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Поштовани,

за Студентску награду Института за физику у Београду предлажем др Ану Худомал за
докторску  дисертацију  “Numerical  study  of  quantum  gases  in  optical  lattices  and  in
synthetic  magnetic  fields”  (“Нумеричко  проучавање  квантних  гасова  у  оптичким
решеткама и  у  синтетичким магнетним пољима”),  која  је  одбрањена  1.  децембра
2020. године на Физичком факултету Универзитета у Београду.

Докторска дисертација др Ане Худомал припада области физике кондензованог стања,
а физички системи којима се бави су ултрахладни гасови бозонских атома у оптичким
решеткама.  Интензивно  проучавање  ултрахладних  атома  започето  је  са  циљем
експерименталне  реализације  Бозе-Ајнштајн  кондензата,  што  је  и  остварено  1995.
године.  Од тада  је  област ултрахладних  атома  веома активна  и  данас  ултрахладни
атоми  представљају  једaн од најзначајнијих експерименталних система зан  од  најзначајнијих  експерименталних  система  за
имплементацију квантних симулатора, које је као концепт увео Фајнман 1982. године.
Увођење  оптичке  решетке  (периодичног  светлосног  потенцијала  за  атоме)  је
приближило  ове  системе  моделима  који  се  проучавају  у  физици  чврстог  стања  и
омогућило  је  непосредно  истраживање  физике  Хабардовог  модела.  У  актуелним
истраживањима фокус је на разумевању неравнотежне динамике квантних система,
као и на уопштењу физичких модела који се могу проучавати у оптичким решеткама.
Специјално,  једна  од  веома  важних  и  актуелних  тема  је  реализација  тополошки
нетривијалних модела у оптичким решеткама. Прекретница која је дефинисана веома
рано и на коју се и даље чека је реализација фракционог Холовог стања у систему
ултрахладних атома.  Ово су веома актуелна отворена питања на чијим одговорима
раде водеће истраживачке групе у свету. Теоријски опис најновијих експеримената је
изузетно сложен и на самој граници изводљивости на данашњим суперрачунарима.

У оквиру докторских студија,  др Ана Худомал је  радила управо на овим кључним
питањима и изузетним залагањем дошла до важних одговора. Проблеми које је Ана
решавала захтевали су подробно разумевање физичке слике и велику сналажљивост у
имплементацији  нумеричких  алгоритама  у  којима  су  постигнуте  перформансе
упоредиве  са  најмодернијим  приступима.  Докторска  дисертација  др  Ане  Худомал
заправо  разматра  две  опште  теме  које  модерни  експерименти  са  ултрахладним
атомима  блиско  повезују.  Прва  тема  је  разумевање  неравнотежне  динамике  у
изолованом и периодично вођеном квантном систему, а друга тема се бави припремом
и мерењем тополошких стања у оваквим поставкама. Обе теме захтевају разумевање и
коришћење напредних физичких концепата, па је од великог значаја за докторски рад
кандидаткиње било и учешће на престижним међународним школама за докторанде,
као  што  је  наведено  у  приложеној  биографији.  Опсежним  проучавањем  бозонске
динамике  у  оптичким  решеткама,  које  је  базирано  на  нумеричким  симулацијама
извршаваним  на  PARADOX  суперрачунару  и  семианалитичким  методама,  Ана  је
утврдила  појаву  режима  нестандардне  споре  термализације  у  коме  је  могуће
припремити  и  испитати  тополошки  нетривијална  стања  у  систему  ултрахладних



атома. Она је ова истраживања детаљно и систематично приказала у својој докторској
дисертацији  “Numerical  study  of  quantum  gases  in  optical  lattices  and  in  synthetic
magnetic  fields”,  која  је  написана  на  енглеском  језику  и  садржи  5  поглавља  и  7
додатака. Главни резултати истраживања приказани су у поглављима 2-4 тезе.

Најчешће неинтеграбилни системи се веома брзо термализују. Међутим, у скорашњим
експериментима изведеним на квантном симулатору ултрахладних Ридбергових атома
примећена је неочекивано спора термализација одређених почетних стања. Са циљем
проналажења  и  разумевања  режима  споре  термализације,  у  поглављу  2  своје
дисертације, кандидаткиња је разматрала уопштене бозонске Хамилтонијане у којима
амплитуда тунелирања из међу два суседна чвора оптичке решетке зависи од њихове
насељености. Анализом корелационих функција и ентропије увезаности показала је да
се одређене почетне конфигурације веома споро термализују. Ова појава је објашњена
појавом специјалних својствених стања тзв. квантних ожиљака, чије особине су потом
детаљно анализиране семианалитичком апроксимацијом.

У  другом  делу  тезе,  кандидаткиња  је  разматрала  тополошке  карактеристике
ултрахладних бозона у синтетичким магнетним пољима. Почев од 2013. године, јака
синтетичка магнетна поља се успешно реализују  на посредан начин,  у  периодично
вођеним оптичким решеткама.  Коришћењем овог приступа,  недавно је по први пут
измерен  Чернов  број  (тополошка  инваријанта  енергетске  зоне)  у  неелектронском
систему, тј. у систему хладних атома. Међутим, за успешну интерпретацију резултата
било је неопходно извршити додатна мерења како би ефекти интеракција били узети у
обзир. 

Подстакнута овим експерименталним напретком, Ана Худомал је у поглављу 3 тезе
истраживала  улогу  слабих  атомских  интеракција  при  мерењу  Черновог  броја  у
вођеним  оптичким  решеткама.  Применом  апроксимативног  аналитичког  развоја  по
инверзној  фреквенцији вођења,  кандидаткиња је  прво показала  присуство додатних
чланова  у  ефективном  Хамилтонијану  и  испитала  њихов  утицај  на  тополошке
карактеристике  ефективног  Хамилтонијана.  Потом  су  доприноси  интеракција
урачунати  употребом  теорије  средњег  поља.  Кандидаткиња  је  утврдила  да
интеракције  доприносе  атомским  прелазима  између  различитих  енергетских  зона
ефективног  модела,  чиме  се  усложњава  експериментална  процедура  у  складу  са
очекивањима.  Међутим,  добијени  резултати  такође  показују  да  слабе  атомске
интеракције олакшавају мерење Черновог броја на неколико начина. Како се очекује
да мерење Черновог броја постане рутински алат у блиској будућности - први корак у
припреми  занимљивијих  тополошких  фаза  -  резултати  кандидаткиње  о  ефектима
слабих интеракција су од значаја и за будуће експерименте. 

У  поглављу  4,  кандидаткиња  је  разматрала  сличан  модел,  али  у  режиму  јаких
интеракција при густинама на којима можемо очекивати појаву фракционих Холових
стања. Најпре је одредила реалистичне фреквенције вођења при којима је загревање
система  на  бесконачну  температуру  довољно  споро.  Поред  тога,  за  довољно  мале
системе, нумерички је конструисала стробоскопски еволуциони оператор и утврдила
при којим најнижим фреквенцијама вођења нека од својствених стања овог оператора
одговарају фракционим Холовим стањима. Од највећег експерименталног значаја је
реалистична  припрема  ових  стања.  Кандидаткиња  је  показала  да  се  полазећи  од



једнодимензионалних  низова,  постепеним  укључивањем  тунелирања  и  вођења,
фракциона  Холова  стања  могу  припремити  и  мерити  на  релевантним  временским
скалама реда десетина милисекунди.

Најзначајнији  резултати  докторске  дисертације  Ане Худомал  објављени су  као  три
М21 публикације:

 A. Hudomal, I. Vaн од најзначајнијих експерименталних система заsić, H. Buljaн од најзначајнијих експерименталних система заn, W. Hofstetter, aн од најзначајнијих експерименталних система заnd A. Baн од најзначајнијих експерименталних система заlaн од најзначајнијих експерименталних система заž,
Dynaн од најзначајнијих експерименталних система заmics of weaн од најзначајнијих експерименталних система заkly interaн од најзначајнијих експерименталних система заcting bosons in opticaн од најзначајнијих експерименталних система заl laн од најзначајнијих експерименталних система заttices with flux,
Phys. Rev. A 98, 053625 (2018).
DOI: 10.1103/PhysRevA.98.053625; ISSN 2469-9926; IF(2018)=2.907

 A . Hudomal, N. Regnaн од најзначајнијих експерименталних система заult, aн од најзначајнијих експерименталних система заnd I. Vaн од најзначајнијих експерименталних система заsić,
Bosonic fraн од најзначајнијих експерименталних система заctionaн од најзначајнијих експерименталних система заl quaн од најзначајнијих експерименталних система заntum Haн од најзначајнијих експерименталних система заll staн од најзначајнијих експерименталних система заtes in driven opticaн од најзначајнијих експерименталних система заl laн од најзначајнијих експерименталних система заttices,
Phys. Rev. A 100, 053624 (2019).
DOI: 10.1103/PhysRevA.100.053624; ISSN 2469-9926; IF(2019)=2.777 

 A. Hudomal, I. Vaн од најзначајнијих експерименталних система заsić, N. Regnaн од најзначајнијих експерименталних система заult, aн од најзначајнијих експерименталних система заnd Z. Paн од најзначајнијих експерименталних система заpić,
Quaн од најзначајнијих експерименталних система заntum scaн од најзначајнијих експерименталних система заrs of bosons with correlaн од најзначајнијих експерименталних система заted hopping,
Commun. Phys. 3, 99 (2020).
DOI: 10.1038/s42005-020-0364-9  ; ISSN 2399-3650; IF(2019)=4.684

Укупан импакт фактор ових радова је 10,368. Према бази Web of Science ови радови
су цитирани 13 пута (без аутоцитата), док су исти радови према бази Google Scholaн од најзначајнијих експерименталних система заr
већ цитирани 30 пута. По актуелности и цитираности се посебно истиче рад у Com-
mun. Phys.  из претходне године,  који по Google Scholaн од најзначајнијих експерименталних система заr  -у има преко 20 цитата.  У
прилогу је дат комплетан списак публикација кандидаткиње. До сада, др Ана Худомал
има 11 саопштења са међународних скупова штампаних у изводу (М34), четири рада
објављена у међународним часописима категорије М21 и један рад категорије М21а. 

На основу свега наведеног и на основу наше успешне сарадње, сматрам да је др
Ана Худомал показала велики ентузијазам, таленат и способност за рад на врло
актуелној  и  захтевној  истраживачкој  теми,  што  је  резултовало  врхунском
докторском дисертацијом.  Зато са  изузетним задовољством предлажем др Ану
Худомал  за  Студентску  награду  Института  за  физику  у  Београду  за  најбољу
докторску тезу одбрањену током 2020. године.

У Београду, 29. 04. 2021. године

др Ивана Васић,
виши научни сарадник,

Институт за физику у Београду

https://doi.org/10.1038/s42005-020-0364-9
https://doi.org/10.1103/PhysRevA.100.053624
https://doi.org/10.1103/PhysRevA.98.053625


Биографија др Ане Худомал

Ана Худомал  je рођена  8.  3.  1991.  године  у  Београду,  где  је  завршила  основну школу  и
Математичку гимназију. Основне академске студије на Физичком факултету Универзитета у
Београду, смер Теоријска и експериментална физика, започела је 2010. године и завршила
јула 2014. године са просечном оценом 10,0. Мастер академске студије на истом факултету,
смер Теоријска и експериментална физика, завршила је октобра 2015. године са просечном
оценом  10,0,  одбранивши  мастер  рад  на  тему  ,,New Periodic Solutions to the Three-Body
Problem and Gravitational Waves” (наслов на српском:  ,,Нова периодична решења проблема
три  тела  и  гравитациони  таласи”).  Мастер  рад  је  урађен  под  руководством  др  Вељка
Дмитрашиновића,  научног  саветника  Института  за  физику  у  Београду.  Новембра  2015.
године  уписала  је  докторске  академске  студије  на  Физичком  факултету  Универзитета  у
Београду,  ужа  научна  област  физика  кондензоване  материје.  Докторску дисертацију под
насловом ,,Numerical study of quantum gases in optical lattices and in synthetic magnetic fields”
(наслов на  српском:  ,,Нумеричко проучавање квантних гасова  у оптичким решеткама и у
синтетичким  магнетним  пољима”)  урадила  је  под  менторством  др  Иване  Васић,  вишег
научног сарадника Института за физику у Београду, и одбранила децембра 2020. године.

Од марта 2016.  године Ана Худомал је  запослена у Институту за  физику у Београду као
истраживач приправник у Лабораторији за примену рачунара у науци, у оквиру Националног
центра  изузетних  вредности  за  изучавање  комплексних  система.  Априла  2019.  године
изабрана је у звање истраживач сарадник. Од марта 2016. до децембра 2019. године била је
ангажована  на  пројекту  основних  истраживања  ,,Моделирање  и  нумеричке  симулациjе
сложених  вишечестичних  система”  (ОН171017)  Министарства  просвете,  науке  и
технолошког развоjа Републике Србиjе,  којим  је  руководио др Антун Балаж, а  од јануара
2020.  је  ангажована  институционално.  Поред  тога,  учествовала  је  и  на  билатералним
пројектима са Немачком (Гете универзитет у Франкфурту) и са Хрватском (Универзитет у
Загребу),  под  руководством  др  Иване  Васић.  До  сада  је  похађала  неколико  школа  за
докторанде, међу којима су International School on Thermal, Quantum, and Topological Phase
Transitions  –  Bad Endorf,  Germany  (2016),  Winter  School  on  Topological  Matter  in  Artificial
Gauge Fields – Dresden, Germany (2018), ICAP2018 Summer School – Barcelona, Spain (2018),
International School and Workshop Anyon Physics of Ultracold Atomic Gases – Kaiserslautern,
Germany (2018),  New Developments in  Topological  Condensed Matter  – Les Houches,  France
(2019), Virtual Winter School on Strongly Correlated Quantum Matter (2020). 

Од 2007. до 2011. године Ана Худомал је била стипендиста Републичке фондације за развој
научног и уметничког подмлатка, затим од 2011. до 2013. стипендиста града Београда, док је
од  2013.  до  2015.  била  стипендиста  Фонда  за  младе  таленте  Републике  Србије.  Током
академске  2014/2015.  године  учествовала  је  у  извођењу  наставе  на  Физичком  факултету
Универзитета  у Београду,  као  сарадник у  настави на  предмету Квантна теоријска  физика
(предметни наставник доц. др Душко Латас). 

До сада,  Ана Худомал има један рад објављен у часопису категорије М21a,  четири рада
објављена  у  часописима  категорије  М21,  као  и  11  саопштења  са  међународних  скупова
штампаних у изводу (категорије  М34). Из теме доктората, Ана Худомал је објавила 3 рада
категорије М21 и 11 саопштења категорије М34.
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ARTICLE

Quantum scars of bosons with correlated hopping
Ana Hudomal 1✉, Ivana Vasić 1, Nicolas Regnault2,3 & Zlatko Papić4

Recent experiments on Rydberg atom arrays have found evidence of anomalously slow

thermalization and persistent density oscillations, which have been interpreted as a many-

body analog of the phenomenon of quantum scars. Periodic dynamics and atypical scarred

eigenstates originate from a “hard” kinetic constraint: the neighboring Rydberg atoms cannot

be simultaneously excited. Here we propose a realization of quantum many-body scars in a

1D bosonic lattice model with a “soft” constraint in the form of density-assisted hopping. We

discuss the relation of this model to the standard Bose-Hubbard model and possible

experimental realizations using ultracold atoms. We find that this model exhibits similar

phenomenology to the Rydberg atom chain, including weakly entangled eigenstates at high

energy densities and the presence of a large number of exact zero energy states, with distinct

algebraic structure.
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Semiclassical studies of chaotic stadium billiards have
revealed the existence of remarkable non-chaotic eigenfuc-
tions called “quantum scars”1. Scarred eigenfunctions dis-

play anomalous enhancement in regions of the billiard that are
traversed by one of the periodic orbits in the classical limit when
ℏ → 0. It was shown that quantum scars lead to striking
experimental signatures in a variety of systems, including
microwave cavities2, quantum dots3, and semiconductor quan-
tum wells4.

A recent experiment on a quantum simulator5, and subsequent
theoretical work6,7, have shown that quantum many-body scars
can occur in strongly interacting quantum systems. The experi-
ment used a one-dimensional Rydberg atom platform in the
regime of the Rydberg blockade5,8,9, where nearest-neighbor
excitations of the atoms were energetically prohibited. The
experiment observed persistent many-body revivals of local
observables after a “global quench”10 from a certain initial state.
In contrast, when the experiment was repeated for other initial
configurations, drawn from the same type of “infinite” tempera-
ture ensemble, the system displayed fast equilibration and no
revivals. These observations pointed to a different kind of out-of-
equilibrium behavior compared to previous studies of quantum
thermalization in various experimental platforms11–15.

In both single-particle and many-body quantum scars, the
dynamics from certain initial states leads to periodic revivals of
the wave function. In the former case, this happens when the
particle is prepared in a Gaussian wave packet initialized along a
periodic orbit1, while in the latter case the revivals can be inter-
preted as a nearly-free precession of a large emergent su(2) spin
degree of freedom16,17. Another similarity between single- and
many-body quantum scars is the existence of non-ergodic
eigenstates. In the single-particle case, such eigenstates are
easily identified by their non-uniform probability density that
sharply concentrates along classical periodic orbits. In the many-
body case, non-ergodic eigenstates are broadly defined as those
that violate eigenstate thermalization hypothesis (ETH)18,19.
Scarred eigenstates violate the ETH in a number of ways: for
example, they appear at evenly spaced energies throughout the
spectrum6,20,21, they have anomalous expectation values of local
observables compared to other eigenstates at the same energy
density, and their entanglement entropy obeys a sub-volume law
scaling20.

In recent works, the existence of atypical eigenstates has been
taken as a more general definition of quantum many-body
scaring. For example, highly excited eigenstates with low entan-
glement have previously been analytically constructed in the non-
integrable AKLT model22,23. A few of such exact eigenstates are
now also available for the Rydberg atom chain model24. The
collection of models that feature atypical eigenstates is rapidly
expanding, including perturbations of the Rydberg atom
chain20,25,26, theories with confinement27–29, Fermi–Hubbard
model beyond one dimension30,31, driven systems32, quantum
spin systems33,34, fractional quantum Hall effect in a one-
dimensional limit35, and models with fracton-like dynamics36–39.
In a related development, it was proposed that atypical eigenstates
of one Hamiltonian can be “embedded” into the spectrum of
another, thermalizing Hamiltonian40, causing a violation of a
“strong” version of the ETH41,42. This approach allows to engi-
neer scarred eigenstates in models of topological phases in arbi-
trary dimensions43. From a dynamical point of view, it has been
shown that models with scarred dynamics can be systematically
constructed by embedding periodic on-site unitary dynamics into
a many-body system44.

A feature shared by many scarred models is the presence of
some form of a kinetic constraint. In the Rydberg atom chain,
the constraint results from strong van der Waals forces, which

project out the neighboring Rydberg excitations45. Such Hilbert
spaces occur, for example, in models describing anyon excitations
in topological phases of matter46–50 and in lattice gauge
theories51–53, including the Rydberg atom system54,55. Recent
works on periodically driven optical lattices have started to
explore such physics56,57. On the other hand, kinetic constraints
have been investigated as a possible pathway to many-body
localization without disorder58. In classical systems, non-
thermalizing behavior without disorder is well known in the
context of structural glasses59–61. The mechanism of this type of
behavior is the excluded volume interactions that impose kinetic
constraints on the dynamics62,63. Similar type of physics has
recently been explored in quantum systems where a “quasi many-
body localized" behavior was proposed to occur in the absence of
disorder64–74.

In this paper, we investigate the relation between kinetic con-
straints, slow dynamics and quantum many-body scars. In con-
trast to previous work, which focused on models of spins and
fermions that are closely related in one dimension due to the
Jordan–Wigner mapping, here we study one-dimensional models
of bosons with density-assisted hoppings, which realize both
“hard” and “soft” kinetic constraints, whilst being non-integrable.
Depending on the form of the hopping term, we demonstrate that
the models encompass a rich phenomenology, including regimes
of fast thermalization, the existence of periodic revivals and
many-body scars, as well as the Hilbert space fragmentation that
has been found in recent studies of fractonic models36–39. Unlike
the experimentally realized Rydberg atom system, we find evi-
dence of many-body scars in a bosonic model without a hard
kinetic constraint, i.e., with a fully connected Hilbert space. We
identify initial states that give rise to periodic many-body revivals
in the quantum dynamics, and we introduce a “cluster approx-
imation” that captures the scarred eigenstates that are responsible
for periodic revivals. We discuss possible experimental realiza-
tions of these models using ultracold atoms.

Results
Models and their Hilbert spaces. A fundamental ingredient of
kinetically constrained models is “correlated hopping”: a particle
can hop depending on the state of its neighbors. In this paper we
consider a system of Np bosons on a one-dimensional lattice with
L sites. We consider models where the total filling factor, ν = Np/
L, is conserved, and we will mainly present results in the dense
regime, ν = 1. We have studied models with ν < 1 and ν > 1, but
we found them to be either too constrained or not constrained
enough, and therefore less interesting. We emphasize that the
bosons in our study are not hard-core, i.e., the occupancy of any
lattice site can take any value from 0 to Np.

We study three different models, defined by the Hamiltonians:

H1 ¼ �J
XL
j¼1

byj bjþ1nj þ nj�1b
y
j bj�1

� �
; ð1Þ

H2 ¼ �J
XL
j¼1

njb
y
j bjþ1 þ byj bj�1nj�1

� �
; ð2Þ

H3 ¼ �J
XL
j¼1

njþ1b
y
j bjþ1nj þ nj�1b

y
j bj�1nj

� �
: ð3Þ

All three models contain a free-boson hopping term, byj bjþ1,

which is dressed in various ways by density operators, nj ¼ byj bj.
We will show that the position of the density operator nj
completely changes the behavior of these models, ranging from
fast thermalization to the breakup of the Hamiltonian into
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disconnected, exactly solvable sectors. For example, note that H1

and H2 are related to each other via free-boson hopping,

H2 ¼ H1 � J
X
j

byj bjþ1 þ byj bj�1

� �
; ð4Þ

which can be easily proven using bosonic commutation relations.
We will see below that this innocuous free-boson hopping leads
to surprisingly different dynamical properties of the two models.

The motivation behind introducing three different models in
Eqs. (1)–(3) can be summarized as follows. Hamiltonian H1

describes a model where a particle cannot hop to the left if that
site is not already occupied by at least one particle, and cannot
hop to the right if it is the only particle left on its initial site. This
introduces constraints to the system. Conversely, there are no
such constraints in the case of H2. Indeed, the hopping
coefficients are only modified in intensity by the particle-
number operator. Hamiltonian H3 introduces additional con-
straints compared to H1. The number of unoccupied sites and
their positions remain constant under the action of this
Hamiltonian. This leads to different connectivity of the Hilbert
space in each of the models, as we explain in the next Section.

We consider periodic boundary conditions (L + 1 ≡ 1) and set
ℏ = J = 1. With periodic boundary conditions, all three
Hamiltonians H1, H2 and H3 have translation symmetry, thus
their eigenstates can be labeled by momentum quantum number,
k, quantized in units of 2π/L. In addition, H3 has inversion
symmetry. We denote by I = 0 and I = 1 the sectors that are even
and odd under inversion, respectively.

Without restrictions on the boson occupancy, the Hilbert space
of H1, H2 and H3 grows very rapidly. For L = Np = 12, the
Hilbert space size of the k = 0 sector is 112720 (the largest one we
will consider for H1 and H2). As previously mentioned (see also
the next Section), the Hilbert space of H3 splits into many
disconnected components, thus it is possible to consider only one
connected component at a time and disregard the unoccupied
sites whose positions do not change. This is more relevant when

looking at properties such as thermalization, than fixing the filling
factor. However, the boundary conditions are in that case no
longer periodic, and the system does not have translation
symmetry. Considering only a system with the size L/2, filling
factor ν = 2, open boundary conditions and minimal number of
particles per site equal to 1 is completely equivalent to
considering the largest component of the full system which has
the size L, filling factor ν = 1, periodic boundary conditions and
no restrictions on the occupancies. The Hilbert space size of the
symmetric invariant sector of the largest connected component of
L = Np = 22 is 176484 and this is the largest sector that we will
consider for H3.

Graph structure of the models. Since we will be interested in the
dynamical properties, it is convenient to first build some intuition
about the structure of the Hamiltonians of the three models in
Eqs. (1)–(3). A Hamiltonian can be viewed as the adjancency
matrix of a graph whose vertices are Fock states of bosons,
n1; n2; ¼ ; nLj i. If the Hamiltonian induces a transition between
two Fock states, the corresponding vertices of the graph are
connected by a link. The graphs that show how the configuration
space is connected have very different structure for the three
Hamiltonians H1, H2, and H3, as can be observed in Fig. 1.

The entire graph of H2 is well connected and it has the same
structure as the graph of the standard Bose-Hubbard model: the
particle-number operators in H2 do not introduce any con-
straints, but only affect the magnitude of the hopping coefficients.
In contrast, the H1 graph shows several clusters of configurations
that are weakly connected to the rest of the graph. “Weakly
connected” means that there is a small number of connections
leading outside the cluster and that their respective hopping
coefficients are smaller in magnitude than those of the
surrounding connections within the cluster. A state that is
initially located inside a cluster is therefore more likely to stay
inside during an initial stage of the time evolution, which
increases the probability of revivals and slows down the growth of

Fig. 1 Connectivity of the Hilbert space. Adjacency graph for a H1, b H2, c H3, all for L = Np = 3. d–f same as a, b and c but for L = Np = 6. To avoid clutter,
we do not label the vertices in d–f. All graphs are weighted, i.e., the line thickness is proportional to the magnitude of the corresponding hopping coefficient.
Several different clusters of configurations are visible in the case of H1. The clusters start to form already for L = 3 (for example, the configurations 012-
021-003 in a) and become more prominent for L = 6 d. In the case of H2, almost all configurations are well connected to the rest of the graph. The graphs
for H3 show that the Hilbert space is highly reducible: its graph splits into many disconnected components.
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entanglement entropy. We will provide a more quantitative
description and examples that illustrate this in Section “Quantum
scars in H1 and H3 models”. Finally, the graph of H3, due to even
stronger constraints, is actually disconnected, which is an
example of Hilbert space fragmentation that was previously
shown to cause non-ergodic behavior in fracton-like models37,38.
This predicts that thermalization and dynamics in the three
models will be very different, which we will confirm in the
following Section. However, we note that the number of
connections and the topology of the graph is not the only
relevant factor for the dynamics. The magnitude of the hopping
coefficients between different configurations is also important
(Supplementary Note 1).

We note that the relation between H1 and H3 is reminiscent of
the relation between the quantum East model75 and the “PXP”
model describing the atoms in the Rydberg blockade
regime6,20,45. Like H3, the PXP model is doubly constrained
and inversion symmetric, while H1 and the quantum East model
are asymmetric versions of those two models with only a single
constraint. The graph of the quantum East model is similar to
that of H1, in that it contains bottlenecks which slow down the
growth of entanglement entropy75.

Dynamics and entanglement properties. We now investigate the
phenomenology of the models introduced in Eqs. (1)–(3). We use
exact diagonalization to obtain the complete set of energy
eigenvalues and eigenvectors, from which we evaluate the level
statistics and the distribution of entanglement entropies for the
three models. Furthermore, we probe dynamical properties of the
models by studying a global quench, simulated via Krylov
iteration.

The energy level statistics is a standard test for thermalization
of models that cannot be solved exactly. A convenient way to

probe the level statistics is to examine the probability distribution
P(r)76 of ratios between consecutive energy gaps sn = En+1 − En,

r ¼ minðsn; snþ1Þ
maxðsn; snþ1Þ

: ð5Þ

The advantage of studying P(r), instead of P(sn), is that there is
no need to perform the spectrum unfolding procedure—see
ref. 77. For standard random matrix theory ensembles, both P(r)
and the mean 〈r〉 are well known78. When computing the same
quantities in a microscopic physical model, it is crucial to resolve
all the symmetries of the model.

The probability distribution P(r) of the ratios of two
consecutive energy gaps is shown in Fig. 2a–c for the three
Hamiltonians H1, H2, and H3 respectively, and two momentum
or inversion sectors. In all three cases, the energy levels repel, i.e.,
the distribution tends to zero as r → 0. For H2, the distribution is
particularly close to the Wigner–Dyson (non-integrable) line. For
H1, the distribution is also consistent with Wigner–Dyson when
we restrict to the middle 1/3 of the spectrum (and after removing
special states with E = 0). We exclude the edges of the spectrum
because they contain degeneracies which are not symmetry-
related. However, such states do not appear to have a major effect
on the level statistics distribution, which is still closer to the
Wigner–Dyson than the Poisson distribution even if they are
included. The level statistics of H3 within the largest connected
component of the Hilbert space is shown in Fig. 2c and is also
consistent with the Wigner–Dyson distribution without restrict-
ing the spectrum. However, we will demonstrate below that the
dynamics in some smaller connected components of H3 can be
exactly solved.

As a complementary diagnostic of thermalization, we next
compute the entanglement entropy of all eigenstates. We divide
the lattice into two sublattices, A and B, of lengths LA and

Fig. 2 Level statistics and entanglement. a–c Probability distribution of the ratios of two consecutive energy gaps. a H1 (middle third of the spectrum
without E = 0 states, L = Np = 12), b H2 (full spectrum, L = Np = 12) and c H3 (largest connected component of L = Np = 22). The black dashed line shows
the Poisson distribution, which corresponds to the integrable case, while the red dashed line is the distribution of the Gaussian orthogonal ensemble, which
corresponds to the thermalizing case. d–f Entanglement entropies SL/2 of all eigenstates plotted as a function of the eigenstate energy per particle, E/Np. d
H1 (L = Np = 12, LA = 6, k = 0), e H2 (same) and f H3 in the largest connected component of L = Np = 20, LA = 10, I = 0. The inset shows all connected
components for L = Np = 12, LA = 6, k = 0.
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LB = L − LA. For a given pure state ψj i, the entanglement
entropy is defined as

SA ¼ �trAðρAln ρAÞ; ð6Þ
where ρA ¼ trB ψj i ψh j is the reduced density matrix of the
subsystem A. The scatter plots, showing entanglement entropy of
all eigenstates Enj i as a function of their energy En, are displayed
in Fig. 2d–f. Here we take into account the translation symmetry
of the system and work in the momentum sector k = 0 for H1 and
H2, and consider only the largest connected component and the
inversion sector I = 0 for H3. The results for other sectors are
qualitatively similar.

Entanglement entropy distribution in Fig. 2d, e reveals a
striking difference between the Hamiltonians H1 and H2, even
though they only differ by a free-boson hopping term, Eq. (4).
The model H1 is constrained, which leads to a large spread of the
entropy distribution and many low-entropy eigenstates including
in the bulk of the spectrum. From this perspective, H1 is
reminiscent of PXP model20,25. By contrast, H2 has no such
constraints and in this case the entanglement entropy is
approximately a smooth function of the eigenstate energy. The
Hamiltonian H3 is doubly constrained, and this is reflected in its
entanglement distribution, which also shows a large spread and
several disconnected bands, reminiscent of an integrable system
like the XY model79.

Global quenches. The constraints in the models in Eqs. (1), (2),
and (3) have significant effects on the dynamics governed by
these Hamiltonians. We probe the dynamics by performing a
global quench on the system. We assume the system is isolated
and prepared in one of the Fock states, ψ0

�� �
, at time t = 0. We

restrict to ψ0

�� �
being product states which are not necessarily

translation-invariant, as such states are easier to prepare in
experiment. However, our results remain qualitatively the same if
we consider translation-invariant ψ0

�� �
. After preparing the sys-

tem in the state ψ0

�� �
, which is not an eigenstate of the Hamil-

tonian, the system is let to evolve under unitary dynamics,

ψðtÞj i ¼ exp � i
_
Ht

� �
ψ0

�� �
: ð7Þ

where H is one of the Hamiltonians of interest. From the time-
evolved state, we evaluate the quantum fidelity,

FðtÞ ¼ jhψ0jψðtÞij2; ð8Þ
i.e., the probability for the wave function to return to the initial
state. In a general many-body system, fidelity is expected to decay
as FðtÞ � expð�LðJtÞ2Þ. It thus becomes exponentially sup-
pressed in the system size for any fixed time t*, i.e.,
Fðt�Þ � expð�cLÞ, where c is a constant. In scarred models, such

as the Rydberg atom chain, fidelity at the first revival peak
occurring at a time T still decays exponentially, but exponentially
slower, i.e., FðTÞ � expð�c0LÞ, with c0 � c. In ref. 20, for a finite
system with L ≲ 32 atoms, the fidelity at the first revival can be as
high as ~70%, and several additional peaks at times nT are also
clearly visible.

We first consider the Hamiltonian H1. Several configurations
exhibit periodic revivals of the fidelity F(t), which can in some
cases be higher than 90%. Most of these configurations involve a
very dense cluster of bosons such as :::0N10:::j i. In contrast, a
completely uniform configuration :::111:::j i thermalizes very
quickly. Here we focus on periodically-reviving configurations
with density being as uniform as possible. One family of such
reviving configurations involves n unit cells made of three lattice
sites:

210210¼ 210j i � ð210Þnj i: ð9Þ

Time evolution of the fidelity for the initial state ð210Þnj i for
different system sizes L = 3n is shown in Fig. 3a. The initial state
is assumed to be the product state, e.g., ψ0

�� � ¼ 210j i for L = 3.
The frequency of the revivals in Fig. 3 is approximately the same
for all system sizes. We emphasize that similar results are
obtained for a translation-symmetric initial state, e.g.,
ψ0

�� � ¼ 1ffiffi
3

p 210j i þ 021j i þ 102j ið Þ. Both cases converge in the

large system limit, and the differences are only significant for
L = 3 when the revival frequency of the initial state with
transition symmetry differs from the frequencies of other system
sizes.

In Fig. 3b we compare the fidelity for the initial state in Eq. (9)
when it is evolved by all three Hamiltonians in Eqs. (1)–(3). The
initial state is fixed to be ð210Þ5�� �

. We observe that the dynamics
with H3 has very prominent revivals; in fact as we will later show,
these revivals are perfect and their period is approximately twice
the revival period for H1. In contrast, for H2 the fidelity quickly
drops to zero without any subsequent revivals.

Finally, in Fig. 3c we plot the time evolution of entanglement
entropy. As expected from the fast decay of the fidelity, the
entropy for H2 rapidly saturates to its maximal value. Moreover,
as expected from the perfect revivals in H3, the entropy in that
case oscillates around a constant value close to zero. For H1, we
observe a relatively slow growth of entropy, with oscillations
superposed on top of that growth, again similar to PXP model6.
For the initial state that is not translation-invariant, it is
important how we cut the system, e.g., :::210j210:::j i versus
:::2102j10:::j i. In the first case, the entanglement entropy remains
zero for H3 because no particle can hop from one subsystem to
the other, while in the second case the entropy oscillates around a
constant value, which is the case in Fig. 3c.

Fig. 3 Dynamics of quantum fidelity and entanglement entropy for initial configurations in Eq. (9). a Time evolution of fidelity F(t) in Eq. (8) for system
sizes L = 3n. The evolution is governed by the Hamiltonian H1, different colors represent different system sizes L. b Fidelity evolution F(t) for the
Hamiltonians H1, H2 and H3 and system size L = 15. c Entanglement entropy evolution SLA ðtÞ for the same cases as in b.
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In Fig. 4 we show the H1 evolution of two local observables,
density correlations between two adjacent sites 〈n1n2(t)〉 and
density on the first site 〈n1(t)〉, starting from the initial state
ð210Þnj i. Unlike fidelity and entanglement entropy, these
observables can be easily measured in experiment. Both
observables robustly oscillate with approximately the same
frequency as the fidelity. The heights of the first few revival
peaks are approximately converged for the system sizes ranging
from L = 6 to L = 15, which suggests that revivals in such local
observables can be observed in the thermodynamic limit. In the
following Section, we will show that the oscillations observed in
the dynamics from ð210Þnj i state in Eq. (9) and their frequency
can be explained using a tractable model that involves only a
small subset of all configurations in the Hilbert space, thus
providing a realization of quantum scars in a correlated bosonic
system. Our starting point will be the model H3, whose graph
explicitly separates into disconnected subsets which makes the toy
model exact, hence we can analytically calculate the revival
frequency. Based on these results, we then introduce an
approximation scheme that describes the dynamics from the
same initial state under the H1 Hamiltonian.

Quantum scars in H1 and H3 models. The quench dynamics of
fidelity and entanglement entropy in Fig. 3 suggest that H1 and
H3 models are candidate hosts for many-body scarred eigenstates
that can be probed by initializing the system in product states
ð210Þnj i. We now analyze the structure of these states using our
approach called “cluster approximation” that is introduced in
detail in Methods.

The dynamics of H3 within the sector containing the state
ð210Þnj i can be solved exactly, as shown in Methods. The
connected component of the state ð210Þnj i consists of all possible
combinations of patterns 210 and 120. This means that triplets of
sites evolve independently, and dynamically the system behaves
as a collection of independent two level systems (spins-1/2). From
this observation, it can be shown that revivals will be perfect with
a period T3 = π/2. The same period is obtained for initial product
state ð210Þnj i and its translation-invariant version; if the initial
state is both translation-invariant and inversion-symmetric, the
period is doubled.

