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Abstract
In this paper, we presented our recently developed Dynamical Radiative and
Elastic ENergy loss Approach (DREENA-C) framework, which is a fully
optimized computational suppression procedure based on our state-of-the-art
dynamical energy loss formalism in constant temperature finite size QCD
medium. With this framework, we have generated, for the first time, joint RAA

and v2 predictions within our dynamical energy loss formalism. The predic-
tions are generated for both light and heavy flavor probes, and different
centrality regions in Pb+Pb collisions at the LHC, and compared with the
available experimental data. While RAA predictions agree with experimental
data, v2 predictions qualitatively agree with, but are quantitatively visibly
above, the experimental data (in disagreement with other models, which
underestimate v2). Consistently with numerical predictions, through simple
analytic analysis, we show that RAA is insensitive to medium evolution (though
highly sensitive to energy loss mechanisms), while v2 is highly sensitive to the
evolution. As a major consequence for precision quark-gluon plasma (QGP)
tomography, this then leaves a possibility to calibrate energy loss models on
RAA data, while using v2 to constrain QGP parameters that are in agreement
with both high and low p⊥ data.
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1. Introduction

Quark-gluon plasma (QGP) is a new state of matter [1, 2] consisting of interacting quarks,
antiquarks and gluons. Such a new state of matter is created in ultra-relativistic heavy ion
collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC). Rare
high momentum probes, which are created in such collisions and which transverse QGP, are
excellent probes of this extreme form of matter [3–5]. Different observables (such as angular
averaged nuclear modification factor RAA and angular anisotropy v2), together with probes
with different masses, probe this medium in a different manner. Therefore, comparing
comprehensive set of joint predictions for different probes and observables, with available
experimental data from different experiments, collision systems and collision energies, allows
investigating properties of QCD medium created in these collisions [6–12].

However, to implement this idea, it is necessary to have a model that realistically describes
high-p⊥ parton interactions with the medium. With this goal in mind, we developed state-of-the-
art dynamical energy loss formalism [13, 14], which includes different important effects (some of
which are unique to this model). Namely, (i) the formalism takes into account finite size, finite
temperature QCD medium consisting of dynamical (that is moving) partons, contrary to the
widely used static scattering approximation and/or medium models with vacuum-like propa-
gators. (ii) The calculations are based on the finite temperature field theory [15, 16], and
generalized HTL approach, in which the infrared divergencies are naturally regulated, so the
model does not have artificial cutoffs. (iii) Both radiative [13] and collisional [17] energy losses
are calculated under the same theoretical framework, applicable to both light and heavy flavor.
(iv) The formalism is generalized to the case of finite magnetic [18] mass and running coupling
[19], and most recently, we also applied first steps towards removing widely used soft-gluon
approximation from radiative energy loss calculations, enhancing the applicability region of this
formalism [20]. This formalism was further integrated into numerical procedure [19], which
includes initial p⊥ distribution of leading partons [21, 22], energy loss with path-length [23, 24]
and multi-gluon [25] fluctuations, and fragmentation functions [26–28], to generate the final
medium modified distribution of high p⊥ hadrons. While all the above effects have to be
included based on theoretical grounds, it is plausible to ask whether all of these ingredients are
necessary for accurately interpreting the experimental data, particularly since other available
approaches [29–33] commonly neglect some—or many—of these effects. To address this
important issue, in [34], we showed that, while abolishing widely used static approximation is
the most important step for accurate suppression predictions, including all other effects is
necessary for a fine agreement with high-p⊥ RAA (and v2, not published) data.

To be able to generate predictions that can reasonably explain the experimental data, all
ingredients stated above have to be preserved (with no additional simplifications used in the
numerical procedure), as all of these ingredients were shown to be important for reliable
theoretical predictions of jet suppression [34]. From computational perspective, it is also
necessary to develop a framework that can efficiently generate wide set of theoretical predictions,
to be compared with a broad range of available (or upcoming) experimental data. We here
present DREENA-C (Dynamical Radiative and Elastic ENergy loss Approach) framework,
which is the first step towards this goal. Due to the complexity of the underlying parton-medium

J. Phys. G: Nucl. Part. Phys. 46 (2019) 085101 D Zigic et al

2



interaction model, this first step takes into account the medium evolution in its simplest form,
through mean (constant) medium temperature (thus ‘C’ in DREENA-C framework). In addition
to presenting the necessary baseline to be compared with future redevelopments of the dynamical
energy loss to more fully account for the medium evolution, DREENA-C is also an optimal
numerical framework for studying the medium evolution effects on certain observables. That is,
as this framework takes into account state-of-the-art parton-medium interaction model, but only
rudimental medium evolution, comparison of its predictions with experimental data allows
assessing sensitivity of certain variables to QGP evolution.

DREENA-C framework corresponds to, in its essence, the numerical procedure presented
in [19], with a major new development that the code is now optimized to use minimal
computer resources and produce predictions within more than two orders of magnitude
shorter time compared to [19]. Such step is necessary, as all further improvements of the
framework, necessarily need significantly more computer time and resources. So, without this
development, further improvements, e.g. towards nontrivially evolving QGP medium, would
not be realistically possible. That is, DREENA-C framework, addresses the goal of efficiently
generating predictions for diverse observables.

Exploiting the ability to generate predictions for a wide range of observables, we will
here use DREENA-C framework to, for the first time, present joint RAA and v2 theoretical
predictions within our dynamical energy loss formalism; these predictions will be generated
for different experiments (ALICE, CMS and ATLAS), probes (light and heavy) and exper-
imental conditions (wide range of collision centralities). Note that some of our results cor-
respond to true predictions (some centrality intervals for B and D mesons), while for other
cases, e.g. for charged hadrons, they correspond to postdictions, as the experimental data are
already available. Motivation for generating these predictions is the following: (i) the
theoretical models up to now were not able to jointly explain these data, which is known as v2
puzzle [35, 36]. That is, the models lead to underprediction of v2, unless new phenomena (e.g.
magnetic monopoles) are introduced [37]. (ii) Having this puzzle in mind, and the fact that
other available models employ the complementary approach, i.e. combine simplified energy
loss models with more sophisticated medium evolutions, this work will enable assessing to
what extent state-of-the-art energy loss model, but with simplest QGP evolution, is able to
jointly explain RAA and v2 data. To obtain additional understanding of this important issue, we
will bellow complement DREENA-C predictions with analytical estimates. (iii) DREENA-C
predictions will establish an important baseline for testing how future introduction of the
medium evolution will improve the formalism. Moreover, such step-by-step introduction of
different medium evolution effects in the model will also allow to investigate their importance
in explaining the experimental data, which is highly relevant for QGP tomography.

2. Methods

The DREENA-C framework is a fully optimized numerical procedure, which contains all
ingredients presented in detail in [19]. We below briefly outline the main steps in this procedure.

The quenched spectra of light and heavy flavor observables are calculated according to
the generic pQCD convolution:

s s
= Ä  Ä 

( ) ( ) ( ) ( )
E
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E Q

p
P E E D Q H

d

d

d

d
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i f Q

3

3

3

3

Subscripts i and f correspond, respectively, to ‘initial’ and ‘final’, and Q denotes initial light or
heavy flavor jet. s ( )E Q pd di i

3 3 denotes the initial momentum spectrum, which are computed
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according to [21, 22], ( )P E Ei f is the energy loss probability, computed within the
dynamical energy loss formalism [13, 14], with multi-gluon [25], path-length fluctuations
[24] and running coupling [19]. D(Q→HQ) is the fragmentation function of light and heavy
flavor parton Q to hadron HQ, where for light flavor, D and B mesons we use, DSS [26],
BCFY [27] and KLP [28] fragmentation functions, respectively.

Regarding the numerical procedure, a major new development is that the code is now
optimized, so that it is two orders of magnitude faster compared to the brute-force approach
applied in [19]. Technically, the main optimization method we used was a combination of
tabulation and interpolation of values of intermediary functions that appear at various steps of the
energy loss calculation. This approach significantly reduces the number of necessary integrations.
However, it must be preceded by careful analysis of the behavior of interpolated functions and the
function sampling must be tailored to this behavior, so that effectively no loss of precision is
introduced. Furthermore, in comparison to the computation of [19], different and better suited
methods of numerical integration were used (mostly quasi Monte Carlo integration), producing a
large speedup, higher integration precision and stability of the underlying results. Finally, the code
was parallelized to take advantage of contemporary multi-core workstations. Furthermore, the
optimization also allowed for further improvements of the physical model: (i) due to numerical
constraints, in the previous multi-gluon fluctuation procedure, the number of radiated gluons was
limited to 3. The procedure is now redeveloped to include the arbitrary number of radiated gluons;
the detailed numerical analysis (both from the point of numerical precision and time efficiency)
showed that the optimal limit of gluons to be included in the procedure is 4–5. (ii) Both radiative
and collisional energy losses are now combined gradually along the traversed path of the parton,
unlike in [19], where radiative and collisional losses were accounted separately.

As noted above, we model the medium by assuming a constant average temperature of QGP.
We concentrate on the central rapidity region in 5.02 TeV Pb+Pb collisions at the LHC, though
we note that these predictions will be applicable for 2.76 TeV Pb+Pb collisions as well, since
the predictions for these two collision energies almost overlap [38]. To determine the temperature

for each centrality region in 5.02 TeV Pb+Pb collisions, we use [39, 40] ~ 
^
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A L
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g is gluon rapidity density, A⊥ is the overlap area and L is the average size of

the medium for each centrality region. At mid rapidity,
N

y
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d
g is directly proportional to experi-

mentally measured charged particle multiplicity
h

Nd

d
ch , which is measured for 5.02 TeV Pb+Pb

collisions at the LHC across different centralities [41]. Furthermore, c is a constant, which can be
fixed through ALICE measurement of effective temperature for 0%–20% centrality at 2.76 TeV
Pb+ Pb collisions LHC [42]. For each centrality region, path-length distributions (as well as
overlap area A⊥ and average size of the medium L ) are calculated following the procedure
described in [23], with an additional hard sphere restriction r<RA in the Woods–Saxon nuclear
density distribution to regulate the path lengths in the peripheral collisions.

In numerical calculations, we use no fitting parameters in generating predictions for
comparison with the data, i.e. all the parameters correspond to standard literature values. We
consider a QGP with ΛQCD=0.2 GeV and nf=3. The temperature dependent Debye mass
μE (T) is obtained from [43], while for the light quarks, we assume that their mass is
dominated by the thermal mass m»M 6E , and the gluon mass is m»m 2g E [44]. The
charm (bottom) mass is M=1.2 GeV (M=4.75 GeV). Finite magnetic mass effect is also
included in our framework [18], as various non-perturbative calculations [45, 46] have shown
that magnetic mass μM is different from zero in QCD matter created at the LHC and RHIC.
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Magnetic to electric mass ratio is extracted from these calculations to be 0.4<μM/μE<0.6,
so presented uncertainty in the predictions comes from this range of screening masses ratio.
Note that other uncertainties (e.g. in quark masses or effective temperature), are not included
in this study. However, we have checked that uncertainties in the quark masses lead to small
(up to 4% for p⊥>8 GeV, and decreasing with increasing p⊥) difference in the resulting
predictions. Regarding effective temperature, as this temperature comes with large error bars,
in [47] we presented a detailed study of how this uncertainty affects the RAA calculations. We
found that RAA dependence on T is almost linear (and the same for all parton energies and all
types of flavor) and does not significantly affect the suppression, concluding that uncertainty
in the effective temperature would basically lead to a systematic (constant value) shift in the
predictions, i.e. the results presented in this paper would not be affected by this uncertainty.

3. Results and discussion

In this section, we will present joint RAA and v2 predictions for high p⊥ charged hadrons, D
and B mesons in Pb+Pb collisions at the LHC. In figure 1 we first show probability

Figure 1. Path-length distributions. Probability distributions for hard parton path
lengths in Pb+Pb collisions at =s 5.02NN TeV for (0–10)%–(50–60)% centrality
classes. Solid black curves: the total distributions with all hard partons included are
represented; Dashed red curves: the distributions include only in-plane particles
(f < ∣ ∣ 15 or f -  < ∣∣ ∣ ∣180 15 ); dashed–dotted blue curves: the distributions include
only out-of-plane partons ( f -  < ∣∣ ∣ ∣90 15 ).
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distributions for hard parton path lengths in Pb+ Pb collisions for different centralities,
obtained by the procedure specified in the previous section. For most central collisions, we
observe that in-plane and out-of-plane distributions almost overlap with the total (average)
path-length distributions, as expected. As the centrality increases, in-plane and out-of-plane
distributions start to significantly separate (in different directions) from average path-length
distributions. Having in mind that [48]

»
-
+

( )v
R R

R R

1

2
, 2AA AA

AA AA
2

in out

in out

this leads to the expectation of v2 being small in most central collisions and increasing with
increasing centrality. Regarding the equation (2) above, note that this estimate presents a
conventional way [48–51] to calculate high p⊥ v2, and it leads to exact result if the higher
harmonics v4, v6, etc. are zero at high p⊥, and the opening angle (where RAA

in and RAA
out are

evaluated) goes to zero.
Based on path-length distributions from figure 1, we can now calculate average RAA, as

well as in-plane and out-of-plane RAAs (RAA
in and RAA

out), and consequently v2 for both light and
heavy flavor probes and different centralities. We start by generating predictions for charged
hadrons, where data for both RAA and v2 are available. Comparison of our joint predictions
with experimental data is shown in figure 2, where left and right panels correspond,
respectively, to RAA and v2. We see good agreement with RAA data, which is also robust, i.e.
achieved across wide range of centralities and experiments. Regarding v2, we surprisingly see
that our v2 predictions are visibly above the data. This is in contrast with other energy loss
models which consistently lead to underprediction of v2, where to resolve this, new phe-
nomena (e.g. magnetic monopoles) were introduced [37]. Despite this quantitative dis-
agreement, we see a reasonable qualitative agreement between the model and the data, i.e. the
predictions are just shifted above the data; this will be further discussed below.

In figure 3, we provide predictions for D meson average RAA (left panel) and v2 (right
panel) data, for four different centrality regions. The predictions are compared with the
available 5.02 TeV Pb+Pb experimental data. For average RAA, we observe good agreement
with the data. Regarding v2, we observe similar behavior as for charged hadron: i.e. while we
obtain a reasonable qualitative agreement with the measurements, quantitatively there is again
an unexpected (having in mind predictions of other models) overestimation of the data.
Figure 4 shows equivalent predictions as figure 3, only for B mesons. For RAA, we compare
our predictions with the available B± [58], Bs

0 [59], non-prompt J/Ψ [60, 61] and non-prompt
D0 [62] data. Note that we can compare B meson predictions with these indirect b quark
suppression data, as due to interplay of collisional and radiative energy loss, B meson sup-
pression is almost independent on p⊥ for p⊥>10 GeV [47], so the fragmentation/decay
functions will not play a large role for different types of b quark observables. Also, note that
our predictions are provided for mid-rapidity region; for non-prompt D0 (which are given for

<∣ ∣y 1 ), we see good agreement between our predictions and the data. For B± and non-
prompt J/Ψ, our predictions show qualitatively good agreement, but overprediction of RAA

data. This is expected, having in mind that those data are given for ∣ ∣y 2 , where both
experiments show 30%–50% increase in RAA with decreasing rapidity. Our predictions do not
agree with Bs

0, but these data come with very large error bars. For v2, we predict values
significantly different from zero for all centrality regions, and see that our predictions agree
with the available non-prompt J/Ψ data [61, 63], though we note that these predictions are
given with very large error bars. This does not necessarily mean that heavy B meson flows, as
flow is inherently connected with low p⊥ v2, and here we show predictions for high p⊥. On
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Figure 2. Joint RAA and v2 predictions for charged hadrons. Left panels: theoretical
predictions for RAA versus p⊥ are compared with ALICE [52] (red circles), CMS [53]
(blue squares) and ATLAS [54] (green triangles) charged hadron experimental data for
5.02 TeV Pb+Pb collisions at the LHC. Right panels: theoretical predictions for v2
versus p⊥ are compared with ALICE [55] (red circles), CMS [56] (blue squares) and
ATLAS [57] (green triangles) charged hadron experimental data for 5.02 TeV Pb+Pb
collisions at the LHC. The gray band boundaries correspond to μM/μE=0.4 and
μM/μE=0.6. Rows 1–7 correspond to, respectively, 0%–5%, 5%–10%, 10%–20%,K,
50%–60% centrality regions.
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the other hand, high p⊥ v2 is connected with the difference in the energy loss (i.e. suppres-
sion) for particles going in different (e.g. in-plane and out-of-plane) directions; this difference
then leads to our predictions of non-zero v2 for high p⊥ B mesons.

Overall, we see that our predicted RAAs agree well with all measured (light and heavy
flavor) data, while our v2 predictions are consistently above the experimental data. Since our
model has sophisticated description of parton-medium interactions, but highly simplified
medium evolution model (through average medium temperature), these robust numerical
results imply the following: (i) RAA is largely insensitive to the medium evolution, in contrast
to its (previously shown [34]) large sensitivity to parton-medium interactions. (ii) v2 is sen-
sitive to the details of medium evolution. These two conclusions have important implications
for QGP tomography, in particular (i) RAA can be used to calibrate parton-medium interaction
models, while (ii) v2 can be used to constrain QGP medium evolution parameters also from
the point of high p⊥ data (in addition to constraining them from low p⊥ predictions/mea-
surements). One should note that insensitivity of RAA and sensitivity of v2 predictions to QGP
evolution were also observed by using very different models and numerical frameworks
[67, 68]. This then clearly suggests that such (in)sensitivity may be a general phenomenon,
but to claim this, one should also gain an analytical understanding, which we provide below.
Furthermore, the numerical results presented above also lead to the following questions,
which are important from the point of future precision QGP tomography: (i) what is the
reason behind the observed overestimation of v2 within DREENA-C framework, and can
expanding medium lead to a better agreement with the experimental data? (ii) Do we expect
that B meson v2 predictions will still be non-zero, once the expanding medium is introduced?

To intuitively approach the issues raised above, we start by noting that, within our
dynamical energy loss formalism, ΔE/E∼Ta and ΔE/E∼Lb, where a b, 1 (ΔE/E is

Figure 3. Joint RAA and v2 predictions for D mesons. Upper panels: theoretical
predictions for RAA versus p⊥ are compared with ALICE [64] (red circles) and CMS
[65] (blue squares) D meson experimental data for 5.02 TeV Pb+Pb collisions at the
LHC. Lower panels: theoretical predictions for v2 versus p⊥ are compared with ALICE
[51] (red circles) and CMS [66] (blue squares) D meson experimental data for 5.02TeV
Pb+Pb collisions at the LHC. The gray band boundaries correspond to μM/μE=0.4
and μM/μE=0.6. First to fourth column correspond to, respectively, 0%–10%, 10%–

30%, 30%–50% and 50%–80% centrality regions.
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fractional energy loss, T is the average temperature of the medium, while L is the average
path-length traversed by the jet). To be more precise, note that both dependencies are close to
linear, though a and b are still significantly different from 1 [38]. However, for the purpose of
this estimate, let us assume that a=b=1, leading to

cD » ( )E E TL, 3

where χ is a proportionality factor.
Another commonly used estimate [25] is that

» -
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where n is the steepness of the initial momentum distribution function (i.e. approximate exponent
of a power-law of initial momentum distribution ^

-p n), and ΔE/E is notably smaller than 1.
In the case when fractional energy loss ΔE/E=1, equation (4) becomes
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where ξ=(n−2) χ/2.
In the DREENA-C approach, T is constant, and the same in in-plane and out-of-plane

directions, while Lin=L−ΔL and Lout=L+ΔL, leading to

Figure 4. Joint RAA and v2 predictions for B mesons. Upper panels: theoretical
predictions for B meson RAA versus p⊥ are compared with ATLAS [60] (green
triangles), CMS [61] (cyan triangles) non-prompt J/Ψ, and CMS non-prompt D0 [62]
(purple squares), B± [58] (blue diamonds) and Bs

0 [59] (orange stars) experimental data
for 5.02 TeV Pb+Pb collisions at the LHC. Lower panels: theoretical predictions for
B meson v2 versus p⊥ are compared with ATLAS [63] (green triangles) and CMS [61]
(cyan triangles) non-prompt J/Ψ for 5.02TeV Pb+Pb collisions at the LHC. The gray
band boundaries correspond to μM/μE=0.4 and μM/μE=0.6. First to fourth column
correspond to, respectively, 0%–10%, 20%–40%, 40%–80% and 0%–100% centrality
regions.

J. Phys. G: Nucl. Part. Phys. 46 (2019) 085101 D Zigic et al

9



x x

x x

» + » - + -

= -
+

= -

( ) ( )

( )

R R R TL TL

T
L L

TL

1

2

1

2
1 1

1
2

1 , 6

AA AA AA
in out

in out

in out

and

x x
x

x
x

x

»
-
+

»
- - -

-

=
D

-
»

D

( ) ( )
( )

( )

v
R R

R R

TL TL

TL

T L

TL

T L

1

2

1

2

1 1

2 1

1

2 1 2
. 7

AA AA

AA AA
2

in out

in out
in out

If the medium evolves, and by assuming 1+1D Bjorken time evolution [69] (as qua-
litatively sufficient for the early time dynamics [70]), the average temperature along in-plane
will be larger than along out-of-plane direction [71], leading to Tin=T+ΔT and
Tout=T−ΔT (whereΔL/L·ΔT/T=1). By repeating the above procedure in this case, it
is straightforward to obtain
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We see that, while v2 explicitly depends on ΔT and ΔL, RAA does not. Therefore, it
follows that, consistently with previous numerical results, RAA can be only weakly sensitive to
QGP evolution, while v2 is quite sensitive to this evolution; note that this is to our knowledge,
the first time that analytical argument to sensitivity of RAA and v2 to medium evolution is
provided. Moreover, from equations (7) and(9), we see that introduction of temperature
evolution is expected to lower v2 compared to constant T case. Consequently, an accurate/
complete energy loss models, when applied in the context of constant temperature medium
should lead to higher v2 than expected, while introduction of T evolution in such models
would lower the v2 compared to non-evolving case. Based on this, and the fact that previous
theoretical approaches were not able to reach high enough v2 without introducing new
phenomena [37], we argue that accurate description of high-p⊥ parton-medium interactions is
crucial for accurate description of high-p⊥ experimental data. With regards to this, the above
results strongly suggest that the dynamical energy loss formalism has the right features
needed to accurately describe jet-medium interactions in QGP, which is crucial for high
precision QGP tomography.

Regarding the second question mentioned above, for B meson to have v2≈0, it is
straightforward to see that one needs ΔT/T≈ΔL/L. Having in mind that ΔL/L is quite
large for larger centralities (see figure 1), ΔT/T would also have to be about the same
magnitude. We do not expect this to happen, based on our preliminary estimates of the
temperature changes in in-plane and out-of-plane in 1+1D Bjorken expansion scheme [69].
That is, our expectations is that B meson v2 will be smaller than presented here, but still
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significantly larger than zero, at least for large centrality regions. However, this still remains
to be tested in the future with the introduction of full evolution model within our framework.

4. Conclusion

In this paper, we introduced the DREENA-C framework, which is a computational sup-
pression procedure based on our dynamical energy loss formalism in finite size QCD medium
with constant (mean) medium temperature. This approach, which combines a state-of-the-art
energy loss model, but with including QGP evolution in its simplest form, is complementary
to other available models that combine simplified energy loss models with more sophisticated
medium evolutions. As such, DREENA-C can provide an important insight to what extent the
accurate description of high-p⊥ parton-medium interactions versus accurate description of
medium evolution is necessary for accurately explaining high p⊥ RAA and v2 measurements.

We here used the DREENA-C framework to, for the first time, generate joint RAA and v2
predictions for both light and heavy flavor probes and different centrality regions in Pb+Pb
collisions at the LHC, and compare them with the available experimental data. We con-
sistently, through both numerical and analytical calculations, obtained that RAA is sensitive to
the average properties of the medium, while v2 is highly sensitive to the details of the medium
evolution. Analytical calculations brought another advantage of DREENA-C, as they would
likely not be possible in frameworks with more complex medium evolution models, but bring
simple and intuitive predictions/explanations for our results, which is necessary for better
qualitative and quantitative understanding of the obtained results.

Since different medium evolution profiles have both different average properties and
different details of the evolution, in precision QGP tomography, both RAA and v2 have to be
jointly used to extract the QGP properties. The DREENA-C framework presents an optimal
starting point for QGP tomography, as RAA predictions (obtained through DREENA-C) can
be first used to calibrate the energy loss model itself; that is, DREENA-C is fast (which is
important for efficient energy loss calibration), and it does not contain the details of the
medium evolution, which could provide an unwanted background for such a purpose. Once
this crucial step of accurate description and calibration of parton-medium interactions is
achieved, different more-detailed profiles of medium evolution (generated through different
bulk medium models and parameters, with and without event by event fluctuations) can be
tested (through our future advancement of DREENA framework) to assess which of these
profiles provide a simultaneous agreement with both high p⊥ RAA and v2 data, across wide
range of diverse experimental data and without further adjustment of energy loss models. In
this way, QGP parameters can be constrained from both low and high p⊥ measurements.

Furthermore, other approaches face difficulties in jointly explaining RAA and v2 data,
where smaller v2, than experimentally observed, is obtained. In distinction to other approa-
ches, we here obtained an overprediction of v2, where the analytical estimates moreover show
that inclusion of more realistic medium evolution models would lead to better agreement with
the data. This, together with the fact that v2 prediction provided here already qualitatively
(though not quantitatively) agree with the data, indicate an important (and highly non-trivial)
conclusion that accurate description of high-p⊥ parton interactions with QGP is likely the
most important ingredient for generating high-p⊥ predictions. These results therefore strongly
suggest that our dynamical energy loss formalism provides a suitable basis for the QGP
tomography (outlined above), which is our main future goal.
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When traversing the QCD medium, high-p⊥ partons lose energy, which is typically measured by suppression,
and predicted by various energy-loss models. A crucial test of different energy-loss mechanisms is their
functional dependence on the length of traversed medium (i.e., path-length dependence). The upcoming
experimental measurements will, for the first time, generate data that may allow to clearly assess this dependence,
in particular, by comparing results from Pb + Pb collisions with future measurements in smaller systems.
However, to perform such a test, it is crucial to choose an optimal observable. To address this, we here use both
analytical and numerical analyses to propose a novel—simple, yet accurate and robust—observable for assessing
the path-length dependence of the energy loss. Our numerical results show that, by using this observable,
different (underlying) energy-loss mechanisms may be directly differentiated from the experimental data, which
is, in turn, crucial for understanding the properties of the created QCD medium.

DOI: 10.1103/PhysRevC.99.061902

Introduction. Understanding properties of quark-gluon
plasma (QGP) [1] created at the Large Hadron Collider (LHC)
and Relativistic Heavy Ion Collider (RHIC) experiments is a
major goal of ultrarelativistic heavy ion physics [2], which
would allow understanding properties of QCD matter at its
most basic level. Energy loss of high-p⊥ partons traversing
this medium is an excellent probe of its properties [3], which
provided a crucial contribution [2] to establishing that QGP
is created in these experiments. Comparing predictions of
different energy-loss models [4], and, consequently, different
underlying energy-loss mechanisms with experimental data
is, therefore, crucial for understanding properties of created
QGP. However, an open question is how to provide the most
direct comparison of energy-loss predictions with experimen-
tal data.

The most basic signature for distinguishing different
energy-loss models is how the predicted energy loss depends
on the length of the traversed QCD medium (so-called path-
length dependence). This path-length dependence directly
relates to different underlying energy-loss mechanisms, such
as perturbative QCD collisional (with typically linear [5,6]),
radiative (with typically quadratic [7–11]), or alternatively
conformal anti-De Sitter holography models (with third-
power [12] energy-loss path-length dependence). Moreover,
even in such cases, the division is not so clear as there are
numerous other effects that can significantly alter these path-
length dependencies [13–15]: inclusion of the mass of the
leading particle, finite-size, and finite temperature effects in
QGP, interference effects, etc. Therefore, accurately assessing
the path-length dependence is also crucial for understanding

*magda@ipb.ac.rs

mechanisms that underly the observed energy loss, which is,
in turn, necessary for investigating the properties of QCD
matter created at RHIC and LHC, i.e., for precision QGP
tomography.

However, despite its essential importance and longstanding
interest in this subject, it is still not possible to directly
infer the energy-loss path-length dependence from experi-
mental measurements and, consequently, provide a possibil-
ity to discriminate between different energy-loss models. To
our knowledge, the most comprehensive study in this sub-
ject [16,17], attempted to extract the energy-loss path-length
dependence from a thorough simultaneous study of RAA and
v2 predictions and data (at Au + Au collisions at RHIC and
Pb + Pb collisions at the LHC) but was not able to constrain
this dependence based on the existing observables and data.
With this in mind, the goal of this Rapid Communication is
to propose a novel approach for extracting the energy-loss
path-length dependence.

It is intuitively clear that the most direct probe of the path-
length dependence would involve comparing experimental
data (and the related theoretical predictions) for two-collision
systems of different sizes. Moreover, it would be optimal if
the size would be the only property distinguishing these two
systems, i.e., that other properties and parameters needed for
generating relevant predictions would be the same between
the two systems. Equally important, it is necessary to propose
an appropriate observable from which the path-length depen-
dence can be reliably extracted. Consequently, the aim of the
analysis presented in this Rapid Communication is to infer
an optimal system and an optimal observable for assessing
the energy-loss path-length dependence. We will also test how
reliable and robust is the inferred observable to different types
of energy loss, probes, centralities, and collision systems.
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Appropriate observable. In this section, we first start by
asking what is an appropriate observable to assess the energy-
loss path-length dependence? To start addressing this ques-
tion, we note that such an observable should be sensitive
to jet-medium interactions (so that energy-loss path-length
dependence can be reliably extracted). On the other hand, it
should not be sensitive to the medium evolution as the details
of the medium evolution would, for such a purpose, present an
unwanted background. Keeping this in mind, it is evident that
such an observable should be a function of RAA since RAA has
exactly these desired properties—i.e., it is highly sensitive to
the energy-loss mechanisms in QGP [18,19], whereas being
insensitive to the medium evolution (i.e., it can be character-
ized by mean QGP temperature) [19]. The medium evolution
insensitivity is also consistent with our recent result [20] of al-
most identical RAA for constant medium temperature and (1 +
1)-dimensional Bjorken expansion; however, this still remains
to be further verified by using more realistic medium evolution
calculations, including event-by-event fluctuations [17,21].

Appropriate systems. Measurements for 5.02-TeV Pb +
Pb collisions are available, whereas precision measurements
for 5.44-TeV smaller systems (Xe + Xe, Kr + Kr, Ar +
Ar, and O + O) will become available in the future with the
planned beam size scan (BSS) at the LHC. As these systems
have similar collision energies but different sizes (atomic mass
numbers are A = 208, 129, 78, 40, 16 for Pb, Xe, Ke, Ar, and
O), comparison of Pb + Pb with smaller systems appears to be
a good candidate for the path-length dependence study. Note
that the BSS at the LHC is complementary to the current beam
energy scan (BES) at RHIC, as in the BES, the systems of the
same size but different collision energies are tested, whereas
in the BSS, the systems of the same energy but different
sizes will be explored, thus providing a crucial insight in how
properties of the created matter depend on the size of the
colliding ions.

Computational framework. In this Rapid Communication,
the RAA predictions will be generated by our full-fledged nu-
merical procedure, recently developed in Ref. [22]. The pro-
cedure is based on our state-of-the-art dynamical energy-loss
formalism [5,15], which contains different important effects
(some of which are unique to this model): (i) Finite-size finite
temperature QGP, consisting of dynamical (that is moving)
constituents. This abolishes the widely used approximations
of static scattering centers, vacuumlike propagators, and/or
infinite-size QGP (e.g., Refs. [7,8,10,11]). (ii) Our calcula-
tions are based on the finite temperature generalized hard-
thermal-loop approach [23] in which the infrared divergencies
are naturally regulated [15]. (iii) Both collisional [5] and
radiative [15] energy losses are computed under the same
theoretical framework, which is applicable to both light and
heavy flavor. (iv) The model is generalized to the case of
finite magnetic mass [24] and running coupling [25]; recently,
we also applied first steps towards removing widely used
soft-gluon approximation [26]. Moreover, in Ref. [18], we
showed that all these ingredients are necessary for accurately
explaining the high-p⊥ parton-medium interactions in QGP.

To generate the final medium modified distribution of high-
p⊥ hadrons, the formalism was integrated into fully optimized
numerical framework DREENA [22], which integrates the

initial-p⊥ distribution of leading partons [27], energy loss
with multigluon [28], and path-length [29] fluctuations and
fragmentation functions [30]. To generate RAA predictions for
Pb + Pb collisions, we use the set of parameters specified in
Ref. [22], which correspond to standard literature values (not
repeated here for brevity).

The dynamical energy-loss formalism was previously used
to obtain a comprehensive set of RAA predictions at the RHIC
and LHC [22]; it shows wide agreement with the existing
data [25], explaining puzzling data and generating nonin-
tuitive predictions for future experiments [31,32] (some of
which were already confirmed by subsequent data [33,34]).
This then strongly indicates that our formalism can realisti-
cally describe high-p⊥ parton-medium interactions and that it
provides a suitable framework for the goal that we want to
achieve in this Rapid Communication.

