in terms
of currents ji,, we would like to write the T-dual Hamilto-
nian (2.25) in terms of T-dual currents. By analogy with the
initial theory (2.7), we write the T-dual energy momentum
tensor components as

1
*T:I: — :F_*G—l *]:lé *Jir

2.26
4k ( )
where * ji are T-dual currents, given by

=t acnhy) (2.27)

The T-dual Hamiltonian is then given by

1 — *
*Hc=*T7—*T+=E*G (*]-llf*]i—i_ JIL*JV)

(2.28)
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We can check that substituting (2.27) into (2.28), the T-dual
Hamiltonian in the form (2.25) is obtained. Therefore,
He =*Hc,

Ty 2T, (2.29)

2.3 T-dual currents

Let us consider the transformation of the currents under T-
duality. Applying (2.21)—(2.8), we obtain
J+u = Ky,/,, + 2“:!:;,”)*77” = zniuv*ji» (2.30)
where we have used (2.13). Similarly, the T-dualization
applied on the T-dual currents is as easily obtained
= aex™ K@ivnv = K@iujiv. (2.31)
The successive application of T-dualization on any current
returns exactly that current.

Although the initial and T-dual theories are equivalent
(2.29), the currents ji, and * j't do not transform exactly
one into another by the T-dualization laws (2.21). There are
couple of ways to see the nature of this fact. Firstly, the current
J+, has the lower indices, while * jX has the upper indices.

Secondly, substituting (2.30) into (2.7), we obtain the T-
dual transformation of the energy momentum tensor

1, . _ .
Lo =4 ([5G ") "

1, . )
=7 G L = T,

” (2.32)

where in the second step we used (2.3) and (2.6). The direct
transformation of currents under T-duality ji, =* j'y would
violate invariance of the energy momentum tensor. The effec-
tive metric Gﬁv in the expression for T-dual energy momen-
tum tensor is obtained from —I"I;G_l Iy = }TG E, Which is
only possible due to the non-trivial T-duality relation between
currents (2.30).

Lastly, let us rewrite the expressions for currents in terms

of coordinates, by substituting (2.4) into (2.8) and (2.18) into
(2.27)
Jop = kG udax”, i =k (GH"™ oLy, (2.33)
Hence, in the same way that coordinates d+x* do not trans-
form into T-dual coordinates d+y, under (2.10), in the same
way the currents ji, do not transform into T-dual currents
* ji‘ . The transformation of variables under T-duality (2.21)
is presented in the Table 1.

Lastly, let us define for future convenience the right hand
side of (2.31), as a new current li
(2.34)

I = K@ivjiv =xx* + K@ivﬂv.

@ Springer

Table 1 Transformations under the T-dualization

Initial theory T-dual theory
T, o~ Ky;t

Kx™ ~ *ah

JEu = 2y *js
K@)iu.jj:\) = *Ji

In the next chapter, we will see how we can avoid working in
two phase spaces, and the currents //{ will have an important
role throughout the rest of the paper.

2.4 Self T-duality

So far we considered the case when two mutually T-dual
theories are defined in two different phase spaces, that we
have marked by {x*, 7r,,}, and {y,,, *7"}.Itis in fact possible
to realize T-duality in the same phase space, that we will call
self T-duality.

To realize self T-duality, let us rewrite the second relation
of (2.19), using (2.17)
kx™ = *G"yy, — 2 *B*y) . (2.35)
Comparing it with the expression for momenta (2.4), we
conclude that the exchange of coordinate with its T-dual
x" < y, is equivalent to

my < kx™, By, < *B" = 59‘“’,

Guv < *G" = (GH™. (2.36)

These are transformation rules for what we call self T-duality.
Note that unlike in (2.21), here the background fields are
transformed, as well.

The self T-duality gives the same expressions for T-dual
background fields (2.17) as in case of Buscher procedure. It
swaps the winding numbers with momenta as well, therefore
preserving all features of T-duality, with the only difference
being that it is realized in the same phase space.