In contrast to the free dynamics in H3, the H1 model exhibits
decaying revivals and does not admit an exact description. In
order to approximate the quench dynamics and scarred
eigenstates in H1, we project the Hamiltonian to smaller
subspaces of the full Hilbert space. These subspaces contain
clusters of states which are poorly connected to the rest of the
Hilbert space and thereby cause dynamical bottlenecks. As
explained in Methods, the clusters can be progressively expanded
to yield an increasingly accurate description of the dynamics from
a given initial state.

For our initial state ð210Þnj i, the minimal cluster is defined as
one that contains all the states given by tensor products of 210,
120 and 300 patterns. Similar to the H3 case, within this
approximation, triplets of sites again evolve independently, and
the dimension of the reduced Hilbert space is dimHc ¼ 3L=3. The
time-evolved state within the cluster is given by

ψc
nðtÞ

�� � ¼ cosnð4tÞ ð210Þnj i þ ¼ ; ð10Þ
where the dots denote other configurations. The fidelity is

Fc
nðtÞ ¼ jhψc

nð0Þjψc
nðtÞij2 ¼ j cosð4tÞj2n: ð11Þ

As in the case of H3, this result is also valid for the translation-
invariant initial state. We see that the period of revivals is T1 = π/
4, which is the same as for H3 with a translation and inversion
symmetric initial state.

The result of the cluster approximation is compared against the
exact result for system size L = 15 in Fig. 5. The frequency of the
fidelity revival, shown by the blue line in Fig. 5a, is accurately
reproduced in this approximation, however the approximation
does not capture the reduction in the magnitude of F(t). Similarly,
the dynamics of entanglement entropy, blue line in Fig. 5b, is only
captured at very short times. In particular, we observe that the
maximum entanglement within the cluster remains bounded even
at long times t ~ 10, while the exact entropy continues to increase
and reaches values that are several times larger.

To obtain a more accurate approximation, we can expand the
minimal cluster with several neighboring configurations on the
graph. We define the extended cluster as a set of all states which
can be obtained using tensor products of the configurations 210,
120, 300, and 111. The enlarged cluster clearly contains the
minimal cluster studied above, but it also includes additional
configurations, resulting in a much better prediction for the first
revival peak height, while still allowing for analytical treatment.

Fig. 4 Evolution of local observables for the Hamiltonian H1. a
Correlations between adjacent sites 〈n1n2(t)〉 for different system sizes and
the initial state ð210Þnj i. b Density on one site 〈n1(t)〉.

Fig. 5 Comparison of the full dynamics against the minimal cluster (1)
and extended cluster (2) approximation schemes. We consider the
system size L = 15 with the initial state ð210Þ5�� E

. a Time evolution of the
fidelity. The frequency of revivals is approximately the same in both cases,
but the results for the extended cluster show better agreement with the
results for the full Hilbert space. b Time evolution of the entanglement
entropy.
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The dimension of the extended cluster grows as dimH~c ¼ 4L=3,
and is thus exponentially larger than the minimal cluster
approximation. Nevertheless, the extended cluster dimension is
still exponentially smaller compared to the full Hilbert space, and
within this approximation it is possible to numerically simulate
the dynamics of larger systems, L ≲ 30—see Fig. 6a. The revivals
are no longer perfect, while their frequency is independent of the
system size and closer to the frequency of revivals for the full
Hilbert space compared to to the minimal cluster approximation
in Fig. 5. The overlap between the eigenstates of the Hamiltonian
H1 reduced to both the minimal and extended cluster and the
state ð210Þ8�� �

is given in Fig. 6b. The eigenstates that correspond
to the minimal cluster approximately survive in the extended
cluster, where they form a band with the highest overlap.

For the initial product state (210)n, it is possible to analytically
obtain the fidelity within the improved approximation for
arbitrary system size. Similar to the previous methods, it can be
shown (see Supplementary Note 2)

F~cL¼3nðtÞ ¼ 4njb2 cosðαtÞ þ d2 cosðβtÞj2n; ð12Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ ffiffiffiffiffi

57
pp

� 4:06815, β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� ffiffiffiffiffi

57
pp

� 1:20423,
b ≈ 0.694113 and d ≈ 0.134933. Eq. (12) is in excellent agreement
with the numerical results in Fig. 6a. It was also found to be a very
good approximation for the translation-invariant initial state
when L ≥ 9 (data not shown).

Figure 7a shows that the logarithm of the fidelity per site,
log ðFðTÞÞ=L, at the first peak, saturates at a finite value for large
L. In the improved cluster approximation, the first peak height
decays as e−0.04L (Supplementary Note 2). For a completely
random state, the fidelity would be F � 1=dimH. In the case ν = 1
and large L, the Hilbert space dimension grows with the system

size as

dimH ¼ 2L� 1

L

� �
� 2L

L

� �
� 4Lffiffiffiffiffiffi

πL
p : ð13Þ

This back-of-the-envelope estimate suggests the fidelity of a
random state is F ~ e−1.39L, which decays considerably faster than
the first peak height in Fig. 7. The improved cluster approxima-
tion correctly reproduces the short-time dynamics, including the
first revival peak, and sets a lower bound for the first peak height
– see Figs. 5 and 7b.

The evolution of the entanglement entropy for the extended
cluster approximation is shown in Fig. 5b. Inside the cluster,
entropy remains approximately constant with periodic oscilla-
tions that have the same frequency as the wave function revivals.
Any further growth of the entanglement entropy can be
attributed to the spreading of the wave function outside the
cluster. To illustrate the “leakage” of the wave function outside
the cluster, in Fig. 8 we compute the time evolution of the overlap
with a cluster, i.e., the probability to remain inside a cluster at
time t,

OCluster ¼
X

a2Cluster
jhajψðtÞij2: ð14Þ

We consider several initial configurations that lie inside or
outside the cluster. The configurations initially inside the cluster
mostly stay there, and the configuration ð210Þ4�� �

that has the
highest revivals also has the highest overlap. Similarly, config-
urations initially outside the cluster continue to have negligible
overlaps. The overlap starting from the configuration ð210Þ4�� �

Fig. 6 Cluster approximations. a Fidelity F(t), for the Hamiltonian H1 and
initial states ð210Þnj i, in the extended cluster approximation for various
system sizes. b Eigenstate overlap with the initial state jð210Þ8i plotted on a
log scale, for both cluster approximations. In the case of degenerate
eigenstates the sum of their overlaps is shown.

Fig. 7 First peak height. a Logarithm (base 10) of the first revival peak
divided by the system size, log ðFðTÞÞ=L, seems to saturate at a finite value
in the thermodynamic limit. b Comparison of the logarithm of the first
revival peak height for the full dynamics and the improved cluster
approximation. The approximation serves as a lower bound.

Fig. 8 Evolution of the probability to remain inside the minimal cluster.
OCluster, as defined in Eq. (14). Initial configurations are indicated in the
legend. Solid lines: configurations initially inside the cluster. Dashed lines:
configurations initially outside the cluster (all except jð111Þ4i are randomly
chosen). Similar results are obtained for the extended cluster (not shown).
System size L = 12.
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approximately predicts the revival peak heights for the full
dynamics.

We now summarize the relation between H3 and H1 from the
point of view of the cluster approximation. For the initial state
ð210Þnj i, the two models yield similar dynamics, compare Eq.
(23) and Eq. (12). The only difference is that the revival frequency
is doubled in the latter case, which can be easily explained by the
symmetry of the initial state and that of the Hamiltonian.
Hamiltonian H3 is inversion-symmetric. If the initial state is also
chosen to be inversion-symmetric, the frequency of the revivals
doubles. The period is then T inv

3 ¼ π=4, which is equal to the
period of revivals T1 of H1 in the cluster approximation. This is
also proven analytically in Methods, see Eq. (27). For comparison,
the revival period for the full Hilbert space is approximately 0.77,
which is slightly less than π/4 ≈ 0.79. The Hamiltonian H1 is not
inversion-symmetric, so the frequency does not double for an
inversion-symmetric initial state, but the revivals are lower in that
case. This shows that it is important for the symmetry of the
initial state to match the symmetry of the Hamiltonian.

Finally, the eigenstates of H1, projected to the subspace of the
minimal cluster approximation, form several degenerate bands
whose eigenenergies are equally spaced in integer multiples of 4.
Interestingly, some of these eigenstates approximately survive in
the full H1 model, and they are precisely the eigenstates that have
the highest overlap with the configurations ð210Þnj i, see Fig. 9a.
In small system sizes, such as L = 6, the surviving eigenstates are
also the lowest entropy eigenstates in the middle of the spectrum,
which is reminiscent of quantum scars in the PXP model20. In
larger systems, e.g., L = 12, the surviving eigenstates are slightly
lower in entropy than their neighbors, but are far from being the
lowest entropy eigenstates, as can be seen in Fig. 9. The lowest
entropy eigenstates have high overlaps with other configurations,
such as ð3100Þ3�� �

, as shown in Fig. 9b, c. In the case of ð210Þnj i,
the eigenstates surviving in the full system belong to every other
band of eigenstates in the cluster approximation and the number
of the surviving eigenstates is n + 1. For even system sizes this
counting includes a zero-energy eigenstate. In Methods we
discuss in more details the generalization of the cluster
approximations to the states of the form ðN10:::0Þnj i, which
were also found to have robust revivals and high overlaps with
some low-entropy eigenstates.

Discussion
In this paper, we have introduced three models of bosons with
“soft” kinetic constraints, i.e., density-dependent hopping. We
have demonstrated that some of these models exhibit similar
phenomenology to other realizations of quantum many-body

scars, for example the Rydberg atom system5. We have studied
quantum dynamics of these systems by performing global
quenches from tensor-product initial states. We have shown that
both the connectivity of the Hilbert space and the relative mag-
nitude of the hopping coefficients have dramatic effects on the
dynamics. For certain initial configurations, the constraints can
lead to slow thermalization and revivals in the quantum fidelity.
The revival frequency can be predicted by considering an expo-
nentially reduced subset of the Hilbert space. For a family of
initial configurations of the form ð210Þnj i, we have derived
analytical expressions for the evolution of quantum fidelity within
this approximation, which accurately capture the revival fre-
quency obtained from exact numerical data. One notable differ-
ence between scarred dynamics in the present bosonic models
and the PXP model is that the revivals exist in the absence of a
hard kinetic constraint, i.e., in the fully connected Hilbert space.
Our cluster approximation also explains the structure of some
low-entropy eigenstates in the middle of the many-body spec-
trum. In addition, we have calculated the evolution of two local
observables which are experimentally measurable, density corre-
lations between two neighboring sites and density on a single site,
and both of them show robust oscillations over a range of system
sizes. We have also shown that the introduced models contain
additional special properties, like the exponentially large zero-
energy degeneracy which is related to the bipartite structure of
the model.

We now comment on the possible experimental realizations of
the models we studied. The implementation of a correlated
hopping term (nkb

y
i bj) in optical lattices has attracted lot of

attention due to a possible onset of quantum phases related to
high-Tc superconductivity80. An early theoretical proposal
exploits asymmetric interactions between the two atomic states in
the presence of a state-dependent optical lattice80. As a result, the
obtained effective model corresponds to the inversion-symmetric
form of H1. In addition, the same term has been found to feature
as a higher-order correction of the standard Bose-Hubbard
model81–84. Although in this case the term typically represents a
modification of the regular hopping term of the order of several
percent, its contribution was directly measured85,86. More
recently, the set of quantum models accessible in cold-atom
experiments has been enriched through the technique of Floquet
engineering87. As a notable example, a suitable driving scheme
can renormalize or fully suppress the bare tunneling rate88. On
top of that, by modulating local interactions an effective model
with the density-dependent tunneling term has been engi-
neered89. For the models considered in this paper the most
promising is a more recent driving scheme exploiting a double
modulation of a local potential and on-site interactions90. Related

Fig. 9 Non-ergodic eigenstates. a Overlap of the configuration ð210Þ4
��� E

with all the eigenstates of H1, H
c
1 and H~c

1 versus the eigenstate energy for sector
k = 0 and system size L = Np = 12. b Same for ð3100Þ3

��� E
. c Entanglement entropy, eigenstates which have the highest overlap with some product states

are marked in different colors.
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sophisticated driving schemes have already enabled a realization
of dynamical gauge fields56,57,91 where both the amplitude and
the phase of the effective tunneling are density-dependent.
Although these experimental proposals explain how to realize
some of the correlated hopping terms present in our models using
ultracold atoms in optical lattices, finding a scheme that exactly
realizes our models requires further study. We emphasize that
other models which would exhibit non-ergodic dynamics and
scarred eigenstates as a result of the same mechanism that was
explained in this work could be built, for example a linear
combination of H1 and H2.

Note added: During the completion of this work, we became
aware of ref. 92 which identified non-thermal eigenstates and slow
dynamics in the quantum East model. Moreover, a recent study93

proposed a Floquet scheme for a bosonic model with density-
assisted hopping, finding signatures of quantum many-
body scars.

Methods
In order to more efficiently describe the dynamics of our models, we introduce a
method—"cluster approximation", that is based on Hilbert space truncation
inspired by the bipartite graph structure of H1. Before providing details about the
cluster approximation for H1 and its generalizations, we present an exact solution
for the perfect revivals in H3 model, which serves as a motivation for the more
complicated case of H1.

Bipartite lattice and zero modes. The graph of H1 is bipartite, i.e. all the basis
configurations can be divided into two disjoint sets, and the action of the
Hamiltonian connects configurations in one set only to the configurations in the
other and vice-versa (the Hamiltonian is off-diagonal). One way to sort config-
urations into these two sets is by parity of the quantity

Δa ¼
jneven � nodd þ Cj

2
; ð15Þ

where C = 0 if L is even and C = 1 if L is odd. We define neven and nodd as the total
numbers of particles at even and odd sites, respectively,

neven ¼
XL1
l¼1

n2l ; nodd ¼
XL2
l¼1

n2l�1; ð16Þ

where L1 = L2 = L/2 if L is even, and L1 = (L − 1)/2, L2 = (L + 1)/2 if L is odd. If
only nearest-neighbor hoppings are allowed and if no two odd sites are coupled (if
the system has open boundary conditions for any L or periodic boundary condi-
tions for L-even), each hopping either increases neven by one and decreases nodd by
one, or vice-versa. This means that each hopping can change Δa only by ±1.

In special cases, like H1 at filling factor ν = 1, it is also possible to define
quantities like Δa for odd system sizes and periodic boundary conditions. This is a
consequence of the constraints imposed by H1, i.e., the fact that a particle cannot
hop to an empty site to its left (Supplementary Note 3). Note that H2 in the same
geometry is not bipartite.

Another way to sort configurations into two sets is by parity of the distance
from the configuration 111:::111j i, which we define as

da ¼ minnf 111:::111h jHn
1 aj i ≠ 0g: ð17Þ

In this case, the two sets are the configurations with even and with odd distances
da. One hopping can change da only by ±1 or 0. Changes by other values are not
possible by definition if the Hamiltonian is Hermitian (all hoppings are reversible).
Both da and Δa have the same parity, thus da must always change after one hopping
in even system sizes or in systems with open boundary conditions. As a
consequence, da cannot change by 0 if Δa can only change by ±1.

The graphs of bipartite systems do not contain any loops of odd dimension
(triangles, pentagons, heptagons and so on). Moreover, the energy spectra of
bipartite systems are symmetric around zero. Their Hamiltonians anticommute
with the operator ð�1ÞΔa . The presence of such an operator in a bipartite lattice
leads to exact zero energy states in the spectrum94,95. It can be shown that the
exponentially growing number of zero modes of H1 is related to the difference
between the numbers of elements in the two sets of its bipartite graph
(Supplementary Note 4). Additionally, the algebraic structure of zero energy
eigenstates can be explained by the structure of the graph – such eigenstates can be
constructed as superpositions of configurations from only one of the sets. Similar
properties are found for H2 for even L, as its graph is also bipartite in that case. The
properties of the zero-energy manifold are discussed in more detail in
Supplementary Note 4.

Perfect revivals in the H3 model. We start with a warmup calculation for H3

acting on L = 3 sites. The connected subspace of 210 contains only two

configurations, 120 and 210. The Hamiltonian reduced to this subspace is

H0
3 ¼ � 0 2

2 0

� �
; ð18Þ

where the basis vectors are

1

0

� �
¼ 210j i; 0

1

� �
¼ 120j i: ð19Þ

The eigenvalues of H 0
3 are E1 = −2 and E2 = 2. The initial state ψ1ðt ¼ 0Þ�� � ¼

210j i evolves as
ψ1ðtÞ
�� � ¼ cosð2tÞ 210j i � i sinð2tÞ 120j i; ð20Þ

and the state ψ2ðt ¼ 0Þ�� � ¼ 120j i evolves as
ψ2ðtÞ
�� � ¼ �i sinð2tÞ 210j i þ cosð2tÞ 120j i: ð21Þ

Previous results can be straightforwardly generalized to larger systems. Let the
length of the system be L = 3n for simplicity. The connected component of the
state ð210Þnj i consists only of combinations of patterns 210 and 120, which means
that triplets of sites evolve independently. From Eq. (20), the initial state
ψnðt ¼ 0Þ�� � ¼ ð210Þnj i evolves as

ψL¼3nðtÞ
�� � ¼ cosnð2tÞ ð210Þnj i

þ ð�iÞnsinnð2tÞ ð120Þnj i þ :::
ð22Þ

where “. . . ” denotes contributions of the basis configurations other than ð210Þnj i
or ð120Þnj i. The fidelity is

FL¼3nðtÞ ¼ jhψnð0ÞjψnðtÞij2 ¼ j cos 2tj2n: ð23Þ
It follows that the revivals are perfect, with a period T3 = π/2. This result is also

valid for the translation-invariant initial state ð210Þnj iT,

ð210Þnj iT � 1ffiffiffi
3

p ð210Þnj i þ ð021Þnj i þ ð102Þnj ið Þ; ð24Þ

as the connected subspaces of 210, 021 and 102 do not overlap and therefore evolve
independently.

However, an initial state that is both translation symmetric and inversion
symmetric has different dynamics. The inverse of the configuration ð210Þnj i is the
configuration ð012Þnj i, which is a translation of the state ð120Þnj i that belongs to
the connected subspace of ð210Þnj i. The initial state

ψinv
n ðt ¼ 0Þ�� � ¼ 1ffiffiffi

2
p ð210Þnj iT þ 1ffiffiffi

2
p ð120Þnj iT ð25Þ

evolves as

ψinv
n ðtÞ�� � ¼ cosn2t þ ð�iÞnsinn2tð Þ ψinv

n ðt ¼ 0Þ�� �þ ::: ð26Þ
and the fidelity is

Finv
n ðtÞ ¼ jhψinv

n ð0Þjψinv
n ðtÞij2

¼ jcosn2t þ ð�iÞnsinn2tj2:
ð27Þ

The frequency of the revivals is now doubled, so the period is T inv
3 ¼ π=4.

Cluster approximations for the H1 model. Here we introduce a scheme for
approximating the dynamics from initial states (210)n in the H1 model. As can be
observed in Fig. 3, the revival periods are approximately the same for different
system sizes. We first focus on the non-trivial case L = 6. Figure 10 shows part of
the graph that contains the initial state, 210210j i. Configurations labeled inside the
ellipses denote representatives of an orbit of translation symmetry, i.e., the con-
figurations are translation-invariant such as the one in Eq. (24).

The minimal subcluster of the graph is highlighted in blue color in Fig. 10. This
cluster is indeed weakly connected to the rest of the configuration space, as it has
only 3 connections that lead outside this cluster (dashed lines) and their hopping
coefficients are slightly lower in magnitude than those inside the cluster, meaning
that the probability is higher to stay inside the cluster than to leave. The hopping
coefficients leading outside are not significantly smaller than the coefficients
staying inside, but in combination with the relatively small number of connections
this has significant effects on the dynamics. This effect is even more pronounced
when the difference in magnitudes is further increased by squaring the particle-
number operators (see Supplementary Note 1).

The minimal cluster from Fig. 10 contains all the states given by tensor products
of 210, 120 and 300 configurations. The set of configurations belonging to this
cluster could have been chosen differently, but this particular choice has at least
two advantages. Firstly, inside this cluster, the evolution of the configuration
210210j i can be thought of as two subsystems 210 evolving separately. The
evolution of all such configurations at different system sizes can be reduced to the
evolution of L = 3 subsystems 210, similar to the case of H3 in the connected
subspace of (210)n. Secondly, this definition allows easy generalization to different
system sizes L = 3n with initial states (210)n. We would like to emphasize that the
cluster was not chosen arbitrarily. The calculations of the probability density
distribution starting from the initial configuration 210210j i and evolving with H1
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have shown that the probability density stays high in this region of the Hilbert
space as long as the revivals in fidelity are visible. The configurations important for
the dynamics were then identified by analyzing the structure of the graph around
the initial configuration.

As an example, consider system size L = 3. The reduced Hilbert space of the
cluster Hc is spanned by the (non-translation-invariant) configurations

1

0

0

0
B@

1
CA ¼ 300j i;

0

1

0

0
B@

1
CA ¼ 210j i;

0

0

1

0
B@

1
CA ¼ 120j i: ð28Þ

The Hamiltonian reduced to this subspace is

Hc
1 ¼ �

0 2
ffiffiffi
3

p
0

2
ffiffiffi
3

p
0 2

0 2 0

0
B@

1
CA; ð29Þ

and its eigenvalues are E1 = −4, E2 = 4, E3 = 0. The initial configuration 210j i
evolves according to

ψc
1ðtÞ

�� � ¼� i
2
sinð4tÞ ffiffiffi

3
p

300j i þ 120j i
� �

þ cosð4tÞ 210j i:
ð30Þ

By generalizing this result to larger systems, it is easy to prove Eqs. (10) and (11).
The minimal clusters can be expanded by adding several neighboring

configurations. For similar reasons as in the case of minimal clusters, the extended
clusters are defined as sets of all states which can be obtained using tensor products
of the configurations 210, 120, 300 and 111. In the case of L = 6, the enlarged
cluster can be observed in Fig. 10. It contains the minimal cluster studied
previously, but it also includes additional configurations shown in green ellipses.
Again, the approximation could be improved by including more configurations,
but this particular choice is well suited for analytical treatment (Supplementary
Note 2) and, as shown above, it gives a good prediction for the first revival peak
height.

Generalization to other clusters. Building on the previous observation that some
of the low-entropy eigenstates have large weight on ð3100Þ3�� �

product state, we
have investigated periodic revivals from such a larger class of initial states. We find
that robust revivals are associated with initial product states of the form�����ððN � 1Þ1 0:::0|{z}

N�2

Þn
+
; ð31Þ

where N is the length of the unit cell (L = Nn). For example, some of these
configurations are ð3100Þnj i, ð41000Þnj i and ð510000Þnj i. Combinations of those
patterns such as 310041000j i also exhibit similar properties, but we will restrict
ourselves to the simpler former cases.

We can construct a generalization of the cluster approximation for
configurations of the form in Eq. (31). As in the case of ð210Þnj i, the dynamics
inside one unit cell explains the dynamics of the full system. The generalized
clusters can be chosen in such a way that their Hilbert spaces are spanned by N
configurations

ij i ¼ ððN þ 1� iÞði� 1Þ 0:::0|{z}
N�2

Þn
������

+
; ð32Þ

where i takes values 1, 2, …N. If we consider only one unit cell (n = 1), the graph
that connects these configurations has a linear structure without any loops, i.e.,

each configuration ij i is solely connected to the configurations i± 1j i, except the
two configurations at the edges, 1j i and Nj i, which are only connected to 2j i and
N � 1j i, respectively.

The projection of the Hamiltonian H1 to this cluster, which we denote by Hc
1,

has a very simple structure: it has the form of a tight-binding chain with the only
nonzero matrix elements on the upper and lower diagonals:

Hc
1;i;iþ1 ¼ Hc

1;iþ1;i ¼ ðN � iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðN þ 1� iÞ

p
: ð33Þ

The dynamics within a single unit cell under Hc
1 corresponds to density

fluctuations between the first and the second site. Following the same procedure as
previously, we can now diagonalize Hc

1 and compute the fidelity time series for the
initial configuration ðN � 1Þ10:::0j i. This result can be directly generalized to
configurations of the form ððN � 1Þ10:::0Þnj i. The derivation is valid for both
translation-invariant and non-translation-invariant initial configurations, as the
cluster in Eq. (32) is disconnected from its translated copies. We stress that this
disconnection, namely the absence of a hopping term between 1ðN � 1Þ0:::0j i and
0N0:::0j i, is a consequence of the constraints imposed by H1 and it would not hold
for H2. In this way, we have calculated the time evolution of the fidelity starting
from the configurations ð3100Þnj i (for n = 1, 2, 3, 4), ð41000Þnj i (n = 1, 2, 3) and
ð510000Þnj i (n = 1, 2), and compared it with the exact numerical results for the full
H1. The cluster approximation captures both the revival frequency and the height
of the first peak. Similar to the ð210Þnj i case, the approximation can be improved
by adding further configurations to the clusters. Moreover, if we want to consider
translation-invariant initial states, we can follow the same recipe for ð210Þnj i by
summing translated patterns with the required phase factors given in terms of
momenta in multiples of 2π/N. We have checked that revivals appear in these
momentum sectors, with roughly the same frequency.

We note that the configurations with larger units cells thermalize more quickly
on shorter timescales, but slower at long times. Initially, the states starting from
configurations with smaller N have lower entanglement entropies than those with
larger N. The Hilbert spaces of large N unit cells are larger, so the entanglement
entropy starting from these configurations rapidly grows to the maximal value for
that unit cell. However, the only way for the wave function to spread through the
entire Hilbert space is that a unit cell reaches a state close to 111. . . 111, so that
particles can hop to the other unit cells. This is less likely for large N, and therefore
such configurations need long times to fully thermalize. As a result, smaller N
entanglement entropies grow faster and after long enough time they overtake those
for larger N. For example, in the case of L = 12 and translation-invariant initial
states, (210)4 overtakes (3100)3 and (510000)2 around t ~ 2, and (3100)3 overtakes
(510000)2 around t ~ 80 (Supplementary Fig. 3).

Finally, we note that non-thermal behavior reminiscent of the one studied here
was previously observed in an unconstrained Bose-Hubbard model, for example in
the context of “arrested expansion”96,97 and quenches from superfluid to Mott
insulator phase98,99. In these cases, the main ingredient is the strong on-site
interaction, which causes the energy spectrum to split into several bands. Due to
the large energy differences between bands, the dynamics of an initial state from a
particular band is at first limited only to the eigenstates that belong to the same
band. Additionally, these energy bands are approximately equally spaced, which
can lead to revivals in fidelity if several bands are populated. In contrast, our
models do not feature on-site interaction, and the mechanism which slows down
the spread of the wave function is correlated hopping, which suppresses
connections between certain configurations and modifies the hopping amplitudes
between others, thus creating bottlenecks that separate different clusters of states.

Data availability
The data that support the plots within this paper and other findings of this study are
available at https://doi.org/10.5518/810100.

Fig. 10 Minimal and extended clusters. Hamiltonian H1 and system size L = Np = 6. Configurations labeled inside the ellipses are representatives of an
orbit of translation symmetry. The minimal cluster is defined by the blue configurations, while green configurations represent the additional components of
the extended cluster. Gray arrows connect to configurations outside the extended cluster. The numbers bellow the graph show the distance da from the
configuration 111111 evaluated using Eq. (17).
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1Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

2Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
3Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université,

Université Paris-Diderot, Sorbonne Paris Cité, 75005 Paris, France

(Received 2 September 2019; published 27 November 2019)

Strong synthetic magnetic fields have been successfully implemented in periodically driven optical lattices.
However, the interplay of the driving and interactions introduces detrimental heating, and for this reason it is
still challenging to reach a fractional quantum Hall state in cold-atom setup. By performing a numerical study,
we investigate stability of a bosonic Laughlin state in a small atomic sample exposed to driving. We identify
an optimal regime of microscopic parameters, in particular interaction strength U and the driving frequency
ω, such that the stroboscopic dynamics supports the basic ν = 1/2 Laughlin state. Moreover, we explore slow
ramping of a driving term and show that the considered protocol allows for the preparation of the Laughlin state
on experimentally realistic time-scales.

DOI: 10.1103/PhysRevA.100.053624

I. INTRODUCTION

Cold atoms in optical lattices provide a highly tunable
platform for quantum simulations of relevant many-body
Hamiltonians [1,2]. Since early experiments with quantum
gases, there has been a strong interest in the realization of
fractional quantum Hall (FQH) states in these setups [3–17].
Despite numerous experimental achievements and a variety of
theoretical proposals, FQH physics has still not been reached
in cold-atom experiments.

A milestone in the field has been recently achieved by the
realization of artificial gauge potentials [18–28]. In particular,
the topological index of a resulting energy band of an optical
lattice featuring a strong synthetic magnetic field has been
directly probed [22]. At first glance, both key requirements for
the emergence of FQH states—atomic interactions and strong
synthetic magnetic fields—are now experimentally available.
However, there are several specific details in the implemen-
tation of strong synthetic magnetic fields for cold atoms that
make the realization of FQH states still challenging.

The most advanced recent realizations of artificial gauge
potentials exploit periodically driven optical lattices [19–28].
Using Floquet theory, the stroboscopic dynamics of a nonin-
teracting driven system can be related to an effective time-
independent Hamiltonian [29–32]. This approach, Floquet
engineering, enriches the set of quantum models that can be
simulated in cold-atom experiments. However, general argu-
ments and numerical studies [33–35] suggest that the interplay
of interactions and driving in a thermodynamically large
system introduces heating, leading to a featureless infinite-
temperature state in the long-time limit.

Although this general result might sound discouraging,
the heating process can be very slow in some driven sys-
tems for specific regime of microscopic parameters. There,
the system can be described by a physically interesting

“prethermal” Floquet state on experimentally relevant time-
scales [36–42]. Moreover, the onset of thermalization in a
finite-size interacting system may exhibit unexpected features,
not found in the thermodynamic limit [43,44]. Heating rates
and resulting instabilities have been recently investigated both
theoretically and experimentally for the driven Bose-Hubbard
model in the weakly interacting regime [38,45–47]. Moreover,
experimental studies of the driven Fermi-Hubbard model in a
honeycomb lattice have established a timescale of the order of
100 tunneling times for the regime where the effective-model
description applies [48,49].

In this paper, we consider small systems of several inter-
acting bosonic atoms in a periodically driven optical lattice
featuring synthetic magnetic flux. The focus of our study is
on finding optimal microscopic parameters that would allow
to prepare and probe the basic bosonic Laughlin state in this
setup. To this end, we employ exact numerical simulations of
the driven Bose-Hubbard model [50] for small system sizes.

From one point of view, it is expected that a small driven
system exhibits low heating rates for a driving frequency set
above a finite bandwidth of an effective model [33]. However,
driving a system with such a high frequency may lead to
undesirable effects, such as coupling of the lowest band to
higher bands of the underlying optical lattice, thus making the
initial description based on the lowest-band Hubbard model
inapplicable. These effects have been addressed in a recent
study [51] where an optimal intermediate frequency window
for Floquet engineering has been established.

In our study, we go a step further in the search for the
optimal regime that might allow for the bosonic Laughlin
states under driving. In particular, for a realistic, intermediate
value of a driving frequency, the interaction term complicates
the effective model by introducing several higher-order terms.
Their effect on the topological states has been addressed only
recently [52,53] and it has been found that typically these
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terms work against the topological state. For this reason,
the stability of the Laughlin state at intermediate driving
frequency requires a separate study, that we perform here.
Moreover, we numerically investigate an experimentally rel-
evant preparation protocol for the Laughlin state in a driven
system [54]. For a reference, we note that a simpler but closely
related question concerning the static (undriven systems) has
gained lot of attention [6,7,15,55].

The paper is organized as follows: in Sec. II we introduce
the model under study and briefly review key features of
the particle-entanglement spectra that we will exploit in the
identification of the Laughlin-like state. Then, in Sec. III A we
investigate general heating effects of interacting bosons ex-
posed to the driving. By extending this approach, in Sec. III B
we construct the stroboscopic time-evolution operator and
inspect its eigenstates in order to identify possible FQH states.
Finally, in Sec. IV we address the possibility of accessing
these states in an experiment through a slow ramp of the
driving term.

II. MODEL AND METHOD

In this section we first introduce the driven model and
explain the basis of Floquet engineering. Then we summarize
several key features of the particle-entanglement spectra that
we use to characterize the bosonic Laughlin states.

A. Driven model

Properties of bosonic atoms in a deep optical lattice can
be realistically described within the framework of the Bose-
Hubbard model [1]. We consider a basic driving scheme
[50] that introduces a uniform, synthetic magnetic flux into
a square optical lattice here spanned by the two vectors ex
and ey. The corresponding Hamiltonian is given by the driven
Bose-Hubbard model

Ĥ (t ) = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy

∑
m,n

(eiωt â†
m,n+1âm,n + H.c.)

+ κ

2

∑
m,n

sin [ω t − (m + n − 1/2) φ]n̂m,n

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (1)

where operators âm,n (â†
m,n) annihilate (create) a boson at

lattice position (m, n), and local density operators are n̂m,n =
â†

m,nâm,n. Jx and Jy are tunneling amplitudes and U is the
on-site local repulsive interaction. We use the units where
h̄ = 1 and the lattice constant a = 1. The driving scheme is
defined by the driving frequency ω, the driving amplitude
κ and by a phase φ. In the following we set φ = π/2 and
κ/ω = 0.5. These values were recently used in an experi-
mental realization of the Harper-Hofstadter model [22]. The
derivation of this model is briefly reviewed in Appendix. We
assume periodic boundary conditions implemented using the
vectors R1 = 4 ex, R2 = −ex + ey, as presented in Fig. 1. This
choice is compatible with the driving term and it allows us
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FIG. 1. Lattice geometry used throughout the paper. The paral-
lelogram gives the exemplary lattice size (Lx, Ly ) = (4, 8). The color
scale is defined by mod (m + n, 4), in accordance with the driving
term from Eq. (1). The vectors R1 = 4 ex, R2 = −ex + ey are used to
implement periodic boundary conditions. The small rectangle gives
the magnetic unit cell for the effective model in Eq. (3).

to exploit translational symmetry by working in the fixed
quasimomentum basis.

Formally, by using the Floquet theory [29,30,56], it can be
shown that the full time-evolution operator corresponding to
this model is given by

Û (t, t0) = e−iK̂ (t )e−i(t−t0 )Ĥeff eiK̂ (t0 ), (2)

where K̂ (t ) is a periodic “kick” operator K̂ (t ) = K̂ (t + 2π/ω)
and Ĥeff is a time-independent effective Hamiltonian. The
full-time evolution operator is periodic as well and conse-
quently the (quasi)eigenenergies of Ĥeff are defined up to
modulo ω. The last equation gives formal mapping of a
periodically driven system to an effective model that captures
the stroboscopic time evolution of the model.

In the noninteracting regime, U = 0, there are several well
controlled approximations to obtain the effective Hamilto-
nian. These techniques are the essence of Floquet engineering,
an approach where the driving scheme is implemented in
such a way to yield a sought-after effective model. How-
ever, according to general analytical arguments and numer-
ical insights, the corresponding effective model of a driven
interacting many-body system in the thermodynamic limit
exhibits nonphysical features [33,34]. In particular, the system
thermalizes and in the long-time limit its steady state is
a featureless, infinite-temperature state, independent of the
initial state.

Here we consider small samples of several bosonic atoms.
Due to a finite spectrum bandwidth, we expect the high-
frequency expansion to be relevant for a finite range of the
driving frequency. Within these assumptions, the leading-
order (in 1/ω) effective Hamiltonian is

Ĥeff = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− J ′
y

∑
m,n

(ei(m+n)φ â†
m,n+1âm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1). (3)
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FIG. 2. (a) The energy spectrum En of the model from Eq. (3) in the kx = 0, ky = 0 sector for Np = 4 and different values of interaction
U/Jx = 1, 10, 40 and U/Jx = ∞ (hard-core bosons). The top part of the spectrum is at ≈(U/Jx )Np(Np − 1)/2. (Not shown for U/Jx = 40.)
For a high ratio U/Jx the spectrum splits into bands. The lowest band corresponds to hard-core bosons. (b) The low-lying part of the particle-
entanglement spectrum − ln ξn of the ground-state incoherent superposition, Eq. (6), in the region A momentum sectors kA

y = 0 and kA
y = π/6,

and for Np = 6,U/Jx = 2.5. (c) The particle-entanglement gap � of the incoherent superposition Eq. (6) as a function of interaction strength
U for Np = 4, 5, 6.