Smaller systems. For RAA predictions in smaller systems
and their comparison with Pb + Pb collisions, one should
note that RAA depends on: (i) initial distribution of high-p⊥
partons, (ii) average temperature of the created QGP, and
(iii) path-length distributions. Regarding initial distributions,
we previously showed [31] that, when the collision energy
is changed almost two times (from 2.76 to 5.02 TeV), the
influence of the change in p⊥ distributions leads to only a
small change (less than 10%) in the resulting suppression.
Consequently, for the increase of less than 10% in the collision
energy (from 5.02 to 5.44 TeV), the same high-p⊥ distribu-
tions can be assumed. The average temperature (T ) for each
centrality region in 5.02-TeV Pb + Pb collisions is estimated
according to Ref. [22]. Note that T is directly proportional
to the charged multiplicity, whereas inversely proportional to
the overlap area and average size of the medium, i.e., T =
( dNch/dη

A⊥L
)
1/3

[22,35]. To estimate T in smaller systems, we note
that, for each centrality region, all the above quantities change
in the two-collision systems: A⊥ ∼ A2/3; L ∼ A1/3 [36,37];
dNch/dη ∼ Npart, where Npart ∼ A since, for the same col-
lision energy, dNch/dη

Npart
should remain constant with decreas-

ing the systems’ size [38,39]. This therefore leads to T ∼
( A

A2/3A1/3 )
1/3 ∼ const, i.e., we expect that, for a fixed centrality

region, T will remain unchanged when moving from large Pb
+ Pb to smaller systems. Finally, the path-length distributions
for smaller systems, at different centralities, can be calculated
in the same manner as previously for Pb + Pb [22]. It is
straightforward to see that the two distributions are similar up
to a rescaling factor corresponding to A1/3. Consequently, we
see that comparison of Pb + Pb with smaller systems is, in
fact, close to ideal when it comes to probing the path-length
dependencies.

RAA ratio. The next question is what is the exact vari-
able (i.e., its functional dependence on RAA) that should be
compared for the two systems in order to extract the path-
length dependence. Since RAA increases when the system size
decreases, it may seem that the ratio of RAA for the two
systems is a natural choice [40]. To test this proposal, in Fig. 1,
we show momentum dependence of the RAA ratio for the
Xe + Xe and Pb + Pb systems (note that, for easier reading,
we will first concentrate on Xe + Xe and Pb + Pb and we will
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FIG. 1. Ratio of RXeXe and RPbPb is shown as a function of p⊥ for charged hadrons, D and B mesons (full, dashed, and dot-dashed curves,
respectively). Centrality regions are denoted in the upper right corners of each panel.

discuss smaller systems subsequently). We see that it would
be very hard to extract the path-length dependence from such
a ratio, e.g., for high p⊥, this ratio approaches 1, naively
suggesting that the underlying model has no (or only weak)
path-length dependence. However, the dynamical energy-loss
model has, in fact, a strong (between linear and quadratic)
path-length dependence. The same problem would emerge if
experimental data would be plotted in that way, i.e., one may
naively conclude that high-p⊥ suppression does not depend
on the system size. Moreover, we see that this quantity is
not robust with respect to the changes in collision centrality,
which would further complicate extracting the path-length
dependence from simple RAA ratio.

The problem above can be intuitively understood by using
scaling arguments. Fractional energy-loss �E/E can be esti-
mated as [22]

�E/E ≈ χT
a
L

b
, (1)

where a, b are proportionality factors, T is the average tem-
perature of the medium, L is the average path-length traversed
by the jet, and χ is a proportionality factor (which depends
on initial jet p⊥). b → 1 corresponds to the linear, whereas
b → 2 corresponds to the quadratic [Landau-Pomeranchuk-
Migdal- (LPM-) like] dependence of the energy loss.

If �E/E is small (i.e., for higher p⊥ of the initial jet,
and for higher centralities), we can make the following esti-
mate [22]:

RAA ≈ 1 − ξT
a
L

b
, (2)

where ξ = (n − 2)χ/2 and n is the steepness of the initial
momentum distribution function.

The ratio of RXeXe and RPbPb then becomes

RXeXe

RPbPb
≈ 1 + ξT

a
L

b
Pb

[
1 −

(
AXe

APb

)b/3
]
. (3)

This quantity is rather complicated, depending explicitly
on the initial jet energy (through ξ ), average medium tem-
perature, and average size of the medium. Also, it explicitly
depends on centrality (through T and LPb, which decrease
with increasing centrality), consistently with what is seen in
Fig. 1. Furthermore, as centrality and initial energy of the

jet increase, ξ, T , and LPb become smaller, explaining why
the ratio in Fig. 1 goes to 1 for high p⊥ and high centrality,
which results in the problem of concealing the path-length
dependence. Consequently, the ratio of RAAs for different
collision systems is not a suitable observable for extracting
path-length dependence.

Suitable observable. It is clear that such an observable
should expose coefficient b in a simplest possible manner.
To initially gauge the appropriate functional dependence, we
again resort to the scaling arguments given above for which
we have shown to provide a reasonable description of the
full-fledged numerical model results in Fig. 1. We proceed by
subtracting RAAs [obtained from Eq. (2)] from 1, which, in the
case of Xe and Pb, reduces to

RXePb
L ≡ 1 − RXeXe

1 − RPbPb
≈ ξT

a
L

b
Xe

ξT
a
L

b
Pb

≈
(

AXe

APb

)b/3

. (4)

This new quantity RXePb
L has a very simple form, which

depends only on the medium size (through AXe/APb) and on
the path-length dependence, i.e., coefficient b, which is now
directly exposed. Note again that this simple dependence is
expected to hold for higher centralities and higher initial
p⊥ where Eqs. (2) and (4) are applicable. Consequently, as
one plots RXePb

L at higher centrality regions, one may expect
that this value will approach a limit that directly reflects the
path-length dependence, i.e., relation given by Eq. (4).

To numerically test our proposal and assess the applica-
bility of the analytically derived scaling in Eq. (4), we fur-
ther concentrate only on higher centrality regions and calcu-
late (1 − RXeXe)/(1 − RPbPb) using our full-fledged numerical
procedure [22]. This ratio is shown in Fig. 2; full, dashed, and
dot-dashed curves show our full results for charged hadrons,
D and B mesons, respectively; the dashed lines correspond
to the b = 1 and 2 limits from Eq. (4). From Fig. 2, one can
see that RXePb

L is almost independent of centrality, which is
exactly what one needs for such observable. At high-p⊥ →
100 GeV, we clearly see that RXePb

L for all types of par-
ticles reaches a limiting value as expected. Moreover, this
limiting value (RXePb

L ≈ 0.8) directly reflects the underlying
path-length dependence, which is, in our case (the dynamical
energy-loss formalism with radiative and collisional energy
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FIG. 2. Predictions for RXePb
L as a function of p⊥ are shown

for charged hadrons (full curves), D mesons (dashed curves), and
B mesons (dot-dashed curves). Upper (lower) dashed gray lines
correspond to the case in which energy-loss path-length dependence
is linear (quadratic). Centrality regions are denoted in the upper right
corners of each panel.

losses in a finite-size QCD medium), between linear and
quadratic (i.e., b ≈ 1.4), regardless of the particle flavor; note
that this extracted path-length dependence is different from a
common assumption of heavy flavor having linear, whereas
light flavor having quadratic (LPM-like) dependance. It is,
therefore, clear that, making such plots from experimental
data and extracting the corresponding path-length dependence
(exponent b), can be used to differentiate between different
energy-loss models in a simple and direct manner. Also, note
that, in distinction to Fig. 2, where the gray dashed lines are
simple and intuitive (allowing straightforward inference of
path-length dependence), defining such lines in Fig. 1 would
not be possible.

Testing robustness and reliability. To address the robustness
of the RAB

L observable, i.e.. if the observable is applicable
to systems of diverse sizes, we further test RAB

L on other
smaller systems (Kr + Kr, Ar + Ar, and O + O). With
this goal in mind, in Fig. 3, we concentrated on charged
hadrons and generated full-fledged predictions for RAB

L for
Xe − Pb, Kr − Pb, Ar − Pb, and O − Pb as a function of
p⊥. From this figure, we first observe that, for all four systems,
this observable is almost independent of centrality as expected
from the arguments presented above. Second, we also observe
that, independent of the collision system, this observable

shows the same behavior, so it is very robust with respect
to extracting path-length dependence. We, moreover, observe
that going to smaller systems makes extracting the path-length
dependence even more straightforward since the separation
between L and L2 lines becomes larger when going to smaller
systems, i.e., it increases for a factor of 2 when going from
Xe − Pb to Ar − Pb and O − Pb. This then motivates using
this observable across systems of different sizes and provides
another argument for the utility of high-p⊥ measurements at
the BSS at the LHC.

Finally, to address the reliability of this RAB
L observable, in

Fig. 3, we also show RAB
L , calculated by using full numerical

procedure stated above but if only collisional [5] (upper
curves) or radiative [15] (lower curves) energy losses are taken
into account—we here again concentrate on higher centrality
regions where Eqs. (2) and (4) are applicable. Within the
dynamical energy-loss model, collisional energy loss is close
to—although somewhat less than—linear (b ≈ 0.9) due to
finite-size effects [5]. From Fig. 3, we see that this path-length
dependence scenario is directly recovered where the approach
to the appropriate dashed line (indicating �L dependence)
is almost ideal. For the radiative energy loss due to the
LPM effect, path-length dependence approaches L2 for higher
p⊥ [15], and we see that, for such a scenario, RAB

L also
unambiguously recovers this tendency, although the spread of
curves for different centralities is somewhat larger compared
to the collisional energy-loss case. This, therefore, leads to
the conclusion that, in addition to being simple and robust,
RAB

L is also an accurate observable for extracting path-length
dependence.

Summary and outlook. Experimental measurements for
smaller collision systems at the future BSS at the LHC will
provide previously unprecedented opportunities to distinguish
between different energy-loss mechanisms and, consequently,
to better understand properties of created QGP. We here
proposed a new—simple, robust, and reliable—observable
for assessing the path-length dependence of the energy loss,
which is a main signature of high-p⊥ parton-medium in-
teractions. Based on our results, this observable can be
used to straightforwardly extract the path-length dependence
from experimental data, which can, consequently, be directly
compared with such dependencies from various theoretical

0 20 40 60 80 100

0.7

0.8

0.9

p (GeV)

R
LA
B

Xe−Pb

L

L2

coll

rad+coll

rad

0 20 40 60 80 100

0.5

0.6

0.7

0.8

p (GeV)

Kr−Pb

coll

rad+coll

rad

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

p (GeV)

Ar−Pb

coll

rad+coll

rad

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

p (GeV)

O−Pb

L

L2

coll

rad+coll

rad

FIG. 3. Predictions for RAB
L as a function of p⊥ are shown for charged hadrons where the darker sets of curves are obtained by using full

dynamical energy loss, whereas upper and lower lighter sets or curves, respectively, correspond to the cases where only collisional or only
radiative energy loss is considered. The first to fourth panels correspond to RXePb

L , RKrPb
L , RArPb

L , and ROPb
L , respectively. In each panel, three

centrality regions 30–40%, 40–50%, and 50–60% are marked by blue, orange, and green, respectively.
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models as a major test of our understanding of energy-loss
mechanisms.

Furthermore, our Rapid Communication also suggests that
(1 − RAA) might be a more suitable observable for the ex-
ploration of QGP than commonly used RAA as we have here
shown that it more directly reflects the underlying energy loss
of the jet traversing the QGP. Furthermore, (1 − RAA) observ-
able appears to be highly correlated to v2 (as noted in our re-
cent study [41]). Since high-p⊥ observables are shown [41,42]
to be sensitive to global QGP properties, we expect that
including the full-medium evolution models (together with

event-by-event fluctuations) into the high-p⊥ predictions and
providing a detailed joint study of high-p⊥ (1 − RAA) and
v2 (and possibly higher harmonics) for different collision
systems will prove to be an excellent tool for high-precision
QGP tomography, which is a future major goal of relativistic
heavy ion physics.
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Dynamical energy loss formalism allows generating state-of-the-art suppression predictions in finite size 
QCD medium, employing a sophisticated model of high-p⊥ parton interactions with QGP. We here 
report a major step of introducing medium evolution in the formalism though 1 + 1D Bjorken (“B”) 
expansion, while preserving all complex features of the original dynamical energy loss framework. We 
use this framework to provide joint R A A and v2 predictions, for the first time within the dynamical 
energy loss formalism in evolving QCD medium. The predictions are generated for a wide range of 
high p⊥ observables, i.e. for all types of probes (both light and heavy) and for all centrality regions 
in both Pb + Pb and Xe + Xe collisions at the LHC. Where experimental data are available, DREENA-B 
framework leads to a good joint agreement with v2 and R A A data. Such agreement is encouraging, i.e. 
may lead us closer to resolving v2 puzzle (difficulty of previous models to jointly explain R A A and v2
data), though this still remains to be thoroughly tested by including state-of-the-art medium evolution 
within DREENA framework. While introducing medium evolution significantly changes v2 predictions, 
R A A predictions remain robust and moreover in a good agreement with the experimental data; R A A

observable is therefore suitable for calibrating parton-medium interaction model, independently from the 
medium evolution. Finally, for heavy flavor, we observe a strikingly similar signature of the dead-cone 
effect on both R A A and v2 - we also provide a simple analytical understanding behind this result. Overall, 
the results presented here indicate that DREENA framework is a reliable tool for QGP tomography.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is by now established that quark-gluon plasma (QGP), be-
ing a new state of matter [1,2] consisting of interacting quarks, 
antiquarks and gluons, is created in ultra-relativistic heavy ion col-
lisions at the Relativistic Heavy Ion Collider (RHIC) and the Large 
Hadron Collider (LHC). Energy loss of rare high p⊥ particles, which 
are created in such collisions and which transverse QGP, is consid-
ered to be an excellent probe of this form of matter [3–6]. Such 
energy loss is reflected through different observables, most im-
portantly angular averaged (R A A ) [7–14] and angular differential 
(v2) [15–22] nuclear modification factor, which can be measured 
and predicted for both light and heavy flavor probes. Therefore, 
comparing a comprehensive set of predictions, created under the 
same model and parameter set, with the corresponding experi-
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mental data, allows for systematical investigation of QCD medium 
properties, i.e. QGP tomography.

We previously showed that the dynamical energy loss formal-
ism [23–25] provides an excellent tool for such tomography. In 
particular, we demonstrated that the formalism shows a very good 
agreement [27–30] with a wide range of R A A data, coming from 
different experiments, collision energies, probes and centralities. 
Recently, we also used this formalism to generate first v2 pre-
dictions, within DREENA-C framework [26], where DREENA stands 
for Dynamical Radiative and Elastic ENergy loss Approach, and 
“C” denotes constant temperature QCD medium. These predictions 
were compared jointly with R A A and v2 data, showing a very 
good agreement with R A A data, while visibly overestimating v2
data. This overestimation also clearly differentiates the dynamical 
energy loss from other models, which systematically underesti-
mated the v2 data, leading to the so called v2 puzzle [31–33]. 
On the other hand, it is also clear that v2 predictions have to 
be further improved - in particular v2 was shown to be sensi-
tive to medium evolution, while in DREENA-C medium evolution 
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was introduced in the simplest form, through constant medium 
temperature. This problem then motivated us to introduce medium 
evolution in DREENA framework.

While several existing energy loss approaches already contain 
a sophisticated medium evolution, they employ simplified par-
ton energy loss models. On the other hand, our dynamical energy 
loss formalism corresponds to the opposite “limit”, where constant 
(mean) medium temperature was assumed, combined with a so-
phisticated model of parton-medium interactions, which includes: 
i) QCD medium composed of dynamical (i.e. moving) scattering 
centers, which is contrary to the widely used static scattering 
centers approximation, ii) finite size QCD medium, iii) finite tem-
perature QCD medium, modeled by generalized HTL approach [34,
35], naturally regularizing all infrared and ultraviolet divergen-
cies [23–25,36]. iv) collisional [25] and radiative [23] energy losses, 
calculated within the same theoretical framework, v) finite parton 
mass, making the formalism applicable to both light and heavy fla-
vor, vi) finite magnetic [37] mass and running coupling [27].

Note that we have previously showed that all the ingredients 
stated above are important for accurately describing experimental 
data [38]. Consequently, introducing medium evolution in the dy-
namical energy loss, is a major step in the model development, as 
all components in the model have to be preserved, and no addi-
tional simplifications should be used in the numerical procedure. 
In addition to developing the energy loss expressions with chang-
ing temperature, we also wanted to develop a framework that can 
efficiently generate a set of predictions for all types of probes and 
all centrality regions. That is, we think that for a model to be real-
istically compared with experimental data, the comparison should 
be done for a comprehensive set of light and heavy flavor experi-
mental data, through the same numerical framework and the same 
parameter set. To implement this principle, we also had to develop 
a numerical framework that can efficiently (i.e. in a reasonably 
short time frame) generate such predictions, which will be pre-
sented in this paper.

We will start the task of introducing the medium evolution in 
the dynamical energy loss formalism with DREENA-B framework 
presented here, where “B” stands for Bjorken. In this framework, 
QCD medium is modeled by the ideal hydrodynamical 1 + 1D
Bjorken expansion [39], which has a simple analytical form of tem-
perature (T ) dependence. This simple T dependence will be used 
as an intermediate between constant (mean) temperature DREENA-
C framework and the full evolution QGP tomography tool. While, 
on one hand, inclusion of Bjorken expansion in DREENA frame-
work is a major task (having in mind complexity of our model, see 
above), it on the other hand significantly simplifies the numeri-
cal procedure compared to full medium evolutions. This will then 
allow step-by-step development of full QGP tomography frame-
work, and assessing improvements in the predictions when, within 
the same theoretical framework, one is transitioning towards more 
complex QGP evolution models within the dynamical energy loss 
framework.

2. Computational framework

To calculate the quenched spectra of hadrons, we use the 
generic pQCD convolution, while the assumptions are provided 
in [27]:

E f d3σ

dp3
f

= Eid3σ(Q )

dp3
i

⊗ P (Ei → E f )

⊗ D(Q → H Q ) ⊗ f (H Q → e, J/ψ), (1)

where “i” and “f”, respectively, correspond to “initial” and “final”, 
Q denotes quarks and gluons (partons). Eid3σ(Q )/dp3

i denotes 

the initial parton spectrum, computed at next to leading order [40]
for light and heavy partons. D(Q → H Q ) is the fragmentation 
function of parton Q to hadron H Q ; for charged hadrons, D and 
B mesons we use DSS [41], BCFY [42] and KLP [43] fragmentation 
functions, respectively. P (Ei → E f ) is the energy loss probability, 
generalized to include both radiative and collisional energy loss in 
a realistic finite size dynamical QCD medium in which the tem-
perature is changing, as well as running coupling, path-length and 
multi-gluon fluctuations. In below expressions, running coupling 
is introduced according to [27], where the temperature T now 
changes with proper time τ ; the temperature dependence along 
the jet path is taken according to the ideal hydrodynamical 1 + 1D
Bjorken expansion [39]. Partons travel different paths in the QCD 
medium, which is taken into account through path length fluc-
tuations [44]. Multi-gluon fluctuations take into account that the 
energy loss is a distribution, and are included according to [27,45]
(for radiative energy loss) and [44,46] (for collisional energy loss).

The dynamical energy loss formalism was originally developed 
for constant temperature QCD medium, as described in detail 
in [23–25]. We have now derived collisional and radiative en-
ergy loss expressions for the medium in which the temperature 
is changing along the jet path; detailed calculations will be pre-
sented elsewhere, while the main results are summarized below.

For the collisional energy loss, we obtain the following analyti-
cal expression:

dEcol

dτ
= 2C R

π v2
αS(E T )αS(μ

2
E(T ))

∞∫
0

neq(|�k|, T )d|�k|
⎛
⎜⎝

|�k|/(1+v)∫
0

d|�q|
v|�q|∫

−v|�q|
ωdω

+
|�q|max∫

|�k|/(1+v)

d|�q|
v|�q|∫

|�q|−2|�k|

ωdω

⎞
⎟⎠

(
|�L(q, T )|2 (2|�k| + ω)2 − |�q|2

2

+ |�T (q, T )|2 (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)
4|�q|4 (v2|�q|2 − ω2)

)
.

(2)

Here E is initial jet energy, τ is the proper time, T is the temper-
ature of the medium, αS is running coupling [27] and C R = 4

3 . k
is the 4-momentum of the incoming medium parton, v is the ve-
locity of the incoming jet and q = (ω, �q) is the 4-momentum of 
the gluon. neq(|�k|, T ) = N

e|�k|/T −1
+ N f

e|�k|/T +1
is the equilibrium mo-

mentum distribution [47] at temperature T including quarks and 
gluons (N and N f are the number of colors and flavors, respec-
tively). �L(T ) and �T (T ) are effective longitudinal and transverse 
gluon propagators [48]:

�−1
L (T ) = �q2 + μE(T )2(1 + ω

2|�q| ln |ω − |�q|
ω + |�q| |), (3)

�−1
T (T ) = ω2 − �q2 − μE(T )2

2

− (ω2 − �q2)μE(T )2

2�q2
(1 + ω

2|�q| ln |ω − |�q|
ω + |�q| |), (4)

while the electric screening (the Debye mass) μE (T ) can be ob-
tained by self-consistently solving the expression [49] (n f is num-
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ber of the effective degrees of freedom, 	Q C D is perturbative QCD 
scale):

μE(T )2

	2
Q C D

ln

(
μE(T )2

	2
Q C D

)
= 1 + n f /6

11 − 2/3 n f

(
4π T

	Q C D

)2

. (5)

The gluon radiation spectrum takes the following form:

dNrad

dxdτ
=

∫
d2k

π

d2q

π

2 C R C2(G) T

x

αs(E T )αs(
k2+χ(T )

x )

π

× μE(T )2 − μM(T )2

(q2 + μM(T )2)(q2 + μE(T )2)

×
(

1 − cos
(k+q)2 + χ(T )

xE+ τ

)
(k+q)

(k+q)2 + χ(T )

×
(

(k+q)

(k+q)2 + χ(T )
− k

k2 + χ(T )

)
, (6)

where C2(G) = 3 and μM(T ) is magnetic screening. k and q are 
transverse momenta of radiated and exchanged (virtual) gluon, re-
spectively. χ(T ) ≡ M2x2 + mE (T )2/2, where x is the longitudinal 
momentum fraction of the jet carried away by the emitted gluon, 
M is the mass of the quark or gluon jet and mg(T ) = μE (T )/

√
2

is effective gluon mass in finite temperature QCD medium [36]. 
We also recently abolished the soft-gluon approximation [50], for 
which we however showed that it does not significantly affect the 
model results; consequently, this improvement is not included in 
DREENA-B, but can be straightforwardly implemented in the future 
DREENA developments, if needed.

Note that, as a result of introducing medium evolution, the dy-
namical energy loss formalism now explicitly contains changing 
temperature in the energy loss expression. This is contrary to most 
of the other models, in which temperature evolution is introduced 
indirectly, through transport coefficient q̂ or gluon rapidity den-
sity dNg

dy (see [51] and references therein). This feature makes the 
dynamical energy loss a natural framework to incorporate diverse 
temperature profiles as a starting point for QGP tomography. As 
the first (major) step, we will below numerically implement this 
possibility through Bjorken 1 + 1D expansion [39].

Regarding the numerical procedure, computation efficiency of 
the algorithm implemented in DREENA-C framework [26] was al-
ready two orders of magnitude higher with respect to the ba-
sic (unoptimized) brute-force approach applied in [27]. However, 
straightforward adaptation of the DREENA-C code to the case of 
the Bjorken type evolving medium was not sufficient. This was 
dominantly due to additional integration over proper time τ , 
which increased the calculation time for more than two orders of 
magnitude. The computation of e.g. radiative energy losses alone, 
for a single probe, took around 10 hours on the available computer 
resources (a high performance workstation). Taking into account 
that it requires ∼ 103 such runs to produce the results presented in 
this paper, it is evident that a substantial computational speedup 
was necessary.

The main algorithmic tool that we used to optimize the cal-
culation was a combination of sampling and tabulating various 
intermediate computation values and their subsequent interpola-
tion. We used nonuniform adaptive grids of the sampling points, 
denser in the parts of the parameter volume where the sam-
pled function changed rapidly. Similarly, the parameters used for 
the numerical integration (the number of quasi-Monte Carlo sam-
pling points and the required accuracy) were also suitably varied 
throughout the parameter space. Finally, while the computation in 
DREENA-C was performed in a software for symbolic computation, 
the new algorithm was redeveloped in C programming language. 

The combined effect of all these improvements was a computa-
tional speedup of almost three orders of magnitude, which was a 
necessary prerequisite for both current practical applicability and 
future developments of DREENA framework.

Regarding the parameters, we implement Bjorken 1 + 1D ex-
pansion [39], with commonly used τ0 = 0.6 fm [52,53], and ini-
tial temperatures for different centralities calculated according to 
T0 ∼ (dNch/dy/A⊥)1/3 [54], where dNch/dy is charged multiplicity 
and A⊥ is overlap area (based on the Glauber model nuclear over-
lap function) for specific collision system and centrality. We use 
this equation, starting from T0 = 500 MeV in 5.02 TeV Pb + Pb
most central collisions at the LHC, which is estimated based on 
average medium temperature of 348 MeV in these collisions, and 
QCD transition temperature of Tc ≈ 150 MeV [55]. Note that the 
average medium temperature of 348 MeV in most central 5.02 TeV 
Pb + Pb collisions comes from [28] the effective temperature (Tef f ) 
of 304 MeV for 0-40% centrality 2.76 TeV Pb+Pb collisions at the 
LHC [56] experiments (as extracted by ALICE). Once T0s for most 
central Pb + Pb collisions are fixed, T0 for both different central-
ities and different collision systems (Xe + Xe and Pb + Pb) are 
obtained from the expression above.

Other parameters used in the calculation remain the same as in 
DREENA-C [26]. In particular, the path-length distributions for both 
Xe + Xe and Pb + Pb are calculated following the procedure de-
scribed in [57], with an additional hard sphere restriction r < R A

in the Woods-Saxon nuclear density distribution to regulate the 
path lengths in the peripheral collisions. Note that the path-length 
distributions for Pb + Pb are explicitly provided in [26]; we have 
also checked that, for each centrality, our obtained eccentricities 
remain within the standard deviation of the corresponding Glauber 
Monte Carlo results [58]. For Xe + Xe, it is straightforward to show 
that Xe + Xe and Pb + Pb distributions are the same up to rescall-
ing factor (A1/3, where A is atomic mass number), as we discussed 
in [59]. Furthermore, the path-length distributions correspond to 
geometric quantity, and are therefore the same for all types of 
partons (light and heavy). For QGP, we take 	Q C D = 0.2 GeV and 
n f = 3. As noted above, temperature dependent Debye mass μE (T )

is obtained from [49]. For light quarks and gluons, we, respec-
tively, assume that their effective masses are M ≈μE(T )/

√
6 and 

mg ≈ μE (T )/
√

2 [36]. The charm and bottom masses are M =1.2
GeV and M =4.75 GeV, respectively. Magnetic to electric mass ra-
tio is extracted from non-perturbative calculations [60,61], leading 
to 0.4 < μM/μE < 0.6 - this range of screening masses leads to 
presented uncertainty in the predictions. We note that no fitting 
parameters are used in the calculations, that is, all the parameters 
correspond to standard literature values.

3. Results and discussion

In this section, we will present joint R A A and v2 predictions 
for light (charged hadrons) and heavy (D and B mesons) flavor in 
Pb + Pb and Xe + Xe collisions at the LHC, obtained by DREENA-B 
framework. Based on the path-length distributions from Figure 1 
in [26], we will, in Figs. 1 to 2, show R A A and v2 predictions for 
light and heavy flavor, in 5.02 TeV Pb + Pb and 5.44 TeV Xe + Xe
collisions, at different centralities. We start by presenting charged 
hadrons predictions, where R A A data are available for both Pb + Pb
and Xe + Xe, while v2 data exist for Pb + Pb collisions. Com-
parison of our joint predictions with experimental data is shown 
in Fig. 1, where 1st and 2nd columns correspond, respectively, to 
R A A and v2 predictions at Pb + Pb, while 3rd and 4th columns 
present equivalent predictions/data for Xe + Xe collisions at the 
LHC. From this figure, we see that DREENA-B is able to well ex-
plain joint R A A and v2 data. For 5.44 TeV Xe + Xe collisions at the 
LHC, we observe good agreement of our predictions with prelim-
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Fig. 1. First column: R A A vs. p⊥ predictions are compared with 5.02 TeV Pb + Pb ALICE [7], ATLAS [8] and CMS [9] h± experimental data. Second column: Equivalent comparison 
for v2 vs. p⊥ (data [15–17]). Third column: R A A vs. p⊥ predictions are compared with 5.44 TeV Xe + Xe ALICE [62], ATLAS [63] and CMS [64] preliminary data. Fourth column:
Equivalent predictions for v2 vs. p⊥ . ALICE, ATLAS and CMS data are respectively represented by red circles, green triangles and blue squares, while centrality regions are 
indicated in the relevant subfigures. Full and dashed curves correspond to, respectively, DREENA-B and DREENA-C frameworks. The gray band boundaries correspond to 
μM/μE = 0.4 and μM/μE = 0.6.
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Fig. 2. First column: Theoretical predictions for D and B meson R A A vs. p⊥ are compared with the available 5.02 TeV Pb + Pb ALICE [10] (red circles) D meson experimental 
data. Second column: v2 vs. p⊥ predictions are compared with 5.02 TeV Pb + Pb ALICE [19] (red circles) and CMS [20] (blue squares) D meson experimental data. Third and 
fourth column: Heavy flavor R A A and v2 vs. p⊥ predictions are, respectively, provided for 5.44 TeV Xe + Xe collisions at the LHC. First to third row, respectively, correspond 
to 0 − 10%, 10 − 30% and 30 − 50% centrality regions. The gray band boundaries correspond to μM/μE = 0.4 and μM/μE = 0.6.

inary R A A data from ALICE, ATLAS and CMS data (where we note 
that these predictions were generated, and posted on arXiv, be-
fore the data became available), except for high centrality regions, 
where our predictions do not agree with ALICE (and also partially 
with ATLAS) data; however, note that in these regions ALICE, AT-
LAS and CMS data also do not agree with each other.

Furthermore, comparison of predictions obtained with DREENA-
B and DREENA-C frameworks in Fig. 1, allows to directly assess 
the importance of inclusion of medium evolution on different ob-
servables, as the main difference between these two frameworks 
is that DREENA-B contains Bjorken evolution, while DREENA-C ac-
counts for evolution in the simplest form (through constant mean 
temperature). We see that inclusion of Bjorken evolution has a 
negligible effect on R A A , while having a significant effect on v2. 
That is, it keeps R A A almost unchanged, while significantly de-
creasing v2. Consequently, small effect on R A A , supports the fact 
that R A A is weakly sensitive to medium evolution, making R A A an 
excellent probe of jet-medium interactions in QGP; i.e. in QGP to-
mography, R A A can be used to calibrate parton medium interaction 
models. On the other hand, medium evolution clearly influences v2
predictions, in line with previous conclusions [65,66]; this sensitiv-
ity makes v2 an ideal probe to constrain QGP medium parameters 
also from the point of high p⊥ measurements (in addition to con-
straining them from low p⊥ predictions and data).

In Fig. 2, we provide joint predictions for D and B meson R A A
(left panel) and v2 (right panel) predictions for both 5.02 TeV 
Pb + Pb and 5.44 TeV Xe + Xe collisions at the LHC. Predictions 
are compared with the available experimental data. For D mesons, 
we again observe good joint agreement with the available R A A and 
v2 data. For B mesons (where the experimental data are yet to be-
come available), we predict a notable suppression (see also [27,

67]), which is consistent with non-prompt J/� R A A measure-
ments [68] (indirect probe of b quark suppression). Additionally, 
we predict non-zero v2 for higher centrality regions. This does not 
necessarily mean that heavy B meson flows, since we here show 
predictions for high p⊥ , and flow is inherently connected with 
low p⊥ v2. On the other hand, high p⊥ v2 is connected with the 
difference in the B meson suppression for different (in-plane and 
out-of-plane) directions, leading to our predictions of non zero v2
for high p⊥ B mesons. Additionally, by comparing D and B meson 
v2s in Fig. 2, we observe that their difference is large and that it 
qualitatively exhibits the same dependence on p⊥ as R A A . This v2
comparison therefore presents additional important prediction of 
the heavy flavor dead-cone effect in QGP, where a strikingly simi-
lar signature of this effect is observed for R A A and v2.

The predicted similarity between R A A and v2 dead-cone effects 
can be analytically understood by using simple scaling arguments. 
Fractional energy loss can be estimated as [26]

�E/E ∼ ηT a Lb, (7)

where a, b are proportionality factors, T and L are, respectively, the 
average temperature of the medium and the average path-length 
traversed by the jet. η is a proportionality factor that depends on 
initial jet mass M and transverse momentum p⊥ .

Under the assumption of small fractional energy loss, we can 
make the following estimate [26]:

R A A ≈ 1 − ξ(M, p⊥)T a Lb,

v2 ≈ ξ(M, p⊥)
(T a Lb−1�L − T a−1Lb�T )

2
, (8)
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where �L and �T are, respectively, changes in average path-
lengths and average temperatures along out-of-plane and in-plane 
directions. ξ = (n − 2)η/2, where n is the steepness of the initial 
momentum distribution function.

