




2. БИОГРАФСКИ И СТРУЧНИ ПОДАЦИ 

 

Марија Јанковић је рођена 30.7.1991. у Београду, где је завршила основну школу „Раде 

Драинац“ и Рачунарску гимназију. Основне академске студије на Физичком факултету 

Универзитета у Београду, смер Теоријска и експериментална физика, завршила је 2015. 

године са просечном оценом 9,95. Мастер академске студије на истом факултету и смеру 

завршила је 2016. године са просечном оценом 10,00. Мастер рад на тему „New periodic 

solutions of the three-body problem“ („Нова периодична решења проблема три тела“) урадила 

је под менторством др Вељка Дмитрашиновића, научног саветника Института за физику у 

Београду. По завршетку мастер академских студија, уписала је докторске студије из области 

физике на Империјал Колеџ Лондон. Докторску дисертацију на тему „Accretion discs and 

planet formation around young stars“ („Акрециони дискови и формирање планета око младих 

звезда“) урадила је под менторством др Субханџој Мохантија, а одбранила у августу 2020. 

године. Диплома докторских студија призната је од стране Агенције за квалификације 

Републике Србије 21.4.2021. године, решење број 612-01-03-3-281/2021. 

 

Током основних студија, током лета 2013. и 2014. године радила је стручну праксу на 

Бабрахам институту у Кембриџу у УК, односно на Институту за чисту и примењену 

математику у Лос Анђелесу у САД. Током докторских студија, током 2017. године радила 

је као асистент-демонстратор на курсу Рачунарска физика на основним академским 

студијама Империјал Колеџа Лондон. Од априла до септембра 2020. године била је 

запослена као научни асистент на Империјал Колеџ Лондон у оквиру European Research 

Council (ERC) пројекта PEVAP под руководством др Џејмса Овена. По завршетку основних 

студија, од октобра 2020. године запослена је као научни сарадник на постдокторском 

усавршавању на Институту за астрономију Универзитета у Кембриџу под руководством др 

Марка Вајата, у оквиру консолидованог пројекта на овој институцији, бр. ST/S000623/1, 

додељеног од стране британске агенције Science and Technology research Council (STFC). На 

овој позицији истражује динамику прашине у егзо-Кајперовим појасевима. 

 

Током основних студија била је добитник стипендије „Проф др Ђорђе Живановић“ за 

изузетне резултате, додељене од стране Физичког факултета и Института за физику у 

Београду. По завршетку мастер студија била је добитник награде „Проф др Љубомир 

Ћирковић“ за најбољу мастер тезу 2015/2016 школске године, додељене од стране Физичког 

факултета. Током докторских студија била је стипендиста Председникове стипендије 

Империјал Колеџа Лондон, као и Фонда за младе таленте "Доситеја" Републике Србије за 

најбоље студенте у иностранству. 

 

Марија је до сада објавила осам научних радова. Радови су до сада цитирани 42 пута, не 

рачунајући аутоцитате.  

 

  



3. ПРЕГЛЕД НАУЧНЕ АКТИВНОСТИ 

 

У досадашњем научном раду кандидаткиња се примарно бавила истраживачким темама из 

области гравитације и астрофизике. Додатно, током основних и мастер академских студија, 

кандидаткиња је проучавала теме из физике, односно ужих области класичне физике и 

небеске механике и у једној студији учествовала у проучавању теме из физике плазме. 

Методолошки приступ кандидаткиње су нумеричке симулације. 

 

Током докторских студија кандидаткиња се бавила проучавањем теорије акреционих 

дискова око младих звезда и теорије формирања планета. У протеклој деценији откривено 

је неколико хиљада планета ван Сунчевој система. Међу њима, најбројније су такозване 

супер-Земље, планете веће од Земље, а мање од Нептуна, које су од својих матичних звезда 

удаљене мање него Меркур од Сунца. Упркос бројности супер-Земљи, за сада не постоји 

прихваћено објашњење тога како су ове планете могле настати на тако малим удаљеностима 

од својих звезда. Планете примарно настају унутар протопланетарних дискова, дискова гаса 

и прашине који окружују младе, тек формиране звезде. Кандидаткиња се бавила нумеричким 

моделовањем делова протопланетарних дискова најближих централној звезди и 

истраживањем постојања услова за формирање супер-Земљи у тим деловима. Резултати 

истраживања објављени су у три студије: 

 Subhanjoy Mohanty, Marija R. Jankovic, Jonathan C. Tan, and James E. Owen, Inside-out 

Planet Formation. V. Structure of the Inner Disk as Implied by the MRI, Astrophys. J. 861, 

144 (2018) (врхунски међународни часопис - категорија М21) 

 Marija R. Jankovic, James E. Owen, and Subhanjoy Mohanty, Close-in Super-Earths: The 

first and the last stages of planet formation in an MRI-accreting disc, Mon. Not. R. Astron. 

Soc. 484, 2296 (2019) (врхунски међународни часопис - категорија М21) 

 Marija R. Jankovic, James E. Owen, Subhanjoy Mohanty, Jonathan C. Tan, MRI-active 

inner regions of protoplanetary discs. I. A detailed model of disc structure, Mon. Not. R. 

Astron. Soc. 504, 280 (2021) (врхунски међународни часопис - категорија М21) 

 

У првој студији представљен је модел унутрашњих делова протопланетарних дискова који 

је само-доследно повезао структуру гаса у диску са акрецијом (акумулацијом) гаса из диска 

на звезду насталом услед магнетно-ротационе нестабилности (енг. MRI). Добијени модел 

структуре гаса коришћен је у другој студији, која се фокусирала на питање постојања услова 

за формирање планета. Прво, показано је да је настала структура гаса повољна за локалну 

акумулацију прашине, што је неопходан услов за настанак чврстих језгара планета. Друго, 

показано је да је разматрани модел гаса повољнији од конвенционалних модела у погледу 

помирења теорије настанка планетних атмосфера и маса атмосфера одређених посматрањем 

код детектованих супер-Земљи. Разлике у предвиђеним и одређеним величинама нису у 

потпуности објашњене, те ова студија указује на неопходност унапређења модела настанка 

планетних атмосфера. Коначно, трећа наведена студија је значајно унапредила многе 

аспекте модела из прве студије, разматрајући многе физичке и хемијске процесе који су у 

првој студији занемарени. Студија је показала да је температура у диску примарно одређена 

топлотом ослобођеном у процесу акреције диска, као и да је вертикална структура диска 

подложна развоју конвекције. Додатно, у складу са претходним предлозима у литератури, 

унутрашњи делови диска су примарно јонизовани термионичком и емисијом јона са честица 

прашине. Резултати студије показали су да је структура гаса у унутрашњим деловима диска 

одређена критичном температуром изнад које термионичка и емисија јона постају ефикасне.  

Овом студијом постављен је темељ за будућа истраживања међу-зависности структуре гаса 

и структуре прашине и акреције у унутрашњим деловима протопланетарних дискова. 

 

https://iopscience.iop.org/article/10.3847/1538-4357/aabcd0
https://iopscience.iop.org/article/10.3847/1538-4357/aabcd0
https://academic.oup.com/mnras/article-abstract/484/2/2296/5274141?redirectedFrom=fulltext
https://academic.oup.com/mnras/article-abstract/484/2/2296/5274141?redirectedFrom=fulltext
https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab920/6207952
https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab920/6207952


У првој студији, кандидаткиња је унапредила нумеричке методе коришћених симулација и 

произвела и припремила резултате симулација за објављивање. У другој студији, 

кандидаткиња је имплементирала нумерички прорачун везан за настанак и еволуцију 

планетних атмосфера, произвела све резултате студије, значајно допринела анализи 

резултата и водила писање објављеног рада. У трећој студији, кандидаткиња је водила 

одабир метода студије, израдила нумеричке симулације коришћене у студији, произвела 

резултате и водила анализу резултата и писање објављеног рада.      

 

У оквиру исте научне области, кандидаткиња се такође бавила темом моделовања 

акреционих дискова око масивних младих звезда, у сврхе предвиђања резултата 

интерферометарских детекција ових система, као и техникама обраде тих резултата. Главни 

резултат кандидаткиње унутар ове истраживачке теме тиче се могућности детекције 

спиралних структура које под одређеним условима могу настати у овим системима, односно 

тога како могућност детекције зависи од разних параметара система. Кандидаткиња је 

показала да АЛМА интерферометар може детектовати спиралне структуре само у 

најмасивнијим дисковима, код којих ефекти само-гравитације изазивају максималне 

пертурбације гаса и прашине, и то само уз одговарајуће технике филтрирања просторних и 

кинематичких података. Значај модела и алата развијених у овој студији огледа се и у 

њиховој примени при састављању предлога за пројекте посматрања АЛМА 

интерферометром. Кандидаткиња је повезала постојеће моделе акреционих дискова са 

алатима за тзв. синтетичка посматрања и алатима за анализу интерферометарских резултата, 

произвела већину резултата студије и водила писање публикације: 

 Marija R. Jankovic, Thomas J. Haworth, John D. Ilee, Duncan H. Forgan, Claudia J. 

Cyganowski, Catherine Walsh, Crystal L. Brogan, Todd R. Hunter, Subhanjoy Mohanty, 

Observing substructure in circumstellar discs around massive young stellar objects, Mon. 

Not. R. Astron. Soc. 482, 4673 (2019) (врхунски међународни часопис - категорија 

М21) 

 

Током мастер студија, студенткиња се бавила проучавањем проблема три тела у класичној 

механици. Овај проблем тиче се три тачкасте масе које се међусобно гравитационо привлаче. 

За разлику од класичног проблема два тела, периодична решења проблема три тела су 

многобројна и тополошки разноврсна. Огроман број ових решења пронађен је нумеричким 

симулацијама у последњих неколико година, што је довело до открића повезаности 

кинематичких и тополошких особина ових решења. Унутар једне студије у којој је 

кандидаткиња учествовала у развоју нумеричких симулација и водила припрему резултата 

за публикацију, кандидаткиња је показала да је таква повезаност особина периодичних 

решења само приближна у специјалном случају тзв. БХХ фамилије решења: 

 Marija R. Jankovic, V. Dmitrasinovic, Angular momentum and topological dependence of 

Kepler's third law in the Broucke-Hadjidemetriou-Henon family of periodic three-body 

orbits, Phys. Rev. Lett. 116, 064301 (2016) (међународни часопис изузетних вредности 

- категорија М21а), 

 Marija R. Jankovic, V. Dmitrasinovic, and Milovan Suvakov, A guide to hunting periodic 

three-body orbits with non-vanishing angular momentum, Comput. Phys. Commun. 250, 

107052 (2020) (међународни часопис изузетних вредности - категорија М21а). 

 

Током основних студија, кандидаткиња је учествовала у једној студији из области физике 

плазме, у којој је као део већег тима допринела аналитичком поједностављењу, односно 

спектралном развоју квантне Ленард-Балеску једначине у кинетичкој теорији плазме. 

Студија је демонстрирала предности овог приступа за нумеричко решавање кинетичких 

једначина. Резултати студије објављени су у публикацији: 

https://academic.oup.com/mnras/article/482/4/4673/5173064
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.064301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.064301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.064301
https://www.sciencedirect.com/science/article/pii/S0010465519303807
https://www.sciencedirect.com/science/article/pii/S0010465519303807


 Christian R. Scullard, Andrew P. Belt, Susan C. Fennell, Marija R. Janković, Nathan Ng, 

Susana Serna, and Frank R. Graziani, Numerical solution of the quantum Lenard-Balescu 

equation for a non-degenerate one-component plasma, Phys. Plasmas 23, 092119 (2016) 

(истакнути међународни часопис - категорија М22)  

  

https://aip.scitation.org/doi/10.1063/1.4963254
https://aip.scitation.org/doi/10.1063/1.4963254


4. EЛЕМЕНТИ ЗА КВАЛИТАТИВНУ ОЦЕНУ НАУЧНОГ ДОПРИНОСА 

КАНДИДАТА 

 

4.1. Квалитет научних резултата 

 

4.1.1. Научни ниво и значај резултата, утицај научних радова 

 

Кандидаткиња је у досадашњој каријери објавила 8 научних радова, од чега 2 рада 

категорије М21а, 5 радова категорије М21 и 1 рад категорије М22. Своја истраживања је 

представила и на 4 конференције, тј. остварила 4 доприноса категорије М34. 

 

До сада најутицајнији рад кандидаткиње из теме доктората је: 

 Marija R. Jankovic, James E. Owen, and Subhanjoy Mohanty, Close-in Super-Earths: The 

first and the last stages of planet formation in an MRI-accreting disc, Mon. Not. R. Astron. 

Soc. 484, 2296 (2019) 

DOI: https://doi.org/10.1093/mnras/stz004 

Тема рада је тестирање хипотезе да је најбројнија класа до сада откривених планета, тзв. 

супер-Земље, настала акумулацијом прашине и гаса у унутрашњим деловима 

протопланетарних дискова, те да кључну улогу у том процесу игра магнетно-ротациона 

нестабилност. Кандидаткиња је произвела све резултате објављене у овом раду и водила 

интерпретацију и дискусију резултата и писање рада. 

 

У студији која је претходила наведеној, кандидаткиња је произвела модел структуре гаса у 

унутрашњим деловима протопланетарних дискова. У наведеној студији, користећи 

нумеричке симулације развијене од стране сарадника, кандидаткиња је истраживала како та 

структура гаса утиче на еволуцију честица прашине. Резултати симулација предвиђају да 

количина прашине у унутрашњим деловима протопланетарних дискова расте током 

времена, што је предуслов за акумулацију прашине у чврста језгра планета.  

 

Под претпоставком да овај процес успешно формира чврста језгра планета, кандидаткиња је 

имплементирала модел акумулације гаса на језгро планете, односно формирање атмосфере 

планете. Теоријска предвиђања овог модела упоређена су са посматрачким мерењима масе 

и радијуса једне групе детектованих планета. Како акумулација гаса на језгро планете зависи 

од структуре гаса у протопланетарном диску, ово је дозволило индиректну проверу 

коришћеног модела диска. У овом смислу, за коришћени модел показано је да је повољнији 

од конвенционалних модела који не узимају у обзир утицај магнетно-ротационе 

нестабилности. Међутим, неслагања између теорије и мерења нису у потпуности уклоњена, 

те ови резултати такође указују на неопходност бољег разумевања процеса акумулације и 

еволуције атмосфера планета.   

 

4.1.2. Цитираност научних радова кандидата 

 

Према подацима о цитираности аутора изведених из базе Web of Science 28.6.2021., радови 

чији је кандидаткиња ко-аутор цитирани су 46 пута, од чега 42 пута без аутоцитата, а 

Хиршов фактор је 5. 

 

4.1.3. Параметри квалитета радова и часописа 

 

Кандидаткиња је објавила 8 радова у часописима: 

 4 рада у часопису Monthly Notices of the Royal Astronomical Society (ISSN: 0035-8711), 

категорија M21, IF (2019) = 5.357, SNIP (2020) = 1.09, SNIP (2019) = 1.13; 

https://academic.oup.com/mnras/article-abstract/484/2/2296/5274141?redirectedFrom=fulltext
https://academic.oup.com/mnras/article-abstract/484/2/2296/5274141?redirectedFrom=fulltext
https://doi.org/10.1093/mnras/stz004


 1 рад у часопису Computer Physics Communications (ISSN: 0010-4655), категорија 

M21а, IF (2020) = 4.390, SNIP (2020) = 1.68; 

 1 рад у часопису Astrophysical Journal (ISSN: 0004-637X), категорија M21, IF (2018) 

= 5.580, SNIP (2018) = 1.22; 

 1 рад у часопису Physical Review Letters (ISSN: 0031-9007), категорија M21a, IF (2016) 

= 8.462, SNIP (2016) = 2.62; 

 1 рад у часопису Physics of Plasmas (ISSN: 1070-664X), категорија M22, IF (2016) = 

2.115, SNIP (2016) = 1.16. 

 

Додатни библиометријски показатељи квалитета часописа у којима је кандидаткиња 

објављивала радове приказани су у табели:  

 

 ИФ М СНИП 

Укупно 41.975 65 11.12 

Усредњено по чланку 5.246 8.125 1.39 

Усредњено по аутору 12.183 18.20 3.33 

 

 

4.1.4. Степен самосталности и степен учешћа у реализацији радова у научним 

центрима у земљи и иностранству 

 

Кандидаткиња је водећи аутор на 5 објављених радова, којима је дала кључан допринос у 

погледу израде резултата нумеричких симулација и њиховој интерпретацији, као и допринос 

писању радова. Од преосталих објављених радова, у 1 раду кандидаткиња је дала кључан 

допринос у погледу израде резултата нумеричких симулација, у 1 раду допринос почетној 

теоретској анализи проблема, а у 1 раду допринос интерпретацији резултата. 

 

Кандидаткиња је већину досадашњих научних активности обављала на Империјал Колеџу 

Лондон у Великој Британији. Кроз наведене доприносе остварила је сарадњу, између 

осталог, са истраживачима са Института за физику у Београду, Чалмерс Универзитета у 

Шведској, Харвард Универзитета у САД и Универзитета у Кембриџу у Великој Британији.  

 

4.2. Нормирање броја коауторских радова, патената и техничких решења 

 

Од 8 радова, 6 радова има пет или мање аутора, док 1 рад има 7, а један 9 аутора. Сви радови 

су из области нумеричких симулација, тако да се 6 радова рачуна са пуним бројем бодова, а 

за преостала 2 рада број бодова се нормира. Укупан број М бодова је 73, а нормирани број је 

68.02. 

 

4.3. Утицај научних резултата 

 

Утицај научних резултата огледа се у подацима о цитираности, наведеним у секцији 4.1.2. 

 

Кандидаткиња је одржала и 2 семинара по позиву на којима је представила своје научне 

резултате, на Чалмерс Универзитету у Шведској 2018. године и на Институту за астрономију 

Универзитета у Кембриџу у Великој Британији 2019. године. 

 

 

 



4.4. Конкретан допринос кандидата у реализацији радова у научним центрима у 

земљи и иностранству 

 

У 5 објављених радова, кандидаткиња је дала кључан допринос у погледу израде резултата 

нумеричких симулација и њиховој интерпретацији, као и допринос писању радова.  

 

Кандидаткиња је већину досадашњих научних активности обављала на Империјал Колеџу 

Лондон у Великој Британији, као студент докторских студија. Преостале научне активности 

кандидаткиња је обављала као мастер студент на Институту за физику у Београду, као 

студент на летњој пракси на Институту за чисту и примењену физику у САД и као научни 

сарадник на Универзитету у Кембриџу у Великој Британији.  

 

  



5. ЕЛЕМЕНТИ ЗА КВАНТИТАТИВНУ ОЦЕНУ НАУЧНОГ ДОПРИНОСА 

КАНДИДАТА 

 

Остварени резултати у периоду након одлуке Научног већа о предлогу за стицање 

претходног научног звањаꓽ  
 

Категорија М бодова по 

раду 

Број радова Укупно М 

бодова 

Нормирани 

број М бодова 

М21а 10 2 20 20 

М21 8 5 40 36.44 

М22 5 1 5 3.57 

M34 0.5 4 2 2 

М70 6 1 6 6 

 

Поређење са минималним квантитативним условима за избор у звање научни сарадникꓽ 
 

 

 

Минимални број М бодова 

Неопхо

дно 

Остварено, 

број М 

бодова без 

нормирања 

Остварено, 

нормирани 

број М 

бодова 

Укупно 16 73 68.02 

М10+М20+М31+М32+М33+М41+М42 10 65 60.02 

М11+М12+М21+М22+М23 6 65 60.02 

 

 

 

  



 

6. СПИСАК ОБЈАВЉЕНИХ РАДОВА 

 

6.1 Радови у међународним часописима изузетних вредности (М21a): 

 

 Marija R. Jankovic, V. Dmitrasinovic, Angular momentum and topological dependence 

of Kepler's third law in the Broucke-Hadjidemetriou-Henon family of periodic three-

body orbits, Phys. Rev. Lett. 116, 064301 (2016) 

DOI: https://doi.org/10.1103/PhysRevLett.116.064301 

M21a, IF (2016) = 8.462, SNIP (2016) = 2.62 

 

 Marija R. Jankovic, V. Dmitrasinovic, and Milovan Suvakov, A guide to hunting 

periodic three-body orbits with non-vanishing angular momentum, Comput. Phys. 

Commun. 250, 107052 (2020) 

DOI: https://doi.org/10.1016/j.cpc.2019.107052 

M21а, IF (2020) = 4.390, SNIP (2020) = 1.68 

 

6.2 Радови у врхунским међународним часописима (М21): 

 

 Marija R. Jankovic, James E. Owen, Subhanjoy Mohanty, Jonathan C. Tan, MRI-active 

inner regions of protoplanetary discs. I. A detailed model of disc structure, Mon. Not. R. 

Astron. Soc. 504, 280 (2021) 

DOI: https://doi.org/10.1093/mnras/stab920 

M21, IF (2019) = 5.357, SNIP (2020) = 1.09 

  

 Richard Teague, Marija R. Jankovic, Thomas J. Haworth, Chunhua Qi, John D. Ilee, A 

three-dimensional view of Gomez’s hamburger, Mon. Not. R. Astron. Soc. 495, 451 

(2020) 

DOI: https://doi.org/10.1093/mnras/staa1167 

M21, IF (2019) = 5.357, SNIP (2020) = 1.09 

  

 Marija R. Jankovic, James E. Owen, and Subhanjoy Mohanty, Close-in Super-Earths: 

The first and the last stages of planet formation in an MRI-accreting disc, Mon. Not. R. 

Astron. Soc. 484, 2296 (2019) 

DOI: https://doi.org/10.1093/mnras/stz004 

M21, IF (2019) = 5.357, SNIP (2019) = 1.13 

  

 Marija R. Jankovic, Thomas J. Haworth, John D. Ilee, Duncan H. Forgan, Claudia J. 

Cyganowski, Catherine Walsh, Crystal L. Brogan, Todd R. Hunter, Subhanjoy Mohanty, 

Observing substructure in circumstellar discs around massive young stellar objects, Mon. 

Not. R. Astron. Soc. 482, 4, 4673–4686 (2019) 

DOI: https://doi.org/10.1093/mnras/sty3038 

M21, IF (2019) = 5.357, SNIP (2019) = 1.13 

  

 Subhanjoy Mohanty, Marija R. Jankovic, Jonathan C. Tan, and James E. Owen, Inside-

out Planet Formation. V. Structure of the Inner Disk as Implied by the MRI, Astrophys. J. 

861, 144 (2018) 

DOI: https://doi.org/10.3847/1538-4357/aabcd0 

M21, IF (2018) = 5.580, SNIP (2018) = 1.22 

  

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.064301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.064301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.064301
https://doi.org/10.1103/PhysRevLett.116.064301
https://www.sciencedirect.com/science/article/pii/S0010465519303807
https://www.sciencedirect.com/science/article/pii/S0010465519303807
https://doi.org/10.1016/j.cpc.2019.107052
https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab920/6207952
https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab920/6207952
https://doi.org/10.1093/mnras/stab920
https://academic.oup.com/mnras/article-abstract/495/1/451/5827536
https://academic.oup.com/mnras/article-abstract/495/1/451/5827536
https://doi.org/10.1093/mnras/staa1167
https://academic.oup.com/mnras/article-abstract/484/2/2296/5274141?redirectedFrom=fulltext
https://academic.oup.com/mnras/article-abstract/484/2/2296/5274141?redirectedFrom=fulltext
https://doi.org/10.1093/mnras/stz004
https://academic.oup.com/mnras/article/482/4/4673/5173064
https://doi.org/10.1093/mnras/sty3038
https://iopscience.iop.org/article/10.3847/1538-4357/aabcd0
https://iopscience.iop.org/article/10.3847/1538-4357/aabcd0
https://doi.org/10.3847/1538-4357/aabcd0


  

6.3 Радови у истакнутим међународним часописима (М22): 

 

 Christian R. Scullard, Andrew P. Belt, Susan C. Fennell, Marija R. Janković, Nathan 

Ng, Susana Serna, and Frank R. Graziani, Numerical solution of the quantum Lenard-

Balescu equation for a non-degenerate one-component plasma, Phys. Plasmas 23, 092119 

(2016) 

DOI: https://doi.org/10.1063/1.4963254  

M22, IF (2016) = 2.115, SNIP (2016) = 1.16 

 

6.4 Саопштења са међународног скупа штампана у изводу (М34): 

 

 M. Jankovic, S. Mohanty, J. Owen, J. Tan 

In situ formation of close-in super-Earths due to the MRI 

From Stars to Planets II, Chalmers, Sweden, 17-21 June 2019 

 M. Jankovic, J. Owen, S. Mohanty 

Close-in Super-Earths: The first and the last stages of planet formation in an MRI-

accreting disc 

UK Exoplanet Community Meeting, London, UK, 15-17 April 2019 

 M. Jankovic, J. Owen, S. Mohanty 

Formation of close-in super-Earths: dust enrichment of the inner disk due to the 

MRI 

ESO workshop “Take a Closer Look”, Garching, Germany, 15-19 October 2018 

 M. Jankovic, J. Owen, S. Mohanty 

Dust enhancement in the inner disk due to the MRI 

UK Exoplanet Community Meeting, Oxford, UK, 21-23 March, 2018 

 

 

https://aip.scitation.org/doi/10.1063/1.4963254
https://aip.scitation.org/doi/10.1063/1.4963254
https://doi.org/10.1063/1.4963254
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ABSTRACT
Short-period super-Earth-sized planets are common. Explaining how they form near their present orbits requires understanding
the structure of the inner regions of protoplanetary discs. Previous studies have argued that the hot inner protoplanetary disc
is unstable to the magnetorotational instability (MRI) due to thermal ionization of potassium, and that a local gas pressure
maximum forms at the outer edge of this MRI-active zone. Here we present a steady-state model for inner discs accreting
viscously, primarily due to the MRI. The structure and MRI-viscosity of the inner disc are fully coupled in our model; moreover,
we account for many processes omitted in previous such models, including disc heating by both accretion and stellar irradiation,
vertical energy transport, realistic dust opacities, dust effects on disc ionization, and non-thermal sources of ionization. For a
disc around a solar-mass star with a standard gas accretion rate (Ṁ ∼ 10−8 M� yr−1) and small dust grains, we find that the
inner disc is optically thick, and the accretion heat is primarily released near the mid-plane. As a result, both the disc mid-plane
temperature and the location of the pressure maximum are only marginally affected by stellar irradiation, and the inner disc is
also convectively unstable. As previously suggested, the inner disc is primarily ionized through thermionic and potassium ion
emission from dust grains, which, at high temperatures, counteract adsorption of free charges on to grains. Our results show
that the location of the pressure maximum is determined by the threshold temperature above which thermionic and ion emission
become efficient.

Key words: planets and satellites: formation – protoplanetary discs .

1 I N T RO D U C T I O N

Close-in super-Earths – planets with radii 1–4 R⊕ and orbital periods
shorter than ∼100 d – are common around solar-type and lower
mass stars (Dressing & Charbonneau 2013, 2015; Fressin et al.
2013; Mulders et al. 2018; Hsu et al. 2019; Zink, Christiansen &
Hansen 2019). Yet how these planets form is still an open problem.
One theory posits that they are born further away from the star,
and subsequently migrate through the protoplanetary disc to their
present orbits (Terquem & Papaloizou 2007; Ogihara & Ida 2009;
McNeil & Nelson 2010; Cossou et al. 2014; Izidoro et al. 2017,
2019; Bitsch, Raymond & Izidoro 2019). However, this hypothesis
predicts that the planets should be water-rich, in contrast to the water-
poor composition inferred from their observed radius distribution
combined with atmospheric evolution models (Owen & Wu 2017;
Van Eylen et al. 2018; Wu 2019).

An alternative proposal is that these super-Earths form at or near
their present orbits, out of solid material which migrates to the inner
disc prior to planet formation. These solids are expected to arrive
in the form of pebbles, which radially drift inwards from the outer
disc due to gas drag (Boley & Ford 2013; Hansen & Murray 2013;
Chatterjee & Tan 2014; Hu et al. 2018; Jankovic, Owen & Mohanty

� E-mail: mj577@cam.ac.uk

2019). However, these pebbles need to be trapped, i.e. their radial
drift must be halted, in order for them to coalesce into planets instead
of drifting into the star. Such trapping may occur as follows.

In the inner protoplanetary disc, at the short orbital periods at
which close-in super-Earths are observed, the gaseous disc is thought
to accrete via the magnetorotational instability (MRI; Balbus &
Hawley 1991). The MRI leads to turbulence in the disc, which
drives viscous accretion, but its magnitude is sensitive to the disc’s
ionization state. The MRI is expected to be efficient in the hot,
innermost parts of the disc (where it can be activated by thermal
ionization of trace alkali elements, at temperatures �1000 K), and
largely suppressed in cold regions further away from the star (the
latter being known as the MRI dead zone; Gammie 1996). At the
transition between the two regions, a local gas pressure maximum
forms when the disc is in steady state, and this pressure maximum
may trap the pebbles that drift in from the outer disc (Chatterjee &
Tan 2014). Concurrently, the MRI-driven turbulence in the inner
disc (interior to the pressure maximum) limits the grain size thereby
inducing high collisional velocities between grains, causing them
to fragment. A decrease in the size of grains reduces their radial
drift, providing an alternative way to accumulate the grains arriving
from the outer disc (Jankovic et al. 2019). In general, therefore,
the structure of the inner disc, undergoing MRI-induced accretion,
is likely to play a key role in the formation of close-in super-
Earths.
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In previous work (Mohanty et al. 2018), we presented a model
of the inner disc in which the disc structure and accretion due to
the MRI are treated self-consistently. We obtained an inner disc
structure in line with the expectations sketched above, and inferred
a location for the pressure maximum consistent with the orbital
distances of close-in super-Earths. However, this model includes a
number of simplifying assumptions about the disc’s physical and
chemical structure. First, the disc is considered to be vertically
isothermal, and secondly, heating by stellar irradiation is neglected.
In reality, the disc temperature will vary vertically, with a profile that
is particularly non-trivial when both accretion heating and stellar
irradiation are accounted for (e.g. D’Alessio et al. 1998). Thirdly,
the model assumes a constant dust opacity, when in fact the latter
depends on the temperature and on grain properties and abundance.

Fourthly, Mohanty et al. (2018) assumed that the only source of
ionization in the disc is thermal (collisional) ionization of potassium,
and only considered gas-phase interactions. Potassium is indeed a
good representative of thermally ionized species in the inner disc
due to its low ionization potential and high abundance (Desch &
Turner 2015). However, ions and free electrons are also adsorbed
on to the surfaces of dust grains in the disc, where they quickly
recombine. Dust can thus reduce the disc ionization level and
suppress the MRI (Sano et al. 2000; Ilgner & Nelson 2006; Wardle
2007; Salmeron & Wardle 2008; Bai & Goodman 2009; Mohanty,
Ercolano & Turner 2013). Conversely, hot grains (�500 K) can
also emit electrons and ions into the gas phase (for electrons, this
process is known as thermionic emission). Such temperatures are
easily attainable in the inner disc, and thermionic and ion emission
have been hypothesized to be important sources of ionization there
(Desch & Turner 2015). Neither of these grain effects are treated by
Mohanty et al. (2018). Finally, while Mohanty et al. (2018) showed
a posteriori that, in the MRI-accreting inner disc, X-ray ionization
of molecular hydrogen may be competitive with thermal ionization
of potassium in supplying free electrons (due to the low gas surface
density in this region), they did not actually include X-ray ionization
in their model.

In this paper, we present a new model of an MRI-accreting,
steady-state inner disc that addresses each of the shortcomings
of the Mohanty et al. (2018) model listed above. The vertical
structure in our model is calculated self-consistently from viscous
dissipation (due to the MRI-induced viscosity), stellar irradiation,
and radiative and convective cooling, with realistic opacities due to
dust grains. Ionization in the disc is determined by thermal ionization
of potassium, thermionic and ion emission from dust grains, and
ionization of molecular hydrogen by stellar X-rays, cosmic rays, and
radionuclides. In Section 2, we detail all the components of our model
and the methods used to find self-consistent steady-state solutions
for the disc structure. We present our results in Section 3, discuss the
relative importance of the various physical and chemical processes
in Section 4, and summarize our findings in Section 5.

The aim of this paper is two-fold: to present the methodology of
our calculations, and to discuss the detailed physics of the inner disc
in the context of fiducial disc and stellar parameters. In a companion
paper (Paper II: Jankovic et al., in preparation), we investigate how
the inner disc structure varies as a function of these parameters, and
discuss the implications for the formation of super-Earths in the inner
disc.

2 M E T H O D S

We consider a disc that is viscously accreting and in steady-state,
i.e. has a constant mass accretion rate. Our model of the disc

structure is described in Section 2.1. The disc structure depends
on the disc’s radiative properties, i.e. opacities, and on the viscosity.
Our calculation of opacities is summarized in Section 2.2, and the
prescription for MRI-driven viscosity given in Section 2.3. The latter
viscosity is a function of the disc’s ionization state, calculated using
a chemical network described in Section 2.4. The disc structure,
opacities, ionization, and viscosity are calculated self-consistently
at every point in the disc, using numerical methods supplied in
Section 2.5.

The key parameters of our model are the steady-state gas accretion
rate Ṁ through the disc, stellar mass M∗, stellar radius R∗, stellar
effective temperature T∗, and value of the viscosity in the absence of
the MRI (the dead-zone viscosity). Additionally, the disc opacities
and ionization state, and thus the disc structure, depend on the
properties of the dust; most importantly, on the dust-to-gas ratio
fdg and the maximum dust grain size amax.

We assume that the disc only accretes viscously due to the MRI.
Disc accretion may additionally be partially driven by magnetic
winds, which could also affect the inner disc structure (e.g. Suzuki
et al. 2016). Therefore, inclusion of wind-driven accretion is an
important issue; however, it is one which we do not tackle here.

2.1 Disc model

Our disc model largely follows the work of D’Alessio et al. (1998,
1999). We consider a thin, axisymmetric, Keplerian, steady-state
disc that is viscously accreting. We assume that the disc is in
vertical hydrostatic equilibrium, heated by viscous dissipation and
stellar irradiation, and that energy is transported by radiation and
convection. Since the disc is vertically thin, we neglect energy
transport in the radial direction. Furthermore, at a given disc radius,
our viscosity depends only on local conditions and the vertical mass
column (see Section 2.3). As such, the disc structures at different
radii are only coupled by the stellar irradiation, as it penetrates the
disc along the line of sight to the central star.

2.1.1 Hydrostatic equilibrium

In a thin Keplerian disc in vertical hydrostatic equilibrium, the gas
pressure profile at any given radius follows from

dP

dz
= −ρ�2z, (1)

where P is the gas pressure, ρ the gas volume density, � the Keplerian
angular velocity, and z the height above the disc mid-plane. We adopt
the ideal gas law.

2.1.2 Viscous heating and stellar irradiation

The disc is heated by the viscosity that drives the accretion. The
viscosity ν is parametrized by ν = αc2

s /�, where α is the viscosity
parameter and cs the isothermal sound speed (Shakura & Sunyaev
1973). The local viscous dissipation rate at any location in the disc
is given by

�acc = 9

4
αP�. (2)

The flux generated by viscous dissipation that is radiated through
one side of the disc at any disc radius r is

Facc = 3

8π
Ṁfr�

2, (3)
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where fr = 1 − √
Rin/r comes from the thin boundary-layer condi-

tion at the inner edge of the disc, Rin = R∗ is the radius of the inner
edge of the disc, and we are assuming a zero-torque inner boundary
condition (e.g. Frank, King & Raine 2002).

We also consider heating due to stellar irradiation. Stellar flux
propagates spherically outwards from the star, and the resultant
heating at any disc location depends on the attenuation of this flux
along the line of sight to the star. Accounting for this, however,
while simultaneously neglecting scattering of starlight and radial
energy transport within the disc (as we do in our 1 + 1D model
here), leads to multiple equilibrium solutions or none at all (e.g.
Chiang et al. 2001). Such behaviour does not appear in 2D disc
models (e.g. Dullemond 2002), which are nevertheless too complex
for our purposes here. Instead, we treat the irradiation heating at
each disc radius in isolation, by considering heating only due to the
stellar flux that impinges on the disc surface at that radius (at some
grazing angle φ calculated self-consistently; see further below), and
then propagates vertically towards the mid-plane (Calvet et al. 1992;
Chiang & Goldreich 1997). In this framework, the attenuation, i.e.
the optical depth to the stellar flux, is approximated as τ irr ≈ τ irr, z/μ,
where τ irr, z is the optical depth in the vertical direction, and μ ≡
sinφ. Local heating due to stellar irradiation is then given by

�irr = κ∗
Pρ

Firr

μ
e−τirr,z/μ, (4)

where κ∗
P is the disc Planck opacity to stellar irradiation (see

Section 2.2) and Firr is the total incident stellar flux at the specified
disc radius. In an optically thick disc, the latter is given by

Firr = σSBT 4
∗

(
R∗
s

)2

μ, (5)

where s is the distance to the star (spherical radius) from the disc
surface at the specified radius.1

Finally, the grazing angle φ is given by

φ = sin−1 4

3π

R∗
r

+ tan−1 dlogzirr

dlogr

zirr

r
− tan−1 zirr

r
. (6)

Here the first term is the value of φ for a flat disc and comes from
the finite size of the stellar disc, and the other two terms are due to
disc flaring. zirr(r) is the height above the disc mid-plane at which
the stellar flux is absorbed; we take zirr(r) to be the height where
the optical depth to the stellar irradiation is τ irr = 2/3. Specifically,
in calculating the height zirr, the optical depth τ irr is obtained by
integrating along the spherical radius s to the star, as opposed to the
approximation used in the local heating term. We determine zirr and
φ self-consistently with the disc structure following the procedure
by D’Alessio et al. (1999), as outlined in Section 2.5.

2.1.3 Radiative energy transport

In a thin disc, the optical depth to the disc’s own radiation is much
smaller in the vertical direction than in the radial. Thus we expect

1When calculating the factor fr in equation (3) we have assumed that the inner
disc edge is at the stellar radius, which would imply that the disc surface can
only see a half of the stellar disc. If the disc surface can only see a half of
the stellar disc, the expression for the total absorbed stellar flux, equation (5),
should include an additional factor of 1/2 (e.g. Chiang & Goldreich 1997).
However, in a more realistic case of the disc being truncated at several stellar
radii, the entire stellar disc should be visible (see e.g. Estrada, Cuzzi &
Morgan 2016), and so we do not include this additional factor.

radiative energy transport to be primarily vertical, and that is the only
direction we consider.

The frequency-integrated moments of the radiative transfer equa-
tion in the Eddington approximation (i.e. assuming that the radiation
is isotropic, as is valid in the optically thick regime) and the equation
for energy balance are then

dF

dz
= �acc + �irr, (7)

dJ

dz
= − 3ρκR

4π
F , (8)

4ρκP(σSBT 4 − πJ ) = �acc + �irr, (9)

where F and J are the radiative flux and mean intensity, respectively.
We have also assumed here that the J and F weighted opacities can
be approximated by the Planck mean opacity κP and the Rosseland
mean opacity κR, respectively (following e.g. Hubeny 1990, see
Section 2.2).

Together with the ideal gas equation of state, equations (1), (7)–
(9) form a closed set in P, F, J, and T. Together with appropriate
boundary conditions, they determine the disc vertical structure. One
boundary condition is imposed at the disc mid-plane, where the
flux F(0) = 0 by symmetry. The remaining boundary conditions
are supplied at the disc surface, at height zsurf above the mid-
plane. The boundary condition for the flux F that is obtained by
integrating equation (7) from z = 0 to zsurf, from which it follows
that F(zsurf) = Facc + Firr. The boundary condition for the mean
intensity J is given by J (zsurf ) = 1

2π
F (zsurf ). Finally, we assume that

the gas pressure at the top of the disc has a small constant value,
P (zsurf ) = 10−10 dyn cm−2, which is another boundary condition.
The precise value of P(zsurf) is arbitrary, but does not affect our
results as long as it is sufficiently small. Overall, then, we have four
boundary conditions on three differential equations. Note that the
temperature T(zsurf) at the disc surface follows from the algebraic
equation (9), the boundary conditions on J and P, and the ideal gas
law.

2.1.4 Energy transport by convection

If radiative energy transport yields a thermal structure such that the
gradient ∇ = dlnT

dlnP
is greater than the adiabatic gradient ∇ad = (γ −

1)/γ , then the gas is unstable to convection. In disc regions where
this is the case, we assume that energy transport by convection is
efficient and the gas is vertically isentropic, so that ∇ = ∇ad at such
locations (e.g. Shu 1992; Garaud & Lin 2007; Rafikov 2007). We
adopt γ = 1.4, valid for an H2 dominated disc. Equations (8) and (9)
are then replaced by

dT

dz
= −∇ad

T
P

ρ(T , P )�2z = −∇ad
μmH
kB

�2z. (10)

2.2 Opacities

Radiative transport is controlled by the Rosseland-mean opacity κR

in optically thick regions (equation 8), and by the Planck-mean
opacity κP in optically thin regions (equation 9). Additionally, the
absorption coefficient for the stellar flux is a Planck-mean opacity κ∗

P

at the stellar effective temperature. We assume that the only source
of these opacities are dust grains. Gas opacities are important in
the very innermost regions of discs, where most dust species have
sublimated. However, these regions are not of particular significance
for the early stages of planet formation that we are interested in,
as dust is required to form solid planet cores. Beyond the silicate
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Figure 1. Planck-mean opacity κP, Rosseland-mean opacity κR, and Planck-
mean opacity at the stellar effective temperature κ∗

P , as functions of disc
temperature, assuming dust-to-gas ratio fdg = 10−2 and a maximum dust
grain size amax = 1μm.

sublimation line, gas opacities may still be important in hot, optically
thin regions (Malygin et al. 2014). However, as we find, the inner
disc is significantly optically thick and including gas opacities would
only alter the structure of the hot disc atmosphere. Therefore, we
completely ignore the contribution of gas to the opacities.

Furthermore, we assume that the only dust species present are
silicate grains. Other species that can be comparable in abundance to
silicates are water ice and carbonaceous grains (e.g. organics; Pollack
et al. 1994). However, due to their low sublimation temperatures,
neither water ice nor carbonaceous grains are expected in the hot
MRI-active regions, and we generally limit our calculations to the
inner 1 AU of the disc.

To calculate the opacities, we adopt the optical constants of ‘astro-
nomical silicates’ from Draine (2003). We use the MIESCAT module
of the python wrapper RADMC3DPY for RADMC3D (Dullemond
et al. 2012) to obtain dust absorption and scattering coefficients as
functions of radiation wavelength and grain size. For each grain
size a, the coefficients are averaged within a size bin of width
�lna = 0.02. Next, we assume that the grain bulk density is
ρgr = 3.3 g cm−3, and that the grain sizes are described by the
MRN distribution, wherein the number density of grains in the size
range [a, a + da] is given by n(a)da ∝ a−qda (Mathis, Rumpl &
Nordsieck 1977), with q = 3.5. We adopt a minimum grain size of
amin = 0.1μm, and a variable maximum grain size amax. The size-
dependent absorption and scattering coefficients are then weighted
by grain mass and averaged over the grain size distribution. Finally,
the absorption coefficient is integrated over frequency to obtain
the Planck-mean opacity κP(T), and the total extinction coefficient
yields the Rosseland-mean opacity κR(T). Following D’Alessio et al.
(1998), we calculate the mean absorption coefficient for the stellar
flux as a frequency-integrated absorption coefficient weighted by the
Planck function at the stellar effective temperature: κ∗

P ≡ κP(T∗).
Fig. 1 shows the opacities per unit mass of gas, assuming a dust-

to-gas ratio of fdg = 10−2, a maximum grain size of amax = 1μm,
and T∗ = 4400 K. The Planck-mean opacity at the stellar effective
temperature κ∗

P is a constant, since the wavelength-dependent dust
absorption coefficient does not depend on the local temperature.
The Planck-mean opacity κP is in general expected to increase with
increasing temperature. This is because the wavelength at which the
Planck function peaks is inversely proportional to the temperature,
and for grains smaller than the wavelength of peak emission (and
small grains contribute to the opacities most) absorption is expected

to increase with decreasing wavelength. However, due to the silicate
absorption feature at 10μm, κP decreases with temperature in the
range ∼ 500–1000 K.

2.3 Viscosity

Our model of the MRI-driven viscosity closely follows that of
Mohanty et al. (2018) (see also Bai 2011). Here we only summarize
the main points. A well-ionized circumstellar disc which follows
the laws of ideal magnetohydrodynamics (MHD) is susceptible to
the MRI (Balbus & Hawley 1991). The MRI leads to turbulence,
producing an accretion stress and acting as a source of viscosity. The
resulting Shakura–Sunyaev viscosity parameter α is

αAZ = 1

3β
, (11)

where the subscript ‘AZ’ denotes an MRI-active zone, β ≡ P/PB is
the plasma parameter, and PB = B2/8π is the magnetic field pressure
(Sano et al. 2004).2

However, even in the inner regions of protoplanetary discs, non-
ideal MHD effects can quench the MRI, leading to the so-called
dead zones. The non-ideal effects considered here are Ohmic and
ambipolar diffusion. Ohmic diffusion will not suppress the MRI if
(Sano & Stone 2002)

� = v2
Az

ηO�
> 1, (12)

where � is the Ohmic Elsasser number, vAz ≡ Bz/
√

4πρ is the
vertical component of the local Alfven velocity, and ηO is the Ohmic
resistivity. Here we utilize the relationship between the strength of
the vertical component of the magnetic field, Bz, and the strength of
the r.m.s. field, B: B2

z ∼ B2/25 (Sano et al. 2004). We also assume
that B is vertically constant. Our method of determining the value of
B is described in Section 2.5.

Similarly, the ambipolar Elsasser number is defined by

Am = v2
A

ηA�
, (13)

where ηA is the ambipolar magnetic resistivity. However, in the
strong-coupling limit, valid in protoplanetary discs, the MRI can
be active even if Am < 1, as long as the magnetic field is sufficiently
weak (Bai & Stone 2011). The criterion for active MRI in the
presence of ambipolar diffusion is

β/βmin > 1, (14)

where the minimum value of β neccessary to sustain the MRI is a
function of the ambipolar Elsasser number:

βmin(Am) =
[(

50

Am1.2

)2

+
(

8

Am0.3
+ 1

)2
]1/2

. (15)

Thus, whether the MRI is active or not depends on the magnetic
resistivities, ηO and ηA, as well as on the magnetic field strength
B. The magnetic resistivities, calculated following Wardle (1999),
express the coupling between the gas and the magnetic field, which
is principally determined by the degree of ionization of the gas.

If either of the two criteria given by equations (12) and (14)
is not fulfilled, the MRI is not active. In such MRI-dead zones,
we assume there is a small residual viscosity αDZ, driven either

2The numerical factor is indeed 1/3 for the Shakura–Sunyaev α parameter in
equation (11); see discussion in Appendix B of Mohanty et al. (2018).
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by propagation of turbulence from the MRI-active zone, or by
hydrodynamic instabilities (for more discussion, see Mohanty et al.
2018). In this work, we also impose a smooth transition between the
active and the dead zones, necessary to ensure numerical stability
in the integration of the equations of disc structure (such smoothing
was not employed by Mohanty et al. 2018). To cover both non-ideal
effects that lead to dead zones, we define C ≡ min(�, β/βmin). Then,
at any location in the disc where |C − 1| < 0.5 (i.e. in the vicinity of
the switch from active to dead), we adopt a smoothed α given by

α = αDZ + αAZ − αDZ

1 + exp
(−C−1

�

) , (16)

where � = 10−2.

2.4 Ionization

2.4.1 Chemical network

We implement the same simple chemical network adopted by
Desch & Turner (2015). This network tracks the number densities
of five species: free electrons (ne), potassium ions (nK+ ), neutral
potassium atoms (nK0 ), potassium atoms adsorbed (condensed) on to
dust grains (nK, cond), and atomic ions (ni; i.e. ions of atomic species
other than potassium; see below).

In the gas-phase, potassium atoms can be thermally ionized:
collisions of neutral potassium atoms with H2 molecules produce
potassium ions and free electrons. The potassium ions and free
electrons can also recombine in the gas phase, either radiatively
or via three-body collisions with H2 molecules (the latter process
dominates at the high densities prevalent in the inner disc).

Furthermore, non-thermal sources (we consider stellar X-rays,
cosmic rays and radionuclides; see Section 2.4.3) can ionize H2

(Glassgold, Najita & Igea 1997; Ercolano & Glassgold 2013). The
charge is quickly transferred from the ionized hydrogen to other
abundant gas species through collisions, producing molecular and
atomic ions (e.g. HCO+, Mg+). Notably, in application to the MRI,
the exact composition of the gas that this leads to is unimportant in
the presence of dust, and simple chemical networks reproduce the
gas ionization levels well (Ilgner & Nelson 2006). Thus, it is assumed
that the ionization of molecular hydrogen at a rate ζ directly produces
atomic ions and free electrons at a volumetric rate ζnH2 . The atomic
ion species in this chemical network may thus be understood as a
representative of the various chemical species abundant in the gas-
phase, whose mass is taken to be that of magnesium. It is assumed
that the number density of molecular hydrogen is constant, which is
valid for low ionization rates. Just as potassium, the atomic ions also
recombine radiatively and in three-body recombinations.

Importantly, all gas-phase species (electrons, ions, and neutral
atoms) collide with and are adsorbed on to dust grains at a rate

Rj , coll = njngrπa2
gr

(
8kBT

πmj

)1/2

J̃j Sj , (17)

where nj is the number density of the gas-phase species, ngr is the
number density of the grains, agr is the grain size, mj is the gas-phase
species mass, J̃j is the modification of the collisional cross-sections
for charged species due to dust grain charge (Draine & Sutin 1987),
and Sj is the sticking coefficient. It is assumed that all grains have the
same charge; this is valid since the dispersion in the distribution of
charge states is generally found to be small (Draine & Sutin 1987).
It is further assumed that potassium ions rapidly recombine on the
grain surface to form condensed potassium atoms. Thus the ions are
effectively destroyed upon adsorption.

At high temperatures electrons on the dust grains have a finite
probability of leaving the grain, producing the so-called thermionic
emission. The emission depends on the energy required for the
electron to escape the grain. For a neutral grain this is the work
function W, a property of the material out of which the grains
are made. The rate at which free electrons are produced through
thermionic emission is

Rtherm = ngr4πa2
grλR

4πme(kBT )2

h3
exp

(
−Weff

kBT

)
, (18)

where

Weff = W + Ze2

agr
(19)

is the effective work function due to grain charge Ze.
Potassium atoms will also evaporate from the grains only at high

temperatures. The vaporization rate of condensed potassium atoms
is given by

RK,evap = nK,condν exp

(
− Ea

kBT

)
, (20)

where ν is the vibration frequency of potassium atoms on the
dust grain surface lattice, and Ea = 3.26 eV is the binding energy,
whose value is chosen to reproduce the condensation temperature of
potassium (1006 K; Lodders 2003). These potassium atoms may be
emitted into the gas phase as both neutral atoms and ions, contributing
further to the gas’ ionization state. The ratio of ions to neutrals among
the emitted particles is given by

n+
K

nK0
= g+

g0
exp

(
+Weff − IP

kBT

)
, (21)

where g+
g0

is the ratio of statistical weights of the ionized and neutral
state of potassium, and IP the ionization potential of potassium. The
fraction of all emitted particles that leave the grain as ions is then
given by

f+ = n+
K/nK0

1 + n+
K/nK0

, (22)

so the rate at which potassium ions evaporate from the grains is given
by RK,evapf+.

It is important to note here that there are two sources of the
neutral potassium atoms condensed on grains, whose evaporation
is described above: first, gas-phase potassium ions that are adsorbed
on to grain surfaces and recombine there into neutral atoms; and
secondly, gas-phase neutral potassium atoms that are adsorbed
directly on to the grains. The reionization and subsequent ejection
from grains of the former simply returns ions to the gas-phase that
were originally adsorbed from it, and thus clearly cannot increase the
ion fraction in the gas-phase beyond what it would be in the absence
of grains. The ionization on the grain surface, and ejection as ions, of
particles that were originally neutral in the gas-phase, however, can
increase the gas-phase ion fraction beyond what it would be without
grains; it is this channel that makes ion emission from grains such a
crucial effect.

Clearly, the contribution of the dust grains to gas ionization levels
depends on the work function W of the grain material. We adopt
the fiducial value of Desch & Turner (2015), W = 5 eV, and refer
the reader to their work for a discussion of the experimental results
supporting this choice. This value is close to the ionization potential
of potassium, IP = 4.34 eV, indicating that thermionic emission is
important for the production of free electrons in the same temperature
range as thermal ionization of potassium. Importantly, for this given
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value of the work function, grains become negatively charged at high
temperatures as a large fraction of potassium evaporating from the
grains is in ionized state. This results in a reduction of the effective
work function Weff, since, for negatively charged grains thermionic
emission is higher (equation 19).

In this work, we assume that the abundances of hydrogen and
potassium atoms are xH = 9.21 × 10−1 and xK = 9.87 × 10−8,
respectively, relative to the total number density of all atomic particles
(Keith & Wardle 2014), and that the mean molecular weight is μ =
2.34mH.3 The grain material density is ρgr = 3.3 g cm−3, the same as
in our calculation of the dust opacities. The input for the chemical
network are temperature T, pressure P, hydrogen ionization rate ζ ,
dust-to-gas ratio fdg, and dust grain size agr. All other kinetic rates,
parameters, and coefficients are the same as in Desch & Turner
(2015).4 We note that the chosen value of the sticking coefficient
for electrons (Se = 0.6) is compatible with the detailed calculation
by Bai (2011), who consider work function values of 1 and 3 eV.
His results suggest that for a work function of 5 eV, at 1000 K, Se

is indeed a few times 0.1 for neutral grains, and increases further
for negatively charged grains. For the sticking coefficients for the
ions we adopt Sj = 1, and similarly for the neutral atoms we adopt a
sticking coefficient of S0 = 1.

For a given dust-to-gas ratio fdg and grain size agr, we pre-
calculate and tabulate the equilibrium number densities of electrons
and ions, and the average grain charge, as functions of temperature T,
pressure P, and hydrogen ionization rate ζ . We find the equilibrium
solution following the same method as Desch & Turner (2015).
Time derivatives of all number densities are set to zero, and so rate
equations yield an algebraic system of equations. For a given average
grain charge Z, this system of equations is solved iteratively to find
number densities of all five species. The grain charge is then found
by solving the equation of charge neutrality.

2.4.2 Grain size distribution / effective dust-to-gas ratio

The described chemical network incorporates only one grain size
population. Ideally, we would consider a number of grain size popu-
lations, with the same size distribution used in our calculation of dust
opacities. However, this would greatly enhance the computational
complexity of the problem. At the same time, it is clear that dust
grains of different size contribute differently to the equilibrium
ionization levels. To the lowest order of approximation, all dust-
related reaction rates are regulated by the total grain surface area.
Thus, it can be expected that the ionization levels are most sensitive
to the smallest grains. Bai & Goodman (2009) considered the effects
of dust on the ionization levels in the cold regions of protoplanetary
discs, in application to the onset of the MRI due to non-thermal
sources of ionization. They considered chemical networks with two
grain size populations and found that the grain populations behave
independently, as the charge transfer between the grains is negligible.
They further found that the ionization levels are largely controlled
by a quantity fdg/a

p
gr, where the exponent p varies between p = 1

(i.e. the total grain surface area) and p = 2.

3The total number densities of molecular hydrogen and potassium are then
related to the gas density as nH2 = xH/(2 − xH)ρ/μ and nK = 2xK/(2 −
xH)ρ/μ, respectively.
4Note that the fiducial value of the hydrogen ionization rate used by
Desch & Turner (2015) is in fact ζ = 1.4 × 10−22 s−1 (S. Desch, private
communication).

We repeat a similar exercise for the above chemical network, suited
to the hot inner regions of protoplanetary discs. For a set of values of
the exponent p = 1, 1.25, and 1.5, we vary the grain size agr and dust-
to-gas mass ratio fdg while keeping fdg/a

p
gr constant. We calculate the

ionization levels as a function of temperature, and for different sets
of pressure and hydrogen ionization rates, so as to probe different
conditions in different regions of the inner disc. The results are shown
in Fig. 2. The grain surface area (p = 1) controls the equilibrium
ionization levels when the hydrogen ionization dominates, but does
not determine the temperature at which the ionization levels rise due
to thermionic and ion emission. On the other hand, for p = 1.5,
this temperature depends very weakly on the grain size. That is,
regardless of the actual dust grain size, a quantity fdg/a

1.5
gr regulates

the temperature at which dense interior of the disc becomes ionized.
Therefore, for the chemical network calculations, we use a single

grain size of agr = 10−5 cm, but employ an effective dust-to-gas ratio
fdg, eff that satisfies fdg,effa

−p
gr = ∫ amax

amin
dn(a)m(a)/ρga

−p , where n(a)
is the same grain size distribution used to calculate dust opacities.
Since we find that thermionic and ion emission are more important
than the non-thermal ionization of hydrogen in the inner disc, we use
p = 1.5. From right-hand panel of Fig. 2, it appears that this choice
will lead to a large error in the gas ionization state we derive in
the low-density non-thermally ionized disc regions, due to the large
variation in such regions in the ionization state produced by different
grain sizes . However, in reality the error will be much smaller than
implied by Fig. 2, since the majority of grains are skewed towards
small sizes in a realistic grain size distribution.

2.4.3 Hydrogen ionization rate

In our calculation of the MRI-driven viscosity, we consider molecular
hydrogen ionization rate due to radionuclides, cosmic rays, and
stellar X-rays. The ionization rate of molecular hydrogen due to
short-lived and long-lived radionuclides is

ζR = 7.6 × 10−19 s−1, (23)

which predominantly comes from decay of 26Al (Umebayashi &
Nakano 2009). The ionization rate of molecular hydrogen due to
interstellar cosmic rays is (Umebayashi & Nakano 2009)

ζCR(z) = ζCR,ISM

2
e

− �(z)
λCR

(
1 +

(
�(z)

λCR

) 3
4
)− 4

3

, (24)

where ζ CR, ISM = 10−17 s−1 is the interstellar cosmic ray ionization
rate, �(z) is the integrated density column from the top of the disc
to the height z above disc mid-plane, and λCR = 96 g cm−2 is the
attenuation length for cosmic rays (Umebayashi & Nakano 1981).

For the ionization rate of molecular hydrogen due to stellar X-rays,
we use Bai & Goodman (2009) fits to the Igea & Glassgold (1999)
Monte Carlo simulations,

ζX(z) = LX

1029 erg s−1

( r

1 AU

)−2.2
(ζ1e

−(�(z)/λ1)c1 + (25)

ζ2e
−(�(z)/λ2)c2 ),

where LX is stellar X-ray luminosity, ζ 1 = 6 × 10−12 s−1, λ1 =
3.4 × 10−3 g cm−2, and c1 = 0.4 characterize absorption of X-rays,
and ζ 2 = 10−15 s−1, λ2 = 1.6 g cm−2, and c2 = 0.65 characterize
the contribution from scattered X-rays. Here we have recalculated
the attenuation lengths given by Bai & Goodman in terms of
column densities of hydrogen nucleus into the surface density lengths
using the hydrogen abundance given above. We adopt the saturated
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286 M. R. Jankovic et al.

Figure 2. Ionization fraction (ne/nH2 ) as a function of temperature. Different colours correspond to different combinations of pressure and hydrogen ionization
rates: P = 102 dyn cm−2 and ζ = 10−19 s−1 (blue), P = 10−2 dyn cm−2 and ζ = 10−19 s−1 (orange), P = 10−2 dyn cm−2 and ζ = 10−11 s−1 (green). Different
linestyles correspond to different grain sizes, agr = 10−5 cm (solid), agr = 10−3 cm (dashed), agr = 10−1 cm (dotted), each with a different dust-to-gas ratio
such that the ratio fdg/a

p
gr remains constant and as evaluated for agr = 10−5 cm, fdg = 0.01. Different panels show the calculations for different values of the

exponent p, as indicated in each panel title. Exponent p = 1 is equivalent to keeping the total grain surface area constant. Adopting exponent p = 1.5 yields
approximately the same threshold temperature at which ionization fraction sharply increases irrespective of grain size agr. See Section 2.4.2.

relationship LX = 10−3.5Lbol (e.g. Wright et al. 2011). For both cosmic
rays and X-rays, we ignore the contribution coming through the
other side of the disc. This is valid since we find that the gas surface
densities are mostly larger than the attenuation lengths of the ionizing
particles and, even at low gas surface densities, this can only increase
the ionization rates by at most a factor of 2.

2.5 Numerical methods

2.5.1 Equilibrium vertical disc structure

At a given orbital radius, magnetic field strength and grazing angle φ,
the disc’s vertical structure is determined as a solution to the boundary
value problem given by equations (1), (7)–(9) and the ideal gas law,
and, where convectively unstable, by equations (1), (7), and (10).
This boundary value problem is solved using the shooting method
(Press et al. 2002). The equations are integrated from the top of the
disc (z = zsurf) to the disc mid-plane (z = 0). The height of the disc
zsurf is then found, such that F(0) = 0. This root-finding problem is
solved using the Ridders’ method, with an exit criterion that |F(0)|
< 10−5F(zsurf).

Equations of the vertical disc structure are integrated on a fixed
vertical grid (i.e. in the z-direction), with points uniform in the
polar angle. Since equation (9) is an algebraic equation, and for
numerical stability, we use a fully implicit integration method. For
the radiative-transfer problem we use a Runge–Kutta method of the
second order, i.e. the trapezoidal method. In the trapezoidal method
the equations (1), (7)–(9) are discretized as a system of non-linear
equations to be solved in every integration step (a system of non-
linear equations in Pn + 1, Fn + 1, Jn + 1, Tn + 1 to be solved by a root-
finding algorithm),

Pn+1 = Pn + h

2
�2(−ρnzn − ρn+1zn+1),

Fn+1 = Fn + h

2
(�n + �n+1),

Jn+1 = Jn + h

2
(− 3

4π
)(ρnκR(Tn)Fn + ρn+1κR(Tn+1)Fn+1),

0 = 4ρn+1κP (Tn+1)(σSBT 4
n+1 − πJn+1) − �n+1,

where h is the integration step, ρ = ρ(T, P) is given by the ideal gas
law, and � = �acc + �irr. Here, �irr, n = �irr, n(Tn, Pn, τ irr, z, n), with the

optical depth to stellar irradiation obtained using τirr,z,n+1 = τirr,z,n +
h
2 κ∗

P (ρn + ρn+1). Furthermore, viscous dissipation is a function of
the MRI-driven viscosity α and thus depends on the local ionization
levels. The latter are a function of the local temperature, pressure, and
the hydrogen ionization rate which depends on the column density
from the top of the disc. Thus, �acc, n = �acc, n(Tn, Pn, Nn), with the
column density given by Nn+1 = Nn + h

2 kB
−1(Pn/Tn + Pn+1/Tn+1).

The equation for pressure Pn + 1 can be rearranged into an explicit
form

Pn+1 = Pn − h
2 �2ρnzn

1 + h
2 �2 μmH

kB

zn+1
Tn+1

.

Then, the above system of equations is equivalent to a single non-
linear equation in Tn + 1, greatly simplifying the problem. In every
integration step we use the Ridders’ method to solve this equation
for the temperature Tn + 1 (down to a relative precision of 10−7) and
consequently for all other quantities. This includes the MRI-driven
viscosity α, which is thus calculated self-consistently at each step
of integration.5 At every step and in every iteration of the root-
solver opacities are interpolated from pre-calculated tables using
cubic splines, and the ionization levels (e.g. free electron number
density) using tri-linear interpolation.

Additionally, at each integration step we check if the resulting
temperature gradient is unstable to convection, and if so, the
temperature Tn + 1 is obtained analytically using

Tn+1 = Tn + h

2
∇ad

μmH

kB
�2(−zn − zn+1).

With Tn + 1 known, all other quantities follow same as above. A disc
column can, in principle, become convectively stable again at some
height above disc mid-plane. To calculate the mean intensity J at
a boundary between a convective and a radiative zone, we use the
energy balance equation (9).

For some model parameters, there can be a range of orbital radii
and values of the magnetic field strength for which there are multiple
solutions for the disc height zsurf (i.e. multiple solutions for the

5This is indeed necessary. An iterative method in which the disc thermal
structure is decoupled from the density structure and the heating terms (e.g.
Dullemond et al. 2002) does not converge to a solution in the case of MRI-
driven viscosity.
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equilibrium vertical disc structure). This happens when a complex
ionization structure leads to strong variations in the viscosity α

as a function of height above disc mid-plane, making the total
produced viscous dissipation a non-monotonous function of zsurf.
When there are multiple solutions, we choose the solution with
smallest zsurf. It is likely that at least some of the additional solutions
are thermally unstable and/or unphysical, as the strong variations
in both the levels of turbulence and the levels of ionization should
be removed by turbulent mixing (see Section 3.2.3). Note that the
multiple solutions in our model, when they exist, correspond to the
same, radially constant input accretion rate. Steady accretion is thus
assured regardless of the choice of the solution.

2.5.2 Magnetic field strength

At a given orbital radius, for a fixed grazing angle, φ, and magnetic
field strength, B, the above procedure yields an equilibrium vertical
disc structure characterized by a vertically averaged viscosity

ᾱ =
∫ zsurf

0 αP dz∫ zsurf
0 P dz

.

As in the vertically isothermal model (Mohanty et al. 2018), for a
sufficiently small and a sufficiently large magnetic field strength B
the MRI is suppressed in the entire disc column and ᾱ = αDZ. There
can be an intermediate range of magnetic fields strengths for which
the MRI is active, and the vertically averaged viscosity ᾱ peaks at
some value of B. At every orbital radius, we choose B such that ᾱ

is maximized. The underlying assumption here is that the magnetic
fields are strengthened by the MRI-driven turbulence. It is assumed
that the initial magnetic field configuration was sufficient to start
the instability. The induced magnetohydrodynamic turbulence then
amplifies the field strength. We assume the equilibrium configuration
is one in which the turbulence is maximized, where the turbulence is
parametrized by ᾱ. Similar arguments were employed by Bai (2011)
and Mohanty et al. (2013).

To maximize ᾱ(B), we use the Brent method with a target absolute
precision of 10−3 in logB. There can be a range of orbital radii
where there are multiple local maxima in ᾱ as a function of B.
This is essentially for the same reasons that cause multiple solutions
in disc height zsurf at a fixed value of B. In general, we choose B
corresponding to the global maximum in ᾱ. However, in some cases,
this is a function of the grazing angle φ at a fixed orbital radius,
and the procedure to determine the grazing angle (described below)
does not converge. There we choose a local maximum with a largest
magnetic field strength.

2.5.3 Grazing angle

At any given orbital radius, the angle between the incident stellar
radiation and the disc surface is determined self-consistently with
the disc structure following D’Alessio et al. (1999). A self-consistent
disc structure is found by iteratively updating the grazing angle and
re-calculating the entire disc structure. We use a logarithmic grid for
orbital radius. First, we calculate φ using equation (6) by assuming
that zirr = 0 and solve for the vertical disc structure and the magnetic
field strength at all radii. We integrate through the obtained disc
structure along lines of sight to the star to calculate τ irr(r, z), which
yields an updated zirr at each radius.

Critically, to calculate the updated value of the grazing angle
φ at each radius, the derivative dlogzirr/dlogr is approximated by
assuming that zirr is a power law, zirr ∝ rb, within a radius bin

centred at the given radius. So, at each radius we fit for the slope b
using zirr at that radius and at a number of radial grid points interior
and exterior to it. Then, the value of the grazing angle is updated and
the vertical disc structure recalculated at all radii.

This procedure is repeated until the grazing angle has converged
at every radius, i.e. until the relative difference in φ between two
consecutive iterations is less than 0.5 per cent at all radii. For the first
radial point, we always assume the flat-disc approximation (zirr = 0)
and do not include it in the fitting routine. In this work, we use a total
of 100 radial points between 0.1 and 1 AU, and a total of 10 radial
points in fits for dlogzirr/dlogr.

3 RESULTS

Using our self-consistent model, we can now investigate the structure
of the inner regions of a protoplanetary disc that is viscously accreting
with a constant accretion rate.

In Section 3.1, we consider a model in which the vertical
structure of the disc is calculated self-consistently from viscous
heating, heating by stellar irradiation, radiative, and convective
energy transport, and self-consistent radiative properties of dust,
while the disc’s ionization state is calculated by only considering
the thermal (collisional) ionization of potassium, using the Saha
equation.

In Section 3.2, we present results for our full model that includes
additional chemical species, including dust grains, in the chemical
network, as well as non-thermal sources of ionization.

Unless otherwise stated, throughout this paper we assume a solar-
mass star, M∗ = 1 M�, with a stellar radius R∗ = 3 R�, effective stellar
temperature T∗ = 4400 K, gas accretion rate Ṁ = 10−8 M� yr−1,
and viscosity in the MRI-dead zone αDZ = 10−4. Our adopted gas
accretion rate is the median from observations of solar-mass classical
T Tauri stars (e.g. Hartmann et al. 1998; Manara et al. 2016, 2017).
In reality, there is more than an order of magnitude scatter in the
data around this median; we explore the effects of varying Ṁ , as
well as other parameters, in a companion paper, as noted below. The
stellar parameters are from the evolutionary models of Baraffe et al.
(2015), for a solar-mass star at an age of 5 × 105 yr. At later times,
the stellar luminosity decreases, as the star contracts towards the
zero-age main-sequence. Our choice of a relatively young classical
T Tauri star thus maximizes the stellar luminosity, allowing us to
examine the largest possible effect of stellar irradiation on the inner
disc. Lastly, we adopt a standard ISM dust-to-gas ratio of fdg = 10−2,
and a maximum dust grain size of amax = 1 μm.

The above set of parameters represents our fiducial model. In
this work, we investigate in detail the main physical and chemical
processes that shape the structure of the inner disc for this model. In
a companion paper (Jankovic et al., in preparation), we examine how
the inner disc structure changes as a function of the model parameters,
and build a picture of how this structure may affect planet formation.

3.1 Disc thermal structure and the MRI

In this section, we explore how thermal processes shape the inner
disc structure. The ionization state of the disc is set here only by
the thermal ionization and recombination of potassium, which is
assumed to be entirely in the gas phase. Note that there is no other
chemistry in this model: in the absence of grain-related reactions
(grains here only contribute to the opacity), and without non-thermal
sources to ionize H2, gas-phase thermal ionization and recombination
of potassium are the only reaction pathways available.
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288 M. R. Jankovic et al.

Figure 3. Temperature as a function of location in the disc for a viscously heated constant-opacity model (left-hand panel), viscously heated model with
realistic opacities (middle), and a viscously and irradiation-heated model with realistic opacities (right-hand panel). In each panel, the solid line shows the disc
photosphere (τR = 2/3) and the dashed line shows the pressure scale height (P = e−1/2Pmid). The dotted line in the right-hand-side panel shows the surface at
which τ irr = 2/3. Note that the inclusion of heating by stellar irradiation does not strongly affect the disc mid-plane temperature. See Section 3.1.1.

Mohanty et al. (2018) presented a model in which the disc
is vertically isothermal, with a constant opacity (= 10 cm2 g−1).
Throughout this section, we shall compare this simple model with
three models of increasing complexity within our framework: (i)
a model with the same constant opacity (κR = κP = 10 cm2 g−1),
but with the disc vertical structure calculated self-consistently from
viscous heating and cooling by radiation and convection; (ii) a model
with the same heating and cooling processes as (i), but now with
opacities also determined self-consistently; and (iii) similar to (ii),
but now also including heating by stellar irradiation.

To make it easier to interpret the effects of these thermal processes,
we first focus on how the disc’s temperature changes when the
increasingly complex models are used. We then discuss how this
leads to differences in the disc’s ionization state, the locations where
the MRI is active, and the radial surface density and mid-plane
pressure profiles. Finally we provide a short summary of the key
findings at the end of this section.

3.1.1 Thermal structure of the inner disc

Fig. 3 shows the temperature as a function of disc radius and height
above the mid-plane for our three models, increasing in complexity
from the left-hand to right-hand panels.

Noticeably, the temperature profiles deviate from being vertically
isothermal. The dashed lines here show the disc pressure scale height,
and the solid lines show the disc photosphere for outgoing radiation
(i.e. where the Rosseland-mean optical depth is τR = 2/3). In all three
models, the temperature increases towards the mid-plane below the
photosphere, as the disc becomes more and more optically thick to
its own radiation.

The resulting temperature gradient is sufficiently high to make the
disc convectively unstable, as shown in Fig. 4. From the mid-plane
up to a couple of pressure scale heights, energy is thus transported
by convection, and the temperature gradient here is essentially
isentropic. Importantly, the strong temperature gradient that yields
this convective instability is not specific to MRI-driven accretion:
it is a general feature of any active, optically thick disc where the
accretion heat is released near the mid-plane (see also Garaud & Lin
2007). We show this analytically in Section 4.

The model that includes heating by stellar irradiation, shown in the
right-hand panels of Figs 3 and 4, features a temperature inversion in
the disc upper layers. This inversion has been discussed in detail

by D’Alessio et al. (1998), and is a simple consequence of the
fact that the photosphere for the outgoing radiation (solid line) lies
below the photosphere for the incoming stellar radiation (dotted
line), where the latter corresponds to the irradiation surface zirr at
which τ irr = 2/3. Above this surface, the disc upper layers are heated
by stellar irradiation. Below, the disc becomes optically thick to
stellar radiation (i.e. stellar photons do not penetrate here) and the
temperature drops. Going deeper still, below the disc photosphere to
the outgoing radiation, the disc becomes optically thick to its own
radiation and the temperature rises again.

In the irradiated disc, close to the star the disc mid-plane is as hot as
the disc upper layers, and further away the mid-plane is significantly
hotter than the upper layers. It would thus appear that accretion
heating dominates in the inner disc. However, at a given radius, the
total flux of stellar radiation absorbed by a vertical column in the
disc is in fact at least an order of magnitude greater than the total flux
generated by viscous dissipation (Firr � 10Facc), throughout the inner
disc (see top panel of Fig. 5). In spite of this, the disc temperature
near the mid-plane is only weakly affected by irradiation. We discuss
this result in Section 4.2.

The ratio Firr/Facc varies non-monotonically, following the grazing
angle φ, shown in the bottom panel of Fig. 5. At the inner edge of
our calculation domain, the first ∼10 points (shown in grey) are
affected by boundary effects. This is a well-known problem in disc
models that account for stellar irradiation using the grazing angle
prescription (Chiang et al. 2001). Importantly, far from the inner
edge, the value of the grazing angle and the disc structure do not
depend on the disc structure at the inner edge.

3.1.2 Ionization levels and non-ideal MHD effects

The ionization structure in our models with a self-consistent vertical
structure is qualitatively different from that in the vertically isother-
mal model of Mohanty et al. (2018). In the latter, the temperature is
constant with height above the mid-plane while the density decreases,
and thus the ionization fraction (ne/nH2 ) increases with height (by
the Saha equation). In our models without stellar irradiation heating,
the temperature declines monotonically with height, and hence the
ionization fraction decreases as well (Fig. 6: middle row, solid
curves). When we include irradiation heating, on the other hand,
the fractional ionization does increase in the uppermost irradiated
layers, due to the rising temperature there (dashed curves).
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Figure 4. Radiative and convective zones (light and dark red, respectively) for a viscously heated constant-opacity model (left-hand panel), viscously heated
model with realistic opacities (middle), and a viscously and irradiation-heated model with realistic opacities (right-hand panel). In each panel, the dashed line
shows the pressure scale height (P = e−1/2Pmid). In all three models, the disc is convectively unstable within few scale heights. See Section 3.1.1.

Figure 5. Top: Ratio of the total irradiation heating to the total viscous
dissipation (Firr/Facc) as a function of radius. The total (vertically integrated)
absorbed stellar flux Firr is at least an order of magnitude larger than the total
viscous dissipation Facc at any given radius. Bottom: Grazing angle of stellar
irradiation (φ) as a function of radius. Note that the Firr/Facc curve follows the
trend in φ. In both panels, the grey portion of the curve indicates the region
affected by the inner boundary condition on φ. See Section 3.1.1.

As a consequence of the above, both ambipolar and Ohmic
resistivities increase with height in our non-irradiated discs. In other
words, in these models, both ambipolar and Ohmic diffusion quench
the MRI from above. In the irradiated disc, the Ohmic resistivity
falls in the uppermost layers; however, ambipolar diffusion still
increases in these layers, again stifling the MRI there. Consequently,
the vertical extent of the MRI-active region (i.e. where the local α

> αDZ) at any given radius in our irradiated disc model is nearly
identical to that in the non-irradiated discs (Fig. 6, top row).

3.1.3 MRI-active and dead zones

The differences in the ionization structure of our vertically self-
consistent models and the vertically isothermal model lead to
differences in where the MRI is active in the disc. A plot of
the viscosity parameter α as a function of disc radius and height
above mid-plane, Fig. 7, shows that the MRI-active zone (i.e.
where α > αDZ) is confined to the vicinity of the mid-plane
in our models. The same was found by Terquem (2008), who
considered a similar vertically self-consistent disc model, for a
simple viscosity prescription in which the MRI is activated above
a fixed critical temperature. This is qualitatively different from
the vertically isothermal case, where the MRI-active zone occurs
around the mid-plane in the innermost region, but rises into the
upper layers at larger radii (see Mohanty et al. 2018). The latter
configuration, where the active zone is sandwiched between a dead
zone around the mid-plane below and an ambipolar-dead zone
above, emerges as a consequence of the ionization increasing with
height above the disc mid-plane in the isothermal case, as discussed
above. Moreover, comparing our non-irradiated discs (first two
panels of Fig. 7) with the irradiated one (last panel), we see that
heating by stellar irradiation makes little difference to the extent
of the MRI-active zone, since it only weakly affects the mid-plane
temperature, and the hot uppermost layers are dead due to ambipolar
diffusion.

Finally, in Fig. 8 we compare radial profiles of the vertically
averaged viscosity parameter ᾱ and the MRI-generated magnetic
field strength B from the four models (the vertically isothermal and
constant opacity disc of Mohanty et al. 2018, plus our three non-
isothermal discs).

In line with theoretical expectations and the results of Mohanty
et al. (2018), the vertically averaged viscosity parameter ᾱ decreases
as a function of orbital radius. At some distance from the star the
MRI is completely quenched and the average viscosity parameter
reaches the minimum value, ᾱ = αDZ. Interestingly, the ᾱ radial
profile is both qualitatively and quantitatively similar in all four
models. However, the radial profile of the magnetic field strength
B reveals qualitative differences. In the vertically isothermal model,
B(r) features a sharp drop at ∼ 0.35 AU, which corresponds to the
appearance of a dead zone in the disc mid-plane, as described
above. From that point, until the MRI is completely smothered at
∼ 0.7 AU, the MRI is active in a thin layer high above the mid-
plane, between a dead zone below and an ambipolar-dead zone
above (see Mohanty et al. 2018). In the self-consistent models,

MNRAS 504, 280–299 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/1/280/6207952 by U
niversity of C

am
bridge,  m

j577@
cam

.ac.uk on 30 June 2021
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Figure 6. Local viscous parameter α (top), ionization fraction ne/nH2 (middle), and magnetic resistivities (bottom) at three different disc radii (as indicated in
the panel titles), in two different models: one with realistic opacities but no irradiation (solid lines), and one that also includes irradiation (dashed lines). Despite
the high ionization fraction in the irradiation-heated disc upper layers, ηA is still very high in these layers, i.e. ambipolar diffusion quenches the MRI there. See
Section 3.1.2.

Figure 7. Local viscous parameter α as a function of location in the disc for a viscously heated constant-opacity model (left-hand panel), viscously heated
model with realistic opacities (middle), and a viscously and irradiation-heated model with realistic opacities (right-hand panel). In each panel the solid line
shows the disc photosphere (τR = 2/3) and the dashed line shows the pressure scale height (P = e−1/2Pmid). The dotted line in the right-hand-side panel shows
the surface at which τ irr = 2/3. Note that the heating by stellar irradiation has a very weak effect on the extent of the MRI-active region. See Section 3.1.3.

however, this configuration does not appear: the magnetic field
strength remains strong until the MRI is completely quenched, and
the MRI-active zone in the inner disc is always restricted to the
mid-plane regions.

3.1.4 Surface density and pressure maximum

All four steady-state models discussed above feature a maximum in
both the local gas pressure and the surface density (Fig. 9), at the
radial location where the vertically averaged viscosity parameter ᾱ
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Figure 8. Vertically averaged viscosity parameter (ᾱ) and the MRI-generated
magnetic field strength (B) as functions of radius, in a vertically isothermal
model as well as in self-consistent models of varying complexity (viscously
heated constant-opacity model, viscously heated model with realistic opac-
ities, and viscously and irradiation-heated model with realistic opacities),
as indicated in plot legend. The vertically averaged viscosity parameter
profile is similar in all four models, but the magnetic field strength profile is
qualitatively different in the vertically isothermal model (in which the field
strength decreases as a function of radius outwards from ∼ 0.4 AU). See
Section 3.1.3.

falls to its minimum value (see Fig. 8). Inwards of this location,
the MRI-driven accretion efficiency (i.e. ᾱ) increases; for a radially
constant (i.e. steady-state) gas accretion rate, this leads to a decrease
in both the surface density and the mid-plane pressure. Since the
radial profile of ᾱ is similar in the four models, their surface density
and mid-plane pressure profiles are similar too. Within our three
self-consistent models, the addition of heating by stellar irradiation
moves the pressure maximum outwards by ∼0.1 AU (compare the
dashed and solid black lines in Fig. 9, bottom panel). At the same
time, relative to the result of Mohanty et al. (2018) for an isothermal
and constant opacity disc (grey solid line), the pressure maximum
in our most complex model in this section (non-isothermal, with
realistic opacities and irradiation heating; black solid line) has moved
∼0.1 AU inwards.

3.1.5 Summary

In this section, we have considered how the details of the disc thermal
structure model affect the disc’s ionization state and where in the
disc the MRI is active. We have also examined the importance of the
various physical effects on the location of the MRI-induced pressure
maximum in the inner disc.

Figure 9. Surface density (top) and mid-plane pressure (bottom) as functions
of radius in a vertically isothermal and self-consistent models of varying
complexity (same as in Fig. 8). In each model the density and the mid-plane
pressure maximum correspond to the point at which the viscous ᾱ reaches a
minimum value. See Section 3.1.3.

Our results show that when the disc vertical structure and the
MRI-driven viscosity are considered self-consistently, the MRI is
active around the disc mid-plane. In previous work using a simplified
vertically isothermal model, a different configuration arises in the
vicinity of the pressure maximum, where the MRI is active in a layer
above (and below) the dead mid-plane. Though both approaches
yield a similar location for the pressure maximum for our fiducial
parameters, the difference in the physical behaviour of the disc
cautions against the use of the simplified model.

Furthermore, for the fiducial parameters considered here, we
find that the mid-plane temperature is primarily determined by
viscous dissipation, and not stellar irradiation. As a result, the
location of the pressure maximum, where the mid-plane temperature
and the ionization levels fall below a critical value, is negligibly
affected by stellar irradiation. Finally, we find that the inner disc is
convectively unstable, even if the disc opacity is constant. Hence,
even though the location of the pressure maximum is similar to
that in previous work, the disc’s structure is qualitatively dif-
ferent. These findings are further discussed in sections 4.2 and
4.3.

3.2 Disc chemical structure and the MRI

In this section, we build upon our models from the previous section.
We first explore the effects of dust on the disc’s ionization state and
on the MRI. We then construct our complete model of the inner disc
by also considering non-thermal sources of ionization.
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3.2.1 Effects of dust

Here we consider two models. The first is our most complex model
from the previous section, which incorporates a self-consistent
vertical structure and realistic opacities, and includes stellar irra-
diation, but accounts for only gas-phase thermal ionization and
recombination of potassium (solid lines in Figs 10 and 11). The
second is a model including all these processes, as well as dust
effects on the ionization (dashed lines in Figs 10 and 11); the latter
effects include adsorption of neutral atoms and free charges on to
dust grains, recombinations on the grain surfaces, and thermionic
and ion emission from the grains.

Fig. 10 depicts the radial profiles of the vertically averaged
viscosity ᾱ, magnetic field strength, mid-plane temperature, and the
mid-plane fractional ionization (ne/nH2 ) for the two models. We
see that the radial profile of ᾱ, and the radial extent of the MRI-
active zone (i.e. where ᾱ > αDZ), are similar in the two models.
Consequently, their surface density and mid-plane pressure profiles,
plotted in Fig. 11, are also similar. Interestingly, Fig. 10 also shows
that when the influence of dust on the ionization is included, both
ᾱ and the ionization fraction are somewhat higher at a given radius
within the active region, while the mid-plane temperature is lower.
We discuss these effects further in Section 4.1.

Fig. 12 illustrates the vertical structure of the model with dust
at three different disc radii. The top row shows the local viscosity
parameter α, the middle row shows the number densities of free
electrons and ions, and the bottom row shows the various contri-
butions to the free electron production rate per unit volume. As in
the thermally ionized disc (Fig. 6), the MRI is active in the hot
disc mid-plane. The ionization levels decrease with height above the
mid-plane as the temperature decreases, and increase again in the
disc atmosphere heated by stellar irradiation. In the hot upper layers
ambipolar diffusion quenches the MRI.

The plots of free electron and ion production rates show that
thermionic and ion emission are the dominant ionization sources.
Thus, Fig. 10 is misleading in the sense that, while the differences
in the global structure are very small when dust effects are added,
it is not because dust effects are minor. Clearly, dust dominates the
chemistry in the inner disc. Rather, for the parameters assumed here,
the ionization levels as a function of temperature and density, when
dust is included, are similar to the levels obtained from gas-phase
thermal ionization only, due to the similarity between the ionization
potential of potassium and the grain work function.

3.2.2 Non-thermal sources of ionization

In this section, we present our full model of the inner disc which,
in addition to the above dust effects, also includes non-thermal
sources of ionization: stellar X-rays, cosmic rays, and radionuclides
all ionize H2, ultimately producing metallic ions and free electrons.
The resulting radial profiles of ᾱ, magnetic field strength, mid-plane
temperature, density, and ionization levels are shown in Fig. 10 as
dotted lines. The radial profile of ᾱ seems to overlap with the model
with only dust effects (dashed line). However, in the region where
the MRI is dead in the dust-only model, ᾱ is slightly higher than
αDZ in the new model including H2 ionization. The magnetic field
strength also does not drop to zero in this model, further revealing
that the MRI remains active here.

Fig. 13 shows the vertical structure of this disc at three different
radii. It reveals that, at large radii where the MRI was quenched
in previous models, the MRI now remains active at large heights
(see also Fig. 14). The situation is reminiscent of the appearance of

Figure 10. Vertically averaged viscous parameter (ᾱ), MRI-generated mag-
netic field strength (B), mid-plane temperature, and the mid-plane free
electron fraction (ne/nH2 ) as functions of radius, for a model with thermal
ionization only, a model with thermal ionization and dust effects, and a model
which also includes realistic non-thermal sources of ionization of H2 (ζ =
ζ R + ζ CR + ζ X). The disc structure is quantitatively similar in all three
models; however, the main sources of ionization in the models with dust are
thermionic and ion emission. See Section 3.2.1.
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Figure 11. Surface density (top) and mid-plane pressure (bottom) as func-
tions of radius for a model with thermal ionization only, a model with thermal
ionization and dust effects, and a model which also includes realistic non-
thermal sources of ionization of H2 (ζ = ζR + ζCR + ζX). The disc structure
is similar in all three. See Section 3.2.1.

an MRI-active layer near the disc surface in the thermally ionized,
vertically isothermal model of Mohanty et al. (2018), but the physical
reason is very different: in the latter model, it is due to the isothermal
assumption, which leads to increasing fractional ionization with
height; in our present non-isothermal model, it is due to additional,
non-thermal sources of ionization (mainly X-rays; see below) which
elevate the fractional ionization near the disc surface.

The plot of ionization levels in Fig. 13 shows that the fractional
abundances of free electrons and metal ions increase strongly towards
the disc surface, where non-thermal ionization dominates. As a result,
potassium ions are depleted in the upper layers via recombination
with the abundant electrons. Furthermore, the values of the metal ion
abundance near the surface are themselves noteworthy: they greatly
exceed the solar abundance of Mg, and even of C and O. The reason is
as follows. In our chemical network, the ionization of an H2 molecule
by a non-thermal source effectively produces a free electron and
a metal ion, the latter through (implicitly included) rapid charge
exchange between a metal atom and the H2 ion. This is valid as
long as the number of H2 ions remains lower than the total number
of metal atoms; in this case, the precise total abundance of metals
is unimportant, and is not accounted for in our calculations. When
the H2 ion abundance exceeds that of metal atoms, however, our
network fails: it yields a spuriously high metal ion abundance, when
in reality H2 ions dominate (since there are no remaining metal
atoms to transfer their charge to). Additionally, when the H2 ion
abundance becomes very high (e.g. when nH+

2
/nH2 exceeds ∼10−3),

our assumption that H2 is effectively a neutral species due to charge
transfer also breaks down.

Clearly, above this level our chemical model is not applicable, as
the ionized hydrogen would become an important species and our
assumption of a constant hydrogen number density would be invalid.
Nevertheless, this is above the MRI active zone at all orbital radii
(see the black solid line in Fig. 14, and also the blue solid line in
Fig. 13), and is thus not germane to our conclusions.

Fig. 15 compares the contributions from stellar X-rays and cosmic
rays to the hydrogen ionization rate. As expected, the un-attenuated
ionization rate due to X-rays is higher at the disc surface, but cosmic
rays can penetrate deeper in the disc. Nevertheless, the MRI-active
region in the upper disc layers is mostly ionized by X-rays, in
agreement with previous work (e.g. Glassgold et al. 1997; Ercolano &
Glassgold 2013).

Finally, note that in this outer region, where the MRI is active
in the upper disc, the gas accretes primarily through the dead zone
(driven by the dead-zone viscosity αDZ), since the density at the
dead disc mid-plane is much higher than in the X-ray-ionized MRI-
active layer. This is why the vertically averaged viscosity parameter
is close to the dead-zone value, ᾱ ∼ αDZ, outwards from the pressure
maximum.

3.2.3 Multiple solutions for the vertical disc structure

In the results presented so far, for our fiducial choice of disc and dust
parameters, solutions for the vertical disc structure (i.e. solutions
in disc height zsurf) appear to be unique. In general, there is also a
single peak in the vertically averaged viscosity ᾱ as a function of
magnetic field strength B (which determines our choice for B; see
Section 2.5.2). The exception is the vicinity of the orbital radius
at which the MRI is quenched at the disc mid-plane (see Fig. 14).
There, ᾱ(B) has two peaks, one corresponding to the solution where
the MRI is active at disc mid-plane, and the other to the solution
where the MRI is active in the upper disc layers, mostly ionized by
stellar X-rays. As discussed in Section 2.5, we choose B such that ᾱ

is maximized in this case as well.
Note that there could be, in principle, an MRI-active layer

high up in the disc at shorter orbital radii as well, in addition
to the active layer at mid-plane. Here, this does not appear due
to our assumption that the magnetic field strength B is vertically
constant. At the high B necessary to drive efficient accretion at
mid-plane, the MRI is quenched in the low-density disc atmo-
sphere due to ambipolar diffusion (since the ambipolar criterion
for active MRI also encapsulates the requirement that the mag-
netic pressure should be less than the thermal pressure). There-
fore, it is only when the temperature drops and high-temperature
ionization effects (thermal ionization of potassium, thermionic,
and ion emission from grains) can no longer drive the accretion
efficiently in the mid-plane that our model features the active
layer (generated by X-ray ionization) high above the disc mid-
plane.

For a different choice of parameters, e.g. if the maximum dust
grain size is amax = 100 μm, there may exist an additional range
of orbital radii where there are multiple peaks in ᾱ(B) and also
multiple solutions for the disc vertical structure (for zsurf) at a fixed
value of the magnetic field strength B. Similarly to the case above,
this issue arises due to the competing effects of high-temperature
sources of ionization and X-rays. As these sources of free electrons
have different dependencies on the disc structure (density, temper-
ature, column density), their combination leads to non-monotonous
variations in the electron number density as a function of height
above the disc’s mid-plane. Since the viscous dissipation due to the
MRI is sensitive to the ionization fraction, the total dissipation can
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294 M. R. Jankovic et al.

Figure 12. Local viscous parameter α (top), fractional abundance of charged species n/nH2 (middle) and ionization rates (bottom; thermionic Rtherm, ion
emission RK,evapf+, thermal k2nH2 nK0 ) at three different radii (as indicated in panel titles) for the model with thermal ionization and dust effects. Thermionic
emission is the primary source of free electrons in the MRI-active regions. See Section 3.2.1.

be a non-monotonous function of zsurf. Since the solution for the
vertical disc structure is determined by an equilibrium between an
input and an output total heat, this can lead to multiple solutions in
zsurf.

To illustrate this issue, we show in Fig. 16 an example of three
thermally stable solutions for the vertical disc structure at a fixed
value of magnetic field strength B that appears in our model for a
maximum grain size amax = 100μm (we ignore thermally unstable
solutions). Note that the dependence of the overall disc structure
and the location of the pressure maximum on the dust grain size
is presented and thoroughly discussed in our companion paper
(Jankovic et al., in preparation). Here we only discuss how we
deal with the multiple solutions. Fig. 16 shows the viscosity α as
a function of height in the top panel and the ratio ne/nH2 in the
bottom.

Evidently, small variations in the free electron number density
correspond to large variations in the viscosity α, all at heights
below one disc pressure scale height (indicated by grey lines).
This implies that the difference between these solutions is likely
unphysical for two reasons. First, the viscosity α is in reality driven
by turbulence, and turbulent motions should not abruptly change
over length scales much smaller than a single pressure scale height.
Secondly, chemical species can also be expected to be spatially

mixed by turbulence, and so such vertical variations in the ionization
fraction as we obtain here might be smoothed over in reality. Since
resolving these issues is beyond the scope of our models, we simply
always choose a solution with minimum zsurf, which also appears
to always correspond to a maximum ᾱ at the given magnetic field
strength.

3.2.4 Summary

As previously suggested by Desch & Turner (2015), the inner
disc is primarily ionized through thermionic and potassium ion
emission from dust grains. These processes counteract adsorp-
tion of free charges on to dust grains at the high temperatures
present in the inner disc. We show that, for our fiducial pa-
rameters, the introduction of dust effects on disc ionization has
very little effect on the location of the pressure maximum. This
is because thermionic and ion emission become efficient above
roughly the same threshold temperature as thermal ionization of
potassium. Additionally, we show that non-thermal sources of
ionization are unimportant for the fiducial parameters considered
here. Thus, similar to our results in Section 3.1, while the inclu-
sion of new physics in our model has not fundamentally changed
the position of the pressure maximum, the physics setting its
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Figure 13. Local viscous parameter α (top), ionization fraction (middle; electrons: ne/nH2 , potassium ions: nK+/nH2 , metal ions: ni/nH2 ) and ionization rates
(bottom; thermionic Rtherm, ion emission RK,evapf+, thermal k2nH2 nK0 and non-thermal ζnH2 ) at three different radii (as indicated in panel titles) for the model
with all sources of thermal and non-thermal ionization. Non-thermal ionization produces an MRI-active region high above disc mid-plane at larger radii (see
the top right-hand panel). The blue line in the right-hand panel on the second row indicates the upper boundary of this MRI-active region at the given radius,
and the ionization fraction at which it occurs. Note that the metal ion fraction becomes unrealistically large only to the right of the blue line, i.e. only above the
high-altitude MRI-active layer. See Section 3.2.2.

position is very different from that described in Mohanty et al.
(2018).

4 DISCUSSION

4.1 Effects of dust

A key feature of the inner disc is that the MRI drives high viscosity
in the innermost regions, close to the star, but becomes largely
suppressed at larger orbital distances (in the so-called dead zone).
This leads to the formation of a local gas pressure maximum that
may play a key role in planet formation at short orbital distances
(Chatterjee & Tan 2014). This decrease in viscosity is expected
to arise because the innermost regions are hot enough (>1000 K)
to thermally ionize potassium (coupling the gas to the magnetic
field), but further out temperature and ionization levels decrease
substantially (Gammie 1996). In a previous study, we showed that in a
thermally ionized disc coupled self-consistently to an MRI viscosity,
the inner edge of the dead zone lies at a few tenths of an AU (Mohanty
et al. 2018).

One of the key differences between this work and that of Mohanty
et al. (2018) is that here we also take into account the effects of dust on
the disc’s ionization state. Small dust grains present in the disc sweep
up free electrons and ions from the gas, and these recombine quickly
on the grain surfaces. In the bulk of the protoplanetary disc dust
grains therefore efficiently lower the ionization fraction, decoupling
the magnetic field from the gas and suppressing the MRI (Sano et al.
2000; Ilgner & Nelson 2006; Wardle 2007; Salmeron & Wardle 2008;
Bai & Goodman 2009; Mohanty et al. 2013). However, in the inner
regions of protoplanetary discs dust grains also act to increase the
ionization levels, as at high temperatures they can also emit electrons
and ions into the gas (Desch & Turner 2015). The balance between
thermal ionization and these processes then determines how well
ionized the inner disc is, and thus the extent of the high-viscosity
region and the location of the dead zone inner edge.

The top panel of Fig. 10 shows that addition of dust only weakly
affects the vertically averaged viscosity ᾱ in the inner disc. At a
given orbital radius, ᾱ is even slightly higher than in the model with
no dust, implying that thermionic and ion emission are important
sources of ionization. In fact, as Desch & Turner (2015) showed,
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Figure 14. Local viscous parameter α as a function of location in the disc
for the model with all sources of thermal and non-thermal ionization. In
the innermost disc, thermionic and ion emission ionize the dense regions
around the disc mid-plane, producing the high MRI-driven α there. At larger
radii, the MRI is active in a low-density layer high above the disc mid-plane,
dominated by non-thermal sources of ionization. The solid black line indicates
the surface in the disc above which the ionization fraction ne/nH2 > 10−4,
i.e. above which the assumptions of our simple chemical network break; this
surface is above the MRI-active region at all radii. See Section 3.2.2.

thermionic and ion emission can become the main source of free
electrons at high temperatures. For our disc model this can be seen
in the bottom panel of Fig. 13, which shows that at the hot disc mid-
plane thermionic and ion emission dominate over other sources of
ionization. Clearly then, for the chosen parameters, the adsorption of
charges on to grains is more than offset by the expulsion of charges
from hot grain surfaces.

Similarity in the resulting disc structure in the models with and
without dust grains can be explained by the similar dependence
on temperature that thermal and thermionic/ion emission have (and
which can also be deduced from the bottom panel of Fig. 13). As
discussed by Desch & Turner (2015), thermal ionization of potassium
becomes efficient at temperatures above ∼1000 K in accordance
with its ionization potential IP = 4.34 eV. The temperature at which
thermionic and ion emission become important is determined by
the work function W of the material out of which dust grains
are made, and for silicates W ∼ 5 eV. This alone would imply
that thermionic emission becomes efficient at temperatures closer
to 2000 K. However, above ∼1000 K potassium-bearing minerals
start evaporating from grain surfaces (Lodders 2003), and a frac-
tion of potassium atoms leaves the grain surface as ions (since

Figure 16. Degeneracy in the vertical disc structure at a fixed magnetic field
strength in a model where the maximum dust grain size is amax = 100 μm:
local viscous parameter α as a function of height (top), and the fractional
electron number density (ne/nH2 ; bottom) as functions of height in three
different equilibrium solutions. The different solutions arise from vertical
variations in the viscous α; the length scales of these variations are much
smaller than the disc pressure scale height (shown for each solution by the
vertical grey lines). The solutions shown here are at a radius of 0.22 AU, for
field strength log Bz = 0.226 and grazing angle φ = 0.06. The vertically
averaged viscous ᾱ for the solid, dashed, and dotted lines are, respectively,
2 × 10−2, 1.78 × 10−2, and 1.28 × 10−2. See Section 3.2.3.

W ∼ IP; see equation 21). Dust grains then become negatively
charged, which reduces the effective potential that electrons need
to overcome for thermionic emission (the effective work function
Weff).

The above results could change significantly as dust grains grow
or as they accumulate in the inner disc (as needed for the formation
of solid planet cores). Dust adsorption of free charges, for example,
becomes much less efficient for larger grains, since the total grain

Figure 15. Ionization rates of molecular hydrogen due to stellar X-rays (ζX), cosmic rays (ζCR), and radionuclides (ζ R) for the model with all sources of
thermal and non-thermal ionization. Stellar X-rays are the dominant source of ionization in the disc upper layers. See Section 3.2.2.
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surface area decreases (Sano et al. 2000; Ilgner & Nelson 2006).
We investigate how dust growth and varying dust-to-gas ratio affect
the inner disc structure in our companion paper (Jankovic et al., in
preparation).

4.2 Effect of stellar irradiation

We find that the absorbed flux of stellar irradiation is many times
higher than the heat flux generated by accretion at any given
radius, yet irradiation has a very small effect on the disc mid-plane
temperature. Consequently, the ionization levels and the MRI-driven
viscosity are similar in the models with and without stellar irradiation.
Why does the irradiation have such a marginal effect?

Essentially, it is because the stellar irradiation heats the disc’s
optically thin regions, from which heat escapes easily. Accretion
heat is generated deep in the disc, where the optical depth is
much higher. In the absence of stellar irradiation, the mid-plane
temperature in the optically thick disc is σSBT 4

mid ∼ Faccτmid (Hubeny
1990, though in our work the mid-plane temperature is somewhat
lower due to convection). If on top of a viscously heated layer of
optical thickness τmid � 1 there is an irradiation-heated layer of
optical thickness τ upper, it follows from equations (8) and (9) that
σSBT 4

mid ∼ Faccτmid + Firrτupper (again, neglecting convection). Here
τ upper is the optical depth of the disc to its own radiation down
to a height at which the disc becomes optically thick to stellar
irradiation. Then, if τmid is sufficiently larger than τ upper, the mid-
plane temperature is determined by viscous dissipation.

Our results are consistent with those of D’Alessio et al. (1998),
who also found that models with and without stellar irradiation
yield roughly the same mid-plane temperatures in the optically
thick inner disc. Similarly, Flock et al. (2019) considered 2D static
radiation-hydrodynamics models of the inner disc heated by stellar
irradiation only, but found that the mid-plane temperature (and
the orbital radius of the dead zone inner edge) would increase
appreciably if accretion heat were included, on the condition
that the accretion heat is released near the optically thick mid-
plane.

Note, additionally, that we have not considered the details of the
inner disc edge or the dust sublimation line. If the inner rim of the
disc is puffed-up, it would throw a shadow over a portion of the inner
disc (Dullemond, Dominik & Natta 2001; Natta et al. 2001), further
reducing the importance of stellar irradiation.

4.3 Convective instability in the inner disc

In Section 3.1, we showed that a large region of the inner disc is
convectively unstable. We find this to be the case even when the
opacities are constant, i.e. a superlinear growth of the opacity with
temperature (Lin & Papaloizou 1980) is not needed. Here, the high
temperature gradient is established because the heat is deposited deep
within the optically thick disc. In the presented models most of the
viscous dissipation happens near the mid-plane, where the MRI is
active, but the same is also true for a vertically constant viscosity
α. This result can also be confirmed analytically. We consider
a simplified problem of radiative transfer in the optically thick
limit, where the temperature is given by σT 4 = 3

4 τF (zsurf ) (Hubeny
1990). Assuming a constant disc opacity, the equation of hydrostatic
equilibrium can be re-written as dP

dτ
= �2z

κR
. The temperature gradient

is then given by

∇ = dlnT

dlnP
= κRP

4�2zτ
.

The appropriate upper boundary condition for this problem is the disc
photosphere (τ = 2/3), where the gas pressure is given by Psurf =
�2zsurfτ surf/κR (assuming that the disc is vertically isothermal above
the photosphere; Papaloizou & Terquem 1999). At the photosphere,
given the chosen boundary condition, we have ∇ = 1/4. Near the
mid-plane the optical depth is τMID = 1

2 κR�, and we may estimate
the mid-plane pressure as

PMID = ρMIDcs,MID
2 = �

2H
cs,MID

2 = 1

2
�2�H,

where the disc’s scale height H is related to the mid-plane temperature
through hydrostatic equilibrium. Substituting τMID and PMID into the
expression for the temperature gradient, we have

∇MID = 1

4

H

z
,

implying that such a disc should become convectively unstable a bit
below one scale height. However, we can further estimate the gradient
∇ near one scale height, by assuming that there PH ∼ PMIDe−1/2 ∼
0.6PMID, and τH ∼ 0.3τMID, as follows from vertically isothermal,
Gaussian profiles of pressure and density. Thus, near z = H, we have

∇H = 1

2

H

z
,

showing that the disc should become convectively unstable above
one scale height.

Furthermore, in the convectively unstable regions we use a simple
approximation that convection is efficient and the temperature
gradient is isentropic. More detailed calculations would yield an
answer in which the temperature gradient lies between the isentropic
one and the gradient given by the radiative transport. As it turns
out, the result would not differ much from what is obtained here.
In the optically thick limit considered above, the difference in the
temperature profile when the entire flux is transported by radiation
and when the entire flux is transported by convection is a very weak
function of optical depth, and remains small for rather large optical
depths (Cassen 1993).

Limiting the temperature gradient is the only role of convection
in our simple viscous model. In real discs, convection might interact
with the MHD turbulence induced by the MRI. For example, in
simulations of ideal MHD, Bodo et al. (2013) and Hirose et al.
(2014) find that convection can increase the angular momentum
transport driven by the MRI by increasing the magnetic field
strength, although it appears that this is only the case when
convection is particularly strong (Hirose 2015). Concurrently, it
is found that the relationship between the induced stress and the
magnetic field strength are not modified. The consequences for
the non-ideal MHD regime, relevant in protoplanetary discs, are
not clear. In our solutions the value of the vertically averaged
MRI-driven viscosity would decrease with both a decrease and an
increase in the magnetic field strength due to non-ideal effects,
as discussed in Section 2.5.2. Convection itself is not expected to
drive the angular momentum transport at a level comparable to
the MRI (e.g. Lesur & Ogilvie 2010; Held & Latter 2018), and
in any case it is not self-sustainable, i.e. it requires an additional
source of heat near disc mid-plane to establish the high temperature
gradient.

4.4 Energy transport by turbulent elements

In our model, we have not considered the possibility that the
turbulent elements driving the angular momentum transport may
also transport energy (Ruediger, Elstner & Tschaepe 1988). Such
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Figure 17. Ratio of the shortest recombination time-scale (tchem) to the
dynamical time-scale (tdyn) as a function of the location in the disc. The solid
line indicates where tchem/tdyn = 1. Everywhere below this line the chemical
equilibrium time-scale is shorter than the dynamical time-scale, justifying
our assumption of the strong-coupling regime. See Section 4.5.

turbulent energy transport flux would be analogous to convection,
transporting energy down the entropy gradient, the difference being
that turbulent elements may persist at sub-adiabatic temperature
gradients (as they are driven by other instabilities) in which case
they transport energy from cooler to hotter regions (Balbus 2000).
We do not expect including this mode of energy transport in our
calculations to appreciably change any of our results. D’Alessio
et al. (1998) found that turbulent energy transport accounts for
less than 20 per cent of the total energy flux at any given orbital
radius. In our work, the convectively stable upper layers of the disc
are MRI-dead, and thus the thermal diffusivity due to turbulence
is likely very low. In the regions of the disc where the radiative
flux alone would yield super-adiabatic temperature gradient, we
already assume that convection efficiently establishes the adiabat.
The proportion of turbulent energy flux could be higher than the
convective energy flux in such regions, but the temperature would
not change significantly. Hence, we have not included this effect in
our analysis.