The Hamiltonian (3) features complex hopping phases
ei(m+n)φ that result in a uniform synthetic magnetic flux φ per
lattice plaquette. Due to the driving, the renormalized hopping
amplitude along the y direction turns into

J ′
y ≡ κ

2ω
sin(φ/2) Jy. (4)

For the values φ = 2πα, where the flux density α is set to α =
1/4, and κ/ω = 0.5, the tunneling amplitude along y direction
in the effective model is J ′

y ≈ Jy × 0.1768.
In a certain regime of microscopic parameters, the ground

state of the model defined in Eq. (3) is given by the lattice
version of the Laughlin state [7,9,57–59]. The Laughlin state
is stabilized for the filling factor ν = Np/Nφ = 1/2, where
Nφ = αLx × Ly is the total number of fluxes (Nφ being an
integer) and Np is the number of bosons, and for a strong-
enough repulsion U . Another important requirement for the
Laughlin state is to avoid the strong hopping anisotropy and to
keep Jx ≈ J ′

y, so we set Jx = 0.2Jy. We consider system sizes
Np = 4, 5, 6 and the respective lattices sizes (Lx, Ly) = (4, 8),
(4, 10), and (4, 12), see Fig. 1, where we expect the ground
state to correspond to the ν = 1/2 Laughlin state. The Hilbert
space sizes for kx = ky = 0 are dimH = 6564, 108 604, and
1 913 364 respectively. For this choice of microscopic param-
eters, the model ground state of Eq. (3) is approximately
twofold degenerate. The two ground-states are found in the
sectors kx = 0, ky = 0 and kx = 0, ky = π . We denote them
by |ψ0,0

LGH〉 and |ψ0,π
LGH〉.

As we are mainly interested in the driven regime, not only
the ground state, but the full spectrum of the model from
Eq. (3) plays a role. A rough argument is that the system does
not absorb energy provided that the driving frequency ω is set
above the bandwidth of the effective model. Several spectra
of the model from Eq. (3) for kx = 0, ky = 0 are presented
in Fig. 2(a). It can be seen that the ground-state energy is
weakly affected by the value of U � Jx, while the top part of
the spectrum with few states is found at UNp(Np − 1)/2. For
higher values of U the spectrum splits into bands where the
lowest band corresponds to the hard-core bosons and higher
bands include double and higher occupancies.

B. Particle-entanglement spectra

There are several ways to characterize the ground states
of the model from Eq. (3) as the Laughlin states. Usually,
the starting point in this direction is the identification of
the twofold degeneracy expected in the implemented torus
geometry for ν = 1/2. Another relevant quantity is the over-
lap of the numerically obtained state with the Laughlin an-
alytical wave function in the torus geometry [9,59]. More
direct evidence can be obtained through the calculation of the
relevant topological index (Chern number) or the quantized
Hall conductance. An additional convincing approach, that
we pursue here, is based on the analysis of the entanglement
spectra of the relevant states.

In the following we will use the particle-entanglement
spectrum (PES) [59,60] to distinguish possible topologically
nontrivial states. In order to obtain this type of entanglement
spectrum, we partition Np particles into two sets of NA and
NB = Np − NA particles. For a given mixed state ρ, we con-
struct a reduced density matrix ρA = trBρ by performing a
partial trace over NB particles. The resulting PES is given by
− ln ξn, where ξn are eigenvalues of ρA. The related particle-
entanglement entropy is given by [61,62]

SA = −tr(ρA ln ρA). (5)

By partitioning particles, we keep the geometry of the
system unchanged. For this reason, we will inspect the PES
for the different momentum sectors kA

y of the remaining NA

particles. An example of a PES is presented in Fig. 2(b). As
proposed in Refs. [59,60], we have considered the incoherent
superposition of the almost twofold degenerate ground state
of Eq. (3) as the density matrix

ρGS = 1
2

(∣∣ψ0,0
LGH

〉〈
ψ0,0

LGH

∣∣ + ∣∣ψ0,π
LGH

〉〈
ψ0,π

LGH

∣∣). (6)

For simplicity, we only present the PES for the two mo-
menta kA

y = 0 and kA
y = π/6. We observe a clear particle-

entanglement gap �. In addition, the counting of low-lying
modes below this gap (ten modes for kA

y = 0 and nine modes
for kA

y = π/6, at NA = 3, Np = 6) corresponds to the Laugh-
lin state [59,60]. In this way the PES encodes topological
features of the state ρ in the form of well defined number
of excitations per momentum sector kA

y [59,60]. This type of
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TABLE I. Counting of modes NL (kA
y ) in the PES of the Laughlin

state for several system sizes and particle partitions. The last column
lists the NL (kA

y ) values for each momentum sector kA
y = 2π i/Ly, i =

0, . . . , Ly − 1.

Np (Lx, Ly ) NA PES: NL (kA
y )

4 (4, 8) 2 3, 2, 3, 2, 3, 2, 3, 2
5 (4, 10) 2 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
6 (4, 12) 3 10, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 9

analysis is useful as it can identify topological features even
without model states, as done for the case of fractional Chern
insulators [63,64].

In the following we will consider specific particle partitions
NA = 2, Np = 4; NA = 2, Np = 5; and NA = 3, Np = 6. For
these cases the counting of excitations NL(kA

y ) per momentum
sector kA

y is well established and given in Table I. In Fig. 2(c)
we show the particle-entanglement gap of the mixtures,
Eq. (6), obtained at different values of U . Numerical results
for the obtained PES indicate that a reasonably large gap is
found starting at U ∼ 0.5Jx and the characteristic features of
the Laughlin state persist with a further increase in U . We note
that at lower values of the flux density, α < 1/4, the Laughlin
state can be found at even lower values of the repulsion U
[9,59].

By analyzing the effective model from Eq. (1), we have
obtained a guidance for the regime of microscopic parameters
and for the geometry of the small system that can give rise to
Laughlin states. In the next sections our aim is to go beyond
the effective model from Eq. (3) and to identify topological
states supported by the full driven dynamics as captured by
the model given in Eq. (1).

III. DRIVEN DYNAMICS

In this section we discuss the full driven dynamics as
captured by the model given in Eq. (1).

A. Heating

First we address the onset of heating following the standard
procedure discussed in Refs. [42,65]. The initial state of the
system is prepared using the ground state of the effective
model

|ψ (t = 0)〉 = e−iK̂ (t=0)
∣∣ψ0,0

LGH

〉
(7)

and we monitor the stroboscopic time-evolution t = N T ,
T ≡ 2π/ω governed by the full driven model defined in
Eq. (1). In our numerical simulations, we approximate the
micromotion operator K̂ (t = 0) using the leading-order high-
frequency expansion; see Eq. (A12). The quantity of interest
is the expectation value of the effective Hamiltonian (3):

〈Ĥeff(t = NT )〉K = 〈ψ (t )|e−iK̂ (t=0)Ĥeffe
iK̂ (t=0)|ψ (t )〉. (8)

We expect this quantity to reasonably correspond to the
ground-state energy of the effective model E0 in the regime
of very high frequency. On the other hand, for a “low”
driving frequency we expect the system to quickly reach the

infinite-temperature β → 0 regime defined by

lim
β→0

〈Ĥeff〉 = 1

dimH tr(Ĥeff ). (9)

For this reason we monitor the normalized total energy

Q(t = NT ) = 〈Ĥeff(t = NT )〉K − E0

limβ→0〈Ĥeff〉 − E0
(10)

and we present it in Fig. 3(a), for U/Jx = 10. In agreement
with the known results [65], we find that the thermalization is
quick for both a “high” driving frequency ω/Jx � 20 and for
a “low” driving frequency ω/Jx � 10. For the intermediate
values of ω, the heating process is slow [65] and the total
energy exhibits a slow exponential growth captured by Q(t =
NT ) ≈ 1 − b exp(−c t ), t 
 1. An example of this behavior
is given for ω/Jx = 15 in Fig. 3(a). The heating process can
also be monitored through the particle-entanglement entropy
SA as a function of time. In Fig. 3(b) for Np = 5 and low
driving frequency we find that this quantity quickly saturates
to its maximal value. Indeed, for a thermal state at infinite
temperature, SA is given by

Smax
A ≈ ln

(
Lx Ly + NA − 1

NA

)
, (11)

marked by the horizontal, dot-dashed line in Fig. 3(b). Except
for the highest frequency considered (ω/Jx = 50), we find
that, in the process of heating, the particle-entanglement gap
of the initial state quickly closes (not shown in the plots).

Here we briefly discuss finite-size effects by comparing
numerical results for the normalized total energy for Np = 4,
Np = 5, and Np = 6. In line with the known results [33,34,38],
the “high-frequency” regime with low heating rates moves
toward higher ω as the system size increases. However, we
find that the estimates obtained in this section (ω/Jx � 20 for
the high- and ω/Jx � 10 for the low-frequency regime, for
U/Jx = 10) apply to all the three sizes Np = 4, 5, 6, at least
for the time-scales that we consider. A comprehensive study of
the leading finite-size effects in driven systems can be found
in Refs. [33,42,65].

B. The stroboscopic time-evolution operator

In order to better understand the limitations of the effective
model, here we time evolve all relevant basis states for a sin-
gle driving period T = 2π/ω and construct the stroboscopic
time-evolution operator

ÛF ≡ Û (t0 + T, t0 = 0) (12)

such that Û (NT + t0) = Û N
F . In the next step, for a system

size Np = 4, (Lx, Ly) = (4, 8) we fully diagonalize this oper-
ator and inspect its eigenstates |n〉. Following the described
procedure, we obtain the long-time limit

lim
N→∞

〈Ĥeff(NT )〉K =
∑

n

|〈n|ψ (t = 0)〉|2〈n|Ĥeff|n〉K , (13)

where we define

〈n|Ĥeff|n〉K = 〈n|e−iK̂ (t=0)Ĥeffe
iK̂ (t=0)|n〉. (14)

Results for Q(t = NT ) from Eq. (10) obtained in this way
are summarized in Fig. 3(c), where we make a comparison
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FIG. 3. (a) The normalized total energy Q(t = NT ) from Eq. (10), and the (b) particle-entanglement entropy SA(t = NT ), Eq. (5), during
the time evolution governed by Eq. (1) for several driving frequencies ω/Jx = 50, 20, 15, 10. Parameters: Np = 5, U/Jx = 10. Note that the
asymptotic value of SA for ω/Jx = 10 and ω/Jx = 15 matches the one given in Eq. (11), as presented by the horizontal, dot-dashed line. (c) The
long-time limit limN→∞ Q(NT ) for Np = 4 and the on-site interactions U/Jx = 1, 10 and U/Jx = ∞ (hard-core bosons). The lines are only
guides to the eye.

between the long-time energies for the case of hard-core
bosons (U → ∞) and soft-core bosons (finite values of U ).
The obtained results indicate that heating rates of hard-core
bosons are closer to the case of U/Jx = 1 in comparison to
U/Jx = 10, which is expected from the bandwidths shown
in Fig. 2(a). Overall we observe that the “high-frequency
regime” is wider for lower ratios U/Jx.

In Fig. 4, we make a comparison between the exact driven
model captured by ÛF and Ĥeff. In Figs. 4(a) and 4(b) we
inspect the distribution of expectation values 〈n|Ĥeff|n〉K . By
comparing these values to the eigenenergies of the effective
model, Eq. (3), we get an insight into the pertinence of the
effective description [33,34]. In particular, for an interacting
system in the thermodynamic limit, the distribution is flat
and the effective description is useless. We state again that
we consider only small atomic samples. For this reason, it
is expected that for high values of ω the full stroboscopic
description nicely matches to the effective model values. Such
an example is given in Fig. 4(a) for U/Jx = 1 and ω/Jx = 20.
As the value of ω gets lower the distribution becomes flatter,
as can be seen in Fig. 4(b) for U/Jx = 10 by comparing results
for ω/Jx = 50 and ω/Jx = 10.

The intermediate regime of frequencies, e.g., ω/Jx = 20
for U/Jx = 10, is of the main experimental relevance [51].
We now investigate whether the driven stroboscopic dynamics
supports some Laughlin-like states, by calculating the PES of

the mixture

ρF = 1
2 (|n0(0, 0)〉〈n0(0, 0)| + |n0(0, π )〉〈n0(0, π )|), (15)

where |n0(kx, ky)〉 is the state from the kx, ky sector with the
lowest expectation value 〈n|Ĥeff|n〉K . The results are presented
in Fig. 4(c). We find that the states with a well defined gap
and the Laughlin-like PES can be found down to ω/Jx � 10
for U/Jx = 1, and down to ω/Jx � 20 for U/Jx = 10. Having
established existence of these states for small samples of Np =
4 particles, in the next section we discuss dynamical protocol
which can be exploited to prepare these states.

IV. SLOW RAMP

The question about an optimal adiabatic protocol that can
be used to prepare the Laughlin state in a cold-atom setup
has gained lot of attention [6,7,15,55]. The situation becomes
even more complex once the full driving process is taken
into account. A general wisdom is that, by starting from a
topologically trivial state, the topological index of a thermo-
dynamically large system cannot be changed adiabatically.
We consider a small atomic sample and follow the proposal
of Ref. [15]. Our main contribution is that we extend this
protocol to the case of the driven, interacting Bose-Hubbard
model.
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FIG. 4. Properties of the eigenstates |n〉 of the stroboscopic time-evolution operator ÛF , Eq. (12), in the kx = 0, ky = 0 sector for Np = 4.
Expectation values 〈n|Ĥeff|n〉K defined in Eq. 14 for (a) U/Jx = 1, ω/Jx = 10, 20 and (b) U/Jx = 10, ω/Jx = 10, 15, 20, 50. The black solid
lines mark eigenenergies of Ĥeff, Eq. (3). Note that in (b) we do not include few states from the top of the spectrum of Ĥeff, Eq. (3), for clarity.
(c) The particle-entanglement gap � of the incoherent superposition ρF , Eq. (15), for U/Jx = 1 and U/Jx = 10, Np = 4. The lines are only
guides to the eye.
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FIG. 5. (a) The expectation value E (t ) defined in Eq. (19) and (b) the particle-entanglement gap �(t ) of ρ(t ), Eq. (18), during the time
evolution governed by Eq. (17) for several driving frequencies ω/Jx = 25, 20, 15, 10. Parameters: Np = 5, U/Jx = 10, η/Jx = 0.05. (c) The
overlap tr [ρ(t )ρF ] of the time evolved state with the target eigenstates of ÛF for ω/Jx = 25, 20. Parameters: Np = 4, U/Jx = 10, η/Jx = 0.05.

A. Model

Following results of Ref. [15], we consider a slow ramp
of the tunneling amplitude along y direction, Jy(t ), as well as
a slow ramp of the driving amplitude κ (t ). Namely, we start
from a series of decoupled wires along the x direction and start
coupling them. More precisely, initial states are selected as the
ground states of Ĥini:

Ĥini = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1). (16)

For the filling factors that we consider, the ground states of
the Ĥini are simple noninteracting states with the ground state
energy E0,ini = −2JxNp. Out of the several degenerate ground
states, we select those where atoms occupy every second wire.
There are two such states and we label them as |ψ+〉 (even
wires occupied) and |ψ−〉 (odd wires occupied). These states
have finite projections only onto the sectors kx = 0, ky = 0
and kx = 0, ky = π of the driven model from Eq. (1). There-
fore we may expect the two initial states |ψ±(t = 0)〉 to be
transformed into the two Laughlin states during the ramp.

Having prepared the initial state, we slowly restore the
tunneling amplitude along the y direction, Jy(t ), and slowly
ramp up the driving amplitude κ (t ). The time-evolution is
governed by

Ĥsr(t ) = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy(t )
∑
m,n

(eiωt â†
m,n+1âm,n + H.c.)

+ κ (t )

2

∑
m,n

sin [ωt − (m + n − 1/2) φ]n̂m,n

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (17)

where Jy(t ) = Jy tanh(η t ), κ (t ) = κ tanh(η t ), η being the
ramping rate. In the long-time limit, we recover the original
Hamiltonian from Eq. (1). During the ensuing time evolution
we construct the mixture

ρ(t ) = 1
2 (|ψ+(t )〉〈ψ+(t )| + |ψ−(t )〉〈ψ−(t )|). (18)

We monitor stroboscopically the energy expectation value

E (t ) = tr(ρ(t )Ĥeff ) (19)

and the PES of ρ(t ).

B. Results

In Fig. 5(a) we present the energy expectation value
from Eq. (19) for U/Jx = 10 and several driving frequencies
ω/Jx = 25, 20, 15, 10. Our numerical results indicate that
ramps with the rates up to η/Jx ∼ 0.1 work reasonably well.
Slower ramps give better results, but are less practical [15]. By
construction, the initial state is a noninteracting state with par-
ticles delocalized along the x direction and therefore the initial
energy is E (t = 0) = −2 Np Jx. During the ramp with the rate
η/Jx = 0.05, for the regime of high driving frequencies, down
to approximately ω/Jx = 20, we find that the energy initially
decreases and reaches an almost constant value at around
tJx ∼ 20. On the other hand, for ω/Jx = 15, the system slowly
heats up during the ramping process, and for ω/Jx = 10 the
system quickly reaches the infinite-temperature state.

One of our main results is summarized in Fig. 5(b), where
we plot the particle-entanglement gap of ρ(t ), from Eq. (18),
as a function of time. In the high-frequency regime ω/Jx �
20, starting around tJx ∼ 20 we find a persistent particle-
entanglement gap, marking the onset of a topologically non-
trivial state. It is even more interesting that, even for ω/Jx ∼
15, the state seems to exhibit a finite gap on intermediate
time-scales. This is not the case for ω/Jx � 10, where the
gap quickly vanishes. In Fig. 5(c), we present the value of
the overlap tr [ρ(t )ρF ], of the time-evolved mixed state with
the relevant state from Eq. (15) for Np = 4. Clearly, the slow
ramp of the type given in Eq. (17) allows for the preparation
of the relevant eigenstates of ÛF with high fidelity (better than
1%).

In Figs. 6(a) and 6(b) we show the time evolution of the
PES in the two momentum sectors kA

y = 0 and kA
y = π/6 for

Np = 6, U/Jx = 5, and η/Jx = 0.05. The PES of the initial
state is easy to understand. As the Ly/2 wires are occupied
by single atoms, the reduced density matrix is proportional
to the identity matrix with the proportionality factor yielding
− ln ξn = ln (2

(Ly/2
NA

)
) ≈ 3.69. During the ramp we find that

additional modes in PES are gaining weight and moving down
in the spectrum. Finally, the state ρ(t ) reached around t ≈
50T exhibits a well defined gap and the correct counting of the
low-lying modes: there are ten low-lying modes for kA

y = 0
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FIG. 6. The low-lying part of the particle-entanglement spectra
− ln ξn of ρ(t ), Eq. (18), during the time evolution governed by
Eq. (17) in the (a) kA

y = 0 and (b) kA
y = π/6 momentum sectors. The

low-lying part of the PES in the sectors (c) kA
y = 0 and (d) kA

y = π/6,
at two instances of time t = 0 and t/T = 100. Parameters: Np =
6, U/Jx = 5, ω/Jx = 15, η/Jx = 0.05.

and nine low-lying modes for kA
y = π/6; see Figs. 6(c) and

6(d) and also Table I.
In Fig. 7 we discuss a satisfactory range of ramping rates

η for a given interaction strength U and a given driving
frequency ω that we fix at ω/Jx = 15. The obtained numerical
results suggest that at weaker interaction strengths U/Jx � 2,
slower ramping rates are needed. One way to explain this
behavior is by using the effective model and arguing that the
gap protecting the Laughlin state is smaller at weaker U . On
the other hand, for stronger interaction strengths U/Jx � 8 the
particle-entanglement gap closes at later stages as the heating
process becomes dominant. Finally, in the intermediate range
U/Jx ∼ 5, faster ramps with η/Jx = 0.1 lead to the sought-
after state ρ(t ) from Eq. (18), with persistent features in
the PES up to t = 500T . These results indicate that, when
optimizing the ramping protocol in an actual experiment, there
will be a tradeoff between the unfavorable heating and a faster
ramping into the desired state, as both of these processes are
promoted by interactions.

V. CONCLUSIONS

The technique of Floquet engineering has been success-
fully exploited for the implementation of synthetic magnetic
fields in driven optical lattices. Following up on these achieve-
ments and on a long-standing pursuit for the FQH states in
cold-atom setups, in this paper we have addressed possible
realization of the bosonic Laughlin state in a small atomic
sample in a periodically driven optical lattice. While a thermo-
dynamically large interacting system generally heats up into
an infinite-temperature state under driving, the heating pro-
cess can be controlled to some extent in a few-particle system.

We have assumed a realistic driving protocol and finite on-
site interactions, and we have identified the FQH state based
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FIG. 7. The particle-entanglement gap �(t ) as a function of time
during the time evolution governed by Eq. (17), for several inter-
action strengths (a) U/Jx = 1.25 (b) U/Jx = 5 and (c) U/Jx = 10,
and several ramping rates η/Jx = 0.025, 0.05, 0.1. Other parameters:
Np = 5, ω/Jx = 15.

on analysis of its particle-entanglement spectra. Results of our
numerical simulations show that the stroboscopic dynamics
of Np = 4, 5, 6 particles supports the topological ν = 1/2
Laughlin state down to ω/Jx = 20 for U/Jx = 10, and down
to ω/Jx = 15 for U/Jx = 1, for the driving amplitude κ/ω =
0.5. These results are in reasonable agreement with the recent
estimates of the optimal heating times [51] that take into
account the contribution of the higher bands of the under-
lying optical lattice. In addition, we have investigated slow
ramping of the driving term and found that it allows for the
preparation of the Laughlin state on experimentally realistic
time-scales of the order of 20 h̄/Jx, where h̄/Jx is the tunneling
time. Interestingly, we find that some topological features per-
sist during an intermediate stage even in the regime where the
system exhibits a slow transition into the infinite-temperature
state (e.g., ω/Jx = 15 for U/Jx = 10).

In the future, we plan to address the preparation scheme for
the relevant correlated states in a driven honeycomb lattice,
which exhibits lower heating rates in comparison to a cubic
lattice according to the recent experiments [48,49]. Another
highly relevant question, that we have not tackled and that we
postpone to future investigation, concerns suitable experimen-
tal probes of topological features. The recent progress in the
field has led to the development of several detection protocols
specially suited for the cold-atom systems [66–71]. For the
type of systems considered in this paper, the most promising
are results of the recent study [71] showing that fractional
excitations can be probed even in small systems of several
bosons.
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APPENDIX: DRIVEN OPTICAL LATTICES

In this Appendix we review the derivation of the model
given in Eq. (1). The system is described by

Ĥlab(t ) = ĤBH + Ĥdrive(t ) + ω V̂ , (A1)

where we start with the Bose-Hubbard model

ĤBH = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy

∑
m,n

(â†
m,n+1âm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (A2)

and we introduce an offset ωV̂ :

V̂ =
∑
m,n

n n̂m,n. (A3)

This shifted Bose-Hubbard model is exposed to a suitable
resonant driving scheme:

Ĥdrive(t ) = κ

2

∑
m,n

sin

(
ωt − φm,n + φ

2

)
n̂m,n,

φm,n = (m + n) φ. (A4)

We assume periodic boundary conditions compatible with the
driving term (A4) in the laboratory frame. To this purpose
we use vectors R1 = 4 ex and R2 = −ex + ey as presented in
Fig. 1. For simplicity, we work in the rotating frame

|ψrot(t )〉 = eiωtV̂ |ψlab(t )〉 (A5)

and derive the Schrödinger equation

i
d|ψrot(t )〉

dt
= Ĥrot(t )|ψrot(t )〉, (A6)

where

Ĥrot(t ) = (eiωtV̂ Ĥlab(t )e−iωtV̂ − ωV̂ ). (A7)

Now we calculate Ĥrot(t ) explicitly. The only nontrivial action
of this rotation on Ĥlab comes from the nearest-neighbor
hopping along y direction. Indeed, we have

eiωtV̂ â†
m,nâm,n′e−iωtV̂ = eiωt (n−n′ )â†

m,nâm,n′ . (A8)

In total we obtain

Ĥrot(t )=−Jx

∑
m,n

(â†
m+1,nâm,n + H.c.) + U

2

∑
m,n

n̂m,n(n̂m,n−1)

+ eiωt Ĥ1 + e−iωt Ĥ−1 + e−iωt (Ly−1)ĤLy−1

+ eiωt (Ly−1)Ĥ−Ly+1, (A9)

with

Ĥ1 = −Jy

OBC∑
m,n

(
â†

m,n+1âm,n − i

4
κei(−φm,n+ φ

2 )n̂m,n

)
,

Ĥ−1 = Ĥ†
1 , (A10)

Ĥ−Ly+1 = −Jy

∑
m

â†
m,0âm−Ly,Ly−1, ĤLy−1 = Ĥ†

−Ly+1.

(A11)

In the terms Ĥ−Ly+1 and ĤLy−1 we take into account periodic
boundary conditions along the direction parallel to R2 as im-
posed in the laboratory frame. In order to limit the complexity
of the numerical calculation, we keep translational invariance
and impose the periodic boundary conditions in both direc-
tions in the rotating frame. This implies that we will neglect
“phasors” e−iωt (Ly−1) and eiωt (Ly−1). Under these assumptions,
we can recast Eq. (A9) into the time-dependent Hamiltonian
given in Eq. (1). In practice, this would require engineering
additional non-trivial terms in the laboratory frame.

The leading order of the kick operator is given by

K̂ (t = 0) ≈ − κ

2ω

∑
m,n

cos(φm,n − φ/2)n̂m,n. (A12)
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Phys. 83, 1523 (2011).

[27] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
[28] N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys.

91, 015005 (2019).
[29] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014).
[30] N. Goldman, J. Dalibard, M. Aidelsburger, and N. R. Cooper,

Phys. Rev. A 91, 033632 (2015).
[31] A. Eckardt and E. Anisimovas, New J. Phys. 17, 093039 (2015).
[32] K. Plekhanov, G. Roux, and K. Le Hur, Phys. Rev. B 95, 045102

(2017).
[33] L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
[34] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90,

012110 (2014).
[35] P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin, Ann. Phys.
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Realization of strong synthetic magnetic fields in driven optical lattices has enabled implementation of
topological bands in cold-atom setups. A milestone has been reached by a recent measurement of a finite Chern
number based on the dynamics of incoherent bosonic atoms. The measurements of the quantum Hall effect in
semiconductors are related to the Chern-number measurement in a cold-atom setup; however, the design and
complexity of the two types of measurements are quite different. Motivated by these recent developments, we
investigate the dynamics of weakly interacting incoherent bosons in a two-dimensional driven optical lattice
exposed to an external force, which provides a direct probe of the Chern number. We consider a realistic driving
protocol in the regime of high driving frequency and focus on the role of weak repulsive interactions. We find that
interactions lead to the redistribution of atoms over topological bands both through the conversion of interaction
energy into kinetic energy during the expansion of the atomic cloud and due to an additional heating. Remarkably,
we observe that the moderate atomic repulsion facilitates the measurement by flattening the distribution of atoms
in the quasimomentum space. Our results also show that weak interactions can suppress the contribution of some
higher-order nontopological terms in favor of the topological part of the effective model.

DOI: 10.1103/PhysRevA.98.053625

I. INTRODUCTION

Ultracold atoms in optical lattices provide a perfect plat-
form for quantum simulations of various condensed-matter
phenomena [1]. Yet, since charge-neutral atoms do not feel the
Lorentz force, a big challenge in this field was realization of
synthetic magnetic fields. After years of effort, artificial gauge
potentials for neutral atoms were implemented by exploiting
atomic coupling to a suitable configuration of external lasers
[2,3]. These techniques were further extended to optical lat-
tices, leading to the realization of strong, synthetic, magnetic
fields. As a result, important condensed-matter models—the
Harper-Hofstadter [4] and the Haldane model [5]—are nowa-
days available in cold-atom setups [6–9]. The key property
of these models is their nontrivial topological content. In the
seminal TKNN paper [10] it was shown that the quantization
of the Hall conductivity observed in the integer Hall effect can
be directly related to the topological index of the microscopic
model—the Chern number.

Cold-atom realizations of topological models exploit peri-
odic driving, either through laser-assisted tunneling [6,7] or
by lattice shaking [8]. Using Floquet theory [11,12], a period-
ically driven system can be related to the time-independent ef-
fective Hamiltonian that corresponds to a relevant condensed-
matter system. The mapping is known as Floquet engineering
and its important features in the context of optical lattices are
discussed in Refs. [13–20]. Because of important differences
of cold-atom setups and their condensed-matter counterparts,
new quench protocols for probing topological features were
proposed [21–25]. Following up on these studies, the de-
flection of an atomic cloud as a response to external force
was used to experimentally measure the Chern number in a
nonelectronic system for the first time [26].

While Floquet engineering is a highly flexible and pow-
erful technique, it poses several concerns. One of the main
open questions is related to the interplay of driving and
interactions which can heat up the system to a featureless,
infinite-temperature regime according to general considera-
tions [27,28]. In particular, it is shown that an initial Bose-
Einstein condensate in a periodically driven optical lattice
may become unstable due to two-body collisions [29] or
through the mechanism of parametric resonance [28,30–36].
The preparation protocol, stability and a lifetime of strongly
correlated phases, expected in the regime of strong interac-
tions under driving is a highly debated topic at the moment
[28,37,38].

In order to further explore the role of weak atomic inter-
actions in probing topological features, here we consider the
dynamics of weakly interacting incoherent bosons in a driven
optical lattice exposed to an external force. The setup that we
consider includes all basic ingredients for the Chern-number
measurement [22,26]—the Chern number of the topological
band can be extracted from the center-of-mass motion of
atomic cloud in the direction transverse to the applied force.
We assume an ideal initial state where the lowest topological
band of the effective model is almost uniformly populated.
The optimal loading sequence necessary to reach this state is
considered in Refs. [39,40]. Following the recent experimen-
tal study [26], we assume that atoms are suddenly released
from the trap and exposed to a uniform force. We perform nu-
merical simulations for the full time-dependent Hamiltonian
and take into account the effects of weak repulsive interac-
tions between atoms within the mean-field approximation. We
make a comparison between the dynamics governed by the
effective and time-dependent Hamiltonian and delineate the
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contribution of interactions to the center-of-mass response and
to the overall cloud expansion dynamics. Our results show that
interactions lead to the undesirable atomic transitions between
topological bands [41], but we also find that a weak atomic
repulsion can facilitate the Chern-number measurements in
several ways.

The paper is organized as follows. In Sec. II we describe
the model and introduce a method that we apply for the
description of incoherent bosons. In Sec. III we address the
dynamics of noninteracting incoherent bosons, and then in
Sec. IV we address the regime of weak repulsive interactions.
Finally, we summarize our results in Sec. V. Appendixes A
to F provide further details.

II. MODEL AND METHOD

In this section, we first present the driven model introduced
in Ref. [26], and then derive the corresponding effective model
and discuss its basic characteristics. At the end, we explain our
choice of the initial state and outline the method that we use
to treat the dynamics of weakly interacting incoherent bosons.

A. Effective Floquet Hamiltonian

Interacting bosons in a two-dimensional optical lattice can
be described by the Bose-Hubbard Hamiltonian

ĤBH = −Jx

∑
l,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m)

− Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m)

+ U

2

∑
l,m

n̂l,m(n̂l,m − 1), (1)

where â
†
l,m and âl,m are creation and annihilation operators

that create and annihilate a particle at the lattice site (l, m) =
laex + maey (a is the lattice constant), n̂l,m = â

†
l,mâl,m is the

number operator, Jx and Jy are the hopping amplitudes along
ex and ey , and U is the on-site interaction. In the derivation
of the model (1) we use the single-band tight-binding approx-
imation [1]. Although the experimental setup [26] is actually
three dimensional, with an additional confinement in the third
direction, our study is simplified to a two-dimensional lattice.

In order to engineer artificial gauge field in the experiment
[26], hopping along ex was at first inhibited by an additional
staggered potential

Ŵ = �

2

∑
l,m

(−1)l n̂l,m, (2)

and then restored using resonant laser light. The experimental
setup can be described by a time-dependent Hamiltonian

H̃ (t ) = ĤBH + V̂ (t ) + Ŵ , (3)

where V̂ (t ) is a time-dependent modulation

V̂ (t ) = κ
∑
l,m

n̂l,m

[
cos

(
lπ

2
− π

4

)
cos

(
ωt − mπ

2
+ φ0

)

+ cos

(
lπ

2
+ π

4

)
cos

(
−ωt − mπ

2
+ π

2
+ φ0

)]
,

(4)

κ is the driving amplitude, and ω = � is the resonant driving
frequency. We set the relative phase φ0 between the optical-
lattice potential and the running waves used for laser-assisted
tunneling to φ0 = π/4.

Using Floquet theory, the time-evolution operator corre-
sponding to the Hamiltonian (3) can be represented as

Û (t, t0) = e−iŴ t e−iK̂ (t )e−i(t−t0 )Ĥeff eiK̂ (t0 )eiŴ t0 , (5)

where Ĥeff is the full time-independent effective Hamiltonian
that describes slow motion and K̂ (t ) is the time-periodic kick
operator that describes micromotion [13,14].

For the moment, in this subsection we first consider the
noninteracting model U = 0. We also assume that the driving
frequency ω is the highest energy scale, but that it is still low
enough that the lowest-band approximation used in deriving
Eq. (1) is still valid. In the leading order of the high-frequency
expansion, the effective Hamiltonian Ĥeff is given by

Ĥeff,0 = J ′
x

∑
l,m

[ei((m−l−1)π/2−π/4)â
†
l+1,mâl,m + H.c.]

− J ′
y

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m), (6)

where the renormalized hopping amplitudes are J ′
x = Jxκ√

2ω
=

Jy and J ′
y = Jy (1 − 1

2
κ2

ω2 ). A schematic representation of this
model is presented in Fig. 1(a). The unit cell is shaded
and the full lattice is spanned by the vectors R1 = (4, 0)
and R2 = (1, 1). Particle hopping around a plaquette in the
counterclockwise direction acquires a complex phase −π

2 and
the model is equivalent to the Harper-Hofstadter Hamiltonian
[4] for the case α = 1/4 [4]. The explicit form of the kick
operator K̂ (t ) from Eq. (3) is given in Appendix A.

Following Refs. [13,14], we find that additional corrections
of the order J 2

x /ω contribute to the system’s dynamics and we
introduce another approximation for the effective Hamiltonian

Ĥeff,1 = Ĥeff,0 + J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m

+ â
†
l+2,mâl,m + â

†
l−2,mâl,m). (7)

The derivation of Hamiltonian (7) is given in Appendix A and
its schematic representation is given in Fig. 1(b). The J 2

x /ω

correction introduces next-nearest-neighbor hopping along x

direction with opposite signs for lattice sites with either even
or odd x-coordinate l. This term does not change the total
complex phase per plaquette, but the unit cell is now doubled
and thus the first Brillouin zone is halved. A similar term
was engineered on purpose in order to implement the Haldane
model [8].

In the next subsection we investigate properties of energy
bands of both effective Hamiltonians, Ĥeff,0 and Ĥeff,1. We
use the units where h̄ = 1 and a = 1. Unless otherwise stated,
we set the parameters to the following values: lattice size
100 × 100 sites, hopping amplitudes J ′

x = Jy = 1 ≡ J , and
the driving amplitude κ = 0.58ω. This value of the driving
amplitude was chosen to be the same as in the experiment
[26]. In order to set the renormalized hopping amplitude
along ex to J ′

x = 1, the initial hopping amplitude has to be
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FIG. 1. Schematic representation of the model. The unit cells
are shaded. (a) Effective Hamiltonian without correction, Ĥeff,0 (6).
Vertical links correspond to real hopping amplitudes (along ey direc-
tion), while the horizontal links to the right of lattice sites labeled
A, B, C, and D correspond to complex hopping amplitudes with
phases 3π

4 , π

4 , − π

4 , and − 3π

4 , respectively (when hopping from left
to right). (b) Effective Hamiltonian with correction, Ĥeff,1 (7). Red
lines represent positive next-nearest-neighbor hopping amplitudes
(connecting uppercase letters), while the blue lines represent negative
next-nearest-neighbor hopping amplitudes (connecting lowercase
letters). Nearest-neighbor hopping amplitudes are the same as in (a).

Jx = √
2ω/κ = 2.44, and the correction term is therefore pro-

portional to J 2
x /ω = 5.95/ω, so it cannot be safely neglected

unless the driving frequency is very high.

B. Band structure

Momentum-space representations of the effective Hamil-
tonians Ĥeff,0 and Ĥeff,1, denoted by Ĥeff,0(k) and Ĥeff,1(k),
respectively, are derived in Appendix B. Band structures for
the effective Hamiltonian Ĥeff,0 without the J 2

x /ω correction,
Eq. (B1), as well as for the effective Hamiltonian Ĥeff,1

including the correction term, Eq. (B2), are shown in Fig. 2
for the two values of driving frequencies ω = 20 and ω = 10.

The Hamiltonian Ĥeff,0 is the Harper-Hofstadter Hamilto-
nian for the flux α = 1/4. It has four energy bands, where
the middle two bands touch at E = 0 and can therefore be
regarded as a single band; see Fig. 2(a). The topological
content of these bands is characterized by the topological
index called the Chern number. The Chern number is the
integral of the Berry curvature [42] over the first Brillouin
zone divided by 2π ,

cn = 1

2π

∫
FBZ

�n(k) · dS, (8)

where n denotes the band number and the Berry curvature
is �n(k) = i∇k × 〈un(k)|∇k|un(k)〉, expressed in terms of
eigenstates of the effective Hamiltonian |un(k)〉. The Chern
numbers of the three well-separated bands are c1 = 1, c2 =
−2, and c3 = 1.