The difference between R A A and v2 for D and B mesons then 
becomes:

R B
A A − R D

A A ≈ (ξ(Mc, p⊥) − ξ(Mb, p⊥)) T a Lb,

v D
2 − v B

2 ≈ (ξ(Mc, p⊥) − ξ(Mb, p⊥))

× (T a Lb−1�L − T a−1Lb�T )

2
, (9)

where Mc and Mb are charm and bottom quark masses respec-
tively. From Eq. (9), we see the same mass dependent prefactor for 
both R A A and v2 comparison, intuitively explaining our predicted 
dead-cone effect similarity for high-p⊥ R A A and v2.

4. Summary

Overall, we see that comprehensive joint R A A and v2 predic-
tions, obtained with our DREENA-B framework, lead to a good 
agreement with all available light and heavy flavor data. This is, 
to our knowledge, the first study to provide such comprehensive 
predictions for high p⊥ observables. In the context of v2 puzzle, 
this study presents a significant development, as the other mod-
els were not able to achieve this agreement without introducing 
new phenomena [69]. However, for more definite conclusions, the 
inclusion of more complex QGP evolution within DREENA frame-
work is needed, which is our main ongoing - but highly non-trivial 
- task, due to the complexity of underlying energy loss formalism.

As an outlook, for Xe + Xe, we also showed an extensive set 
of predictions for both R A A and v2, for different flavors and cen-
tralities, to be compared with the upcoming experimental data. 
Reasonable agreement with these data would present a strong ar-
gument that the dynamical energy loss formalism can provide a 
reliable tool for precision QGP tomography. Moreover, such com-
parison between predictions and experimental data can also con-
firm interesting new patterns in suppression data, such as our 
prediction of strikingly similar signature of the dead-cone effect 
between R A A and v2 data.
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Abstract

We overview our recently developed DREENA-C and DREENA-B frameworks, where DREENA (Dynamical Radiative
and Elastic ENergy loss Approach) is a computational implementation of the dynamical energy loss formalism; C stands
for constant temperature and B for the medium evolution modeled by Bjorken expansion. At constant temperature our
predictions overestimate v2, in contrast to other models, but consistent with simple analytical estimates. With Bjorken
expansion, we obtain good agreement with both RAA and v2 measurements. We find that introducing medium evolution
has a larger effect on v2 predictions, but for precision predictions it has to be taken into account in RAA predictions as
well. We also propose a new observable, which we call path length sensitive suppression ratio, for which we argue
that the path length dependence can be assessed in a straightforward manner. We also argue that Pb + Pb vs. Xe + Xe
collisions make a good system to assess the path length dependence. As an outlook, we expect that introduction of more
complex medium evolution (beyond Bjorken expansion) in the dynamical energy loss formalism can provide a basis for
a state of the art QGP tomography tool – e.g. to jointly constrain the medium properties from the point of both high-p⊥
and low-p⊥ data.

Keywords: relativistic heavy ion collisions, quark-gluon plasma, energy loss, hard probes, heavy flavor

1. Introduction

Energy loss of high-p⊥ particles traversing QCD medium is considered to be an excellent probe of
QGP properties [1, 2, 3]. The theoretical predictions can be generated and compared with a wide range
of experimental data, coming from different experiments, collision systems, collision energies, centralities,
observables. This comprehensive comparison of theoretical predictions and high p⊥ data, can then be used
together with low p⊥ theory and data to study the properties of created QCD medium [4, 5, 6, 7], that is,
for precision QGP tomography. However, to implement this idea, it is crucial to have a reliable high p⊥
parton energy loss model. With this goal in mind, during the past several years, we developed the dynamical
energy loss formalism [8]. Contrary to the widely used approximation of static scattering centers, this model
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takes into account that QGP consists of dynamical (moving) partons, and that the created medium has finite
size. The calculations are based on the finite temperature field theory, and generalized HTL approach. The
formalism takes into account both radiative and collisional energy losses, is applicable to both light and
heavy flavor, and has been recently generalized to the case of finite magnetic mass and running coupling [9].
Most recently, we also relaxed the soft-gluon approximation within the model [15]. Finally, the formalism is
integrated in an up-to-date numerical procedure [9], which contains parton production [10], fragmentation
functions [11], path-length [12, 13] and multi-gluon fluctuations [14].

The model up-to-now explained a wide range of RAA data [9, 16, 17, 18], with the same numerical
procedure, the same parameter set, and with no fitting parameters, including explaining puzzling data and
generating predictions for future experiments. This then strongly suggests that the model provides a realistic
description of high p⊥ parton-medium interactions. However, the model did not take into account the
medium evolution, so we used it to provide predictions only for those observables that are considered to be
weakly sensitive to QGP evolution.

Therefore, our goal, which will be addressed in this proceedings, is to develop a framework which will
allow systematic comparison of experimental data and theoretical predictions, obtained by the same formal-
ism and the same parameter set. In particular, we want to develop a framework, which can systematically
generate predictions for different observables (both RAA and v2), different collision systems (Pb + Pb and
Xe+Xe), different probes (light and heavy), different collision energies and different centralities [19, 20, 21].
Within this, our major goal is to introduce medium evolution in the dynamical energy loss formalism [20],
where we start with 1+1D Bjorken expansion [22], and where our developments in this direction, will also
be outlined in this proceedings. Finally, we also want to address an important question of how to differen-
tiate between different energy loss models; in particular, what is the appropriate observable, and what are
appropriate systems, to assess energy loss path-length dependence [21]. Note that only the main results are
presented here; for a more detailed version, see [19, 20, 21], and references therein.

2. Results and discussion

As a first step towards the goals specified above, we developed DREENA-C framework [19], which is
a fully optimized computational suppression procedure based on our dynamical energy loss formalism in
constant temperature finite size QCD medium. Within this framework we, for the first time, generated joint
RAA and v2 predictions based on our dynamical energy loss formalism. We generated predictions for both
light and heavy flavor probes, and different centrality regions in Pb + Pb collisions at the LHC (see [19] for
more details). We obtained that, despite the fact that DREENA-C does not contain medium evolution (to
which v2 is largely sensitive), it leads to qualitatively good agreement with this data, though quantitatively,
the predictions are visibly above the experimental data.

The theoretical models up-to-now, faced difficulties in jointly explaining RAA and v2 data, i.e. lead to
underprediction of v2, unless new phenomena are introduced, which is known as v2 puzzle [23]. Having this
in mind, the overestimation of v2, obtained by DREENA-C, seems surprising. However, by using a simple
scaling arguments, where fractional energy loss is proportional to T a and Lb , and where, within our model
a, b are close to 1, we straightforwardly obtain that in constant T medium, RAA ≈ 1 − ξT L and v2 ≈ ξTΔL

2 ,
while in evolving medium RAA retains the same expressions and v2 ≈ ξTΔL−ξΔT L

2 (see [19] for more details,
ξ is a proportionality factor that depends on initial jet p⊥). So, it is our expectation that, within our model,
the medium evolution will not significantly affect RAA, while it will notably lower the v2 predictions.

To check the reliability of these simple estimates, we developed DREENA-B framework [20], which is
our most recent development within dynamical energy loss formalism. Here B stands for 1+1D Bjorken
expansion [22], i.e. the medium evolution is introduced in dynamical energy loss formalism in a simple
analytic way. We provided first joint RAA and v2 predictions with dynamical energy loss formalism in
expanding QCD medium, which are presented in Fig. 1 (for charged hadrons), and we observe very good
agreement with both RAA and v2 data. We equivalently obtained the same good agreement for D mesons,
and predicted non-zero v2 for high p⊥ B mesons.

In Fig. 2, we further present predictions for Xe+Xe data [21], where we note that these predictions were
generated before the data became available. In this figure (see also Fig. 1), we compare DREENA-C and
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Fig. 1. Joint RAA and v2 predictions for charged hadrons in 5.02 TeV Pb + Pb collisions. Upper panels: Predictions for RAA
vs. p⊥ are compared with ALICE [24] (red circles) and CMS [25] (blue squares) charged hadron experimental data in 5.02 TeV
Pb + Pb collisions. Lower panels: Predictions for v2 vs. p⊥ are compared with ALICE [26] (red circles) and CMS [27] (blue squares)
experimental data in 5.02 TeV Pb + Pb collisions. Full and dashed curves correspond, respectively, to the predictions obtained with
DREENA-B and DREENA-C frameworks. In each panel, the upper (lower) boundary of each gray band corresponds to μM/μE = 0.6
(μM/μE = 0.4). Columns 1-6 correspond, respectively, to 0 − 5%, 5 − 10%, 10 − 20%,..., 40 − 50% centrality regions. The figure is
adapted from [19, 20] and the parameter set is specified there.

DREENA-B frameworks, to assess the importance of including medium evolution on RAA and v2 observ-
ables. We see that introduction of expanding medium affects both RAA and v2 data. That is, it systematically
somewhat increase RAA, while significantly decreasing v2; this observation is in agreement with our estimate
provided above. Consequently, we see that this effect has large influence on v2 predictions, confirming pre-
vious arguments that v2 observable is quite sensitive to medium evolution. On the other hand, this effect is
rather small on RAA, consistent with the notion that RAA is not very sensitive to medium evolution [28, 29].
However, our observation from Figs. 1 and 2 is that medium evolution effect on RAA, though not large,
should still not be neglected in precise RAA calculations, especially for high p⊥ and higher centralities.

Fig. 2. Joint RAA and v2 predictions for charged hadrons

in 5.44 TeV Xe + Xe collisions. Predictions for RAA vs. p⊥
and v2 vs. p⊥ are shown on upper and lower panels, respec-
tively. Columns 1-3, respectively, correspond to 5 − 10%,
20 − 30% and 40 − 50% centrality regions. Full and dashed
curves correspond, respectively, to the predictions obtained
with DREENA-B and DREENA-C frameworks. The figure is
adapted from [20] and the parameter set is specified there.

Fig. 3. Path-length sensitive suppression ratio (RXePb
L ) for

light and heavy probes. Predictions for RXePb
L vs. p⊥ is

shown for charged hadrons (full), D mesons (dashed) and B
mesons (dot-dashed). First and second column, respectively,
correspond to 30 − 40% and 50 − 60% centrality regions.
μM/μE = 0.4. The figure is adapted from [21] and the pa-
rameter set is specified there.

Finally, as the last topic of this proceedings, we address a question on how to differentiate between
different energy loss models. With regard to this, note that path length dependence provides an excellent
signature differentiating between different energy loss models, and consequently also between the underly-
ing energy loss mechanisms. For example, some energy loss models have linear, some have quadratic, and
our dynamical energy loss has the path-length dependence between linear and quadratic, which is due to
both collisional and radiative energy loss mechanisms included in the model. To address this question, we
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first have to answer what is an appropriate system for such a study. We argue that comparison of suppres-
sions in Pb+Pb and Xe+Xe is an excellent way to study the path length dependence: From the suppression
calculation perspective, almost all properties of these two systems are the same. That is, we show [21] that
these two systems have very similar initial momentum distributions, average temperature for each centrality
region and path length distributions (up to rescaling factor A1/3). That is, the main property differentiating
the two systems is its size, i.e. rescaling factor A1/3, which therefore makes comparison of suppressions in
Pb + Pb and Xe + Xe collisions an excellent way to study the path length dependence.

The second question is what is appropriate observable? With regards to that, the ratio of the two RAA

seems a natural choice, as has been proposed before. However, in this way the path length dependence
cannot be naturally extracted, as shown in [21]. For example, this ratio approaches one for high p⊥ and high
centralities, suggesting no path length dependence, while the dynamical energy loss has strong path length
dependence. Also, the ratio has strong centrality dependence. That is, from this ratio, no useful information
can be deduced. The reason for this is that this ratio includes a complicated relationship (see [21] for more
details) which depends on the initial jet energy and centrality; so extracting the path-length dependence from
this observable would not be possible.

However, based on the derivation presented in [21], we propose to use the ratio of 1-RAA instead. From
this estimate, we see that this ratio RXePb

L ≡ 1−RXeXe
1−RPbPb

≈
(

AXe
APb

)b/3
has a simple dependence on only the size of

the medium (A1/3 ratio) and the path length dependence (exponent b). In Fig. 3 we plot this ratio, where we
see that the path length dependence can be extracted from this ratio in a simple way, and moreover there is
only a weak centrality dependence. Therefore, 1-RAA ratio seems as a natural observable, which we propose
to call path-length sensitive suppression ratio.
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Traditionally, the low-p⊥ sector is used to infer the features of initial stages before quark-gluon plasma
thermalization. On the other hand, a recently acquired wealth of high-p⊥ experimental data paves the way
to utilize the high-p⊥ particles’ energy loss in exploring the initial stages. We here study how four different
commonly considered initial-stage scenarios—which have the same temperature profile after thermalization, but
differ in the “temperature” profile before thermalization—affect predictions of high-p⊥ RAA and v2 observables.
Contrary to common expectations, we obtain that high-p⊥ v2 is insensitive to the initial stages of medium
evolution, being unable to discriminate between different conditions. On the other hand, RAA is sensitive to
these conditions; however, within the current error bars, the sensitivity is not sufficient to distinguish between
different initial stages. Moreover, we also reconsider the validity of the widely used procedure of fitting the
energy loss parameters, individually for different initial-stage cases, to reproduce the experimentally observed
RAA. We here find that previously reported sensitivity of v2 to different initial states is mainly a consequence of
the RAA fitting procedure, which may lead to incorrect conclusions. On the other hand, if a global property, in
particular the same average temperature, is imposed to tested temperature profiles, high sensitivity of high-p⊥
v2 is again obtained. We show, however, that this sensitivity would be a consequence of differences not in initial
stages but rather in final stages. Consequently, the simultaneous study of high-p⊥ RAA and v2, with consistent
energy loss parametrization and stringently controlled temperature profiles, is necessary to assess sensitivity of
different variables to differences in initial and final stages.

DOI: 10.1103/PhysRevC.101.064909

I. INTRODUCTION

It is by now firmly confirmed that a new state of matter—
the quark-gluon plasma (QGP) [1,2], in which quarks, anti-
quarks and gluons are deconfined—is formed at the Relativis-
tic Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC). Rare high transverse momentum (high-p⊥) particles,
which are created immediately upon collision, are sensitive
to all stages of QGP evolution, and are considered to be
excellent probes [3–6] of this extreme form of matter. As these
probes traverse the QGP, they lose energy, which is commonly
assessed through high-p⊥ angular averaged (RAA) [7–14] and
high-p⊥ angular differential (v2) [15–19] nuclear modification
factors.

Commonly, high-p⊥ particles are used to study the nature
of jet-medium interactions, while low-p⊥ particles are used
to infer the bulk QGP properties. Accordingly, the scarce
knowledge of the features of initial stages before QGP ther-
malization (τ < τ0) was mostly inferred by utilizing data from
the low-p⊥ sector [20–22] (p⊥ � 5 GeV). However, since
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high-p⊥ partons effectively probe QGP properties, which in
turn depend on initial stages, the idea of utilizing high-p⊥
theory and data in exploring the initial stages emerged. This
idea acquired an additional boost, since a wealth of precision
high-p⊥ RAA [7–12] and v2 [15–19] data have recently be-
come available. Thus, the main goal of this paper is to assess
to what extent and through what observables the initial stages
of QGP evolution can be restrained by exploiting the energy
loss of high-p⊥ particles in the evolving medium.

While clarifying these issues is clearly intriguing, the
results of current theoretical studies on this subject are either
inconclusive or questionable [23–25] as, e.g., the energy loss
parameters are fitted to reproduce the experimentally observed
high-p⊥ RAA data individually for different analyzed initial
stages. The energy loss parametrization should, however,
clearly be a property of high-p⊥ parton interactions with
the medium, rather than of individual temperature profiles.
Consequently, to more rigorously study this issue, one needs a
high control on both the energy loss and the analyzed tempera-
ture (T ) profiles. To achieve this, we here use our state-of-the-
art dynamical energy loss formalism, embedded in Bjorken
one-dimensional (1D) medium evolution [26] (DREENA-B
framework). While Bjorken 1D medium evolution is not a
full bulk QGP evolution model, for this particular study it
has a major advantage, as it allows one to analytically intro-
duce different evolutions before thermalization, with the same
evolution after thermalization, which therefore allows one to
clearly isolate only the effects of different initial stages (which
would not be possible with full hydrodynamics models).
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Consequently, we will here consider the effects on high-
p⊥ RAA and v2 predictions of four common initial-stage
cases [23], which have the same T profiles after thermaliza-
tion, but differ in T profiles before the thermalization.

Furthermore, we recently demonstrated that the DREENA-
B framework [27] is able to accurately reproduce both high-
p⊥ RAA and v2 data for diverse colliding systems and energies
(Pb + Pb at 2.76 and 5.02 TeV and Xe + Xe at 5.44 TeV), for
both light and heavy flavors (h±, B, D) and all available cen-
tralities, without introducing new phenomena [28,29]. This
is distinct from many other formalisms, which employ more
advanced medium evolution models, but contain simplified
energy loss models, which have a tendency to underestimate
v2 relative to the experimental data; this is widely known as
the v2 puzzle [30,31]. Moreover, we recently obtained that
going from 1D Bjorken to full 3+1D hydrodynamics evolu-
tion [32] does not significantly change the agreement between
our predictions and experimental data, strongly suggesting
that, for high-p⊥ data, accurate energy loss description is
more important than the medium evolution. Consequently, for
this study, using 1D Bjorken evolution has a major advantage
of tight control over the temperature profiles used to mimic
different initial states, while, at the same time, providing a
reasonably realistic description of the data within our model.

The paper is organized as follows. In Sec. II, theoretical
and computational frameworks are outlined. In Sec. III, we
first assess the sensitivity of RAA and v2 to the aforementioned
initial stages. We then adopt the approach of fitting initial
temperature (T0) to reproduce the same RAA in all cases, and
then assess the effect of thus obtained “modified” temperature
profiles on RAA and v2. We finally reexamine the validity of
the widely used procedure [23–25] of fitting the energy loss
parameters for different initial-stage cases to reproduce the
same RAA. For all these studies, we analytically pinpoint the
origin of the obtained results. Our conclusions are presented
in Sec. IV.

II. THEORETICAL AND COMPUTATIONAL
FRAMEWORKS

To obtain the medium modified distribution of high-p⊥
light and heavy flavor particles, the generic pQCD convolution

formula [33,34] is utilized:

E f d3σ

d p3
f

= Eid3σ (Q)

d p3
i

⊗ P(Ei → E f ) ⊗ D(Q → HQ), (1)

where indexes f and i refer to the final hadron (HQ) and

initial parton (Q), respectively. Eid3σ (Q)
d p3

i
denotes the parton

initial momentum distribution, calculated according to [35].
P(Ei → E f ) represents the energy loss probability based on
our dynamical energy loss formalism (see below). D(Q →
HQ) stands for the fragmentation function of a parton into
a hadron (HQ), where for the light hadrons and D and B
mesons we apply fragmentation functions of de Florian, Sas-
sot, and Stratmann (DSS) [36], Braaten, Cheung, Fleming,
and Yuan (BCFY) [37], and Kartvelishvili, Likhoded, and
Petrov (KLP) [38], respectively.

The dynamical energy loss formalism [39–41] includes
several unique features in modeling jet-medium interactions,
whereby we previously showed [42] that all the ingredients are
important for accurately describing experimental data: (1) The
finite size QCD medium, that consists of dynamical (moving)
as opposed to static scattering centers, which allows longi-
tudinal momentum exchange with the medium constituents.
(2) The calculations are done within the finite temperature
generalized hard-thermal-loop approach [43], so that infrared
divergences are naturally regulated in a highly nontrivial
manner, contrary to many models which apply tree-level (vac-
uumlike) propagators [44–47]. (3) Both radiative [40,41] and
collisional [39] contributions are calculated within the same
theoretical framework. (4) The generalizations to a finite mag-
netic mass [48], running coupling [33], and beyond the soft-
gluon approximation [49] are performed. In this paper, for the
magnetic to electric mass ratio we assume the value μM/μE =
0.5, since various nonperturbative [50,51] approaches re-
ported it to be in the range 0.4–0.6. (5) The energy loss prob-
ability comprises also multigluon [52] and path-length [34]
fluctuations. The path-length fluctuations are calculated ac-
cording to the procedure presented in [53], and are provided
in Ref. [54].

As outlined in Ref. [27], the analytical expression for a
single gluon radiation spectrum, in an evolving medium, reads

dNrad

dx dτ
= C2(G)CR

π

1

x

∫
d2q
π

d2k
π

μ2
E (T ) − μ2

M (T )[
q2 + μ2

E (T )
][

q2 + μ2
M (T )

]T αs(ET )αs

(
k2 + χ (T )

x

)

×
[

1 − cos

(
(k + q)2 + χ (T )

xE+ τ

)]
2(k + q)

(k + q)2 + χ (T )

[
k + q

(k + q)2 + χ (T )
− k

k2 + χ (T )

]
, (2)

where k and q denote transverse momenta of radiated and exchanged gluons, respectively, C2(G) = 3, CR = 4/3 (CR = 3) for
the quark (gluon) jet, while μE (T ) and μM (T ) are electric (Debye) and magnetic screening masses, respectively. Temperature
dependent Debye mass [55] is obtained by self-consistently solving Eq. (5) from Ref. [27]. αs is the (temperature dependent)
running coupling [56], E is the initial jet energy, while χ (T ) = M2x2 + m2

g(T ), where x is the longitudinal momentum fraction

of the jet carried away by the emitted gluon, M is the mass of the quark (Mu,d,s ≈ μE (T )/
√

6, i.e., the thermal mass, whereas
Mc = 1.2 GeV and Mb = 4.75 GeV) or gluon jet, and mg(T ) = μE (T )/

√
2 [57] is the effective gluon mass in finite temperature

QCD medium. Note that for all parameters we use standard literature values, i.e., we do not include additional fitting parameters
when comparing our predictions with experimental data.
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The analytical expression for the collisional energy loss per unit length in the evolving medium is given by [27]

dEcoll

dτ
= 2CR

πv2
αs(ET )αs

(
μ2

E (T )
)∫ ∞

0
neq(|�k|, T )d|�k|

[∫ |�k|/(1+v)

0
d|�q|

∫ v|�q|

−v|�q|
ωdω +

∫ |�q|max

|�k|/(1+v)
d|�q|

∫ v|�q|

|�q|−2|�k|
ω dω

]

×
[
|�L(q, T )|2 (2|�k| + ω)2 − |�q|2

2
+ |�T (q, T )|2 (|�q|2 − ω2)[(2|�k| + ω)2 + |�q|2]

4|�q|4 (v2|�q|2 − ω2)

]
, (3)

where neq(|�k|, T ) = N
e|�k|/T −1

+ Nf

e|�k|/T +1
is the equilibrium mo-

mentum distribution [58] comprising gluons, quarks, and
antiquarks (N = 3 and Nf = 3 are the numbers of colors
and flavors, respectively). k is the four-momentum of the
incoming medium parton, v is velocity of the initial jet, and
q = (ω, �q) is the four-momentum of the exchanged gluon.
|�q|max is provided in Ref. [39], while �T (T ) and �L(T ) are
effective transverse and longitudinal gluon propagators given
by Eqs. (3) and (4) in Ref. [27].

One of the assets of our energy loss formalism is the fact
that energy loss explicitly depends on T , which makes it natu-
rally suited for examining the QGP properties via implemen-
tation of various temperature profiles. In this paper, the tem-
perature dependence on proper time (τ ) is taken according to
the ideal hydrodynamical 1D Bjorken expansion [26] T (τ ) ∼

3
√

(τ0/τ ), with thermalization time τ0 = 0.6 fm [59,60]. The
initial QGP temperature T0 for the chosen centrality bin is not
a free parameter, i.e., it is constrained starting from the ALICE
effective temperature [61] and following the numerical proce-
dure outlined in Ref. [62]. In this paper, we will concentrate on
mid-central 30–40% centrality region at 5.02 TeV Pb + Pb at
the LHC, which corresponds to T0 = 391 MeV [27]. However,
we performed an extensive study on all centrality regions
(as in [27]), and checked that the results and conclusions
obtained here are the same irrespectively of the centrality
region (results not shown for brevity). The QGP transition
temperature is considered to be TC ≈ 160 MeV [63].

The DREENA-B framework is applied to generate predic-
tions for two main high-p⊥ observables: RAA and v2. RAA is
defined as the ratio of the quenched A + A spectrum to the
p + p spectrum, scaled by the number of binary collisions
Nbin:

RAA(pT ) = dNAA/d pT

NbindNpp/d pT
; (4)

while for intuitive understanding of the underlying effects we
also use [54]

RAA ≈ Rin
AA + Rout

AA

2
, (5)

where Rin
AA and Rout

AA denote in-plane and out-of-plane nu-
clear modification factors, respectively. The expression for the
high-p⊥ elliptic flow is derived in [23] (see also [54,64,65]),
under the assumption of negligible higher harmonics at high
p⊥ � 10 GeV, leading to

v2 ≈ 1

2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

. (6)

The advantage of using Eq. (6) for high-p⊥ predictions is
that it is computationally significantly less demanding than the
commonly used v2 expression (see, e.g., Eq. (1) from [15]).
However, to explicitly verify its applicability, we checked that,
for average temperature profiles, Eq. (6) will lead to the same
result (up to less than 1% difference) as the commonly used
azimuthally dependent expression.

We also note that the approach to experimentally infer
v2 (see, e.g., Eq. (16) in [15]) is different from the above-
mentioned theoretical approaches. However, that approach
could lead to different v2 predictions only if event-by-event
fluctuations are considered (which we do not do in this study).
We also note that the importance of event-by-event fluctua-
tions in adequately addressing high-p⊥ v2 is currently an open
question; i.e., in [30], it was proposed that event-by-event
fluctuations may increase the high-p⊥ v2, while this was not
supported by two subsequent independent studies [29,66].

III. RESULTS AND DISCUSSION

In the first part of this section we address how different
initial stages (before the thermalization time τ0) affect our
predictions of high-p⊥ RAA and v2. To this end, we consider
the following four common cases of initial stages [23], which
assume the same 1D Bjorken hydro temperature (T ) pro-
file [26] upon thermalization (for τ � τ0), but have different
T profiles before the thermalization (for τ < τ0):

(a) T = 0, the so-called free-streaming case, which cor-
responds to neglecting interactions (i.e., energy loss)
before the QGP thermalization.

(b) The linear case, corresponding to linearly increasing T
with time from transition temperature (TC = 160 MeV
at τC = 0.25 fm) to the initial temperature T0.

(c) The constant case, T = T0.
(d) The divergent case, corresponding to 1D Bjorken ex-

pansion from τ = 0.

These initial stages are depicted in Fig. 1, and it is clear
that (a)–(d) case ordering corresponds to gradually increasing
prethermal interactions. Note that we use this classification
(a)–(d) consistently throughout the paper to denote initial
stages (for τ < τ0), as well as for the entire evolution. Also,
note that in this part of the study we will include experimental
data for comparison with our predictions. However, to allow
better visualization of our obtained numerical results, in the
other two parts of the study we will omit the comparison
with the data, as the error bars are large and the data re-
main the same. Intuitively, one would expect that introducing
these prethermal interactions would increase the energy loss
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FIG. 1. Four temperature evolution profiles, which differ at the initial stages. At τ � τ0, all profiles assume the same temperature
dependence on the proper time (1D Bjorken [26]). At the initial stage, i.e., for 0 < τ < τ0, the temperature is considered to be (a) equal
to zero; (b) increasing linearly from TC to T0 between τC and τ0, otherwise zero; (c) constant and equal to T0; and (d) a continuous function of
τ matching the dependence for τ � τ0. Note that, in each panel, T0 has the same value at τ0.

compared to the commonly considered free-streaming case,
and consequently lead to smaller RAA. In Fig. 2 we indeed
observe that RAA is sensitive to the initial stages for all types
of particles. That is, as expected, we see that the suppression
progressively increases from case (a) to case (d). However,
these differences are not very large, and the current error
bars at the LHC do not allow distinguishing between these
scenarios, as can be seen in Fig. 2 (left).

In contrast to RAA, the effect of initial stages on v2 is
intuitively less clear, as this observable nontrivially depends
on the energy loss or RAA’s (see Eq. (6)). From Fig. 3, we
surprisingly infer that v2 is insensitive to the presumed initial
stage for all types of particles (in distinction to the results
obtained in [24]), so that v2 is unable to distinguish between
different initial-stage scenarios.

To quantitatively understand this unexpected observation,
in Fig. 4 we show transverse momentum dependence of Rin

AA,
Rout

AA, and RAA in i = b, c, d cases relative to the baseline case
(a) for charged hadrons. The conclusions for heavy particles
are the same and therefore omitted. We distinguish three sets
of curves, which correspond to the ratio of RAA’s in linear
(b), constant (c), and divergent (d) cases relative to the free-
streaming (a) case. Note that the free-streaming case is used

as a baseline, as it corresponds to the most commonly used
scenario, both in low- and high-p⊥ calculations.

Each set of curves in Fig. 4 contains three lines, repre-
senting proportionality functions γ (p⊥), which are defined as
follows:

γ in
ia = Rin

AA,i

Rin
AA,a

, γ out
ia = Rout

AA,i

Rout
AA,a

, γia = RAA,i

RAA,a
, (7)

where i = b, c, d denotes the corresponding cases from Fig. 1.
From Fig. 4 we see that for the same i (i.e., within the same set
of curves (b), (c), or (d)) the proportionality functions γia(p⊥)
are practically identical for the relations involving in-plane,
out-of-plane, and angular averaged RAA’s:

γ in
ia ≈ γ out

ia ≈ γia. (8)

Note also that γia < 1, while γias from distinct sets signif-
icantly differ from one another (i.e., for i 
= j → γia(p⊥) 
=
γ ja(p⊥)).

Consequently, by implementing Eq. (7) in Eq. (6) and
acknowledging Eq. (8), we obtain

v2,i ≈ 1

2

γia
(
Rin

AA,a − Rout
AA,a

)
γia

(
Rin

AA,a + Rout
AA,a

) = v2,a, (9)
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FIG. 2. RAA dependence on p⊥ for four different initial stages depicted in Fig. 1 is shown for charged particles (left panel), D mesons
(central panel) and B mesons (right panel). For charged hadrons, the predictions are compared with 5.02 TeV Pb + Pb ALICE [7] (red circles),
ATLAS [8] (green triangles), and CMS [9] (blue squares) h± RAA experimental data. In each panel, temperature profiles from Fig. 1 are
represented by a full red curve (case (a)), by a dashed blue curve (case (b)), by a dot-dashed orange curve (case (c)), and by dotted green curve
(case (d)). The results correspond to the centrality bin 30–40%, and μM/μE = 0.5.
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FIG. 3. v2 dependence on p⊥ for four different initial stages depicted in Fig. 1. Left, central, and right panels correspond to charged
hadrons, D mesons and B mesons, respectively. For charged hadrons, the predictions are compared with 30–40% centrality 5.02 TeV Pb + Pb
ALICE [15] (red circles), ATLAS [16] (green triangles), and CMS [17] (blue squares) h± v2 experimental data. The labeling and remaining
parameters are the same as in Fig. 2.

for any choice of i = b, c, d , as observed in Fig. 3. Therefore,
we here showed that initial stages alone do not affect v2, i.e.,
they affect only RAA. RAA susceptibility to the initial stages is
in qualitative agreement with papers [27,67,68], where RAA is
shown to be only sensitive to the averaged properties of the
evolving medium, i.e., average temperature (T ). Since RAA

is proportional to T , and since for all four initial-stage cases
(a)–(d) the T value is different (T a < T b < T c < T d ), it is
evident that RAA will be different in these cases.

RAA

RAA
in

RAA
out

0 20 40 60 80 100
0.6

0.8

1.0

p (GeV)

R
A
A
,i/

R
A
A
,a

h±

FIG. 4. Transverse momentum dependence of in-plane (dashed),
out-of-plane (dot-dashed), and angular averaged (full curves) RAA

relative to the free-streaming (a) case for charged hadrons. Blue (up-
per), orange (middle), and green (lower) sets of curves correspond,
respectively, to (b), (c) and (d) cases. The remaining parameters are
the same as in Fig. 2.

The fact that RAA depends on the average temperature of
the medium, motivates us to further explore the case in which
we modify the above temperature profiles to reproduce the
same average temperature. This is equivalent to reevaluating
the initial temperatures for different cases from Fig. 1, and,
based on the reasoning above, it is evident that new initial
temperatures should satisfy the following ordering: T0,d ′ <

T0,c′ < T0,b′ < T0,a′ . This leads to T profiles, which do not
differ only at early times (τ < τ0), but represent different evo-
lutions altogether. These new evolutions, that are illustrated
in Fig. 5 (which is a counterpart of Fig. 1 for the second

C
,

0

TC

T0

T
Lin L Lout

FIG. 5. Temperature dependence on the proper time in the setup
with the same average temperatures. The labeling is the same as in
Fig. 1, apart from the fact that initial temperatures (T0’s) now differ
in these four cases. As in Fig. 1, TC = 160 MeV, τ0 = 0.6 fm, and
τ ′

C = 0.27 fm. Vertical gray dashed lines correspond to average in-
medium path length (L), and to the path lengths along in-plane (Lin)
and out-of-plane (Lout) directions, as labeled in the figure.
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FIG. 6. RAA dependence on p⊥ for four different medium evolutions depicted in Fig. 5. Left, central, and right panels correspond to charged
hadrons, D mesons, and B mesons, respectively. In each panel, the T profile corresponding to the case (a′) from Fig. 5 is represented by a full
red curve, case (b′) by a dashed blue curve, case (c′) by a dot-dashed orange curve, and case (d′) by a dotted green curve. The results correspond
to the centrality bin 30–40%, and μM/μE = 0.5.

part of this section), are denoted as (a′)–(d′) and referred to
as “modified” T profiles ((a) ≡ (a′)).