4.5 Ambipolar diffusion in the strong-coupling regime

The criterion for ambipolar diffusion to quench the MRI that
we employ is valid in the strong-coupling regime (Bai & Stone
2011). Strong coupling requires that ionization equilibrium be
achieved on a time-scale tchem shorter than the dynamical time-
scale tdyn = 2π /�. Previously, Mohanty et al. (2018) reported
that this condition is not fulfilled in most of the inner disc, as
slow radiative recombinations make the chemical equilibrium time-
scale long. However, even in the absence of dust, three-body
recombination (recombinations through collisions with the abundant
molecular hydrogen) are much faster than radiative recombina-
tions, and adsorption on to grains is even faster (Desch & Turner
2015).

Since we solve directly for the equilibrium ionization state, we do
not have access to the time-scale tchem. However, we can estimate it as
tchem = ne/R, whereR is the fastest of the above three recombination
rates (in general, but not always, that is adsorption on to dust
grains). Fig. 17 shows, for our fully self-consistent model with our
full chemical network, that tchem/tdyn < 1 everywhere except in the
uppermost, lowest-density layers of the disc. We thus conclude that
our use of the ambipolar diffusion criterion in the strong-coupling
regime is justified.

5 C O N C L U S I O N S

We present a steady-state model of the inner protoplanetary disc
which accretes viscously, primarily due to the MRI. In this model,
the disc is heated by viscous dissipation and stellar irradiation, and
cools radiatively and convectively. The disc is ionized by thermal
ionization, thermionic and ion emission from dust grains and by
stellar X-rays, cosmic rays and radionuclides, and we also account for
adsorption of charges on to dust grains. The disc’s structure (density,
temperature), viscosity due to the MRI, opacity, and ionization state
are calculated self-consistently everywhere in the disc (both as a
function of radius and height). To the best of our knowledge, this
is the first model that self-consistently couples all these processes
to describe the structure of the inner regions of a steadily accreting
protoplanetary disc.

We investigate how these various processes affect the structure of
the inner disc and the extent to which the MRI can drive efficient
accretion, i.e. the locations of the inner edge of the dead zone and the
gas pressure maximum. For the fiducial parameters considered in this
work (stellar parameters: M∗ = 1 M�, R∗ = 3 R�, T∗ = 4400 K, X-
ray luminosity LX = 10−3.5Lbol; disc parameters: gas accretion rate
Ṁ = 10−8 M� yr−1, viscosity in the MRI-dead zone αDZ = 10−4;
dust parameters: dust-to-gas mass ratio fdg = 10−2, maximum grain
size amax = 1 μm), we find that:

(i) Inwards of the pressure maximum, the MRI is active only
around the disc mid-plane. This differs from the predictions of
vertically isothermal models, and is possibly important for the
evolution of dust grains in the inner disc.

(ii) Since the inner disc is optically thick, stellar irradiation only
weakly influences the mid-plane temperature, and thus also only
weakly affects the location of the dead zone inner edge.

(iii) Most of the inner disc is convectively unstable, which we
show is a property of any optically thick disc in which viscous
heating occurs near the mid-plane. This motivates further work into
a coupled MRI-convective instability in the limit of non-ideal MHD.

(iv) As suggested by Desch & Turner (2015), dust controls the
ionization state of the inner disc, and thus the onset of the MRI.
Thermal ionization plays a secondary role, as thermionic and ion
emission from dust grains ionize the hot dense regions.

(v) High above disc mid-plane stellar X-rays produce an MRI-
active layer. However, the X-rays barely change the overall viscosity
at short orbital distances, or the location of the pressure maximum.

(vi) The pressure maximum resides at ∼0.7 AU for our fiducial
parameters, roughly the same location as in our previous work
(Mohanty et al. 2018). This is a consequence of the high optical depth
in the inner disc, and the similarity between the ionization potential
of potassium and the work function of the dust grains, rather than
physics setting the pressure maximum location being similar.

These conclusions are drawn for a disc with a fiducial dust-to-gas
ratio of 10−2 and small dust grains (amax = 1μm), which may be
expected in the early stages of dust evolution in the disc. How these
results depend on the model parameters, including dust grain size
and dust-to-gas ratio, is explored in a companion paper (Jankovic
et al., in preparation), where we also use our new inner disc model to
speculate on possible formation pathways for close-in super-Earths.
Finally, it is important to note that our model is based on a simplifying
assumption that the inner disc is at steady-state. Only time-dependent
simulations will show whether steady-state is indeed achieved and,
if it is, whether this steady-state is stable.
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ABSTRACT
Unravelling the three-dimensional physical structure, the temperature and density distribution,
of protoplanetary discs is an essential step if we are to confront simulations of embedded planets
or dynamical instabilities. In this paper, we focus on submillimeter array observations of the
edge-on source, Gomez’s Hamburger, believed to host an overdensity hypothesized to be a
product of gravitational instability in the disc, GoHam b. We demonstrate that, by leveraging
the well-characterized rotation of a Keplerian disc to deproject observations of molecular lines
in position-position-velocity space into disc-centric coordinates, we are able to map out the
emission distribution in the (r, z) plane and (x, |y|, z) space. We show that 12CO traces an
elevated layer of z / r ∼ 0.3, while 13CO traces deeper in the disc at z / r � 0.2. We identify
an azimuthal asymmetry in the deprojected 13CO emission coincident with GoHam b at a polar
angle of ≈30◦. At the spatial resolution of ∼1.5 arcsec, GoHam b is spatially unresolved, with
an upper limit to its radius of <190 au.

Key words: accretion, accretion discs – circumstellar matter – stars: formation.

1 I N T RO D U C T I O N

High angular resolution observations of the dust in protoplanetary
discs, both at mm and near-infrared (NIR) wavelengths, have shown
a stunning variety of features such as concentric rings and spirals
(Andrews et al. 2018; Avenhaus et al. 2018). These structures hint
at highly dynamic environments where the dust distributions are
sculpted by changes in the gas pressure distribution. The precise
cause for the perturbations in the gas is hard to constrain, with mul-
tiple scenarios possible, including embedded planets (e.g. Dipierro
et al. 2015b; Fedele et al. 2018; Keppler et al. 2018; Zhang et al.
2018), and (magneto-)hydrodynamical instabilities (Flock et al.
2015) or gravitational instabilities (Dong et al. 2015; Dipierro et al.
2015a; Hall et al. 2016; Meru et al. 2017). Differentiating between
these scenarios requires an intimate knowledge of the underlying
gas structure and, in particular, how that structure changes from
the mid-plane, as traced by the mm continuum emission, to the
disc atmosphere, populated by the small sub-μm grains which
efficiently scatter stellar NIR radiation.

This is routinely attempted by using observations of different
molecular species believed to trace distinct vertical regions in the
disc. This is due to a combination of both optical depth effects

� E-mail: richard.d.teague@cfa.harvard.edu

and changes in physical conditions with height in the disc, which
make certain regions more conducive to the formation of particular
species. However, it is only with high spatial resolution data that
we are beginning to be able to directly measure the height at
which molecular emission arises (de Gregorio-Monsalvo et al. 2013;
Rosenfeld et al. 2013; Pinte et al. 2018), verifying predictions from
chemical models.

A more direct approach is the observation of high-inclination
discs where the emission distribution can be mapped directly. Unlike
continuum emission that suffers from extremely high optical depths
due to the long path lengths for edge-on discs (Guilloteau et al. 2016;
Louvet et al. 2018), the rotation of the disc limits the optical depth of
molecular emission in a given spectral channel. This allowed Dutrey
et al. (2017) to map the 12CO J = 2 − 1 and CS J = 5 − 4 emission
distribution in the (rdisc, zdisc) plane, calling this a tomographically
reconstructed distribution (TRD), for the edge-on disc colloquially
known as the Flying Saucer (2MASS J16281370-2431391).

In addition to allowing access to the (rdisc, zdisc) plane, Dent et al.
(2014), but see also Matrà et al. (2017) and Cataldi et al. (2018),
demonstrated how similar techniques can be used to deproject a cut
across the disc major axis into the (xdisc, |ydisc|) plane. The absolute
value of ydisc arises because it is impossible to distinguish between
the near and far side of the disc (±ydisc) from their projected line-of-
sight velocities alone. Using this technique, the authors were able
to extract the azimuthal emission distribution along the line of sight
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revealing a clump of CO emission. Application of this technique to
a vertically extended source enables the extraction of a full three-
dimensional (3D) emission distribution.

In this paper, we apply these techniques to submillimeter array
(SMA) observations of Gomez’s Hamburger, an edge-on circum-
stellar disc. In Section 2, we describe the observations and data
reduction. In Section 3, we provide an overview of the deprojection
techniques used and their application to Gomez’s Hamburger. A
discussion of these results and a summary conclude the paper in
Sections 4 and 5, respectively.

2 SU M M A RY O F O B S E RVAT I O N S

At an inclination of i ≈ 86◦ and a distance of 250 ± 50 pc,
Gomez’s Hamburger (GoHam, IRAS 18059-3211) offers a rare
opportunity to study the chemical and physical structure of an
edge-on disc. Although originally classified as an evolved A0 star
surrounded by a planetary nebula, follow-up observations using
the SMA showed CO emission in the distinct pattern of Keplerian
rotation about GoHam. These and subsequent observations firmly
establish GoHam as a 2.5 ± 0.5 M� A-type star at a distance
of 250 ± 50 pc surrounded by a massive, Mdisc ∼ 0.2Msun,
circumstellar disc (Bujarrabal, Young & Fong 2008; Wood et al.
2008; Bujarrabal, Young & Castro-Carrizo 2009; De Beck et al.
2010). This identification is further justified with the exquisite
observations from the NICMOS instrument on the Hubble Space
Telescope, which show the distinct flared geometry associated with
protoplanetary discs (Bujarrabal et al. 2009).

2.1 Data reduction

The data were obtained from the SMA archive1 and calibrated
using the MIR software.2 The interested reader is referred to the
original papers, Bujarrabal et al. (2008, 2009), for a thorough
overview of the calibration process. After calibration, the data were
exported to CASA v5.6.0 where two rounds of self-calibration
were performed on the continuum, with phase solutions applied to
the spectral line windows. The phase centre was adjusted so that the
centre of the continuum was in the image centre.

After experimenting with various imaging properties, both the
12CO and 13CO transitions were imaged at their native channel
spacing of 203 kHz (264 m s−1) with a Briggs weighting scheme
and a robust parameter of 0.5. This resulted in synthesized beams
of 1.53 × 1.11 arcsec2 at 0.◦4 for 12CO and 1.57 × 1.15 arcsec2 at
2.◦0 for 13CO. The measured rms in a line free channel was found to
be 132 and 120 mJy beam−1 for the 12CO and 13CO. Channel maps
were created both at the native channel spacing and downsampled
by a factor of 2 to increase the signal-to-noise ratio.

Moment maps were also generated for the data using the PYTHON

package bettermoments (Teague & Foreman-Mackey 2018).
Integrated intensity maps were created using a threshold of 2σ for
both molecules, while the rotation map used the quadratic method
described in (Teague & Foreman-Mackey 2018) without the need
for any σ -clipping. Rather than using the intensity weighted velocity
dispersion (second moment), which is typically very noisy and
incurs a large uncertainty (Teague 2019a), we use the ‘effective
linewidth’ implemented in bettermoments. This calculates an
effective line width using �Veff = M0/

√
πF max

ν , where M0 is the

1https://www.cfa.harvard.edu/cgi-bin/sma/smaarch.pl
2https://www.cfa.harvard.edu/∼cqi/mircook.html

integrated intensity and F max
ν is the line peak. For a Gaussian

line profile, this returns the true Doppler width of the line. Both
transitions show a peak at the disc centre, gradually decreasing in
the outer disc. However, at this spatial resolution, the line profile is
dominated by systematic broadening effects from the imaging.

2.2 Observational results

Using the 2D-Gaussian fitting tool IMFIT in CASA the integrated
flux of the 1.3-mm continuum was found to be 293 ± 4 mJy,
consistent with Bujarrabal et al. (2008). Integrating over an elliptical
region with a major axis of 14 arcsec, a minor axis of 7 arcsec and
a position angle of 175◦, and clipping all values below 2σ , the
12CO integrated flux was found to be 37.2 Jy km s−1. For the 13CO,
integrating over an elliptical mask with a major axis of 12 arcsec and
a minor axis of 4.2 arcsec a position angle of 175◦, again clipping
all values below 2σ , resulted in an integrated flux of 16.5 Jy km s−1.

A summary of the moment maps alongside the continuum
image is shown in Fig. 1. The continuum is clearly detected and
considerably smaller in extent than the gas component. Assuming
a source distance of 250 pc (Bujarrabal et al. 2008), the gaseous
disc extends 1500 au in radius. For both transitions, the southern
side of the disc is observed to be considerably brighter than the
northern side, in addition to a slight north–south asymmetry in the
continuum emission. In addition, the east–west asymmetry in the
12CO integrated intensity suggests that the eastern side of the disc
is tilted towards the observer.

Fig. 2 shows the channel maps, downsampled in velocity by a
factor of 2, for the 12CO emission, top panel, and the 13CO emission,
bottom panel. Both lines show the distinct ‘butterfly’ emission
morphology characteristic of a rotating disc. The 12CO emission is
more extended, both in the radial and vertical directions, as would
be expected given its larger abundance. The 12CO emission also
splits into two lobes, most clearly seen in the channels at 1.62 and
3.73 km s−1, due to the elevated emission surface, while the 13CO
appears more centrally peaked.

To find the systemic velocity of the disc, we fit the rotation
maps, maps of the line centre, v0, shown in Fig. 1, using the
PYTHON package eddy (Teague 2019b). At these large inclinations,
vertically extended emission, as expected for 12CO and to a lesser
extent, 13CO, will result in rotation maps which are extended
along the minor axis (see fig. 3 a from Dutrey et al. 2017),
resulting in a v0 distribution which deviates significantly from
an inclined 2D disc model. Despite this, the rotation profile will
be symmetric about the systemic velocity such that the inferred
vLSR from a fit of an inclined 2D disc will provide a good
estimate of the true systemic velocity. We fix the source distance to
250 pc, and allow the source centre, inclination, position angle,
stellar mass, and systemic velocity to vary. Using 64 walkers,
which take 10 000 burn-in steps and an addition 5000 steps to
estimate the posterior distributions, we find Gaussian-like posteriors
for vLSR for both transitions: vLSR(12CO) = 2793 ± 34 m s−1 and
vLSR(13CO) = 2778 ± 38 m s−1. These uncertainties represent the
statistical uncertainties, which do not consider the applicability of
the model and so the true uncertainties are likely larger.

3 DEPROJ ECTI ON TO DI SC-CENTRI C
C O O R D I NAT E S

If the velocity structure of the source is known, it is possible to
deproject observations of an edge-on disc in position–position–
velocity (PPV) space, (xsky, ysky, v0), into 3D disc-centred coordi-
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A 3D View of Gomez’s Hamburger 453

Figure 1. Summary of the observations. Panel (a) shows the 1.3-mm continuum emission. The black contours show steps of 20σ starting at 10σ , where
σ = 1.13 mJy beam−1. Central panels (b) and (c) show the rotation maps for the 12CO and 13CO emission, respectively. The black contours show the integrated
intensities for the two lines in steps of 10 per cent of their peak values, 4.90 and 3.51 Jy beam−1 km s−1. The right most panels, (d) and (e), show the effective
width of the line, with the integrated intensity contours overlaid. The synthesized beams are shown in the bottom left-hand side of each panel.

Figure 2. Top panel: Channel maps of the 12CO emission, downsampled to 528 m s−1 channel spacing for presentation. Solid lines show contours starting at
3σ and increasing in steps of 3σ , where σ = 87 mJy beam−1. The synthesized beams are shown in the left rows. The dotted lines show the orientation of the
major and minor axes of the disc. The central velocity of the channel is shown in the top right-hand side of each panel. Bottom panel: as above, but for 13CO
emission. The solid lines are contours of 3σ ,where σ = 75 mJy beam−1. Note the substantial increase in brightness in the southern side of the disc.
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Figure 3. The deprojection of pixels assuming a 0.25 arcsec pixel size and
a 250 m s−1 velocity spacing from equation (5). The velocity resolution
sets the number of ‘spokes’ in the deprojection, while the pixel scaling sets
the sampling along each spoke. The central channels close to the systemic
velocities, v0 ∼ vLSR, populate regions, where xdisc is small. Thus, even
with high-velocity resolution, it is hard to get an accurate deprojection for
these regions (see, e.g. Dent et al. 2014; Matrà et al. 2017; Cataldi et al.
2018).

nates, (xdisc, ydisc, zdisc). Both Dutrey et al. (2017) and Matrà et al.
(2017) discuss similar deprojections, the former into an azimuthally
averaged (rdisc, zdisc) plane, and the latter into the (xdisc, |ydisc|)
plane for a cut at a constant zdisc through the disc. In this section, we
discuss both deprojections and include a correction due to changes
in the rotation velocity as a function of height rather than assuming
cylindrical rotation.

At any given voxel (a pixel in PPV space), the projected line of
sight velocity, v0, is given by

v0 = vφ cos φ sin i + vLSR, (1)

where vφ is the rotation velocity, φ is the azimuthal angle (not to
be confused with the polar angle that is measured in the sky plane
rather than the disc plane), i is the disc inclination, and vLSR is the
systemic velocity. For Keplerian rotation we know that

vφ(rdisc, zdisc) =
√

GMstarr
2
disc

(r2
disc + z2

disc)3/2
, (2)

where rdisc and zdisc are the cylindrical radius and height in the disc,
respectively, dropping the disc subscript for brevity. Substituting
this into equation (1) and noting that for and edge-on disc, such that
i = 90◦, xsky = rdisccos φ, and zdisc = ysky, then we find

v0 − vLSR =
√

GMstarx
2
sky

(r2
disc + y2

sky)3/2
. (3)

As both xsky and ysky are readily measured in the image plane, we
can rearrange for rdisc giving

rdisc =

√√√√(
GMstarx

2
sky

(v0 − vLSR)2

)2/3

− y2
sky. (4)

If cylindrical rotation is assumed, i.e. that there is no z dependence
in vφ in equation (2), the y2

sky correction term vanishes, recovering
the result from Dutrey et al. (2017).

Noting that rdisc =
√

x2
disc + y2

disc, where ydisc is the line-of-sight
axis, we can additionally infer something about the line-of-sight

distance of the emission,

|ydisc| =

√√√√(
GMstarx

2
sky

(v0 − vLSR)2

)2/3

− y2
sky − x2

sky, (5)

as used in Matrà et al. (2017). However, as there is a degeneracy
in the side of the disc the emission arises, ±y, this recovers an
average of both sides of the disc. Again, if the cylindrical rotation
is assumed, the y2

sky correction term vanishes in equation (5). Fig. 3
shows how pixels would be deprojected into the (xdisc, |ydisc|)
plane. It illustrates that the velocity resolution sets the ‘azimuthal’
sampling, i.e. how many spokes there are, while the pixel size (or
spatial resolution) will set sampling along these spokes. As, such,
both spatial and spectral resolution are required for an accurate
deprojection of the data.

In addition to the transformation of the coordinates, it is essential
to include the Jacobian such that integrated flux in the deprojected
maps is conserved. Following appendix C of Cataldi et al. (2018),
we find that the Jacobian for the transformation from (xsky, ysky, v)
to (rdisc, zdisc, v), where zdisc = ysky, is given by

Jrdisc, zdisc = 3xsky rdisc

r2
disc + z2

disc

, (6)

which is a dimensionless transformation, meaning that the units are
the same as in a channel map (e.g. Dutrey et al. 2017). Similarly, to
transform the sky-plane coordinates into (xdisc, |ydisc|) coordinates,
we find,

Jxdisc, ydisc = 3

2

√
GMstar xdiscydisc

(
x2

disc + y2
disc + z2

disc

)−7/4
, (7)

similar to equation (10) in Cataldi et al. (2018), but including an
addition z2

disc term owing to our definition of vφ . This Jacobian
has units of Hz, owing to the change from PPV space to position–
position–position space. After correcting for the change in velocity
with an addition dν/c term, where d is the source distance and ν the
frequency of the line, we have the final units of W m−2 sr−1, i.e. a
radiance along the z-axis.

We note that these derivations assume that the disc is completely
edge-on and in Keplerian rotation. Dutrey et al. (2017) showed how
changes in the inclination can affect the deprojection. The authors
found that for only moderate deviations from edge-on, i.e. i �
80◦, the TRD (see also Section 3.1) provided a good representation
of the underlying physical structure. One half of the disc, either
where z > 0 or z < 0, would be brighter, with this brighter half
corresponding to the side of the disc, which is closer to the observer.
In addition, the vertical extent of the emitting layer would broaden
in the z-direction, before eventually splitting into two distinct arms
when i � 80◦ and the near and far sides of the disc are spatially
resolved.

3.1 TRD

As the disc is expected to be highly inclinated, i ∼ 85◦ (Bujarrabal
et al. 2008, 2009), we use the deprojection techniques described
in Section 3 to explore the 3D structure of the disc, starting with
the TRD as used for the Flying Saucer in Dutrey et al. (2017). We
take the geometrical properties inferred from forward modelling a
full 3D model presented in Bujarrabal et al. (2008, 2009), which
assumed Keplerian rotation around a 2 M� central star and a disc
inclined at 85◦, observed at a position angle of 175◦.

Using equation (4), each pixel is deprojected into (rdisc, zdisc)
space, before being binned into bins equal in size to the pixel. In
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A 3D View of Gomez’s Hamburger 455

Figure 4. TRD using the method in Dutrey et al. (2017) for 12CO, left-hand panel, and 13CO, right-hand panel. The dashed lines show z / r = 0.3 to the
left-hand panel and z / r = 0.2 to the right-hand panel. Note that asymmetry about the z = 0 line due to the deviation from a completely edge-on disc, as
discussed in Dutrey et al. (2017).

each bin, we take the maximum value, equivalent to collapsing an
image cube along the spectral axis by taking the maximum value
along each pixel, e.g. a moment 8 map in CASA.

Fig. 4 shows the TRD for 12CO, left-hand panel, and 13CO,
right-hand panel, taking the peak brightness temperature in each
bin. Immediately, we see that 12CO traces an elevated region of
z / r ∼ 0.3, while 13CO appears to trace a region closer to the
mid-plane, confined to z / r � 0.2. The drop off of signal within
the inner 1 arcsec is due to convolution effects, as described in
Dutrey et al. (2017). The asymmetry above the mid-plane is due
to the deviation from a directly edge-on disc with a similar effect
seen in the Flying Saucer, where the level of difference between
the positive and negative values is consistent with the i ≈ 85◦

inclination measured for the source. We note a bright point-source
at xdisc ∼ 3.5 arcsec and zdisc ∼ 1.5 arcsec, likely associated with
the peak in the 12CO zeroth moment map in the north-west (see
channel 1.22 km s−2 in Fig. 5). Higher resolution data are required
to accurately disentangle this feature.

3.2 Line-of-sight deprojection

In Bujarrabal et al. (2009), it was argued that there was an
enhancement of 13CO at an offset of r ≈ 1 arcsec. To explore whether
this can be observed with the above techniques, we follow Matrà
et al. (2017) and use equation (5) to deproject cuts along the major
axis of the disc into the (xdisc, |ydisc|) plane.

The disc was split into six equally thick slices of 0.8 arcsec
spanning ±2 arcsec about the disc mid-plane. For each slice, every
PPV voxel above an signal-to-noise ratio of 2 was deprojected into
disc coordinates then linearly interpolated on to a regular grid with
the results shown in Fig. 5. The same procedure was performed
for 13CO, however, with narrower slices of 0.6 arcsec spanning
±1.5 arcsec with the results shown in Fig. 6.

As with the TRD, the western side of the 12CO emission, positive
z values, panels (e)–(g), is considerably brighter than the eastern
side, negative z values, due to the slight deviation from a completely
edge-on disc (Dutrey et al. 2017). It is also clear that at large
separations from the disc mid-plane, the inner edge of the 12CO
emission moved outwards, most clearly seen in panels (b) and (g)
of Fig. 5. Some azimuthal structure is tentatively observed at higher
altitudes for 12CO, namely in panel (f). Given the orientation of the
disc, the gas rotates in a clockwise direction. Although the 13CO
data are noisier, some features are still observable. As with the

12CO, at higher altitudes the emission peaks at r ∼ 3 arcsec, while
becoming more centrally peaks at lower z value.

Both 12CO and 13CO show an enhancement in emis-
sion close to the disc mid-plane, at (xdisc, |ydisc|, zdisc) ≈
(2 arcsec, 1 arcsec, 0 arcsec), marked in Figs 5 and 6 by the black-
dashed circle. Bujarrabal et al. (2009) previously reported an en-
hancement in 13CO emission at an offset position of (δxsky, δysky) ≈
(1.5 arcsec, −2.5 arcsec), with later observations of 8.6d and
11.2 μm PAH emission revealing a similar apparent overdensity
(Berné et al. 2015). We note that, in principle, it is possible to
subtract an azimuthally averaged model from each of these projected
maps. However, we found that given the high azimuthal variability
owing to the noise in the data and strong systematic feature due
to the transformation from the limited spatial resolution of the
data, these did not yield residual maps in which structure was
readily distinguished, with higher spatial and spectral resolution
data necessary for such an approach.

4 DISCUSSION

In the previous section, we have shown that assuming that an edge-
on disc is in the Keplerian rotation allows one to deproject pixels
in PPV space into disc-centric position–position–position space. In
this section, we discuss the implication of these deprojections.

4.1 GoHam b

Previous studies of GoHam have detected a significant enhancement
of emission in the southern half of the disc, dubbed GoHam b, seen
in 13CO emission and 8.6 and 11.2μm PAH emission (Bujarrabal
et al. 2009; Berné et al. 2015). They find that this excess emission
could be explained with a gaseous overdensity containing a mass
of 0.8 to 11.4MJup, spread uniformly over a spherical region with
a radius of ∼0.6 arcsec (∼150 au). Furthermore, based on models
of the disc structure, it is estimated that the disc of GoHam is
marginally gravitationally unstable, with Toomre parameter Q � 2
(Berné et al. 2015). In circumstellar discs, gravitational instabilities
can lead to growth of local, gravitationally bound overensities (i.e.
to disc fragmentation; Gammie 2001; Rice et al. 2003). It has
been hypothesized that such self-gravitating overdensities could
be precursors to giant planets (Boss 1997, 1998). In fact, formation
by gravitational instability is favoured for giant planets on wide
orbits (e.g. Morales et al. 2019). This poses the question of whether
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Figure 5. Deprojected 12CO emission assuming Keplerian rotation. The left-hand panel shows the zeroth moment (integrated intensity) map of 12CO. The six
annotated slices, Panel (b)–(g), show the centre of the cuts which make up the two columns to the right-hand side. To the right-hand side, two columns, ydisc

represents the line-of-sight axis. For the deprojected data, regions where |x| < 0.5 arcsec and |y| < 0.5 arcsec are masked. The height of each cut relative to the
disc mid-plane is shown in the top right-hand of each panel. Note that negative x values are to the north of the disc centre. In panels (b)–(g), the black-dashed
lines are lines of the constant cylindrical radius.

Figure 6. As in Fig. 5, but for 13CO. In the integrated intensity map, left-hand panels, GoHam b manifests as a bright southern side of the disc. In the right-hand
panels, GoHam b manifests as a significant asymmetry with the positive xdisc side of the disc being considerably brighter.

GoHam b may be a young protoplanet formed via gravitationally
instability.

To test this hypothesis, we need to understand the 3D structure
of the edge-on disc, which can be achieved using the deprojection

techniques discussed above. In panels (c)–(f) of Fig. 6, the right half
of the disc (corresponding to the southern half of the disc on the
sky) is considerably brighter than the left half which we interpret
as GoHam b. A similar asymmetry is seen in the 12CO emission,
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Figure 7. Residuals between the positive and negative xdisc panels from Figs 5, top row, and 6, bottom row. Each column represents a slice at a different height
above or below the mid-plane, given at the top of each column. Positive values represent that the positive xdisk side is brighter, while negative values suggest
that the negative xdisc side is brighter. The location of GoHam b is more readily seen for the 13CO emission.

however at a much lower significance. This is more readily seen in
Fig. 7, which shows the residuals between positive xdisk and negative
xdisc quadrants of the deprojections shown in Figs 5 and 6. While
this projection leave it ambiguous whether the feature is at positive
or negative xdisc, it is clear from the brighter southern side of the disc
that these residuals are dominated by an excess of emission in the
positive xdisc direction. The deprojection shows that the excess in
emission is localized in all three dimensions, further confirming it
as a local overdensity and not due to chance line-of-sight projection
effects. These properties are consistent with what would be expected
from an object formed via gravitational fragmentation of the disc.

GoHam b is also tentatively detected in the 13CO panel of Fig. 4,
consistent in location with the bright peaks seen in the zeroth
moment maps in Figs 5 and 6. However, without the line-of-sight
deprojection discussed above, it is hard to fully disentangle the
contribution from GoHam b relative to the background. Future
observations designed for these sort of analyses will benefit from
first inferring a disc-averaged (r, z) emission distribution, before
using that as a background model to more readily identify deviations
in the line-of-sight deprojections.

The enhancement in the brightness temperature shown in Fig. 6
is ≈ 20 per cent, comparable to that found in previous studies of
this source (Bujarrabal et al. 2009). For an optically thin molecular
line, the emission is linearly proportional to the product of the gas
temperature and the column density of the emitting molecule, while
an optically thick line is only proportional to the gas temperature. It
is therefore tempting to assume that 13CO is optically thin and
thus offers a direct probe of the mass of GoHam b. However,
given the unresolved nature of GoHam b and the lack of multiple
transitions to infer the local excitation conditions, see Section 4.3,
we do not have sufficient information to improve the estimates
made previously regarding the mass of GoHam b, 0.8 to 11.4MJup.
Future observations of multiple transitions of optically thin lines will
therefore provide the most accurate probe of the mass of GoHam b,
leading to clues about its nature.

4.2 Utility in determining chemical stratification

As previously discussed in Dutrey et al. (2017), these deprojection
techniques allow us to directly access the vertical stratification of

molecular species, an essential data product with which to confront
astrochemical models. This approach is hugely complementary to
observations of moderately inclined discs which use the asymmetry
of the line emission about the disc major axis in a moderately
inclined disc to infer the height of the emission surface (e.g.
Rosenfeld et al. 2013; Pinte et al. 2018).

First, the technique for moderately inclined discs can only be
applied to bright lines such that the emission in any given channel
is well defined. This criteria leaves only 12CO and 13CO as viable
choices, meaning that less abundant molecules believed to arise
from elevated regions, such as CH3CN (Loomis et al. 2018), are
unable to be tested. Conversely, for an edge-on disc there is no
requirement on the significance of the detection; if the molecular
emission can be detected in the channel maps, it can be deprojected
into disc-centric coordinates.

Secondly, the deprojection techniques described in Section 3 do
not require any assumptions about the optical depth of the lines to
be made as all pixels can be deprojected to fill in the (rdisc, zdisc)
plane. This can be clearly seen in Fig. 8 where the 12CO emission
is detected in the mid-plane, where usually it is hidden due to
high optical depths. For face-on or low inclination discs, an optical
depth of 1 is quickly reached along the line of sight such that the
disc regions behind this optical surface (the mid-plane) are hidden
from view. Conversely, for an edge-on disc, the line of sight to the
disc mid-plane is unobstructed, allowing us to directly probe the
mid-plane emission without confusion from the upper layers. We
additionally note that Dullemond et al. (2020) showed it is possible
access similar information for moderately inclined sources if the
spatial resolution of the data allowed for the top and bottom half of
the disc to be spatially resolved.

Fig. 8 demonstrates these advantages using TRDs of 12CO and
13CO emission from GoHam. Note that this figure, unlike Fig. 4, has
the colour scales normalized to the peak value for each molecule to
bring out the structure of the emission. The 12CO and likely 13CO,
being optically thick, will be tracing the local gas temperature. In
the outer disc, the 13CO emission may become optically thin, at
which point the brightness is proportional to the gas temperature
and local CO density. We observe that both molecules peak at
elevated regions due to the chemical stratification of the disc rather
than an optical depth effect as found in less inclined sources.
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Figure 8. The molecular layers of 12CO, top, and 13CO, bottom. Note that
the 13CO has been flipped about z = 0 in order to provide a fair comparison
due to the asymmetry due to the slight deviation from an edge-on disc. The
conversion to linear scales assumed a distance of d = 250 pc. Note that the
colour scaling has been normalized to the peak value of each to highlight
structure.

12CO will inhabit a more elevated region than that of 13CO due
to the lower abundance of 13CO relative to 12CO, resulting in
less efficient shielding from photodissociated ultraviolet photons. A
lower bound for the emission distribution will be given by the freeze-
out temperature, ∼21 K for CO. The low mid-plane temperatures
will not completely remove all gaseous-phase molecules, but will
significantly reduce their abundance resulting in the very low level
of emission seen in Fig. 8.

These observations demonstrate the utility of edge-on sources in
terms of characterizing the chemical structures. Moving towards
larger samples sizes, observed at higher angular and spectral
resolutions will uncover the distribution of molecules currently
unable to be constrained with moderately inclined discs. These
deprojection techniques are readily combined with line-stacking
techniques used to boost the significance of weak lines (e.g. Walsh
et al. 2016), enabling studies of the molecular distribution of weak
complex species, studies of which are currently hindered by their
lack of bright emission.

4.3 The prospect for mapping the disc mass

With multiple transitions of a molecule observed in an edge-on
source, it is possible to go beyond merely mapping out the emission
distribution. For example, excitation analyses can be performed
to extract local excitation temperatures and volume densities (e.g.
Bergner et al. 2018; Loomis et al. 2018; Teague et al. 2018). By
first deprojecting the data into 3D disc-centric coordinates, one can
be certain that the emission being compared arises from the same
location; an assumption always made but extremely hard to verify
in less inclined sources. In other words, highly inclined sources
provide access to the disc vertical structure, without losing access
to the disc azimuthal structure.

Rarer CO isotopologues are less affected by optical depth issues,
and therefore may be more accurate probes of the disc gas mass
(e.g. 13C17O Booth et al. 2019). However, total gas masses derived
in this way are sensitive to the assumed CO abundance. With the
deprojection, it is also possible to calculate the volume of the
emitting area. Thus, if the local H2 density can be constrained using
molecules which are not in non-local thermodynamic equilibrium

(such as CS in the outer disc, e.g. Teague et al. 2018), this can be
then be mapped to a total gas mass.

With a gas temperature and local gas mass to hand, it would then
be possible to determine whether regions of the GoHam disc are
gravitationally unstable (e.g. Toomre 1964). If the region around
GoHam b is found to be at (or close to) instability, then this would
favour its formation via the gravitational fragmentation of the disc.
Such an interpretation is also supported by recent observations
showing that star–disc systems similar to GoHam also appear to
be unstable (e.g. HL Tau Booth & Ilee 2020).

5 SU M M A RY A N D C O N C L U S I O N S

We have used the deprojection techniques previously presented in
Dutrey et al. (2017), Dent et al. (2014), Matrà et al. (2017), and
Cataldi et al. (2018) to provide a 3D view of the massive disc,
Gomez’s Hamburger using archival SMA observations of 12CO and
13CO.

The deprojected data reveal a clear difference between the 12CO
and 13CO emission regions with the 12CO tracing a considerably
elevated region of z / r ∼ 0.3, while the 13CO arises from much
lower regions, z / r � 0.2, as expected from the higher abundance
of 12CO compared to 13CO.

When deprojecting the data into the (xdisc, |ydisc|) plane, a
clear feature in the southern side of the disc in 13CO which is
interpreted as the previously detected over density, GoHam b.
With this deprojection, it is possible to localize the emission to
(rdisc, φdisc) ≈ (500 au, ±30◦), with the accuracy ultimately limited
by the spatial and spectral resolution of the data.

We conclude with a discussion on the utility of these observa-
tional techniques in mapping the physical and chemical structure
in protoplanetary discs. With access to the full 3D structure of the
disc, future observations will be able to map out the gas temperature
and density as has never been done before.
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a b s t r a c t

A large number of periodic three-body orbits with vanishing angular momentum have been found in
Newtonian gravity over the past 6 years due to a simple search method and to the contribution from
practitioners outside the Celestial Mechanics community. Extension of such orbits to non-vanishing
angular momentum has been lacking due to inter alia the absence of a sufficiently simple and widely
known search method. We present a method, i.e., a general strategy plus detailed tactics (but not
a specific algorithm, or a code), to numerically search for relative periodic orbits in the Newtonian
three-body problem with three equal masses and non-vanishing angular momentum. We illustrate
the method with an application to a specific, so-called Broucke–Hadjidemetriou–Hénon (BHH) family
of periodic 3-body orbits: Our search yielded around 100 new ‘‘satellite’’ orbits, related to the original
BHH orbits by a topological relation (defined in the text), with infinitely many orbits remaining to be
discovered. We used the so-obtained orbits to test the period vs. topology relation that had previously
been established, within a certain numerical accuracy, for orbits with vanishing angular momentum.
Our method can be readily: (1) applied to families of periodic 3-body orbits other than the BHH one;
(2) implemented using various standard algorithms for solving ordinary differential equations, such as
the Bulirsch–Stoer and the Runge–Kutta–Fehlberg ones; (3) adapted to 3-body systems with distinct
masses and/or coupling constants, including, but not limited to, Coulomb interaction. Our goal is to
enable numerical searches for new orbits in as many families of orbits as possible, and thus to allow
searches for other empirical relations, such as the aforementioned topology vs. period one.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The three-body problem, as formulated by Newton, is to pre-
dict the motion of the Sun–Earth–Moon system [1–5]. Euler [6]
and Lagrange [7] found their respective (analytic) solutions in
the mid- to late 18th century, but that was of no immediate
astronomical significance — the first Jovian satellites were only
discovered 150 years after Lagrange’s calculation, and even today
such Lagrangian systems comprise less than 1% of all known
three-body systems, the remaining 99% being the so-called ‘‘hi-
erarchical’’ systems, such as the Sun–Earth–Moon one, [5,8].2

In the late 19th century Bruns showed that the general New-
tonian three-body problem is not integrable [1], which explained

✩ The review of this paper was arranged by Prof. Hazel Andrew.
∗ Corresponding author.

E-mail address: dmitrasin@ipb.ac.rs (V. Dmitrašinović).
1 On sabbatical leave of absence.
2 What is meant by ‘‘hierarchical’’ 3-body system is one in which two bodies

move around each other, and thus form a ‘‘binary’’, and the third moves around
the binary, or vice versa.

the absence of new solutions at that time. That (should have)
made it clear that there would be no further progress without
numerical investigations. The first new periodic orbit in the un-
restricted three-body problem arrived in 1956 when Schubart [9]
found his collinear, and colliding periodic orbit using a mechani-
cal computer.3

The numerical studies of periodic orbits in the general, i.e., un-
restricted three-body problem (3BP) began in earnest about
50 years ago: The first new orbits after Schubart’s one were
announced in 1967 by Szebehely and Peters [13,14] who found
several ‘‘free-fall’’ periodic orbits using electronic computers.

3 At about the same time in mid-20th century, doubts about the existence
of any further solution, i.e., other than the Eulerian and Lagrangian ones, were
formally cast [10], and then equally formally refuted: Arenstorf [11] published
an existence proof for periodic solutions of the general three-body problem,
albeit without examples, and Jefferys and Moser [12] had also published
existence proofs for ‘‘almost periodic solutions’’ in the three-dimensional case,
also without examples. Without at least one explicit example of a new periodic
orbit, that would have been just another academic controversy.

https://doi.org/10.1016/j.cpc.2019.107052
0010-4655/© 2019 Elsevier B.V. All rights reserved.
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Subsequently, Standish [15] published several other free-fall or-
bits. While these publications definitely settled the question of
whether the general problem had non-trivial periodic solutions
other than the Euler and Lagrange ones, they did not begin
to address the question of hierarchical orbits. Moreover, Sze-
behely and Peters [13,14] suggested that the periodic orbits
were isolated.4 This led to some confusion, which was resolved
in 1974 by Hénon [16], who extended Szebehely and Peters’
free-fall, i.e., zero-angular-momentum solutions to non-zero val-
ues of angular momentum, and showed that they form one-
parameter continuous families of orbits. This is a general property
of (relative)5 periodic orbits and will be called Hénon’s first
theorem.

Further progress was based on this fact and the subsequent
numerical discoveries of hierarchical periodic three-body orbits
by Broucke’s [17,18], Hadjidemetriou’s [19–21], and by Hénon’s
[22–24] groups, working separately, though aware of each other’s
work, and using different methods. We shall refer to these three
groups of authors collectively as BHH. BHH had not only con-
firmed the existence, but found two kinds (‘‘prograde’’ and ‘‘ret-
rograde’’, the latter with three branches) of stable periodic solu-
tions, both for equal and unequal masses, as well as for different
values of the angular momentum. The stable solutions among
those found by BHH are in agreement with observed hierarchical
systems [8,17,19]. As the scale-invariant angular momentum6

is reduced, the hierarchical nature of these solutions is lost,
and all three bodies become equally involved in the motion
(which is sometimes called ‘‘interplay’’ of three bodies). Such
orbits have not been observed, as yet, even though some of them
are (linearly) stable. This ‘‘lost branch’’ of BHH solutions remains a
challenge for both observational and theoretical astronomy. In the
meantime, rigorous existence proofs, at least at certain discrete
values of the angular momentum, have been supplied for some
of the BHH orbits [26,27]. All of this ought to make it clear that
the BHH family of solutions is important, both for astronomical
applications and for mathematical purposes, more about which
later.

In the meantime, more than 2000 new topologically dis-
tinct zero-angular-momentum three-body orbits have been re-
ported [28–43]. By virtue of Hénon’s first theorem, each and
every one of these orbits defines (the beginning of) a distinct
family of orbits with non-zero angular momentum, only a few
of which have been studied [30,44–48] to any extent. Though it
is practically impossible, at least for one group of investigators, to
study all 2000 families, around 45 linearly stable orbits deserve
to be further looked into. For such an endeavor, one needs a
general method that has been lacking heretofore: the papers [44–
47] rely on different techniques designed specifically for one, or
another, particular family of orbits. A few years ago we extended
a previously established search method for zero-angular momen-
tum orbits (see Refs. [33,34,37]) to the BHH family of orbits with
non-zero angular momentum [39]. It must be emphasized that
this search method differs significantly from all three original

4 ‘‘Recent numerical investigations [13–15] have led to the conjecture that
periodic solutions of the planar general problem of three bodies are isolated,
for given masses of the bodies. To quote, for instance, Szebehely (1973): ’The
periodic orbits of the general problem do not seem to form families in the same
sense we know families in the restricted problems’; and ’to establish families
of periodic orbits according to what is known today, requires changes in the
participating masses as well as in the initial conditions’. This conjecture is made
for arbitrary distances between the participating bodies’’., a quote from [16].
5 What is meant here by a relative periodic orbit is one that returns to its

initial position after a period, though rotated by a finite angle, see Section 3.1.
6 The change of angular momentum, while keeping the same form of the

orbits, generally implies a change of energy, or of size. Due to the scaling
rules [25] for orbits in the Newtonian potential, one can define scale-invariant
angular momentum, see Section 2.3.

BHH methods. Indeed, the three BHH methods were designed
such that only one (what we now call the progenitor) orbit (at
given energy and angular momentum) in the BHH family could be
found — the first (and only) satellite orbit (a related orbit, defined
in Section 2) of the BHH family, prior to [39], was discovered and
reported in Ref. [44], perhaps unwittingly.

As there was no known reason why the number of such
satellite orbits ought to be limited – indeed the Birkhoff–Lewis
theorem [49] decrees the opposite – the search for BHH satellite
orbits had to be conducted, for both practical astronomical and for
theoretical reasons. We found around 100 such new orbits, [39],
with (infinitely) many more waiting to be discovered, limited
only by one’s strength and/or patience and availability of com-
puter resources. A similar situation may hold in other families of
orbits.

In the meantime, we have realized that our method is suffi-
ciently wide to accommodate searches for periodic orbits in some
other, though not all (see Section 3.2), families of the Newto-
nian gravitational three-body problem, with minimal modifica-
tions also for distinct masses; but also in other non-relativistic
three-body problem involving homogeneous potentials, such as
the Coulombic one [50]. Therefore, the purpose of this work is
two-fold:

• methodological: we have extended our previous search and
scanning method [34] to periodic orbits with non-zero angu-
lar momentum. This was a non-trivial endeavor because one
new continuous parameter (angular momentum L) enters
the calculation, and the search is necessarily in a three-
dimensional subspace of the full six-dimensional
phase space of initial conditions, but one with a successful
outcome.
We have modified the method of minimizing the return
proximity function in the phase space of initial conditions
to the present search in two-dimensional ‘‘slices’’ of a three-
dimensional sub-space. This, of course, has the consequence
that a detailed search of the complete subspace would last
too long to be practically implemented in a reasonably short
time. Consequently, we searched only in the immediate
vicinity of (previously discovered) progenitor BHH orbits,
and, even with this limitation, we found around 100 new
orbits.

• particular: to find as many as possible new satellite orbits
of the BHH family and then to investigate (any, new) topo-
logical regularities among them, such as those discovered
among orbits with vanishing angular momentum [36,37].
Davoust and Broucke [44] had found the first (k=3) satellite
orbit in the retrograde branch of the BHH family. We ex-
tended the search for BHH satellite orbits systematically, at
first up to values k ≤ 19, where k is the so-called topological
exponent, defined in Section 2.1 and Ref. [32], and then less
systematically up to k = 84.7

The completion of the long-term goal of exploring the stable
families of three-body orbits, as described above, can only be
accomplished by a concerted effort by several teams using ever-
more-powerful computing facilities. For this reason, here we
publish technical details of our search method in the hope that
someone else will take over the torch.

This paper is organized into six sections: After the present
Introduction, we present necessary preliminaries in Section 2. In
Section 3 we discuss our search method and, in particular the sub-
space of initial conditions. In Section 4 we present our numerical

7 This is not to say that this sequence stops at 84, but rather, that we have
arrived close to the limits imposed by the precision of our codes (and algorithms)
and the computing power available to us.
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results together with our estimates of numerical uncertainties.
Then in Section 5 we discuss the scaling laws for three body
orbits and the expected topological dependence of the scaling-
law ‘‘constant’’ for three bodies. In Section 6 we discuss the open
questions and suggest future searches. Finally, in Section 7 we
summarize and draw our conclusions.

2. Preliminaries

In this section we provide some preliminary information, such
as the motivation for this work, as well as basic background infor-
mation necessary to follow the rest of the paper. There is nothing
fundamentally new in this section, though it should give a brief
pedagogical introduction to matter written for readers unfamiliar
with celestial mechanics in general, and the three-body problem
in particular.

2.1. Testing new topological laws

Historically, periodic three-body orbits were classified into
families and named according to Strömgren’s nomenclature used
in the restricted three-body problem, see Ref. [44]. Such a
definition of families does not always correspond with the un-
ambiguous topological definition of families, provided by Mont-
gomery [51]: For example out of approximately 20 families
discussed by Davoust & Broucke [44], only 3 are topologically
distinct.

Using the topological classification method, Ref. [33] gave a
precise definition of ‘‘satellites’’ of an arbitrary progenitor orbit
w, as orbits that are the kth-power of their progenitor, i.e., with
the homotopy/free-group elements that have the form wk, where
k = 2, 3, . . .. Thereupon this definition was applied to the study
of figure-8 satellites, which were first observed in Ref. [30], and
investigated in detail in Ref. [33]. The latter study led to the
discovery of remarkable topological Kepler’s third law-like reg-
ularities (‘‘laws’’) for orbits with vanishing angular momentum,
Refs. [36,37]. An immediate question is if such regularities persist
when the angular momentum does not vanish?

Ref. [39] was the first step in an attempt to answer that ques-
tion, viz. that of finding the satellite orbits in the BHH family, as
there was no guarantee that they had to exist. The present paper
is an elaboration of the brief first report [39]. Indeed, it was only
in Ref. [37] that the existence of satellite orbits is related to the
stability of progenitor orbit (with vanishing angular momentum)
was understood,8 in terms of the Birkhoff–Lewis theorem [49].

2.2. Basic facts

Broucke [17,18,44], Hadjidemetriou [19–21] and Hénon
[22,23] (BHH) explored a set of periodic planar three-body orbits
with bodies that have the same mass and wherein the initial
coordinates form a collinear configuration (or a ‘‘syzygy’’, as it
is known in the astronomical literature),9

r1 = (x1, 0), r2 = (x2, 0), r3 = (x3, 0)

and the initial velocities are orthogonal to the vector determined
by the collinear position vectors, i.e., of the form:

v1 = (0, ẏ1), v2 = (0, ẏ2), v3 = (0, ẏ3)

In the following we shall call this a collinear orthogonal con-
figuration. Such configurations are special insofar as they lead

8 In Ref. [39] the (unnecessarily strong) KAM theorem was invoked when the
(weaker) Birkhoff–Lewis one would have sufficed.
9 Which is in conformity with Montgomery’s theorem, [52], that, with the

exception of Lagrange’s solution, every periodic solution to the Newtonian
three-body problem passes through syzygies.

to discrete symmetries of the orbit, when they appear in an
orbit twice [53,54]. This is not the most general Ansatz for initial
velocities: collinear, i.e., x-components, of relative velocities vi,
i = 1, 2, 3, need not vanish in general, but allowing for that
freedom would increase the dimensionality of the search phase
space by two and thus greatly increase the difficulty of search.

These orbits, an example of which is shown in Fig. 1(a),
form two continuous curves of relative periodic orbits in the
phase space of initial conditions, whose termini (‘‘ends’’) include
a collinear collision (Schubart) orbit (retrograde), and both ap-
proach the limit of a two-body problem with masses m and 2m
at the common upper terminus (‘‘end’’) of their L(T ) curves, Fig. 2.
Concerning the latter limit, the first periodic orbits that Broucke
found contained the so-called double Keplerian motion, which
means that two bodies revolve tightly around each other, while
the pair together revolves around the third body, therefore repre-
senting the inner and the outer binary system. If the two binaries’
revolve in the same direction, e.g. (both) clock-wise, then the
orbit is called direct. If they revolve in opposite directions, then
the orbit is retrograde. Some of these orbits have been proven to
exist in a mathematically rigorous manner in Refs. [26,27].

Broucke [17,18], Hadjidemetriou [19–21] and Hénon [22,23]
talk of two families10 of orbits – direct and retrograde – but
all of these orbits belong to a single topological family: during
one period the orbit completes a single ‘‘loop’’ around one of
the poles on the shape sphere (for definition see Ref. [32,34]),
see Fig. 1.b. This ‘‘loop’’ is described by the conjugacy class of
the fundamental group/free group element a, according to the
topological classification explained in Refs. [32,34]. It turns out,
however, that there are numerous relative periodic orbits with
topology ak, where k = 2, 3.., that have the same form of initial
conditions. Such orbits are (sometimes) called ‘‘satellites’’ [30,33],
whereas other authors call them ‘‘bifurcation orbits’’ [44].

2.3. Scaling laws for Newtonian trajectories

For the sake of clarity and completeness, here we review
some elementary scaling laws, indeed so elementary that they
are explicitly presented in only one graduate-school level texbook
on classical mechanics Ref. [25] that we know of. Nevertheless,
these scaling rules have significant non-trivial consequences in
the three-body problem. Here we follow our own presentation(s)
from Refs. [36,39].

It is well known that Kepler’s third law follows from the
spatio-temporal (mechanical) scaling laws, which, in turn, fol-
low from the homogeneity of the Newtonian gravity’s potential.
Under spatial scaling r → λr, the time must scale as t →

λ3/2t , and consequently v → v/
√

λ. The (total) energy scales
as E → λ−1E, the period T as T → λ3/2T and the angular
momentum as L → λ1/2L, the last one behaving differently than
either the period T , or the hyper-radius R =

√
1
3

∑3
i<j(ri − rj)2 =√∑3

i (Rg.b. − ri)2, which is proportional to the root-mean-square
distance of the three particles from their geometrical barycenter
Rg.b. =

1
3

∑3
i ri,

11 and scales linearly with λ: R → λR thus pre-
senting a measure of the overall ‘‘size’’ of the triangle. The angular
momentum L, though conserved by virtue of the equations of
motion, changes (‘‘scales’’) as a function of the total energy E, or
of the ‘‘size’’ R. For this reason only vanishing angular momentum

10 whereas Davoust and Broucke [44] relate further three families (D2,D3,D4)
to the BHH family D1 by way of analytic continuation through binary collisions;
see ‘‘... although it is very likely that the four families D1 through D4 are, in fact,
one single complex family’’ in Sect. 7. of Ref. [44].
11 which equals the physical center-of-mass Rg.b. = RCM when all three masses
are equal.
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Fig. 1. (a) One retrograde BHH orbit, an absolute periodic one. It can be obtained from a particular relative periodic orbit whose period is multiplied by 7, after
which time the orbit closes its trajectory in real space. (b) the same orbit on the shape sphere.

Fig. 2. L(T ) curves for (a) direct (prograde) orbits (green dots); and (b) retrograde BHH orbits (blue dots). All orbits are scaled to have total energy E = −
1
2 . Figure

reproduced from Ref. [39] with permission from the publisher. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

L = 0 is a ‘‘fixed point’’ under scaling transformations. Therefore,
in the following we shall use the scale-invariant angular momen-
tum Lr = L|E|

1/212 and, for simplicity’s sake, equal masses. Thus,
we (may) replace the (typical, or mean, or maximum) ‘‘size’’ R̄
of the three-body system in Kepler’s third law T ∝ R̄3/2 with
the inverse absolute value of energy |E|

−1, i.e., T ∝ |E|
−3/2, or

equivalently T |E|
3/2

= const. . These scaling laws hold for any
number of bodies interacting by Newtonian gravity.

The ‘‘constant’’ on the right-hand-side of the equation T |E|
3/2

= const. is not universal in the three-body case, as it is in the
two-body case — it may depend on all or any one of the following:

12 Davoust and Broucke [44] used the combination of variables 27L2E, which
is effectively the negative of 27 times the square of Lr .

the topological family w of the three-body orbit, described by the
free-group word w, on the mass ratios, and on the scale-invariant
angular momentum Lr = L|E|

1/2, see Refs. [22,23]

T (w)
|E|

3/2
= f (L(w)

|E|
1/2),

or as an inverse function:

L(w)
|E|

1/2
= f −1(T (w)

|E|
3/2).

Thus, the curve L(w)
r (T (w)

r ) = L(w)
|E|

1/2(T (w)
|E|

3/2) as a function
of T (w)

r = T (w)
|E|

3/2 is a fundamental property of any family w

of periodic three-body orbits. For the BHH family the L(T ) curve
shown in Fig. 2 is based on the data from Refs. [17–23].
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2.4. The return proximity function

The return proximity function d(X0, T0) in phase space is de-
fined as the absolute minimum of the d(X0, T0) = mintm<t≤T0

⏐⏐⏐X(t)
− X(0)

⏐⏐⏐, of the 12-dimensional state vector X0 = X(t) − X(0)
evolving from the initial time 0 to the time t , where⏐⏐⏐X(t) − X(0)

⏐⏐⏐ =

√ 3∑
i

[ri(t) − ri(0)]2 +

3∑
i

[pi(t) − pi(0)]2 (1)

is the Euclidean norm (‘‘distance’’ between two 12-vectors) in the
12-dimensional Euclidean phase space consisting of the Cartesian
coordinates and velocities of all three bodies without removing
the center-of-mass motion, and tm is the shortest non-zero time

such that
d
⏐⏐⏐X(t)−X(0)

⏐⏐⏐
dt

⏐⏐⏐
t=tm

= 0. The recurrence time τ (X0, T0) is the

time t at which a minimum of
⏐⏐X(t)−X(0)

⏐⏐ is reached. Searching
for periodic solutions with a period T < T0 is equivalent to finding
zeros of the return proximity function.

A definition analogous to Eq. (1) holds for the 8-vector Y(t),
made up of Jacobi relative vectors (ρ, λ):

ρ =
1

√
2

(r1 − r2)

λ =
1

√
6

(r1 + r2 − 2r3)

and their time derivatives (ρ̇, λ̇); here we have eliminated the
center-of-mass vector and its corresponding linear momentum
from the phase space. Similarly, the 6-vector Z(t)=(x, y, z, ẋ, ẏ, ż)
consisting of ‘‘three-vectors’’ (x, y, z)

x =
2ρ · λ

R2 , y =
λ2

− ρ2

R2 , z =
2(ρ × λ) · ez

R2 (2)

where R =

√
ρ2 + λ2 is the hyper-radius, which are scalar

products of Jacobi vectors, and thus rotation-invariant, and their
time derivatives (ẋ, ẏ, ż).

3. The space of initial conditions for BHH orbits

In the preceding section we showed some of the arguments
used by BHH, as well as some of their results. In the following
we present our method and describe its advantages.

3.1. Relative periodic orbits

Relative periodic orbits are such that the system returns, after
one period, to its initial configuration, albeit rotated through
some angle. When this total rotation angle equals zero, or is a
multiple of 2π , the solution is called absolute periodic. A relative
periodic orbit with a total rotation angle that is commensurate
with 2π yields, after a certain number of periods, an absolute
periodic orbit. All of the BHH orbits are relative periodic, and
some of them also lead to absolute periodic orbits.

Therefore, we shall search only for relative periodic orbits,
by eliminating the rotations, i.e., by using the 6-vector, Z(t) =

(x, y, z, ẋ, ẏ, ż), defined in Eq. (2). The overall (total) rotation
angle Φ of the system can be reconstructed from the trajectory
in this hyper-space and the equation for angular momentum
conservation. By using the relative return proximity function,
d(Z0, T0) = mintm<t≤T0 |Z(t) − Z0|, in the minimization procedure,
Refs. [32,34,39], we are effectively searching for relative periodic
orbits.

The collinear orthogonal configuration is a fixed point of a
reversing symmetry [17,53,54] and as such has consequences for

periodic orbits in the problem of three-bodies, as noted already
by Broucke and Boggs [17] and by Bengochea et al. [55]. If an orbit
passes through two, or more, collinear orthogonal configurations,
then it possesses a higher (discrete) symmetry, as formalized in
the ‘‘mirror theorem’’, Refs. [17,53–55]. We shall find multiple
examples of such discrete symmetries among our three-body
orbits.

3.2. Parametrization of initial conditions

Montgomery [52] has shown that all periodic 3-body orbits,
with the exception of the Lagrange one, must encounter a syzygy,
or equivalently cross the equator on the shape sphere, at least
once during one period. Thus, by choosing a collinear configura-
tion (a syzygy), though not necessarily a collinear orthogonal con-
figuration for the initial one, one does not lose generality. Thus
one reduces the number of independent Cartesian components
of initial relative vectors and velocities from eight down to six.
Therefore, the most general parametrization of initial conditions
involves six parameters: (1) two for the initial configuration;
and (2) four for the initial velocities. Fixing one of two initial
configuration parameters can be thought of as constraining the
initial size of the system, which reduces the number of free
parameters to five.

The energy and the angular momentum conservation impose
two further linearly independent, but non-linearly related con-
straints on the initial vectors and velocities. Indeed, fixing the
energy at a particular value is equivalent to choosing a particular
initial size of the system, so we shall leave these intricacies
for Section 3.2.2. Five-dimensional search space is still too large
for practical implementation. Therefore, we chose to set two
collinear components of the initial relative velocities equal to
zero, and keep only the orthogonal ones. This choice reduces the
number of parameters to three.

The same choice is consistent with, i.e., sufficient but not
necessary for, vanishing of the time derivative of the hyperradius
R at the initial (syzygy) time t = 0: Ṙ(t = 0) = 0, see
Section 3.2.2. In other words Ṙ(t = 0) = 0, does not imply
orthogonality of the initial velocities to the initial vector. The
additional initial constraint Ṙ(t = 0) = 0 is satisfied by all of the
(non-zero-angular-momentum) BHH orbits [17–23], and by all of
the (non-zero-angular-momentum) Davoust–Broucke orbits [44],
as well as by all of the (zero-angular-momentum) solutions in
Refs. [33,37,42,43]. Thus, the collinear orthogonal initial config-
uration is sufficiently wide to encompass many, though not all
of presently known families of periodic orbits. One exception is
Martin Grant’s Rosette orbit, Ref. [56], for his initial conditions
see footnote.13 This set of i.c.s appears to have 8 independent
variables. By evolving to a collinear configuration this number
is reduced to six, see Section 6.2.4. One of two initial configu-
ration parameters may be fixed (e.g. to unity, as in Section 3.3)
which leaves us with five free parameters in total, which is
more than the three parameters allowed in our search subspace.
This means that this solution does not fit into the class with
collinear orthogonal initial conditions. Nevertheless, this orbit
passes through 3 ‘‘reversor’’ isosceles configurations, which fact
guarantees additional discrete symmetry of the orbit.

13 Martin Grant’s i.c.s are: x1(0) = 0.7812, y1(0) = −0.2465, x2(0) = y1(0) =

−0.2465, y2(0) = x1(0) = 0.7812, x3(0) = −x1(0) − x2(0) = −0.5347,
y3(0) = x3(0) = −0.5347, ẋ1(0) = −ẏ2(0) = −0.6087, ẏ1(0) = −ẋ2(0) = −0.286,
ẋ3(0) = −ẋ1(0) − ẋ2(0) = 0.3227, ẏ3(0) = −ẋ3(0) = −0.3227, T = 17.0874,
E = −1.89451, L = −0.40184.
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Fig. 3. Geometry of initial conditions.

3.2.1. Initial configuration
The initial configuration is collinear, (or recti-linear) orthog-

onal, though generally asymmetric, as shown in Fig. 3, so as to
yield non-zero angular momentum, and can be written in terms
of (initial configuration) Jacobi vectors ρ0, λ0 as:

ρ0 = (a, 0), λ0 = (b, 0),

and the initial position of the center-of-mass (CM)

RCM
0 =

1
3

(
r10 + r20 + r30

)
=

1
3

(x1 + x2 + x3) x̂ = 0

From these three linear algebraic equations one can easily find

x3 − x1 = −
a +

√
3b

√
2

, x3 − x2 =
a −

√
3b

√
2

, x1 − x2 =
√
2a,

(3)

the initial potential energy equals

V = −

∑
i<j

1
rij

= −

( √
2

a +
√
3b

+

√
2

|a −
√
3b|

+
1

√
2a

)
, (4)

and the initial hyper-radius is R0 =

√
ρ2
0 + λ2

0 =
√
a2 + b2.

3.2.2. Initial velocities
We demand that the CM velocity vanishes

ṘCM =
1
3

(ṙ1 + ṙ2 + ṙ3) = 0

which leaves four independent components of two two-
dimensional Jacobi velocity vectors, as advertised earlier.

Next, we impose Ṙ(0) = 0 as an initial condition. The hyperra-
dius R can be expressed as R =

√
ρ2 + λ2, a function of the Jacobi

vectors ρ, λ. This leads to the requirement

R(0)Ṙ(0) = ρ0 · ρ̇0 + λ0 · λ̇0 = 0,

as R(0) ̸= 0. Since (ρ0, λ0) have only components in one (the x-)
direction, the above equation imposes a constraint only on a
linear combination of the x-components of the velocity vectors,
and no condition on the orthogonal (y-) components, which are,
in turn, determined by the angular momentum

L = m
(
ρ0 × ρ̇0 + λ0 × λ̇0

)
.

This is most simply solved by the requirement that the initial
velocity vectors have no x-component, i.e., that they are parallel,
and orthogonal to the initial spatial separation vectors:

ρ̇0 = cŷ =
1

√
2

(ẏ1 − ẏ2) ŷ,

λ̇0 = dŷ =
1

√
6

(ẏ1 + ẏ2 − 2ẏ3) ŷ,

which leaves us with two additional free parameters (c, d).

Of course, this is not the most general set of initial condi-
tions satisfying our additional constraint Ṙ(0) = 0 — it can be
augmented/extended by adding two new parameters, the
x-components of the velocity vectors, e = ρ̇x, f = λ̇x, that satisfy

ρxρ̇x + λxλ̇x = 0,

thus leaving (only) one independent new parameter.
Our Ansatz e = f = 0 is sufficiently wide to cover the

BHH family and its topological satellites, as well as other families
of orbits (such as, though not limited to, the non-zero-angular-
momentum BHH orbits [17–23] and by (some of) three non-
zero-angular-momentum Davoust–Broucke orbits [44], and, last
but not least, all of the zero-angular-momentum solutions in
Refs. [33,37,42,43]).

Thus our space of initial conditions is nominally four-
dimensional, with an additional (non-linear) constraint between
the angular momentum and energy. The energy E is determined
by

E =
1
2

(
v2ρ + v2λ

)
−

∑
i<j

1
rij

=
1
2

(
c2 + d2

)
−

( √
2

a +
√
3b

+

√
2

|a −
√
3b|

+
1

√
2a

)
(5)

(we take all three masses to equalm = 1, and set the gravitational
constant G = 1, which sets the units in our system). The total
angular momentum is given by

L = |ρ × ρ̇| + |λ × λ̇| = ac + bd,

both of which are constants of motion. As briefly mentioned
above, one might think that these two integrals of motion could
be used to effectively remove one of the three parameters. The
energy is related to the overall size (hyper-radius R) by scaling
rules, Section 2.3. So it will be used up when we fix the size see
Section 3.3. The angular momentum, on the other hand, scales
with size differently than the energy, so that, in effect, it remains
an independent variable. Thus, our space of initial conditions
of BHH orbits remains effectively three-dimensional, even when
these two conservation laws are explicitly implemented.

3.3. The search sub-space

We use these four parameters (a, b, c, d), together with the
following additional constraint to parametrize the search-space
for periodic orbits. The ‘‘size’’ of the orbits must be fixed in order
to avoid finding the same orbits, only rescaled by a size factor,
see Section 2.3. Therefore, we fix the ‘‘size’’ by setting b = 1.
Henceforth we shall not rescale the size R, or energy E of the
system.14

Then, for any fixed value of L, we have d = L − ac , and
with energy E =

1
2

(
c2 + (L − ac)2

)
−

( √
2

a+
√
3

+

√
2

|a−
√
3|

+
1

√
2a

)
, a

function of three independent variables: a, c and L. Now we are
left with (only) a three-dimensional ‘‘phase sub-space’’, spanned
by a, c and L, to be searched for periodic orbits. For a fixed value
of L the search can be further restricted to certain regions of
parameters a and c (see the following).

Firstly, as three equal masses imply permutation symmetry,
one only needs to look at one permutation of the three bodies,
thus allowing us to search only a limited set of configurations
viz. starting from those in which the ‘‘inner body’’ is closer to
the ‘‘left-hand-side’’ body, to the configurations when the ‘‘inner

14 Only at the end of the day, one may change to scale-invariant period and
angular momentum.
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Fig. 4. Two views of the three-dimensional parameter space of the initial conditions of BHH orbits. Green points denote Hénon’s (retrograde) orbits [22], black points
are Broucke’s ‘‘A family’’ (retrograde) orbits and the red points denote Broucke’s ‘‘R family’’ (prograde) orbits [18]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

body’’ is exactly in the middle between the other two bodies,
i.e., for a ∈ (0, 1

√
3
], we have |a −

√
3| =

√
3 − a and leads to

E =
1
2

(
c2 + (L − ac)2

)
−

1
√
2a

+
2
√
6

a2 − 3
.

Secondly, we confine ourselves to the values of free param-
eters that lead to negative total energies, E < 0, so as to avoid
escape of one of the bodies to infinity.15 For example, having
fixed the values of L and a, the allowed values of c lie within a
circle defined by the inequality:

1
2

(
c2 + (L − ac)2

)
<

1
√
2a

+
2
√
6

3 − a2
. (6)

This inequality has non-trivial implications: it divides the (a, c, L)
space into disjoint regions, some of which are allowed, and others
are not.

The inequality (6) can be rewritten in various ways, keeping
one pair of parameters fixed while solving for the third one; thus
it is quartic in a, and quadratic in c , and L. As some of its roots
need not be real, or within the allowed regions of (real-valued)
parameters the actual number of relevant roots may be anywhere
between 0 and 4 × 2 × 2 = 16, which determines the number of
allowed, disjoint regions in the (a, c, L) space. E.g. depending on
whether e.g. c ∈ (c−, c+), or c ∈ (0, c−), c ∈ (c+, ∞)

c± =
aL(

a2 + 1
) ∓

1(
a2 + 1

)
×

√(
a
((

a2 − 3
)
L2 +

√
2
(
a
(
−a2 + 4

√
3a + 2

)
+ 4

√
3
))

+ 3
√
2
)

−a
(
a2 − 3

)
and, e.g. L ∈ (L−, L+), or L ∈ (0, L−), L ∈ (L+, ∞), where

L± = ac ±

√(
a
(
a
(√

2 − ac2
)

+ 3c2 − 4
√
6
)

− 3
√
2
)

a
(
a2 − 3

)
It should be clear that the number and form of these restrictions
depends on the functional dependence L(a, c) for any given family

15 This condition alone does not guarantee that there can never be an escape
to infinity, but only that there will be none as long as there are no two-body
collisions.

of periodic orbits. As these L(a, c) functional dependences are
generally not known, except in one (the BHH), or perhaps two
cases (the figure-8 orbits), in the following we shall eschew a
general analysis of all possible cases, such as the one above, but
concentrate on the case of BHH orbits at hand.

Before we continue, a few comments are in order: (1) it should
be clear that the present method can be readily modified to
include distinct masses; (2) at first we shall apply this method to
the BHH family, as that is the most thoroughly studied family of
three-body orbits in the literature and the a(L, c)BHH is fairly well
known; (3) the present method holds in general, and not only for
the BHH family. It can and should be applied in the vicinity of all
known (linearly) stable orbits with vanishing angular momentum.

3.4. The region of BHH orbits’ initial conditions and the scanning
method

As can be seen in Fig. 4 all of the previously known BHH
orbits fall on two continuous ‘‘curves’’, the green–black one de-
picting the retrograde, and the red one the prograde orbits, in the
three-dimensional space of initial conditions parametrized by L,
a and c.16 This is a consequence of Hénon’s first theorem [16].
Therefore, we choose the vicinity of this structure as the starting
point of our search. Our search was conducted at fixed values of
angular momentum L, in a region of a two-dimensional subspace
of initial conditions parametrized by a and c. The ‘‘scanning’’
method for numerical searching for relative periodic orbits, which
is described in more detail in Ref. [34] consists of two steps:
(1) a ‘‘brute force’’ scan that produces the ‘‘initial candidates’’; and
(2) use the ‘‘initial candidates’’ as starting points in a minimiza-
tion method, such as coordinate descent, or gradient descent.
The crux of the matter is to have a good idea where to look
for candidates, which depends on the parametrization of the
initial conditions. The resulting orbit is accepted as periodic if the
minimized r.p.f. is sufficiently close to zero.

16 N.B. The retrograde orbits’ ‘‘one continuous’’ curve appears as two here
due to our choice of the domain of the parameters a and c , and of symmetries;
another choice might have given a single curve, which, however, would have
been less auspicious for the purposes of orbit hunting. Similarly, the prograde
and the retrograde curves would merge in the (extreme) limit of two ‘‘inner’’
bodies merging into one.
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Fig. 5. Initially discovered satellite orbits of the BHH family, shown in real space
and on the shape sphere, k = 12, 45, 39.

4. Results

Our search was conducted at fixed values of angular mo-
mentum L, in a region of a two-dimensional subspace of initial
conditions parametrized by a and c . The ‘‘scanning’’ method of
numerical searching for periodic orbits was briefly explained in
Section 3.4 and described in pedagogic detail in Ref. [34].

We performed two preliminary searches at angular momen-
tum L = 0.935549, where there is one (Hénon’s) orbit, and
at L = 1.5, where there are no BHH orbits. Parameters a
and c took values in the following intervals: a ∈ [0.05, 0.6],
c ∈ [−5.5, 5.5], although it was unnecessary to go above a =

1/
√
3 = 0.57735 · · ·, see Section 3.3. The resolution of the search

was 1000 × 1000, which determined the duration of search.
Naturally, one expects that longer searches would have pro-
duced more copious results, as longer periods would have been
probed.

Some local minima of the return proximity function (r.p.f.)
were extracted from the results and refined using additional
minimization methods, which led to several new orbits, some of
which were direct, whereas others were retrograde. After plotting
the newly found orbits’ trajectories on the shape sphere, it was

Fig. 6. Initially discovered satellite orbits of the BHH family, shown in real space
and on the shape sphere, k = 84, 13, 58.

easy to see that all of these orbits are topological powers of BHH
orbits, the so-called topological satellites.

In the first two (preliminary) searches we found six BHH
satellite orbits. These orbits make k loops about a single collision
point on the shape sphere, with k = 84, 12, 45, 39, 58, 13 (see
Figs. 5 and 6), some of which are retrograde and others are direct.
One notices immediately the diversity of patterns on the shape
sphere: some (e.g. panels 2, 3, 4, 6 in Fig. 5) are symmetric,
whereas others (e.g. panels 1, 5 in Fig. 5) are asymmetric.

However, the level of detail in these results is very low: the
resolution is not high enough to resolve some minima. Therefore
we decided to perform such ‘‘scans’’ in smaller sections of the a−c
plane and in the vicinity of BHH orbits (see Figs. 7 and 8).

4.1. High resolution searches for BHH satellite orbits

The maps of the return proximity function at L = 0.8, 0.85,
0.9, 0.935 are shown in Figs. 7 and 8. Note the ‘‘interference-
like’’ dark and bright regions (patterns) in this map. The brighter
regions correspond to higher values of the negative logarithm
of the return proximity function. Each bright (yellow) ‘‘stripe’’
in Figs. 7, 8 contains a particular satellite of topological order



M.R. Janković, V. Dmitrašinović and M. Šuvakov / Computer Physics Communications 250 (2020) 107052 9

Fig. 7. The map of the negative logarithm of the return proximity function at
angular momentum values L = 0.8 (upper panel), and L = 0.85 (lower panel).
The brighter regions correspond to higher values of the negative logarithm of
the return proximity function. Each black square denotes a local minimum of the
return proximity function for which the value of the return proximity function
is sufficiently close to zero: a satellite orbit, and the number is the k-value of
that satellite. The black region in the lower right-hand corner is forbidden by
the negative energy condition.

k, arranged in an increasing order of k from the right to the
left-hand side (see Figs. 10 and 11).

The same region in the a − c plane was also explored at four
other values of L ∈ [0.8, 1]. There we found satellite orbits with
the same values of k, at slightly different initial conditions. For
example, their trajectories on the shape sphere were wider or
narrower, and for one of the two visually distinct types in Fig. 12,
the satellites of the same k differ in eccentricity.

Some shape-sphere orbits (e.g. panels 1, 2, 3 in Fig. 12) are
symmetric, whereas others (e.g. panels 4, 5 in Fig. 12) are asym-
metric. In Fig. 12 one can also recognize that there are orbits with
significant eccentricities of the inner and outer binaries, where
these two kinds of binaries can (still) be recognized. In contrast,
we challenge the reader to recognize any kind of binary in the
satellite orbits shown in panel 1 of Fig. 12].

All of these satellites at the above-mentioned values of L are
‘‘arranged’’ in a way similar to those at L = 0.9, and in an overall
manner/shape that are in accordance with Hénon’s first theo-
rem, i.e., with the expectation that there are continuous families
(curves in the parameter space) of satellite orbits with a particular

Fig. 8. The map of the negative logarithm of the return proximity function
at angular momentum values L = 0.9 (upper panel), and L = 0.935549
(lower panel). The brighter regions correspond to higher values of the negative
logarithm of the return proximity function. Each black square denotes a local
minimum of the return proximity function for which the value of the return
proximity function is sufficiently close to zero: a satellite orbit, and the number
is the k-value of that satellite. The black region in the lower right-hand corner
is forbidden by the negative energy condition.

value of k, and most probably several different families/curves for
the same k.

In addition to this, we searched for satellites with higher
powers k, at higher values of angular momentum L, where we
found examples of k up to 58.

4.2. Detailed searches near BHH retrograde orbits

Summary of detailed searches that were performed in the
vicinity of BHH retrograde orbits is given in Table 1, with the
searched segments of parameter space illustrated in Fig. 9.
Comments made in the right-hand-most column of Table 1 in-
dicate segments open to future improvement. One, particularly
interesting segment is the low L-values, which we could not
access due to lack of regularization of collisions in our code. Orbits
in this region ought to have satellites, as well, assuming relevance
of the Birkhoff–Lewis theorem to this system, see Section 6.1.
A detailed study of this segment would constitute a test of this
assumption.

The complete set of orbits is shown in the text below; the
topological power k takes values k = 3–48, 58, 84, see Fig. 12.
For more, see the web-site [38].
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Fig. 9. Illustration of searched segments (‘‘scans’’) in the parameter spaces (a, L) (upper panel), and (a, c) (lower panel). Each different colored line/box corresponds
to a scan we performed in one a–c region, see Table 1, as follows. Upper panel (from top to bottom): blue (1.5)(0.935549), light brown (1.1), orange (1.03)(1.07),
green (1.0)(0.9)(0.85)(0.8), gray (0.7), red(0.65), dark brown (0.65). Lower panel: red (0.65), dark brown (0.65), gray (0.7), orange (1.03)(1.07), light brown (1.1), green
(0.935549), blue (1.5)(0.935549). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Searches (‘‘scans’’) performed in segments of parameter space.
L amin amax cmin cmax Comment

0.65 0.05 0.09 3.5 5.5 Few local minima
0.65 0.1 0.5 1 5 Several local minima
0.7 0.4 0.6 −2.5 −0.5 Unstructured set of local minima
0.8 0.1 0.3 −3 −1 Good results
0.85 0.1 0.3 −3 −1 Good results
0.9 0.1 0.3 −3 −1 Good results
0.935548917 0.1 0.3 −3 −1 Good results
1 0.1 0.3 −3 −1 Good results
1.03 0.06 0.12 −3.5 −2.5 Good results
1.07 0.06 0.12 −3.5 −2.5 Good results
1.1 0.02 0.2 −5 −3 Many local minima packed densely

5. Kepler-third-law-like regularities

In this section we follow Ref. [39] closely, for two reasons:
(1) for the sake of completeness: Kepler-third-law-like regular-
ities are perhaps the most exciting news that have emerged from
the discovery of new (satellite) orbits and thus deserve a proper
presentation; (2) in order to reveal our methods and way of
thinking: we suspect that similar, though perhaps not exactly
identical regularities may hold in other families of periodic orbits.

As stated in the Introduction 1, families of periodic three-body
orbits can be characterized by the topology of their trajectories in
the real configuration space (‘‘braid group’’), or on the (so-called)
shape sphere (‘‘free group’’), as described in Refs. [32–34,51], the
latter can be specified by the conjugacy classes of elements, or
‘‘words’’ w, for short, consisting of letters a, b, A = a−1, B = b−1,
that define the free group on two letters (a, b).

Thus, here we must study the dependence of the constant on
the right-hand-side of the scaling law T (w)|E(w)|3/2 = const(w)
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Fig. 10. Examples of satellite orbits of the BHH family, shown in real space and on the shape sphere, k = 3, 4, 5, 6. Each row contains two different satellites for
each value of k = 3, 4, 5, 6, starting from the top, except for k = 3, where there is only one.

on the structure of the word w(a, b, A, B) that characterizes a pe-
riodic three-body orbit with zero angular-momentum. In Ref. [36]
we have shown that Kepler’s third law ‘‘constant’’ T (wk)|E(wk)|3/2

of the ‘‘kth satellite orbit’’ with zero angular-momentum (speci-
fied by the free-group element wk where k is an integer) of the
‘‘progenitor orbit’’ w equals k times the Kepler’s third law con-
stant T (w)|E(w)|3/2 of the progenitor orbit w: T (wk)|E(wk)|3/2 =

kT (w)|E(w)|3/2. More simply, periodic orbits with zero angular-
momentum normalized to a common energy E have periods
related by T (wki ) = kiT (w). We wish to see if this, or some similar
statement holds also at non-zero angular momentum?

Then the analogon of Eq. T (wk)|E(wk)|3/2 = kT (w)|E(w)|3/2 for
orbits with non-zero angular momenta is

T (wk)|E(wk)|
3/2

= f
(
L(wk)|E(wk)|

1/2
)

= kT (w)|E(w)|3/2

= kf
(
L(w)|E(w)|1/2

)
,

or

L(wk)|E(wk)|
1/2

= f −1
(
T (wk)|E(wk)|

1/2
)

= f −1 (T (w)|E(w)|1/2/k
)

= L(w)|E(w)|1/2
(
T (w)|E(w)|1/2/k

)
, (7)

or yet more simply, a relation between L(T ) curves for the pro-
genitor orbit Lr (Tr ) and its k’th satellite L(w

k)
r (T (wk)

r ):

L(w)
r (T (w)

r ) = L(w
k)

r (T (wk)
r /k). (8)

In the brief report [39] we tested this relation on the BHH family
of solutions using the orbits presented in the previous section. In
order to ensure a precise check of Eq. (8) it is necessary to pre-
cisely determine orbital periods. The periods T of the orbits could
not be reliably established to better than the seven significant
digits (decimal places), as shown in Table I in the Supplementary
information for Ref. [39].

Our solutions are numerical, hence they necessarily contain
some, small, but finite numerical ‘‘error’’, i.e., difference between
the particles’ spatial positions after one period and their initial
values. This error is perhaps best quantified by the value of the
‘‘return proximity function’’, d(Z0, T0) = mint≤T0 |Z(t) − Z0|, see
Refs. [33,34], evaluated after one period t = T . The minimal val-
ues of d(Z0, T0), dmin, for our solutions are typically of the order of
O(10−10)−O(10−9), which also indicates the order of magnitude
of the expected error in the values of kinematical variables, such
as the period T . The relation between the expected error in the
period T and the minimal ‘‘return proximity function’’, dmin, is not
a linear one, however.

We have undertaken four independent evaluations (denoted
by Roman capital numerals I–IV) of period T : two T (I) = TRKFrpf ,
T (III) = TRKFz ), are based on the Runge–Kutta–Fehlberg (RKF)
algorithm of fourth order, and another two (T (II) = TBSrpf , T (IV)
= TBSz ) are based on the Bulirsch–Stoer (BS) algorithm, each
with two different definitions of the period T : Trpf is based on
the minimum of the return proximity function (rpf) and Tz is
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Fig. 11. Examples of satellite orbits of the BHH family, shown in real space and on the shape sphere, k = 7, 8, 9. Each row contains two different satellites for each
value of k = 7, 8, 9, starting from the top.

based on the crossing of the equator on the shape sphere. These
measurements may, but need not, agree in general. They must
agree only when the initial conditions are ‘‘perfect’’, i.e., when
the value of d(Z0, T0) is zero (which does not happen in actual
numerical calculations).

5.1. Observed topological dependence of the scaling laws for three
bodies

The L(T ) curves of different-k satellite orbits are scattered over
a large region and do not ‘‘touch’’/intersect the BHH progenitor
family of orbits’ L(T ) curve when plotted as a function of the
(un-divided) period T , see Fig. 13. Note the huge span/scatter of
periods in the data.

After dividing the period T by the topological exponent/index
k, T ′

= T/k, we can see in Fig. 14 that the satellite orbits’ L(T/k)
curve (the angular momentum as a function of topologically-
rescaled period T/k) approximately coincides with the L(T ) curve
of BHH retrograde orbits.

6. Open questions

Here we present a list of open questions related to our paper.
They range from general questions about astronomical existence
and some, perhaps abstract mathematical questions about the
deeper underlying causes for these orbits, to entirely practical
suggestions as to which specific subspace of i.c.s ought to be
explored in a numerical search.

6.1. Astronomical and mathematical questions

Our study also opens up several mathematical and astronom-
ical questions:

1. The BHH family is one of only two families, another being
the Lagrange one, of periodic three-body orbits that have
been observed in the skies: all ‘‘hierarchical’’ triple star
systems belong to BHH orbits, though the converse is not
true. The Sun–Earth–Moon system may be viewed as a
BHH solution [5,17,20], with unequal masses. Therefore, it
seems important to extend the present study to the case
of three different masses: some work in this direction has
already been done in Refs. [17,20,55], but more needs to be
done, and our method lends itself to the task. A number of
3-body systems have been discovered by the Kepler space
telescope, all of which are of the hierarchical type, see §5.2
and §5.4 in Ref. [5].17 Are there BHH topological satellites
among astronomically observed three-body systems?

2. We have observed satellite orbits only in the stable region
of BHH progenitor orbits’ L(T ) curve: why? What precisely
is the relation between satellites’ existence and stability of

17 see §5.2 Searches for Exomoons in Ref. [5]: ‘‘There are many dynamical
processes that affect circumbinary planets, but we will focus on Kepler-16b,
the first circumbinary planet confirmed by the Kepler mission (Doyle et al.
2011). This was a huge discovery because previous circumbinary planets had
been posited through the post-common envelope binaries (e.g., Beuermann et al.
2010)’’.
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Fig. 12. Overview of some of the satellite orbits in the BHH family, k =

3, 10, 10, 11, 43.

progenitor’s orbit? In 1976 Hénon [22] stated that ‘‘. . . the
stable periodic orbits which we have found are very proba-
bly surrounded by a region of finite measure in phase space
in which the orbits possess non-linear stability’’, i.e., that
the linearly stable orbits in the BHH three-body family are
also nonlinearly, or perpetually, or Kolmogorov–Arnold–
Moser (KAM) stable. In other words, the KAM theorem
[57–59] is believed to hold for stable BHH orbits. From the
KAM theorem it follows that there must be infinitely many
‘‘conditionally periodic’’ solutions near non-linearly stable
BHH orbits. In Ref. [37] it was noted that, according to
the Birkhoff–Lewis theorem [49], even the (weaker) linear
stability may lead to an infinity of periodic satellite orbits.
It would be good to verify this conjecture.

3. Prograde orbits are unstable at these values of L, which
makes them unlikely to have satellites, according to the
Birkhoff–Lewis theorem. One ought to perform further
searches in the parameter space at higher values of angular
momentum L before one can draw any conclusions about
the (non)existence of satellite orbits and their properties
on the L(T ) plot.

4. In recent years there has been progress in providing formal
‘‘proofs of existence’’ for some BHH orbits, Refs. [26,27]. The
obvious question is: can one ‘‘prove the existence’’ of the
satellite orbits, and when?

5. Several different types of BHH satellites with identical val-
ues of k were reported in Ref. [39]. The question naturally
arises: just how many such satellites are there for each
value of k?

6. The above point (2) would account for the existence of
satellite orbits, though not for the relation between their
periods and topologies. Some suggestions about the cause
of this relation based on the (complex-variable) analytic
properties of the action integral were presented in Ap-
pendix E of Ref. [37], but it would be good to make those
arguments rigorous, or to repudiate them (for example by
finding counterexamples).

6.2. Suggestions for future numerical work

If true, the aforementioned Hénon’s conjecture implies ex-
istence of infinitely many satellite orbits for all linearly stable
three-body orbits, of which there are many. Of course, one may
object that a search for all such orbits must be without an end.

However, there is by now sufficient reason to believe that
there is some, perhaps not fully revealed as yet, structure in
the spectrum of periodic 3-body orbits (viz. discrete multiples of
periods, relation(s) between periods and topology), and the goal
would be to reveal this structure to the fullest extent possible.

Thus, the goal of a search would/ought to be to find (all)
linearly stable orbits with the periods shorter than some (fi-
nite upper) bound (i.e., with the simplest topologies) — whereas
the subsequent extension of sequences (generated by such short
orbits — progenitors) towards infinity may indeed be pointless.

6.2.1. Extension of zero-angular-momentum solutions to nonzero
values

There are around 20 linearly stable, out of grand total around
200 zero-angular-momentum orbits in Ref. [37] and at least 23
among roughly 2000 orbits from Refs. [35,40,42,43,60].

As explained above, all linearly stable orbits deserve a thor-
ough investigation in the sense of extending them to non-zero
angular momenta. Reference [40] commands special attention,
because it is the only work that has reported periodic orbits
outside of the i.c. subspace defined in Refs. [32,37].
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Fig. 13. Retrograde BHH orbits and the BHH satellite orbits with various values of k, discovered thus far, L(T ) dependence at fixed energy E = −0.5. Adapted from
Ref. [39].

Fig. 14. Retrograde BHH orbits (black and blue dots) and their satellites (red dots) with various values of k, discovered thus far, L(T ′
= T/k) dependence at fixed

energy E = −0.5. Adapted from Ref. [39]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Last, but not least, the same method can be applied to 100, or
so, zero angular momentum orbits in the Coulomb potential [50].

6.2.2. Searches around (other) known nonzero-angular-momentum
orbits

Of course, search for other satellites can and should be contin-
ued in the BHH family, specifically in the prograde orbit branch,
where only a few satellites have been found thus far, as well as
in the retrograde branch, near the Schubert orbit, where further
satellites are expected, but regularization is required [61–63].

There are other known, linearly stable orbits that fall into the
present class of initial conditions: Davoust and Broucke reported
a number (136) of (generally topologically unidentified) nonzero-
angular-momentum orbits in Ref. [44]. All of these orbits’ initial
conditions are described by four parameters, just as ours, and
a number of these orbits are linearly stable. Unfortunately, the

tables of i.c.s in Ref. [44] are (very) difficult to read (due to a bad
font) – which prevented us from examining them all18 – here we
discuss only those orbits which we managed to reconstruct.

These orbits were not classified into families according to their
topologies, but, rather, using Strömgren’s (restricted 3-body prob-
lem) classification into 14 simple symmetry (denoted by small ro-
man and greek letters) and 11 double symmetry families (denoted
by capital letters).

Many of these Davoust–Broucke (Strömgren) families fall into
one of only three topological families: (1) The (Strömgren) double-
symmetry A1, B and single-symmetry a, b, c, d, α, β families con-
tain orbits with the same topology as the Lagrange–Euler solu-
tions, i.e., the identity element/zero of the free group; (2) The

18 And when we read them, we could not be sure that we did it correctly.
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Table 2
The initial conditions in terms of parameters A, B, C,D, as defined in the text, for three semichoreographic orbits. T is the
period, L the angular momentum, and E is the energy. The shortest period orbit is Moore’s [28].
A B C T T |E|

3/2 L|E|
1/2 E

0.6789245 −1.992169 1.3677159 3.147316 3.6087 −1.7668 −1.0955
0.2369355 −0.720445 1.2540211 8.004531 13.700 0.131881 −1.4308
0.400045 1.415959 1.1166540 8.413701 22.945 6.14072 −1.9519

Table 3
Satellite orbits in the retrograde BHH family, some of which are shown in Fig. 12. Minimal return proximity dmin for these
orbits is dmin < 10−7 . k is the topological power of the orbit, T is its period and E its energy.
Nr L a c T k dmin

1 0.7 0.427052524289 −1.336907801590 4.46125383 3 1.12E−10
2 0.85 0.225423376709 −2.161172667330 4.93326124 3 1.72E−10
3 0.65 0.226748054608 2.494853501883 5.38634911 3 3.22E−11
4 0.85 0.236597473885 −1.986209145030 4.79387855 4 1.09E−10
5 0.7 0.410445264670 −0.901755581763 3.04224052 4 1.16E−10
6 0.65 0.089473243424 3.863464841380 6.80175586 4 3.88E−10
7 0.65 0.351891702719 1.961519344674 5.95736952 4 1.26E−10
8 0.8 0.278773932080 −1.610811894950 4.47639401 5 2.26E−10
9 0.65 0.131937959644 3.165458555994 8.78754480 5 6.12E−08
10 0.8 0.228399714670 −1.771422978980 4.12780456 6 1.12E−10
11 0.9 0.162112751455 −2.424555946410 4.72091689 6 1.09E−10
12 0.65 0.335276789538 2.040219149776 9.43988995 6 1.38E−10
13 0.8 0.195389423297 −1.911145472440 3.90877460 7 2.84E−10
14 0.85 0.213186587101 −1.831539642360 4.45339868 7 1.61E−10
15 0.9 0.174854596011 −2.217240443720 4.74829390 7 9.79E−11
16 0.9 0.269439116363 −1.452760161970 4.74215052 7 1.87E−10
17 0.8 0.171971993864 −2.034163513840 3.75598535 8 1.38E−10
18 0.935548917 0.129471314426 −2.721144023250 4.76584900 8 1.01E−10
19 0.7 0.537026752182 −1.208756213130 15.23729361 8 1.49E−10
20 0.85 0.186299773074 −1.955937487530 4.23559872 8 1.45E−10
21 0.9 0.205445523859 −1.864664426590 4.90547644 8 1.26E−10
22 0.935548917 0.273518188668 −1.304218790410 4.75908509 8 1.34E−10
23 0.8 0.154250567982 −2.146266402400 3.64212942 9 3.05E−10
24 0.935548917 0.232402133831 −1.514749892810 4.78046677 9 9.95E−11
25 0.85 0.166323483739 −2.067914324720 4.07742799 9 2.21E−10

(Strömgren) double-symmetry family A2 contains quasi-isosceles
orbits (with angular momentum); (3) The (Strömgren) double-
symmetry families D1, E,G and single-symmetry g, h, i are (di-
rect) parts of the BHH topological family; (4) The (Strömgren)
double-symmetry D2,D3,D4, F and single-symmetry e families
are (retrograde) parts of the BHH topological family, in particular
solutions no. 90 and no. 91 are the k = 3 satellites.

6.2.3. Semichoreographies with nonzero-angular-momentum
Davoust and Broucke [44] were apparently the first ones

to find a semichoregraphic solution — a periodic 3-body orbit
wherein two bodies move on the same trajectory, whereas the
third one moves on its own. In Ref. [28] Moore rediscovered
Davoust and Broucke’s orbit. We have found two other such
orbits, see Table 2, and called them semichoreographies; each
(semi)choreography defines a continuous family of orbits, as a
function of angular momentum, whose orbits are not (necessar-
ily) semichoreographies themselves, and which have not been
explored thus far, to our knowledge.

We list several such orbits’ i.c.s in Table 2, with the following
definition of i.c. parameters A, B, C,D in terms of our parameters
a, b, c, d,

a =
√
2, b = −

√
2
3
A, c =

√
1
2
(B − C), d =

√
3
2
(B + C).

6.2.4. Isolated orbits
Last, but not least there are a number of isolated, generally

topologically unidentified periodic orbits, often unpublished, or
published only in Ph.D. or M.Sc. theses, and/or on the internet;
here we list the ones we knew at the time of writing.

• The ‘‘Celtic knot’’ choreographic orbit of Montaldi & Steck-
les [64] (no i.c.s supplied), which appears to be equivalent to
the ‘‘Rosette’’ orbit of Grant [56] with nonvanishing angular
momentum, the i.c.s are supplied in footnote [91]. This orbit
does not fit into the (sub)space of collinear orthogonal i.c.s,
for proof, see footnote,19 and therefore requires relaxation
of conditions imposed in Section 3.2.

• Danya Rose’s many previously unknown orbits with van-
ishing angular momentum [40], some of which do not pass
through an equidistant collinear (‘‘Eulerian’’) initial configu-
ration.

• A number of as yet topologically unidentified orbits pre-
sented in Refs. [55,65] and references therein.

All of this indicates: (1) a need to complete the families with
other non-zero angular momentum orbits; (2) a probable abun-
dance of new satellite orbits waiting to be discovered.

Free-fall orbits generally do not satisfy Ṙ = 0 at equator
crossings,20 so generally they do not fall into the present search
space.

19 In order to check if its i.c.s fall into the class of collinear orthogonal, i.e., if
ri · ṙi = 0, (for all i = 1, 2, 3), we note that the first of six syzygies is reached
after t = 0.7032783, where we have (x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)) =

(0.00077832, −0.469023, −0.00165945, 0.999997, 0.000881126, −0.530975),
which still has 4 independent variables. Of course, two of these four can
be eliminated by an appropriate rotation of the reference frame. Similarly,
the velocities at t = 0.7032783 are (ẋ1(t), ẏ1(t)) = (−3.03236, −2.77587);
(ẋ2(t), ẏ2(t)) = (0.385354, 0.00774803); (ẋ3(t), ẏ3(t)) = (2.647, 2.76812), of
which there are 4 independent ones. Evaluating the scalar products, which are
rotation-invariant, we see that ri(t) · ṙi(t) ̸= 0 (for all i = 1, 2, 3), i.e., this is not
an orthogonal collinear configuration. Nevertheless, this orbit passes through
three reversible configurations of another kind: the isosceles one, see Ref. [65].
20 With the exception of isosceles triangle ones.
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Table 4
Satellite orbits in the retrograde BHH family — Table 3 continued.
Nr L a c T k dmin

26 0.9 0.182069791972 −1.978004135720 4.67040604 9 1.17E−10
27 0.935548917 0.137285145946 −2.545654735050 4.78370980 9 9.67E−11
28 1 0.294303286736 −1.008322699800 4.76801186 9 1.23E−10
29 1 0.238218402625 −1.735467337160 6.99274465 9 1.40E−10
30 0.85 0.150808938415 −2.170190077810 3.95629338 10 1.48E−10
31 1 0.209243455808 −1.847936324290 6.46969425 10 1.57E−10
32 1 0.266925744815 −1.097311225480 4.78597293 10 1.23E−10
33 0.7 0.442402892100 −0.700265953090 6.66684025 10 2.26E−09
34 0.8 0.129160165070 −2.343250256240 3.48168164 11 1.12E−10
35 1 0.243617171755 −1.190238664360 4.79985962 11 1.09E−10
36 0.8 0.119882517495 −2.431498122390 3.42239489 12 1.27E−10
37 0.935548917 0.147716034231 −2.192473293620 4.68169607 12 1.18E−10
38 1 0.223340706817 −1.288029535680 4.81093626 12 2.30E−10
39 0.8 0.112051269923 −2.514553762900 3.37232423 13 1.43E−10
40 0.935548917 0.137088743692 −2.274985930540 4.56392294 13 1.52E−10
41 1 0.205347639306 −1.392000632830 4.81998871 13 1.62E−10
42 0.8 0.105352054293 −2.592836811550 3.32933694 14 1.97E−10
43 1 0.146284147722 −2.203021298400 5.44909516 14 1.06E−10
44 0.85 0.105854763654 −2.586702862280 3.60999927 15 1.05E−10
45 1 0.136829854037 −2.277089258430 5.30678948 15 2.09E−10
46 1 0.173982588477 −1.627461935580 4.83391624 15 5.74E−09
47 0.85 0.100315012262 −2.656853706660 3.56736722 16 9.88E−11
48 0.9 0.102148274757 −2.632996062570 3.90923742 17 1.52E−10
49 0.935548917 0.102773178918 −2.625007735230 4.19114405 18 1.04E−10
50 1 0.110009104810 −2.537603649510 4.91429079 19 1.42E−08

7. Summary, conclusions

Here we have presented details of our method, originally
designed to search for periodic orbits within the Broucke–
Hadjidemetriou–Hénon (BHH), Refs. [17–23], family of orbits.
However, we have realized that the method has a (much) wider
scope.

We have numerically found 99 new satellite orbits in the
family of BHH relative periodic solutions to the planar three body
problem, and analyzed their properties and compared them with
the properties of the original BHH orbits. An approximate relation
between their kinematic and topological properties was reported
in Ref. [39].

BHH orbits form a family with a very simple topology, and
their satellites are orbits with topology that can be described as
the kth power of BHH one. The BHH orbits’ scale-invariant angular
momenta L and scale-invariant periods T form a continuous curve
L(T ), whereas our satellite orbits form a scattered set of points
on the same L(T ) plot. The latter exhibit the property that when
their period T is divided by their ‘‘topological power’’ k, they
approximately fall on the L(T ) curve of the original (k = 1) BHH
orbits. The deviation from exact identity of the two curves, can
be quantified by a mean-square-root deviation of the observed
satellite-orbit data from a fit to the BHH progenitor-orbit data.

Our study was motivated by the discovery of satellite orbits
at vanishing angular momentum and of the proportionality of
their scale-invariant period to their topological power [33]. The
Kepler-like topological regularities have been found to hold more
generally in sequences of orbits, albeit thus far only at vanishing
angular momenta [36,37]. This report shows, however, that this
regularity persists even when orbits with L ̸= 0 are considered,
albeit approximately, i.e., within some tolerance.

These results are even more striking when one remembers
that there are several distinct types of satellite orbits of the same
topological power k, some with quite different values of L and
T , all of which display this property. Furthermore, more than
one satellite of the same power k and the same type have been
found for several progenitor orbits presented in this report; our
results (not shown here) suggest that satellites form continuous

Table 5
Satellite orbits in the retrograde BHH family — Tables 3 and 4 continued.
Nr L a c T k dmin

51 1.03 0.111843109779 −2.516815645433 5.31721934 20 9.76E−11
52 1.03 0.106999360702 −2.572864154118 5.23675314 21 1.10E−10
53 1.03 0.102629340641 −2.626824252565 5.16461551 22 1.04E−10
54 1.07 0.112532299117 −2.509130097108 5.93058960 22 9.37E−11
55 1.03 0.098663558847 −2.678884782752 5.09949046 23 1.13E−10
56 1.07 0.107950445783 −2.561552366744 5.83679015 23 1.62E−10
57 1.03 0.095045815614 −2.729207988143 5.04033295 24 1.24E−10
58 1.07 0.103792166702 −2.612125153377 5.75238033 24 9.83E−10
59 1.07 0.099998313989 −2.661009860717 5.67592271 25 1.93E−10
60 1.07 0.096520577947 −2.708345753387 5.60626742 26 1.77E−10
61 1.07 0.093319072567 −2.754253774713 5.54248254 27 1.28E−10
62 1.07 0.090360532835 −2.798839977984 5.48380387 28 1.27E−10
63 1.07 0.087616970029 −2.842197991476 5.42959820 29 1.09E−10
64 1.03 0.078546062730 −3.001449136918 4.77275161 30 1.18E−10
65 1.07 0.085064647578 −2.884410942736 5.37933595 30 1.04E−10
66 1.03 0.076424987284 −3.042734364817 4.73851381 31 1.48E−10
67 1.07 0.082683286816 −2.925553119986 5.33257043 31 1.02E−10
68 1.03 0.074436173120 −3.083042211579 4.70642108 32 1.04E−10
69 1.07 0.080455449983 −2.965691193228 5.28892198 32 9.96E−11
70 1.03 0.072567055606 −3.122428961620 4.67626201 33 1.51E−10
71 1.07 0.078366051119 −3.004885281315 5.24806564 33 1.39E−10
72 1.03 0.070806647363 −3.160945841855 4.64785297 34 9.95E−11
73 1.07 0.076401964229 −3.043189884203 5.20972146 34 1.05E−10
74 1.03 0.069145295338 −3.198639607087 4.62103356 35 1.66E−10
75 1.07 0.074551712461 −3.080654510153 5.17364685 35 1.59E−10

curves in the parameter space of initial conditions. That ‘‘fine
structure’’ should be investigated in greater detail, however, as
in the examples set by Davoust and Broucke [44].

From the methodological point of view, we have shown that
a systematic search for periodic solutions is possible in a three-
dimensional subspace of initial conditions, although it is more
challenging and time-consuming than in the case of orbits with
vanishing angular momentum. We have found satellite orbits up
to topological power k = 58 (84); but we feel that we have not
found all satellite orbits with values k ≤ 58 (84), despite there
being no known theorem stating how many orbits there ought
to be. It should be noted that our search was time-limited: the
same method can be used without modifications to complete the
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Table 6
Satellite orbits in the retrograde BHH family — Tables 3–5 continued.
Nr L a c T k dmin

76 1.03 0.067574480868 −3.235553106562 4.59566306 36 1.02E−10
77 1.03 0.066086655842 −3.271725713345 4.57161742 37 1.18E−10
78 1.07 0.071153562285 −3.153240705933 5.10748717 37 1.01E−10
79 1.03 0.064675107247 −3.307193655949 4.54878679 38 1.05E−10
80 1.07 0.069588876352 −3.188441664622 5.07705416 38 1.04E−10
81 1.1 0.072454170036 −3.124853635110 5.53965642 39 1.05E−10
82 1.03 0.063333841711 −3.341990448546 4.52707358 39 1.68E−10
83 1.07 0.068104140192 −3.222962078095 5.04818753 39 1.04E−10
84 1.1 0.070912224143 −3.158592700200 5.50480009 40 9.94E−11
85 1.03 0.062057492484 −3.376147044334 4.50639068 40 1.13E−10
86 1.1 0.069446525539 −3.191702128170 5.47170776 41 1.07E−10
87 1.03 0.060841236077 −3.409692239688 4.48666015 41 1.03E−10
88 1.07 0.065350113732 −3.290088012685 4.99465663 41 9.97E−11
89 1.07 0.065350112192 −3.290088080655 4.99465659 41 1.15E−10
90 1.1 0.068051285222 −3.224210823950 5.44023825 42 1.04E−10
91 1.03 0.059680728422 −3.442652640917 4.46781196 42 1.24E−10
92 1.1 0.066721298871 −3.256145631480 5.41026552 43 8.88E−11
93 1.07 0.069589283429 −2.997571148119 4.88748351 43 1.26E−10
94 1.1 0.065451870057 −3.287531720240 5.38167667 44 1.02E−10
95 1.1 0.064238759898 −3.318392179570 5.35437026 45 1.03E−10
96 1.1 0.063078117801 −3.348748949910 5.32825481 46 2.14E−10
97 1.1 0.061966455334 −3.378621962290 5.30324770 47 9.76E−11
98 1.1 0.060900580973 −3.408030582910 5.27927394 48 9.86E−11
99 0.93555 0.061515814146 1.086851979730 2.57459301 58 1.96E−10

search. We concentrated on a search for satellites of retrograde
BHH orbits, yet in this process we inadvertently found (only) four
satellites of direct BHH orbits.

There is no reason to believe, however, that a finite maximum
value of k exists. As k increases the satellite orbits seem to be
packed more densely, however, so the search for higher values of
k will be limited by inevitable numerical inaccuracies.

Our method can be also used without modification to extend
this search to higher angular momenta and to direct BHH orbits.
An extension of our search into unexplored regions of the L − T
plane ought to provide (new) data that will further test our
hypothesis.

Last, but not least, the same method can be used to search for
non-vanishing angular momentum families of orbits other than
the BHH one, as explained in Section 6.2. That, of course, would
represent a major new research program.
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Appendix A. Tables of initial conditions

For the sake of reproducibility, here we list the initial condi-
tions of our 99 orbits.

A.1. Arbitrary k satellites

Tables 3, 4, 5, 6 show initial conditions for un-normalized
orbits.
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ABSTRACT
We explore in situ formation and subsequent evolution of close-in super-Earths and mini-
Neptunes. We adopt a steady-state inner protoplanetary gas disc structure that arises from
viscous accretion due to the magneto-rotational instability (MRI). We consider the evolution
of dust in the inner disc, including growth, radial drift, and fragmentation, and find that dust
particles that radially drift into the inner disc fragment severely due to the MRI-induced
turbulence. This result has two consequences: (1) radial drift of grains within the inner disc
is quenched, leading to an enhancement of dust in the inner regions that scales as dust-to-
gas-mass-flux-ratio at ∼1 au; (2) however, despite this enhancement, planetesimal formation
is impeded by the small grain size. Nevertheless, assuming that planetary cores are present
in the inner disc, we then investigate the accretion of atmospheres on to cores and their
subsequent photoevaporation. We then compare our results to the observed exoplanet mass–
radius relationship. We find that (1) the low gas surface densities and high temperatures in
the inner disc reduce gas accretion on to cores compared to the minimum mass solar nebula,
preventing the cores from growing into hot Jupiters, in agreement with the data; (2) however,
our predicted envelope masses are still typically larger than observed ones. Finally, we sketch
a qualitative picture of how grains may grow and planetesimals form in the inner disc if grain
effects on the ionization levels and the MRI and the back reaction of the dust on the gas (both
neglected in our calculations) are accounted for.