Because the correction from Eq. (7) includes next-nearest-
neighbor hopping terms, the elementary cell in real space
is doubled [see Fig. 1(b)] and, as a consequence, the first
Brillouin zone for the Hamiltonian Ĥeff,1 is reduced by a
factor of 2 compared to Ĥeff,0. There are now eight lattice
sites in the unit cell and eight energy bands, but the number
of gaps depends on the driving frequency. The new bands
touch in pairs, in such a way that there are always maximally
three well-separated bands. When the driving frequency is
high enough, the correction is small and the gaps between
the three bands remain open; see Fig. 2(b). The original band
structure of Ĥeff,0 is recovered in the limit ω → ∞. The
Berry curvature and the Chern number can be calculated using
the efficient method presented in Ref. [43]. Our calculations
confirm that the Chern numbers of Ĥeff,1 are equal to those
of Ĥeff,0 (c1 = 1, c2 = −2, and c3 = 1), as long as the gaps
between the energy bands are open. The gaps close when the
driving frequency is too low, see Fig. 2(c), and the Chern
numbers of the subbands can no longer be properly defined.

C. Dynamics of incoherent bosons

We need to take into account a contribution of weak, repul-
sive interactions. Full numerical simulations of an interacting
many-body problem are computationally demanding, so we
need a reasonable, numerically tractable approximation. To
this end we will use the classical field method [44], which

π/2 π 3π/2 2π

E
/
J

ky

c1 = 1

c2 = −2

c3 = 1

π/4 π/2 3π/4 π

E
/
J

kyω = 20
π/4 π/2 3π/4 π

E
/
J

kyω = 10

-1

-2

-3
0

(a)
0

(b)

0

1

2

3

-1
-2
-3
-4

0
1
2
3
4

0
(c)

-1
-2
-3
-4
-5

0
1
2
3
4
5

FIG. 2. Energy bands of the effective Hamiltonians. (a) Ĥeff,0(k) Eq. (B1), which is without the J 2
x /ω correction term. (b) Ĥeff,1(k)

Eq. (B2), which includes the correction term. Driving frequency ω = 20; gaps are open. (c) Same as (b), but with ω = 10. Gaps are closed.
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belongs to a broader class of truncated Wigner approaches
[45]. This method is similar to the approach used to treat
incoherent light in instantaneous media [46,47], known in
optics as the modal theory.

The underlying idea of the method is to represent the
initial state as an incoherent mixture of coherent states |ψ〉,
âl,m|ψ〉 = ψl,m|ψ〉 [44]. This is explained in more detail in
Appendix C. In our study, we sample initial configurations of
these coherent states with

|ψ (t = 0)〉 =
Nm∑
k=1

eiφk |k〉, (9)

where φk ∈ [0, 2π ) are random phases and the states |k〉
correspond closely to the lowest-band eigenstates of Ĥeff.
Each of Nsamples initial states is time evolved and physical
variables can be extracted by averaging over an ensemble of
different initial conditions.

The time evolution of each of these coherent states is
governed by

i
dψl,m(t )

dt
=

∑
ij

Hlm,ij (t )ψi,j (t ) − F m ψl,m(t )

+U |ψl,m(t )|2ψl,m(t ), (10)

where Hlm,ij (t ) = 〈l, m|Ĥ (t )|i, j 〉 are matrix elements of
Ĥ (t ) from Eq. (3), F is the external force, and interactions
U contribute with the last, nonlinear term. Formally, Eq. (10)
takes the form of the Gross-Pitaevskii equation [48–50]. The
performances and limitations of the method are discussed and
reviewed in Ref. [51].

For comparison, we also consider the related time evolu-
tion governed by the effective Hamiltonian

i
dψl,m(t )

dt
=

∑
ij

heff
lm,ijψi,j (t ) − F m ψl,m(t )

+U |ψl,m(t )|2ψl,m(t ), (11)

where heff
lm,ij = 〈l, m|ĥeff|i, j 〉, with ĥeff being either Ĥeff,0

from Eq. (6), or Ĥeff,1 from Eq. (7). Equation (11) should
be considered only as a tentative description of the sys-
tem: the mapping between Ĥ (t ) and Ĥeff is strictly valid only
in the noninteracting regime and the interaction term may
introduce complex, nonlocal, higher-order corrections [27].
However, we expect their contribution to be small in the limit
U → 0, and for time scales which are not too long [52–55].

In the following we use Nm = 300 modes and accom-
modate Np = 300 particles per mode, so in total in the
simulations we have N = NmNp = 90 000 bosons. Typical
densities in real space are up to 100 particles per site and
we choose the values of U in the range U ∈ [0, 0.05]. Other
parameters: J ′

x = Jy = 1, κ/ω = 0.58, ω = 10, 20, and F =
0.25J/a. The correction terms are non-negligible in this
frequency range. In practice, we first numerically diagonalize
the Hamiltonian (C2) from Appendix C and set our parameters
in such a way that the lowest Nm modes have high overlap
with the lowest band of the effective model. In the next step,
we sample initial configurations (9). For each of Nsamples =
1000 sets of initial conditions we then time evolve Eq. (10)
and extract quantities of interest by averaging over resulting

TABLE I. Four different cases: the same effective Hamiltonian
is always used for the initial state and band definitions, either with
or without the correction. The evolution is governed either by the
time-dependent Hamiltonian or by the same effective Hamiltonian
as the one that was used for the initial state and calculation of band
populations.

Case Initial state Band populations Evolution

1 Ĥeff,1 Ĥeff,1 Ĥeff,1

2 Ĥeff,1 Ĥeff,1 Ĥ (t )

3 Ĥeff,0 Ĥeff,0 Ĥeff,0

4 Ĥeff,0 Ĥeff,0 Ĥ (t )

trajectories. This value of Nsamples is chosen to be high enough,
so that the fluctuations are weak. We present and discuss
results of our numerical simulations in the following sections.

III. NONINTERACTING CASE

We start by addressing the dynamics of noninteracting
bosons. In this case we set U = 0 in Eq. (10) and numerically
solve the single-particle Schrödinger equation without further
approximations. Our aim is to numerically validate and com-
pare the two approximations, Eqs. (6) and (7), for the effective
Hamiltonian. To this purpose, we juxtapose results of the
two approximative schemes with the numerically exact results
obtained by considering the full time evolution governed
by Ĥ (t ). For clarity, the four different time evolutions that
we consider in this section are summarized in Table I. We
calculate the center-of-mass position x(t ) and plot the results
in Fig. 3. In this way we also find the regime of microscopic
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Ĥeff,1

γeff,1(t)

x
/
a
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Ĥ(t)
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FIG. 3. Anomalous drift x(t ). Dashed purple lines: numerical
simulations using the time-dependent Hamiltonian Ĥ (t ) (cases 2 and
4 from Table I). Solid green lines: effective Hamiltonians Ĥeff,1 (c)
and (d) and Ĥeff,0 (a) and (b) (cases 1 and 3). Dotted black lines:
theoretical prediction (14) from γeff,1(t ) or γeff,0(t ). (a) Initial states
and band populations obtained using the effective Hamiltonian Ĥeff,0

without the correction (cases 3 and 4). Driving frequency ω = 20.
(b) ω = 10. (c) Hamiltonian Ĥeff,1 with the J 2

x /ω correction (cases 1
and 2). Driving frequency ω = 20. (d) ω = 10.
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parameters where the Chern-number measurement can be
optimally performed.

First, we consider the basic Harper-Hofstadter Hamiltonian
(6) and select the occupied modes |k〉 of the initial state (C1)
as eigenstates of the model from Eq. (9) for ĥeff = Ĥeff,0. As
explained in the previous section, at the initial moment t0 =
0, the confinement is turned off and the force F = −F ey is
turned on. As a consequence of the applied external force and
the nonzero Chern number of the lowest band of the model
(6), the particles exhibit an anomalous velocity in the direction
perpendicular to the force [56]. In the ideal case, when the
lowest band is fully populated, the theoretical prediction for
the center-of-mass position in the ex direction is [26]

x(t ) = x(t0) + c1
2Fa2

πh̄
t, (12)

where c1 = 1 is the Chern number (8) of the lowest band.
However, even in the ideal case, due to the sudden quench
of the linear potential, a fraction of particles is transferred to
the higher bands. To take this effect into account, the authors
of Ref. [26] introduced a filling factor γ (t )

γ (t ) = η1(t ) − η2(t ) + η3(t ), (13)

where ηi (t ) are populations of different bands of Hamiltionian
(6) from Eq. (C4) in Appendix C and the plus and minus signs
in Eq. (13) are defined according to the Chern numbers c1 =
1, c2 = −2, and c3 = 1. The final theoretical prediction is
then [26]

x(t ) = x(t0) + c1
2Fa2

πh̄

∫ t

0
γ (t ′)dt ′. (14)

In Fig. 3(a) we consider the anomalous drift for a high
value of the driving frequency ω = 20, where we expect
the expansion in 1/ω to be reliable. We find an excellent
agreement between the prediction (14) (dotted black line)
and numerical calculation based on Ĥeff,0 (solid green line).
However, some deviations between the full numerical results
(dashed purple line) and the results of the approximation
scheme (solid green line) are clearly visible. These deviations
are even more pronounced for ω = 10, Fig. 3(b).

Now we turn to the effective model (7). In this case we
select the modes of the initial state as eigenstates of Eq. (9)
for ĥeff = Ĥeff,1. Moreover, we also consider band populations
(C4) of the same model. In the case when ω = 20, Fig. 3(c),
the anomalous drift obtained using the effective Hamiltonian
(7) (solid green line) closely follows the theoretical prediction
(14). Moreover, from the same figure we can see that the
effective Hamiltonian Ĥeff,1 reproduces the behavior of the
time-dependent Hamiltonian very well. All three curves al-
most overlap for intermediate times (5–40 ms); see Fig. 3(c).
We attribute the long-time (>45 ms) deviations to the finite-
size effects introduced by the next-nearest-neighbor hopping
terms, which cause the atomic cloud to reach the edge of
the lattice faster. This effect is explained in more detail in
Sec. IV B.

For a lower driving frequency ω = 10, the effective and the
time-dependent Hamiltonians do not agree so well anymore;
see Fig. 3(d). The finite-size effects can be observed even
earlier in this case (around 25 ms). This happens because the
next-nearest-hopping terms are inversely proportional to the
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γeff,0(t)

γeff,0(t) − const
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γ(t)
γeff,1(t)

γeff,1(t) − const

FIG. 4. Time evolution of the filling factor γ (t ) for driving
frequency ω = 20. Solid purple lines: evolution governed by the
time-dependent Hamiltonian Ĥ (t ) (cases 2 and 4 from Table I).
Dashed green lines: evolution governed by the effective Hamiltonian
Ĥeff,1 or Ĥeff,0 (cases 1 and 3). Dotted black lines: green lines shifted
in order to compare them with purple lines. Shift is chosen so
that the two lines approximately overlap. (a) Initial states and band
populations obtained using the effective Hamiltonian Ĥeff,0, which is
without the J 2

x /ω correction term (cases 3 and 4). (b) Hamiltonian
Ĥeff,1 which is with the correction term (cases 1 and 2).

driving frequency. It is interesting to note that the prediction
(14) is close to numerical data for short times even in this case
when the gaps of the effective model are closed, see Fig. 2(c),
and the Chern number of the lowest band is not well defined.
In fact, it is surprising that the anomalous drift even exists in
this case, as all subbands are now merged into a single band.
We attribute this effect to our choice of the initial state. When
the gaps are closed, it is hard to set the parameters in such
a way that the lowest band is completely filled. The top of
this band usually remains empty and the particles thus do not
“see” that the gap is closed.

Time evolution of the filling factor γ (t ) is plotted in Fig. 4
for four different cases from Table I—evolution using the
effective Hamiltonian without correction Ĥeff,0 [γeff,0(t ), case
3, dashed green line in Fig. 4(a)], the effective Hamiltonian
with correction Ĥeff,1 [γeff,1(t ), case 1, dashed green line in
Fig. 4(b)], or the time-dependent Hamiltonian Ĥ (t ) [γ (t ),
cases 2 and 4, solid purple lines]. At the initial moment γ (t0 =
0) < 1, because the initial state was multiplied by the operator
e−iK̂ (0). This introduces a shift between γ (t ) and γeff,1(t ).
Apart from the shift, these two curves behave similarly, unlike
the γeff,0(t ) curve that exhibits completely different behavior.
Because of this, we use only γeff,1(t ) to estimate the value of
the prediction (14).

We find that the values of γeff,1(t ) for ω = 20 are high:
�0.95; see Fig. 4. For this reason, up to 50 ms the center-of-
mass position x(t ) exhibits roughly linear behavior with some
additional oscillations. Interestingly, the anomalous drift x(t )
exhibits quadratic behavior on short time scales in all cases
from Fig. 3. In Appendix D, we explain this feature using the
time-dependent perturbation theory and Fermi’s golden rule.

IV. INTERACTING CASE

We now investigate the effects of weak repulsive interac-
tions. We work in the high-frequency regime and set ω = 20.
As shown in Sec. II B, for U = 0 the effective Hamiltonian
with correction, Ĥeff,1, is in this case equivalent to the Harper-
Hofstadter Hamiltonian with flux α = 1/4. Moreover, the
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FIG. 5. Effects of interactions. (a) Anomalous drift x(t ) for several different values of the interaction coefficient U . U is given in units
where J = 1. Thick lines: numerical simulations using the time-dependent Hamiltonian Ĥ (t ). Thin lines: theoretical prediction (14) from
γeff,1(t ). (b) Corresponding γeff,1(t ) = η1(t ) − η2(t ) + η3(t ), obtained from simulations using the effective Hamiltonian Ĥeff,1.

same approximative form of the full effective model accu-
rately reproduces the behavior of the time-dependent Hamil-
tonian up to 50 ms and thus provides a good starting point for
the study of weakly interacting particles. We first consider the
anomalous drift of the center of mass of the atomic cloud and
then we inspect the expansion dynamics more closely in terms
of atomic density distributions in real and momentum space.

A. Anomalous drift and dynamics of band populations

To simulate the dynamics of many incoherent bosons, we
use the classical field method presented in Sec. II C and
propagate Eq. (10) in time. We assume that at t0 = 0 atoms are
uniformly distributed over the lowest band of Ĥeff,1. For this
reason, the initial state is the same as the one that we use in the
noninteracting regime. In this way, the dynamics is initiated
by an effective triple quench: at t0 = 0 the confining potential
is turned off, atoms are exposed to the force F = −F ey , and
also the interactions between particles are introduced. The
total number of particles is set to N = 90 000, which amounts
to approximately 100 particles per lattice site in the central
region of the atomic cloud. We consider only weak repulsion
U � 0.05.

The anomalous drift x(t ) obtained using the full time-
dependent Hamiltonian is shown in Fig. 5(a) for several
different values of the interaction strength U . In comparison
to the noninteracting regime, we find that the weak repulsive
interactions inhibit the response of the center of mass to the
external force. In particular, at t = 50 ms the drift is reduced
by about 15% for U = 0.005 and it is further lowered by an
increase in U . Finally, at U = 0.05, the anomalous drift is
barely discernible. Interestingly, for weak U ∈ (0.001, 0.01)
we find that the drift x(t ) in the range of t ∈ (10, 50) ms
looks “more linear” as a function of time in comparison to
the noninteracting result.

We now analyze the anomalous drift in terms of the filling
factor γ (t ) and compare the results of Eq. (10) with the
description based on Eq. (11). By solving Eq. (11) we obtain
the filling factor γeff,1(t ) following Eq. (C4) and present

our results in Fig. 5(b). Whenever the results of Eq. (10)
reasonably agree with the results obtained from Eq. (11), we
are close to a steady-state regime with only small fluctuations
in the total energy, as Eq. (11) preserves the total energy of
the system. In this regime, during the expansion dynamics
the interaction energy is converted into the kinetic energy and
atoms are transferred to higher bands of the effective model.
Consequently, the filling factor γeff,1(t ) is reduced. Typically,
we find three different stages in the decrease of γeff,1(t ).

In an early stage, t � t1 = 5 ms, a fast redistribution of
particles over the bands of the effective model sets in due to
the sudden quench of U . The factor γeff,1(t ) decays quadrat-
ically as a function of time down to γeff,1(t1) ≈ 0.75 for
U = 0.01, and γeff,1(t1) ≈ 0.25 for U = 0.05. In this process
the interaction energy of the system is quickly lowered as
described in Appendix E. At later times t > 5 ms, we observe
a linear decay of the filling factor γeff,1(t ) as a function of
time, that finally turns into an exponential decay at even later
times (t > 10 ms). Similar regimes are observed in other dy-
namical systems. For example, a decay rate of an initial state
suddenly coupled to a bath of additional degrees of freedom
exhibits these three stages [57]. The initial quadratic decay is
often denoted as “the Zeno regime.” For longer propagation
times, Fermi’s golden rule predicts the linear decay. At even
longer time scales, when the repopulation of the initial state
is taken into account, the time-dependent perturbation theory
yields the exponential regime, known under the name of the
Wigner-Weisskopf theory [57].

We now investigate this last regime in more detail. For
the population of the lowest band η1(t ), an exponential decay
function f (t ) = a + b e−ct provides high quality fits for t ∈
(10, 50) ms; see Fig. 6(a) for an example. Similarly, the pop-
ulations of two higher bands can also be fitted to exponential
functions. The obtained exponential decay coefficients c for
the lowest band population are plotted as a function of the
interaction strength U in Fig. 6(b). The resulting dependence
is approximately quadratic: c(U ) = α0 + α1U + α2U

2. For
small values of U , the exponents c(U ) obtained for the
dynamics governed by Ĥ (t ) and Ĥeff, 1 agree very well and
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FIG. 6. (a) Evolution of the band populations ηi (t ). Dashed lines:
numerical results obtained using the time-dependent Hamiltonian
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exhibit linear behavior. At stronger interaction strengths U �
0.03, the approximation of Eq. (11) becomes less accurate as
it omits the quadratic contribution in c(U ) found in the full
time evolution. In addition, the values of the exponents c are
affected by the force strength F and driving frequency ω.

As we now understand some basic features of γeff,1(t ), we
make an explicit comparison between the numerical results
for the anomalous drift and the expectation (14). The dashed
lines in Fig. 5(a) correspond to the theoretical prediction
(14) calculated from γeff,1(t ). For the intermediate interaction
strengths U � 0.01, we find a very good agreement between
the two. From this we conclude that the interaction-induced
transitions of atoms to higher bands are the main cause of the
reduced anomalous drift x(t ) as a function of U . When the
interactions become strong enough (U ∼ 0.02), the numerical
results start to deviate from the theoretical prediction (14) with
γeff,1(t ). In this regime, Eq. (11) does not provide a reliable
description of the dynamics, as higher-order corrections need
to be taken into account.

B. Real and momentum-space dynamics

So far we have considered the averaged response of the
whole atomic cloud. We now inspect the expansion dynamics
in a spatially resolved manner. The real-space probability
densities at the initial moment and after 50 ms (75 driving
periods) are shown in Figs. 7 and 8, and the corresponding
momentum-space probability densities in Appendix F.

At the initial moment, the atomic cloud is localized in
the center of the lattice. By setting r0 = 20 in the confining
potential of Eq. (C2) and populating the lowest-lying states,
we fix the cloud radius to r = 20, Fig. 7(a). The cloud density
is of the order of 100 atoms per lattice site and a weak density
modulation is visible along x direction. After the confining
potential is turned off, and the external force in the −ey

direction is turned on, the cloud starts to expand and move
in the +ex direction. As shown in the previous subsection,
the band populations and therefore the anomalous drift are
significantly altered by the interaction strength, and this is also
the case with the expansion dynamics; see Figs. 7 and 8.

In the noninteracting case, Fig. 7(b), the atomic cloud
nearly separates into two parts moving in opposite directions

y
/
a

x/a

y
/
a

x/a

t/T = 75

Ĥeff,0

U = 0

t/T = 0

Ĥ(t)
U = 0

t/T = 75

Ĥeff,1

U = 0

t/T = 75

Ĥ(t)
U = 0

FIG. 7. Real-space density distribution, noninteracting case U =
0. (a) Initial state. (b) After 50 ms (75 driving periods), evolution
using the time-dependent Hamiltonian Ĥ (t ). (c) Evolution using
effective Hamiltonian without correction Ĥeff,0. (d) Evolution using
effective Hamiltonian with correction Ĥeff,1.

along x axes (while the center of mass still moves in the +ex

direction). By comparing Fig. 7(c) and Fig. 7(d), we conclude
that this effect stems from the next-nearest-neighbor hopping
along x present in the effective Hamiltonian (7), as it does
not happen in the effective model without the correction term
(6). This type of separation was already observed in Ref. [22],
where the next-nearest-neighbor hopping terms were also
present. When the interactions between particles are included,

y
/
a

x/a

y
/

y
/
a

x/a

t/T = 75

Ĥeff,1

U = 0.01

t/T = 75

Ĥ(t)
U = 0.01

t/T = 75

Ĥeff,1

U = 0.05

t/T = 75

Ĥ(t)
U = 0.05

FIG. 8. Real-space density distribution after 50 ms (75 driving
periods), interacting case. U is given in units where J = 1. (a) Evo-
lution using the time-dependent Hamiltonian Ĥ (t ), U = 0.01. (b)
Same with U = 0.05. (c) Evolution using the effective Hamiltonian
Ĥeff,1, U = 0.01. (d) Same with U = 0.05.
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FIG. 9. Atomic cloud width for different interaction strengths,
evolution using the time-dependent Hamiltonian Ĥ (t ). U is given in
units where J = 1. (a) dx =

√
〈x2〉 − 〈x〉2. (b) dy = √〈y2〉 − 〈y〉2.

this separation is not so prominent [Fig. 8(a), U = 0.01],
and it almost completely disappears when the interactions are
strong enough [Fig. 8(b), U = 0.05]. This is also the case
when the evolution is governed by the effective Hamiltonian
Ĥeff,1; see Figs. 8(c) and 8(d). Atomic cloud widths dx =√

〈x2〉 − 〈x〉2 during the expansion are plotted in Fig. 9. We
observe a slow expansion of the cloud in y direction, Fig. 9(b),
and much faster expansion along x direction, Fig. 9(a), which
comes about as a consequence of the cloud separation. On top
of this, we observe that the interactions enhance expansion
along y. Surprisingly, the opposite is true for the dynamics
along x. This counterintuitive effect is often labeled as self-
trapping and its basic realization is known for the double-
well potential [58,59]. In brief, strong repulsive interactions
can preserve the density imbalance between the two wells,
as the system cannot release an excess of the interaction
energy. In our case, the situation is slightly more involved
as the cloud splitting is inherent (induced by the corrections
of the ideal effective Hamiltonian). Apart from this, due to
the driving the total energy is not conserved. However, our
numerical results indicate that the interaction energy is slowly
released in the second expansion stage, Fig. 14. Effectively,
in this way the interactions cancel out the contribution of the
next-nearest-neighbor hopping and favor the measurement of
the properties of the model (6). In Fig. 10(a) we show that
deviations between different approximations based on Ĥ (t ),

Ĥeff,1, and Ĥeff,0 in the anomalous drift x(t ) nearly vanish at
U = 0.01.

Another desirable effect might be that the interactions
make the momentum-space probability density more ho-
mogeneous, see Appendix F, so that the real-space prob-
ability density becomes more localized. We can quantify
momentum-space homogeneity using the inverse participation
ratio R(t ) = 1∑

i P 2
i (t )

, where Pi (t ) = |ψi (t )|2 is the probability

that the state ψi is occupied at time t . Minimal value of
the inverse participation ratio (IPR) is 1 and it corresponds
to a completely localized state, while the maximal value is
equal to the total number of states (in our case 10 000) and
corresponds to the completely delocalized state, where the
particles have the same probability of being at any quasi-
momentum k. As stated before, the first Brillouin zone of
the lowest band has to be as homogeneously populated as
possible in order to properly measure the lowest band Chern
number. From Fig. 10(b), we see that IPR increases in time
when the interaction coefficient U is large enough, so we
can conclude that the interactions are actually beneficial for
measuring the Chern number, as they can “smooth out” the
momentum-space probability density. In Fig. 10(c) we give
estimates for the Chern number that can be extracted from
our numerical data for different values of U . We find the best
estimate c1 ∼ 0.99 for the intermediate interaction strength
U ∼ 0.01.

C. Staggered detuning

Here we briefly consider the effects of staggered detuning
that was introduced in the experimental study [26] during the
loading and band mapping sequences. This detuning can be
described by an additional term

δ

2

∑
l,m

[(−1)l + (−1)m]n̂l,m (15)

in the Hamiltonians Ĥ (t ) and Ĥeff,1. We will ignore the
higher-order [at most O( 1

ω2 )] corrections that this term intro-
duces to the effective Hamiltonian. Staggered detuning does
not break the symmetry of the effective Hamiltonian Ĥeff,1,
but if δ is large enough, it can cause a topological phase

49

50

51

52

53

0 10 20 30 40 50

(a)

U = 0.01

9840
9860
9880
9900
9920
9940
9960
9980

10000

0 10 20 30 40 50 60 70

(b)

0.8

0.9

1

1.1

10 20 30 40 50

(c)

x
/
a

t (ms)
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FIG. 10. (a) Comparison of anomalous drifts obtained from evolution using the time-dependent Hamiltonian Ĥ (t ) (solid purple line),
effective Hamiltonian without correction Ĥeff,0 (dashed green line) and effective Hamiltonian with correction Ĥeff,1 (dotted black line).
Intermediate interaction strength U = 0.01. U is given in units where J = 1. (b) Time evolution of the inverse participation ratio in momentum
space for several different values of U . Evolution is performed using the time-dependent Hamiltonian Ĥ (t ). When the interactions are strong
enough, IPR approaches the maximal possible value (10 000 in this case), which is equal to the total number of states and corresponds to the
completely delocalized state. U is given in units where J = 1. (c) Chern number of the lowest band obtained for different interaction strengths
as the ratio of the theoretical prediction for the anomalous drift and numerical results: c1(t ) = ( 2Fa2

πh̄

∫ t

0 γeff,1(t ′)dt ′)/[x(t ) − x(t0)].
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FIG. 11. Lowest band Chern numbers extracted from numerical
data for several different values of detuning δ. Purple circles: non-
interacting case, U = 0. Green triangles: U = 0.01. Blue squares:
theoretical values of the lowest band Chern number c′

1. A topological
phase transition is visible at δc ≈ 1.38. The lines between points are
only a guide to the eye.

transition and make all bands topologically trivial. By numer-
ically calculating the Berry curvature and Chern numbers c′

i ,
we find that this transition occurs at δc ≈ 1.38 J ; see Fig. 11.
This value is lower than the one for the ordinary Harper-
Hofstadter Hamiltonian for α = 1/4, which is δc = 2 J [26],
due to the different hopping amplitudes J ′

x and J ′
y , and due to

the additional J 2
x /ω correction that we consider.

We now investigate how this topological transition can be
probed through the dynamical protocol used in the exper-
iment. We again numerically calculate the anomalous drift
and the evolution of the filling factor, but now with staggered
detuning (15) included in the Hamiltonian Ĥinitial (C2) used
to obtain the initial state, in the equations of motion (10) and
(11), and in the definitions of the band populations ηi (t ) (C4).
Using these results, we repeat the procedure for the extraction
of the lowest band Chern number from numerical data that
was carried out in the previous section. The Chern number
obtained by comparing the anomalous drift to the prediction
calculated from the filling factor is then averaged over the
time interval t ∈ (20, 40) ms. This interval was chosen in
order to avoid the initial quadratic regime and the finite-
size effects at later times. The resulting lowest band Chern
numbers for several different values of detuning δ in both the
noninteracting case and the case of intermediate interaction
strength U = 0.01 are presented in Fig. 11.

We can see that the calculated value of the Chern number
decreases from c1 = 1 to c1 = 0 with increasing detuning
δ. The obtained value of the Chern number is lower than 1
even before the phase transition occurs. This is due to our
choice of the initial state, which is not perfectly homogeneous
in momentum space. Close to the phase transition, both the
energy bands and the Berry curvature have pronounced peaks
at the same regions of the first Brillouin zone, and these
regions are initially less populated. Because of this, the Berry
curvature at these regions contributes less to the anomalous
drift, which lowers the measured Chern number. This effect is

somewhat reduced by the interactions, as they smooth out the
momentum-space probability density, and might also cancel
out the detuning term. Similar interplay of interactions and
staggering was observed in the fermionic Hofstadter-Hubbard
model [60]. The obtained results are in line with experimental
measurements [26].

V. CONCLUSIONS

Motivated by the recent experimental results reporting the
Chern numbers of topological bands in cold-atom setups,
we studied numerically bosonic transport in a driven optical
lattice. The considered driving scheme and the range of micro-
scopic parameters were chosen to be close to those in a recent
experimental study [26]. The driving frequency was set to be
high enough in order to avoid strong energy absorption for the
relevant time scales. Additionally, the system was restricted to
a two-dimensional lattice, even though the actual experimen-
tal setup had continuous transverse degrees of freedom. This
restriction stabilizes the system [29,31,41] and leads to lower
heating rates than those in the experiment. It corresponds to
the case of strongly confined third dimension.

We investigated bosonic dynamics for the full time-
dependent Hamiltonian, the effective Floquet Hamiltonian,
and included the effects of weak repulsive interactions be-
tween atoms using the mean-field approximation. In the non-
interacting case, we found that the effective Hamiltonian and
its band structure depend on the frequency of the drive ω

through an additional J 2
x /ω correction term. The initial state

was set as a mixture of incoherent bosons homogeneously
populating the lowest band, but a possible direction of future
research could be to simulate the full loading sequence of an
initial Bose-Einstein condensate and to try to obtain the inco-
herent state through driving, as it was done in the experiment.

The main focus of this work is on the effects of weak in-
teractions. For a weak atomic repulsion, atomic transitions to
higher effective bands obtained in our simulations mainly oc-
cur due to a release of the initial interaction energy during the
atomic-cloud expansion. Although the effect is undesirable,
it can be properly taken into account in the extraction of the
Chern number. At larger interaction strengths, the transitions
are more pronounced as the system absorbs energy from the
drive. In this regime the good agreement between the full and
effective description is lost and the measurement should be-
come more complicated. In addition to causing redistribution
of atoms over bands, our results show that weak interactions
can also be beneficial in measuring the Chern number. Their
desirable effect comes about due to smoothening the atomic
distribution over the topological band and due to canceling
out the contribution of some less relevant terms to the bosonic
dynamics.
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APPENDIX A: EFFECTIVE MODEL

After a unitary transformation into the rotating frame ψ̃ =
e−iŴ tψ , where ψ̃ and ψ are the old and the new wave
functions, and Ŵ is the staggered potential, the new time-
dependent Hamiltonian that describes the experimental setup
is given by [26]

Ĥ (t ) = Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m) + V̂ (+1)eiωt + V̂ (−1)e−iωt + U

2

∑
l,m

n̂l,m(n̂l,m − 1), (A1)

where

V̂ (+1) = κ/2
∑
l,m

n̂l,mg(l, m) − Jx

∑
lodd,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m), (A2)

V̂ (−1) = κ/2
∑
l,m

n̂l,mg∗(l, m) − Jx

∑
leven,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m), (A3)

g(l, m) = cos(lπ/2 − π/4)ei(φ0−mπ/2) + cos(lπ/2 + π/4)ei(mπ/2−φ0−π/2). (A4)

The kick operator is given by

K̂ (t ) = 1

iω

(
V̂ (+1)eiωt − V̂ (−1)e−iωt

) + O

(
1

ω2

)
(A5)

and the effective Hamiltonian by

Ĥeff = Ĥ0︸︷︷︸
Ĥ

(0)
eff

+ 1

ω
[V̂ (+1), V̂ (−1)]︸ ︷︷ ︸

Ĥ
(1)
eff

+ 1

2ω2
([[V̂ (+1), Ĥ0], V̂ (−1)] + [[V̂ (−1), Ĥ0], V̂ (+1)])︸ ︷︷ ︸

Ĥ
(2)
eff

+O

(
1

ω3

)
. (A6)

If we assume that the driving frequency is high and interactions are weak, the interaction term and almost all O( 1
ω2 ) terms

can be neglected. After substituting Eqs. (A1), (A2), and (A3) into Eq. (A6) we obtain

Ĥ
(0)
eff = − Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m), (A7)

Ĥ
(1)
eff = 1

ω

[
κ

2

∑
l,m

â
†
l,mâl,mg(l, m) − Jx

∑
lodd,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m),

(A8)
κ

2

∑
l,m

â
†
l,mâl,mg∗(l, m) − Jx

∑
leven,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m)

]
= Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4.

We will now separately calculate each term:

Ĥ1 = − Jxκ

2ω

∑
lodd,m,l′,m′

g∗(l′,m′)[â†
l+1,mâl,m + â

†
l−1,mâl,m, â

†
l′,m′ âl′,m′ ]

= − Jxκ

2ω

∑
lodd,m

[(g∗(l, m) − g∗(l + 1,m))â†
l+1,mâl,m + (g∗(l, m) − g∗(l − 1,m))â†

l−1,mâl,m], (A9)

Ĥ2 = − Jxκ

2ω

∑
leven,m,l′,m′

g(l′,m′)[â†
l′,m′ âl′,m′ , â

†
l+1,mâl,m + â

†
l−1,mâl,m]

= Jxκ

2ω

∑
leven,m

[(g(l, m) − g(l + 1,m))â†
l+1,mâl,m + (g(l, m) − g(l − 1,m))â†

l−1,mâl,m], (A10)

Ĥ3 = J 2
x

ω

∑
lodd,m,l′even,m

′
[â†

l+1,mâl,m + â
†
l−1,mâl,m, â

†
l′+1,m′ âl′,m′ + â

†
l′−1,m′ âl′,m′ ]

= J 2
x

ω

∑
lodd,m

(2â
†
l+1,mâl+1,m + â

†
l+3,mâl+1,m + â

†
l−1,mâl+1,m − 2â

†
l,mâl,m − â

†
l+2,mâl,m − â

†
l−2,mâl,m)

= J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m + â

†
l+2,mâl,m + â

†
l−2,mâl,m), (A11)
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Ĥ4 = κ2

4ω

∑
l,m,l′,m′

g(l, m)g∗(l′,m′)[â†
l,mâl,m, â

†
l′,m′ âl′,m′ ] = 0. (A12)

Using trigonometric identities and

g(l, m) − g(l ± 1,m) = ±
√

2( sin[(2l ± 1 − 1)π/4]ei(π/4−mπ/2) + sin[(2l ± 1 + 1)π/4]ei(mπ/2−3π/4)), (A13)

we can rewrite the sum of terms (A9) and (A10) in a more convenient form:

Ĥ1 + Ĥ2 = Jxκ√
2ω

∑
l,m

(ei[(m−l)π/2−π/4]â
†
l,mâl−1,m + e−i[(m−l−1)π/2−π/4]â

†
l,mâl+1,m). (A14)

The only O( 1
ω2 ) (Ĥ (2)

eff ) term that cannot be neglected in the parameter range that we use is [26]

Jy

2

κ2

ω2

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m). (A15)

Finally, the effective Hamiltonian becomes

Ĥeff,1 = Jxκ√
2ω

∑
l,m

(ei[(m−l−1)π/2−π/4]â
†
l+1,mâl,m + e−i[(m−l)π/2−π/4]â

†
l−1,mâl,m) − Jy

(
1 − 1

2

κ2

ω2

)∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m)

(A16)

+ J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m + â

†
l+2,mâl,m + â

†
l−2,mâl,m), (A17)

with the renormalized nearest-neighbor hopping amplitudes J ′
x = Jxκ√

2ω
= Jy and J ′

y = Jy (1 − 1
2

κ2

ω2 ), and a next-nearest-neighbor

along ex hopping term proportional to J 2
x

ω
in (A17).

APPENDIX B: EFFECTIVE HAMILTONIAN IN MOMENTUM SPACE

If we choose the unit cell as in Fig. 1(a) [lattice sites A = (1, 0), B = (2, 0), C = (3, 0), and D = (4, 0)], the momentum-space
representation of the effective Hamiltonian without correction Ĥeff,0 (6) is given by a 4 × 4 matrix

Ĥeff,0(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 J ′
xe

−i 3π
4 − J ′

ye
−ik·R2 0 J ′

xe
−i 3π

4 −ik·R1 − J ′
ye

ik·(R2−R1 )

J ′
xe

i 3π
4 − J ′

ye
ik·R2 0 J ′

xe
−i π

4 − J ′
ye

−ik·R2 0

0 J ′
xe

i π
4 − J ′

ye
ik·R2 0 J ′

xe
i π

4 − J ′
ye

−ik·R2

J ′
xe

i 3π
4 +ik·R1 − J ′

ye
ik·(R1−R2 ) 0 J ′

xe
−i π

4 − J ′
ye

ik·R2 0

⎞
⎟⎟⎟⎟⎟⎠, (B1)

where R1 and R2 are the lattice vectors R1 = (4, 0) and R2 = (1, 1) and k is in the first Brillouin zone, which is given by the
reciprocal lattice vectors b1 = π

2 (1,−1) and b2 = 2π (0, 1).