The two currents ji, and /'y transform into each other
under the self T-duality (2.36)

i =7+ 2 My x” & wex™ + k0 7, = 1. (2.37)

On the other hand, under (2.36) the energy-momentum tensor
is invariant

| PP R Ik
Ty = :F@(G WY jap jrv <> :F@Gwlili =T..
(2.38)

With the help of (2.9), we see that the Hamiltonian does not
change under (2.36). Nevertheless, the Hamiltonian can be
expressed in terms of new currents /'y
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Table 2 Transformations under the self T-duality

Initial theory Self T-dual theory
Ty < KX,
Kx'™ < T
By < somy
Guv = Gz
ji;l, g li
1 E Kqv Hqv
He = —Gy, (51 +1417), (2.39)

4k

but with the effective metric instead of the inverse metric.
Substituting (2.6) and (2.34) into the previous equation, we
obtain the initial form of the Hamiltonian (2.9).

It is important to point out that although the energy-
momentum tensor components 7+ and the Hamiltonian H¢
remain invariant under the self T-duality, the currents ji,
and I{ do not. Therefore although both currents ji, and
I'{ are defined in terms of the initial theory variables, they
have to change under self T-duality, due to the invariance of
energy momentum tensor components (2.38). We summa-
rize its transformation rules in the Table 2. Our next goal is
to generalize these two currents and obtain the algebra of
their generalizations.

3 Generalized currents in a new basis

In this chapter, we will construct two types of generalized
currents. Generalized currents are arbitrary functionals of
the fields, parametrized by a pair of vector field and covector
field on the target space, treating both vectors and 1-forms
on equal footing [9]. The convenient bases in which these
generalized currents are defined are components of currents
Jjap and I

Firstly, we will generalize the currents ji,. From (2.8)
we extract its T and o components

. J+u + J-

Jop = w = 7, + 2k By (X)x",

. J+u — J-

nuz—iia—iiszuumx”. G.1)
We will mark
iy =7y + 26 By (x)x", (3.2)

as a new, auxiliary current. Therefore, {kx'*, i w} 1S a new
convenient basis on the world-sheet. We can now write cur-
rents (2.8) in this basis as

Jip =iy £kGpuux". (3.3)

In the same way as in [15], we define the generalized
currents in the new basis, as the linear combination of both
coordinate o —derivatives and auxiliary currents
Jew,ay = uP (X)iy + ay (x)kx™, (3.4)
where u*(x) and a,(x) are the arbitrary coefficients. The
charges of these currents are

Ocu,a) = /dUJC(u,a)~ (3.5)

The charges exhibit additional symmetry. In order to see
that, let us firstly rewrite the integral of the total derivative of
an arbitrary function A

2 2
/ do(\) =/ dodax" =0,
0 0

which goes to zero for closed strings. From this fact, we
obtain the reducibility relations for the charges

(3.6)

Ocw.a+or) = QCu.a)- 3.7

The expression of the form (3.4) is particularly interest-
ing, since it gives rise to many for string theory relevant
structures. Firstly, for the special case of coefficients relation
a, = £G,yu”, we obtain
Jew,+Guy = ut jp. (3.8)
Hence, the currents (2.8) indeed can be obtained from the
generalized currents (3.4). On the other hand, for special

case a, = —2B,,u", we obtain
Jew,—2Buy = utmy, (3.9
as well as for u* = 0, we obtain
Je.a) = aprx’. (3.10)

We see that the general current algebra for the appropriate
coefficients reduces to non-commutativity relations of both
coordinates and momenta.

We are also interested in another type of generalized cur-
rent, that in analogous way generalizes [/;, in the basis related
to its T and o components

I+ [
-5 =kx" + k0w, I = 5

ly = = (G5,

(3.11)
The second set of generalized currents is defined by

JRw.by = V()7 + by (X)kH, (3.12)

@ Springer
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where v/ (x) and b, (x) are the arbitrary coefficients, and we
have introduced another auxiliary current by

= kx™ + k6", (3.13)
Their charges are
ORw.p) = /dUJR(v,b)- (3.14)

Similarly as in (3.7), these charges also exhibit additional
symmetry. In order to see that, let us write the total derivative
integral (3.6), using (3.13), in terms of new basis vectors

2 21
/ do*icaﬂ)»x'“ = f dod a(k" — k0" m,). (3.15)
0 0

As aresult, we obtain the non-uniqueness of the charges

ORw+x001,b+32) = OR(v,b)- (3.16)
In a special case of v** = :t(GE])’“’bv, the generalized
current (3.12) reduces to the current (2.30)

g gk
JR(iGEIb,b) =buly,

(3.17)
thus justifying calling it generalized current. Momenta 7,
and auxiliary currents k** can also be as easily obtained from
it.