Key words: planets and satellites: formation – protoplanetary discs.

1 I N T RO D U C T I O N

Recent advances in exoplanet detection, led primarily by the Kepler
mission, have uncovered several new classes of exoplanets (e.g.
Borucki et al. 2011; Batalha et al. 2013). These are the close-in
super-Earths and mini-Neptunes, planets with radii of 1–4 R⊕ and
periods of up to 100 d, and they are found to be abundant around
solar and sub-solar mass stars (e.g. Fressin et al. 2013; Dressing &
Charbonneau 2015). How (and where in their parent protoplanetary
discs) these planets form is a subject undergoing intense study.

One suggestion is that these super-Earths/mini-Neptunes form
at larger separations, as more solids are potentially available
outside the ice line, and then migrate inwards through the disc
(e.g. Ida & Lin 2008; Kley & Nelson 2012; Cossou, Raymond &
Pierens 2013; Cossou et al. 2014). However, the migration scenario
predicts that planets in multiplanet systems should typically end
up in mean motion resonances, whereas such orbital resonances
are rare among the Kepler planets (e.g. Baruteau et al. 2014;
Winn & Fabrycky 2015). Although several mechanisms have been

� E-mail: m.jankovic16@imperial.ac.uk

explored to either break the resonances or prevent capture into
them, (e.g. Goldreich & Schlichting 2014; Izidoro et al. 2017;
Liu, Ormel & Lin 2017), this discrepancy has not yet been fully
resolved. Moreover, the radius distribution of the Kepler planets,
shaped by atmospheric photoevaporation, appears consistent with
the planetary cores having a rock/iron (Earth-like) composition
(Owen & Wu 2017), implying formation inside the ice line and
arguing against significant migration.

An alternative scenario is that these planets form in situ, close
to their present orbits. In this case, planetary cores form in the
inner protoplanetary disc. They can still be subjected to planet–
disc interactions, and the two are not mutually exclusive. If the
cores are subjected to the fast type I migration, the innermost planet
could stall at the inner disc edge (Masset et al. 2006; Ogihara,
Morbidelli & Guillot 2015), explaining why the observed period
distribution of the innermost planet peaks around ∼ 10 d (Mulders
et al. 2018; see also Mulders, Pascucci & Apai 2015, Lee & Chiang
2017). Alternatively, type I migration could be suppressed if the
surface density profile is flat or has a positive slope in the inner
disc (Ogihara et al. 2018), or stalled by the core opening a gap
(e.g. Hu et al. 2016). In fact, there is evidence suggesting that the
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Kepler planets could have been massive enough to open gaps in the
inner disc (Wu 2018).

If the close-in planets do form in situ, a large amount of solids is
necessary in the inner protoplanetary disc compared to the amount
in the minimum mass solar nebula (Chiang & Laughlin 2013). These
solids may be delivered to the inner disc from the outer disc prior to
planet formation (Hansen & Murray 2012, 2013; Chatterjee & Tan
2014), through the radial drift of pebbles and rocks (Weidenschilling
1977; Takeuchi & Lin 2002; Armitage 2018). The growth of dust
grains in the outer disc and their subsequent radial drift inwards have
been confirmed by observations (e.g. Panić et al. 2009; Andrews
et al. 2012; Isella, Pérez & Carpenter 2012; Rosenfeld et al. 2013;
Powell, Murray-Clay & Schlichting 2017).

To create a dust-rich inner disc in which to form planets, the
radial drift of dust particles needs to be stopped or slowed down.
The radial drift of particles in the Epstein drag regime slows
down closer to the star in conventional disc models, and this can
concentrate dust in the inner disc to some extent (Youdin & Shu
2002; Youdin & Chiang 2004; Birnstiel, Dullemond & Brauer 2010;
Birnstiel, Klahr & Ercolano 2012; Dr ↪

ażkowska, Alibert & Moore
2016). Another way to halt the radial drift and enrich the inner
disc with dust is to trap the solids inside an axisymmetric local
gas pressure maximum that is expected to form if the accretion
in the inner disc is driven by the magneto-rotational instability
(MRI; Kretke et al. 2009; Dzyurkevich et al. 2010; Dr ↪

ażkowska,
Windmark & Dullemond 2013; Chatterjee & Tan 2014). A gas
pressure maximum acts as a trap for the marginally coupled solids
as the gas inwards of the pressure maximum is super-Keplerian,
reversing the direction of the radial drift (e.g. Pinilla, Benisty &
Birnstiel 2012). Furthermore, in a steady-state disc accreting due
to the MRI a pressure maximum forms at the boundary between
the thermally ionized innermost disc in which the MRI-induced
viscosity is high, and the low-viscosity dead zone in which the MRI
is suppressed due to low ionization levels (Gammie 1996). This
local pressure maximum is expected to form at few tenths of au
around solar and sub-solar stars (Chatterjee & Tan 2014), which
is consistent with the orbital distances of the close-in super-Earths
and mini-Neptunes.

Mohanty et al. (2018) presented a semi-analytic steady-state inner
disc model in which the disc structure, thermal ionization, and the
viscosity due to the MRI were determined self-consistently. The
location of the pressure maximum inferred from this model is
similarly in general agreement with the orbital distances of the
close-in planets. An important insight from the Mohanty et al.
(2018) models of the inner disc is that in a steady state they
predict gas surface densities that are considerably lower than those
of the minimum mass solar nebula. This is not surprising as the
minimum mass solar nebula simply extrapolated the surface density
to small separations, whereas in reality the shrinking size of the
dead-zone results in more efficient angular momentum transport,
hence lowering the surface densities towards smaller separations.

The atmospheres of many of the close-in super-Earths and mini-
Neptunes must be H/He dominated (e.g. Jontof-Hutter et al. 2016),
and they typically make up 0.1–10 per cent of their total mass
(Lopez & Fortney 2014; Wolfgang & Lopez 2015). Thus, they
are considerably larger than the atmospheres of the planets in the
inner Solar system. Outgassing of hydrogen from a rocky core is
not sufficient to explain the majority of these atmospheres (Rogers
et al. 2011). Thus, these atmospheres are most likely composed of
gas accreted from the protoplanetary disc after the formation of a
solid core. If so, these atmospheres are formed steadily through core
accretion.

Lee, Chiang & Ormel (2014; see also Lee & Chiang 2015,
2016; Lee, Chiang & Ferguson 2017) argue that core accretion
is so efficient that the key concern is how to stop the super-
Earth cores from undergoing run-away accretion and becoming
gas giants (Mizuno 1980). This led Lee & Chiang (2016) to
suggest that super-Earth/mini-Neptune formation occurred in gas-
poor ‘transition discs’, during the final short-lived phase of disc
dispersal. The requirement for a gas-poor inner disc raises the
question if planet formation in the gas-poor inner disc arising
due to steady-state MRI accretion could be a desirable scenario
and a possible alternative to the Lee & Chiang (2016) proposal of
atmospheric accretion during disc dispersal.

In this paper, we examine the possibility of the in situ formation
of the close-in planets in the inner disc structure arising from
MRI-driven accretion, obtained using the self-consistent model of
Mohanty et al. (2018). First, in Section 2, we examine the evolution
of dust in the inner disc and discuss the possibility of planetesimal
formation. In Section 3, we calculate the atmospheres that super-
Earth and mini-Neptune cores can accrete in the gas-poor inner disc
implied by the MRI, and then evolve them forward in time, in order
to compare our calculations to the data.

An important caveat to our dust calculations is that we evolve the
dust assuming the gas profile is fixed in time. Dust grains can act
to suppress the MRI by lowering the coupling between the gas and
the magnetic field (e.g. Sano et al. 2000; Ilgner & Nelson 2006),
and could thus significantly alter the gas disc structure. Moreover,
at high dust-to-gas ratios, which we show can be achieved in the
inner disc, dust becomes dynamically important, and the dynamical
back reaction on the gas should be taken into account. In Section 4,
we qualitatively discuss these effects, and how they might influence
our results. We shall address the self-consistent feedback of dust
enhancement on the gas disc structure in subsequent studies.

2 DUST EVOLUTI ON

We consider the evolution of the dust, including growth, fragmenta-
tion, and radial drift, in a steady-state gas disc that is viscously
accreting due to the MRI. The structure of the gas disc (gas
surface density, temperature, pressure, and viscosity) is obtained
from the steady-state models of the inner protoplanetary gas disc
calculated by Mohanty et al. (2018). In these models, the viscosity
(α parameter) is determined self-consistently with the disc structure
(Shakura & Sunyaev 1973), thermal ionization, and MRI criteria
(Bai 2011; Bai & Stone 2011). The parameters of the model are the
stellar mass and radius (M∗, R∗), steady-state accretion rate (Ṁg),
and minimum viscosity of the gas due to purely hydrodynamical
effects (αDZ). The minimum viscosity αDZ is the assumed value
of α inside the MRI-dead zones; it is a minimum in the sense
that such hydrodynamical effects are assumed to dominate over
the MRI-induced turbulence if the MRI implies a viscosity lower
than αDZ. In this work, we primarily use M∗ = 1 M�, R∗ =
2.33 R�, Ṁg = 10−8 M� yr−1, and αDZ = 10−4. The disc structure
for these parameters is shown in Fig. 1. The local gas pressure
maximum is at an orbital distance of ∼0.7 au, and temperature and
surface density at that location are ∼1000 K and ∼5000 g cm−2,
respectively. Outwards from the pressure (and the surface density)
maximum, the MRI is suppressed and α = αDZ.

Throughout this paper, we use the above fiducial values for the
disc parameters. Here, we briefly describe how the disc structure
depends on these parameters. For a higher gas accretion rate Ṁg,
the radial α profile is roughly an outward-translated version of
the one shown in the top panel of Fig. 1, and inward-translated
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2298 M. R. Jankovic, J. E. Owen, and S. Mohanty

Figure 1 Gas disc structure from the steady-state model of Mohanty et al.
(2018) for M∗ = 1 M�, R∗ = 2.34 R�, Ṁg = 10−8 M� yr−1, and αDZ =
10−4. From top to bottom: α parameter, mid-plane pressure, surface density,
and temperature, as functions of radius. Location of the local gas pressure
maximum due to the MRI is indicated by the vertical dashed line.

for a smaller Ṁg. The radial location of the local gas pressure
maximum scales with the accretion rate approximately as Ṁ1/2

g .
For a higher αDZ, the α falls to this value closer to the star, and
vice versa, but the value of α as a function of orbital distance
remains almost the same otherwise; as a result, the radial location
of the local pressure maximum scales with the minimum dead-
zone viscosity as α

−1/4
DZ . Furthermore, inwards of the pressure

maximum the temperature has to be sufficiently high for thermal
ionization of potassium to support the MRI, and so it is always
larger than 1000 K, regardless of the exact choice of Ṁg and αDZ.
For a steady-state vertically-isothermal α-disc, the accretion rate is
Ṁg = 3πc2

s α�g/� (ignoring an additional factor that depends on
the boundary condition at the inner disc edge, and that becomes
unimportant far away from the edge). Further assuming (as is
approximately the case) that the temperature at the location of the
pressure maximum is constant regardless of the disc parameters,
it follows that the maximum gas surface density approximately
depends on the disc parameters1as Ṁ1/4

g and α
−5/8
DZ .

As we neglect the dynamical back reaction of the dust on the gas
and the effect of the dust on the MRI, the local evolutionary time-
scales are considerably shorter than the Myr time-scale on which
the accretion rate will evolve. Thus, the structure of the gas disc
is held fixed, i.e. not evolved in time. Note also that our gas disc
model considers MRI-driven accretion only, and magnetic winds, if
present, can also affect the inner gas disc structure (e.g. reduce the
gas surface density compared to the minimum mass solar nebula
even in the absence of the MRI, Suzuki et al. 2016).

2.1 Methods

The dust particle size distribution is evolved using the two-
population model of Birnstiel et al. (2012). The dust surface density
�d is evolved using the advection–diffusion equation

∂�d

∂t
+ 1

r

∂

∂r

[
r

(
�dū − Dgas�g

∂

∂r

(
�d

�g

))]
= 0 , (1)

where r is the cylindrical radius, ū is the dust advection velocity,
Dgas is the gas diffusivity, and �g is the gas surface density.

The dust advection velocity is a sum of the velocities due to
advection with the accreting gas and radial drift. For particles with
Stokes number Sti = πρsai/2�g (with ρs the internal density of
the dust and ai the particle size), and adopting the terminal velocity
approximation (e.g. Takeuchi & Lin 2002), the dust velocity is given
by

ui = 1

1 + St2
i

ugas + 2

Sti + St−1
i

udrift , (2)

where

udrift = c2
s

2vK

d lnP

d lnr
, (3)

with cs the speed of sound, vK the Keplerian velocity, and P the mid-
plane gas pressure. Small particles (St � 1) move with the gas, and
larger particles can move faster or slower than the gas, depending
on the sign of the pressure gradient.

1Derivation of the scalings from the Shakura–Sunyaev equations takes into
account the small correction due to the dependence of the temperature on
the disc parameters and yields that the maximum surface density depends
on the disc parameters as Ṁ

3/10
g and α

−13/20
DZ . These small corrections are

omitted here for simplicity.
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Planet formation in an MRI accretion disc 2299

In the Birnstiel et al. (2012) model, the dust surface density �d

and dust advection velocity ū are the sum and the mass-weighted
average, respectively, of the surface density and velocity of two
populations of particles: small monomer-sized particles (a0 = 1μm)
and large particles (a1). The size of the large particles evolves in
time and space. At first, small dust grains grow. Then, at each radius
the size of the large particles is set by whichever process yields the
smallest grain size: radial drift (adrift), where grains larger than adrift

radially drift more quickly than they can grow; drift-fragmentation
(adf), where grains larger than adf fragment due to relative radial
drift velocities; or turbulent fragmentation (afrag), where grains
larger than afrag fragment due to relative velocities induced by
turbulence.

As we are interested in the innermost protoplanetary disc, inside
the ice line, we set the bulk density of particles to ρs = 3 g cm−3,
and the critical fragmentation velocity to uf = 1 m s−1, based on
experiments on collisions of silicate grains (Blum & Münch 1993;
Beitz et al. 2011; Schräpler et al. 2012; Bukhari Syed et al. 2017) of
similar size (the regime applicable in the Birnstiel et al. 2012 model
used here).2

The viscosity parameter α due to the MRI turbulence from our
gas disc model is determined as a vertical average at each radius.
We assume that this vertically averaged α signifies the strength of
turbulence that particles feel, which in turn determines the particle
size due to turbulent fragmentation (afrag) and the radial turbulent
mixing (diffusivity Dgas). However, the viscosity (and the level of
turbulence) can be different at the disc mid-plane compared to
the upper layers of the disc, depending on where the non-ideal
magnetohydrodynamic effects suppress the MRI. Dust tends to
settle towards mid-plane, its scale height being determined by the
balance between gravitational settling and turbulent stirring (e.g.
Youdin & Lithwick 2007). The use of a vertically averaged α

could thus be invalid in weakly turbulent regions. Nevertheless,
we proceed with this assumption for ease of computation; we
do check the robustness of our results by swapping the vertically
averaged α parameter for the mid-plane value in one run, and recover
qualitatively the same results.

2.2 Numerical procedure

The advection–diffusion equation (1) is integrated using an explicit
first order in time and second order in space finite element method.
The advection term is integrated with an upwind scheme that adopts
a van Leer flux limiter; the numerical scheme is described in detail
by Owen (2014). The only modification we have made is the
inclusion of the Birnstiel et al. (2012) dust evolution algorithm.
Our simulations use 262 cells in the radial direction with a 0.002 au

2We note that simulations of grain collisions (Meru et al. 2013) indicate that
the critical fragmentation velocity could be significantly higher for porous
grains than for compact ones, for a range of porosities that is not robustly
covered by the above experiments. Now, in the fragmentation-limited regime
particle size depends quadratically on uf. Thus, if porosity is important, and
hence uf is set to, e.g. 10 m s−1 instead, particle sizes (Stokes number) would
be larger by a factor of 100, strongly affecting how coupled a particle is to
the gas flow and how susceptible to radial drift. However, since particles
also become less porous (to the point of becoming compact, and fragile) in
a wide variety of conditions – e.g. in collisions that result in coagulation
(simulations by Meru et al. 2013, experiments by Kothe, Güttler & Blum
2010), collisions that result in bouncing (Weidling et al. 2009), and collisions
of larger grains with monomers (Schräpler & Blum 2011) – we opt to use
the compact grain value of uf = 1 m s−1.

Figure 2 Dust-to-gas ratio �d/�g as a function of radius after 0.2 Myr, for
various dust accretion rates at the outer boundary, as indicated in plot legend.
Location of the local gas pressure maximum due to the MRI is indicated
by the vertical dashed line, and location of the dust sublimation line by the
vertical dotted line.

spacing inwards of 0.4 au and a 0.01 au spacing outwards. The inner
boundary is set to 0.016 au, and the outer boundary is set to 1 au (i.e.
outside the pressure maximum, but inside the ice line). The time-step
is set with respect to the spatial resolution, the advection speed, and
the diffusion coefficient, so that it obeys the Courant–Friedrichs–
Lewy condition. Following Birnstiel et al. (2012), at each time-step
the size of the large particles is updated to the smallest of the four
size limits (agrowth, adrift, adf, or afrag). At the outer boundary, we
impose a constant dust accretion rate, which we vary in different
runs. This is to mimic the fact that the dust flux is not a fixed quantity
and can vary with time due to radial drift of dust from the outer disc
(e.g. Birnstiel et al. 2012). Dust particle size at the outer boundary
is calculated self-consistently.

Furthermore, we neglect the effects of dust sublimation, and
note that the temperature in our gas disc model exceeds the dust
sublimation value (∼1500 K) only inwards of 0.1 au.

2.3 Results

Our simulations proceed as follows: initially, the dust-to-gas ratio
is 0.01 at all radii and all dust grains are monomers (a =
1μm). We evolve the dust for 0.2 Myr, by which time it has
reached steady state. The steady-state dust-to-gas ratio is shown
in Fig. 2 as a function of radius for three different values of dust
accretion rates Ṁd at the outer boundary condition. For any given
dust accretion rate, the steady-state dust-to-gas ratio is roughly
constant inwards of the pressure maximum (indicated by the
vertical dashed line), and it decreases outwards from the pressure
maximum. There is only a moderate accumulation of dust at the
pressure maximum, compared to the rest of the inner disc. This
implies that the pressure maximum does not efficiently trap dust
particles.

Essentially, the particles do not feel significant gas drag, and thus
do not significantly feel the effect of the change in the sign of the
pressure gradient inwards of the pressure maximum. This happens
because the MRI-induced turbulence causes fragmentation, result-
ing in small particles. Fig. 3 shows the three dust size limits (due
to radial drift, drift-fragmentation, and turbulent fragmentation) as
functions of radius, calculated in steady state. The smallest of the
three (afrag), due to turbulent fragmentation, sets the size of the
population of large particles in these simulations, which dictates
the evolution of dust overall. Particle size is thus limited to only

MNRAS 484, 2296–2308 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/484/2/2296/5274141 by U
niversity of C

am
bridge,  m

j577@
cam

.ac.uk on 30 June 2021



2300 M. R. Jankovic, J. E. Owen, and S. Mohanty

Figure 3 Dust particle size limits due to radial drift (adrift), drift-
fragmentation (adf), and turbulent fragmentation (afrag) as functions of radius
after 0.2 Myr. Location of the local gas pressure maximum due to the MRI
is indicated by the vertical dashed line, and location of the dust sublimation
line by the vertical dotted line. Spikes in adrift and adf correspond to gas
pressure extrema.

a few millimetres near the pressure maximum (indicated by the
vertical dashed line), and the particles are monomer sized in the
innermost disc.

The particle size determines, through the Stokes number, how
coupled the dust is to the gas. Thus, the particle size determines to
what extent the particles move with the accreting gas towards the star
and also by how much they are slowed down or sped up by the gas
drag. In this case, inwards of the pressure maximum (and outwards
from the pressure minimum at ∼ 0.2 au) the gas drag acts outwards
(udrift > 0). However, as dust particles are small inside the pressure
maximum (St ∼ 4 × 10−4 even for the large particles) and their size
further decreases inwards, the dust advection velocity is outwards
only in a very narrow region. Consequently, after accounting for the
diffusivity (i.e. the radial turbulent mixing of dust, which limits the
radial gradient of the dust-to-gas ratio), the mass build-up inside the
pressure maximum is moderate compared to the rest of the inner
disc.

The dust advection velocity used in our method is a mass-
weighted average of the velocity of the monomer-sized particles
and the large particles (of size afrag, Fig. 3). The monomer-sized
particles are just advected by the gas through the pressure maximum,
but it can be shown that an individual large particle will also not
be trapped. This is due to dust particles being in the fragmentation
limit, in which the particles are fragmented faster than they drift.
The drift time-scale for the large particles inside the pressure trap
(the region inwards of the pressure maximum where their advection
velocity is outwards) can be estimated by

tdrift ≈ 1

2

dtrap

u1(rPmax )
, (4)

where dtrap ≈ 0.06 au is the radial width of the trap, and the particle
velocity is u1 ≈ 2 cm s−1 (see equation 2), which is evaluated
just inwards of the pressure maximum. The velocity u1 decreases
inwards, and so this estimate, tdrift ≈ 7400 yr, is a lower limit. The
collisional (i.e. fragmentation) time-scale for the large particles,
tcol = (nσ�v)−1, is much shorter in comparison. Here, n = fmρd/md

is the number density of large particles, fm is the mass fraction of
the large particles (fm = 0.75 in the fragmentation limit, Birnstiel
et al. 2012), ρd ≈ �d�/(

√
2πcs) is the mid-plane mass density of

particles, md is mass of a single particle, σ is the collisional cross-
section, and �v ≈ √

3αStcs is the typical relative velocity between

the particles due to turbulence (Ormel & Cuzzi 2007). This yields
the collisional time-scale of

tcol =
√

8

27π

�g

fm�d

√
St

α

1

�
,

≈ 4

(
fm

0.75

)−1 (
�d

0.01�g

)−1 ( St

10−4

)1/2 ( α

10−4

)−1/2

×
(

�

10 yr−1

)−1

yr, (5)

where we have expressed the particle size afrag in terms of the
Stokes number St. At the pressure maximum α = 10−4, and so tcol

≈ 0.08�g/�d yr �tdrift for dust-to-gas ratios �d/�g � 0.01. Thus,
instead of getting trapped in the pressure maximum, dust particles
fragment and flow inwards.

In the innermost disc, turbulent fragmentation yields monomer-
sized particles that are entrained with the gas (ū ∼ ugas). And so the
radial drift inwards is slowed by particles becoming well coupled
to the gas. This is also why, in steady state, the dust-to-gas ratio is
roughly constant inwards of the pressure maximum.

Finally, despite the pressure maximum not trapping the inflowing
particles, the dust-to-gas ratio is enhanced. Because the dust moves
with the gas in the innermost disc, the steady-state dust-to-gas
ratio is directly proportional to the ratio of dust-to-gas accretion
rates at the outer boundary, Ṁd/Ṁg. Now, the initial dust-to-gas
ratio everywhere is �d/�g = 10−2. Preserving this ratio overtime
in the inner disc would thus require Ṁd/Ṁg = 10−2 at the outer
boundary. However, the growth of dust grains in the outer disc,
and the attendant inwards radial drift of grains there, means that
Ṁd/Ṁg > 10−2 at the outer boundary (i.e. dust accretes inwards
preferentially compared to gas). In this case, the inner disc in steady
state will also have �d/�g > 10−2. In other words, as Fig. 2 shows,
radial drift of grains from the outer disc leads to an enrichment of
solids in the inner disc.

What level of the enrichment is attainable depends on the ratio of
dust and gas accretion rates Ṁd/Ṁg, i.e. how quickly the grains drift
from the outer disc relative to gas accretion. Since the grain growth
in the outer disc is limited by radial drift rather than fragmentation
(Birnstiel et al. 2012), high grain drift rates are possible. For
example, assuming that �d/�g = 10−2 in the outer disc, achieving
Ṁd/Ṁg = 1 requires the radial drift velocity of grains (≈2 St udrift)
to reach 102ugas. For the standard α-disc model and α = 10−4

(extrapolation of the disc model shown in Fig. 1), this is satisfied
if grains grow to St ∼ 10−2. This corresponds to a particle size an
order of magnitude below the radial drift limit (adrift) throughout
the outer disc. Therefore, the grains easily grow large enough to
achieve accretion rates of Ṁd/Ṁg � 1. These grains in the outer
disc will contain ices that will evaporate as grains drift across the
ice lines, towards the inner disc. However, even in the outermost
disc silicates account for a considerable portion of the total solid
mass (e.g. adopting the abundances of oxygen and carbon in their
main molecular carriers from Öberg, Murray-Clay & Bergin 2011,
23 per cent of the total oxygen and carbon mass in the outer disc
is in silicates and other refractories). Hence, Fig. 2 features dust
accretion rates up to Ṁd/Ṁg = 1 (which, as argued above, are
likely), in which case the dust-to-gas ratio in the inner disc also
approaches unity.

2.4 Implications for planetesimal formation

The above results show that the MRI yields a dust-enhanced inner
disc, although at the expense of the dust particle size. Further-
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more, as there is no trap for the dust particles, the accumulation
of dust is limited by the dust inflow rate from the outer disc,
and does not increase indefinitely. In this section, we explore if
further concentration of particles via the streaming instability (SI;
Youdin & Goodman 2005) and subsequent gravitational collapse
into planetesimals could be the next step towards forming the close-
in super-Earths and mini-Neptunes.

The SI can greatly concentrate dust particles if the ratio of dust-
to-gas bulk densities is ρd/ρg � 1 (Youdin & Goodman 2005;
Johansen & Youdin 2007). This is most likely to be attained in the
disc mid-plane, as dust particles gravitationally settle. The settling
is balanced by turbulent stirring. One source of turbulence is the
MRI. To reach ρd/ρg ≥ 1 in the mid-plane in the presence of such
turbulence, the dust-to-gas surface density ratio �d/�g needs to be
greater than or equal to Zcr1 = √

α/(St + α) (Carrera et al. 2017).
Even in discs that are weakly turbulent or completely laminar,

as dust settles the dust–gas interaction leads to turbulence (self-
stirring) that can prevent clumping by the SI. In this case, SI can only
successfully concentrate dust particles if the dust-to-gas ratio �d/�g

is greater than a critical value Zcr2 that depends on the particle Stokes
number (Johansen, Youdin & Mac Low 2009; Carrera, Johansen &
Davies 2015). For St < 0.1 (relevant to our simulations), this critical
value has been most recently revised by Yang, Johansen & Carrera
(2017), who find

log Zcr2 = 0.1 log2 St + 0.2 log St − 1.76 . (6)

Small dust grains that are entrained with the gas do not participate
in the SI. Hence, to compare our results against the SI criteria, we
use the dust-to-gas ratio fm�d/�g of the large grain population only
(where fm = 0.75 is the mass fraction of large particles; Birnstiel
et al. 2012).

In the top panel of Fig. 4, we compare this dust-to-gas ratio, for the
outer boundary condition Ṁd/Ṁg = 1, with the above two criteria
for the onset of the SI. We find that in the inner disc, turbulence
due to the MRI is generally more prohibitive to dust settling than
the turbulence due to dust–gas interactions. Both conditions are
fulfilled only near the pressure (and density) maximum.

Provided that the SI successfully concentrates dust particles in
the disc mid-plane, the dust bulk density there may reach up to
100–1000 times the local gas density (Johansen & Youdin 2007).
Gravitational collapse of such particle concentrations will occur if
the dust density exceeds the local Roche density (below which
the star can tidally disrupt the fragment), ρRoche = 9M∗/4πr3.
Comparing ρRoche with the mid-plane gas densities in our steady-
state MRI disc (Fig. 4, bottom panel), we find that the condition
for gravitational collapse is only satisfied near the pressure (and
density) maximum, or at larger separations. Importantly, the bottom
panel of Fig. 4 shows that the possibility of gravitational collapse
of solids in the inner disc is severely limited by the steep gradient
of the Roche density.

Overall, given the stellar and disc parameters used here, we find
that the SI and the gravitational collapse pathway to planetesimals
are viable in the inner disc only in a very narrow region near the
pressure maximum. For gas accretion rates larger than the one used
here (Ṁg > 10−8 M� yr−1, which could be expected in the early
phase of disc evolution, e.g. Manara et al. 2012), this conclusion
will hold, while for sufficiently smaller accretion rates planetesimals
would not form in this way anywhere near or inwards of the pressure
maximum. First, in both cases dust evolution is expected to yield
roughly the same steady-state dust-to-gas ratios given the same ratio
of dust and gas accretion rates at the outer boundary. To confirm
this conclusion, we repeat the dust evolution calculations for the

Figure 4 Top panel: Dust-to-gas ratio of large dust grains fm�d/�g as a
function of radius (when Ṁd/Ṁg = 1 at the outer boundary; fm = 0.75),
compared to the two criteria for the onset of the streaming instabilities.
Bottom panel: Expected peak local dust densities ρd if streaming instabilities
successfully concentrate particles in the disc mid-plane as functions of
radius, compared to the Roche density ρRoche. In both panels, the vertical
dashed line indicates location of the local pressure maximum, and the dotted
line indicates the location of the dust sublimation line.

gas accretion rate of Ṁg = 10−9 M� yr−1, obtaining results very
similar to those above. In addition to similar steady-state dust-to-
gas ratios, the particle Stokes number sharply drops inwards of the
pressure maximum, and the SI is similarly triggered only around the
pressure maximum. This is because the slope of the increase in α

inwards of the pressure maximum is roughly the same for different
Ṁg. Hence, the SI criteria is expected to be fulfilled only near the
pressure maximum for higher gas accretion rates as well.

Secondly, even if SI is successfully triggered, to form planetesi-
mals the peak dust density needs to be above the Roche density. The
peak dust density scales with the mid-plane gas density at the pres-
sure maximum, so it scales with the gas accretion rate approximately
as Ṁ−1/2

g , and with the radial location of the pressure (and density)

maximum as r−1
Pmax

. Since the peak dust density is larger than the
Roche density at the pressure maximum for Ṁg = 10−8 M� yr−1,
and the Roche density ρRoche ∝ r−3, for Ṁg > 10−8 M� yr−1

the gravitational collapse criterion will also be fulfilled near the
pressure maximum, while for a sufficiently smaller accretion rate
(including Ṁg = 10−9 M� yr−1) peak dust density will be too
low.

Moreover, it is important to note that, in order for the SI to operate,
there must be a relative azimuthal velocity between the dust and gas
(e.g. Squire & Hopkins 2018), in addition to the density criteria
invoked above. Such a relative velocity necessarily disappears at
the pressure maximum itself, further constricting the region where
the SI is viable in our disc.
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However, we reiterate that our calculations do not include the
effects of dust on the gas dynamics and on the MRI. The latter
effect in particular may relax some of the constraints on the SI,
and we discuss this possibility in Section 4. Overall, if the close-
in sub-Neptunes form in situ, in an MRI-accreting inner disc (as
suggested by Chatterjee & Tan 2014), any theory needs to explain
how the dust grains can grow larger to either start the SI in a wider
vicinity of the pressure maximum, or for the pressure maximum to
become an efficient dust trap that can concentrate grains to densities
needed for the gravitational collapse, or find an alternative pathway
to planetesimal and core formation.

3 AC C R E T I O N A N D E VO L U T I O N O F
PL ANETARY ATMOSPHERES

We showed above that planetesimal formation through streaming
instabilities and gravitational collapse is challenging despite the
dust enhancement in the inner disc. Although these conclusions
could change (see Section 4), it is not presently clear how exactly
planetesimals or cores would arise in the inner disc, and we
are unable to predict properties of solid cores formed in situ.
Nevertheless, orbital distances, radii, and masses of many close-
in planets have been well determined observationally. Furthermore,
their radius distribution has been shown to be consistent with Earth-
like composition and thus formation inside the ice line (Owen &
Wu 2017), possibly in the inner disc. Thus, in this section we use
observational results to perform a separate test of in situ formation
by considering accretion of planetary atmospheres in the inner disc
and their subsequent evolution.

To follow the accretion of planetary atmospheres, we assume
that solid super-Earth-sized cores are present in the inner regions
of our gas-poor inner disc structure taken from Mohanty et al.
(2018). Furthermore, following the arguments of Lee & Chiang
(2016), we ignore additional heating arising from further accre-
tion of solids, as any amount of accretion providing significant
heating typically results in the core rapidly reaching run-away
masses.

After disc dispersal (which we do not model), we also account
for atmospheric mass lost due to photoevaporation. This is an
important addition, as several theoretical (e.g. Lopez & Fortney
2013; Owen & Wu 2013) and observational (e.g. Lundkvist et al.
2016; Fulton et al. 2017; Fulton & Petigura 2018) studies have
shown that photoevaporation significantly sculpts the exoplanet
population after formation.

3.1 Methods

3.1.1 Accretion of planetary atmospheres

We assume that solid super-Earth-sized planet cores accrete their
gaseous envelopes in a gas-poor inner disc that is viscously
accreting due to the MRI; this disc structure does not evolve in
time. For a quasi-steady-state envelope, the accreted envelope mass
fraction after time t can be estimated by the scaling relations from
Lee & Chiang (2015; with an additional factor that accounts for
varying gas surface density from Lee et al. 2017, Fung & Lee
2018):

X(t) = 0.07

(
t

1 Myr

)0.4 (0.02

Z

)0.4 ( μ

2.37

)3.4

×
(

Mcore

5M⊕

)1.7 (
f�

0.1

)0.12

(7)

for dusty atmospheres, and

X(t) = 0.18

(
t

1 Myr

)0.4 (0.02

Z

)0.4 ( μ

2.37

)3.3

×
(

Mcore

5M⊕

)1.6 (1600 K

Trcb

)1.9 (
f�

0.1

)0.12

(8)

for dust-free atmospheres. Here, Z is the metallicity of the atmo-
sphere; μ = 1/(0.5W + 0.25Y + 0.06Z) is the mean molecular
weight, with W = (1 − Z)/1.4, Y = 0.4(1 − Z)/1.4; Trcb is the temper-
ature at the radiative–convective boundary inside the atmosphere;
f� = �g/�MMSN is the ratio of the gas surface density (�g from our
inner disc model, Fig. 1) and the gas surface density profile of the
minimum mass solar nebula (�MMSN = 1700(d/1 au)−3/2 g cm−2,
where d is the orbital radius, Hayashi 1981). Furthermore, we have
assumed the gas adiabatic index is γ = 1.2, and that in dusty
atmospheres Trcb = 2500 K, which arises from the disassociation of
Hydrogen (see Lee & Chiang 2015, their section 2.1).

We use the expressions (7,8) to calculate how much gas a planet
accretes in 1 Myr as a function of core mass, for various metallicities
Z and gas surface density factors f� in the case of dusty atmospheres
(with Trcb = 2500 K), and various Z, f� , and Trcb in the case of
dust-free atmospheres.

3.1.2 Photoevaporation of planetary atmospheres

These accreted atmospheres are then subjected to photoevaporation
following disc dispersal. We use a simplified estimate of the
photoevaporative mass-loss. First, for a given planet core mass Mcore

and (accreted) envelope mass fraction X we find the photospheric
radius of the planet Rp. For this, we use a simple model of an
atmosphere at hydrostatic equilibrium (Owen & Wu 2017), in which
the solid core is surrounded by an adiabatic convective envelope,
topped by an isothermal radiative photosphere. Next, the mass-loss
time-scale due to high-energy stellar irradiation is (Owen & Wu
2017)

tẊ = 4πd2GM2
coreX(1 + X)

ηπLHE

1

R3
p

, (9)

where d is the orbital radius of the planet, and LHE is the stellar
high-energy flux. We consider a Sun-like star, as in our disc model
above.

To determine the final envelope mass fractions, we do not
explicitly evolve the atmospheres in time. Instead, we use the fact
that most of the mass-loss happens during the first ∼ 100 Myr after
disc dispersal since during this period the stellar high-energy flux
LHE is saturated (LHE = Lsat ∼ 10−3.5L� for a Sun-like star), while
after this time it quickly decays (Jackson, Davis & Wheatley 2012;
Tu et al. 2015).

Thus, if a planet’s mass-loss time-scale tẊ is initially (i.e. at the
time of disc dispersal) longer than 100 Myr, the planet will not suffer
significant mass-loss. Here, we assume that such a planet remains
unchanged by the photoevaporation.

On the other hand, a planet with initial tẊ < 100 Myr will lose
mass. Now, for a given core mass Mcore and orbital distance d, the
mass-loss time-scale as a function of the envelope mass fraction,
tẊ(X), peaks at X ≡ Xpeak of a few per cent, decreasing for both
smaller and larger X (Owen & Wu 2017). Thus, for a planet with
an initially small accreted envelope mass fraction (X < Xpeak), the
mass-loss further shortens the loss time-scale. Hence, if such a
planet’s initial mass-loss time-scale is less than 100 Myr it is subject
to run-away mass-loss, and we assume it is completely stripped
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Figure 5 Envelope mass fraction of atmospheres accreted in 1 Myr as a
function planet core mass for dusty (black lines) and dust-free (grey lines)
atmospheres and a variety of metallicities Z, gas surface density factors f�

and (in the case of dust-free atmospheres) radiative–convective boundary
temperatures Trcb, as indicated in plot legend. The grey region indicates
the total range of expected envelope mass fractions (except for those that
would reach an envelope mass fraction of X = 0.5 within 1 Myr and thereby
expected to undergo run-away accretion to form gas giants; these are not
shown).

of its atmosphere. Conversely, the mass-loss time-scale of a large
atmosphere (X > Xpeak) increases as it loses mass, tending towards
the peak value of tẊ(Xpeak). If Mcore and d are such that the latter
peak time-scale is ≥100 Myr, we assume that a planet with such
a large initial atmosphere will stall at an envelope mass fraction X
corresponding to a loss time-scale of tẊ = 100 Myr. However, if the
peak time-scale is <100 Myr, the mass-loss time-scale can increase
to this peak value and then descend into the run-away regime on
the other side while the stellar activity is still saturated; thus, such
a planet will lose its entire atmosphere regardless of the accreted X.
This simple prescription adequately captures the basic physics of
atmospheric photoevaporation (see far left-hand panel of fig. 6 in
Owen & Wu 2017).

3.2 Results

3.2.1 Accretion of planetary atmospheres

Using the scaling relations (7,8), we calculate the envelope mass
fractions that planetary cores of various masses accrete from the gas
disc in 1 Myr. Results are shown in Fig. 5 for both dusty and dust-free
atmospheres of various metallicities, ranging from solar (Z = 0.02)
to the metallicity of Neptune’s atmosphere (Z = 0.2; Karkoschka &
Tomasko 2011), gas surface density factors f� = 10−4–1.88, and
radiative–convective boundary temperatures Trcb = 1600–2500 K.

The dependence on metallicity Z is non-monotonous, as the ac-
creted envelope mass fraction depends separately on the metallicity
and on the mean molecular weight (which is set by the metallicity).
The smallest accreted atmospheres, with the rest of the parameters
fixed, have Z ∼ 0.1.

The radiative–convective boundary temperature Trcb is expected
to be roughly constant in dusty atmospheres, so we only explore
the effect of this parameter in dust-free atmospheres. In the latter,
Trcb is related to the temperature of the environment. Additionally,
accretion of both dust-free and dusty atmospheres depends on the
density of the environment. Here, we are interested in atmospheres
that are accreted in the inner disc, near or inwards of the pressure
maximum. The location of the pressure maximum is determined
by the extent of thermal ionization of potassium in our disc model,

and so this corresponds to disc temperatures of T � 1000 K,
regardless of the exact disc parameters (e.g. gas accretion rate).
For a disc temperature of T ∼ 1000 K, numerical models of the
accreting atmospheres give Trcb ∼ 1600 K (Lee & Chiang 2015),
which thus sets a lower bound on Trcb for our calculations. Moreover,
the location of the pressure maximum is also where the gas surface
density is highest (see Fig. 1). Colder atmospheres in a more dense
environment accrete more. So, to show the maximum accreted
atmospheres in an MRI-accreting disc, we plot a set of dusty and
dust-free atmospheres (of various metallicities Z) for the maximum
f� = 1.88, and the minimum Trcb = 1600 K (the latter refers only to
the dust-free atmospheres). Conversely, the maximum temperature
at which equation (8) is valid (due to the limitations of the opacity
tables used by Lee et al. 2014) is Trcb = 2500 K,3 and the minimum
gas surface density in our inner disc model with respect to the
minimum mass solar nebula is f� ≈ 10−4 (corresponding to the
inner disc edge in Fig. 1). Hotter atmospheres in lower density
environments accrete less, and so to show the smallest accreted dust-
free atmospheres, we plot the f� = 10−4 atmospheres, with Trcb =
2500 K for the dust-free atmospheres, and with metallicity Z = 0.1
(since, as noted above, Z ∼ 0.1 yields the smallest atmosphere for
any given set of other parameters).

Finally, atmospheres that grow above a threshold of X = 0.5
undergo run-away accretion and end up as gas giants (Rafikov
2006). The scaling relations (7,8) are not applicable in this case,
neither are we interested in the much rarer close-in Jupiters.
Therefore, Fig. 5 is cut-off at X = 0.5, and the grey region indicates
how small or large super-Earth/mini-Neptune atmospheres may be
at the time of disc dispersal. Overall we see that, if the cores are
formed 1 Myr before the dispersal, run-away accretion is avoided for
the majority of relevant core masses, but they do accrete significant
gaseous envelopes of up to a few × 10 per cent of core mass.

The envelopes shown in Fig. 5 have been calculated assuming
that the accretion lasts for 1 Myr. Since disc lifetimes can be longer
(Mamajek 2009), these envelopes could be conservative estimates
if planets form sooner than 1 Myr before disc dispersal. If, for
example, the envelopes are accreted for 5 Myr, the envelope mass
will double. We do not expect the results to be very sensitive to the
exact disc parameters, as long as the cores accrete their atmospheres
in a thermally ionized MRI-active inner disc. We note, however,
that our disc model implies that the extent of such inner disc does
not encompass all observed sub-Neptunes for all relevant accretion
rates; e.g. the gas pressure maximum is at an orbital period longer
than 100 d only for gas accretion rates of Ṁg � 3 × 10−9 M� yr−1.
Thus, a planet with a longer orbital period might spend at least some
time in a colder MRI-dead zone, which we do not take into account.

3.2.2 Photoevaporation of planetary atmospheres

To further check the consistency of core accretion in the MRI-
accreting inner disc with observations, we need to consider whether
these accreted atmospheres survive photoevaporation. We calculate
the final (remaining) envelope mass fraction of the minimum and

3Note that assuming Trcb is directly proportional to the disc temperature
T, and scaling from the numerical models’ result that Trcb ∼ 1600 K
corresponds to T ∼ 1000 K, yields T ∼ 1500 K for Trcb ∼ 2500 K. The disc
temperature in our model only exceeds 1500 K at radii <0.1 au, so a
maximum Trcb of 2500 K is indeed roughly valid over most of our inner
disc.
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Figure 6 Maximum (top) and minimum (bottom) envelope mass fraction
of the atmospheres after accounting for photoevaporation, as functions of
planet core mass and orbital period. In the top figure, the hatched region
indicates the core masses for which the planets would undergo run-away
accretion and are thus excluded from here.

maximum possible accreted atmospheres (corresponding, respec-
tively, to dusty atmospheres with f� = 10−4 and Z = 0.1, and dust-
free atmospheres with Z = 0.02, f� = 1.88, and Trcb = 1600 K)
for each core mass and as a function of orbital period. Results are
shown in Fig. 6. In the case of the maximum accreted atmospheres
(top panel), the atmospheres would undergo run-away accretion for
core masses �8 M⊕ (indicated by the hatched region), which are
thus excluded here.

The figures show that the orbital period at which the atmosphere
can be completely evaporated decreases with increasing core mass,
and cores that retain their atmospheres generally evolve towards a
1 per cent envelope mass fraction as expected from theory. At 100 d,
the atmospheres are unaffected by photoevaporation, and at periods
shorter than 1 d all planets are predicted to end up as bare cores.
Massive cores are predicted to keep their 1–50 per cent atmospheres
at the majority of orbital periods, and planets with Earth-mass cores
are safe from complete mass-loss at periods larger than 50 d.

Note that here the orbital period determines the level of high-
energy flux that planet experiences and planet equilibrium tempera-
ture (and thus planet radius), but does not directly reflect variations
in temperature and density of the protoplanetary disc inside which
the atmospheres were accreted. As discussed above, the effect of the
disc temperature on the accreted envelope mass fraction is negligible
for dusty atmospheres. For dust-free atmospheres, the dependence

Figure 7 Mass–radius relationship for sub-Neptune planets: Earth-like
composition solid cores (dotted line), probabilistic fit to observations mean
value (dashed line) and scatter (solid dark grey region; Wolfgang et al. 2016),
region of low planet occurrence rates from the observed radius distribution
of planets (sheer grey region) (Fulton et al. 2017), and predictions from
the minimum and maximum accreted atmospheres and photoevaporation
(medium grey and light grey region, respectively) with orbital period
contours for the minimum accreted atmospheres (solid-line contours).

is monotonous and the extent of the effect is explored by considering
the minimum Trcb we expect in the inner disc, and the maximum
Trcb for which the scaling relations (7,8) are valid. Similarly, the
dependence on the disc density is explored by considering the
smallest and largest values of the ratio of the MRI-disc model
and the minimum mass solar nebula surface densities. Thus, by
calculating the effect of photoevaporation on both the minimum
and maximum accreted atmospheres shown in Fig. 5 for each core
mass, we also encompass the possible range of disc densities and
temperatures.

3.3 Comparison to observations

Overall, Fig. 6 shows that the envelopes formed in a gas-poor
inner disc due to the MRI survive photoevaporation for a large
range of orbital periods, and the low gas surface densities are not
a hindrance to the formation of mini-Neptunes. On the contrary,
the final envelope mass fractions of the planets that do keep their
atmospheres are typically overestimated. The planets with core
mass larger than 2 M⊕ are predicted to either have a > 1 per cent
atmosphere or to be completely evaporated. On the other hand,
from the observations, the typical envelope mass fraction of mini-
Neptunes that hold on to their atmospheres is 1 per cent (Wolfgang &
Lopez 2015). To look into this further, we compare the predictions
of our calculations against the observed mass–radius relationship
for sub-Neptune planets in Fig. 7, and against measured masses and
radii of individual sub-Neptune planets in Fig. 8.

For the observations in Fig. 7, we show the probabilistic best-
fitting mass–radius relationship of Wolfgang, Rogers & Ford
(2016): a power law M/M⊕ = 2.7(R/R⊕)1.3 (indicated by the dashed
line) with a standard deviation of ±1.9 M⊕ due to an intrinsic scatter
in planet mass (the dark grey region), and an upper limit constraint
on the planet density corresponding to a mass–radius relationship
for solid cores of Earth-like composition M/M⊕ = (R/R⊕)4 (dotted
line; Valencia et al. 2010). Additionally, the above mass–radius
relationship does not capture a significant feature of the observed
radius distribution of sub-Neptunes, a decrease in occurrence rates
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Figure 8 Sub-Neptune planets with measured masses and radii (square
markers if the mass was determined using the radial velocity method, and
triangles if the mass was determined using transit timing variations), with
uncertainties as listed in Wolfgang et al. (2016), Earth-like composition
solid cores (dotted line), and predictions from the minimum and maximum
atmosphere models (medium grey and light grey region respectively), in
period bins as indicated in plot labels. This figure indicates that while
the period range at which planets can be stripped by photoevaporation is
consistent with the data, our planets typically have larger H/He envelopes
that expected.

of planets with radii of 1.5–2 R⊕ (indicated here by the sheer grey
region; Fulton et al. 2017).

To show the predictions of our atmospheric calculations in the
mass–radius plane, we take the calculated envelope mass fraction
as a function of core mass and period and re-calculate the planet
radius at the planet age of 5 Gyr as a function of core mass
and period, using the same simple atmospheric evolution model
of Owen & Wu (2017). We show the results for the minimum
and maximum accreted atmospheres (Fig. 6, and excluding the
completely evaporated planets) in Fig. 7 (the medium and the light
grey region, respectively). Note that the light grey region has a cut-
off at about 8 M⊕ because we exclude massive cores that, given
the parameters of the maximum accreted atmospheres, would be
subject to run-away accretion. The solid line contours show how
the planet mass and radii change as a function of period for the
minimum accreted atmospheres. At the orbital period of 100 d, the
planets are largely unaffected by the atmospheric loss, and closer
to the star the photoevaporation removes atmospheres of the lower
mass planets entirely. For the planets that keep their atmospheres
at large periods, a decrease in period means little to no change in
planet mass. Consequently, for these planets a decrease in period
results in an increase in planet radius as atmospheres are hotter and
more expanded closer to the star due to stronger stellar irradiation.
At small periods, the atmospheric loss is significant for all planets,
and the trend is reversed.

It is clear from Fig. 7 that for planets with radii R � 2.3 R⊕
the core accretion of atmospheres in the inner disc predicts larger
planet radii than those observed, due to the overestimated envelope
mass fractions. The predicted atmospheres are massive enough to
populate the region corresponding to planet radii of 1.5–2 R⊕, which
is inconsistent with the observed decrease in planet occurrence
rates at those radii (sheer grey region). For planets with R �
2.3 R⊕, there is a region in which the observed (dark grey) and
the predicted (medium and light grey) mass–radius relationships
overlap. This overlap corresponds to the (minimum accreted)
predicted atmospheres for orbital periods between 20 and 100 d, and
a narrow range of short orbital periods (2–5 d). Notably, even for
the minimum accreted atmospheres, the planet radii, at fixed planet
mass, are smaller than those observed only for significant high-
energy fluxes at orbital periods of less than about 2 d. Taking into
account the full range of accreted atmospheres (up to the maximum
accreted atmospheres shown in light grey) further suggests that the
predicted atmospheres are typically larger than the atmospheres of
the observed sub-Neptunes.

We further compare the predictions of our calculations to sub-
Neptune planets with measured masses and radii (taken from
Wolfgang et al. 2016, excluding the planets where only the upper
limit on the mass was known). The observed and the predicted radii
and masses are shown in Fig. 8 in four panels corresponding to four
orbital period bins. As in Fig. 7, the medium and light grey regions
correspond to the predictions from the minimum and maximum
atmosphere mass models, respectively. To facilitate comparison
against the planets that are bare solid cores in each period bin,
here we also show the core masses that are predicted to lose their
entire atmospheres in a given period bin (the grey lines shown
below the dotted lines that represent the Earth-like composition
mass–radius relationship). Fig. 8 shows that the masses of the
predicted bare cores and the period at which photoevaporation
can strip them are largely consistent with those observed. That
is, there are no observed planets consistent with the Earth-like
composition that are (significantly) more massive than the largest
core that the photoevaporation can strip (the upper limit of the
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grey line, the predicted bare cores) in each period bin. Fig. 8
also explicitly demonstrates that for the planets that maintain their
atmospheres against the photoevaporation, the predicted planet radii
are consistent with or larger than those observed for the majority
of the planets. At long orbital periods (20–100 d), all planets
except one are consistent, within the observational uncertainties,
with the predictions (the minimum accreted atmospheres in medium
grey, the maximum accreted atmospheres in light grey, and the
region in between). At intermediate periods (5–20 d), about a third
of planets that are not bare cores have radii smaller than the predicted
radii at the same mass. Finally, at short periods of less than 5 d, there
are noticeably five planets with radii of ∼1.8–2 R⊕ that are neither
consistent with the mass–radius relationship of rocky cores, nor
with the presence of H/He envelopes. This suggests, potentially,
that the cores of these planets could contain significant amounts of
ice. Still, majority of the short-period planets are consistent with
the predictions. Additionally, we reiterate that, while there might
be exceptions, the radius distribution of sub-Neptunes is consistent
with cores being largely rocky (Owen & Wu 2017). Therefore, these
results confirm our inference that typically our planets accrete too
much gas. In Section 4, we suggest possible explanations for this
result, such as incorrect assumptions of quasi-hydrostatic accretion
and negligible heating from planetesimal accretion, or missing
mass-loss mechanisms that might act during, or after, disc dispersal.

Overall, the atmospheres accreted in the inner disc are typically
in agreement with or larger than those observed, with the exception
of planets with significant high-energy fluxes within a very narrow
range. This is because core accretion is so efficient that considerable
atmospheres can be accreted in the hot and low-density MRI-
accreting inner disc and also maintained against photoevaporation.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have investigated two aspects of planet formation
in the inner disc that is viscously accreting due to the MRI. We
considered the earliest phase of planet formation that is evolution
of dust particles, and the final phase that is the shaping of the
planetary atmospheres. We present simple calculations that include
both the accretion and subsequent photoevaporation of close-in
super-Earth/mini-Neptune planets. By coupling these processes to
perform end-to-end calculations, we are able to assess the viability
of the in situ formation model for close-in planets.

In Section 2, we consider the evolution of dust grains in the inner
disc that is viscously accreting due to the MRI (Mohanty et al.
2018), which features a local gas pressure maximum at the orbital
distance of a few tenths of AU. Taking into account the effect of
the MRI-induced turbulence on the dust grain size, we find that
fragmentation of particles due to turbulent relative velocities limits
the particle size to below few millimetres. As a result, the particles
are not efficiently accumulated inside the pressure maximum as
hypothesized by Chatterjee & Tan (2014) and Hu et al. (2018).
Regardless of that, as the particles become well coupled to the gas,
the radial drift is negated in the inner disc, and the dust-to-gas ratio
is enhanced throughout the inner disc. Thus, the local gas pressure
maximum might play a lesser role in the in situ planet formation
than previously thought.

The pressure maximum is, however, still the location of a local
density maximum in both gas and dust. We explored if the resulting
inner disc structure that is enriched in dust could be susceptible to the
onset of the streaming instabilities. This pathway to planetesimals
seems to be viable only in a narrow region near the pressure (and
density) maximum, for the chosen disc parameters.

The gas is not, however, evolved in this work and effects of the
growing amounts of dust on to the MRI have not been taken into
account. Dust grains lower the gas ionization levels by absorbing
free charges and enhancing recombination rates, as ions recombine
on the grains (Draine & Sutin 1987; Ilgner & Nelson 2006). Charged
grains are not themselves well coupled to the magnetic field as
they are too massive, and so their presence promotes the non-
ideal MHD effects, which can suppress the MRI (Sano et al. 2000;
Ilgner & Nelson 2006; Wardle 2007; Salmeron & Wardle 2008;
Bai & Goodman 2009). The likely result of taking dust effects
into account is thus weakened turbulence, and the change of the
disc structure in the longer term. The consequences can only be
investigated by modelling both the gas and the dust self-consistently.
Here, we sketch out a potential scenario by considering the relevant
time-scales.

Assuming that the steady-state solution of the gas structure
(Fig. 1) is reached before dust starts affecting the MRI, we expect
the dust enhancement of the inner disc to ensue. At a certain dust-
to-gas ratio the dust will suppress the MRI, and we expect the
levels of turbulence to adapt almost instantly, as the time-scale of
the magnetic field regeneration is the orbital time-scale torb (e.g.
Balbus & Hawley 1991). With the decreasing levels of turbulence,
the dust particle size will rapidly grow due to particle coagulation.
The growth due to coagulation happens on the time-scales of
�g/�dtorb (e.g. Brauer, Dullemond & Henning 2008), so faster than
102torb if the inner disc is indeed enriched in dust.

The gas disc structure would not change over such short time-
scales. But, in the absence of the viscous heating due to the MRI,
the disc will cool at a time-scale of 102–104torb (the equilibrium
thermal time-scale from roughly the pressure minimum to the
pressure maximum in the model considered here; Mohanty et al.
2018). The pressure profile would also follow this time-scale, as the
vertical hydrostatic equilibrium is established quickly on the orbital
time-scale (torb). This would likely result in the pressure maximum
moving radially inwards.

Concurrently, due to larger particle size and lower turbulent
stirring the particles would vertically settle towards the mid-plane
and radially towards the pressure maximum, increasing both the
surface density and the mid-plane bulk density dust-to-gas ratio
there. Such formation of a ring of solids could potentially trigger
formation of larger bodies, such as planetesimals (as hypothesized
by e.g. Chatterjee & Tan 2014). The larger particle size and the
settling towards the mid-plane would likely trigger the SI (inwards
of the pressure maximum; see Fig. 4). However, it is unclear if
this could lead to the formation of planetesimals, as a gravitational
collapse is unlikely due to the low bulk dust densities and high
Roche density in the inner disc. Moreover, as discussed above,
the pressure maximum is expected to move radially inwards, and
so will the accumulated dust, whereas the Roche density steeply
increases inwards. Thus, overtime the pressure maximum would
need to accumulate significantly more dust to cross the gravitational
collapse threshold.

The gas accretion rate and the gas surface density will change
slowly in comparison to the above processes, on the long viscous
time-scale, ∼ 103–105torb from the pressure minimum to the pres-
sure maximum in the model considered here (Mohanty et al. 2018).
Suppression of the MRI would lead to increased amounts of gas
in the inner disc on this time-scale. However, if planetesimals are
formed, this would clear the inner disc of the dust grains and the
MRI could be induced again, decreasing the gas surface density and
moving the pressure maximum outwards. At this stage, it is unclear
whether these competing processes are balanced in a steady state, or
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the behaviour of the inner disc is dynamic and quasi-periodic. Such
a determination can only be investigated through self-consistent
modelling of dust, gas, and the MRI.

At high dust-to-gas ratios, the dust also becomes dynamically
important, and affects the gas disc structure through the drag back
reaction (Nakagawa, Sekiya & Hayashi 1986). The gas rotation
profile is then driven towards Keplerian, and as a result the radial
gas pressure profile flattens. This, in turn, slows down the radial drift
of dust particles. If dust already pile ups in the inner disc due to
radial drift being slower than in the outer disc, the dust back reaction
amplifies the effect (Dr ↪

ażkowska et al. 2016). In this work, dust
enhancement is driven by the dust grains already being completely
coupled to the gas in the innermost disc, and thus the effect of dust
back reaction would be limited. However, the back reaction would
become important if the dust grains grow (e.g. due to the suppression
of the MRI-induced turbulence discussed above), especially near the
pressure maximum. If the dust grains grow in the innermost disc
where the pressure gradient is negative, the backreaction would
slow down the loss of dust to the star. However, the back reaction
would also limit the concentration of dust that can be achieved at the
pressure maximum since it acts to flatten the overall gas pressure
profile (Taki, Fujimoto & Ida 2016).

Furthermore, if super-Earth and mini-Neptune cores indeed form
in situ, would the inferred low gas surface densities due to the MRI
allow them to acquire the observed 0.1−10 per cent envelope mass
fractions? We find that they would. In fact, even after accounting
for atmospheric evaporation, the calculated atmospheres tend to
overestimate the observed ones.

Could the atmospheric accretion in the MRI-implied disc and
the observations be brought into agreement, without invoking an
assumption that cores form just before the beginning of disc
dispersal (e.g. Ikoma & Hori 2012; Lee & Chiang 2016)? The
calculations shown here do not include several effects that could
contribute.

First of all, for core masses smaller than 10 M⊕, the discrepancy
could be explained by the ‘boil-off’ or core-powered mass-loss
(Owen & Wu 2016; Ginzburg, Schlichting & Sari 2018; see also
Ikoma & Hori 2012), a process in which a planet atmosphere that had
not cooled and contracted before the disc dispersal loses its mass.
Upon the dispersal, the stellar continuum radiation illuminates the
planet and launches a Parker wind. The mass-loss causes rapid
contraction of the atmosphere, and the contraction in turn shuts
off the mass-loss. Planets that start out with few tens of per cent
atmospheres, may be left with 1 per cent after the boil-off. This
process precedes the mass-loss caused by the stellar high-energy
flux considered above, and can operate at larger distances from the
star.

Secondly, the scaling relations we use to calculate the accreted
atmospheres are derived assuming no sources of heating due to
planetesimal accretion, or due to heat deposited in the hypothesized
final stage of giant mergers of planetary embryos. The latter could be
released for several kyr (e.g. Inamdar & Schlichting 2015), lowering
the cooling rate of the atmosphere, and thus allowing less gas to
be accreted. Furthermore, the scaling relations assume that the gas
inside the planet’s Hill sphere is bound and static. 3D simulations
suggest this may not be true and that high-entropy disc material is
recycled between the envelope and disc (e.g. Fung, Artymowicz &
Wu 2015; Ormel, Shi & Kuiper 2015; Cimerman, Kuiper & Ormel
2017) potentially modifying the atmospheric cooling rate.

Finally, if the giant mergers happen between planets, after the
disc has fully dispersed, they would likely result in significant
atmospheric mass-loss. Head-on collisions between Earth/super-

Earth-sized planets with few per cent atmospheres can remove tens
of per cent of the total atmospheric mass (Liu et al. 2015; Inamdar &
Schlichting 2016).

Nevertheless, to avoid the run-away accretion for more massive
cores, the low gas surface densities the MRI provides are favourable
compared to the MMSN environment. Furthermore, gas-poor con-
ditions in this case are provided in a long-lived state, and not in a
transient phase (e.g. a transition disc, as proposed by Lee & Chiang
2016).

In summary, our results support the hypothesis that the MRI-
driven accretion in the inner protoplanetary disc could lead to in situ
planet formation. However, there are several avenues that need to be
explored in more detail until we can make quantitative predictions.
In particular, the feedback between the enhancement of the dust
in the inner disc and the suppression of the MRI, the feedback
between the dust enhancement and the gas dynamics, and the role
of disc dispersal and boil-off/core-powered mass-loss in shaping
the final envelope masses of super-Earths/mini-Neptunes are issues
that deserve closer study.
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ABSTRACT
Simulations of massive star formation predict the formation of discs with significant substruc-
ture, such as spiral arms and clumps due to fragmentation. Here, we present a semi-analytic
framework for producing synthetic observations of discs with substructure, in order to deter-
mine their observability in interferometric observations. Unlike post-processing of hydrody-
namical models, the speed inherent to our approach permits us to explore a large parameter
space of star and disc parameters, and thus constrain properties for real observations. We com-
pute synthetic dust continuum and molecular line observations probing different disc masses,
distances, inclinations, thermal structures, dust distributions, and number and orientation of
spirals and fragments. With appropriate spatial and kinematic filtering applied, our models
predict that Atacama Large Millimetre Array observations of massive young stellar objects at
<5 kpc distances should detect spirals in both gas and dust in strongly self-gravitating discs
(i.e. discs with up to two spiral arms and strong kinematic perturbations). Detecting spirals
will be possible in discs of arbitrary inclination, either by directly spatially resolving them for
more face-on discs (inclinations up to ∼50 deg), or through a kinematic signature otherwise.
Clumps resulting from disc fragmentation should be detectable in the continuum, if the clump
is sufficiently hotter than the surrounding disc material.

Key words: accretion, accretion discs – radiative transfer – circumstellar matter – stars: for-
mation – stars: massive.

1 I N T RO D U C T I O N

Circumstellar discs have long been detected around low- to
intermediate-mass (M∗ � 8 M�) young stars. These discs are
known to accrete material on to the star, and are of increasing in-
terest as the sites of planet formation (e.g. Williams & Cieza 2011;
Armitage 2015; Casassus 2016; Morbidelli & Raymond 2016). In
the higher mass regime (M∗ � 8 M�), the very short pre-main-
sequence lifetime (<10 Myr), coupled with the embedded, distant
(≥kpc) and relatively scarce nature of such stars, makes the detec-
tion of discs more difficult. Nevertheless, there is growing obser-
vational evidence for the presence of discs around massive young
stellar objects (MYSOs; Hunter et al. 2014a; Johnston et al. 2015;
Zapata et al. 2015; Chen et al. 2016; Ilee et al. 2016).

� E-mail: m.jankovic16@imperial.ac.uk

Investigating the nature and properties of discs around mas-
sive stars is important for a number of reasons. First, as a star
gains mass, radiative and kinematic (i.e. stellar wind) feedback
drives ambient material away and could effectively shut off ac-
cretion and hence limit the potential stellar mass (Kahn 1974;
Nakano 1989; Edgar & Clarke 2004). The fact that we observe
very massive stars (e.g. Massey, DeGioia-Eastwood & Waterhouse
2001) requires some mechanism that permits the star to continue
to accrete. Numerical simulations have demonstrated that feed-
back can be overcome by accretion through a disc (e.g. Kuiper
et al. 2010, 2011; Klassen et al. 2016; Rosen et al. 2016; Harries,
Douglas & Ali 2017), with the feedback energy escaping through
the poles. Therefore, circumstellar discs are pivotal in allowing
massive stars to grow, and so characterizing them observationally
is key.

Secondly, if gravitationally unstable, a circumstellar disc can
produce substructure that can affect the accretion on to the star, and
even fragment into gravitationally bound objects (discussed further
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below). A Keplerian disc will be gravitationally unstable when the
Toomre (1964) Q parameter satisfies

Q ≡ cs�

πG�
< 1 (1)

where cs, �, and � are the sound speed, angular frequency,
(GM∗/R3)1/2, and surface density at a distance R from a star of
mass M∗. If we assume that the disc mass scales linearly with the
stellar mass and the temperature in the deeper layers of the outer
disc is roughly constant at ∼10 K (i.e. is independent of stellar
mass), we would hence expect from equation (1) that Q ∝ M−1/2

∗ .
Under this simple argument, discs around more massive YSOs are
more susceptible to becoming gravitationally unstable (though in-
stability in discs around lower mass stars certainly can arise; Pérez
et al. 2016). Gravitational instability is therefore something that is
important to consider in the study of discs around MYSOs.

Numerical models of gravitationally unstable discs predict spi-
ral overdensities and fragmentation of the disc to form clumps
(Kratter & Matzner 2006; Hall, Forgan & Rice 2017). This instabil-
ity of the disc may drive up the accretion rate compared to regular
viscous evolution (Laughlin & Bodenheimer 1994). Such an ef-
fect may provide an explanation for recent outbursting behaviour
detected towards several MYSOs (Caratti o Garatti et al. 2017;
Hunter et al. 2017). Furthermore, the resulting clumps may be the
seeds of additional gravitationally bound objects such as stars or
planets (Forgan et al. 2018b). If bound to the massive primary, fu-
ture interaction (i.e. accretion) of such secondary objects can have
consequences for the later stages of massive stellar evolution (for a
review, see De Marco & Izzard 2017).

Observationally, however, it is extremely difficult to detect the
immediate circumstellar environments of massive young stars due
to their embedded nature, their relative scarcity, and their corre-
spondingly large distances. Infrared (IR) interferometry and high-
resolution near-infrared spectroscopy have revealed discs on scales
of less than 1000 au around MYSOs (Bik & Thi 2004; Kraus et al.
2010; Wheelwright et al. 2010; Boley et al. 2013; Ilee et al. 2013;
Ramı́rez-Tannus et al. 2017), but these techniques are limited to trac-
ing only the inner regions of discs, and provide little information on
the bulk of the circumstellar environment. Longer-wavelength in-
terferometric observations allow access to the circum(proto)stellar
environments of less evolved, more embedded MYSOs, but of-
ten probe larger spatial scales. In many cases, velocity gradi-
ents detected in millimetre and centimetre-wavelength molecular
line observations trace large-scale (1000 s to �10 000 au), mas-
sive (M toroid ≥ M∗), non-equilibrium rotating structures known as
‘toroids’ (e.g. Cesaroni 2005; Cesaroni et al. 2006, 2007; Beuther &
Walsh 2008; Beltrán et al. 2011; Cesaroni et al. 2011; Johnston et al.
2014; and references therein). Nevertheless, high angular resolution
observations are beginning to provide tantalizing evidence for Ke-
plerian discs around massive protostars (e.g. Hunter et al. 2014a;
Johnston et al. 2015; Zapata et al. 2015; Chen et al. 2016; Ilee et al.
2016).

It is therefore imperative to develop a robust framework within
which we are able to extrapolate a robust physical interpretation
from such observations. Synthetic observations, where the appear-
ance of a model to an observer is computed (ideally including the
instrumentation response), are particularly valuable in this regard
(for a review, see Haworth et al. 2018). To date, some synthetic
observations have been computed from dynamical simulations of
massive star formation/disc evolution, and are generally very opti-
mistic about the detection of substructure in discs (e.g. Krumholz,
Klein & McKee 2007; Harries et al. 2017; Meyer et al. 2018).

However, these studies typically place objects at nearby distances
(≤1 kpc), do not always account for the full instrumentational (e.g.
interferometric) effects, and are typically concerned with predict-
ing the dust continuum emission from these objects, rather than
observations of molecular lines that can trace the gas emission and
kinematics. In addition, approaches involving full two-dimensional
(2D) or three-dimensional (3D) (radiation-)hydrodynamics are ex-
tremely computationally expensive, and thus only permit a small
region of parameter space to be explored. The main caveat of ex-
isting synthetic observations of discs around MYSOs is that they
are only able to focus on a small number of scenarios, owing to the
cost of the dynamical simulations. Given the huge range of star-disc
parameters, such as the stellar and disc mass, thermal and chemical
structure, and number of spirals/clumps, a less expensive means of
producing models from which to generate synthetic observations is
extremely valuable.

In this paper, we combine semi-analytic models of self-
gravitating discs with radiative transfer models to provide forward
modelling predictions for upcoming Atacama Large Millimetre Ar-
ray (ALMA) observations, in order to gauge the impact of different
physical conditions on the observability of massive discs and their
substructure. We note that the framework we present can be eas-
ily adapted to perform retrieval modelling of observations. This
paper is organized as follows. In Section 2, we describe how we
construct the semi-analytic models of self-gravitating discs, our
radiative transfer calculations and how we account for the instru-
mentational interferometric effects. In Section 3, we present an
overview of the challenges that arise in the spatial and kinematic
detection of substructure in our fiducial disc model, and how we
use fast and efficient filtering techniques in order to enhance this
substructure. In Section 4, we explore and discuss critical effects
on substructure observability and make recommendations for future
observational campaigns. Finally, in Section 5, we summarize our
main conclusions.

2 M E T H O D O L O G Y

We begin by describing how we construct our discs and process
them to produce synthetic ALMA observations. There are three
phases to this process. First, we set up the semi-analytic disc struc-
ture (as detailed in Section 2.1). Next, we compute the properties of
the dust and the abundance of the molecule, and a radiative transfer
calculation is used to compute the flux received by an observer (Sec-
tion 2.2). Finally, we account for instrumentational effects inherent
to interferometry and produce simulated observations of the models
in both continuum and molecular line emissions (Section 2.3).

2.1 Disc construction

The circumstellar matter surrounding our MYSOs is constructed
using a simple semi-analytic approach, following Clarke (2009),
Rice & Armitage (2009), and Forgan et al. (2016). In this frame-
work, we set up a radial profile of an axisymmetric quasi-steady
self-gravitating disc. Upon this we then impose a spiral structure as
a perturbation (following the procedure of Hall et al. 2016), and in
some models include the presence of a fragment within the disc.

2.1.1 Underlying axisymmetric radial structure of the disc

From the inner (rin = 50 au) to the outer (rout = 1000 au) boundary
of the disc, at each radius we iteratively solve a system of equations
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Observing substructure in discs around MYSOs 4675

that determines the disc structure. Solutions are determined by the
stellar mass M∗ and the accretion rate Ṁ . We fix the stellar mass
to M∗ = 20 M� in this paper, but the accretion rate Ṁ is varied
to produce a set of corresponding quasi-steady state disc solutions
(i.e. Ṁ is constant at all radii).

Starting with an initial estimate for the surface density �, we
calculate the angular velocity � at radius r

� =
√

G(M∗ + ∫ r

rin
2πr�dr)

r3
. (2)

Numerical simulations predict that self-gravitating discs set-
tle into a marginally stable state where the Toomre Q parameter
(Toomre 1964) is roughly constant throughout the disc and close
to ∼1.7 (Durisen et al. 2007). Thus, following Rice & Armitage
(2009), Forgan et al. (2016), and Hall et al. (2016), we impose a
constant value of the Toomre parameter

Q = csκepi

πG�
= 2, (3)

where κepi is the epicyclic frequency and cs is the local sound speed.
For Keplerian discs κepi = �, and we assume the same here. From
the last expression, we then find the sound speed cs and from it the
disc scale height H, where

H = cs

�
, (4)

and mid-plane density

ρ0 = �

2H
. (5)

Given the sound speed cs and mid-plane density ρ0, we use the
equations of state table (Black & Bodenheimer 1975; Stamatellos
et al. 2007) to find the temperature. We use the temperature T and
the density ρ0 to find the mass-mean opacity κ (Stamatellos et al.
2007), and the optical depth from the surface of the disc to the disc
mid-plane, at the given radius,

τ = 1

2
κ�. (6)

The mass-mean opacity κ is obtained by averaging the Rosseland-
mean opacity from Bell & Lin (1994) over a spherically symmetric
polytropic pseudo-cloud. This takes into account effects of the sur-
rounding warmer/colder matter.

Following Rice & Armitage (2009) and Forgan et al. (2016), we
assume that angular momentum transport can be approximated as
local and pseudo-viscous. The accretion rate Ṁ is then given by

Ṁ = 3πν� = 3παc2
s �

�
, (7)

where ν is the viscosity and α is the pseudo-viscous parameter
(Shakura & Sunyaev 1973). The two are related by ν = αcsH. In
quasi-steady state Ṁ is constant at all radii.

The unknown pseudo-viscous parameter α is found by assuming
that the strength of the angular momentum transport is set by the
cooling rate. The cooling rate is given by (Rice & Armitage 2009)


 = 16σSB

3

(T 4 − T 4
irr)

τ + τ−1
, (8)

where σ SB is the Stefan–Boltzmann constant and Tirr is the temper-
ature in the disc due to irradiation from the star, and we assume that
gas and dust temperatures are the same. We find that using the stan-
dard Stefan–Boltzmann relationship between the stellar luminosity
(L∗ ∼ 7.5 × 104 L� for the stellar mass M∗ = 20 M�, Hosokawa &

Omukai 2009), distance from the star, and the equilibrium irradia-
tion temperature, Tirr, yields unrealistically high disc temperatures
compared to results from hydrodynamical simulations with detailed
radiative transfer (T. Douglas, T. Harries, private communication).
This is possibly due to the stellar irradiation being heavily repro-
cessed in the outer disc. Thus, we follow Rice & Armitage (2009)
and assume a constant Tirr = 10 K throughout the disc, bringing
our results into agreement with the detailed simulations. The stellar
irradiation should become much more important in the innermost
disc (r � 50 au), where the line-of-sight optical depth from the star
to the disc mid-plane is much smaller than in the outer disc. How-
ever, given the observational parameters that we probe in this work,
the innermost disc is not resolved in our synthetic observations.
Thus, we do not model the highly irradiated inner disc and artifi-
cially set the inner boundary of the disc to rin = 50 au. Finally, if the
irradiation dominates over the pseudo-viscous heating (Tirr > T),
we set T = Tirr. For our fiducial accretion rate Ṁ = 10−3 M� yr−1,
T > Tirr throughout the disc.

The cooling rate, given by equation (8), is balanced against (equal
to) the viscous dissipation rate

D = 9

4
ν��2 = 9

4
αc2

s ��, (9)

which we use to find the pseudo-viscous parameter α. Next, we can
find the accretion rate Ṁ from equation (7) and compare it to the
value for which we want to solve the structure of the steady-state
disc, based on which we iteratively improve the value of the surface
density �.

2.1.2 Spiral substructure

The radial model described above gives us an axisymmetric disc.
We impose a spiral structure on that disc by adding perturbations
to it. The surface density is perturbed as in Hall et al. (2016), using
results of Cossins, Lodato & Clarke (2009)

�′ = � − α1/2� cos(m(�(r) − φ + θ )), (10)

where φ = tan (y/x), m is the number of spiral arms, and �(r)
determines how tightly the spirals are wrapped. We set �(r) =
1
b

log( r
a

), a = 13.5 and b = 0.38, the same as Hall et al. (2016). The
angle θ is the phase offset of the spiral, which we introduce in order
to investigate how the angular orientation of the spirals with respect
to the observer, at the time of the observation, might influence the
ability to resolve the spiral arms.

In this work, we also vary the number of spiral arms m. Numerical
simulations show that lower-mass (Md/M∗ < 0.1) self-gravitating
discs develop a large number of spiral arms (m > 10; Cossins
et al. 2009), while higher-mass discs (Md/M∗ > 0.25) develop fewer
(m ∼ 2; Lodato & Rice 2004, 2005; Forgan et al. 2011). For our
fiducial disc accretion rate Ṁ = 10−3 M� yr−1 the semi-analytic
one-dimensional (1D) disc model yields a disc-to-star mass ratio
of ∼ 0.3, placing it in the regime of massive discs with few spiral
arms. We thus set m = 2 in our fiducial disc model, and also run a
model with m = 4 spiral arms to probe how the spatial separation
between the spirals affects the possibility of their detection.

Finally, if α obtained from the 1D model is above a certain value
αsat = 0.1, at which gravitational torque saturates (Gammie 2001;
Rice, Lodato & Armitage 2005; Deng, Mayer & Meru 2017), here
we set it to α = αsat.

Here, we are also interested in kinematic effects, so we also
perturb the angular velocity of matter in the disc. If we assume that
the radial velocity of matter is negligible compared to the angular
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component, we can use the angular projection of the continuity
equation to show that the velocity perturbation is proportional to
the density perturbation. We neglect the radial velocity Ṁ/(2πr�)
in our models, although we note that it can be up to a few tenths
of the Keplerian velocity in the outermost disc. The sign of the
angular velocity perturbation then depends on the velocity of the
spiral pattern compared to the local Keplerian velocity – it is positive
if the spiral pattern is rotating faster than the unperturbed velocity,
and negative in the opposite case. Therefore, we perturb the angular
velocity via

�′ = � − η� cos(m(�(r) − φ + θ )), (11)

where η is a free parameter that controls the magnitude of the
perturbation. The η parameter is determined by the rotation velocity
of the spiral pattern that is roughly proportional to the disc-to-star
mass ratio (Cossins et al. 2009; Forgan et al. 2011). We set η = 0.2
in our fiducial disc model, appropriate given the disc-to-star mass
ratio in the model, but also vary η to probe the observational effect
of weaker perturbations.

Furthermore, we set the perturbed sound speed to the value of
the local fluid velocity relative to the unperturbed speed c′

s = |�′ −
�|r (with a lower limit of the unperturbed sound speed, cs). This
accounts for the higher temperatures expected in the spirals due to
heating from shocks (Cossins et al. 2009).

An illustration of our semi-analytic discs is given in Fig. 1, which
compares the surface density, sound speed and local bulk speed of
axisymmetric, two-arm spiral and four-arm spiral discs.

2.1.3 Prescription for fragments

In addition to discs with spiral structure, we also explore the obser-
vational characteristics of discs undergoing fragmentation. To that
end, we insert clumps within the disc to represent the presence of
a fragment within our disc models. The clump is modelled as an
isothermal Gaussian within a sphere of radius RC

ρ = ρC exp

(
−|r − rC|2

2R2
C

)
, (12)

where �r is the vector relative to the clump centre. We assign the
clump temperature TC, central density ρC, and radius RC guided
by the analysis of fragments in smoothed particle hydrodynamic
simulations by Hall et al. (2017). The centre of the clump �rC in our
models is always set so that the clump is located within a spiral arm
(as is often the case in simulations of fragmenting discs, see e.g.
Boley 2009).

2.2 Radiative transfer modelling

We produce synthetic images and molecular line data cubes from
the above disc models using the TORUS radiative transfer and hydro-
dynamic code (e.g. Harries 2000; Kurosawa et al. 2004; Haworth &
Harries 2012), with the molecular-line transfer ray-tracing scheme
presented by Rundle et al. (2010). We now summarize the relevant
details of these calculations.

2.2.1 Constructing a 3D disc

We map the 2D models, described in Section 2.1, on to the mid-
plane of a TORUS grid using bilinear interpolation. We then construct
the vertical structure of the disc assuming hydrostatic equilibrium.

We give ourselves the freedom to explore the effect of a disc that is
not isothermal using a parametric temperature profile of the form:

T (R, z) =
{

Tmid + (Tatm − Tmid)
[
sin

(
πz
2zq

)]
z < zq

Tatm z ≥ zq

(13)

following Williams & Best (2014), where we set Tatm = fatmTmid

and zq is four times the disc scale height. This allows us to com-
pare an isothermal disc (fatm = 1) with increasing amounts of ver-
tical heating (fatm > 1) that could have important observational
impact (for example sublimating dust, or destroying or exciting
molecules).

2.2.2 Dust continuum emission

Dust is included in our radiative transfer models, contributing as a
continuum emission source and an opacity source to the line emis-
sion. We assume a single distribution of grains at all radii that is
well mixed with the gas with a dust-to-gas mass ratio of 10−2,
though we also follow Vaidya, Fendt & Beuther (2009) and subli-
mate dust in regions where the temperature is above 1500 K. The
dust distribution is a Mathis, Rumpl & Nordsieck (1977) power
law (n(a) ∝ a−q) specified in terms of the minimum and maxi-
mum size and a power law for the grain size distribution. For most
of the models in this paper, we use amin = 1 nm, amax = 1 cm
and q = 3.3, though we probe the impact of grain growth in
Section 4.4.

2.2.3 Gas emission and molecular abundances

We have chosen to focus our observational predictions for the gas
on the CH3CN J = 13–12 ladder of transitions. Emission from
CH3CN is widely detected in the vicinity of massive protostars
(see e.g. Hunter et al. 2014b; Ilee et al. 2016; Beuther et al. 2017;
Cesaroni et al. 2017). The ladder is an incredibly useful diagnos-
tic of the physical conditions of the gas, due to the large number
of K transitions that span a range of excitation energies, and the
fact that they are sufficiently closely spaced to enable simultane-
ous observation. Within the J = 13–12 ladder, transitions range
from the K = 0 transition at 239.138 GHz (Eup = 80 K) to the
K = 12 transition at 238.478 GHz (Eup = 1106 K). We have chosen
to concentrate on the K = 3 transition (239.096 GHz, Eup = 145 K)
as this line traces the entire radial extent of the disc in our
models.

We assume local thermodynamic equilibrium (LTE), which sig-
nificantly reduces the computational cost of the models compared
to non-LTE line transfer. The CH3CN abundance is canonically as-
sumed to be 10−7 relative to molecular hydrogen (Herbst & van
Dishoeck 2009), but we assume that the molecular abundance can
be depleted by freeze out at low temperatures or destroyed through
reactions. Assuming that freeze out and thermal desorption are in
equilibrium, the threshold density at a given temperature T above
which CH3CN will be frozen out is

ρthr = md

δπσd

√
NsEb

kBT
exp

(
− Eb

kBT

)
, (14)

where δ, md, σ d, Ns, and Eb are the dust-to-gas mass ratio, mean dust
grain mass, dust cross section, the number density of surface binding
sites (≈1.5 × 1015 cm−2), and the species-dependent binding energy
Eb/kB = 4680 K (Collings et al. 2004). We assume a mean grain size
of 0.1μm, and grain density of 3.5 g cm−3 (from which the cross-
section and grain mass can be computed assuming spherical grains).
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Observing substructure in discs around MYSOs 4677

Figure 1. Self-gravitating discs constructed using the 2D semi-analytic model: axisymmetric (top row), two spiral arms (middle row), four spiral arms (bottom
row). The panels show the surface density, sound speed, and bulk velocity from left to right.

We also assume a dust-to-gas mass ratio of 10−2. Where CH3CN is
frozen out, we assume a negligible abundance of 10−20. We do not
account for destruction of CH3CN by two-body reactions/cosmic
rays (despite the time-scale for destruction by these processes being
short) because doing so requires a sophisticated chemical network
including CH3CN production pathways. We do however destroy
CH3CN in regions where the temperature is above 2300 K, which
is the regime in which the chemical models of Walsh et al. (2014);
Walsh, Nomura & van Dishoeck (2015) find its abundance sharply
drops and becomes negligible.

With the abundances and level populations known, a position–
position–velocity data cube is constructed using a ray tracing
scheme through the disc (Rundle et al. 2010). Both the continuum
and line emission are calculated in the frequency range ν ± νumax/c,
where ν is the rest frequency of the molecular line considered in a
given synthetic observation, umax = 40 km s−1 (which probes right
down to our inner radius of 50 au for the 20 M� star we consider)
and c is the speed of light.

2.3 Accounting for the instrumentational response of ALMA
using CASA

Given that we are interested in interpreting observations from
ALMA, it is essential that we account for the instrumentational
response. For example, limited time on source, finite resolution
and the lack of sensitivity to large-scale structure inherent to high-
resolution interferometry can all have significant effects on the re-
sulting data. We therefore postprocess the TORUS molecular line data
cubes described in Section 2.2 using the CASA1 software (McMullin
et al. 2007) to account for the above.

In our fiducial model, we consider band 6 observations in ALMA
configuration 40.7, which has a minimum baseline of 81 m, a max-
imum baseline of 3.7 km, an angular resolution of 0.09 arcsec and
a maximum recoverable scale of 0.8 arcsec. Given that a 1000 au
disc at ∼1 kpc has an angular size of ∼1 arcsec, and given ALMA

1https://casa.nrao.edu/
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capabilities in cycle 4, the cycle at which ALMA reached close to
full operations for the 12-m array, this configuration was a prag-
matic choice for attempting to better detect and resolve discs around
MYSOs and perhaps also to search for substructure within them. We
use a spectral resolution of 0.4 km s−1, representative of the practi-
cal spectral resolution achieved in cycle 4 observations of candidate
high-mass star–disc systems (Ilee et al., in prep.); however higher
spectral resolution is possible with ALMA.

To account for the instrument response of ALMA, we use the
CASA SIMOBSERVE and CLEAN routines. We set the zenith precip-
itable water vapour to 1.796 mm (an estimate from the ALMA sen-
sitivity calculator for the fifth octile). The total time on source is set
to 2 h (with an integration time of 20 s), with the source transiting in
the middle of the observation. We obtain an image of the continuum
emission from the 40 line-free channels at either end of the cube.
Thus, the continuum bandwidth used here is ∼ 0.025 GHz. Even
in line-rich sources such as NGC6334I, line-free continuum band-
widths �10× larger are readily obtainable with ALMA (see e.g.
table 1 of Hunter et al. 2017), so our results represent a conserva-
tive lower limit for continuum signal-to-noise ratios. The line-free
channels are used to subtract the continuum in the uv plane, using
the UVCONTSUB routine. To produce the continuum and line im-
ages, we use the CASA CLEAN routine with a threshold of 3× the
RMS noise (RMS ≈ 2.5 mJy beam−1 per channel for the K = 3
line, and ≈0.3 mJy beam−1 for the continuum), and using a circu-
lar mask around the source. Integrated intensity (moment 0) and
intensity-weighted velocity (moment 1) maps are made using the
IMMOMENTS routine, and the position–velocity (PV) diagrams are
made using the IMPV routine. In making moment 1 maps, only pixels
above a cut-off of 5× the RMS are included.

We adopt a distance of 3 kpc for the majority of our models in
this paper, but also explore 1–5 kpc. We are hence using substan-
tially larger distances than previous synthetic observations of discs
about MYSOs, which typically consider 0.5–1 kpc and/or note that
at larger distances detecting discs and structure is difficult (e.g. the
2 kpc distant models of Krumholz et al. 2007). In all observations
considered here, we assume our object lies in the direction of the
centre of the protocluster G11.92−0.61, with on sky co-ordinates
of RA = 18h13m58.1, Dec. = −18d54m16.s7 (Cyganowski et al.
2017).

3 RESULTS

We use our framework for quickly producing synthetic observations
of self-gravitating discs to explore whether or not self-gravitational
substructure, spiral density waves, and fragmentation are detectable
in discs around massive stars with upcoming ALMA observations.
We find that the spiral features are not always obvious neither spa-
tially, in continuum images and integrated intensity (moment 0)
maps of line emission, nor spectrally, in intensity-weighted veloc-
ity (moment 1) maps and PV diagrams. This is in contrast, but
not in conflict, with the findings of Douglas et al. (2013), who
modelled signatures of self-gravitating discs in nearby, lower mass
systems (their model is of a 1 M� star and a 0.39 M� disc) in
lines from more abundant species such as CO and HCO+. Signifi-
cant enhancement of substructure can, however, be obtained, using
filtering techniques presented in this section.

Our fiducial model is a disc around a M∗ = 20 M� star at a
distance of 3 kpc with an inclination of 30 deg, an accretion rate of
Ṁ = 10−3 M� yr−1, a ratio of atmospheric to mid-plane tempera-
ture fatm = 4, an intensity of velocity and temperature perturbations
η = 0.2, and two spiral arms (see the second row of Fig. 1). In

Section 4, we will explore how the detection of self-gravitational
signatures is sensitive to the disc and observational (e.g. distance,
line, inclination) parameters. In this section, we focus on enhancing
substructure using filtering techniques.

3.1 Enhancing spatial detection of substructure in discs

As mentioned above, spirals are not always obvious in our synthetic
continuum images and moment 0 maps. To improve the spatial
detectability of spirals we subtract the continuous background disc
emission to highlight the more spatially confined substructure. We
define the base synthetic image (i.e. that from TORUS and CASA)
as the ‘primary image’. We consider subtraction of 2D (elliptical)
Gaussian fits to this primary image using the CASA IMFIT routine.
The IMFIT routine is a well-tested, easy-to-use component of the
publicly available CASA software.

Fig. 2 compares the primary image with the residuals of fitting a
single Gaussian and of simultaneously fitting two Gaussian compo-
nents to the 239 GHz continuum image of our fiducial disc model
with two spiral arms. Fig. 3 presents the same comparison for mo-
ment 0 maps of the line emission. We find that in the moment 0
maps the two-component Gaussian fit is better at filtering the more
continuous disc emission, as one component fits the bright inner
disc (that is optically thick, see Section 4.4) and the other covers a
larger extent of the disc. On the other hand, subtraction of a single
Gaussian fit from the moment 0 map of our fiducial disc model (the
middle panel of Fig. 3) is inadequate, as it does not fit the continu-
ous/axisymmetric emission from the disc well. It does not subtract
the unresolved bright inner disc, but subtracts the inner regions of
the spiral arms that are clearly revealed in the image filtered using
the two-component Gaussian fit. On the other hand, we find that in
the continuum image it is sufficient to fit and subtract a single el-
liptical Gaussian profile to clearly highlight the spiral substructure.
Note that the continuum image filtered using the two-component
Gaussian fit (the right-hand panel of Fig. 2) features two compact
bright spots near the centre of the disc that are not real structures.
The artefacts also appear in the image filtered using a single Gaus-
sian profile, but they are much less significant.

Throughout the rest of this paper, we apply the technique of
subtracting the one-component and the two-component Gaussian
fits when considering continuum and moment 0 line emission maps,
respectively. We found this technique to have a good balance of ease
of implementation and ability to detect substructure.

We note two points of caution when using these techniques. First,
our results show that even in discs that do not possess real clump-like
features (such as our models with completely smooth spirals), the
interferometric imaging can induce artefacts that could be mistaken
for clumps and/or substructure in the disc. We therefore suggest
that caution be taken when attributing such features to the presence
of a real feature, such as disc fragmentation due to gravitational
instability, particularly when the feature is of low significance and
close in spatial scale to the interferometric beam. Secondly, the
CASA IMFIT routine requires an initial estimate of the parameters
for multiple component Gaussian fits as input, and the results can
be sensitive to this input. We find it useful to run the fitting routine
several times with varying input estimates to check for convergence.

Finally, we note that fitting more tailored parametric axisymmet-
ric disc models of the intensity profile (e.g. those presented here)
could do an even better job at revealing substructure, particularly
since the brightness profile will deviate from Gaussian in practice.
However, this requires more detailed modelling.
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Observing substructure in discs around MYSOs 4679

Figure 2. Synthetic continuum images for a two arm spiral disc model with two filtering techniques applied, with 3σ (σ = off-source RMS noise) contours.
Flux is normalized with respect to the peak value in each image. Left is the primary (unfiltered) image of the 239 GHz continuum, with a signal-to-noise ratio
of 500. Middle subtracts a single Gaussian fit to the primary image. Right subtracts a two-component Gaussian fit. The signal-to-noise ratio in the filtered
images is 25 and 20, for the single and double Gaussian fits respectively.

Figure 3. Synthetic moment 0 maps for a two arm spiral disc model with two filtering techniques applied, with 3σ (σ = off-source RMS noise) contours.
Integrated intensity is normalized with respect to the peak value in each map. Left is the primary (unfiltered) image, with a signal-to-noise ratio of 82. Middle
subtracts a single Gaussian fit to the primary image. Right subtracts a two-component Gaussian fit. Signal-to-noise ratio in the filtered images is 33 and 11, for
the single and double Gaussian fits respectively.

3.2 Enhancing spectral detection of substructure in discs

To improve the kinematic detectability of spirals we subtract line-of-
sight projected Keplerian velocities, convolved with the synthesized
beam of our synthetic observations from our model moment 1 maps.
This method was used by Walsh et al. (2017) to constrain the incli-
nation and the position angle of the HD 100546 disc, as well as to
infer the presence of either a warp or radial flow residing <100 au
from the central star (distinguishing between the two is difficult,
e.g. Rosenfeld, Chiang & Andrews 2014).

By using the same fitting metrics as Walsh et al. (2017) we find
that the best-fitting inclination and position angle do not always
correspond to the known (i.e. input) inclination and position an-
gle of our disc models, with typical variation in both of ±10 deg.
We attribute this to deviations from a simple flat thin disc model.
Irrespective of this, we find that an incorrect best-fitting inclina-
tion (that is within ±5–15 deg from the correct value) does nei-
ther affect the ability to detect the spiral signatures in our syn-
thetic observations nor induce the appearance of any artificial sub-
structure. We thus proceed with subtraction of Keplerian profiles
corresponding to the actual disc model inclinations and position

angles, but noting that the automatically fitted value would also
suffice.

The moment 1 map of the synthetic line emission observation,
the moment 1 map of equally inclined flat Keplerian emission, and
the result of the subtraction of the latter from the former map (the
moment 1 map residuals) are shown in Fig. 4 for our fiducial disc
model with two spiral arms. The velocity residuals are given in units
of the spectral resolution δv = 0.4 km s−1. The warp-like features
resulting from spiral structure are much more prominent following
the kinematic filtering technique we apply.

Throughout the rest of this paper, we apply the described sub-
traction technique to enhance the kinematic detectability of disc
substructure in moment 1 maps and present only the residuals of
the subtraction.

4 DISCUSSION

The speed of our disc model construction and synthetic observations
(under an hour per model using four cores for the radiative transfer
calculations, and a single core for the rest, on a desktop) allows us to
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4680 M. R. Jankovic et al.

Figure 4. An illustration of kinematic filtering applied to a moment 1 map of a two spiral disc. The left-hand panel is the initial synthetic observation, the
middle a Keplerian profile, and the right-hand panel the residual. The velocity residuals are given in units of the spectral resolution δv = 0.4 km s−1. Dashed
contours in the left-hand and the middle panels also show the velocity in units of δv. In the right-hand panel, dashed horizontal and vertical lines indicate disc
position angle and the line perpendicular to it, respectively. The warp-like features resulting from spirals are much more evident in the residuals map.

explore a parameter space of disc (e.g. mass and temperature) and
observing (e.g. distance and line) parameters. We detail the specific
parameter space that we explore in Table 1. Starting from our fidu-
cial disc model, we vary the parameters one-by-one, producing sets
of models that are different from each other in the value of a single
parameter. This is with the exception of disc inclination that is also
separately set for each set of models. All of the models are avail-
able for download.2 In this section, we discuss what the limiting
factors are for the detection of self-gravitational substructure both
spatially and spectrally, and gauge the expectations for upcoming
ALMA observations of MYSOs. We focus first on self-gravitating
disc models with spiral density waves, for which we also discuss
the impact of disc thermal and chemical structure (Section 4.3) and
optical depth (Section 4.4). We then explore detectability of disc
fragmentation into clumps as a function of the fragment properties
(Section 4.5).

4.1 Spatially resolving spiral substructure

Spatial detection of spiral substructure is sensitive to the angular res-
olution relative to the angular separation between spirals, as viewed
by the observer. Manifestly, the spatial detectability of spirals de-
pends on the disc distance, as well as on the disc inclination and
the nature of spirals, as illustrated in Fig. 5. This section focuses
on the line moment 0 maps from our synthetic observations, but in
most cases, the same conclusions can be drawn from analysis of the
continuum images.

Spiral substructure in strongly self-gravitating discs, i.e. those
with a lower number of spiral arms and less tightly wound spirals,
is likely to be detected. For 1000-au-radius discs with an inclina-
tion of 30 deg, we find that two-arm spirals are resolvable up to ap-
proximately 5 kpc distances with ALMA configuration 40.7. Such a
distance encompasses approximately 70 per cent of the MYSO pop-
ulation in the Red MSX Source (RMS) Survey3 for which distances
are available (Lumsden et al. 2013). At close distances (<1 kpc) the
moment 0 maps of line emission might even yield hints of vertical
stratification in the outer disc (the top left-hand panel of Fig. 5),
since the beam size is smaller than the disc scale height inside the
spiral arms. Indeed, the vertical stratification of molecular emission

2DOI 10.5281/zenodo.1408072.
3http://rms.leeds.ac.uk

in more evolved, axisymmetric discs has already been observed
(e.g. HD 163296, Rosenfeld et al. 2013; de Gregorio-Monsalvo
et al. 2013), but our results suggest that similar structures will be
observable in non-axisymmetric discs.

As the number of spiral arms increases, however, and spirals be-
come more tightly wrapped, it becomes increasingly more difficult
to resolve the spirals. We find that four-arm spirals are barely dis-
cernible at a moderate distance of 3 kpc. This principally happens
because the size of the synthesized beam is large compared to the
angular separation between spiral arms.

Spiral substructure is more easily resolved spatially for more face-
on discs, but spirals in our models are detected for the majority of
disc inclinations, from 0 (face-on discs) up to ∼50 deg. Furthermore,
over the inclinations that the spirals are not spatially detected, below
we will show that they are likely to be detected spectrally.

4.2 Spectrally resolving spiral substructure

The usefulness of spectral diagnostics in probing the kinematic
perturbation caused by the self-gravity-induced spiral substructure
depends on how the spectral resolution of the observation relates to
the line-of-sight-projected velocities, and is thus sensitive to disc
inclination: an edge-on disc will be easier to resolve spectrally
than a face-on disc (if otherwise identical). We thus expect that
deviations from Keplerian motion will be much easier to detect in
PV diagrams for more edge-on discs. Indeed, this is seen in the
bottom panels of Fig. 6, which show PV diagrams of our fiducial
disc model inclined at 30, 60, and 80 deg. In each case, the red line
denotes the Keplerian profile. The signature of spirals is a twin-lobe
feature that cuts diagonally across the profile, which if sufficiently
resolved should appear as a figure-of-eight like structure, similar
to that suggested by Douglas et al. (2013). The signature becomes
more prominent with increasing inclination.

In addition to the spiral signatures, there are other deviations
from the Keplerian profile in the PV diagrams, i.e. deviations from
the curved red lines. These deviations are seen in the PV diagrams
of both spiral (Fig. 6) and axisymmetric disc models (Fig. 7). For
example, in discs inclined at 30 and 60 deg, in the lower left and
middle panels in Fig. 6 (and Fig. 7), there is emission at low ve-
locities from the inner disc. This is simply due to convolution of
the emission with the beam in each velocity channel, that is, an
observational effect due to the disc not being perfectly resolved.
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Observing substructure in discs around MYSOs 4681

Table 1. A summary of the models with spiral arms presented in this paper, except for the models with clumps. The
first column lists the model parameters that were varied, second the fiducial (default) value of each parameter, third the
values that were explored for each parameter, and fourth the disc inclination used for the set of models in each row. In
the first column η is the magnitude of spiral velocity and temperature perturbation, and fatm the ratio of atmospheric to
mid-plane temperature.

Parameter Fiducial Values explored Inclination (deg)

Line choice K = 3, J = 13 → 12 K = 7, J = 13 → 12 30
Inclination (deg) 30, 60 0 – 90
Number of spirals 2 0, 4 30
Accretion rate
(M� yr−1)

10−3 10−5, 10−4, 10−2 60

η 0.2 −0.2, 0.1 60
Rotational offset (rad) 0 π/4, π/2, 3π/4 60
Distance (kpc) 3 1, 5 30
fatm 4 1, 2, 8 60
Dust amax = 1 cm, q = 3.3 amax = 0.1μm −1 cm; q = 3.3–3.5 60

Figure 5. A summary of the parameters to which the spatial detection of spirals is sensitive. All of the panels show line moment 0 maps from synthetic
observations, with 3σ (σ = off-source RMS noise) contours, and in which two-component Gaussian fits are subtracted to enhance substructure (see Section 3.1).
For the six moment 0 maps shown here, the signal-to-noise ratio in the unfiltered images varies roughly between 55 and 110, and in the filtered images between
8 and 25; the lower boundaries of these ranges correspond to the disc model at a distance of d = 5 kpc, and the upper boundaries to the disc model at d = 1 kpc.
Integrated intensity is normalized with respect to the peak value in each map. The top central panel is our fiducial two-arm spiral model. The lower central
panel has four spirals, but is otherwise identical to the two-arm fiducial. The left-hand panels illustrate the sensitivity to distance, and the right-hand panels the
sensitivity to inclination.

Noticeably, there is no such emission in the disc inclined at 80 deg
(the bottom right-hand panels). This, on the other hand, is an opti-
cal depth effect. PV diagrams are produced based on cuts along the
major axis of the disc image (i.e. based on the disc position angle;
we use the input value from our models). In a fairly face-on disc,
the cut is made across the ‘top’ disc surface, and in a sufficiently

inclined disc the cut is along the outermost flared side of the disc.
In the disc inclined at 80 deg the line of sight towards the inner disc
cuts through a large column of gas with near-zero line-of-sight ve-
locities. Consequently, the near-zero line-of-sight velocity emission
from the inner disc region is obscured by the line self-absorption.
We discuss the more general effects of optical depth in Section 4.4.
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4682 M. R. Jankovic et al.

Figure 6. Sensitivity of spectral detection of spirals to disc inclination. The top panels are moment 1 map residuals of the kinematic filtering (given in the
units of the spectral resolution δv = 0.4 km s−1), and the bottom panels are PV diagrams of our fiducial disc model. Intensity is normalized with respect to the
peak value in each diagram. Red lines indicate the expected position–velocity signature of a smooth, Keplerian disc with the same parameters as the model.
For both top and bottom panels: left to right disc inclinations are 30, 60, and 80 deg.

Figure 7. PV diagrams of an axisymmetric disc model, identical to our fiducial disc model except for the lack of spirals. Intensity is normalized with respect
to the peak value in each diagram. Left to right disc inclinations are 30, 60, and 80 deg. Red lines indicate the expected position-velocity signature of a smooth,
Keplerian disc with the same parameters as the model. Deviations from this Keplerian profile are discussed in Section 4.2.

Furthermore, there is also missing emission at Keplerian veloci-
ties from the outermost disc in the PV diagram of the disc inclined
at 80 deg, unlike in the less inclined discs. The emission is missing
because the PV cut probes the cold disc mid-plane of the outer disc
in this case, where the molecule is frozen out. For a discussion of
the observational effects of the molecule freeze out, see Section 4.3.

Fig. 6 also illustrates how the dependence on inclination is
twofold for the moment 1 maps, as they are also sensitive to the
spatial resolution (i.e. beam size). As discussed above, spirals are
easier to detect spatially in more face-on discs. Interestingly, the

moment 1 maps are also affected by the molecule freeze out. The
disc inclined at 30 deg (the top left-hand panel of Fig. 6) has an
apparent aspect ratio inconsistent with its inclination (and rotation
profile). This is due to the molecule freeze out in the outer disc
outside of spiral arms. Furthermore, the moment 1 map of the disc
inclined at 80 deg (the top right-hand panel in Fig. 6) also reveals the
absence of the molecule from the disc mid-plane: the radial extent
of emission is smaller along the horizontal dashed line (that cuts
the disc mid-plane in the outermost disc) than below and above this
line (where emission from the hot disc atmosphere is seen).
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We conclude from our results that around MYSOs at ∼3 kpc
spirals will be readily resolved spatially in low-inclined discs
(�50 deg), and readily detected spectrally in PV diagrams in more
inclined discs (�60 deg). For discs at intermediate inclinations
(∼50–60 deg), spatial diagnostics aided by moment 1 maps and
PV diagrams should unambiguously show spiral substructure. Sim-
ilar dependencies in detecting substructure on inclination have been
found by Douglas et al. (2013), albeit for lower mass discs that are
much closer than a few kpc.

We note that MYSOs may be embedded in a natal envelope that
may affect observations both by obscuration of emission, and via
influencing the kinematic signature of lines (i.e. infall, see Ilee et al.
2016); we do not account for this effect in our models. Kinematic
signatures could also be affected by larger-scale filamentary flows
in the immediate star-forming environment (see e.g. Maud et al.
2017; Izquierdo et al. 2018).

We find that both spatial and spectral detectability of spiral sub-
structure are only weakly dependent on the rotational offset (rota-
tion angle relative to a fixed disc axis) of spirals in our models (see
Section 2.1.2).

The kinematic perturbation introduced by the spirals in the above
models is super-Keplerian, i.e. the spiral pattern is rotating faster
than the disc and the matter in spiral overdensities is moving at a
velocity that is higher than the local Keplerian velocity. The mag-
nitude of the kinematic perturbation (parameter η in our models) is
expected to roughly scale with disc-star mass ratio, i.e. with how
self-gravitating the disc is (Cossins et al. 2009; Forgan et al. 2011).
The above results correspond to a strongly self-gravitating disc
(η = 0.2), and we find that it quickly becomes difficult to resolve
the perturbation in less self-gravitating discs (η = 0.1). Obviously,
this is a function of the spectral resolution of the (synthetic) obser-
vation, but the disc physics also plays a role: kinematic perturbation
directly determines thermal perturbation in the spirals. The heating
due to shocks in spiral arms is expected to be proportional to the
kinematic perturbation (Cossins et al. 2009), as accounted for in our
models.

We also explore the possibility of sub-Keplerian kinematic per-
turbation and find that the twin-lobe feature in the PV diagrams
appears similarly as in the super-Keplerian case, but the moment
1 maps become much more difficult to interpret, and spiral sig-
natures are not easily identified. Nevertheless, the pattern speed
of spiral density waves in low-mass self-gravitating discs is found
to be generally super-Keplerian in simulations (Forgan, Ramón-
Fox & Bonnell 2018a). Therefore, spirals should be easy to spec-
trally resolve in sufficiently inclined and strongly self-gravitating
discs.

4.3 Sensitivity to thermal and chemical structure

Molecular abundances can vary greatly within a circumstellar disc,
with different molecular species surviving in the gas phase within
different regions in the disc. For example, the CH3CN in our fiducial
disc model resides in the hot inner disc, the stellar-irradiated warm
disc atmosphere and the shock-heated regions of the spiral arms
(for the details of the chemical prescription, see Section 2.2.3). In
the disc mid-plane, the molecule is mostly frozen out outside the
spirals and outside the snowline at ∼300 au.

The molecular abundance in the atmosphere is regulated by the
atmospheric heating, a free parameter in our models. In a disc
colder than our fiducial one the molecule is frozen out higher into
the atmosphere. For sufficiently weaker atmospheric heating, the
molecule in the outer disc will practically only trace the spirals,

as emission from the low-density upper layers will be too weak.
Thus, it could be expected for a cooler disc to make spirals easier
to detect as they would have a higher contrast with the rest of the
disc. However, we find that varying the atmospheric heating in our
fiducial disc model does not affect detection of spirals, since there
is already a significant contrast between the shock-heated spiral
arms and the rest of the disc. The effect might become important
in less massive discs with weaker spiral perturbations, as discussed
above.