When the J 2
x

ω
correction is included in the effective Hamiltonian, Ĥeff,1 (7), the unit cell is doubled, see Fig. 1(b), and the first

Brillouin zone is therefore halved. If we now choose the lattice sites a = (1, 0), B = (2, 0), c = (3, 0), D = (4, 0), A = (2, 1),
b = (3, 1), C = (4, 1), and d = (5, 1) for the unit cell, the momentum-space representation of the effective Hamiltonian will be
an 8 × 8 matrix

Ĥeff,1(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2J2
x

ω
J ′

xe
−i 3π

4 − J2
x
ω

(1 + eik·R1 ) J ′
xe

−i( 3π
4 −k·R1 ) 0 −J ′

ye
ik·R2 0 −J ′

ye
ik·R1

J ′
xe

i 3π
4

2J2
x

ω
J ′

xe
−i π

4
J2
x
ω

(1 + eik·R1 ) −J ′
y 0 −J ′

ye
ik·R2 0

− J2
x
ω

(1 + e−ik·R1 ) J ′
xe

i π
4 − 2J2

x
ω

J ′
xe

i π
4 0 −J ′

y 0 −J ′
ye

ik·R2

J ′
xe

i( 3π
4 −k·R1 ) J2

x
ω

(1 + e−ik·R1 ) J ′
xe

−i π
4

2J2
x

ω
−J ′

ye
−ik·(R1−R2 ) 0 −J ′

y 0

0 0 0 −J ′
ye

ik·(R1−R2 ) 2J2
x

ω
J ′

xe
−i 3π

4
J2
x
ω

(1 + eik·R1 ) J ′
xe

−i( 3π
4 −k·R1 )

−J ′
ye

−ik·R2 0 −J ′
y 0 J ′

xe
i 3π

4 − 2J2
x

ω
J ′

xe
−i π

4 − J2
x
ω

(1 + eik·R1 )

0 −J ′
ye

−ik·R2 0 −J ′
y

J2
x
ω

(1 + e−ik·R1 ) J ′
xe

i π
4

2J2
x

ω
J ′

xe
i π

4

−J ′
ye

−ik·R1 0 −J ′
ye

−ik·R2 0 J ′
xe

i( 3π
4 −k·R1 ) − J2

x
ω

(1 + e−ik·R1 ) J ′
xe

−i π
4 − 2J2

x
ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)
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FIG. 12. Eight energy subbands of Ĥeff,1(k) for the driving frequency ω = 20. Subbands 1 and 2 form the lowest band with Chern number
c1 = 1, subbands 3, 4, 5, and 6 form the middle band with c2 = −2, and subbands 7 and 8 form the highest band with c3 = 1.

with the lattice vectors R1 = (4, 0) and R2 = (2, 2). The
reciprocal lattice vectors are then b1 = π

2 (1,−1) and b2 =
π (0, 1).

The energy bands of Ĥeff,1(k) are shown in Figs. 2 and 12.

APPENDIX C: DESCRIPTION OF INCOHERENT BOSONS

In a typical condensed-matter system constituent particles
are electrons. Due to their fermionic statistics, at low enough
temperatures, and with Fermi energy above the lowest band,
that band of the topological model is uniformly occupied,
and consequently the transverse Hall conductivity can be
expressed in terms of the Chern number (8) [10]. In con-
trast, weakly interacting bosons in equilibrium form a Bose-
Einstein condensate in the band minima and only probe the
local Berry curvature [21].

Yet in the experiment [26] the Chern number was suc-
cessfully measured using bosonic atoms of 87Rb. This was
possible because in the process of ramping up the drive (4),
the initial Bose-Einstein condensate was transferred into an
incoherent bosonic mixture. Conveniently, it turned out that
the bosonic distribution over the states of the lowest band
of the effective Floquet Hamiltonian was nearly uniform.
Motivated by the experimental procedure, we model the initial

bosonic state by a statistical matrix

ρ(t = 0) =
Nm∏
k=1

|k,Np〉〈k,Np|, (C1)

where the states |k〉 = a
†
k|0〉 approximately correspond to the

lowest-band eigenstates of Ĥeff and each of these Nm states is
occupied by Np atoms |k,Np〉 = N (a†

k )Np |0〉.
A procedure for selecting the states |k〉 is described in

Refs. [22,26]. In order to probe the Chern number of the low-
est band, the states |k〉 should correspond closely to the
lowest-band eigenstates of Ĥeff. At the same time, in the
experiment in the initial moment the atomic cloud is spatially
localized. According to Refs. [22,26] the optimal approach is
to consider a steep confining potential and to use the low-lying
eigenstates of

Ĥinitial = ĥeff +
(

r

r0

)ζ

, (C2)

where in our calculations ĥeff is either Ĥeff,0 from Eq. (6)
or Ĥeff,1 from Eq. (7) and the parameters of the confining
potential are set to r0 = 20, ζ = 20.
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FIG. 13. Population in higher bands, comparison of numerical results (solid line) with the Fermi’s golden rule in the first and second
approximation (dashed lines). Band populations are calculated for an initial BEC in an eigenstate of the effective Hamiltonian and then
averaged over (approximately) all states in the first band. (a) Initial state and evolution from the effective Hamiltonian with correction Ĥeff,1,
Eq. (7). (b) Without the correction, Ĥeff,0, Eq. (6).

The dynamics of the initial state (C1) is induced by a
double quench: at t0 = 0 the atomic cloud is released from
the confining potential and exposed to a uniform force of
intensity F along the y direction. During the whole procedure
the driving providing the laser-assisted tunneling, defined in
Eq. (4), is running.

The main observables of interest are the center-of-mass
position along x direction

x(t ) =
〈∑

l,m

l|ψl,m(t )|2
〉

(C3)

and the population of the ith band of the effective model

ηi (t ) =
〈 ∑

|k〉∈ith band

∣∣∣∣∣∑
l,m

αk∗
lmψlm(t )

∣∣∣∣∣
2〉

, (C4)

where the states |k〉 = ∑
l,m αk

lm|l, m〉 correspond to the eigen-
states of the effective model. Here, angle brackets 〈 〉 denote
averaging over Nsamples sets of initial conditions.

In the case of noninteracting particles, these and other
quantities can be numerically accessed by solving the single-
particle time-dependent Schrödinger equation for Nm differ-
ent initial states |k〉. This is equivalent to sampling the initial
state according to Eq. (9).

In the end, we give two technical remarks. First, all our
calculations are done in the rotating frame; see Eq. (A1) in
Appendix A. The staggered potential (2) is removed in this
way. Second, in the case when the evolution is governed by
the time-dependent Hamiltonian (10), the initial state is mul-
tiplied by the operator e−iK̂ (0) in order to properly compare
these results to the ones obtained from the evolution governed
by the effective Hamiltonian (11); see Eq. (5).

APPENDIX D: INITIAL QUADRATIC REGIME

For simplicity, we will consider only the case without
the confining potential and with very weak force F = 0.01.

The initial state is a Bose-Einstein condensate in one of the
eigenstates of the effective Hamiltonian. The results are later
averaged over all first band eigenstates.

Fermi’s golden rule predicts that the probability for transi-
tion from an initial state ψi to a final state ψf , induced by
a perturbation �Ĥ , is proportional to the square of matrix
elements |〈ψi |�Ĥ |ψf 〉|2. In this case, the perturbation is
�Ĥ = F ŷ. If we assume that the probability of a particle be-
ing in the initial state is always Pi (t ) = |ψi (t )|2 ≈ 1, Fermi’s
golden rule predicts [61]

P
FGR1
i→f (t ) = 1

h̄2 |〈ψi |�Ĥ |ψf 〉|2t2. (D1)

If we now also consider transitions from the other states to
the initial state, but keep the assumption that the populations
in other states are small Pj �=i (t ) = |ψj �=i (t )|2 � 1, the time-
dependent perturbation theory then predicts [61]

P
FGR2
i→f (t ) = |〈i|�Ĥ |f 〉|2 1 − 2 e− �

2h̄
t cos

(Ef −Ei

h̄
t
) + e− �

h̄
t

(Ef − Ei )2 + �2

4

,

(D2)

where � = 2π
h̄

|〈i|�Ĥ |f 〉|2 and Ei (Ef ) is the energy of the
initial (final) state.

We plot the numerical results and both theoretical predic-
tions from Fermi’s golden rule in Fig. 13. Here we can see
that all three curves agree well for short times, the second
approximation longer remains close to the numerical results,
and that the initial quadratic regime is reproduced by theory.
This is the so-called quantum Zeno regime [57].

APPENDIX E: ENERGY

Time evolution of kinetic and interaction energy per par-
ticle for different interaction strengths is plotted in Fig. 14.
Here we define the kinetic energy per particle as the expec-
tation value of the time-dependent Hamiltonian (A1) divided
by the total number of particles Ekin(t ) = 1

N
〈∑l,m,i,j ψ∗

l,m(t )
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FIG. 14. (a) Kinetic energy per particle (expectation value of the time-dependent Hamiltonian Ekin(t ) = 1
N

〈∑l,m,i,j ψ∗
l,m(t )

Hlm,ij (t )ψi,j (t )〉 divided by the total number of particles N ) for several different interaction strengths. (b) Interaction energy per particle

Eint (t ) = 1
N

U

2 〈 ∑
l,m |ψl,m(t )|2[|ψl,m(t )|2 − 1]〉. U is given in units where J = 1.

Hlm,ij (t )ψi,j (t )〉, while the interaction energy per particle

is Eint (t ) = 1
N

U
2 〈∑

l,m |ψl,m(t )|2[|ψl,m(t )|2 − 1]〉. Both ener-
gies grow with increasing interaction coefficient U .

When the interactions are strong enough and after long
enough time, the atoms become equally distributed between
the eigenstates of the Hamiltonian Ĥ (t ). As the energy
spectrum of Ĥ (t ) is symmetric around zero, the expectation
value of Ĥ (t ) (kinetic energy) should be zero when all
bands are equally populated. We can see this in Fig. 14(a),
where the kinetic energy approaches zero at t ≈ 50 ms for the
case U = 0.05.

The interaction energy at first rapidly decreases, as the
cloud rapidly expands after turning off the confinement

potential V̂conf , and after that continues to slowly decrease as
the cloud slowly expands; see Fig. 14(b).

These considerations also provide a possibility to discuss
the applicability of the approximative method introduced in
Sec. IV. As we work in the regime of high frequency ω =
20, we find that for weak interaction, at short enough times
of propagation, the energy is approximately conserved. At
stronger values of U � 0.01 we observe a slow increase in
the total energy on the considered time scales. In both cases
we do not find the onset of parametric instabilities [31]. If
present, these instabilities are signaled by an order of magni-
tude increase in energy on a short time scale, that we do not
find.
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Ĥeff,1

t/T = 75
U = 0.01

π/4

π/2

k
x
a
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FIG. 15. Momentum-space density distribution in all bands, η1(k) + η2(k) + η3(k). U is given in units where J = 1. Left: evolution using
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In addition, the two-body interaction can deplete the occu-
pancies of initial coherent modes [29,41] and limit the validity
of our approach. In principle, these types of processes can be
addressed by including quantum fluctuations along the lines
of the full truncated Wigner approach [45]. Yet, we set our
parameters in such a way that these additional contributions
are small.

APPENDIX F: MOMENTUM-SPACE DENSITY
DISTRIBUTION

The momentum-space probability densities at the initial
moment and after 75 driving periods (50 ms) are shown in
Fig. 15. The interactions deplete the lowest band, but also
smooth out the density distribution.
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Abstract
We test numerically the recently proposed linear relationship between the 
scale-invariant period Ts.i. = T|E|3/2, and the topology of an orbit, on several 
hundred planar Newtonian periodic three-body orbits. Here T is the period of 
an orbit, E is its energy, so that Ts.i. is the scale-invariant period, or, equivalently, 
the period at unit energy |E| = 1. All of these orbits have vanishing angular 
momentum and pass through a linear, equidistant configuration at least once. 
Such orbits are classified in ten algebraically well-defined sequences. Orbits 
in each sequence follow an approximate linear dependence of Ts.i., albeit with 
slightly different slopes and intercepts. The orbit with the shortest period in 
its sequence is called the ‘progenitor’: six distinct orbits are the progenitors of 
these ten sequences. We have studied linear stability of these orbits, with the 
result that 21 orbits are linearly stable, which includes all of the progenitors. 
This is consistent with the Birkhoff–Lewis theorem, which implies existence 
of infinitely many periodic orbits for each stable progenitor, and in this way 
explains the existence and ensures infinite extension of each sequence.
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1.  Introduction

There is no general solution to the Newtonian three-body problem [1], so particular solutions, 
such as periodic orbits, are of special interest. Up until five years ago, only three topologically 
distinct families of periodic orbits were known [2–5], with the latest two discoveries being 
received with some fanfare. No theorem guaranteeing the existence of further periodic solu-
tions was known at the time. Indeed contradictory claims [6], and counterclaims [7] in the 
1950s and 1960s led to some confusion, which was (only partially) resolved by subsequent 
numerical discoveries—the corresponding formal existence proofs for these orbits are still 
being sought, and only in a few rare examples, have been supplied—for a brief history of this 
problem up to mid 1970’s see section 16 in Broucke [8], and for subsequent developments, 
see section I in [9].

The questions of existence, density and distribution of stable orbits is of some importance 
for astronomy: stable orbits have at least a fighting chance of being produced in astrophysi-
cal processes and, therefore, of being subsequently observed. These questions can only be 
addressed by explicit discovery, or construction of new stable orbits7. Therefore any reliable 
new source of information about periodic orbits, even if it is (only) empirical and incomplete, 
ought to be welcomed by the community and subjected to further tests.

Several hundred demonstrably distinct families of periodic orbits have been found by 
numerical means over the past few years [9–14]. This progress in numerical studies has led to a 
new, wholly unexpected insight into the distribution of periodic orbits, that was, at first, rather 
tentative: soon after the papers [5, 10] appeared a relationship between an orbit’s period and its 
topology was observed—at first just in one class of orbits [10], and then more generally [15]. 
The initial set of orbits was fairly ‘sparse’, consisting of only about 45 orbits, so the observed 
regularities had large gulfs yet to be filled. In the meantime we have continued our search for 
new orbits, as well as tests of their stability, amounting to more than 200 orbits, this time with a 
clear indication that their number grows without bounds as the scale-invariant period increases, 
and still following the linear dependence of an orbit’s period on its topology [9].

Here we present a new, detailed numerical test of the previously observed regularities, 
based on more than 200 orbits, as well as several new regularities regarding (probably) infi-
nite sequences of orbits. Moreover, we present a semi-empirical observation about the rela-
tion between stability of certain orbits and the existence of infinite sets of periodic orbits, as 

6 ‘However, the existence of periodic solutions for the general three-body problem has been considered a somewhat 
controversial question in the last few years. Vernić (1953) has published a detailed study containing a mathemati-
cal proof of the non-existence of periodic solutions other than the Lagrange solutions. Later it is seen that Merman 
(1956) and Leimanis (1958) have questioned Vernić’s non-existence proof. More recently Arenstorf (1967) has pub-
lished a new existence proof for periodic solutions of the general problem, although his work contains no examples, 
whereas Kolenkiewicz and Carpenter have numerically computed a periodic solution with masses and configuration 
of the Sun–Earth–Moon system. Jefferys and Moser (1966) have also published existence proofs for almost periodic 
solutions in the three-dimensional case. However, the most convincing explicit examples of periodic solutions 
have recently been obtained numerically by Szebehely and Standish (1969), and Peters (1967). Their publications 
definitely settle the question of whether the general problem has non-trivial periodic solutions, although all of their 
examples are rather specialized; i.e. collision orbits or zero total angular momentum orbits’.
7 Only roughly one out of ten of the newly discovered orbits are linearly stable [9, 14].
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related by the Birkhoff–Lewis theorem [16], as well as some analytic arguments about the 
causes of the linear relation between the period and topology, that still remain without rigor-
ous proofs. These arguments have evolved from the study [44] of the three-body system in 
the so-called strong Jacobi–Poincaré potential, which system is simpler than the Newtonian 
one, and therefore allows certain theorems about the existence of solutions to be proven and 
analytical arguments to be made. The extension of these analytic arguments to the Newtonian 
three-body system may seem straightforward at first, but a closer inspection might prove more 
complicated. We have tried and pointed out lacunae in our arguments, in the hope that experts 
will either complete the proofs, or definitely disprove the conjectures.

If our numerical and empirical arguments withstand a more rigorous mathematical scru-
tiny, they should have: (1) significant implications for the distribution of periodic three-body 
orbits in all homogeneous potentials with singularities at the two-body collision points: at 
least one such potential (the Coulomb one) is of direct physical interest; and (2) ready gener-
alizations for 4-, 5-, ... n-body periodic orbits in the Newtonian potential.

In this paper, after the present Introduction, in section 2 we provide the necessary preliminaries 
for our work. Then in section 3 we provide more than 200 periodic zero-angular-momentum 
orbits and identify their topologies using two integers, nw and n̄w, defined in section 2. There 
we test their Ts.i. versus (nw + n̄w) relationship(s) and refine the quasi-linear rule, equation (2), 
by classifying the new orbits into ten algebraically well-defined sequences. In section 4 we 
study the linear stability of three-body orbits, which leads us to the identification of six orbits 
as progenitors of ten sequences of orbits. There, we offer a possible explanation for the exist-
ence of infinitely many orbits in each sequence, in terms of the Birkhoff–Lewis theorem, 
which we do not prove in this case, however. In section 5 we offer a possible explanation of the 
observed linear regularities, using the virial theorem and the analyticity of the action. Finally, 
in section 6 we summarize and discuss our results, as well as present some open questions. 
Appendices A–E are devoted to various necessary technical topics, that would distract the flow 
of our arguments, if they were kept in the main text.

2.  Preliminaries: topology and period of periodic three-body orbits

For a quantitative relationship between topology and period to be possible one has to have an 
algebraic method for the description of an orbit’s topology. There are several such methods in 
the literature, variously based on the braid group B2, [2], on the free group F2 on two elements 
[17], and on three symbols [18], see appendices B and C.

The original discovery of the linear relationship between period and topology was based on 
Montgomery’s free group method [17], which was used to identify and label periodic orbits.

The topology of a periodic three-body orbit O can be algebraically described by a finite 
sequence of symbols, e.g. letters (a, b) and (A, B), that we shall call ‘word’ wO

8, as defined in 
[17], and presented in detail in [19], and briefly reviewed in appendix B. For an alternative 
method of assigning symbols to a topology, see appendix C.

With such an algebraic description one could, for the first time, search for relations between 
topological and dynamical properties of orbits. At first, the curious approximate linear func-
tional relation

Ts.i.(wk
8)

Ts.i.(w8)
≡ T(wk

8)|E(wk
8)|3/2

T(w8)|E(w8)|3/2 � k = 1, 2, 3, ... ,� (1)

8 More precisely, the conjugacy class of the free group element.
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was noticed between the periods T, energies E and the free-group elements w8 = (ab)(AB) 
for the figure-eight orbit [3] and their topological-power satellite orbits with topologies 
wk = [(ab)(AB)]

k, (k = 1, 2, 3, · · ·). We define ‘topological-power satellite’ orbits as those 
whose topologies can be described as k times repeated topology, i.e. integer powers wk of 
the simplest (‘progenitor’) orbit described by the word w [10]. Here ≃ means equality within 
the estimated numerical precision of [10]. In the meantime, with improved numerics, several 
cases have been found where this relation breaks down at higher decimal places.

Initially, only the ‘topological-power satellites’ of the figure-eight orbit were known9, but, 
in the meantime new examples of topological-power satellites10 have been found to obey equa-
tion  (1) within their respective numerical errors. This naturally raises the question: why do 
only some orbits have topological-power satellites and not others? We shall argue below that 
the linear stability of the shortest-period (‘progenitor’) orbit plays a crucial role in this regard.

Following this observation, [15] investigated all of the 45 orbits known at the time and not 
just the topological-power satellites, and observed the following more general11 quasi-linear 
relation

Ts.i.(w)
Ts.i.(wp)

� Nw

Nwp

=
nw + n̄w

nwp + n̄wp� (2)
for three-body orbits with zero angular momentum. Here Nw = nw + n̄w is one half of the 
minimal total number of letters12, in the free group element w = w(O) characterizing the 
(family of) orbit O, and similarly for wp = w(progenitor), the word describing the progeni-
tor orbit in a sequence, where nw is the number nw = 1

2 (na + nb), of small letters a, or b, and 
n̄w = 1

2 (nA + nB) is the number of capital letters A, or B.
Equation (2) suggested ‘at least four and at most six’ distinct sequences among the 45 

orbits considered in [15]. Precise algebraic definitions of these sequences, analogous to the 
definition wk of the topological-power satellites, were not known at the time, again due to the 
dearth of distinct orbits13. This clearly demanded further, finer searches to be made.

Equation (2) predicts (infinitely) many new, as yet unobserved orbits together with their 
periods; if true, even approximately, equation (2) would be a spectacular new and unexpected 
property of three-body orbits, that would open new insights into the Newtonian three-body 
problem, as well as provide help in practical searches to find new orbits. Therefore equa-
tion (2) merits a thorough investigation, which we shall attempt below. The scope, of course, 
is limited by the number and type of available orbits.

3.  Classification of orbits in sequences

Using equation (2) we predicted the periods and numbers of letters of new orbits, and then 
searched for them, with the results first reported in [9]. We did so by first identifying the 
linearly stable orbits among the original 13 orbits, and then by ‘zooming in’ our search on 
smaller windows around the stable orbits. Thus we found new periodic orbits that have ‘filled’ 

9 With one exception: the yarn orbit wyarn = (babABabaBA)3 = w3
moth I, where wmoth I = babABabaBA in [5].

10 E.g. of the ‘moth I’ orbit, as well as several topological-power satellites of three other orbits, see [9, 20, 39].
11 Equation (1) is manifestly a special case of equation (2).
12 Here, by ‘minimal total number of letters’ we mean the number of letters after all pairs of adjacent identical small 
and capital letters, such as aA, have been eliminated, as explained in [9].
13 Many distinct satellite orbits’ points almost overlapped on the Ts.i. − Nw graph, due to identical values of Nw and 
similar periods, which further reduced the number of distinct data points. Moreover, there were significant ‘gaps’ 
between the data points, as well as one ‘outlier point’ (orbit), in figure 1 in [15], that was roughly 8% off the conjec-
tured straight line.
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many of the ‘gaps’ in the older versions of the Ts.i. − Nw graph, see figure 1(a), the website 
[20] and the supplementary notes (stacks.iop.org/JPhysA/51/315101/mmedia). The ‘outlier’ 
point, in figure 1 in [15], has become just another orbit in a new sequence with a slightly 
steeper slope on the same graph. The totality of the Ts.i. − Nw points is shown in figure 1.
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Figure 1.  (a) Left panel: the scale-invariant periods |E|3/2T(w) of more than 200 
presently known zero-angular-momentum three-body orbits versus one half of the 
number of all letters in the free-group word w describing the orbit, Nw = nw + n̄w, 
where nw is the number of small letters a, or b, and n̄w is the number of capital letters 
A, or B in the word w. (b) Right panel: same as (a), only in terms of the number of 
symbols n123 in the sequence of symbols (1,2,3) describing the topology of the orbit, 
see appendix C. Color code: (1) red  =  sequence I—butterfly I; (2) green  =  sequence 
II—dragonfly; (3) dark blue  =  sequence III—yin-yang; (4) pink  =  sequence IVa—
moth I; (5) light blue  =  sequence IVb—butterfly III; (6) yellow  =  sequence IVc—
moth III; (7) black  =  sequence V—figure-eight; (8) orange  =  sequence VI—yarn; (9) 
grey  =  sequence VII—moth; (10) empty circles  =  other.

Table 1.  Typical (non-minimal) free group elements’ w structure for orbits in various 
sequences, their progenitors, the line parameters c1, c2, where the Ts.i.(Nw) dependence 
is fitted as f (x) = c1x + c2. Not all words w(ni) in any particular sequence need have 
the presented structure, however, see supplementary notes.

Sequence  
number and 
name Free group elementw(n) progenitor c1 c2

I butterfly I (n, n) (AB)2(abaBAB)n(ab)2(ABAbab)n Schubart 9.957 ± 0.011 −0.2 ± 0.2
II dragonfly 
(n, n)

bA(baBA)naB(abAB)n isosceles 9.194 ± 0.004 0.04 ± 0.06

III yin-yang 
(n, n)

(abaBAB)na(babABA)nA S-orbit 9.8667 ± 0.0003 0.002 ± 0.004

IVa moth I 
(n, n + 1)

(abAB)nA(baBA)nB moth I 9.34 ± 0.06 0.7 ± 0.7

IVb butterfly III 
(n, n + 1)

[(ab)2(AB)2]nb[(ba)2(BA)2]na butterfly III 9.967 ± 0.012 −0.3 ± 0.3

IVc moth III 
(n, n + 1)

(babABA)nA(abaBAB)nB Schubart 9.94 ± 0.04 −1.2 ± 0.7

V figure-eight 
(n, n)

(abAB)n figure-8 9.2377 ± 0.0014 −0.03 ± 0.02

VI moth I—yarn 
(2n, 3n)

[(abAB)A(baBA)B]n moth I 9.683 ± 0.002 0.01 ± 0.02

VIIa moth (n, n) (abAB)(n+1)a(baBA)nb Schubart 9.61 ± 0.07 −0.2 ± 0.7

VIIb moth (n, n) (abaBAB)(n+1)b(babABA)na Schubart 9.88 ± 0.04 −0.7 ± 0.5
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It is clear that the scale-invariant periods Ts.i. do not lie on one straight line, but rather on 
several lines with slightly different slopes, emerging from a small ‘vertex’ area, forming a 
(thin) wedge-like structure in figure 1. All the newly found orbits passing through an Euler 
configuration, see supplementary notes, fit into one of ten sequences, where the fourth (‘moth 
I’) sequence in [15] has now been divided into three: (a) ‘moth I (n, n + 1)’; (b) ‘butterfly 
III–IV (n, n + 1)’; (c) ‘moth III (n, n + 1)’. Moreover, we found two entirely new sequences: 
(1) ‘VIIa moth (n, n)’ and (2) ‘VIIb moth (n, n)’, and one sequence of pure ‘topological-power 
satellites’ of the moth I orbit.

Each of these ten sequences has an algebraic pattern of free-group elements, see table 1, 
associated with it. Here we use the sequence label (n, m) to denote the general form of 
(nw, n̄w) in that sequence: for example (n, n) means that nw and n̄w are equal integers: 
n = nw = n̄w = 1, 2, 3, . . .. Then, n can be used to label orbits within the sequence, see supple-
mentary notes. By setting n  =  0, or n  =  1, in the second column of table 1, in each sequence, 
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Figure 2.  The scale-invariant periods |E|3/2T(w) of zero-angular-momentum three-body 
orbits versus one half of the number of all letters in the free-group word w describing 
the orbit, Nw = nw + n̄w, where nw is defined as in figure 1. (a) Top left: sequence I—
butterfly I, ; (b) top right: sequence II—dragonfly; (c) center left: sequence III—yin-
yang; (d) center right: sequence IVa—moth I; (e) bottom left: sequence IVb—butterfly 
III; (f) bottom right: sequence IVc—moth III. The blue points at the lower ends of 
sequences are the progenitors of the respective sequences, see the text. Progenitors of 
sequences II, III and IVc, that involve collisions were not used in the fitting procedure, 
so the validity of the linear Ansatz for these sequences can be evaluated by inspection.
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we can read off the topology of their respective progenitor, which is shown in the third column 
of table 1.

The individual Ts.i. − Nw graphs are shown in figures 2 and 3, and their free-group patterns 
are in table 1. The agreement of separate sequences with the linear functional Ansatz, equa-
tion (2), see figures 1(b)–(d), is much better than for the aggregate of all orbits, Figure 1, but 
the (root-mean-square) variations of line parameters (c1, c2) reported in table 1 are generally 
larger than the estimates numerical errors, thus indicating that equation (2) is still approximate,  
and not exact, even in these sequences.

Whereas the approximate empirical rule equation  (2) now appears established, and its 
extension to ever-longer periods just a technical difficulty, some deeper questions remain 
open. For example, the raison d’être of so many periodic orbits remains obscure, let alone the 
linear relation among their periods.

4.  Linear stability and progenitor orbits

Perhaps the first hint at a solution to this puzzle was given in [39], where it was noticed that the 
topological satellite orbits in the Broucke–Hadjidemetriou–Hénon (BHH), [8, 35, 36, 40–43], 
family of orbits with non-zero angular momentum, exist only when their progenitor is linearly 
stable. There is a theorem, due to Birkhoff and Lewis [16], see also section 3.3 (by Jürgen 
Moser) in [25], which holds for systems with three degrees-of-freedom and implies the exis-
tence of infinitely many periodic orbits14. So, whereas the Birkhoff–Lewis theorem might solve 

Figure 3.  Same as in figure 2, except for the following sequences: (a) top left: sequence 
V—figure-eight; (b) top right: sequence VI—yarn; (c) bottom left: sequence VIIa—
moth III (n, n); (d) bottom right: sequence VIIb—moth III (n, n). The progenitors of 
sequence VIIa and VIIb were not used in the fitting procedure.

14 In [12], it was conjectured that the topological-power satellites of the figure-eight orbit are a consequence of the 
Poincaré–Birkhoff theorem [22], see also section 24 in [23] and section 2.7 in [24], as applied to the figure-eight 
orbit. That conjecture is incorrect, however, because the Poincaré–Birkhoff theorem applies only to systems with 
two degrees-of-freedom, to which class the planar three-body problem does not belong.
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one part of the puzzle, it does not say anything about the relation of topologies and periods. 
There is, however, another (the so-called ‘twist’) condition underlying this theorem, which 
we shall not try to check here—we simply conjecture that the Birkhoff–Lewis theorem holds 
for the linearly stable periodic three-body orbits. Linear stability of periodic orbits is tested 
numerically, see below, and thus the conjecture of Birkhoff–Lewis theorem can be falsifed.

We have analyzed linear stability of all zero-angular-momentum three-body orbits and 
tabulated the linearly stable ones in table 2. The Floquet exponents νj, and the linear stability 
coefficients λj = exp(±2πiνj), are the standard ones, as defined in [9]. We note that two orbits, 
‘butterfly III’ and ‘moth I’, lie at the origins of two ‘linear sequences15’ of ‘non-topological-
power satellite’ orbits observed among the original 13 orbits [15].

Thus, the manifest candidates for progenitors are: (1) ‘figure-eight’ for the sequence V 
‘figure-eight (n, n)’; (2) ‘butterfly III’ for the sequence IVb ‘butterfly III (n, n + 1)’; and (3) 
‘moth I’ for the sequences IVa ‘moth I (n, n + 1)’ and VI ‘moth I—yarn (2n, 3n)’. These three 
progenitors are collisionless orbits with three degrees-of-freedom, that are linearly stable.

Next we extend this reasoning to sequences of periodic three-body orbits with collisional 
progenitors.

	(1)	�The parent orbit of sequence II ‘dragonfly (n, n)’ is Broucke’s isosceles triangle orbit  
[37, 38], that involves two-body collisions. This orbit always stays in an isosceles triangle 
configuration, thus eliminating one degree-of-freedom, and is linearly stable [37, 38], so 
it also satisfies the Poincaré–Birkhoff theorem.

	(2)	�The parent orbit of the ‘yin-yang’ sequence is the collisional ‘S-orbit’ of [4, 11]16.

Table 2.  The Floquet exponents νj, where λj = exp(±2πiνj) define the linear stability 
coefficients of linearly stable periodic three-body orbits.

Label ν1 ν2

S-orbit 0.131 093 0.470 591
Moore 8 0.298 093 0.00 842 275
NC1 (87) 0.27 216 0.158 544
V.17.H (O13  =  817) 0.31 573 0.0002 988

V.17.I (O14  =  817) 0.0435 411 0.00 262 681

V.17.J (O15  =  817) 0.0435 411 0.00 262 681
II.11.A (bumblebee) 0.137149 0.0325 135
IVa.2.A (moth I) 0.159013 0.491 881
IVa.4.A (moth II) 0.108 451 0.0886 311
IVb.3.A (butterfly III) 0.378 728 0.00 173 642
I.5.A 0.170 764 0.001 476
I.14.A 0.443 006 0.000 121 435
II.17.B 0.138 698 0.0335 924
III.13.A.β 0.175 816 0.000 655 417
IVb.9.A 0.194 186 0.000 561 819
IVc.12.B 0.0863 933 0.00 394 124
IVc.17.A 0.0442 047 0.00 206 416
VIIa.11.A 0.416 228 0.0088 735
VIIb.7.A 0.27 753 0.0360 425
VIIb.9.A 0.216 455 0.0584 561
VIIb.13.A 0.0621 421 0.0141 894

15 The orbits ‘moth I’ and ‘moth II’ have different topologies, but belong to the same sequence.
16 See the initial condition #20 in table I in [11].
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	(3)	�The Schubart orbit [34] is the progenitor of four sequences: I, IVc, VIIa and VIIb, see 
table 1 and supplementary notes. The Schubart orbit is linearly stable in three spatial 
dimensions, [35, 36], but due to its collinear nature, it has only two degrees-of-freedom. 
As it has two degrees-of-freedom, it satisfies the Poincaré–Birkhoff theorem [22–24], 
which also predicts the existence of infinitely many orbits17.

Thus, we have shown a definite correlation between the sequences in table 1 and linear 
stability of the progenitor orbit in each sequence.

5.  Virial theorem and analyticity of the action

The remaining mysteries are: (i) why are the Ts.i.(Nw) graphs linear, and (ii) why are the slopes 
of different sequences so close to each other? 

Our answers to these questions are still not proven in a sufficiently rigorous way. Therefore, 
we shall present them here in the same, or similar way, as they were discovered; otherwise the 
motivation, and the weak points of our arguments might be lost.

It should be clear that the mere formulation of Ts.i. = T|E|3/2 depends crucially on the 
homogeneity of the Newtonian potential: the exponent 3/2 follows from the Newtonian poten-
tial’s degree of homogeneity α = 1, see [15, 19]. So, one may ask if the same, or similar behav-
iour occurs in other homogeneous potentials? A (partial) answer to this question was provided 
in [44], where periodic three-body orbits in the so-called strong potential Vα=2(r) � −1/r2 
and their relation to topology were studied, which has led to our proposed answer to question 
(i). The strong potential Vα=2(r) � −1/r2, is also homogeneous, see appendix D.

It was shown in [44] that the periodic solutions to the three-body problem in the strong 
potential form sequences, very much like those in the Newtonian potential shown in section 3, 
but their periods do not increase linearly with the topological complexity Nw of the orbit. 
Rather, it is the action integral, Smin � Nw, that rises linearly with Nw, which fact can be under-
stood using Cauchy’s residue theorem, which is based on the analyticity of the action integral,

Sα=2
min = −2

∫ T

0
Vα=2(r(t))dt,

where r(t) is a periodic solution to the equations-of-motion (e.o.m.) at fixed energy E  =  0, 
see appendix E.

But, in the Newtonian potential the action of (any) periodic orbit is proportional to its 
period Sα=1

min (T) = 3|E|T , see equation (D.5), derived in appendix D.2. So, the scale-invariant 
period Ts.i. must depend in the same way on the topological complexity Nw of the orbit as the 
corresponding action Sα=1

min (T). The question now arises if the same argument as in [44], about 
the analyticity of the action Sα=1

min (T) can be extended to the Newtonian potential? 
In the Newtonian potential this argument becomes more complicated because the hyper-

radius R = |Z| is not constant in Newtonian three-body orbits, and the problem becomes one in 
the calculus of two complex variables, see appendices A and E. This leads to new possibilities 
that have not been considered thus far. Indeed, the second complex variable in the Newtonian 
potential immediately leads to the possibility that there is a pole in the second complex vari-
able Z, which could lead to non-zero contributions to the integral, and thus change the Ts.i.(Nw) 
functional dependence, under right conditions.

Assuming that the variation of periodic orbits in the second complex variable Z is limited 
such that no new poles arise in the action integral, see appendix E, we may conclude that

17 We see that one colliding orbit is the progenitor of more than one sequence of collisonless orbits.
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Sα
min =

(
α+ 2
α− 2

)
E T � Nw.

This cannot be true in general, however: a moment’s thought shows that the linear depend
ence cannot hold in the harmonic oscillator, as all harmonic oscillatory motions have the 

same period there. More formally, equation Sα
min =

(
α+2
α−2

)
E T , implies that the action of a 

periodic orbit in the harmonic oscillator always vanishes Sα=−2
min = 0. Moreover, we note that 

the action integral equation (D.4) must have (at least one) pole if the residue theorem should 
hold. Consequently, there is an upper bound on the exponent: α � 0, for which this kind of 
action-topology dependence can exist.

These arguments provide also a (possible) answer to question (ii) above, as the slope of of 
the Ts.i.(Nw) graph depends on the residue(s) at the same poles in all sequences, the main dif-
ference being the ordering of circles around the poles, i.e. of the Riemann sheet(s) one is on 
(‘crossings of branch cuts’), see appendix E.

Of course, the foregoing arguments do not constitute a mathematical proof—the miss-
ing dots on the i’s and crosses on the t’s, or, perhaps more interestingly, counter-arguments/
proofs—ought to be supplied by the interested reader.

6.  Summary, discussion and outlook

We have shown that:

	(1)	�The presently known periodic three-body orbits with vanishing angular momentum and 
passing through an Euler configuration, can be classified into 10 sequences according to 
their topologies. Each sequence probably extends to infinitely long periods, and emerges 
from one of six linearly stable (shortest-period) progenitor orbits.