The two new bases transform into each other under (2.36):

iy = T +2kByx" < kxM 40", = k*, w, < kxt
(3.18)

Therefore, the generalized currents are defined in the mutu-
ally T-dual bases, and their respective algebras are also going
to be mutually T-dual.

At the end of this chapter, let us obtain the relations for
coefficients when two generalized currents are equal. This
will enable us to obtain the algebra of currents Jg(y ), pro-
vided that we have the algebra of Jc(, ), and vice versa. Let
us start with rewriting the expressions for both generalized
currents in the basis {rr,, x"#}. Substituting the expression
(3.2) into (3.4) we obtain

Jew.a) = u'my +k(ay —2Byu’)x™, (3.19)

while substituting the expression (3.13) into (3.12) we obtain

Jrw.py = W — k0*by), + Kby X (3.20)

@ Springer

Comparing (3.19)-(3.20), we see that generalized currents
are equal when coefficients satisfy following relations

ut = vt — k6"h,,

ay =2B,v" 4+ (GGEh) Vb, (3.21)
The above relations can be easily inversed. We obtain

v = (G5 Gt + k0" a,,

by=a, —2B,u". (3.22)

4 Courant bracket

We are interested in calculating the Poisson bracket algebra
of the most general currents Jc(y q), defined in (3.4), as well
as of their charges Q ¢ (4,q), defined in (3.5). We will start with
the generators i, and x"* algebra, that we calculate using the
standard Poisson bracket relations

{x"(o, 1), m, (6, 7))} = 8"8(0 —0),
{(x"(o, 1), x"(0,7)} =0,

{my(o, 1), my(0, 1)} =0. “4.1)

In the accordance with [15], we will obtain that the algebra
of generalized charges (3.5) gives rise to the twisted Courant
bracket [6].

We obtain the algebra of generators (3.2)
{i,(0),iy(0)} = =2k Byypx'"8(0c — &), 4.2)

where the structural constants are the Kalb—Ramond field
strength components, given by
By = 0y Bup + 0y By + 0By “4.3)

The rest of the generators algebra is given by

{in(0), kx"(0)} = 18,/ 3,8(0 — &), {kx'(0),kx"(5)} =0.

4.4)

The Poisson bracket of the most general currents (3.4) is
obtained using (4.2) and (4.4). It reads

Ucw.a) (@), Jew.p) (0)}
= (" u" —u"8,v")i8(c — &) — 2k Byypx™u"vP8(o — o)
—K ((Bﬂav — dya v — (Buby — Bvbﬂ)u”) x*8(o — &)

+ 1 (4 (0)by(0) + v(5)a, (6)) 858(0 — &). (4.5)

We can modify the anomalous part in the following manner

(u" (@)bp(0) + v"(5)a,(6)) 3:8(0 — &)
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1
= 3 (@Wh)(@) + (va)(@)) 9,3(0 — &)
— %(ub)(a)(’)(—,a(o —0)+ %(va)(&)aaﬁ(a —0)
= § (@D)(0) + Wh)(®) +va(o) + W)@) 850 )

+ %a,t(ua —ub)x"8(c — ), (4.6)

where we have used the notation (ub)(0) = u"(0)b, (),
and the relation f(5)9,6(c — ) = f/(0)d(c — o) +
f(0)3;6(c — o) in the last step. Substituting the previous
equation in (4.5) we obtain

{(Jew,a) (@), Jcw,p)(0)}
= —Jc@w,o(0)8(0 — o)
+§ (ub)(0) + ub) (&) + (va) (o)

+(a)(0)) 0s6(c — o), 4.7
where the coefficients in the resulting current are
wH = u'9,v* —v',ut, (4.8)

and
¢ = 2B’ v? + (9pay — dvay)v” — (9uby — dyby)u”

+%8u (ub — va). “4.9)

The minus sign in front of the Jc(y,¢) is included for the
future convenience. We see that w* does not depend on back-
ground fields, while the coefficient ¢, does, because of the
H-flux term By,,,p.