4.4 The optical depth

The TORUS radiative transfer calculations give us quick access to the
optical depth in both gas and dust in the models. For reference, the
dust absorption coefficient at frequency ν in a medium of density ρ

is

αdust
ν = κνρ (15)

for opacity κν . Additionally, the absorption coefficient in the line is
set by the balance between stimulated photoabsorption and induced
emission

αgas
ν = hν

4π
(nlBlu − nuBul) φν, (16)

where nu, nl are the molecule populations in the upper and lower
states of the transition, φν is the line profile function which is
sensitive to both the bulk and microturbulent velocities, and Bul

and Blu are the Einstein coefficients of stimulated emission and
absorption. We computed the optical depth at the line frequency
due to dust and gas (the line self-absorption) from each grid cell on
the mid-plane along the trajectory towards the observer in a given
model (i.e. the optical depth is inclination dependent).

We first consider the opacity due to dust only in an axisymmetric
disc, i.e. a disc without spirals. In this section we allow ourselves
to vary the maximum grain size in the distribution to probe the
impact of grain growth. We find that there is an inner zone that is
optically thick due to dust alone (this extent, i.e. radius, is roughly
equivalent for both the K = 3 and K = 7, J = 13 → 12 lines, which
only differ in frequency by ∼0.1 GHz). For a maximum grain size
amax<100μm (minimum grain size 1 nm, q = 3.3), this optically
thick inner region due to dust alone is around 50 au in extent (or less
in the case of lower accretion rates, though our inner radius is 50 au
so we cannot constrain smaller optically thick extents). If amax is
increased to around 300–500μm the optically thick region sharply
jumps in size to around 100–250 au, and remains so for maximum
grain sizes up to 1 cm. These extents are only mildly sensitive to the
inclination, at least until the disc is almost edge on and the projected
column becomes a lot higher.

Examples of the extent of the optically thick dust disc as a func-
tion of the maximum grain size for a series of axisymmetric discs of
different mass accretion rates (and hence total masses) are shown in
the upper panel of Fig. 8. The lower panel of Fig. 8 shows how the
opacity varies as a function of wavelength, the behaviour of which
at the transition wavelength (black line) explains the form of the
upper panel. Unsurprisingly, a larger extent of the disc is optically
thick for larger disc masses.

We hence expect that discs around MYSOs observed in these
lines will have an optically thick inner region due to dust alone. If
this is detected beyond 100 au, up to around 250 au, it may serve
as evidence for widespread grain growth beyond the usual ISM
maximum grain size (this is expected in discs, see e.g. Testi et al.
2014 for a review). Note that dense spirals can also induce localized
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4684 M. R. Jankovic et al.

Figure 8. The upper panel shows the extent of axisymmetric regions of
discs that are optically thick due to dust alone in the CH3CN K = 3, J = 13
→ 12 line. The optical depth at a given radius is computed by moving
integrating vertically through the disc. Different lines/colours correspond
to different mass accretion rates and hence total disc masses. The lower
panel shows the wavelength dependence of the opacity for different amax,
the behaviour of which at the transition wavelength (black vertical line)
determines the form of the upper panel.

regions that are optically thick in dust at larger radii. The expectation
that massive discs around MYSOs will have such optically thick
regions suggests that mass estimates from the continuum are likely
to be underestimates (a similar conclusion was reached by Forgan
et al. 2016).

The line opacity (equation 16) can also make the emission op-
tically thick at radii larger than the inner region set by the dust
opacity. However, we find that this is difficult to generalize as the
line is marginally optically thick/thin. It depends on a plethora of
factors including the chemical and thermal structure of the disc, the
viewing angle (and hence the distribution of velocities along the line
of sight), the disc mass, and so on. The inclination is particularly
important to the line opacity, since self-absorption is sensitive to
the kinematics along the line of sight. Our fiducial face-on disc is
optically thick in the line centre out to around 600–800 au when
the line opacity is included but at an inclination of 60 deg the same
model is only optically thick in the line centre out to the extent set
by the dust.

Overall, the K = 3, 7, J = 13 → 12 CH3CN lines cannot be
assumed to be optically thick/thin at larger radii in the disc. How-
ever, the inner disc is expected to be optically thick due to the dust,
with an extent that is sensitive to grain growth above an ISM size
distribution.

4.5 Detecting disc fragmentation

In addition to discs with spiral substructure, we also consider frag-
menting discs. Fragments contract into dense and hot clumps of
gas and dust that ultimately might become stellar companions or
planets.

Given their large distances, observations of MYSOs with ALMA
will possess a typical spatial resolution of the order of a few 100s
of au. For a distance of 3 kpc, the particular ALMA configuration
we use for our synthetic observations yields spatial resolution of
∼270 au. On the other hand, analysis of fragmentation in smoothed
particle hydrodynamic simulations of self-gravitating discs around
a solar mass star identified fragment radii of a few au (Hall et al.
2017). Even if fragment radii in massive systems are extrapolated
to reach 10s of au, the fragments are not expected to be directly
resolved by ALMA. However, they could still be detected appearing
as beam-size clumps.

To explore the possibility of fragment detection, we insert an
isothermal clump (see Section 2.1.3) into our fiducial two-arm spiral
disc model with an inclination of 30 deg. The clump is placed inside
one of the spiral arms, at disc mid-plane, and its velocity is equal to
the local bulk velocity. We set the clump radius to 20 au. We do not
consider smaller clumps because smaller clumps are challenging to
resolve in our radiative transfer calculations of the 2000 au 3D disc
model, even with an adaptive mesh,4 and because a 40 au-diameter
is still only a fraction of the beam, as discussed above. In six disc
models with clumps, we vary the clump orbital distance (200–
800 au), total mass (0.1–5 M�), and temperature (150–1400 K).

Our main findings are that none of the clumps are detectable
in the moment 0 nor the moment 1 maps and that the clumps are
unambiguously detected in the continuum if they are sufficiently
hotter than the surrounding matter, independently of the mass (over
the range of masses we consider). Due to shock heating in the spiral
arms, even at the orbital distance of 800 au the temperature in the
spiral arms reaches ∼300 K at the disc mid-plane. Consequently, in
our synthetic observations, the clumps with a temperature of 1400 K
are easily detectable, and those with a temperature of 300 K are not
detectable at all. Again, we find that this is insensitive to the total
clump mass in the range of 0.1–5 M�. As an example, we show the
continuum image of the model with a 0.1 M� and 1400 K clump in
Fig. 9.

We therefore conclude that the next generation of ALMA obser-
vations towards MYSOs at ∼3 kpc distances could expect to detect
hotter fragments (i.e. those that have sufficiently contracted; Hall
et al. 2017) in the dust continuum, but neither in the moment 0 map
nor in the moment 1 map of line emission. We note, however, that
we have not included kinematics of the matter accreting on to a frag-
ment. We also infer that it would be more likely to detect clumps if
they are outside of spiral arms due to increased contrast. As the spi-
ral arms are expected to be the birthplace of fragments, this refers to
the later stages of fragment evolution when the fragment decouples
from the spiral density wave to fall on to a Keplerian orbit. Finally,
we stress again that caution is required when interpreting substruc-
ture in terms of fragmentation, as we have shown in Section 3.1
that image filtering may result in a clumpy structure, which may be
difficult to disentangle.

4The total processing time for a model with a clump is about 5 h using four
cores for the radiative transfer calculations, and a single core for the rest, on
a desktop, much longer than the 1 h processing for models without clumps
due to a much higher spatial resolution of the data cubes necessary to resolve
the clump.
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Observing substructure in discs around MYSOs 4685

Figure 9. Simulated observed image of our fiducial disc model inclined
at 30 deg, with a 0.1 M�, 1400 K fragment inserted at the orbital distance
of 800 au, in the 239 GHz continuum. Flux is normalized with respect to
the peak value. The relative coordinates of the fragment in the image are
(0.12 arcsec, 0.24 arcsec). A Gaussian fit has been subtracted from the orig-
inal image to enhance substructure (see Section 3.1).

5 SU M M A RY A N D C O N C L U S I O N S

We have developed a means of quickly generating flexible syn-
thetic observations of self-gravitating discs. Our approach is not
entirely dissimilar to the parametric approach of Williams & Best
(2014) that is applied to low mass, axisymmetric discs. Unlike
the time-consuming process of performing synthetic imaging of
hydrodynamical simulations, our approach permits us to explore
a range of parameters and to understand what influences the de-
tectability of substructure in gravitationally unstable discs around
MYSOs. In our approach, we calculate semi-analytic models of such
discs, including features such as spirals and clumps. These are then
post-processed with a radiative transfer code to compute synthetic
molecular line observations, which are then modified to account for
interferometric/observing effects characteristic of ALMA. We draw
the following main conclusions from this work:

(1) Spatial and kinematic filtering techniques, such as those de-
scribed in Sections 3.1 and 3.2, are crucial for detection of substruc-
ture in discs around MYSOs at the kpc distances at which they are
observed.

(2) We predict that ALMA will be able to resolve two-arm spi-
rals at a majority of distances in the 1–5 kpc range explored here.
Substructure in discs with a larger number of spiral arms, i.e. more
weakly self-gravitating discs, will be much more difficult to infer.

(3) Spirals at ∼3 kpc will be easily resolved spatially in discs
inclined up to ∼50 deg. At inclinations of ∼50–60 deg, it will be
possible to identify spirals with the help of kinematic diagnostics
(moment 1 maps). Above an inclination of 60 deg, we find that
spirals can be detected only in PV diagrams.

(4) The molecular abundance distribution can, in principle, be
a strong influencing factor for the detection of substructure. It is
sensitive to the thermal conditions and molecules may be completely
frozen out in the cold dense mid-plane, tracing only the hot disc
atmosphere and shock-heated spirals. Weak atmospheric heating
may lead to freeze out of the molecule higher into the atmosphere,
but we find this not to be important for the detection of spirals,
within the parameter space explored here.

(5) The optical depth of the CH3CN lines considered here varies
greatly with the disc inclination and other disc parameters, and the
line is often marginally optically thick/thin in the outer disc. We
find that the inner disc is always optically thick due to the dust. The
extent of the optically thick inner disc may allow the amount of
grain growth in the disc to be inferred.

(6) Our modelling suggests that disc fragmentation is unlikely
to be detected in the line emission, but that fragments may be
detectable in the continuum if they are sufficiently hotter than the
surrounding disc material. Their detectability is not a strong function
of their mass, but rather their temperature.

Our results suggest that upcoming observational campaigns will
enable characterization of the immediate circumstellar environ-
ments of massive young stars. Such observations, under certain
circumstances, will have the power to begin probing the physical
and dynamical conditions of circumstellar discs around MYSOs,
and therefore determine the formation mechanisms of massive stars
themselves.
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Abstract

The ubiquity of Earth- to super-Earth-sized planets found very close to their host stars has motivated in situ
formation models. In particular, inside-out planet formation is a scenario in which planets coalesce sequentially in
the disk, at the local gas pressure maximum near the inner boundary of the dead zone. The pressure maximum
arises from a decline in viscosity, going from the active innermost disk (where thermal ionization yields high
viscosities via the magnetorotational instability [MRI]) to the adjacent dead zone (where the MRI is quenched).
Previous studies of the pressure maximum, based on α-disk models, have assumed ad hoc values for the viscosity
parameter α in the active zone, ignoring the detailed MRI physics. Here we explicitly couple the MRI criteria to the
α-disk equations, to find steady-state solutions for the disk structure. We consider both Ohmic and ambipolar
resistivities, a range of disk accretion rates (10−10

–10−8Me yr−1), stellar masses (0.1–1Me), and fiducial values
of the non-MRI α-viscosity in the dead zone (αDZ=10−5 to 10−3). We find that (1) a midplane pressure
maximum forms radially outside the dead zone inner boundary; (2) Hall resistivity dominates near the inner disk
midplane, perhaps explaining why close-in planets do not form in ∼50% of systems; (3) X-ray ionization can
compete with thermal ionization in the inner disk, because of the low steady-state surface density there; and (4) our
inner disks are viscously unstable to surface density perturbations.

Key words: planets and satellites: formation – protoplanetary disks

1. Introduction

The Kepler mission has discovered more than 4000
exoplanet candidates from observations of their transits (e.g.,
Mullally et al. 2015; Coughlin et al. 2016). One of the great
surprises from this data set is the ubiquity of Earth- and super-
Earth-sized planets in very tight orbits, which have no solar
system analogs. Specifically, more than 50% of Sun-like stars
appear to harbor one or more planets of size 0.8–4 Re at orbital
periods P<85 days (i.e., shorter than Mercury’s; Fressin
et al. 2013). Similarly, nearly all M dwarfs seem to host one or
more 0.5–4 Re sized planets at P<50 days (Dressing &
Charbonneau 2015). Note that the single-planet systems
included in these statistics may have as-yet-undetected smaller
planets as well. Moreover, a large fraction (30%) of the close-
in multiplanet Kepler systems appear dynamically packed (i.e.,
cannot admit an additional planet without becoming unstable;
Fang & Margot 2013). Thus, a major, and possibly the
dominant, planet formation mechanism in our Galaxy produces
small planets very close to the central star, with a large fraction
of these in tightly packed multiplanet systems. Two main
scenarios have been advanced to explain such planets:
(1) formation in the outer disk followed by inward migration
(e.g., Kley & Nelson 2012; Cossou et al. 2013, 2014), and
(2) formation in situ (Hansen & Murray 2012, 2013; Chiang &
Laughlin 2013; Chatterjee & Tan 2014, hereafter CT14).

The inward migration scenario tends to produce planets that
are trapped in orbits of low-order mean motion resonances,
which is not a particular feature of these Kepler systems
(Baruteau et al. 2014; Fabrycky et al. 2014). Recently
discovered trends in the atmospheric photoevaporation of these
planets also indicate an Earth-like (rock/iron) core composi-
tion, implying formation inward of the ice line and thus arguing
against significant migration (Owen & Wu 2017).

The inside-out planet formation (IOPF) scenario proposed by
CT14 is a new type of in situ formation model. It is based on
the fact that the effective viscosity in the disk is expected to
decline, moving radially outward from the innermost disk—
where efficient thermal ionization of alkali metals (Umebayashi
& Nakano 1988) activates the magnetorotational instability
(MRI; Balbus & Hawley 1991), leading to high viscosities—to
the adjacent “dead zone,” where decreasing thermal ionization
leads to a suppression of the MRI by Ohmic resistivity,
yielding low viscosities (Gammie 1996). In a steady-state disk,
i.e., one with a constant disk accretion rate Ṁ , this fall-off in
viscosity produces a local maximum in the gas pressure in the
vicinity of the dead zone inner boundary (DZIB). The IOPF
mechanism proposes that dust grains that have grown to
∼centimeter-sized “pebbles” in the outer disk (Hu et al. 2017)
and are drifting radially inward are trapped in this pressure
maximum, within which they rapidly coalesce into a proto-
planet. The protoplanet itself is also expected to be trapped in
this region (Hu et al. 2016) and thus able to continue growing
(especially by pebble accretion), until it becomes massive
enough to open a gap a few Hill radii wide in the disk.
Material interior to the inner rim of this gap will tend to drain

rapidly (on a local viscous timescale) onto the star. While some
replenishment of this interior region may continue owing to gas
flowing across the gap, densities here are expected to decrease,
potentially leaving the outer rim of the gap subject to direct
stellar X-ray/UV irradiation. This can activate the MRI in disk
gas close to the outer rim, over a thickness set by how far stellar
ionizing photons penetrate radially into the rim (e.g., Chiang &
Murray-Clay 2007). A new DZIB then forms at the outer edge
of this MRI-active region, creating a new pressure trap where
incoming pebbles can coagulate into another planet. The
process continues until the pebble supply from the outer disk is
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exhausted, leaving behind a system of closely packed inner
planets.

The formation of gas pressure maxima is thus central to the
IOPF model. In particular, the location of the first maximum,
controlled by thermal ionization of alkalis in the inner disk, sets
the orbital radius of the innermost (so-called “Vulcan”) planet
in the system. The goal of this paper is to investigate the
formation of this first pressure maximum.

There have been several previous works studying pressure
traps in the disk created by changes in the viscosity
(e.g., CT14; Kretke & Lin 2007; Kretke et al. 2009; Kretke
& Lin 2010). All of these have been based on a steady-state
Shakura–Sunyaev α-disk model, wherein the disk accretion
rate is constant, viscous heating due to accretion is the main
source of energy input, and the disk viscosity is parameterized
in terms of the quantity α. Crucially, however, these studies
have all adopted ad hoc prescriptions of α for computational
ease, without accounting for the detailed physics of the MRI.

Conversely, several groups have investigated the behavior of
active and dead zones in the disk, accounting for the detailed
effects of non-ideal MHD and complex gas and dust chemistry
on the MRI, either using direct numerical simulations (e.g.,
Bai 2011, 2017; Bai & Stone 2011; Turner et al. 2010) or based
on the MRI criteria implied by such simulations (e.g., Perez-
Becker & Chiang 2011a, 2011b; Mohanty et al. 2013).
However, these studies all assume a passive disk (heated and
ionized by stellar irradiation) and a predetermined temperature
and surface density profile (usually minimum-mass solar
nebula [MMSN]). Consequently, the results are generally
neither in steady state (Ṁ varies with radius) nor applicable to
the inner disk (where viscous heating dominates).

Our aim here is to marry the two approaches: we wish to solve
for the structure of the inner disk assuming a steady-state,
viscously heated α-disk, but with α determined self-consistently
from detailed considerations of the MRI and non-ideal MHD
effects. To the best of our knowledge, this is the first such unified
disk model (Keith & Wardle [2014] present an elegant self-
consistent α-disk model for circumplanetary disks, but their MRI-
α is a more parameterized version than ours, with a saturation
value set arbitrarily). As such, the results are germane not only to
the IOPF mechanism and the specific purpose of locating a
pressure maximum in the inner disk but also to the broader goal
of understanding the structure of viscously heated steady-state
disks with MRI-driven accretion and non-ideal MHD.

In Section 2, we provide an overview of our methodology
and discuss some critical caveats to our assumption of MRI-
driven accretion. In Section 3, we summarize the α-disk model,
and in Section 4, we describe our treatment of the MRI. Our
technique for calculating α and Ṁ is detailed in Sections 5 and
6, and our method of determining equilibrium solutions is
outlined in Section 7. We present our results in Section 8 and
discuss their implications in Section 9.

2. Overview of Methodology and Caveats

2.1. Methodology

We wish to investigate the location of the pressure maximum
in the inner disk, by solving for the inner disk structure in steady
state (i.e., with constant Ṁ) and assuming that the MRI is the
dominant magnetically controlled mechanism for local mass and
angular momentum transport. We further wish to do this in the
context of the Shakura–Sunyaev α-disk model. Consequently, we

must solve the coupled set of equations for the MRI and disk
structure: coupled because the effective viscosity parameter α
from the MRI and the attendant Ṁ both depend on the underlying
disk structure (as well as on the magnetic field strength B), while
the disk structure itself, in the Shakura–Sunyaev model, is
determined by α and Ṁ (and stellar parameters).
Briefly, we use a grid-based method of solution. A grid of

disk structures is calculated for a desired Ṁ and a range of
input values for α and field strength B; the MRI-induced output
α and corresponding accretion rate Ṁ are derived for each of
these disk structures, and the chosen solution structure is the
one in which the output values of α and Ṁ match the input
ones. We find that a range of such solutions are possible
differing in B; a unique solution is chosen under the assumption
that the MRI is maximally efficient, i.e., generates the largest
field it can support (but see “Caveats” below).
Pressure Maximum: How do our solutions produce a

pressure maximum? In the α-disk model, the gas pressure is
a decreasing function of both α and radius. This leads to a
turnover in pressure at the radial location where our derived α
falls to its minimum value. What defines this minimum in our
methodology? In previous work as well as in this paper, a
lower limit (“floor”) on α is set by its value αDZ in the dead
zone, where the MRI is quenched but various (nonmagnetic)
hydrodynamic/gravitational instabilities may still generate
viscous stresses. Fiducial values for this floor are chosen based
on theory and numerical simulations; we explore the plausible
range αDZ=10−5 to 10−3 (discussed in more detail later). The
pressure maximum then occurs where the α in the MRI-active
zone decreases to this dead zone limiting value. This floor will
always be reached if heating due to viscous accretion (a
decreasing function of radius for constant Ṁ) is the only source
of the ionization required to kindle the MRI (as assumed here;
but see also X-rays/UV below).
Simplifications: In this pilot study, we adopt a number of

simplifications: no ionization by stellar photons (X-ray or UV;
we only consider thermal ionization due to accretion heating),
ionization of a single alkali species (i.e., no complex chemical
network), no dust, and a fixed opacity of 10 cm2 g−1. Relaxing
these assumptions presents no conceptual difficulties, and we
shall do so in a subsequent paper (M. R. Jankovic et al. 2018, in
preparation); the inclusion of more physics will certainly
change the precise location of the pressure maximum (e.g., dust
grains will reduce the MRI efficiency, and X-rays may change
the limiting value of α; these effects and others are discussed at
appropriate junctures). Nevertheless, as an initial step, the
mathematical ease afforded by these simplifications allows us
to clearly present our methodology and identify important
general trends in the solutions.

2.2. Caveats

Finally, there are crucial caveats, applicable to all work so
far on pressure maxima in the inner disk (including this paper),
concerning the basic assumption that mass and angular
momentum transport are controlled by the MRI. In the
innermost disk, where the inductive term in the field evolution
equation greatly exceeds the resistive terms, the MRI is indeed
likely to be dominant and maximally efficient (e.g., Bai 2013).
Farther out, however, where the resistivities become non-
negligible, the situation is much more complicated.
Specifically, first, when Ohmic and ambipolar resistivities are

both important, vertically stratified 3D simulations (Bai 2013;
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Bai & Stone 2013; Gressel et al. 2015) imply that (a) in the
absence of any net vertical magnetic flux, the MRI is extremely
weak, with an effective viscosity orders of magnitude lower than
required to power the observed accretion rates in classical T
Tauri stars; and (b) with even a small net vertical field, MRI
turbulence is completely smothered (because, while the MRI is
initially present, the field is subsequently amplified to strengths
greater than that at which the MRI can operate under ambipolar
diffusion; i.e., the assumption of maximally efficient MRI is no
longer valid). The flow over the entire vertical extent of the disk
now becomes fully laminar, and a magnetized disk wind
develops instead, which efficiently carries angular momentum
away from the disk and drives accretion at rates consistent with
observations. In other words, where Ohmic and ambipolar
effects are both important, mass accretion seems driven primarily
by vertical angular momentum transport by magnetized winds,
and not radial transport by the MRI.

Second, introducing the Hall effect into the above situation
complicates matters further, depending on whether the net
vertical magnetic field is aligned or anti-aligned with the spin
axis of the disk (Bai 2014, 2015, 2017; Lesur et al. 2014; Simon
et al. 2015). When the two are aligned (i.e., Ω· B>0), the
Hall shear instability (HSI) generates laminar viscous stresses via
the amplification of horizontal components of the field
(Kunz 2008), leading to strong radial angular momentum
transport and hence significant mass accretion (in addition to
the magnetized-wind-driven accretion at comparable rates).
Conversely, when the field and disk spin axis point in opposite
directions ( B 0W <· ), the horizontal field is considerably
suppressed, and mass and angular momentum transport are
predominantly wind driven.

At face value, these results suggest that using the Shakura–
Sunyaev viscous disk model to search for a pressure maximum,
with the expectation that α declines sharply across the interface
between the MRI-active innermost disk and the adjacent dead-
zone-dominated region, might not be a valid exercise for two
reasons. First, in the region usually characterized as “dead
zone” dominated, angular momentum in the aforementioned
simulations is mainly transported vertically out of the disk by
wind-related torques, instead of being radially redistributed
within the disk by standard viscous torques (either hydro-
dynamic/gravitational within the dead zone, or MRI in an
overlying active layer). Thus, the Shakura–Sunyaev viscous
model is invalid here. Second, when the field and disk spin axis
are aligned, the HSI activates efficient mass and angular
momentum transport all the way down to the midplane here (in
addition to wind-related transport higher up); i.e., there is no
dead zone in any sense.

Nevertheless, it is premature to write off an inner disk
pressure maximum in the standard viscous disk context. All the
above simulations are restricted to radii 1 au, an order of
magnitude farther out than the presumed location of the
pressure maximum at few tenths of an au (the simulation
domain of Bai [2017] formally extends into 0.6 au, but they
deem the results at <2 au to be vitiated by boundary effects).
Thus, it remains to be seen whether the above conclusions
apply to our region of interest in the inner disk. Concurrently, if
the close-in planets we address here are indeed formed in situ
from inward-migrating solids, then some sort of pressure trap
seems inescapable in this region, in order to corral these solids
and prevent their falling into the star. As such, continuing this
line of inquiry currently appears justified.

Finally, even if the wind/Hall results from the simulations
extend to much smaller radii, a pressure maximum is still
plausible (and, in general, a significant change in disk structure
is expected) at the interface between the innermost MRI-active
turbulent disk and the adjacent wind-dominated laminar disk,
because of the qualitative difference in physical conditions
between the two regions. The Shakura–Sunyaev α-disk model
will not apply across the interface, and the controlling factor for
any change in disk structure may be the radial distribution of
magnetic flux (since the field ultimately determines the strength
of the MRI, the wind, and the Hall effect; X. N. Bai 2017,
private communication), rather than the radial behavior of α as
assumed here. Nonetheless, the α-disk model will still apply to
the MRI region, and insights into the latter gleaned from the
present work will remain useful.

3. Disk Model

A detailed derivation of the steady-state (temporally
constant) disk structure within the Shakura–Sunyaev viscous
α-disk model is given by Hu et al. (2016, hereafter H16). We
summarize the main results here. The viscosity parameter α is
defined by the relation

c
, 1s

2

n a=
W

( )

where ν is the viscosity, cs the sound speed, and Ω the
Keplerian angular velocity at any given disk radius. Now, the
α-disk model is fundamentally derived from vertically
integrated quantities (surface density and accretion rate;
see H16); as such, the “α” that enters into it is more precisely
a vertical average. This issue is often elided (e.g., H16 do not
discuss it) under the implicit assumption that α is vertically
constant or slowly varying. However, in a vertically stratified
disk (such as we will find), with MRI-active zones sandwiched
between inactive ones, the nature of the viscosity changes with
height, and the latter assumption is invalid. In this case, the
relevant quantity is the effective viscosity parameter ā, defined
as the pressure-weighted vertical average of α:
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where the second equality (derived using P csgas
2r= for density

ρ) holds only for a vertically isothermal disk (so that cs
2 is

constant with height; we shall assume such isothermality
further below). We show how to calculate ā in Section 5. We
explicitly append the subscript “gas” to pressure P to
differentiate the gas pressure from the magnetic pressure (PB,
encountered later); for all other quantities (density, temper-
ature, etc.) we drop this subscript, since they always refer to gas
alone in this paper.
With this definition of ā, the steady-state gas surface density

(summing both above and below the midplane) at any orbital
radius r in the disk is given by
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for a normalized stellar mass M*,1≡M*/1Me, accretion rate
M 9 º-˙ Ṁ/10−9Me yr−1, radial distance rAU≡r/1 au, opa-
city κ10≡κ/10 cm2g−1, adiabatic index γ1.4≡γ/1.4, and
effective viscosity parameter 3a º-¯ 10 3a -¯ , with fr º

R r1 in-( ) for a disk inner edge located at Rin (if the disk
extends to the stellar surface, then Rin=R*, the stellar radius).
The associated midplane temperature is given by
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if viscous heating is the main source of energy input (i.e.,
heating by stellar irradiation is ignored). The midplane pressure
is then
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and the midplane density (which follows from the ideal gas law
Pgas=ρ kBT/μ, for particles with mean molecular mass
μ≈2.34mH, where mH is the atomic mass of hydrogen) is
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Crucially, Equations (5) and (6) show that the midplane
pressure and density do not depend on the local α, but rather on
its vertically averaged value ā. In other words, the midplane
pressure (and thus density) is sensitive to conditions in the
entire column pressing down from above (as intuitively
expected), not simply local ones. This has the following
important consequence. As we will show, the midplane
pressure maximum does not form where the dead zone first
develops in the midplane (i.e., at the DZIB, which is where the
midplane α reaches its minimum), as often assumed. Instead, it
forms farther out radially, where the effective parameter ā
reaches its minimum (because the MRI-active zone continues
outward for some distance above the dead zone). Thus, we will
find that the midplane pressure maximum is actually located
within the dead zone.

Unlike H16, we assume for simplicity that the disk is
vertically isothermal (i.e., γ=1). Strictly speaking, this is
slightly inconsistent with the derivation of the midplane
temperature (Equation (4) above) by H16, following the
formalism of Hubeny (1990), wherein the temperature depends
on the vertical optical depth in the disk. However, implementing
this dependence couples together the vertical temperature and
density profiles in a complicated fashion (H16 avoid this because
they are concerned with just midplane values). Moreover, at
small optical depths (τ=1), the temperature is also highly
sensitive to the details of the appropriate radiative processes (a
simplistic treatment of which leads to an infinitely hot disk
surface; see discussion by Hubeny 1990); addressing these is
beyond the scope of this paper. On the other hand, at large
optical depths (τ?1), T only varies very slowly with depth, as
τ1/4 (see Hubeny 1990). Therefore, since we expect the inner
disk to only be active in optically thick regions close to the
midplane, we approximate the vertical temperature profile in
the region of interest by the midplane values: T(z, r)∼
T0 (r).

The (isothermal) sound speed is then c k Ts B 0 m= , and the
vertical pressure profile in hydrostatic equilibrium becomes

P z r P r
z

z
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H
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2

2
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where the pressure scale height is defined as z c2H sº W.
Finally, we assume a constant opacity of κ=10cm2 g−1,
approximately the expected value in protoplanetary disks (e.g.,
Wood et al. 2002). H16 use the detailed opacity tables of Zhu
et al. (2012), where the values depend on the pressure and
temperature structure of the disk, and solve for the equilibrium
opacities and structure iteratively. In our case, however, the
disk structure equations are already coupled to the MRI ones,
and the two sets must be solved simultaneously. Introducing a
further interdependence with opacity adds a level of complexity
that we set aside in this exploratory work. We do compare,
a posteriori, our constant κ to the values implied by Zhu et al.
(2012) for our equilibrium disk structure, to gauge the
discrepancy between the two; in general, we find our value
to be reasonable.

4. MRI

Our treatment of the MRI generally follows that of Mohanty
et al. (2013), except we consider ionization by thermal
collisions instead of by X-rays, and we do not include grains.
Here we summarize the major points of our analysis. The
physical conditions required for the MRI to operate are set out
in Section 4.1; our treatment of thermal ionization and
recombination is discussed in Section 4.2; and the calculation
of the various resistivities (Ohmic, ambipolar, and Hall), which
determine whether or not the MRI criteria are met, is described
in Section 4.3.

4.1. Criteria for Active MRI

We discuss the necessary conditions for active MRI in
Appendix A and only state the final results here. The Ohmic
Elsässer number Λ is defined as

v
, 8z

O

2


h
L º

W
( )

where ηO is the Ohmic resistivity and v z the vertical
component of the local Alfvén velocity ( B 4z prº , where
Bz is the vertical field strength and ρ the local gas density).
Similarly, the ambipolar Elsässer number Am is defined as

Am
v

, 9
A
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h
º

W
( )

where ηA is the ambipolar resistivity and v the local total
Alfvén velocity ( B 4prº , where B is the rms field strength).3

With these definitions, the conditions for sustaining active
MRI are

1 10L > ( )

3 Our reasons for adopting v z in Equation (8) but v in Equation (9) are
supplied in the discussion preceding Equation (33) and in footnote (8), in
Appendix A.
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and

Am . 11aminb b> ( ) ( )

Here β≡Pgas/PB is the plasma β parameter (with magnetic
pressure PB≡B2/8π), and the minimum allowed value of β—
denoted by βmin—is a function of the ambipolar Elsässer
number Am (Bai & Stone 2011):
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Equation (10) encapsulates the reasonable condition that, when
Ohmic resistivity dominates, the MRI is sustained when the
growth rate of the fastest-growing MRI mode exceeds its
dissipation rate. When ambipolar diffusion dominates, on the
other hand, Bai & Stone (2011) find that, in the strong-coupling
(single-fluid) limit applicable to protoplanetary disks (see
discussion preceding Equation 36(a) in Appendix A), the MRI
can operate at any value of Am, provided that the field is
sufficiently weak. Equations 11(a), (b) then define what
“sufficiently weak” means: it signifies that the plasma β

parameter must exceed a minimum threshold βmin. Specifically,
it implies that the gas pressure must dominate over the magnetic
pressure in the disk for the MRI to function (see discussion
following Equation 37(b)). An “active zone” is where both
conditions (10) and (11) are satisfied, allowing efficient MRI; a
“dead zone” is where condition (10) is not met, so that Ohmic
resistivity shuts off the MRI; and a “zombie zone” (following the
nomenclature of Mohanty et al. 2013) is where condition 11(a) is
not satisfied, so that ambipolar diffusion quenches the MRI.

Note that the effects of Hall diffusion are ignored in the above
analysis. As discussed in Section 2 and Appendix A, in the
presence of a net vertical background field, the Hall effect can
amplify the MRI or suppress it, depending on whether the field is
aligned or anti-aligned with the spin axis of the disk. Quantifying
this effect is beyond the scope of this paper. However, we do
investigate the Hall effect a posteriori, by calculating the Hall
Elsässer number ( v ;H

2
c hº W(∣ ∣ ) see Appendix A and

Equation (35)) everywhere in our solutions. In any region
where χ<1, which we call a “Hall zone,” Hall diffusion has a
strong effect on the MRI; we discuss the potentially critical
implications of such regions for planet formation.

4.1.1. Choice of Magnetic Field Strength

Both the Ohmic and ambipolar conditions for active MRI,
Equations (10) and (11), depend on the magnetic field strength:
via v z in ΛO and PB in β. Indeed, for a given set of stellar
parameters and a fixed accretion rate, we will see that there
exist an infinite number of solutions, each corresponding to a
different disk structure with a different field strength B.

The question then is how to determine an appropriate B. We
do so by assuming that (a) the magnetic field strength is
constant with height across the active layer and (b) the MRI is
maximally efficient, generating the strongest possible field that
still allows the MRI to operate (i.e., still satisfies the constraint
β>βmin).

The same assumptions are made by Mohanty et al. (2013)
and Bai (2011). A roughly constant B across the active layer is
expected from MRI-driven turbulent mixing (Bai 2011, and
references therein), justifying condition (a). Condition (b)

encapsulates the notion that (in the absence of any other
mechanism) the MRI turbulence will continue to amplify the
field up to some maximum value Bmax corresponding to βmin,
beyond which the MRI is quenched (i.e., the instability is self-
regulated). Our implementation of this condition to derive
equilibrium disk solutions is described in Section 5.
Finally, we note that numerical simulations of the MRI by

Sano et al. (2004) indicate that the total rms field strength B and
its vertical component Bz are related by B2∼25Bz

2, a condition
we adopt. Thus, though our Ohmic MRI condition is defined in
terms of v z Bz

2µ while the ambipolar condition is in terms of
PB∝B2, one need specify only B or Bz, not both
independently.

4.2. Thermal Ionization and Recombination

In the hot inner regions of the disk, ionization is dominated
by thermal collisions, with the equilibrium level of thermal
ionization of an atomic species a given by the Saha equation:
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Here ne is the number density of free electrons, and n0,a and
n+,a are the number densities of neutral atoms and singly
ionized ions, respectively, of species a; h m k T2e e B

2l pº ( )
is the thermal de Broglie wavelength of electrons of mass me;
ge (=2), g0,a, and g+,a are the degeneracy of states for free
electrons, neutrals, and ions, respectively; and a is the
ionization energy.
We note the following simplifications when only one, singly

ionized species (e.g., an alkali metal; see below) participates in
ionization/recombination. In this case, charge conservation
requires ne=n+,a and n0,a=na−ne (where na is the total
number density of species a). Since molecular hydrogen, with
number density nH2, forms the vast bulk of the gas, we adopt
the standard expressions for fractional ionization, xe≡ne/nH2,
and the abundance of species a, xa≡na/nH2. Writing the
entire right-hand side of the Saha equation above as Ta ( ), a
little algebra then yields x x n1 1 4e a aH2 = -  +[ ( ) ]

n2 aH2 [ ( )]. This leads to two limiting physical solutions: when
n 0H2  (more precisely, when x n4 1a aH2  ( ) ), we get
xe≈xa, and when nH2  ¥ (more precisely, when
x n4 1a aH2  ( ) ), we get x x ne a a H2» . Also note that,
without any ionization of hydrogen itself, and with hydrogen
being the most abundant species by far, we have nH2≈nn
(number density of neutrals) ≈ ntot (total number density of
particles). We use these results later.
In order of decreasing ionization potential a , the important

elements in the inner disk are He, H, Mg, Na, and K (Keith &
Wardle 2014). The exponential in the Saha equation ensures
the on/off behavior of thermal ionization, wherein most of the
atoms of a species a become ionized over a narrow range of
temperatures around the ionization temperature T ka a Bº .
Thus, since we expect the disk temperature to generally
decrease radially outward and we are concerned with the outer
edge of the active zone, we only consider potassium (K) here,
which has the smallest a and is thus ionized farthest out. Our
adopted quantities for K are listed in Table 1; in this pilot study,
we neglect its depletion into grains.
With a chemical network comprising collisional ionization/

recombination of just one singly ionized element, the
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recombination rate is simply dn dt k n n k ne ei e a ei e,
2= =+ ,

where k T3 10ei
11= ´ - cm3 s−1 (Ilgner & Nelson 2014) is

the rate coefficient for electron–ion collisions and the second
equality follows from charge conservation. The recombination
timescale is then (e.g., Bai 2011)

t
n

dn dt k n

1
. 13e

e ei e
rcb ~ = ( )

We will compare this timescale to the dynamical time tdyn to
verify whether our equilibrium solutions are in the strongly
coupled limit described in Appendix A.

4.3. Resistivities

Armed with the equilibrium abundances of electrons, ions,
and neutrals computed via the Saha equation, we derive the
resistivities in the disk and thus examine where the disk is MRI
active by the criteria of Section 4.1 (for a field strength B given
by the considerations of Section 4.1.1). We follow Wardle
(2007) in writing the Ohmic, Hall, and Pederson conductivities
(σO, σH, and σP respectively) as
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where the summation is over all charged species j (in our case,
j= e for electrons and i for singly charged ions of K), with
particle mass mj, number density nj, and charge Zje (with
Zj=±1 for us). The Hall parameter βj (not to be confused
with the plasma β parameter) is the ratio of the gyrofrequency
of a charged particle of species j to its collision frequency with
neutrals (of mean particle mass mn=μmH and density ρn):
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Here v m mj j j ng s= á ñ +( ) is the drag coefficient and v jsá ñ the
rate coefficient for collisional momentum transfer between
charged species j and neutrals, making γjρn the collision
frequency with neutrals. Note that βi=βe (since mi?me).

The resistivities may then be written as
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where H P
2 2s s sº +^ is the total conductivity perpendicular

to the magnetic field.
If electrons and ions are the only charged species (which is

the case for us, without grains), then the above equations imply
(1) ηH=βe ηO and ηA=βiβeηO; (2) consequently, while ηO is
independent of the magnetic field strength B, ηH and ηA scale
linearly and quadratically, respectively, with B; and (3) the

ambipolar Elsässer number in Equation (9), Am v A
2
 hº W,

reduces to (using βi = βe) Am≈γiρi/Ω. The three diffusion
regimes then correspond to (e.g., Wardle 2007) βi=βe = 1
(Ohmic: neither electrons nor ions are tied to the field, being
coupled instead to the neutrals through frequent collisions),
βi=1=βe (Hall: electrons are tied to the field while ions are
not), and 1=βi=βe (ambipolar: both electrons and ions are
tied to the field, and drift together through the sea of neutrals).
To compute the resitivities, we use the rate coefficients from

Wardle & Ng (1999):
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where Te is the electron temperature, assumed here to equal the
disk gas temperature given by Equation (4).

5. Calculation of ā

Finally, we must connect the MRI formulation of accretion
to the α-disk model. In particular, we must specify how to
calculate the effective viscosity parameter ā, defined by
Equations (1) and (2), that goes into the Shakura–Sunyaev
disk model. The derivation is supplied in Appendix B; we only
state the main results here. At any radius in the disk, we expect
a vertically layered structure: in the hot innermost disk close to
the star, we expect an MRI-active zone straddling the midplane,
bounded by a zombie zone close to the disk upper and lower
surfaces; farther out, where the disk is cooler, we expect a dead
zone straddling the midplane, a zombie zone close to the disk
upper and lower surfaces, and an MRI-active zone sandwiched
between the two.4 For a vertically isothermal disk (as assumed
here), ā at any radius is then given in general by

N

N
, 23i i i

tot

å
a

a
=¯

( ¯ )
( )

Table 1
Adopted Parameters for Potassium

Aa xK
a,b

K a g+,K/g0,K
c

(amu) (eV)

39.10 1.97 10−7 4.34 1/2

Notes.
a Atomic mass (A), abundance (xK ≡ nK/nH2), and ionization potential ( K )
from Keith & Wardle (2014).
b Keith & Wardle (2014) cite the abundance of K relative to H atoms as
9.87×10−8; our value is relative to H molecules and thus double their value.
c Rouse (1961) cites g+/g0=1/2 for the alkali metal sodium; we adopt the
same value for the alkali potassium.

4 Such a layered disk model was first put forward by Gammie (1996) and has
since been recovered in various semianalytic studies invoking both Ohmic and
ambipolar diffusion and based on local shearing-box MHD simulations (e.g.,
Bai 2011; Dzyurkevich et al. 2013; Mohanty et al. 2013), as well as by global
stratified 3D simulations invoking only Ohmic dissipation (Dzyurkevich
et al. 2010). (Although all these studies concern larger radii in the disk where
the ionization is primarily due to stellar irradiation, e.g., X-rays, instead of
being thermally driven as in this paper, the basic physics for active MRI
remains the same as outlined in Section 4.1.) As noted in Section 2, such a
model becomes invalid if, in the presence of both Ohmic and ambipolar
diffusion and a net vertical field, the MRI is shut off, angular momentum
transport is driven by winds, and the entire vertical extent of the disk becomes
laminar instead; our models in this paper do not speak to the latter situation.
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where the summation is over i=MRI (active zone), DZ (dead
zone), and ZZ (zombie zone). Here Ni is the one-sided column
density of the ith zone, N Ni itot = å is the total one-sided
column density of the disk at that radius (i.e., from the surface
to the midplane), and iā is the effective viscosity parameter
within the ith zone (see below). Thus, for a vertically
isothermal disk, ā at any radius is the column-weighted mean
of the active, dead, and zombie effective viscosity parameters.

The different iā ( MRIā , DZā , and ZZā ) are specified as
follows. Within the MRI-active zone, we have (see
Appendix B)

2

3

1

2
, 24MRIa

b
=

á ñ

⎛
⎝⎜

⎞
⎠⎟¯ ( )

where P Pgas Bbá ñ = á ñ is the plasma-beta parameter averaged
over the thickness of the active layer (note that we assume that
B and hence PB are vertically constant, so the averaging is only
over Pgas). In the dead and zombie zones, where the MRI is
quenched, various hydrodynamical processes can still produce
residual (non-MRI) stresses; numerical simulations of these
suggest an associated effective α in the approximate range
∼10−5 to 10−3 (e.g., Dzyurkevich et al. 2010, 2013, and
references therein; Malygin et al. 2017, and references therein).
Additionally, without carrying out detailed hydrodynamic
simulations, we have no concrete way of judging how the
effective α in the dead and zombie zones might differ. For
simplicity, therefore, we assume that the effective viscosity
parameter in the dead and zombie zones is the same (i.e.,

DZ ZZa a=¯ ¯ ) and find equilibrium solutions for the disk
structure for three different fiducial values of DZā spanning
the range implied by the numerical solutions:

10 or 10 or 10 . 25DZ ZZ
5 4 3a a= = - - -¯ ( ¯ ) ( )

Importantly, note that DZā also sets a minimum value (“floor”)
on MRIā : when our calculations imply that a region is formally
“MRI-active” (i.e., satisfies Equations (10) and (11)), but
nevertheless has MRIā less than our adopted DZā , we expect
that the residual hydrodynamic stresses there will dominate
over the MRI stress. We therefore declare such a region to be
dead by fiat and assign it an effective viscosity parameter equal
to DZā .

6. Accretion Rates

Within a given disk zone (MRI active, dead, or zombie), the
local accretion rate (positive inward) at any radius is
M r r T dz r2 2i h r i

1 2
2 ,

i
òp= - W ¶ ¶f

-˙ ( ) [ ]/ , where 2hi is the
thickness of the ith zone (summed over both sides of the
midplane) and Trf,i the particular shear stress operating in that
zone. For a vertically isothermal disk, this reduces to (see
Appendix B)

M
m

r r
r c N

12
, 26i s i i

H 2 2p m
a=

W
¶
¶

˙ ( ¯ ) ( )

where i=MRI, DZ, or ZZ; Ni is the one-sided column density
of the ith zone; and the values of the various iā are specified in
the previous section.

Similarly, the total accretion rate at any radius, i.e., the local
sum of the rates through the different vertical layers, is

M M r r T dz r2 2i i r
1 2òpº å = - W ¶ ¶f

-
-¥

+¥˙ ˙ ( ) [ ]/ . Now, in a
real disk, the chemistry and ionization, and hence the thickness
(column) of any zone and the field strength, will generally vary
with radius, and there is no physically compelling reason to
expect the accretion rate through any given zone (Equation (26)
above) to be radially or temporally constant. In steady state,
however, the total accretion rate must by definition be a
constant in both time and radius (to prevent temporal changes
in the local surface density). Imposing this condition on our
solutions, the total accretion rate becomes (see Appendix B)

M
c

f

3
, 27s

r

2p a
=

S
W

˙ ¯ ( )

the standard expression for a constant accretion rate in a
vertically isothermal α-disk. ā here is given by Equation (23),
Σ (=2μmH Ntot) is the total surface density summed over both
sides of the midplane, and f R r1r inº -( ). As an aside,
note that it is the combination f Mr

˙ that appears in the disk
structure equations (Section 3), which is independent of Rin by
Equation (27).

7. Method for Determining the Equilibrium Solution

At a given disk radius around a fixed stellar mass, specified
input values of the accretion rate and mean viscosity parameter
(Min˙ and inā ) determine the pressure, temperature, and density
via the disk structure Equations (3)–(7). The latter quantities,
combined with the Saha Equation (12), set the fractional
ionization. The disk structure and ionization, together with a
specified field strength B, then determine the resistivities (via
Equations (14)–(22)) and hence the extent of the active layer
via the MRI conditions (10)–(11). This in turn yields the output
mean viscosity parameter and accretion rate ( outā and Mout˙ )
implied by the MRI (Equations (23)–(25) and (27)). We find
self-consistent equilibrium solutions (Mout˙ = Min˙ and outā =

inā ) through a grid-based technique, as follows.
For a specified stellar mass M* and disk radius r and a

desired disk accretion rate Min˙ , we determine the disk structure
and ionization for a range of input ā: in DZa a=¯ [ ¯ , 1], spanning
the gamut of plausible values given the assumed DZā in the
dead zone. For each of these disk structures, we then derive the
height of the active layer, and thus the MRI-implied Mout˙ and

outā , for a range of field strengths: B=[10−5, 103]G, which
covers the plausible range in stellar accretion disks. A self-
consistent disk structure solution is then one for which Mout˙ =
Min˙ and outā = inā .
How exactly such a solution is determined is illustrated in

Figure 1 for a fiducial case: M 1* = Me, M 10in
9= -˙ Me yr−1,

10DZ
4a = -¯ , at radius r=0.02 au. The x- and y-axes show inā

and outā , respectively, while the overplotted grayscale contour
map shows the magnetic field strength B (with the white curves
marking contours of constant B). The overlaid solid black
contours are the output accretion rate Mout˙ .
We see that, along the locus of equilibrium solutions (solid

blue line, along which outā = inā and Mout˙ = Min˙ ), increasing ā
corresponds to increasing field strength B (this is easily seen by
noticing that contours of constant Ṁ are steeper than the
contours of constant B, so B changes—increases—as one
marches up the blue solution locus with Ṁ constant). In other
words, for any given ā, there exists a field strength B that yields
an equilibrium solution with the desired Ṁ , up to some upper
limit in ā (corresponding to an upper limit in B). How do we
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choose a unique solution from among these infinite possibi-
lities? We do so by invoking our assumption (see Section 4.1.1)
that the MRI is maximally efficient, generating the strongest
possible field that still allows the MRI to operate. Thus, we
choose the maximum B, and thus the maximum ā (marked by a
dashed vertical line), for which an equilibrium solution exists.

For a given M* and Ṁ , we repeat the above calculations for
a range of radii r, to determine ā as a function of radius. Our
calculations begin at a disk inner edge of Rin=R*. We
continue working outward in radius until our derived
equilibrium solution for ā falls to the assumed floor value

DZā . Beyond this radius, there is no active zone any more in
our model, and we simply assume a constant DZa a=¯ ¯ .

8. Results

We first present a detailed discussion of our solution for the
fiducial case (M* = 1Me, Ṁ=10−9Me yr−1, 10DZ

4a = -¯ ) in
Section 8.2: the disk structure and location of the pressure
maximum (Sections 8.1.1–8.1.4), behavior of the accretion
flow in different layers (Section 8.1.5), the appearance of a
viscous instability (Section 8.1.6), and the validity of various
assumptions (Sections 8.1.7–8.1.8). We then briefly discuss the
solutions arising from variations in our fiducial parameters
(αDZ, Ṁ , and M*), pointing out any salient differences along
the way (Section 8.3–8.4). Piecewise polynomial fits to our ā
and B results as a function of radius are provided in
Appendix C for all cases.

8.1. Fiducial Model: M*=1 M e, Ṁ =10−9 M e yr−1,
āDZ=10−4

For this M*=1Me case, the stellar radius and effective
temperature are R*=2.33 R and Teff=4350K, respectively
(using the evolutionary models of Baraffe et al. [1998],5 for a

fiducial age of 1Myr). In this and all following solutions, the
disk inner radius is situated at the stellar surface (i.e.,
Rin=R*), and our MRI calculations stop at the radius where
the effective viscosity parameter ā falls to the floor value DZā
(i.e., where the pressure maximum forms). Beyond this radius,
the disk structure is calculated assuming that the viscosity
parameter remains constant at DZa a=¯ ¯ .

8.1.1. Dominant Resistivities

Figure 2 shows the relative importance of the three
resistivities—ηO, Hh∣ ∣, and ηA—as a function of location in
the inner disk. Ambipolar diffusion dominates over Hall and
Ohmic in the surface layers, while Hall resistivity dominates
everywhere else at these radii. Ohmic resistivity is not
dominant anywhere, though it is larger than ambipolar closer
to the midplane at radii 0.09 au. This distribution of
resistivities is also depicted more quantitatively in Figure 3,
where we plot ηO, Hh∣ ∣, and ηA as functions of scale height at
various radii.
The physics underlying the above behavior can be extracted

from Figure 4, where we plot the fractional ionization
(xe≡ne/nH2) and number density of neutral molecular
hydrogen (nH2) as functions of scale height at different radii.
Recall that nH2≈nn (number density of neutrals) ≈ ntot (total
number density), given the overwhelming relative abundance
of hydrogen and the very low ionization fractions in general
(since potassium, with total abundance xK≡nK/nH2∼2×
10−7, is the only ionized species here). Combining this with
our results from Section 4.2 for one singly ionized species, we
get x n n T ne e n nK» µ ( ) when nn is sufficiently high
(with the subscript “K” on  denoting the specific case of

Figure 1. Output values Mout˙ (solid black lines) and outā (y-axis) corresponding
to input values for inā (x-axis) and magnetic field strength B (gray scale with
white contours), for fixed stellar and disk parameters M*=1 Me, Min˙ =
10−9 Me yr−1, 10DZ

4a = -¯ , and radius r=0.02 au. The solid blue line
indicates the locus of all solutions inā = outā ; note that this line also overlies
the required accretion rate for a self-consistent solution: Mout˙ = Min˙ =
10−9 Me yr−1. The intersection of the vertical dashed line with the blue line
marks the position of the final adopted equilibrium solution, corresponding to
the largest value of B that still allows the MRI to operate (there are no solutions
with active MRI beyond this B, which is why this solution lies at the edge of
the map). Figure 2. Relative importance of the Ohmic (ηO), Hall ( Hh∣ ∣), and ambipolar

(ηA) resistivities as a function of location in the inner disk, for our fiducial disk
model. The top panel shows vertical location in units of actual height above the
midplane; the bottom panel shows vertical location in units of column density
measured from the disk surface. The dashed line in both panels indicates one
pressure scale height. Note that there is no region where Ohmic resistivity
dominates over both Hall and ambipolar resistivities. See Section 8.1.1.

5 Specifically, the iso.3 models with mixing length=1.9× pressure scale
height, as required to fit the Sun.
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potassium). For the same conditions, and combining the latter
relationship with results from Section 4.3, we also have

x n T1O e n Kh µ µ ( ) , B x n B T nH e n nKh µ µ∣ ∣ ( ) ( ) ,

and B x n B T nA e n n
2 2 2

K
3h µ µ( ) ( )/ / . Thus, at any fixed

radius in Figure 4 (with TK ( ) constant since vertically
isothermal), the ionization fraction xe increases rapidly above a
scale height zH as hydrostatic equilibrium causes ntot∼nH2

∼nn to drop, with all the potassium ionized (x xe K as
n 0;H2  see Section 4.2) by a few×zH. Consequently, at a
given radius in Figure 3, ηO decreases with height above ∼zH,
while Hh∣ ∣ increases with height and ηA increases even faster
(note that the field strength B is vertically constant at fixed
radius in our calculations).

In summary, though a large fraction of the alkali atoms are
ionized near the disk surface, the total density here is too low to
collisionally couple either ions or electrons to the bulk fluid of
neutrals, and hence ambipolar diffusion dominates; closer to
the midplane, the density increases sufficiently to tie ions (but
not electrons) to the neutrals, making Hall resistivity dominant,
but the density is still too low for Ohmic resistivity to compete
with either Hall or ambipolar diffusion. Beyond ∼0.09 au, the
rising density and falling temperature are sufficient (combined
with a declining B; see Section 8.1.2 below) for Ohmic
resistivity to exceed ambipolar diffusion near the midplane, but
still not enough to allow Ohmic resistivity to exceed Hall
diffusion here.

8.1.2. Active, Dead, and Zombie Zones

Figure 5 shows our derived locations of the MRI-active
zone, the dead zone (where Ohmic resistivity shuts off the
MRI: Λ<1) and the zombie zone (where ambipolar diffusion
cuts off the MRI: β<βmin). We emphasize that the effects of
Hall resistivity on the MRI are not accounted for here: we only
consider the effects of Ohmic and ambipolar diffusion, even in
regions where Hh∣ ∣ dominates over ηO and ηA. Nevertheless, we
also overplot the Hall zone, where the Hall Elsässer number

χ<1: this is where the Hall influence on the MRI is
significant (see further below), and should be accounted for in
future work. Figure 6 shows the associated field strength B as a
function of radius, while Figure 7 shows the midplane radial
behavior of the ionization fraction, plasma β parameter, and
Ohmic Elsässer number.
We see from Figure 5 that, from the inner edge of the disk

to ∼0.05 au, the active zone extends from the midplane up to
a roughly constant fraction of the scale height, bounded above
by a zombie zone, while from 0.05 to 0.09 au the active zone
narrows considerably, with the zombie zone pushing down
increasingly toward the midplane. At 0.09 au, a dead zone
rises up sharply from the midplane; from here on, the active
zone is confined to a very thin and continuously narrowing
layer sandwiched between the zombie zone above and dead
zone below, until the MRI is completely choked off at
∼0.25 au, at which point our calculations stop (beyond this
radius, we assume a constant DZa a=¯ ¯ , leading to the
formation of a pressure maximum at this radius; see following
sections).
These trends in the active, dead, and zombie zones can be

understood as follows. At a fixed height (in scale height units),
ηO increases while the field strength B declines, going radially
outward from the inner edge to ∼0.05 au (Figures 3 and 6). The
combined effect is to decrease the Ohmic Elsässer number Λ;
however, it still remains high enough to allow the active zone
to straddle the midplane (e.g., see midplane Λ in Figure 7,
bottom panel). The weakening of the field over this radial span
instead serves to keep the plasma β sufficiently large,
β>βmin, so that ambipolar diffusion does not cut off the
MRI too close to the midplane and drive Ṁ below the desired
steady-state value (e.g., see midplane β and βmin in Figure 7,
middle panel). By 0.05 au, however, the midplane Λ has fallen
to unity (Figure 7). Now the field B has two choices: either
continue to weaken, making Λ<1 at the midplane (i.e.,
creating a dead zone there) and thus driving the active zone
upward, or strengthen instead, thereby keeping the MRI alive

Figure 3. Ambipolar (ηA), Ohmic (ηO), and Hall ( Hh∣ ∣) resistivities as a function of height above the midplane (in units of the local scale height zH), at various radii for
our fiducial disk model. See Section 8.1.1.
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around the midplane, but suppressing β and thus allowing the
zombie zone to descend toward the midplane. Since we assume
that the MRI is maximally efficient, i.e., generates the strongest
possible field that still allows the MRI to survive, it is the latter
solution that is chosen (Figure 6), yielding the observed active

and zombie zone shapes in Figure 5 over 0.05–0.09 au. The
quantitative increase in B here (and thus change in ā and hence
in surface density Σ; see following sections) is such that the Ṁ
(by Equation (27)) remains at the required value.
By 0.09 au, however, the zombie zone has descended all the

way to the midplane (i.e., β=βmin at the midplane; Figure 7).
Now the field has no choice but to weaken again (Figure 6), in
order to maintain any active zone at all. As B decreases, a dead
zone develops at the midplane, the zombie zone lower
boundary is impelled upward, and a thin active layer forms
between the dead and zombie regions (Figure 5). This situation
cannot continue indefinitely, though, since the dead zone upper
boundary keeps rising with radius (as ηO continues to grow;
Figure 3). Finally, at ∼0.25 au, the MRI-active zone is
squeezed shut completely, as the upper edge of the dead zone
meets the lower edge of the zombie zone. No further changes in
B can alter this, since the dead region would expand upward for
smaller B, and the zombie region would expand downward for
larger B. Thus, this is the radius where the effective viscosity
parameter ā falls to its minimum value DZā (since the disk is

Figure 4. Fractional ionization (ne/nH2) and molecular hydrogen density (nH2) as a function of height above the midplane (in units of the local scale height zH), at
various radii for our fiducial disk model. See Section 8.1.1.

Figure 5. Various MRI zones in our fiducial disk model as a function of disk
location. The top panel shows vertical location in units of height above
midplane; the bottom panel shows it in units of column density. The dashed
line indicates the disk scale height. Orange denotes the MRI-active zone (i.e.,
where ΛO>1 and β>βmin), brown denotes the dead zone (where ΛO<1);
yellow denotes the zombie zone (where β<βmin), and the gray hashed region
denotes the Hall zone (where χ<1). Note that, beyond 0.09 au, the active
zone rises above the midplane and continues as a thin layer sandwiched
between the dead and zombie zones, until it is finally quenched totally at the
outer edge of our solution at ∼0.25 au. See Section 8.1.2.

Figure 6.Magnetic field strength B as a function of radius, for our fiducial disk
model. Filled circles are our model results, and the overplotted solid line is a
combined piecewise polynomial fit to these results. Note that the jump at
0.09 au is not a physical discontinuity, but a result of our finite-grid radial
sampling. See Section 8.1.2 and Table 1 in Appendix C for the polynomial fit
parameters.
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now fully MRI-dead vertically), and hence where the midplane
pressure maximum forms.

The above result raises an important point missed in most
earlier work: the midplane gas pressure does not reach its
maximum at the inner edge of the dead zone (i.e., at ∼0.09 au
in this example), but rather somewhat radially beyond this edge
(at ∼0.25 au here). In other words, the midplane gas pressure
achieves its maximum value within the dead zone. This is a
straightforward consequence of two facts: (1) the midplane
pressure in the Shakura–Sunyaev model is not a function of
simply the local midplane value of α, but rather its vertically
averaged value ā (see Equation (5) and discussion in
Section 3); and (2) the active zone does not abruptly come to
an end when a dead zone appears in the midplane, but instead
climbs above the dead zone and continues outward for some
distance, thereby pushing the location of minimum ā (and so
maximum midplane pressure; see Figures 8 and 9 further
below) beyond the DZIB. As such, pebbles drifting inward
along the midplane will become trapped within the dead zone
itself, where conditions are less turbulent than at the active/
dead zone interface farther in, with potentially important
implications for planet formation.

In the context of the location of the pressure maximum, we
now discuss the potential importance of some effects ignored in
our simplified treatment here.

Other Ionized Elements: We have only treated potassium
here, with the justification that—as the element with the lowest
ionization potential (4.34 eV) among the important species in
the inner disk (Section 4.2)—it remains ionized farthest out and
is thus most relevant to the location of the pressure maximum.

Nevertheless, other elements with slightly higher ionization
potentials may plausibly matter because their abundances are
much higher. To check this, we carried out calculations for our
fiducial model with sodium instead, which has an ionization
potential (5.14 eV) only slightly larger than potassium’s but is
∼16 times more abundant. We find (not plotted) that, while the
greater abundance of Na yields a significantly higher ionization
fraction in regions where our original simulations showed K to
already be highly ionized (in surface layers, and near the
midplane close to the disk inner edge), the pressure maximum
occurs slightly inward of its position with K; i.e., the latter is
still set by the difference in ionization potentials. As such,
while the precise shape of the active, dead, and zombie zones
will vary somewhat when other atomic species are included
with K, we do not expect the position of the pressure maximum
to shift substantially. Implementing more complex chemical

Figure 7. Various MRI related quantities in the midplane, plotted as a function
of radius, for our fiducial disk model. Top: fractional abundance of electrons,
expressed relative to both the number density of hydrogen molecules (ne/nH2;
left axis) and the number density of potassium nuclei (ne/nK; right axis).
Middle: plasma β parameter, minimum value βmin required for active MRI, and
ambipolar Elsässer number Am. Bottom: Ohmic Elsässer number Λ. See
Section 8.1.2.

Figure 8. Vertically averaged viscosity parameter ā, plotted as a function of
radius for our fiducial disk model. Filled circles represent our model results; the
overplotted solid line is a combined piecewise polynomial fit to these results.
Our MRI calculations end at ∼0.25 au, the radius at which ā falls to our
adopted floor value DZā =10−4. Beyond this radius we assume a constant

DZa a=¯ ¯ , as indicated by the dashed horizontal line. See Table 1 in
Appendix C for the polynomial fit parameters.

Figure 9. Various disk structure quantities plotted as a function of radius, for
our fiducial disk model. Top left: (vertically constant) temperature. Top right
and bottom left: midplane pressure and midplane density. Bottom right: surface
density. Solid lines represent our model calculations, which end at the radius
where ā falls to DZā . Beyond this radius we assume a constant DZa a=¯ ¯ ,
obtaining the results shown here by the dashed lines.
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networks (with additional atomic and molecular species and
grains) will be important for increasing the recombination rate
and ensuring that we are in the strongly coupled limit (see
Section 8.1.8 further below); we shall tackle this in an
upcoming paper.

Importance of Dust: Dust grains affect both the opacity of
the disk and the efficiency of the MRI. While our calculations
are dust-free—in the sense that grain effects on the MRI are
ignored—we have nonetheless assumed a constant opacity of
10 cm2 g−1, which is a reasonable value for the warm inner
regions of dusty protoplanetary disks (see Hu et al. 2017).
Concurrently, an a posteriori calculation of the opacities in our
disk solution, using detailed opacity tables including grains,
yields values very close to our assumed constant in all regions
of interest except very close to the disk inner edge (see
Section 8.1.7 further below). As such, grains are effectively
included in our opacities, and treating them more precisely via
opacity tables should not alter our results appreciably.

Inclusion of dust is very likely to be important for the MRI,
however. Grains can drastically suppress the MRI, by soaking
up electrons and thereby reducing the amount of negative
charge tied to the magnetic field (since all but the very smallest
grains [see below] are collisionally decoupled from the field
themselves; e.g., Perez-Becker & Chiang 2011a; Bai 2013;
Mohanty et al. 2013). Enhanced recombination on the charged
grain surfaces also removes positive charge from the gas,
further hampering the MRI. Lastly, MRI damping is exacer-
bated by the incorporation of the alkali atoms (which are the
primary charge suppliers) into grains and their adsorption onto
grain surfaces; we have currently ignored this effect, which can
deplete metal abundances by an order of magnitude or more
(e.g., Jenkins 2009; Keith & Wardle 2014). Concurrently, as
Figure 9 shows, the disk temperatures in our solution are well
below the dust sublimation temperature of ∼1500 K (at the
extant densities) at radii 0.05 au; as such, the pressure
maximum and the DZIB in our current solution sit squarely
within the radial range where dust is thermodynamically
allowed. Moreover, while the pressure maximum traps
relatively large grains (“pebbles”)—the whole reason for
invoking it for planet formation—smaller ones are increasingly
well coupled to the gas and can thus flow through the trap;
furthermore, it is these small grains that have the greatest
impact on the MRI (because of their large collective surface
area for electron adsorption). Therefore, we expect small grains
to exist in our solution space, damping the MRI to some extent
and moving both the DZIB and the pressure maximum radially
inward of our currently predicted locations.

The magnitude of this effect depends, on the one hand, on
the relative abundance of grains versus electrons. For dust
grains with number density nd and a fixed radius a, the grain
abundance xd≡nd/nH2 may be expressed as xd=(3Rμ
mH)/(4π ρgr a

3), where R is the dust-to-gas ratio by mass and
ρgr≈3g cm−3 is the density of a single grain. For a standard
ISM value of R=10−2, very small grains of size a=0.1μm
then imply xd≈3×10−12: ∼10–30 times smaller than the
ionization fraction xe∼few×10−11 to 10−10 that we infer
over most of the active zone (both close to the midplane, at
radii 0.05 au, and higher up, at ∼1zH–2zH, once a dead zone
forms in the midplane; see Figure 4). Such grains will therefore
put a significant dent in the number density of free electrons,
and thus affect the MRI activity, if the adsorbed negative

charge per grain is of order −10. Slightly smaller grains,
a=0.03μm, imply xd=10−10  xe and so will have a severe
impact on the MRI even with 1 electron adsorbed per grain
on average. Such grain sizes and charging are not unrealistic in
disks (e.g., Perez-Becker & Chiang 2011a). We note that this
calculation assumes that all the dust is sequestered in grains of
a single size; a more realistic grain size distribution will reduce
the effective dust-to-gas ratio in small grains and thus decrease
xd. This is plausibly a small correction, though, since the grain
number density is likely to be dominated by the smallest
particles (e.g., standard MRN distribution: na∝a−3.5; but see
Birnstiel et al. 2011).
Furthermore, we have compared grain abundances here to

the electron abundance derived assuming no depletion of
potassium in the gas phase. If a sizable fraction of K is
sequestered in dust instead (both by inclusion in molecules that
make up dust grains and by the adsorption of neutral K atoms
onto grains), then the xe due to thermal ionization will be much
smaller than we have inferred to start with, further reducing the
MRI (though this effect will be tempered somewhat by ion and
thermionic emissions, whereby neutral K collisions with grains
produce free K+ ions and/or electrons; see Desch & Turner
2015).
On the other hand, MRI damping by grains is mitigated to

the extent that they are tied to the field (and thus act like ions),
instead of being knocked off by collisions with neutrals. The
Hall parameter βj (Equation (17)) is a measure of the strength
of the field coupling for any species j; noting that grains are
much more massive than neutral gas particles, the relative
coupling strength for grains versus ions is thus igrb b =

Z v Z vi igr grs sá ñ á ñ(∣ ∣ ) (∣ ∣ ). The rate coefficient for ion–neutral
collisions v isá ñ is given in Equation (22), while that for grain-
neutral collisions is (Wardle & Ng 1999) v grsá ñ =

a k T m128 9B n n
2p p( ) ( ) cm3 s−1, where Tn is the neutral

temperature, which we assume equals the gas temperature T,
and Z 1i =∣ ∣ in our case. We thus get 4igrb b » ´

Z T a10 10 K 0.1 m4
gr

3 1 2 2m- - -∣ ∣( ) ( ) . Hence, at the T ∼1000–
2000 K in our disk solution (Figure 9), the 0.03–0.1 μm grains
considered above will be far more decoupled from the field
than the ions, even for grain charges Z 10gr ~∣ ∣ . We conclude
that the net effect of abundant very small grains will be to
significantly suppress the MRI and thus shift the pressure
maximum inward of where we currently find it to be.
Relevance of X-rays: Here we have only considered thermal

ionization and ignored photoionization by stellar X-rays. We
estimate the effect of the latter as follows. Igea & Glassgold
(1999, hereafter IG99) have calculated the ionization rate ζX,
due to X-rays with photon energies of a few keV and ignoring
grain effects, as a function of column density. They find that,
while ζX∝LX/r

2 (where LX is the stellar X-ray luminosity and
r the radial distance from the star), as expected, it is also
“universal,” in the sense that ζX plotted as a function of
(vertical) column density is independent of the precise density
structure of the disk. Moreover, in the absence of grains, the
ionization fraction is given simply by x n ke ieX H2z= ( ) ,
where kie is the recombination rate coefficient for ion–electron
recombinations for the relevant dominant ions (e.g., see
expressions for xe in various limiting cases derived by Perez-
Becker & Chiang 2011a). We use these facts to scale directly
from IG99ʼs results (correcting for the fact that they supply
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column densities in terms of hydrogen nuclei while we use
hydrogen molecules instead).

The column density in our active region close to the
midplane, at a mean radial distance r∼0.05 au, is NH2 ∼
3×1024 cm−2, while in the active region above the dead zone,
at a mean r∼0.1 au, it is NH2∼1025cm−2 (see Figure 5). At
the same active region locations, we also have xe ∼3×10−10

and 10−10, respectively, due to thermal ionization, and nH2

∼1014cm−3 (Figure 4). Concurrently, at 1 au, for LX=
1029erg s−1 and photon energies of 5 keV, IG99ʼs Figure 5
implies ζX∼3×10−17 s−1 and 3×10−18 s−1 at NH2∼
3×1024 cm−2 and 1025 cm−2, respectively (results for 3
and 8 keV photons are only marginally different). Assuming, as
IG99 do, that molecular ions, specifically HCO+, are dominant,
and thus using a dissociative recombination rate coefficient of
k eHCO , =+ 2.4×10−7/(T/300 K)0.69cm3 s−1 (Woodall et al.
2007; Perez-Becker & Chiang 2011a) and scaling to our radii
of interest, where T∼103K, we then find that X-ray
ionization implies xe∼3×10−11 in our active region at
0.05 au and xe∼5×10−12 in the active region at 0.1 au; these
are roughly an order of magnitude smaller than xe from thermal
ionization cited above. We note that Bai & Goodman (2009)
provide an analytic fit to IG99ʼs ζX curves; we get the same
results using their fitting formula.

However, while X-rays first produce molecular ions, charge
transfer to metals is so rapid that it is metal ions that constitute
the dominant ionic species, if the metal abundance is high (as it
is in our non-depleted grainless case;6 e.g., Fujii et al. 2011;
Keith & Wardle 2014). In that case, in the absence of grains, it
is the metal ion (M+)–electron recombination rate coefficient,
k T2.8 10 300 KeM ,

12 0.86= ´ -+ ( ) cm3 s−1 (see Section 4.2),
that must be used to calculate the X-ray-driven xe. At the
relevant temperatures T∼103 K, we see that k eM , »+

10 5- ×k eHCO ,+ (i.e., metal ions recombine vastly slower than
molecular ones); consequently, the xe due to X-rays in our
metal-abundant active regions will be more than 2 orders of
magnitude higher than inferred above using HCO+, comple-
tely swamping the xe from thermal ionization. Of course,
metals may be severely depleted when grains are present;
however, this will decrease the thermal ionization fraction too,
so we expect X-rays to remain highly competitive with thermal
ionization in activating the MRI in the inner disk.

Note, however, that once a dead zone forms in the midplane,
the midplane column density quickly exceeds that in the
overlying active zone by more than an order of magnitude
(Figure 5). IG99ʼs results then imply an X-ray-induced
midplane xe at least 3 orders of magnitude smaller than that
deduced from X-rays in the active zone, and much smaller than
the midplane xe from thermal ionization. As such, X-ray
ionization will not change our result that a dead zone
eventually forms in the midplane and the active zone climbs
up above it. However, by enhancing the ionization in the
overlying active zone, and thus increasing the effective
viscosity parameter ā, X-rays will alter the location of the
pressure maximum. These effects will be quantified in our
upcoming work including X-rays (Jankovic et al. 2018, in
preparation).

Finally, we point out that, in past work, X-ray ionization has
widely been stated to be unimportant in the inner disk, with
thermal ionization of alkali metals being the dominant process
instead. Why then do we find X-rays to be at least as important
as thermal collisions? The reason is that previous studies have
drawn their conclusions based on the assumption of a surface
density distribution that monotonically increases radially
inward (e.g., the MMSN; Igea & Glassgold 1999). In that
case, the surface density in the innermost regions is indeed too
high for X-rays to penetrate to any significant depth in the disk.
Here, however, we examine a posteriori the degree of X-ray
ionization in our steady-state disk solution,7 in which the
surface density Σ is considerably lower inward of the pressure
maximum (see Figure 9 further below). Such a turnover in the
radial Σ profile is in fact a generic feature of steady-state
models that invoke a radially changing α-viscosity to produce a
pressure maximum in the disk (because the higher viscosity
inward of the pressure maximum requires a lower Σ to drive a
given Ṁ , by Equation (27); e.g., see solutions by Kretke &
Lin 2007, 2010). The severely depressed surface density in the
inner disk then allows much greater X-ray penetration and
ionization. Therefore, if protoplanetary disks start with a
standard monotonic Σ(r) profile, we conjecture that they will
evolve as follows: initially, thermal ionization will dominate in
the inner disk, driving it toward the steady-state solution we
find, and thereby reducing the surface density in these regions;
once the Σ here falls sufficiently (i.e., column densities drop to
∼1025–1024 cm−2), X-ray ionization will begin to complement,
and perhaps overtake, the ionization due to thermal collisions,
enhancing the MRI and thus the effective α. As argued above,
we do not expect this to alter the qualitative features of our disk
solution, but we do expect the precise locations of the DZIB
and the pressure maximum to change from our current results.
Hall Effect: Here we have neglected the effects of Hall

resistivity on the MRI. This does not prevent us, though, from
calculating the Hall Elsässer number χ everywhere within our
solution disk. The results are shown in Figure 5, where the
cross-hatched region denotes the Hall zone, i.e., where χ<1,
and hence where the Hall effect is important. We see that the
Hall zone essentially overlaps with the Ohmic dead zone and
also extends into the overlying active zone at radii 0.15 au.
Thus, if the net vertical field is anti-aligned with the disk spin
axis, we do not expect our solution to change very much: in this
field configuration, the Hall effect damps magnetically driven
radial angular momentum transport, so the active zone will end
at (and the pressure maximum will thus be located at) ∼0.15 au
instead of ∼0.25 au, while the dead zone (where Ohmic
resistivity already quenches the MRI) will remain dead. If the
net vertical field is aligned with the spin axis, on the other hand,
the HSI can activate magnetically driven radial transport within
the entire dead zone.
This suggests an explanation for the fact that close-in

Earths/super-Earths are not seen around ∼50% of stars. In
general, one expects a net vertical background magnetic field
threading the disk, due to either the stellar field or an external
interstellar field. Moreover, one expects the alignment/anti-
alignment of this field to be random relative to the disk angular
momentum vector, with a roughly equal distribution of either
geometry. Thus, in roughly half the systems, alignment
between the field and disk spin axis should lead to the HSI

6 Note that it is the metal abundance, and not the ionization potential, that is
the controlling factor here (because the keV X-ray energies greatly exceed the
electron binding energies in the metals). As such, the relevant metal here is
magnesium (with attendant ions Mg+), and not potassium as in our thermal
ionization calculations, since Mg is far more abundant than K: xMg/xK≈
4×102 (e.g., Keith & Wardle 2014).

7 Where the solution has been derived using the standard assumption of
thermal ionization alone.
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activating the dead zone, which will remove the pressure
barrier and thus suppress the formation of close-in small
planets; in the other half of systems, anti-alignment will damp
the HSI, allow the pressure barrier to form, and thus promote
the formation of such planets.

We shall address this mechanism quantitatively in future
work; we only note here that our result—that χ<1 within the
Ohmic dead zone—is in qualitative agreement with that of Bai
(2017), who finds that the Hall effect is critical within the
classical Ohmic dead zone (albeit at much larger radii than in
our solutions).

8.1.3. rā( )

Figure 8 shows our solution for the vertically averaged
viscosity parameter ā as a function of radius. In the innermost
disk, ā saturates at ∼0.08 as the potassium becomes almost
entirely ionized (see top panel of Figure 7). It then falls
smoothly by nearly 3 orders of magnitude, reaching our
adopted floor value of 10DZ

4a = -¯ at ∼0.25 au. Beyond this
point, there is no MRI-active zone any more, and we assume a
constant DZa a=¯ ¯ (depicted by the dashed horizontal line in
Figure 8).

8.1.4. Disk Structure and Pressure Maximum

Figure 9 shows the (vertically isothermal) temperature,
midplane density, midplane pressure, and surface density as
functions of radius for our fiducial disk model. Beyond
∼0.25 au, where ā falls to DZā , we calculate these quantities
assuming a constant DZa a=¯ ¯ (as depicted by the dashed lines
in Figure 9).

The salient results are as follows: (a) There is a clear
maximum in the midplane gas pressure (and midplane gas
density) at ∼0.25 au, where ā reaches its floor value of DZā .
Note that this location is radially well beyond the DZIB, which
is located at ∼0.09 au; thus, the midplane pressure maximum is
situated within the dead zone, for the reasons discussed earlier.
(b) The surface density declines sharply inward of the pressure
maximum, falling by 2 orders of magnitude toward the disk
inner edge. This is a straightforward consequence of ā
increasing inward in this region coupled with a constant Ṁ ,
as discussed previously. (c) The temperature varies quite
slowly in the inner disk in this fiducial model, by less than a
factor of 2, and in particular remains lower than the dust
sublimation temperature of ∼1500 K except near the disk inner
edge. As such, small dust grains (which will be coupled to the
gas rather than being trapped in the pressure maximum) are
expected to have a significant effect on the MRI in this region,
which we examine in a subsequent paper.

8.1.5. Accretion Rates in Active, Dead, and Zombie Zones

The total inward accretion rate (which by definition is
radially constant in our steady-state solutions) is, at every
radius, the sum of the accretion rates within the individual
vertical layers of the disk (active, dead, and zombie). We
calculate these individual Ṁ using Equation (26); the results
are plotted in Figure 10. We see that the inward Ṁ through the
active layer is practically the sole contributor to the total from
the innermost radii out to ∼0.09 au, where the dead zone in the
midplane first develops; the Ṁ through the overlying zombie

zone (due to non-MRI torques) steadily increases over this
radial span but is negligible compared to the active zone value.
Once the Ohmic dead zone forms, the inward accretion through
it (again, due to non-MRI torques) rapidly increases (as the
thickness of this layer grows), while the Ṁ in the active and
zombie zones correspondingly decrease. Indeed, beyond
∼0.15 au, the inward Ṁ in the dead zone exceeds the total
value; this is compensated for by decretion (outward flow of
mass) in the active and zombie zones, which ensures that the
total inward accretion rate remains constant at the desired value
(10−9Me yr−1 here).
A little reflection shows that in a nontrivial and nonpatho-

logical disk, i.e., one in which the disk properties vary radially
in a physically plausible manner, such inconstancy of the
accretion rates within the individual layers is unavoidable if the
total Ṁ is to remain fixed: if we demand that the total value be
invariant, then we do not have any separate justifiable knobs to
turn to ensure that the individual contributing rates remain
constant as well.
Does this phenomenon represent a growing instability?

Certainly the buildup of mass at some locations, and excavation
at others, that the radially varying accretion rates will generate in
the individual layers will tend to drive the disk away
from our equilibrium solution. However, these changes in
the vertical density profile will occur over a local viscous
timescale, given by t rvisc

2 n~ ¯ (where n̄ is the vertically
averaged local viscosity). By Equations (1) and (2) cs

2n a= W¯ ¯ in

Figure 10. Accretion rates through the active zone (filled black circles), zombie
zone (filled gray circles), and dead zone (open circles) for our fiducial model.
The solid black line represents the sum of the three rates (i.e., the total accretion
rate through the disk, held fixed at Ṁ =10−9 Me yr−1 in this model). The top
panel shows inward (positive) accretion rates, and the bottom panel shows
outward (negative) rates. A few small anomalies—the minor jitter in the active
zone (and thus total) rate around 0.04 au, and the anomalously large first two
points in the dead zone accretion rate, at 0.09 au—result from our finite grid
resolution at locations where the disk resistivities undergo sharp changes (we
have left them in to show the limits of our precision). See Section 8.1.5.
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our vertically isothermal disk, so t z rHvisc
1 2 1a~ W ~- - -¯ ( )

z r tH
1 2

dyna- -¯ ( ) , where tdyn∼1/Ω is the dynamical timescale.
Simultaneously, the disk will tend to relax back to a hydrostatic
equilibrium vertical profile (which is assumed in our solution) on a
timescale given by tH∼zH/cs∼1/Ω∼tdyn. Note that the
instantaneous perturbations in the vertical density profile here do
not represent a change in the total surface density Σ at any
location: the latter remains constant (by Equation (27), since the
total Ṁ is fixed at our steady-state value), i.e., the density
perturbations sum to zero vertically. Thus, the disk will tend to
relax to the same hydrostatic equilibrium vertical profile as in our
solution. Now, in a normal thin disk, the disk aspect ratio zH/r =
1, so for a standard 1a <¯ , we have tvisc ? tdyn. Figure 11
demonstrates this explicitly for our disk: we see that tvisc is orders
of magnitude larger than tdyn over our radii of interest.
Consequently, we expect the density perturbations introduced by
the variable accretion rates to be vertically smoothed out, and
hydrostatic equilibrium re-established, much more rapidly than
these perturbations can grow; our steady-state solution will then
remain valid in a (dynamical) time-averaged sense.

8.1.6. Viscous Instability

In our steady-state solutions, the surface density Σ and hence
the accretion rate are temporally constant. Perturbations in Σ,
however, may lead to a viscous instability as follows (see
Pringle 1981). The general evolution equation for the disk
surface density is

t r r

dj

dr r
r

d

dr

1
, 28
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where j is the specific angular momentum at any disk location,
and n̄ is again the vertically averaged viscosity. For the specific
case of a Keplerian disk, we have GM r3

*W = and j=r2Ω,
and the above reduces to
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Changes in Σ will occur on a viscous timescale. We have
already noted that vertical hydrostatic equilibrium is estab-
lished over a timescale tdyn = tvisc. Similarly, the disk will
relax to thermal equilibrium over a time given by the ratio of
the thermal energy content per unit area to the rate of viscous
heating (=rate of cooling in equilibrium) per unit area:
t P z c tH sth gas

2 2 2 1
dynn n a~ S W ~ W ~ -( ) ( ¯ ) ( ¯ ) ¯ . Thus, for

1a <¯ , we have tdyn<tth=tvisc (as Figure 11 explicitly
shows for our disk), and we expect the disk to be in both
thermal and hydrostatic equilibrium over the timescales on
which Σ varies. In this situation, the mean viscosity at a fixed
radius will depend only on the local surface density, i.e.,

r,n n= S¯ ¯ ( ), and Equation (29) is a nonlinear diffusion
equation for Σ. For steady-state solutions, the left-hand side of
Equation (29) is zero; we wish to investigate the effect of a
small perturbation about any such equilibrium solution Σ0.
Define x nº S¯ . Then any small variation in the surface
density, 0 0 dS  S + S, implies a variation x x x0 0 d + ,
with x xd d= ¶ ¶S S( ) . Inserting the perturbed value of Σ into

Equation (29) then gives the time evolution equation for the
perturbation δx:
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This linear diffusion equation for δ x is well behaved if and
only if the diffusion constant ∂x/∂Σ is positive; instability
results otherwise. Hence, using cs

2n a= W¯ ¯ in our disk to
evaluate the diffusion constant, we arrive at the viscous
instability condition:
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A negative diffusion constant implies that surface density
inhomogeneities will be amplified: overdense regions will grow
denser, while underdense ones will become even more rarefied. In
other words, an axisymmetric disk will tend to break up into rings.
To investigate whether our inner disk is viscously unstable,

we proceed as follows. We assume that, given a local
perturbation in surface density Σ, the local disk parameters (ā,
cs, x, Ṁ ) tend toward their steady-state values corresponding to
the perturbed value of Σ. This allows us to evaluate the
instability criterion by comparing the different equilibrium
solutions we have calculated. We also find it useful to change
variables from x to Ṁ , in order to connect to our steady-state
solutions for different values of Ṁ .
In general, t r M r2 1p¶S ¶ = ¶ ¶-( ) ˙ . For steady state,

Ṁ must be radially constant; in this case, combining the latter
expression with Equation (29) yields the equilibrium solution
M f3 r0 p n= S˙ ¯ (equivalent to Equation (27) with our
definition of n̄). Thus, M x0 0µ˙ (with the constant of
proportionality independent of Σ), and the instability condition
∂x/∂Σ<0 may be expressed as M 0¶ ¶S <˙ , or equivalently
as M 0¶S ¶ <˙ . Evaluating the latter expression, we can write
the instability criterion as

M

M
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In Figure 12, we plot the steady-state Σ solution as a
function of radius, for various Ṁ spanning±0.3 dex around
our fiducial value of 10−9Me yr−1. We immediately see that, at

Figure 11. Viscous, thermal, and dynamical (orbital) timescales as a function
of radius for our fiducial disk model. See Sections 8.1.5 and 8.1.6.
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any fixed radius beyond ∼0.035 au, Σ increases as
Ṁ decreases, i.e., M 0¶S ¶ <˙ . Thus, most of the disk is
viscously unstable. This is shown more explicitly in Figure 13,
where we plot M¶S ¶ ˙ (calculated by deriving the steady-state
Σ for Ṁ =10−9Me yr−1 ± 1%) against radius; the quantity is
negative over all but the innermost disk regions. By
Equation (32), the instability criterion may also be expressed
as a condition on the summed change in ā and cs

2 as a function
of the change in Ṁ . In Figure 14, we plot each of these two
terms separately. It is apparent that the instability is caused
primarily by the large change in ā with Ṁ , with the change in
sound speed making only a minor contribution. We shall see
explicitly how ā changes with accretion rate in Section 8.3.

8.1.7. Opacity

In this work, we have assumed a constant opacity of
10 cm2 g−1 throughout our calculation domain. Given the

pressure and temperature structure derived thereby for our
solution disk, we check the validity of this assumption
a posteriori, by using the detailed tables of Zhu et al. (2012)
to compute the opacities predicted as a function of pressure and
temperature.
The results are plotted in Figure 15. We see that the predicted

opacity over the bulk of our disk solution is 5–10 cm2 g−1

(primarily due to grains; see below), very close to our assumed
value. The only exception is the innermost disk, at 0.03 au,
where the expected opacities are 1–2 orders of magnitude lower
(as grains disappear). However, this small inner region is not
consequential to our results at larger radii, e.g., regarding the

Figure 12. Steady-state solutions for the surface density Σ as a function of
radius, for model parameters M*=1 Me, 10DZ

4a = -¯ , and varying accretion
rates Ṁ =10−9.3

–10−8.7 Me yr−1 in steps of 0.1 dex. Over most of the disk
(except the innermost regions), the surface density increases with decreasing
accretion rate. See Section 8.1.6.

Figure 14. Mln lna¶ ¶( ¯ ) ( ˙ ) (top) and c M2 ln lns¶ ¶( ) ( ˙ ) (bottom) as a
function of radius, for our fiducial disk model. See Section 8.1.6.

Figure 15. Rosseland mean opacity (in cm2 g−1) calculated a posteriori for our
fiducial disk model, plotted as a function of disk location (with height in units
of vertical column). The dashed curve denotes one pressure scale height. Over
most of our region of interest in the disk, the derived opacity is within a factor
of two of 10 cm2 g−1, consistent with our a priori adoption of this value
everywhere. See Section 8.1.7.

Figure 13. M¶S ¶∣ ˙ ∣ as a function of radius for our fiducial disk model. The
solid line denotes M 0¶S ¶ >˙ (viscously stable), while the dashed line
denotes M 0¶S ¶ <˙ (viscously unstable). The disk is thus unstable at radii r
 0.03 au. See Section 8.1.6.
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DZIB and the pressure maximum. In summary, therefore, our disk
solution is overall self-consistent vis-à-vis the adopted opacity.

Note that we have not explicitly included grains in our
calculations. Nevertheless, our assumed opacity of 10 cm2 g−1

is the fiducial value adopted widely for dusty accretion disks
and is validated over most of the disk by the opacity
calculations above that do account for grains. In other words,
grains are implicitly included in our opacities. On the other
hand, dust will also markedly influence the chemistry and the
MRI (see Section 8.1.2); these grain effects are ignored in this
work (we treat them in a subsequent paper; Jankovic et al.
2018, in preparation).

8.1.8. Validity of the Strong-coupling Limit

The criteria we use for active MRI in the presence of
ambipolar diffusion (Equations 11(a), (b)), derived from the
MRI simulations of Bai & Stone (2011), require that we be in
the strong-coupling limit, i.e., in the single-fluid regime. The
conditions for the latter are (see Appendix A) (1) ρn?ρi
(which is always satisfied in our case wherein potassium is
the only ionized species, since the abundance of K puts a
hard upper limit of ∼10−7×mK/mH2 = 1 on i nr r ) and
(2) trcb=tdyn, where trcb is the recombination timescale. The
latter condition expresses the requirement that ionization–
recombination equilibrium be established on timescales shorter
than the dynamical time on which other relevant disk physics
(such as field amplification by Keplerian shear) occurs. Since
ionization is generally very fast, it is the recombination time
that forms the bottleneck in establishing ionization equilibrium,
hence the criterion trcb=tdyn. If this is not satisfied, then the
MRI simulation results do not represent a steady state.

We use Equation (13) to calculate trcb everywhere in our
solution disk, and we compare it to the local tdyn; the results are
shown in Figure 16. We find that in fact the required condition
on trcb is met only in the innermost disk close to the midplane,
and nowhere else. The reason is clear: with effectively only a
single chemical species (K), there is only one, relatively slow,
recombination channel; thus, trcb ( T neµ ) only becomes
small enough to fall below tdyn at the smallest radii, where ne is
highest (see Figure 4; the weaker dependence on T, combined
with the relatively small variation in T in our solution—see
Figure 9—means that the temperature does not alter trcb very
much). As such, our disk solution is to be interpreted only as an
idealized case that holds if ionization equilibrium is established
with a single alkali species. Whether such an equilibrium can
indeed be reached, or maintained, when the disk and field are
otherwise evolving on much shorter dynamical timescales is
unclear.8

Nevertheless, our disk solutions are useful for two reasons.
First, actual disks should support far more complex chemical
networks, including both molecular ions and grains in addition
to metal ions. With the much larger number of recombination
channels available in such physically realistic circumstances,
we do expect the time to attain ionization equilibrium to usually
be shorter than the dynamical one (e.g., Bai 2011). In that case,
as long as ā follows the general form in our solutions (high
value at very small radii, and tapering off with increasing
distance), our results, regarding the behavior of the various
zones and the trends in the MRI and accretion rates, should
remain qualitatively applicable (though the quantitative loca-
tions of the pressure maximum and so forth will certainly
change). Second, our analysis provides a general method for
self-consistently solving the problem of an α-disk coupled to
the MRI (and for checking the validity of the solution
a posteriori, as done here). This methodology will remain
applicable, whatever the specifics of the chemical network.

8.2. Variations in āDZ

Figures 17–19 show our disk solutions for the same M* and
Ṁ as the fiducial case, but with 10DZ

3a = -¯ and 10−5 (instead
of 10−4). These results closely resemble the fiducial solution,
but with a couple of important quantitative differences.
First, because ā declines with increasing radius, the pressure

maximum (located where ā hits the floor value DZā ) occurs at a
smaller radius (∼0.12 au) for 10DZ

3a = -¯ compared to the
fiducial case (∼0.25 au); conversely, it is at a larger radius
(∼0.4 au) for 10DZ

5a = -¯ . in fact, as Figure 20 shows, the
radial location of the pressure maximum as a function of the
floor value DZā is approximately a power law: rP DZ

1 4
max aµ - .

This follows from the fact that our solutions ā as a function of
radius approximately decrease as power laws beyond 0.1 au,
and the location of the pressure maximum corresponds to the
radius at which this power law falls to the floor value DZā (right
panels of Figure 18).
Second, while all three DZā solutions are quite similar at

radii inward of the pressure maxima, they are not exactly the
same: specifically, the field strengths in the three cases diverge
beyond ∼0.09 au (left panel of Figure 18), which is where the
dead zone first arises (compare Figures 5 and 17). This stems
from the fact that the total Ṁ at any radius is the sum of
the individual accretion rates through the active, dead, and

Figure 16. Recombination timescale (trcb) vs. dynamical timescale (tdyn) as a
function of location in our fiducial disk model. The solid black curve denotes
the disk midplane, and the dashed curve denotes one pressure scale height. The
green region is where trcb<tdyn (and thus where the single-fluid approximation
is valid); in the rest of our fiducial disk, trcb>tdyn. See Section 8.1.8.

8 Answering this question rigorously requires a general two-fluid simulation
(of which the one-fluid regime is a special case), including source and sink
terms for the ions in order to account for an evolving ionization fraction (we
thank X. Bai for useful discussions on this issue). Note that the idealized two-
fluid simulations of Hawley & Stone (1998, hereafter HS98; see Appendix A)
assume a fixed ion fraction and so do not address this issue directly.
Nonetheless, if trcb?tdyn, then the ionization fraction may be assumed to be
approximately constant over tdyn, with all the relevant species being completely
ionized (since the ionization timescale alone is very short). In this sense, the
HS98 results may be applied to a disk like ours, with only a single alkali
species, with the specification that all the alkali atoms be ionized. We cannot,
however, apply the HS98 results to the ionization fractions we have derived
assuming Saha equilibrium, because trcb?tdyn means that Saha equilibrium is
simply not established over the dynamical timescales relevant to the HS98
simulations. At any rate, as discussed in the main text above, we do not expect
a chemical network comprising only one alkali to be generally representative of
real disks, so we do not pursue this line of inquiry further here.
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Figure 17. Same as Figure 5, but now for 10DZ
3a = -¯ (left) and 10 5- (right).

Figure 18. Left: field strength B as a function of radius. Right: ā as a function of radius. In both plots, results for 10DZ
3a = -¯ (open circles) and 10DZ

5a = -¯ (filled
gray circles) are overplotted on the results for our fiducial model with 10DZ

4a = -¯ (filled black circles; the fiducial results are the same ones shown in Figures 6 and 8,
respectively).

Figure 19. Various disk parameters as a function of radius: same as Figure 9, but now for 10DZ
3a = -¯ (left) and 105 (right).
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zombie layers at that location. As discussed in Section 8.1.5 for
the fiducial case, the accretion rate in the low-density zombie
zone makes a negligible contribution to the total; hence, at radii
where the active zone dominates in the midplane, the
Ṁ through it (controlled by the B-field) is essentially constant
at the fixed total rate. Thus, the field strength at these radii
remains the same for the three DZā cases considered (which all
have the same total Ṁ ). Once a dead zone forms in the high-
density midplane, however, the accretion rate through it makes
a significant and radially increasing contribution to the total
rate; the rate through the active zone then compensates (in
order to keep the total Ṁ fixed) by declining rapidly with
radius, facilitated by a steep decrease in the field strength (see
Figure 10). Since the accretion rate through the dead zone
increases with DZā , a higher (lower) DZā leads to a steeper
(shallower) fall-off in field strength (and thus in the active zone
accretion rate) with radius, as depicted in Figure 18.

8.3. Variations in Ṁ

Figures 21–24 show our disk solutions for the same M* and
DZā as the fiducial case, but with Ṁ=10−8 and

10−10Me yr−1 (instead of 10−9Me yr−1). The salient devia-
tions here from the fiducial case are all rooted in the fact that a
higher Ṁ elevates the viscous heating rate, leading to a larger
ionization fraction at a given location.

First (Figures 21 and 24), the pressure maximum is pushed
out to ∼0.7 au when Ṁ =10−8 Me yr−1 and in to ∼0.07 au
when Ṁ=10−10 Me yr−1, compared to ∼0.25 au for the
fiducial accretion rate. An increase (decrease) in ionization
fraction yields a higher (lower) ā at a fixed radius, so the
pressure maximum (achieved where ā falls to DZā ) occurs at a
larger (smaller) radius for a given DZā . As Figure 25 shows, the
radial location of the pressure maximum as a function of the
accretion rate is approximately a power law: rPmax µ Ṁ1/2.

Second (Figure 21), for the higher Ṁ =10−8 Me yr−1, the
inner edge of the dead zone recedes to a larger radius (∼0.4 au,
versus 0.09 au for the fiducial case). The inner edge of the Hall
zone is pushed out as well, but not as much, resulting in this
zone now intruding on the MRI-active zone. For the lower Ṁ
=10−10 Me yr−1, on the other hand, the dead zone extends all
the way to the disk inner edge; the active zone only occurs
sandwiched between the dead and zombie zones and never
extends to the midplane. Interestingly, the very low ionization
fractions in this solution also allow the appearance of a region
where Ohmic resistivity ηO dominates over both ηH and ηA (red

sliver at the disk outer edge in Figure 22; the only time such a
region appears in our solutions).
Third (Figure 23, right panel), ā saturates at ∼0.1 at small

radii as the accretion rate increases to 10−9 Me yr−1 (left
panel of Figure 22). The saturation occurs because, at these Ṁ ,
potassium is almost completely ionized at small radii over the
entire vertical extent of the disk (e.g., see top left panel of
Figure 4, which shows that, near the disk inner edge in the
fiducial case, xe≈(1–2)×10−7 from the midplane to the
disk surface: very close to the maximum possible value of xe in
our disks, equal to the abundance of K, of ∼2×10−7; for
10−8 Me yr−1, xe [not shown] is even closer to this upper limit
at small radii). This explains why we found, in Section 8.1.6,
that the innermost regions of our fiducial disk are viscously
stable: this instability is mainly controlled by the change in ā
with Ṁ (see Equation (32) and Figure 14), and this change is
by definition very small when ā is close to saturation. Note as
well that ā is saturated out to a much larger radius for 10−8

Me yr−1 compared to the fiducial case (because the ionization
fraction grows with Ṁ ), implying that the inner disk becomes
viscously stable over an increasing radial extent as the
accretion rate climbs.

8.4. Variations in M*
Figures 26–28 show our disk solutions for the same Ṁ and

DZā as the fiducial case, but with M*=0.1Me(instead of
1Me). Note that the inner edge of the disk, assumed to lie at
the stellar surface in our calculations, is also smaller in this case
(Rin=R*≈1 Re, compared to ∼2.3 Re for the fiducial mass).
We see that the solutions for the two different stellar masses

are nearly identical, except that the solutions for the lower mass
are compressed radially inward by a roughly constant multi-
plicative factor (i.e., shifted inward by a constant additive
factor, on the logarithmic radial scale in the plots). This is
explained by the functional form of the fundamental parameters
ρ, Pgas, and T in a steady-state α-disk (Equations (4)–(6)).
Specifically, the dependence of each of these parameters on the
stellar mass M* and orbital radius r can be expressed as a
dependence on the combined parameter M*/r

3 (the additional
dependence on r via fr is negligible for r?Rin). Dependencies
on ā and the opacity κ do not change this fact, since the latter
quantities are themselves functions of ρ, Pgas, and T. As such,
for a fixed accretion rate, the solution at any radius ra, for
a stellar mass M*a, is identical to that at radius rb º
r M Ma b a

1 3
* *( ) for a stellar mass M*b.

9. Discussion and Conclusions

The IOPF mechanism depends on the presence of a midplane
pressure maximum, arising initially from the change in
viscosity between the MRI-active innermost disk and the
adjacent dead zone. We have investigated the formation and
location of this first pressure maximum by solving the coupled
equations for MRI-driven viscosity with thermal ionization and
an α-disk structure in steady state. We examine a range of disk
accretion rates ( 10−10 to 10−8Me yr−1) and stellar masses
(0.1–1Me). Within the dead and zombie zones, where the
viscosity comes from non-MRI hydrodynamic and/or gravita-
tional stresses, we assume a constant viscosity parameter DZā
(which also sets a “floor” on the MRI-driven α), set to a
fiducial value in the range 10−3 to 10−5. We find the following:

Figure 20. Radial location of the pressure maximum as a function of DZā ,
showing the approximate power-law dependence rP DZ

1 4
max aµ -¯ .
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(1) A midplane pressure maximum does form, but it is
located within the dead zone, rather than at the DZIB as
usually assumed. This is a general consequence of two
factors: first, the midplane pressure does not depend on
the local value of α, but rather on its vertically averaged
effective value ;ā second, the MRI-active zone does not
end abruptly at the DZIB, but instead continues outward
above the dead zone, so that ā falls to its minimum

value DZā (causing a pressure maximum) beyond the
DZIB.

(2) The radial location of the pressure maximum has
approximately power-law dependencies on αDZ, stellar
mass, and accretion rate: rP DZ

1 4
max aµ - , M*

1/3, and Ṁ1/2.
(3) Inward of the pressure maximum, the surface density Σ in

our steady-state solutions decreases radially inward, instead
of increasing monotonically as usually assumed (e.g., in the
MMSN). This is a general feature of all solutions with a
constant accretion rate and an α that increases inward (since
a lower Σ is required to produce the same Ṁ with a larger
α). The very low Σ that results in these inner disk regions
has two consequences (points 4 and 5 below).

(4) At these low Σ, Hall diffusion rather than Ohmic
resistivity dominates near the midplane. Specifically, for
the range of M*, Ṁ , and αDZ considered here, the Hall
Elsässer number χ<1 within the Ohmic dead zone in
our solutions. As such, in the presence of a net vertical
background field aligned with the disk spin axis, the Hall
effect can reactivate the dead zone, thereby removing the
pressure maximum and suppressing the IOPF mech-
anism. This might explain why close-in small planets are
not found in roughly half of all systems: any background
stellar or interstellar field threading the disk will be
randomly aligned/anti-aligned with the disk spin axis,
yielding alignment in statistically half the cases.

(5) At these low Σ, X-ray ionization can become competitive
with thermal ionization, contrary to the standard assump-
tion that the X-rays may be ignored here. In our analysis,
where X-rays are not included (their effects are only
investigated a posteriori), the MRI-active zone eventually
ends where thermal ionization peters out, and ā falls to the
floor value αDZ (forming a pressure maximum there). In
real disks, we expect that the MRI-active layer above the
dead zone will eventually become X-ray supported, and
thus continue outward to join up with the active layer in
the midplane beyond the outer boundary of the dead zone

Figure 21. Same as Figure 5, but now for an accretion rate Ṁ =10−8 Me yr−1 (left) and 10−10 Me yr−1 (right).

Figure 22. Same as Figure 2, but for an accretion rate Ṁ =10−10 Me yr−1.
This is the only one of our various disk models in which an Ohmic-dominated
region arises (red sliver in bottom right corner of both panels).
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(e.g., see disk solutions with X-ray-driven MRI by
Mohanty et al. 2013). In this case, the minimum value
of ā will be somewhat higher than αDZ (since the disk

never becomes completely dead vertically); what this
precise value is, and where it is achieved (and thus a
pressure barrier is formed), will be X-ray dependent.

Figure 23. Left: field strength B as a function of radius. Right: ā as a function of radius. In both plots, results for Ṁ =10−10 Me yr−1 (open circles) and
Ṁ =10−8 Me yr−1 (filled gray circles) are overplotted on the results for our fiducial model with Ṁ =10−9 Me yr−1 (filled black circles; the fiducial results are the
same ones shown in Figures 6 and 8, respectively).

Figure 24. Various disk parameters as a function of radius: same as Figure 9, but
now for an accretion rate Ṁ =10−8 Me yr−1 (top) and 10−10 Me yr−1 (bottom).

Figure 25. Radial location of the pressure maximum as a function of the
accretion rate Ṁ , showing the approximate power-law dependence
r MP

1 2
max µ ˙ .

Figure 26. Same as Figure 5, but now for a stellar mass M*=0.1 Me.
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(6) A linear stability analysis of our equilibrium disk solutions
indicates that most of the inner disk is viscously unstable
( M 0¶S ¶ <˙ ), with the inner edge of this unstable region
moving outward with increasing Ṁ . The instability is driven
primarily by the change in ā (due to variations in the
ambipolar and Ohmic diffusivities) as a function of Ṁ . To
zeroth order, this instability will cause the inner disk to break
up into rings. A more detailed nonlinear analysis, together
with the inclusion of more realistic disk physics (i.e.,
inclusion of grain effects on the MRI, and a more rigorous
treatment of the disk thermal structure, ionization including
X-rays, and opacities), is required to verify the presence of
the viscous instability.

We thank Sourav Chatterjee, Xiao Hu, Zhaohuan Zhu,
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helpful discussions. S.M. and J.T. acknowledge support from a
Royal Society International Exchange grant IE131607 and
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acknowledges support from the Imperial College PhD Scholar-
ship and the Dositeja stipend from the Fund for Young Talents
of the Serbian Ministry for Youth and Sport.

Appendix A
Discussion of Conditions for Active MRI

Our treatment of the conditions for active MRI generally
follows that of Mohanty et al. (2013); we summarize the salient
points here. Magnetic torques are important for mass and angular
momentum transport in the disk only if the gas is sufficiently
coupled to the field, i.e., if gas motions can generate magnetic
stresses faster than they can diffuse away owing to a finite
resistivity η. In a Keplerian disk, these stresses arise owing to
orbital shear, so the relevant timescale for field generation is the
orbital period, i.e., the dynamical timescale tdyn∼1/Ω.
For local tangled fields generated by MRI-induced turbulence,

the height of the thin disk sets an upper limit on the wavelength
of MRI modes, and hence on the dissipation timescale, so it is
the vertical direction that is relevant. For a vertical mode with
wavenumber k, the Ohmic dissipation rate is ∼k2ηO, while the
growth rate is kv z , where v z is the vertical component of the
local Alfvén velocity (v B 4z z prº , for a local vertical field
strength Bz and gas density ρ; MRI simulations by Sano et al.
(2004) indicate that B B 25z

2 2~ , where B is the rms field
strength). Since the maximum growth rate is Ω, the wavenumber
of the fastest-growing mode is k v z= W . Stipulating that the
growth rate of this mode exceed its dissipation rate then yields
the Ohmic Elsässer number criterion for active MRI:

v
1, 33z

O

2


h
L º

W
> ( )

whether the net background field is vertical, toroidal, or zero (Sano
& Stone 2002). Moreover, we will see below that efficient MRI
additionally requires the gas pressure in the disk (Pgas) to
substantially exceed the magnetic pressure (PB). For gas with
sound speed cs, Pgas (∝cs

2)?PB (∝v2
) implies cs/v ?1,

guaranteeing that the wavelength ∼v z /Ω(<v/Ω) of the fastest-
growing mode is indeed much smaller than the disk scale height
zH∼cs/Ω.
The rationale for the Ohmic Elsässer criterion may be

understood more clearly by considering the general induction
equation for magnetic fields (e.g., Wardle 2007):

B
v B B

B B B
t

, 34

O

H A

h

h h

¶
¶

=  ´ ´ -  ´  ´
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( ) [ ( )
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where v and B are the neutral velocity and magnetic field
vectors, respectively, “ ”̂ denotes a unit vector, and “⊥” indicates
the component of a vector perpendicular to B. The first expression

Figure 27. Left: field strength B as a function of radius. Right: ā as a function of radius. In both plots, results for M*=0.1 Me (open circles) are overplotted on the
results for our fiducial model with M*=1 Me (filled black circles; the fiducial results are the same ones shown in Figures 6 and 8, respectively).