In this second T -profiles setup, we first verify from Fig. 6
that RAAs in all four cases practically overlap, as expected.
We next address how these modified evolution cases (a′)–(d′)
affect v2. From Fig. 7 we see that v2 is now very sensitive to
the transition from the free-streaming case to other modified
T profiles. More accurately, for all types of particles, the
lowest v2 is observed in the modified divergent case, while
the highest v2 is observed in the free-streaming case.

The observation from Fig. 7 leads to the following two
questions: (i) Why is v2 altered by these modified T profiles
(a′)–(d′)? (ii) Are these discrepancies a consequence of dif-
ferent initial stages? To answer these questions, we first note
that, within this setup, the differences between v2 (observed in
Fig. 7) are proportional to Rin

AA − Rout
AA, as the denominator in

Eq. (6) (as a starting premise) remains practically unchanged
(see Fig. 6). The transverse momentum dependence of Rin

AA −

Rout
AA is further shown in Fig. 8 for charged hadrons (as results

for D and B mesons will lead to the same conclusion). We see
a clear hierarchy, i.e., the largest Rin

AA − Rout
AA for free stream-

ing, descending towards the divergent case. To quantitatively
understand this observation, we note that for Rin

AA the high-p⊥
probes traverse, on average, the medium up to Lin, while
for Rout

AA the medium is traversed up to Lout. Consequently,
if we refer to Fig. 5, Rin

AA − Rout
AA comes from the T -profile

difference in the time region between Lin and Lout, i.e., upon
thermalization. Since in this region T d ′ < T c′ < T b′ < T a′

holds, Rin
AA − Rout

AA is the largest for the free-streaming case
and the smallest for the divergent case, as observed in Fig. 8,
and in agreement with v2 ordering in Fig. 7. This therefore
provides clarification of why Rin

AA − Rout
AA, and consequently

v2, is affected by these four different QGP evolution profiles,
and that this difference originates primarily from the interac-
tions of high-p⊥ partons with thermalized QGP and not the
initial stages. This agrees with the first part of this section
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FIG. 7. v2 dependence on p⊥ for four different medium evolutions depicted in Fig. 5. Left, central, and right panels correspond to charged
hadrons, D mesons, and B mesons, respectively. The labeling and remaining parameters are the same as in Fig. 6.
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FIG. 8. Rin
AA − Rout

AA dependence on p⊥ for charged hadrons. The
labeling and remaining parameters are the same as in Fig. 6.

(Figs. 2 and 3), where we showed and explained insensitivity
of v2 to different initial stages. It is worth emphasizing that,
contrary to the first part of this section, in the second part we
tested the effects on RAA and v2 not from distinctive initial
stages but instead from four entirely different evolutions of
the QCD medium (related by the same global property, i.e.,
average temperature).

In the final, third part of this section we adopt a commonly
used approach, in which the energy loss is fitted through
change of multiplicative fitting factor in the energy loss, to
reproduce the desired high-p⊥ RAA, e.g., the one that best fits
the experimental data (see, e.g., [24,30,65,69–71]). To this
end, we use the same four T profiles from the first part of

TABLE I. Fitting factors values.

T profile case Cfit
i

Free-streaming case (a) 1
Linear case (b) 0.87
Constant case (c) 0.74
Divergent case (d) 0.67

this section (Fig. 1), while in our full-fledged calculations (see
Sec. II) we introduce an additional multiplicative fitting factor
(free parameter) Cfit

i , i = b, c, d . Cfit
i is then estimated for each

initial-stage case as a best fit to the free-streaming RAA (see
Table I). Thus-obtained RAAs are shown in the left panel of
Fig. 9 only for the representative case of h±, as the same con-
clusions stand for both light and heavy flavor hadrons. From
the left panel of this figure we observe practically overlapping
RAAs in all (a)–(d) cases, as anticipated, which is obtained
by decreasing Cfit

i consistently from the free-streaming to the
divergent case (each Cfit

i � 1) in order to compensate for the
higher energy losses in the corresponding cases compared to
the case (a).

The effect of different T profiles from Fig. 1 after intro-
duction of multiplicative fitting factor Cfit

i in the full-fledged
numerical procedure on v2 is depicted in the right panel of
Fig. 9, where we see that elliptic flow in (a)–(d) cases notably
differs; i.e., it is the highest in the free-streaming case while it
is the lowest in the divergent case. Based on this observation,
one could naively infer that initial stages, i.e., the τ < τ0

region (the only region in which T profiles differ), have a
significant effect on v2, as recently observed by an alternative
approach [24].

However, this kind of reasoning is inconsistent with our
analysis outlined in the first two parts of this section, as
well as with intuitive expectation that introduction of the
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FIG. 9. RAA (left panel) and v2 (right panel) dependence on p⊥ for charged hadrons, when an additional energy loss multiplicative factor is
introduced to reproduce the free-streaming RAA, in four different initial-stage cases depicted in Fig. 1. The labeling and remaining parameters
are the same as in Fig. 2.
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FIG. 10. Comparison of four fitting factors defined by Eq. (16) with the Cfit
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(b) (left), constant (c) (central) and divergent (d) (right panel) cases. C factors represented by full, long-dashed, dot-dashed, and dot-dot-dashed
curves correspond to h± angular averaged, in-plane, and out-of-plane RAA and v2 cases, respectively. The horizontal gray dashed line represents
the energy loss fitted value Cfit

i . The results correspond to the centrality bin 30–40%, and μM/μE = 0.5.

energy loss at the initial stage affects RAA. To quantitatively
understand this result, we introduce asymptotic scaling behav-
ior [27,54,72]. That is, for higher p⊥ of the initial jet, and for
higher centralities (where fractional energy loss is expected to
be small), we can make the following estimates:

�E/E ≈ χT
m

L
n
, RAA ≈ 1 − l − 2

2

�E

E
= 1 − ξT

m
L

n
,

(10)
where m, n are proportionality factors, T is the average
temperature of the QGP, L denotes the average path length
traversed by the jet, χ is a proportionality factor (that depends
on p⊥ and flavor of the jet). ξ = l−2

2 χ , where l is the steepness
of a power law fit to the transverse momentum distribution.

If �E/E is fitted by additional multiplicative factor C, the
new Rfit

AA becomes

Rfit
AA,i ≈ 1 − CiξT

m
i L

n
i ≈ 1 − Ci(1 − RAA,i ), (11)

where i = b, c, d and Ci (Ci < 1,∀i) denotes the fitting factor,
and the last part of Eq. (11) is obtained by using Eq. (10),
leading to

Ci ≈ 1 − Rfit
AA,i

1 − RAA,i
. (12)

We note that Eq. (12) is applicable to the average, in-plane and
out-of-plane RAAs, since the same fitting factor is consistently
applied in all three cases. By imposing the condition (which
quantifies the equivalence of fitted RAA in (b)–(d) cases to the
free-streaming case)

Rfit
AA,i = RAA,a, (13)

and by applying Eqs. (5)–(8) and (13), together with Eqs. (10)
and (11) and their in-plane and out-of-plane analogs, we
obtain

vfit
2,i ≈ 1

2

Ci
(
Rin

AA,i − Rout
AA,i

)
2RAA,a

= 1

2

Ciγia
(
Rin

AA,a − Rout
AA,a

)
Rin

AA,a + Rout
AA,a

= Ciγiav2,a, (14)

which can also be written as

Ci ≈ vfit
2,i

γiav2,a
. (15)

From Eq. (14), we see that decrease of vfit
2 in (b)–(d) cases

compared to (a) is a result of a fitting factor Ci(p⊥) (which is
smaller than 1), as well as the proportionality function γi(p⊥)
(also smaller than 1). However, note that Eq. (14) describes
asymptotic behavior at very high p⊥, where, as shown earlier,
γ s approach 1. Consequently, the diminishing of elliptic flow
compared to the case (a) is predominantly due to a decrease of
the artificially imposed fitting factor C. Therefore, we obtain
that, contrary to [24], initial stages are not mainly responsible
for the obtained differences (the right panel of Fig. 9) in the
vfit

2 curves for different T profiles. Moreover, this argument,
as well as the obtained inconsistency of the results in this
and the first two parts of the paper, implies that application of
multiple fitting procedure for each different initial stage may
result in incorrect energy loss estimates and in misinterpreting
the underlying physics.

To asses if this qualitative conclusion indeed holds, i.e.,
that v2 susceptibility observed in Fig. 9 (as well as in [24])
is indeed mainly a consequence of a fitting factor in the
energy loss, in Fig. 10 we check the consistency of Eqs. (12)
and (15) with the full-fledged numerical calculations. That is,
a nontrivial consequence of Eqs. (12) and (15) is that Ci factors
for the average, in-plane, and out-of-plane RAA’s (Eq. (12))
and v2 (Eq. (15)), should be the same in high-p⊥ limit, and
moreover overlap with Cfit

i in this limit. To this end, we define
the C factors (originating from Eqs. (12) and (15))

Cin
i = 1 − Rin,fit

AA,i

1 − Rin
AA,i

, Cout
i = 1 − Rout,fit

AA,i

1 − Rout
AA,i

,

Cav
i = 1 − Rfit

AA,i

1 − RAA,i
, Cv2

i = 1

γia

vfit
2,i

v2,a
(16)
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and compare them with Cfit
i , for each separate initial-stages

case, i = b, c, d . Note that, while terms themselves on the
right-hand side of each expression in Eq. (16) are obtained
from Eqs. (12) and (15) in the high-p⊥ limit (and consequently
are expected to overlap in this limit, if our analytical estimate
is valid), we calculate Cfit

i , and the terms on the right-hand side
of each expression in Eq. (16), through full-fledged numerical
procedure. We indeed observe that, for each i and at high-p⊥,
Cin

i , Cout
i , Cav

i , and Cv2
i factors are practically overlapping, and

approach the value Cfit
i . Consequently, this highly nontrivial

observation confirms that our qualitative conclusion is valid,
and that v2 susceptibility in this case is indeed mainly a
consequence of an additionally introduced fitting factor.

IV. CONCLUSIONS

Traditionally, the features of initial stages before QGP ther-
malization are explored through comparison of bulk medium
simulations and low-p⊥ data. On the other hand, the recent
abundance of high-p⊥ experimental data motivates exploiting
the high-p⊥ energy loss in studying the initial stages. We
here utilized state-of-the-art dynamical energy loss embedded
in analytical 1D Bjorken medium expansion (DREENA-B
framework), which allowed us to tightly control the ana-
lyzed temperature profiles. In particular, we considered four
temperature profiles, which are identical after thermalization
but are different before thermalization, corresponding to four
commonly considered initial-stage cases. This allowed us to
study the effects of different initial-stage cases on high-p⊥

RAA and v2 predictions, under highly controlled conditions,
by combining full-fledged numerical results and analytical
estimates used to interpret the experimental results.

We found that high-p⊥ RAA is sensitive to the prether-
malized stages of the medium evolution; however, within the
current error bars, the sensitivity is not sufficient to distinguish
between different scenarios. On the other hand, the high-p⊥
v2 is unexpectedly insensitive to the initial stages. We further-
more found that previously reported sensitivity [24] of high-
p⊥ v2 to initial stages is mainly a consequence of the fitting
procedure in which the parameters in the energy loss are ad-
justed to reproduce experimentally observed RAA individually
for different initial-stage cases. On the other hand, if the same
global property, in particular the same average temperature,
is imposed to tested temperature profiles, high sensitivity of
high-p⊥ v2 is again obtained. This sensitivity is, however, a
consequence of differences in final rather than initial stages.
Overall, our results underscore that the simultaneous study of
high-p⊥ RAA and v2, with consistent that is, fixed energy loss
parameters across the entire study and controlled temperature
profiles (reflecting only the differences in the initial stages), is
crucial to impose accurate constraints on the initial stages.
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Abstract
High p⊥ theory and data are commonly used to study high p⊥ parton interactions with QGP, while low p⊥ data and
corresponding models are employed to infer QGP bulk properties. On the other hand, with a proper description of
high p⊥ parton-medium interactions, high p⊥ probes become also powerful tomography tools, since they are sensitive
to global QGP features, such as different temperature profiles or initial conditions. This tomographic role of high p⊥
probes can be utilized to assess the spatial anisotropy of the QCD matter. With our dynamical energy loss formalism,
we show that a (modified) ratio of RAA and v2 presents a reliable and robust observable for straightforward extraction of
initial state anisotropy. We analytically estimated the proportionality between the v2/(1−RAA) and anisotropy coefficient
ε2L, and found surprisingly good agreement with full-fledged numerical calculations. Within the current error bars, the
extraction of the anisotropy from the existing data using this approach is still inaccessible. However, with the expected
accuracy improvement in the upcoming LHC runs, the anisotropy of the QGP formed in heavy ion collisions can be
straightforwardly derived from the data. Such a data-based anisotropy parameter would present an important test to
models describing the initial stages of heavy-ion collision and formation of QGP, and demonstrate the usefulness of
high p⊥ theory and data in obtaining QGP properties.

Keywords: Quark-gluon plasma, High p⊥ probes, Initial anisotropy

1. Introduction

Understanding the properties of the new form of matter named Quark-Gluon Plasma (QGP) is the major
goal of relativistic heavy ion physics [1, 2]. However, to explore the properties of QGP, one needs good
probes. With regards to that, it is commonly assumed that high p⊥ theory and data are good probes for
exploring the high p⊥ parton interactions with QGP, while low p⊥ theory and data are considered as good
probes for bulk QGP properties. Contrary to this common assumption, the goal of this contribution is to
demonstrate that high p⊥ particles can also be useful independent probes of bulk QGP properties.

To put it simply, the main idea is that when high p⊥ particles transverse QGP, they lose energy, where
this energy loss is sensitive to bulk QGP properties, such as its temperature profiles or initial conditions.
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Consequently, with a realistic and sophisticated high p⊥ parton energy loss model, high p⊥ probes can
indeed become powerful tomographic tools. So, in this contribution, we will present how we can use these
probes to infer some of the bulk QGP properties, i.e., for precision QGP tomography. Note that only the
main results are presented here; for a more detailed version, see [3], and references therein.

2. DREENA framework

To achieve the goal of utilizing high p⊥ theory and data for inferring the bulk QGP properties, as pre-
viously implied, a reliable high p⊥ parton energy loss model is necessary. With this goal in mind, we de-
veloped a dynamical energy loss formalism [4, 5], which takes into account some more realistic and unique
features, such as: i) The calculations are performed within finite temperature field theory and generalized
Hard-Thermal-Loop [6] approach, in which the infrared divergences are naturally regulated, excluding the
need for artificial cutoffs. ii) The formalism assumes QCD medium of finite size and finite temperature,
consisting of dynamical partons (i.e., energy exchange with medium constituents is included), in distinction
to commonly considered static scatterers approximation and/or models with vacuum-like propagators. iii)
Both radiative [4] and collisional [5] energy losses are calculated within the same theoretical framework,
and are equally applicable to light and heavy flavors. iv) The formalism is generalized to include a finite
chromomagnetic mass [7], running coupling, and to relax the widely used soft-gluon approximation [8].
Finally, the formalism is integrated in a numerical framework DREENA (Dynamical Radiative and Elastic
ENergy loss Approach) [9, 10], to provide predictions for high p⊥ observables.

Within this framework, we generated a wide set of high p⊥ predictions using 1D Bjorken expansion [11]
(i.e., DREENA-B framework [10]). Thus we obtained a good joint agreement with a wide range of high p⊥
RAA and v2 data, by applying the same numerical procedure, the same parameter set, and no fitting param-
eters in model testing. That is, there is no v2 puzzle [12] within our model, which then strongly suggests
that the model provides a realistic description of high p⊥ parton-medium interactions. Moreover, our pre-
liminary findings suggest that, within our formalism, moving from 1D Bjorken to full 3D hydrodynamical
expansion does not significantly affect the agreement of our predictions with high p⊥ RAA and v2 data [13].
Consequently, in order to adequately address the high p⊥ measurements, a proper description of high p⊥
parton interactions with the medium appears to be much more important than an advanced medium evo-
lution description. Furthermore, we have also analyzed the sensitivity of high p⊥ RAA and v2 to different
initial stages, giving an additional insigth in the usefulness of both high p⊥ observables in the precision QGP
tomography [14].

3. Inferring QGP anisotropy through high p⊥ theory and data

As one example of QGP tomography, in this contribution, we will address how to infer the QGP
anisotropy from high p⊥ RAA and v2 data. The initial state anisotropy is one of the main properties of
QGP and a major limiting factor for precision QGP tomography. However, despite its essential impor-
tance, it is still not possible to directly infer the initial anisotropy from experimental measurements. Several
theoretical studies [15, 16, 17, 18] have provided different methods for calculating the initial anisotropy,
leading to notably different predictions, with a notable effect in the resulting predictions for both low and
high p⊥ data. Therefore, approaches for inferring anisotropy from the data are necessary. Optimally, these
approaches should be complementary to existing predictions, i.e., based on a method that is fundamentally
different from models of early stages of QCD matter.

To this end, we here propose a novel approach to extract the initial state anisotropy. Our method is based
on inference from high p⊥ data, by using already available RAA and v2 measurements, which will moreover
be measured with much higher precision in the future. Such an approach is substantially different from the
existing approaches, as it is based on the inference from experimental data (rather than on calculations of
early stages of QCD matter) exploiting the information from interactions of rare high p⊥ partons with the
QCD medium. This also presents an improvement/optimization in utilizing high p⊥ data as, to date, these
data were mostly constrained on studying the parton-medium interactions, rather than assessing bulk QGP
parameters, such as spatial asymmetry.
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In the literature, the initial state anisotropy is quantified in terms of eccentricity parameter ε2

ε2 =
〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)∫
dx dy (y2 + x2) ρ(x, y)

, (1)

where ρ(x, y) denotes the initial density distribution of the formed QGP. Regarding high p⊥ observables, we
note that v2 is sensitive to both the anisotropy of the system and its size, while RAA is sensitive only to the
size of the system. Therefore, it is plausible that the adequate observable for extracting eccentricity from
high p⊥ data depends on both v2 and RAA, and the question is how.

To address this question, we will use the dynamical energy loss formalism, and DREENA-B framework
outlined above. For high p⊥, the fractional energy loss scales as [3] ΔE/E ∼ χ〈T 〉a〈L〉b, where 〈T 〉 stands
for the average temperature along the path of high p⊥ parton, 〈L〉 is the average path-length traversed by the
parton, χ is a proportionality factor that depends on the initial parton transverse momentum, and a and b are
exponents which govern the temperature and path-length dependence of the energy loss. Within our model,
a ≈ 1.2 and b ≈ 1.4, which is contrary to simpler models, and consistent with a wide range of experimental
data [19, 20]. From this simple scaling argument, we can straightforwardly obtain the following expressions
for RAA and v2 (for more details we refer the reader to [3]):

RAA ≈ 1 − ξ(χ)〈T 〉a〈L〉b, v2 ≈ 1
2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

≈ ξ(χ)〈T 〉a〈L〉b
(

b
2
ΔL
〈L〉 −

a
2
ΔT
〈T 〉
)
, (2)

where we see that ξ(χ)〈T 〉a〈L〉b corresponds to 1− RAA. Therefore, if we divide v2 by (1− RAA), we see that
this ratio is given by the following simple expression:

v2

1 − RAA
≈
(

b
2
ΔL
〈L〉 −

a
2
ΔT
〈T 〉
)
. (3)

Note that, while this ratio exposes the dependence on the asymmetry of the system (through spatial (ΔL/〈L〉)
and temperature (ΔT/〈T 〉) parts), the dependence only on spatial anisotropy is still not isolated. However,
by plotting together spatial and temperature anisotropy, we obtain a linear dependence [3], with a propor-
tionality factor given by c ≈ 4.3. Therefore, v2/(1 − RAA) reduces to the following expression:

v2

1 − RAA
≈ 1

2

(
b − a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 ≈ 0.57ς, where ς =

〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 and

1
2

(b − a
c

) ≈ 0.57. (4)

Consequently, the asymptotic scaling behavior of observables v2 and RAA, at high p⊥, reveals that their
(moderated) ratio is determined only by the geometry of the initial QGP droplet. Therefore, the anisotropy
parameter ς could, in principle, be directly obtained from the high p⊥ experimental data.

Fig. 1. A) Comparison of theoretical predictions for charged hadron v2/(1 − RAA) as a function of p⊥ with 5.02 TeV Pb + Pb
CMS [21, 22] (blue squares), ALICE [23, 24] (red triangles) and ATLAS [25, 26] (green circles) data. Each panel corresponds to
different centrality range, as indicated in the upper right corners, while red lines denote the limit 0.57ς from Eq. (4). B) Comparison
of ε2L (red band) extracted from our full-fledged calculations, with ε2 obtained from MC-Glauber [15] (gray full curve), EKRT [16]
(cyan dashed curve), IP-Glasma [17] (green dot-dashed curve) and MC-KLN [18] (blue dotted curve) models. MC-Glauber and EKRT
curves correspond to 5.02 TeV, whereas IP-Glasma and MC-KLN curves correspond to 2.76 TeV Pb + Pb collisions at the LHC.

To test the adequacy of the analytical estimate given by Eqs. (2)-(4), Fig. 1A is displayed, which
comprises our v2/(1 − RAA) predictions (gray bands), stemming from our full-fledged recently developed
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DREENA-B framework (outlined in the previous section), the ALICE, CMS and ATLAS data, and analyt-
ically derived asymptote 0.57ς (red lines). Importantly, for each centrality range and for p⊥ � 20 GeV,
v2/(1 − RAA) is independent on p⊥, and approaches the asymptote, i.e., is determined by the geometry of
the system - depicted by the solid red line, up to 5% accuracy. Moreover, the experimental data for all three
experiments also display the independence on the p⊥ and agree with our predictions, although the error bars
are rather large. Therefore, we conclude that our scaling estimates are valid and that v2/(1 − RAA) indeed
carries the information about the anisotropy of the fireball, which can be simply (from the straight line fit to
data at high p⊥ limit) and robustly (in the same way for each centrality) inferred from the experimental data.

However, note that the anisotropy parameter ς is not the widely-considered anisotropy parameter ε2
(given by Eq. (1)). To facilitate comparison with ε2 values in the literature, we define ε2L =

〈Lout〉2−〈Lin〉2
〈Lout〉2+〈Lin〉2 =

2ς
1+ς2 , and in Fig. 1B compare it with the results from different initial-state models [15, 16, 17, 18]. First, we
should note that as a starting point, our initial ε2, through which we generate our path-length distributions,
agrees with EKRT and IP-Glasma. However, what is highly non-trivial is that, as an outcome of this proce-
dure, in which v2/(1 − RAA) is calculated (based on the full-fledged DREENA-B framework), we obtain ε2L

which practically coincides with our initial ε2 and also with some of the conventional initial-state models.
As an overall conclusion, the straightforward extraction of ε2L and its agreement with values of the prevail-
ing initial-state models’ eccentricity (and our initial ε2) is highly non-trivial and supports v2/(1 − RAA) as a
reliable and robust observable for anisotropy. Additionally, the width of our ε2L band is smaller than the dif-
ference in the ε2 values obtained by using different models (e.g., MC-Glauber vs. MC-KLN). Therefore, our
approach provides genuine resolving power to distinguish between different initial-state models, although
it may not be possible to separate the finer details of more sophisticated models. This resolving power,
moreover, comes from an entirely different perspective, i.e., from high p⊥ theory and data, supporting the
usefulness of utilizing high p⊥ theory and data for inferring the bulk QGP properties.
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Abstract

A number of models in mathematical epidemiology have been developed to account
for control measures such as vaccination or quarantine. However, COVID-19 has brought
unprecedented social distancing measures, with a challenge on how to include these in
a manner that can explain the data but avoid overfitting in parameter inference. We
here develop a simple time-dependent model, where social distancing effects are intro-
duced analogous to coarse-grained models of gene expression control in systems
biology. We apply our approach to understand drastic differences in COVID-19 infection
and fatality counts, observed between Hubei (Wuhan) and other Mainland China prov-
inces. We find that these unintuitive data may be explained through an interplay of
differences in transmissibility, effective protection, and detection efficiencies between
Hubei and other provinces. More generally, our results demonstrate that regional dif-
ferences may drastically shape infection outbursts. The obtained results demonstrate
the applicability of our developed method to extract key infection parameters directly
from publically available data so that it can be globally applied to outbreaks of COVID-19
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in a number of countries. Overall, we show that applications of uncommon strategies,
such as methods and approaches from molecular systems biology research to mathe-
matical epidemiology, may significantly advance our understanding of COVID-19 and
other infectious diseases.

1. Introduction

As the novel COVID-19 disease caused by the SARS-CoV-2 virus

took the world by a storm, the new pandemic quickly gained priority in sci-

entific research in a wide range of biological and medical science disciplines.

Despite that their prior expertise was in unrelated research fields, many

researchers have successfully adapted their approaches andmethods to exam-

ine various aspects of this viral infection and, thus, contributed to finding the

necessary solutions. The systems biology community is not an exception

(Alon, Mino, & Yashiv, 2020; Bar-On, Flamholz, Phillips, & Milo, 2020;

Djordjevic, Djordjevic, Ilic, Stojku, & Salom, 2021; Eilersen & Sneppen,

2020; Karin et al., 2020; Saad-Roy et al., 2021; Vilar & Saiz, 2020;

Wong et al., 2020): those involved in modeling the dynamics of biological

systems at the molecular and cellular level can directly apply the similar

methodology in epidemiological studying of the virus spread—and this

exactly is the central point of the present paper. In particular, dynamic

models of biochemical reaction networks, in which the reaction kinetics fol-

low the law of mass action, are analogous to compartmental epidemiological

models which, instead of concentrations of chemical species, track the

prevalence of individuals in defined population classes over time (Voit,

Martens, & Omholt, 2015). Moreover, gene expression dynamics is usually

a result of the interplay between the changing rate of cell growth, on which

the global physiological rates of molecule synthesis and degradation depend,

and complex transcription regulation (Djordjevic, Rodic, & Graovac,

2019). Therefore, modeling dynamics of gene circuits implies combining

kinetic models, often relying on the law of mass action, with appropriate

non-linear functions describing the regulation part. In the case of the

COVID-19 epidemic, one can note that the virus transmission in a popu-

lation, driven by the biological capacity of the particular virus in the given

environment, is coupled with strong, time-dependent regulation, represen-

ted by the epidemic mitigation measures imposed by governments. These

similarities between the modeled systems may facilitate the application of
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the systems biology techniques to the epidemiology field of research. In this

paper, we will show how such an approach can be used to assess the basic

parameters of the COVID-19 epidemic progression in a given population.

In particular, we will use the analogy outlined above to study the

COVID-19 spread inMainland China and test the hypothesis about possible

reasons for the uneven disease spread in China provinces.

Our interest inMainland China infection progression comes from Fig. 1.

The progression seems highly intriguing, as Hubei (with only 4% of China

population) shows an order of magnitude larger number of detected infec-

tion cases (Fig. 1A) and two orders of magnitude higher fatalities (Fig. 1B)

compared to the total sum in all other Mainland China provinces. The epi-

demic was unfolding well before the Wuhan closure (with the reported

symptom onset of the first patient on December 1, 2019) and within the

period of huge population movement, which started 2 weeks before

January 25 (the Chinese Lunar New Year) (Chen, Yang, Yang, Wang, &

B€arnighausen, 2020). As a rough baseline, a modeling study of the infection

spread from Wuhan (Wu, Leung, & Leung, 2020) estimated more than

105 new cases per day in Chongqing alone—instead, the actual (reported)

peak number for allMainland China provinces outside Hubei was just 831.

Fig. 1 Infection and fatality counts for Hubei vs all other provinces. The number of
(A) detected infections, (B) fatality cases. Zero on the horizontal axis corresponds to
the time from which the data (Hu et al., 2020) are taken (January 23), which also coin-
cides with the Wuhan closure. Red circles correspond to the observed Hubei counts.
Blue squares correspond to the sum of the number of counts for all other provinces.
The figure illustrates a puzzling difference in the number of counts between Hubei
alone and the sum of all other Mainland China provinces.
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Consequently, it is a notable challenge for computational modeling to

understand drastic differences in COVID-19 infection and fatality counts

observed between Hubei (Wuhan) and other Mainland China provinces.

These drastic differences may be a consequence of an interplay between

the virus transmissibility (influenced by environmental and demographic

factors) and the effectiveness of the protection measures. Both can signifi-

cantly change between different provinces (more generally different coun-

tries/regions), and the model has to infer this from available data (commonly

the number of confirmed cases, publicly available for a large number of

countries/regions).

The study presented here will therefore demonstrate the usefulness of the

systems biology approach to the analysis of non-trivial COVID-19 data from

China. In particular, the developed method will allow us to analyze the puz-

zling differences in dynamics trajectories in Mainland China provinces, and

it will also turn out to be more generally applicable for understanding

regional differences in outburst dynamics. The surprising differences in

COVID-19 progression in different provinces may put strong constraints

on the underlying infection progression parameters and allow us to

understand:

i. What interplay between the inherent disease transmissibility and the

effects of social distancing is responsible for the large difference in the

count numbers between Hubei and the rest of Mainland China?

Addressing this question in a proper way would make easier to compre-

hend how regional differences may shape the infection outbursts, which

is important both locally (for explaining this puzzle), and more generally

in the context of global COVID-19 pandemics progression.

ii. What is the Infected Fatality Rate (IFR, the number of fatalities per total

number of infected cases) in China? Case Fatality Rate (CFR, the number

of fatalities per confirmed/detected cases) can be obtained directly from the

data but is highly sensitive to the testing coverage. IFR is a more fun-

damental mortality parameter, as it does not depend on the testing cov-

erage, but is however much harder to determine, due to the unknown

number of infected cases.

Addressing these questions allows understanding both the different response

policies, and the inherent risks posed by the pandemics and will enable future

cross-country comparisons. The developed methodology (i) demonstrates

the usefulness of applying transdisciplinary expertise to efficiently analyze

problems of nationwide importance, (ii) allows to readily analyze future
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outbreaks of COVID-19 and other infectious diseases, as it depends only on

inference from straightforward and publically available data.

2. An overview of compartmental models of epidemic
progression

In epidemiology, for practical and ethical reasons, it is fairly impossible

to conduct scientific experiments in controlled conditions in order to inves-

tigate the spread of the disease in the human population (Brauer, 2008).

Therefore, epidemiologists usually resort to collecting data from clinical

reports on the observed situation in the field and, then, using mathematical

models to interpret these data, i.e., to infer the principles underlying the pro-

cess of disease spreading. These principles may point to potentially successful

control strategies, as well as to the probable future status of the disease in the

population. Epidemiological data can often be incomplete or inaccurate due

to poorly controlled or non-standardized collection methods, which signif-

icantly complicates modeling. However, even a qualitative agreement of the

model with the data can provide useful information of great practical impor-

tance. Hence, model predictions are widely used for making various esti-

mates and answering important questions about the seriousness of the

epidemic consequences. For example, how many people will be infected,

require treatment, or die, or how many patients should the public health

facilities expect at any given time? Also, how long will the epidemic last?

Towhat extent could quarantine and self-isolation of the infected contribute

to mitigating the effects of the epidemic?Model predictions guide the devel-

opment of strategies to control the epidemic spread, including vaccination

programs.

When the goal is to discover the general principles of epidemic progres-

sion, simple mathematical models, which can be solved and analyzed with a

“pencil on paper,” are a logical choice as they give insight into the properties

of the examined process despite failing to reproduce it in detail. In 1927,

Kermack and McKendrick formulated a simple model that predicted

behavior similar to that observed in numerous epidemics (Kermack &

McKendrick, 1927). It was a type of compartmental model describing the

infection spread in a population by analogy with a system of vessels con-

nected by pipes through which a fluid flows. Namely, the population is

divided into compartments, and assumptions are made about the nature

and the rate of the flow between them. The structure of the compartmental
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model—which sections and howmany of them it will contain and how they

will be connected—depends on the characteristics of transmission of a given

infectious disease and whether the past disease provides immunity to

re-infections or not. The model set by these two scientists is known as

SIR (from Susceptible–Infected–Recovered). It divides the population into

three classes which correspond to compartments (Fig. 2): Susceptible (S)

class includes healthy individuals susceptible to infection, which have never

been exposed to the virus; Those who are infected and can infect others

belong to the Infected (I) class; Recovered (R) class encompasses those

who are excluded from the population, either by quarantining the infected,

or by acquiring immunity through recovery from disease or immunization,

or by the death of the infected (Brauer, 2008).

Mathematically, this model is represented by a system of ordinary differ-

ential equations. The time derivative of the number of individuals in a

compartment, i.e., the rate of their change, is given by the difference between

the rates at which the compartment is filled and emptied. Analogous to the

processes in which chemical species (e.g., proteins) are degraded or converted

into others within a biochemical reaction network (Ingalls, 2013), the rate of

transition of individuals from one compartment to another follows the law of

mass action. For example, a person moves from compartment S to compart-

ment I at the rate which is proportional to the product of the S and I, as the

encounterwith an infected person enables virus transmission to the susceptible

one (Voit et al., 2015).