The relation (4.7) defines the bracket, that acts on a pair
of two ordered pairs consisting of a vector and a 1-form, that
as a result has another ordered pair, that we can write like
[(u,a), (v,b)]c = (w, 0). (4.10)
The bracket that we have obtained is the twisted Courant
bracket [6]. The Courant bracket represents the generaliza-
tion of the Lie bracket on spaces that contain both vectors
and 1-forms. As a result, it gives an ordered pair of a vector
w = wHd, and a 1-form ¢ = ¢, dx".

Let us confirm the equivalence between the twisted
Courant bracket and the bracket that we have obtained in
(4.10). The coordinate free expression for the twisted Courant
bracket is given by

[(u,a), (v, b)]c = ([u, vle, Lub — Lya — %d(iub —iya)

FH@u, v, .)) =W, 0), 4.11)

where [u, v], is the Lie bracket and H (u, v, .) is a 1-form
obtained by contracting a three form. The Lie derivative £,
is defined in a usual way £, = i,d + di,, where d is the

exterior derivative and i, the interior derivative. Their action
on 1-forms is given by da = d,a,dx"dx" and iya = u*a,,.
The Lie bracket is given by

[, v]r * =u"d,v"* — v’ 0,ut. (4.12)
Using the definition of Lie derivative, we furthermore obtain
1
<Eub — Lya — =d(i,b — iva)>
2 w

=u"(dyb, — 3,by) — v (dva, —

pay)

1
+§8M(ub —va). (4.13)
As for the last term in (4.11), it is given by
H(u,v, )|, = 2B ou”v”. (4.14)

The expression for the generalized current corresponding to
the Courant bracket is obtained by substituting (4.12), (4.13)
and (4.14) in (4.11)
[(u,a), (v,b)]c = (w,0), (4.15)
where w" and ¢, are exactly the same as w* and ¢,
defined in (4.8) and (4.9), respectively. Therefore, we see that
the bracket defined in (4.10) is indeed the twisted Courant
bracket.

Besides the current algebra, we are interested in the alge-
bra of charges (3.5). The anomalous term is canceled when
integrated. For example, consider the first term in anomaly

/dad&(ub)(a)aob‘(a —0)
= —/d685/da(ub)(a)5(a —0)

= —/d&&(,(ub(&)) =0, (4.16)

since we are working with the closed strings. The other terms
cancel in a similar manner. Integrating the generalized cur-
rents (4.7) over o and ¢ we obtain
{Qcw,a), Qcw,n} = —Qclw,a),,b)lc- (4.17)
We see that the algebra of charges is anomaly free. The rela-
tion (4.17) was firstly obtained in [15] for the general case
of the Hamiltonian formulation of string o-model, in which
momenta and coordinates satisfy the same Poisson bracket
relations as auxiliary currents and coordinates in our theory.

Let us check whether the algebra (4.7) is consistent with
the known results for the Poisson bracket algebra of the cur-
rents jy, [28]

{j£(0), jv(0)} = £2kT 1px"P8(0 — )

@ Springer
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— 2k Byypx'P8(0 — &)

+2cG 8 (0 — &),
{zn(0), jv(3)} = £2k Ty 1px"8(0 = &)

— 2k Bypx'P8(0c — a), (4.18)
where I'y 1y = %(8,,Gpu +0,Gyy — 0, G yp) are Christoffel
symbols. If we substitute a;, = £G,,u" and b, = £G V"

for constants u* and v* in (4.7), with the help of (3.8) we
obtain

{(u" jap (), v jau (3)}
= u'v" (=26 By £ k(3,G oy — 8,Grp)) x"P8(c — G)
+ kut v’ (G (0) + Gy (6))58(0 — &)
= ulv” (=2k Buup £ k0, G py + 3,G iy — 8, Gop)) X7 8(0 — 7)
+ 2ku" v G 1 (0)058(0 — &)
= ul v {jap, jeo ) (4.19)
The consistency with the second relation in (4.18) can be as
easily obtained.