Figure 28. Various disk parameters as a function of radius: same as Figure 9,
but now for a stellar mass M*=0.1 Me.
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on the right is the inductive term (I), while the second, third, and
fourth terms represent Ohmic (O), Hall (H), and ambipolar (A)
diffusion, respectively. Clearly, in magnitude, I∼ΩB while O∼
ηOB/L

2; moreover, as noted above, L v z~ W is the character-
istic length scale of the fastest-growing MRI mode (and thus the
relevant scale for field diffusion too). Thus Λ∼I/O, and
Equation (33) simply expresses the intuitive notion that, for
robust MRI-driven field amplification when Ohmic resistivity is
the prime diffusive channel, the ratio of the inductive to the
Ohmic term must exceed unity. A region where Ohmic diffusion
kills the MRI, and thus Equation (33) is not satisfied (i.e.,
Λ<1), is called a dead zone.

Analogously, when the Hall term dominates the diffusivities on
the right-hand side of the induction equation, we expect it to
strongly affect the MRI when the Hall Elsässer number χ satisfies

v
1. 35

H

2
c

h
º

W
<

∣ ∣
( )

We call a region satisfying Equation (35) the Hall zone. The nature
of the Hall term’s effect on the MRI, however, is very different
from that of Ohmic resistivity: in the presence of a net background
vertical field threading the disk, the nondissipative character of
Hall diffusion implies that it may amplify or suppress the MRI
depending on whether the field is aligned or anti-aligned with the
rotation axis of the disk (i.e., whether B 0W >· or <0; this
behavior can be understood by noticing that flipping the direction
of B changes the sign of every term in the induction equation,
Equation (34), except the Hall one (e.g., Wardle 1999; Balbus &
Terquem 2001). These issues have been explored in a linear
analysis by Wardle & Salmeron (2012), and in various more recent
nonlinear simulations (see discussion of simulation results in
Section 2); Xu & Bai (2016) have also explored similar Hall
diffusion effects when, in the presence of a net field, grains cause a
flip in the sign of ηH that mimics a reversal in field polarity.
Including the quantitative effect of Hall diffusion on the MRI

is thus nontrivial and beyond the scope of this exploratory paper;
as such, we ignore it here. We do calculate the magnitude of all
three resistivities (ηO, ηH, and ηA) and show their relative
strengths over our region of interest; however, in Hall-dominated
areas, we use either the Ohmic Elsässer criterion (Equation (33))
or the ambipolar condition (discussed below; Equations (36) and
37(a)) to evaluate the MRI efficiency, depending on whether ηO
or ηA is the next-strongest resistivity.

For ambipolar diffusion, the Elsässer number Am is again
defined analogously to the Elsässer number Λ for Ohmic
diffusion, but with ηA replacing ηO

9:

Am
v

. 36
A

2


h
º

W
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Note that Am is independent of the field strength B, since v2
 ∝

B2 and so is ηA (see Section 4.3).10 Wardle (1999) argued that
the appropriate criterion for efficient MRI, when ambipolar

diffusion dominates instead of Ohmic, should in fact mirror
Equation (33), i.e., Am>1. When electrons and ions are the
only charged species, the latter condition reduces to γi
ρi/Ω>1 (see Section 4.3), where γi is the neutral–ion
collisional drag coefficient and ρi is the ion density. This
implies that the MRI can flourish in the presence of ambipolar
diffusion (i.e., the field, to which the ions and electrons are
frozen, will be sufficiently coupled to the mainly neutral fluid)
only if a neutral particle collides at least once per orbit with an
ion. This condition has often been used to investigate
ambipolar-dominated disk regions (e.g., Turner et al. 2010).
On the other hand, Hawley & Stone (1998) suggested that

the above criterion is too lenient. Their 3D local shearing-box
simulations, using an idealized two-fluid approximation (ions
+ neutrals; ionization and recombination are not considered, so
ion and neutral numbers are individually conserved), indicated
that efficient MRI with ambipolar diffusion requires neutral–
ion collisions to be at least 100 times more frequent, i.e., γi
ρi/Ω100.
However, more recently, Bai & Stone (2011) have argued that it

is not the two-fluid approximation but the strong-coupling limit
that is most applicable to protoplanetary disks. This limit holds
when two criteria are met: (a) the neutral density vastly exceeds the
ion density, ρn?ρi, a condition invariably satisfied in these disks;
and (b) the recombination timescale is much shorter than the
orbital period (dynamical timescale), trcb= tdyn (∼1/Ω), which
Bai (2011) demonstrates is true over most of the disk as well (see
discussion below). In this case, the ion inertia may be neglected,
the ion density is controlled entirely by ionization–recombination
equilibrium with the neutrals, and the problem reduces to a single-
fluid (of neutrals) approximation. In this strongly coupled limit,
with the ratio of the inductive to ambipolar term further given by
the general expression for Am in Equation (35) (instead of just the
reduced value γiρi/Ω), Bai & Stone (2011) find that the MRI can
operate at any value of Am, provided that the field is sufficiently
weak. Specifically, the MRI can be sustained as long as the plasma
β parameter, β≡Pgas/PB, satisfies

, 37aminb b> ( )

where the minimum value of β is a function of Am,
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Am Am
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and PB=B2/8π. Note from Equation 37(b) that βmin

approaches (50/Am1.2) for Am  1 and asymptotes to 1 from
above as Am  ¥. Hence, condition 37(a) for active MRI
demands that the gas pressure dominate over the magnetic
pressure in the disk, as stated earlier. Following Mohanty et al.
(2013), we denote locations where Equations 37(a), (b) are not
satisfied (i.e., β<βmin), and thus the MRI is quenched by
ambipolar diffusion, as zombie zones.
Bai (2011) shows that trcb = tdyn, i.e., the strong-coupling

limit applies, when complex chemical networks are invoked and
grains are abundant; he cautions that this limit may not hold in
simpler formulations, as recombination pathways become
limited. This warning is potentially germane to us, since, in
our simplified treatment of thermal ionization here, the chemical
network comprises only one channel (M M e++ - , whereM
is a single species of alkali metal), and grains are moreover

9 We use v here instead of the v z employed in the Ohmic Elsässer number
definition in Equation (33), since we will adopt (in Equations 37(a), (b)) the
results of the numerical simulations by Bai & Stone (2011), who use the total
Alfvén velocity to define Am.
10 A typo in the text of Mohanty et al. (2013) suggests that Am depends on B
through both ηA and v

2; while this is formally true, the two dependencies in
fact cancel out. This does not vitiate any results in Mohanty et al. (2013), since
their actual calculations of Am are correctly implemented.
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omitted. We proceed by first assuming that the strong-coupling
limit holds for us as well, and thus we use conditions 37(a),
(b) to determine whether the MRI can operate in ambipolar-
dominated regions; we then check whether trcb=tdyn holds in
these regions in the disk solutions derived, to verify consistency
(see discussion and Equation (15) in Section 4.2, and detailed
discussion in Section 8.1.8).

Appendix B
Connecting the MRI and α-disk Formulations

For a general shear stress Trf in the disk, the viscosity
parameter αT is defined by the relation

T r
d

dr
P c , 38r T T sgas

2nr a a rº
W

= - = -f⎜ ⎟⎛
⎝

⎞
⎠ ( )

where the first equivalence in parentheses is the definition of
Trf and ν is the viscosity. The negative sign on the right-hand-
side terms enforces the convention that the α-parameter be
positive (since Trf∝dΩ/dr<0 in a Keplerian disk). We have
labeled the α-parameter with the subscript “T” to explicitly
denote that it is defined here in terms of Trf, instead of in terms
of the viscosity ν as done in the Shakura–Sunyaev model
(Equation (1) in the main text; we connect the two definitions
further below). For any particular driver of shear stress (e.g.,
the MRI), we will find it mathematically convenient to define
an effective viscosity parameter Tā , given by the pressure-
weighted vertical average of αT:
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where the integrals are over the total thickness of the layer
(summed over both sides of the midplane) where the specified
shear stress operates. The second equality above, which defines

Tā as a density-weighted vertical average, holds when the disk
is vertically isothermal (so that cs is constant with height).
Using Equation (38), this yields the useful form
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where the first equality is general and the second again true for
a vertically isothermal disk. For the specific case of MRI-driven
turbulence, the vertical integral of the turbulent stress is given
by (e.g., Wardle 2007)
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where Br and Bf are the radial and azimuthal components of the
field, respectively, B B h B B dz2r h r

1
2òá- ñ º -f f

-( ) , and B is
the rms field strength. The second equality flows from the result
of MRI simulations by Sano et al. (2004) that B B B4 r

2 ~ á- ñf .
Replacing the vertical integral on the left by using the first
equality in Equation (40), noting that the vertical average of

Pgas over the MRI layer is P P dz h2
hgas 2 gasòá ñ º ( ) , recogniz-

ing that PB=B2/8π is the magnetic pressure, and using the
definition of the plasma-beta parameter β ≡ Pgas/PB, we finally

arrive at
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for MRI-driven turbulent stresses (as denoted by the subscript
on Tā on the left-hand side). Here P P P Pgas B gas Bbá ñ º á ñ = á ñ
is the vertical average of the plasma-beta parameter over the
active layer thickness 2h (the second equality comes from our
assumption that the field strength is constant over this
thickness). Bai & Stone (2011) also arrive at Equation (42);
it is essentially a restatement of the assertion above that
B B B4 r

2 ~ á- ñf , as they discuss.
Now, at any radial location in the disk, we expect the vertical

structure to be multilayered, with the most general structure
being a dead zone (where Ohmic resistivity suppresses the
MRI) straddling the midplane, a zombie zone (where ambipolar
diffusion shuts off the MRI) near the disk top and bottom
surfaces, and an MRI-active layer sandwiched in between. The
shear stress within the MRI-active and inactive layers is driven
by different physical mechanisms, and hence Tā within these
layers will be (very) different. It is therefore convenient, in
analogy with Equation (39) for the individual disk layers, to
define an average viscosity parameter Tavgā over the entire
thickness of the disk:
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For a vertically isothermal disk, which is assumed in this paper
(and where the second equality above applies), Tavgā can be put
in a very simple form by noting that

T dz c dz T dz ,

44

r T s
i h

r i
2

2
,

i
avgò ò òåa r= - =f f

-¥

+¥

-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟¯

( )

where the first equality comes from combining Equations (38)
and (43). The second equality simply breaks up the vertical
integral over the total disk thickness into a sum of integrals
over zones with different shear-stress mechanisms; 2hi and Trf,i
denote, respectively, the thickness of the ith zone (summed
over both sides of the midplane) and the form of the shear-
stress tensor there. Using the second equality in Equation (40)
to replace the individual integrals under the summation above,
and dividing throughout by the mean molecular mass μ, we get

N

N
, 45T

i i T

tot

i

avg

å
a

a
=¯

( ¯ )
( )

where N dzi hi
ò r mº is the (one-sided) column density of

each ith zone, and N dz Ni itot 0ò r mº = å
+¥

is the (one-
sided) total column density from the surface to the midplane
(we assume that the disk is symmetric about the midplane).
Thus, for a vertically isothermal disk, Tavgā is the column-
weighted vertical average of the effective viscosity parameters

Tiā within each zone (MRI active, dead, and zombie; we will
denote these zones by i=MRI, DZ, and ZZ, respectively).
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Now, the parameter α that is used to derive the Shakura–
Sunyaev disk equations is defined in terms of the viscosity ν
(Equation (1) in the main text), while αT is defined in terms of
the shear stress Trf (Equation (38)). Combining these two
equations with the definition Trf ≡ ν ρ r dΩ/dr, we see that

2

3
, 46Ta a= ( )

where the factor of 2/3 comes from dΩ/dr in a Keplerian disk.
Moreover, the Shakura–Sunyaev equations (Equations (3)–

(6) in the main text) are derived on the basis of vertically
integrated quantities (Σ and Ṁ ; see H16). As such, it is not α
that enters directly into these equations, but more precisely the
effective parameter ā, which is a vertical average over the entire
disk thickness defined analogously to Equation (43):

P dz
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. 47

gas

gas

ò

ò

ò

ò
a

a ar

r
º =-¥

+¥

-¥

+¥
-¥

+¥

-¥

+¥¯ ( )

Combining this with Equations (43), (46), and (45) yields
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where the last equality holds for the vertically isothermally
case. Note that 1 2TMRIa b» á ñ¯ ( ) by Equation (42). In the dead
and zombie zones, the effective parameters TDZā and TZZā are set
by hydrodynamic and/or gravitational instabilities, and we set
their values guided by the results of numerical simulations (see
below). Furthermore, without detailed simulations of how the
viscosity in the dead and zombie zones might differ, we assume
that the effective viscosity parameters are the same in both
zones: T TDZ ZZa a=¯ ¯ . Then, for the vertically isothermal condi-
tions that we adopt, we may write

N N N

N
, 49MRI MRI DZ ZZ DZ

tot
a

a a
=

+ +¯ ¯ ( ) ¯ ( )

where 2 3 1 3TMRI MRIa a bº » á ñ¯ ¯ ( ) and 2 3TDZ ZZ DZa a a= º¯ ( ¯ ) ¯ .
Based on simulations (e.g., Dzyurkevich et al. 2010, 2013, and
references therein; Malygin et al. 2017, and references therein), we
adopt a fiducial value of 10DZ

3a = -¯ , 10−4, or 10−5.
Finally, the accretion rate (positive inward) due to the shear

stress within any ith zone (MRI active, dead, or zombie) is
given by

M
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For the vertically isothermal case, we can replace the stress
integral using the last equality in Equation (40), which yields

M
m

r r
r c N
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¶
¶
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where i=MRI, DZ, or ZZ, and MRIā and DZā ( ZZa= ¯ by
assumption here) are defined above. We use this formula to
calculate the accretion rates within the individual disk zones.

Note that, for the specific case of accretion within the MRI
zone, we can combine Equations (41) and (50) to alternatively
write

M
r r

r hB
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2
. 52MRI

2 2»
W

¶
¶

˙ ( ) ( )

This shows explicitly how, given a disk structure and chemistry
(ionization), the field strength B controls the accretion rate
through the MRI-active layers: directly via its appearance in the
above formula, and indirectly by influencing the magnitudes of
the Ohmic Elsässer number Λ and the plasma β parameter,
which in tandem set the active layer thickness h.
For a general shear stress Trf, the total accretion rate at any

radius is (analogous to Equation (50) but now integrated over
the entire disk thickness)

M
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If the total accretion rate is radially constant (as we shall
demand for our equilibrium solutions), then, multiplying
throughout by vK and integrating both sides over radius, from
the disk inner edge Rin out to any desired radius r, we get

M
f
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. 54
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The factor f R r1r inº -( ) is the same one that appears in
the Shakura–Sunyaev equations in Section 3; it arises from the
radial integral of vK. Note that there is no equivalent
contribution from the disk inner edge when radially integrating
the ∂/∂ r term on the right-hand side of Equation (53), since
Trf ∝ dΩ/dr=0 at the inner edge: in the α-disk model, Rin is
by definition the location where the angular velocity Ω plateaus
and turns over.
Finally, combining the first equality in Equations (44) and

(48) to replace the vertical integral of the shear stress in
Equation (54) above, and using the definition of surface density

dzò rS º
-¥

+¥
, we arrive at
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the standard expression for a constant accretion rate in a
vertically isothermal α-disk model.

Appendix C
Polynomial Fits to Solutions for rā( ) and B(r)

We fit our rlog logā( ) and B rlog log( ) solutions with
piecewise polynomials over one, two, or three distinct intervals
in radius r. The fits are of the form y c c x c x ...0 1 2

2= + + + ,
where y loga= ¯ or Blog , x rlog= , and cn is the nth
polynomial coefficient. We list the radius intervals and
polynomial coefficients for our various disk models in
Tables 2–7. The starting radius for the innermost interval for
all models is Rin=R* (=1 Re for M*=0.1Me and 2.3 Re
for M*=1Me).
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Table 2
Disk Model: M*=1 Me, Ṁ =10−9 Me yr−1, αDZ=10−4

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.048 −8.5526396 −9.0739395 −3.1434803 −0.22451420
0.232 −6.6333076 −4.3837696 −0.37942259

B rlog log( ) 0.048 −1.3996038 −2.7297839 −0.57806547
0.090 0.90110720 −1.4531042 −0.92303502
0.232 −65.562920 −307.15327 −531.13562 −407.62824 −116.78615

Table 3
Disk Model: M*=0.1 Me, Ṁ =10−9 Me yr−1, αDZ=10−4

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.023 −12.472096 −12.102624 −3.8119263 −0.3015077
0.108 −8.103168 −4.5772352 −0.34497049

B rlog log( ) 0.023 −2.6963071 −3.4619552 −0.66750054
0.042 0.40642769 −1.9598652 −0.89520128
0.108 −233.05517 −779.1073 −972.0254 −538.41475 −111.58188

Table 4
Disk Model: M*=1 Me, Ṁ =10−10 Me yr−1, αDZ=10−4

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.066 −11.604954 −9.0560947 −2.2069353

B rlog log( ) 0.066 −169.31517 −454.52007 −454.24907 −201.59358 −33.457131

Table 5
Disk Model: M*=1 Me, Ṁ =10−8 Me yr−1, αDZ=10−4

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.190 −6.7811175 −12.02901 −8.2440562 −1.8594328
0.730 −4.5536009 −4.1222938 −0.17861849

B rlog log( ) 0.190 −0.18901295 −1.6613468 −0.22499278
0.362 1.2930281 −0.098087489 −0.85474294
0.730 −1.2770216 −25.759443 −116.39124 −238.42566 −180.2177

Table 6
Disk Model: M*=1 Me, Ṁ =10−9 Me yr−1, αDZ=10−5

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.048 −8.9655034 −9.8830202 −3.6673762 −0.33667805
0.415 −6.5991431 −4.2982932 −0.33100659

B rlog log( ) 0.048 −1.4088427 −2.7388476 −0.58018993
0.092 0.99828119 −1.2919053 −0.85648004
0.415 −3.0815134 −20.240474 −39.070548 −34.357312 −11.153956

Table 7
Disk Model: M*=1 Me, Ṁ =10−9 Me yr−1, αDZ=10−3

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.048 −8.9910621 −9.9615069 −3.7341083 −0.35427178
0.127 −6.7619972 −4.6539156 −0.51395667

B rlog log( ) 0.048 −1.3612921 −2.6728148 −0.55758751
0.086 0.80147769 −1.6020543 −0.97716225
0.127 −3619.2649 −14562.646 −21960.398 −14712.958 −3694.7273
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We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon’s periodic orbits with
values of the topological exponent k ranging from k ¼ 3 to k ¼ 58 to plot the angular momentum L as a
function of the period T, with both L and T rescaled to energy E ¼ −0.5. Upon plotting LðT=kÞ we find
that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the LðTÞ curve for
nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the
progenitor data is σ ¼ 0.13. This regularity supports Hénon’s 1976 conjecture that the linearly stable
Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol’mogorov-Arnol’d-Moser, stable.

DOI: 10.1103/PhysRevLett.116.064301

Introduction.—Numerical studies of periodic three-body
orbits have increased their output over the past few years—
more than 40 new orbits—and their “satellites” have been
discovered, Refs. [1–4]. Unlike periodic two-body orbits,
which are all ellipses, and thus are all topologically
equivalent, the noncolliding three-body periodic orbits
have one of infinitely many different topologies.
Montgomery, Ref. [5], had devised an algebraic method
to associate a free-group element (“word”) w with a three-
body orbit’s topology, and thus to label and classify such
periodic orbits; for an elementary introduction to this
method, see Ref. [6]. That classification method has
recently acquired practical importance in the identification
of new three-body orbits, Refs. [1,3,4].
A number of newly discovered orbits, Refs. [1–4], were

of the so-called topological satellite type. Such satellite
orbits are also known as “bifurcation” in the older literature,
Refs. [2,7], where they were only loosely defined in terms
of their presumed origin. It was only in Ref. [3] that a
precise definition of a topological satellite was given. When
this definition was applied to the figure-eight satellites [8],
reported in Ref. [3], it led to the discovery of a remarkable
“topological Kepler’s third law”-like regularity for arbitrary
orbits with vanishing angular momenta, Ref. [9]. The
immediate question is whether this regularity persists when
the angular momentum does not vanish.
The present Letter is an attempt to answer that question,

albeit in a single, specific family of three-body orbits, viz.,
in the Broucke-Hadjidemetriou-Hénon (BHH) family
[10–16], that has the simplest nontrivial topology (free
group element w ¼ a). The main reason for selecting only
this family of orbits is that it is the most thoroughly studied
family thus far: it is the only family of orbits with a
previously determined dependence of the period T on the

angular momentum L of (nonsatellite, or progenitor)
periodic orbits, Refs. [10–16]. No such, or comparable,
study of any of the remaining known families exists to our
knowledge at this moment. Moreover, the BHH family is
one of only two families [17] of periodic three-body orbits
that have been observed in astronomy: all known “hierar-
chical” triple star systems belong to BHH orbits. Moreover,
the Sun-Earth-Moon system may be viewed as a BHH
solution, albeit with highly asymmetrical mass ratios.
The first step towards this goal, the one of finding as

many different BHH satellite orbits as possible, has already
been accomplished in Ref. [18]. Previously, Davoust and
Broucke, Ref. [7], had found one (the first k ¼ 3) satellite
of one retrograde BHH orbit. Reference [18] extended the
search for retrograde BHH satellite orbits systematically up
to values k ≤ 19 of the topological exponent k, and more
haphazardly up to k ¼ 58. Thus, several different types of
BHH satellites with identical values of k were discovered
[19], as were a few prograde BHH satellites; see the
Supplemental Material [20] and the Web site [21].
Prograde BHH satellites have not been studied systemati-
cally, as yet, mostly due to their paucity at the values of the
angular momentum covered in the searches in Ref. [18].
Presently, it is not known how many satellites ought to
exist, and under which conditions. It is interesting, how-
ever, that the observed satellites correspond only to linearly
stable BHH progenitor orbits. This is in line with Hénon’s
1976 conjecture [15,20] about Kol’mogorov-Arnol’d-
Moser (KAM) stability of linearly stable BHH orbits.
Then, motivated by the findings reported in Ref. [9], we

checked for similar regularities of satellite BHH orbits with
nonzero angular momentum. First, we formulated the
topological dependence of Kepler’s third law for three-
body orbits with nonzero angular momenta, and second, we
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tested it on the presently known satellites of the retrograde
BHH family. We found a striking result: all of our
retrograde BHH satellites fall on a single (continuous)
curve LðT=kÞ, Fig. 3, that is practically indiscernible by the
naked eye from the LðTÞ curve, Fig. 1, for nonsatellite
(progenitor) retrograde BHH solutions, whereas the “topo-
logically uncorrected” curve LðTÞ looks very different; see
Fig. 2. A quantitative measure of this (dis)agreement is
shown in terms of corresponding standard deviations.
Preliminaries.—Broucke [7,10,11], Hadjidemetriou

[12–14], and Hénon [15,16] (BHH) explored a set of
periodic planar three-body orbits with equal mass bodies.
These orbits form two continuous curves in the L-T plane
whose lower (retrograde) terminus (“end”) is the collinear
collision (Schubart) orbit, and both the retrograde and the
direct LðTÞ curves approach the same high-L limit at their
upper termini, Fig. 1.
Although BHHwrite of two families of orbits—direct, or

prograde, and retrograde—all of these orbits belong to a
single topological family: during one period the orbit
completes a single “loop” around one of the poles on
the shape sphere. This loop can be described by the
conjugacy class of the fundamental group or free group
element a, according to the topological classification used
in Refs. [1,6]. It turns out, however, that there are numerous
relative periodic orbits with topology ak, with k ¼ 2; 3;….

Such orbits are sometimes called satellites [2,3], whereas
other authors call them “bifurcation orbits” [7].
Scaling laws for three bodies.—It is well known that

Kepler’s third law (for two bodies) follows from the
spatiotemporal scaling laws, which, in turn, follow from
the homogeneity of the Newtonian gravity’s static poten-
tial, Ref. [22]. These scaling laws read r → λr, t → λ3=2t,
and, consequently, v → v=

ffiffiffi

λ
p

. The (total) energy scales as
E → λ−1E, the period T as T → λ3=2T, and angular
momentum as L → λ1=2L, i.e., differently than either the
period T, or “size” R, which is the reason why only the
vanishing angular momentum L ¼ 0 is a “fixed point”
under scaling. For this reason, we use scale-invariant
angular momentum Lr ¼ LjEj1=2, scale-invariant period
Tr ¼ TjEj3=2 and, for simplicity’s sake, equal masses.
Thus, we may replace the “mean size” R̄ of the three-
body system in Kepler’s third law T ∝ R̄3=2 with the inverse
absolute value of energy jEj−1, i.e., T ∝ jEj−3=2, or equiv-
alently TjEj3=2 ¼ Tr ¼ const.
The “constant” on the right-hand side of this equation is

not a universal one in the three-body case, as it is in the two-
body case (where it depends only on the masses and the
Newtonian coupling G). It may depend both on the family
w of the three-body orbit, described by the free-group word
w, and on the scale-invariant angular momentum Lr ¼
LjEj1=2 of the orbit, see Refs. [15,16], as follows:

TðwÞjEj3=2 ¼ TðwÞr ¼ fðLðwÞjEj1=2Þ ¼ fðLðwÞr Þ;

or as an inverse function,

LðwÞr ¼ LðwÞjEj1=2 ¼ f−1ðTðwÞjEj3=2Þ ¼ f−1ðTðwÞr Þ:

Thus, the curve LðwÞr ðTðwÞr Þ ¼ LðwÞjEj1=2ðTðwÞjEj3=2Þ as a

function of TðwÞr ¼ TðwÞjEj3=2 is a fundamental property of
any family w of periodic orbits. For the BHH family the
LðTÞ curve, for fixed energy E ¼ −0.5 orbits, based on the
data from Refs. [10–16], is shown in Fig. 1.
We wish to see if the zero-angular-momentum relation

TrðwkÞ ¼ kTrðwÞ, Ref. [9], or some similar statement holds
also at nonzero angular momentum. The analogon of this
relation for orbits with nonzero angular momenta would be
a simple relation between LðTÞ curves for the progenitor

orbit LrðTrÞ and its kth satellite Lðw
kÞ

r ðTðwkÞ
r Þ:

LðwÞr ðTðwÞr Þ ¼ Lðw
kÞ

r ðTðwkÞ
r =kÞ: ð1Þ

We shall test this relation in the BHH family of solutions,
and in order to do so, we use the BHH satellite orbits
from Ref. [18].
LðTÞ curves for BHH satellites.—The L-T plots of

different-k satellite orbits are scattered over a large region
and do not intersect the BHH progenitor family of orbits’
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FIG. 1. LðTÞ curves for direct or prograde (green, upper set of
points) and retrograde (blue, lower set of points) BHH orbits, all
at fixed energy E ¼ −0.5.

0 50 100 150 200 250 300
T

1

2

3

4

5

6

L

Henon’s orbits
Broucke’s orbits
Satellites

FIG. 2. LðTÞ dependence of retrograde BHH orbits (blue dots
of different hues) and their satellites (red), with various values of
k, all at fixed energy E ¼ −0.5. The data are from Table I.
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LðTÞ curve when plotted as a function of the (undivided)
period T, see Fig. 2. Note the large span of periods T in the
data, Table I, and in Fig. 2, as well as two large “gaps” in
the data. These gaps are due to the exigencies of the search
reported in Ref. [18], which was not conducted with the
intention of testing the hypothetical topological Kepler’s
third law. The values in Table I have been rounded off to
five significant decimal places. So, the numerical error is
less than one part in 10 000. Such an error would be
invisible in Figs. 2, 3, and 4, meaning that the “size of the
points” in these figures is larger than the expected error.
After dividing the period T (at fixed energy) by the
topological exponent k, T 0 ¼ T=k, we can see in Fig. 3
that the satellite orbits’ LðT=kÞ curve (the angular momen-
tum L as a function of topologically rescaled period T=k)
approximately coincides with the LðTÞ curve of BHH
retrograde orbits. It seems that such an appearance of order
out of apparent disorder cannot be an accident.

Next, in Fig. 3 we look more closely at the section of the
LðTÞ curve of progenitor BHH retrograde orbits in which
we have found all but one of our satellites. We have
interpolated Hénon’s [15] 18 stable retrograde data points
with a piecewise polynomial fit in this part of the LðTÞ
curve. The standard deviations from this interpolated curve
were calculated for (1) Broucke’s 10 progenitor retrograde
orbits [10,11] and (2) the 56 out of 57 new satellite orbits
from Table I (excluding one orbit that lies near the
“shoulder” at T ¼ 14 in Fig. 3), with the following results.
(1) σ ¼ 0.0034 for Broucke’s orbits, and (2) σ ¼ 0.1269 for
satellite orbits. This difference of 2 orders of magnitude
between these two numbers clearly indicates that the
rescaled satellites’ periods do not coincide exactly with
the progenitor ones, but only approximately.
Moreover, when one assembles Hénon’s and Broucke’s

[10,11] retrograde orbits in one set and fits the aggregate
data by a polynomial of the sixth degree, Fig. 3, the
standard deviation of the fit is σ ¼ 0.0313, whereas the

6 8 10 12 14
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Henon’s orbits
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Satellites

FIG. 3. LðT 0 ¼ T=kÞ dependence at fixed energy E ¼ −0.5 for
the aggregate set of retrograde BHH orbits (blue dots of different
hues) and their satellites (red dots) with various values of k,
together with the fitted interpolating function (blue solid). The
data are from Table I.
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FIG. 4. Enlargement of the L ∈ ½1.5; 3� region of the retrograde
BHH orbits (blue dots) and their satellites (red dots) with various
values of k LðT 0 ¼ T=kÞ dependence at fixed energy E ¼ −0.5.
Note that the size of the dots on the diagram exceeds the
corresponding numerical uncertainties (“error bars”).

TABLE I. Properties of satellite orbits in the retrograde branch
of the BHH family. Here, k is the topological power of the orbit, T
is its period, and L is its angular momentum. All orbits have the
same energy E ¼ −ð1=2Þ. For the raw data and a discussion of
numerical errors, see the Supplemental Material [20].

T L k T L k

27.800 80 1.288 15 3 71.538 38 2.460 95 11
27.411 57 1.505 52 3 77.074 74 2.259 18 12
32.992 45 1.616 82 4 77.060 60 2.379 81 12
33.479 35 1.557 01 4 76.731 11 2.517 18 12
55.678 84 1.310 00 4 82.213 27 2.319 68 13
39.511 02 1.653 31 5 82.199 18 2.452 31 13
45.138 27 1.775 68 6 81.882 58 2.570 68 13
44.586 32 1.902 40 6 87.317 60 2.376 87 14
50.646 60 1.879 00 7 87.303 60 2.520 98 14
50.638 90 1.911 39 7 92.384 79 2.504 86 15
50.141 13 1.974 52 7 92.377 38 2.591 66 15
50.141 28 1.975 37 7 92.082 10 2.670 70 15
56.060 83 1.969 71 8 97.432 10 2.559 79 16
55.604 11 2.121 89 8 102.450 58 2.673 31 17
77.813 66 1.205 44 8 107.449 64 2.758 61 18
56.052 69 2.010 54 8 112.429 18 2.838 83 19
56.049 53 2.027 09 8 209.487 95 3.692 20 39
55.604 30 2.122 89 8 214.258 15 3.727 85 40
61.399 03 2.051 28 9 219.023 02 3.762 83 41
60.968 89 2.185 81 9 223.782 78 3.797 19 42
61.390 86 2.098 90 9 228.537 63 3.830 94 43
61.386 76 2.123 97 9 233.287 75 3.864 12 44
60.968 79 2.185 32 9 238.033 32 3.896 75 45
60.999 96 2.338 82 9 242.774 50 3.928 85 46
61.396 97 2.063 00 9 247.511 46 3.960 44 47
66.666 44 2.179 17 10 252.244 33 3.991 55 48
66.666 89 2.176 08 10 308.853 30 4.614 04 58
66.297 61 2.401 65 10
78.610 58 1.593 25 10
71.897 15 2.194 81 11
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standard deviation of all satellite orbits from this poly-
nomial curve is σ ¼ 0.1315, roughly four times bigger. It is
(statistically) clear that the satellites do not follow exactly
the same LðTÞ curve as the progenitors, but the deviation is
not large. This constitutes the evidence for the analogon of
the topological dependence of Kepler’s third law for the
L ≠ 0 case, Ref. [9].
Finally, we note that all of our newly found satellite

orbits fall into a region of the progenitor LðTÞ curve that
corresponds to stable progenitor BHH orbits, with one
possible exception (the red point near the shoulder at
T ¼ 14 in Fig. 3, that “sits” on the border point between
stable and unstable regions). We have not found any other
satellites in this, the second stable region of BHH retro-
grade orbits. In Fig. 4 we show the fine structure in the
satellites’ LðT=kÞ curve, that remains to be studied in finer
detail and be better understood.
We have not studied the direct or prograde (sub)family of

BHH orbits, as Ref. [18] did not search for their satellites,
but found four almost inadvertently. Certainly, that task
ought to be completed in the future.
Summary, conclusions and outlook.—We have used 57

new satellite orbits from Ref. [18], in the family of
Broucke-Hadjidemetriou-Hénon, Refs. [10–16], relative
periodic solutions to the planar three body problem.
Thence followed a striking relation between their kinematic
and topological properties.
BHH orbits constitute a family with a simple topology,

described by the free group element a according to the
classification on the shape sphere, and their satellites are
orbits of the topology ak. The BHH orbits’ angular
momenta L and periods T form a continuous curve
LðTÞ, at fixed energy. Our satellite orbits form a scattered
set of points on the same LðTÞ plot, but all of them exhibit
the property that after their period T is divided by their
topological order k, they approximately fall on the LðTÞ
curve of the original (k ¼ 1) BHH orbits.
This study was motivated by the discovery, Ref. [9], of a

relation between the topology and periods among the
satellites of the figure-eight orbit, Ref. [3], and one other
type (“moth I”—“yarn” in Ref. [1]), of three-body orbits at
vanishing angular momentum. This Letter shows that
Kepler’s third law’s topological dependence also holds
for orbits with L ≠ 0, albeit only approximately. It remains
to be seen just precisely what this discrepancy depends on.
These results are even more striking if one remembers

that among our results there are several distinct types of
satellite orbits of the same topological power k, some with
quite different values of L and T, which all display this
property. A closer look at the LðT=kÞ curve revealed a
fine structure, which should be investigated in higher
detail in the future. An extension of the search conducted
in Ref. [18] into hitherto unexplored regions of the L-T
plane ought to provide (new) data that will further test our
result.

Our results indirectly confirm Hénon’s 1976 conjecture,
see page 282 in Ref. [15], reproduced in the Supplemental
Material [20], that the linearly stable BHH orbits are also
nonlinearly, or perpetually, or KAM stable. Such KAM
stability implies the existence of quasiperiodic orbits with
periods that conform to the quasiperiodicity condition (i.e.,
with periods that are “almost commensurate”with the BHH
progenitor’s period), as predicted by the KAM theorem,
Refs. [23–25].
Our study opens several new questions. (1) The most

commonlyobservedhierarchical triple star systemsbelongto
theBHHfamily.Are thereBHHtopological satellites among
astronomically observed three-body systems? It is important
to extend the present study to the realistic case of three
different masses: some early work has already been done in
this direction by Broucke and Boggs, Ref. [10], and by
Hadjidemetriou and Christides, Ref. [13]. (2) In recent years
therehavebeen formal“proofsof existence”given for at least
some BHH orbits, Refs. [26,27]. This begs the question: can
one “prove existence” of their satellite orbits, and, if yes, of
how many satellites, and under which conditions?
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We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method,

namely an expansion in Laguerre polynomials. This method exactly conserves both particles and

kinetic energy and facilitates the integration over the dielectric function. To demonstrate the

method, we solve the equilibration problem for a spatially homogeneous one-component plasma

with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method

requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally

from the equation along with the non-logarithmic order-unity terms. The spectral method can also

be used to solve the Landau equation and a quantum version of the Landau equation in which the

integration over the wavenumber requires only a lower cutoff. We solve these problems as well

and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we

discuss the possible generalization of this method to include spatial inhomogeneity and velocity

anisotropy. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963254]

I. INTRODUCTION

The Landau equation, or its equivalent formulation in

terms of the Fokker-Planck equation,1 is a valuable tool in the

study of out-of-equilibrium weakly coupled plasmas.2,3 The

assumption of small-angle binary scattering between the par-

ticles is well-suited to Coulomb interactions at high tempera-

ture and low density. However, this approximation results in a

divergence at small impact parameters, and the neglect of

screening leads to a divergence for large particle separations

due to the long-range nature of the Coulomb interaction. As is

well-known, these divergences require cutoffs, which, in prac-

tice, mean choosing a Coulomb logarithm and thereby adding

a level of ambiguity to the calculation. Although a more real-

istic calculation does contain such a logarithmic term, there

are other terms potentially the same order as log K that we are

discarding by using Landau/Fokker-Planck. To include these

terms requires a more sophisticated collision operator. An

option is a quantum version of the Boltzmann equation,4

which naturally handles strong collisions, avoiding the small-

angle approximation. Another candidate is the quantum

Lenard-Balescu (QLB) equation, which accounts for both

quantum diffraction, solving the large-k (wavenumber) diver-

gence, and dynamical screening, giving convergence as

k! 0, in a natural way and thus requires no input Coulomb

logarithm. This equation has been used extensively to

calculate various plasma properties at weak coupling, such

as transport coefficients5–8 and temperature equilibration

rates.9,10 These computations do not require a time-dependent

solution of the QLB equation, and indeed the latter has rarely

been attempted; the quantum Lenard-Balescu equation is far

more complicated than Landau/Fokker-Planck, which itself is

not trivial to solve.11,12 We present here a numerical solution

of the quantum Lenard-Balescu equation for a velocity-

isotropic, spatially homogeneous, one-component plasma.

The paper is organized as follows. In Section II, we

describe the equation in detail, and in Section III, we intro-

duce our solution method, which, for reasons discussed

there, is very different from those traditionally used to solve

the Fokker-Planck equation. In Sections IV and V, we

describe how we solve the most difficult problem, the inte-

gration over the dielectric function. Our solution method can

easily be applied to several simpler kinetic equations, such

as the Landau equation, and we enumerate these in Section

VI and give the minor modifications needed for each. In

Sections VII–IX, we describe our initial conditions, the

numerical solution of the ordinary differential equations that

arise from our method, and we show the relaxation to equi-

librium of various initial distributions. In the remainder of

the paper, we discuss possible generalizations of the method

to handle anistropy in velocity and inhomogeneity in space.

II. QUANTUM LENARD-BALESCU EQUATION

The equation we will solve is the non-degenerate quantum13

Lenard-Balescu14,15 equation for a one-component plasma

@f

@t
¼ CQLB fð Þ; (1)

where
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CQLB fð Þ ¼ � 1

4p2�h2

ð
d3v0

ð
d3k

j/ kð Þj2����� k; k � vþ �hk2

2m

� �����
2

� d k � v� v0ð Þ þ �hk2=m
� �

� f vð Þf v0ð Þ�f vþ �hk=mð Þf v0 � �hk=m
� �h i

;

(2)

where m is the particle’s mass, �h is Planck’s constant, and

we use the Coulomb potential

/ kð Þ ¼ 4pe2

k2
: (3)

The dielectric function is given by

� k;xð Þ ¼ 1� 4pe2

k2
v k;xð Þ (4)

and vðk;xÞ is the free-particle response function

v k;xð Þ ¼ v 0ð Þ k;xð Þ

� lim
g!0þ

ð
d3v

f vð Þ � f vþ �hk=mð Þ
�hx� �hv � k� �h2k2

2m
þ ig

: (5)

This equation is valid when the system is non-degenerate,

i.e., when

h � 2mkBT

�h2 3p2nð Þ2=3
� 1; (6)

where n is the number density, and weakly coupled

C � e2 4=3pnð Þ1=3

kBT
� 1: (7)

When the former condition is violated, additional factors of

1� f appear in the integrand in (2), and the latter is required

for the validity of the random phase approximation. Generally

speaking, this equation describes high-temperature, low-den-

sity plasmas.

The presence of the distribution in the response function

is a serious complication. Even worse, integrals over the

dielectric function often contain very narrow peaks and their

numerical integration can be tricky even at equilibrium16,17 let

alone for arbitrary distributions. These difficulties, coupled

with the fact that the Landau equation, despite its deficiencies,

yields distributions that are likely qualitatively correct at weak

coupling, have kept the Lenard-Balescu (LB) equation from

being studied numerically in any serious way in plasma phys-

ics. There are, however, several examples of its solution in the

context of carrier scattering in semiconductors (e.g., Binder

et al.,18 and see the book of Bonitz19 for further discussion

and references). We know of only one previous attempt in the

plasma context: Dolinsky’s pioneering 1965 solution of the

classical LB equation20 using a discretization method in

velocity. This work predates the advent of conservative veloc-

ity discretization schemes even for the Fokker-Planck equa-

tion, but it is not completely clear that such methods are

generically well-suited to the Lenard-Balescu equation any-

way because of the need to integrate accurately over the fea-

tures of the dielectric function. This issue could certainly use

a more thorough investigation. In any case, the classical equa-

tion considered by Dolinsky is divergent at large k and, unlike

the quantum version, an artificial cutoff is needed. Besides

Dolinksy, there is also the somewhat related work of Ricci

and Lapenta,21 in which they consider a one-dimensional ver-

sion of the Lenard-Balescu equation. While certainly interest-

ing, their system is primarily of theoretical value (it cannot

equilibrate, for example). Although many sophisticated tech-

niques are now available for the Landau and Boltzmann equa-

tions,22–27 enabling solution in multiple spatial and velocity

dimensions with several different particle species, we are only

capable, for the moment, of a solution of the QLB equation

for a spatially homogeneous, one-component plasma with an

isotropic velocity distribution. In Section X, we will discuss

how the method can be generalized.

As we explain in detail in Section V, after the initial

condition has been chosen, only one dimensionless combina-

tion of the various physical parameters is really important in

the subsequent evolution. We therefore do not lose much by

specializing to electrons, so that m in the above equations is

equal to the electron mass, me, and fixing the number density

which we shall henceforth call ne.

III. METHOD

Because of the difficulties associated with the dielectric

function, we choose to steer clear of discretization in veloc-

ity. Instead, we use an expansion in Laguerre polynomials

f v; tð Þ ¼ f eq vð Þ
X1
n¼0

An tð ÞL
1
2ð Þ

n
ubmev2

2

� �
; (8)

where

f eq vð Þ � ne
meb
2p

� �3=2

exp �mebv2

2

� �
(9)

is the Maxwell distribution, b � 1=kBT, kB is Boltzmann’s

constant, T the temperature of the final equilibrium state, and

ne is the particle number density. The parameter u 2 ½1; 2�
will be discussed in detail below. Multiplying by the

Maxwell distribution is convenient because it is the station-

ary solution of this form of the QLB equation, and thus in

equilibrium we will simply have

An ¼ dn0: (10)

In other words, the action of the collision operator is to

attempt to drive down all coefficients with n> 0. Because

we are multiplying by the Maxwell distribution, the

Laguerre orthogonality property proves usefulð1
0

xae�xL að Þ
n xð ÞL að Þ

m xð Þdx ¼ C nþ aþ 1ð Þ
n!

dn;m: (11)

For example, if we choose u¼ 1, conservation of particles

and energy correspond to the simple identities
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A0 ¼ 1 ½conservation of particles�; (12)

A1 ¼ 0 ½conservation of energy�; (13)

provided we make the choice a ¼ 1=2, as we have in (8).

Because the QLB equation conserves particles and energy,

the time derivatives of these two coefficients are identically

zero, so if these identities hold for the initial distribution,

then they hold for all times. The temperature that appears in

the expansion is that of the final equilibrated state, which can

easily be related to the total (kinetic) energy. The Lenard-

Balescu equation also conserves momentum, but this is iden-

tically zero when we have isotropy in velocity.

Clearly, the expansion (8) with u¼ 1 has many advan-

tages. However, we do pay some price for them. The

Laguerre polynomials are orthogonal with respect to the

weight wðxÞ ¼ x1=2e�x, and for a function f(x) to be repre-

sentable by a series of these polynomials, it must be square

integrable with respect to this weight, i.e.,

ð1
0

x1=2e�xjf ðxÞj2dx <1: (14)

But because we actually have an expansion of the form

f xð Þ ¼ e�x
X

n

AnL
1
2ð Þ

n xð Þ; (15)

we have the more stringent requirement that exf ðxÞ be square

integrable, or ð1
0

x1=2exjf ðxÞj2dx <1: (16)

Say for example, f ðxÞ ¼ e�x=c, then the integral (16) isð1
0

x1=2exð1�2=cÞdx; (17)

which converges only when 0 < c < 2. For the purposes of

this work, the requirement that distributions fall off faster

than e�x=2 is not particularly problematic. We consider only

equilibration problems, in which the end state is the Maxwell

distribution, An ¼ dn0, and thus, if the initial distribution can

be represented, then the subsequent evolution can as well.

To be more precise, if (16) is satisfied for the initial time,

then it is satisfied for all times. We will not prove this, but it

seems very unlikely that the integral in (16) would be ini-

tially finite but then diverge as the distribution becomes

more Maxwellian (it is, of course, finite for the Maxwell dis-

tribution itself). We will have more to say about this in

Section X, where we show that choosing u¼ 2 in (8) restores

completeness at the expense of complicating the collision

integrals and conservation conditions.

To solve the equation, we truncate the expansion (8) at

some nmax, which will be as large as 40 in the present work.

The ordinary differential equations that result are of the form

dAn

dt
¼
Xnmax

l¼0

Xnmax

k¼0

Cn
lk Af gð ÞAlAk: (18)

The coefficients Cn
lk are integrals over the dielectric function

and depend on all the An, which we denote {A}, and there-

fore must be computed on the fly. We describe in Section V

how we evaluate these coefficients, but first we turn to the

dielectric function.

IV. DIELECTRIC FUNCTION

It is convenient to define the dimensionless variables

X2 � �h2bk2

4me
; (19)

Y2 � mebx2

k2
; (20)

in terms of which we will write all of our results. The non-

equilibrium dielectric function is derived in Appendix A. This is

given in terms of its expansion coefficients, like the distribution

itself, where the first term is the non-degenerate equilibrium

dielectric function and the terms containing An for n> 1 give the

non-equilibrium part. In terms of X and Y, this expansion is

� X; Yð Þ ¼ 1þ g2

X3
wQ X; Yð Þ; (21)

where wQðX; YÞ ¼ wQ
r ðX; YÞ þ iwQ

i ðX; YÞ is a complex func-

tion whose real and imaginary parts are given by

wQ
r X; Yð Þ ¼ 1ffiffiffi

2
p
X1
k¼0

Ak �Y�M k þ 1;
3

2
;�Y2

�

� �


þYþM k þ 1;
3

2
;�Y2

þ

� ��
; (22)

wQ
i X; Yð Þ ¼

ffiffiffi
p
2

r
1

2

X
k

Ak

� e�Y2
�L

�1
2ð Þ

k Y2
�

� ��e�Y2
þL

�1
2ð Þ

k Y2
þ

� 
 �
; (23)

where Mða; b; zÞ is the confluent hypergeometric function,

Y6 � ðY6XÞ= ffiffiffi
2
p

, and

g � kQ=kD (24)

with

k2
Q �

�h2b
4me

; (25)

k2
D �

1

4pe2neb
: (26)

Thus, g is the ratio of the equilibrium thermal de Broglie and

Debye wavelengths (note that these are calculated in terms

the final equilibrium temperature). The inverse of this ratio

is usually denoted K ¼ 1=g. At weak coupling, which is

where the QLB equation is accurate, g� 1. We will exploit

the smallness of g when we compute the coefficients.

Because it greatly simplifies the analysis without

detracting from the important physics, we take the limit
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�h! 0 in the dielectric function. This is equivalent to

expanding (21) in X,

wQðX; YÞ 	 wQð0; YÞ þ XwðYÞ; (27)

where

w Yð Þ � @wQ X; Yð Þ
@X

����
X¼0

: (28)

Clearly, wQð0; YÞ ¼ 0 and we can compute w(Y) from (28)

by making use of the hypergeometric contiguous relation

z
@M a; b; zð Þ

@z
¼ b� 1ð Þ M a; b� 1; zð Þ �M a; b; zð Þ½ �: (29)

The dielectric function is then

�cl X; Yð Þ ¼ 1þ g2

X2
w Yð Þ (30)

with the real and imaginary parts of w(Y) given by

wr Yð Þ ¼
X1
k¼0

AkM k þ 1;
1

2
;� Y2

2

� �
; (31)

wi Yð Þ ¼
ffiffiffi
p
2

r
Ye�

Y2

2

X1
k¼0

AkL
1=2ð Þ

k

Y2

2

� �
: (32)

Neglecting quantum effects in the dielectric function probably

does not impact the solution in a major way and, of course,

we retain this physics everywhere else in the QLB equation.

With only a few tens of parameters, namely, the Ak, to be

determined numerically, this analytic representation of the

dielectric function is very convenient. We can, for example,

use it to determine the dispersion relation of waves in non-

equilibrium plasmas. We will see how this form is also useful

in the numerical solution of the QLB equation, despite the

presence of the confluent hypergeometric function.

Note that we can, if we wish, simplify the problem even

further by considering only static screening and setting Y¼ 0

in the dielectric function. The result is

�static Xð Þ ¼ 1þ g2

X2

X1
k¼0

Ak: (33)

In this form, we no longer have dynamical screening effects,

but the static screening length is still calculated from the

distribution.

V. COEFFICIENTS

The coefficients of Equation (18) are computed by multi-

plying the equation by a Laguerre polynomial and integrating

over velocity. The details of this are given in Appendix B.

The result is

Cn
lk¼�C0

n!

C nþ3=2ð Þ
ð1

0

dX
e�X2

X3

ð1
�1

dY
e�Y2

j� X;Yð Þj2 Pn
lk X;Yð Þ;

(34)

where the prefactor is

C0 � neb
3=2 ffiffiffi

p
p

e4ffiffiffiffiffiffi
me
p : (35)

The functions Pn
lkðX; YÞ are polynomials in X and Y defined

by

Pn
lk X; Yð Þ ¼ 1

2
qn

lk X; Yð Þ þ qn
lk X;�Yð Þ� �

; (36)

where

qn
lkðX; YÞ �

Xminðl;nÞ

j¼0

L
ð�1

2
Þ

n�j ðY2
�Þ � ½Lð�

1
2
Þ

k ðY2
þÞLð�

1
2
Þ

l�j ðY2
�Þ

� L
ð�1

2
Þ

k ðY2
�ÞLð�

1
2
Þ

l�j ðY2
þÞ�; (37)

so P is just the even part of q in Y. It is not really necessary

to take the even part explicitly because the integration over Y
filters out the odd powers, but we do it to make the following

analysis more clear. Note also that the symmetry of q in X
and Y means that Pn

lk contains only even powers of X and it

turns out that X2Y2 is the lowest power for all n, l, k. To

facilitate our approximations, we use the decomposition

Pn
lkðX; YÞ ¼ X2Y2Gn

lkðYÞ þ Rn
lkðX; YÞ; (38)

where Gn
lkðYÞ is a polynomial in Y and Rn

lkðX; YÞ contains

terms only of order X4 and higher. Now, the X integration in

(34) would of course be divergent as X! 0 were it not for

the dielectric function. However, only the first term in (38)

would actually diverge. Our decomposition is therefore a

separation into the term that needs the dielectric function for

convergence, and the rest of the integrand that does not.

From here on, we will keep the dielectric function only

where it is actually needed for convergence and set it to 1

elsewhere. This approximation can be justified as follows.

Physical parameters, such as mass and density, enter

into the coefficients in (34), and therefore the equation, in

two places: the prefactor C0 and the dimensionless ratio g.

The constant C0 only sets the overall time scale of the prob-

lem, and the two solutions with the same g and initial distri-

bution but different C0 will be identical up to time rescaling.

Therefore, the only really important quantity is g, and vary-

ing things like the particle mass, the number density, and the

final equilibrium temperature only matters to the extent that

we are changing g. As such, as previously mentioned, we

stick to electrons at 1025cm�3. The latter choice makes g
similar with the coupling constant, C, as we vary the temper-

ature. As we will show later, the expansion of Cn
lk in g is

Cn
lk ¼ a0 þ

X1
i¼0

big
2i ln gþ

X1
i¼1

aig
2i: (39)

The term proportional to b0 is the Coulomb logarithm and a0

is the order-unity term; if g is small, we may be justified in

neglecting the rest. And if g is smaller still, the logarithmic

term will dominate a0 and the Landau equation is fine.

However, for arbitrary non-equilibrium initial conditions, the

092119-4 Scullard et al. Phys. Plasmas 23, 092119 (2016)



Oð1Þ terms depend on the distribution and must be computed

before we can be sure they can be neglected, making the def-

inition of “small” for g highly problem-dependent. Our strat-

egy of keeping the dielectric function only where it is

necessary for convergence is equivalent with computing a0

and b0 and dropping the rest. Thus, we neglect terms that are

Oðg2 log gÞ and higher, which does not make a great differ-

ence in many cases. For example, at a density of 1025cm�3 at

T¼ 1000 eV, g 	 0:05, and g2lng 	 �7:5� 10�3, compared

with the term lng 	 �3 and other Oð1Þ terms that we are

going to keep. We discuss below some situations where one

might need the higher-order terms, but we will not be con-

cerned about computing them in this paper. In any case, it is

a straightforward generalization to include them (see Section

X), but, of course, this becomes more computationally

expensive.

Under this approximation, the integrals over Rn
lk, as they

do not contain the Ak, can be precomputed. We define the

coefficients

Bn
lk �

n!

C nþ 3=2ð Þ
ð1

0

dX
e�X2

X3

ð1
�1

dYe�Y2

Rn
lk X; Yð Þ: (40)

Another set we will need is

Sn
lk �

n!

C nþ 3=2ð Þ
ð1
�1

dYe�Y2

Y2Gn
lk Yð Þ : (41)

Even though these coefficients can be precomputed, doing so

is not completely trivial. As n, l and k become large, Rn
lk

becomes higher-order in X and Y. For example, at

ðn; l; kÞ ¼ ð40; 40; 40Þ, the most difficult case, Rn
lkðX; YÞ is

order 234 in X and Y. If we wish to use a numerical integra-

tion scheme for this, we need to evaluate Rn
lkðX; YÞ at the

quadrature points, which can prove to be tricky with such

high order polynomials. There is probably an optimal solu-

tion to this problem, but we resort to brute force. We use the

CLN arbitrary precision library28 for Cþþ and we decom-

pose the polynomial Rn
lkðX; YÞ into its powers,

Rn
lkðX; YÞ ¼

X
ij

an
lkijX

2iY2j; (42)

where the sums over i and j start at i ¼ j ¼ 2. Using the exact

integrals ð1
0

e�X2

X2i�3dX ¼ 1

2
C i� 1ð Þ (43)

and ð1
�1

e�Y2

Y2jdY ¼ C
1

2
þ j

� �
; (44)

where CðxÞ is the gamma function, combined with the

decomposition (42) allows us to evaluate (40) so long as we

have sufficient precision; we keep 60 digits for this purpose.

Of course, we do not need this many when we solve the

actual differential equation, so in the end we keep the result-

ing Bn
lk only to double precision. The constants Sn

lk can be

handled in the same way but in Equation (57) we give the

exact solution for these.

Now we are left with the problem of evaluating

In
lk �

ð1
0

dX
e�X2

X

ð1
�1

dY
e�Y2

j� X; Yð Þj2 Y2Gn
lk Yð Þ; (45)

which must be computed on the fly. The strategy is to com-

pute the X integral exactly, which would hardly be possible

if we were not using the classical dielectric function. The

remaining one-dimensional integral over Y will contain a

tangle of special functions, but the integrand is smooth and

can easily be handled with a straightforward Gaussian quad-

rature. The steps required to reduce (45) are given in

Appendix C, with the result

In
lk ¼ �

C nþ 3=2ð Þ
n!

Sn
lk

cE

2
þ ln g

� �
þ Fn

lk


 �
; (46)

where

Fn
lk �

n!

C nþ 3=2ð Þ
1

2

ð1
�1

dYe�Y2

Y2Gn
lk Yð ÞF Yð Þ; (47)

and

F Yð Þ � 1

2
ln w2

r Yð Þ þ w2
i Yð Þ� �þ wr Yð Þ

wi Yð Þ arctan wr Yð Þ;wi Yð Þ
� �

;

(48)

where arctanðx; yÞ is the quadrant-correct version of

tan�1y=x, producing an angle in the range ð�p; p�. The inte-

grand in (45) is well-behaved, without any of the sharp peaks

that typically characterize dielectric function integrands, and

we avoid the need for any pole-correcting integration techni-

ques.16,17 The same strategy was used by Williams and

DeWitt5 for conductivity calculations in a two-component

plasma in equilibrium. Although a very different problem

from ours, it involves the same collision operator and the

same kinds of integrals (compare their Equation (73) with

our (48)). In fact, this method would be useful for other prob-

lems as well, such as temperature equilibration.9,10

Although we now have a one-dimensional integral, we

are still faced with the task of evaluating it at every time

step. The factor e�Y2

in the integrand strongly suggests we

use Gauss-Hermite quadrature. Actually, because the inte-

grand is even, we make the substitution x ¼ Y2 and use a

closely related Gauss-Laguerre scheme. We then haveð1
�1

dYe�Y2

Y2Gn
lkðYÞFðYÞ ¼

ð1
0

dxx1=2e�xGn
lkð

ffiffiffi
x
p ÞFð ffiffiffixp Þ

	
XNp

i¼1

WiG
n
lkð

ffiffiffiffi
xi
p ÞFð ffiffiffiffixi

p Þ; (49)

where xi are the abscissa points, the zeros of L
ð1=2Þ
Np
ðxÞ, and

Wi are the weights, given by

Wj ¼
xjC Np þ 1=2
� �

Np! Np þ 1=2
� �

L
1=2ð Þ

Np�1 xjð Þ
h i2

: (50)

092119-5 Scullard et al. Phys. Plasmas 23, 092119 (2016)



We choose Np¼ 200 to ensure that we have an accurate

integration even for the largest n, l, and k. This number can

probably be varied to optimize performance, and it may not

always be necessary to include every term in (50), especially

for the smaller (n, l, k). We do not explore this particular per-

formance issue too closely, but, as we will show, this scheme

is more than sufficiently accurate for our purposes and ena-

bles a numerical solution of the Lenard-Balescu equation.

What is more, because our integration is now simply a sum

over quadrature points, the values of the confluent hypergeo-

metric functions and Laguerre polynomials that appear in

wrð
ffiffiffi
x
p Þ and wið

ffiffiffi
x
p Þ can be precomputed at xi and never need

to be evaluated during the solution. We will also precalculate

the points Gn
lkð

ffiffiffiffi
xi
p Þ. This is somewhat tricky because,

exactly like Rn
lk, as (n, l, k) become large, the order of this

polynomial also becomes large and we require high precision

to evaluate it. To do this, we use a strategy similar to the one

we employed to calculate Bn
lk. First, we compute the quadra-

ture points, xi, to high precision using Mathematica. Then,

we decompose Gn
lkðYÞ as in (42) and evaluate each power of

Y at
ffiffiffiffi
xi
p

to 60 digits and sum these results to get Gn
lkð

ffiffiffiffi
xi
p Þ.

As before, we keep these values only to double precision, so

no arbitrary precision library is needed in the actual solver.

To demonstrate the accuracy of the quadrature scheme,

we will compute Fn
lk for ðn; l; kÞ ¼ ð40; 40; 40Þ, the most dif-

ficult case. Of course, we must also specify a distribution,

and for this, we use a two-temperature plasma in which half

the particles are at temperature T1 and the other half at T2,

which is shown in the top panel of Figure 1. The coefficients

for this distribution are calculated in Section VII and are

characterized by the single parameter c � T1=T, where T is

the final temperature, which we choose to be 0.2, the limit of

our resolution ability. Using Mathematica’s adaptive numeri-

cal integration with 100-digit precision, we find thatð1
�1

dYe�Y2

Y2G40
40;40ðYÞFðYÞ 	 2:1563096073: (51)

The calculation takes several minutes but is accurate to the

number of digits presented. For this integral, our double preci-

sion quadrature code gives 2.1563096082, correct to eight

decimal places, far more than we need, and is just a sum over

200 points. Of course, the accuracy depends on the distribu-

tion and we may not always achieve this level. For example,

consider c ¼ 0:08, which is badly under-resolved when

nmax ¼ 40. However, the Laguerre series is positive every-

where, as shown in the bottom panel of Figure 1, and thus is

an acceptable distribution. Done with adaptive integration in

high precision, the integral (51) is 2.9349261394. With our

Gaussian quadrature scheme, we find 2.9323983879, which is

not disastrous but not nearly as accurate as in the previous

example, probably due to the oscillations in the distribution.

Adding more quadrature points would probably improve the

accuracy, but computing the integral to three figures is suffi-

cient for our purposes.

We have a fast and accurate method for integrating

over the dielectric function, but the price we pay for this is

that we must keep a huge number of precalculated values; if

we want to use nmax ¼ 40 coefficients in the polynomial

expansion and Np¼ 200 quadrature points, the file contain-

ing the Gn
lkð

ffiffiffiffi
xi
p Þ is 287 megabytes. While this is manage-

able enough, when we consider that the number of

coefficients needed grows as n3
max and that we will need

more quadrature points as we increase (n, l, k), it is clear

that this can quickly grow out of control. However, the pre-

sent approach is surely the brute-force method to compute

Cn
lk, and there are likely better ways to do this. For example,

let us define Vj
lk to be the integral over triple products of

Laguerre polynomials

Vj
lk �

ð1
�1

dY

ð1
0

dX
e�Y2

j� X; Yð Þj2
e�X2

X3

� L
�1=2ð Þ

j Y2
�

� �
L
�1=2ð Þ

k Y2
þ

� 
L
�1=2ð Þ

l Y2
�

� �
: (52)

Equation (34) for the coefficients can then be written as

Cn
lk ¼ �C0

n!

C nþ 3=2ð Þ
Xmin l;nð Þ

j¼0

Vn�j
l�j;k � Vn�j

k;l�j

� 
: (53)

Vj
lk satisfies a recurrence formula that can possibly be

exploited to facilitate computation of Cn
lk without needing

huge files of precomputed data. In Appendix E, we derive

this formula and show that it has an exact solution. It may

well be that such a method is superior once certain mathe-

matical issues are resolved.

Putting the pieces of the present method together, we

find for the coefficients

FIG. 1. Two-temperature initial distribution using nmax ¼ 40 polynomials

with c ¼ 0:2 (top) and c ¼ 0:08 (bottom). The c ¼ 0:08 case is under-

resolved with nmax ¼ 40, and the bumps are mostly a result of this, but the

distribution is positive everywhere and properly normalized and is therefore

suitable as an initial condition. The variable x ¼ bmev2=2 and f(x) is divided

by neðbme=2pÞ3=2
.
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Cn
lk ¼ C0 Sn

lk

cE

2
þ ln g

� �
� Bn

lk þ Fn
lk Af gð Þ


 �
; (54)

which, as mentioned, neglects terms that are Oðg2lngÞ.
However, we have derived the Coulomb logarithm, rather

than imposing it, along with all Oð1Þ terms that arise from

the quantum Lenard-Balescu equation. These are by far the

dominant contributions to the equation for the situations we

will consider. On the other hand, as we can see from

Equation (C6) in Appendix C, the expansion of the incom-

plete gamma function that leads to (54) is not in g2 but in

g2wðYÞ. It is conceivable that some distributions might make

jwðYÞj comparable to g�2 and then we would not be justified

in discarding these terms. For example, if we have a two-

temperature initial condition, we can make jwð0Þj as large as

we want by increasing the temperature separation. We will

not encounter such an extreme situation here but, as men-

tioned, we discuss how to restore these terms in Section X.

VI. SPECIAL CASES

By neglecting different terms in (54), we can find solu-

tions to various kinetic equations. These are listed here.

A. Landau equation

If we drop the quantum diffraction terms Bn
lk and the

screening terms Fn
lk, we are left with the coefficients of the

Landau equation

Cn
lk ¼ C0Sn

lk

cE

2
þ ln g

� �
; (55)

¼ �C0Sn
lk log K: (56)

In the first line, we write the Coulomb logarithm informed

by the Lenard-Balescu equation, but one is free to make any

choice of log K one wishes; the integrals in this equation are

divergent and the form of K results from the choice of cut-

offs. The coefficients Cn
lk are all precomputed so nothing

needs to be calculated on the fly. This makes the solution

extremely cheap compared with the full QLB equation.

Another fact worth mentioning is that the coefficients Sn
lk

actually have a closed form in terms of hypergeometric

functions

Sn
lk ¼

ffiffiffi
p
p

2
ffiffiffi
2
p n!

C nþ 3=2ð Þ
1

4k

1

n!l!k!
C

3

2
� nþ k þ l

� �

� C � 1

2
þ nþ k � l

� �
f16 3

~F2 1;�l; n; b1
1; b

1
2; 1

� �
�½ 2k � 2lþ 2nð Þ2 � 1� 3 ~F2 1;�l; n; b2

1; b
2
2; 1

� �
g;

(57)

where

b1
1 ¼ �

1

4
þ k � l� n

2
; (58)

b1
2 ¼

1

4
þ k � l� n

2
; (59)

b2
1 ¼

3

4
þ k � l� n

2
; (60)

b2
2 ¼

5

4
þ k � l� n

2
; (61)

and 3
~F2ða1; a2; a3; b1; b2; zÞ is a regularized hypergeometric

function. The latter is defined by

3
~F2 a1; a2; a3; b1; b2; zð Þ � 3F2 a1; a2; a3; b1; b2; zð Þ

C b1ð ÞC b2ð Þ ; (62)

where pFqða1:::; ap; b1; :::; bq; zÞ is the generalized hypergeo-

metric function. These expressions may not seem terribly

convenient. However, Mathematica, and probably other sim-

ilar programs, quickly evaluates them and easily handles the

differential equations too. This prescription therefore pro-

vides a fast and convenient way to solve the single-

component Landau equation. The derivation of (57) is given

in Appendix D.

B. Non-degenerate quantum Landau equation

Setting Fn
lk ¼ 0 in (54) neglects the dielectric function,

but we still have the quantum wave effects embodied in the

Bn
lk and we end up with the coefficients for what we call the

non-degenerate quantum Landau equation. The reason for

this ungainly term is that “quantum Landau equation” is

already in use29,30 for a kinetic equation that accounts for

quantum statistics but no other quantum effects, which is

sort of the complement of our equation. The integrals in this

equation are divergent as X! 0 but converge as X!1,

meaning that we need only a lower cutoff. This will, of

course, generally be chosen to be the equilibrium Debye

length, or Xc ¼ g in our dimensionless variables. The result-

ing coefficients are

Cn
lk ¼ C0 Sn

lk

cE

2
þ ln g

� �
� Bn

lk


 �
; (63)

which can once again all be precalculated.

C. Classical Lenard-Balescu equation

Finally, we can set Bn
lk ¼ 0 but retain Fn

lk. The coeffi-

cients are then

Cn
lk ¼ C0 Sn

lk

cE

2
þ ln g

� �
þ Fn

lk Af gð Þ

 �

: (64)

These correspond to the classical Lenard-Balescu equation,

in which we cure the X!1 divergence by introducing a

cutoff in wavenumber at the inverse of the thermal deBroglie

wavelength, kQ in Equation (25), or Xc¼ 1 in the dimension-

less units. Of course, one can instead cut the integral off at

the Landau length to keep everything classical.

D. Quantum Lenard-Balescu with static screening

The dielectric function that neglects dynamical screen-

ing is given in Equation (33). This corresponds to the

choices
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wrðYÞ ¼
X1
k¼0

Ak;

wiðYÞ ¼ 0:

(65)

Using these in Equation (48), we find

FðYÞ ¼ ln
X1
k¼0

Ak þ 1; (66)

leading to the coefficients

Cn
lk ¼ C0

1

2
Sn

lk cE þ 1þ ln g2
X

Ak

� h i
� Bn

lk

� �
: (67)

We can see that static screening contributes an additional

constant (i.e., one) and modifies the Coulomb logarithm by

the sum over Ak. This provides a correction to the Debye

length and is trivial to compute.

VII. INITIAL CONDITIONS

To test our algorithm, we consider the relaxation to

equilibrium of various initial distributions. For general u, the

coefficients Anð0Þ for a given f ðv; 0Þ are

An 0ð Þ ¼ 2p3=2u3=2

ne

n!

C nþ 3=2ð Þ

�
ð1

0

e
�

bmv2

2
u� 1ð Þ

v2f v; 0ð ÞL
1
2ð Þ

n u
mebv2

2

� �
dv;

(68)

which is an easy consequence of the orthogonality property

of Laguerre polynomials.

A. Two-temperature plasma

Here, we will consider the case of a two-temperature

one-component plasma. A number density n1 have tempera-

ture T1 and n2 have T2 so,

f v; 0ð Þ ¼ me

2p

� �3
2

n1b
3=2
1 exp �meb1v

2

2

� �


þ n2b
3=2
2 exp �meb2v

2

2

� �#
: (69)

We define the fractions n � n1=ne; n2 � n2=ne; c � T1=T,

and c2 � T2=T. By conservation of particles and energy, we

have

n2 ¼ 1� n; (70)

c2 ¼
1� nc
1� n

: (71)

We make the choice c < 1, so that c2 > 1. Carrying out the

integration (68), we find

An 0ð Þ ¼ n 1� cð Þnu3=2

cu� cþ 1ð Þnþ3=2
þ 1� nð Þ 1� c2ð Þnu3=2

c2u� c2 þ 1ð Þnþ3=2
: (72)

For u¼ 1, which is what we use exclusively here, the condi-

tion (16) means that c2 must be less than 2 or the expansion

does not converge, which is also clear enough in (72). This

is, of course, a purely mathematical requirement and it leads

to the constraint between n and c,

c >
2n� 1

n
: (73)

If we needed to break this we would choose a different value

of u, such as 2. However, (73) is no constraint if n 
 1=2 so

if, for example, we have an equal number of particles of

each temperature, then c can be chosen arbitrarily in the

range ½0; 1� with c2 < 2 enforced by conservation of energy.

This is the first situation we will consider.

With n ¼ 1=2, the coefficients Anð0Þ for c ¼ 0:2 and

u¼ 1 are shown in Figure 2. It is a mathematical peculiarity

that, for this situation, every odd coefficient is zero. In an

equilibration problem, the distribution becomes more

Maxwellian with time, and thus, the initial condition is prob-

ably the most difficult thing to resolve. In other words, one

will not need more polynomials at a later time than at the

beginning. To get an idea of the number needed for a two-

temperature system, we consider the nmax at which we first

have Anmax
< d. For this problem,

N ¼ log d
log 1� cð Þ : (74)

Shown in Figure 3 is a plot of NðcÞ using d ¼ 10�3. This is a

somewhat arbitrary choice, to be sure, but it provides a use-

ful rule of thumb. From this plot, it is clear that for n¼ 40,

which is our maximum, one would not want to go far below

c ¼ 0:2. We can, of course, invert (74) to estimate the mini-

mum c for a given N

c ¼ 1� d1=N: (75)

We should point out that although the initial An depend only

on the ratio of the initial to the final temperature, their

FIG. 2. The coefficients, Anð0Þ, for the two-temperature initial condition

with c ¼ 0:2.
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subsequent values will depend on the absolute temperature

through the dependence of the coefficients on g and the

prefactor.

B. Gaussian distribution

We consider here the initial distribution

f vð Þ ¼ Be�
v�v0ð Þ2

2r2 ; (76)

for demonstration purposes, not because we have a particular

application in mind. The amplitude, B, and variance, r2, can

be related to the number density and the energy by first

defining the integrals

I1ð�v0Þ �
ð1

0

v2e�ðv��v0Þ2 dv; (77)

I2ð�v0Þ �
ð1

0

v4e�ðv��v0Þ2 dv; (78)

with �v0 � v0=
ffiffiffi
2
p

r. We then have

r2 ¼ 3I1 �v0ð Þ
2I2 �v0ð Þbme

; (79)

B ¼ ne

4p
ffiffiffi
2
p

r
� �3

I1 �v0ð Þ
: (80)

The integrals (77) and (78) can be expressed in terms of spe-

cial functions, but they are easily evaluated numerically for a

given �v0. This parameter is the only one on which the An

depend. For general u, these are given by

An ¼
ffiffiffi
p
2

r
I2 �v0ð Þ½ �3=2

33=2 I1 �v0ð Þ½ �5=2

n!

C nþ 3=2ð Þ

�
ð1

0

e� 1�1
uð Þx� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I2 �v0ð Þ= 3I1 �v0ð Þu½ �
p

x1=2��v0

� �2

� L
1
2ð Þ

n xð Þx1=2dx: (81)

Although the integral can be written exactly in terms of

Hermite polynomials using formula 7.374.9 of Gradshteyn

and Ryzhik,31 we just solve it numerically. The parameter �v0

determines the number of polynomials needed to resolve the

distribution. Being limited to 40 polynomials, we find that

we can choose �v0 no larger than 2. Exactly what this means

in terms of absolute velocity depends on the values of the

other parameters, such as ne and b.

VIII. DIFFERENTIAL EQUATIONS

The ordinary differential equations do not turn out to be

very difficult to solve. We use the fifth-order Runge-Kutta

scheme with adaptive time step implemented in the Boost

library,32 which easily handles the problem. For the Landau

equation, and any of the others for which the coefficients can

be precalculated, the solution is found more or less instanta-

neously using nmax ¼ 40 polynomials. For the Lenard-

Balescu equation, the story is different and a solution can

take several hours, but the bulk of the work is in the compu-

tation of the Cn
lk with the equation itself not being any more

difficult than the other cases. This can be easily sped up with

parallel computation; each processor computes every Cn
lk for

a different range of n. The results are then shared, and the

equation can be solved on a single processor. This scheme

scales essentially perfectly with the number of processors,

and in practice, we generally assign one n to each processor.

IX. RESULTS

A. Comparison with Fokker-Planck solution

The first thing we wish to do is check that our

approach is sound by comparing our solution to the Landau

equation with the result of a more traditional discretized

solution to the Fokker-Planck equation. Data for this were

provided by David Michta using a code he developed to

study thermonuclear burn.33 This approach uses discretiza-

tion in velocity that is designed to ensure conservation of

particles11 and energy,12 non-trivial problems in discretiza-

tion schemes. The situation we considered was a two-

temperature one-component plasma of electrons at a den-

sity of 2� 1025cm�3. Half the particles are Maxwellian at

500 eV, half are at 1500 eV, and we use a Coulomb loga-

rithm log K ¼ 1. In Figure 4, we plot the distribution at the

initial time and at two later times for both our solution

using 20 polynomials and the Fokker-Planck result. The

two solutions are completely indistinguishable from one

another, indicating that, at least as far as the coefficients

Sn
lk and the Landau equation go, our computations are

correct.

B. Two-temperature plasma

Shown in Figure 5 is the numerical solution of the quan-

tum Lenard-Balescu equation for the two-temperature plasma

with c ¼ 0:2; ne ¼ 1� 1025cm�3 and T¼ 1000 eV. All the

coefficients except for A0, which is fixed at 1, approach zero

as t!1, exactly as expected. The even coefficients fall

monotonically while the odd coefficients, which start at zero,

all become negative (except A1 of course) before reaching a

minimum and decaying back to zero. The distribution itself is

shown in Figure 6. At 1000 eV, the solutions of the Landau

FIG. 3. The number of polynomials needed such that Anmax
< 10�3 as a func-

tion of c for a two-temperature plasma. The left-most point corresponds to

c ¼ 0:01. In this paper, we have nmax ¼ 40, and thus, we begin to have resolu-

tion problems when c < 0:2.
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and quantum Landau equations are essentially the same as

Figures 5 and 6, indicating that the order-unity terms are not

playing much role. This is not completely obvious since lng is

only around �3. As we reduce the magnitude of lng, which

we do by turning down T, we can begin to see slight differ-

ences between the Landau and Lenard-Balescu solutions,

although almost no difference is ever in evidence between the

Landau and quantum Landau equations. Shown in Figures 7

and 8 are the solutions of the Landau and quantum Lenard-

Balescu equations for T¼ 600 eV, so g 	 �2:3; the evolution

of the coefficients is noticeably different in the two cases.

However, a comparison for the distribution itself is shown in

Figure 9, and the differences between the Landau and quan-

tum Lenard Balescu equations are modest at these conditions

to say, the least. We cannot turn the temperature down much

further without having numerical problems in the solver, an

indication that our neglect of higher-order terms in g2 is

becoming problematic. However, even at T¼ 600 eV, the

low-temperature electrons are at 120 eV and 5� 1024cm�3

and are becoming degenerate (h 	 1:1). Thus, for this particu-

lar type of initial condition, our physical assumptions break

down before we see any real advantage to carrying out the

expensive integration over the dielectric function. On the

other hand, we stress that any conclusions about where the

Lenard-Balescu and Landau solutions become different are

highly dependent on the initial distribution and we should not

overestimate the generality of this particular example. It is

certainly the case that by separating the temperature more

widely, which we cannot do with only 40 polynomials, we

would find ever greater divergence in the two solutions. In

Section IX C, we find an initial distribution for which the two

solutions are different.

Our method also allows a detailed view of the dielectric

function in the random phase approximation, something that

would not be easy to obtain with a discretization method.

Figures 10 and 11 show the time evolution of the real and

imaginary parts of the free-particle response function for the

two-temperature initial condition with c ¼ 0:2, T¼ 1000 eV,

FIG. 4. Comparison between distributions calculated with our spectral solu-

tion of the Landau equation (solid black) and a discretized Fokker-Planck

solution (dashed cyan). The two are indistinguishable for all times, three of

which are shown.

FIG. 5. Evolution of the expansion coefficients for the quantum Lenard-

Balescu equation for a two-temperature initial condition with c ¼ 0:2 and

T¼ 1000 eV. The even coefficients, which all start out positive, decay monoton-

ically to zero with the exception of A0 which is fixed at 1. The odd coefficients

start at zero and, aside from A1, become negative and then decay to zero. The

first four non-trivial coefficients are labelled and the rest up to n¼ 14 are shown

in various colors. The distribution itself is shown in Figure 6.

FIG. 6. Evolution of the distribution function under the quantum Lenard-

Balescu equation for a two-temperature initial condition with c ¼ 0:2 and

T¼ 1000 eV. The thickest solid line is t¼ 0, and the dashed line is equilib-

rium. The variable x ¼ bmev2=2 and f(x) is divided by neðbme=2pÞ3=2
.

FIG. 7. Evolution of expansion coefficients by the Landau equation for c ¼
0:2 and T¼ 600 eV. The first four non-trivial coefficients are labelled, and

the rest up to n¼ 14 are shown in various colors.
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and ne ¼ 1� 1025cm�3. These are easily obtained from the

coefficients and Equations (31) and (32).

C. Under-resolved two-temperature plasma

Here, we use the two-temperature initial condition but

choose c ¼ 0:08, which is much too small for 40 polyno-

mials. However, as Figure 1 shows, even though this distri-

bution is badly under-resolved, it is still positive everywhere

and thus constitutes a viable initial condition. To solve this

problem, we keep the first 34 polynomials for the initial con-

dition and set the remaining seven to zero. This way we still

maintain a positive distribution, but we have a few modes

above our resolved range to ensure we have sufficient resolu-

tion for the subsequent evolution. We find that for

T¼ 1000 eV, there are modest but clear differences between

the Landau and QLB evolutions, as shown in Figure 12. At

600 eV, the two solutions are very different, as shown in

Figure 13. The Landau equation more quickly smoothes out

the ripples in the distribution than QLB, and we have two

very distinct approaches to equilibrium.

D. Gaussian distribution

We solve for the relaxation of the Gaussian initial condi-

tion described in Section VII B with T¼ 1000 eV, v0 ¼ 2,

and ne ¼ 1:0� 1025cm�3. The evolution of the coefficients

is shown in Figure 14, while that of the distribution itself is

in Figure 15. As in the two-temperature case, there is not

much difference between the Landau and quantum Lenard-

Balescu equations at these conditions. And once again, upon

making g smaller, our physical and numerical approxima-

tions break down before we see any interesting differences.

X. GENERALIZATIONS AND VARIATIONS

A. Beyond order unity

All the calculations we have done here have the loga-

rithmic and order unity terms. To get all the higher order

terms is a straightforward generalization. Consider the inte-

gral in Equation (34)

FIG. 8. Evolution of expansion coefficients by the quantum Lenard-Balescu

equation for c ¼ 0:2 and T¼ 600 eV. The first four non-trivial coefficients

are labelled and the rest up to n¼ 14 are shown in various colors.

FIG. 9. Comparison between the evolution of the quantum Lenard-Balescu

(solid blue) and Landau (dashed brown) equations for a two-temperature ini-

tial condition with c ¼ 0:2 and T¼ 600 eV. The difference between the two

is minimal at these conditions. The variable x ¼ bmev2=2 and f(x) is divided

by neðbme=2pÞ3=2
.

FIG. 10. Evolution of the real part of the free-particle response function

under the quantum Lenard-Balescu equation for a two-temperature initial

condition with c ¼ 0:2 and T¼ 1000 eV. The thickest solid line is t¼ 0 and

the dashed line is equilibrium. The relationship to the response function in k
and x space is vðk;xÞ ¼ �nebwðYÞ, where Y is given by (20).

FIG. 11. Evolution of the imaginary part of the free-particle response func-

tion under the quantum Lenard-Balescu equation for a two-temperature ini-

tial condition with c ¼ 0:2 and T¼ 1000 eV. The thickest solid line is t¼ 0,

and the dashed line is equilibrium. The relationship to the response function

in k and x space is vðk;xÞ ¼ �nebwðYÞ where Y is given by (20).

092119-11 Scullard et al. Phys. Plasmas 23, 092119 (2016)



Tn
lk �

ð1
0

dX
e�X2

X3

ð1
�1

dY
e�Y2

j� X; Yð Þj2 Pn
lk X; Yð Þ: (82)

We can decompose the polynomial into powers of X

Pn
lkðX; YÞ ¼

XM

p¼1

X2pGnp
lk ðYÞ (83)

and keep the dielectric function everywhere, using the for-

mulas in Appendix C (with p ¼ sþ 1) to do the X-integrals

for every p rather than just p¼ 1 as we have done. Using the

decomposition (83) and the results of Appendix C, the inte-

gral (82) can be written

Tn
lk ¼ �

1

2

XM

p¼0

p!g2p�2Jp gð Þ; (84)

where

iJp gð Þ�
Ð1
�1

w Yð Þ½ �p
wi Yð Þ e�Y2

eg2w Yð ÞGnp
lk Yð ÞC �p;g2w Yð Þ

� �
dY:

(85)

Although not clear by inspection, the real part of the inte-

grand in (85) is odd for all p so the integral is always imagi-

nary. Calculating these Y-integrals numerically by the

method we used in this work would require that we precom-

pute Gnp
lk ðYÞ at the quadrature points for all (n, l, k) and all p

up to M, which varies depending on the polynomial. This

would lead to a large quantity of precomputed data, but it is

possible in principle. Alternatively, we can keep the

dielectric function for 1 
 p 
 pmax but set it to 1 for

p > pmax, which would allow us to keep a prescribed number

of powers of g. If the method of Appendix E, or something

like it, proves feasible, then we could use it to compute all

the coefficients after putting our efforts in computing the

coefficients for l¼ 0 alone. This would probably be the ideal

solution if it is possible.

To examine where higher powers of g might be needed,

we compute Tn
lkðgÞ for ðn; l; kÞ ¼ ð4; 4; 4Þ using the formula

(84). We compute the Y-integrals with Mathematica’s adap-

tive numerical integration for the case of a two-temperature

plasma with c ¼ 0:5 and 20 polynomials. This calculation

discards no powers of g, and we compare it with the approxi-

mation used in the solution of the QLB equation

FIG. 12. Comparison between the quantum Lenard-Balescu (solid) and

Landau (dashed) equations for a two-temperature initial condition with c ¼
0:08 and T¼ 1000 eV. We do not have enough polynomials to fully resolve

this distribution, but the series expansion still constitutes a valid initial con-

dition. The variable x ¼ bmev2=2 and f(x) is divided by neðbme=2pÞ3=2
.

FIG. 13. Comparison between the quantum Lenard-Balescu (solid) and

Landau (dashed) equations for a two-temperature initial condition with c ¼
0:08 and T¼ 600 eV. We do not have enough polynomials to fully resolve

this distribution but the series expansion still constitutes a valid initial condi-

tion. The variable x ¼ bmev2=2 and f(x) is divided by neðbme=2pÞ3=2
.

FIG. 14. Evolution of the first few An for the Gaussian initial distribution,

Equation (76). The first four non-trivial coefficients are labelled, and the rest

up to n¼ 14 are shown in various colors.
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Tn
lk 	 �

C nþ 3=2ð Þ
n!

Sn
lk

cE

2
þ ln g

� �
� Bn

lk þ Fn
lk


 �
: (86)

The result is shown in the short-dashed red curve in Figure

16. Our approximation is very accurate until g � 0:1, and

then higher-order terms become necessary. We stress again

that this conclusion is highly dependent upon the distribu-

tion, but among the ones we are able to resolve with 40 poly-

nomials, this gives a reasonable idea of where the

approximations start to break down. We also compare with

the result of setting either Bn
lk; Fn

lk, or both, to zero. The

dashed-dotted purple line indicates that the Landau approxi-

mation, where both these terms are set to zero, is worst.

Keeping Bn
lk but not Fn

lk gives the long-dashed green curve,

which is a marked improvement, but keeping both is clearly

best and is very accurate when g < 0:1. Table I gives the

actual values for g ¼ 0:001. Now, for this distribution at

these conditions, there is not much difference between the

solutions of the Landau and QLB equations, so the discrep-

ancies in Figure 16 apparently do not have a noticeable

effect.

B. Multiple species

The generalization to multiple species is straightfor-

ward, and the techniques for the evaluation of the dielectric

function integrals will work in that case too. If we have, say,

electrons and protons, we would need two sets of coefficients

Ae
n and Ap

n corresponding to expansion (8) for feðv; tÞ and

fpðv; tÞ. Of course, there would also be collision operators for

e–e, p–p, and e–p interactions. If we choose u¼ 1, conserva-

tion of particles is given by Ae
0 ¼ Ap

0 ¼ 1 and energy by

Ae
1 ¼ �Ap

1.

C. Velocity anisotropy and spatial inhomogeneity

To treat the most general Wigner distributions, f ðr; v; tÞ,
we can likewise generalize the expansion (8) to be

f eq r; v; tð Þ
X
nlm

Anlm r; tð ÞYlm h;/ð ÞL
1
2ð Þ

n
ubmev2

2

� �
; (87)

where Ylmðh;/Þ are spherical harmonics. The Anlmðr; tÞ now

satisfy partial differential equations, and the conservation

laws are given by integrals of the coefficients over space,

which must be respected by the solution method. The results

of Appendixes A and B must also be generalized to include

the spherical harmonics. This does not appear to be particu-

larly easy, and we may find ourselves lacking the convenient

closed formulas we obtained in the isotropic case, but it is

surely not impossible.

D. Alternative expansions

There are other related expansions that can be used to

solve these equations. First, we explore the possibility of

choosing different values of u. As mentioned in Section III,

we have been content here to use u¼ 1 because of the trivial

conservation properties (12) and (13), but we cannot repre-

sent every possible distribution this way. This situation can

be rectified by keeping u in Equation (8). The essential form

of such an expansion is

f xð Þ ¼ e�x=u
X1
n¼0

AnL
1
2ð Þ

n xð Þ; (88)

that is, the argument of the exponential is a factor of u
smaller than that of the Laguerre polynomial. For this expan-

sion to converge, ex=uf ðxÞ must be square-integrable with

respect to the Laguerre weight, so

FIG. 15. Evolution of Gaussian initial distribution, Equation (76) with �v0 ¼ 2

and T¼ 1000 eV. The thickest line is t¼ 0, and the dashed line is equilibrium.

The variable x ¼ bmev2=2 and f(x) is divided by neðbme=2pÞ3=2
.

FIG. 16. The integral T4
44ðgÞ defined in Equation (82). The solid black curve

is the integration carried out to all orders in g; short dashed red is the

approximation (54) used in our solution of the quantum Lenard-Balescu

equation; long dashed green uses (54) with Fn
lk ¼ 0; dashed-dotted purple

uses (54) with neither Bn
lk or Fn

lk. Our approximation is very accurate until

g � 0:1 and is much better than using the Coulomb logarithm alone.

TABLE I. Comparison of the various approximations for calculating T4
44ðgÞ

defined in Equation (82). Quantum Landau is Equation (86) with Fn
lk ¼ 0

and Landau is (86) with Bn
lk ¼ Fn

lk ¼ 0.

Approximation T4
44ð0:001Þ

All orders �5.99681

Equation (86) �5.99678

Quantum Landau �6.1849

Landau �7.09642

092119-13 Scullard et al. Phys. Plasmas 23, 092119 (2016)



ð1
0

x1=2exð�1þ2=uÞjf ðxÞj2dx <1: (89)

If u¼ 2, this condition is very mild, certainly far less strin-

gent than (16). The cost of this is that we complicate the col-

lision integrals even further, and conservation is no longer

automatic. In Appendixes A and B, we indicate the modifica-

tions needed for computing the response function and colli-

sion integrals with general u. The condition for conservation

of particles becomes

2ffiffiffi
p
p
X1
n¼0

An
C nþ 3=2ð Þ

n!
1� uð Þn ¼ 1 (90)

and for conservation of energy, we have

2

3
ffiffiffi
p
p
X1
n¼0

An
C nþ 3=2ð Þ

n!
3� 3u� 2nuð Þ 1� uð Þn ¼ 1: (91)

Thus, if u¼ 2, conservation is no longer automatic but can

be lost if we have an insufficient number of coefficients. Of

course, one may question whether it is particularly valuable

to maintain conservation of particles and energy even if we

have insufficient resolution, so this may not be a very impor-

tant consideration. Also, even though u¼ 1 was sufficient for

our purposes because the system does not evolve to a state

that violates (16) if it is initially satisfied, when we general-

ize this method to multiple particle species and situations in

which there is an external force, this may no longer be the

case. Therefore, in more practical applications, it may be

that u¼ 2, or at least u> 1, is more appropriate.

An expansion based on a completely different set of

orthogonal functions may prove useful. Rather than the

orthogonality condition (11), one might be tempted to try

polynomials that satisfyð1
0

x�e�x2

PnðxÞPmðxÞdx ¼ Mndnm; (92)

where Mn are a set of constants. The distribution expansion

is then

f v; tð Þ ¼ ne
meb
2p

� �3
2

e�
bmev2

2

X1
n¼0

An tð ÞPn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
meb=2

p
v

� 
: (93)

In recent works,34,35 it was suggested that these polynomials

may be a more efficient way to represent distribution func-

tions for certain applications. It does seem to be the case36

that, compared with the Laguerre polynomials, one needs

fewer of them to fully resolve some distributions (in our

case, �¼ 2 is the natural choice). However, these polyno-

mials are “non-classical,”37 and there are no closed forms

either for the polynomials themselves or for any of their

properties such as coefficients of the recurrence relation and

the normalization constants, Mn. The polynomials must be

generated by the Gram-Schmidt procedure, and all required

quantities, such as the real and imaginary parts of the

response function and the polynomial Gn
lkðYÞ, would need to

be computed numerically at the quadrature points without

the aid of any of the exact formulas upon which we have

relied. Of course, such closed forms are not really necessary

and it may be worth exploring this issue further.

XI. DISCUSSION

We have used a spectral expansion to solve the quantum

Lenard-Balescu equation for a one-component Coulomb sys-

tem. To demonstrate the technique, we have computed the

relaxation to equilibrium of various initial distributions

including variants of a two-temperature plasma. We have

found that including the full dynamical dielectric function

makes little difference for these problems and we do just as

well if we use the computationally cheaper static screening.

This is in general agreement with the findings of Dolinsky

for the classical Lenard-Balescu equation; he was not able to

find an initial condition for which there was any difference

between the Lenard-Balescu and Landau/Fokker-Planck sys-

tems. Nevertheless, this conclusion about the relevance of

the dielectric function cannot be true in general. As we

pointed out, even for a one-component plasma divided into

two temperatures, with a large enough temperature ratio, sig-

nificant differences should be expected between the two

kinetic solutions. For the moment, we do not have the resolu-

tion to thoroughly study this effect, but we began to see hints

of it in our under-resolved c ¼ 0:08 solutions. When we gen-

eralize to multiple species and anisotropic distributions, the

dielectric function may become more important. For exam-

ple, one can make a significant error in calculations of ther-

mal conductivity for an electron-proton system by using

static over dynamical screening in the collision integrals.

This difference will also be present in time-dependent

solutions.

Compared to the many advances for the Boltzmann and

Landau/Fokker-Planck equations,22–24,26 for which it is now

possible to find solutions in multiple dimensions of velocity

and space, our velocity-isotropic and 0D spatial solutions

may not seem terribly impressive. However, we have shown

that it is possible to solve the quantum Lenard-Balescu equa-

tion including faithful integrations over the dielectric func-

tion. What is more, our method provides an analytic

representation of the response and dielectric functions. It is

also readily generalizable to multiple space and velocity

dimensions and we hope that this will be the subject of future

work.
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APPENDIX A: DERIVATION OF THE DIELECTRIC
FUNCTION

Here, we compute the response function by computing

the integral (5) using our series expansion (8). First, we note

that the response function is of the form

vðk;xÞ ¼ Zðk;x�Þ � Zðk;xþÞ; (A1)

where

Z k;xð Þ � lim
g!0þ

ð
d3v

f vð Þ
�hx� �hv � kþ ig

(A2)

and

x6 � x6
�hk2

2me
: (A3)

Equation (A1) can be easily found by making the substitu-

tion u ¼ vþ �hk=me in the second term of (5). Inserting the

expansion (8) into (A2), we choose k to point in the z-direc-

tion and integrate in the cylindrical coordinates ðv?;/; vzÞ.
We then have

Z k;xð Þ ¼ ne

�h

bme

2p

� �1
2 1

k

X
Ak

�
ð1
�1

ð1
0

e�x�bmev2
z =2L

1
2ð Þ

k xþ bmev2
z

2

� �
x=k � vz þ ig

dxdvz;

(A4)

where we have made the substitution x ¼ mbv2
?=2. We now

use the identity

ð1
0

e�xL
1
2ð Þ

k xþ yð Þdx ¼ L
�1

2ð Þ
k yð Þ ; (A5)

which can be derived from the Laguerre sum formula

Lða1þa2þ1Þ
n ðxþ yÞ ¼

Xn

i¼0

L
ða1Þ
i ðxÞLða2Þ

n�i ðyÞ; (A6)

by choosing a1 ¼ 0 and a2 ¼ �1=2. The integral we are left

with is

Z k;xð Þ ¼ ne

�h

bme

2p

� �1
2 1

k

X
AmJm; (A7)

where

Jm �
ð1
�1

e�bmev2
z =2L

�1
2ð Þ

m
bmev2

z

2

� �
x=k � vz þ ig

dvz; (A8)

which, with the help of the substitution x2 ¼ bmev2
z=2, can

be written as

Jm ¼
ð1
�1

e�x2

L
�1

2ð Þ
m x2ð Þ

Y=
ffiffiffi
2
p � xþ ig

dx : (A9)

As usual, the imaginary part is easily found from the

Sokhotski-Plemelj theorem

lim
�!0þ

ð1
�1

f xð Þ
x6i�

¼ 7ipf 0ð Þ þ P

ð1
�1

f xð Þ
x

dx; (A10)

where P denotes principal value integration. Thus

Im Jm ¼ �pe�Y2=2L
�1

2ð Þ
m

Y2

2

� �
: (A11)

To find the real part, we will not directly attempt the princi-

pal value integral but will instead use the standard trick

1

Yffiffiffi
2
p � xþ ig

¼ �i

ð1
0

ei Y=
ffiffi
2
p �xþigð Þtdt (A12)

and the identity

L
�1

2ð Þ
m x2ð Þ ¼ �1ð Þm

m!22m
H2m xð Þ; (A13)

where HnðxÞ are Hermite polynomials, to write

Jm ¼ �i
�1ð Þm

m!22m
�
ð1

0

ð1
�1

e�x2

e
i Yffiffi

2
p �xþigð ÞtH2m xð Þdxdt :

(A14)

Because H2mðxÞ and e�x2

are even, we have

Jm ¼ �i
�1ð Þm

m!22m

� 2

ð1
0

ð1
0

e�x2

e
i Yffiffi

2
pð Þt cos xtð ÞH2m xð Þdxdt : (A15)

Using 7.388.3 of Gradshteyn and Ryzhik,31 we find for the x-

integral

ð1
0

e�x2

cos xtð ÞH2m xð Þdx ¼ �1ð Þm
ffiffiffi
p
p
2

t2m exp � t2

4

� �
;

(A16)

so

ReJm ¼
ffiffiffi
p
p

m!22m

ð1
0

sin
Yffiffiffi
2
p t

� �
t2me�t2=4dt: (A17)

Again consulting Gradshteyn and Ryzhik, this time 3.952.7,

and using Kummer’s transformation for the confluent hyper-

geometric function, Mða; b; zÞ, we arrive at the real part of

Zðk;xÞ

ReZ ¼ ne
bme

�h

x
k2

X
m

AmM 1þ m;
3

2
;�Y2

2

� �
: (A18)

Putting together our previous results, the imaginary part is

ImZ ¼ �
ffiffiffi
p
2

r
ne

ffiffiffiffiffiffiffiffi
bme

p
�hk

X
m

Ame�
Y2

2 L
�1

2ð Þ
m

Y2

2

� �
: (A19)
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Using (A1) and the definitions Y2
6 � bmex2

6=2k2 and (19),

we arrive at (4). The calculation for arbitrary u is the same

except that one expands H2mð
ffiffiffi
u
p

xÞ by means of a multiplica-

tion theorem for Hermite polynomials.

APPENDIX B: REDUCTION OF THE COLLISION
INTEGRALS

The purpose of this Appendix is to derive a simplifica-

tion of the quantum Lenard-Balescu collision integral using

the polynomial expansion in Equation (8). The calculation is

only for u¼ 1, which we use exclusively in this paper. The

generalization to arbitrary u is straightforward but results in

more complicated formulas.

We multiply the left- and right-hand sides of the kinetic

equation (1) by L
1
2ð Þ

m ðbmev2=2Þ and integrate over d3v. The

left-hand side becomes

2neffiffiffi
p
p C nþ 3=2ð Þ

n!

dAn

dt
: (B1)

The right-hand side is, of course, the real problem; it is the

nine-fold integral

ð
CQLB fð ÞL

1
2ð Þ

n
mebv2

2

� �
d3v; (B2)

which we will reduce to two. Beginning with v0, we make

use of the convenient definitions

x � k � vþ �hk2

2me
; (B3)

x6 � x6
�hk2

2me
; (B4)

to write

ð
d3v0d xþ � k � v0� �

f v0ð Þ

¼ ne
bme

2p

� �1
2 1

k

X1
k¼0

Ak tð ÞL �
1
2ð Þ

k Y2
þ

� 
e�Y2

þ (B5)

and ð
d3v0d xþ � k � v0� �

f v0 � �hk=me

� �

¼ ne
bme

2p

� �1
2 1

k

X1
k¼0

Ak tð ÞL �1
2ð Þ

k Y2
�

� �
e�Y2

� ; (B6)

where

Y2
6 �

bmex2
6

2k2
: (B7)

To derive (B5), we take k as the z-direction and integrate in

the cylindrical coordinates ðv?;/; v0zÞ. We find then

ð1
�1

ð2p

0

ð1
0

d xþ � kv0z
� �

e�
bme v0?2þvz 02ð Þ

2

� L
1
2ð Þ

n
bmev2

?
2
þ bmevz02

2

� �
v?dv?d/dv0z

¼ 2p
bme

1

k
e�Y2

þ

ð1
0

e�xL
1
2ð Þ

n xþ Y2
þ

� 
dx;

(B8)

where we have made the substitution x ¼ bmev2
?=2.

Combining (A5) and (B8) with the prefactors and series in

f ðv0Þ, we find (B5). Equation (B6) is found in exactly the

same way after making the substitution u ¼ v� �hk=me.

We aim in the end to have an integration over k and x.

For the v integration, we again take k to point in the z-direc-

tion, and then we have vz ¼ x�=k and dvz ¼ dx=k. We will

therefore employ cylindrical coordinates ðv?;/; vzÞ and inte-

grate over v? and /, leaving vz as the x-integral. Because

(B5) and (B6) depend only on x and k, they will play no fur-

ther role in the integration. The pieces we do need are

ð
d3vf vð ÞL

1
2ð Þ

n
mebv2

2

� �
(B9)

and

ð
d3vf vþ �hk=með ÞL

1
2ð Þ

n
mebv2

2

� �
; (B10)

integrated over v? and /, for which we find

ð2p

0

ð1
0

f vð ÞL
1
2ð Þ

n
mebv2

2

� �
v?dv?d/

¼ ne
meb
2p

� �3=2

2p
X

Al tð Þ
ð1

0

dv?v?e�
bme v2

?þv2
zð Þ

2

� L
1
2ð Þ

n
bmev2

?
2
þ Y2

�

� �
L

1
2ð Þ

l

bmev2
?

2
þ Y2

�

� �
;

¼ ne
meb
2p

� �1=2

e�Y2
�
X

Al tð Þ

�
ð1

0

e�xL
1
2ð Þ

n xþ Y2
�

� �
L

1
2ð Þ

l xþ Y2
�

� �
dx; (B11)

and, similarly

ð2p

0

ð1
0

f vþ �hk=með ÞL
1
2ð Þ

n
mebv2

2

� �
v?dv?d/

¼ ne
meb
2p

� �1=2

e�Y2
þ
X

Al tð Þ

�
ð1

0

e�xL
1
2ð Þ

n xþ Y2
�

� �
L

1
2ð Þ

l xþ Y2
þ

� 
dx : (B12)

To handle the last integrals in (B11) and (B12), we use the

identity

ð1
0

e�xL
1
2ð Þ

n xþ yð ÞL
1
2ð Þ

l xþ zð Þdx ¼
Xmin l;nð Þ

i¼0

L
�1

2ð Þ
n�i yð ÞL �

1
2ð Þ

l�i zð Þ;

(B13)
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which can be easily derived by again using (A6) with a1 ¼ 0

and a2 ¼ �1=2. At this point, only the magnitude of k is left

in the integrand, so
Ð

d3k! 4p
Ð

k2dk. To get the final form

of the integrand, we multiply (B5) by (B11), subtract the prod-

uct of (B6) and (B12), integrate over 4p
Ð1
�1 dvz

Ð1
0

k2dk, and

include the dimensional prefactor in (2). The resulting expres-

sion for the coefficients is

Cn
lk ¼ �

bmene

4p3=2�h2

n!

C nþ 3=2ð Þ
ð1
�1

ð1
0

e� Y2
�þY2

þð Þ

� j/ kð Þj2
j� k;xð Þj2 qn

lk X; Yð Þdkdx; (B14)

where qn
lkðX; YÞ is given in Equation (37). It is a straightfor-

ward matter to use the dimensionless variables X and Y
defined in (19) and (20) along with the Coulomb potential to

arrive at (34).

APPENDIX C: EXACT INTEGRATION OVER THE
DIELECTRIC FUNCTION

Here, we will simplify Equation (46) by an exact inte-

gration over X. In fact, we will solve the more general case

IX Y; sð Þ �
ð1

0

dXX2s�1 e�X2

j� X; Yð Þj2 (C1)

for which the X-integral in (46) is the special case s¼ 0. We

do this because including terms in the collision integrals

greater than Oð1Þ requires integrals for which s> 0, a gener-

alization we may wish to consider in the future. These are

also no more difficult than the s¼ 0 case.

To begin, we make use of the identity

1

j� X; Yð Þj2 ¼
1

2iIm �ð Þ
1

�� �
1

�

� �
: (C2)

Using the classical dielectric function in Equation (30), the

integral becomes

IX Y;sð Þ¼ 1

2ig2wi Yð Þ�
ð1

0

X2sþ3e�X2

X2þg2w� Yð Þ�
X2sþ3e�X2

X2þg2w Yð Þ

" #
dX:

(C3)

Glancing at (31) and (32), it is clear that wiðYÞ ¼ �wið�YÞ
and wrðYÞ ¼ wrð�YÞ so that w�ðYÞ ¼ wð�YÞ. The first term

of (C3) can be written as

1

2ig2wi Yð Þ
ð1

0

X2sþ3e�X2

X2 þ g2w �Yð Þ dX: (C4)

If in the Y-integration we make the substitution Y ! �Y, we

find that the first and second terms of (C3) are actually equal

and opposite when integrating over Y and we can set

IX Y; sð Þ ¼ � 1

ig2wi Yð Þ
ð1

0

X2sþ3e�X2

X2 þ g2w Yð Þ dX: (C5)

This integral can be evaluated in terms of special functions

ð1
0

X2sþ3e�X2

X2 þ g2w Yð Þ dX

¼ 1

2
eg2w Yð Þ � g2w Yð Þ

� �1þs
1þ sð Þ!C �1� s; g2w Yð Þ

� �
(C6)

where Cðt; zÞ is the incomplete gamma function, defined by

Cðt; zÞ ¼
ð1

z

ut�1e�udu: (C7)

This function has the series

C �1� s; zð Þ ¼ �1ð Þ1þs

1þ sð Þ! wsþ2 � cE � log z
� �

� 1

zsþ1

X1
k¼0;k 6¼sþ1

�zð Þk
k � s� 1ð Þk!

: (C8)

where cE 	 0:57721566 is Euler’s constant and wsþ2 are

constants appearing in the digamma function at integer argu-

ments. The first few of these are

w2 ¼ 1;

w3 ¼ 3=2;

w4 ¼ 11=6;

w5 ¼ 25=12 :

The order-unity terms arising from dynamical screening come

only from s¼ 0 and we can now isolate these using (C8) in

(C6) and expanding exp½g2wðYÞ�. Doing this, we find (46).

APPENDIX D: EXACT EXPRESSIONS FOR LANDAU
COEFFICIENTS

Here, we derive Equation (57), the closed expression for

Sn
lk, and the coefficients of the Landau equation. We begin by

setting �ðk;xÞ ¼ 1 and using the variables g � k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
meb=2

p
and z � vz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
meb=2

p
, to write the coefficients for the quantum

Landau equation Cn
lk

Cn
lk ¼ � �C

Xminð‘;nÞ

j¼0

ð1
g0

dg

ð1
�1

dzIQLðg; z; �hÞ; (D1)

where the integrand is

IQL g; z; �hð Þ � 1

�h2

1

g3
exp �z2 � zþ �hg=með Þ2
� 

� L
�1

2ð Þ
n�j z2ð Þ L

�1
2ð Þ

k zþ �hg=með Þ2
� 

L
�1

2ð Þ
l�j z2ð Þ




�L
�1

2ð Þ
‘�j zþ �hg=með Þ2

� 
L
�1

2ð Þ
k z2ð Þ

�
; (D2)

the prefactor is now

�C ¼
ffiffiffi
p
p

ne 2mebð Þ3=2e4 n!