	(2)	�Numerically, the scale-invariant periods of orbits in each sequence obey linear depend
ences on the number of symbols in the algebraic description of the orbit’s topology.

	(3)	�There is a possible explanation for the existence of this infinity of periodic orbits, in the 
form of Birkhoff–Lewis theorem, provided that each progenitor orbit also satisfies the 
‘twist’ condition [16].

	 (4)	�Some of the longer-period orbits are linearly stable: (a) the seventh satellite of ‘figure-eight’ 
orbit18; (b) moth II, which lies in, but is not the progenitor of the ‘moth I’ sequence; and (c) 
the ‘bumblebee’ orbit, which lies in, but is not the progenitor of the ‘dragonfly’ sequence.

We note that in 1976 [35], Hénon established the linear stability of many orbits with non-
vanishing angular momenta (L �= 0) in the Broucke–Hadjidemetriou–Hénon family. The top-
ological-power satellites of these linearly stable BHH orbits were discovered only recently 
[39], where an L �= 0 version of the period-topology linear dependence equation  (2) was 
checked numerically, as well. The agreement there is also (only) approximate, as a small, but 
numerically significant discrepancy exists.

Furthermore, [44] indicates that a linear dependence of the action, but not of the period, 
on the topology exists also in the case of periodic three-body orbits in the so-called strong 
Jacobi–Poincaré potential, which is in agreement with the virial theorem, see appendix D. The 
argument in [44] can be extended to the Newtonian potential, but it becomes a complicated 
question in the calculus of two complex variables19.

18 The stability of ‘figure-eight’ orbit was established in [32, 33].
19 Indeed, the second complex variable in the Newtonian potential immediately leads to new possibilities: there is 
a pole in the second variable, which could lead to non-zero contributions, and thus change the Ts.i.(Nw) function, 
under right conditions.
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Our results are generic, so they imply that similar linear relations may be expected to hold 
for 3-body orbits in the Coulombian20, and in all other homogeneous potentials containing 
poles.

Moreover, similar functional dependences might also hold for 4-, 5-, 6-body etc orbits in 
the Newtonian potential.

Our results also raise new questions:

	(1)	�Each of the six progenitors generates a family of orbits, at different masses and non-
vanishing angular momenta, e.g. the Schubart colliding orbit [34], generates the BHH 
family of collisionless orbits with non-zero angular momenta, that describe the majority 
of presently known triple-star systems. The remaining five progenitors may now be 
viewed as credible candidates for astronomically observable three-body orbits, provided 
that their stability persists under changes of mass ratios and of the angular momentum. 
Those dependences need to be explored in detail.

	(2)	�Checking the ‘twist’ condition of the Birkhoff–Lewis theorem, for each progenitor orbit, 
is a task for mathematicians, as is the explanation of the topologies of the so-predicted 
orbits: why do these sequences exist and not some others? 

	(3)	�The question of existence of other stable two-dimensional colliding orbits, and of new 
sequences of periodic orbits that they (may) generate. Rose’s new linearly stable colliding 
orbits [13] are particularly interesting in this regard. Turning the foregoing argument 
around, one can use any newly observed sequence of orbits to argue for the the existence 
of its, perhaps as yet unknown, progenitor.

	(4)	�A remaining mystery is why are the slopes of different sequences so close to each other? 
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Appendix A. Three-body variables

The graphical representation of the three-body system can be simplified with the use of trans-
lational and rotational invariance—by changing the coordinates to the Jacobi ones [30]. Jacobi 
or relative coordinates are defined by two relative coordinate vectors, see figure A1:

20 Several such periodic orbits have been found in [45, 46], but their topological classification was not considered.
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ρ =
1√
2
(r1 − r2), λ =

1√
6
(r1 + r2 − 2r3).� (A.1)

Three independent scalar variables can be constructed from Jacobi coordinates: ρ2, λ2  and 

ρ · λ. The overall size of the orbit is characterized by the hyperradius R =

√
ρ2 + λ2 . These 

scalar variables are connected to the unit vector with Cartesian components [17]:

n̂ =

(
2ρ · λ

R2 ,
λ2 − ρ2

R2 ,
2(ρ× λ) · ez

R2

)
.� (A.2)

Therefore, every configuration of three bodies (shape of the triangle formed by them, inde-
pendent of size) can be represented by a point on a unit sphere. This sphere is called the 
shape-sphere.

Every relatively periodic orbit of a three-body system is therefore represented on the shape-
sphere by a closed curve (collisionless solutions), a finite open section of a curve (free-fall 
and colliding solutions), or a point (Lagrange–Euler solutions). One example, the figure-eight 
orbit, is illustrated in figure A2.

Figure A1.  The two three-body Jacobi coordinates ρ,λ.

Figure A2.  The shape-space sphere: the figure-eight orbit (solid black curve); three 
two-body collision points (red), singularities of the potential, lie on the equator.
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The north and the south pole of the shape-sphere correspond to equilateral triangles, while 
the equator corresponds to degenerate triangles, where the bodies are in collinear configura-
tions (syzygies). There are three points on the equator that correspond to two-body collision 
points—the singularities of the potential, see figure A2.

Two orbits with identical representations on the shape-sphere are considered to be the 
same solution. For example, periodic orbits subjected to symmetry transformations, such as 
translations, rotations, dilations, reflections of space and time, all have identical curves on the 
shape-sphere and are counted as one.

Size or energy scaling, r → αr, and the equations  of motion imply t → α3/2t  [31]. 
Therefore, the velocity scales as v → v/

√
α , the total energy scales as E → α−1E, and the 

period T as T → α3/2T . Consequently, the combination |E|3/2T is invariant under scale trans-
formations and we call it scale invariant period Ts.i. = |E|3/2T . It is always possible to remove 
one of the three scalar variables by changing the hyper-radius to the desired value by means 
of these scaling rules.

Appendix B.  Montgomery’s topological identification method

A curve corresponding to a collisionless periodic orbit can not pass through any one of the 
three two-body collision points. Stretching this curve across a collision point would there-
fore change its topology. The classification problem of closed curves on a sphere with three 

Figure B1.  The two elements (a, b) of the free group.

Figure B2.  Stereographic projection of a sphere onto a plane. Three two-body collision 
points (solid red) lie on a meridian (dashed circle), with one of them being at the north 
pole (denoted by the letter N).
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punctures is given by the conjugacy classes of the fundamental group, which is in this case the 
free group on two letters (a,b), see figure B1.

This abstract notation has a simple geometric interpretation: it classifies closed curves in 
a plane with two punctures according to their topologies. The shape sphere can be mapped 
onto a plane by a stereographic projection using one of the punctures as the north pole, see 
figure B2. The selected puncture is thusly removed to infinity, which leaves two punctures in 
the (finite) plane. Any closed curve on the shape sphere (corresponding to a periodic orbit) can 
now be classified according to the topology of its projection in the plane with two punctures. 
Topology of a curve can be algebraically described by a ‘word’—a sequence of letters a, b, A 
and B—which is, more formally, an element of the free group F2. Here a denotes a clockwise 
full turn around the right-hand-side puncture, b the counter-clockwise full turn around the 
left-hand-side puncture (see figure B1), and the upper case letters denote their inverse ele-
ments a-1  =  A and b-1  =  B.

A specific periodic orbit can be equally well described by several different sequences of 
letters. As there is no preferred starting point of a closed curve, any other word that can be 
obtained by a cyclic permutation of the letters in the original word represents the same curve.

The conjugacy class of a free group element (word) contains all cyclical permutations of 
the letters in the original word. For example, the conjugacy class of the free group element aB 
also contains the cyclically permuted word Ba. The class of topologically equivalent periodic 
orbits therefore corresponds not merely to one specific free group element, but to the whole 
conjugacy class.

Time-reversed orbits are represented by the inverse elements of the original free group ele-
ments. Naturally, they correspond to physically identical solutions, but they generally form 
different words (free group elements) with different conjugacy classes.

Another ambiguity is related to the choice of the puncture to be used as the north pole of 
the stereographic projection (of the sphere onto the plane). A single loop around any one of the 
three punctures on the original shape sphere (denoted by a or b) must be equivalent to the loop 
around either of the two remaining punctures. But as can be seen in figure B2, a simple loop 
around the third (‘infinite’) puncture on the shape sphere corresponds to aB, a loop around 
both poles in the plane. Therefore, aB must be equivalent to a and b.

Some periodic solutions have free group elements that can be written as wk = wk (a, b, 
A, B), where w = w (a, b, A, B) is a word that describes some solution, and k is an integer. 
Such orbits will be called topological-power satellites. For example, the orbits with free group 
element (abAB)k are called figure-eight (k) satellites, and are all free from the stereographic 
projection ambiguity.

Appendix C. Tanikawa and Mikkola’s (syzygy) method of topological 
identification

There is an alternative method of assigning a sequence of three symbols, in this case three 
digits (1,2,3), to any given ‘word’ in the free group F2. It has been proposed for collisionless 
orbits, by [18], see also [21], to use the sequence of syzygies (collinear configurations) as a 
symbolic dynamics for the 3-body problem.

The rules for converting ‘words’ consisting of letters a, b, A, B into ‘numbers’ con-
sisting of three digits—(1, 2, 3)—are as follows: (i) make the substitution a  =  12, A  =  21, 
b  =  32, B  =  23; (ii) 11  =  22  =  33  =  empty sequence (‘cancellation in pairs rule’). So, for 
example:
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	(1)	�The symbolic sequence corresponding to the BHH family of orbits, aB  =  1223  =  13 
is equivalent, by way of cyclic permutations, to: a  =  12 and to B  =  23, as one 
would expect intuitively. Thus we see that the ‘lengths’ Nn, i.e. the number of sym-
bols in a sequence are identical for all three symbolic sequences representing the 
BHH family, Nn(13) = Nn(12) = Nn(23), unlike the Montgomery’s method, where 
Nw (aB)  �=  Nw (a)  =  Nw (B). This indicates that the ‘lengths’ Nn(w) are good algebraic 
descriptors of the complexity of an orbit’s topology.

	(2)	�The symbolic sequence abAB  =  (12)(32)(21)(23)  =  12322123  =  123123  =   
(123)2 corresponding to the figure-eight orbit is now manifestly invariant under cyclic 
permutations, 1 → 2 → 3 and 1 → 3 → 2, whereas it is so only in a non-manifest way in 
the two-letter scheme. Here, also, the ‘length’ Nn(w) is also a good algebraic descriptor of 
the complexity of an orbit’s topology.

Note that:

	 1.	�As stated above, the numbers 1, 2, and 3 can be viewed as denoting syzygies, i.e. crossings 
of the equator on the shape sphere, in one of three corresponding segments on the said 
equator, where the index of the body passing between the other two is used as a symbol.

	 2.	�Each symbol is its own inverse, which accounts for the ‘cancellation in pairs’ rule21. 
This circumstance leads to the reduction (by a factor of two) of the number of symbolic 
sequences denoting one topology, as the time-reversed orbit has an identical symbolic 
sequence to the original one (which is not the case in the two-letter scheme); and

	 3.	�That the cyclic permutation symmetry indicates irrelevance of which syzygy is denoted 
by which digit.

In this way, we have restored the three-body permutation symmetry of the problem into the 
algebraic notation describing the topology of a periodic three-body orbit, albeit at the price of 
having three symbols, rather than two. This restoration of permutation symmetry also implies 
an absence of the ‘automorphism ambiguity’ [15]. Such three-symbol sequences have been 
used e.g. in [18, 21] to identify the topology of periodic three-body orbits.

The length of a sequence of symbols necessary to describe any given topology generally 
increases by a factor close to 1.5 as one switches from two letters Nw to three digits Ns, as 
symbols used, i.e. Ns � 1.5Nw. The precise value of this proportionality factor (�1.5) is not 
important for our purposes, as we shall be concerned with the length(s) of symbolic sequences 
with a well-defined algebraic form, such as w1(w2)nw3(w4)n , where n = 1, 2, 3, · · ·. In such a 
case, the following relation holds N[w1(w2)

nw3(w4)
n] � N[w1w3] + nN[w2w4] using either set 

of symbols for wi. Only the value of the slope parameter changes as one switches from one set 
to another. Of course, it is an additional mystery if and when the slopes of different sequences 
happen to coincide.

Appendix D.  Virial theorem and the action of periodic orbits in homogeneous 
potentials

D.1. The Lagrange–Jacobi identity and the virial theorem

We know that the Lagrange–Jacobi identity [30],

21 This is only possible for periodic orbits that form closed loops on the shape sphere; otherwise one would have to 
define one symbol for crossing the equator from above and another one for crossing from below.
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1
2

dG
dt

= 2Ktotal + αVα
total,� (D.1)

where G =
∑N

i=1 qi · pi is the so-called virial, gives a relation between kinetic Ktotal =
∑

i Ki 
and potential energy Vα

total, for homogeneous potentials with homogeneity degree −α. One 
example of such a homogeneous potential is the sum of two-body terms 

∑
i<j Vα(rik), where 

Vα(rik) � −1/rαik  is a power-law interaction . Here rik is the distance between two particles, 
and α is a positive real number.

For periodic motions, with period T, this identity can be integrated to yield

1
2

∫ T

0
dt

dG
dt

=
1
2
(G(T)− G(0)) = 0

=

∫ T

0
(2Ktotal + αVα

total)dt
�

(D.2)

which tells us that the time integral of the kinetic energy is related to the time integral of the 
potential energy:

∫ T

0
dtKtotal = −α

2

∫ T

0
dtVα

total.

Energy conservation

E = Ktotal + Vα
total

implies

E =
1
T

∫ T

0
(Ktotal + Vα

total)dt =
1
T

∫ T

0
(−α

2
Vα

total + Vα
total)dt

which leads to the equipartition of energy (or ‘virial’) theorem:

E =

(
α− 2
−2

)
1
T

∫ T

0
Vα(r(t))dt ≡

(
α− 2
−2

)
〈Vα(r)〉� (D.3)

E =

(
α− 2
α

)
1
T

∫ T

0
K(ṙ(t))dt ≡

(
α− 2
α

)
〈K(ṙ(t))〉� (D.4)

which holds exactly for periodic orbits. This, in turn, reduces the action S to one or another 
time integral.

D.2. The action for three-body orbits in a homogeneous potential

The (minimized) action of a periodic n-body orbit in a homogeneous potential Vα(r) � −1/rα 
is

Smin =

∫ T

0
L(q(t), q̇(t))dt =

∫ T

0
(T(ṙ(t))− Vα(r(t))) dt,

leads to

Sα
min(T) =

(
α+ 2
α− 2

)
E T ,� (D.5)
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which depends only on the energy E and period T of the orbit. Note the singularity on the 
right-hand-side of equation (D.5) at α = 2, which demands that E  =  0 in that case. For the 
Newtonian case, α = 1, equation (D.5) leads to

Sα=1
min (T) = −3ET = 3|E|T ,

as claimed in [15].

Appendix E.  Complex variables and analytic properties of the action

Here we follow closely appendix C in [44]. The minimized action Sα
min =

∫ T
0 L(q(t), q̇(t))dt of 

a periodic orbit q(t) in the homogeneous (power) potential Vα(r), written as a time integral of 
twice the kinetic energy K over period T,

Sα
min(T) =

(
α+ 2
α

) 3∑
i=1

∫ T

0

p2
i

2m
dt =

(
α+ 2
α

) 3∑
i=1

∫ ri(T)

ri(0)
pi · dri� (E.1)

where m  =  1, can be expressed as a closed-contour integral of two complex variables. After 
shifting to the relative-motion variables, (ρ,λ), one finds

Sα
min(T) =

(
α+ 2
α

)(∫ ρ(T)

ρ(0)
pρ · dρ+

∫ λ(T)

λ(0)
pλ · dλ

)
.

The real Jacobi two-vectors ρ and λ may be replaced with two complex variables

zρ = ρx + iρy, zλ = λx + iλy,

so that the action Sα
min, can be rewritten as a (double) closed contour integral in two complex 

variables:

Sα
min(T) =

(
α+ 2
α

)(∫ zρ(T)

zρ(0)

ż∗ρdzρ +
∫ zλ(T)

zλ(0)
ż∗λdzλ

)
.

Note that the periodicity of motion ρ(0) = ρ(T), λ(0) = λ(T) implies zρ(T) = zρ(0) and 
zλ(T) = zλ(0), which makes this integral a closed contour one

Sα
min =

(
α+ 2
α

)(∮

Cρ

ż∗ρdzρ +
∮

Cλ

ż∗λdzλ

)
.

If there were only one complex variable, then the so-defined function would be analytic. 
Indeed, the action of two-body elliptic motion in the Newtonian potential has been evaluated 
using Cauchy’s residue theorem in section 18.16 of [26], and in section 11.8 in [27]. With two 
complex variables, there is no such guarantee, however. Moreover, the residue theorem for 
functions of two complex variables is a more complicated matter, see [48–51].

The existence and positions of poles in this (double) contour integral are not mani-
fest in its present form; the same integral is given by equation  (D.3) in appendix D.2, 

Sα
min(T) =

(
α+2
−2

) ∫ T
0 Vα(r(t))dt, due to the virial theorem, however, where the potential 

Vα(r(t)) is known to have three singularities (simple poles) at three binary collisions and the 
time-evolution dependence r(t) of the periodic orbit, which parametrizes the contour. For the 
Newtonian potential α = 1 the binary collisions are regularizable, and this integral has been 
studied by Sundman [28] with the result that the functions rk(u), 1 � k � 3, are holomorphic 
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in a strip |Im u| < δ of the complex plane u ∈ C  which contains the real axis, see section 2.3 
in [29]. Since Sα=1

min (T) = S(T) = −
( 3

2

)
u(T), we know that the trajectories rk(S), 1 � k � 3 

are holomorphic functions of the action S in a strip |Im S| < δ of the complex plane S ∈ C  
which contains the real axis.

Note the following implications of this result: (1) for non-singular potentials (α < 0) there 
are no poles in the potential, and consequently no poles encircled by the contour, so the resi-
due vanishes; (2) for singular potentials (2 > α > 0) there are poles in the potential, but the 
residue depends on the integration contour, i.e. on the trajectory on the shape sphere and its 
topology w; (3) if the integration contour, i.e. the trajectory on the shape sphere repeats k times 
the topologically equivalent path, then, for singular potentials (2 > α > 0), the residue equals 
k times the single path residue.

Next, we switch from the real (ρ,λ), or complex (zρ, zλ) Cartesian Jacobi variables to 
the curvilinear hyper-spherical variables: the real hyper-radius R and the overall rota-
tion angle Φ = 1

2 (ϕρ + ϕλ), and the two angles parametrizing the shape-sphere, e.g. 
(θ = (ϕρ − ϕλ),χ = 2Tan−1( ρλ )). Here (ϕρ,ϕλ) are the angles subtended by the vectors 
(ρ,λ) and the x-axis. Equivalently, we may use the complex variables Z, defined by (R,Φ) and 
z, defined by way of a stereographic projection from the shape-sphere parametrized by (θ,χ).

The variable Z has limited (bounded) variation for all periodic orbits (with zero angular 
momentum) studied in this paper. Indeed, the value of R = |Z| = 0 occurs only in the ‘tri-
ple collision’ (‘der Dreierstoss’) orbits, which does not happen in our case. The condition 
Φ  =  const. is trickier, however, because there are ‘relatively periodic’ solutions with vanish-
ing angular momentum (L  =  0) and a non-zero change ∆Φ �= 0 of angle Φ over one period. 
All of the orbits considered in this paper are absolutely periodic, i.e. they have ∆Φ = 0 over 
one period, so this caveat does not apply. Therefore one may eliminate the complex variable 
Z from further consideration, at least for the orbits considered here, and the problem becomes 
(much) simpler.

Thus, we see that the complex integration contour Cz relevant to Cauchy’s theorem, 
Smin = 2iπ

∑
Res, for the considered periodic orbits, is determined solely by the orbit’s tra-

jectory on the shape sphere: the only poles relevant to this contour integral are the two-body 
collision points on the shape sphere. Consequently, the periodic orbits’ minimized action 
(integral) is determined (predominantly) by the topology of the closed contour on the shape 
sphere, i.e. by the homotopy group element of the periodic orbit, unless there is a closed con-
tour in the Z = (R,Φ) variable, as well.

Repeated k-fold loops of the contour lead to k times the initial integral, i.e. 
Smin(wk) = 2kiπ

∑
Res = kSmin(w), or, equivalently Ts.i.(wk) = kTs.i.(w), as observed in 

topological satellite orbits in section 3. Crossings of branch cuts22 provide for the change of 
residue(s) of the pole(s) at different values of k, which may account for the different values of 
Res, i.e. for different slopes of Ts.i.(Nw) graphs in different sequences.

Detailed study of analytic properties of the action should be a subject of interest to pure 
mathematicians, however, [47].

ORCID iDs

V Dmitrašinović  https://orcid.org/0000-0003-0192-921X

22 We have shown in [44] that in the strong potential each of the three poles is also a logarithmic branch cut, which 
implies a complicated structure of branch cuts and different residues. Similar situation ought to be expected in the 
Newtonian potential as well.
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Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit
gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the
corresponding luminosities for the 13þ 11 recently discovered three-body periodic orbits in Newtonian
gravity. These waves clearly allow one to distinguish between their sources: all 13þ 11 orbits have
different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to
13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.
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Direct detection of gravitational waves [1,2] ought to
come about in the foreseeable future, due to the substantial
effort made at the operational and/or pending detectors. One
of the most promising candidates for astrophysical sources
of gravitational waves are the coalescing, i.e., inspiraling
and finally merging binary compact stars [3,4]. Binary
coalescence is the only source for which there is a clear
prediction of the signal and an estimate of the detection
distance limit, as general relativists have completed numeri-
cal simulations of mergers of compact binaries, such as
neutron stars and/or black holes, Refs. [5–7].
Slowly changing, quasiperiodic two-body orbits are

weak sources of gravitational radiation, Refs. [8,9]—only
accelerated collapse leads to an increase in energy loss. The
major part of the emitted energy in a binary coalescence
comes from the final merger of two neutron stars, or black
holes, that produces an intense burst of gravitational
radiation. Of course, such mergers are one-off events,
never to be repeated in the same system, so their detection
is subject to their (poorly known) distribution in our
Galaxy. It is therefore interesting to look for periodic
sources of intense gravitational radiation.
There is now a growing interest in three-body systems as

astrophysical sources of gravitational waves, Refs. [10–12].
These early works did not find a substantial increase in the
luminosity (emitted power) from representative three-body
orbits belonging to three families that were known at the
time, Refs. [13–22], over the luminosity from a comparable
periodic two-body system [23]. The luminosity of a
(quadrupolar) gravitational wave is proportional to the
square of the third time derivative of the quadrupole
moment, see Refs. [8,9], which, in turn, is sensitive to
close approaches of two bodies in a periodic orbit [24].
Thus, getting as close as possible to a two-body collision
without actually being involved in one, is a desirable
property of the radiating system.

Recently 13 new distinct periodic orbits belonging to 12
(new) families have been discovered in Ref. [25], as well as
11 “satellite orbits” in the figure-eight family [26]. Some of
these three-body orbits pass very close to binary collisions
and yet avoid them, so they are natural candidates for
periodic sources of intense gravitational radiation.
In this Letter we present our calculations of quadrupolar

waveforms, Fig. 1, and of luminosities, see Table I and
Fig. 2 of gravitational radiation emitted by the 13þ 11
recently discovered periodic three-body gravitating orbits,
Refs. [25,26]. We have also calculated waveforms of all
published Broucke-Hadjidemetriou-Henon (BHH) orbits
[14–20], which we omit from this Letter for the sake of
brevity, and because they are closely related to Henon’s
“criss-cross” one, studied in Ref. [10]. The waves of the
13þ 11 new orbits show clear distinctions in form and
luminosity, thus ensuring that they would be distinguishable
(provided their signals are strong enough to be detected).
We consider systems of three equal massive particles

moving periodically in a plane under the influence of
Newtonian gravity. The quadrupole moment Iij of three
bodies with equal masses mn ¼ m, (n ¼ 1; 2; 3) is
expressed as Iij ¼

P
3
n¼1 mxinx

j
n, where xin is the location

of nth body, and the spatial dimension indices i and j run
from 1 to 3 (with x1 ¼ x, x2 ¼ y, x3 ¼ z). The reduced
quadrupole Qij is defined as Qij ¼ Iij − 1

3
δij

P
3
k¼1 Ikk.

The gravitational waveforms denoted by hTTij are,
asymptotically,

hTTij ¼ 2G
rc4

d2Qij

dt2
þO

�
1

r2

�
; ð1Þ

where r is the distance from the source, Refs. [8,9]. Here,
TT means (i) transverse (

P
3
i¼1 h

TT
ij n̂

i ¼ 0) and (ii) trace-
less (

P
3
i¼1 h

TT
ii ¼ 0), where n̂i denotes the unit vector of

the gravitational wave’s direction of propagation. The two
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independent waveforms hþ;× of a quadrupolar gravita-
tional wave propagating along the z axis, Refs. [8,9] can
be expressed as

hþ ¼ 2G
c4r

X3

i¼1

mið_x2i þ xiẍi − _yi2 − yiÿiÞ; ð2Þ

h× ¼ 2G
c4r

X3

i¼1

miðẍiyi þ 2 _xi _yiþxiÿiÞ; ð3Þ

where r denotes the distance from the source to the
observer. We set the units of G ¼ c ¼ m ¼ 1 throughout
this Letter.
Here the coordinate axes x and y are chosen so that they

coincide with the orbits’ two (reflection) symmetry axes,
when they exist, i.e., when the orbits are from class I, as
defined in Ref. [25]. Otherwise, e.g., when only a single
point reflection symmetry exists, as in class II orbits, the x,
y axes are taken to be the eigenvectors of the moment-of-
inertia tensor. The rotation angle necessary for each orbit to
be aligned with these two axes is given in Table I [27].
The first gravitational radiation waveforms for periodic

three-body systems were studied in Refs. [10–12]. They
calculated the quadrupole radiation waveforms for three
periodic orbits of the following three-equal-mass systems:
(i) of the Lagrange “equilateral triangle” orbit [13], (ii) of
Henon’s “criss cross” [19], and (iii) of Moore’s “figure
eight” [21]. These three orbits are characteristic

representatives of the (only) three families of periodic
three-body orbits known at the time. Reference [10] found
distinct gravitational waveforms for each of the three
families, thus suggesting that one might be able to
distinguish between different three-body systems as
sources of gravity waves by looking at their wave-
forms [28].
In the meantime 13þ 11 new orbits belonging to 12 new

families have been found, Refs. [25,26]. The families of
three-body orbits can be characterized by their topological
properties viz. the conjugacy classes of the fundamental
group, in this case, the free group on two letters (a, b),
Ref. [29]. The free group element tells us the number of
times the system’s trajectory on the shape sphere passes
around one or another (prechosen) two-body collision point
within one period. Every time the system is close to a two-
body collision the (relative) velocities, accelerations, and
the third derivatives of relative coordinates increase, so that
the luminosity of gravitational radiation also increases; i.e.,
there is a burst of gravitational radiation. This argument can
be made more quantitative by appealing to two-body results
of Ref. [8], as is shown in footnote [30].
We show the gravitational radiation waveforms hþ;× in

Fig. 1, emitted by three massive bodies moving according
to the orbits from Refs. [25,26] belonging to these families,
where Eqs. (2) and (3) are used as the definitions of the two
waveforms.
First, we note that all of the calculated three-body orbits’

waveforms are distinct [31], thus answering (in the

TABLE I. Initial conditions and periods of three-body orbits. _x1ð0Þ, _y1ð0Þ are the first particle’s initial velocities in the x and y
directions, respectively, T is the period of the (rescaled) orbit to normalized energy E ¼ −1=2, Θ is the rotation angle (in radians)
and hPi is the mean luminosity (power) of the waves emitted during one period. Other two particles’ initial conditions are specified by
these two parameters, as follows: x1ð0Þ ¼ −x2ð0Þ ¼ −λ, x3ð0Þ ¼ 0, y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ 0, _x2ð0Þ ¼ _x1ð0Þ, _x3ð0Þ ¼ −2_x1ð0Þ,
_y2ð0Þ ¼ _y1ð0Þ, _y3ð0Þ ¼ −2_y1ð0Þ. The Newtonian coupling constant G is taken as G ¼ 1 and the masses are equal m1;2;3 ¼ 1.

Name _x1ð0Þ _y1ð0Þ λ T ΘðradÞ hPi
Moore’s figure eight 0.216 343 0.332 029 2.574 29 26.128 0.245 57 1.35 × 100

Simo’s figure eight 0.211 139 0.333 568 2.583 87 26.127 0.277 32 1.36 × 100

ðM8Þ7 0.147 262 0.297 709 3.008 60 182.873 0.269 21 2.46 × 100

I.A.1 butterfly I 0.147 307 0.060 243 4.340 39 56.378 0.034 78 1.35 × 105

I.A.2 butterfly II 0.196 076 0.048 690 4.016 39 56.375 0.066 21 5.52 × 106

I.A.3 bumblebee 0.111 581 0.355 545 2.727 51 286.192 −1.090 4 1.01 × 105

I.B.1 moth I 0.279 332 0.238 203 2.764 56 68.464 0.899 49 5.25 × 102

I.B.2 moth II 0.271 747 0.280 288 2.611 72 121.006 1.138 78 1.87 × 103

I.B.3 butterfly III 0.211 210 0.119 761 3.693 54 98.435 0.170 35 3.53 × 105

I.B.4 moth III 0.212 259 0.208 893 3.263 41 152.330 0.503 01 7.48 × 105

I.B.5 goggles 0.037 785 0.058 010 4.860 23 112.129 −0.406 17 1.33 × 104

I.B.6 butterfly IV 0.170 296 0.038 591 4.226 76 690.632 0.038 484 1.23 × 1013

I.B.7 dragonfly 0.047 479 0.346 935 2.880 67 104.005 −0.406 199 1.25 × 106

II.B.1 yarn 0.361 396 0.225 728 2.393 07 205.469 −1.015 61 2.33 × 106

II.C.2a yin-yang I 0.304 003 0.180 257 2.858 02 83.727 0.659 242 1.31 × 105

II.C.2b yin-yang I 0.143 554 0.166 156 3.878 10 83.727 −0.020 338 1.31 × 105

II.C.3a yin-yang II 0.229 355 0.181 764 3.302 84 334.877 0.472 891 7.19 × 1010

II.C.3b yin-yang II 0.227 451 0.170 639 3.366 76 334.872 0.254 995 7.19 × 1010
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positive) the question about their distinguishability posed in
Ref. [10]. In Fig. 1 we also show the gravitational wave-
form of one “old” orbit: Simo’s figure eight, (discovered in
2002) belonging to the figure-eight family. Simo’s figure
eight is an important example, as it is virtually

indistinguishable from Moore’s one, and yet the two have
distinct gravitational waveforms, see our Fig. 1, and Fig. 2
in Ref. [10]. That is so because these two figure-eight
solutions have distinct time dependences of the hyperradius
R, where R2 ∼ ð1=mÞδij

P
3
k¼1 Ikk, so that the two orbits

have different quadrupolar waveforms.
Note, moreover, the symmetry of the waveforms in

Fig. 1 with respect to reflections of time about the midpoint
of the period T=2: this is a consequence of the special
subset of initial conditions (vanishing angular momentum
and passage through the Euler point on the shape sphere)
that we used. There are periodic three-body orbits,
such as those from the BHH family, that do not have this
symmetry.
The gravitational waveforms’ maxima range from 20 to

50 000 in our units, with the energy fixed at E ¼ −1=2.
This large range of maximal amplitudes is due to the
differences in the proximity of the approach to two-body
collisions in the corresponding orbits. One can explicitly
check that the bursts of gravitational radiation during one
period correspond to close two-body approaches.
As stated above, the (negative) mean power loss hdE=dti

of the three-body system, or the (positive) mean luminosity
(emitted power) of quadrupolar gravitational radiation hPi,
averaged over one period, is proportional to the square of the
third time derivative of the (reduced) quadrupole moment

Qð3Þ
jk , hdE=dti ¼ −hPi ¼ − 1

5
ðG=c5ÞP3

j;k¼1 hQð5Þ
jk

_Qjki ¼
− 1

5
ðG=c5ÞP3

j;k¼1 hQð3Þ
jk Q

ð3Þ
jk i, (for an original derivation

see Refs. [8,9], for pedagogical ones, see Refs. [1,2]). But,
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FIG. 1 (color online). The gravitational radiation quadrupolar
waveforms hþ;× × r as functions of the elapsed time t in units of
the period T, for two periodic three-body orbits (in units of
Gm=c2; we have set G ¼ m ¼ c ¼ 1 throughout this Letter) and
r is the radial distance from the source to the observer. Dotted
(blue) and solid (red) curves denote the þ and × modes,
respectively. Top: Simo’s figure eight, Ref. [22]; and bottom:
orbit I.B.1 Moth I. Note the symmetry of these two graphs under
the (time-)reflection about the orbits’ midpoint T=2 during one
period T.
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Qð3Þ
jk are proportional to the first time derivatives of the

gravitational waveforms Qð3Þ
jk ¼ ðd=dtÞQð2Þ

jk ∝ ðd=dtÞhþ;×.
The peak amplitudes of gravitational waveforms hþ;×, in
turn, grow in the vicinity of two-body collisions [30], which
explains the burst of gravitational radiation as one approaches
a two-body collision point.
The mean and instantaneous luminosities, expressed in

our units, of these orbits, normalized to E ¼ −1=2, are
shown in Table I and Fig. 2, respectively. Note that in
Table I we show only three orbits belonging to the figure-
eight family: Moore’s, Simo’s, and the stable choreography
ðM8Þ7; they have all the same order of magnitude of the
mean luminosity [32], whereas the butterfly I and butterfly
II orbits, which belong to the same topological family, have
mean luminosities that differ by more than a factor of 40.
Generally, the mean luminosities of these orbits cover 13

orders of magnitude, ranging from 1.35 (Moore’s figure
eight) to 1.23 × 1013 (I.B.6 butterfly IV) in our units; see
Table I. The peak instantaneous luminosities have an even
larger range: 20 orders of magnitude; see Fig. 2. Here, the
symmetric form of the instantaneous (time unaveraged)
power P ¼ 1

5
ðG=c5ÞP3

j;k¼1 Q
ð3Þ
jk Q

ð3Þ
jk was used. This gives

us hope that at least some of these three-body periodic
orbits can, perhaps, lead to detectable gravitational radia-
tion signals.
It is a different question if some or all of these sources of

gravitational radiation would be observable by the present-
day and the soon-to-be-built gravitational wave detectors:
that strongly depends on the absolute values of the masses,
velocities, and the average distances between the three
celestial bodies involved, as well as on the distribution of
such sources in our Galaxy.
Moreover, note that all of the newly found and analyzed

three-body orbits have zero angular momentum, and many
of them are unstable. It is well known [16–20] that by
changing the angular momentum within the same family
of three-body orbits, the stability of an orbit changes as
well. So, it may happen that a previously stable orbit turns
into an unstable one, and vice versa. For this reason it
should be clear that a careful study of gravitational-
radiation-induced energy- and angular-momentum dissi-
pation is necessary for these orbits [33]. Moreover, if
realistic results are to be obtained, post-Newtonian
approximations will have to be applied in the future.
Such relativistic corrections are most important at large
velocities, i.e., precisely near close approaches that are so
crucial for large gravitational radiation. Thus, the present
Letter is meant only to highlight the possibilities in this
field, and should be viewed as an invitation to join in the
more realistic future studies.
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Spin and Charge Correlation Measurements in the 2D
Hubbard Model — Jan Drewes1, Luke Miller1,2, Eugenio
Cocchi1,2, Chun Fai Chan1, Nicola Wurz1, •Marcell Gall1,
Daniel Pertot1, Ferdinand Brennecke1, and Michael Köhl1 —
1Physikalisches Institut, University of Bonn, Wegelerstrasse 8, 53115
Bonn, Germany — 2Cavendish Laboratory, University of Cambridge,
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We experimentally study the emergence of correlations in an ultracold,
fermionic 2D lattice system, representing a realisation of the Hubbard
model. Our ability to precisely tune the system parameters over a
large range and the possibility to simultaneously detect the density
distribution of both spin components in-situ enables us to examine the
emergence of density and spin correlations as a function of doping in-
teraction strength and temperature. In addition we gain from the mea-
surement of the equation of state insight into the full thermodynamics
of the 2D Hubbard model. To improve our preparation and detection
capabilities, we use a spin spiral technique which allows us to detect
the spin structure factor at arbitrary wave vectors. Further we employ
a spatial light modulator to reshape the underlying trapping potential
of the optical lattice to realize the homogeneous Hubbard model and
reach lower temperatures by redistributing entropy between different
spatial regions.
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Kirilov1,2, Bo Huang1, and Rudolf Grimm1,2 — 1IQOQI, Austrian
Academy of Science, Innsbruck, Austria — 2Inst. for Experimental
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We report on the production of a double-degenerate Fermi-Bose mix-
ture of 6Li and 41K. In our experimental sequence the potassium atoms
are sympathetically cooled by the lithium atoms, which are evapora-
tively cooled in an optical dipole trap. We obtain 104 41K atoms with
a BEC fraction close to 1 and a T/TF ≈ 0.05 with 105 6Li atoms in
each spin state. To measure the temperature of our fermionic sample
we use the 41K BEC as a tool for thermometry. As the system is
in thermal equilibrium we evaluate the condensed fraction of our 41K
atoms and extract the temperature of the atoms. To investigate the
properties of the 6Li-41K mixture near the inter-species Feshbach res-
onance at 335.8 G we use another scheme of evaporation around 300 G
which enables us to achieve similar temperatures. We explore both
the repulsive side and attractive side of the Feshbach resonance and
observe phase separation for strong repulsive interactions and collapse
for attractive interactions. This work is supported by the Austrian
Science Fund FWF within the SFB FoQuS.
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During the last decade ultracold fermionic alkaline earth quantum gas
attracted a lot of attention due to their unique properties such as long-
lived meta-stable state, an ultra-narrow optical clock transition, SU(N)
symmetric interactions as well as the existence of an interorbital Fes-
hbach resonance. In particular fermionic Yb quantum gas allow for
quantum simulation of lattice systems with orbital degrees of freedom,
like the Kugel-Khomskii model or the Kondo lattice model (KLM).