5 Roytenberg bracket

The Roytenberg bracket appeared as a result of the current
algebra firstly in [12], where the author twisted the Poisson
structure by trading the 2-form B,,,, with the bi-vector I[1#". In
this paper, we firstly calculate the Poisson bracket algebra for
the generalized currents Jg(y,p) (3.12), in order to calculate
the T-dual Poisson structure of the twisted Courant bracket.

While the currents (3.12) have the same form as the cur-
rents giving the Roytenberg bracket in [12], in [12] the
momenta are redefined so that they are equal to the auxil-
iary currents i, (3.2) in our paper. As a result of this dif-
ference, the currents Jg(y,p) and Jc(u,q) are related by self
T-duality, which is not the case for corresponding currents
in [12]. Therefore, we will show that the Courant bracket
twisted by a2-form 2B, is T-dual to the Roytenberg bracket,
obtained by twisting the Courant bracket by a bi-vector k6",
When the fluxes are turned off, both of them reduce to the
untwisted Courant bracket, that is T-dual to itself.

We will start with the algebra of auxiliary currents k"
(3.13). Using (4.1), we obtain

{(k*(0), k" (8)} = —Kk8,0M"x"P8(0 — &) — k> (01 3,0"°
—0"7 9,0M°)7,8(0 — ), (5.1)

where 6" is the non-commutativity parameter (2.12). From
(3.13) we express the coordinate in terms of algebra genera-
tors and obtain

k() K (@)} = =k Q I kP8(0 —5) k> R"P 1,8 (0 —5),
(5.2)

@ Springer

where we expressed the structure constants as fluxes

= ,0M,

) RIP = 019 9,6 + 6" 3,071 + 77 3,01

(5.3)

These are the non-geometric fluxes [29]. They were firstly
obtained by applying the Buscher rules [18-21] on the three-
torus with non-trivial Kalb-Ramond field strength (4.3). After
the T-duality transformations are applied along two isometry
directions, one obtains the space that is locally geometric,
but globally non-geometric. The flux for this background
is Q p“ ", After the T-duality transformation is applied along
all directions, one obtains the space that is neither locally,
nor globally geometric, characterized with the R*P flux.
When considering a generalized T-dualization, the R flux is
obtained when performing T-dualization over the arbitrary
coordinate on which the background fields depend [30].

The rest of the generators algebra is calculated in a similar
way

{k"(0), m,(0)} = k8",0,8(0 — &) +k QP mpé(o —05),
{m, (o), my(0)} =0. 54

‘We obtain the Poisson bracket of the most general currents
JR(u,a), using (5.2) and (5.4). It reads

{JRw.a)(0), JRw,b)(0)}
= "o u" —u"9,v")m,8(c — ) — Kle‘Upn“a‘,bpS(n —0)
— k(03,0 ay — vP0ya,0" — 8,070 a,) 1, 8(0 — &)
—K (u”Bpré’”“ +kuld,0""b, — KQ”/’Spu“bv) 7,8(0 — &)
+ (" @by — duby) — v" (uay — dvay)) kH8(o — &)
— ke (aphyd, 67" — 0" Dpauby — dpbuay)) k8o — &)

+ i (4 (0)byu (o) + v"(6)a, (5)) 0:8(0 — &). (5.5)

Using (4.6) and (3.13) we can transform the anomaly in the
following way
Kk ((ub)(0) + (va)(0)) d;8(c — )

= %((ub)(a) + (ub)(0) + (va)(o) + (va)(0))ds8(c — o)

+ %aﬂ(va —ub)(o) (k" — 0" 1p)é (0 — o). (5.6)