C nþ 3=2ð Þ (D3)

and g0 is the small-k cutoff. To obtain the classical version

of this expression, we take the �h! 0 limit
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ILðg; zÞ ¼ lim
�h!0

IQLðg; z; �hÞ: (D4)

To do this, we must expand to second-order in �h, and

using some simple identities of Laguerre polynomials, this

yields

IL g; zð Þ ¼
2e�2z2

L
�1

2ð Þ
n�j z2ð Þ

m2
eg

� ‘� jþ 1ð ÞL �
1
2ð Þ

k z2ð ÞL �1
2ð Þ

‘�jþ1 z2ð Þ



� k þ 1ð ÞL �
1
2ð Þ

‘�j z2ð ÞL �1
2ð Þ

k z2ð Þ
�
: (D5)

The z-integration of this expression can be done by taking

advantage of the relationship between Laguerre and

Hermite polynomials in Equation (A13), and Titchmarsh’s

identityð1
�1

dz e�2z2

Ha zð ÞHb zð ÞHc zð Þ

¼ 2 aþbþc�1ð Þ=2

p
� C

aþ b� cþ 1

2

� �
C

a� bþ cþ 1

2

� �

� C
�aþ bþ cþ 1

2

� �
; (D6)

when aþ bþ c is even and the integral is zero otherwise.

The coefficients then become

Cn
lk ¼ � �C

ffiffiffi
2
p

log K
m2

ep

Xmin ‘;nð Þ

j¼0

�1ð Þnþkþ‘

� 2� nþkþ‘�2jþ1ð Þ

n� jð Þ!k! ‘� jð Þ! C �nþ k þ ‘þ 3

2

� �

� C nþ k � ‘� 1

2

� �
C n� k þ ‘� 2jþ 3

2

� �


�C nþ k � ‘þ 3

2

� �
C n� k þ ‘� 2j� 1

2

� ��
: (D7)

At this point, we confess that we simply evaluated the above

sum over j in Mathematica, which returns an analytical form

involving the regularized hypergeometric function, 3
~F2.

Comparing this expression with Equation (56) to get the cor-

rect numerical constants, we find Equation (57) for the Sn
lk.

We do not yet know how to derive this formula legitimately,

but we performed many checks between the analytic expres-

sion and the numerically determined Sn
lk to ensure that (57) is

indeed correct.

APPENDIX E: RECURRENCE FORMULAS FOR
COEFFICIENTS

In this Appendix, we derive and solve the recurrence for-

mula for the triple product integrals Vj
lk defined in Equation (52).

This will be based on the formula for Laguerre polynomials

L
�1

2ð Þ
n xð Þ ¼ 2� 3=2þ x

n

� �
L
�1

2ð Þ
n�1 xð Þ

� 1� 3

2n

� �
L
�1

2ð Þ
n�2 xð Þ : (E1)

Note that in the definition of V, two of the three Laguerre

polynomials have the same argument. The strategy is to

exploit this fact to find the recurrence formula for the family

of integrands

vj
lk X; Yð Þ � g X; Yð ÞL �1

2ð Þ
j Y2

�
� �

L
�1

2ð Þ
k Y2

þ
� 

L
�1

2ð Þ
l Y2

�
� �

; (E2)

where g(X, Y) is an arbitrary function of X and Y. We begin

by using the Laguerre formula to show

L
�1

2ð Þ
j Y2

�
� �

¼ 2� 3

2j

� �
L
�1

2ð Þ
j�1 Y2

�
� �

� 1� 3

2j

� �
L
�1

2ð Þ
j�2 Y2

�
� �� 1

j
Y2
�L

�1
2ð Þ

j�1 Y2
�

� �
:

(E3)

Therefore,

vj
lk X; Yð Þ ¼ 2� 3

2j

� �
vj�1

lk X; Yð Þ

� 1� 3

2j

� �
vj�2

lk X; Yð Þ � 1

j
Y2
�v

j�1
lk X; Yð Þ: (E4)

We have a factor of Y2
� that will cause problems when we

integrate. We can rid ourselves of it by using the recurrence

formula again in the rearranged form

Y2
�L

�1
2ð Þ

l Y2
�

� � ¼ 2lþ 1

2

� �
L
�1

2ð Þ
l Y2

�
� �

� l� 1

2

� �
L
�1

2ð Þ
l�1 Y2

�
� �� lþ 1ð ÞL �

1
2ð Þ

lþ1 Y2
�

� �
(E5)

to get

Y2
�v

j�1
lk X; Yð Þ ¼ 2lþ 1

2

� �
vj�1

lk X; Yð Þ

� l� 1

2

� �
vj�1

l�1;k X; Yð Þ � lþ 1ð Þvj�1
lþ1;k X; Yð Þ;

(E6)

which we can plug into (E4) to get a recurrence formula for

the integrand free of any additional factors of X or Y. Putting

everything together, we find

Vj
lk ¼ 2� 2 lþ 1ð Þ

j


 �
Vj�1

lk � 1� 3

2j

� �
Vj�2

lk

þ
l� 1

2
j

Vj�1
l�1;k þ

lþ 1

j
Vj�1

lþ1;k: (E7)

Note that k does not participate in this recurrence formula.

This system is comprised of nmax þ 1 discrete boundary-

value problems in j and l corresponding to each possible

value of k. For example, we can use our numerical integra-

tion techniques to find Vj
lk for j¼ 0 and j ¼ nmax for all val-

ues of k. In principle, the recurrence formula then generates

the rest. Note that although this is a three-point recurrence, it

can be used to compute j¼ 1 as long as we adhere to the con-

vention that when j> 0, we set negative-index polynomials
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to zero when they arise. This convention allows computation

of the Laguerre polynomials themselves for j> 0 and there-

fore also works for our coefficients. Another possibility is

that rather than specify the values on the boundary of the

cube, we instead compute the coefficients only for j¼ 0. We

now need to compute these up to 2nmax. However, in prac-

tice, it appears that this procedure is unstable and the initial

errors become out of control after a few iterations. We will

not investigate this issue further here, but we point out that

(E7) can be solved exactly. To do this, rewrite (E7) in the

more symmetric form

jVj
l�1;k � 2jVj�1

l�1;k þ j� 3

2

� �
Vj�2

l�1;k

¼ lVj�1
lk � 2jVj�1

l�1;k þ j� 3

2

� �
Vj�1

l�2;k; (E8)

so that l� 1 is on the left and j� 1 on the right. Looking for

a separable solution of the form

Vj
lk ¼ UjWl (E9)

we find the equations

jUj � 2jUj�1 þ j� 3

2

� �
Uj�2 ¼ kUj�1;

lWl � 2lWl�1 þ l� 3

2

� �
Wl�2 ¼ kWl�1;

(E10)

where k is an arbitrary constant. We can immediately recog-

nize these as the recurrence formulas for the associated

Laguerre polynomials with a ¼ �1=2 and x ¼ �3=2� k.

The most general solution to (E7) is a superposition of vari-

ous values of k each with a different amplitude, l

Vj
lk ¼

X
i

l kð Þ
i L

�1
2ð Þ

j � 3

2
� k kð Þ

i

� �
L
�1

2ð Þ
l � 3

2
� k kð Þ

i

� �
: (E11)

We require enough constants l and k that can satisfy the

boundary conditions. It is not clear how best to apportion

and calculate these but we have several options. This

requires further investigation, but it seems clear that if such

an approach can work, it would greatly improve the algo-

rithm presented in the paper.
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Abstract

Among the extrasolar planets discovered so far, the most abundant are the close-in super-

Earths. These are planets with sizes between that of the Earth and Neptune, and orbits

typically smaller than Mercury’s. In this thesis, I study the innermost regions of accretion

discs surrounding young stars, and if and how close-in super-Earths can form at such short

orbital periods.

I start by discussing a simple model of the inner disc structure coupled to a detailed pre-

scription of disc accretion due to the magneto-rotational instability (MRI). I use the inferred

structure of the gas to show that the MRI leads to accumulation of dust in the inner disc,

as necessary for the formation of solid planet cores. Next, assuming that solid cores do form

in the inner disc, I investigate the accretion and evolution of planetary atmospheres. I show

that, despite the MRI-accreting inner disc being gas-poor, the predicted planet atmospheres

are at least as large as observed. Finally, I present an improved model of the inner disc that

accounts for disc heating due to accretion and stellar irradiation, vertical energy transport, dust

opacities, and dust effects on disc ionization. The optically-thick inner disc is weakly affected

by stellar irradiation, and also convectively unstable. Dust controls the ionization state of the

inner disc, and thus the onset of the MRI. I show that sustained dust accumulation can occur

in the inner disc, without suppressing the MRI. If planets form in the inner disc, larger gas

accretion rates (and thus earlier times in the disc lifetime) are favoured.

The work in this thesis advances our knowledge of the planet-forming environment at short

orbital distances and supports the hypothesis that super-Earths could form near their present

orbits. This work also identifies impediments to planet formation in the inner disc which require

further study.
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1 Introduction

The past few decades have seen unprecedented advances in planetary science, starting with the

first discovery of a planet orbiting a main sequence star other than the Sun in 1995. Thousands

more extrasolar planets have been discovered since then. It emerged that most stars host

planetary systems that are quite dissimilar to the Solar system. By far the most prevalent

planets seem to be of size between that of the Earth and Neptune, in orbits typically smaller

than Mercury’s. The abundance of these so-called close-in super-Earths has opened many new

questions in the theory of how planets form.

All planets are believed to have formed in discs of gas and dust that surround young,

newly-formed stars, the so-called protoplanetary discs. Our understanding of protoplanetary

discs has also greatly advanced due to modern observational facilities. However, observations

show us that planets are incredibly common at small orbital radii, whereas the structure of

protoplanetary discs at such small radii is difficult to observe due to large distances to these

objects. In this thesis I aim to bridge this gap by building theoretical models of the structure of

the innermost regions of protoplanetary discs, and examining how they set the initial conditions

for planet formation.

This chapter starts with a brief overview of the currently known extrasolar planet population

and properties of the close-in super-Earths. Then, I introduce the basic concepts in the theory

of protoplanetary discs, focusing on the special conditions that arise in the innermost regions

of these objects. Last, I discuss our current understanding of how the super-Earths might have

formed, and outline the new work presented in this thesis.

1.1. Extrasolar planets

Two methods are responsible for the vast majority of extrasolar planet (or exoplanet) discoveries

so far: radial velocity and transit photometry. A planet-hosting star orbits around their joint

centre of mass, periodically moving forwards and backwards relative to an observer. The radial

velocity method detects this motion by measuring the Doppler shift in the light emitted by

the star. This is a function of planet mass and the system inclination relative to the observer,

and the radial velocity method obtains a lower limit on the planet mass. Transit photometry

measures a decrease in the light received from the star when a planet transits over the stellar

disc. It yields the planet radius. Therefore, in general, we may only know either the (minimum)

9
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mass or the radius of a planet. Where possible, planets are detected with one method and

confirmed with the other, providing both. A radial-velocity mass of a transiting planet is

also its actual mass, since inclination is known. Additionally, in some cases it is possible to

obtain masses of planets through transit photometry only. In multi-planet systems planets

interact gravitationally and this can cause small transit timing variations (TTVs). Precise

measurements coupled to dynamical modelling can then be used to infer planet masses (Agol

et al. 2005; Holman and Murray 2005).

Unfortunately, both mass and radius are known for only a small number of exoplanets.

Therefore, Fig. 1.1 shows planet (minimum) mass as a function of orbital period in one panel,

and planet radius in the other, for sets of planets for which these quantities have been de-

termined (and also includes a small portion of planets discovered through other, less common

detection methods). Both panels illustrate the diversity of the extrasolar planets discovered

so far. Three groupings of planets are evident in the planet mass-period plot: short-period

(Hot) and long-period (Cold) Jupiter-sized giants, and short-period super-Earths. Neither Hot

Jupiters nor super-Earths have analogues in the Solar system.

These plots are, naturally, highly biased by the sensitivity of the detection methods. Such

biases have been well characterized for the most successful planet finder to date, NASA’s Kepler

mission (Borucki et al. 2010). The main biases introduced by the transit photometry survey

by Kepler are incompleteness due to the requirement that a planet’s orbit is aligned with

the observer’s line of sight, false positives (i.e., non-planet transits), incompleteness due to

the transit-detecting algorithm missing planet transits in the data and uncertainties in stellar

parameters (e.g. Fressin et al. 2013; Dressing and Charbonneau 2013; 2015). By removing

these biases it is possible to calculate the occurrence rates, i.e., the average number of planets

of certain properties per star. Such analyses have shown that planets around other stars are

very common. In an early study based on the first 16 months of Kepler data Fressin et al.

(2013) estimated that there are 0.7 planets per star with orbital periods up to 85 days, the

vast majority of which (0.65 planets per star) are planets with radii in the range 0.8 � 4 R`,

i.e. super-Earths. This is roughly consistent with estimates from radial velocity surveys that

the occurrence rate of Hot Jupiters is in the range 0.1%-1% and the occurrence rate of Cold

Jupiters of the order of several 1% (Mayor et al. 2011; Santerne et al. 2016). Unsurprisingly,

the actual detected population (shown in Fig. 1.1) is highly biased towards giant planets.

Estimates based on the full four-year Kepler data set yield even higher occurrence rates for

the super-Earths. Focusing on M dwarf stars, Dressing and Charbonneau (2015) estimated 2.5

planets per star in the super-Earth size range and orbital periods up to 200 days. More recent

studies estimated that for orbital periods of 0.5� 256 days there are 3.5 super-Earths per star

for FGK type stars and between 4.2 and 8.4 super-Earths per star for M dwarfs (Hsu et al.

2019; 2020). As can be inferred from these high occurrence rates, the super-Earths readily

appear in multi-planet systems (e.g. Borucki et al. 2011). It is estimated that at least 42% of

all Sun-like stars have planet systems with at least 7 planets (Mulders et al. 2018) that are

10



CHAPTER 1. INTRODUCTION

Figure 1.1: Extrasolar planets with known mass (or the lower limit on mass, see text; top) and
with known radius (bottom) as functions of orbital period. Note the three groupings of planets
in the mass-period plot: super-Earths, Hot Jupiters and Cold Jupiters. Obtained from NASA
Exoplanet Archive. Courtesy NASA/JPL-Caltech.
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nearly coplanar.

Evidently, the close-in super-Earths are incredibly common around low-mass stars. What

are these planets like? Some indications of the structure and composition of super-Earths are

gained from those planets for which both radius and mass have been determined. Fig. 1.2 shows

the mass-radius relationship for the observed planets and also theoretical predictions for planets

made purely of iron, silicates or water ice. Importantly, many of the planets have radii well

above the pure water ice radius at a given mass, indicating that they must contain a significant

volume of gas on top of a solid core, most likely made of hydrogen and helium (as found by e.g.

Marcy et al. 2014; Weiss and Marcy 2014; Rogers 2015). A small amount of mass is needed in

a H/He envelope to make a large difference in planet radius. Assuming that the super-Earths

have rocky cores, Wolfgang and Lopez (2015) estimate that only about 1% to 10% percent of

planet mass is needed in the envelope to explain the radii of the super-Earths.

In the presence of a gaseous envelope, determination of the core composition becomes a

degenerate problem, e.g., it cannot be determined how much, if any, water ice is present in the

core. The bottom panel of Fig. 1.2 zooms into a region of the radius-mass plane showing small

planets. There appears to be a transition radius of about 1.5 R`, above which most of the

planets are of density so low that they must contain large amounts of volatiles (Rogers 2015).

Most of the planets smaller than about 1.5 R` appear consistent with an iron-rock (Earth-

like) composition (Dressing et al. 2015), and those that do not, have large mass uncertainties

(Jontof-Hutter 2019).

Fortunately, some advances can be gained even without the mass measurements, using the

radius distribution alone. Fig. 1.3 shows a de-biased radius distribution of the close-in planets

based on the Kepler survey. It shows the relative scarcity of giant close-in planets relative to

the super-Earths. It also reveals that the super-Earths are, in fact, made up of two populations.

This gap in the radius distribution of close-in super-Earths had been predicted by models of

atmospheric evolution (Owen and Wu 2013). These models predict that all close-in super-Earths

were initially formed with large H/He envelopes; however, the ones that are least massive and

closest to the star lost their envelopes due to photoevaporation by high-energy stellar flux. The

location of the gap in these models is sensitive to the composition of the solid planet core, and

the observed gap is consistent with an Earth-like (i.e., rock-iron) composition (Owen and Wu

2017; Van Eylen et al. 2018; Wu 2019).

The close-in super-Earths stand in stark contrast to the inner region of the Solar system,

as they typically have orbital periods shorter than Mercury’s, while many of them are more

massive than all of the terrestrial planets combined. Given their occurrence rate around low-

mass stars, explaining how these planets form is undoubtedly a vital task.
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Figure 1.2: Planet radius as a function of planet mass for a set of extrasolar planets with
theoretical predictions for pure iron, silicate rock and water ice planets (top) and the same
figure zoomed into small planets (bottom). In the top panel, orange squares show planets whose
masses are determined using TTVs and green circles planets whose masses are determined using
the radial velocity method. In the bottom panel, planet data are colour-coded according to the
incident flux, as indicated in plot legend. In both panels, solid and dashed lines show theoretical
predictions, as indicated in plot legend (Zeng and Sasselov 2013; Fortney et al. 2007; Grasset
et al. 2009). Republished with permission of Annual Reviews, Inc., from Jontof-Hutter (2019);
permission conveyed through Copyright Clearance Center, Inc.
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Figure 1.3: Completeness-corrected radius distribution for planets with orbital periods shorter
than 100 days (solid black line) including the small radii for which completeness is low (solid
grey line) and the uncorrected radius distribution (dotted grey line). The uncertainties in the
occurrence rates are based on simulated planet populations. The median uncertainty in radius
is shown in the upper right. Adapted from Fulton et al. (2017). ©AAS. Reproduced with
permission.

1.2. Protoplanetary discs

Stars form when parts of cold dense clouds of interstellar matter (ISM) gravitationally collapse.

Since these clouds are slowly rotating, their gravitational contraction combined with conserva-

tion of angular momentum also results in the formation of a disc around the newly-formed star

(e.g. Terebey et al. 1984). It is believed that planets form in these discs, and hence they are

commonly referred to as protoplanetary discs.

Since they form out of ISM, protoplanetary discs are expected to start out with 99% of their

mass in gas and 1% of their mass in solid dust grains (Mathis et al. 1977). The dust grains

absorb stellar light in the optical waveband and re-emit it in the infrared. The resulting infrared

excess in the spectral distribution (SED) of young stellar objects has long been detected (e.g.

Mendoza 1966, 1968) and its dusty disc origin understood (e.g. Adams et al. 1987). Inferred disc

masses are in the range of 10�3 � 10�1 Md (Beckwith et al. 1990; Beckwith and Sargent 1991;

Andrews and Williams 2005; 2007). The disc-like geometry of these objects was first confirmed

with Hubble Space Telescope images of light scattered off dust grains (O’dell and Wen 1994).

Dust thermal emission was resolved using millimetre interferometry, revealing dust disc sizes

of few hundreds of AU (Dutrey et al. 1996). The more abundant gas component of these discs

is more difficult to detect, since it is largely made up of relatively cold molecular hydrogen.

Nevertheless, observations of molecular lines of trace species such as CO yield insight into the

14



CHAPTER 1. INTRODUCTION

kinematics of these objects, which is to first order determined by simple Keplerian rotation

around the central star (e.g. Sargent and Beckwith 1987; Simon et al. 2000).

Protoplanetary discs accrete onto the star. Material flows from the inner disc edge onto

the star along magnetic field lines, emitting broad atomic emission lines (Muzerolle et al. 1998;

2001). As the material falls onto the stellar surface it creates shocks and emits UV continuum

radiation (Gullbring et al. 1998). Both effects can be used to infer the mass accretion rate

onto the star, which is typically in the range of 10�10 � 10�6 Md yr�1 (Hartmann et al. 1998).

While these measurements only constrain accretion within a few stellar radii from the star,

the obtained accretion rates are found to be correlated with the observed total disc dust mass,

implying that the disc evolves as a whole (Manara et al. 2016).

Eventually, protoplanetary discs disperse. The vast majority of the youngest stars host

discs, but very few stars older than a few Myr have one (Haisch et al. 2001; Mamajek 2009).

Importantly, the disc lifetime sets the timescale for planet formation. Any planet with a H/He

atmosphere accreted from the protoplanetary disc, including the close-in super-Earths, had to

have formed while the gaseous disc was still around. Furthermore, accretion in protoplanetary

discs is detected up to somewhat smaller, but comparable stellar ages as the infrared excess

(Fedele et al. 2010). This means that accretion and its effects on disc structure are important

during planet formation.

In the remainder of this section I will discuss the basics of the structure and evolution of

protoplanetary discs, starting with some basic notions about the structure of thin circumstellar

discs. I will discuss the basic theory of how accretion controls the disc evolution and the

processes driving accretion, focusing on the short orbital distances at which the super-Earths

are observed. Last, I will discuss theoretical expectations and observational evidence of dust

growth and evolution in protoplanetary discs.

1.2.1. Thin circumstellar discs

Throughout this work I will consider axisymmetric discs, i.e. I will assume that rotational

shear azimuthally smooths all disturbances. Although there are certainly some exceptions to

this among the observed discs, the majority are indeed axisymmetric. Protoplanetary discs are

also observed to be geometrically thin, i.e., their height is much smaller than their radius. It

is thus commonly assumed that in the time necessary for the disc to evolve over large radial

distances, the disc vertical structure settles into hydrostatic equilibrium. As most discs are

observed to be much less massive than their host star, I will also neglect the disc self-gravity.

Then, in the vertical direction, thermal pressure balances stellar gravity,

dP

dz
� �ρ GM�z

pr2 � z2q3{2 , (1.1)
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where P is gas thermal pressure, ρ is disc density and M� stellar mass. For a thin disc in which

z ! r, adopting the ideal gas law, the vertical disc structure is determined by

dP

dz
� �PΩ2

Kz

c2
s

, (1.2)

where cs is the speed of sound, and ΩK is the Keplerian angular velocity.

The disc angular velocity Ω is not strictly Keplerian. Even in a disc that is only slowly

evolving in the radial direction (ur ! rΩ), Ω is affected by the radial gas thermal pressure

gradient,

rΩ2 � rΩ2
K �

1

ρ

dP

dr
. (1.3)

This term can be safely neglected when considering gas disc evolution, so that Ω � ΩK. How-

ever, it is hugely important in the evolution of dust in circumstellar discs, as discussed further

below. Here I have also assumed that the disc angular velocity Ω is constant with height, since

the disc is thin.

1.2.2. Viscous accretion discs

In order for disc material to accrete onto the star it has to lose angular momentum. How

exactly this happens in protoplanetary discs is an unsolved problem. One possibility is that

a shear stress redistributes angular momentum throughout the disc. Consider a differentially

rotating disc as a series of infinitesimal rings and a Newtonian shear stress of the form

Wrφ � ρνr
BΩ

Br , (1.4)

where ν is kinematic viscosity. In a Keplerian disc such shear stress between two rings will slow

down the inner ring and speed up the outer. Material slowing down in the gravitational field

of the star will flow inwards, accreting, and matter speeding up will move outwards, carrying

angular momentum away. In protoplanetary discs molecular viscosity is negligible. However,

as discussed further below, other processes can produce the same behaviour.

The theory of evolution of viscously accreting discs was set out by Shakura and Sunyaev

(1973) and Lynden-Bell and Pringle (1974). From conservation of angular momentum it follows

that

ρur
1

r

Bpr2Ωq
Br � p∇W qφ (1.5)

in a thin axisymmetric disc. For the viscous stress given by eq. (1.4),

ρur
1

r

Bpr2Ωq
Br � 1

r2

B
Br
�
r2ρνr

BΩ

Br


. (1.6)

Here viscosity ν can be a function of both height above disc midplane and of radius. The
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equation of mass continuity is
Bρ
Bt �

1

r

B
Br prρurq � 0. (1.7)

Vertically integrating eq. (1.7) and (1.6) yields

BΣ

Bt �
1

2πr

B 9M

Br � 0, (1.8)

� 1

2π
9M
B
Br
�
r2Ω

� � B
Br
�
r2Σν̄r

BΩ

Br


, (1.9)

where 9M � �2πr
³8
�8

dzρur is the inwards gas accretion rate, Σ � ³8
�8

dzρ is the gas surface

density and ν̄ � ³8
�8

dzρν{Σ is the vertically-averaged viscosity.

Therefore, in a Keplerian disc, the gas accretion rate is given by

9M � 6π

rΩ

B
Br
�
r2Ων̄Σ

�
. (1.10)

Substituting eq. (1.10) into the mass continuity equation yields

BΣ

Bt �
3

r

B
Br
�
r1{2 B

Br
�
r1{2ν̄Σ

�

, (1.11)

i.e., that time evolution of the gas surface density is governed by what is essentially a diffusion

equation. Time-dependent solutions to this equation are given by Lynden-Bell and Pringle

(1974) for some special cases of viscosity. For example, they show that for constant viscosity or

viscosity that is a power-law function of radius, gas flows inwards onto the star at the inner disc

edge, and viscously spreads at the outer edge. In this work I will primarily consider steady-state

solutions, in which the gas accretion rate 9M is radially constant. Radially integrating eq. (1.9)

from the inner disc edge, rin, to an arbitrary radius r,

� 1

2π
9Mpr2Ω� r2

inΩinq � r2Σν̄r
BΩ

Br |
r
rin
. (1.12)

Here, the right-hand side requires specifying a boundary condition at the inner disc edge. In

reality this depends on the complicated nature of gas flows and the magnetic field between the

inner disc edge and stellar surface (Bouvier et al. 2007). A simple way to specify this boundary

condition is to assume that the boundary layer between the disc and the star is thin (rin � R�,

e.g. Frank et al. 2002). Within this thin layer the angular velocity of material has to decrease

from its Keplerian value in the disc to the rotation velocity of the star, and so at some point

in the boundary layer BΩ{Br � 0. Therefore, in steady state,

9M � 3πν̄Σf�1
r , (1.13)

where fr � 1�aR�{r.
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Finally, to obtain the full description of the system, one needs to consider the energy balance.

If the only source of heat is dissipation due to the viscous stress, then at any point in the disc

the viscous dissipation rate and the cooling rate are balanced, i.e.

9

4
ρνΩ2 � ∇.F, (1.14)

where F is the energy transport flux, e.g. radiative flux. In a thin disc one can expect the heat to

escape vertically much more easily than in the radial direction, so that F � Fz. Furthermore,

at disc midplane F � 0 due to symmetry. Then, vertically integrating eq. (1.14) from disc

midplane to disc surface yields

Ftot � 9

8
Σν̄Ω2 � 3

8π
Ω2

9Mfr, (1.15)

where Ftot is the total heat flux that escapes through one side of the disc and the second

equality is obtained by substituting Σν̄ from eq. (1.13). Therefore, the total viscous dissipation

at a given radius depends only on the gas accretion rate 9M and stellar parameters.

Further progress can only be made by specifying the energy transport flux F and the

viscosity ν. In radiative energy transport, flux F is a function of disc structure and disc

radiative properties, i.e. absorptivity and emissivity of the material. This inter-dependency

will be considered with varying degrees of complexity in this thesis, and so I defer further

discussion to relevant chapters. As for the viscosity ν, it was already noted that it must arise

from pseudo-viscous processes in the disc. Its origin is discussed in the next section.

1.2.3. Source of viscosity

Shakura and Sunyaev (1973) argued that viscosity in accretion discs comes from turbulence.

Essentially, correlated fluctuations in radial and azimuthal velocities due to turbulent motions

yield a shear stress analogous to the viscous stress given by eq. (1.4). If a magnetic field is

present, the same is true of fluctuations in the radial and azimuthal components of the field. In

both cases it is convenient to assume that the shear stress is proportional to the gas pressure,

with a dimensionless proportionality constant α. In the case of turbulent velocity fluctuations,

for example, α is a square of the ratio of the turbulent velocity to the speed of sound (e.g.

Balbus and Hawley 1998). Then, since supersonic turbulence would lead to shocks and quickly

dissipate, Shakura and Sunyaev argue that α   1, placing a constraint on the magnitude of

shear stress in discs. Furthermore, shear stress is given by eq. (1.4) if viscosity ν is given by

ν � α
c2

s

Ω
, (1.16)

connecting the Shakura and Sunyaev α parameter to the above formulation of a viscous accre-

tion disc.
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Figure 1.4: Illustration of the onset of the magneto-rotational instability. Two fluid elements
(grey cubes), coupled to the magnetic field (red line), are initially at the same orbital radius
(left), rotating around the star at the same azimuthal velocity (black arrows). Following a
perturbation in the radial direction, the inner element has a higher azimuthal velocity than
the outer, and the magnetic field line is stretched (right). This results in the growth of the
perturbation as discussed in Section 1.2.3.

What instability or instabilities may give rise to turbulence in protoplanetary discs? First,

consider a well ionized disc, so that the gas is perfectly coupled to the magnetic field and the

induction equation is
BB
Bt � ∇� pv�Bq, (1.17)

where B is the magnetic field strength. In this so-called ideal magnetohydrodynamic (MHD)

regime, a rotating disc threaded by a magnetic field is unstable to small perturbations if dΩ{dr  
0, i.e. if the angular velocity decreases outwards (Balbus and Hawley 1991). The onset of the

magneto-rotational instability (MRI) is illustrated in Fig. 1.4 for an initially vertical magnetic

field. A small perturbation leads to a radial displacement of two fluid elements. Due to the

resulting difference in their angular velocities, with the outer element moving slower than the

inner one, the fluid elements move apart azimuthally. This stretches the magnetic field line

(shown in red) coupled to the fluid elements. Magnetic tension acts to reduce this stretch.

However, pulling the inner fluid element back reduces its angular momentum, causing it to

fall further inwards, and vice versa for the outer fluid element. As a result, the instability

grows and at the same time transports angular momentum outwards, as needed for accretion.

Furthermore, for the instability to develop, the magnetic field strength can be arbitrarily weak,

but not arbitrarily strong - roughly, the magnetic pressure needs to be smaller than the gas

pressure. The instability also develops quickly, with the growth timescale being of the order of

the local orbital period in the linear regime.

In the non-linear regime, explored through numerical simulations, the MRI leads to MHD

turbulence. Shear stress is measured in simulations by averaging over turbulent fluctuations in

velocity and magnetic field strength. The viscosity parameter α due to the MRI is found to

be in the range 10�3 � 10�1 in homogeneous local simulations threaded by a uniform magnetic

field (Hawley and Balbus 1992; Hawley et al. 1995), homogeneous local zero net magnetic flux
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simulations (Hawley et al. 1996), and stratified local zero net flux simulations (Brandenburg

et al. 1995; Stone et al. 1996). These results were confirmed more recently to be independent

of spatial resolution in the simulations (Simon et al. 2009; Davis et al. 2010; Shi et al. 2010).

Therefore, if protoplanetary discs were well ionized, they would easily become turbulent due

to the MRI. However, ionization levels are expected to be low in these discs and non-ideal MHD

effects are expected to play a significant role in disc evolution. For the conditions relevant in

protoplanetary discs, collisional coupling between neutral and charged particles remains strong.

Because of this, the Lorentz force effectively acts on the neutrals too, i.e., on the fluid as a

whole. However, when the fluid is weakly ionized, the coupling between the fluid and the

magnetic field weakens. The induction equation becomes (Balbus 2011)

BB
Bt � ∇� pv�Bq �∇� pηOp∇�Bq � ηAp∇�BqK � ηHp∇�Bq � B̂q. (1.18)

Here, B̂ is a unit vector and “K” denotes the component of a vector perpendicular to B. The

first term on the right-hand side is the advective term, which is the same as in the ideal case

given by eq. (1.17). The second and the third terms are due to Ohmic and ambipolar diffusion,

proportional to the Ohmic resistivity ηO and the ambipolar resistivity ηA, respectively. If

Ohmic diffusion is important, collisions of charged particles with neutrals decouple the charged

particles (and thus the fluid overall) from the magnetic field. If ambipolar diffusion is important,

charged particles remain coupled to the magnetic field, but the collisions with the neutrals are

not efficient enough to couple the entire fluid to the field. By decoupling the fluid from the

magnetic field, Ohmic and ambipolar diffusion stabilize the disc against the MRI. Finally, the

fourth term is due to the Hall effect. While it is also proportional to what is dimensionally a

resistivity ηH, it is not a diffusive term.

The fluid ionization fraction at which Ohmic diffusion, for example, suppresses the MRI

is of the order of x � 10�13 (e.g. Fromang et al. 2013). However, the ionization levels in

protoplanetary discs can be even lower. The main sources of ionization are typically considered

to be thermal (collisional) ionization, stellar X-rays and cosmic rays. Thermal ionization only

becomes important above about a 1000 K, the ionization temperature of potassium (Umebayashi

and Nakano 1988). It is thus only relevant in the innermost, hot regions of protoplanetary discs.

Stellar X-rays and cosmic rays can only penetrate mass columns of the order of 10 g cm�2 and

100 g cm�2, respectively (Glassgold et al. 1997; Umebayashi and Nakano 1981). Since the disc

surface density is expected to be higher than such mass columns in the bulk of the disc, X-rays

and cosmic rays may only be relevant in the uppermost layers, near disc surface, and in the

outer regions of the disc. Fig. 1.5 illustrates the structure of the inner protoplanetary disc that

emerges from this analysis. In the ionized regions the MRI is expected to be active, driving

turbulence and efficient accretion. The cold dense regions, on the other hand, form the so-called

dead zone, where ionization is too low to support the MRI (Gammie 1996; Jin 1996).

In the dead zone, in the absence of (the coupling with) the magnetic field, various hydrody-

20



CHAPTER 1. INTRODUCTION

dead zone

active zone

X-rays

cosmic 
rays

thermal 
ionization

Figure 1.5: Illustration of the inner protoplanetary disc showing key ionization mechanisms
and the MRI active and dead zones (Gammie 1996).

namic instabilities can drive turbulence under the right conditions (Pfeil and Klahr 2019; Lyra

and Umurhan 2019). However, the resulting viscosity is expected to be far smaller than in the

MRI-active zone (e.g. Lesur and Papaloizou 2010; Nelson et al. 2013; Stoll and Kley 2014).

Therefore, it is expected that the viscosity, or accretion efficiency, decreases with distance from

the star with a potentially sharp drop at the transition between the active and the dead zone.

Finally, given the difficulties in producing turbulence in protoplanetary discs, it must be

recognised that accretion might be (at least partially) driven by non-viscous processes. In the

bulk of the disc, the Hall effect can be the dominant non-ideal MHD effect. Unlike the diffusive

terms, it does not merely suppress the MRI. Rather, the Hall effect can drive large scale laminar

flows through the disc (although this depends on the alignment of the magnetic field with the

disc rotation axis; Lesur et al. 2014). Additionally, in the presence of a magnetic field threading

the disc MHD winds can be launched from the disc surface, lifting angular momentum from the

disc (Suzuki and Inutsuka 2009; Suzuki et al. 2010; Moll 2012; Bai and Stone 2013; Fromang

et al. 2013; Lesur et al. 2013). It appears likely that both the Hall effect and MHD winds play a

significant role in the overall evolution of discs, driving gas accretion at a much larger range of

radii than the MRI (Bai 2017). Nevertheless, the structure of the innermost, thermally-ionized

regions of discs are still likely to be strongly affected by the MRI, and especially so the disc

midplane where planets are expected to form.

1.2.4. Evolution of dust

Protoplanetary discs are expected to start out with small (sub-micron) ISM-like dust grains.

Dust thermal emission offers evidence for grain growth to larger sizes. In optically thin regions

of the disc the emitted flux is directly proportional to dust emissivity, which itself is a function

of dust grain size (Beckwith and Sargent 1991). Comparison of the slope of the disc spectral

energy distribution (SED) at millimetre wavelengths with the predicted slope of dust emissivity

as a function of wavelength shows growth beyond millimetre sizes (D’Alessio et al. 2001).

Dust grain size determines the dust spatial evolution. Small dust grains are entrained
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with the gas, well mixed throughout the disc, slowly accreting onto the star. On the other

hand, larger dust grains are only partially coupled to the gas through gas drag. As discussed

above, as the gas thermal pressure decreases with distance from the star the pressure gradient

effectively lowers the gravitational force, making the gas orbital velocity slightly sub-Keplerian.

As partially-decoupled dust grains tend towards Keplerian orbits, they feel drag from the slower

gas. This causes the dust grains to lose angular momentum and fall radially towards the star.

The effect is known as radial drift and it is expected to be most drastic for centimetre-sized dust,

as larger bodies become completely decoupled from the gas (Weidenschilling 1977). Indeed,

observations show that discs appear significantly smaller in the dust continuum than in the gas

line emission, with a steep drop in the dust continuum at disc outer edge, a signature of radial

drift (Panić et al. 2009; Andrews et al. 2012; Rosenfeld et al. 2013; Trapman et al. 2020).

Additionally, for dust grains at a finite height above the disc midplane, Keplerian orbits

around the central star are inclined relative to the midplane (because the plane of a Keplerian

orbit must pass through the centre of the star). The gas drag tends to damp the resulting

relative velocity between the dust and the gas in the vertical direction. As a result, dust grains

also fall, or settle, vertically towards the disc midplane (Weidenschilling 1977). The dust is not,

however, expected to settle in the midplane, as turbulent motions in the disc lift and mix the

grains. The dust vertical structure is then determined as an equilibrium between settling and

turbulent mixing (Dubrulle et al. 1995).

The radial drift of dust has an important consequence in discs which feature a local gas

pressure maximum, see Fig. 1.6. In the region of positive pressure gradient the gas is super-

Keplerian, reversing the effect of gas drag on the dust grains. Therefore, just inwards of

a pressure maximum, dust grains radially drift outwards. For dust grains that encounter a

pressure maximum while radially drifting inwards from the outer disc, the pressure maximum

acts as a trap, where over time dust can accumulate (e.g. Haghighipour and Boss 2003; Pinilla

et al. 2012). The resulting dust structure in the disc is a dust ring. Many of such dust rings have

been observed in protoplanetary discs (e.g. ALMA Partnership et al. 2015; Andrews et al. 2018;

Long et al. 2019), with direct kinematic evidence that the dust rings correspond to locations

of gas pressure maxima (Teague et al. 2018).

Radial drift, vertical settling, turbulent mixing and, for the smallest grains, Brownian mo-

tion, also drive collisions between dust grains (Testi et al. 2014). Dust growth occurs when

such collisions result in sticking. Growth by sticking easily produces particles up to millimeters

in size; however, collisional velocities increase with grain size and at higher velocities collisions

are more likely to result in bouncing or even fragmentation of dust grains (Blum and Münch

1993), impeding growth beyond millimetre sizes (Zsom et al. 2010; Birnstiel et al. 2011). Even

if some lucky particles surmount these barriers (Windmark et al. 2012a;b; Garaud et al. 2013),

they are prone to fast radial drift towards the star. Nevertheless, in many discs at least some

of the dust must somehow form large planet-size bodies (since planets exist).

Finally, it is important to note that the composition of dust grains varies spatially inside
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Figure 1.6: Illustration of a radial midplane gas pressure profile in a disc featuring a local
maximum (indicated by a dashed line). Blue arrows show directions of radial drift of dust
grains embedded in such a disc.
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Figure 1.7: Illustration of a protoplanetary disc showing the gas disc inner edge, silicate subli-
mation line, MRI dead zone inner edge and water ice line.

discs. The temperature in protoplanetary discs can vary from a few tens of Kelvin in the

outermost disc to a few thousand near the star, covering the sublimation points of all key

materials. Water is only condensed beyond the so-called ice line, where the temperature falls

below �150 K. Furthermore, from observations of disc emission in the near-infrared, very little

to no dust is expected to exist inside the sublimation line of silicates where temperatures are

higher than �1500 K (Hillenbrand et al. 1992; Natta et al. 2001). Naturally, spatial variations

in the composition of planet-building material leave an imprint on planetary systems. For

example, the terrestrial planets and the main asteroid belt in the Solar system are relatively

dry, and it is thought that the Earth’s entire water content was delivered by scattered water-rich

asteroids formed in the outer Solar system (Morbidelli et al. 2000).

1.3. Formation of close-in super-Earths

In this chapter so far I have discussed the known exoplanet population and the structure and

evolution of protoplanetary discs, inside which planets are believed to form. From the detected

exoplanet population it is inferred that roughly half of all Sun-like and lower mass stars host

one or more close-in super-Earth-sized planets. It follows then that protoplanetary discs must
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efficiently produce such planets. However, how, and even where exactly inside protoplanetary

discs, the close-in super-Earths form is an open question.

The main theoretical problem in forming super-Earths is in the large amount of solid mass

required to assemble these planets. Assuming that planets form near their present orbital

distances (i.e. in situ) from locally available material, a model of a protoplanetary disc can

be constructed such that contains the minimum amount of dust required to build solid planet

cores. For the Solar system, such model is known as the Minimum mass Solar nebula (MMSN;

Hayashi 1981). Close to the star the MMSN has sufficient amounts of dust to form the terrestrial

planets. To build the close-in super-Earths, a disc would have to be significantly richer in solids

at short orbital distances (Raymond et al. 2008; Chiang and Laughlin 2013). While this led

some authors to conclude that the super-Earths cannot have formed in situ (e.g. Raymond et al.

2008), others proposed that the proto-Solar system might have been an exception rather than

the rule, and that the typical protoplanetary disc is indeed more massive (Chiang and Laughlin

2013). However, a minimum mass nebula is an idealization, and growing planets cannot access

all of the material available in the disc. After taking this into account, and also considering

that solids comprise only about a percent of total disc mass, the required disc mass is found

to be close to or above the criterion for gravitational stability of the disc (Schlichting 2014).

Other problems also arise if the super-Earths form in discs that are rich in both dust and gas.

For example, in a massive gaseous disc, accretion of gas onto super-Earth-sized solid cores is so

efficient that the planets would easily accumulate Jupiter-sized atmospheres (Lee et al. 2014),

whereas Jupiter-sized planets are much less common than the super-Earths.

There are two main ways to solve this problem, both relying on the fact that the solid-to-gas

ratio need not (and almost certainly does not) stay constant throughout disc lifetime. First,

when small dust grains grow into pebbles, they radially drift inwards, towards the star, due

to gas drag (see Section 1.2.4). If the drift can be stopped or slowed down at short orbital

periods, the pebbles accumulate there, enhancing the solid-to-gas ratio. Second, large planet-

sized bodies interact with the gaseous disc gravitationally and this can cause them to move

(migrate) radially (e.g. Goldreich and Tremaine 1979; 1980; Kley and Nelson 2012). It is thus

possible for a planet to form at an orbital distance different to the one we observe today, where

the conditions for planet formation are more favourable, following which the planet migrates

to its final orbit. The latter, the so-called migration scenario, has been studied in more detail,

and so I will discuss it first.

1.3.1. Migration scenario

Planets (or planet embryos) can launch spiral density waves in the disc (Goldreich and Tremaine

1979; 1980). As these waves propagate outwards through the disc, through gas that rotates

slower than the planet, they add angular momentum to the gas. The opposite is true for the

waves propagating inwards. To conserve angular momentum, a back-reaction torque acts on
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the planet. Due to a slight asymmetry, regions from which the density waves are launched

exterior to the planet are closer to the planet than the ones interior to it. Consequently, the

net torque acting on the planet causes it to move inwards. A planet also interacts with the

material near its orbit, i.e., the material that corotates with it. The torque that acts on the

planet from the corotation region is sensitive to the disc structure, and can also act to drive

outwards planet migration (e.g. Paardekooper and Mellema 2006). At some locations then,

such as the inner disc edge, the net torque may be zero, and migration stalls (Masset et al.

2006). It is thus possible that super-Earths form at an orbital distance different to the one we

observe today, and then migrate inwards through gravitational interactions with the disc (e.g.

Terquem and Papaloizou 2007; Ogihara and Ida 2009; Cossou et al. 2014).

Super-Earths might form more easily at larger orbital distances due to several factors. Fur-

ther away from the star there is more material to form planets. Observations of protoplanetary

discs show that the radial surface density profiles are shallow, so the amount of mass available

at a given orbital distance increases radially outwards (typically Σprq9r�1, e.g. Williams and

Cieza 2011, although, note that there is a large spread in the observed Σprq profiles, and also

that such observations are limited to the outer regions of discs). From theoretical models, in the

MMSN, for example, there is enough mass to form the super-Earths at a few AU from the star

(Schlichting 2014). Moreover, beyond the water ice line, where the temperature is low enough

for water to condense into ice (see Fig. 1.7), the amount of solids increases by a factor of 2–4

(Lodders 2003). Furthermore, the proximity of the water ice line in particular could be fertile

ground for the further growth of radially drifting pebbles, overcoming the dust growth barriers

discussed in Section 1.2.4 (Ida and Guillot 2016; Drazkowska and Alibert 2017; Schoonenberg

and Ormel 2017; Schoonenberg et al. 2018; 2019). Additionally, larger solid bodies can grow

by capturing and accreting the pebbles, and this process is also thought to be more efficient if

the pebbles are icy (Morbidelli et al. 2015). Once sufficiently large bodies form near or beyond

the ice line, they migrate inwards, concurrently growing further by colliding and merging with

each other. This typically results in a system of super-Earth-sized planets tightly packed near

the inner disc edge (Terquem and Papaloizou 2007; Ogihara and Ida 2009; Cossou et al. 2014).

There are two main arguments against the migration scenario. First, as a system of plan-

ets collectively migrates inwards, it forms a resonant chain (e.g. Cresswell and Nelson 2006;

Terquem and Papaloizou 2007; Ogihara and Ida 2009; Ida and Lin 2010). Most of the observed

close-in super-Earths do not lie in such resonant orbits (Burke et al. 2014). The most promis-

ing mechanism to break the resonant chains (i.e., to bring the theory in agreement with the

data) is that once the gaseous disc dissipates, planetary systems become dynamically unstable

and go through one last phase of scattering and collisions. If this happens, the final planetary

system is no longer in resonance (Terquem and Papaloizou 2007; Ida and Lin 2010; Cossou

et al. 2014; Coleman and Nelson 2016). How often this happens in real systems is, however,

unclear. Matching the observed properties of super-Earth systems requires 95% of the systems

to become unstable, whereas in simulated systems this number ranges from 45% to 95% de-
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pending on uncertain model parameters (Izidoro et al. 2017; 2019). Moreover, it is generally

found that such a phase of giant impacts strips the planets of their atmospheres (Inamdar and

Schlichting 2015; Poon et al. 2020), whereas a large number of the close-in super-Earths have

significant H/He envelopes (admittedly, some authors argue that super-Earths can efficiently

accrete their atmospheres even with very little gas remaining in the disc; Lee and Chiang 2016).

It is important to add, however, that convergent migration which leads to planets in resonance

is a feature of migration inside viscous (turbulent) discs. Predictions differ in simulations of

planet migration inside inviscid (laminar) discs (e.g. those that accrete primarily via magne-

tohydrodynamic winds or Hall-driven radial flows, Nelson 2018). In inviscid discs, systems of

super-Earths do not end up in resonances in the first place (McNally et al. 2019), and so the

giant impact phase need not happen.

The second argument against the migration scenario is related to the composition of the

planets. If the embryos of the super-Earths form near or outside the water ice line, the super-

Earths should be water-rich (Ogihara and Ida 2009; McNeil and Nelson 2010; Izidoro et al.

2019). This is the case even if planet embryos form both inside and outside the ice line, as the

water-rich embryos further out migrate inwards and collide with the purely rocky ones (Izidoro

et al. 2019). In contrast, the solid cores of the super-Earths are inferred to be consistent with a

rock-iron, Earth-like composition, as discussed in Section 1.1. This problem for the migration

scenario seems inescapable at present.

1.3.2. Formation in the inner disc

The Earth-like composition of the super-Earths implies that they form near their present orbits,

or at the very least inside the water ice line. As discussed above, formation of super-Earths at

short orbital distances requires a delivery of solid material to the inner disc from the outer. It

has been proposed that this delivery happens in the form of pebbles that radially drift inwards

due to gas drag, and whose radial drift is stopped or slowed down at short orbital distances

(Hansen and Murray 2012; Boley and Ford 2013; Chatterjee and Tan 2014, see also Kretke

et al. (2009)). Radially drifting pebbles are stripped of their water ice at the water ice line,

but up to a half of their material is in the form of silicates and iron (Lodders 2003), which

continues its radial drift inwards.

The pebble-driven formation of the super-Earths in the inner disc has been mostly explored

within the so-called inside-out planet formation scenario (IOPF; Chatterjee and Tan 2014;

2015; Hu et al. 2016; 2018). In this scenario, radially-drifting pebbles halt their drift in a local

gas pressure maximum present in the inner disc (as inwards of the pressure maximum radial

drift switches direction; see discussion in Section 1.2.4 and Fig. 1.6). Such a local gas pressure

maximum is expected to arise in the inner disc, if the disc is in steady state and if gas accretion

is driven by the MRI. As discussed in Section 1.2.3, MRI-driven viscosity (and hence accretion

efficiency) is expected to decrease with increasing distance from the star as the disc transitions
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from being hot and thermally-ionized to cold and weakly ionized. To maintain a steady state,

i.e. a constant gas accretion rate, eq. (1.13) implies that gas surface density should increase

outwards in this region. The viscosity reaches a minimum at the inner edge of the MRI dead

zone (Fig. 1.5). At that location then, one expects a local maximum in both gas surface density

and gas pressure. The location of this pressure maximum is estimated to be at an orbital

distance of a few tenths of an AU (Gammie 1996; Chatterjee and Tan 2014), roughly consistent

with the orbital distances of the super-Earths.

If a local gas pressure maximum can indeed trap radially drifting pebbles, enough solids

could accumulate over time to form a planet. One suggestion is that pebbles accumulate at

the pressure maximum until the resulting ring of pebbles becomes gravitationally unstable and

collapses into a planet-sized body (Chatterjee and Tan 2014). In IOPF, once the planet forms,

it is not expected to migrate inwards, as it remains trapped inside the gas surface density

maximum at which it formed (Hu et al. 2016). This surface density maximum acts as a trap for

the planet in the same manner as the disc inner edge (Masset et al. 2006). Instead, the planet is

expected to carve out a gap in the disc (Chatterjee and Tan 2014; Hu et al. 2016). It has been

hypothesized that the material interior to the gap would then accrete onto the star, leaving

the material exterior to the gap exposed to stellar X-rays. Stellar X-rays would ionize the

innermost region of the remnant disc, pushing the inner edge of the MRI dead zone outwards.

A second planet may then form at the new local gas pressure maximum, and the process may

be repeated for the third planet etc. (i.e., the planet system is formed inside-out). However,

it is not clear that super-Earths formed via IOPF would indeed be immune to migration. The

MRI-induced planet trap is expected to move inwards as the disc evolves, and the planet would

move with it (Coleman and Nelson 2014).

Formation of the super-Earths in the inner disc has been explored in much less detail,

yet it appears necessary to explain the rocky composition of these planets. In particular, the

structure of an MRI-accreting inner disc has not been modelled in detail, and it is not clear

if temperatures remain high enough in the inner disc for the local gas pressure maximum to

persist throughout the disc lifetime. Similarly, the hypothesis that the MRI-induced pressure

maximum leads to pebble accumulation remains to be tested, and the growth of pebbles to

larger bodies investigated.

1.4. Thesis outline

The aim of this thesis is to investigate the structure of the innermost regions of protoplanetary

discs and to explore if these regions can support formation of the close-in super-Earths. The

first question to consider is if the inner edge of the MRI dead zone, and the local gas pressure

maximum, indeed occur at orbital distances at which we observe the close-in super-Earths.

In Chapter 2 I present theoretical models of the inner regions of viscously accreting discs in
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which the viscosity is self-consistently calculated from the criteria for the onset of the MRI.

Then, Chapter 3 deals with the question of whether such an MRI-accreting inner disc leads

to accumulation of dust. Assuming that super-Earth-sized solid planet cores do form in the

MRI-accreting inner disc, in Chapter 4 I investigate accretion of gas onto these cores, i.e. the

formation of planet atmospheres. The atmospheres of the super-Earths affect greatly their radii,

and coupling the accreted atmospheres with a simple model of their subsequent evolution allows

comparison to the observed planet properties. The models presented in Chapter 2 adopt many

assumptions about the disc structure, making the problem tractable enough for a preliminary

study. These assumptions are lifted in Chapter 5, which presents a detailed model of disc

physical and chemical structure. Then, in Chapter 6 I investigate how this new model depends

on various disc and stellar parameters. Finally, in Chapter 7 I summarise the main findings

and discuss the remaining open problems.
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2 MRI-accreting inner disc

2.1. Introduction

For the super-Earths to form near their present short orbits, the inner protoplanetary disc

must become enriched in solids. This may happen via the following process. Small solids (dust

grains, or pebbles) radially drift through protoplanetary discs towards the star due to gas drag.

Concurrently, in steady state, the inner protoplanetary disc is expected to feature a local gas

pressure maximum, at the boundary between the MRI-active and the MRI-dead zones. This

pressure maximum may trap the radially-drifting pebbles, and super-Earths might then form

from the accumulated pebbles (e.g. Chatterjee and Tan 2014). To investigate whether the inner

disc indeed features a local gas pressure maximum, I produce models of the inner disc in which

the disc accretes viscously via turbulence induced by the MRI.

The boundary between the MRI-active and the MRI-dead zone in the inner disc has been

previously studied using numerical MHD simulations (Dzyurkevich et al. 2010; Flock et al.

2017). These simulations can directly probe the turbulent motions of the fluid and the evolution

of the magnetic field. However, they are computationally expensive; thus, they either use a

fixed, prescribed temperature profile (Dzyurkevich et al. 2010), or cannot be run for long enough

to reach a steady state (Flock et al. 2017). As such, they can be used to study the formation

of the pressure maximum at this boundary, but they cannot predict its location in a real,

steady-state disc. Additionally, the cited studies only consider the MRI-dead zone arising due

to Ohmic diffusion, whereas ambipolar diffusion can also suppress the MRI.

The formation of the pressure maximum due to the MRI can also be studied using much

simpler and computationally cheaper viscous disc models (e.g. Terquem 2008; Kretke and Lin

2007; Kretke et al. 2009; Kretke and Lin 2010; Chatterjee and Tan 2014). This is achieved

by parametrizing the viscosity arising from the MRI as a function of disc structure parameters

(e.g. temperature, density). However, previous studies either adopt simplified parametrizations

that do not consider the detailed physics of gas ionization and the coupling between the gas

and the magnetic field, or they make ad hoc assumptions about the magnetic field strength.

In the study presented in this chapter, viscosity is parametrized based on MRI criteria

extracted from MHD simulations (Sano and Stone 2002; Turner et al. 2007; Bai and Stone 2011;

Bai 2011a), with a detailed calculation of magnetic resistivities and a physically motivated

choice of the magnetic field strength at every orbital radius. Additionally, both Ohmic and
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ambipolar diffusion are taken into account. On the other hand, I use a simplified model for

the disc structure. It is assumed that the inner disc is vertically isothermal, disc opacity is

a constant, and there is only a single ionized species. Both heating by stellar irradiation and

ionization of the disc by stellar X-rays are neglected. These are considerable simplifications,

which will be re-considered in Chapter 5. However, the models presented here still capture the

basic physics expected to set the structure of the inner disc, and the simplicity allows clear

insights into the MRI-driven accretion in the inner disc and the inner disc structure.

2.2. Methods

In Section 2.2.1 I discuss the adopted model of the disc structure, Section 2.2.2 explains how

a viscosity driven by the MRI is calculated, and Section 2.2.3 how the disc structure and the

MRI viscosity are coupled to obtain a self-consistent model.

2.2.1. Standard α-disc model

To model the disc structure, I employ the standard Shakura-Sunyaev α-disc model. This is

a model of a thin steady-state viscously accreting disc, with the viscosity parametrized using

the Shakura and Sunyaev (1973) α parameter. The basics of thin viscous discs were covered

in the previous Chapter. In this model it is further assumed that the heat released through

viscous dissipation is transported vertically by radiation and that the disc is optically thick,

i.e. that the optical depth at disc midplane τmid � 1
2
Σκ " 1. Here, κ is the Rosseland-mean

opacity, assumed to be vertically constant. Then, the disc midplane temperature is given by

(e.g. Hubeny 1990)

σT 4
mid �

3

8
τmidFacc, (2.1)

where Facc is the total heat flux leaving through one side of the disc, given by eq. (1.15).

Equation (2.1) implies that the temperature varies with optical depth, and thus varies with

height above disc midplane. However, the dependence is weak, T9τ�1{4. Hence, in this model

it is assumed that the disc is vertically isothermal with the temperature at all heights equal

to the temperature at the midplane. The solution to the hydrostatic equilibrium, eq. (1.2), is

then given by

P pr, zq � Pmidprqe�
z2

H2 , (2.2)

where Pmid is the pressure at midplane and H � ?
2cs{Ω is the disc pressure scale height.

Adopting the ideal gas law, an analogous expression describes the vertical density (ρ) profile,

with

ρmid � Σ?
πH

. (2.3)

Gathering expressions for the midplane density and temperature, eqns. (2.3) and (2.1), total
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viscous dissipation, eq. (1.15), the relation between the disc surface density, vertically-averaged

viscosity and accretion rate, eq. (1.13), and the parametrization of viscosity, eq. (1.16), one

obtains (e.g. Hu et al. 2016)

Σ � 27{5

36{5π3{5
pµmp

kB
q4{5G1{5σ

1{5
SBκ

�1{5ᾱ�4{5M1{5
� pfr 9Mq3{5r�3{5, (2.4)

ρmid � 28{5

313{10π9{10
pµmp

kB
q6{5G11{20σ

3{10
SB κ�3{10ᾱ�7{10M11{20

� pfr 9Mq2{5r�33{20, (2.5)

Tmid � 31{5

27{5π2{5
pµmp

kB
q1{5G3{10σ

�1{5
SB κ1{5ᾱ�1{5M3{10

� pfr 9Mq2{5r�9{10, (2.6)

Pmid � 21{5

311{10π13{10
pµmp

kB
q2{5G17{20σ

1{10
SB κ�1{10ᾱ�9{10M17{20

� pfr 9Mq4{5r�51{20, (2.7)

where fr � 1�
b

R�
r

. This series of expressions show simple relationships between the quantities

describing the disc structure and stellar parameters, disc accretion rate 9M , opacity κ and

vertically-averaged viscosity parameter ᾱ. The latter is in general a pressure-weighted average,

and in the case of a vertically-isothermal disc equal to a density-weighted average,

ᾱ �
³8
�8

αPdz³8
�8

Pdz
�
³8
�8

αρdz³8
�8

ρdz
. (2.8)

In principle, both the opacity κ and viscosity parameter ᾱ are functions of the disc structure.

For simplicity, in this work it is assumed that the opacity is constant everywhere in the disc and

equals κ � 10 cm2 g�1, consistent with typical properties of small dust grains in protoplanetary

discs (e.g. Wood et al. 2002). The dependence of the viscosity parameter ᾱ on the disc structure

is, on the other hand, the key ingredient of the model presented here and is discussed in the

next section.

2.2.2. MRI-driven viscosity parameter α

In the following, I discuss the criteria for the onset of the MRI, calculation of the ionization

state of the gas, calculation of the coupling between the gas and the magnetic field (i.e., the

resistivities), and finally the calculation of the viscosity parameter α due to the MRI.

2.2.2.1. Criteria

The viscosity that the MRI induces depends, first of all, on whether a certain region of the disc

is unstable to the MRI. As discussed in Chapter 1, there are three effects that can modify the

onset of the MRI: Ohmic diffusion, ambipolar diffusion and the Hall effect. Ohmic diffusion can

suppress the MRI entirely by decoupling the magnetic field from the gas. Numerical simulations

(Sano and Stone 2002; Turner et al. 2007) show that Ohmic diffusion does not suppress the
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MRI if

Λ � v2
Az

ηOΩ
¡ 1, (2.9)

where Λ is the Ohmic Elsasser number, ηO is the Ohmic resistivity and vAz the vertical com-

ponent of the local Alfven velocity (vAz � Bz{
?

4πρ, where Bz is the vertical component of the

magnetic field strength and ρ is the local gas density). This criterion expresses the requirement

that for the MRI to be active, the MRI growth rate must be larger than the Ohmic diffusion

rate (Fleming et al. 2000). The growth rate of the fastest-growing MRI mode is �Ω and the

wavenumber of that mode is k � Ω{vAz. From eq. (1.18), one can also see that for a given

wavenumber k, the Ohmic diffusion rate is �ηOk2. Then, the comparison of the two rates

yields eq. (2.9). Note that the dependence on the vertical component of the Alfven velocity

vAz (and the magnetic field strength Bz), rather than the total vA (and the total magnetic

field strength B), comes from the notion that the Ohmic diffusion affects smaller lengthscale

perturbations most easily, and in a thin disc those are in the vertical direction (Turner et al.

2007).

Ambipolar diffusion may also suppress the MRI. A criterion analogous to the above has

been investigated (Hawley and Stone 1998) using the ambipolar Elsasser number

Am � v2
A

ηAΩ
, (2.10)

where ηA is the ambipolar resistivity. However, Bai and Stone (2011) showed that when ions

and neutrals in the gas are strongly coupled, behaving as a single fluid under the influence of the

magnetic field, ambipolar diffusion will not suppress the MRI even if Am   1, if the magnetic

pressure is sufficiently weak compared to the gas pressure. That is, for a plasma β-parameter,

β � P {PB, where PB � B2{8π is the magnetic field pressure, the MRI will not be suppressed

if

β ¡ βmin, (2.11)

where the minimum value βmin is given by

βminpAmq �
��

50

Am1.2


2

�
�

8

Am0.3
� 1


2
�1{2

. (2.12)

For the ions and neutrals to be strongly coupled it is required that the density of ions be much

lower than the density of neutrals, and that the recombination timescale trcb for ions be much

shorter than the dynamical timescale, i.e. trcb ! tdyn � 1{Ω. I assume that both of these

conditions are fulfilled, and a posteriori check if this is true. Furthermore, note that while the

Ohmic Elsasser number depends on the vertical component of the magnetic field strength Bz,

the ambipolar Elsasser number depends on the total strength B. The two are not independent,

however, and numerical simulations show that B2
z � B2{25 Sano et al. (2004).
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The Hall effect can also significantly modify the behaviour of the gas and the magnetic

field (Lesur et al. 2014). However, its effects are non-diffusive, non-trivial and also dependent

on the alignment between the rotation axis of the disc and the magnetic field threading the

disc. Therefore, it is neglected in this study, and its importance for our results will be only a

posteriori investigated by considering the Hall Elsasser number,

χ � v2
A

|ηH|Ω . (2.13)

In summary, if conditions given by eq. (2.9) and (2.11) are both fulfilled at some location

in the disc, it is assumed that the MRI is active there. A region where the Ohmic criterion,

eq. (2.9), is not fulfilled is called a dead zone (Gammie 1996). A region where the ambipolar

criterion, eq. (2.11), is not fulfilled will be referred to as a zombie zone (following Mohanty et al.

2013). Note that a zombie zone is qualitatively the same as a dead zone, as in both regions the

MRI is fully suppressed.

2.2.2.2. Ionization

For simplicity, in this chapter I only consider thermal (collisional) ionization. The inner edge

of the dead zone is expected to occur at the orbital radius at which the thermal ionization

becomes inefficient, due to the temperature decreasing with distance from the star. The tem-

perature below which thermal ionization becomes inefficient is determined by the ionization

potential of a given chemical species. Therefore, the location of the inner edge of the dead

zone is determined by the lowest ionization potential among the species that are abundant in

the inner disc. In terms of the lowest ionization potential, the top three species overall are

rubidium, caesium and potassium; however, the abundance of potassium is orders of magni-

tude higher than that of rubidium or caesium (Lodders 2003). Sodium, which has the fourth

lowest ionization potential, is more abundant than potassium. However, it becomes efficiently

ionized at temperatures significantly higher than the one needed for potassium, and so sodium

ions only become important radially closer to the star. Therefore, in this chapter, I consider

thermal ionization of potassium only.

If both ionization and recombination are driven by gas-phase collisions only, the equilibrium

number densities of free electrons (ne), atomic ions (ni) and neutral atoms (n0) are determined

by the Saha equation,
ne ni

n0

� 1

λ3
e

ge gi

g0

exp

� �I
kBT



, (2.14)

where λe �
a
h2{p2πmekBT q is the thermal de Broglie wavelength of electrons of mass me;

ge � 2, g0 and gi are the degeneracy of states for free electrons, neutrals and ions; and I is the

ionization potential. For potassium I � 4.34 eV, and it is assumed that gi{g0 is the same as

for sodium, gi{g0 � 1{2 (Rouse 1961). Since it is assumed that potassium is the only ionized
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species, charge conservation requires that ne � ni. Then, it also follows that n0 � nK,tot � ne,

where nK,tot is the total number density of potassium ions and neutrals (nK,tot � 1.97�10�7nH2 ,

following Keith and Wardle 2014).

Finally, since it is assumed that free electrons can only recombine in collisions with potas-

sium ions, the recombination rate is given by dne{dt � keineni, where kei � 3�10�11{?T cm3 s�1

(Ilgner and Nelson 2006). The recombination timescale is then trcb � ne{pdne{dtq � 1{pkeineq.

2.2.2.3. Resistivities

In this work, The Ohmic, Hall and ambipolar resistivities are calculated following Wardle

(2007), first expressing them as

ηO � c2

4πσO

, (2.15)

ηH � c2

4πσK

σH

σK
, (2.16)

ηA � c2

4πσK

σP

σK
� ηO. (2.17)

where σO, σH and σP are the Ohmic, Hall and Pederson conductivities, respectively, and σK �a
σ2

H � σ2
P is the total conductivity perpendicular to the magnetic field. The conductivites are

given by

σO � ec

B

¸
j

nj |Zj| βj (2.18)

σH � ec

B

¸
j

nj Zj
1� β2

j

(2.19)

σP � ec

B

¸
j

nj |Zj| βj
1� β2

j

(2.20)

where the sums are over all charged species j (here, these are free electrons and potassium

ions), mj is particle mass, nj the number density, and Zje the charge of each species. Further,

βj is the Hall parameter, the ratio of the gyrofrequency of a particle to its collision frequency

with neutral particles. It is given by

βj � |Zj|eB
mj c

1

γjρn

, (2.21)

where γj is the drag coefficient and ρn is the mass density of neutral particles (and γjρn the

collision frequency with neutrals). The drag coefficient γj is calculated as

γj � xσvyj
mj �mn

, (2.22)
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wheremn � µmH is the mean neutral particle mass, and xσvyj the rate coefficient for momentum

transfer in collisions between charged species j and neutrals. The latter are given by Wardle

(1999),

xσvye � 10�15

�
128 kBT

9πme


1{2

cm3 s�1, (2.23)

xσvyi � 1.6� 10�9 cm3 s�1, (2.24)

for electrons and ions, respectively.

2.2.2.4. Viscosity

If criteria (2.9) and (2.11) are met, the MRI induces turbulence. Turbulence produces a time-

and volume-averaged shear stress, measured in numerical simulations (Sano et al. 2004) to be

! Wrφ "� �1

2
! PB " . (2.25)

In the framework of viscous accretion discs, at any location in the disc the shear stress is given

by eq. (1.4),

Wrφ � �3

2
αP, (2.26)

where I have substituted viscosity in terms of the Shakura-Sunyaev α parameter using eq. (1.16).

Therefore, the MRI-driven α viscosity is

α � 1

3

PB
P

� 1

3β
. (2.27)

The time and volume average symbols have been dropped here for simplicity, and it is implicitly

assumed that at any location in the disc α, PB and P are averages over some finite volume and

time.

Furthermore, numerical simulations show that when the MRI is suppressed by Ohmic dif-

fusion (i.e., in the dead zone, where criterion (2.9) is not met), there is a non-zero shear stress

induced by the adjacent MRI-active zone. The resulting viscosity parameter in the dead zone

is of the order of αDZ � 10�4 (e.g. Dzyurkevich et al. 2010). Purely hydrodynamic instabilities

may also produce a weak stress in the dead zone (e.g. Lesur and Papaloizou 2010; Nelson et al.

2013; Stoll and Kley 2014). In this work I assume that the viscosity parameter is constant in

the dead zone, and explore a range of values (αDZ � 10�5 � 10�3). For simplicity, the same

value is adopted for the viscosity parameter in the zombie zone (where the MRI is suppressed

by ambipolar diffusion). Additionally, in this model αDZ also denotes a minimum value of α.

That is, even if the Ohmic and ambipolar criteria indicate that the MRI should be active, if

eq. (2.27) yields a viscosity parameter lower than αDZ, it is assumed that α � αDZ.

The criteria for the MRI and the value of the MRI-driven viscosity in the active zone all
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depend on the magnetic field strength. The Ohmic and ambipolar criterion are functions of the

vertical component of the magnetic field strength Bz and the total strength B, respectively,

and the value of α in the active zone is also a function of the total strength B. As already noted

above, simulations show that B2
z � B2{25 (Sano et al. 2004), and so one only needs to consider

either Bz or B. Furthermore, following Bai (2011a), I assume that the magnetic field strength is

vertically constant. Then, at any orbital radius, one only needs to consider a single value of B.

In this model, this value is chosen at each radius such that maximizes the accretion efficiency

(viscosity parameter). How exactly this is done is described further below; here I only discuss

the motivation behind this choice. First note that, as discussed in Chapter 1, an arbitrarily

weak magnetic field is required to start the instability. The induced magnetohydrodynamic

turbulence amplifies the magnetic field strength. This cannot go on infinitely, as there is a

maximum B at which the MRI may be active without being quenched by ambipolar diffusion.

Choosing this maximum B would, by definition, yield no active MRI. Instead, it is assumed

that the MRI amplifies the field until a point at which further increase in the magnetic field

strength implies a lower accretion efficiency given the above MRI criteria, i.e., it is assumed

that B is a monotonously increasing function of the accretion efficiency. Similar arguments

were employed by Bai (2011a) and Mohanty et al. (2013).

Finally, in the standard α-disc model discussed above, at any given orbital radius the disc

structure depends on the vertically-averaged viscosity parameter ᾱ, defined in eq. (2.8). The

MRI-driven α varies with height above disc midplane. At a given value of the magnetic field

strength, the Ohmic and ambipolar criteria depend on gas pressure, density and resistivities

(which are also functions of the ionization levels). In general, for a given disc structure (tem-

perature, pressure and density) one could evaluate the ionization levels, resistivities and the

MRI criteria at a number of points above disc midplane. Then, in the MRI-active zones α

follows from eq. (2.27), and in the MRI-dead and zombie zones α � αDZ. A pressure-weighted

(or a density-weighted) average ᾱ could then be evaluated numerically. However, the obtained

structure of the different MRI zones allows for some simplifications. It is found that there is,

generally, a dead zone around disc midplane, a zombie zone in the disc upper layers, and an

active zone in between. Therefore, to calculate ᾱ from a given disc structure, first I use a

root-finding algorithm (specifically, the bisection method) to find the height of the dead zone,

i.e., the height at which the Ohmic criterion eq. (2.9) is fulfilled (hDZ, which may be zero). The

same is repeated to find the height of the boundary between the active and the zombie zone

(hZZ). The vertically-averaged MRI-driven ᾱ is then given by

ᾱ �
³hDZ

0
αDZPdz �

³hZZ

hDZ

1
3
PBdz �

³8
hZZ

αDZPdz³8
0
Pdz

, (2.28)

where I use eq. (2.27) for the value of α in the active zone. Since PB is vertically-constant, the

second term in the numerator is calculated trivially. Furthermore, since it is assumed that the
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disc is vertically isothermal, pressure as a function of height is given by eq. (2.2) and so the rest

of the integrals are calculated using the well-known Error function.

2.2.3. Self-consistent α-disc model

The key parameters of the model presented here are the disc accretion rate 9M , stellar mass M�,

stellar radius R� and the value of viscosity parameter in the dead zone αDZ. If these parameters

are specified, a self-consistent solution for the disc structure can be obtained as follows. At a

given orbital radius and an input vertically-averaged viscosity parameter ᾱin, equations (2.4,

2.2), along with the ideal gas law, yield the temperature, pressure and density at an arbitrary

height above disc midplane. Then, as described in Section 2.2.2, this inferred disc structure

can be used to calculate the MRI-driven ᾱout. At a fixed value of the magnetic field strength

B, I use a root-finding method (bisection) to find the self-consistent value ᾱin � ᾱout.

At a fixed value of B, the solution appears to always be unique. However, there is an infinite

number of solutions with varying B. At low enough and high enough B the only solution is the

one where the MRI is completely suppressed, ᾱin � ᾱout � αDZ. In the innermost disc, i.e., at

short orbital radii, there is a range of B for which the MRI is active, and ᾱin � ᾱout � ᾱ peaks

at some value of B. This determines our chosen solution. At larger orbital radii, the MRI is

suppressed at any value of B, as expected in the absence of non-thermal sources of ionization;

there ᾱ � αDZ. At any radius, a scan over B is performed in the range 10�5 � 103 G. If there

is a range of values for which an MRI-active zone exists, ᾱ is maximized as a function of B

within that range.

The numerical procedures described in this section have been implemented as an extension

of the code originally developed by S. Mohanty.

2.3. Results

Section 2.3.1 presents an in-depth analysis of the ionization, MRI-driven viscosity and the

structure of the disc, for a fiducial model with a gas accretion rate 9M � 10�9 Md yr�1, stellar

mass M� � 1 Md and a dead-zone viscosity parameter αDZ � 10�4. I also analyse the stability

of the obtained steady-state disc structure to surface density perturbations, and consider the

validity of the strong-coupling assumption. In Section 2.3.2, I consider the effects of varying the

above three model parameters. For a Solar mass star (the fiducial choice), I assume the stellar

radius is R� � 2.33 Rd, based on the stellar models of Baraffe et al. (1998) and a stellar age of

1 Myr. In all models the inner disc boundary is at the stellar radius and the outer boundary is

at the orbital radius outwards from which the MRI is completely suppressed.
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Figure 2.1: Fractional ionization (ne{nH2) and molecular hydrogen density (nH2) as a function
of height above disc midplane (in units of disc scale height zH at each radius), at different
orbital radii for the fiducial disc model.

2.3.1. Fiducial model

2.3.1.1. Ionization and resistivities

Molecular hydrogen is by far the most abundant species in discs, and so the number density

of neutral particles and the total number density of particles are approximately equal to that

of molecular hydrogen, nn � ntot � nH2 . Therefore, when considering the ionization levels in

the disc, the relevant quantity is the ratio ne{nH2 (where ne � n�, since potassium is the only

ionized species). Fig. 2.1 shows ne{nH2 for the fiducial disc model as a function of height above

disc midplane (z), at different orbital radii. For reference, also shown is the number density

of molecular hydrogen (nH2). Two trends emerge. First, as expected, the fractional ionization

near the disc midplane (at small heights) decreases with orbital radius (this is further discussed

below). Second, at all radii ne{nH2 increases with height above the midplane. The latter follows

simply from the solution to the Saha equation: since the temperature is vertically constant, and

density decreases with height, the fraction ne{nH2 increases with height. As nH2 Ñ 0 towards

disc surface, ne Ñ nK.

Fig. 2.2 shows the resulting ambipolar, Ohmic and Hall resistivities (ηA, ηO and |ηH|, respec-

tively). The Ohmic resitivity is inversely proportional to the fractional ionization and directly

proportional to the density of neutrals (through its dependence on the Hall parameter of each

charged species). As a result, the Ohmic resitivity decreases with height above disc midplane at

all radii. The reverse is true for the ambipolar and Hall resistivities, which both increase with

the decreasing gas density and thus with height. To compare the three resistivities, Fig. 2.3
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Figure 2.2: Ambipolar (ηA), Ohmic (ηO) and Hall (|ηH|) resistivities as a function of height
above disc midplane (in units of disc scale height zH at each radius), at different orbital radii
for the fiducial disc model.

shows in different colours different regions of the disc according to the relative ratios between

the three resistivities. High in the disc atmosphere ambipolar resistivity dominates, and lower

below, in the bulk of the disc, Hall resistivity. For this fiducial model, Ohmic resistivity is not

dominant at any location in the disc.

2.3.1.2. Active, dead and zombie zones

Fig. 2.4 shows the regions in the disc where the MRI is active, the dead zone (where the MRI

is suppressed due to Ohmic diffusion, and the Ohmic Elsasser number Λ   1), the zombie zone

(where the MRI is suppressed due to ambipolar diffusion, and the plasma parameter β   βmin).

Also shown is the Hall zone (where Hall Elsasser number χ   1), where the Hall effect can be

expected to alter the MRI and the disc structure. This is, however, neglected, and the Hall

zone is shown only as an indication of where the results presented here might be inapplicable

(see discussion at the end of this section). Furthermore, the midplane values of ne{nH2 , β and

Λ are shown as functions of radius in Fig. 2.5, and Fig. 2.6 shows the magnetic field strength

B.

From the inner disc edge to the outer edge where the MRI becomes completely suppressed,

three distinct regions appear as a result of the competing influences of Ohmic and ambipolar

diffusion. From the inner disc edge to about 0.05 AU, the height of the active zone is limited by

the ambipolar diffusion only. Due to the high ionization levels near disc midplane, as well as

low densities (discussed further below), Ohmic resistivity is low in this region, and Λ " 1. To
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Figure 2.3: Relative importance of the Ohmic (ηO), Hall (|ηH|) and ambipolar (ηA) resistivities
as a function of location in the disc, for the fiducial disc model. The top panel shows vertical
location in units of height above disc midplane; the bottom panel shows vertical location in units
of column density measured from the disc surface. The dashed line in both panels indicates
one pressure scale height.
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Figure 2.4: The MRI-active (Λ ¡ 1 and β ¡ βmin), dead (Λ   1), zombie (β   βmin) and Hall
(χ   1) zones as a function of disk location. The top panel shows vertical location in units
of height above disc midplane; the bottom panel shows vertical location in units of column
density measured from the disc surface. The dashed line in both panels indicates one pressure
scale height. Note that the active zone exists at all orbital radii shown here, although beyond
0.09 AU it is a thin layer sandwiched between the dead and zombie zones
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Figure 2.5: Top: Fractional abundance of free electrons as a function of radius, expressed
relative to both the number density of hydrogen molecules (ne{nH2 ; left axis) and number
density of potassium (ne{nK; right axis). Middle: Plasma β parameter, minimum value βmin

required for active MRI, and ambipolar Elsasser number Am. Bottom: Ohmic Elsasser number
Λ.
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Figure 2.6: Magnetic field strength B as a function of radius, for the fiducial disc model. Filled
circles are the model results, and the solid line is a combined polynomial fit to these results.

maintain the highest accretion efficiency at each radius against ambipolar diffusion, magnetic

field strength decreases with radius.

From 0.05 AU to about 0.09 AU, Λ � 1. This region still features no dead zone. However,

Ohmic diffusion indirectly influences the disc structure. The most efficiently accreting state

in this region is that in which the magnetic field strength B increases with radius, to keep

midplane Λ at unity. On the other hand, this results in an increased suppression of the MRI

by ambipolar diffusion, and so the active zone diminishes in this region.

At about 0.09 AU, the solution changes qualitatively. The MRI-active zone is here a thin

layer between the dead zone around midplane, and the zombie zone in the disc upper layers.

As the ionization levels and the magnetic field strength drop even further, this layer becomes

thinner and thinner, and at about 0.25 AU the MRI is completely suppressed.

The Hall zone mostly overlaps with the dead zone in Fig. 2.4, and also covers parts of the thin

active layer. The Hall effect on accretion is dependent on the alignment between the magnetic

field threading the disc and the rotation axis of the disc. It could either act to completely

suppress the MRI (moving the outer boundary of the model shown here inwards), or to drive

laminar accretion near disc midplane. In the latter case, the influence on the disc structure

would depend on the ratio of the accretion efficiencies in the MRI-active and the Hall zone.

The fact that the Hall zone overlaps with a significant part of (although not with the entire)

inner disc indicates importance of including it in future studies. However, as the accretion is

laminar in the Hall-dominated regions, it cannot be trivially accounted for in the viscous disc

framework.

2.3.1.3. Viscosity, disc structure and pressure maximum

The vertically-averaged viscosity parameter ᾱ that results from the discussed structure of active,

dead and zombie zones is shown in Fig. 2.7 as a function of radius. At the inner disc edge, where

nearly all of the potassium is ionized, ᾱ � 0.08. Radially outwards ᾱ decreases until at about
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Figure 2.7: Vertically-averaged viscosity parameter ᾱ as a function of radius for the fiducial
disc model. Filled circles represent the model results; the solid line is a combined polynomial
fit to these results. The outer boundary of the model is at � 0.25 AU, the radius at which ᾱ
decreases to the minimum, dead-zone value αDZ � 10�4. Beyond this radius it is assumed that
ᾱ � αDZ (dashed horizontal line).

0.25 AU it reaches the minimum value ᾱ � αDZ. This is the location at which the thin MRI-

active layer completely disappears in Fig. 2.4. Outwards from this location it is simply assumed

that ᾱ remains at the constant dead-zone value.

Fig. 2.8 shows the resulting disc temperature, midplane density and pressure, and the surface

density, as functions of radius. Most importantly, in line with expectations, the inner disc

features a local gas pressure maximum. The pressure maximum is located at �0.25 AU, where

ᾱ falls to the minimum value. Interestingly, this corresponds to the location where the MRI

becomes suppressed at all heights, but not to the inner edge of the dead zone (which occurs

where the MRI is suppressed at midplane but still survives higher up), which appears at about

0.09 AU (see Fig. 2.4). Therefore, this potential pebble trap lies in the region where the disc

midplane is only weakly turbulent. The location of the pressure maximum is also the location of

the overall maximum in the surface density. Inwards of this location, the MRI-driven accretion

efficiency (i.e., ᾱ) increases; at a constant gas accretion rate, this leads to a decrease in the

surface density. Finally, note that inwards of the pressure maximum, the temperature profile is

nearly flat. The temperature at the location of the pressure maximum is �1000 K, as expected

from the ionization potential of potassium. Outwards from the pressure maximum, temperature

decreases with radius much more steeply.

2.3.1.4. Viscous instability

The models considered here are steady-state models, meaning that all quantities are assumed

to be constant in time, with a gas accretion rate that is also constant at all radii. A viscous disc

that is in steady-state, however, can still be unstable to surface density perturbations (viscously

unstable, Lightman and Eardley 1974; Pringle 1981). Consider the time evolution equation for
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Figure 2.8: Various disc structure quantities as a function of radius, for the fiducial disc model.
Top left: (Vertically constant) temperature. Top right and bottom left: Midplane pressure
and midplane density. Bottom right: Surface density. Solid lines show the results of the self-
consistent MRI-accreting model, ending at the radius where ᾱ falls to αDZ. Beyond this radius,
dashed lines show the results based on an assumption that ᾱ � αDZ.

the surface density, eq. (1.11). In steady-state, BΣ{Bt � 0, corresponding to a solution Σ � Σ0.

Then, consider a small perturbation, Σ0 Ñ Σ0 � δΣ, leading to a perturbation in x � ν̄Σ,

x0 Ñ x0 � δx, where δx � pBx{BΣqδΣ. Here, note that in a thin disc, both the hydrostatic

and thermal equilibria are established on timescales much shorter than the viscous timescale,

so on a viscous timescale ν̄ can be considered a function of Σ only (at a given orbital radius).

Substituting δΣ, δx into eq. (1.11) yields

Bpδxq
Bt �

� Bx
BΣ



1

r

B
Br
�

3 r1{2 B
Br
�
r1{2 δx

��
. (2.29)

This is a diffusion equation in x, with a diffusion constant Bx{BΣ. If Bx{BΣ ¡ 0, a small

perturbation δx diminishes. However, if Bx{BΣ   0, a small perturbation grows, i.e., leads to

an instability.

This instability criterion can be re-formulated in terms of the steady-state solutions that

are calculated here, if it is assumed that, following the perturbation in the surface density, the

disc viscosity, temperature and the accretion rate quickly evolve to the steady-state solution in

which the surface density equals the perturbed value Σ0 � δΣ. Under that assumption, 9M9x,

and the instability develops if B 9M{BΣ   0, or, equivalently,

BΣ{B 9M   0. (2.30)

The above assumption is likely to hold since the disc viscosity and accretion come from the

MRI, which develops on the dynamical timescale (the thermal timescale also being shorter than
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Figure 2.9: Surface density Σ as a function of radius, for a number of steady-state model
solutions with M� � 1 Md, αDZ � 10�4 and varying accretion rate in the range 9M � 10�9.3 �
10�8.7 Md yr�1. Outwards of �0.03 AU, at a fixed orbital radius the surface density increases
with decreasing accretion rate.

the viscous timescale). Therefore, the steady-state models with varying gas accretion rate can

be used to check if the inner disc is viscously unstable.

This is done in Fig. 2.9 and Fig. 2.10. Fig. 2.9 shows the surface density as a function of

radius for a number of steady-state solutions with varying gas accretion rate around the fiducial

value of 9M � 10�9 Md yr�1. The plot clearly shows that beyond �0.03 AU the surface density

increases with decreasing 9M . Fig. 2.10 shows this more formally, i.e., it shows the derivative

BΣ{B 9M evaluated using steady-state solutions at 9M � 10�9 Md yr�1 � 1%, with BΣ{B 9M   0

outwards of �0.03 AU. Therefore, a large part of the inner disc is unstable to surface density

perturbations, or viscously unstable.

What would be the outcome of this instability? If a positive perturbation in surface density

(i.e., an over-density, δΣ ¡ 0) leads to a lower gas accretion rate, the over-density would grow.

Conversely, if δΣ   0, producing a local under-density, the accretion rate increases, expelling

even more material from the under-density. Therefore, the viscous instability would create

axisymmetric over- and under-densities, i.e., rings and gaps in the disc.

Finally, consider the viscosity ν̄ in terms of the Shakura-Sunyaev ᾱ parameter. The insta-

bility criterion can then be written as (within the steady-state formulation)

Bpln ᾱq
Bpln 9Mq � 2

Bpln csq
Bpln 9Mq ¡ 1. (2.31)

The first and the second term on the left-hand side are plotted in Fig. 2.11 (from the same

calculation as Fig. 2.10). This explicitly shows that it is the dependence of the MRI-driven ᾱ

on the gas accretion rate (and the surface density) that drives the instability, while variations

in the sound speed cs are small.
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Figure 2.10: Derivative |BΣ{B 9M | as a function of radius for the fiducial disc model. The solid
line denotes BΣ{B 9M ¡ 0 (viscously stable) while the dashed line denotes BΣ{B 9M   0 (viscously
unstable). Outwards of �0.03 AU, disc is viscously unstable.

Figure 2.11: Derivatives Bplnᾱq{Bpln 9Mq (top) and 2Bplncsq{Bpln 9Mq (bottom) as a function of
radius for the fiducial disk model.
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Figure 2.12: Rosseland mean opacity (in cm2 g�1) calculated a posteriori for the fiducial disc
model, as a function of disc location (with height in units of vertical column density). The
dashed curve denotes one pressure scale height. Over most of the region of interest in the disc,
the derived opacity is within a factor of two of 10 cm2 g�1, consistent with the a priori assumed
value of opacity.

2.3.1.5. Opacity

In all of the models presented in this chapter, disc opacity is assumed to be a constant, κ �
10 cm2 g�1. In general, disc opacity is a function of pressure and temperature. The adopted

constant value is representative of opacity due to small dust grains. Fig. 2.12 shows an a

posteriori calculation of opacity due to dust grains, and also due to gas atomic and molecular

lines (Zhu et al. 2009), using the disc temperatures and densities inferred from the steady-state

model. In the bulk of the inner disc the calculated value is roughly in agreement with the

adopted value. The disagreement is greatest in the innermost disc, where the temperature is

higher than the sublimation temperature of dust grains, since the opacity adopted in this work

is inaccurate when dust is no longer the contributing species.

2.3.1.6. Validity of the strong-coupling limit

The models presented here assume that ambipolar diffusion suppresses the MRI based on the

criterion given by eq. (2.11). This criterion is based on numerical simulations of the MRI

performed in the strong-coupling limit (referring to the coupling between ions and neutrals in

the gas, and the way both jointly respond to the magnetic field; Bai and Stone 2011). The

strong-coupling limit is valid if ρn " ρi, i.e. if the density of neutrals is much greater than

the density of ions, and if the recombination timescale trcb for ions is much shorter than the

dynamical timescale, i.e. trcb ! tdyn. The first condition is easily fulfilled here, since the only

ionized species is potassium.

To check whether the second condition is fulfilled, we can calculate the recombination

timescale trcb as described in Section 2.2.2.2 and compare it to tdyn. The result is shown

in Fig. 2.13. The region where trcb   tdyn is shown in green here, showing that this condition
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Figure 2.13: Comparison of the recombination timescale (trcb) and the dynamical timescale
(tdyn) as a function of location in the fiducial disk model. The solid black curve denotes the
disc midplane, and the dashed curve denotes one pressure scale height. The green region shows
where trcb   tdyn (and thus where the single-fluid approximation is valid).

is fulfilled only near disc midplane inwards of �0.03 AU. This result indicates that collisional

recombinations are too slow to establish the ionization equilibrium on the orbital timescales (at

which the MRI develops). It thus follows that more realistic (more complex) chemical networks

ought to be considered in order to rely on eq. (2.11) (such as in the work by Bai 2011b).

2.3.2. Varying model parameters

2.3.2.1. Viscosity in the dead zone

In the results presented so far, the viscosity parameter in the dead zone (and the zombie zone)

is assumed to be αDZ � 10�4. However, this is an uncertain parameter, with weak constraints

from numerical simulations. To explore the sensitivity of the inner disc structure to this value,

in Figs. 2.14–2.17 I show the results for two models in which the accretion rate 9M and the

stellar mass M� are the same as in the fiducial model, but viscosity parameter in the dead zone

is taken to be αDZ � 10�5 and 10�3.

Fig. 2.15 shows that, since αDZ is the minimum value of ᾱ, its precise value can drastically

change the location of the pressure maximum rPmax (where ᾱ falls to αDZ). Larger αDZ implies

a smaller rPmax . In fact, since outwards of �0.05 AU ᾱ decreases approximately as a power-law

of radius, there is a simple (approximate) relationship between the two, rPmax9α�1{4
DZ (see also

Fig. 2.17).

In terms of other disc features, the models with varying αDZ appear to be qualitatively the

same to the fiducial model. The value of αDZ does affect the magnetic field strength outwards

from �0.09 AU, where larger αDZ requires a smaller B (shown in Fig. 2.15). This corresponds

to the region where a dead zone exists around disc midplane (see Fig. 2.14). In this region, the

dead-zone viscosity contributes significantly to the total vertically-averaged viscosity parameter.

49



CHAPTER 2. MRI-ACCRETING INNER DISC

Figure 2.14: Same as Fig. 2.4, but now for αDZ � 10�3 (left) and 10�5 (right).

Figure 2.15: Left: Magnetic field strength B as a function of radius. Right: ᾱ as a function
of radius. Both figures show results for the fiducial model, αDZ � 10�4 (filled black circles),
results for αDZ � 10�3 (empty circles) and αDZ � 10�5 (filled grey circles).
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Figure 2.16: Various disc structure quantities as a function of radius: same as Fig. 2.8, but now
for αDZ � 10�3 (left) and 10�5 (right).

Figure 2.17: Radial location of the pressure maximum as a function of αDZ, showing the
approximate power-law dependence rPmax9αDZ

�1{4.
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Figure 2.18: Same as Fig. 2.4, but now for an accretion rate 9M � 10�8 Md yr�1 (left) and
10�10 Md yr�1 (right).

2.3.2.2. Accretion rate

Next, I discuss the effects of varying the gas accretion rate 9M while keeping the stellar mass

M� and the viscosity parameter in the dead zone αDZ constant. Results for a model with
9M � 10�8 Md yr�1 and a model with 9M � 10�10 Md yr�1 are shown in Figs. 2.18–2.22.

The main effect of varying 9M is that the viscous dissipation rate changes directly propor-

tionally. Thus, higher 9M makes the disc hotter, and more ionized, increasing the MRI-driven ᾱ

at any given radius (where the MRI is active). For the outer regions, this means that for higher
9M the pressure maximum moves radially outwards, approximately as a power law rPmax9 9M1{2

(see Fig. 2.22). In the inner regions, the viscosity parameter saturates at around ᾱ � 0.1 (shown

in Fig. 2.20). This happens because in the innermost disc (at high enough accretion rate) all of

potassium becomes ionized.

Some qualitative differences also arise in where the disc is MRI-active. Fig. 2.18 shows that

for 9M � 10�10 Md yr�1, the midplane is not turbulent anywhere in the disc. Additionally,

Fig. 2.18 shows for 9M � 10�8 Md yr�1 the Hall zone (where the Hall effect might significantly

affect the accretion and the disc structure) extends inwards of the dead zone inner edge, implying

that at high 9M the pressure maximum might not move as outwards as implied by Fig. 2.22.
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Figure 2.19: Same as Fig. 2.3, but for an accretion rate 9M � 10�10 Md yr�1. This is the only
one of the disc models shown here in which an Ohmic-dominated region arises (red region in
bottom right corner of both panels).

Figure 2.20: Left: Magnetic field strength B as a function of radius. Right: ᾱ as a function of
radius. Both figures show results for the fiducial model with 9M � 10�9 Md yr�1 (filled black
circles), a model with 9M � 10�10 Md yr�1 (empty circles) and 9M � 10�8 Md yr�1 (filled grey
circles).
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Figure 2.21: Same as Fig. 2.8, but now for an accretion rate 9M � 10�8 Md yr�1 (left) and
10�10 Md yr�1 (right).

Figure 2.22: Radial location of the pressure maximum as a function of the accretion rate 9M ,
showing the approximate power law dependence rPmax9 9M1{2.
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Figure 2.23: Same as Fig. 2.4, but for now for a stellar mass M� � 0.1 Md.

2.3.2.3. Stellar mass

Figs. 2.23–2.25 show the results for a model with the fiducial 9M and αDZ, but with a stellar

mass of M� � 0.1 Md (and a stellar radius R� � 1 Rd). These results show that the structure

of the inner disc around stars of different mass is virtually the same, only shifted radially

inwards. The location of the pressure maximum scales with the stellar mass as a power law,

rPmax9M�1{3
� . This follows from the Shakura-Sunyaev equations, in which the stellar mass and

orbital radius can always be combined into M�{r3 (neglecting fr, since for r " R�, fr � 1).

Note that these models do not include heating of the disc by stellar irradiation, and so the

stellar radius R� only affects the disc structure through fr, which can be neglected at r larger

than a few R�.

2.4. Discussion and conclusions

I used the Shakura-Sunyaev α-disc model coupled with a parametrization of the MRI-driven

α to investigate the structure of the thermally-ionized inner regions of protoplanetary discs in

steady-state. I produced models of discs with various gas accretion rates (10�10–10�8 Md yr�1),

stellar masses (0.1–1 Md) and minimum values of α (i.e., value of α in MRI-dead zones; 10�5–
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Figure 2.24: Left: Magnetic field strength B as a function of radius. Right: ᾱ as a function of
radius. Both figures show results for the fiducial model with M� � 1 Md (filled black circles)
and a model with M� � 0.1 Md (empty circles).

Figure 2.25: Same as Fig. 2.8, but now for a stellar mass M� � 0.1 Md.
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10�3).

All of the models feature a local gas pressure maximum at a few tenths of an AU from

the star. Radially outwards from the pressure maximum the MRI is completely suppressed;

just inwards of it the MRI is suppressed around disc midplane, but an MRI-active zone exists

above (and below) the midplane. It is only closer to the star (and not in all models) that the

disc midplane becomes MRI-active. In other words, at the location of the pressure maximum,

the disc midplane is weakly-turbulent. This could have an important impact on the growth

and evolution of pebbles that become trapped at this location. The exact orbital radius of

the pressure maximum scales with model parameters via simple power-laws: rPmax9α�1{4
DZ , M

1{3
�

and 9M1{2.

These models include suppression of the MRI by Ohmic and ambipolar diffusion, but not

the Hall effect. To explore how the Hall effect would modify the obtained results, I calculated

which regions of the disc have a Hall Elsasser number χ   1. This Hall zone largely coincides

with the Ohmic dead zone, and partially with the MRI-active zone. Therefore, the Hall effect

could move the pressure maximum radially inwards, if it simply shuts off the MRI within this

Hall zone. The effects are less clear if the Hall effect leads to an increased efficiency of accretion,

in which case the arising disc structure would depend on the physics at the boundary between

the MRI-viscous, turbulent region and Hall-dominated inviscid, laminar region.

Note also that the suppression of the MRI by ambipolar diffusion is considered in the strong-

coupling limit, which is found to be violated over most of the disc due to long recombination

timescales. However, the models presented here consider only a single ionized species, and a

more complex chemical network would have more recombination pathways. In particular, small

dust grains can adsorb free charges, which then recombine on grain surfaces faster than in the

gas phase. Including dust grains in the chemistry would have far-reaching consequences, since

this might effectively reduce the ionization levels compared to the case where grains are absent,

and might lead to a stronger suppression of the MRI (Sano et al. 2000; Ilgner and Nelson

2006; Wardle 2007; Salmeron and Wardle 2008; Bai and Goodman 2009), although dust can

also positively contribute to the disc ionization state at high temperatures (Desch and Turner

2015).

Additionally, the above results show that the location of the pressure maximum does not

correspond to the dead zone inner edge, but rather to the active zone outer edge. However,

there could be no such outer edge in a disc that is also ionized by stellar X-rays and cosmic rays.

As discussed in Section 1.2.3, at short orbital radii the X-rays and the cosmic rays may activate

the MRI in the disc upper layers. The thermally-ionized active zone in the inner disc would

then smoothly connect to the outer disc, see Fig. 1.5. In that case, the exact location of the

pressure maximum, coinciding with the minimum in disc viscosity, would additionally depend

on the relative importance of thermal and non-thermal sources of ionization. In Chapters 5

and 6 I will revisit the inner disc model, and consider both the effects of X-rays and cosmic

rays, and the dust grains.
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Finally, at a given orbital radius, the vertically-averaged viscosity parameter increases with

gas accretion rate so much that the gas surface density decreases, BΣ{B 9M   0. This implies

that the steady-state inner disc is unstable to perturbations in the gas surface density. This

so-called viscous instability could lead to gas concentrating into rings. However, further study

is required to determine if the disc is stabilized when a more detailed disc chemical and thermal

structure is considered.
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3 Early stages of planet formation in the

inner disc

3.1. Introduction

In Chapter 2 I discussed a steady-state model of the gas in the inner regions of protoplanetary

discs. In this chapter, I examine the evolution of dust in the obtained gas structure.

The main goal of this chapter is to examine if the evolution of dust leads to enhancement

of solids at short orbital periods, as necessary for the formation of the super-Earths. To create

a dust-rich inner disc, the radial drift of dust particles from the outer disc needs to be stopped

or slowed down. The radial drift of small particles (that are in the Epstein drag regime) slows

down closer to the star in conventional disc models, i.e., in which the gas density and pressure

increase radially inwards (Youdin and Shu 2002; Youdin and Chiang 2004; Birnstiel et al. 2010;

2012; Drazkowska et al. 2016). This can concentrate dust in the inner disc to some extent. On

the other hand, if dust grains are large and thereby only marginally coupled to the gas, the

radial drift can be fully stopped inside an axisymmetric local gas pressure maximum that is

expected to form if the accretion in the inner disc is driven by the MRI (Kretke et al. 2009;

Dzyurkevich et al. 2010; Drazkowska et al. 2013; Chatterjee and Tan 2014). How coupled the

dust grains are to the gas depends on their size (Weidenschilling 1977). Therefore, I consider

both the spatial evolution of the dust, and the evolution of the dust grain size, including growth,

fragmentation and radial drift.

Furthermore, to form the solid core of a planet, accumulated dust grains must grow larger.

As discussed in Chapter 1, collisions and sticking between small dust grains produce millimetre

to centimetre-sized pebbles. These pebbles do not stick as efficiently as small grains, raising

the question of how solids proceed to grow beyond these sizes. One suggestion is that larger

solid bodies, tens of kilometres in size (so-called planetesimals), may grow directly from small

pebbles, by the concentration of pebbles into dense clumps that become gravitationally unstable

(Youdin and Goodman 2005). Following dust evolution calculations in sections 3.2 and 3.3, I

investigate the possibility of planetesimal formation in the inner disc in Section 3.4.

An important caveat to the calculations presented in this chapter is that the dust is evolved

in a gas disc that is fixed in time. Dust grains can act to suppress the MRI by lowering

the coupling between the gas and the magnetic field (e.g. Sano et al. 2000; Ilgner and Nelson
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2006), and could thus significantly alter the gas disc structure. Moreover, at high dust-to-gas

ratios, which I show can be achieved in the inner disc, dust becomes dynamically important

and the dynamical back-reaction on the gas should be taken into account. In Section 3.5, these

effects, and how they might influence the obtained results, are discussed qualitatively. The

self-consistent feedback of dust enhancement on the gas disc structure should be addressed in

future studies.

3.2. Methods

3.2.1. Gas disc model

The structure of the gas disc (gas surface density, temperature, pressure and viscosity) is

obtained from the steady-state models of the inner protoplanetary gas disc presented in Chapter

2. In these models the viscosity (α parameter1) is determined self-consistently with the disc

structure (Shakura and Sunyaev 1973), thermal ionization and MRI criteria (Bai and Stone

2011; Bai 2011a). The parameters of the model are the stellar mass and radius (M�, R�),

gas accretion rate ( 9Mg), and assumed viscosity parameter inside the MRI-dead zones (αDZ).

Recall that αDZ is also the minimum viscosity parameter, in the sense that α � αDZ even

if the MRI is active, if it implies a lower value. In this work I primarily use M� � 1 Md,

R� � 2.33 Rd, 9Mg � 10�8 Md yr�1 and αDZ � 10�4. The disc structure for these parameters is

shown in Fig. 3.1. The local gas pressure maximum is at an orbital distance of � 0.7 AU, and

temperature and surface density at that location are � 1000 K and � 5000 g cm�2, respectively.

Outwards from the pressure (and the surface density) maximum the MRI is suppressed and

α � αDZ.

Consider, briefly, how the disc structure depends on these parameters. For a higher gas

accretion rate 9Mg the radial α profile is roughly an outward-translated version of the one shown

in the top panel of Fig. 3.1, and inward-translated for a smaller 9Mg. The radial location of the

local gas pressure maximum scales with the accretion rate approximately as 9M
1{2
g . For a higher

αDZ the α falls to this value closer to the star, and vice versa, but the value of α as a function of

orbital distance remains almost the same otherwise; as a result, the radial location of the local

pressure maximum scales with the minimum dead-zone viscosity as α
�1{4
DZ . Furthermore, inwards

of the pressure maximum the temperature has to be sufficiently high for thermal ionization of

potassium to support the MRI and so it is always larger than 1000 K, regardless of the exact

choice of 9Mg and αDZ. For a steady-state vertically-isothermal α-disc the accretion rate is
9Mg � 3πc2

sαΣg{Ω (ignoring an additional factor which depends on the boundary condition at

the inner disc edge, and which becomes unimportant far away from the edge). Further assuming

(as is approximately the case) that the temperature at the location of the pressure maximum

1For simplicity, in this chapter I denote the vertically-averaged viscosity parameter ᾱ simply as α.
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is constant regardless of the disc parameters, it follows that the maximum gas surface density

approximately depends on the disc parameters2as 9M
1{4
g and α

�5{8
DZ .

The dynamical back-reaction of the dust on the gas and the effect of the dust on the MRI

are neglected in this chapter, and the timescale on which the dust evolves is much shorter than

the Myr timescale on which the accretion rate evolves. Thus, the structure of the gas disc is

held fixed, i.e. not evolved in time.

3.2.2. Dust evolution model

The dust particle size distribution is evolved using the two-population model of Birnstiel et al.

(2012). The dust surface density Σd is evolved using the advection-diffusion equation

BΣd

Bt � 1

r

B
Br
�
r

�
Σdū�DgasΣg

B
Br
�

Σd

Σg



�
� 0 , (3.1)

where r is the cylindrical radius, ū is the dust advection velocity, Dgas is the gas diffusivity

(assumed to be equal to the MRI-driven gas viscosity) and Σg is the gas surface density.

The dust advection velocity is a sum of the velocities due to advection with the accreting

gas and radial drift. For particles with Stokes number Sti � πρsai{2Σg (with ρs the internal

density of the dust and ai the particle size), and adopting the terminal velocity approximation

(e.g. Takeuchi and Lin 2002), the dust velocity is given by

ui � 1

1� St2
i

ugas � 2

Sti � St�1
i

udrift , (3.2)

where

udrift � c2
s

2vK

d lnP

d lnr
, (3.3)

with cs the speed of sound, vK the Keplerian velocity and P the midplane gas pressure. Small

particles (St! 1) move with the gas, and larger particles can move faster or slower than the

gas, depending on the sign of the pressure gradient.

In the Birnstiel et al. (2012) model the dust surface density Σd and dust advection velocity

ū are the sum and the mass-weighted average, respectively, of the surface density and velocity

of two populations of particles: small monomer-sized particles (a0 � 1µm) and large particles

(a1). The size of the large particles evolves in time and space. At first, dust grains grow, starting

at the monomer size. Then, at each radius the size of the large particles is set by whichever

process yields the smallest size limit: radial drift (adrift), where grains larger than adrift radially

drift more quickly than they can grow; drift-fragmentation (adf), where grains larger than adf

fragment due to relative radial drift velocities; or turbulent fragmentation (afrag), where grains

2Derivation of the scalings from the Shakura-Sunyaev equations takes into account the small correction due
to the dependence of the temperature on the disc parameters and yields that the maximum surface density

depends on the disc parameters as 9M
3{10
g and α

�13{20
DZ . These small corrections are omitted here for simplicity.
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Figure 3.1: Gas disc structure from the steady-state model for M� � 1 Md, R� � 2.34 Rd,
9Mg � 10�8 Md yr�1 and αDZ � 10�4. From top to bottom: α parameter, midplane pressure,

surface density and temperature, as functions of radius. Location of the local gas pressure
maximum due to the MRI is indicated by the vertical dashed line.
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larger than afrag fragment due to relative velocities induced by turbulence.

In the innermost protoplanetary disc, inside the water ice line, the main dust species are

silicate grains. Therefore, the bulk density of particles is set to ρs � 3 g cm�3, and the critical

fragmentation velocity to uf � 1 m s�1, based on experiments on collisions of silicate grains

(Blum and Münch 1993; Beitz et al. 2011; Schräpler et al. 2012; Bukhari Syed et al. 2017) of

similar size (the regime applicable in the Birnstiel et al. 2012 model used here).3

The viscosity parameter α due to the MRI-turbulence from the gas disc model is determined

as a vertical average at each radius. Here, it is assumed that this vertically-averaged α equals

the strength of turbulence that particles feel, which in turn determines the particle size due

to turbulent fragmentation (afrag) and the radial turbulent mixing (diffusivity Dgas). However,

the viscosity (and the level of turbulence) can be different at the disc midplane compared to

the upper layers of the disc, depending on where the non-ideal magnetohydrodynamic effects

suppress the MRI. Dust tends to settle towards midplane, its scale height being determined

by the balance between gravitational settling and vertical turbulent mixing (e.g. Youdin and

Lithwick 2007). The use of a vertically-averaged α could thus be invalid in regions where the

disc midplane is weakly turbulent. Nevertheless, I proceed with this assumption and check

the robustness of the obtained results by swapping the vertically-averaged α parameter for the

midplane value in one run, and recover qualitatively the same results.