By formulating such (or similar) models, one assumes that the epidemic is

a deterministic process. Namely, the state of the population at all times is

completely determined by its previous state and the rules described by the

model. This is a reasonable approximation in cases where the numbers of

individuals in the compartments are large, i.e., in a commonly considered

Fig. 2 Schematic representation of the SIR model. Rectangles denote model compart-
ments containing susceptible (S), infected (I), and recovered (R) individuals in the pop-
ulation of size N. Permitted directions of flow between compartments are denoted by
arrows, with the rates of flow indicated above them. The rates are expressed according
to the law of mass action, where κ1 and κ2 are the rate constants. The dashed curve
corresponds to bimolecular reaction, where newly infected are generated through
interactions (contacts) between susceptible and already infected individuals.

6 Magdalena Djordjevic et al.

ARTICLE IN PRESS



deterministic range (>10). Such approximation (i.e., deterministic model-

ing) is well suited for the spread of COVID-19, which is up to now known

for a large number of individuals in all compartments.

3. Systems biology approach to compartmental
modeling of the COVID-19 epidemic

The above-introduced SIR model is likely the simplest compartmen-

tal model in mathematical epidemiology and many subsequent models are

derivatives of this basic form. Among others, these extensions have also been

developed toward including control measures such as vaccination or quar-

antine (Diekmann, Heesterbeek, & Britton, 2012; Keeling &Rohani, 2011;

Martcheva, 2015). However, COVID-19 brought a challenge to account

for previously unprecedented social distancing measures, taken by most

countries. When included, these effects have been, up to now, accounted

for by the direct changes in the transmissibility term (Chowell, Sattenspiel,

Bansal, & Viboud, 2016; Tian et al., 2020), which, however, corresponds

to introducing a phenomenological dependence in otherwise mechanistic

models. That is, to be included consistently in the model, social distancing

should move individuals from one compartment to the other, just as vaccina-

tion and quarantine are usually implemented. On the other hand, it is neces-

sary to construct aminimal mechanistic model in terms of the ability to explain

the data with the smallest number of parameters, so that relevant infection pro-

gression properties can be inferredwithout overfitting.With this goal inmind,

we used our systems biology background to develop a minimal model that

accounts for all the main qualitative features of the SARS-CoV-2 infection

spread under epidemic mitigation measures. As outlined above, we opt for

a deterministic model due to the robust and computationally less demanding

parameter inference (Wilkinson, 2018).

To describe the COVID-19 epidemic, we developed SPEIRD model

depicted schematically in Fig. 3. It assumes that healthy persons susceptible

to infection (S), can be infected, but in the case of this (and many other)

viruses they do not immediately become contagious to other people, but

first spend some time in the compartment E (Exposed to the virus) and then

develop symptoms and pass to the compartment I. Infected persons can

either recover at home, moving to the compartment R, or they can be diag-

nosed with SARS-CoV-2 virus infection (Active detected cases).A (Active)

cases can, further, either become healed (H) or die from the disease (F ). To

consistently implement the social distancing within this model structure, we
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included a compartment P (Protected) in the model, which contains suscep-

tible persons who are protected from exposure to the virus as a result of the

epidemic mitigation measures, such as self-imposed isolation, social distanc-

ing, and advised changes in individual behavior.

The following differential equations describe how different categories

change with time:

dS=dt ¼ �β � I � S=N � α tð Þ � S (1)

dE=dt ¼ β � I � S=N � σ � E (2)

dI=dt ¼ σ � E � γ � I � ε � δ � I (3)

dA=dt ¼ ε � δ � I � h � A� m � A (4)

dH=dt ¼ h � A (5)

dF=dt ¼ m � A (6)

where β is the infection rate in a fully susceptible population; α(t), the
time-dependent protection rate, i.e., the rate at which the population moves

from susceptible to the protected category, quantifying the impact of the

social protection measures; σ, the inverse of the exposed period; γ, the
inverse of the infectious period; δ, the inverse of the period of the infection
diagnosis; ε, the detection efficiency; h, the healing rate of diagnosed cases;

m, the mortality rate.

Fig. 3 Schematic representation of the SPEIRDmodel. Compartments and the transition
rates are as indicated in the text, where transitions between different compartments are
marked by arrows. The time-dependent transition rate from susceptible to protected
category α(t) is indicated by the solid arrow. The infected can transition to the recovered
category either without being diagnosed (transition to R), or being diagnosed and then
transitioning to confirmed healed or fatality cases. The dashed rectangle indicates that
A, H, and F categories in the starting model are substituted for the cumulative case
counts (D), which removes h and m from the analysis, where D is fitted to the
observed data.
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The probability that an infected person will meet a susceptible person is

proportional to S/N, whereN is the total number of individuals in the pop-

ulation. The rate at which individuals move from S to E is obtained when

the product of I and S/N is multiplied by the infection rate, β, which quan-
tifies the efficiency of transmission of a particular virus in the population

with certain demographic characteristics and meteorological conditions,

and it does not depend on epidemic suppression measures. Thus, β is a char-
acteristic of the virus, the population, and the external conditions in which

the virus is transmitted. Since the compartment S is being emptied, the

corresponding rate in the first equation is specified with the minus sign.

S also decays by moving the individuals to P with a protection rate that

may vary with time. While mitigation measures are commonly accounted

for bymodels with time-independent terms (Martcheva, 2015), we note that

the social distancing term should depend on time, as this measure is intro-

duced at a certain point in epidemics and may also evolve gradually. We

denote the time point (more specifically, the date) of the onset of the social

distancing measures in the examined population with t0. The protection rate

α(t) is then taken as 0 before t0 and a constant value α afterwards.

One may notice a direct parallel between the model outlined above, and

e.g., modeling gene expression regulation in systems biology with a step

function that approximates the activity of a promoter to which repressor

proteins are highly cooperatively bound: the promoter is initially silenced

and upon receiving a signal which leads to the abrupt removal of repression,

promoter activity rises sharply to its maximum value. We notice that

the step function is a satisfactory approximation of the dynamics of social

distancing, i.e., it may not be necessary to further increase the number of

parameters by applying the Hill function (which describes a more gradual

activation), since governments quickly introduced these measures, together

with their effective implementation. Note however that in (Djordjevic

et al., 2021) we introduced a more complex model with Hill function,

and provided analytical results for key properties of this model.

Compartment E is filled by infecting the susceptibles and emptied by

moving the individuals to I, with the rate σ representing the inverse value

of the latent period during which the person is not contagious. While com-

partment I is filled with individuals from E, it is depleted through two chan-

nels. Individuals move toRwith the rate γ, which is the inverse of the period
of contagiousness, and to A with the rate δ, which is the inverse of the time

required for diagnosis, multiplied by ε, reflecting that only a fraction (likely

small due to many asymptomatic infections) of the total infected are
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detected. Note that case detection reduces the number of individuals in

I that can infect susceptibles: the model assumes that the detected cases

are quarantined and thus isolated from the general population. The numbers

in compartments A,H, and F change following the same logic described for

the other compartments.

We can further simplify the analysis by looking at the total number of

detected cases (D), which is the sum of A, H, and F. By adding the

Eqs. (4)–(6), we obtain:

dD=dt ¼ ε � δ � I , (7)

and thus lose two parameters, h and m. The total number of detected cases in

time is a measurable quantity from which we can determine the dynamics of

other model compartments since this is the data that is available for various

different regions and countries. Thereby, we assume that before t0 social

distancing does not take effect, and the measures introduced at t0 will take

effect on D�10 days later, as this is about the time that elapses between

infection and detection/diagnosis (Feng et al., 2020). Consequently, for

the first t0+10 days, the D curve reflects disease transmission without

epidemic suppression measures.

3.1 Virus transmission in the early stages of epidemics
Wewill now focus on the dynamics of the infection spread at the very begin-

ning of the epidemic, i.e., on the period before the introduction and practice

of any control measures (Salom et al., 2021). Regarding the model, we

assume that there is no social distancing (no transition from S to P), there

is no quarantine, and almost the entire population consists of people suscep-

tible to infection, so S/N¼1. This gives us an even simpler mathematical

model which appears to be very useful because it allows analytical derivation

of the expressions we need. Our system of Eqs. (1)–(3) and (7) is reduced to
two linear differential equations that we can write in matrix form

d

dt

E

I

� �
¼ �σ β

σ �γ

� �
E

I

� �
¼ A

E

I

� �
, (8)

determine the eigenvalues and eigenvectors of the matrix and, subsequently,

the solutions of the system,E(t) and I(t). Specifically, the cumulative number

of infected in time, I(t), is obtained according to the following equation:

I tð Þ ¼ C1 exp λ+tð Þ + C2 exp λ�tð Þ, (9)
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where λs are eigenvalues of the matrix. Since one of the eigenvalues, here

denoted by λ�, is negative, the corresponding term of the Eq. (9) will

decrease over time, and I(t) will be effectively described by the first term,

already after few days from the epidemic outbreak (Salom et al., 2021).

We can further derive this equation for the dependence of the logarithm

of the number of detected cases in time:

log D tð Þð Þ ¼ log ε � δ � I 0ð Þ=λ+ð Þ + λ+ � t (10)

This is the straight line equation whose slope is given by the value of λ+ (the

dominant, positive eigenvalue of the matrix in Eq. (8)).

Once we know λ+, we can calculate the value of the so-called basic

reproduction number, R0,free, by fixing mean values of the latency period

and the infectivity period (γ¼0.4 days�1, σ¼0.2 days�1), which are known

from the literature and characterize the fundamental infection processes

(Kucharski et al., 2020; Li et al., 2020):

R0,free ¼ β
γ
¼ 1 +

λ+ γ + σð Þ + λ2+
γσ

(11)

R0,free is an important epidemiological parameter that characterizes the

inherent biological transmission of the virus in a completely unprotected

population. In particular, it is the mean number of secondarily infected

by one infected person introduced in a completely susceptible population.

It depends on the biology of the specific virus, as well as the demographic

characteristics of the population and the environmental conditions, while it

does not depend on the applied infection control measures (Brauer, 2008).

In Salom et al. (2021) we utilized a bioinformatics analysis, akin to those

often used to understand complex data in systems biology, to pinpoint

demographic and meteorological factors that affect R0,free (i.e., inherent

virus transmissibility in population). This furthermore underlines that a rich

array of techniques developed and/or widely used within systems biology

can be successfully employed within infectious disease modeling.

4. Parameter analysis and inference

R0,free, α, t0, two initial conditions (I0 and E0), and the detection effi-

ciency ε, are unknown andmay differ between the provinces. Is it possible to

determine these unknown parameters from different properties of the

D curve? Early in the infection, almost the entire population is susceptible

(S�N), so Eqs. (2) and (3) become linear, and decoupled from the rest of the
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system, as discussed in the previous section. This sets the ratio of I0 to E0,

through the eigenvector components with the dominant (positive) eigen-

value of the Jacobian for this subsystem. This eigenvalue, corresponding

to the initial slope of the log(D) curve, sets the value of λ+ and subsequently,

ofR0,free (see Eq. 11). From Eq. (7) one can see that the product of I0 and ε�δ
is set by dD/dt at the initial time (t¼0). Later dynamics of the D curve is

determined solely by the combination tα¼ t0+1/α (which we denote as

protection time), setting the time at which �½ of the population moves

to the protected category. We also numerically checked this, and confirmed

that t0 can be lowered at the expense of increasing 1/α, without affecting the
fit quality.We allowed for t0 to vary in reasonable proximity of January 23, as

the social distancing was generally introduced close to Wuhan closure (e.g.,

on that date, all major events in Beijing were canceled) (Chen et al., 2020;

Du et al., 2020), but we cannot be sure when the measures effectively took

place. Our inferred t0 values are within a week from Wuhan closure, appe-

aring as reasonable. The remaining independent parameter (I0) is then left to

be determined fromD curve properties at the late infection stage, such as its

saturation time. The number of characteristic dynamics features is thus at

least equal to the number of fit parameters, leading to constrained numerical

analysis, so that overfitting is not expected. For few provinces, we however

observed that I0 can be decreased compared to the best fit value, without

noticeably affecting the fit quality. For these provinces, we chose the lowest

I0 value that still leads to a comparably good fit. This allows obtaining the

most conservative (i.e., as high as possible while still consistent with data)

IFR estimate, as the reported fatality counts for provinces other than

Hubei is surprisingly low.

Parameter inference and uncertainties are estimated separately for each

province. However, within a given province, demographic, special, or pop-

ulation activity (network effects) heterogeneities (Britton, Ball, & Trapman,

2020; Diekmann et al., 2012), or seasonality effects (Wong et al., 2020), are

not taken into account. These are potentially important, particularly for pro-

jections (longer-term predictions of infection dynamics under different sce-

narios), and can be readily included in our model. Such extensions would

however complicate parameter inference, due to an increase in parameter

number, as this may either lead to overfitting or require special/additional

data that may be available only for a limited number of countries/regions

(which would limit the generality of our proposed method). A more

complex model structure may also obscure a straightforward relationship

between the model parameters and distinct dynamical features of the
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confirmed case count curve analyzed above. While the inclusion of addi-

tional effects is left for future work, we here employ the model structure

and parameter inference introduced above on widely available case count

data, as proof of the principle for the generality of our proposed approach.

Moreover, a major advantage of our approach is that it allows consistent

analysis for all provinces with the same model, numerical procedure, and

parameter set, allowing an objective comparison of the obtained results.

Our model was numerically solved by the Runge-Kutta method

(Dormand & Prince, 1980) for each parameter combination. Parameter

values were inferred by exhaustive search over a wide parameter range, to

avoid reaching a local minimum of the objective function (R2). To infer

the unknown parameters, we fit (by minimizing R2) the model to the

observed total number of detected D for each province. As an alternative

to exhaustive search, some of many optimization techniques used in epi-

demics modeling, such as the Markov chain Monte Carlo (MCMC)

approach, can be used instead (Keeling & Rohani, 2011; Wong et al.,

2020)—exhaustive search is however straightforward, guarantees that the

global minimum is reached, and is in this case not computationally demand-

ing. Errors were estimated through Monte-Carlo simulations (Press,

Flannery, Teukolsky, & Vetterling, 1986), individually for each province

with the assumption that count numbers follow the Poisson distribution.

Monte-Carlo simulations were found as the most reliable estimate of the

fit parameter uncertainties for a non-linear fit (Cunningham, 1993). This

also serves as an independent check for overfitting, as in that case, data point

perturbations would lead to large parameter uncertainties. We find no indi-

cation of this in the results reported below, as the inferred uncertainties (con-

sistently indicated with all results) are reasonably small. In particular, the

differences in the inferred parameter values, which are relevant for the

reported results/conclusions, are statistically highly significant. P values

for extracted parameter differences between provinces are estimated by

the t-test.

5. Analysis of COVID-19 transmission in China

We used our SPEIRD model with the parameter inference described

above, to analyze all Mainland China provinces, except Tibet, where only

one COVID-19 case was reported. Parameters were estimated separately

for each of the 30 provinces by the same model and parameter set, which

enables an impartial comparison of the results presented below. To allow
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for a straightforward comparison of the infection progression between

different provinces, the starting date (i.e., t¼0) in our analysis is the same

for all the provinces and corresponds to January 23 (when the data for

all the provinces became publically available and continuously tracked

(Hu et al., 2020)).

In Fig. 4A and B, we show that our model can robustly explain the

observed D, in the cases of large outburst (Hubei on Fig. 4A), as well as

for all other provinces, where D is in the range from intermediate (e.g.,

Guangdong) to low (e.g., Inner Mongolia). Provinces in Fig. 2B were

selected to cover the entire range of observed D (from lower to higher

counts), while comparably good fits were obtained for other provinces,

which were all included in the further analysis. Our method is also robust

to data perturbations (which might be frequent), e.g., in the case of

Hubei (Wuhan), a large number of counts was added on February 12, based

on clinical diagnosis (CT scan) (Feng et al., 2020), which is apparent as a

discontinuity in observedD in Fig. 4A. Themodel however interpolates this

discontinuity, finding a reasonable description of the overall data.

We backpropagated the dynamics inferred for Hubei, to estimate that

January 5 (�4 days) was the onset of the infection’s exponential growth

in the population (not to be confused with the appearance of first infections,

which likely happened in December (Feng et al., 2020)). This agrees well

with (Feng et al., 2020) (cf. Fig. 3A), which tracked cases according to their

symptom onset (shifted for�12 days with respect to detection/diagnosis, cf.

Fig. 3B), and coincides with WHO reports on social media that there is a

cluster of pneumonia cases—with no deaths—in Wuhan (WHO, 2020).

Since our analysis does not directly use any information before January

23, this agreement provides confidence in our I0 estimate. Note that we infer

I0 separately for each province of interest, through which we also take into

account different times of the infection onset in different provinces (so that

earlier onset time would generally lead to a larger number of infected on

January 23).

Key parameters inferred from our analysis are summarized in Fig. 4C–F,
with individual results and errors for all the provinces shown in Table 1.

Fig. 4C shows the distribution of R0,free. Note that R0,free might depend

on demographic (population density, etc.) and climate factors (temperature,

humidity…), which are not controllable, but are unrelated to the applied

social distancing measures (see above). It is known that the R0 value can

strongly depend on the model, e.g., the number of introduced compart-

ments (Keeling & Rohani, 2011); accordingly, a wide range of R0 values
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Fig. 4 Model predictions: comparison with data and key parameter estimates. Predictions (compared to data) of detected infection counts for
(A) Hubei, (B) other Mainland China provinces. Zeros on the horizontal axis correspond to January 23, which is the initial time in our numerical
analysis for all the provinces. The observed counts are shown by dots and our model predictions by dashed curves. Names of the provinces
are indicated in the legend, with provinces selected to cover the full range of the observed total detected counts. The distribution with
respect to provinces of (C) the basic reproduction number in the absence of social distancing, R0,free, (D) the protection time tα. (E) Case
Fatality Rate, calculated directly from the reported data. (F) Infected Fatality Rate. The values for Hubei are indicated by the red bars.
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Table 1 Inferred COVID-19 infection progression parameters for Mainland China provinces
Province tα (days) R0 E0 I0 IFR (%) CFR (%) Detected (%)

Anhui 6.6�0.5 5.5�0.8 920�30 220�20 0.04�0.02 0.6�0.3 6�3

Beijing 7.9�0.5 3.5�0.4 610�20 180�10 0.12�0.05 1.7�0.7 7�3

Chongqing 7.0�0.2 3.5�0.2 1900�40 560�20 0.04�0.03 1.0�0.5 4�2

Fujian 3.7�0.4 7�2 1660�40 360�20 0.007�0.003 0.3�0.4 2�1

Gansu 5�1 6�3 630�20 150�10 0.03�0.04 1�1 2�3

Guangdong 5.0�0.1 7�1 1360�40 290�20 0.04�0.01 0.6�0.2 7�2

Guangxi 7�1 3.8�0.8 1000�30 290�20 0.02�0.02 0.8�0.6 3�3

Guizhou 8.1�0.6 7�1 53�7 11�3 0.06�0.03 1�1 4�2

Hainan 7.6�0.8 3.3�0.7 300�20 90�10 0.21�0.09 4�2 6�3

Hebei 6.0�0.6 7�2 240�20 52�7 0.11�0.03 1.8�0.8 6�2

Heilongjiang 7�1 6�2 260�20 59�7 0.15�0.07 2.9�0.9 5�3

Henan 7.0�0.3 4.5�0.5 1780�40 460�20 0.09�0.04 1.7�0.4 5�2

Hubei 8.3�0.2 8.2�0.4 31,900�400 6600�200 0.15�0.09 6.5�0.1 2�2

Hunan 5.1�0.1 6.8�0.8 1430�40 310�20 0.02�0.01 0.4�0.2 5�2

I. Mongolia 10.0�0.8 2.8�0.4 940�30 300�20 0.01�0.03 1�1 1�3

Jiangsu 5.5�0.5 7�2 500�20 110�10 0�0 0�0 6�2
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Jiangxi 7.0�0.2 5.6�0.9 890�30 210�10 0.005�0.002 0.1�0.1 5�2

Jilin 10.0�0.7 4.0�0.8 270�20 76�9 0.02�0.02 1�1 1�2

Liaoning 7�1 2.9�0.7 1240�40 390�20 0.02�0.04 2�2 1�2

Ningxia 5.3�0.9 7�3 72�9 15�4 0�0 0�0 6�23

Qinghai 6.1�0.6 4.0�0.5 2260�50 640�30 0�0 0�0 0�2

Shaanxi 5.2�0.5 6�1 380�20 90�10 0.07�0.03 1.3�0.8 6�2

Shandong 9�1 3.5�0.5 900�30 260�20 0.06�0.01 1.0�0.4 6�1

Shanghai 5.0�0.4 6�1 1570�40 370�20 0.02�0.02 0.8�0.5 2�3

Shanxi 5.2�0.5 6�2 1600�40 370�20 0�0 0�0 1�2

Sichuan 7.7�0.8 3.7�0.5 990�30 280�20 0.03�0.02 0.6�0.3 5�3

Tianjin 7�2 4�2 170�10 46�7 0.14�0.06 2�1 7�3

Xinjiang 7.3�0.9 6�1 42�7 10�3 0.25�0.09 3�2 8�2

Yunnan 4.0�0.2 7�2 360�20 76�9 0.06�0.03 1.2�0.9 5�2

Zhejiang 5.0�0.1 7.2�0.8 1340�40 290�20 0.005�0.002 0.1�0.1 7�3

tα, protection time;R0,free, basic reproduction number; E0, initial exposed; I0, initial infected; IFR, Infected Fatality Rate;CFR, Case Fatality Rate; detected %, fraction of
the infected population that has been detected. Error of the quantities correspond to one standard deviation.
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were reported for China in the literature (Sanche et al., 2020; Wu, Leung,

Bushman, et al., 2020). Consequently, a clear advantage of our study is that

parameters for all China provinces were determined from the same model

and data set, which allows direct comparisons. Our obtained average R0,free

for provinces outside of Hubei is 5.3�0.3, in a reasonable agreement with a

recent estimate (�5.7) (Sanche et al., 2020). Furthermore, we observe that

R
0,free

for Hubei is a far outlier with a value of 8.2�0.4, which is notably

larger than for other provinces with p�10�11. This then strongly suggests

that demographic and climate factors that determineR0,free, played a decisive

role in a large outburst in Hubei vs other provinces, which we further

address below.

The distribution of protection time tα for the provinces is shown in

Fig. 4D, with the value for Hubei indicated in red. The mean for the other

provinces is 6.6�0.2 days. That is, we observe that the suppressionmeasures

were efficiently implemented, with �½ of the population moving to the

protected category within a week fromWuhan closure. The protection time

for Hubei of 8.3�0.2 days was longer, which is statistically significant at the

p�10�11 level. The estimated less efficient protection in the case of Hubei

may also be an important contributing factor in the surprising difference in

Hubei vs other provinces, which we further investigate below.

CFR distribution, based on the fatality numbers reported for Hubei and

other provinces is shown in Fig. 4E. These numbers are not based on the

model predictions, i.e., can be straightforwardly obtained by dividing the

total number of fatalities by the total number of detected cases. CFR for

other provinces with a mean of 1.2�0.4% is significantly smaller compared

to CFR for Hubei, which was 4.6% before the correction on April 17, and

6.5% after the correction (with 1290 fatalities added to Wuhan). This large

difference in CFR between Hubei and other provinces further accentuates

the differences noted in Fig. 1.

IFR is harder to determine than CFR, as a majority of COVID-19 infec-

tions correspond to asymptomatic or mild cases that are by large not diag-

nosed (Day, 2020). We consequently calculate IFR as the total number of

fatalities divided by the total number of infections (cumulative incidence) for

the entire outburst, where cumulative incidence is estimated from our

model. As the infections precede fatalities, both the total number of fatalities

and the cumulative incidence in our estimate correspond to the entire out-

burst, so that all the infections had a sufficient time to recover or lead to

fatalities—this is directly feasible for the provinces in China, where all

detected case counts reached saturation. Note that IFR calculated in this
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way corresponds to an averaged quantity so that it does not capture possible

time-dependent change over the outburst interval (in fact, for Wuhan it

is known that the fatality rate was larger at the very beginning of the out-

burst). Nevertheless, the estimated IFR’s present a reasonable measure of

COVID-19 mortality across China provinces.

IFR distribution, which provides a much less biased measure of the

infection mortality, is shown in Fig. 4F. In distinction to CFR, estimated

IFR shows a much smaller difference between Hubei (0.15�0.09%) and

other provinces (0.056�0.007%). Therefore, while Hubei is a clear outlier

with respect to CFR, we observe similar IFR values for all Mainland China

provinces, where few provinces have even higher IFR than Hubei. The

ratio of IFR to CFR equals the fraction of all infected that got detected

(detection coverage). We estimate that the mean detection coverage for all

provinces except Hubei is higher than detection coverage for Hubei

(4.5�0.9% vs 2�2%). This difference is responsible for a decrease by a

factor of two fromCFR to IFR for Hubei, compared to the other provinces,

and consequently for more uniform mortality estimates at the IFR level.

Xinjiang has the highest IFR of 0.25�0.09% so that Hubei is not an outlier

anymore. Estimated IFR’s of up to 0.3% in China provinces are in general

agreement with the estimates reported elsewhere (see e.g., (Bar-On et al.,

2020; Djordjevic et al., 2021; Mizumoto, Kagaya, & Chowell, 2020)).

In Fig. 5A, two key infection progression parameters are plotted against

each other: protection time tα vs basic reproduction number R0,free.

Unexpectedly, there is a high negative correlation, with Pearson correlation

coefficient R¼� 0.70, which is statistically highly significant p�10�5,

where these two are a priori unrelated (see above). Actually, stronger social

distancing measures—which by definition are not included in R0,free—

would lead to a decrease in effective transmissibility. This would then lead

to a tendency of transmissibility to positively correlate with tα, oppositely

from the strong negative correlation observed in Fig. 5A. Therefore, higher

basic reproduction number is genuinely related to a shorter protection time

(larger effect of the suppression measures). Intuitively, this could be under-

stood as a negative feedback loop, commonly observed in systems biology

(Alon, 2019; Phillips, Kondev, Theriot, & Garcia, 2012), where larger

R0,free leads to steeper initial growth in the infected numbers, which may

elicit stronger measures and better observing of these measures by the pop-

ulation faced with a more serious outbreak. Interestingly, similar negative

feedback was also obtained in the context of epidemics research other than

COVID-19 (Wang, Andrews, Wu, Wang, & Bauch, 2015).
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The twomain properties of the Hubei outburst are therefore higherR0,

free and tα compared to other provinces. In Fig. 5B, we investigate how

these two properties separately affect the Wuhan outburst for latent and

infected cases, where unperturbed Hubei dynamics is shown by the red full

curve.We first reduce onlyR0,free from the Hubei value, to the mean value

for all other provinces (the dash-dotted green curve). We see that this

reduction substantially lowers the peak of the curve, though it still remains

wide. Next, instead of decreasing R0,free, we decrease the protection time

tα to the mean value for all other provinces (dashed orange curve). While

reducing tα also significantly lowers the peak of the curve, its main effect is

in narrowing the curve, i.e., reducing the outburst time. Finally, when R0,

free and tα are jointly reduced, we obtain the (dotted purple) curve that is

both significantly lower and narrower than the original Hubei progression.

This curve comes quite close to the curve that presents the sum of all other

provinces (full blue curve)—the dotted curve remains somewhat above

this sum, mainly because the initial number of latent and infected cases

is somewhat higher for Hubei compared to the sum of all other provinces.

This synergy between the transmissibility and the control measures will be

further discussed below.

Fig. 5 The interplay of transmissibility and effective social distancing. (A) The correlation
plot of tα vs R0,free for all provinces, where the point corresponding to Hubei is marked in
red. (B) The effect (on the Hubei dynamics of infected and latent cases) of reducing R0,
free and tα to the mean values of other Mainland China provinces. Both the unperturbed
Hubei dynamics and the sum of infected and latent cases for all other provinces are
included as references.
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6. Conclusions

In this study, we applied a systems biology approach to develop a

novel method of COVID-19 transmission dynamics. The model includes

(time-dependent) social distancing measures in a simple manner, consistent

with the compartmental mechanistic nature of the underlying process. The

model has a major advantage that it is independent of the specific transmis-

sion process considered, and requires only commonly available count data as

an input. The model allows extracting key infection parameters from the

data that are readily available and publicly accessible (both for China and

other countries), so that, in a nutshell, our approach is of wide applicability.

To our best knowledge, such parameters (necessary to assess any future

COVID-19 risks), were not extracted by other computational approaches.

The developed method is subsequently applied to the problem that

appears highly non-trivial, i.e., to understand the puzzle created by the dras-

tic differences in the infection and fatality counts betweenHubei and the rest

of Mainland China. The goal was to determine if it is possible to consistently

explain such drastic differences by the same model, and what are the

resulting numerical estimates and conclusions. We found that Hubei was

a suitable ground for infection transmission, being an outlier with respect

to two key infection progression parameters: having significantly larger

R0,free, and a longer time needed to move a sizable fraction of the population

from susceptible to a protected category. While stricter measures were for-

mally introduced in Hubei, the initial phase of the outburst put a large strain

on the system, arguably leading to less effective measures compared to other

provinces.

The fact that the initial epidemic in Hubei was not followed by similar

outbursts in the rest ofMainland China may be understood as a serendipitous

interplay of the two factors noted above. While both smaller R0,free and

lower half-protection time (more efficient measures) significantly suppress

the infection curve, their effect is also qualitatively different.While lowering

R0,free more significantly suppresses the peak, decreasing the half-protection

time significantly reduces the outburst duration. Consequently, the synergy

of these two effects appears to lead to drastically suppressed infection dynam-

ics in other Mainland China provinces compared to Hubei. The number of

detected (diagnosed) cases in the entire Mainland China is, therefore,

though unintuitive, well consistent with the model, and is explainable by

a seemingly reasonable combination of circumstances. Our obtained
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negative feedback between transmissibility and effects of social distancing

may be understood in terms of larger transmissibility triggering more strin-

gent social distancing measures, where a similar conclusion was also obtained

through entirely different means (a combination of real-time human mobil-

ity data and regression analysis) (Kraemer et al., 2020).

In summary, we showed that unintuitive dissimilarity in the infection

progression for Hubei vs other Mainland China provinces is consistent with

our model, and can be attributed to the interplay of transmissibility and

effective protection, demonstrating that regional differences may drastically

shape the infection outbursts. This also shows that comparisons in terms of

the confirmed cases, or fatality counts (even when normalized for population

size), between COVID-19 and other infectious diseases, or between differ-

ent regions for COVID-19, are not feasible, and that parameter inference

from quantitative models (individually for different affected regions) is nec-

essary. Consequently, this paper illustrates that utilization of uncommon

strategies, such as systems biology application to mathematical epidemiol-

ogy, may significantly advance our understanding of COVID-19 and other

infectious diseases.
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It is hard to overstate the importance of a timely prediction of the COVID-19 pandemic

progression. Yet, this is not possible without a comprehensive understanding of

environmental factors that may affect the infection transmissibility. Studies addressing

parameters that may influence COVID-19 progression relied on either the total numbers

of detected cases and similar proxies (which are highly sensitive to the testing capacity,

levels of introduced social distancing measures, etc.), and/or a small number of analyzed

factors, including analysis of regions that display a narrow range of these parameters.

We here apply a novel approach, exploiting widespread growth regimes in COVID-19

detected case counts. By applying nonlinear dynamics methods to the exponential

regime, we extract basic reproductive number R0 (i.e., the measure of COVID-19

inherent biological transmissibility), applying to the completely naïve population in the

absence of social distancing, for 118 different countries. We then use bioinformatics

methods to systematically collect data on a large number of potentially interesting

demographics and weather parameters for these countries (where data was available),

and seek their correlations with the rate of COVID-19 spread. While some of the

already reported or assumed tendencies (e.g., negative correlation of transmissibility with

temperature and humidity, significant correlation with UV, generally positive correlation

with pollution levels) are also confirmed by our analysis, we report a number of both

novel results and those that help settle existing disputes: the absence of dependence on

wind speed and air pressure, negative correlation with precipitation; significant positive

correlation with society development level (human development index) irrespective of

testing policies, and percent of the urban population, but absence of correlation with

population density per se. We find a strong positive correlation of transmissibility on

alcohol consumption, and the absence of correlation on refugee numbers, contrary to

some widespread beliefs. Significant tendencies with health-related factors are reported,

including a detailed analysis of the blood type group showing consistent tendencies

on Rh factor, and a strong positive correlation of transmissibility with cholesterol levels.

Detailed comparisons of obtained results with previous findings, and limitations of our

approach, are also provided.

Keywords: COVID-19 transmissibility, environmental factors, basic reproduction number, COVID-19 demographic

dependence, COVID-19 weather dependence
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INTRODUCTION

The ancient wisdom teaches us that “knowing your adversary” is
essential in every battle—and this equally applies to the current
global struggle against the COVID-19 pandemic. Understanding
the parameters that influence the course of the pandemic is
of paramount importance in the ongoing worldwide attempts
to minimize the devastating effects of the virus which, to the
present moment, has already taken a toll of more than a million
lives (Dong et al., 2020), and resulted in double-digit recession
among some of the major world economies (World Bank, 2020a).
Of all such factors, the ecological ones (both abiotic such as
meteorological factors and biotic such as demographic and
health-related population properties) likely play a prominent role
in determining the dynamics of disease progression (Qu et al.,
2020).