Substituting the last equation in (5.5), we obtain
{VRw,a)(0), JRw,b)(0)}
= —Jrw,5(0)é(0 — o)
+3 (Wh)(©) + Wh)(&) + (va) (@)
+(a)(0)) 0,6(c — o), 5.7

where

wht = w9, — v ut + k60" 9,0 a,

— kvPdya,0"" —k Q f*vVa,
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+ kuf9,b,0"" + ku” Qp"“bv — k0P d,utb,

_ g@’“’av(va — ub) + K2 R"Payb,, (5.8)
and
¢ =v"(0uay — dvay) — u”(duby — d,by,)
1
—EBM(Ua —ub) +Kkapb, Q1"
—k0" (3paub, — d,bpa,), (5.9)

where we have substituted Q and R fluxes (5.3). Unlike
the coefficients in the previous case, here both coefficients
depend on backgrounds, due to the presence of fluxes.

As expected, algebra is not closed due to the anomalous
part. This Poisson bracket defines a new bracket
[(u,a), (v,b)]Ig = (W, 0), (5.10)
which is equal to the Roytenberg bracket [11]. In case of

only R and Q flux present in the generators algebra (5.3), the
Roytenberg bracket is given by

[(u,a), (v,b)]r
1
= ([u, vl = [v. @Ml + [, b1, + 5[, Mls(a b, )

- (L,,a — Lub + %d(iub - iva))n,

1

+ Lub— Loa = 5d(iub — iva) — la. bln). .11
where I1 = I1#Y9,0, is the bi-vector. The expression
[TT, I]s(a, b, .) represents the Schouten—Nijenhuis bracket
[31] contracted with two 1-forms and [a, b]g is the Koszul
bracket [32] given by
[a, bln = Lanb — Lpna + d(I1(a, b)). (5.12)
The Koszul bracket is a generalization of the Lie bracket on
the space of differential forms, while the Schouten-Nijenhuis
bracket is a generalization of the Lie bracket on the space of
multi-vectors.

The terms in (5.11) that we have not calculated yet can be
written, using (4.13), as

1 123
<(£va - Lyb+ Ed(iub - iva))n)

= (u”(aubp —d,b,) —v"(dva, — dpay)

1
+59p(ub va)> ly G (5.13)

The Koszul bracket (5.12) can be further transformed in a
following way

la, bInl, = TI?"(bpdvay, — apdyby) + 0,11 ayb,, (5.14)

while the remaining terms linear in IT become

([—v, alllg + [u, bII])®
= 0 (0ya, T + )3, T1") + a, 11779,

— 1’ (3,b, I + b, 3, T1"°) — b, TI? 9, ut.  (5.15)

Lastly, we write the expression for the Schouten-Nijenhuis
bracket for bi-vectors

[T, M]g|*" = egggn"“aonﬂy, (5.16)
where
8o 8p 87
egj/;’y’ =|8) 55 bin (5.17)
8 8 8y
Thus, we get
([T, T]s(a, b, NI* =2R"*Pa,b,, (5.18)

where R*'P is the flux defined in (5.3).

Combining the previously obtained terms, we obtain
the expression for the generalized current corresponding to
the Roytenberg bracket twisted by the non-commutativity
parameter as a bi-vector

[(u,a), (v, b)]g = (w, ¢), (5.19)

where w* and c, are equal to w* and ¢, defined in (5.8)
and (5.9), respectively, provided that [T*" = K"V,

Integrating the previous equation over ¢ and o, we see
that charges satisty
{ORw,a)> ORw.b)} = —OR[(.a),(v,b)]r- (5.20)
The bases in which these generalized currents have been
defined are mutually T-dual (2.36). This means that the gen-
eralized currents also transform into each other
Je@w,a)y < JR,b) (5.21)
provided that we swap also coefficients u" < b, a, < v*.
We say that two types of brackets, one obtained by twisting
the Courant bracket by a 2-form 2B,,,, another obtained by
twisting the Courant bracket by a bi-vector I[T*", are mutually
T-dual, as long as the aforementioned 2-form B, is T-dual
to the bi-vector ITH*".