3.2.3. Numerical methods

The advection-diffusion equation (3.1) is integrated using an explicit first order in time and

second order in space finite element method. The advection term is integrated with an upwind

scheme using a van Leer flux limiter. The numerical scheme has been developed and described

in detail by Owen (2014). The modification made for this work, implemented by J. E. Owen,

is the inclusion of the Birnstiel et al. (2012) dust evolution algorithm. The simulations in this

work use 262 cells in the radial direction with a 0.002 AU spacing inwards of 0.4 AU and a

0.01 AU spacing outwards. The inner boundary is set to 0.016 AU, and the outer boundary is

set to 1 AU (i.e. outside the pressure maximum, but inside the water ice line). The time-step is

set with respect to the spatial resolution, the advection speed and the diffusion coefficient, so

that it obeys the Courant-Friedrichs-Lewy condition. Following Birnstiel et al. (2012), at each

time step the size of the large particles is updated to the smallest of the four size limits (agrowth,

adrift, adf or afrag). The outer boundary condition is a constant dust accretion rate. This is not,

3Note that simulations of grain collisions (Meru et al. 2013) indicate that the critical fragmentation velocity
could be significantly higher for porous grains than for compact ones, for a range of porosities that is not robustly
covered by the above experiments. In the fragmentation-limited regime particle size depends quadratically on uf .
If porosity is important, and uf is higher by, e.g., a factor of 10, particle sizes (and their Stokes number) would
be larger by a factor of 100, strongly affecting how coupled particles are to the gas flow and how susceptible to
radial drift. However, there is a variety of processes that lead to particles becoming less porous (compactified)
– e.g., collisions that result in coagulation (simulations by Meru et al. 2013, experiments by Kothe et al. 2010),
collisions that result in bouncing (Weidling et al. 2009) and collisions of larger grains with monomers (Schräpler
and Blum 2011). Therefore, I use the compact grain value of uf � 1 m s�1.
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Figure 3.2: Dust-to-gas ratio Σd{Σg as a function of radius after 0.2 Myr, for various dust
accretion rates at the outer boundary, as indicated in plot legend. Location of the local gas
pressure maximum due to the MRI is indicated by the vertical dashed line, and location of the
dust sublimation line by the vertical dotted line.

in general, a fixed quantity and it can vary with time, determined by the radial drift of dust

from the outer disc (e.g. Birnstiel et al. 2012). Therefore, in this work it is varied in different

simulations. Dust particle size at the outer boundary is calculated self-consistently.

Furthermore, the effects of dust sublimation are neglected. Note that the temperature in

the adopted gas disc model exceeds the dust sublimation temperature (�1500 K) only inwards

of 0.1 AU.

3.3. Results

Initially, the dust-to-gas ratio is 0.01 at all radii and all dust grains are monomers (a � 1µm).

The dust is evolved for 0.2 Myr, by which time it has reached steady state. The steady-state

dust-to-gas ratio is shown in Fig. 3.2 as a function of radius for three different values of dust

accretion rates 9Md at the outer boundary condition. For any given dust accretion rate, the

steady-state dust-to-gas ratio is roughly constant inwards of the pressure maximum (indicated

by the vertical dashed line), and it decreases outwards from the pressure maximum. There is

only a moderate accumulation of dust at the pressure maximum, compared to the rest of the

inner disc. This implies that the pressure maximum does not efficiently trap dust particles.

Essentially, the particles do not feel significant gas drag, and thus do not significantly feel

the effect of the change in the sign of the pressure gradient inwards of the pressure maximum.

This happens because, as a result of the MRI-induced turbulence and particle fragmentation,
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the particle size is very small. Fig. 3.3 shows the three dust size limits (due to radial drift,

drift-fragmentation and turbulent fragmentation) as functions of radius, calculated in steady

state. The smallest of the three (afrag), due to turbulent fragmentation, sets the size of the

population of large particles in these simulations, which dictates the evolution of dust overall.

Particle size is thus limited to only a few millimetres near the pressure maximum (indicated by

the vertical dashed line), and the particles are monomer-sized in the innermost disc.

The particle size determines, through the Stokes number, how coupled the dust is to the

gas. Thus, the particle size determines to what extent the particles move with the accreting

gas towards the star and also by how much they are slowed down or sped up by the gas drag.

In this case, inwards of the pressure maximum (and outwards from the pressure minimum at

� 0.2 AU) the gas drag acts outwards (udrift ¡ 0). However, as dust particles are small inside the

pressure maximum (St� 4 � 10�4 even for the large particles) and their size further decreases

inwards, the dust advection velocity is outwards only in a very narrow region. Consequently,

after accounting for the diffusivity (i.e., the radial turbulent mixing of dust), the accumulation

of solids inside the pressure maximum is moderate compared to the rest of the inner disc.

The dust advection velocity used here is a mass-weighted average of the velocity of the

monomer-sized particles and the large particles (of size afrag, Fig. 3.3). The monomer-sized

particles are advected by the gas through the pressure maximum, and it can be shown that

an individual large particle will also not be trapped. This is because the dust particles are in

the fragmentation limit, in which the particles are fragmented faster than they drift. The drift

timescale for the large particles inside the pressure trap (the region inwards of the pressure

maximum where their advection velocity is outwards) can be estimated by

tdrift � 1

2

dtrap

u1prPmaxq
, (3.4)

where dtrap � 0.06 AU is the radial width of the trap, and the particle velocity is u1 � 2 cm s�1

(see eq. (3.2)) is evaluated just inwards of the pressure maximum. The velocity u1 decreases

inwards, and so this estimate, tdrift � 7400 yr, is a lower limit. The collisional (i.e., fragmen-

tation) timescale for the large particles, tcol � pnσ∆vq�1, is much shorter in comparison. Here

n � fmρd{md is the number density of large particles, fm is the mass fraction of the large

particles (fm � 0.75 in the fragmentation limit, Birnstiel et al. 2012), ρd � ΣdΩ{p?2πcsq is the

midplane mass density of particles, md is mass of a single particle, σ is the collisional cross sec-

tion and ∆v � ?
3αStcs is the typical relative velocity between the particles due to turbulence
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Figure 3.3: Dust particle size limits due to radial drift (adrift), drift-fragmentation (adf), and
turbulent fragmentation (afrag) as functions of radius after 0.2 Myr. Location of the local gas
pressure maximum due to the MRI is indicated by the vertical dashed line, and location of
the dust sublimation line by the vertical dotted line. Spikes in adrift and adf correspond to gas
pressure extrema.

(Ormel and Cuzzi 2007a). This yields the collisional timescale of:

tcol �
c

8

27π

Σg

fmΣd

c
St

α

1

Ω

� 4

�
fm

0.75


�1�
Σd

0.01Σg


�1�
St

10�4


1{2 � α

10�4

	�1{2

�
�

Ω

10 yr�1


�1

yr

(3.5)

where I have expressed the particle size afrag in terms of the Stokes number St. At the pressure

maximum α � 10�4 and so tcol � 0.08Σg{Σd yr! tdrift for dust-to-gas ratios Σd{Σg Á 0.01.

Thus, instead of becoming trapped in the pressure maximum, dust particles fragment and flow

inwards.

In the innermost disc turbulent fragmentation yields monomer-sized particles that are en-

trained with the gas (ū�ugas). And so the radial drift inwards is slowed by particles becoming

well coupled to the gas. This is also why, in steady state, the dust-to-gas ratio is roughly

constant inwards of the pressure maximum.

Finally, despite the pressure maximum not trapping the inflowing particles, the dust-to-gas

ratio is enhanced. Because the dust moves with the gas in the innermost disc, the steady state

dust-to-gas ratio there is directly proportional to the ratio of dust-to-gas accretion rates at the
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outer boundary, 9Md{ 9Mg. The initial dust-to-gas ratio everywhere is Σd{Σg � 10�2. For this

ratio to be constant over time, the ratio of accretion rates would have to be 9Md{ 9Mg � 10�2

at the outer boundary. However, the growth of dust grains in the outer disc, and their radial

drift inwards, means that 9Md{ 9Mg ¡ 10�2 at the outer boundary of the inner disc (i.e., dust

accretes inwards preferentially compared to gas). Hence, the dust-to-gas ratio in the inner disc

in steady-state is Σd{Σg ¡ 10�2. In other words, as Fig. 3.2 shows, radial drift of grains from

the outer disc leads to an enrichment of solids in the inner disc.

What level of the enrichment is attainable depends on the ratio of dust and gas accretion

rates 9Md{ 9Mg, i.e. how quickly the grains drift from the outer disc relative to gas accretion. Since

the grain growth in the outer disc is limited by radial drift rather than fragmentation (Birnstiel

et al. 2012), high grain drift rates are possible. For example, assuming that Σd{Σg � 10�2 in

the outer disc, achieving 9Md{ 9Mg � 1 requires the radial drift velocity of grains (� 2 St udrift)

to reach 102ugas. For the standard α-disc model and α � 10�4 (extrapolation of the disc model

shown in Fig. 3.1) this is satisfied if grains grow to St� 10�2. This corresponds to a particle size

an order of magnitude below the radial drift limit (adrift) throughout the outer disc. Therefore,

the grains easily grow large enough to achieve accretion rates of 9Md{ 9Mg Á 1. These grains in

the outer disc will contain ices which will evaporate as grains drift across the ice lines, towards

the inner disc. However, even in the outermost disc silicates account for a considerable portion

of the total solid mass (e.g., adopting the abundances of oxygen and carbon in their main

molecular carriers from Öberg et al. 2011, 23% of the total oxygen and carbon mass in the

outer disc is in silicates and other refractories). Hence, Fig. 3.2 features dust accretion rates up

to 9Md{ 9Mg � 1, in which case the dust-to-gas ratio in the inner disc also approaches unity.

3.4. Implications for planetesimal formation

The above results show that the MRI yields a dust-enhanced inner disc, although at the expense

of the dust particle size. Furthermore, as there is no trap for the dust particles, the accumulation

of dust is limited by the dust inflow rate from the outer disc, and does not increase indefinitely.

In this section I explore if further concentration of particles via the streaming instability (SI;

Youdin and Goodman 2005) and subsequent gravitational collapse into planetesimals could be

the next step towards forming the close-in super-Earths and mini-Neptunes.

The SI can greatly concentrate dust particles if the ratio of dust-to-gas bulk densities is

ρd{ρgÁ 1 (Youdin and Goodman 2005; Johansen and Youdin 2007). This is most likely to be

attained in the disc midplane, as dust particles gravitationally settle. The settling is balanced

by turbulent stirring. One source of turbulence is the MRI. To reach ρd{ρg ¥ 1 in the midplane

in the presence of such turbulence, the dust-to-gas surface density ratio Σd{Σg needs to be

greater than or equal to Zcr1 �
a
α{pSt� αq (Carrera et al. 2017).

Even in discs that are weakly turbulent or completely laminar, as dust settles the dust-gas
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interaction leads to turbulence (self-stirring) which can prevent clumping by the SI. In this case,

SI can only successfully concentrate dust particles if the dust-to-gas ratio Σd{Σg is greater than

a critical value Zcr2 that depends on the particle Stokes number (Johansen et al. 2009; Carrera

et al. 2015). For St  0.1 (relevant to the simulations shown here) this critical value has been

most recently revised by Yang et al. (2017), who find

logZcr2 � 0.1 log2 St� 0.2 log St� 1.76 . (3.6)

Small dust grains that are entrained with the gas do not participate in the SI. Hence, to compare

the above results against the SI criteria, I use the dust-to-gas ratio fmΣd{Σg of the large grain

population only (where fm � 0.75 is the mass fraction of large particles; Birnstiel et al. 2012).

The top panel of Fig. 3.4 compares this dust-to-gas ratio, for the outer boundary condition
9Md{ 9Mg � 1, with the above two criteria for the onset of the SI. This plot shows that in the

inner disc, turbulence due to the MRI is generally more prohibitive to dust settling than the

turbulence due to dust-gas interactions. Both conditions are fulfilled only near the pressure

(and density) maximum.

Provided that the SI successfully concentrates dust particles in the disc midplane, the dust

bulk density there may reach up to 100 – 1000 times the local gas density (Johansen and Youdin

2007). Gravitational collapse of such particle concentrations will occur if the dust density

exceeds the local Roche density (below which the star can tidally disrupt the fragment), ρRoche �
9M�{4πr3. Comparison of ρRoche with the midplane gas densities in the steady-state MRI disc

(Fig. 3.4, bottom panel) shows that the condition for gravitational collapse is only satisfied near

the pressure (and density) maximum, or at larger orbital distances. Importantly, the bottom

panel of Fig. 3.4 shows that the possibility of gravitational collapse of solids at short orbital

distances is severely limited by the Roche density.

Overall, given the stellar and disc parameters used here, the SI and the gravitational collapse

pathway to planetesimals is viable in the inner disc only in a very narrow region near the pressure

maximum. For gas accretion rates larger than the one used here ( 9Mg ¡ 10�8 Md yr�1, that

could be expected in the early phase of disc evolution, e.g. Manara et al. 2012) this conclusion

will hold, while for sufficiently smaller accretion rates planetesimals would not form in this way

anywhere near or inwards of the pressure maximum. Firstly, in both cases dust evolution is

expected to yield roughly the same steady-state dust-to-gas ratios given the same ratio of dust

and gas accretion rates at the outer boundary. To confirm this conclusion, I repeat the dust

evolution calculations for the gas accretion rate of 9Mg � 10�9 Md yr�1, obtaining results very

similar to those above. In addition to similar steady-state dust-to-gas ratios, the particle Stokes

number sharply drops inwards of the pressure maximum, and the SI is similarly triggered only

around the pressure maximum. This is because the slope of the increase in α inwards of the

pressure maximum is roughly the same for different 9Mg. Hence the SI criteria is expected to

be fulfilled only near the pressure maximum for higher gas accretion rates as well.

68



CHAPTER 3. EARLY STAGES OF PLANET FORMATION IN THE INNER DISC

10 1 100

Radius [AU]

10 1

100

Du
st

-to
-g

as
 ra

tio

fm d/ g
Zcr1
Zcr2

10 1 100

Radius [AU]

10 7

10 6

10 5

10 4

10 3

10 2

10 1

De
ns

ity
 [g

 c
m

3 ]

d( = 100 g)
d( = 1000 g)
Roche

Figure 3.4: Top panel: Dust-to-gas ratio of large dust grains fmΣd{Σg as a function of radius

(when 9Md{ 9Mg � 1 at the outer boundary; fm � 0.75), compared to the two criteria for the
onset of the streaming instabilities.
Bottom panel: Expected peak local dust densities ρd if streaming instabilities successfully
concentrate particles in the disc midplane as functions of radius, compared to the Roche density
ρRoche. In both panels the vertical dashed line indicates location of the local pressure maximum,
and the dotted line indicates the location of the dust sublimation line.
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Secondly, even if SI is successfully triggered, to form planetesimals the peak dust density

needs to be above the Roche density. The peak dust density scales with the midplane gas density

at the pressure maximum, so it scales with the gas accretion rate approximately as 9M
�1{2
g , and

with the radial location of the pressure (and density) maximum as r�1
Pmax

. Since the peak dust

density is larger than the Roche density at the pressure maximum for 9Mg � 10�8 Md yr�1,

and the Roche density ρRoche9r�3, for 9Mg ¡ 10�8 Md yr�1 the gravitational collapse criterion

will also be fulfilled near the pressure maximum, while for a sufficiently smaller accretion rate

(including 9Mg � 10�9 Md yr�1) peak dust density will be too low.

Moreover, it is important to note that, in order for the SI to operate, there must be a relative

azimuthal velocity between the dust and gas (e.g. Squire and Hopkins 2018), in addition to

the criteria discussed above. At the pressure maximum itself, however, this relative velocity

vanishes.

However, the calculations presented here do not include the effects of dust on the gas

dynamics and on the MRI. The latter effect in particular may relax some of the constraints on

the SI, and this possibility is discussed in Section 3.5.

3.5. Discussion and conclusions

In this chapter I have investigated the earliest phase of planet formation that is the evolution

of dust grains in the inner disc that is viscously accreting due to the MRI. The MRI-accreting

inner disc features a local gas pressure maximum at the orbital distance of a few tenths of AU.

Taking into account the effect of the MRI-induced turbulence on the dust grain size, I find that

fragmentation of particles due to turbulent relative velocities limits the particle size to below

few millimetres. As a result, the particles are not efficiently accumulated inside the pressure

maximum as hypothesised by Chatterjee and Tan (2014); Hu et al. (2018). Regardless of that,

as the particles become well coupled to the gas, the radial drift is stopped in the inner disc,

and the dust-to-gas ratio is enhanced throughout the inner disc. Thus, the local gas pressure

maximum might play a lesser role in the planet formation in the inner disc than previously

thought.

The pressure maximum is, however, still the location of a local density maximum in both

gas and dust. I explored if the resulting inner disc structure that is enriched in dust could be

susceptible to the onset of the streaming instabilities. This pathway to planetesimals seems to

be viable only in a narrow region near the pressure (and density) maximum, for the chosen disc

parameters.

The gas is not, however, evolved in this work and effects of the growing amounts of dust

onto the MRI have not been taken into account. Dust grains lower the gas ionization levels

by absorbing free charges and enhancing recombination rates, as ions recombine on the grains

(Draine and Sutin 1987; Ilgner and Nelson 2006). Charged grains are not themselves well
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coupled to the magnetic field as they are too massive, and so their presence promotes the

non-ideal MHD effects which can suppress the MRI (Sano et al. 2000; Ilgner and Nelson 2006;

Wardle 2007; Salmeron and Wardle 2008; Bai and Goodman 2009). The likely result of taking

dust effects into account is thus weakened turbulence, and the change of the disc structure in

the longer term. The consequences can only be investigated by modelling both the gas and

the dust self-consistently. However, one can sketch out a potential scenario by considering the

relevant timescales.

Assuming that the steady-state solution of the gas structure (Fig. 3.1) is reached before

dust starts affecting the MRI, we can expect the dust enhancement of the inner disc to ensue.

At a certain dust-to-gas ratio the dust will suppress the MRI, and we can expect the levels

of turbulence to adapt almost instantly, as the timescale of the magnetic field regeneration

is the orbital timescale torb (e.g. Balbus and Hawley 1991). With the decreasing levels of

turbulence, the dust particle size will rapidly grow due to particle coagulation. The growth due

to coagulation happens on the timescales of Σg{Σdtorb (e.g. Brauer et al. 2008), so faster than

102torb if the inner disc is enriched in dust.

Concurrently, due to larger particle size and lower turbulent stirring the particles would

vertically settle towards the midplane and radially towards the pressure maximum. Such for-

mation of a ring of solids could potentially trigger formation of larger bodies (as hypothesized

by e.g. Chatterjee and Tan 2014). The larger particle size and the settling towards the midplane

would likely trigger the streaming instability (inwards of the pressure maximum; see Fig. 3.4).

However, it is unclear if this could lead to the formation of planetesimals, as a gravitational

collapse is unlikely due to the low bulk dust densities and high Roche density in the inner disc.

The gas surface density will change slowly in comparison to the above processes, on the

long viscous timescale, �103 – 105torb from the pressure minimum to the pressure maximum

in the model considered here. The decrease in viscosity would lead to an increase in the gas

surface density on this timescale. The gas surface density maximum and the pressure maximum

would move inwards. However, if thresholds to form planetesimals are crossed, the small dust

grains suppressing the MRI would be removed from the disc. This would increase the viscosity,

decrease the gas surface density and move the pressure maximum outwards. Whether these

processes are balanced in another kind of a steady state, or the behaviour of the inner disc

is dynamic and quasi-periodic, must be investigated through self-consistent modelling of dust,

gas and the MRI.

At high dust-to-gas ratios the dust also becomes dynamically important, and affects the

gas disc structure through the drag backreaction (Nakagawa et al. 1986). The gas rotation

profile is then driven towards Keplerian, and as a result the radial gas pressure profile flattens.

This, in turn, slows down the radial drift of dust particles. If dust already piles up in the inner

disc due to radial drift being slower than in the outer disc, the dust backreaction amplifies

the effect (Drazkowska et al. 2016). In this work, dust enhancement is driven by the dust

grains already being completely coupled to the gas in the innermost disc, and thus the effect of
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dust backreaction would be limited. However, the backreaction would become important if the

dust grains grow (e.g. due to the suppression of the MRI-induced turbulence discussed above),

especially near the pressure maximum. If the dust grains grow in the innermost disc where the

pressure gradient is negative, the backreaction would slow down the loss of dust to the star.

However, the backreaction would also limit the concentration of dust that can be achieved at

the pressure maximum, since it acts to flatten the overall gas pressure profile (Taki et al. 2016).

In summary, the results presented here suggest that the inner disc might support formation

of the super-Earths. However, the self-consistent evolution of the dust and the gas needs to be

studied.
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4 Atmospheres of planets formed in the

inner disc

4.1. Introduction

It was shown in Chapter 3 that planetesimal formation through the streaming instability and

gravitational collapse is challenging despite the dust enhancement in the inner disc. Although

these conclusions could change when the feedback of dust onto gas is taken into account, it is

not presently clear how exactly planetesimals or cores would arise in the inner disc, and it is

not possible to predict properties of solid cores formed in the inner disc. Nevertheless, orbital

distances, radii and masses of many close-in planets have been well determined observationally.

Thus, in this chapter I use observational results to perform a separate test of super-Earth for-

mation in the inner disc by considering accretion of planetary atmospheres and their subsequent

evolution.

Recall, from Chapter 1, that the atmospheres of many of the close-in super-Earths and

mini-Neptunes are H/He dominated (e.g. Jontof-Hutter et al. 2016) and they typically make

up 0.1 – 10% of their total mass (Lopez and Fortney 2014; Wolfgang and Lopez 2015). Thus,

they are considerably more massive than the atmospheres of the planets in the inner Solar

system. Outgassing of hydrogen from a rocky core is not sufficient to explain the majority

of these atmospheres (Rogers et al. 2011). Thus these atmospheres are most likely composed

of gas accreted from the protoplanetary disc after the formation of a solid core. If so, these

atmospheres are presumably formed steadily through core accretion. In core accretion, the

gaseous envelope is connected to the disc. It remains in a quasi-hydrostatic equilibrium and

contracts as it cools, allowing more gas to be accreted (e.g. Rafikov 2006; Lee et al. 2014; Lee

and Chiang 2015).

Lee et al. (2014) (see also Lee and Chiang 2015; 2016; Lee et al. 2017) argue that accretion

onto a super-Earth-sized solid core is an efficient process, and that there is a theoretical problem

of how to stop the super-Earth cores from undergoing runaway accretion and becoming gas

giants (Mizuno 1980). A solution was proposed in Lee and Chiang (2016), where they suggest

that the final assembly of super-Earth cores only occurs towards the end of the protoplanetary

disc lifetime, so that their atmospheres are accreted from the gas-poor “transition discs”, i.e.,

during disc dispersal.
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On the other hand, the inner disc models discussed in Chapter 2 predict in a steady state gas

surface densities that are considerably lower than those of the minimum mass solar nebula at

short orbital periods. If the super-Earths had to have formed in a gas-poor inner disc, perhaps

they have formed in the gas-poor inner disc arising due to steady-state MRI accretion, a possible

alternative to the Lee and Chiang (2016) proposal. Therefore, I use the atmospheric accretion

model of Lee and Chiang (2015) to calculate the atmospheres accreted onto super-Earth-sized

cores in the MRI-accreting inner disc.

Additionally, after disc dispersal, super-Earths are subject to atmospheric mass loss due

to photoevaporation by high-energy stellar irradiation. It has been shown theoretically (e.g.

Owen and Wu 2013; Lopez and Fortney 2013) and observationally (e.g. Lundkvist et al. 2016;

Fulton et al. 2017; Fulton and Petigura 2018) that this mass loss can significantly change the

planet properties. Therefore, in this study I take this mass loss into account. Finally, I evolve

the planets in time, to their present day ages, and compare the resulting planet properties to

the observed ones.

4.2. Methods

4.2.1. Accretion of planetary atmospheres

In this work, it is assumed that solid super-Earth-sized planet cores accrete their gaseous

envelopes in a gas-poor inner disc that is viscously accreting due to the MRI. The model of the

disc structure is the same one as in Chapter 3, and it is assumed that the disc structure does

not evolve in time. The gaseous envelope is assumed to be in quasi-hydrostatic equilibrium,

contracting as it cools, allowing more gas to be accreted. Then, the accreted envelope mass

fraction (ratio of envelope mass and core mass) after time t can be estimated by the scaling

relations from Lee and Chiang (2015) (with an additional factor that accounts for varying gas

surface density from Lee et al. 2017; Fung and Lee 2018):

Xptq � 0.07

�
t

1 Myr


0.4�
0.02

Z


0.4 � µ

2.37

	3.4
�
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5M`


1.7�
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0.12

(4.1)

for dusty atmospheres, and

Xptq � 0.18

�
t

1 Myr
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0.02
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�
Mcore
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0.12

(4.2)

for dust-free atmospheres. Here Z is the metallicity of the atmosphere; µ � 1{p0.5W �0.25Y �
0.06Zq is the mean molecular weight, with W � p1 � Zq{1.4, Y � 0.4p1 � Zq{1.4; Trcb is the

temperature at the radiative-convective boundary inside the atmosphere; fΣ � Σg{ΣMMSN is

the ratio of the gas surface density (Σg from the adopted inner disc model, Fig. 3.1) and the gas

74



CHAPTER 4. ATMOSPHERES OF PLANETS FORMED IN THE INNER DISC

surface density profile of the minimum mass solar nebula (ΣMMSN � 1700pd{1 AUq�3{2 g cm�2,

where d is the orbital radius, Hayashi 1981). Furthermore, it is assumed that the gas adia-

batic index is γ � 1.2, and that in dusty atmospheres Trcb � 2500 K which arises from the

disassociation of Hydrogen (see Lee and Chiang (2015), their section 2.1).

I use the expressions (4.1,4.2) to calculate how much gas a planet accretes in 1 Myr as a

function of core mass, for various metallicities Z and gas surface density factors fΣ in the case

of dusty atmospheres (with Trcb = 2500 K), and various Z, fΣ and Trcb in the case of dust-free

atmospheres.

4.2.2. Photoevaporation of planetary atmospheres

These accreted atmospheres are subject to photoevaporation following disc dispersal. I use a

simplified estimate of how the photoevaporation changes the accreted atmospheres. First, for

a given planet core mass Mcore and (accreted) envelope mass fraction X I find the photospheric

radius of the planet Rp. For this I use a simple model of an atmosphere at hydrostatic equi-

librium (Owen and Wu 2017), in which the solid core is surrounded by an adiabatic convective

envelope, on top of which is an isothermal radiative photosphere.

Next, the mass-loss timescale due to high-energy stellar irradiation is (Owen and Wu 2017)

t
9X �

4πd2GM2
coreXp1�Xq
ηπLHE

1

R3
p

, (4.3)

where d is the orbital radius of the planet and LHE is the stellar high-energy flux. I consider a

Sun-like star, as in the adopted disc model.

To determine the final envelope mass fractions, I do not explicitly evolve the atmospheres

in time. Instead, one can use the fact that most of the mass loss happens during the first

� 100 Myr after disc dispersal, since during this period the stellar high-energy flux LHE is

saturated (LHE � Lsat � 10�3.5Ld for a Sun-like star) and after this time it quickly decays

(Jackson et al. 2012; Tu et al. 2015).

Thus, one can estimate the final envelope mass fraction as follows. If a planet’s mass-loss

timescale t
9X is longer than 100 Myr at the time of disc dispersal, the planet does not suffer

significant mass loss. In this case it can be assumed that such a planet remains unchanged by

the photoevaporation.

On the other hand, a planet with t
9X   100 Myr loses mass. For a given core mass Mcore and

orbital distance d, the mass-loss timescale as a function of the envelope mass fraction, t
9XpXq,

peaks at X � Xpeak of a few percent, decreasing for both smaller and larger X (Owen and Wu

2017). Thus, for a planet with a small accreted envelope mass fraction (X   Xpeak), the mass

loss further shortens the loss timescale. If such a planet’s initial mass-loss timescale is less than

100 Myr it is subject to runaway mass loss, and it can be assumed that it is completely stripped

of its atmosphere. For a planet with a large accreted atmosphere (X ¡ Xpeak), the mass-loss
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timescale increases towards the peak value t
9XpXpeakq as the planet loses mass. If Mcore and d

are such that the t
9XpXpeakq ¥100 Myr, one can assume that such a planet will end up with an

envelope mass fraction X corresponding to a mass-loss timescale of t
9X = 100 Myr. However,

if t
9XpXpeakq  100 Myr, the mass-loss timescale at first increases, and then decreases, entering

the runaway regime. In this case a planet loses its entire atmosphere despite an initially large

accreted X. This simple prescription adequately captures the basic physics of atmospheric

photoevaporation (see far left panel of fig. 6 in Owen and Wu 2017).

4.3. Results

4.3.1. Accretion of planetary atmospheres

Using the scaling relations (4.1,4.2) I calculate the envelope mass fractions that planetary cores

of various masses accrete from the gas disc in 1 Myr. Results are shown in Fig. 4.1 for both

dusty and dust-free atmospheres of various metallicities, ranging from solar (Z � 0.02) to the

metallicity of Neptune’s atmosphere (Z � 0.2; Karkoschka and Tomasko 2011), gas surface

density factors fΣ � 10�4 – 1.88, and radiative-convective boundary temperatures Trcb � 1600 –

2500 K.

The dependence on metallicity Z is non-monotonous, as the accreted envelope mass fraction

depends separately on the metallicity and on the mean molecular weight (which is set by the

metallicity). The smallest accreted atmospheres, with the rest of the parameters fixed, have

Z � 0.1.

The radiative-convective boundary temperature Trcb is expected to be roughly constant in

dusty atmospheres, so I only explore the effect of this parameter in dust-free atmospheres. In

the latter, Trcb is related to the temperature of the environment. Additionally, accretion of

both dust-free and dusty atmospheres depends the density of the environment. Here we are

interested in atmospheres that are accreted in the inner disc, near or inwards of the pressure

maximum. The location of the pressure maximum is determined by the extent of thermal

ionization of potassium in the disc model used here, and so this corresponds to disc temperatures

of T Á 1000 K, regardless of the exact disc parameters (e.g. gas accretion rate). For a disc

temperature of T � 1000 K, numerical models of the accreting atmospheres give Trcb� 1600 K

(Lee and Chiang 2015), which thus sets a lower bound on Trcb for the calculations in this work.

Moreover, the location of the pressure maximum is also where the gas surface density is highest

(see Fig. 3.1). Colder atmospheres in a more dense environment accrete more. So, to show

the maximum accreted atmospheres in an MRI-accreting disc, I plot a set of dusty and dust-

free atmospheres (of various metallicities Z) for the maximum fΣ � 1.88, and the minimum

Trcb � 1600 K (the latter refers only to the dust-free atmospheres). Conversely, the maximum

temperature at which equation (4.2) is valid (due to the limitations of the opacity tables used
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Figure 4.1: Envelope mass fraction of atmospheres accreted in 1 Myr as a function planet core
mass for dusty (black lines) and dust-free (grey lines) atmospheres and a variety of metallicities
Z, gas surface density factors fΣ and (in the case of dust-free atmospheres) radiative-convective
boundary temperatures Trcb, as indicated in plot legend. Grey region indicates the total range of
expected envelope mass fractions (except for those that would reach an envelope mass fraction
of X � 0.5 within 1 Myr and thereby expected to undergo runaway accretion to form gas giants;
these are not shown).

by Lee et al. 2014) is Trcb � 2500 K 1 , and the minimum gas surface density in the inner disc

model with respect to the minimum mass solar nebula is fΣ � 10�4 (corresponding to the inner

disc edge in Fig. 3.1). Hotter atmospheres in lower-density environments accrete less, and so

to show the smallest accreted dust-free atmospheres, I plot the fΣ � 10�4 atmospheres, with

Trcb � 2500 K for the dust-free atmospheres, and with metallicity Z � 0.1 (since, as noted

above, Z � 0.1 yields the smallest atmosphere for any given set of other parameters).

Finally, atmospheres that grow above a threshold of X � 0.5 undergo runaway accretion

and end up as gas giants (Rafikov 2006). The scaling relations (4.1,4.2) are not applicable in

this case. Therefore, Fig. 4.1 is cut off at X � 0.5, and the grey region indicates how small or

large super-Earth/mini-Neptune atmospheres may be at the time of disc dispersal. Overall one

can see that, if the cores are formed 1 Myr before the dispersal, runaway accretion is avoided

for the majority of relevant core masses, but they do accrete significant gaseous envelopes of

up to a few� 10% of core mass.

The envelopes shown in Fig. 4.1 have been calculated assuming that the accretion lasts for

1 Myr. Since disc lifetimes can be longer (Mamajek 2009), these envelopes could be conservative

estimates if planets form sooner than 1 Myr before disc dispersal. If, for example, the envelopes

1Note that, assuming Trcb is directly proportional to the disc temperature T , and scaling from the numerical
models’ result that Trcb� 1600 K corresponds to T � 1000 K, yields T � 1500 K for Trcb� 2500 K. The disc
temperature in the model used here only exceeds 1500 K at radii  0.1 AU, so a maximum Trcb of 2500 K is
indeed roughly valid over most of the inner disc.
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are accreted for 5 Myr, the envelope mass will double. It is not expected for the results to

be very sensitive to the exact disc parameters, as long as the cores accrete their atmospheres

in a thermally-ionized MRI-active inner disc. Note, however, that the disc model used here

implies that the extent of such inner disc does not encompass all observed sub-Neptunes for

all relevant accretion rates; e.g. the gas pressure maximum is at an orbital period longer than

100 days only for gas accretion rates of 9MgÁ 3 � 10�9 Md yr�1. Thus, a planet with a longer

orbital period might spend at least some time in a colder MRI-dead zone, which is not taken

into account in this work.

4.3.2. Photoevaporation of planetary atmospheres

To further check the consistency of core accretion in the MRI-accreting inner disc with obser-

vations, we need to consider whether these accreted atmospheres survive photoevaporation. I

calculate the final (remaining) envelope mass fraction of the minimum and maximum possible

accreted atmospheres (corresponding respectively to dusty atmospheres with fΣ � 10�4 and

Z � 0.1, and dust-free atmospheres with Z � 0.02, fΣ � 1.88 and Trcb � 1600 K) for each core

mass and as a function of orbital period. Results are shown in Fig. 4.2. In the case of the maxi-

mum accreted atmospheres (top panel), the atmospheres would undergo runaway accretion for

core masses Á 8 M` (indicated by the hatched region), which are thus excluded here.

The figures show that the orbital period at which the atmosphere can be completely evap-

orated decreases with increasing core mass, and cores that retain their atmospheres generally

evolve towards a 1% envelope mass fraction as expected from theory. At 100 days the atmo-

spheres are unaffected by photoevaporation, and at periods shorter than 1 day all planets are

predicted to end up as bare cores. Massive cores are predicted to keep their 1 – 50% atmospheres

at the majority of orbital periods, and planets with Earth-mass cores are safe from complete

mass loss at periods larger than 50 days.

Note that here the orbital period determines the level of high-energy flux that planet experi-

ences and planet equilibrium temperature (and thus planet radius), but does not directly reflect

variations in temperature and density of the protoplanetary disc inside which the atmospheres

were accreted. As discussed above, the effect of the disc temperature on the accreted envelope

mass fraction is negligible for dusty atmospheres. For dust-free atmospheres the dependence is

monotonous and the extent of the effect is explored by considering the minimum Trcb expected

in the inner disc, and the maximum Trcb for which the scaling relations (4.1,4.2) are valid. Sim-

ilarly, the dependence on the disc density is explored by considering the smallest and largest

values of the ratio of the MRI-disc model and the minimum mass solar nebula surface densi-

ties. Thus, by calculating the effect of photoevaporation on both the minimum and maximum

accreted atmospheres shown in Fig. 4.1 for each core mass, I encompass the possible range of

disc densities and temperatures.
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Figure 4.2: Maximum (top) and minimum (bottom) envelope mass fraction of the atmospheres
after accounting for photoevaporation, as functions of planet core mass and orbital period. In
the top figure, the hatched region indicates the core masses for which the planets would undergo
runaway accretion and are thus excluded from here.
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4.4. Comparison to observations

Overall, Fig. 4.2 shows that the envelopes formed in a gas-poor inner disc due to the MRI

survive photoevaporation for a large range of orbital periods, and the low gas surface densities

are not a hindrance to the formation of mini-Neptunes. On the contrary, the final envelope

mass fractions of the planets that do keep their atmospheres are typically overestimated. The

planets with core mass larger than 2 M` are predicted to either have a ¡ 1% atmosphere or to

be completely evaporated. On the other hand, from the observations, the typical envelope mass

fraction of mini-Neptunes that hold onto their atmospheres is 1% (Wolfgang and Lopez 2015).

To look into this further, I compare the predictions of these calculations against the observed

mass-radius relationship for sub-Neptune planets in Fig. 4.3, and against measured masses and

radii of individual sub-Neptune planets in Fig. 4.4.

For the observations in Fig. 4.3, I show the probabilistic best-fitting mass-radius relationship

of Wolfgang et al. (2016): a power law M{M` � 2.7pR{R`q1.3 (indicated by the dashed line)

with a standard deviation of �1.9 M` due to an intrinsic scatter in planet mass (the dark grey

region), and an upper limit constraint on the planet density corresponding to a mass-radius

relationship for solid cores of Earth-like composition M{M` � pR{R`q4 (dotted line; Valencia

et al. 2010). Additionally, the above mass-radius relationship does not capture a significant

feature of the observed radius distribution of sub-Neptunes, a decrease in occurrence rates of

planets with radii of 1.5 – 2 R` (indicated here by the sheer grey region; Fulton et al. 2017).

To show the predictions of the above atmospheric calculations in the mass-radius plane, I

take the calculated envelope mass fraction as a function of core mass and period and re-calculate

the planet radius at the planet age of 5 Gyr as a function of core mass and period, using the

same simple atmospheric evolution model of Owen and Wu (2017). The results are shown

for the minimum and maximum accreted atmospheres (Fig. 4.2, and excluding the completely

evaporated planets) in Fig. 4.3 (the medium grey and the light grey region respectively). Note

that the light grey region has a cut-off at about 8 M` because the massive cores that, given the

parameters of the maximum accreted atmospheres, would be subject to runaway accretion, are

excluded. The solid-line contours show how the planet mass and radii change as a function of

period for the minimum accreted atmospheres. At the orbital period of 100 days the planets are

largely unaffected by the atmospheric loss, and closer to the star the photoevaporation removes

atmospheres of the lower-mass planets entirely. For the planets that keep their atmospheres

at large periods a decrease in period means little to no change in planet mass. Consequently,

for these planets a decrease in period results in an increase in planet radius as atmospheres

are hotter and more expanded closer to the star due to stronger stellar irradiation. At small

periods the atmospheric loss is significant for all planets, and the trend is reversed.

It is clear from Fig. 4.3 that for planets with radii R À 2.3 R` the core accretion of atmo-

spheres in the inner disc predicts larger planet radii than those observed, due to the overesti-

mated envelope mass fractions. The predicted atmospheres fill in the range of planet radii of
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Figure 4.3: Mass-radius relationship for sub-Neptune planets: Earth-like composition solid
cores (dotted line), probabilistic fit to observations mean value (dashed line) and scatter (solid
dark grey region) (Wolfgang et al. 2016), region of low planet occurrence rates from the observed
radius distribution of planets (sheer grey region) (Fulton et al. 2017), and predictions from the
minimum and maximum accreted atmospheres and photoevaporation (medium grey and light
grey region respectively) with orbital period contours for the minimum accreted atmospheres
(solid-line contours).

1.5 – 2 R`, at which there is an observed decrease in planet occurrence rates (sheer grey region).

For planets with R Á 2.3 R` there is a region in which the observed (dark grey) and the pre-

dicted (medium and light grey) mass-radius relationships overlap. This overlap corresponds to

the (minimum accreted) predicted atmospheres for orbital periods between 20 and 100 days,

and a narrow range of short orbital periods (2 – 5 days). Notably, even for the minimum ac-

creted atmospheres, the planet radii, at fixed planet mass, are smaller than those observed

only for significant high-energy fluxes at orbital periods of less than about 2 days. Taking

into account the full range of accreted atmospheres (up to the maximum accreted atmospheres

shown in light grey) further suggests that the predicted atmospheres are typically larger than

the atmospheres of the observed sub-Neptunes.

I further compare the predictions of the above calculations to sub-Neptune planets with

measured masses and radii (taken from Wolfgang et al. 2016, excluding the planets where only

the upper limit on the mass was known). The observed and the predicted radii and masses are

shown in Fig. 4.4 in four panels corresponding to four orbital period bins. As in Fig. 4.3, the

medium and light grey regions correspond to the predictions from the minimum and maximum

atmosphere mass models respectively. To facilitate comparison against the planets that are

bare solid cores in each period bin, Fig. 4.4 also shows the core masses that are predicted to

lose their entire atmospheres in a given period bin (grey lines shown below the dotted lines

that represent the Earth-like composition mass-radius relationship). Fig. 4.4 shows that the
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Figure 4.4: Sub-Neptune planets with measured masses and radii (square markers if the mass
was determined using the radial velocity method, and triangles if the mass was determined
using transit-timing variations), with uncertainties as listed in Wolfgang et al. (2016), Earth-
like composition solid cores (dotted line), and predictions from the minimum and maximum
atmosphere models (medium and light grey region respectively), in period bins as indicated in
plot labels. This figure indicates that while the period range at which planets can be stripped by
photoevaporation is consistent with the data, the planets typically have larger H/He envelopes
that expected.
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masses of the predicted bare cores and the period at which photoevaporation can strip them

are largely consistent with those observed. That is, there are no observed planets consistent

with the Earth-like composition that are (significantly) more massive than the largest core that

the photoevaporation can strip (the upper limit of the grey line, the predicted bare cores) in

each period bin. Fig. 4.4 also explicitly demonstrates that for the planets that maintain their

atmospheres against the photoevaporation, the predicted planet radii are consistent with or

larger than the those observed for the majority of the planets. At long orbital periods (20 –

100 days) all planets except one are consistent, within the observational uncertainties, with

the predictions (the minimum accreted atmospheres in medium grey, the maximum accreted

atmospheres in light grey, and the region in between). At intermediate periods (5 – 20 days),

about a third of planets that are not bare cores have radii smaller than the predicted radii at

the same mass. Finally, at short periods of less than 5 days, there are noticeably 5 planets

with radii of �1.8� 2 R` that are neither consistent with the mass-radius relationship of rocky

cores, nor with the presence H/He envelopes. This suggests, potentially, that the cores of these

planets could contain significant amounts of ice. Still, the majority of short-period planets

are consistent with the predictions. Additionally, while there might be exceptions, the radius

distribution of sub-Neptunes is consistent with cores being largely rocky (Owen and Wu 2017).

Therefore, these results confirm the inference that typically the planets accrete too much gas

in the calculations.

Overall, the atmospheres accreted in the inner disc are typically in agreement with or larger

than those observed, with the exception of planets with significant high-energy fluxes within a

very narrow range. This is because core accretion is so efficient that considerable atmospheres

can be accreted in the hot and low-density MRI-accreting inner disc and also maintained against

photoevaporation.

4.5. Discussion and conclusions

In this chapter I have examined accretion of planetary atmospheres formed in the inner disc

that is viscously accreting due to the MRI. I have considered both the accretion and subsequent

photoevaporation of close-in super-Earth planets, and compared the results to the observed

properties of these planets.

If super-Earth and mini-Neptune cores indeed form in the inner disc, would the inferred low

gas surface densities due to the MRI allow them to acquire the observed 0.1 � 10% envelope

mass fractions? It is found that they would. In fact, even after accounting for atmospheric

evaporation, the calculated atmospheres tend to overestimate the observed ones.

Could the atmospheric accretion in the MRI-implied disc and the observations be brought

into agreement, without invoking an assumption that cores form just before the beginning of

disc dispersal (e.g. Ikoma and Hori 2012; Lee and Chiang 2016)? The calculations shown here
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do not include several effects which could contribute.

First of all, for core masses smaller than 10 M`, the discrepancy could be explained by the

“boil-off” or core powered mass-loss (Owen and Wu 2016; Ginzburg et al. 2018; see also Ikoma

and Hori 2012), a process in which a planet atmosphere that had not cooled and contracted

before the disc dispersal loses its mass. Upon the dispersal the stellar continuum radiation

illuminates the planet and launches a Parker wind. The mass loss causes rapid contraction of

the atmosphere, and the contraction in turn shuts off the mass loss. Planets that start out with

few 10s of percent atmospheres, may be left with 1% after the boil-off. This process precedes

the mass loss caused by the stellar high-energy flux considered above, and can operate at larger

distances from the star.

Secondly, the scaling relations used to calculate the accreted atmospheres are derived as-

suming no sources of heating due to planetesimal accretion, or due to heat deposited in the

hypothesized final stage of giant mergers of planetary embryos. The latter could be released for

several kyr (e.g. Inamdar and Schlichting 2015), lowering the cooling rate of the atmosphere,

and thus allowing less gas to be accreted. Furthermore, the scaling relations assume that the

gas inside the planet’s Hill sphere is bound and static. Three-dimensional numerical simulations

suggest instead that disc material is recycled between the envelope and the disc (e.g. Ormel

et al. 2015; Fung et al. 2015; Cimerman et al. 2017).

Finally, if the giant mergers happen between planets, after the disc has fully dispersed,

they would likely result in significant atmospheric mass loss. Head-on collisions between

Earth/super-Earth-sized planets with few-percent atmospheres can remove tens of percent of

the total atmospheric mass (Liu et al. 2015; Inamdar and Schlichting 2016).

Nevertheless, to avoid the runaway accretion for more massive cores, the low gas surface

densities the MRI provides are favourable compared to the MMSN environment. Furthermore,

gas-poor conditions in this case are provided in a long-lived state, and not in a transient

phase (e.g. a transition disc, as proposed by Lee and Chiang 2016). Therefore, the results

presented here support the hypothesis that the super-Earths could have formed in the inner

protoplanetary disc.
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5 Improved model of the MRI-accreting

inner disc

5.1. Introduction

In Chapter 2 I discussed models of the inner disc in which the disc structure and accretion due

to the MRI were considered self-consistently. The obtained structure of the inner disc features

a local gas pressure maximum, in line with theoretical expectations, and the location of the

pressure maximum in these models was found to be consistent with the orbital distances of the

close-in super-Earths. However, these models included a number of simplifications about the

disc physical and chemical structure. The disc vertical structure was considered to be vertically-

isothermal, and heating by stellar irradiation was neglected. However, disc temperature may

vary vertically, and the temperature profile is particularly non-trivial when both accretion

heating and stellar irradiation are considered (e.g. D’Alessio et al. 1998). The opacity of the

disc due to dust grains was also taken to be a constant, whereas in reality it varies with

temperature and the properties and the abundance of dust grains.

Furthermore, in Chapter 2 it was assumed that the only source of ionization in the disc is

thermal (collisional) ionization of potassium, and that the potassium ions and free electrons

may only recombine in the gas-phase. Potassium is a good representative of thermally-ionized

species in the inner disc based on its low ionization potential and its abundance (Desch and

Turner 2015). However, ions and free electrons also collide with dust grains present in the disc.

When they are adsorbed onto grain surfaces, they quickly recombine. The presence of dust

grains is thus known to reduce the ionization levels in discs and suppress the MRI (Sano et al.

2000; Ilgner and Nelson 2006; Wardle 2007; Salmeron and Wardle 2008; Bai and Goodman 2009;

Mohanty et al. 2013). Importantly, dust grains heated to high temperatures (Á 500 K) can also

emit electrons and ions into the gas phase. For electrons, the process is known as thermionic

emission. Such temperatures are easily attainable in the inner disc, and thermionic and ion

emission have been shown to be important sources of ionization there (Desch and Turner 2015).

Additionally, in Chapter 2 we saw that an MRI-accreting inner disc features low gas surface

densities, and so ionization of molecular hydrogen by the stellar X-rays may be comparable to

thermal ionization as a source of free electrons.

In this chapter I present a new model of a steady-state disc that is accreting due to the MRI.
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The vertical structure in this model is calculated self-consistently from viscous dissipation (due

to the MRI-induced viscosity), stellar irradiation, and radiative and convective cooling (with

realistic opacities due to dust grains). Ionization in the disc is driven by thermal ionization of

potassium, thermionic and ion emission from dust grains, and ionization of molecular hydrogen

by stellar X-rays, cosmic rays and radionuclides. Section 5.2 details all components of this

model and the methods we can use to find a self-consistent steady-state solution for the disc

structure. Section 5.3 presents the results, and in Section 5.4 I discuss the relative importance

of the considered physical and chemical processes for the structure of the inner protoplanetary

disc. In the next chapter I further investigate how the inner disc structure changes with dust

grain size, dust-to-gas ratio, gas accretion rate and stellar mass, and discuss the implications

for the formation of the super-Earths in the inner disc.

5.2. Methods

The disc is assumed to viscously accrete due to the MRI. The model of the disc structure

is described in Section 5.2.1. The disc structure depends on the disc’s radiative properties,

i.e. opacities, and on the viscosity. The calculation of opacities is given in Section 5.2.2, and

the prescription for the MRI-driven viscosity in Section 5.2.3. The MRI-driven viscosity is a

function of the disc’s ionization state, calculated using a chemical network described in Section

5.2.4. Disc structure, opacities, ionization and viscosity are calculated self-consistently at every

point in the disc, using numerical methods given in Section 5.2.5.

The key parameters of the self-consistent disc model are the steady-state gas accretion rate
9M , stellar mass M�, stellar radius R�, effective temperature T�, and value of the viscosity in

the absence of the MRI (the dead-zone viscosity). Additionally, disc opacities and ionization

state, and thus the disc structure, depend on the properties of dust, namely, the dust-to-gas

ratio fdg and the maximum dust grain size amax.

5.2.1. The disc model

The disc model largely follows the work of D’Alessio et al. (1998; 1999). I consider a thin,

axisymmetric, Keplerian, steady-state disc that is viscously accreting, and assume that the

disc is in vertical hydrostatic equilibrium, heated by viscous dissipation and stellar irradiation,

and that energy is transported by radiation and convection. The energy transport in the radial

direction is neglected. Furthermore, at a given orbital radius, viscosity depends only on local

conditions and the vertical mass column (see Section 5.2.3). Then, the structure of the disc

at different radii is only coupled by the stellar irradiation, as it penetrates the disc along the

line-of-sight to the central star.
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5.2.1.1. Hydrostatic equilibrium

In a thin Keplerian disc in vertical hydrostatic equilibrium, at any given radius the gas pressure

profile follows from
dP

dz
� �ρΩ2z, (5.1)

where P is the gas pressure, ρ is the gas volume density, Ω is the Keplerian angular velocity

and z is the height above disc midplane. I adopt the ideal gas law.

5.2.1.2. Viscous heating and stellar irradiation

The disc is heated by the viscosity that drives the accretion. The viscosity is parametrized

by ν � αc2
s{Ω, where α is the Shakura and Sunyaev (1973) viscosity parameter and cs is the

isothermal sound speed. Local viscous dissipation rate at any location in the disc is given by

Γacc � 9

4
αPΩ. (5.2)

The flux generated by viscous dissipation that is radiated through one side of the disc is

Facc � 3

8π
9MfrΩ

2, (5.3)

where fr � 1�aRin{r comes from the inner disc edge thin-layer boundary condition, r is the

orbital radius and Rin � R� is the orbital radius of the inner disc edge (e.g. Frank et al. 2002),

where I am assuming a zero-torque inner boundary condition.

I also consider heating due to stellar irradiation. Stellar flux propagates spherically from the

star, and heating due to stellar irradiation at any location in the disc depends on the attenuation

of this flux along the line-of-sight to the star. However, such treatment of the stellar flux in 2D

coupled to a 1+1D disc model considered here, with no radial energy transport or scattering

of stellar light, leads to multiple, or no solutions at all, for the equilibrium disc structure.

Such behaviour does not appear in 2D disc models (e.g. Dullemond 2002). Therefore, it is

necessary to use an assumption that the stellar flux hits the disc surface at an angle φ and then

propagates vertically towards the midplane (Calvet et al. 1992; Chiang and Goldreich 1997).

In this framework, the attenuation, i.e. the optical depth to the stellar flux, is approximated

as τirr � τirr,z{µ, where τirr,z is the optical depth in the vertical direction, and µ � sinφ. Local

heating due to stellar irradiation is then given by

Γirr � κ�Pρ
Firr

µ
e�τirr,z{µ, (5.4)

where κ�P is the disc Planck opacity to stellar irradiation (see Section 5.2.2) and Firr is the total
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incident stellar flux at the given orbital radius. In an optically-thick disc, the latter is given by

Firr � σSBT
4
�

�
R�

s


2

µ, (5.5)

where s is the distance to the star (spherical radius) from the top of the disc at the given orbital

radius.

The grazing angle φ is given by

φ � sin�1 4

3π

R�

r
� tan�1dlogzirr

dlogr

zirr

r
� tan�1 zirr

r
. (5.6)

Here the first term is the value of φ for a flat disc and comes from the finite size of the stellar

disc, and the other two terms are due to disc flaring. Height zirrprq defines the surface in the

disc at which the stellar flux is absorbed; here, zirrprq is the height above disc midplane at

which the optical depth to stellar irradiation is τirr � 2{3. Specifically, in calculating the height

zirr, the optical depth τirr is obtained by integrating along spherical radius s to the star, as

opposed to the approximation used in the local heating term. The height zirr and the angle φ

are determined self-consistently with the disc structure following the procedure by D’Alessio

et al. (1999), as outlined in Section 5.2.5.

5.2.1.3. Radiative energy transport

We can consider the energy transport only in the vertical direction. In a thin disc the optical

depth to disc radiation is much smaller in the vertical than in the radial direction. Thus, it can

be expected that the radiation primarily transports heat vertically.

The frequency-integrated moments of the radiative transfer equation in the Eddington ap-

proximation (i.e. assuming that radiation is isotropic, as is valid in the optically thick regime)

and the energy balance equation are

dF

dz
� Γacc � Γirr, (5.7)

dJ

dz
� �3ρκR

4π
F, (5.8)

4ρκPpσSBT
4 � πJq � Γacc � Γirr, (5.9)

where F and J are radiative flux and mean intensity, respectively. I have also assumed here

that the J and F weighted opacities can be approximated by the Planck mean opacity κP and

the Rosseland mean opacity κR, respectively (following e.g. Hubeny 1990, see Section 5.2.2).

Together with the ideal gas law, equations (5.1, 5.7-5.9) form a closed set of equations in P ,

F , J and T . Together with appropriate boundary conditions, they determine the disc vertical

structure. One boundary condition is given at disc midplane, where due to symmetry the flux

F p0q � 0. The rest of the boundary conditions are given at the top of the disc, at height zsurf
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above disc midplane. The boundary condition for the flux F is obtained by integrating eq. (5.7)

from z � 0 to z � zsurf , from which it follows that F pzsurfq � Facc�Firr. The boundary condition

for the mean intensity J is given by Jpzsurfq � 1
2π
F pzsurfq. Furthermore, we can assume that

the gas pressure at the top of the disc has a small constant value, P pzsurfq � 10�10 dyn cm�2,

which is another boundary condition. This is arbitrary, but does not affect the results as long

as the value is sufficiently small. Overall, thus, there are 4 boundary conditions for the three

differential equations. Additionally, the temperature T pzsurfq at the top of the disc follows from

the algebraic eq. (5.9) and the boundary conditions for J and P .

Some applications of eq. (5.8) to accretion discs require an additional multiplicative factor on

the right-hand side of the equation, the so-called flux-limiter, to preserve causality (Levermore

and Pomraning 1981). This is not the case in the boundary value problem described above.

The flux-limiter is introduced to ensure that F   cER, where ER � 4π
c
J is the radiation energy

density. Here, this condition is already fulfilled everywhere in the disc, since at the top of the

disc F � cER{2 and vertically downwards ER (or J) can only increase and F can only decrease

(i.e., from eq. (5.7) and (5.8), dF {dz ¡ 0 and dJ{dz   0).

5.2.1.4. Energy transport by convection

If radiative energy transport yields a thermal structure such that gradient ∇ � dlnT
dlnP

is greater

than the adiabatic gradient ∇ad � pγ � 1q{γ, the gas is unstable to convection. In disc regions

where this is the case we can assume that energy transport by convection is efficient and that

gas is vertically isentropic, so ∇ � ∇ad at such locations (e.g. Shu 1992; Rafikov 2007). I adopt

γ � 1.4. Then, the equations (5.8), (5.9) are replaced by

dT

dz
� �∇ad

T

P
ρpT, P qΩ2z � �∇ad

µmH

kB

Ω2z. (5.10)

5.2.2. Opacities

Radiative transport is controlled by the Rosseland-mean opacity κR in optically-thick regions,

eq. (5.8), and by the Planck-mean opacity κP in optically-thin regions, eq. (5.9). Additionally,

absorption coefficient for the stellar flux is a Planck-mean opacity κ�P at the stellar effective

temperature. In this work, it is assumed that the only source of these opacities are dust grains.

Gas opacities are important in the very innermost regions of discs, where most dust species

are sublimated. However, these regions are not of particular significance for the early stages of

planet formation that we are interested in, as the dust is required to form solid planet cores.

Beyond the silicate sublimation line, gas opacities may still be important in the hot, optically-

thin regions (Malygin et al. 2014). However, the inner disc is significantly optically-thick and

including gas opacities would only alter the structure of the hot disc atmosphere. Therefore,

we can completely ignore the gas contribution to the opacities.
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Figure 5.1: Planck-mean opacity κP, Rosseland-mean opacity κR, and Planck-mean opacity
at the stellar effective temperature κ�P, as functions of disc temperature, assuming dust-to-gas
ratio fdg � 10�2 and a maximum dust grain size amax � 1µm.

Furthermore, we can assume that the only dust species present are silicate grains. Other

species that can be comparable in abundance to silicates are water ice and carbonaceous grains

(e.g. organics, Pollack et al. 1994). However, due to their low sublimation temperatures, both

water ice and carbonaceous grains are expected to be sublimated in the hot MRI-active regions.

To calculate the opacities, I use the optical constants of “astronomical silicates” from Draine

(2003), and the miescat module of the python wrapper radmc3dPy for RADMC3D (Dulle-

mond et al. 2012) to obtain dust absorption and scattering coefficients as functions of radiation

wavelength and grain size. For each grain size a the coefficients are averaged within a size

bin of width ∆loga � 0.02. Next, I adopt the grain bulk density of ρg � 3.3 g cm�3, and the

grain size distribution given by dnpaq9 a�qda (Mathis et al. 1977), with q � 3.5, minimum

grain size amin � 0.1µm, and a maximum grain size amax. Then, the size-dependant absorption

and scattering coefficients are weighted by grain mass and averaged over the grain size distri-

bution. Finally, the absorption coefficient is integrated over frequency to obtain Planck-mean

opacity (κPpT q), and the total extinction coefficient yields Rosseland-mean opacity (κRpT q).
Following D’Alessio et al. (1998), I calculate the mean absorption coefficient for the stellar flux

as a frequency-integrated absorption coefficient weighted by the Planck function at the stellar

effective temperature (κ�P � κPpT�q).
Fig. 5.1 shows the opacities per unit mass of gas, assuming a dust-to-gas ratio of fdg �

10�2 and T� � 4400 K, for a maximum grain size amax � 1µm. Planck-mean opacity at the

stellar effective temperature κ�P is a constant, since the wavelength-dependent dust absorption

coefficient does not depend on the local temperature. The Planck-mean opacity κP is in general

expected to increase with increasing temperature. This is because the wavelength at which the

Planck function peaks is inversely proportional to the temperature, and for grains smaller than

the wavelength of peak emission (and small grains contribute to the opacities most) absorption

is expected to increase with decreasing wavelength. However, due to the silicate absorption

feature at 10µm, κP decreases with temperature in the range � 500 K – 1000 K.
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5.2.3. Viscosity

The model of the MRI-driven viscosity closely follows that presented in Chapter 2 (see also Bai

2011a). Here only the main points are summarized. A well-ionized circumstellar disc which

behaves according to laws of ideal magnetohydrodynamics is susceptible to the MRI (Balbus

and Hawley 1991). Under such conditions, the MRI leads to turbulence, producing an accretion

stress and acting as a source of viscosity. In terms of the Shakura-Sunyaev parameter α, the

MRI yields

αAZ � 1

3β
(5.11)

where β � P {PB is the plasma parameter, and PB � B2{8π is the magnetic field pressure

(Sano et al. 2004).

However, even in the inner regions of protoplanetary discs, non-ideal magnetohydrodynamic

effects quench the MRI, leading to the so-called dead zones. The non-ideal magnetohydrody-

namic effects considered here are Ohmic and ambipolar diffusion. Ohmic diffusion will not

supress the MRI if (Sano and Stone 2002)

Λ � v2
Az

ηOΩ
¡ 1, (5.12)

where Λ is the Ohmic Elsasser number, vAz � Bz{
?

4πρ is the vertical component of the local

Alfven velocity and ηO is the Ohmic magnetic resistivity. Here, we can utilize the relationship

between the vertical component of the magnetic field strength Bz and the r.m.s. field strength

B, B2
z � B2{25 (Sano et al. 2004). It is also assumed that B is vertically constant. The method

of determining the value of B is described in Section 5.2.5.

Similarly, the ambipolar Elsasser number is defined by

Am � v2
A

ηAΩ
, (5.13)

where ηA is the ambipolar magnetic resistivity. However, in the strong-coupling limit valid in

protoplanetary discs, the MRI can be active even if Am   1, if the magnetic field is weak (Bai

and Stone 2011). The criterion for the active MRI is then given by

β{βmin ¡ 1 (5.14)

where the minimum value of β necessary to sustain the MRI is a function of the ambipolar

Elsasser number,

βminpAmq �
��

50

Am1.2


2

�
�

8

Am0.3
� 1


2
�1{2

. (5.15)

Thus, whether the MRI will be active or not depends on the magnetic resistivities, ηO and

ηA, as well as the magnetic field strength B. The magnetic resistivities, calculated following
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Wardle (2007), express the coupling between the gas and the magnetic field. This is principally

determined by the ionization of the gas.

If any of the two criteria given by eqns. (5.12), (5.14) is not fulfilled, the MRI is not active.

In such MRI-dead zones, I assume there is a small residual viscosity αDZ, driven either by

propagation of turbulence from the MRI-active zone, or by hydrodynamic instabilities. In this

chapter, I also impose a smooth transition between the active and the dead zone, necessary to

ensure numerical stability in the integration of the equations of the disc structure. To cover

both non-ideal effects that lead to dead zones, we can define C � minpΛ, β{βminq. Then, at any

location in the disc, if |C � 1|   0.5,

α � αDZ � αAZ � αDZ

1� exp
��C�1

∆

� , (5.16)

where ∆ � 10�2. The exact value of ∆ makes very little difference to the results presented

here.

5.2.4. Ionization

5.2.4.1. Chemical network

A simple chemical network is implemented following Desch and Turner (2015). The chemi-

cal network considers number densities of five species: atomic ions (ni), free electrons (ne),

potassium ions (nK�), neutral potassium atoms (nK0) and potassium atoms adsorbed onto dust

grains (nK,cond).

In the gas-phase potassium atoms are thermally ionized – collisions of neutral potassium

atoms with hydrogen molecules produce potassium ions and free electrons. Potassium ions and

free electrons recombine radiatively and also in three-body recombinations in collisions with

hydrogen molecules (the latter process dominates at high densities present in the inner disc).

Furthermore, non-thermal sources of ionization (e.g. X-rays) can ionize molecular hydrogen

(Glassgold et al. 1997; Ercolano and Glassgold 2013). The charge is quickly transferred from

the ionized hydrogen to other abundant gas species through collisions, producing molecular and

atomic ions (e.g. HCO�, Mg�). Notably, in application to the MRI, the exact composition

of the gas that this leads to is unimportant in the presence of dust, and simple chemical

networks reproduce the gas ionization levels well (Ilgner and Nelson 2006). Thus, it is assumed

that ionization of molecular hydrogen directly produces an atomic ion and a free electron at

a rate ζnH2 . The atomic ion species in this chemical network may thus be understood as a

representative of the various chemical species abundant in the gas-phase. Its mass is taken to be

that of magnesium. It is assumed that the number density of molecular hydrogen is constant,

which is valid for low ionization rates. Same as potassium, the atomic ions also recombine

radiatively and in three-body recombinations.
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Importantly, all gas-phase species collide with and are adsorbed onto dust grains at a rate

Rj, coll � njngrπa
2
gr

�
8kBT

πmj


1{2

J̃jSj, (5.17)

where nj is the number density of the gas-phase species, ngr is the number density of the grains,

agr is the grain size, mj is the gas-phase species mass, J̃j is the modification of the collisional

cross-sections for charged species due to dust grain charge (Draine and Sutin 1987), and Sj is

the sticking coefficient. It is assumed that all grains have the same charge; this is valid since

the dispersion of the distribution of charge states is generally found to be small(Draine and

Sutin 1987). It is further assumed that potassium ions are quickly recombined on the grain

surface to form condensed potassium atoms. The atomic ions are effectively destroyed upon

adsorption.

At high temperatures electrons on the dust grains have a finite probability of leaving the

grain, producing the so-called thermionic emission. The emission depends on the energy re-

quired for the electron to escape the grain. For a neutral grain this is the work function W , a

property of the material out of which the grains are made. The rate at which free electrons are

produced through thermionic emission is

Rtherm � ngr4πa
2
grλR

4πmepkBT q2
h3

e
�
Weff
kBT , (5.18)

where

Weff � W � ke
Ze2

agr

(5.19)

is the effective work function due to grain charge Ze, and ke is the Coulomb constant.

Potassium atoms will also evaporate from the grains only at high temperatures. The va-

porization rate of condensed potassium atoms is given by

RK,evap � nK,condνe
� Ea
kBT , (5.20)

where ν is the vibration frequency of potassium atoms on the dust grain surface lattice, and

Ea � 3.26 eV is the binding energy, whose value is chosen to reproduce the condensation

temperature of potassium (1006 K, Lodders 2003). These potassium atoms may be emitted

into the gas phase as both neutral atoms and ions, contributing further to the gas’ ionization

state. The ratio of ions to neutrals among the emitted particles is given by

n�K
nK0

� g�
g0

e
�
Weff�IP

kBT , (5.21)

where g�
g0

is the ratio of statistical weights of the ionized and neutral state of potassium, and

IP the ionization potential of potassium.

Clearly, the contribution of the dust grains to gas ionization levels depends on the work
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function W of the grain material. I adopt the fiducial value of Desch and Turner (2015),

W � 5 eV, and refer the reader to their work for a discussion of the experimental results

supporting this choice. This value is close to the ionization potential of potassium, IP � 4.34 eV,

indicating that thermionic emission is important for the production of free electrons in the same

temperature range as thermal ionization of potassium. Importantly, at this given value of the

work function, grains become negatively charged at high temperatures as a large fraction of

potassium evaporating from the grains is in ionized state. This results in a reduction of the

effective work function Weff , i.e., for negatively charged grains thermionic emission is higher.

In this work, I assume that the abundances of hydrogen and potassium atoms are xH �
9.21�10�1 and xK � 9.87�10�8, respectively, relative to the total number density of all atomic

particles (Keith and Wardle 2014), and that the mean molecular weight is µ � 2.34mH
1. The

grain material density is ρgr � 3.3 g cm�3, the same as in the calculation of the dust opacities.

The input for the chemical network are temperature T , pressure P , hydrogen ionization rate ζ,

dust-to-gas ratio fdg and dust grain size agr. All other kinetic rates, parameters and coefficients

are the same as in Desch and Turner (2015). Note that the chosen value of the sticking coefficient

for the electrons (Se � 0.6) is compatible with the detailed calculation by Bai (2011a). The

calculation therein is done for the values of work function of 1 eV and 3 eV. The results suggest

that for the work function of 5 eV, at 1000 K, Se is indeed few times 0.1 for neutral grains, and

increases further for negatively-charged grains.

For a given dust-to-gas ratio fdg and grain size agr, the equilibrium number densities of

electrons and ions, and the average grain charge, are pre-calculated and tabulated as functions

of temperature T , pressure P and hydrogen ionization rate ζ. The equilibrium solution is

found following the same method as Desch and Turner (2015). Time derivatives of all number

densities are set to zero, and so rate equations yield an algebraic system of equations. For

a given average grain charge Z, this system of equations is solved iteratively to find number

densities of all five species. Then, the grain charge is found by solving the equation of charge

neutrality.

5.2.4.2. Effective dust-to-gas ratio

The described chemical network incorporates only one grain size population. Ideally, we would

consider a number of grain size populations, with the same size distribution used in the calcula-

tion of dust opacities. However, this would greatly enhance the computational complexity of the

problem. At the same time, it is clear that dust grains of different size contribute differently to

the equilibrium ionization levels. To the lowest order of approximation, all dust-related reaction

rates are regulated by the total grain surface area. Thus, it can be expected that the ionization

levels are most sensitive to the smallest grains. Bai and Goodman (2009) considered the effects

of dust on the ionization levels in the cold regions of protoplanetary discs, in application to the

1The total number densities of molecular hydrogen and potassium are then related to the gas density as
nH2

� xH{p2� xHqρ{µ and nK � 2xK{p2� xHqρ{µ, respectively.
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Figure 5.2: Ionization fraction (ne{nH2) as a function of temperature. Different colours corre-
spond to different combinations of pressure and hydrogen ionization rates, P � 102 dyn cm�2

and ζ � 10�19 s�1 (blue), P � 10�2 dyn cm�2 and ζ � 10�19 s�1 (orange), P � 10�2 dyn cm�2

and ζ � 10�11 s�1 (green). Different linestyles correspond to different grain sizes, agr � 10�5 cm
(solid), agr � 10�3 cm (dashed), agr � 10�1 cm (dotted), each with a different dust-to-gas ratio
such that the ratio fdg{apgr remains constant and as evaluated for agr � 10�5 cm, fdg � 0.01.
Different panels show the calculations for different values of the exponent p, as indicated in
each panel title. Exponent p � 1 is equivalent to keeping the total grain surface area constant.
Adopting exponent p � 1.5 yields approximately the same threshold temperature at which
ionization fraction sharply increases irrespective of grain size agr. See Section 5.2.4.2.

onset of the MRI due to non-thermal sources of ionization. They considered chemical networks

with two grain size populations and found that the grain populations behave independently,

as the charge transfer between the grains is negligible. They further found that the ionization

levels are largely controlled by a quantity fdg{apgr where the exponent p varies between p � 1

(i.e. the total grain surface area) and p � 2.

We can repeat a similar exercise for the above chemical network, suited to the hot inner

regions of protoplanetary discs. For a set of values of the exponent p � 1, 1.25, 1.5 grain size

agr is varied while keeping fdg{apgr constant. The ionization levels are calculated as a function

of temperature, and for different sets of pressure and hydrogen ionization rates, so as to probe

different conditions in different regions of the inner disc. The results are shown in Fig. 5.2.

The grain surface area (p � 1) controls the equilibrium ionization levels when the hydrogen

ionization dominates, but does not determine the temperature at which the ionization levels

rise due to thermionic and ion emission. On the other hand, for p � 1.5, this temperature

depends very weakly on the grain size. That is, regardless of the actual dust grain size, a

quantity fdg{a1.5
gr regulates the temperature at which dense interior of the disc becomes ionized.

Therefore, we can proceed with a single grain size, agr � 10�5 cm, in the chemical network,

but, use an effective dust-to-gas ratio such that feffa
�p
gr � ³amax

amin
dnpaqmpaq{ρga

�p, where npaq
is the same grain size distribution used to calculate dust opacities. Since it is found that

thermionic and ion emission are more important than non-thermal sources of ionization in the

inner disc, p � 1.5 is adopted. From Fig. 5.2 it appears that this choice will produce a large

error in the ionization levels in the low-density non-thermally ionized disc regions. However,
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the discrepancy will be much lower for a size distribution than in Fig. 5.2, since most of the

grains remain small.

5.2.4.3. Hydrogen ionization rate

In the calculation of the MRI-driven viscosity, I consider molecular hydrogen ionization rate

due to radionuclides, cosmic rays and stellar X-rays. The ionization rate of molecular hydrogen

due to short-lived and long-lived radionuclides is

ζR � 7.6� 10�19 s�1, (5.22)

which predominantly comes from decay of 26Al (Umebayashi and Nakano 2009). The ionization

rate of molecular hydrogen due to interstellar cosmic rays is (Umebayashi and Nakano 2009)

ζCRpzq � ζCR,ISM

2
e
�Σpzq
λCR

�
1�

�
Σpzq
λCR


 3
4

�� 4
3

, (5.23)

where ζCR,ISM � 10�17 s�1 is the interstellar cosmic-ray ionization rate, Σpzq is the integrated

density column from the top of the disc to the height z above disc midplane, and λCR �
96 g cm�2 is the attenuation length for cosmic rays (Umebayashi and Nakano 1981).

For the ionization rate of molecular hydrogen due to stellar X-rays I use Bai and Goodman

(2009) fits to Igea and Glassgold (1999) Monte Carlo simulations,

ζXpzq � LX

1029 erg s�1

� r

1 AU

	�2.2

pζ1e
�pΣpzq{λ1qc1 � ζ2e

�pΣpzq{λ2qc2 q, (5.24)

where LX is stellar X-ray luminosity, ζ1 � 6 � 10�12 s�1, λ1 � 3.4 � 10�3 g cm�2, and c1 �
0.4 characterize absorption of X-rays, and ζ2 � 10�15 s�1, λ2 � 1.6 g cm�2, and c2 � 0.65

characterize the contribution from scattered X-rays. Here the attenuation lengths given by

Bai & Goodman in terms of column densities of hydrogen nucleus are re-calculated into the

surface density lengths using the hydrogen abundance given above. I adopt the relationship

LX � 10�3.5Lbol (Wright et al. 2011). For both cosmic rays and X-rays, I ignore the contribution

coming through the other side of the disc. This is valid since in the inner disc the gas surface

densities are mostly larger than the attenuation lengths of the ionizing particles and, even at

low gas surface densities, this can only increase the ionization rates by at most a factor of 2.

5.2.5. Numerical methods

5.2.5.1. Equilibrium vertical disc structure

At a given orbital radius, magnetic field strength and grazing angle φ, the vertical disc structure

is determined as a solution to the boundary value problem given by eqns. (5.1), (5.7)-(5.9) and
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the ideal gas law, and, where convectively unstable, by eqns. (5.1), (5.7) and (5.10). This

boundary value problem is solved using the shooting method (Press et al. 2002). The equations

are integrated from the top of the disc (z � zsurf) to the disc midplane (z � 0). The height of

the disc zsurf is then found, such that F p0q � 0. This root-finding problem is solved using the

Ridders’ method, with an exit criterion that |F p0q|   10�5F pzsurfq.
Equations of the vertical disc structure are integrated on a fixed grid with points uniform

in the polar angle. Since eq. (5.9) is an algebraic equation, and for numerical stability, I use

a fully implicit integration method. I use Runge-Kutta method of the second order, i.e. the

trapezoidal method. In the trapezoidal method the equations (5.1), (5.7)-(5.9) are discretized

as a system of nonlinear equations to be solved in every integration step (a system of nonlinear

equations in Pn�1, Fn�1, Jn�1, Tn�1 to be solved by a root-finding algorithm),

Pn�1 � Pn � h

2
Ω2p�ρnzn � ρn�1zn�1q, (5.25)

Fn�1 � Fn � h

2
pΓn � Γn�1q, (5.26)

Jn�1 � Jn � h

2
p� 3

4π
qpρnκRpTnqFn � ρn�1κRpTn�1qFn�1q, (5.27)

0 � 4ρn�1κP pTn�1qpσSBT
4
n�1 � πJn�1q � Γn�1, (5.28)

where h is the integration step, ρ � ρpT, P q is given by the ideal gas law and Γ � Γacc � Γirr.

Here, Γirr,n � Γirr,npTn, Pn, τirr,z,nq, with the optical depth to stellar irradiation obtained using

τirr,z,n�1 � τirr,z,n � h
2
κ�Ppρn � ρn�1q. Furthermore, viscous dissipation is a function of the MRI-

driven viscosity α and thus depends on the local ionization levels. The latter are a function of

the local temperature, pressure and the hydrogen ionization rate which depends on the column

density from the top of the disc. Thus, Γvis,n � Γvis,npTn, Pn, Nnq, with the column density

given by Nn�1 � Nn � h
2
k�1

B pPn{Tn � Pn�1{Tn�1q.
The equation for pressure Pn�1 can be rearranged into an explicit form

Pn�1 �
Pn � h

2
Ω2ρnzn

1� h
2
Ω2 µmH

kB

zn�1

Tn�1

. (5.29)

Then, the above system of equations is equivalent to a single nonlinear equation in Tn�1, greatly

simplifying the problem. In every integration step the Ridders’ method is used to solve this

equation for the temperature Tn�1 (down to a relative precision of 10�7) and consequently for

all other quantities. This includes the MRI-driven viscosity α, which is thus calculated self-

consistently at each step of integration.2 At every step and in every iteration of the root-solver

opacities are interpolated from pre-calculated tables using cubic splines, and the ionization

levels (e.g., free electron number density) using tri-linear interpolation.

2This is indeed necessary. An iterative method in which disc thermal structure is decoupled from the density
structure and the heating terms (e.g. Dullemond 2002) does not converge to a solution in the case of MRI-driven
viscosity.
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Additionally, at each integration step it is checked if the resulting temperature gradient is

unstable to convection, and if so, the temperature Tn�1 is obtained analytically using

Tn�1 � Tn � h

2
∇ad

µmH

kB

Ω2p�zn � zn�1q. (5.30)

With Tn�1 known, all other quantities follow same as above. A disc column can, in principle,

become convectively stable again at some height above disc midplane. To calculate the mean

intensity J at a boundary between a convective and a radiative zone, the energy balance

equation (5.9) is used.

For some model parameters there can be a range of orbital radii and values of the magnetic

field strength for which there are multiple solutions for the disc height zsurf (i.e. multiple

solutions for the equilibrium vertical disc structure). This happens when a complex ionization

structure leads to strong variations in the viscosity α as a function of height above disc midplane,

making the total produced viscous dissipation a non-monotonous function of zsurf . When there

are multiple solutions, the solution with smallest zsurf is chosen. It is likely that at least some of

the additional solutions are unphysical, as the strong variations in both the levels of turbulence

and the levels of ionization should be removed by turbulent mixing (see Section 5.3.2.3).

5.2.5.2. Magnetic field strength

At a given orbital radius, grazing angle φ and magnetic field strength B, the above procedure

yields an equilibrium vertical disc structure characterized by a vertically-averaged viscosity

ᾱ �
³zsurf

0
αPdz³zsurf

0
Pdz

. (5.31)

As in the vertically-isothermal model (discussed in Chapter 2), for a sufficiently small and a

sufficiently large magnetic field strength B the MRI is suppressed in the entire disc column

and ᾱ � αDZ. There can be an intermediate range of magnetic fields strength for which the

MRI is active, and the vertically-averaged viscosity ᾱ peaks at some value of B. At every

orbital radius, B is chosen such that ᾱ is maximized. The underlying assumption here is that

the magnetic fields are strengthened by the MRI-driven turbulence, so that the magnetic field

strength is a monotonously increasing function of ᾱ. To maximize ᾱpBq, the Brent method is

used, with a target absolute precision of 10�3 in logB.

For some model parameters there can be a range of orbital radii where there are multiple

local maxima in ᾱ as a function of B. This is essentially for the same reasons that cause multiple

solutions in disc height zsurf at a fixed value of B. In general B is chosen which corresponds

to the global maximum in ᾱ. However, in some cases, this is a function of the grazing angle φ

at a fixed orbital radius, and the procedure to determine the grazing angle (described below)

does not converge. There a local maximum with a largest magnetic field strength is chosen.
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5.2.5.3. Grazing angle

At any given orbital radius, the angle φ between the incident stellar radiation and the disc

surface is determined self-consistently with the disc structure following D’Alessio et al. (1999).

A self-consistent disc structure is found by iteratively updating the grazing angle φ and re-

calculating the entire disc structure. I use a logarithmic grid for orbital radius. First, I calculate

φ using eq. (5.6) by assuming that zirr � 0 and solve for the vertical disc structure and the

magnetic field strength at all radii. I integrate through the obtained disc structure along lines-

of-sight to the star to calculate τirrpr, zq, which yields an updated zirr at each radius.

Critically, to calculate the updated value of the grazing angle φ at each radius, the derivative

dlogzirr{dlogr is approximated by assuming that zirr is a power-law, zirr9 rb, within a radius

bin centered at the given radius. So, at each radius I fit for the slope b using zirr at that radius

and at a number of radial grid points interior and exterior to it. Then, the value of the grazing

angle is updated and the vertical disc structure re-calculated at all radii.

This procedure is repeated until the grazing angle has converged at every radius, i.e., until

the relative difference in φ between two consecutive iterations is less than 0.5% at all radii. For

the first radial point I always assume the flat-disc approximation (zirr � 0) and do not include

it in the fitting routine. In this work I use a total of 100 radial points between 0.1 AU and

1 AU, and a total of 10 radial points in fits for dlogzirr{dlogr.

5.3. Results

I investigate structure of inner regions of protoplanetary discs using a model of a viscous

steady-state accretion disc in which viscosity comes from the MRI. In Chapter 2, I discussed

a vertically-isothermal, constant-opacity disc with a single thermally-ionized chemical species.

In Section 5.3.1 I consider a model in which the vertical structure of the disc is calculated

self-consistently from viscous heating, heating by stellar irradiation, radiative and convective

energy transport, and self-consistent radiative properties of dust, and the disc’s ionization state

is calculated by only considering the thermal (collisional) ionization of potassium, using the

Saha equation. Then, in Section 5.3.2 I present results of the full model that also includes other

relevant chemical species, including dust grains, and non-thermal sources of ionization.

Throughout this chapter I assume the gas accretion rate 9M � 10�8 Md yr�1, stellar mass

M� � 1 Md, stellar radius R� � 3 Rd, effective stellar temperature T� � 4400 K, and viscosity in

the MRI-dead zone αDZ � 10�4. The chosen gas accretion rate is the median from observations

(Hartmann et al. 1998; Manara et al. 2016; 2017). The chosen stellar parameters for a solar-

mass star are from the stellar evolution models of Baraffe et al. (2015), for the stellar age of

5 � 105 yr. At later ages, stellar luminosity decreases, as the star contracts. Maximizing the

stellar luminosity allows us to examine the maximum effect that the stellar irradiation has on

the inner disc. Furthermore, I assume a dust-to-gas ratio fdg � 10�2 and a maximum dust
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grain size amax � 1µm. In this work the focus is on examining the main physical and chemical

processes that shape the structure of the inner disc, given the above model parameters. How

the disc structure changes as a function of the model parameters is investigated in the next

chapter.

5.3.1. Disc thermal structure and the MRI

In this section I explore how the thermal processes shape the inner disc structure. The chemistry

considered in this section is simple, the disc’s ionization state is set by the thermal ionization

of potassium only, all of which is assumed to be in the gas phase. The effects of dust on the

ionization levels, as well as non-thermal sources of ionization, are explored in Section 5.3.2.

5.3.1.1. Thermal structure of the inner disc

Fig. 5.3 shows the temperature as a function of orbital radius and height above disc midplane

for three models of varying complexity. The left-hand panel shows a disc which has the same

constant opacity (κR � κP � 10 cm2 g�1) as in Chapter 2, but where the disc vertical structure

is calculated self-consistently from viscous heating and cooling by radiation and convection. The

middle panel is a model in which the opacities are also determined self-consistently. Finally,

the right-hand panel is a model which further accounts for the heating by stellar irradiation.

Noticeably, the temperature profiles deviate from vertically-isothermal. Here, the dashed

lines show the disc pressure scale height, and the solid lines show the disc photosphere (where

the Rosseland-mean optical depth is τR � 2{3). In all three models the temperature increases

towards the midplane below the photosphere, as the disc becomes more and more optically-thick

to its own radiation.

The resulting temperature gradient becomes sufficiently high, that the disc becomes con-

vectively unstable, as shown in Fig. 5.4. From the disc midplane to a height of a couple of

pressure scale heights, energy is thus transported by convection, and there we can assume that

the temperature gradient is isentropic. Importantly, the strong temperature gradient that gives

the rise to the convective instability is not specific to the MRI-driven accretion. It is a feature

of any active optically-thick disc where the accretion heat is released near midplane (see also

Garaud and Lin 2007). This is shown analytically in Section 5.4.

The model that also includes heating due to stellar irradiation, shown in the right panels of

Fig. 5.3 and Fig. 5.4, features a temperature inversion in the disc upper layers. This temperature

inversion has been discussed in detail by D’Alessio et al. (1998). The dotted line here indicates

the irradiation surface zirr at which τirr � 2{3. Above this line the disc upper layers are

heated by stellar irradiation. Below, disc becomes optically-thick to incident irradiation and

temperature drops. Then, below the disc photosphere (the solid line), disc is optically-thick to

its own radiation and temperature increases again.
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Figure 5.3: Temperature as a function of location in the disc for a viscously-heated constant-
opacity model (left), viscously-heated model with realistic opacities (middle), and a viscously
and irradiation-heated model with realistic opacities (right). In each panel the solid line shows
the disc photosphere (τR � 2{3) and the dashed line shows the pressure scale height (P �
e�1{2Pmid). The dotted line in the right-hand panel shows the surface at which τirr � 2{3. Note
that the inclusion of heating by stellar irradiation does not strongly affect the disc midplane
temperature. See Section 5.3.1.1.

In the irradiated disc, close to the star the disc midplane is as hot as the disc upper layers,

and further away the midplane is significantly hotter than the upper layers. It would appear that

the accretion heating dominates in the inner disc. However, the total flux of stellar radiation

absorbed by a vertical column in the disc at a given radius, shown in Fig. 5.5, is in fact of the

order of few tens of the total flux generated by viscous dissipation (Firr�10Facc) throughout the

inner disc. Nevertheless, the disc temperature near midplane is weakly affected by irradiation.

I discuss this result in Section 5.4.2.

The ratio Firr{Facc varies non-monotonically, following the grazing angle, shown in the right

panel of Fig. 5.5. At the inner edge of the calculation domain, the first �10 points (shown

in grey) are affected by the boundary effects. This is a well known problem in disc models

that account for stellar irradiation using the grazing angle prescription (Chiang et al. 2001).

Importantly, far away from the inner edge, the value of the grazing angle and the disc structure

do not depend on the disc structure at the inner edge.

5.3.1.2. Ionization levels and non-ideal MHD effects

The ionization structure of the models with a self-consistent vertical structure is qualitatively

different than in the vertically-isothermal models discussed in Chapter 2. In the vertically-

isothermal models the ionization fraction increases with height above disc midplane, as the

temperature is constant and density decreases (which follows from the Saha equation). Here,

as the temperature decreases with height, so does the ionization fraction, as shown in the

middle three panels of Fig. 5.6. Here, the top three panels show the viscosity α as a function

of height above disc midplane, middle panels show the free electron number density relative

to the number density of molecular hydrogen ne{nH2 , and bottom panels show the Ohmic and

ambipolar resistivities. Solid lines are for the viscously-heated model with self-consistent dust
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Figure 5.4: Radiative and convective zones (light and dark red, respectively) for a viscously-
heated constant-opacity model (left), viscously-heated model with realistic opacities (middle),
and a viscously and irradiation-heated model with realistic opacities (right). In each panel the
dashed line shows the pressure scale height (P � e�1{2Pmid). In all three models the disc is
convectively unstable within few scale heights. See Section 5.3.1.1.
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Figure 5.5: Ratio of the total irradiation heating to the total viscous dissipation (Firr{Facc)
as a function of radius (top) and the incident angle to stellar irradiation (φ) as a function
of radius (bottom). The total (vertically-integrated) absorbed stellar flux Firr is at least an
order of magnitude larger than the total viscous dissipation Facc at any given radius. Gray
lines indicate the region affected by the inner boundary condition for the incident angle φ. See
Section 5.3.1.1.
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Figure 5.6: Local viscous parameter α (top), ionization fraction ne{nH2 (middle) and magnetic
resistivities (bottom) at three different orbital radii (as indicated in panel titles) in a model
with realistic opacities, but no irradiation, and a model that also includes irradiation, as shown
in plot legend. Despite the high ionization fraction in the irradiation-heated disc upper layers,
ambipolar diffusion quenches the MRI there. See Section 5.3.1.2.

opacities, and dashed lines are for the model that also includes heating by stellar irradiation.

In the latter model, the ionization does increase in the uppermost irradiated layers.

As a consequence of the above, in non-irradiated discs both ambipolar and Ohmic resistivity

increase with height. In other words, in these self-consistent models, both ambipolar and Ohmic

diffusion quench the MRI from above. The Ohmic resistivity decreases in the uppermost layers

of the irradiated disc, however, ambipolar diffusion does not.

5.3.1.3. MRI-active and dead zones

The differences in the ionization structure of the vertically self-consistent models and the

vertically-isothermal models lead to differences in where in the disc the MRI is active. Plot of

the viscosity α as a function of orbital radius and height above disc midplane, Fig. 5.7, shows

that the MRI-active zone (where α ¡ αDZ) remains around midplane. This is qualitatively

different from the vertically-isothermal case, where the MRI-active zone is around midplane
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Figure 5.7: Local viscous parameter α as a function of location in the disc for a viscously-
heated constant-opacity model (left), viscously-heated model with realistic opacities (middle),
and a viscously and irradiation-heated model with realistic opacities (right). In each panel the
solid line shows the disc photosphere (τR � 2{3) and the dashed line shows the pressure scale
height (P � e�1{2Pmid). The dotted line in the right-hand panel shows the surface at which
τirr � 2{3. Note that the heating by stellar irradiation has a very weak effect on the extent of
the MRI-active region. See Section 5.3.1.3.

in the innermost region, but at a certain orbital distance rises into the upper layers. Such a

configuration in which an MRI-active zone is nested between a dead zone at midplane, and

ambipolar-dead zone above, arises in the vertically-isothermal case because there the ionization

levels increase with height above disc midplane. Furthermore, the three panels correspond to

the same three models as above: viscously-heated constant-opacity model, viscously-heated

model with self-consistent opacities, and a fully self-consistent model which also includes heat-

ing by stellar irradiation. Noticeably, stellar irradiation makes little difference to the extent of

the MRI-active zone, since irradiation affects the midplane temperature weakly, and the hot

uppermost layers are dead due to the ambipolar diffusion.

Finally, Fig. 5.8 compares radial profiles of the vertically-averaged viscosity ᾱ and the mag-

netic field strength B from four models of varying complexity. The grey solid lines show the

results of the viscously-heated vertically-isothermal constant-opacity model from Chapter 2.

The black dotted line is for the disc which has the same constant opacities, but where the disc

vertical structure is calculated self-consistently from viscous heating and cooling by radiation

and convection. The black dashed line is for the model in which the opacities are also deter-

mined self-consistently and the black solid line is for the model which further accounts for the

heating by stellar irradiation.

In line with theoretical expectations and the previous study, the vertically-averaged viscosity

ᾱ decreases as a function of orbital radius. At some distance from the star the MRI is completely

quenched and the viscosity reaches the minimum value, ᾱ � αDZ. Remarkably, the ᾱ radial

profile is both qualitatively and quantitatively similar in these models. We can expect this

to be the case in general, as long as the disc is optically thick, so that the heating by stellar

irradiation may be neglected. However, the radial profile of the magnetic field strength B

reveals qualitative differences. In the vertically-isothermal model, Bprq features a sharp drop
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Figure 5.8: Vertically-averaged viscosity parameter (ᾱ) and the magnetic field strength (B) as
functions of radius in a vertically-isothermal and self-consistent models of varying complexity (a
viscously-heated constant-opacity model, viscously-heated model with realistic opacities, and a
viscously and irradiation-heated model with realistic opacities), as indicated in plot legend. The
vertically-averaged viscosity parameter profile is similar in all four models, but the magnetic
field strength profile is qualitatively different in the vertically-isothermal model. See Section
5.3.1.3.
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at � 0.35 AU, which corresponds to the rise of a dead zone at disc midplane described above

(see also Chapter 2). From that point, until the MRI is completely quenched at � 0.7 AU, the

MRI is active in a thin layer high above the midplane, between a dead zone at disc midplane

and a zombie zone above. In the self-consistent models, however, this configuration does not

appear and the magnetic field strength remains high until the MRI is completely quenched.

5.3.2. Disc chemical structure and the MRI

In this section I build upon the model from the previous section. First, I explore the effects of

dust on the disc’s ionization state and on the MRI. Then, I produce the full model of the inner

disc by also considering non-thermal sources of ionization.

5.3.2.1. Effects of dust

Fig. 5.9 shows the radial profiles of the vertically-averaged viscosity ᾱ, magnetic field strength,

midplane temperature and the midplane free electron number density for a model with a self-

consistent vertical structure and thermal ionization only (solid lines), and a model in which

the dust effects on the ionization state are included (dashed lines). The latter model includes

gas-phase collisional (thermal) ionization and recombination, adsorption of free charges on the

dust grains, and thermionic and ion emission from the dust grains. Non-thermal ionization is

also included, but at a negligible rate of ζ � 10�25 s�1 to isolate the high-temperature effects.

As Fig. 5.9 shows, the radial profile of ᾱ and the radial extent of the MRI-active zone are

overall similar for both models. Interestingly, when the dust effects are included, ᾱ is higher

at a given orbital radius, as is the ionization fraction, i.e. ne{nH2 . Concurrently, the midplane

temperature is lower in the model that includes dust.

Fig. 5.10 shows the vertical structure of the model with dust at three different orbital radii.

Top panels show the viscosity α as a function of height, middle panels show the number densities

of free electrons and ions, and bottom panels show the various contributions to the free electron

production rate (in s�1 cm�3). As in the thermally-ionized disc (Fig. 5.7), the MRI is active

at the hot disc midplane. The ionization levels decrease with height above the midplane as

temperature decreases, and increase again in the disc atmosphere heated by stellar irradiation;

here, however, ambipolar diffusion quenches the MRI.

The plots of free electron production rates show that thermionic emission is the dominant

ionization source. Thus, Fig. 5.9 is misleading in the sense that, while the differences in the

global structure are very small when dust effects are added, it is not because dust effects are

small. Clearly, dust dominates the chemistry in the inner disc. Rather, for the parameters

assumed here, the ionization levels as a function of temperature and density are similar to the

levels obtained from gas-phase thermal ionization only.
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Figure 5.9: Vertically-averaged viscous parameter (ᾱ), magnetic field strength (B), midplane
temperature and the midplane free electron fraction (ne{nH2) as functions of radius for a model
with thermal ionization only, a model with thermal ionization and dust effects (with ζ �
10�25 s�1), and a model which also includes non-thermal sources of ionization (ζ � ζR�ζCR�ζX).
The disc structure is quantitatively similar in all three models; however, the primary source of
ionization in the models that include dust are thermionic and ion emission. See Section 5.3.2.1.
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Figure 5.10: Local viscous parameter α (top), ionization fraction ne{nH2 (middle) and ionization
rates (bottom; thermionic Rtherm, thermal k2nH2nK0 and non-thermal ζnH2) at three different
radii (as indicated in panel titles) for the model with thermal ionization and dust effects (with
ζ � 10�25 s�1). Thermionic emission is the primary source of free electrons in the MRI-active
regions. See Section 5.3.2.1.
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5.3.2.2. Non-thermal sources of ionization

In this section I present the full model of the inner disc which, in addition to the above,

also includes non-thermal sources of ionization. Stellar X-rays, cosmic rays and radionuclides

ionize hydrogen, producing atomic ions and free electrons. The resulting radial profiles of

ᾱ, magnetic field strength, midplane temperature, density and ionization levels are shown in

Fig. 5.9 as dotted lines. The radial profile of ᾱ seems to overlap with the model where the

hydrogen ionization rate was set to a negligibly low value. However, in the region where the

MRI is dead in the previous models, ᾱ is slightly higher than αDZ in this model. The magnetic

field strength does not drop to zero in this model, further revealing that the MRI remains active

here.

Fig. 5.11 shows the vertical structure of this disc at three different orbital radii. It reveals

that at large orbital radii where the MRI was quenched in previous models, it remains active

at large heights (see also Fig. 5.12). The plots of ionization levels show that the fraction of

free electrons and atomic ions increase immensely towards disc surface where the non-thermal

ionization dominates. As a result of the high electron fraction in the upper layers, potassium

ions are depleted there, as they can easily recombine with the abundant electrons. Note that

the fraction of free electrons and atomic ions become extremely large near the disc surface,

i.e. higher than the total Mg abundance, and even total C, O abundances. The plots are

cut off at nj{nH2 ¡ 10�3. Clearly, above this level the chemical model is not applicable, as

the ionized hydrogen would become an important species and the assumption of a constant

hydrogen number density would be invalid. Nevertheless, this is above the MRI active zone at

all orbital radii, and it is thus not pertaining to the conclusions.

Fig. 5.13 compares the contributions from stellar X-rays and cosmic rays to the hydrogen

ionization rate. As expected, the un-attenuated ionization rate due to X-rays is higher at the

disc surface, but cosmic rays can penetrate deeper in the disc. Nevertheless, the MRI-active

region in the upper disc layers is mostly ionized by X-rays.

Finally, note that in this outer region the gas accretes primarily through the dead zone,

since the density at the dead disc midplane is much higher than in the X-ray-ionized MRI-

active layer. This is why the vertically-averaged viscosity parameter is close to the dead-zone

value, ᾱ � αDZ outwards from the pressure maximum.

5.3.2.3. Multiple solutions for the vertical disc structure

In the results presented so far, for the fiducial choice of disc and dust parameters, solutions

for the vertical disc structure (i.e., solutions in disc height zsurf) appear to be unique at any

given orbital radius, grazing angle φ and magnetic field strength B. In general, there is also

a single peak in the vertically-averaged viscosity ᾱ as a function of magnetic field strength B

(which determines the choice for B). The exception is the vicinity of the orbital radius at which

the MRI becomes quenched at disc midplane (see Fig. 5.12). There, ᾱpBq has two peaks, one

109



CHAPTER 5. IMPROVED MODEL OF THE MRI-ACCRETING INNER DISC

10 5

10 4

10 3

10 2

10 1

100
Lo

ca
l v

isc
ou

s 
0.11 AU 0.50 AU 0.79 AU

10 16

10 14

10 12

10 10

10 8

10 6

10 4

n/
n H

2

ne/nH2

nK + /nH2

ni/nH2

10 3 10 2 10 110 20

10 16

10 12

10 8

10 4

100

104

Io
ni

za
tio

n 
ra

te
 [c

m
3  s

1 ]

10 3 10 2 10 1

Height [AU]
10 3 10 2 10 1

thermionic
thermal
ionization of H2

Figure 5.11: Local viscous parameter α (top), ionization fraction ne{nH2 (middle) and ionization
rates (bottom; thermionic Rtherm, thermal k2nH2nK0 and non-thermal ζnH2) at three different
radii (as indicated in panel titles) for the model with all sources of thermal and non-thermal
ionization. Non-thermal ionization produces an MRI-active region high above disc midplane at
larger radii (see the top right panel). See Section 5.3.2.2.
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Figure 5.12: Local viscous parameter α as a function of location in the disc for the model with
all sources of thermal and non-thermal ionization. In the innermost disc, thermionic and ion
emission ionize the dense regions around the disc midplane, producing the high MRI-driven α
there. At larger radii, the MRI is active in a thin layer high above the disc midplane, dominated
by non-thermal sources of ionization. See Section 5.3.2.2.
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Figure 5.13: Ionization rates of molecular hydrogen due to stellar X-rays (ζX) and due to cosmic
rays (ζCR) for the model with all sources of thermal and non-thermal ionization. Stellar X-rays
are the dominant source of ionization in the disc upper layers. See Section 5.3.2.2.

corresponding to the solution where the MRI is active at disc midplane, and the other to the

solution where the MRI is active in the upper disc layers, mostly ionized by stellar X-rays. As

discussed in Section 5.2.5, B is chosen such that ᾱ is maximized in this case as well.

Note that there could be, in principle, a thin MRI-active layer high up in the disc at shorter

orbital radii as well, in addition to the active layer at midplane. Here, this does not appear

due to the assumption that the magnetic field strength B is vertically constant. At the high

B necessary to drive the efficient accretion at midplane, the MRI is quenched in the low-

density disc atmosphere due to ambipolar diffusion. Therefore, it is only when the temperature

drops and the high-temperature ionization cannot drive the accretion efficiently that the model

features the thin active layer high up above the disc midplane.

For a different choice of parameters, e.g. if the maximum dust grain size is amax � 100µm,

there may exist an additional range of orbital radii where there are multiple peaks in ᾱpBq
and also multiple solutions for the disc vertical structure (for zsurf) at a fixed value of the

magnetic field strength B. Similarly to the above, this issue arises due to competing effects of

high-temperature sources of ionization (thermal ionization, and thermionic and ion emission)

and X-rays. As these sources of free electrons depend quite differently on the disc structure

(density, temperature, column density), their combination leads to non-monotonous variations

in the electron number density as a function of height above disc midplane. Since the viscous

dissipation due to the MRI is sensitive to the ionization levels, the total dissipation can be a

non-monotonous function of zsurf . Since the solution for the vertical disc structure is determined

by an equilibrium between an input and an output total heat, this can lead to multiple solutions

in zsurf .

To illustrate this issue Fig. 5.14 shows an example of three thermally-stable solutions for the

vertical disc structure at a fixed value of magnetic field strength B that appears in the model

for a maximum grain size amax � 100µm (we can ignore thermally unstable solutions, which are

not shown here). Note that the dependence of the overall disc structure and the location of the

pressure maximum on the dust grain size are presented and thoroughly discussed in the next
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Figure 5.14: Degeneracy in the vertical disc structure at a fixed magnetic field strength in a
model where the maximum dust grain size is amax � 100µm: local viscous parameter α as
a function of height (top), and the fractional electron number density (ne{nH2 ; bottom) as
functions of height in three different equilibrium solutions. The different solutions arise from
vertical variations in the viscous α; the lengthscales of these variations are much smaller than
the disc pressure scale height (shown for each solution by the vertical grey lines). See Section
5.3.2.3.

chapter. Here, I only discuss the issue of the multiple solutions. Fig. 5.14 shows the viscosity

α as a function of height in the top panel and the ratio ne{nH2 in the bottom.

Evidently, small variations in the free electron number density correspond to large variations

in the viscosity α, all at heights below one disc pressure scale height (indicated by grey lines).

This implies that the difference between these solutions is likely unphysical for two reasons.

First, the viscosity α is in reality driven by turbulence, and turbulent motions should not

abruptly change over lengthscales much smaller than a single pressure scale height. Second,

chemical species can also be expected to be spatially mixed by turbulence, and so such vertical

variations in the ionization levels might be smoothed over in reality. Since resolving these issues

is out of the scope of the models, a solution with minimum zsurf is always chosen, which also

appears to always correspond to a maximum ᾱ at the given magnetic field strength.
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5.4. Discussion

5.4.1. Effects of dust

A key feature of the inner disc is that the MRI drives high viscosity in the innermost regions,

close to the star, but becomes largely suppressed at larger orbital distances (in the so-called

dead zone). This leads to a formation of a local gas pressure maximum that may play a key

role in planet formation at short orbital distances (Chatterjee and Tan 2014). This decrease

in viscosity is expected to arise because the innermost regions are hot enough (¡ 1000 K) to

thermally ionize potassium (coupling the gas to the magnetic field), but further out temperature

and ionization levels decrease substantially (Gammie 1996). In Chapter 2, we have seen that

in a thermally-ionized disc coupled self-consistently to an MRI viscosity, the inner edge of the

dead zone lies at a few tenths of an AU.

One of the key differences of this work to Chapter 2 is that here the effects of dust on disc

ionization levels are also taken into account. Small dust grains present in the disc sweep up

free electrons and ions from the gas, and these recombine quickly on the grain surfaces. In the

bulk of the protoplanetary disc dust grains efficiently lower the ionization levels, decoupling

the magnetic field from the gas and suppressing the MRI (Sano et al. 2000; Ilgner and Nelson

2006; Wardle 2007; Salmeron and Wardle 2008; Bai and Goodman 2009). In the inner regions

of protoplanetary discs dust grains also act to increase the ionization levels, as at high tem-

peratures they can also emit electrons and ions into the gas (Desch and Turner 2015). The

balance between thermal ionization and these processes then determines how well ionized the

inner disc is, and thus, the extent of the high-viscosity region and the location of the dead zone

inner edge.

The top panel of Fig. 5.9 shows that addition of dust only weakly affects the vertically-

averaged viscosity ᾱ in the inner disc. At a given orbital radius, ᾱ is even slightly higher than

in the model with no dust, implying that thermionic and ion emission are important sources

of ionization. In fact, as Desch and Turner (2015) showed, thermionic emission can become

the main source of free electrons at high temperatures. For the disc model discussed here this

can be seen in the bottom panel of Fig. 5.11, which shows that at hot disc midplane thermionic

emission dominates over other sources of ionization. Clearly then, for the chosen parameters,

the adsorption of charges onto grains is more than counteracted by the expulsion of charges

from hot grain surfaces.

Similarity in the resulting disc structure in the models with and without dust grains can

be explained by the similar dependency on temperature that thermal and thermionic emission

have (and which can also be deduced from the bottom panel of Fig. 5.11). As discussed by

Desch and Turner (2015), thermal ionization of potassium becomes efficient at temperatures

above �1000 K in accordance with its ionization potential IP � 4.34 eV. The temperature at

which thermionic emission becomes important is determined by the work function W of the
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material out which dust grains are made, and for silicates W � 5 eV. This alone would imply

that thermionic emission becomes efficient at temperatures closer to 2000 K. However, above

�1000 K potassium-bearing minerals start evaporating from grain surfaces (Lodders 2003), and

a fraction of potassium atoms leaves the grain surface as ions (since W � IP). Dust grains

then become negatively charged, which reduces the effective potential that electrons ought to

overcome for thermionic emission (the effective work function Weff).

The above results could change significantly as dust grains grow or as they accumulate

in the inner disc (as needed for the formation of solid planet cores). Dust adsorption of free

charges, for example, becomes much less efficient for larger grains, since the total grain surface

area decreases (Sano et al. 2000; Ilgner and Nelson 2006). I investigate how dust growth and

varying dust-to-gas ratio affect the inner disc structure in the next chapter.

5.4.2. Importance of stellar irradiation

The absorbed flux of stellar irradiation is many times higher than the heat flux generated

by accretion at any given radius, yet irradiation has a very small effect on the disc midplane

temperature. Consequently, the ionization levels and the MRI-driven viscosity are similar in

the models with and without stellar irradiation.

Essentially, this is because the stellar irradiation heats the disc optically-thin regions, from

which heat escapes easily. Accretion heat is generated deep in the disc, where the optical depth

is much higher. In the absence of stellar irradiation, the midplane temperature in the optically

thick disc is σSBT
4
mid � Faccτmid (Hubeny 1990, though in this work the midplane temperature

is somewhat lower due to convection). If on top of a viscously-heated layer of optical thickness

τmid " 1 there is an irradiation-heated layer of optical thickness τupper, from eq. (5.8) it follows

that σSBT
4
mid � Faccτmid � Firrτupper (again, neglecting convection). Here τupper is the optical

depth of the disc to its own radiation down to a height at which the disc becomes optically thick

to stellar irradiation. Then, if τmid is sufficiently larger than τupper, the midplane temperature

is determined by viscous dissipation.

The results are consistent with those of D’Alessio et al. (1998), who also found that mod-

els with and without stellar irradiation yield roughly the same midplane temperatures in

the optically-thick inner disc. Similarly, Flock et al. (2019) considered 2D static radiation-

hydrodynamics models of the inner disc heated by stellar irradiation only, but found that the

midplane temperature (and the orbital radius of the dead zone inner edge) would increase ap-

preciably if accretion heat were included, on the condition that the accretion heat is released

near the optically-thick midplane.

5.4.3. Convective instability in the inner disc

In Section 5.3.1 we have seen that a large region of the inner disc is convectively unstable.