We will present recent progress of the Hamburg Yb experiment to-
wards realizing the KLM and correlated KLM, including measurements
on spin polarized as well as on interacting Fermi gases with an im-
proved clock laser setup.

This work is supported by the DFG within the SFB 925 and the
Marie Curie Initial Training Network QTea.
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tian Krinner1, Shuta Nakajima2, Jean-Philippe Brantut1, and
Tilman Esslinger1 — 1Institute for Quantum Electronics, ETH

Zürich, 8093 Zürich, Switzerland — 2Department of Physics, Grad-
uate School of Science, Kyoto University, Kyoto 606-8502, Japan

Building on the holographic shaping of optical potentials and a high-
resolution microscope, we demonstrate the local control of fermionic
lithium atoms flowing through a one-dimensional structure. We first
image the transport through a quantum wire, in a way similar to the
scanning gate technique applied to solid state devices. By scanning
the position of a sharp, repulsive optical gate over the wire and mea-
suring the subsequent variations of conductance, we spatially map the
transport at a resolution close to the transverse wavefunction inside
the wire. The control of the gate at the scale of the Fermi wavelength
makes it sensitive to quantum tunnelling. Furthermore, our knowledge
of the optical potential allows a direct comparison of the experimental
maps with a numerical and an analytical model for non-interacting
particles.

The flexibility offered by our setup makes it relatively simple to
imprint more complex structures. By projecting several consecutive
scatterers, a lattice of variable length can be built inside the quantum
wire. This opens the path to study metal-insulator physics with strong
attractive interactions.
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Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

We analyze in detail the properties of the one-dimensional Anyon-
Hubbard model, which can be mapped to a corresponding Bose-
Hubbard model with a density-dependent Peierls phase via a gener-
alized Jordan-Wigner transformation [1]. At first we extend the mod-
ified version of the classical Gutzwiller-mean-field ansatz of Ref. [2] in
order to obtain the pair-correlation function for both the bosonic and
the anyonic system. A comparison of the resulting quasi-momentum
distributions with high-precision DMRG calculations reveals in general
a parity breaking, which is due to anyonic statistics. Afterwards, we
determine how the boundary of the superfluid-Mott quantum phase
transition changes with the statistical parameter. We find in accor-
dance with Ref. [1] that the statistical interaction has the tendency to
destroy superfluid coherence.
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The appearance of topological properties in lattice systems caused by
a non-trivial topological band structure in the bulk is closely related to
the existence of chiral edge modes via the bulk-edge correspondence.
These edge states appear at the interface of two spatial regions with a
distinct topology, which for example naturally arise at the boundaries
of a sample surrounded by vacuum. In cold atom systems, these edge
modes are difficult to detect, since the underlying harmonic trapping
potential does not feature sharp boundaries. Therefore, we propose a
different method to design topological interfaces within the bulk of the
system. We illustrate this scheme by an optical lattice realization of
the Haldane model, where a spatially varying lattice beam leads to the
appearance of distinct topological phases in separated regions of space.
The versatility of the method allows to tune the position, the localiza-
tion length and the chirality of the edge modes. We numerically study
the propagation of wave packets in such a system and demonstrate
the feasibility to experimentally detect chiral edge states. Finally, we
show that the edge modes, unlike the bulk states, are topologically pro-
tected against the effects of disorder, which makes a random potential
a powerful tool to detect edge states in cold atom setups.

Poster Q 53.16 Thu 17:00 P OG2
Transport dynamics in optical lattices with flux — •Ana
Hudomal1, Ivana Vasić1, Walter Hofstetter2, and Antun
Balaž1 — 1Scientific Computing Laboratory, Center for the Study
of Complex Systems, Institute of Physics Belgrade, University of Bel-
grade, Serbia — 2Institut für Theoretische Physik, Johann Wolfgang
Goethe-Universität, Frankfurt am Main, Germany
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Recent cold atom experiments have realized artificial gauge fields in
periodically modulated optical lattices [1,2]. We study the dynamics
of atomic clouds in these systems by performing numerical simula-
tions using the full time-dependent Hamiltonian and comparing these
results to the semiclassical approximation. Under constant external
force, atoms in optical lattices with flux exhibit an anomalous velocity
in the transverse direction. We investigate in detail how this transverse
drift is related to the Berry curvature and Chern number, taking into
account realistic experimental conditions.

[1] G. Jotzu et al., Nature 515, 237 (2014).
[2] M. Aidelsburger et al., Nature Phys. 11, 162 (2015).

Poster Q 53.17 Thu 17:00 P OG2
Towards the investigation of collective scattering in
nanofiber-trapped atomic ensembles — •Adarsh S. Prasad,
Jakob Hinney, Samuel Rind, Philipp Schneeweiss, Jürgen Volz,
Christoph Clausen, and Arno Rauschenbeutel — TU Wien -
Atominstitut, Stadionallee 2, 1020 Wien, Austria

We realize an efficient optical interface between guided light and laser-
cooled atoms which are arranged in two linear arrays in a two-color
evanescent-field dipole trap created around an optical nanofiber [1]. In
this configuration, the probability of a nanofiber-guided photon being
absorbed and then re-emitted into free space by a trapped atom is as
high as 10%. For a periodic array of atoms, interference of the fields
scattered by different atoms result in a collective emission into a cone
with a well-defined angle with respect to the fiber axis. We plan to
study this collective emission and its dependence on various experimen-
tal parameters. The next step will be to adjust the periodicity of the
atomic array to fulfill the Bragg condition such that fiber-guided light
is strongly back-reflected [2]. Here, the interaction between the atomic
array and the fiber-guided light depends strongly on the polarization
of the light field. In particular, light that is polarized in (orthogonal
to) the plane of atoms will be weakly (strongly) reflected. We want
to implement such highly reflecting atomic arrays, which could then
be used to implement cavity quantum electrodynamics experiments in
which the resonator itself is made of quantum emitters.
[1] E. Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010).
[2] Fam Le Kien et. al., Phys. Rev. A 90, 063816 (2014).

Poster Q 53.18 Thu 17:00 P OG2
Setup of a new micro-structured linear Paul trap with in-
tegrated solenoids and reduced axial micromotion — •H.
Siebeneich, D. Kaufmann, T. Gloger, P. Kaufmann, M. Johan-
ning, and ch. Wunderlich — Department Physik, Universität
Siegen, 57068 Siegen, Germany

We present the status of a new 3d segmented ion trap setup with
integrated solenoids, in which an improved design allows for a sub-
stantial reduction of axial micromotion and for an increased magnetic
gradients. Our trap consists of three layers of gold plated alumina,
where the segmented outer layers provide the trapping potentials [1],
and the middle layer contains solenoids that are used to create a mag-
netic field gradient [2]. The gradient gives rise to coupling between
the ions’ internal and motional states. The trap is mounted on a ce-
ramic chip carrier that, at the same time, acts as an ultra-high vacuum
interface, featuring about 100 thick-film printed current and voltage
feedthroughs. The thick film interface has been improved by replacing
previously used Ag-Pd layers by Au layers which reduced their resis-
tivity by a factor of eight. The previously high resistivity used to be a
a bottleneck for achieving high solenoid currents and thus a magnetic
gradient. The shape of the solenoids was redesigned, leading to an
expected reduction of axial micromotion by four orders of magnitudes.
[1] S.A. Schulz et al.: Sideband cooling and coherent dynamics in a
microchip multi-segmented ion trap, New Journal of Physics, Volume
10, April 2008 [2] D. Kaufmann et al.: Thick-film technology for ultra
high vacuum interfaces of micro-structured traps, Appl Phys B (2012)
107:935-943

Poster Q 53.19 Thu 17:00 P OG2
Design and construction of a Perpetual Atom Laser Machine
— •Chun-Chia Chen, Shayne Bennetts, Benjamin Pasquiou, and
Florian Schreck — Institute of Physics, University of Amsterdam,
Amsterdam, The Netherlands

We have developed a machine aimed at producing a perpetual atom
laser, a long standing goal within atomic physics. Continuous pro-
duction of Bose-Einstein condensate (BEC) or an atom laser requires
two incompatible cooling processes, laser cooling a gas sample, then
cooling evaporatively until degeneracy is reached. In order to produce
a perpetual output these stages take place simultaneously in different

parts of our machine. To protect the condensate from scattered pho-
ton heating we use a combination of physical separation, baffles and a
”transparency” beam. Our machine has now demonstrated a perpet-
ual MOT of 2× 109 88Sr atoms with temperatures as low as 20µK on
a 7.4-kHz wide laser cooling transition with a continuous loading rate
of 7×108 atoms/s. Using a different set of parameters and location we
have also demonstrated a perpetual MOT of 2× 108 88Sr at 2µK with
a loading rate of 9 × 107 atoms/s which we have successfully loaded
into a dipole trap. By switching to the 0.5% abundance 84Sr isotope
we are able to evaporate to BECs of 3×105 84Sr atoms. Critically, for
the second location we have validated the effectiveness of our architec-
ture in protecting a BEC from scattered broad-linewidth laser cooling
light, which is used in the first cooling stages. We will describe our
design and the performance demonstrated so far.

Poster Q 53.20 Thu 17:00 P OG2
Optical trapping of neutral mercury — •Holger John and
Thomas Walther — Technische Universität Darmstadt, Institut für
Angewandte Physik, Schlossgartenstraße 7, 64289 Darmstadt

Laser-cooled mercury constitutes an interesting starting point for var-
ious experiments, in particular in light of the existence of bosonic and
fermionic isotopes. On the one hand the fermionic isotopes could be
used to develop a new time standard based on an optical lattice clock
employing the 1S0 - 3P0 transition. Another interesting venue is the
formation of ultra cold Hg-dimers employing photo-association and
achieving vibrational cooling by employing a special scheme.

The laser system is based on an interference-filter stabilized external
cavity diode laser with excellent spectral properties combined with a
home built non-cryogenic fiber amplifier for the 1015nm fundamental
wavelength with a slope-efficiency of more than 35 % delivering up to
4W of pump limited output power. The fundamental wavelength is fre-
quency doubled twice to reach the cooling transition at 253.7 nm. The
challenging requirements meeting the natural linewidth of 1.27 MHz
are mastered by use of a ULE reference resonator.

After integrating a 2D-MOT as an atom source to the vacuum sys-
tem the first measurements of ultra-cold atoms with the new laser
system will be reported.

Poster Q 53.21 Thu 17:00 P OG2
Diffusion of Single Atoms in Bath — •Daniel Adam, Fa-
rina Kindermann, Tobias Lausch, Daniel Mayer, Felix Schmidt,
Steve Haupt, Michael Hohmann, Nicolas Spethmann, and Artur
Widera — TU Kaiserslautern, Department of Physics, Kaiserslautern,
Germany

Diffusion is an essential phenomenon occurring in various systems such
as biological cells, traffic models or stock markets. While most systems
are well described by standard Brownian motion, anomalous diffusion
can lead to markedly different dynamical properties.

Experimentally, we study the diffusion of individual atoms illumi-
nated by near-resonant light and trapped in a periodic potential. All
relevant parameters such as damping coefficient and potential hight
can be controlled in order to realize different diffusive regimes.

We explore the amount of information contained in the Kramers
rate, i. e. the rate at which a diffusing atom can escape from a po-
tential well. Furthermore we exploit the excellent control over the
optical trapping potential and study the diffusion of the atom in a
time-varying periodic trap, complemented by numerical simulations of
the dynamics.

Poster Q 53.22 Thu 17:00 P OG2
Kinetic Monte Carlo simulation of percolation in driven-
dissipative Rydberg gases — •Stephan Helmrich, Philipp Fab-
ritius, Graham Lochead, and Shannon Whitlock — Physikalisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Hei-
delberg

Directed percolation is perhaps the most prominent example of a
unique class of phenomena which exhibit genuine non-equilibrium
phase transitions and non-trivial critical behaviour. We explore
whether highly tunable gases of ultracold atoms excited to long-range
interacting Rydberg states can serve as a clean experimental realisation
of percolation phenomena in two and three dimensions. The mecha-
nism investigated is the cooperative excitation of Rydberg atoms trig-
gered when the excitation laser is resonant for atoms within a charac-
teristic distance of another Rydberg atom (facilitated excitation). To
simulate the dynamics of this system we use a kinetic Monte Carlo al-
gorithm which is able to reproduce many of the experimental features
of laser excited Rydberg gases. We investigate the scaling behavior
for the fraction of Rydberg excitations (active sites) and their spa-
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Recent cold atom experiments have realized artificial gauge fields in periodically modulated optical lattices 

[1,2]. We study the dynamics of atomic clouds in such systems by performing numerical simulations using the 

full time-dependent Hamiltonian and compare results with the semiclassical approximation. Under constant 

external force, atoms in optical lattices with flux exhibit an anomalous velocity in the transverse direction. We 

investigate in detail how this transverse drift is related to the Berry curvature and Chern number, taking into 

account realistic experimental conditions. 
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Erlangen 2018 Tuesday

Q 35: Quantum Gases (Fermions) II

Tuesday 14:00–16:15 K 1.022

Talk Q 35.1 Tue 14:00 K 1.022
Artificial gauge potentials in periodically driven optical lat-
tices: numerical simulations of atomic transport — •Ana
Hudomal1, Ivana Vasić1, Hrvoje Buljan2, Walter Hofstetter3,
and Antun Balaž1 — 1Scientific Computing Laboratory, Center for
the Study of Complex Systems, Institute of Physics Belgrade, Uni-
versity of Belgrade, Serbia — 2Department of Physics, University of
Zagreb, Croatia — 3Institut für Theoretische Physik, Johann Wolf-
gang Goethe-Universität, Frankfurt am Main, Germany

Artificial gauge potentials have been recently realized in cold-atom
experiments with periodically driven optical lattices [1,2]. In such sys-
tems, atoms subjected to a constant external force gain an anomalous
velocity in the direction transverse to the direction of the applied force.
Taking into consideration realistic experimental conditions, we perform
numerical simulations in order to investigate the dynamics of atomic
clouds and relate it to the Chern number of the effective model. We
use the full time-dependent Hamiltonian and take into account the
effects of weak repulsive interactions between atoms. The results are
compared to the semiclassical approximation.

[1] G. Jotzu et al., Nature 515, 237 (2014).
[2] M. Aidelsburger et al., Nature Phys. 11, 162 (2015).

Talk Q 35.2 Tue 14:15 K 1.022
Experimental characterization and control of Floquet states
in a periodically driven two-body quantum system — •Kilian
Sandholzer, Rémi Desbuquois, Michael Messer, Frederik Görg,
Joaqúın Minguzzi, Gregor Jotzu, and Tilman Esslinger — Insti-
tute for Quantum Electronics, ETH Zürich, Zürich, Switzerland

Floquet engineering is a powerful tool to modify properties of a static
system such as opening topological gaps or controlling magnetic or-
der. The versatility of cold atom experiments offers the possibility to
implement many of these schemes. Nonetheless, preparing a certain
Floquet state that has the desired properties in this out-of-equilibrium
situation is a more difficult task, especially when the driving frequency
is close to a characteristic energy scale of the system. In this work, we
prepare fermionic atoms in a driven optical lattice such that the system
can be described by two interacting particles on a double well poten-
tial with a periodically modulated tilt. In the case of near-resonant
driving we achieve to enter adiabatically individual Floquet states by
using a two-step ramping protocol. In addition, the fast coherent dy-
namics inherently connected to the drive are studied in detail. Finally,
an analytical derivation of the effective time-independent Hamiltonian
of the realized system is presented and then compared to numerical
studies and experimental data.

Talk Q 35.3 Tue 14:30 K 1.022
Dynamics of driven interacting many-body systems —
•Michael Messer, Frederik Görg, Kilian Sandholzer, Joaqúın
Minguzzi, Rémi Desbuquois, and Tilman Esslinger — Institute for
Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland

Periodic driving can be used to coherently control the properties of
a many-body state and to engineer new phases which are not acces-
sible in static systems. The successful implementation of a periodi-
cally driven Fermi-Hubbard model on a 3D hexagonal lattice offers the
possibility to explore the intriguing dynamics of Floquet many-body
systems. A theoretical analysis of driven many-body Hamiltonians is
inherently challenging, however, in combination with our experiments
a deeper understanding seems feasible.

By controlling the detuning between shaking frequency and interac-
tions, and setting a variable strength of the periodic drive, we achieve
independent control over the single particle tunneling and the magnetic
exchange energy. This control allows us to investigate the dynamics
and build-up of nearest-neighbor spin-spin correlations. Furthermore,
we explore possible mechanisms behind the formation of correlations in
interacting Floquet systems. In addition, we can analyze the creation
of double occupancies, as one mechanism to form excitations.

Talk Q 35.4 Tue 14:45 K 1.022
Enhancement and sign change of magnetic correlations in
a driven quantum many-body system — •Frederik Görg1,
Michael Messer1, Kilian Sandholzer1, Joaqúın Minguzzi1, Gre-
gor Jotzu1,2, Rémi Desbuquois1, and Tilman Esslinger1 —
1Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzer-
land — 2Max Planck Institute for the Structure and Dynamics of Mat-

ter, 22761 Hamburg, Germany

Strong periodic driving can be used to control the properties of inter-
acting quantum systems. In solid state experiments, ultrashort laser
pulses are employed to tune the charge order as well as magnetic and
superconducting properties of materials. At the same time, continuous
driving has been used in cold atom experiments to engineer novel ef-
fective Floquet-Hamiltonians which feature for example a topological
bandstructure. We realize a strongly interacting Fermi gas in a peri-
odically driven hexagonal optical lattice and investigate its charge and
magnetic properties. We first demonstrate that in the high-frequency
regime, the effective description of the many-body system by a renor-
malized tunnelling amplitude remains valid by comparing our results to
an equivalent static system. When driving at a frequency close to the
interaction energy, we show that anti-ferromagnetic correlations can
be enhanced or even switched to ferromagnetic ordering. Our observa-
tions can be explained by a microscopic model, in which the particle
tunnelling and magnetic exchange energies can be controlled indepen-
dently. Therefore, Floquet engineering constitutes an alternative route
to experimentally investigate unconventional pairing.

Talk Q 35.5 Tue 15:00 K 1.022
Manipulating and probing excitations of a Chern insulator by
Floquet engineering an optical solenoid — •Botao Wang, Nur
Ünal, and André Eckardt — Max Planck Institute for the Physics
of Complex Systems, Dresden, Germany

The realization of artificial gauge fields in optical lattice systems has
paved a way to the experimental investigation of various topological
quantum effects. Here we propose a realistic scheme for realizing tun-
able local (solenoid type) artificial magnetic fields by means of Floquet
engineering. We show that such an optical solenoid field can be used
to coherently manipulate and probe Chern insulator states of the Hof-
stadter Hamiltonian. In particular, we investigate the possibility to
create local quasiparticle and quasihole excitations, to coherently pop-
ulated edge modes, and to achieve quantized charge pumping. All
these effects are manifested on the spatial density distributions, which
can be measured directly in quantum-gas microscopes.

Talk Q 35.6 Tue 15:15 K 1.022
Characterizing topology by dynamics: Chern number
from linking number — •Matthias Tarnowski1,2, Nur Ünal3,
Nick Fläschner1,2, Benno Rem1,2, André Eckardt3, Klaus
Sengstock1,2,4, and Christof Weitenberg1,2 — 1Institut für Laser-
physik, Universität Hamburg, 22761 Hamburg, Germany — 2The
Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
— 3Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer
Straße 38, 01187 Dresden, Germany — 4Zentrum für Optische Quan-
tentechnologien, Universität Hamburg, 22761 Hamburg, Germany

Topology plays an important role in modern solid state physics de-
scribing intriguing quantum states such as topological insulators. It is
an intrinsically non-local property and therefore challenging to access,
often studied only via the resulting edge states. Here, we report on
a new approach by connecting the Chern number with the dynamical
evolution of highly excited states of the system and demonstrate it ex-
perimentally with cold atoms in hexagonal optical lattices. We study
the contour of dynamically created vortex pairs in momentum space
following a sudden quench into the system of interest and infer the
Chern number of the post-quench Hamiltonian from the topology of
the contour, quantified by the linking number with the static vortices.
Our work exploits a direct mapping between two topological indices
and allows detecting topology by the naked eye.

Talk Q 35.7 Tue 15:30 K 1.022
1D fermionic Floquet topological insulators with Hubbard in-
teraction — •Haixin Qiu1 and Johann Kroha1,2 — 1Physikalisches
Institut and Bethe Center for Theoretical Physics, Universität Bonn,
Nussallee 12, 53115 Bonn, Germany — 2Center for Correlated Matter,
Zhejiang University, Hangzhou, Zhejiang 310058, China

The fermionic Rice-Mele model is a standard model for quantum
ratchet transport in periodically driven, one-dimensional, bipartite
chains. In the adiabatic limit, this model exhibits quantized transport
(Thouless pump), while in the limit of fast drive quasistatic approxi-
mations with effective hopping parameters are possible. Here we study
the Rice-Mele model with periodic drive of both, the hopping ampli-
tudes and the onsite energy modulation,in the intermediate regime
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1 Scientific Computing Laboratory, Center for the Study of Complex Systems,

Institute of Physics Belgrade, University of Belgrade, Serbia
2 Department of Physics, University of Zagreb, Croatia

3 Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
e-mail: hudomal@ipb.ac.rs

Different condensed matter systems, such as elec-
trons in a crystal lattice, can be simulated using ul-
tracold atoms in optical lattices. Unlike electrons,
atoms are electrically neutral and therefore do not
feel the effects of magnetic field. Artificial gauge
potentials have been recently realized in cold-atom
experiments with periodically driven optical lattices
[1, 2]. In such systems, atoms subjected to a constant
external force gain an anomalous velocity in the direc-
tion transverse to the direction of the applied force.

Taking into consideration realistic experimental
conditions, we perform numerical simulations in or-
der to investigate the dynamics of atomic clouds and
relate it to the Chern number of the effective model.
We consider incoherent bosons and the full time-
dependent Hamiltonian. The effects of weak repulsive
interactions between atoms are taken into account us-
ing the mean-field approximation.

Our results show that driving, external force and
interactions all cause heating and transitions to
higher bands, which have significant effects on the
dynamics. It turns out that weak interactions can be
beneficial, because they make the momentum-space
probability density more homogeneous. In the future,
we also plan to study the details of the atomic-cloud
expansion dynamics, and to simulate the full loading
sequence of an initial Bose-Einstein condensate, as it
was done in the experiment [2].

Figure 1: Density profile of an atomic cloud during ex-
pansion dynamics after release from a trap in the presence
of an artificial gauge field and external force.

[1] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat,
T. Uehlinger, D. Greif, and T. Esslinger, Nature
515, 237 (2014).

[2] M. Aidelsburger, M. Lohse, C. Schweizer, M.
Atala, J. T. Barreiro, S. Nascimbène, N. R.
Cooper, I. Bloch, and N. Goldman, Nat. Phys.
11, 162 (2015).
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Q 25.1 Tue 16:30 S Atrium Informatik
Unequal-time correlations in Bose-Einstein condensates —
∙Linda Shen1,2 and Martin Gärttner2 — 1Institut für Theo-
retische Physik, Philosophenweg 16, 69120 Heidelberg, Germany —
2Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, 69120 Hei-
delberg, Germany
We develop measurement schemes for unequal-time correlation func-
tions in a Bose-Einstein condensate (BEC). Both the spectral and
statistical components of the two-point correlation function are in-
vestigated out of equilibrium. Thereby, the time-evolution of a BEC
is computed numerically using classical-statistical simulation methods
based on the Gross-Pitaevskii equation.

The spectral correlation function is approached by linear response
methods, which are in principle applicable to both numerical computa-
tions as well as experimental measurements. The statistical correlation
function can be computed directly in the classical-statistical approx-
imation. Extracting the unequal-time statistical function experimen-
tally, however, requires involved techniques in order to avoid quantum
back action effects. We propose to use a non-invasive measurement
protocol where the system is weakly coupled to an ancillary system.

In thermal equilibrium, the spectral and statistical components are
related by the fluctuation-dissipation theorem. Measuring both will al-
low a better understanding of how the fluctuation-dissipation theorem
builds up as the system approaches equilibrium.

Q 25.2 Tue 16:30 S Atrium Informatik
Quantum Droplets with Tilted Dipoles — ∙Manuel Schmitt1,
Vladimir Veljić2, Antun Balaž2, and Axel Pelster1 —
1Research Center OPTIMAS and Department of Physics, Technische
Universität Kaiserslautern, Germany — 2Scientific Computing Labo-
ratory, Center for the Study of Complex Systems, Institute of Physics
Belgrade, University of Belgrade, Serbia
Since 2005 there have been many striking advancements in Bose-
Einstein condensates (BECs) with dipolar interactions, the most re-
cent one being the discovery of quantum droplets, which are stabilized
due to quantum fluctuations [1, 2]. With a variational approach we
investigate the influence of a tilted dipole axis on quantum droplets
in a wave guide-like setup [3]. At first we generalize for one quantum
droplet the energy functional for the extended Gross-Pitaevskii theory
to tilted dipoles and determine the resulting deformation of the cloud
as well as its stability as a function of the tilting angle. Furthermore,
we consider two quantum droplets in a trap and calculate how their
equilibrium distance depends on the tilting of the dipole axis. With
this we gain new insight into the emergence of filaments of dipolar
BECs.

[1] M. Schmitt et al., Nature 539, 259 (2016)
[2] L. Chomaz et al., Phys. Rev. X 6, 041039 (2016)
[3] I. Ferrier-Barbut et al., Phys. Rev. Lett. 116, 215301 (2016)

Q 25.3 Tue 16:30 S Atrium Informatik
Many-body Multifractality in Fock space for Interact-
ing Bosons — Jakob Lindinger, Andreas Buchleitner, and
∙Alberto Rodríguez — Physikalisches Institut, Albert-Ludwigs-
Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg,
Germany
We analyse the many-body multifractality of the Bose-Hubbard Hamil-
tonian’s eigenstates in Fock space, for arbitrary values of the interpar-
ticle interaction. For the ground state, generalized fractal dimensions
unambiguously signal, even for small system sizes, the emergence of
a Mott insulator. We show that the scaling of the derivative of any
generalised fractal dimension with respect to the interaction strength
encodes the critical point of the superfluid to Mott insulator transition,
and we establish that the transition can be quantitatively character-
ized by one single wavefunction amplitude from the exponentially large
Fock space [1]. Furthermore, multifractality of the excited eigenstates
is investigated and the possible existence of localization in Fock space
is thoroughly studied.

[1] J. Lindinger, A. Buchleitner, A. Rodríguez, arXiv:1810.06369

Q 25.4 Tue 16:30 S Atrium Informatik
Dynamics in multi-species bosonic systems — Tobias Brün-
ner, ∙Gabriel Dufour, Alberto Rodríguez, and Andreas

Buchleitner — Physikalisches Institut, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
The dynamics of bosons in multimode systems is determined by an in-
volved interplay between interactions and indistinguishability-induced
many-particle interference. We construct a formalism to investigate
systematically the dynamics of multiple bosonic species, distinguish-
able by an internal degree of freedom which is insensitive to the time
evolution. We unveil how interparticle interactions lead to a hierar-
chy of interaction-induced interference processes, such that even the
dynamics of single-particle observables is influenced by the degree of
indistinguishability (DOI). Time-averaged expectation values of ob-
servables dominated by two-particle interference are shown to correlate
with a measure of the DOI for initial Fock states [1]. Time-resolved fea-
tures of the dynamics, such as the frequency content of the signals, are
also influenced by the DOI and reveal the interacting or non-interacting
nature of the system. We show that this can be understood from the
symmetry properties of the Hamiltonian based on group-theoretical
arguments [2].

[1] T. Brünner, G. Dufour, A. Rodríguez, A. Buchleitner,
Phys. Rev. Lett. 120, 210401 (2018)
[2] T. Brünner, PhD Thesis, Albert-Ludwigs-Universität Freiburg
(2018). https://doi.org/10.6094/UNIFR/16683

Q 25.5 Tue 16:30 S Atrium Informatik
Rotational cooling of molecules in a BEC — ∙Martin Will,
Tobias Lausch, and Michael Fleischhauer — University of Kaiser-
slautern, 67663 Kaiserslautern, Germany
We discuss the rotational cooling of homonuclear diatomic molecules
in a Bose-Einstein-condensate (BEC) . For typical molecules there is
no frictionless rotation since the dominant cooling occurs via emission
of particle-like phonons. Only for macro-dimers, whose size becomes
larger than the condensate healing length, a Landau-like, critical angu-
lar momentum exists below which phonon emission is suppressed. We
find that the phonon-induced angular momentum relaxation is much
faster than the cooling of linear motion of impurities in a BEC. This
also leads to a finite lifetime of angulons, quasi-particles of rotating
molecules coupled to orbital angular-momentum phonons. The life-
times are however still smaller than typical angulon binding energies.
We analyze the dynamics of rotational cooling for homo-nuclear di-
atomic molecules based on a quantum Boltzmann equation including
single- and two-phonon scattering and discuss the effect of thermal
phonons. For typical molecules two-phonon scattering becomes rele-
vant at finite temperature.

Q 25.6 Tue 16:30 S Atrium Informatik
Coexistence of phase transitions and hysteresis near the
onset of Bose-Einstein condensation — Michael Maennel3

and ∙Klaus Morawetz1,2 — 1Münster University of Ap-
plied Sciences,Stegerwaldstrasse 39, 48565 Steinfurt, Germany —
2International Institute of Physics- UFRN,Campus Universitário
Lagoa nova,59078-970 Natal, Brazil — 3Informatik DV,Petersstr.
14,04109 Leipzig, Germany
Multiple phases occurring in a Bose gas with finite-range interaction
are investigated [2]. In the vicinity of the onset of Bose-Einstein con-
densation (BEC), the chemical potential and the pressure show a van
der Waals-like behavior indicating a first-order phase transition for
weak interactions like Hartree-Fock or Popov approximation. How-
ever, for strong interactions there remains a multivalued region for the
T-matrix approximation even after the Maxwell construction, which is
interpreted as a density hysteresis [1]. This unified treatment of nor-
mal and condensed phases becomes possible due to the recently found
scheme to eliminate self-interactions in the T-matrix approximation,
which allows one to calculate properties below and above the critical
temperature [3,4]. [1] Phys. Rev. A 87 (2013) 053617, [2] New J.
Phys. 12 (2010) 033013, [3] J. Stat. Phys. 143 (2011) 482, [4] Phys.
Rev. B 84 (2011) 094529

Q 25.7 Tue 16:30 S Atrium Informatik
Dynamics of weakly interacting bosons in optical lattices with
flux — ∙Ana Hudomal1, Ivana Vasić1, Hrvoje Buljan2, Walter
Hofstetter3, and Antun Balaž1 — 1Scientific Computing Labo-
ratory, Center for the Study of Complex Systems, Institute of Physics
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Belgrade, University of Belgrade, Serbia — 2Department of Physics,
Faculty of Science, University of Zagreb, Croatia — 3Institut für The-
oretische Physik, Johann Wolfgang Goethe-Universität, Frankfurt am
Main, Germany
Realization of strong synthetic magnetic fields in driven optical lattices
has enabled implementation of topological bands in cold-atom setups
[1,2]. A milestone has been reached by a recent measurement of a finite
Chern number based on the dynamics of incoherent bosonic atoms [2].
Motivated by these recent developments, we investigate the dynamics
of weakly interacting incoherent bosons in a two-dimensional driven
optical lattice exposed to an external force, which provides a direct
probe of the Chern number [3]. We find that interactions lead to the
redistribution of atoms over topological bands both through the con-
version of interaction energy into kinetic energy during the expansion
of the atomic cloud and due to an additional heating. Remarkably, we
observe that the moderate atomic repulsion facilitates the measure-
ment by flattening the distribution of atoms in the quasimomentum
space.

[1] G. Jotzu et al., Nature 515, 237 (2014).
[2] M. Aidelsburger et al., Nature Phys. 11, 162 (2015).
[3] A. Hudomal et al., Phys. Rev. A 98, 053625 (2018).

Q 25.8 Tue 16:30 S Atrium Informatik
Quench dynamics and boundary condition dependence of the
one-dimensional extended Bose Hubbard model — ∙Sebastian
Stumper, Junichi Okamoto, and Michael Thoss — Insitute of
Physics, University of Freiburg, Freiburg, Germany
The one-dimensional extended Bose Hubbard model exhibits a variety
of quantum phases due to its competing interactions. For large on-site
interactions, a Mott insulating (MI) phase exists, while a charge den-
sity wave (CDW) phase becomes dominant for large nearest-neighbour
interactions. In between these phases, there exists a topologically non-
trivial phase of a Haldane insulator (HI), which is characterized by a
non-local string order (Phys. Rev. Lett. 97, 260401 (2006)). Ground
state properties and low energy spectra are, however, very sensitive to
the treatment of boundary conditions (arXiv:1403.2315 (2014)). We
study an open chain of the extended Bose Hubbard model for various
configurations of chemical potentials applied at the edges using the
density matrix renormalization group method (Comput. Phys. Com-
mun. 225, 59 (2018)). Without edge potentials, the CDW and HI
phases show a non-degenerate ground state, and the order parameters
change signs in the middle of the chain. This feature is robust against
finite size scaling and is explained by a simple effective picture for
the low energy states. On the other hand, with large edge potentials,
the sign change of the order parameters disappears, and we recover
uniform bulk ground states. Furthermore, we simulate quenched dy-
namics with initial states from MI, HI and CDW phases and discuss
the results in terms of our findings on the equilibrium cases.

Q 25.9 Tue 16:30 S Atrium Informatik
Staggered-immersion cooling of a quantum gas in optical lat-
tices — ∙Bing Yang1,2,3, Hui Sun1,2,3, Chun-jiong Huang2,3,
Han-yi Wang1,2,3, You-jin Deng2,3, Han-ning Dai1,2,3, Zhen-
sheng Yuan1,2,3, and Jian-wei Pan1,2,3 — 1Physikalisches Insti-
tut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 226,
69120 Heidelberg, Germany — 2Hefei National Laboratory for Physi-
cal Sciences at Microscale and Department of Modern Physics, Univer-
sity of Science and Technology of China, Hefei, Anhui 230026, China
— 3CAS Centre for Excellence and Synergetic Innovation Centre in
Quantum Information and Quantum Physics, University of Science
and Technology of China, Hefei, Anhui 230026, China
Here we realize efficient cooling of ten thousand ultracold bosons in
staggered optical lattices. By immersing Mott-insulator samples into
removable superfluid reservoirs, thermal entropy is extracted from the
system. Losing less than half of the atoms, we lower the entropy of a
Mott insulator by 65-fold, achieving a record-low entropy per particle
of 0.0019 𝑘B (𝑘B is the Boltzmann constant). We further engineer the
sample to a defect-free array of isolated single atoms and successfully
transfer it into a coherent many-body state. The present staggered-
immersion cooling opens up an avenue for exploring novel quantum
matters and promises practical applications in quantum information
science.

Q 25.10 Tue 16:30 S Atrium Informatik
Simulation of the Quantum Rabi Model with Ultracold Ru-
bidium Atoms in the Deep Strong Coupling Regime —
∙Geram Hunanyan1, Johannes Koch1, Martin Leder1, Enrique

Rico2,3, Carlos Sabin4, Enrique Solano2,3, and Martin Weitz1

— 1Institut für Angewandte Physik Bonn, Wegelerstr. 8, D-53115
Bonn, Germany — 2Department of Physical Chemistry, University of
the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
— 3IKERBASQUE, Basque Foundation for Science, Maria Diaz de
Haro 3, E-48013 Bilbao, Spain — 4Instituto de Fisica Fundamental,
CSIC, Serrano 113-bis, E-28006 Madrid, Spain
The Quantum Rabi Model (QRM) has been applied to describe the dy-
namics of a two-level quantum system interacting with a single bosonic
mode. Although a fair quantity of experiments explore the strong
coupling regime of the QRM, where due to the still limited coupling
strength the system can be transformed to the widely known Jaynes-
Cummings Model, researchers are just beginning to exploit the regime
where the full QRM must be considered. Our experimental imple-
mentation to simulate the QRM uses ultracold rubidium atoms in an
optical lattice potential, with the effective two-level quantum system
being simulated by different Bloch bands in the first Brillouin zone.
The bosonic mode is represented by the oscillations of the atoms in
an optical dipole trapping potential. We experimentally observe the
atomic dynamics in the deep strong coupling regime. The present
status of results will be presented.