However, making good estimates of the effects that general
demographic, health-related, and weather conditions, have
on the spread of COVID-19 infection is beset by many
difficulties. First of all, these dependencies are subtle and
easily overshadowed by larger-scale effects. Furthermore, as the
effective rate of disease spread is an interplay of numerous
biological, medical, social, and physical factors, a particular
challenge is to differentiate the dominating effects of local
COVID-19-related policies, which are both highly heterogeneous
and time-varying, often in an inconsistent manner. And this is
precisely where, in our view, much of the previous research on
this subject falls short.

There are not many directly observable variables that can be
used to trace the progression of the epidemics on a global scale
(i.e., for a large number of diverse countries). The most obvious
one—the number of detected cases—is heavily influenced both
by the excessiveness of the testing (which, in turn, depends
on non-uniform medical guidelines, variable availability of
testing kits, etc.) and by the introduced infection suppression
measures (where the latter are not only non-homogeneous but
are also erratically observed (Cohen and Kupferschmidt, 2020).
Nevertheless, the majority of the research aimed to establish
connections of the weather and/or demographic parameters
with the spread of COVID-19 seeks correlations exactly with
the raw number of detected cases (Adhikari and Yin, 2020;
Correa-Araneda et al., 2020; Fareed et al., 2020; Gupta et al.,
2020; Iqbal et al., 2020; Li et al., 2020; Pourghasemi et al.,
2020; Rashed et al., 2020; Singh and Agarwal, 2020). For the
aforementioned reasons, the conclusions reached in this way
are questionable. Other variables that can be directly measured,
such as the number of hospitalized patients or the number of
COVID-19 induced deaths (Pranata et al., 2020; Tosepu et al.,
2020; Ward, 2020), again depend on many additional parameters
that are difficult to take into account: level of medical care and
current hospital capacity, advancements, and changing practices
in treating COVID-19 patients, the prevalence of risk groups,
and even on the diverging definitions of when hospitalization
or death should be attributed to the COVID-19 infection. As
such, these variables are certainly not suitable as proxies of the
SARS-CoV-2 transmissibility per se.

On the other hand, as we here empirically find [and as
theoretically expected (Anderson and May, 1992; Keeling and

Rohani, 2011)] the initial stage of the COVID-19 epidemic (in
a given country or area) is marked by a period of a nearly
perfect exponential growth for a wide range of countries, which
typically lasts for about 2 weeks (based on our analysis of
the available data). One can observe widespread dynamical
growth patterns for many countries, with a sharp transition
between exponential, superlinear (growth faster than linear), and
sublinear (growth slower than linear) regimes (see Figure 1)—
the last two representing a subexponential growth. We here
concentrate on the initial exponential growth of the detected-
case data (marked in red in Figure 1), characterizing the period
before the control measures took effect, and with a negligible
fraction of the population resistant to infection. Note that dates
which correspond to the exponential growth regime (included
in Supplementary Table 1) are different for each country,
corresponding to the different start of COVID-19 epidemic in
those countries.

We use the exponential growth regime to deduce the basic
reproduction number R0 (Martcheva, 2015), following a simple
and robust mathematical (dynamical) model presented here. R0
is a straightforward and important epidemiological parameter
characterizing the inherent biological transmissibility of the
virus, in a completely naïve population, and the absence of
social distancing measures (Bar-On et al., 2020; Eubank et al.,
2020). To emphasize the absence of social distancing in the
definition (and inference) of R0 used here, the term R0,free is
also used, — for simplicity, we further denote R0 ≡ R0,free. R0
is largely independent of the implemented COVID-19 policies
and thus truly reflects the characteristics of the disease itself,
as it starts to spread unhampered through the given (social
and meteorological) settings. Namely, the exponential period
ends precisely when the effect of control measures kick in,
which happens with a delay of ∼10 days after their introduction

FIGURE 1 | COVID-19 growth regimes. Transitions of the growth patterns

(here shown for Italy) from exponential (red), to superlinear (blue) and sublinear

(green) regime. The three insets correspond to the log-linear scale

(exponential), log-log scale (superlinear), and linear-log scale (sublinear). Dots

correspond to detected infections, starting from 20.02.2020. In this study,

R0,free is extracted from the slope of the first (exponential, i.e., log-linear) inset,

corresponding to dates 29.02–13.03 in the case of Italy.
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(The Novel Coronavirus Pneumonia Emergency Response
Epidemiology Team, 2020), corresponding to the disease latent
period, and to the time between the symptom onset and the
disease confirmation. Not only that very few governments
had enacted any social measures before the occurrence of a
substantial number of cases (Cohen and Kupferschmidt, 2020),
but also the length of the incubation period makes it likely that
the infection had been already circulating for some time through
the community even before the first detected case (and that
the effects of the measures are inescapably delayed in general).
Also, the transition from the exponential to the subsequent
subexponential phase of the epidemics is readily visible in
the COVID data (see Figure 1). Furthermore, R0 is invariant
to the particular testing guidelines, as long as these do not
significantly vary over the (here relatively short) studied period.
Note that in Figure 1 cumulative number of positive cases (also
known as cumulative infection incidence) is shown, which has
to monotonically increase—though with a decreasing rate, once
the infection starts to slow down, i.e., once the subexponential
growth (sublinear and superlinear regimes) is reached.

In the analysis presented here, we consider 42 different
weather, demographic, and health-related population factors,
whose analyzed ranges correspond to their variations exhibited in
118 world countries (not all of the parameters were available for
all of the countries, as discussed in Section “Demographic and
Weather Data Acquisition”). While some authors prefer more
coherent data samples to avoid confusing effects of too many
different factors (Adhikari and Yin, 2020; Correa-Araneda et al.,
2020; Fareed et al., 2020; Rashed et al., 2020; Singh and Agarwal,
2020; Tosepu et al., 2020), this consideration is outweighed by the
fact that large ranges of the analyzed parameters serve to amplify
the effects we are seeking to recognize and to more reliably
determine the underlying correlations. For example, while the
value of the HumanDevelopment Index (HDI, a composite index
of life expectancy, education, and per capita income indicators)
varies from 0.36 to 0.96 over the set of analyzed countries, this
range would drop by an order of magnitude (Global Data Lab,
2020) if the states of the US were chosen as the scope of the
study (other demographic parameters exhibit similar behavior).
The input parameters must take values in some substantial ranges
to have measurable effects on R0 (i.e., small variations may lead
to effects that are easily lost in statistical fluctuations).

The number of considered parameters is also significant,
especially when compared to other similar studies (Adhikari
and Yin, 2020; Copat et al., 2020; Fareed et al., 2020; Iqbal
et al., 2020; Rashed et al., 2020; Rychter et al., 2020; Singh and
Agarwal, 2020; Thangriyal et al., 2020; Tosepu et al., 2020). In a
model where a large number of factors are analyzed under the
same framework, consistency of the obtained results, in terms of
agreement with other studies, common-sense expectations, and
their self-consistency, becomes an important check of applied
methodology and analysis. Furthermore, a comprehensive and
robust analysis is expected to generate new findings and lead
to novel hypotheses on how environmental factors influence
COVID-19 spread. Overall, we expect that the understanding
achieved here will contribute to the ability to understand the
behavior of the pandemics in the future and, by the same token,

to timely and properly take measures in an attempt to ameliorate
the disease effects.

MODEL AND PARAMETER EXTRACTION

Modified SEIR Model and Relevant
Approximations
There are various theoretical models and tools used to
investigate and predict the progress of an epidemic (Keeling and
Rohani, 2011; Martcheva, 2015). We here opted for the SEIR
compartmental model, up to now used to predict or explain
different features of COVID-19 infection dynamics (Maier and
Brockmann, 2020; Maslov and Goldenfeld, 2020; Perkins and
España, 2020; Tian et al., 2020; Weitz et al., 2020). The model is
sufficiently simple to be applied to a wide range of countries while
capturing all the features of COVID-19 progression relevant for
extracting the R0 values. The model assumes dividing the entire
population into four (mutually exclusive) compartments with
labels: (S)usceptible, (E)xposed, (I)fected, and (R)ecovered.

The dynamics of the model (which considers gradual
transitions of the population from one compartment to the
other) directly reflects the disease progression. Initially, a healthy
individual has no developed SARS-CoV-2 virus immunity and
is considered as “susceptible.” Through contact with another
infected individual, this person may become “exposed”—
denoting that the transmission of the virus has occurred, but
the newly infected person at this point has neither symptoms
nor can yet transmit the disease. An exposed person becomes
“infected”—in the sense of becoming contagious—on average
after the so-called “latent” period which is, in the case of
COVID-19, approximately 3 days. After a certain period of
the disease, this person ceases to be contagious and is then
considered as “recovered” (from the mathematical perspective
of the model, “recovered” are all individuals who are no longer
contagious, which therefore also includes deceased persons). In
the present model, the recovered individuals are taken to be no
longer susceptible to new infections (irrespectively of whether
the COVID-19 immunity is permanent or not, it is certainly
sufficiently long in the context of our analysis).

Accordingly, almost the entire population initially belongs
to the susceptible class. Subsequently, parts of the population
become exposed, then infected, and finally recovered. SARS-
CoV-2 epidemic is characterized by a large proportion of
asymptomatic cases (or cases with very mild symptoms) (Day,
2020), which leads to a large number of cases that remain
undiagnosed. For this reason, only a portion of the infected will
be identified (diagnosed) in the population, and we classify them
as “detected.” This number is important since it is the only direct
observable in ourmodel, i.e., the only number that can be directly
related to the actual COVID-19 data.

This dynamic is schematically represented in Figure 2, and is
governed by the following set of differential equations:

dS

dt
= −

βSI

N
(1)

dE

dt
=

βSI

N
− σE (2)
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FIGURE 2 | Diagrammatic representation of the SEIR model with the added class of “Detected” patients. Individuals move (denoted by solid arrows) from Susceptible

to Exposed to Infected to Recovered, with the rates indicated above arrows in the figure. Some of the infected are detected (diagnosed/confirmed), indicated by the

dashed arrow.

dI

dt
= σE− γ I (3)

dR

dt
= γ I (4)

dD

dt
= εδI (5)

In the above equations, S, E, I, and R denote numbers
of individuals belonging to, respectively, susceptible, exposed,
infected, and recovered compartments, D is the cumulative
number of detected cases, while N is the total population.
Parameter β denotes the transmission rate, which is proportional
to the probability of disease transmission in contact between
a susceptible and an infectious subject. Incubation rate σ

determines the rate at which exposed individuals become infected
and corresponds to the inverse of the average incubation period.
Recovery rate γ determines the transition rate between infected
and recovered parts of the population, (i.e., 1/γ is the average
period during which an individual is infectious). Finally, ε

and δ are detection efficiency and the detection rate. All these
rate parameters are considered constant during the analyzed
(brief) period. Also, note that the constants in our model do
not correspond to transition probabilities per se, but rather to
transition rates (with units 1/time), so that e.g. γ and εδ do
not add to one. While rates in the model can be rescaled and
normalized to directly correspond to transition probabilities,
our formulation (with rates rather than probabilities) is rather
common (see e.g., Keeling and Rohani, 2011), and also has
a direct intuitive interpretation, where the transition rates
correspond to the inverse of the period that individuals spend in
a given compartment (see e.g., the explanation for γ above).

In the first stage of the epidemic, when essentially the entire
population is susceptible (i.e., S/N ≈ 1) and no distancing
measures are enforced, the average number of secondary
infections, caused directly by primary-infected individuals,
corresponds to the basic reproduction number R0. The infectious
disease can spread through the population only when R0 > 1
(Khajanchi et al., 2020a), and in these cases, the initial growth of
the infected cases is exponential. Though R0 is a characteristic of
the pathogen, it also depends on environmental abiotic (e.g., local
weather conditions), as well as biotic factors (e.g., prevalence of
health conditions, and population mobility tightly related to the
social development level).

Note that, as we seek to extract the basic reproduction
number R0 from the model for a wide range of countries,

the social distancing effects are not included in the model
presented above. That is, the introduced model serves only to
explain the exponential growth phase—note that this growth
regime characterizes part of the infection progression where
the social distancing interventions still did not take effect, and
where the fraction of resistant (non-susceptible) population
is still negligible. It is only this phase which is relevant for
extracting R0 that is used in the subsequent analysis. R0 should
not be confused with the effective reproduction number Re,
which takes into account also the effects of social distancing
interventions and the decrease in the number of susceptibles
due to acquired infection resistance. Re is not considered in
this work, as we are concerned with the factors that affect the
inherent biological transmissibility of the virus, independently
from the applied measures. That is, by considering R0 rather
than Re, we disentangle the influence of meteorological and
demographic factors on transmissibility (the goal of this study),
from the effects of social distancing interventions (not analyzed
here). The model can, however, be straightforwardly extended
to include social distancing measures, as we did in (Djordjevic
et al., 2020)—social distancing measures were also included
through other frameworks (Khajanchi and Sarkar, 2020; Maier
and Brockmann, 2020;Maslov andGoldenfeld, 2020; Perkins and
España, 2020; Samui et al., 2020; Sarkar et al., 2020; Tian et al.,
2020; Weitz et al., 2020). Such extensions are needed to explain
the subexponential growth that emerges due to intervention
measures (i.e., superlinear and sublinear growth regimes that
are illustrated in Figure 1 for Italy but are common for other
countries as well).

COVID-19 Growth Regimes
If we observe the number of total COVID-19 cases (e.g., in a
given country) as a function of time, there is a regular pattern that
we observe: the growth of the detected COVID cases is initially
exponential but slows down after some time—when we say it
enters the subexponential regime. The subexponential regime can
be further divided into the superlinear (growing asymptotically
faster than a linear function) and sublinear regime (the growth
is asymptotically slower than a linear function). This typical
behavior is illustrated, in the case of Italy, in Figure 1 above.
The transition to the subexponential regime occurs relatively
soon, much before a significant portion of the population gains
immunity, and is a consequence of the introduction of the
infection suppression measures.
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Inference of the Basic Reproduction
Number R0
In the initial exponential regime, a linear approximation to
the model can be applied. Namely, in this stage, almost the
entire population is susceptible to the virus, i.e., S/N≈1, which
simplifies the Equation (2) to:

dE

dt
= − σE+ βI. (6)

By combining expressions (3) and (6) one obtains:

d

dt

(

E
I

)

=

(

− σ β

σ −γ

) (

E
I

)

= A

(

E
I

)

, (7)

where we have introduced a two-by-two matrix:

A =

(

− σ β

σ −γ

)

(8)

The solution for the number of infected individuals can now
be written:

I (t) = C1 · e
λ+t + C2 · e

λ−t , (9)

where λ+ and λ− denote eigenvalues of the matrix A, i.e., the
solutions of the equation:

det (A− λI) = 0. (10)

The eigenvalues must satisfy:

∣

∣

∣

∣

−σ − λ β

σ −γ − λ

∣

∣

∣

∣

= 0,

leading to:

(λ + σ) · (λ + γ) − β · σ = 0. (11)

The solutions of (11) are:

λ± =
− (γ + σ) ±

√

(γ − σ)2 + 4βσ

2
. (12)

Since λ− < 0, the second term in (9) can be neglected for
sufficiently large t. More precisely, numerical analysis shows that
this approximation is valid already after the second day, while,
for the extraction of R0 value we will anyhow ignore all data
before the fifth day (for the analyzed countries, numbers of cases
before the fifth day were generally too low, hence this early data
is dominated by stochastic effects/fluctuations). Hence, I (t) is
proportional to exp(λ+t), i.e.:

I (t) = I (0) · eλ+t . (13)

By using β from (12) and R0 =
β
γ
(Keeling and Rohani, 2011;

Martcheva, 2015), we obtain:

R0 = 1+
λ+ · (γ + σ) + λ+

2

γ · σ
. (14)

From (13) and (5) we compute:

D (t) = ε · δ · I (0) ·
(eλ+t − 1)

λ+
. (15)

By taking the logarithm, the above expression leads to:

log (D (t)) = log (εδI(0)/λ+) + λ+ · t, (16)

from which λ+ can be obtained as the slope of the log (D (t))
function. From Equation (14), we thus obtain the R0 value as
a function of the slope of log (D (t)), where the latter can be
efficiently inferred from the plot of the number of detected
COVID-19 cases for a large set of countries.

The SEIR model and the above derivation of R0 assume that
the population belonging to different compartments is uniformly
mixed. Possible heterogeneities may tend to increase R0 values
(Keeling and Rohani, 2011). However, this would not influence
the results obtained below, as our R0 values are consistently
inferred for all analyzed countries by using the same model,
methodology, and parameter set. Moreover, our R0 values are
in agreement with the prevailing estimates in the literature
(Najafimehr et al., 2020).

Demographic and Weather Data
Acquisition
For the countries for which R0 was determined through
the procedure above, we also collect a broad spectrum of
meteorological and demographic parameter values. Overall, 118
countries were selected for our analysis, based on the relevance
of the COVID-19 epidemiological data. Namely, a country
was considered as relevant for the analysis if the number of
detected cases on June 15th was higher than a threshold value
of 1,000. A few countries were then discarded from this initial
set, where the case count growth was too irregular to extract any
results, possibly due to inconsistent or irregular testing policies.
As a source for detected cases, we used (World Bank, 2020b;
Worldometer, 2020).

In the search for factors correlated with COVID-19
transmissibility, we have analyzed overall 42 parameters, 11
of which are related to weather conditions, 30 to demographics
or health-related population characteristics, and one parameter
quantifying a delay in the epidemic’s onset (data provided in
Supplementary Tables 2–5). Not all of these parameters were
available for all of the considered countries. In particular, data
on the prevalence of blood types (Supplementary Table 4

in the Supplement) was possible to find for 83 of the 118
countries, while, primarily due to scarce data on pollutant
concentrations during the epidemics, almost 30% of entries in
Supplementary Table 5 in Supplement had to be left blank for
this category. Nevertheless, we opted to include these parameters
in our report: despite the lower number of values, some of these
parameters exhibited strong and highly statistically significant
correlations with R0, warranting their inclusion.

Our main source of weather data was project POWER
(Prediction of Worldwide Energy Resources) of the NASA
agency (NASA Langley Research Center, 2020). A dedicated
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Python script was written and used to acquire weather data
via the provided API (Application Programming Interface).
NASA project API allows a large set of weather parameters
to be obtained for any given location (specified by latitude
and longitude) and given date (these data are provided in the
Supplementary Table 7). From this source, we gathered data on
temperature (estimated at 2m above ground), specific humidity
(estimated at 2m above ground), wind speed (estimated at 2m
above ground), and precipitation (defined as the total column of
precipitable water). Data on air pressure (at ground level) and
UV index (international standard measurement of the strength
of sunburn-producing ultraviolet radiation) were collected via
similar API fromWorldWeather Online source (WorldWeather
Online, 2020), using the same averaging methodology. Since
we needed to assign a single value to each country (for
each analyzed parameter), the following method was used for
averaging meteorological data. In each country, a number of
largest cities1 were selected and weather data was taken for
the corresponding locations. These data was then averaged,
weighted by the population of each city, followed by averaging
over the period used for R0 estimation (more precisely, to
account for the time between disease transmission and the case
confirmation, we shifted this period 12 days into the past). The
applied averaging method used here can be of limited adequacy
in countries spreading over multiple climate zones, but is still
expected to provide reasonable single-value estimates of the
weather parameters, particularly since the averaging procedure
was formulated to reflect the most likely COVID-19 hotspots in
a given country.

Demographic data was collected from several sources.
Percentage of the urban population, refugees, net migration,
social and medical insurance coverage, infant mortality, and
disease (CVD, cancer, diabetes, and CRD) risk was taken from
the World Bank organization (World Bank, 2020b). The HDI
was taken from the Our World in Data source (Our World in
Data, 2020), while median age information was obtained from
the CIA website. The source of most of the considered medical
parameters: cholesterol, raised blood pressure, obesity, inactivity,
BSG vaccination as well as data on alcohol consumption and
smoking prevalence was World Health Organization (World
Health Organization, 2020). Data for blood types were taken
from the Wikidata web site. BUCAP parameter, representing
population density in the built-up area, was taken from GHS
Urban Center Database 2015 (European Commission Global
Human Settlement, 2020). The onset parameter, determining the
delay (in days) of the epidemic’s start, was inferred from COVID-
19 counts data. We used the most recent available data for all
the parameters.

RESULTS

The log (D (t)) function, for a subset of selected countries, is
shown in Figure 3. The obvious linear dependence confirms that

1This number was determined for each country by the following condition: the
total population of the cities taken into consideration had to surpass 10 percent of
the overall population of the country.

the progression of the epidemic in this stage is almost perfectly
exponential. Note that our model exactly reproduces this early
exponential growth (see Equation 13), happening under the
assumption of a small fraction of the population being resistant,
and the absence of the effect of social distancing interventions.
From Figure 3, we see that this behavior, predicted by the model
for the early stage of the epidemic, is also directly supported by
the data, i.e., the exponential growth in the cumulative number
of confirmed cases is indeed observed for a wide range of
countries. For each country, the parameter λ+ is directly obtained
as the slope of the corresponding linear fit of the log (D (t)),
and the basic reproduction number R0 is then calculated from
Equation (14). Here, we used the following values for the
incubation rate, σ = 1/3 day−1, and for the recovery rate γ =

1/4 day−1, per the commonly accepted values in the literature
(Bar-On et al., 2020). Note that possible variations in these two
values would not significantly affect any conclusions about R0
correlations, due to the mathematical properties of the relation
(14): it is a strictly monotonous function of λ+ and the linear
term λ+· (γ + σ) /γ ·σ dominantly determines the value of R0.

Supplementary tables contain the values for 42 variables,
for all countries. Correlations of each of the variables with R0
are given in Supplementary Table 6. Values for the Pearson
correlation coefficient are further shown below, though
consistent conclusions are also obtained by Kendall and
Spearman correlation coefficients (which do not assume a
linear relationship between variables). Correlation coefficients
were calculated in the usual manner: as the correlation of the
vector of parameter values with the vector of R0 values, by
taking into account all available data (for parameters that were
available across all of the countries, both of the vectors were 118
dimensional; if values were missing for certain countries, these
countries were simply ignored and lower-dimensional vectors
were compared).

The first set of results that corresponds to, roughly speaking,
general demographic data, is presented in Figure 4. The plot
in panel A shows the distribution of R0 vs. HDI values for
all countries, where a higher HDI score indicates the more
prosperous country concerning life expectancy, education, and
per capita income (Sagar and Najam, 1998). This parameter was
included in the study due to a reasonable expectation that a
higher level of social development also implies a higher level
of population interconnectedness and mixing (stronger business
and social activity, more travelers, more frequent contacts,
etc.), and hence that HDI could be related to the SARS-CoV-
2 transmissibility. Indeed, we note a strong, statistically highly
significant correlation between the HDI and the R0 value, with
R = 0.37, and p = 4·10−5, demonstrating that the initial
expansion of COVID-19 was faster in more developed societies.

The social security and health insurance coverage (INS)
“shows the percentage of population participating in programs
that provide old age contributory pensions (including survivors
and disability) and social security and health insurance
benefits (including occupational injury benefits, paid sick leave,
maternity, and other social insurance)” (World Bank, 2020b).
Reflecting the percentage of the population covered by medical
insurance and likely feeling more protected from the financial
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FIGURE 3 | Time dependence of the detected cases for various countries, during the initial period of the epidemic, shown on a log-linear scale. The linear fit of log(D)

shows that the spread of COVID-19 in this phase is very well approximated by exponential growth. Note that the values on axes are chosen differently for each

country, in order to emphasize the exponential character of the growth. For each country, the start and end dates of the exponential regime, together with the

extracted slope λ+, are provided in the Supplementary Table 1. ARG, Argentine; AUT, Austria; AZE, Azerbaijan; BEL, Belgium; BRA, Brazil; CHL, Chile; CRO,

Croatia; CZE, Czech Republic; EGY,Egypt; GAB, Gabon; GEO, Georgia; DEU, Germany; HUN, Hungary; ISL, Iceland; IND, India; IRN, Iran; IRQ, Iraq; ISR, Israel; CIV,

Cote d’Ivoire; MDG, Madagascar; MLI, Mali; MDA, Moldova; MAR, Morocco; NLD, Netherlands; PAN, Panama; PRT, Portugal; ROU, Romania; SAU, Saudi Arabia;

SEN, Senegal; SRB, Serbia; ESP, Spain; CHE, Switzerland; TUN, Tunis; GBR, Great Britain; UKR, Ukraine.

effects of the epidemics, this indicator shows a strong (R = 0.4)
and highly significant (p = 4·10−4) positive correlation with R0.
The percentage of urban population (UP) and BUCAP density
(BAP) are both included as measures of how concentrated is the
population of the country. While the UP value simply shows
what percentage of the population lives in cities, the BUCAP
parameter denotes the amount of built-up area per person. Of
the two, the former shows a highly significant positive correlation
with the COVID-19 basic reproduction number, whereas the
latter shows no correlation. Median age (MA) should be of
obvious potential relevance in COVID-19 studies since it is well

known that the disease more severely affects the older population
(Jordan et al., 2020). Thus, we wanted to investigate also if there
is any connection of age with the virus transmissibility. Our
results are suggestive of such a connection, since we obtained
a strong positive correlation of age with R0, with very high
statistical confidence. Infant mortality (IM) is defined as the
number of infants dying before reaching 1 year of age, per 1,000
live births. Lower IM rates can serve as another indicator of
the prosperity of a society, and it turns out that this measure
is also strongly correlated, but negatively, with R = −0.36 and
p = 8·10−5 (showing again that more developed countries, i.e.,
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FIGURE 4 | (A) R0 vs. HDI as an example of transmissibility dependence on demographic data (Pearson correlation denoted as R). (B) Pearson correlations of R0

with (from left to right): social security and health insurance coverage (INS), percentage of urban population (UP), BUCAP measure of population density (BAP), median

age (MA), infant mortality (IM), net migration (I-E), and percentage of refugee population by country or territory of asylum (RE). The statistical significance of each

correlation is indicated in the legend, while “ns” stands for “no significance.”

those with lower IM rates, have experienced more rapid spread
of the virus infection). Net migration (I-E) represents the 5-
year estimates of the total number of immigrants less the annual
number of emigrants, including both citizens and non-citizens.
This number, related to the net influx of foreigners, turns out
to be positively correlated, in a statistically significant way, with
R0. However, according to our data, the percentage of refugees,
defined as the percentage of the people in the country who are
legally recognized as refugees and were granted asylum in that
country, is not correlated with R0 at all.

Another set of parameters corresponds to medically-related
demographic parameters and is shown in the upper part of
Figure 5. The plot in panel A represents the average blood
cholesterol level (in mmol/L) in the population of various
countries, plotted against the value of R0. The two parameters
are strongly correlated, with R = 0.4, and p = 6·10−6. Another
demographic parameter with clear medical relevance, that has
a comparatively strong and significant positive correlation with
R0, is the alcohol consumption per capita (ALC), as shown
in panel B of Figure 5. Our data shows that R0 is also
positively correlated, with high statistical significance, with the
prevalence of obesity and to a somewhat smaller extent with
the percentage of smokers. Here, obesity is defined as having a
body-mass index over 30. A medical parameter that is strongly,
but negatively, correlated with R0, is a measure of prevalence
and severity of COVID-19 relevant chronic diseases in the
population (CD). This parameter is defined as “the percent of
30-year-old-people who would die before their 70th birthday
from any of cardiovascular disease, cancer, diabetes, or chronic
respiratory disease, assuming that s/he would experience current
mortality rates at every age and s/he would not die from any
other cause of death” (World Bank, 2020b). The percentage
of people with raised blood pressure (RBP) is also negatively

correlated with R0, though this correlation is not as strong and
as statistically significant as in the case of the CD parameter.
Here, raised blood pressure is defined as systolic blood pressure
over 140 or diastolic blood pressure over 90, in the population
older than 18. The percentage of smokers exhibits statistically
significant (though not large) positive correlation. Two medical-
demographic parameters that show no correlation with R0 in our
data are the prevalence of insufficient physical activity among
adults aged over 18 (IN) and BCG immunization coverage among
1-year-olds (BCG).

In Figure 5C we see that blood types are, in general, strongly
correlated with R0. The highest positive correlation is exhibited
by A− and O− types, with a Pearson correlation of 0.4 and 0.39,
and a very high statistical significance of p = 10−4 and p =

2·10−4, respectively. Taken as a whole, group A is still strongly
and positively correlated with R0, albeit with a bit lower statistical
significance (A+ type correlation has p-value two orders of
magnitude higher than A−). This is not so for group O that,
overall, does not seem to be correlated to R0 (O+ even shows a
certain negative correlation but without statistical significance).
Our data reveals a highly significant positive correlation also
for AB− subtype (R = 0.31, p = 0.003), while neither the AB+

subtype nor overall AB group is significantly correlated with
the basic reproduction number. Clear negative correlation is
exhibited only by B blood group (R = −0.31, p = 0.004), mostly
due to the negative correlation of its B+ subtype (R = −0.34,
p = 0.001), whereas B− subtype is not significantly correlated
with R0 in our data. If we consider the rhesus factor alone, we
again observe very strong correlations with R0 and with very
high statistical significance: Rh− and Rh+ correlate positively
(R= 0.4) and negatively (R=−0.4), respectively, with very high
statistical significance (p = 2·10−4). The tendency of Rh− and
Rh+ to, respectively, increase and decrease the transmissibility,
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FIGURE 5 | (A) R0 vs cholesterol level, as an example of a health-related parameter dependence. (B) Pearson correlation of R0 with (from left to right): alcohol

consumption per capita (ALC); the prevalence of obesity (OB); severity of COVID-19 relevant chronic diseases in the population (CD); a percentage of people with

raised blood pressure (RBP); a percentage of smokers (SM); the prevalence of insufficient physical activity among adults (IN); BCG immunization coverage among

1-year-olds (BCG) (C) Correlation of blood types with R0 in order: A, B, AB, and O (from left to right); overall value for that group, correlation only for Rh+ subtype of

the group, and correlation for Rh− subtype is shown. The two rightmost bars correspond to the overall correlation of Rh+ and the overall correlation of the Rh− blood

type with R0. The convention for representing the statistical significance of each correlation is the same as in Figure 4.

is therefore consistent with the results obtained for all four
individual blood-groups.

In Figure 6, the onset represents the delay of the exponential
phase and is defined, for each country, as the number of days
from February 15 to the start of the exponential growth of
detected cases. The motivation was to check for a possible
correlation between the delay in the onset of the epidemic and
the rate at which it spreads. Indeed, our data shows that such
correlation exists and that it is strong and statistically significant:
R=−0.48 and p= 4·10−8. In other words, the later the epidemic
started, the lower (on average) is the basic reproduction number.

Panel B of Figure 6 shows the correlation of R0 with some
of the commonly considered air pollutants. Our data reveal
a statistically significant positive correlation of R0 with NO2

and SO2 concentrations. Other pollutants—CO, PM2.5 (fine
inhalable particles, with diameters that are generally 2.5µm

and smaller), and PM10 (inhalable particles, up to 10 nm in
diameter)—show no statistically significant correlation with R0.

Next, we consider weather factors. Panels C and D of
Figure 6 show correlations of precipitation, temperature, specific
humidity, UV index, air pressure, and wind speed with the
reproduction number R0. Of these, precipitation, temperature,
specific humidity, and UV index show a strong negative
correlation, at a high level of statistical significance. Of the
other two parameters, both air pressure and wind speed are not
correlated at all with R0 in our data.

DISCUSSION

The present paper aimed to establish relations between
the COVID-19 transmissibility and a large number of
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FIGURE 6 | (A) R0 vs. the time delay of epidemic onset. (B) Pearson correlation of R0 with pollutants (from left to right): NO2, SO2, CO, PM2.5, and PM10 (inhalable

particles with 2.5 and 10µm, respectively). (C) R0 vs. precipitation. (D) Pearson correlation of R0 with (from left to right): temperature, specific humidity, UV index, air

pressure, and wind speed. The convention for representing the statistical significance of each correlation is the same as before.

demographic and weather parameters. As a measure of COVID-
19 transmissibility, we have chosen the basic reproduction
number R0—a quantity that is essentially independent of the
variations in both the testing policies and the introduced social
measures (as discussed in the Introduction), in distinction
to many studies on transmissibility that relied on the total
number of detected case counts [see e.g., (Adhikari and Yin,
2020; Correa-Araneda et al., 2020; Fareed et al., 2020; Gupta
et al., 2020; Iqbal et al., 2020; Li et al., 2020; Pourghasemi et al.,
2020; Rashed et al., 2020; Singh and Agarwal, 2020)]. We have
covered a substantial number of demographic and weather
parameters, and included in our analysis all world countries
that were significantly affected by the COVID-19 pandemic
(and had a reasonable consistency in tracking the early phase
of infection progression). While a number of manuscripts
have been devoted to factors that may influence COVID-19
progression, only a few used an estimate of R0 or some of its

proxies (Coccia, 2020; Contini and Costabile, 2020; Copiello
and Grillenzoni, 2020)—these studies were however limited to
China, and included a small set of meteorological variables, with
conflicting results obtained for their influence on R0. Therefore,
a combination of (i) using a reliable and robust measure of
COVID-19 transmissibility, and (ii) considering a large number
of factors that may influence this transmissibility within the
same study/framework, distinguishes our study over prior
work. We, however, must be cautious when it comes to further
interpretation of the obtained data. As always, we must keep
in mind that “correlation does not imply causation” and that
further research is necessary to identify possible confounding
factors and establish which of these parameters truly affect the
COVID-19 transmissibility. Due to the sheer number of studied
variables, an even larger number of parameters that might be
relevant but are inaccessible to study (or even impossible to
quantify), as well as due to possible intricate mutual relations of
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the factors that may influence COVID-19 transmission, this is a
highly non-trivial task. While we postpone any further analysis
in this direction to future studies, we will, nevertheless, consider
here the possible interpretations of the obtained correlations,
assuming that they also probably indicate the existence of at
least some causation. We below provide a detailed comparison
between our results and previous findings. While a detailed
discussion is presented, despite our best effort, we may have
missed some of the relevant references due to an extremely
rapidly developing field. Nevertheless, we point out a clear
distinction of our work with previous studies, as outlined in
this paragraph.