This is also the case even when the opacities are constant, i.e., a super-linear growth of the
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opacity with temperature (Lin and Papaloizou 1980) is not needed. Here, the high temperature

gradient is established because the heat is deposited deep within the optically-thick disc. In

the presented models most of the viscous dissipation happens near midplane, where the MRI

is active, but the same is also true for a vertically-constant viscosity α. This result can also

be confirmed analytically. We can consider a simplified problem of radiative transfer in the

optically thick limit, where the temperature is given by σT 4 � 3
4
τF pzsurfq (Hubeny 1990).

Assuming a constant disc opacity, the equation of hydrostatic equilibrium can be re-written as
dP
dτ
� Ω2z

κR
. The temperature gradient is then given by

∇ � dlnT

dlnP
� κRP

4Ω2zτ
.

The appropriate upper boundary condition for this problem is the disc photosphere (τ � 2{3),

where the gas pressure is given by Psurf � Ω2zsurfτsurf{κ (assuming that the disc is vertically

isothermal above the photosphere, Papaloizou and Terquem 1999). At the photosphere, given

the chosen boundary condition, we have ∇ � 1{4. Near the midplane the optical depth is

τMID � 1
2
κΣ, and we may estimate the midplane pressure as

PMID � ρMIDcs,MID � Σ

2H
cs,MID � 1

2
Ω2ΣH,

where the disc scale height H is related to the midplane temperature. Substituting τMID and

PMID into the expression for the temperature gradient, we have

∇MID � 1

4

H

z
,

implying that such a disc should become convectively unstable a bit below one scale height.

However, we can further estimate the gradient ∇ near one scale height, by assuming that there

PH � PMIDe
�1{2 � 0.6PMID, and τH � 0.3τMID, as follows from vertically isothermal, Gaussian

profiles of pressure and density. Thus, near z � H, we have

∇H � 1

2

H

z
,

showing that the disc should become convectively unstable above one scale height.

Furthermore, in the convectively unstable regions I have used a simple approximation that

convection is efficient and the temperature gradient is isentropic. More detailed calculations

would yield an answer in which the temperature gradient lies between the isentropic one and

the gradient given by the radiative transport. As it turns out, the result would not differ much

from what is obtained here. In the optically-thick limit considered above, the difference in the

temperature profile when the entire flux is transported by radiation and when the entire flux

is transported by convection is a very weak function of optical depth, and remains small for

rather large optical depths (Cassen 1993).
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Limiting the temperature gradient is the only role of convection in the simple viscous model

discussed here. In real discs, convection might interact with the MHD turbulence induced

by the MRI. For example, in simulations of ideal MHD Bodo et al. (2013) and Hirose et al.

(2014) find that convection can increase the angular momentum transport driven by the MRI

by increasing the magnetic field strength, although it appears that this is only the case when

convection is particularly strong (Hirose 2015). Concurrently, it is found that the relationship

between the induced stress and the magnetic field strength are not modified. The consequences

for the non-ideal MHD regime, relevant in protoplanetary discs, are not clear. In the solutions

presented in this work the value of the vertically-averaged MRI-driven viscosity would decrease

with both a decrease and an increase in the magnetic field strength due to non-ideal effects.

Convection itself is not expected to drive the angular momentum transport at a level comparable

to the MRI (e.g. Lesur and Papaloizou 2010; Held and Latter 2018), and in any case it is not

self-sustainable, i.e., it requires additional source of heat near disc midplane to establish the

high temperature gradient.

5.4.4. Energy transport by turbulent elements

Ruediger et al. (1988) considered vertical structure models in which the turbulent elements

driving the angular momentum transport may also transport energy. Such turbulent energy

transport flux would be analogous to convection, transporting energy down the entropy gra-

dient, the difference being that turbulent elements may persist at sub-adiabatic temperature

gradients (as they are driven by other instabilities) in which case they transport energy from

cooler to hotter regions (Balbus 2000). We can expect that including this mode of energy trans-

port into these calculations would not change appreciably any of the results presented here.

D’Alessio et al. (1998) found that the turbulent energy transport accounts for less then 20% of

the total energy flux at any given orbital radius. In this work, the convectively stable upper

layers of the disc are MRI-dead, and thus the thermal diffusivity due to turbulence is likely

very low. In the regions of the disc where the radiative flux alone would yield super-adiabatic

temperature gradient, it is already assumed that convection efficiently establishes the adiabat.

The proportion of turbulent energy flux could be higher than the convective energy flux in such

regions, but the temperature would not change significantly.

5.4.5. Ambipolar diffusion in the strong-coupling regime

The criterion for the ambipolar diffusion to quench the MRI that is employed here is valid in

the strong-coupling regime (Bai and Stone 2011). Strong coupling requires that the ionization

equilibrium is achieved on a timescale tchem shorter than the dynamical timescale tdyn � 2π{Ω.

Previously, in Chapter 2 it was reported that this condition is not fulfilled in most of the inner

disc, as slow radiative recombinations make the chemical equilibrium timescale long. However,

even in the absence of dust, three-body recombinations (recombinations through collisions
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Figure 5.15: Ratio of the shortest recombination timescale (tchem) to the dynamical timescale
(tdyn) as a function of the location in the disc. The solid line indicates where tchem{tdyn � 1.
Everywhere below this line the chemical equilibrium timescale is shorter than the dynamical
timescale, justifying the assumption of the strong-coupling regime. See Section 5.4.5.

with the abundant molecular hydrogen) are much faster than radiative recombinations, and

adsorption onto grains is even faster (Desch and Turner 2015).

Since I solve directly for the equilibrium ionization state, I do not have access to the timescale

tchem. However, we can estimate it as tchem � ne{R, where R is the fastest of the above three

recombination rates (in general, but not always, that is adsorption onto dust grains). Fig. 5.15

shows, for the fully self-consistent model with the full chemical network, that tchem{tdyn   1

everywhere except in the uppermost, lowest-density layers of the disc. It can thus be concluded

that the use of the ambipolar diffusion criterion in the strong-coupling regime is justified.

5.5. Conclusions

I present a steady-state model of the inner protoplanetary disc which accretes viscously, pri-

marily due to the MRI. In this model, the disc is heated by viscous dissipation and stellar

irradiation, and cools radiatively and convectively. The disc is ionized by thermal ionization,

thermionic and ion emission from dust grains and by stellar X-rays, cosmic rays and radionu-

clides, and I also account for adsorption of charges onto dust grains. The disc structure (density,

temperature), viscosity due to the MRI, disc opacity and ionization state are calculated self-

consistently everywhere in the disc.

I investigate how these various processes affect the structure of the inner disc and the extent

to which the MRI can drive efficient accretion, i.e., the location of the inner edge of the dead

zone. I find that, since the inner disc is optically thick, stellar irradiation weakly affects the

temperature at midplane, and therefore weakly affects the location of the dead zone inner edge.

Furthermore, the inner disc is largely convectively unstable, which is shown to be a property

of any optically-thick disc in which viscous heating is released near the midplane.
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Dust controls the ionization state of the inner disc, and thus the onset of the MRI. Thermal

ionization plays a secondary role, as thermionic and ion emission from dust grains ionize the

hot dense regions. High above disc midplane stellar X-rays produce a thin MRI-active layer.

However, this changes very little the overall viscosity at short orbital distances.

While there are some qualitative differences in the shape of the dead zone inner edge as a

function of radius and height above disc midplane compared to the work discussed in Chapter

2, its radial location remains at roughly the same orbital distance of �0.7 AU for the fiducial pa-

rameters. This is a consequence of the similarity between the ionization potential of potassium

and the work function of the dust grains. How these results depend on the model parameters,

including dust grain size and dust-to-gas ratio, is explored in the next chapter.
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6 Dependence on dust, disc and stellar

parameters

6.1. Introduction

A key first step to forming the super-Earths in the inner regions of protoplanetary discs, near

their present orbits, is enhancement of the solid component of the inner disc. The inner disc

can be enriched by pebbles from the outer disc (Hansen and Murray 2013; Boley and Ford

2013; Chatterjee and Tan 2014; Hu et al. 2018), as pebbles are prone to inwards radial drift due

to gas drag (Weidenschilling 1977). It has been hypothesized (Chatterjee and Tan 2014) that

the radial drift of pebbles could be stopped at a local gas pressure maximum in the inner disc.

Over time the pressure maximum could accumulate enough material to form a super-Earth-sized

planet.

The pressure maximum will only trap pebbles which are prone to radial drift relative to

the gas. Smaller dust grains that are well coupled to the gas may be advected and diffused

through the pressure maximum by the gas accreting onto the star. In the inner disc, the size

of dust grains is limited by fragmentation due to relative turbulent velocities (Birnstiel et al.

2010; 2012; Drazkowska et al. 2016). Pebbles that radially drift from the outer to the inner disc

become smaller due to fragmentation, and the effect of radial drift weakens. In Chapter 3 it was

shown that, in an inner disc in which the gas accretion and the grain turbulent velocities are

driven by the MRI, the grains can become small enough to escape the pressure trap, through

advection and radial mixing by the turbulent gas. Additionally, it was found that this leads

to an accumulation of small dust grains throughout the inner disc, interior to the pressure

maximum.

In Chapter 3 the effects of dust onto gas were not taken into account, and it was speculated

that the accumulation of dust would quench the MRI, lowering the levels of turbulence and

allowing some grain growth. Dust grains are expected to quench the MRI by adsorbing free

charges from the gas phase (Sano et al. 2000; Ilgner and Nelson 2006; Wardle 2007; Salmeron and

Wardle 2008; Bai and Goodman 2009; Mohanty et al. 2013). However, this would concurrently

push the MRI-active region and the pressure maximum inwards, possibly eliminating it from

the inner disc. Evidently, the outcome is a function of the size and the abundance of the dust

grains.
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In Chapter 5 I presented a model of a steady-state viscously accreting disc which includes

both the MRI-driven viscosity and the effects of dust onto gas. This accounts for the adsorp-

tion of free charges onto dust grains, and also for the electron (thermionic) and ion emission

from dust grains into the gas phase. The thermionic and ion emission become important at

temperatures above �1000 K (so at the temperatures present in the inner disc) and act to in-

crease the ionization fraction of the gas (Desch and Turner 2015). It was shown that for 1µm

grains, comprising 1% of the disc mass, these dust effects balance out and result in a pressure

maximum at roughly the same location as predicted from thermal ionization. Additionally,

this model also self-consistently considers the disc opacity due to dust grains, thus taking into

account the effect of dust on the disc thermal structure.

In this chapter I investigate how the inner disc structure changes with dust-to-gas ratio,

dust grain size, and other disc and stellar parameters, in order to narrow down the region of

parameter space where the formation of planetary cores inside the ice line is more likely. I

briefly overview the disc model in Section 6.2 and present the results in Section 6.3. Section

6.4 focuses on the existence and the location of the gas pressure maximum as a function of the

above parameters, exploring the entire parameter space in detail. In Section 6.5 I discuss the

implications of these results for the formation of the super-Earths and Section 6.6 summarizes

the conclusions.

6.2. Methods

The disc model used here is presented in Chapter 5. Here, I only summarize the main points.

It is assumed that the viscously-accreting disc is in steady-state, i.e., that the gas accretion

rate 9M is radially constant, on the basis that the gas accretion rate evolves on a long (Myr)

timescale. The disc structure is calculated self-consistently with disc opacities, ionization state

and the viscosity due to the MRI. The disc is assumed to be in vertical hydrostatic and thermal

equilibrium, heated by viscous dissipation and stellar irradiation, and cooled radiatively and/or

via convection.

I consider disc opacities due to silicate dust grains. The opacities are calculated for a power-

law grain size distribution (Mathis et al. 1977), with a minimum grain size amin � 0.1µm and a

maximum grain size amax, using optical constants from Draine (2003, see Chapter 5 for details).

Fig. 6.1 shows the opacities per unit mass of gas for a set of maximum grain sizes amax, assuming

a dust-to-gas ratio fdg � 0.01, bulk density of dust grains ρs � 3.3 g cm�3, and stellar effective

temperature T� � 4400 K. Additionally, Fig. 6.2 shows the Planck-mean and Rosseland-mean

opacities at a fixed temperature of 500 K, as functions of maximum grain size. The structure

of the disc is considered only beyond the silicate sublimation line, and so the opacities due to

gas molecular and atomic lines are neglected. Additionally, the contribution from the water

ice and carbonaceous grains is neglected, since their sublimation temperatures are much lower

120



CHAPTER 6. DEPENDENCE ON DUST, DISC AND STELLAR PARAMETERS

than the temperatures expected in the hot (¡ 1000 K) MRI-active regions (e.g. Pollack et al.

1994).

Furthermore, the disc ionization state is calculated using a simple chemical network (De-

sch and Turner 2015) that includes thermal (collisional) ionization of potassium; ionization of

molecular hydrogen by stellar X-rays, cosmic rays and radionuclides (producing metal (mag-

nesium) ions by charge transfer); gas-phase recombinations; adsorption onto dust grains and

thermionic and ion emission from dust grains. Only a single dust grain species of size agr �
0.1µm is considered in the chemical network, but an effective dust-to-gas ratio feff is chosen to

mimic the full size distribution stated above (see Chapter 5 for details).

Finally, the viscosity due to the MRI, parametrized using the Shakura and Sunyaev (1973)

α parameter, is calculated using a prescription based on the results of magnetohydrodynamic

simulations (see Chapter 5). This accounts for the suppression of the MRI by Ohmic and

ambipolar diffusion. In the MRI-dead zones (where the MRI is suppressed), I assume the gas

can still accrete due to a small constant viscosity parameter αDZ, induced either by the adjacent

MRI-active zone or by purely hydrodynamical instabilities. The dead-zone viscosity parameter

αDZ plays an important role in the results presented here. The viscous α is calculated both as

a function of radius and height, and a vertically-averaged viscosity parameter is defined as

ᾱ �
³zsurf

0
αPdz³zsurf

0
Pdz

, (6.1)

where zsurf is the disc height, defined as a height above which the gas pressure falls below some

small constant value.

6.3. Results

As the fiducial model, I consider a disc with a gas accretion rate 9M � 10�8 Md yr�1, stellar

mass M� � 1 Md, stellar radius R� � 3 Rd, effective stellar temperature T� � 4400 K1, viscosity

parameter in the MRI-dead zone αDZ � 10�4, dust-to-gas ratio fdg � 10�2, and maximum dust

grain size amax � 10�4 cm. In Chapter 5 I used this fiducial model to discuss the impact of

various physical and chemical processes on the inner disc structure. Here, I explore the effects

of varying these parameters on the inner disc structure. First, Section 6.3.1 details the effects

of varying the dust-to-gas ratio fdg and maximum dust grain size amax. Then, Section 6.3.2

details the effects of varying the gas accretion rate 9M , stellar mass M�, and the dead-zone

viscosity αDZ.

1These specific stellar parameters correspond to a solar-mass star at an age of 0.5 Myr in the stellar evolution
models of Baraffe et al. (2015). Over the first 5 Myr luminosity of a solar-mass star decreases by a factor of 5
in these models, and so the adopted parameters are roughly valid throughout the disc lifetime. Additionally,
in Chapter 5 it was shown that the stellar irradiation has a weak effect on the extent of the MRI-active zone,
since the inner disc is optically thick, and so this decrease in the luminosity is unimportant.
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Figure 6.1: Planck-mean opacity κP (top), Rosseland-mean opacity κR (middle), and Planck-
mean opacity at the stellar effective temperature κ�P (i.e., the absorption coefficient for the
stellar irradiation; bottom), as functions of disc temperature, for different maximum grain sizes
amax as indicated in plot legend, assuming a dust-to-gas ratio fdg � 0.01 and stellar effective
temperature T� � 4400 K. Absorption is dominated by small grains, and so the Planck-mean
opacities decrease with increasing maximum grain size. The Rosseland-mean opacity is a non-
monotonous function of grain size for amax À 10�2 cm.
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Figure 6.2: Planck-mean opacity κP and Rosseland-mean opacity κR at a temperature of
500 K, as functions of maximum grain size amax, assuming a dust-to-gas ratio fdg � 0.01.
The Rosseland-mean opacity peaks around amax � 10�3 cm at this temperature.

6.3.1. Dust-to-gas ratio and dust size

Dust has two effects on the disc structure in this model: it determines opacities in the disc, and

it affects the disc ionization state. To better understand the results of varying dust properties,

I first consider only the dust opacities. That is, in Section 6.3.1.1, I consider a model with a

vastly simplified chemical network, in which the only source of ionization is thermal ionization

of potassium and free charges recombine only in the gas phase. Then, in Section 6.3.1.2 I

present the results of the full model which also accounts for the adsorption of charges onto dust

grains, thermionic and ion emission from dust grains, and ionization of molecular hydrogen by

stellar X-rays, cosmic rays and radionuclides.

6.3.1.1. Thermally-ionized model

In this section I consider a model which includes dust opacities, but does not include dust

effects on the disc chemistry, nor ionization of molecular hydrogen. Ionization levels are set by

thermal ionization of potassium and calculated using the Saha equation. The results of varying

the dust-to-gas ratio fdg in this simplified model are shown in the left column of Fig. 6.3.

The top left panel shows the radial profile of the vertically-averaged viscosity parameter

ᾱ, defined in eq. (6.1), for three different values of the dust-to-gas ratio, fdg � 10�4, 10�2 and

1, for a constant maximum grain size amax � 10�4 cm. In this simplified, thermally-ionized

disc model, the MRI is active only at short radii, around the hot disc midplane. Therefore,

the viscosity is highest in the innermost region where the midplane ionization fraction and the

midplane temperature (shown in the second and third row, respectively) are highest, and it

decreases with distance from the star. At some radius ionization fraction drops below that

needed to sustain the MRI, and the viscosity parameter ᾱ falls to the minimum, dead-zone

value αDZ. That determines the location of the local gas pressure maximum, shown in the

bottom panel.
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Figure 6.3: Results for the thermally-ionized disc (where the only source of ionization is thermal
ionization of potassium, and dust effects on the disc chemistry are not included). The left
column shows models with a constant maximum grain size amax � 10�4 cm and varying dust-
to-gas ratio fdg as indicated in plot legend. The right column shows models with a constant
dust-to-gas ratio fdg � 10�2 and varying maximum grain size amax as indicated in plot legend.
The rows show radial profiles of (from top to bottom) vertically-averaged viscosity parameter
ᾱ, midplane free electron fraction ne{nH2 , midplane temperature and midplane pressure. The
inner edge of the fdg � 1 model is set to 0.3 AU, since radially inwards temperature increases
above the sublimation temperature of silicates. The light-coloured lines indicate the regions
affected by the inner boundary condition (see Chapter 5). See Section 6.3.1.1.
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Fig. 6.3 shows that a higher dust-to-gas ratio results in a larger MRI-active zone (the region

where ᾱ ¡ αDZ). This is because the inner disc is optically-thick, so the disc midplane temper-

ature is set by the accretion heat released near midplane and the optical depth of the disc to

its own radiation (with a caveat that the vertical temperature gradient is additionally limited

by convection; see Chapter 5). The disc’s opacity is directly proportional to the dust-to-gas

ratio, and so a disc with more dust is more optically-thick, trapping more heat and making the

disc midplane hotter. This makes the midplane more ionized, leading to a higher MRI-induced

viscosity at a given radius.

Furthermore, the right column of Fig. 6.3 shows models with a constant dust-to-gas ratio

of fdg � 10�2, but varying the maximum dust grain size amax in the range 10�4 � 1 cm. The

radial profiles of the viscosity parameter ᾱ (the top right panel) show that the MRI-active

region becomes smaller if dust grains are larger, at fixed dust-to-gas ratio. This is because

larger dust grains have lower opacities (see Fig. 6.1), making the inner disc less optically thick.

Same as in a disc with a lower dust-to-gas ratio, this makes the disc midplane cooler and

less ionized. The effect on the disc temperature is clearly seen in the outer regions in which

the MRI is dead and the viscosity parameter is constant, ᾱ � αDZ (the right-hand side panel

in the third row). Going inwards, the MRI will become active roughly where the midplane

temperature reaches � 1000 K, as necessary for the thermal ionization of potassium. Therefore,

in these simplified, thermally-ionized models, dust growth results in the MRI-active zone edge

being pushed inwards. Note that it is the effects of dust opacities alone that lead to these

significant changes in the extent of the MRI-active zone. The effects of including dust grains

in the chemical network are explored next.

6.3.1.2. Full model

In this section, I consider the full model that additionally includes (direct) effects of dust on the

ionization fraction (adsorption of free charges onto dust grains, thermionic and ion emission),

and also ionization of molecular hydrogen. Three sources of ionization are considered for the

latter (stellar X-rays, cosmic rays and radionuclides), the X-rays being the most important

(see Chapter 5). The results of varying the dust-to-gas ratio and maximum dust grain size in

this full model are shown in the left and the right column of Fig. 6.4, respectively. From top

to bottom, the figure shows the radial profiles of the vertically-averaged viscosity parameter,

midplane free electron fraction, midplane temperature and midplane pressure.

As in the simplified, thermally-ionized models discussed above, in the innermost regions

the viscosity parameter decreases with distance from the star. Here, however, the viscosity

parameter reaches a minimum value close to the dead-zone viscosity, and then increases again

radially outwards, due to ionization by stellar X-rays (this is true in all models, even if not

always evident in the plots). Note that in the full model, in the innermost regions the main

sources of ionization are thermionic and ion emission from dust grains, and free charges mostly
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Figure 6.4: Results for the full model which includes dust effects on disc chemistry and ion-
ization of molecular hydrogen. The left column shows models with a constant maximum grain
size amax � 10�4 cm and varying dust-to-gas ratio fdg as indicated in plot legend. The right
column shows models with a constant dust-to-gas ratio fdg � 10�2 and varying maximum grain
size amax as indicated in plot legend. The rows show radial profiles of (from top to bottom)
vertically-averaged viscosity parameter ᾱ, midplane free electron fraction ne{nH2 , midplane
temperature and midplane pressure. The light-coloured lines indicate the regions affected by
the inner boundary condition (see Chapter 5). The radius of the pressure maximum is larger for
a larger dust-to-gas ratio; it is approximately the same for the maximum grain size of 10�4 cm
and 10�2 cm, but quite smaller for the maximum grain size of 1 cm. See Section 6.3.1.2.
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recombine by adsorption onto dust grains (see Chapter 5; Desch and Turner 2015). While this

is fundamentally different from the gas-phase thermal ionization, ionization levels as a function

of temperature and density are quantitatively similar. As a result, the viscosity parameter

in these innermost regions (at high temperatures) is similar to the models with no dust. In

Chapter 5 I discussed this for the fiducial maximum grain size amax � 10�4 cm. The results

presented in this work show that this conclusion holds at a wide range of dust-to-gas ratios and

grain sizes (e.g., compare Fig. 6.4 with Fig. 6.3).

An exception to this is the case of high dust-to-gas ratio of fdg � 1. In this model, the

midplane free electron fraction decreases substantially already at the distance of �0.4 AU (see

the left-hand panel on the second row in Fig. 6.4). However, the viscous ᾱ remains high out

to �2 AU in this model (the top left panel in Fig. 6.4). In this high-ᾱ region, the MRI is

indeed active at the disc midplane (as shown in the left-hand panel of Fig. 6.5), despite the

large decrease in the midplane electron number density. What drives the MRI in this case?

The right-hand panel of Fig. 6.5 shows that between �0.4 AU and �2 AU the main ionized

species are the potassium ions and the dust grains. Evidently, the number density of electrons

decreases with increasing dust-to-gas ratio (keeping other parameters fixed), but the opposite

is true for the number density of potassium ions evaporating from dust grains, above �900 K

(see Desch and Turner 2015). In the resulting disc ionization state, due to charge conservation,

the total charge of potassium ions equals the total charge on dust grains. However, since the

dust grains have a much higher inertia than potassium ions, it is the potassium ions that couple

the gas to the magnetic field. Overall, these results show that emission of potassium from dust

grains is sufficient to sustain the MRI out to large radii, at high dust-to-gas ratios. However,

also note that for a dust-to-gas ratio of unity, the dynamical back-reaction of dust on the gas

(which is not considered in this work) would become important.

Furthermore, as noted above, in the full model the viscosity parameter ᾱ reaches a minimum

value, outwards from which it increases with radius. The minimum in the viscosity parameter

corresponds to the location of the gas pressure maximum, shown in the bottom panels of

Fig. 6.4. Outwards of the pressure maximum, temperature at the disc midplane is too low

for efficient ionization, and so the MRI is only active in a thin X-ray-ionized layer high above

disc midplane (seen near �2 AU in the left-hand panel of Fig. 6.5). In these outer regions,

the viscosity parameter increases with decreasing dust-to-gas ratio and increasing dust grain

size. This is because the main source of ionization are the stellar X-rays, and dust only acts

as a recombination pathway. For lower dust-to-gas ratios and, equivalently, higher maximum

grain size, the total grain surface area (onto which free charges adsorb) decreases, leading to

higher ionization fraction and higher MRI-driven viscosity (Sano et al. 2000; Ilgner and Nelson

2006). Nevertheless, the contribution from the thin X-ray-ionized layer is low in all cases and

the viscosity parameter ᾱ � αDZ in this region. In other words, in these outer regions the

gas primarily accretes through the dead zone, and the stellar X-rays do not affect strongly the

location of the pressure maximum.
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Figure 6.5: Local viscosity parameter α as a function of location in the disc (left) and the
fractional number densities of various ionized species at the disc midplane as a function of
radius (right), in a model with a dust-to-gas ratio of fdg � 1. See Section 6.3.1.2.

Overall, the extent of the high-viscosity inner region and the location of the pressure maxi-

mum seem to be dictated by the dependence of disc opacities on the dust-to-gas ratio and dust

grain size through the effects discussed in the previous section. Note, however, that in the full

model the location of the pressure maximum is approximately the same for amax � 10�4 cm and

amax � 10�2 cm (see the top right panel in Fig. 6.4). This is because a larger grain size results

in a lower effective dust-to-gas ratio in the chemical network. This somewhat decreases the

critical temperature at which the thermionic and ion emission make the gas sufficiently ionized

to start the MRI at disc midplane. In addition, larger grain sizes increase the minimum value

of the viscosity parameter (set by the dead-zone value and the stellar X-rays), which moves

the pressure maximum inwards. Concurrently, a decrease in the disc’s opacity with grain size

is moderate for amax À 10�2 cm (see Fig. 6.1). The location of the pressure maximum as a

function of dust grain size is considered in more detail in Section 6.4.

6.3.2. Gas accretion rate, stellar mass and dead-zone viscosity

In this section I investigate how the structure of the inner disc changes with varying gas accretion

rate, stellar mass and dead-zone viscosity. Fig. 6.6 shows the results of the fiducial model and

three other models in which these three parameters are varied. The different panels show, from

top to bottom, the vertically-averaged viscosity parameter (ᾱ), midplane free electron fraction

(ne{nH2), midplane temperature and midplane pressure, as functions of radius.

In each panel the dashed line shows a model with a gas accretion rate 9M � 10�9 Md yr�1,

lower than in the fiducial model with 9M � 10�8 Md yr�1, shown by the solid line. The lower gas

accretion rate results in a smaller high-viscosity inner region, and a gas pressure maximum at

a shorter radius. This is because the gas accretion rate determines the total viscous dissipation

at any given radius. In the optically-thick inner disc, this sets the midplane temperature, the

midplane ionization fraction and the viscosity. From Fig. 6.6, the radius of the gas pressure
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maximum scales with the gas accretion rate approximately as rPmax9 9M1{2. This is, in fact,

the same scaling previously found in Chapter 2, where heating by stellar irradiation, dust

effects and ionization of molecular hydrogen were neglected. While stellar irradiation and

ionization of molecular hydrogen are indeed unimportant for the model parameters chosen

here, the dust effects are not. However, while the chemistry setting the ionization state of

the disc is qualitatively different in those simple models (thermal ionization of potassium)

and in the models presented here (thermionic and ion emission), in both cases the ionization

fraction increases sharply above roughly the same temperature (�1000 K), yielding the same

approximate scaling.

Note also that the ionization of molecular hydrogen (predominantly by the stellar X-rays)

is not entirely negligible. X-rays activate the MRI in a thin layer high above the disc midplane

outwards of the pressure maximum, increasing the viscosity parameter ᾱ compared to the dead-

zone value αDZ. The top panel of Fig. 6.6 shows that this X-ray-activated accretion becomes

more important in the case of the lower gas accretion rate, increasing the viscosity parameter

outwards of the pressure maximum by a factor of 2. This is because in these outer regions a

lower gas accretion rate results in lower gas surface densities, increasing the relative contribution

of the accretion through the X-ray-activated layer relative to the accretion through the dead

zone.

Furthermore, the dotted line in Fig. 6.6 shows a model with a dead-zone viscosity αDZ � 10�3

(higher than the fiducial αDZ � 10�4). As in the simple models discussed in Chapter 2, the

exact value of αDZ is unimportant in the innermost, well-ionized region. In the outer regions the

accretion stress is dominated by that in the dead zone, and so αDZ determines the minimum

vertically-averaged viscosity parameter in the disc. Therefore, a larger αDZ results in the

pressure maximum moving radially inwards compared to the fiducial model.

Finally, the dash-dotted line shows a model with a stellar mass of M� � 0.1 Md. Here I

adopt a stellar radius of R� � 1 Rd and an effective temperature of T� � 2925 K 2. Keeping

the other parameters constant, structure of the inner disc surrounding a M� � 0.1 Md star

is merely shifted radially inwards compared to the fiducial model with M� � 1 Md. This is

predominantly due to the Keplerian angular velocity being smaller at a given orbital radius

around a less massive star, which reduces the total viscous dissipation at the given radius. The

resulting approximate scaling rPmax9M�1{3
� is consistent with the simple models from Chapter 2,

stressing again that (for the chosen 9M , dust parameters etc.) stellar irradiation and ionization

by stellar X-rays are unimportant in setting the location of the pressure maximum.

2These stellar parameters are taken from the stellar evolution models of Baraffe et al. (2015), adopting a
stellar age of 0.5 Myr. For M� � 0.1 Md, the stellar luminosity is predicted to decrease only by a factor of 3
over the first 5 Myr in these models. It is not expected that this decrease is important, since stellar irradiation
plays a minor role in the structure of the inner disc even at the adopted maximum value of the luminosity (see
the discussion in Chapter 5).
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Figure 6.6: Results for the full model which includes dust effects on disc chemistry and ioniza-
tion of molecular hydrogen. The different panels show radial profiles of (from top to bottom)
vertically-averaged viscosity parameter ᾱ, midplane free electron fraction ne{nH2 , midplane
temperature and midplane pressure. Fiducial model (solid lines) has a gas accretion rate
9M � 10�8 Md yr�1, stellar mass M� � 1 Md and dead-zone viscosity αDZ � 10�4. Models with

a lower gas accretion rate (dashed line), a smaller stellar mass (dash-dotted line) or a larger
dead-zone viscosity (dotted line) all yield the gas pressure maximum at a smaller radius. The
light-coloured lines indicate the regions affected by the inner boundary condition (see Chapter
5). See Section 6.3.2.
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6.4. Location of the pressure maximum

The above results show that, for a wide range of disc, stellar and dust parameters, the inner disc

features a high-viscosity inner region, a low-viscosity outer region, and a gas pressure maximum

at the transition between the two regions. This gas pressure maximum has been hypothesized

to have a key role in the formation of the super-Earths inside the water ice line (Chatterjee

and Tan 2014). Based on the models discussed so far, increasing dust grain size and dead-zone

viscosity parameter, and decreasing gas accretion rate and stellar mass result in the pressure

maximum moving inwards, towards the star. In this section, I examine in more detail the

dependence of the radius of the pressure maximum (and its existence) on these parameters.

In order to reduce the computational complexity of the problem and to be able to explore the

parameter space in detail, here I neglect heating of the disc by stellar irradiation (but still

consider the ionization of the disc by the stellar X-rays). This has been shown to be a good

approximation if the inner disc is optically thick (see Chapter 5), but also see the discussion at

the end of this section.

Fig. 6.7 shows the radius of the pressure maximum (or pressure bump) as a function of

the maximum dust grain size, for the stellar mass 1 Md (the left-hand panel) and 0.1 Md (the

right-hand panel). In all models shown here, dust-to-gas ratio has the fiducial value of 10�2.

The solid, dashed and dotted lines correspond to different values of the dead-zone viscosity

parameter (αDZ � 10�5, 10�4 and 10�3, respectively). For the different stellar masses different

ranges of the gas accretion rate 9M are explored, as indicated in plot legends next to each panel.

The chosen ranges are motivated by observational studies, which find that for a solar-mass star

typically 9M � 10�8 Md yr�1 and for the stellar mass of 0.1 Md, typically 9M � 10�10 Md yr�1

(e.g. Mohanty et al. 2005; Manara et al. 2012; Alcalá et al. 2014; 2017; Manara et al. 2017).

There is a significant spread both in the reported mean values in these studies (�1 dex for

the stellar mass of 0.1 Md, and somewhat less for a solar-mass star) and within the observed

samples in each study (up to 2 dex). However, the correlation with the stellar mass appears

robust, and so we can adopt the above typical values as mean values and vary the gas accretion

by �1 dex for each stellar mass.

The radius of the pressure maximum as a function of the maximum dust grain size (amax)

shows a similar trend across virtually all values of the stellar mass, accretion rate and dead-

zone viscosity: it weakly increases with increasing amax for small grains, peaks at about amax �
10�2 cm, and steadily decreases for larger dust grains. The factors causing this have already

been briefly discussed in Section 6.3.1. First, recall that a decrease in the disc opacity means

that accretion heat can escape more easily, making the disc midplane colder and pushing the

pressure maximum inwards. For small dust grains, larger dust grain size leads to a moderate

increase in the opacity (here, the relevant opacity is the opacity of the disc to its own radiation in

the optically-thick regions, i.e., the Rosseland-mean opacity, see Fig. 6.1). At the same time, the

increase in dust grain size reduces the critical temperature at which ionization fraction rises due
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Figure 6.7: Radius of the gas pressure bump as a function of maximum dust grain size. Left-
hand panel shows the results for a stellar mass M� � 1 Md, right-hand panel for M� � 0.1 Md.
In all models the dust-to-gas ratio is 10�2. Solid, dashed and dotted lines show results for
the dead-zone viscosity parameter αDZ � 10�5, 10�4 and 10�3, respectively. Blue, green and
red lines indicate different gas accretion rates 9M as indicated in plot legends for each panel.
Keeping other parameters fixed, the radius of the pressure bump is a non-monotonic function
of the maximum grain size, and peaks at around �10�2 cm. For M� � 0.1 Md, there is no
pressure maximum for the low accretion rate and αDZ ¡ 10�5, for the stellar radius adopted
here (indicated by the orange region). See Section 6.4.

to thermionic and ion emission (as the increase in dust grain size is equivalent to a reduction

in the effective dust-to-gas ratio in the chemical network; see also Desch and Turner 2015),

pushing the pressure maximum outwards. Concurrently, the minimum value of the viscosity

parameter is larger for larger grains, pushing the pressure maximum inwards. When all these

factors are compounded, for small grains, the radius of the pressure maximum increases with

amax. However, if the grains grow beyond amax � 10�2 cm, disc opacities are severely reduced

and the net effect is a decrease in the radius of the pressure maximum. Additionally, note that

the exact value of amax at which the radius of the pressure bump peaks somewhat varies with
9M and αDZ; this can be expected, since both determine the gas surface density and thus the

optical depth at disc midplane and the relative importance of the above three effects. It is also

important to note that including heating due to stellar irradiation seems to somewhat modify

this trend, as can be seen from the comparison of the models discussed in the previous section

(specifically, in Fig. 6.4, where for the fiducial disc and stellar parameters, micron-size grains

result in a pressure maximum at a larger radius than 100-micron grains) and Fig. 6.7. The

resulting differences in the radial location of the pressure maximum are, however, small.

For the solar-mass star, within the observationally-motivated range of 9M and a wide range of

αDZ, the pressure maximum is found to exist at rPmax Á 0.04 AU for a wide range of grain sizes.

On the other hand, for M� � 0.1 Md both the smaller orbital velocity and the observationally-

determined lower gas accretion rates lead to significantly lower rPmax . For the gas accretion rate
9M � 10�11 and αDZ � 10�5 the pressure maximum does not exist if grains grow larger than

few �10�3 cm. For the same gas accretion rate and higher αDZ, no pressure maximum exists

132



CHAPTER 6. DEPENDENCE ON DUST, DISC AND STELLAR PARAMETERS

at all.

Finally, recall that in the models shown in Fig. 6.7 heating by stellar irradiation has been

neglected. One the one hand, including stellar irradiation could increase the disc midplane tem-

perature by a small amount in these optically-thick solutions, and move the pressure maximum

slightly outwards. This would be a small effect, as can be verified for the sets of parameters

that were also considered in the previous section (e.g., results including stellar irradiation are

shown for the fiducial disc and stellar parameters, and maximum grain sizes up to 1 cm, in

Fig. 6.4). On the other hand, for some parameters, including stellar irradiation could also lead

to additional or modified solutions that are optically thin. Specifically, for lower gas accretion

rates, an equilibrium solution could exist with a low gas surface density if the density was low

enough for the X-rays to ionize the entire disc column and produce a much higher accretion

efficiency. This is especially the case if the dust grains are larger, as this lowers the ion recom-

bination rate and increases the ionization fraction. Since the accretion rate is proportional to

the product of the gas surface density and the viscosity, such a solution also requires the disc

temperature to be high enough to match the required accretion stress. In the viscously-heated

solutions considered in this section such solutions are not found (in the vicinity of the pressure

maximum), since the temperature in a viscously-heated optically-thin disc is low. However, in

an optically thin disc, the temperature would be set by stellar irradiation. If the temperature

due to irradiation is high enough, for some parameters, a disc in steady state would adapt to

this X-ray-ionized solution, and no pressure maximum would exist. Therefore, this issue should

be studied further in the future.

6.5. Discussion

In this work I have investigated how the structure of the inner disc, accreting primarily through

the MRI, changes with various disc, stellar and dust parameters. Of particular interest are the

existence and the location of a local gas pressure maximum and a highly-turbulent region

inwards of it, which could accumulate dust grains radially drifting from the outer disc, possibly

leading to the formation of planetary cores (Chatterjee and Tan 2014; Hu et al. 2018). The

models presented in this work are steady-state models, each with a distribution of dust grains

that is fixed throughout the disc. However, as discussed in the rest of this section, these models

provide us with important insights into how the inner disc could evolve as the dust grains grow,

if and how the dust will accumulate, how this accumulation could feedback on the gas structure,

and the disc parameters that are favourable for the formation of planetary cores.

6.5.1. Dust growth

Dust growth to a few tens of microns increases the extent of the high-viscosity inner region

and the radius of the pressure maximum, as an increase in dust grain size leads to a moderate
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increase in the disc opacity and a decrease in the threshold temperature at which thermionic

and ion emission become efficient. Growth beyond that size has the opposite effect, as it leads

to a significant decrease in the disc opacity, making the disc midplane colder, and thus less

ionized. Therefore, in the inner disc, if dust grows larger than �10�2 cm sizes, the dead-zone

inner edge expands inwards.

Note that this is the opposite of what happens in the outer regions of protoplanetary discs.

The outer regions are ionized primarily by the stellar X-rays and cosmic rays. These sources

of ionization become more important further away from the star, as the disc column density

decreases and the high-temperature effects become unimportant. These regions are expected

to be optically thin to their own radiation, and the primary source of heat is stellar irradiation.

Therefore, the dust acts primarily to lower the ionization fraction by adsorbing free charges

from the gas. Because of this, in the outer regions the dead zone is expected to shrink as the

dust grains grow (Sano et al. 2000; Ilgner and Nelson 2006).

In the inner disc, dust growth is limited by collisional fragmentation of dust grains due

to relative turbulent velocities (Birnstiel et al. 2010; 2012; Drazkowska et al. 2016). We can

consider the location of the pressure maximum under an assumption that the maximum dust

grain size has reached this limit, with the relative grain velocities induced by the MRI-driven

turbulence. In a turbulent disc, typical collisional relative velocity between dust grains is given

by V 2
dd � 3V 2

g St (for St   1, Ormel and Cuzzi 2007b), where Vg is the typical turbulent gas

velocity (given by V 2
g � αc2

s ) and St is the dust particle Stokes number (the ratio between the

particle stopping time and the eddy turnover time, assumed to equal the orbital timescale 1{Ω;

i.e., the non-dimensional stopping time). There is a critical velocity ufrag above which a collision

between dust grains results in their fragmentation, rather than sticking/growth. For silicate

grains of similar size, ufrag � 1 m s�1 (Blum and Münch 1993; Beitz et al. 2011; Schräpler et al.

2012; Bukhari Syed et al. 2017, although note that grains might become more sticky at the

high temperatures present in the inner disc, Demirci et al. (2019)). Since Stokes number St

is directly related to the grain size, and the collision velocity to St, fragmentation imposes an

upper limit on dust growth. At the fragmentation limit (Birnstiel et al. 2009; 2012),

Stfrag �
u2

frag

3αc2
s

. (6.2)

The exact relationship between the Stokes number and the particle size depends on the

relevant drag law (Weidenschilling 1977). Typically, the dust grains in protoplanetary discs are

smaller than the mean free path of gas molecules, and therefore couple to the gas according

to the Epstein drag law. However, due to the high densities in the inner disc, dust grains

may enter the Stokes regime. Importantly, the above approximate expression for the turbulent

relative velocity between dust grains (Vdd) has been derived under an assumption that St does

not depend on the relative velocity between the dust grain and the gas, Vdg. This assumption is

true for grains in the Epstein drag regime. In the Stokes regime, it is true only if the Reynolds
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number Re of the particle is less than unity. Therefore, it is necessary to always check that

this condition is fulfilled for the particles in the Stokes regime, and that we may employ the

above expression for Vdd. The Reynolds number of a particle itself depends on the velocity

Vdg, for which we can adopt another approximate expression, V 2
dg � V 2

g St{p1 � Stq (Cuzzi and

Hogan 2003, note that this expression was derived analytically for St ! 1, but also shown to

be applicable for a wide range of St through a comparison with numerical simulations).

The location of the pressure maximum in a disc in which grain growth is limited by frag-

mentation is calculated as follows. At the location of the pressure maximum for various combi-

nations of stellar mass, accretion rate, dead-zone viscosity parameter and maximum dust grain

size (i.e., for every point in Fig. 6.7), the fragmentation limit for the particle Stokes number,

Stfrag, is calculated (assuming α � ᾱ), as well as the corresponding grain size, afrag (for an

appropriate drag law). Then, for every combination of the stellar mass, the accretion rate and

the dead-zone viscosity parameter, using linear interpolation, the grain size is found such that

afragpamaxq � amax. This yields a corresponding radius of the pressure maximum.

Note that this calculation utilizes models in which the maximum dust grain size is assumed

to be constant everywhere in the disc, and so the obtained solutions also formally correspond

to models in which the maximum dust grain size is radially constant (and equal to the fragmen-

tation limit afrag at the pressure maximum). In a real disc, the fragmentation limit to which

particles can grow would be a function of the turbulence levels and other parameters which

vary as functions of radius. While this calculation does not take this radial variation of dust

size into account, the fragmentation limit at the pressure maximum and the location of the

pressure maximum would remain the same as in the solutions found here. In particular, note

that radially inwards from the pressure maximum, afrag should decrease compared to the value

at the pressure maximum, as the viscosity parameter ᾱ increases. As we will find, the solution

for afrag at the pressure maximum is always higher than amax at which the radius of the pressure

maximum peaks (as a function of amax, in Fig. 6.7). That is, at a fixed radius, a decrease in

particle size inwards of the pressure maximum would yield an increase in the viscosity parame-

ter, compared to the value calculated using the fragmentation limit at the pressure maximum.

Accounting for the radial variation in particle size would then make the radial gradient of the

viscosity parameter steeper inwards of the pressure maximum, but it would not change the

location of its minimum, and therefore not the location of the pressure maximum obtained

here.

The results for the radius of the pressure maximum and the grain size are shown in Fig. 6.8,

as functions of the gas accretion rate, for different values of stellar mass and dead-zone viscosity

parameter. The maximum grain size limited by turbulent fragmentation (middle panel) is

sensitive to the dead-zone viscosity (and turbulence) parameter αDZ (results for αDZ � 10�5,

10�4 and 10�3 are shown by the solid, dashed and dotted lines, respectively). This is because

the location of the pressure maximum corresponds to the location of the minimum in the

vertically-averaged viscosity (and turbulence) parameter ᾱ; since outwards from the pressure
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maximum the disc primarily accretes through the dense MRI-dead region around the midplane,

at the pressure maximum ᾱ � αDZ.

Remarkably, despite the sensitivity of the grain size to αDZ, the radius of the pressure max-

imum depends very weakly on this parameter. Basically, the fragmentation-limited solution for

the grain size is always larger than the grain size at which the radius of the pressure maximum

peaks as a function of the grain size (see Fig. 6.7). Therefore, in this region of the parameter

space, a larger grain size yields a smaller radius of the pressure bump. Larger (fragmentation-

limited) grain size is obtained for lower values of the dead-zone viscosity parameter, as discussed

above. Concurrently, at a fixed grain size (and other parameters), a lower dead-zone viscosity

parameter yields a larger radius of the pressure bump (see Section 6.3.2). Evidently, com-

pounding these inter-dependencies results in a weakly-varying radius of the pressure bump for

a wide range of values for the dead-zone viscosity parameter.

Furthermore, for the solar-mass star, the pressure maximum is located at radii Á 0.1 AU

in the entire range of the observationally-motivated gas accretion rates considered here. Com-

pounding this with the result that a higher dust-to-gas ratio (resulting from accumulation

of dust, see also the next section) would move the pressure maximum outwards, this places

the potentially planet-forming region within the range of the observed orbital distances of the

super-Earths.

For a lower-mass star, M� � 0.1 Md, at a fixed gas accretion rate, dust grains may grow

to somewhat larger sizes than for the solar-mass star. Overall, the radius of the pressure

maximum is expected to be smaller, due to the larger grain sizes, but also (mostly) due to the

lower viscous dissipation at a given accretion rate, and the lower observed gas accretion rates

(see the discussions in sections 6.3.2 and 6.4). As the radius of the pressure maximum moves

inwards for lower gas accretion rates, no high-viscosity inner region and no pressure maximum

are found at the low end of the observed accretion rates (i.e., for 9M � 10�11 Md yr�1). This

implies that planet formation around these stars is more likely earlier in the disc lifetime.

6.5.2. Dust accumulation

For dust grains to become trapped within the pressure maximum, the outwards radial drift

velocity of dust grains just inwards of the pressure maximum should be higher than the velocity

with which the accreting gas advects the grains inwards. The ratio of the radial drift and the gas

advection velocities is roughly equal to the ratio of the particle Stokes number and the viscous

α (Jacquet et al. 2012). Therefore, for the particle radial drift to overcome advection with

the gas inwards of the pressure maximum, it is required that St{α ¡ 1. To check whether this

condition is fulfilled, we can consider the ratio between the Stokes number at the fragmentation

limit Stfrag and the viscosity and turbulence parameter ᾱ. The results are shown in the bottom

panel of Fig. 6.8.

The ratio Stfrag{ᾱ is most sensitive to the value of the dead-zone viscosity parameter αDZ.
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Figure 6.8: Radius of the pressure bump (top), maximum dust grain size (middle) and ratio
of the Stokes number to the viscosity parameter (St{ᾱ) at the pressure bump (bottom) as
functions of the gas accretion rate, for a maximum dust grain size that corresponds to the grain
growth limit due to turbulent fragmentation. Solid, dashed and dotted lines correspond to
different values of the dead-zone viscosity parameter αDZ as shown in the plot legend. The dust
grain size and St{ᾱ are most sensitive to the dead-zone viscosity parameter αDZ. Concurrently,
varying αDZ weakly affects the location of the pressure bump. Blue lines show the results for a
stellar mass M� � 1 Md, orange lines for M� � 0.1 Md. There is no solution for M� � 0.1 Md

at the accretion rate of 9M � 10�11 Md yr�1, which is at the lower end of the observed rates for
this stellar mass. See Sections 6.5.1 and 6.5.2.
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The Stokes number at the fragmentation limit Stfrag is given by eq. (6.2). At a fixed critical

fragmentation velocity ufrag, it is a function only of the viscosity parameter ᾱ and the speed

of sound cs (i.e., the temperature) at the pressure maximum. The viscosity parameter ᾱ at

this location is determined by the accretion through the dead zone at disc midplane and the

accretion through a thin X-ray ionized layer high above the midplane. The former dominates

due to the density at midplane being much higher, and so ᾱ � αDZ. Therefore, Stfrag{ᾱ9α�2
DZ.

Furthermore, the temperature at the pressure maximum is expected to be roughly �1000 K,

as above this temperature thermionic and ion emission from dust grains lead to a sharp increase

in the ionization fraction and the onset of the MRI at the disc midplane. However, the exact

value varies as a function of dust grain properties, gas density at the pressure maximum, as

well as the highly non-linear MRI criteria. The dependence of Stfrag{ᾱ on 9M comes mostly

from the variations in this critical temperature.

Overall, whether the dust grains become trapped in the pressure maximum depends on an

assumed value of αDZ. We may consider how the disc might evolve forward, depending on

this value. First, if the dead-zone viscosity parameter is low, αDZ � 10�5, Stfrag{ᾱ " 1. In

this case, dust grains could readily accumulate at the pressure maximum. This accumulation

might lead to an unstable configuration, as an increase in the dust-to-gas ratio leads to an

increase in ᾱ at a given radius (see Fig. 6.4). As the dust-to-gas ratio would increase at the

pressure maximum, and decrease both inwards and outwards, this might lead to an emergence

of an additional minimum in ᾱ, and thus to a formation of an additional pressure trap. Time-

dependent simulations are needed to examine further evolution of the disc, and the possibility

of planetesimal formation in this case.

Second, consider a case in which the dead-zone viscosity parameter is closer to the middle of

the plausible range, αDZ � 10�4. For all considered gas accretion rates Stfrag{ᾱ � 1. This is the

case considered in Chapter 3, where it was shown that the gas pressure maximum does not trap

large amounts of dust. This is because ᾱ increases inwards of the pressure maximum, and Stfrag

decreases. This limits the radial width of the pressure trap, as defined above. Dust advection

with the accreting gas is not sufficient to remove the dust grains from the trap; however,

the grains are also mixed radially by the turbulence. The dust-to-gas ratio at the pressure

maximum is then limited by the corresponding radial diffusion term. Nevertheless, dust would

still accumulate in the entire region interior to the pressure maximum, as in the highly-turbulent

innermost region dust grains become small enough to couple to the gas, reducing the radial

drift relative to the outer disc.

In this chapter, it is also found that a higher dust-to-gas ratio yields a larger extent of the

high-viscosity inner region (see Section 6.3.1.2). This is highly beneficial for planet formation

in the inner disc, as it implies that the accumulation of dust is not only sustainable, but

also leads to a radial expansion of the high-viscosity, high-turbulence region inside of which

the dust accumulates. In particular, this expansion is beneficial for the growth of the small

fragmentation-limited dust grains into larger, more rigid solid bodies, i.e., into planetesimals.
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Specifically, planetesimals may form out of small grains through a combination of the streaming

instabilities (SI) and the gravitational instability (Youdin and Goodman 2005; Johansen and

Youdin 2007; Bai and Stone 2010; Johansen et al. 2012; Simon et al. 2016; 2017; Schäfer et al.

2017). Under certain conditions, the SI leads to localized concentrations of dust grains. If

these concentrations are susceptible to gravitational instability, this may lead to the formation

of planetesimals. It was pointed out in Chapter 3 that this process is unlikely in the inner

disc if the pressure (and the density) maximum is located at very short orbital distances, as

too close to the star the tidal effect of the star prevents the gravitational collapse. Therefore,

the shift of the pressure maximum to larger orbital distances due to the accumulation of dust

could potentially help to overcome this barrier and form planetesimals. Note that, for the same

reasons, planetesimal formation near the pressure maximum in the inner disc favours larger gas

accretion rates, and therefore formation at earlier times in the disc lifetime.

Finally, if the dead-zone viscosity parameter is high, αDZ � 10�3, Stfrag{ᾱ ! 1. In this

case, dust grains are so small and well-coupled to the gas that they are advected through the

pressure maximum inwards. Dust may still accumulate interior to the pressure maximum,

as a consequence of fragmentation in the innermost regions, as noted above. However, it is

unlikely that this could lead to the formation of larger solid bodies. While the exact value of

the dead-zone viscosity is unimportant for the location of the pressure maximum (see Fig. 6.8

and Section 6.5.1), in this case the grains would be too small, too well-coupled to the gas to

start the streaming instabilities (Carrera et al. 2015; Yang et al. 2017).

6.6. Conclusions

I have explored how the structure of the MRI-accreting inner regions of protoplanetary discs

changes as a function of the dust-to-gas ratio, dust grain size, and other disc and stellar pa-

rameters. I have especially focused on the location of the gas pressure maximum arising at the

boundary between the highly-viscous innermost region and the low-viscosity outer region. The

existence and the location of the pressure maximum, and the disc structure in its vicinity, are

key to the formation of the super-Earths inside the water ice line.

At fixed dust parameters, the radius of the pressure maximum is directly related to the stellar

mass M� and the gas accretion rate 9M . This is because the stellar mass and the accretion rate

determine the total viscous dissipation at a given radius, and thus the temperature and the

ionization fraction at disc midplane. The radius of the pressure maximum is inversely related

to the assumed viscosity parameter in the MRI-dead zone αDZ. The location of the pressure

maximum corresponds to a minimum in the viscosity parameter. Even though in the model

discussed here there is an MRI-active layer at all radii, in the outer regions this is a thin (X-ray

ionized) layer high above the disc midplane, and the disc primarily accretes through the dense

MRI-dead regions around the midplane. Therefore, the minimum viscosity parameter is close
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in value to the dead-zone αDZ.

At fixed stellar and disc parameters, the location of the pressure maximum moves radially

outwards as the dust grains grow to few tens of microns. Grain growth to still larger sizes results

in the pressure maximum moving inwards, towards the star. This behaviour is primarily driven

by the effects of dust opacities on the disc thermal structure.

I calculate the location of the pressure maximum for the case of dust growth being lim-

ited by turbulent fragmentation. For a solar-mass star and gas accretion rates in the range

10�9 � 10�7 Md yr�1, this always places the pressure maximum outwards of 0.1 AU. In this

fragmentation-limited regime, the radius of the pressure maximum depends very weakly on the

dead-zone viscosity parameter, and it is most sensitive to the gas accretion rate. For a stellar

mass of 0.1 Md, no pressure maximum exists at the lower end of the observed gas accretion

rates (10�11 Md yr�1). This suggests that planet formation in the inner disc is more likely early

in the disc lifetime.

The fragmentation-limited dust grain size and its Stokes number are most sensitive to

the value of the viscosity (and turbulence) parameter at the pressure maximum. As noted

above, this roughly equals the assumed value of the viscosity parameter in the MRI-dead zone

(αDZ). Therefore, whether the dust grains can become trapped in the pressure maximum is

determined by this uncertain parameter. Dust trapping is likely for the lower end of plausible

values (αDZ � 10�5) and will not happen for the higher end (αDZ � 10�3).

Importantly, the pressure maximum moves outwards for higher dust-to-gas ratios. This

suggests that accumulation of dust near the pressure maximum and/or inwards of it results in

an expansion of the dust-enriched region. However, time-dependent simulations are needed to

further study the potential outcomes, and the viability of planetesimal formation in the inner

disc.

140



7 Summary and Outlook

In this thesis I have studied the structure of the inner regions of protoplanetary discs, and

whether these regions provide favourable conditions for the formation of the abundant close-in

super-Earths. The key question that I have explored is whether dust can accumulate in the

inner disc, possibly at a local gas pressure maximum that is expected to form if the innermost

regions of the disc are accreting due to the MRI.

7.1. Summary

In Chapter 2 I have discussed a steady-state model of the inner disc in which the gas structure

is governed by viscous accretion, primarily due to the MRI. Here, a simple model of the gas disc

structure is self-consistently coupled to a detailed parametrization of the MRI-driven viscosity.

This parametrization accounts for the suppression of the MRI by Ohmic and ambipolar diffu-

sion. In line with theoretical expectations, the MRI is active in the innermost region due to

thermal ionization of potassium. In the absence of non-thermal sources of ionization, the outer,

colder region is MRI-dead. A local gas pressure maximum forms, as expected, at the transition

between the two regions. It is shown that, for a wide range of disc and stellar parameters, the

pressure maximum indeed occurs at the orbital distances at which the close-in super-Earths

are observed.

Another important result of this study is that the steady-state structure of the inner disc is

viscously unstable. At a given orbital distance the vertically-averaged viscosity increases with

the gas accretion rate so much that, throughout most of the inner disc, the gas surface density

decreases with increasing gas accretion rate. This implies that a small accumulation of gas will

lead to a lower accretion rate, which will lead to a further accumulation of gas. Therefore, this

instability might be important for the evolution of both gas and dust in the inner disc and

deserves further study, as discussed further below.

Next, in Chapter 3, I have investigated the evolution of dust in this steady-state gas disc

model, including dust grain growth, radial drift and fragmentation. In the inner disc the dust

grain size is limited by fragmentation due to relative turbulent velocities (in this case, induced

by the MRI). Grains that radially drift from the outer to the inner disc become smaller due to

fragmentation, and the effects of gas drag weaken. As a result, the pressure maximum is not

an efficient trap for the grains. However, in the innermost, highly-turbulent region, the grains

141



CHAPTER 7. SUMMARY AND OUTLOOK

fragment to such small sizes that they become almost completely coupled to the gas. As this

effectively halts the radial drift, dust accumulates throughout the inner disc, interior to the

pressure maximum.

Using the obtained structure of the dusty disc, I explore if the dust grains can overcome the

fragmentation limit through a combination of streaming instabilities and gravitational collapse.

Previous studies have shown that the combination of these processes is a promising mechanism

to form planetesimals out of dust grains, if certain conditions are met. However, in the inner

disc, these processes appear to be viable in a restricted region of parameter space. There are two

main limitations. First, the streaming instabilities require the dust grains to settle vertically

towards the disc midplane. However, due to their small sizes, grains are efficiently stirred by

the turbulence. Second, even if the criteria to start the streaming instabilities are fulfilled, and

if it is assumed that this leads to localized concentrations of dust, gravitational collapse into

planetesimals is difficult due to the tidal effect of the star. The required critical density of dust

increases steeply radially inwards and presents a major obstacle for planetesimal formation

in the inner disc. Note that, due to the preference for higher densities, the pressure (and

the density) maximum is still the most favourable location, despite the dust being enhanced

everywhere interior to the pressure maximum.

However, even without knowing how exactly solid planet cores form in the inner disc, it is

possible (and fruitful) to study later stages of planet formation. In particular, for the super-

Earths that have an atmosphere, it is known that their masses are dominated their solid cores,

while their radii are largely determined by their atmospheres. This means that, for a given

core mass, one can study formation of the gaseous envelope, and compare the results to the

observations of planet radii. The formation of the envelope depends on the conditions in the

gaseous disc in which the planet is embedded, creating a connection between theoretical disc

models and observations of planet properties. Thus, in Chapter 4, I have studied the size of

the atmospheres that super-Earth-mass cores can accrete, given the densities and temperatures

present in the inner disc, as obtained from the model presented in Chapter 2. Furthermore,

I considered how these atmospheres evolve to their present ages, including the atmospheric

mass-loss due to high-energy stellar flux. I find that the MRI-accreting inner disc structure is

favourable in avoiding runaway gas accretion onto planet cores (for typical super-Earth masses),

while the predicted planetary atmospheres are still at least as large as observed. On the other

hand, the predicted atmospheres are still often larger than the observed ones, suggesting that

additional mass-loss mechanisms may be at work.

The inner disc model discussed in Chapter 2 proved extremely useful in identifying various

benefits and barriers for planet formation at short orbital distances, as discussed in Chapters

3 and 4. However, there are a number of limitations of this model. Most importantly, the

effects of dust grains on the disc ionization state are not accounted for, and the effect of dust

on the disc thermal structure is only considered via a single constant value of the opacity. It

is already pointed out in Chapter 2 that omitting these effects leads to a violation of some of
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the underlying assumptions about the criteria for the MRI, and that realistic dust opacities

may deviate from the assumed constant value. Findings presented in Chapter 3 further stress

the importance of considering the effects of dust on the gas structure and on the levels of

turbulence. The model also features other simplifications, such as assuming that the disc is

vertically isothermal, and neglecting heating and ionization of the disc by the stellar flux.

Therefore, in Chapter 5, I build an improved model of the inner disc structure, still coupled

to the same detailed model of MRI-driven accretion. In this improved model, disc thermal

structure is set by viscous heating, heating due to stellar irradiation, radiative and convective

energy transport, and realistic dust opacities. I show that, for the fiducial disc and stellar

parameters (including micron-size grains), stellar irradiation is largely unimportant, due to

the inner disc being optically thick. The vertical temperature profile deviates from vertically

isothermal, even causing the disc to become convectively unstable. Nevertheless, these changes

only weakly affect the radial location of the gas pressure maximum.

Including the effects of dust on the disc ionization state also only weakly affects the location

of the gas pressure maximum. This, on the other hand, is not because the effects of dust are

negligible. On the contrary, thermionic and ion emission from dust grains are the primary

sources of ionization at high temperatures when grains are included. However, similarly to

thermal ionization, there is a threshold temperature at which these processes become efficient,

and this threshold temperature is roughly the same as for thermal ionization of potassium.

Therefore, the MRI-driven viscosity rises at roughly the same radial location in the disc. Ad-

ditionally, in this improved model, ionization of molecular hydrogen by stellar X-rays activates

the MRI at larger radii (where temperatures are too low for the thermal effects). However, in

these outer regions (but still in the vicinity of the pressure maximum), the MRI is active only

in a thin low-density layer high above the disc midplane. Gas accretion is still dominated by

the dense, MRI-dead zone around the disc midplane.

Finally, in Chapter 6, I have used this improved model to investigate how the structure of

the inner disc depends on various disc and stellar parameters. I have found that the dependence

of the radial location of the pressure maximum on stellar mass, gas accretion rate and the dead-

zone viscosity parameter is similar to the scalings identified in the simple model discussed in

Chapter 2. This finding can be attributed to the fact that the basic mechanisms setting the

disc structure remain the same, including there being a critical temperature above which disc

becomes ionized enough to couple to the magnetic field.

Importantly, for fixed values of the above parameters, the inner disc structure changes as

a function of the dust grain size and the dust-to-gas ratio. For maximum dust grain sizes

larger than �100 microns, an increase in grain size results in a decrease in the extent of the

high-viscosity inner region and thus in the radius of the local gas pressure maximum. Still,

if grain growth is limited by turbulent fragmentation, in a disc surrounding a solar-mass star

the gas pressure maximum should exist at few tenths of an AU. For a stellar mass of 0.1 Md,

the allowed region of the parameter space for the existence of the pressure maximum is more
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constricted, as no pressure maximum is found for the low end of the observed gas accretion

rates. Overall, these results confirm that the inner disc will feature a high-viscosity region and

a pressure maximum that may accumulate the solids necessary to build super-Earths, except,

perhaps, at later stages of disc evolution around small stars.

However, whether the formation of solid planet cores is likely in the inner disc depends on the

uncertain dead-zone viscosity parameter. Grains are likely to accumulate, either at the pressure

maximum (for lower values of the dead-zone viscosity) or inwards of it (as discussed in Chapter

3). However, for high values of the dead-zone viscosity parameter, turbulent fragmentation

and stirring would inhibit processes necessary to form larger solid bodies. Here, an important

result presented in this thesis is that dust accumulation (i.e., an increase in the dust-to-gas

ratio) acts to increase the MRI-driven viscosity at a given radius (and thus the radial extent of

the high-viscosity inner region). If grains accumulate at the pressure maximum, this behaviour

might lead to non-trivial outcomes, whose further study requires time-dependent simulations,

as discussed below.

7.2. Outlook

Throughout this work it is assumed that the MRI-accreting inner disc is in an equilibrium,

steady state. Concurrently, the obtained results suggest that the disc is likely to evolve out of

this state.

First, in Chapter 2 it was shown that the steady-state MRI-accreting inner disc is unstable

to surface density perturbations. At a fixed radius, the MRI-driven accretion rate decreases

with an increasing surface density (as calculated using the steady-state models). Therefore,

a perturbation in the disc surface density might lead out of the steady-state by creating an

increasing pile-up of mass at certain locations. This so-called viscous instability (Lightman and

Eardley 1974; Pringle 1981) could have important consequences for the inner disc structure

and planet formation. It is likely to produce rings and gaps in the gas structure on the viscous

timescale. Gas rings may further concentrate dust, while also allowing dust growth due to

decreased turbulence levels, creating favourable conditions for planetesimal formation.

Second, joint evolution of gas and dust might not produce a steady state. In particular, it is

unclear how the disc would evolve if dust grains accumulate in the pressure maximum. Higher

dust-to-gas ratio would lead to a local increase of the viscosity. It is unclear whether further

evolution of gas and dust might lead to a modified equilibrium state, or creation of multiple

viscosity minima (and pressure maxima).

Evidently, the inner disc will evolve in time, and the possible outcomes are crucial to de-

termine the degree to which dust grains accumulate in the inner disc, and whether they can

overcome the fragmentation barrier and build solid planet cores. Therefore, further study is

required to understand the time-dependence of the inner disc structure, using simulations that
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self-consistently couple the gas and the dust. Such simulations would rely directly on the model

presented in this thesis, which would be used to tabulate the value of the viscosity parameter

as a function of gas surface density, dust grain size, dust-to-gas ratio etc., as an input for the

time-dependent evolution.

This proposed future study should also account for the dynamical effects of dust on the

gas, which have been neglected in this work. If dust grains drift radially through the disc due

to gas drag, there is also a back-reaction on the gas (Nakagawa et al. 1986). This becomes

increasingly important at high dust-to-gas ratios. The drag back-reaction acts to flatten the

radial gas pressure profile, and so it would affect if and how much dust may accumulate in the

pressure maximum (Taki et al. 2016).

These time-dependent semi-analytic models will undoubtedly be useful for future studies of

the early stages of planet formation in the inner disc. However, the semi-analytic parametriza-

tion of gas accretion presented in this thesis should also be examined with magnetohydrody-

namic simulations suited for the conditions in the inner disc, and accounting for both Ohmic

and ambipolar diffusion. For example, the fact that the semi-analytic steady-state solution is

viscously unstable, even in the absence of any dust growth or spatial evolution, deserves more

detailed study. More generally, magnetohydrodynamic simulations are important in order to

check the unverified assumptions of the semi-analytic model, such as the assumption that the

magnetic field always evolves as to maximize the accretion stress in the inner disc. Another

application would be to investigate the effect of convective motions on the evolution of the

MRI, which has been shown to be important in the non-ideal limit (Bodo et al. 2013; Hirose

et al. 2014).

Finally, it must be stressed that the presented picture of the MRI-driven accretion in the

inner disc is incomplete. Out of the three non-ideal MHD effects relevant in protoplanetary

discs, only two have been accounted for. In addition to Ohmic and ambipolar diffusion, Hall

effect may also be important. The Hall effect can drive angular momentum transport in the

dead zone (Lesur et al. 2014), although this is sensitive to the alignment between the vertical

magnetic field and the disc (Simon et al. 2015; Bai 2014). The simple calculation of the Hall

Elsasser number in Chapter 2 shows that a “Hall zone” might also overlap with an MRI-active

region. Although the innermost MRI-active region should still persist when the Hall effect is

included, the Hall effect can significantly affect planet formation in this region simply by pushing

the pressure maximum inwards, and thus increasing the critical density for the gravitational

collapse of grains into planetesimals.
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Andrews, S. M., Huang, J., Pérez, L. M., Isella, A., Dullemond, C. P., Kurtovic, N. T., Guzmán,
V. V., Carpenter, J. M., Wilner, D. J., Zhang, S., Zhu, Z., Birnstiel, T., Bai, X.-N., Benisty,
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D’Alessio, P., Cantö, J., Calvet, N., and Lizano, S. (1998). Accretion Disks around Young
Objects. I. The Detailed Vertical Structure. ApJ, 500(1):411–427.

149



BIBLIOGRAPHY

Davis, S. W., Stone, J. M., and Pessah, M. E. (2010). Sustained Magnetorotational Turbulence
in Local Simulations of Stratified Disks with Zero Net Magnetic Flux. ApJ, 713(1):52–65.

Demirci, T., Krause, C., Teiser, J., and Wurm, G. (2019). Onset of planet formation in the
warm inner disk. Colliding dust aggregates at high temperatures. A&A, 629:A66.

Desch, S. J. and Turner, N. J. (2015). High-temperature Ionization in Protoplanetary Disks.
ApJ, 811(2):156.

Draine, B. T. (2003). Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet. ApJ,
598(2):1017–1025.

Draine, B. T. and Sutin, B. (1987). Collisional charging of interstellar grains. ApJ, 320:803–817.

Drazkowska, J. and Alibert, Y. (2017). Planetesimal formation starts at the snow line. A&A,
608:A92.

Drazkowska, J., Alibert, Y., and Moore, B. (2016). Close-in planetesimal formation by pile-up
of drifting pebbles. A&A, 594:A105.

Drazkowska, J., Windmark, F., and Dullemond, C. P. (2013). Planetesimal formation via
sweep-up growth at the inner edge of dead zones. A&A, 556:A37.

Dressing, C. D. and Charbonneau, D. (2013). The Occurrence Rate of Small Planets around
Small Stars. ApJ, 767(1):95.

Dressing, C. D. and Charbonneau, D. (2015). The Occurrence of Potentially Habitable Planets
Orbiting M Dwarfs Estimated from the Full Kepler Dataset and an Empirical Measurement
of the Detection Sensitivity. ApJ, 807(1):45.

Dressing, C. D., Charbonneau, D., Dumusque, X., Gettel, S., Pepe, F., Collier Cameron,
A., Latham, D. W., Molinari, E., Udry, S., Affer, L., Bonomo, A. S., Buchhave, L. A.,
Cosentino, R., Figueira, P., Fiorenzano, A. F. M., Harutyunyan, A., Haywood, R. D., John-
son, J. A., Lopez-Morales, M., Lovis, C., Malavolta, L., Mayor, M., Micela, G., Motalebi,
F., Nascimbeni, V., Phillips, D. F., Piotto, G., Pollacco, D., Queloz, D., Rice, K., Sasselov,
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From Stars to Planets II - Connecting our understanding of star and planet formation
Monday June 17th - Friday June 21st 2019, Chalmers University of Technology, Gothenburg, Sweden
http://cosmicorigins.space/fstpii

Sponsored by: Chalmers Initiative on Cosmic Origins (CICO) & Vetenskapsrådet (Swedish Research Council)

SOC: Jonathan C. Tan (Chair, Chalmers/UVa), Ilse Cleeves (UVa), Maria Drozdovskaya (Bern), Eric Herbst (UVa), Jouni Kainulainen (Chalmers), 
Zhi-Yun Li (UVa), Yamila Miguel (Leiden), Darin Ragozinne (BYU), John Tobin (NRAO), Jonathan Williams (UH), Andrew Youdin (UA)
LOC: Jonathan C. Tan (chair), Thomas Bisbas, Yu Cheng, Antea Cooper, Juan Farias, Madeline Gyllenhoff, Chia-Jung Hsu, Dylan Jones, Boy Lankhaar, Mengyao Liu, 
Andri Spilker, Liam Walters

Science Program
Key: I - invited talk (22+3min); IS - invited short talk (17+3); C - contributed talk (12+3); CS - contributed short talk (8+2); P - poster (<2) 

Sun. 16th June 2019
17.00-20.00 Welcome reception at Vasaparken (find us in middle of park; if weather is bad,  go to Vasa kyrkogata 1, south of park, next to Levantine)

Mon. 17th June 2019
8.30 Registration & poster set-up (Chalmers Conference Center)  - posters are displayed until Thursday 2pm
8.45 1 Welcome & Science Overview: Open Questions from the SOC

A Large-Scale Interstellar Medium, Molecular Clouds and Star Formation
9.00 2 IS Kainulainen, Jouni Chalmers The PROMISE Survey: the Dark Clouds of the Galactic Plane
9.20 3 C Wienen, Marion Exeter A New Perspective On Star Formation and Spiral Structure in Our Home Galaxy
9.35 4 CS Cosentino, Giuliana UCL/ESO Widespread SiO emission in IRDCs as a probe of cloud-cloud collisions and other shock interactions
9.45 5 CS Petkova, Maya Heidelberg A dominant role for galactic dynamics in turbulence driving, cloud evolution, & star formation in the CMZ
9.55 Welcome from Chalmers University President, Stefan Bengtsson
10.00 6 C Onishi, Toshikazu Osaka Pre. U. High-mass star formation under various environments probed in the Magellanic Clouds
10.15 7 P Guszejnov, David Texas Evolution of giant molecular clouds across cosmic time

8 P Gezer, Ilknur Copernicus AC Star Formation in the Outer Galaxy
9 P Siodmiak, Natasza Copernicus AC IRAS 22147+5948 – a cradle of star birth 

10 P Spilker, Andri Chalmers Interpreting Scaling Relations of Star Formation
11 P Law, Chi Yan CUHK/Chalmers Links between magnetic field and filamentary clouds
12 P Tanaka, Kei Osaka/NAOJ Synthetic Observations of Molecular Cloud Formation
13 P Bisbas, Thomas Athens/AUT/Köln How do the observables of molecular clouds depend on the ISM environmental parameters?
14 P Gahm, Gösta Stockholm Expanding star forming shells around young stellar clusters
15 P Rezaei Kh., Sara Chalmers/MPIA 3D structure of the Orion-Eridanus superbubble with Gaia DR2

10.30 Coffee break & posters



B Exoplanet Properties and Evolution
11.00 16 I Howard, Andrew Caltech Observed Properties of Close-in, Small Planets
11.25 17 I Ragozzine, Darin BYU The underlying distribution of exoplanetary system architectures
11.50 18 C Janson, Markus Stockholm Planet formation around stars of different masses
12.05 19 C Persson, Carina Chalmers Super-Earths: rocky extrasolar planets
12.20 20 CS Brandeker, Alexis Stockholm Is it raining lava in the evening on the super Earth 55 Cancri e?

12.30 Lunch

14.00 21 C Mustill, Alexander Lund How do distant planets affect the dynamics of those we see close to the star?
14.15 22 C Cai, Maxwell Xu Leiden Diverse stellar environments result in diverse exoplanet architectures
14.30 23 C Veras, Dimitri Warwick Autopsies: From Dying Stars to Dying Planets
14.45 24 P Müller, Simon Zürich The Evolution of Giant Planets with Composition Gradients

25 P Wallace, Alexander ANU Expected Exoplanet Yield from High-Contrast Imaging and Interferometry Surveys
 26 P Georgieva, Iskra Chalmers Methods for Exoplanet Discovery
 27 P Fridlund, Malcolm Chalmers The KESPRINT collaboration

28 P McIntyre, Sarah ANU Planetary Magnetism as a Parameter in Exoplanet Habitability
29 P Li, Daohai Lund Flyby encounters between two solar systems
30 P Tan, Jonathan Chalmers/UVA A Swedish Contribution to ARIEL

C Star Cluster Formation and Evolution
15.00 31 I Offner, Stella Texas The Role of Stellar Feedback in Star Cluster Formation 

15.30 Coffee break & posters

16.00 32 C Inutsuka, Shu-ichiro Nagoya Filamentary Molecular Clouds and the Angular Momenta of Cloud Cores
16.15 33 CS Kuznetsova, Aleksandra Michigan Where do Protostellar Cores Get their Angular Momenta? 
16.25 34 CS Treviño Morales, Sandra Chalmers Dynamical signs of a hub-filament system
16.35 35 CS Suri, Sümeyye MPIA Are filaments in Orion PDRs?
16.45 36 CS Andersen, Morten Gemini The formation of massive star clusters
16.55 37 CS Farias, Juan Chalmers The Dynamics of Star Cluster Formation
17.05 38 C Reiter, Megan UKATC Cluster dynamics in the typical birthplaces of stars and planets
17.20 39 CS van Terwisga, Sierk Leiden Disk masses in the Orion Molecular Cloud-2: Distinguishing time and environment
17.30 40 C Hands, Thomas Zurich Planetesimal discs in open clusters: implications for 1I/'Oumuamua,  Kuiper belt,  Oort cloud & more
17.45 41 P Pelkonen, Veli-Matti ICCUB From CMF to IMF: can we predict the mass of the forming star?

42 P Parker, Richard Sheffield Enlarging habitable zones around binary stars in hostile environments
43 P Yi, Hee-Weon Kyung Hee Uni. Physical and chemical properties of cores in different environments; the Orion A, B and λ Orionis clouds
44 P Walters, Liam Virginia Dense gas tracers in the most massive Infrared Dark Cloud
45 P Gyllenhoff, Madeline Virginia Star Cluster Formation from Ellipsoidal Clouds
46 P Cheng, Yu Virginia A cluster of protostellar disks in a massive star formation region
47 P Zinnecker, Hans SOFIA Star formation studies with SOFIA

6-8pm - Poster reception



Tue. 18th June 2019
D Formation and Evolution of the Solar System

8.30 48 IS Miguel, Yamila Leiden Revealing giant planets interiors with Cassini and Juno missions
8.50 49 C Haugboelle, Troels Copenhagen Probing the protosolar disk using dust filtering of the gas giants in the early Solar System
9.05 50 C Haghighipour, Nader Hawaii Accurate Modeling of Terrestrial Planet Formation and Post-Formation Instability of the Solar System
9.20 51 CS Lichtenberg, Tim Oxford A water budget dichotomy of rocky protoplanets from 26Al-heating
9.30 52 C Li, Rixin Arizona Demographics of Planetesimals Formed by the Streaming Instability
9.45 53 I Nesvorny, David SWRI Trans-Neptunian Binaries Provide Evidence for Planetesimal Formation by the Streaming Instability

10.10 Coffee break

10.30 54 C Pfalzner, Susanne FZ Jülich Outer Solar System possibly Shaped by Stellar Flyby
10.45 55 IS Drozdovskaya, Maria Bern Ingredients for Solar-like Systems: IRAS 16293-2422 B versus 67P/Churyumov-Gerasimenko

E Astrochemistry of Star and Planet Forming Regions and Exoplanets
11.05 56 I Sakai, Nami RIKEN Disk Formation and Evolution toward Protoplanetary Disks

11.30 Leave for excursion to Brännö and the southern archipeligo, stopping first at hotels, if needed.
We will take tram 11 to Saltholmen (travel card provided, aim to be there by 12.45) and then the 13.05 ferry to Brännö.
~13.30 Lunch at Brännö Varv, then option for a ~5 km walk in Galterö nature reserve and/or swimming in the Kattegat
Ferries return from Brännö about once per hour.

19.30 Inaugural Astronomy on Tap Gothenburg event (Haket Pub), featuring talks by Yamila Miguel and Christian Eistrup



Wed. 19th June 2019
E Astrochemistry of Star and Planet Forming Regions and Exoplanets (cont.)

9.00 57 C Padovani, Marco Arcetri Physics and chemistry of cosmic rays in star-forming regions
9.15 58 C Rivilla, Victor Arcetri Abundant Z-cyanomethanimine in the interstellar medium: paving the way to the synthesis of adenine
9.30 59 I van Dishoeck, Ewine Leiden Astrochemistry on solar-system scales: from young to mature disks
9.55 60 I Guzmán, Viviana PUC Complex molecules in protoplanetary disks
10.20 61 P Colzi, Laura Arcetri Enhanced nitrogen fractionation at core scales: the high-mass star-forming region IRAS 05358+3543

62 P Grassi, Tommaso LMU The impact of cosmic rays on chemistry and microphysics in hydrodynamical simulations
63 P Punanova, Anna Ural Federal U. Methanol vs visual extinction in cold cores: test the model predictions
64 P Hsu, Chia-Jung Chalmers Simulating deuterium fractionation in massive pre-stellar cores
65 P Kulterer, Beatrice Marie Bern Modelling of deuterated methanol formation around Class 0 objects

 66 P Calcutt, Hannah Chalmers From low-mass to high-mass: Chemical variability across the Galaxy
67 P Vasyunin, Anton Ural Federal U. Modeling the complex organic molecules formation in IRAS16293-2422
68 P Van Gelder, Martijn Leiden Directly linking gas and ice abundances in low-mass protostars
69 P Jones, Dylan Virginia Chemical Evolution During Massive Star Formation
70 P Angarita Arenas, Yenifer Leeds Pattern Finding in Samples of Spectroscopic Data
71 P Cooper, Antea Virginia Quantum Chemical Predictions of Prebiotic Polymer Formation and Purine Synthesis

10.40 Coffee break & posters

11.10 72 I Walsh, Catherine Leeds Probing the composition of the planet-building reservoir in disks: the hunt for gas-phase methanol
11.35 73 CS Ilee, John Leeds The interplay between dynamics and chemistry during planet formation
11.45 74 CS Krijt, Sebastiaan Arizona Coupled physical and chemical evolution of CO in protoplanetary disks
11.55 75 CS Eistrup, Christian Virginia From disk to planet atmosphere: the chemical route
12.05 76 CS Cridland, Alex Leiden Connecting planet formation & astrochemistry: refractory carbon depletion & Hot Jupiter atmospheric C/O
12.15 77 C Rahm, Martin Chalmers The Azotosome, a Challenge for Computational Molecular Astrobiology

12.30 Lunch



F Pre-stellar and Protostellar Cores, Outflows, and Young Stellar Objects
14.00 78 I Yang, Yao-Lun Texas The Dynamical and Chemical Evolution from Cores to Disks
14.25 79 CS Küffmeier, Michael Heidelberg Modeling embedded Star Formation
14.35 80 CS Liu, Mengyao Virginia The SOFIA Massive (SOMA) Star Formation Survey - Tests of Massive Star Formation Theories
14.45 81 P Cao, Yue Nanjing Striking resemblance between the mass spectrum of sub-pc clumps and the initial mass function

82 P Gieser, Caroline MPIA Physical and chemical complexity in high-mass star-forming regions
83 P Johnston, Katharine Leeds A high-resolution picture of spiral arms and stability within the AFGL 4176 disk
84 P Koumpia, Evgenia Leeds Spatially resolving the MYSO binaries PDS 27 and PDS 37 with VLTI/PIONIER
85 P Olech, Mateusz Copernicus AC Studies of high-mass star formation with periodic methanol masers
86 P Lankhaar, Boy Chalmers Characterizing maser polarization
87 P Kang, In Kyung Hee U. Probing the inner disk of a massive young stellar object with the high-resolution spectrometer, IGRINS
88 P Staff, Jan U. Virgin Islands Disk wind feedback from high-mass protostars
89 P Tokuda, Kazuki Osaka PU ALMA studies of the substructure of protostellar/prestellar cores in Taurus
90 P Smullen, Rachel Arizona The highly variable time evolution of cores
91 P Young, Alison Exeter Synthetic molecular line observations of the first hydrostatic core
92 P Postel, Andreas Geneva Analysis and modeling of FU Ori Objects observed with Herschel and Spitzer
93 P Djupvik, Amanda NOT Time-variable velocities of knots in protostellar jets
94 P Habel, Nolan Toledo Surveying Protostars within 500PC with HST
95 P Skliarevskii, Aleksandr SFU Global evolution of a gravitoviscous protoplanetary disk. The importance of the inner sub-au region
96 P Waterfall, Charlotte Manchester Modelling the radio and X-ray emission from T-Tauri flares
97 P Tychoniec, Łukasz Leiden Chemistry and kinematics of molecular jets from the protostars - ALMA perspective
98 P Zhang, Yichen RIKEN Rotation in the NGC 1333 IRAS 4C Outflow
99 P Mardones, Diego U. Chile / MPE Multiple Outflow Launching Cavities in HH46/47

15.30 Coffee break & posters
 
16.00 100 CS Zhang, Yichen RIKEN Massive star formation in 0.03-resolution view of ALMA
16.10 101 CS Frost, Abigail Leeds Unveiling a potential transition disk around a massive young stellar object (MYSO)
16.20 102 CS Kreplin, Alexander Exeter Hydrogen-line emission in YSOs: Resolving the origin of Brγ-line emission with NIR interferometry
16.30 103 CS Tabone, Benoit Leiden Unveiling the accretion-ejection connection in protostars with ALMA
16.40 104 CS Bjerkeli, Per Chalmers Resolving star and planet formation with ALMA
16.50 105 CS Cruz-Sáenz de Miera, Fernando Konkoly L1551 IRS 5: ALMA observations of a binary system with a FUor-like star and a circumbinary ring
17.00 106 IS Li, Zhi-Yun Virginia Formation of rings and gaps in wind-launching non-ideal MHD disks
17.20 107 C Chabrier, Gilles CRAL, ENS-Lyon Exploring new fundamental physical mechanisms in star and planet formation and evolution
17.35 108 C Jayawardhana, Ray Cornell Watching Brown Dwarfs Go ’Round and ’Round: Angular Momentum Evolution of Sub-Stellar Objects
 
19.00- 22.30 Conference dinner at Wijkanders
22.30- … Afterparty at Yaki-Da (free entry before 23.00)



Thursday 20th June 2019
G Protostellar and Protoplanetary Disks

9.00 109 IS Tobin, John NRAO The Protostellar Disk Population in the Orion Molecular Clouds
9.20 110 IS Williams, Jonathan Hawaii Disk Dust Mass Distributions across Protostellar Evolutionary Classes
9.40 111 I Testi, Leonardo ESO Demographical properties of disks from solar mass stars to the BD regime
10.05 112 CS van 't Hoff, Merel Leiden Unveiling the temperature structure of embedded disks
10.15 113 CS Mori, Shoji Tokyo Inefficient Magnetic Accretion Heating in Protoplanetary Disks
10.25 114 P Savvidou, Sofia MPIA Influence of grain growth on the thermal structures of protoplanetary discs

115 P Concha-Ramírez, FranciscaLeiden External photoevaporation of circumstellar disks constrains the timescale for planet formation
116 P Cherkos, Alemayehu Addis Ababa Effect of viscosity on propagation of MHD waves in astrophysical plasma
117 P Nauman, Farrukh Chalmers Machine learning applied to disk dynamos
118 P Vlemmings, Wouter Chalmers A limit to the magnetic field around TW Hya from ALMA CN polarisation observations
119 P Trapman, Leon Leiden Gas versus dust sizes of protoplanetary disks: Effects of dust evolution
120 P Elbakyan, Vardan SFU Spatial distribution and growth of dust in a clumpy gravitoviscous protoplanetary disk
121 P Akimkin, Vitaly IoA, RAS Early evolution of self-gravitating circumstellar disks with a dust component
122 P Price, Daniel Monash Protoplanetary discs: The messy leftovers of star formation

10.40 Coffee break

11.10 123 CS Klarmann, Lucia MPIA Characterising dust and gas at the inner rim of protoplanetary disks with GRAVITY
11.20 124 CS Doppmann, Gregory Keck Obs. Diagnosing Protoplanetary Conditions with High Resolution IR Spectroscopy
11.30 125 CS Panic, Olja Leeds Giant planet formation sweet spot - Discs around Herbig Ae stars
11.40 126 CS Hogerheijde, Michiel Leiden Locating cold water vapour in the disk of HD100546
11.50 127 P Notsu, Shota Leiden Water lines & multiple ring & gap structures of the disk around HD 163296 observed by ALMA

128 P Ros, Katrin Lund Icy pebble growth by nucleation and deposition at protoplanetary disc ice lines
129 P Miley, James Leeds ALMA’s view of the mid-plane in Herbig Discs
130 P Booth, Alice Leeds The First Detection of 13C17O in a Protoplanetary Disk: A Robust Tracer of Disk Mass
131 P Vanon, Riccardo Sheffield Disc gravito-turbulence regulated by zonal flow instabilities
132 P Kadam, Kundan Konkoly Dynamical Gaseous Rings in the Dead Zone of Protoplanetary Disks
133 P Tominaga, Ryosuke Nagoya Dust diffusion & a new secular instability in disks: a way to create ring structures & planetesimals
134 P Hu, Xiao UNLV Non-ideal MHD simulation of HL Tau disk: formation of rings
135 P Bosman, Arthur Leiden Probing planet formation and disk substructures in the inner disk
136 P Ziampras, Alexandros Tübingen Location and shape of water iceline in protoplanetary disks
137 P Musso Barcucci, Arianna MPIA Detection of Hα Emission from a Brown Dwarf Companion with SPHERE/ZIMPOL
138 P Calcino, Josh Queensland Signatures of an eccentric disc: Dust and gas in IRS48
139 P Jordan, Lucas Tübingen Protoplanetary disks in close binaries
140 P Rometsch, Thomas Tübingen Forming transition disks with planets
141 P Chen, Lei Konkoly Variable warm dust around the Herbig Ae star HD 169142: is it of secondary origin?
142 P Woelfer, Lisa MPE Radiation-Hydrodynamical Models of X-ray Photoevaporation in Carbon Depleted Circumstellar Discs
143 P Franz, Raphael LMU Dust Entrainment in Photoevaporative XEUV Winds



 H Planet Formation
144 P Lyra, Wladimir Cal State Initial conditions for planet formation: Turbulence driven by hydrodynamical instabilities in disks
145 P Schaefer, Urs Hamburg On the Coexistence of Streaming Instability and Vertical Shear Instability in Protoplanetary Disks
146 P Carpenter, Vincent MPIA Simulations of the Onset of Collective Motion of Sedimenting Particles
147 P Eriksson, Linn Lund Pebble drift and planetesimal formation in protoplanetary disks with embedded planets
148 P Schulik, Matthäus Lund Global 3D radiation-hydro simulations of gas accretion: opacity dependent growth of Saturn-mass planets
149 P Moldenhauer, Tobias Tübingen Planetary Proto-Atmospheres
150 P Hasegawa, Yasuhiro JPL/Caltech The occurrence rate of close-in giant exoplanets as a link between formation of stars and planets
151 P Tan, Jonathan Chalmers/UVA Tests of Inside-Out Planet Formation
152 P Penzlin, Anna Tübingen Dynamics of circumbinary discs and planet migration
153 [P] Nordlund, Åke Copenhagen Task based computing with the DISPATCH code framework
  

12.30 Lunch

14.00 154 I Johansen, Anders Lund From dust to planetesimals and beyond
14.25 155 CS Liu, Beibei Lund Growth after the streaming instability: From planetesimal accretion to pebble accretion
14.35 156 CS Ramsey, Jon Virginia Simulating pebble accretion with DISPATCH, a next-generation tool for computational astrophysics
14.45 157 I Nelson, Richard Queen Mary Planet migration in laminar and inviscid protoplanetary discs
15.10 158 I Zhu, Zhaohuan UNLV Using Disk Substructures to Reveal Young Planet Population
15.35 159 CS Nayakshin, Sergei Leicester ALMA dusty annular structures: significant implications for planet and star formation theories

15.45 Coffee break

16.10 160 I Mulders, Gijs U. Chicago Exoplanets around stars of different masses as empirical constraints for planet formation models
16.35 161 I Mordasini, Christoph Bern A new generation of planetary population syntheses
17.00 162 CS Bitsch, Bertram MPIA Formation and composition of super-Earths
17.10 163 CS Hu, Xiao UNLV Accreting Protoplanetary Disks and In Situ Inside-Out Planet Formation
17.20 164 CS Jankovic, Marija Imperial In situ formation of close-in super-Earths due to the MRI
17.30 165 CS Marleau, Gabriel-DominiqueTübingen The accretion shock in planet and star formation
17.40 166 Conference Summary / Discussion
18.30 End of Science Sessions

Friday 21st June 2019

Midsummer activities and farewell party

11.00 Bus leaves Elite Hotel to go to Onsala Space Observatory for a picnic lunch and hike by the sea and telescopes (bring your own food)

~16.00 Bus returns to Gothenburg first to Park Slottsskogen (drop off at Natural History Museum), then continuing back to Elite Hotel.

~16.00 to ~20.00 Enjoy the outdoor party and BBQ at Park Slottskogen (also close to Botanical Gardens)

~21.00 Farewell party near Vasa Park
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Close-in Super-Earths: The first and the last stages of
planet formation in an MRI-accreting disc
Marija Jankovic – Imperial College London

At the orbital distances of the abundant close-in super-Earths, the inner regions of
protoplanetary discs are viscously accreting due to the magneto-rotational instability
(MRI). The MRI-induced turbulence limits the size of dust particles in the inner disc,
as the particles fragment due to relative turbulent velocities. We show that this leads to
enhancement of the dust-to-gas ratio, i.e., to the first stage of planet formation in the
inner disc. We further explore how the high temperatures and low gas surface densities
of the MRI-accreting inner disc affect the last stages of planet formation, the accretion of
planet atmospheres onto solid cores. We calculate how much gas solid cores accrete from
the disc, how much of their atmospheres they subsequently lose to photoevaporation,
and the resulting planet mass-radius relationship. Finally, we compare the results to the
observed exoplanet masses and radii.

Tracing volatile elements from disks to planets
Oliver Shorttle – University of Cambridge – Invited speaker

The elements carbon, water, and sulfur, are some of the most abundant in the universe,
are major constituents of planetary atmospheres, and are essential constituents of all
known life. Yet, their arrival on planets and distribution therein remains uncertain.
In large part this is due to their volatile nature: each element may form species that
readily enter the gas phase at the temperatures and pressures of planetary differentiation.
Here, we combine observations from Earth with observations from protoplanetary disks.
Combining geochemical and astrophysical observations in this way gives us new insight
into how these elements were partitioned between gas and dust during accretion, and
where they are ultimately distributed in planets.
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Take a close look
The quest for detecting exoplanets (e.g., via Kepler and HARPS RV surveys) has revealed
the existence of a large population of systems comprising one to several planets very close
to the central star, i.e. at distances of 0.1-1 au, even around TTauri (age<5 Myr) stars.
These are usually slightly bigger than the Earth and up to Neptune sizes, with rare
Jupiter analogues. This finding differs to what we observe in our own Solar System,
and raises the question of how such planets form. From a theoretical point of view, it
is still hard to show that these planets formed in-situ, but it is similarly complicated
to explain this large population of close-in planets as a result of migration through the
disk. Additional evidence of the importance of this region comes from our own Solar
System, where studies have established that material routinely observed in meteorites
(e.g., Ca-Al-rich inclusions, CAI) must have formed very close to the central star, or in
a very hot region of the disc.

To advance our understanding of planet formation and migration, it is crucial to
study the conditions within the inner regions of their progenitor protoplanetary discs.
The innermost part of the disc is where most of the star-disc interaction processes take
place. The magnetic field topology of the central star truncates the disc at a few stellar
radii and drives accretion of material onto the central star, as well as the ejection of fast-
collimated jets and slow winds. Recent studies indicate that this star-disc interaction
evolves quickly at the same time that giant planet formation ceases. Also, this region
is known to undergo rapid evolution, for example, short or long lasting dimming events
(e.g., AA-Tau, RW Aur, dippers). This rapid evolution is, in itself, likely to impact the
formation of planets. Finally, a fraction of discs known as transition discs, show a deficit
of dust in the inner few au of the disc, which could be related to the mechanism driving
disc evolution in this planet-forming region.

Studies of this key inner disc region require innovative techniques and a wide range of
instrumentations, since radio interferometers cannot resolve spatial scales smaller than
10 au in most discs. Observations with instruments on the ESO/VLT and VLTI and
other facilities provide us with unprecedented detail and motivate this workshop. Specif-
ically, this workshop aims at discussing the present-day knowledge of the morphology
and composition of the innermost regions of the disc, of the star-disc interaction pro-
cesses, and of the theories to describe the evolution of the innermost regions of discs and
of the formation of close-in planets.

SOC LOC

Hussain, G. (ESO) (chair) Stella Chasiotis-Klingner
Benisty, M. (IPAG Grenoble) Carlo F. Manara
Birnstiel, T. (LMU Munich) Gaitee Hussain
Bouvier, J. (IPAG Grenoble) Paolo Cazzoletti
Calvet, N. (U. Michigan) Giuliana Cosentino
Ciesla, F. (U. Chicago) Stefano Facchini
Ercolano, B. (LMU Munich) Anna Miotello
Lopez, B. (OCA Nice) Tereza Jeǎábková
Natta, A. (DIAS Dublin) Enrique Sanchis Melchor
Manara, C.F. (ESO) (organizer) Tomáš Tax
Schneider, P.C. (Hamburg) (organizer) Maria Giulia Ubeira Gabellini



Workshop venue

The workshop will be held in the ESO Auditorium, located at:

Karl-Schwarzschild-Str. 2, Garching b. München.

Contact phone and fax number

Contact phone number: +49 89 320 060 (ESO Reception Desk)
Contact fax numbers: +49 89 320 23 62

Registration

Registration will take place on Monday, October 15th in front of the new auditorium
(Eridanus) from 12:30.

Contact

Please use the following email-address to contact us: tcl2018@eso.org

Webpage

https://www.eso.org/sci/meetings/2018/tcl2018.html

What’s in the booklet

1. Program Overview p. 4

2. Detailed Program p. 5

3. List of Posters p. 10

4. Talk abstracts p. 15

5. Poster abstracts p. 44

https://www.eso.org/sci/meetings/2018/tcl2018.html


Program Overview

Monday, Oct 15

12:30 Registration
13:30 Welcome
13:50 Session 1 – Close-in exo-planets observations and origin
18:00 Reception at Supernova
18:15 Planetarium show & visit of exhibition
& 18:45 (two groups of ∼70 people)

19:15 Food served in the Supernova building

Tuesday, Oct 16

09:00 Session 2 – Morphology of the inner disk
12:30 Lunch
16:50 Poster viewing with Beer and Brezn

Wednesday, Oct 17

09:00 Session 2 continues
09:40 Session 3 – Evolution of protoplanetary disks
12:30 Lunch
17:00 Poster viewing with Beer and Brezn

Thursday, Oct 18

09:00 Session 4 – Angular momentum transport and con-
nection of outer and inner disk

12:30 Lunch
14:00 Session 5 – Star-disk interaction
16:30 Breakout Sessions

Auditorium Eridanus RW Aur: origin of the dimming
events

19:00 Social dinner: Gasthof Neuwirt in Garching

Friday, Oct 19

09:00 Session 5 continues
11:00 Final Discussion and Concluding Remarks
12:30 End of program
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Monday, Oct 15

12:30 Registration

13:30 Introduction

Session 1 – Close-in exo-planets observations and origin

13:50 Haywood,
Raphaëlle

Invited
review

Current status of the observational search
for close-in planets

14:30 Ormel, Chris Invited
review

Theories of formation of close-in exo-
planets

15:10 Kreplin,
Alexander

VLTI+ALMA imaging of potential
planet-formation processes in the pre-
transitional disc of V1247 Ori

15:30 Mendigut́ıa,
Ignacio

Detecting signatures of planet formation
in disks around young stars

15:50 Break

16:20 Keppler, Miriam Discovery of a planetary mass companion
in the gap of the transition disk PDS 70

16:40 Jankovic, Marija Formation of close-in super-Earths: dust
enrichment of the inner disk due to the
MRI

17:00 Ogihara,
Masahiro

Formation of close-in super-Earths from
embryos with suppressed type I migration

17:20 Drazkowska,
Joanna

Planetesimal formation in the inner region
of the protoplanetary disk

17:40 Tan, Jonathan Inside-Out Planet Formation

18:00 Reception at Supernova

18:15 Planetarium show and visit of the exhibition

& 18:45 (two groups of ∼70 people)

19:15 Food served in the Supernova building

5



Tuesday, Oct 15

Session 2 – Morphology of the inner disk

09:00 Facchini, Stefano Invited
review

The inner regions of protoplanetary disks:
a dynamical perspective

09:40 Kraus, Stefan Invited
review

Spatially resolved observations of inner
disc structure

10:20 Banzatti, Andrea Invited
talk

Observing the evolution of exoplanet-
forming disks at 0.01-10 au with gas, dust,
and wind tracers

10:50 Break

11:30 Ansdell, Megan Misaligned inner disk demographics using
”dipper” stars

11:50 Pinilla, Paola Variable Outer Disk Shadowing Around
the Dipper Star J160421.7-213028

12:10 Nealon, Rebecca Warping protoplanetary discs by planets
on inclined orbits

12:30 Lunch

14:00 Brown, Alexan-
der

Dust and Gas Composition at the Inner
Edge of the Transitional Disk Surrounding
7Myr old T Cha

14:20 Arulanantham,
Nicole

Mapping the Inner Disk Gas around
Young Stars in the Lupus Complex

14:40 France, Kevin Invited
talk

UV Characterization of Inner Disks: from
Hubble to LUVOIR

15:10 Perraut, Karine The inner dust rim of protoplanetary disks
as probed by GRAVITY

15:30 Break

16:00 Matter, Alexis Invited
talk

Observing and characterizing the planet-
forming region of protoplanetary disks
with MATISSE

16:30 Davies, Claire Grain growth-induced curvature of the in-
ner rim of protoplanetary disks

16:50 Beer and Brezn Poster Viewing

19:00 End of day
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Wednesday, Oct 17

09:00 Garufi, Antonio The outer disk knows about the inner disk

09:20 Ricci, Luca Imaging the inner regions of proto-
planetary disks with sub-millimeter and
millimeter interferometry

Session 3 – Evolution of protoplanetary disks

09:40 Rosotti, Giovanni Invited
review

Disc evolution processes: how they affect
the inner disc

10:20 McClure, Melissa Invited
review

Eye to the telescope: observing the inner
1 AU of protoplanetary disks

11:00 Break

11:30 Parker, Raeesa Understanding the formation and distri-
bution of cm-sized dust grains in DG Tau
A

11:50 Bitsch, Bertram Origin of super-Earths planets: influence
of pebble accretion, migration and insta-
bilities

12:10 McNally, Colin How planets move in the inner disc

12:30 Lunch

14:00 Bosman, Arthur Inner disk chemistry and the effects of
drifting icy grains: the case of CO2

14:20 Booth, Richard The inner disc tracers of the physics and
chemistry of disc evolution

14:40 Chen, Christine Invited
talk

Observing the Inner Regions of Protoplan-
etary Disks with JWST

15:10 Simon, Jake What Drives Accretion in Protoplanetary
Disks?

15:30 Break

16:00 Ballabio, Giulia Empirical diagnostics of protoplanetary
disc winds

16:20 Picogna, Gio-
vanni

The dispersal of planet-forming discs. A
new generation of X-ray photoevaporation
models.

16:40 Monsch, Kristina The imprint of X-ray photoevaporation on
the orbital distribution of giant planets

17:00 Beer and Brezn Poster viewing

19:00 End of the day
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Thursday, Oct 18

Session 4 – Angular momentum transport and connection of
outer and inner disk

09:00 Sheikhnezami,
Somayeh

Invited
review

Disk-outflow interaction: exchange of
mass and angular momentum

09:40 Garćıa López,
Rebeca

Invited
review

Observations of outflows and angular mo-
mentum transport from the inner to the
outer disk

10:20 Dougados,
Catherine

What can jets and outflows tell us about
the central astronomical units ?

10:40 Break

11:10 McGinnis,
Pauline

Spectral signatures of jets and winds in
the young, open cluster NGC 2264

11:30 Nisini, Brunella Connection between jets, winds and accre-
tion in T Tauri stars

11:50 Fischer, Will Complementary Insights from Helium
10830 in the Age of Interferometry

12:10 Nolan, Chris Determining the launching regions of
centrifugally-driven disc winds from non-
ideal MHD simulations

12:30 Lunch

Session 5 – Star-disk interaction

14:00 Gregory, Scott Invited
review

The impact of magnetic fields on the star-
disk interaction and planet formation

14:40 Venuti, Laura Invited
review

Observations of star-disk interaction and
link to disk evolution at the epoch of
planet formation

15:20 Takasao, Shin-
suke

Fast accretion onto a weakly magnetized
star

15:40 Alencar, Silvia The inner disk structure of the classical T
Tauri star LkCa 15

16:00 Break

16:30 Breakout Sessions

Auditorium Eridanus – RW Aur: origin of the dimming events

Pavo, Tucana, Dorado, Vela – Rooms to be requested by
participants for oher sessions

18:00 End of the day

19:00 Social Dinner Gasthof Neuwirt Garching
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Friday, Oct 19

09:00 Hill, Colin Magnetic Fields and Planets of Weak-line
T Tauri Stars

09:20 Beccari, Giacomo Accretion properties of low-mass stars in
the Large Magellanic Cloud: the case of
LH95

09:40 Aly, Hossam Dusty warps: Can Warps in Protoplane-
tary Discs Form Dust Traps?

10:00 Ramsay, Suzanne Invited
talk

Looking closely at protoplanetary discs
with the European ELT and its instru-
ments

10:30 Break

11:00 Final Discussion and Concluding Remarks

12:30 End of Program

Breakout session 1 – RW Aur: Origin of the dimming events

16:30 Facchini, Stefano Brief overview on the RW Aur dimming
events

16:40 Lamzin, Sergei Analysis of photometric and polarimetric
observations of RW Aur A: arguments in
favor of dusty wind

16:45 Safonov, Boris Resolving dusty wind of RW Aur A

16:50 Koutoulaki,
Maria

Shedding light on the dimming events of
the CTTS RW Aur A.

16:55 Günther,
H. Moritz

X-ray news from RW Auriga: Optical
dimming with iron rich plasma and an ex-
ceptional column density

17:00 Gárate, Matias The dimmings of RW Aur. Is the accre-
tion of dust preceding an outburst?

17:05 Discussion on RW Aur lead by S. Facchini
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UKEXO18  - University of Oxford  - Abstracts

014-9658-4) was fundamentally flawed by the authors’ misunderstanding of chemical
equilibria (Jackson JB, 2017, J Mol Biol, doi: 10.1007/s00239-017-9805-9). 

We should not be seduced by the apparent simplicity of the natural pH gradient hypothesis
into thinking that the origin of other forms in the universe (on exoplanets) might have easily
and commonly involved natural pH gradients. Modern molecular machines capable of
utilising Δ pH in living organisms on earth probably only emerged after the evolutionary
arrival of proteins- that is, rather late in the development of life.

Marija Jankovic
Imperial College London

A057

Dust enhancement in the inner disk due to the MRI

The formation pathway of the abundant close-in super-Earths and mini-Neptunes is still
unclear. Do they form in situ or migrate inwards as embryos? If the former, then the key step
to planet formation is dust enrichment of the inner protoplanetary disk. Dust is subject to
growth by coagulation, and radial drift and fragmentation due to gas drag and turbulence. In
the outer disk the dust particles are expected to quickly grow and drift inwards. The inner
disk structure, governed by viscous accretion due to the magneto-rotational instability (MRI),
features a local gas pressure maximum that could potentially trap the drifting dust particles.

 We examine the evolution of dust radial distribution and dust particle size in a steady-state
gaseous disk, with the inner disk gas structure self-consistently determined from MRI criteria
(Mohanty et al. 2017).  

We find that in the inner disk turbulent fragmentation limits the size of dust particles, which
thus remain too small to feel significant gas drag and therefore do not accumulate at the
local gas pressure maximum. However, as a decrease in particle size also implies less radial
drift, this ultimately leads to dust enhancement throughout the inner disk, interior to the
pressure maximum.

Luke Jonathan Johnson, Charlotte M. Norris*
Imperial College London

A054

Simulations of Stellar Variability

The radiative output of stars is not constant, with brightness fluctuations observed as they
rotate due to magnetic surface features such as cool starspots and hot active regions. To
facilitate analysis of this phenomenon, we present ACTReSS, a software tool for calculating
the incident flux from a model active stellar surface as it varies throughout a rotation. The
model uses a non-linear limb-darkening law with coefficients derived from MURaM 3D
magneto-convection simulations for the quiet Sun and bright active regions. This allows us to
investigate the dependence of the flux variation on spectral type and wavelength.

*in collaboration with Yvonne C. Unruh (Imperial College); Sami K. Solanki, Natalie A. 
Krivova (MPS Göttingen)

25
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