In [33] it has been proposed that T-duality can be under-
stood as the isomorphism ¢ between two Courant algebroids
[7,9]. The relations connecting coefficients of two sets of
generalized currents (3.21) can in fact be rewritten as

¢(u,a) = (u — kba,2Bu + (G5 G)a), (5.22)
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which can be interpreted as the isomorphism ¢(u,a) =
(v, b) between two Courant algebroids with the trivial bun-
dles over a point and with the twisted Courant and Royten-
berg brackets as brackets that act on the Cartesian product of
sections of these bundles, as well as the natural inner product
(., .) between generalized vectors, given by

1
((u,a), (v, b)) = E(ub + va). (5.23)

In order for ¢ to be the isomorphism that corresponds to
T-duality, it has to satisfy the following conditions:

(pu,a), (v, b)) = ((u, a), (v, b)),
[, a), (v, D)Ilc = ¢ ([(u,a), (v, b)]R) .

To prove that the first condition is satisfied, using (5.22), we
obtain

(5.24)

(p(u,a), ¢(v, b))
= ((u —kBa,2Bu + (GEIG)a), (v —k6b,2Bv
+ (G5 G)b))
_ % (ZB,“,u“v” +26(BO) Vvt ay + (G5 G) by
k(G5 G0 bya,
2By, v u” + 2k (BO) Julb, + (G5 G ayv”
—K(Ggla)ﬂvew’aﬂbp)
1 _
= Wby, +v"a) ((G5'6)', +2x(0B)",)

= ((u, a), (v, b)), (5.25)

where we have used the fact that B,,, and (GE] GOV are
both antisymmetric, as well as

(G G + 2k (OB = 8-, (5.26)

which is the identity easily obtained from (2.6) and (2.12). As
for the second relation of (5.24), it can be shown by writing
the relation (4.17) for ¢-transformed coefficients

{Ocow.a) Ocow,p)} = —OClow,a),0@,b)c- (5.27)

On the other hand, due t0 Qcyu,a) = OQRu,q). the terms

on the right-hand sides of (5.27) and (5.20) are equal. By
equating them, one obtains

OQR((u,a),(0,0)1r = QClpw,a),0(w,b)lc- (5.28)

Lastly, using (5.22), we write the above relation in the form

OQCow,a),0,b)1r) = QClpu,a),p®,b)lcs (5.29)

@ Springer

from which the second condition of (5.24) is easily read.

Therefore, we have shown that the relations connecting
two types of generalized currents (5.22) define the isomor-
phism between two Courant algebroids, characterized by
twisted Courant and Roytenberg bracket, that according to
[33] is interpreted as T-duality.

6 Conclusion

In this paper, we used the T-dualization rules (2.10) for coor-
dinates in the Lagrangian approach, and (2.21) for the canon-
ical variables in the Hamiltonian approach. The relation for
T-dual background fields (2.17) stands in both approaches.
These relations between the fields provide correct relations
between the Courant and Roytenberg bracket.

The T-dualization rules we used, correspond exactly to
Buscher’s rules obtained in its original procedure [18-21]
when there is an Abelian group of isometries of coordi-
nates x“ along which one T-dualizes: B(x?) = B(x% 4 b%),
G(x%) = G(x* 4 b*). In the Buscher procedure the sym-
metry is gauged and the new action is obtained. Integrat-
ing out the gauge fields from that action, one obtains the
T-dual Lagrangian. From that, the T-dual transformation law
between the T-dual coordinate o -derivatives and the canoni-
cal momenta of the initial theory can be obtained Ky[/i =7y
This is exactly the relation (2.21) in our paper.

The most interesting case is when we try to perform the T-
dualization along non-isometry directions x¢, such that back-
ground fields do depend on them. Then we should apply the
generalized Buscher’s procedure, developed in [25,34]. In
this case, the expression for the T-dual background fields
(2.17) remain the same but the argument of the T-dual back-
ground fields is not simply the T-dual variable y,. It is
the line integral V' that is a function of the world-sheet
gauge fields v and v®, namely V*[vy, v_] = [, d§%vS =
Jp(dEtv] 4+ dE~v?). The expressions for gauge fields can
be obtained by varying the Lagrangian with respect to gauge
fields and the expression for the argument of background
fields has the form V¢ = —x 0Py, + Ggl“b Yp, Where y, isa
double of T-dual variable y,, which satisfy relations y;a =y,
and ¥/, = 4. Let us point out that in such case the T-dual
theory becomes locally non-geometric because the argument
of the background fields is the line integral.