We will first consider the demographic variables presented
in Figure 4. The obtained correlation of the HDI with the
basic reproduction number is both strong and hardly surprising.
The level of prosperity and overall development of a society
is necessarily tied with the degree of population mobility and
mixing, traffic intensity (in particular air traffic), business and
social activity, higher local concentrations of people, and other
factors that directly or indirectly increase the frequency and range
of personal contacts (Gangemi et al., 2020), rendering the entire
society more vulnerable to the spread of viruses. In this light, it
is reasonably safe to assume that the obtained strong and highly
statistically significant correlation of HDI with R0 reflects a truly
causal connection. However, some authors offer also a different
explanation: that higher virus transmission in more developed
countries is a consequence of more efficient detection of COVID-
19 cases due to the better-organized health system (Gangemi
et al., 2020)—but since our R0 measure does not depend on
detection efficiency, presented results can be taken as evidence
against such hypothesis.

The interpretation is less clear for other demographic
parameters, for example, the percentage of the population
covered by medical and social insurance programs (INS). While
there seem to be no previous studies discussing this parameter,
one possibility is to attribute its strong positive correlation with
R0 to a hypothetical tendency of population to more easily
indulge in the epidemiologically-risky behavior if they feel well-
protected, both medically and financially, from the risks posed
by the virus; conversely, that the population that cannot rely
on professional medical care in the case of illness is likely to be
more cautious not to contract the virus. The other is, of course,
to see this correlation as an indirect consequence of the strong
correlation of this parameter with HDI—which is also, almost
certainly, the underlying explanation of the infant mortality (IM)
correlation, where low mortality ratios point to a better medical
system, which goes hand in hand with the overall prosperity and
development of the country (Ruiz et al., 2015) (thus the negative
correlation with R0).

Similarly, the strong positive correlation of median age (MA)
with R0 might be a mere consequence of its clear relation
with the overall level of development of the country (Gangemi
et al., 2020), but it can be also considered in the light of the
fact that clinical and epidemiological studies have unanimously
shown that the elderly are at higher risk of developing a more
severe clinical picture, and our result may indicate that the virus
also spreads more efficiently in the elderly population. Possible

explanations may include: drugs frequently prescribed to this
population that increase levels of ACE2 receptors (Shahid et al.,
2020), a general weakening of the immune system with age
leading to a greater susceptibility to viral infections (Pawelec and
Larbi, 2008), and a large number of elderly people grouped in
nursing homes, where the virus can expand very quickly (Kimball
et al., 2020).

The correlation of population density with R0, or the lack
of thereof, is more challenging to explain. Naively, one could
expect that COVID-19 spreads much more rapidly in areas with
a large concentration of people, but, if exists, this effect is not
that easily numerically captured. As the standard population
density did not show any correlation with the reproduction
number R0 (not shown), we explored some more subtle variants.
Namely, the simplest reason why the data shows no correlation
of R0 with population density would be that the density,
calculated in the usual way, is too averaged out: the most
densely-populated country on our list, Monaco, has roughly
10,000 times more people per square kilometer than the least
densely-populated Australia. However, Melbourne downtown
has a similar population density as Monaco and far more
people, so one would expect no a priori reason that its infection
progression would be slower (and the R0 rate for Australia as a
whole will be dominantly determined by the fastest exponential
expansion occurring anywhere on its territory). For this reason,
we included the BUCAP parameter into the analysis, which
takes into account only population density in built-up areas.
Surprisingly, even this parameter did not exhibit any statistically
significant correlation. Actually, several studies may serve as
examples showing that the correlation of population density
with the rate of COVID-19 expansion can be expected only
under certain conditions since the frequency of contacts between
people is to a large extent modulated by additional geographical,
economic, and sociological factors (Berg et al., 2020; Carozzi,
2020; Pourghasemi et al., 2020; Rashed et al., 2020). Our observed
absence of a correlation could be therefore expected and possibly
indicates that such a correlation should be sought at the level
of smaller populated areas—for example, individual cities (Yu
et al., 2020). This conclusion is somewhat supported by the
obtained highly significant and strong positive correlation of
R0 with the percentage of the population living in cities (UP)
and which probably reflects the higher number of encounters
between people in a more densely populated, urban environment
(Li et al., 2020). It is also possible that virus spread might have
a highly non-linear dependence on the population density—
namely, that an outbreak in a susceptible population requires
a certain threshold value of its density, while below that value
population density ceases to be a significant factor influencing
virus (Scheffer, 2009; Carozzi, 2020; Coro, 2020).

Another demographic parameter that exhibits a significant
correlation with R0 in our data is the net migration (I-E),
denoting the number of immigrants less the number of
emigrants. Unlike this number, which shows a positive
correlation, the number of refugees (RE) seems not to be
correlated at all. By definition, migrants deliberately choose to
move to improve their prospects, while refugees have to move
to save their lives or preserve their freedom. Migrants (e.g., in
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economic or academic migration), arguably tend to stay in closer
contact with the country of their origin and have more financial
means for that, which likely contributes to more frequent border
crossings and more intensive passenger traffic (Fan et al., 2020),
thereby promoting the infection spread. On the other hand,
refugees are mostly stationed in refugee camps, there is less
possibility of spreading the virus outside through contacts with
residents, but there is a high possibility of escalation of the
epidemic within camps with a high concentration of people
(Hargreaves et al., 2020). We did not find any other attempt
in the literature to examine this issue. In any case, our results
demonstrate that refugees are certainly not a primary cause
of concern in the pandemics, contrary to fears expressed in
some media.

Of the medical factors, the strongest correlation of R0 is
established with elevated cholesterol levels, as shown in Figure 5.
Cholesterol may be associated with a viral infection and further
disease development through a complex network of direct and
indirect effects. In vitro studies of the role of cholesterol in virus
penetration into the host body, done on several coronaviruses,
indicate that its presence in the lipid rafts of the cell membrane is
essential for the interaction of the virus with the ACE2 receptor,
and also for the latter endocytosis of the virus (Radenkovic et al.,
2020). Obesity prevalence (OB) also exhibits a highly significant,
though somewhat weaker correlation with R0, which might be
a consequence of the common connection between obesity and
cholesterol: in principle, obesity might be a relevant factor in
the COVID-19 epidemic exactly due to the effects of cholesterol
on SARS-CoV-2 susceptibility. Of course, other effects might
be at play, e.g., the fact that the adipose tissue of obese people
excessively produces pro-inflammatory cytokines (Sattar et al.,
2020). In the case of obesity, a simple explanation via relation
to HDI is not available, since obesity does not show a simple
correlation with the society development (Haidar and Cosman,
2011). Overall, while the correlation of obesity with a more severe
prognosis in COVID-19 is well established in the literature, its
relation to COVID-19 transmissibility is only mentioned in Li
et al. (2020) and hitherto unexplained.

Often related to obesity is also raised blood pressure (RBP),
and we have discovered that this factor is also correlated, at
high statistical significance, with R0. While this seems to be
the first study correlating high blood pressure with the SARS-
CoV-2 transmission rate, it is known that, based on clinical
studies, RBP appears to be a risk factor for hospitalization and
death due to COVID-19 (Ran et al., 2020a; Schiffrin et al.,
2020). In this light, it might be surprising that the correlation
between RBP and R0 turns out to be negative. On the other
hand, this result supports the existing hypothesis about the
beneficial effect of ACE inhibitors and ARBs (Ran et al., 2020a;
Schiffrin et al., 2020) (standardly used in the treatment of
hypertension). Similarly unintuitive correlation we report in
the case of chronic diseases that are known to be relevant
for the COVID-19 outcome. Namely, our data show, at very
high statistical significance, a strong negative correlation of
R0 with the risk of death from a batch of chronic diseases
(cardiovascular disease, cancer, diabetes, and chronic respiratory
disease), agreeing in this regard with some recent research

(Chiang et al., 2020; Li et al., 2020). These diseases are identified
as relevant comorbidities in the context of COVID-19, leading
to a huge increase in the severity of the infection and poorer
prognosis (An et al., 2020; Zheng et al., 2020) and, therefore, the
discovered negative correlation comes as a surprise—particularly
when contrasted to the positive correlation of obesity (where both
are recognized risk factors in COVID-19 illness). One possible
explanation is that the correlation may be due to potentially
lower mobility of people with chronic diseases compared to the
general mobility of the population. Additionally, it is possible that
these people, being aware to belong to a high-risk group, behaved
more cautiously even before the official introduction of social
distancing measures.

According to our analysis, the prevalence of certain health-
hazard habits is also significantly correlated to COVID-19
transmissibility. Chronic excessive alcohol consumption has, in
general, a detrimental effect on immunity to viral and bacterial
infections, which, judging by the strong positive correlation we
obtained, most likely applies also to SARS-CoV-2 virus infection.
This correlation contradicts the belief that alcohol can be used
as a protective nostrum against COVID-19, which has spread in
some countries and even led to cases of alcohol poisoning (Chick,
2020).

Regarding the impact of smoking on SARS-CoV-2 virus
infection—the results are controversial (Chatkin and Godoy,
2020). The positive correlation of smoking with COVID-19
transmissibility that we obtained seems to support the reasoning
that, since the SARS-CoV-2 virus enters cells by binding to
angiotensin-converting enzyme 2 (ACE2) receptors and that the
number of these receptors is significantly higher in the lungs of
smokers, the smokers will be more affected and easily infected
(Brake et al., 2020; Hoffmann et al., 2020). Accordingly, our result
contradicts the hypothesis that a weakened immune response of
smokers to virus infection may prove beneficial in the context
of inflammation caused by intense cytokine release (Garufi et al.,
2020).

Another result that addresses the association of unhealthy
lifestyle with greater susceptibility to SARS-CoV-2 infection is
the slight positive correlation we obtained for the prevalence of
insufficient physical activity (IN) in adults, which is however not
statistically significant. In this sense, in the case of COVID-19,
we could not fully confirm the findings from (Jurak et al., 2020),
who found that physical activity significantly reduces the risk of
viral infections.

Despite the recent media interest (Gallagher, 2020), our
findings neither could confirm that BCG immunization has any
beneficial effect in the case of COVID-19, at least as far as
reducing the risk of contracting and transmitting the disease is
concerned. While it is known that the BCG vaccine provides
some protection against various infectious agents, unfortunately,
there is no clear evidence for such an effect against SARS-
CoV-2 (O’Neill and Netea, 2020). Our analysis suggests that
BCG immunization simply does not correlate with SARS-CoV-2
virus transmission.

SARS-CoV-2 target cells are typically capable of synthesizing
ABH antigens and certain arguments exist, both theoretical
and experimental, for a potential relation of blood groups
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with COVID-19 progression and transmission (Guillon et al.,
2008; Dai, 2020; Gérard et al., 2020). While the results of
epidemiological studies on COVID-19 patients mostly support
the proposed effect of blood groups on the development of
COVID-19 disease, the relationship between virus transmission
and blood group prevalence and Rh phenotype has been
significantly less studied. Our analysis showed strong positive
correlations of virus transmission with the presence of A blood
group and Rh− phenotype, as well as strong negative correlations
for B blood group and Rh+ phenotype, while for AB and O blood
group no significant correlations were obtained (Figure 5C). This
result coincides significantly with the correlations obtained in
a study conducted for 86 countries (Ansari-Lari and Saadat,
2020). However, another study focused on hospitalized patients
in Turkey reported that the Rh+ phenotype represents a
predisposition to infection (Arac et al., 2020), contradicting our
findings. Similar results regarding the Rh factor were obtained
in a study (Latz et al., 2020) on hospitalized patients in the US
(this study further reported no correlation of blood types with
the severity of the disease). One way to reconcile these results
with ours would be to speculate that the virus is more efficiently
transmitted in a population with a higher proportion of Rh−

phenotype because these people show a milder clinical picture
compared to Rh+, so their movement is not equally limited,
which is why they have more ability to pass on the infection.

Our data (Figure 6A) shows a strong negative correlation with
the date of the epidemic onset. Curiously, it seems that the later
the epidemic started in a given country, it is more likely that
the disease expansion will be slower. Instead of interpreting this
result as an indication that the virus has mutated and changed its
properties over such a short period, we offer the following simpler
explanation: pandemic reached first those countries that are most
interconnected with the rest of the world (at the same time,
those are the countries characterized by great mobility of people
overall), so it is expected that also the progression of the local
epidemics in these countries is more rapid. Another contributing
factor could be the effect of media, which had more time to raise
awareness about the risks of COVID-19 in the countries that were
hit later (Khajanchi et al., 2020b).

Another segment of our interest were air pollutants, shown
in Figure 6B. Air pollution can have a detrimental effect on
the human immune system and lead to the development (or
to worsening) of respiratory diseases, including those caused
by respiratory viral infections (Becker and Soukup, 1999; Copat
et al., 2020). Several papers have already investigated air pollution
in the context of COVID-19 and reported a positive correlation
between the death rate due to COVID-19 and the concentration
of PM2.5 in the environment (Wu et al., 2020; Yao et al., 2020c).
Positive correlations were also found for the spread of the SARS-
CoV-2 virus, but mainly by considering daily numbers of newly
discovered cases—a method that, as we have already argued, may
strongly depend on testing policies, as well as on state measures
to combat the epidemic (Copat et al., 2020). It has been suggested
that virus RNA can be adsorbed to airborne particles facilitating
thus its spread over greater distances (Coccia, 2020; Setti et al.,
2020), but these arguments were contested by examination of air
samples inWuhan (Contini and Costabile, 2020; Liu et al., 2020).

The latter conclusions concur with the results of a study in which
no correlation was obtained between the basic reproductive
number of SARS-CoV-2 infection for 154 Chinese cities and the
concentration of PM2.5 and PM10 particles, while the correlation
of these factors with the death rate (CFR) was shown (Ran
et al., 2020b). The statistically insignificant and relatively weak
correlations we obtained for PM2.5 and PM10 pollutants also
do not support the hypothesis of a potentially significant role
of these particles in the transmission of this virus. In contrast,
significant positive correlations were shown by our analysis
for concentrations of NO2, SO2, and CO in the air (although
the correlation for CO is not statistically significant), which is
generally supported by the results of other studies. For example,
a positive correlation of NO2 levels with the basic reproductive
number of infection was obtained from data for 63 Chinese cities
(Yao et al., 2020a). Also, it has been shown that the number
of detected cases of COVID-19 in China is strongly positively
correlated with the level of CO, while in Italy and the USA
such correlation exists with NO2 (Pansini and Fornacca, 2020).
The mentioned study failed to establish a clear correlation with
the level of SO2. Possible mechanisms of interaction were also
proposed (Daraei et al., 2020). Also, it is important to emphasize
that the atmospheric concentration of NO2 strongly depends on
the levels of local exhaust emissions, so its correlation with virus
transmission can be interpreted by the connection with the urban
environment, characterized by more intensive traffic (Goldberg
et al., 2020).

Finally, we have also obtained some interesting correlations of
the meteorological parameters with R0, shown in Figures 6C,D.
The statistically very highly significant negative correlation of
the basic reproductive number of SARS-CoV-2 virus infection
with both the mean temperature and humidity obtained in
our research (Figure 6D) is consistent with the results of other
relevant papers, e.g., (Mecenas et al., 2020). For example, a similar
correlation was obtained in a study that analyzed COVID-19
outbreak in the cities of Chile—a country that covers several
climate zones, but where it is still safe to assume that social
patterns of behavior and introduced epidemic control measures
do not drastically differ throughout the country (Correa-Araneda
et al., 2020). Effectively the same conclusion—that fewer COVID-
19 cases were reported in countries with higher temperatures
and humidities—was reached in a study covering over 200
countries in the world (Iqbal et al., 2020). While an established
correlation between virus transmission and a certain factor is
not, in general, a telltale sign of a direct causal relationship
between them, in the case of temperature and humidity such
connection is firmly indicated also by results of experimental
research (Lowen et al., 2007; Casanova et al., 2010; Chan et al.,
2011; van Doremalen et al., 2020). Nevertheless, some studies
yielded different conclusions, most likely due to the method
of calculating R0 or due to choosing a small/uninformative
sample of populations in which the number of infected cases
was monitored (Guo et al., 2020; Lin et al., 2020; Yao et al.,
2020b). For example, a study focused on the suburbs of New
York, Queens, obtained a positive correlation between virus
transmission and temperature, which seems unexpected given
the prevailing observations of other studies (Adhikari and Yin,
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2020). This result is most likely a consequence of analyzing data
for a small area (Queens only) where the temperature varies in
a relatively narrow range of values, as well as correlating the
number of detected cases, which may be sensitive to variations
in the testing procedure.

Another environmental agent that can destroy or inactivate
viruses is UV radiation from sunlight, and the properties of a
particular virus determine how long it can remain infectious
when exposed to radiation. For example, epidemics of influenza
have a seasonal character precisely due to the susceptibility of
influenza viruses to UV radiation (Sagripanti and Lytle, 2007).
Our analysis found, at very high statistical significance, a strong
negative correlation between the transmission of the SARS-CoV-
2 virus and the intensity of UV radiation, which is consistent
with the results of other studies obtained for the cities of Brazil
and the provinces of Iran (Ahmadi et al., 2020; Mendonça et al.,
2020). It is worth mentioning that lower temperatures, humidity,
and sunlight levels usually occur in combination and directly
affect not only the virus but also the human behavior, so the
observed higher transmission of the virus in such conditions can
alternatively be interpreted by indirect effects of other factors that
act together in cold weather, such as more time spent indoors
where the virus spreads more easily, or weakening of the immune
system that increases susceptibility to infections (Abdullahi et al.,
2020).

While the results related to COVID-19 correlations with
temperature, humidity, and UV radiation are fairly frequent in
the literature, this is less so for the results on the precipitation
levels. Very few other studies have examined the association
of precipitation with SARS-CoV-2 transmission, with either no
correlation found (Pourghasemi et al., 2020), or looking at
precipitation as a surrogate for humidity and generally receiving
a negative correlation with infection rate (Araujo and Naimi,
2020; Coro, 2020). Our results, however, shown in Figure 6D,
confirm natural expectations: just like humidity, the precipitation
exhibits a strong negative correlation with R0, only slightly lower
than in the case of T, H, and UV, at a very high level of
statistical significance. Such results also concur with some general
conclusions about the behavior of similar viruses (Agrawal et al.,
2009; Pica and Bouvier, 2012).

Our analysis did not reveal any statistically significant
correlation either between the wind speed or between air pressure
and SARS-CoV-2 transmissibility. In the case of wind speed,
this result agrees with the findings in some other papers (Gupta
et al., 2020; Oliveiros et al., 2020). A positive correlation of
wind speed with COVID-19 transmissibility was obtained in
a study in Chilean cities, but, as the authors themselves note,
the interpretation of the effect of this factor is complicated by
its observed significant interaction with temperature (Correa-
Araneda et al., 2020). The role of wind in transmitting the
virus to neighboring buildings is predicted by the SARS virus
spread model within the Amoy Gardens residential complex
in Hong Kong, but such an effect may relate to local air
currents and virus transmission over relatively short distances
and does not imply a correlation of mean wind speeds in
the area with virus transmission (McKinney et al., 2006; Pica
and Bouvier, 2012). As for the air pressure, the potential
connection is hardly at all investigated in the literature. An

exception is a study (Cambaza et al., 2020) reporting a positive
correlation of air pressure with the number of COVID-19 cases
in parts of Mozambique, but our results do not confirm such
a conclusion.

CONCLUSION

While there is by now a significant amount of research on a
crucial problem of how environmental factors affect COVID19
spread, several features set this analysis apart from the existing
research. First is the applied methodology: instead of basing
analysis directly on the number of detected COVID-19 cases
(or some of its simple derivatives), we employ an adapted
SEIR model to extract the basic reproduction number R0 from
the initial stage of the epidemic. By taking into account only
data in the exponential growth regime, i.e., before the social
measures took effect (as explained in the “Methods” section), we
ensured that the correlations we have later identified were not
confounded with the effects of local COVID-19 policies. Even
more importantly, our method is also invariant to variations in
COVID-19 testing practices, which, as is well known, used to vary
in quite an unpredictable manner between different countries.
Another important factor is the large geographical scope of
our research: we collected data from 118 countries worldwide,
more precisely, from all the countries that were above a certain
threshold for the number of confirmed COVID-19 cases (except
for several countries with clearly irregular early growth data).
The third factor was the number of analyzed parameters: we
calculated correlations for the selected 42 different variables (of
more than a hundred that we initially considered overall) and
looked for viable interpretations of the obtained results.

These results should also help in resolving some of the existing
disputes in the literature. For example, our findings indicate that
correlation of HDI with R0 is not a consequence of the COVID-
19 testing bias, as was occasionally argued. Of the opposing
opinions, our data seem to support assertions that blood types
are indeed related to COVID-19 transmissibility, as well as
arguments that the higher prevalence of smoking does increase
the virus transmissibility (though weakly). On the other hand,
in the dispute about the effects of the pollution, our correlations
give an edge to claims that there is no correlation between PM2.5
and PM10 particles and transmissibility (whereas we agree with
the prevailing conclusions about the positive correlation of other
considered pollutants). In the case of the effects of the wind,
based on the obtained results we tend to side with those denying
any connection. In certain cases our findings contradict popular
narratives: there are no clear indications that either number of
refugees or physical inactivity intensifies the spread of COVID-
19. Unfortunately, our data also suggest that BCG immunization
may not help in subduing the epidemic. Additionally, the
obtained correlations hint to possible new alleys of research, e.g.,
those that would help us understand the connection between
cholesterol levels and SARS-CoV-2 transmissibility.

Overall, we believe that the presented results can be a useful
contribution to the ongoing attempts to better understand the
first pandemic of the twenty-first century—and the better we
understand it, the sooner we may hope to overcome it.
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Abstract 

Many studies have proposed a relationship between COVID-19 transmissibility and ambient pollution 

levels. However, a major limitation in establishing such associations is to adequately account for 

complex disease dynamics, influenced by e.g. significant differences in control measures and testing 

policies. Another difficulty is appropriately controlling the effects of other potentially important 

factors, due to both their mutual correlations and a limited dataset. To overcome these difficulties, we 

will here use the basic reproduction number (R0) that we estimate for USA states using non-linear 

dynamics methods. To account for a large number of predictors (many of which are mutually strongly 

correlated), combined with a limited dataset, we employ machine-learning methods. Specifically, to 

reduce dimensionality without complicating the variable interpretation, we employ Principal 

Component Analysis on subsets of mutually related (and correlated) predictors. Methods that allow 

feature (predictor) selection, and ranking their importance, are then used, including both linear 

regressions with regularization and feature selection (Lasso and Elastic Net) and non-parametric 

methods based on ensembles of weak-learners (Random Forest and Gradient Boost). Through these 

substantially different approaches, we robustly obtain that PM2.5 levels are the main predictor of R0 in 

USA states, with corrections from factors such as other pollutants, prosperity measures, population 

density, chronic disease levels, and possibly racial composition. As a rough magnitude estimate, we 

obtain that a relative change in R0, with variations in pollution levels observed in the USA, is typically 

~30%, going up to 70%, which further underscores the importance of pollution in COVID-19 

transmissibility. 
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1 Introduction 

Many studies have provided evidence or strong arguments for the importance of pollution (primarily 

PM2.5 and to a lesser degree PM10 and NO2) in COVID-19 transmissibility: i) Droplets with virus 

particles may bind to Particulate Matter (PM), which may promote the diffusion of virus droplets in 

the air (Chen et al., 2010; Comunian et al., 2020; Contini and Costabile, 2020). ii) Once the virus 

droplet bound to PM reaches a susceptible individual, it can penetrate deeper in alveolar and 

tracheobronchial regions (Qu et al., 2020). iii) Pollution has a general effect on weakening the immune 

system making the organism more susceptible to infection (Domingo and Rovira, 2020; Paital and 

Agrawal, 2020; Qu et al., 2020). iv) It promotes overexpression of ACE-2 receptors, which allows 

SARS-CoV-2 binding and entry into cells (Comunian et al., 2020; Paital and Agrawal, 2020; Sagawa 

et al., 2021). 

While these arguments are compelling, and several studies pointed to correlations between pollutant 

levels and increased severity of COVID-19 progression (De Angelis et al., 2021; Lorenzo et al., 2021; 

Tello-Leal and Macías-Hernández, 2020; Yao et al., 2021; Zhu et al., 2020), there are also prominent 

methodological difficulties in establishing this link. Specifically, comparing case counts (Adhikari and 

Yin, 2020; Suhaimi et al., 2020)  in different geographical regions may be influenced by significant 

differences in the epidemic onsets, applied control measures (social distancing and similar), and testing 

methodologies (most significantly the number of performed tests). Consequently, adequately 

controlling the infection dynamics, rather than relying on absolute case counts, is crucial. Secondly, 

confounding factors, which have to be used jointly with pollution in assessing transmissibility, such as 

social-demographic, medical, and meteorological variables can be mutually highly correlated (Salom 

et al., 2021). Such high correlations realistically present a problem for any statistical inference method, 

though modern machine-learning approaches can partially account for this difficulty (Gupta and 

Gharehgozli, 2020). Also, to obtain robust predictions that are not an artifact of the applied 

methodology and the underlying assumptions, it is crucial to perform analysis by several independent 

methods.  

We will accordingly employ the following approach: i) We consider USA states as this dataset has 

sufficient variability in the relevant variables to extract reasonable conclusions while heterogeneities 

in sociodemographic and weather parameters are not too large to overshadow the dependence on 

pollution. ii) As a measure of transmissibility, we use the basic reproduction number (R0), which is 

insensitive to specific testing policies and estimates SARS-CoV-2 transmissibility in the absence of 

social distancing and in a completely susceptible (non-resistant) population. To estimate R0 for 

individual USA states, we will apply our previously developed methodology (Salom et al., 2021) based 

on observation of different dynamical regimes in COVID-19 infection counts during the disease 

outburst and disease dynamics model applied to one of these growth regimes (exponential). These R0 

estimates, instead of the disease counts (or other similar measures), will be used as a dependent 

(response) variable in further analysis. As independent (input) variables, we will assemble a large set 

of available sociodemographic, medical, and weather variables. Importantly, to assess the pollution 

levels in detail, we will assemble the data for ten different pollutants, with the levels determined in the 

time windows relevant for the analyzed exponential growth regimes. The weather parameters will be 

assembled in the same dynamically relevant manner. This will result in a large number of predictors, 

many of which are grouped in sets of similar and mutually often highly correlated variables. 

Additionally, the number of assembled variables will exceed the total sample size, so reducing the 

number of predictors to a smaller and less correlated set will become a priority. We will achieve this 

through data preprocessing (feature engineering), which includes variable transformations, removing 

all outliers, and grouping variables in mutually related and correlated subsets (e.g., measures of 

similarity, population age, prosperity, chronic disease). Principal Component Analysis (PCA) will be 
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applied on these subsets, resulting in dimensionality reduction (reducing the number of predictors) and 

smaller correlations within these reduced predictor sets. Finally, established machine learning 

approaches will be used with the goals to i) select important variables and rank their relative importance 

in explaining R0, ii) obtain an estimate of expected changes in R0 based on observed variability in 

pollution levels. While this will be a rough estimate, due to the inability to assemble all relevant factors 

in determining R0, it will provide a quantitative assessment for the importance of pollution in SARS-

CoV-2 transmissibility. 

2 Methods 

2.1 R0 extraction 

Basic reproduction number (R0) is a measure of SARS-CoV-2 transmissibility in a fully susceptible 

population and in the absence of intervention measures (social distancing, quarantine). For extraction 

of R0, we used our previously published methodology, in particular analysis of widespread infection 

growth regimes (Magdalena Djordjevic et al., 2021) and extraction of R0 from the exponential growth 

phase that we previously applied on a worldwide level (Salom et al., 2021). We below for completeness 

summarize this methodology. 

To describe the SARS-CoV-2 transmission in a population, we constructed an adapted version of an 

SEIR compartmental model (Maier and Brockmann, 2020; Maslov and Goldenfeld, 2020; Perkins and 

España, 2020; Tian et al., 2020; Weitz et al., 2020), which takes into account all the relevant features 

of this process, while being simple enough to be used for R0 estimation in a wide range of 

populations(Magdalena Djordjevic et al., 2021; Salom et al., 2021). In the early stages of epidemics 

and before social distancing measures are introduced, the flow between the model compartments leads 

to the changes of the compartment member abundances S (susceptible), E (exposed), I (infected), R 

(recovered), and D (cumulative detected cases) which are described by the following system of 

ordinary differential equations: 

𝑑𝑆

𝑑𝑡 
=  − 

𝛽𝑆𝐼

𝑁
 (1.1. ) 

𝑑𝐸

𝑑𝑡 
=  

𝛽𝑆𝐼

𝑁
−  𝜎𝐸 (1.2. )  

𝑑𝐼

𝑑𝑡 
=  𝜎𝐸 − 𝛾𝐼 (1.3. ) 

𝑑𝑅

𝑑𝑡 
= 𝛾𝐼 (1.4. )  

𝑑𝐷

𝑑𝑡
= 𝜀𝛿𝐼 (1.5. ) 

where N is the population size. Parameters represent: β - the rate of virus transmission from an infected 

to the encountered susceptible individual, σ - the inverse of the average incubation period (~3 days), γ 

- the inverse of the average period of infectiousness, 𝜀 – the detection efficiency (as not every infected 

individual becomes detected), and 𝛿 - the detection rate. 

We here apply the model to the relatively brief, initial epidemics period when government mitigation 

measures were still absent, the virus spreads according to its biological potential, the characteristics of 

the particular population, and the environment. Therefore, the parameter values are considered constant 

in this period. The standard measure of the virus transmissibility in these, uncontrolled conditions is 

the basic reproduction number, R0, defined as the average number of secondary infections caused by a 

primary infected individual in a fully susceptible population (S/N ≈ 1), and in the absence of social 

distancing measures (also sometimes denoted as R0,free) (Maier and Brockmann, 2020). At the start of 

an epidemic, R0 > 1 and the number of the infected individuals grows exponentially. At this time 
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interval, the model can be linearized by invoking S/N ≈ 1, becoming represented by only two linear 

differential equations (1.2) and (1.3). Solving for the eigenvalues of this system, 

𝜆± =  
−(𝛾 + 𝜎) ± √(𝛾 − 𝜎)2 + 4𝛽𝜎

2
, (3.7. ) 

provides the solution of the form 𝐼(𝑡) = 𝐶1 · 𝑒𝜆+𝑡 +  𝐶2 · 𝑒𝜆−𝑡, which can be approximated by 

𝐼(t) = 𝐼(0) ·  𝑒𝜆+𝑡 (3.8. ) 

where the term containing the negative eigenvalue, λ- can be neglected (see (Salom et al., 2021)). With 

𝑅0 = 𝛽 𝛾⁄  (Keeling and Rohani, 2011; Martcheva, 2015), the equation for the basic reproduction 

number, 

𝑅0  = 1 +  
𝜆+ ·  (𝛾 + 𝜎) + 𝜆+

2

𝛾 ∗ 𝜎
. (3.9. ) 

can be obtained by expressing β from Eq. (3.7). 

To estimate the R0 values for 46 US states, we collect the detected case counts for each state from 

(Worldometer, 2020). The solution 𝐷(t) =  𝜀 · 𝛿 · 𝐼(0) · (𝑒𝜆+𝑡 − 1) 𝜆+⁄  of the Eq. (1.5) using the Eq. 

(3.8) models the dependence of the cumulative number of detected with time. Taking its logarithm, 

log(𝐷(t)) =   log 0I   +  λ+ · t, (3.12. ) 

results in the equation of the straight line that can be fitted to the data on the semilogarithmic scale. 

Notably, the slope of that line is given by the positive eigenvalue of the system, 𝜆+. Once that 𝜆+ is, 

thus, determined by fitting, the value of R0 for a particular state can be calculated from Eq. (3.9).  

2.1 Pollution data collection 

Air quality information was obtained from the US environmental protection agency (EPA) Air Data 

service (US Environmental Protection Agency, 2020) . We used aggregated daily data for pollutant 

gases (O3, NO2, SO2, CO), particulates (PM2.5 and PM10) and other available species (VOCs, NOx, and 

HAPs). Aggregation was done over all the cities with available information (smaller in comparison to 

the cities used for weather data). The population was obtained from the US Census Bureau (U.S. 

Census Bureau, 2020). All the variable values are averaged for each city over the identified time period, 

and the state average is calculated as the average of all included state cities weighted by population.  

2.4 Weather data collection 

Weather parameters were downloaded in bulk using a custom Python script from the NASA POWER 

project service (NASA Langley Research Center, 2020) . All the parameters were downloaded via the 

POWER API at the longitude and latitude coordinates matching the largest cities in each state that 

comprise above 10% of the state population. Variables include temperature at 2m and 10m, measures 

of humidity and precipitation (wet bulb temperature, relative humidity, total precipitation), and 

insolation indices. The maximum predicted UV index was downloaded from OpenUV (OpenUV, 

2020). Geographical coordinates of the cities and populations of cities and states were adapted from 

Wikidata (Wikipedia, 2021a, 2021b).  

1.3 Socio-demographic data collection 

Demographic data was collected from several sources. The demographic composition of the U.S. 

population by gender, race, and percentage of the population under 18 and over 65 was taken from the 

Measure of America, a project of The Social Science Research Council website (Measure of America, 
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2018). Information about health insurance, GDP, life expectancy at birth, infant and child mortality 

was also taken from the Measure of America website. Medical parameters such as hypertension, 

cholesterol, cardiovascular disease, diabetes, cancer, obesity, inactivity, and chronic kidney and 

obstructive pulmonary disease were taken from the Americas Health Rankings website (America’s 

Health Ranking, 2021) hosting Centers for Disease Control and Prevention (CDC) data (CDC, 2019). 

Percentages of the population that are actively smoking and consuming alcohol are taken from the 

same source as well. The percentage of the foreign population was taken from the Census Reporter 

website (U.S. Census Bureau, 2019). The subnational HDI was taken from the Global Data Lab website 

(2020) (Smits and Permanyer, 2019). Population density, urban population percentage, and median age 

were taken from the U.S. Census Bureau website (U.S. Census Bureau, Population Division, 2019). 

2.5 Data processing 

Analysis of data distributions and QQ plots reveals non-normal distributions in a majority of variables. 

To reduce the skewness of the data we applied a number of transforms with different strengths (square 

root, cubic root, or log), adjusted in sign to maintain the data ranking (Spearman correlation). The table 

with all applied transformations is provided below. Also, note that the entire dataset used in this 

analysis (variable values for all 46 states) is provided in Supplement Table 1. In addition to the 

transformations applied, the table below also links the variables to the dataset, by relating a variable 

shortcut (used in Supplemental files) with its full name and units. 

Data Name(units) Transformation f(x) 

T2M, T2MMAX, T2MMIN, T10M, 
T10MMAX, T10MMIN, TS, T2MWET 

Temperatures (°C) None 

RH2M Relative humidity at 2 meters (%) -log(max(x) - x) 

QV2M Specific humidity at 2 meters (g/kg) log(x) 

T2MDEW Dew Point (°C) None 

PRECTOT Precipitation (mm/day) x1/3 

TQV Total Column Precipitable Water (cm) log(x) 

CLRSKY_SFC_SW_DWN Clear Sky Insolation Incident on a 
Horizontal Surface (MJ/m2/day) 

log(x) 

ALLSKY_SFC_LW_DWN Downward Thermal Infrared 
(Longwave) Radiative Flux (MJ/m2/day) 

-(max(x) - x)1/3 

ALLSKY_SFC_SW_DWN  All Sky Insolation Incident on a 
Horizontal Surface (MJ/m2/day)  

log(x) 

OpenUVmax UV radiation x1/3 

WS2M Wind speed at 2 meters None 

WS10M Wind speed at 10 meters None 

Population over 65 (%) Population over 65 (%) None 

Life Expectancy  Life Expectancy at Birth (years) -(max(x) - x)1/2 

Median age Median age (years) -(max(x) - x)1/2 

Youth population Population under 18 (%) log(x) 

Population density Population density (people/km2) log(x) 

BUAPC Built Up Area Per Capita (km2/people) log(x) 
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Urban Population Urban Population (%) -(max(x) - x)1/2 

HDI Human development index (0-1) 
Average of education, health and 
standard of living. 
(Mean years of schooling of adults 
aged 25+, Expected years of schooling 
of children aged 6 + Life expectancy at 
birth + GNIpc ) /3 

-(max(x) - x)1/2 

GDPpc Gross domestic product per capita log(x) 

Infant mortality rate  Infant Mortality Rate (per 1,000 live 
births) 

-log(x) 

Child mortality  Child Mortality (age 1-4, per 1000 
population) 

-log(x) 

Alcohol consumption Adults alcohol consumption binge 
drinking (%) 

log(x) 

Foreign-born population Foreign-born population (%) log(x) 

Obesity Obesity age 20 and older (%) None 

CVD deaths Age 65+ Cardiovascular disease deaths 
per 100000 people 

log(x) 

Hypertension Adults with Hypertension (%) log(x) 

High cholesterol Population with high cholesterol (%) None 

Smoking Population smoking (%) None 

Cardiovascular disease Population with cardiovascular disease 
(%) 

None 

Diabetes Population with diabetes (%) x1/3 

Cancer Population with cancer (%)  None 

Chronic kidney disease Population with chronic kidney disease 
(%) 

x1/2 

Chronic obstructive pulmonary disease Population with chronic obstructive 
pulmonary disease (%) 

log(x) 

Multiple chronic conditions Population with multiple chronic 
conditions (%) 

None 

Physical inactivity Population physically inactive (%) x1/3 

Male percent Fraction of male in the population (%) log(x) 

White percent Fraction of white in the population (%) -log(max(x) - x) 

Black percent Fraction of black in the population (%) x1/3 

Native percent Fraction of native in the population (%) log(x) 

Asian percent Fraction of Asian in the population (%) log(x) 

Latino percent Fraction of Latino in the population (%) log(x) 

No health insurance children No health insurance under 18 (%) x1/2 

No health insurance adults No health insurance 18-64 (%) None 

No health insurance all No health insurance all population (%) None 
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No insurance black No health insurance black (%) None 

No insurance native No health insurance native (%) x1/3 

No insurance Asian No health insurance Asian (%) x1/2 

No insurance Latino No health insurance Latino (%) None 

No insurance white No health insurance white (%) None 

PM2.5 PM2.5 concentration (µg/m3) None 

PM10 PM10 concentration (µg/m3) x1/2 

CO CO concentration (ppm, 10−6) x1/2 

NO2 NO2 concentration (ppb, 10−9) None 

SO2 SO2 concentration (ppb) log(x - min(x)) 

O3 O3 concentration (ppm) None 

VOC Volatile organic compounds 
concentration (ppb Carbon) 

log(x) 

Lead Lead concentration (µg/m3) log(x) 

HAPs Hazardous air pollutants concentration 
(µg/m3) 

x1/2 

NONOxNOy Nitrous oxides concentration (ppb) x1/3 

R0 Estimated basic reproduction number log(x) 

Table 1. List of variables (with units) and the applied transformations. Variable shortcuts (first column) correspond to 

Supplement Table 1. 

Individual data values that remained more than three median absolute deviations from the new median 

were substituted by the said median value. 

2.6 Feature engineering and Principal Components Analysis 

To reduce the number of variables, we divided them into groups by conceptual similarity and expected 

correlation and performed Principle Component Analysis (PCA) on each group. This also partially 

reduced data correlation (Joliffe, 2002). Variables are grouped according to two criteria: i) They 

represent similar quantities so that after PCA interpretation of the obtained PC remains unambiguous 

ii) That correlation between the variables in the same group are high, so that in this way after PCA the 

correlations in the predictor set are substantially reduced.  Grouping of variables and their relation to 

PCA is provided in Table 2 below: 

PC components Variables 

PC1 T T2M, T2MMAX, T2MMIN, T10M, T10MMAX, T10MMIN, TS 

PC1 humidity QV2M, T2MDEW 

PC1 percipitation PRECTOT, TQV 

PC1 radiation 
PC2 radiation 

CLRSKY_SFC_SW_DWN, 
ALLSKY_SFC_SW_DWN,  ALLSKY_SFC_LW_DWN 

PC1 seasonality 
PC2 seasonality 

PC1 T, PC1 humidity, PC1 precipitation, PC1 radiation, PC2 
radiation, RH2M, UV 

PC1 age Population over 65,  Youth population, Median age 
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PC2 age 

PC1 density 
PC2 density 

1/BUCAP, Urban population, Population density 

PC1 prosperity 
PC2 prosperity 
PC3 prosperity 
PC4 prosperity 

Life expectancy, Infant mortality, GDP, HDI, Child mortality,  
Alcohol consumption, Foreign born population 

PC1 disease 
PC2 disease 
PC3 disease 
PC4 disease 

Obesity (% age 20 and older), 
Age 65+ CVD deaths,  
Adults with hypertension (%),  
Population with high cholesterol (%),  
Population smoking (%),   
Population with cardiovascular disease (%), 
Population with diabetes%,  
Population with cancer (%),  
Population chronic kidney disease (%),  
Population chronic obstructive pulmonary disease (%), 
Population multiple chronic conditions (%), 
Population physical inactivity (%), 

PC1 ins. 
PC2 ins. 
PC3 ins. 

No health insurance (% of_children_under_18),  
No health insurance (% of_adults_ages_18–64),  
No health insurance total population (%),   
No health insurance black (%),  
No health insurance native (%),  
No health insurance Asian (%),  
No health insurance Latino (%),  
No health insurance white (%), 

Table 2.  Grouping of variables and relation to PC. 

Since different variables are expressed in different units and correspond to diverse scales, each variable 

in the dataset was standardized (the mean subtracted and divided by the standard deviation) before 

PCA. For each datasets, we retained as many PCs (starting from the most dominant one) as needed to 

(cumulatively) explain >85% of the data variance. It was inspected that PCs reasonably follow a normal 

distribution (as expected, based on the transformation of the original variables). Note that a number of 

variables did not enter any of the groups from Table 2, as they either have a distinct meaning from 

other variables (e.g. racial prevalence), or have a similar meaning but do not exhibit a high correlation 

with the related variables (e.g. relative humidity RH2M, which does not correlate well with the other 

two humidity measures, QV2M and T2MDEW). These variables enter further analysis independently, 

i.e. together with PCs obtained after PCA on grouped variables.  

2.7 LASSO regression  

To complement the feature selection already done through PCA, additional L1 regularization was done 

with Lasso (Tibshirani, 1996). All input variables were standardized. Hyperparameter 𝜆 controlling for 

the model complexity was optimized through grid search on an exponential scale from numerical zero 

(OLS regression) to the value yielding the intercept-only model. Mean Squared Error (MSE) on the 

cross-validation testing set (200 repeats, 80-20 split) was taken as the loss function, and we chose the 

𝜆1SE as the simplest model still comparable to the optimal one (Krstajic et al., 2014). The final model 

was comprised of all the non-zero coefficients. 
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2.8 Elastic net regression 

Elastic Net expands the Lasso regression with an L2 regularization and introduces a second 

hyperparameter 𝛼 (Friedman et al., 2010; Hastie et al., 2008; Zou and Hastie, 2005). The same 

preprocessing was done for the input variables, after which the 2-dimensional grid-search with the 

same 𝜆-scale as in Lasso, and the 𝛼 linearly equidistant on the interval from 0 (Ridge regression) to 1 

(Lasso regression) inclusive. Cross-validation was performed the same as for the Lasso regression, but 

each fold gave a distinct (𝛼, 𝜆) pair of hyperparameters. The final chosen value is the (𝛼, 𝜆) pair closest 

to the centroid of all the folds, and these hyperparameters were used to retrain the model on the whole 

dataset. Again, the final model was comprised of all the non-zero coefficients. 

2.9 Random Forest and Gradient Boost  

To avoid overfitting, variables were preselected so that they exhibit significant correlations with R0 

(with a liberal threshold of P<0.1), by either Pearson, Kendall, or Spearman correlations. Cross-

validation and hyperparameter selection for Gradient Boost and Random Forest  (Breiman, 2001, 1996; 

Freund and Schapire, 1997; Friedman, 2001; Hastie et al., 2008) was done equivalently as for Lasso 

and Elastic net. For Gradient Boost, maximal number of splits, minimal leaf size, and learning rate 

were chosen through grid search, with the respective values: {1, 2, 3, 4, 5, 8, 16}; {1, 2, 3, 4, 5, 8, 16, 

18} ; { 0.1, 0.25, 0.5, 0.75, 1}. For Random Forest, the grid values for maximal number of splits and 

minimal leaf size were, respectively: {6, 12, 18, 22, 24, 26 30, 35}, {1, 2,…, 7}. The number of trained 

decision trees in the ensemble was also chosen to minimize Mean Square Error (MSE) on the testing 

set, for both methods. The obtained hyperparameters were used to retrain the models on the whole 

dataset, and predictor importance was estimated for both methods. 

2.10 Model metrics 

MSE for the testing data, averaged over all cross-validations, was used as a metric to compare the 

performance of different models. For easier interpretability, MSE values were scaled by those 

corresponding to the constant model (so that MSE of 1 corresponds to the constant model). To assess 

statistical significance with respect to the constant model, a t-test was applied to MSE values obtained 

through cross-validation. 

3 Results 

3.1 Extraction of R0 and feature engineering 

The log(𝐷(t)) in the exponential growth regime for a subset of selected USA states is shown in Fig. 

1. The linear dependence confirms that the progression of the epidemic in this stage is almost perfectly 

exponential. Moreover, from Fig. 1, we see that this exponential growth in the cumulative number of 

confirmed cases is robustly observed for a wide range of USA states, while we previously also observed 

the same robust initial exponential growth for a wide range of world countries (Salom et al., 2021) . 

This exponential growth happens in the early infection stage, when only a small fraction of the 

population is resistant, and before social distancing interventions take effect. Note that, even after 

introducing the measures, there is ~10 days delay in observing their effect in the confirmed case-counts 

curve, due to the incubation period and the time needed between the symptom onset and the infection 

detection/confirmation. We exploit this exponential regime to infer R0 as described in Methods (see 

also (Magdalena Djordjevic et al., 2021) and (Salom et al., 2021)), which we further use as our 

independent (response) variable. 
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Figure 1. The time dependence of the detected cases for the different US states during the initial period of the epidemic is 

shown on a log-linear scale. The linear fit of log(D) shows that the spread of COVID-19 is well approximated by exponential 

growth in this phase. Values on axes are chosen differently for each state to emphasize the exponential growth phase. For 

each state, the start and end dates, the extracted slope λ+, of the exponential regime, are given in the Supplementary Table 

S1. Al – Alabama; AK – Arkansas; AR – Arizona; CA – California; CO – Colorado; FL – Florida; GA – Georgia; ID – 

Idaho; ME – Maine; MD – Maryland; MN – Montana; NE – Nebraska; NJ – New Jersey; NM – New Mexico; NY – New 

York; NC – North Carolina; OH – Ohio; OR – Oregon; PA – Pennsylvania; RI – Rhode Island; SD – South Dakota; TN – 

Tennessee; TX – Texas; VA – Virginia. 

We further transformed the variables so that their distribution becomes as close to normal as possible 

and removed the outliers, as detailed in Methods. The main purpose of these transformations, and 

outliers' removal, is to account for more extreme variable values (such as heavy distribution tails), 

which may significantly affect some of the analysis methods that we further use (in particular, 

correlation analysis, Lasso and Elastic net regressions). On the other hand, methods based on the 

ensembles of decision trees (e.g., Random Forest and Gradient Boost) are fairly robust to outliers and 

non-normal variable distributions and will provide a consistency check of the obtained conclusions. 

Note that transformations of all variables are provided in Table 1. Further, the total number of variables 

(74) is larger than the sample size (46 states). While the regressions with feature selection (Lasso and 

Elastic net) can handle the number of variables that is significantly larger than the sample size (as long 

as the number of selected features is smaller than the sample size), this large number of variables (some 

highly correlated) is a major risk for overfitting, particularly for Random Forest and Gradient Boost 

methods.  

To reduce both the number of variables and correlations between them, we employ PCA. The main 

disadvantage of this is possibly hard interpretation of the obtained PCs. We, thus, divided the initial 

set of variables into smaller subsets of similar meaning and high mutual correlation, where the division 
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of the variables into subgroups is provided in Table 2. Each group of variables is related to their 

corresponding PCs in that table. Note that the number of PCs for each variable group is chosen such 

that they explain more than 85% of the variability in the dataset (standard threshold). Finally, to each 

of the PCs, we assign an intuitive name (e.g., PC1 prosperity, PC1 age) according to the set of variables 

from which they are formed. 

3.2 Feature extraction 

 
Figure 2. Pearson's correlations for relevant variables. A) Variables significantly correlated (P<0.05) with the basic 

reproduction number R0 are shown. The bars' height indicates the value of Pearson's correlation coefficient (R on the y 

axis). B) Scatter plot of R0 vs. PM2.5. The dashed line shows linear fit. C) Person’s correlations of variables in A) with 

PM2.5. Variable names are indicated on the horizontal axis. Stars in bar plots represent the level of statistical significance, 

as indicated in the figure legend. 

We start from the basic assessment of the variable importance in explaining R0, which are pairwise 

correlations. Note that these do not control for the presence of other potentially important variables but 

are a straightforward initial assessment of the relation with R0. In Figure 2A, we show the Pearson 

correlation constant of the variables with R0, where predictors with statistically significant correlations 

(P<0.05) are shown together with their correlation constants (represented by bars' heights) and 

statistical significance levels (indicated by stars). Somewhat surprisingly, we find that the highest 

correlation is with PM2.5, with R~0.6 and P~10-4. A large positive correlation between R0 and PM2.5 

levels can also be observed from the scatter plot in Figure 2B. Additionally, several other variables 

exhibit statistically significant correlations with R0, as indicated in Figure 2A. Note, however, that 
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some of these variables are also significantly correlated with PM2.5. Moreover, their correlation with 

R0 and PM2.5 is in the same direction (Figure 2C). Consequently, their significant correlation with R0 

might, at least in part, be due to their correlation with PM2.5.  

 
Figure 3: Values of regression coefficients in A) Lasso and B) Elastic Net regressions, respectively, where the bars' height 

corresponds to the coefficients' values for selected variables. Coefficients of all other variables are shrunk to zero (not 

shown) by the regressions. Variable importance in C) Gradient Boosting (GBoost) and D) Random Forest (RF) regressions, 

with the bars' height corresponding to estimated importance. Only variables with P<0.1 (according to either Pearson, 

Kendall, or Spearman correlations with R0) are included in GBoost and RF regressions. MSE values are scaled to the 

constant value model and averaged over 200 cross-validations. P-values correspond to the statistical significance of 

obtained MSE's compared to the baseline model. Variable names are indicated on the horizontal axis. 
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To partially address this, we proceed to an analysis that allows selecting the most important predictors 

from the set of correlated variables. Specifically, results of Lasso and Elastic net regressions are shown 

in Figures 3A and 3B. Both of these methods provide both regularization and the ability to select 

significant predictors through shrinking other coefficients to zero. Moreover, we standardize all the 

variables before using them in regressions, so that the absolute values of the regression coefficients 

provide relative importance of the selected variables. For each of the two methods, we perform repeated 

cross-validations, together with optimizations of hyperparameters, so that methods have maximal 

predictive power (i.e., minimal MSE) on the training set (see Methods for details). We obtain that the 

two methods are statistically highly significant compared to the constant model (P~10-19 and 10-23, for 

Lasso and Elastic net, respectively). The predictive power of these methods is, however, only moderate, 

as can be seen for the obtained MSE values (MSEs are scaled, so that MSE of 1 corresponds to the 

constant model, which is not a large difference from 0.79 and 0.76, obtained by Lasso and Elastic net, 

respectively). Note, however, that the main purpose of these models is in feature selection, while 

predictability will be improved through models employed in the next subsection. 

From both Lasso and Elastic net, we again obtain that PM2.5 is the most important predictor, positively 

affecting COVID-19 transmissibility (so that higher PM2.5 leads to higher transmissibility). A similar 

trend is obtained for CO and PC1 NO (formed from NO2 and Nitrogen-oxides concentrations) – CO 

was also found to be significantly related with R0 through pairwise correlations. Additionally, the 

population density (PC2 density) appears as an important predictor through both Lasso and Elastic net, 

though with smaller importance (regression coefficient), but consistently with pairwise correlations, 

and with a tendency to increase transmissibility. Also, through all three approaches employed so far 

(pairwise correlations, Lasso, and Elastic net), we obtain that the higher state prosperity (PC1 

prosperity) negatively influences R0. Also, chronic diseases significantly influence (increase) R0 as 

obtained by both pairwise correlations and Elastic net. Finally, PC2 ins., which is related to the fraction 

of the population (in particular Latinos) with medical insurance, also negatively correlates with R0 

(through all three methods). Interpretation of these dependencies is further addressed in the Discussion 

section.  

3.3 Variable importance estimates 

Our next goal is to assess variable importance and achieve better model predictability through methods 

that are considered state-of-the-art in machine learning for these types of problems. We will employ 

two methods based on ensembles of weak learners (decision trees), in particular Gradient Boost and 

Random Forest. They are substantially different from Lasso and Elastic net employed in the previous 

subsection, as they do not assume linear dependence of the response from input variables (so-called 

non-parametric models). Consequently, their employment provides an independent check for the 

importance of PM2.5 in explaining R0. Moreover, we expect to obtain better predictability of these 

models, which can, in turn, be used for a quantitative estimate of pollution variation effects on R0.  

The two methods are implemented similarly to Lasso and Elastic net, i.e., model hyperparameters are 

optimized to achieve maximal predictability through repeated cross-validations (see Method for 

details). As these models (i.e., decision trees in general) are prone to overfitting, we performed a simple 

variable selection. That is, only variables with P<0.1 (according to either Pearson, Kendell, or 

Spearman correlations) are selected, resulting in 13 variables shown on the horizontal axes of Figures 

3C and 3D, which were then used in further analysis. We obtained a much better predictive power for 

both Gradient Boost and Random Forest models (compared to regressions in the previous subsection) 

with MSE of 0.44 and 0.5, respectively, where these differences compared to the constant model 

(MSE=1) are statistically highly significant (P~10-83 and 10-84, respectively).  
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Estimates of variable importance for both of these models are shown in Figures 3C and 3D. In both 

figures, the most prominent feature is PM2.5, consistently with all other results obtained so far. 

Furthermore, PC1 disease and PC1 NO appear with moderate importance in both methods, where 

GBoost also emphasizes the importance of PC2 ins., which is all generally consistent with the analysis 

presented in the previous subsection. With respect to the pollution, the only difference is that PM10 

appears as moderately important in GBoost, while not selected by other models. Also, CO is selected 

by Random Forest as moderately important (consistent with the previous analysis) but does not appear 

as such in GBoost. Finally, the racial factor (in particular, fraction of black population) is selected as 

important by Random Forest (and also appeared as significant through pairwise correlations) but does 

not appear as important in GBoost. A possible interpretation of these findings is addressed in the 

Discussion section. 

3.4 Quantitative estimate of pollution influence on R0 

As we obtain a reasonable model accuracy through both GBoost and Random Forrest, we will next 

estimate how pollution variations (observed through different USA states) affect R0. While we included 

a substantial number of variables (all that we could realistically assemble) in our analysis, these are of 

course not all the variables that can affect R0, so we here aim to provide rough estimates. Still, such an 

estimate is useful, as it provides the magnitude by which reasonably realistic changes in the pollution 

levels can affect R0. For example, the new SARS-CoV-2 strain that emerged in Great Britain (known 

as B.1.1.7), which is considered to become dominant in many other parts of the world, is estimated to 

lead to up to 1.9 increase in R0 – this value can e.g. be compared with our estimated change due to 

pollution variations. To generate predictions for each of the analyzed states, we keep all other 

parameters fixed while changing the pollution values so that the changes correspond to the actual 

values observed in all 46 states. In this way, the relative change in R0, due to observed variations in 

pollution (R0/R0) was estimated, where R0 corresponds to the difference between maximal and 

minimal estimated R0 values.  

 

Figure 4: Relative change in R0 due to pollution variations observed in USA states. For each state included in the analysis, 

R0 was predicted for the range of pollution values observed throughout all other states. Relative variation in R0 was 

estimated through both A) Gradient Boost (GBoost) and B) Random Forest (RF) regressions, with the models trained as in 

Fig. 3C) Scatter plot of R0/R0 predictions for GBoost and RF, with Pearson’s correlation coefficient and P-value indicated.  

The obtained results for R0/R0 for all analyzed states are shown as histograms in Figure 4A (GBoost) 

and 4B (Random Forest). For GBoost, a somewhat larger R0/R0, corresponding to the median of 

~40%, is obtained, while for Random Forrest, smaller values with a median of ~25% are estimated. 

This can e.g. be compared with R0/R0 of up to 90% for the B.1.1.7 strain (Davies et al., 2021), so that 

estimated changes due to pollution variation are smaller but still substantial. Finally, as the two 
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histograms are somewhat different, in Figure 4C we directly test the consistency of their R0/R0 

predictions. It can be seen that they are well consistent, with reasonably high correlation (R=0.73 and 

P~10-8). Note that these two methods are independent and substantially different (though both based 

on ensembles of decision trees), so differences in their predictions are expected. 

4 Discussion 

Figures 2 and 3 reveal the main paper conclusion: PM2.5 pollution is the main driver behind SARS-

CoV-2 transmissibility in the US. This result is unambiguously obtained through both pairwise 

correlations of variables with R0 and by the applied machine learning approaches. While the association 

of the PM2.5 pollution with the rate of COVID19 spread is not a novel result (Gujral and Sinha, 2021; 

Gupta and Gharehgozli, 2020; Maleki et al., 2021; Stieb et al., 2020), this research is distinct from the 

existing studies: First, through its large robustness, where we reached the same conclusion by diverse 

approaches, as illustrated in Figure 3. Secondly, by explicitly taking into account the infection 

dynamics, i.e., the model-based estimate of R0 as SARS-CoV-2 transmissibility measure, ensuring that 

the result does not depend on testing and/or the implemented social distancing measures. This study is 

also distinct due to the sheer number of 74 predictors initially considered, where PCA and different 

statistical learning approaches were used to analyze such a large feature set in a meaningful way that 

allows straightforward interpretation. Taken together, we believe that the results presented here 

establish the link of PM2.5 pollution with COVID19 transmissibility much more firmly. Previous 

studies on the USA obtained non-consistent reports on pollution importance, underlying importance of 

more extensive modeling and statistical learning approaches that we employed here (Allen et al., 2021; 

Gupta and Gharehgozli, 2020; Luo et al., 2021).  

A quantitative implication of the established connection is illustrated in Figure 4. We estimated that 

varying the pollutant levels (specifically, levels of PM2.5, PM10, CO and NO2, which enter Random 

Forest and Gradient Boost methods), where changes in PM2.5 levels are by far the most important, they 

make a difference of ~30% in terms of the R0 values. While this is smaller compared to reproduction 

number changes due to the appearance of new highly infective strains (that are up to ~90% higher) 

(Davies et al., 2021), it is still sizable, and clearly illustrates the importance of PM2.5 in modulating the 

virus transmissibility. For example, in an exponential regime of infection progression (c.f. Eq. (3.8) in 

Methods) lasting for ~10 days (a typical period in which exponential growth is observed for USA 

states), and with typical parameter values, leads to two times larger number of infected, and (at least) 

equal proportion of lost human lives. An additional (and independent) effect of larger pollutant levels, 

is in potentially increased COVID-19 mortality due to higher pollutant levels, as suggested by several 

studies (Luo et al., 2021; Pozzer et al., 2020; X. Wu et al., 2020). Overall, this underscores the 

importance of reducing pollutant levels in the epidemiological context. 

While we obtain that PM2.5 pollution is the dominant predictor of virus transmissibility, our results also 

suggest the relevance of other factors. First, few other pollutants are also selected through our analysis, 

most notably NO2 and its related nitrogen oxide derivatives (where its particularly high importance 

was assigned by the Random Forest method, see Fig. 3D), and to some extent CO and PM10. These 

results are partially in line with findings that a number of pollutants, more precisely particulate matter 

(Comunian et al., 2020; Sagawa et al., 2021), but also NO2 (Paital and Agrawal, 2020), cause 

overexpression of ACE-2 in respiratory cells, thus increasing the likelihood of infection. This is not 

necessarily the only relevant mechanism, as the prolonged exposure to pollutants can cause a general 

weakening of the immune system (Glencross et al., 2020; Qu et al., 2020). However, the relatively low 

importance of NO and CO pollutants that we obtained speaks in favor of the hypothesis that PM 

pollution, by binding to virus droplets, additionally mechanically facilitates SARS-CoV-2 spread 

through the air - both extending the range of virus diffusion and allowing its direct transport into deeper 
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pulmonary regions (Qu et al., 2020). On the other hand, the inferred large difference in the influence 

of PM2.5 and PM10 particles may be understood through the difficulty of particulate matter larger than 

5 µm to reach ACE2 receptors located in type II alveolar cells (Bontempi, 2020; Copat et al., 2020; 

Zhu et al., 2020). 

Another factor (unsurprisingly) related to the susceptibility of an organism to infections, is the presence 

of different comorbidities and, in general, any diseases that could potentially compromise the immune 

system (Allel et al., 2020; Coccia, 2020; Liu et al., 2020). Indeed, all applied analysis methods except 

for Lasso, find the prevalence of chronic diseases in the population (i.e., its dominant principal 

component PC1-disease) to be an important R0 predictor.  

Additionally, the applied methods also identify a group of three mutually interrelated factors: the 

dominant PC reflecting the overall prosperity of the state (PC1 prosperity), the percentage of the black 

population, and the PC2 insurance component (this component effectively reflects the insurance 

coverage among the Hispanic population). Our recent study of the effects of various demographic and 

weather parameters on the spread of COVID19 based on the data from 118 world countries (Marko 

Djordjevic et al., 2021) also pointed to the essential role of the country's prosperity, but we note a stark 

disagreement in the sign of the correlation: whereas, worldwide, the more developed countries suffered 

from higher COVID19 expansion rates, data on US states show an opposite trend - wealthier and more 

developed areas of US on average seem to exhibit lower R0 values (Gupta and Gharehgozli, 2020). 

However, this difference may be expected: on the global level, there are substantial variations in the 

development level between countries, where this level effectively becomes a proxy for the frequency 

of social contacts (reflecting business and cultural activity, population mixing due to work/education, 

international travel, etc.) (Gangemi et al., 2020). On the other hand, all states of America have highly 

developed societies and the dominant effect of these more subtle differences is likely different: within 

this prosperity range, the better off population has more means to prioritize and practice precautionary 

behavior (e.g. have professions that require less physical contacts, fewer comorbidities, healthier 

lifestyle, higher awareness of the infection risks, etc.). But a COVID19 pandemic has also emphasized 

a specific racial aspect of healthcare disparities. The correlation between the percentage of the black 

population and R0 observed in our data (Figure 2A), as well as the results of the Random Forrest 

regression method (Figure 3D), agree with the already established conclusion that the black minority 

is by far overrepresented not only among COVID19 fatalities (Luo et al., 2021; Xiao Wu et al., 2020) 

but also among the total infected population (Chakraborty, 2021; Stieb et al., 2020) . Another relevant 

factor is the health insurance coverage (PC2 insurance), which consistently through our analysis shows 

that COVID19 infection is spreading faster among people without medical insurance (Figure 2 and 

Figure 3). Both the percentage of the black population and the prevalence of insurance coverage are 

significantly correlated with pollution, in particular with PM2.5, as can be seen in Figure 2C (curiously, 

our data do not show such correlation with the PC1 prosperity component). It has been argued that the 

influence of factors related to a more economically disadvantaged population (overrepresentation of 

minorities, absence of medical insurance,…) is inherently hard to disentangle from the effects of 

pollution. While this standpoint is also in part supported by our analysis, we also note that PM2.5 

consistently appeared with much larger importance through all analyses compared to these 

economically disadvantaged factors (Chakraborty, 2021; Stieb et al., 2020). Therefore, the most 

plausible interpretation is to associate PM2.5 (rather than these other factors) with R0 changes. 

It is also interesting to consider which parameters did not show up as important in our results. The 

absence of seasonal principal components from the final sets of significant predictors may imply 

irrelevance of the weather parameters such as temperature, UV radiation, and humidity on the SarS-

CoV2 transmission - in spite that it has become almost a common knowledge that high temperatures 

should suppress the virus transmission (Byun et al., 2021; Fu et al., 2021; Sarkodie and Owusu, 2020). 
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Thus, the results presented here side with the authors who disagree that weather factors bear a 

significant influence on the course of the COVID19 epidemic (Wang et al., 2021). One should however 

note that variations of meteorological factors are much larger on a global scale, where indeed we find 

out a larger significance of these factors (Salom et al., 2021). Another somewhat surprising conclusion 

is the moderate significance of the population density. While there is a significant correlation of PC2 

density component with R0, it further appeared significant only in Lasso regression, and even there 

with not that high coefficient. This is however in line with several other studies, that also didn’t assign 

a high significance to population density (Carozzi et al., 2020; Hamidi et al., 2020; Pourghasemi et al., 

2020; Rashed et al., 2020). 

5 Conclusion and outlook 

Starting from 74 initial parameters and by using five different analysis approaches, we obtained the 

results that robustly select PM2.5 pollution as the most important predictor of SARS-CoV-2 

transmissibility in the USA. Using R0 as a transmissibility measure and non-linear dynamics to extract 

its values for different USA states, these results are largely insensitive to the differences in the state 

policies. The obtained large quantitative estimate of the magnitude of the PM2.5 effect on virus 

transmissibility may be intuitively unexpected and is not that far from estimated differences in 

transmissibility caused by virus mutations.  

The main issue to be addressed in future studies is that of causality, i.e. disentangling the effects of 

pollution from those of socio-demographic factors with which it is correlated. This clearly cannot be 

achieved through studies with a larger resolution, such as the one employed here, even with 

applications of sophisticated statistical (machine) learning methods, and with taking into account the 

infection progression dynamics. Carefully crafted, and high resolution, longitudinal epidemiological 

studies may be a way forward in this regard. The results obtained here, and by other similar studies, 

may provide a basis for these high-resolution studies, particularly in terms of factors that should be 

considered, their expected relative importance, and the magnitude of the effects that may be expected.       
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