For example, in case of the weakly curved background
[25] the initial theory is geometric and T-dual theory is non-
geometric. In the initial theory the generalized current alge-
bra gives rise to the twisted Courant bracket. However, in
the T-dual theory, the presence of double variable y,, makes
the calculation of T-dual current algebra much more com-
plicated. It is hard to believe that such a bracket or its cor-
responding self T-duality version will be equivalent to the
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Roytenberg one. Therefore, in case of non-geometric theo-
ries, one might expect some new form of brackets.

Next, we introduced the T-duality in the same phase space,
that we call self T-duality. It interchanges the momenta and
coordinate o-derivatives, as well as the background fields
with the T-dual ones. The Hamiltonian was expressed in
terms of currents ji, and metric tensor G, as well as
in terms of its T-dual currents Iy and T-dual metric tensor
G o= (GEI)“”. We considered two types of general-
ized currents, Jc,q) and Jr,p), that generalize currents
J+u and I'{ respectively. The suitable basis for the current
Jc(u.q) consists of coordinate o -derivatives x"* and the aux-
iliary currents i, = m, + 2«xByyx"", and for the current
JR(v,p), it consists of momenta 7, and auxiliary currents
k" = kx'* + k601, These bases transform into each other
under the self T-duality (2.36).

In this paper, we obtained two types of brackets, extracted
from the generalized current Poisson bracket algebra. We
have shown that one of them is equal to the twisted Courant
bracket, while the other equals the Roytenberg bracket. The
former can be obtained by twisting the Courant bracket by
a 2-form, in our paper 2B,,,, resulting in the appearance
of H—flux in generators algebra. The latter bracket can be
obtained by twisting the Courant bracket by a bi-vector IT*",
resulting in the appearance of Q— and R—fluxes, but not
H —flux, in generators algebra. Since bases in which gener-
alized currents are defined are mutually T-dual, we conclude
that the brackets are mutually T-dual, when the bi-vector TT#"
equals to the non-commutativity parameter k9",

We find these results important in itself. Both the Courant
and the Roytenberg bracket are well understood mathemat-
ical structures. Relation between them and T-duality has a
potential to help understand the T-duality better. Moreover,
by analyzing characteristics of these brackets we can exam-
ine how certain aspects of the mutually T-dual theories relate
to each other.

Suppose we turn off all the fluxes. That is equivalent to
setting B, = 0 and IT*Y = 0, which reduce the auxiliary
currents to canonical momentum and coordinate o deriva-
tive: i, — m, and k* — kx’*. The generalized currents
now reduce to Jew,a) = utm, + aukx™ and Jrpp) =
v, + kb, x'* Tt is easy to verify that these currents remain
invariant under exchange of momenta and winding numbers,
provided that we also change the coefficients in the particular
way Jow,a) < dukx™ + atm, = Jea,m. Therefore, we
conclude that these currents are T-dual to themselves. They
give rise to the Courant bracket, the untwisted one, which
does not contain any fluxes.

It is interesting that both charges Qc,q) and Q g(v,») can
be expressed as the self T-dual symmetry generators in the
form

G= /dcr [/, + Apkex™]. (6.1)

It is easy to show that if we define the new gauge param-
eter A, = [N\M + 2B,,&", the generators (6.1) are charges
Oce.n); if we define /4 = £/ + k0"’ A, the generators
are charges Qp (£.K)- Momenta 7, are generators of general
coordinate transformations and x’* generators of local gauge
transformations 8% By, = BMT\V - BUIN\M, while £# and 1~\M
are their corresponding parameters. These generators were
studied in [28], where it was shown that general coordinate
transformations are T-dual to gauge transformations.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]
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