Q 25.11 Tue 16:30 S Atrium Informatik
Probing the mott-insulator state in optical lattices with pho-
toassociation collisions — ∙Hui Sun, Bing Yang, Zhen-sheng
Yuan, and Jian-wei Pan — Physikalisches Institut, Ruprecht-Karls-
Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg,
Germany
The photoassociation collision is a process two colliding atoms form
an excited molecular state after absorbing a photon, which can be
used to remove doublons in optical lattices. In this work, we present
the detection of a bosonic Mott-insulator state in optical lattices via
photoassociation collisions. The photoassociation frequency and colli-
sion strength in the 0−g molecular channel are calibrated in ultracold
quantum gases of Rb87. Then we measure the density distributions of
two-dimensional Mott-insulator states in optical lattices after illumi-
nated by a photoassociation light, which is 13.6 cm−1 red detuned to
the D2 line. From the density profiles, we extract the temperatures
of the Mott-insulators and demonstrate an improvement of the mea-
surement precision. This new method extends our ability to probe this
ultracold strongly correlated systems.

Q 25.12 Tue 16:30 S Atrium Informatik
Probing Equilibration of Isolated Quantum Systems in a
Spinor Bose-Einstein Condensate — ∙Stefan Lannig, Rodrigo
Rosa-Medina Pimentel, Maximilian Prüfer, Philipp Kunkel,
Alexis Bonnin, Helmut Strobel, and Markus K. Oberthaler
— Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, 69120 Hei-
delberg
If and how isolated quantum systems eventually reach thermal equi-
librium is still an open question. To address this we experimentally
investigate the spin dynamics of a Bose-Einstein condensate of 87Rb.
In particular, we focus on the long-time dynamics in the 𝐹 = 1 hyper-
fine manifold, which realises a spin-1 system. We prepare the system in
different out-of-equilibrium states and probe its subsequent evolution
by applying a new readout technique which allows to simultaneously
extract multiple spin projections. We observe that the kinetic temper-
ature, leading to a finite non-condensed fraction, impacts the coherent
evolution and relaxation of the spin observables.

Using local control of the spin orientation and atomic density we
aim at further exploring and understanding the relaxation processes
involved in the temporal evolution of a 1-d spinor system. We in-
vestigate the response of the system to controlled local perturbations
which can be connected to spatial and temporal correlations offering
new observables for characterisation of general many-particle quantum
dynamics.

Q 25.13 Tue 16:30 S Atrium Informatik
Non-equilibrium dynamics of interacting Bosons in an opti-
cal lattice — ∙Jens Benary1, Christian Baals1,2, Jian Jiang1,
and Herwig Ott1 — 1Department of Physics and OPTIMAS re-
search center, Technische Universität Kaiserslautern, 67663 Kaiser-
slautern, Germany — 2Graduate School Materials Science in Mainz,
55128 Mainz, Germany
We study the non-equilibrium dynamics of ultracold Bose gases using
a scanning electron microscope. In our latest setup an optical system
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Searching for quantum scars in constrained bosonic models 
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Recent experiments on arrays of Rydberg atoms have shown that preparing a system in a certain 
initial state can lead to unusually slow thermalization and persistent density oscillations [1]. This 
type of non-ergodic behavior has been attributed to the existence of “quantum many-body 
scars”, i.e., atypical, weakly-entangled eigenstates of the system that have high overlaps with a 
small subset of vectors in the Hilbert space. Periodic dynamics and many-body scars are believed 
to originate from a “hard” kinetic constraint: due to strong interactions, no two neighbouring 
atoms are both allowed to be in an excited Rydberg state. Here we investigate quantum many-
body scars in a 1D bosonic lattice model with a “soft” constraint: there are no restrictions on the 
allowed boson states and the particles can hop freely, but the amplitude of a hop depends on the 
occupancy of the hopping site. We find that this model exhibits similar phenomenology to the 
Rydberg atom chain, including weakly entangled eigenstates at high energy densities and the 
presence of a large number of exact zero energy states, with distinct algebraic structure. We 
discuss the relation of this model to the standard Bose-Hubbard model and possible 
experimental realizations using ultracold atoms. 
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Probing fractional Hall states in driven optical lattices 
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Driven optical lattices enrich the set of quantum models that can be simulated in cold-atom 
experiments [1, 2]. General arguments suggest that the interplay of strong interactions and 
driving in a thermodynamically large system introduces heating, leading to a featureless infinite-
temperature state in the long-time limit [3, 4]. Recently, several papers have focused on a 
possibility of prethermalization, arguing that some strongly correlated states can be probed on 
experimentally relevant timescales, before reaching the infinite-temperature limit [5, 6]. We 
investigate ways to prepare and probe fractional Hall states in a few-particle bosonic sample in a 
driven optical lattice. 
 
REFERENCES 
[1] G. Jotzu et al., Nature (London) 515, 237 (2014). 
[2] M. Aidelsburger et al., Nat. Phys. 11, 162 (2015). 
[3] L. D’Alessio, M. Rigol, Phys. Rev. X 4, 041048 (2014). 
[4] A. Lazarides, A. Das, R. Moessner, Phys. Rev. E 90, 012110 (2014). 
[5] T. Mori, T. Kuwahara, K. Saito, Phys. Rev. Lett. 116, 120401 (2016). 
[6] D. A. Abanin et al., Phys. Rev. B 95, 014112 (2017). 
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Abstract. Recent experiments on arrays of Rydberg atoms have shown that preparing a system in
a certain initial state can lead to unusually slow thermalization and persistent density oscillations
[1]. This type of non-ergodic behavior has been attributed to the existence of “quantum many-body
scars”, i.e., atypical, weakly-entangled eigenstates of the system that have high overlaps with a
small subset of vectors in the Hilbert space. Periodic dynamics and many-body scars are believed
to originate from a “hard” kinetic constraint: due to strong interactions, no two neighbouring atoms
are both allowed to be in an excited Rydberg state. Here we investigate quantum many-body scars
in a 1D bosonic lattice model with a “soft” constraint: there are no restrictions on the allowed boson
states and the particles can hop freely, but the amplitude of a hop depends on the occupancy of the
hopping site. We find that this model exhibits similar phenomenology to the Rydberg atom chain,
including weakly entangled eigenstates at high energy densities and the presence of a large number
of exact zero energy states, with distinct algebraic structure. We discuss the relation of this model
to the standard Bose-Hubbard model and possible experimental realizations using ultracold atoms.
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Numerical study of quantum gases in
optical lattices and in synthetic magnetic

fields

Abstract

Theoretical and experimental advances in the past few decades have resulted in the development
of a new research field – quantum simulations with ultracold atoms. The main idea is to create
a clean and precisely controllable quantum system which can then be used to simulate another
system of interest – one that is not as easy to study experimentally. Although there are
several different experimental platforms for quantum simulations, ultracold atoms are often
used because they are especially well suited for this role. Progress in cooling and trapping
techniques has enabled experimentalists to cool down atomic gases to quantum degeneracy and
to easily manipulate them. These systems are well isolated from their environment and do
not contain any impurities or defects. In particular, cold atoms in optical lattices – periodic
potentials made by interference of laser beams – have shown to be an excellent platform for the
study of various condensed matter systems. It is possible to realize different lattice geometries
in the desired number of dimensions. The lattice size, number of atoms, temperature of the
system and even the strength of interactions between atoms can be precisely tuned. Some
of these parameters would be impossible to change in a real condensed matter system. The
set of models which can be realized with ultracold atoms can be further extended by the use
of Floquet engineering. In this approach, the system is exposed to a suitable time-periodic
modulation. The resulting stroboscopic dynamics of this driven system can be related to a
corresponding static model through Floquet theory. In particular, Floquet engineering was
used to realize synthetic magnetic fields in systems of neutral cold atoms.

In this thesis we use numerical simulations and analytical insights to study dynamics of
several relevant systems which have been the focus of recent experiments with ultracold atoms
in optical lattices. One of the fundamental open questions that has gained lot of attention
recently is related to the thermalization of a general isolated quantum system. Such systems
are typically shown to thermalize in experiments, meaning that they lose all memory of their
initial state. However, there are several notable counterexamples. In particular, a new class
of systems which exhibit unusual thermaization has been recently discovered – the systems
with special eigenstates called quantum many-body scars. Another long-standing problem is

v



realization of topologically nontrivial models with ultracold atoms. These systems usually
require magnetic fields, whose effects can be mimicked by driving in a cold atom system.
However, interactions between atoms are always present in a realistic system. The interplay of
driving and interactions typically leads to the thermalization and additional considerations are
necessary in order to identify regimes where this process is slow and allows for the preparation
and measurement of an interesting topological state.

Recent experiments on Rydberg atom arrays have found evidence of anomalously slow ther-
malization and persistent density oscillations, which have been interpreted as a many-body
analog of the phenomenon of quantum scars. Periodic dynamics and atypical scarred eigen-
states have been obtained in a model with a “hard” kinetic constraint: the neighboring Rydberg
atoms cannot be simultaneously excited. In the first part of this thesis we propose a realization
of quantum many-body scars in a one-dimensional bosonic lattice model with a “soft” con-
straint in the form of density-assisted hopping. We discuss the relation of this model to the
standard Bose-Hubbard model and possible experimental realizations using ultracold atoms.
We find that this model exhibits similar phenomenology to the Rydberg atom chain, including
weakly entangled eigenstates at high energy densities and the presence of a large number of
exact zero energy states, with distinct algebraic structure.

Realization of strong synthetic magnetic fields in driven optical lattices has enabled imple-
mentation of topological bands in cold-atom setups. A milestone has been reached by a recent
measurement of a finite Chern number based on the dynamics of incoherent bosonic atoms. The
measurements of the quantum Hall effect in semiconductors are related to the Chern-number
measurement in a cold-atom setup; however, the design and complexity of the two types of
measurements are quite different. Motivated by these recent developments, in the second part
of this thesis we investigate the dynamics of weakly interacting incoherent bosons in a two-
dimensional driven optical lattice exposed to an external force, which provides a direct probe
of the Chern number. We consider a realistic driving protocol in the regime of high driving
frequency and focus on the role of weak repulsive interactions. We find that interactions lead to
the redistribution of atoms over topological bands both through the conversion of interaction
energy into kinetic energy during the expansion of the atomic cloud and due to an additional
heating. Remarkably, we observe that the moderate atomic repulsion facilitates the measure-
ment by flattening the distribution of atoms in the quasimomentum space. Our results also
show that weak interactions can suppress the contribution of some higher-order nontopological
terms in favor of the topological part of the effective model.

Strong interactions and strong synthetic magnetic fields, the main ingredients for the realiza-
tion of fractional quantum Hall states, are already available in experiments on cold atom gases
in periodically driven optical lattices. However, the interplay of the driving and interactions
introduces detrimental heating, and for this reason it is still challenging to reach a fractional
quantum Hall state in cold-atom setup. By performing a numerical study, in the third part of
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this thesis we investigate stability of a bosonic Laughlin state in a small atomic sample exposed
to driving. We identify an optimal regime of microscopic parameters, in particular interaction
strength U and the driving frequency ω, such that the stroboscopic dynamics supports the
basic ν = 1/2 Laughlin state. Moreover, we explore slow ramping of a driving term and show
that the considered protocol allows for the preparation of the Laughlin state on experimentally
realistic time-scales.

Keywords: ultracold gases, quantum simulations, nonequilibrium dynamics, quantum scars,
topological phases of matter, synthetic gauge fields, Floquet systems, exact diagonalization
Research field: Physics
Research subfield: Condensed matter physics
UDC number: 538.9
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Numeričko proučavanje kvantnih gasova u
optičkim rešetkama i u sintetičkim

magnetnim poljima

Sažetak

Teorijski i eksperimentalni napredak u poslednjih nekoliko decenija doveo je do razvoja nove
oblasti istraživanja – kvantnih simulacija sa ultrahladnim atomima. Osnovna ideja je da se
napravi čist i precizno podesiv kvantni sistem koji se zatim može koristiti za simuliranje nekog
drugog sistema od intresa koji nije tako jednostavan za eksperimentalno ispitivanje. Iako pos-
toji nekoliko različitih platformi za kvantne simulacije, ultrahladni atomi se često koriste jer
su izuzetno pogodni za ovu ulogu. Napredak u tehnikama za hla -denje i zarobljavanje atoma
omogućio je eksperimentalnim fizičarima da ohlade atomske gasove do kvantne degeneracije i
lako manipulǐsu njima. Ovi sistemi su dobro izolovani od svog okruženja i ne sadrže nikakve
nečistoće ili defekte. Hladni atomi u optičkim rešetkama, periodičnim potencijalima nastalim
interferencijom laserskih zraka, pokazali su se kao odlična platforma za proučavanje raznovrsnih
sistema kondenzovane materije. Moguće je realizovati različite geometrije rešetke u željenom
broju dimenzija. Veličina rešetke, broj atoma, temperatura sistema, čak i jačina interakcija
izme -du atoma mogu se precizno podešavati. Neke od ovih parametara ne bi bilo moguće
promeniti u sistemu kondenzovane materije. Skup modela koji se mogu realizovati pomoću
ultrahladnih atoma može se dalje proširiti korǐsćenjem Floke inženjeringa. U ovom pristupu,
sistem je izložen pogodnoj vremenski periodičnoj modulaciji. Rezultirajuća stroboskopska di-
namika ovog vo -denog sistema može se povezati sa odgovarajućim statičkim modelom putem
Floke teorije. Floke inženjering je korǐsćen i za realizaciju sintetičkih magnetnih polja u sis-
temima neutralnih hladnih atoma.

U ovoj tezi koristićemo numeričke simulacije i analitičke metode u cilju proučavanja di-
namike nekoliko relevantnih sistema koji su bili u fokusu skorašnjih eksperimenata sa ultrahlad-
nim atomima u optičkim rešetkama. Jedno od osnovnih otvorenih pitanja koje je nedavno
privuklo dosta pažnje povezano je sa termalizacijom izolovanog kvantnog sistema u opštem
slučaju. Takvi sistemi se u eksperimentima tipično termalizuju, što znači da gube svu mem-
oriju o svom početnom stanju. Ipak, postoji nekoliko značajnih kontraprimera. Jedna nova
klasa sistema sa atipičnom termalizacijom je nedavno otkrivena – to su sistemi sa posebnim
svojstvenim stanjima nazvanim kvantni vǐsečestični ožiljci. Još jedan dugogodǐsnji problem
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predstavlja realizacija topološki netrivijalnih modela sa ultrahladnim atomima. Takvi sistemi
obično zahtevaju magnetna polja, čiji efekti mogu da se oponašaju vo -denjem u sistemu hladnih
atoma. Me -dutim, interakcije izme -du atoma su uvek prisutne u realističnim sistemima. Uza-
jamno dejstvo dejstvo vo -denja i interakcija dovodi do termalizacije, pa su dodatna razmatranja
neophodna da bi se identifikovali režimi u kojima je ovaj proces spor i dozvoljava pripremu i
merenje interesantnih topoloških stanja.

Nedavni eksperimenti na nizovima Ridbergovih atoma pronašli su dokaze o anomalno sporoj
termalizaciji i dugotrajnim oscilacijama gustine, što je bilo interpretirano kao vǐsečestični anal-
ogon fenomena kvantnih ožiljaka. Periodična dinamika i atipična svojstvena stanja sa ožiljcima
dobijeni su u modelu sa “jakim” kinetičkim ograničenjem: susedni Ridbergovi atomi ne mogu
da budu istovremeno pobu -deni. U prvom delu ove teze predstavljena je realizacija kvant-
nih vǐsečestičnih ožiljaka u jednodimenzionalnom bozonskom modelu na rešetki sa “slabim”
ograničenjem u formi tunelovanja potpomognutim gustinom. Diskutovana je veza ovog mod-
ela sa standardnim Boze-Habard modelom i mogućnost njegove eksperimentalne realizacije sa
ultrahladnim atomima. Ovaj model ispoljava sličnu fenomenologiju kao i lanac Ridbergovih
atoma, uključujući slabo kvantno uvezana svojstvena stanja na velikim gustinama energije,
kao i prisustvo velikog broja egzaktnih nultih energetskih stanja sa posebnom algebarskom
strukturom.

Realizacija jakih sintetičkih magnetnih polja u vo -denim optičkim rešetkama je omogućila
implementaciju topoloških energetskih zona u sistemima hladnih atoma. Značajno postignuće
predstavlja skorašnje merenje nenultog Černovog broja bazirano na dinamici nekoherentnih be-
zonskih atoma. Merenja kvantnog Holovog efekta u poluprovodnicima povezana su sa merenjem
Černovog broja u eksperimentima sa hladnim atomima, ali se dizajn i kompleksnost ove dve
vrste eksperimenata dosta razlikuju. Motivisani skorašnjim eksperimentima, u drugom delu
ove teze ispitujemo dinamiku slabo interagujućih nekoherentnih bozona u dvodimenzionalnoj
vo -denoj optičkoj rešetki pod dejstvom spoljašnje sile, što omogućava direktno merenje Černovog
broja. Razmaramo realističan protokol vo -denja u režimu visoke frekvencije i fokusiramo se na
ulogu slabih odbojnih interakcija. Pokazujemo da interakcije dovode do redistribucije atoma
na topološke energetske zone kroz konverziju interakcione energije u kineticku energiju u toku
širenja atomskog oblaka, kao i zbog dodatnog zagrevanja. Primećujemo da umereno odbi-
janje izme -du atoma olakšava merenje putem poravnanja distribucije atoma u kvazi-impulsnom
prostoru. Naši rezultati tako -de pokazuju da slabe interakcije mogu da ponǐste doprinos nekih
netopoloških članova vǐseg reda u korist topološkog dela efektivnog modela.

Jake interakcije i jaka sintetička magnetna polja, glavni sastojci za realizaciju frakcionog
kvantnog Holovog efekta, već su dostupni u eksperimentima sa hladnim atomskim gasovima
u periodično vo -denim optičkim rešetkama. Me -dutim, uzajamno dejstvo vo -denja i interakcija
izaziva neželjeno zagrevanje, pa je iz tog razloga ostvarivanje frakcionog kvantnog Holovog
stanja u sistemu hladnih atoma i dalje veliki izazov. Uz pomoć numeričkih simulacija, u trećem
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delu ove teze istražujemo stabilnost bozonskih Laflinovih stanja u malom atomskom uzorku
pod dejstvom periodičnog vo -denja. Pronalazimo optimalan režim mikroskopskih parametara,
jačinu interakcija U i frekvenciju vo -denja ω, takvih da stroboskopska dinamika podržava os-
novno ν = 1/2 Laflinovo stanje. Pored toga, istražujemo postepeno uključivanje člana koji
opisuje vo -denje i pokazujemo da razmatrani protokol dozvoljava pripremu Lafinovog stanja na
eksperimentalno relevantnim vremenskim skalama.

Ključne reči: ultrahladni gasovi, kvantne simulacije, neravnotežna dinamika, kvantni ožiljci,
topološke faze materije, sintetička gejdž polja, Floke sistemi, egzaktna dijagonalizacija
Naučna oblast: Fizika
Uža naučna oblast: Fizika kondenzovanog stanja
UDK broj: 538.9
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Introduction

When atoms are cooled down to sufficiently low temperatures, their quantum statistics starts
to play an important role and the differences between bosons and fermions become apparent. In
the case of bosons, cooling leads to macroscopic occupation of a single quantum state – the Bose-
Einstein condensate (BEC). More than 70 years after its first theoretical prediction in 1924,
BEC was finally experimentally achieved in 1995, when the atoms were cooled down to 170 nK
[1]. This was made possible by advances in laser and evaporative cooling techniques during the
previous decades, as well as magnetic and optical trapping. These techniques were later also
applied to fermionic atoms, molecules, and mixtures of different atomic species, successfully
cooling down these systems to quantum degeneracy. During the last two decades since BEC
was first attained, significant progress has been made in both theoretical and experimental
research on quantum gases. There are many possible applications of ultracold quantum gases.
They can be used for precision measurements, and can also serve as a platform for quantum
computing and quantum simulations.

1.1 Quantum simulations

Quantum simulators were first envisioned by Feynman in 1982 [2, 3]. The idea was to create
a clean and highly controllable quantum system that can be used to simulate another complex
quantum system described by an equivalent Hamiltonian. The need for quantum computing
and quantum simulations has arisen due to computational limits of classical computers. While
it is theoretically possible to find the exact eigenvalues and eigenstates for any finite-dimensional
interacting quantum many-body system, the Hilbert space dimensions of such systems grow
exponentially with the system size, which quickly makes it impossible to store the necessary
data in the memory of even the most advanced modern supercomputers. Exact numerical cal-
culations are therefore limited to the smallest systems consisting only of tens of particles and
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Chapter 1 Introduction

lattice sites, which sometimes makes it very hard to extrapolate the results to the thermody-
namic limit. Feynman’s proposal was to use a computer which operates on quantum-mechanical
laws to solve quantum-mechanical problems. Unlike a classical computer, in this case the num-
ber of necessary computer elements – quantum bits – scales linearly with the size of the system
of interest. Additionally, a quantum computer is probabilistic – there is no unique output for
each input. Instead, such a computer returns several outputs with different probabilities, which
is expected as it is actually performing a quantum measurement.

Quantum simulators are a similar yet distinct concept. Unlike universal quantum computers,
which could in theory be programmed to execute any possible algorithm, but are still years
or even decades away from practical applications [4], quantum simulators are designed for a
specific task and are therefore easier to build. There is already a variety of their experimental
realizations on different platforms, for example using neutral cold atoms [5, 6], trapped ions
[7], superconducting circuits [8], photonic systems [9] or nitrogen-vacancy centers in diamond
[10, 11]. Some of the phenomena simulated in this way are quantum magnetism [12], strange
metal phase of high-temperature superconductors [13, 14], decay of a Higgs particle [15], black-
hole radiation [16] and photosynthesis [17]. Quantum simulations have shown to be useful
in a wide range of different research fields, including condensed-matter physics, high-energy
physics, cosmology and quantum chemistry. They could also be applied to classical problems
which require large computing power. While universal quantum computers are very prone to
computation errors, as each particle needs to be set to a precisely defined quantum state, this
is not the case for quantum simulators where the resulting quantity is typically an average over
the whole system and thus less sensitive to the exact state of an individual particle.

In particular, ultracold atoms in optical lattices provide a perfect platform for quantum sim-
ulations of various condensed-matter phenomena [5, 18]. Here, the optical lattice plays the role
of the crystal lattice in solid-state systems, while the atoms play the role of the electrons. Op-
tical lattice is a spatially periodic potential created by interference of two counter-propagating
laser beams. Schematic representations of two-dimensional and three-dimensional optical lat-
tices are shown in Fig. 1.1. Cold atoms can be trapped inside the lattice by the optical dipole
force. Various optical-lattice geometries can be realized depending on the intensity and relative
angles between interfering laser beams. The strength of interactions between the atoms can be
tuned using Feshbach resonances. The possibility to precisely adjust all microscopic parameters
of the system can be used to create exotic phases of matter that are not observed in nature,
or to experimentally probe quantities that are otherwise not accessible in condensed-matter
systems.

Two seminal condensed-matter models which were realized with ultracold atoms are the
Bose-Hubbard and the Fermi-Hubbard model. The experimental setup is similar in both cases;
a dilute atomic gas, typically consisting of alkali atoms (Li, Na, K, Rb, Cs), is placed inside a
magneto-optical trap, cooled down to low temperatures and exposed to an optical lattice po-
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(a)

(b)

Figure 1.1: Schematic of a two-dimensional (a) and three-dimensional (b) square optical
lattice. Adapted from Ref. [5].

tential. The exact model which is realized, Bose- or Fermi-Hubbard, depends on the bosonic or
fermionic nature of the atomic species which is used. Bosonic atoms are used more often as they
are easier to cool down to quantum degeneracy, given that their ground state is a Bose-Einstein
condensate. Early experiments have studied quantum phase transitions and characterized dif-
ferent phases of matter in these two models. Another topic that was experimentally explored
with these models is their nonequilibrium dynamics. In recent experiments, Bose-Hubbard and
Fermi-Hubbard models serve as a foundation for the realization of other generalized and more
complex models.

1.2 Bose-Hubbard model

Interacting spinless bosons in a periodical potential are described by the Bose-Hubbard Hamil-
tonian [19]. This model has only two parameters; hopping amplitude J which determines the
probability for a particle to tunnel to a neighbouring site, and the strength of interactions U
between two particles on the same site which can be either repulsive (U > 0) or attractive
(U < 0). The Bose-Hubbard Hamiltonian can be written as

ĤBH = −J
∑
〈l,m〉

(
â†l âm + H. c.

)
+ U

2
∑
l

n̂l (n̂l − 1) , (1.1)

where â†l and âl are creation and annihilation operators that create and annihilate a particle
at the lattice site with index l, n̂l = â†l âl is the particle number operator, and the label 〈l,m〉
stands for nearest neighbors. This model was derived using the single-band tight-binding ap-
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proximation [5]. The Hamilatonian shown here is given by a general expression for an arbitrary
number of dimensions. The equation for a specific number of dimensions can be written in
a similar manner, with potentially different hopping amplitudes in different directions. The
Bose-Hubbard Hamiltonian has a global U(1) gauge symmetry and all the symmetries of the
underlying lattice. As the occupancy of a single lattice site is not limited for bosonic particles,
the Hilbert space dimension grows with the system size as

dimH =
(
N + L− 1

N

)
, (1.2)

where N is the number of particles and L is the number of lattice sites.
Although the Bose-Hubbard Hamiltonian [19] was first formulated for solid state systems as

generalization of the (Fermi-)Hubbard model [20], the closest experimental realization of this
model is provided by ultracold bosonic atoms in an optical lattice. The necessary conditions for
the approximation to be valid are that the atoms are cooled down to a low enough temperature,
so that only the lowest energy band is significantly occupied, and that the lattice is deep enough,
thus making the Wannier functions sufficiently localized at each lattice site. As the atoms
interact by short-range Van der Waals forces and there are no long-range Coulomb interactions
between neutral atoms, the onsite interaction term is sufficient to describe the interactions in
this system. Long-range dipolar interactions can be avoided by choosing an atomic species
without a dipolar moment.

The phase diagram of the Bose-Hubbard model consists of the superfluid phase and the
Mott insulator phase, depending on the ratio J/U and the filling factor ν = N/L [19]. In the
superfliuid phase where the hopping term is dominant over the interaction term, the particles are
completely delocalized across all lattice sites. The ground state in this phase is a BEC and can
be described by a single Bloch wavefunction. It is characterized by long-range phase coherence.
This state can be described by the Gross-Pitaevskii equation – a nonlinear Schrödinger-like
equation. In contrast, the interaction term is dominant in the Mott insulator phase and in the
ground state an integer number of particles is localized at each lattice site. This is a strongly-
correlated quantum many-body state. In the limit U → 0, it is a product of local Fock states
at each site. Unlike the superfluid state, the Mott insulator state is incompressible, as particle
number fluctuations are energetically very costly. There is no more phase coherence in the
Mott insulating phase. Instead, there are long-range particle number correlations.

The phase transition between these two phases has been experimentally observed in an
ultracold quantum gas [21]. In this experiment, the ratio J/U was varied by increasing the
lattice potential depth, which resulted in decreased hopping amplitude J and increased onsite
interaction strength U . After setting the desired ratio, the confining potential was turned off
and the atomic cloud was left to expand freely in the optical lattice potential. The phase
coherence between different lattice sites was visible in the resulting interference pattern. The
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absence of interference maxima marked the onset of the Mott insulating phase. A schematic of
the two states and the corresponding interference patterns are given in Fig. 1.2. Experiments
like this one and their excellent agreement with theoretical predictions have confirmed that the
Bose-Hubbard model is indeed realized with cold atoms in optical lattices.

(a) Superfluid (b) Mott insulator

Figure 1.2: Schematic of a superfluid state (a) and a Mott insulator state (b) in an optical
lattice and corresponding interference patterns after expansion. Adapted from Ref. [21].

There are several generalizations of this model which include additional potentials, long-
range density-density or dipolar interactions, next-nearest-neighbour and other hopping terms,
interaction- or density-induced hopping terms, particles with spin, as well as the Bose-Fermi-
Hubbard which describes a mixture of bosonic and fermionic particles. The Bose-Hubbard
Hamiltonian will be the starting model for all the studies in this thesis. We will be interested
in systems with density-dependent hopping terms and systems with additional time-dependent
potentials – the so-called driven systems.

1.3 Nonequilibrium dynamics

While the properties of quantum systems in equilibrium are generally well understood, nonequi-
librium dynamics of such systems is still an active field of research. A system can be taken
out of equilibrium by changing its Hamiltonian, either by a sudden quench or by continuously
ramping one or more parameters. Systems in contact with a thermal reservoir are generally
expected to thermalize, but it is not clear whether a general isolated quantum system should
ever reach thermal equilibrium. Ultracold atoms provide an excellent experimental platform for
the study of quantum many-body physics out of equilibrium, as they are both precisely tunable
and well isolated from their environment [22]. In such experiments, the system is typically first
prepared in the ground state |ψ0〉 of some initial Hamiltonian Ĥ0 and then evolved under a
different Hamiltonian Ĥ, which may or may not be time-dependent.

The main question is through which mechanism and under which conditions isolated quan-
tum systems initially out of equilibrium evolve towards a state in thermal equilibrium. This
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question has been studied in a variety of experiments on quantum gases [23–29]. Complete
thermalization has been observed in some of these experiments [24, 28]. The final thermalized
state is independent of the initial state – all memory is lost during the process of thermaliza-
tion. However, this loss of information is somewhat surprising because of the fact that the
time-evolution operator Û(t) = e−iĤt is unitary and therefore preserves the system in a pure
quantum state. A potential answer is provided by the eigenstate thermalization hypothesis
(ETH) [30–33]. ETH states that thermalization happens already at the eigenstate level and
that this becomes visible in the expectation values of certain observables during time evolution,
due to dephasing between eigenstates which constitute the initial state. In other words, even
though the system stays in a pure quantum state indefinitely, the results of measurements will
appear thermalized after long enough time.

Let the initial state be a superposition of eigenstates of the Hamiltonian Ĥ from an energy
range Emin ≤ E ≤ Emax. If ETH is obeyed for a certain observable Ô, its diagonal matrix
elements in the basis of Ĥ, Oii = 〈i|Ô|i〉, will be approximately a smooth function of energy
Oii(E) over the energy range of interest. ETH then predicts that the expectation value of the
observable Ô after thermalization will be equal to the value predicted by the microcanonical
ensemble over the same energy range. A single eigenstate is sufficient to predict the thermal
expectation value, as all the eigenstates from the energy range in question would lead to the
same prediction. ETH typically holds for few-body observables, both local and nonlocal, which
are the ones usually measured in experiments. Although ETH has not been analytically proven
for a general interacting quantum system, it was shown to be valid in a number of numerical
studies [33]. Analytical proofs exist for several specific cases.

However, there are several types of systems which do not obey ETH. Some of them com-
pletely avoid thermalization. Two well known examples are integrable systems [34] and systems
which exhibit many-body localization [35]. Integrable systems typically have a large num-
ber of conserved quantities which constrain their evolution and prevent them from eventually
thermalizing. Many-body localization (MBL) requires random disorder in the system and is
characterized by the emergence of local integrals of motion. These local integrals of motion
preserve the information about the initial state. MBL was shown to be robust with respect to
perturbations. Signatures of MBL have been observed in multiple experiments [36–39].

An useful diagnostic of thermalization is the bipartite entanglement entropy [40, 41], a
quantity which measures the degree of entanglement between two complementary subsystems
labeled A and B:

SA = −Tr (ρAlnρA) . (1.3)

The entanglement entropy is defined for a certain pure state |ψ〉. In the preceding equation,
ρA = TrB|ψ〉〈ψ| is the reduced density matrix of the subsystem A. In contrast to thermalizing
systems where the entanglement entropy of highly excited eigenstates typically scales as the
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volume of the subsystem A, in the MBL phase it obeys the so-called “area law” – it is propor-
tional to the area of the boundary between the subsystems [35, 41, 42]. Additionally, during the
nonequilibrium dynamics the entanglement entropy grows logarithmically with time, instead of
the usual linear or power-law growth [43–45].

Another type of systems with unusually slow thermalization has emerged in recent years –
quantum many-body scarred systems. It was shown that these systems are neither integrable
nor many-body localized. This phenomenon was first observed experimentally in a quantum
simulator with an array of Rydberg atoms [46]. While the system exhibited the expected
thermalizing behavior for most initial states, preparing it in certain initial states surprisingly
resulted in persistent density oscillations – the system kept returning to its initial state. Theo-
retical explanation for such behavior has followed soon after the experimental results [47, 48].
It was shown that the states with unusual dynamics are superpositions of atypical eigenstates
dubbed “qunatum many-body scars”. These eigenstates have significantly smaller entangle-
ment entropies than the other eigenstates at the same energy scale. Their name was inspired
by the phenomenon of quantum scars in noninteracting systems, where some eigenstates of a
quantum system have enhanced probability density in vicinity of unstable periodic orbits of the
corresponding classical system [49]. In the case of quantum many-body scars, the eigenstates
are concentrated in certain regions of the Hilbert space instead of real space. Such atypical
eigenstates have been subsequently found in a variety of different systems [50–67]. It is however
still not completely clear what are the necessary conditions for their existence. A particular
realization of quantum many-body scars in a one-dimensional model of bosons with correlated
hopping will be the topic of the first part of this thesis.

Systems which slowly thermalize or do not thermalize at all could have several practical
applications. Most importantly, they could be useful for quantum computing, where it is of
crucial importance to preserve the system in a particular quantum state. Another application
would be to extend the available timescales in experiments on exotic quantum phases which
are currently hindered by rapid thermalization.

1.4 Synthetic magnetic fields

Strong magnetic fields are required for many phenomena in condensed matter physics, such
as integer and fractional quantum Hall effects. The Harper-Hofstadter model [68] is a two-
dimensional model which describes a charged particle in a periodic potential and perpendicular
magnetic field. Its Hamiltonian can be written as

ĤHH = −J
∑
l,m

(
e−2iπmαâ†l+1,mâl,m + â†l,m+1âl,m + H. c.

)
, (1.4)
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Figure 1.3: Schematic representation of the Harper-Hofstadter model.

where the parameter α is the magnetic flux through one plaquette in the units of flux quanta
h/q. The effects of magnetic field are encoded in the position-dependent complex hopping
coefficients e−2iπmα. A particle hopping in counterclockwise direction along the smallest closed
loop acquires a phase 2πα, as shown in Fig. 1.3, in analogy to a charged particle in magnetic
field which would acquire the Aharonov-Bohm phase. The energy spectrum of the Harper-
Hofstadter model has an interesting fractal structure, as can be seen in Fig. 1.4. The number
of energy bands depends on α; when α is a rational number the number of bands is equal to
its denominator. For example, there are three energy bands for α = 1/3, see Fig. 1.4(a), as
well as for α = 2/3. The plot of energy versus α shown in Fig. 1.4(b) is called the “Hofstadter
butterfly”.

(a) (b)

Figure 1.4: (a) Energy spectrum for α = 1/3. (b) “Hofstadter butterfly” [68] – energy
spectrum of the Harper-Hofstadter model.

In the seminal TKNN paper [69] it was shown that the quantization of the Hall conductivity
observed in the integer Hall effects can be directly related to the topological index of the
microscopic model (1.4) – the Chern number. The Chern number is defined for a single energy
band and is always an integer. It is also a topological invariant, which means that it is insensitive
to local deformations and disorder, and changes only when the global topological properties of
the system change, i.e. when the band gap closes. The Chern numbers for the three energy
bands of the Harper-Hofstadter model with α = 1/3 are shown in Fig. 1.4(a). Topological
concepts in physics have become an increasingly important field of research in the last few
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decades. In 2015, the deflection of an atomic cloud in an optical lattice with synthetic magnetic
field as a response to external force was used to experimentally measure the Chern number in
a non-electronic system for the first time [70].

The Chern number is closely related to the Berry curvature and Berry phase [71]. It is
defined as the integral of the Berry curvature [72] over the first Brillouin zone divided by 2π,

cn = 1
2π

∫
FBZ

Ωn(k) · dS, (1.5)

where n denotes the band number and the Berry curvature is Ωn(k) = i∇k×〈un(k)|∇k|un(k)〉,
expressed in terms of eigenstates |un(k)〉. The Berry phase is a geometric phase that a particle
acquires when it makes a closed loop in some parameter space and can be thought of as the
analogue of the Aharonov-Bohm phase, while the Berry curvature is then analogous to the
magnetic field.

If one wants to simulate systems with magnetic fields using cold atoms, the problem arises
from the fact that atoms are charge-neutral and therefore do not feel the Lorentz force. These
effects have to be included in some artificial way, by engineering the so-called synthetic magnetic
fields. One of the first ideas was to take advantage of the similarity between the Lorentz force
and the Coriolis force. This was experimentally realized in 2000 using rotating quantum gases
[73], where the appearance of quantized vortices was observed, which is a property of superfluids
and superconductors in magnetic field. However, this experimental realization poses several
difficulties. Maximal rotation velocity achievable in the experiment is technically limited and
it is difficult to realize a stable rotating optical lattice. All of this has made it impossible
to obtain strong synthetic magnetic fields required for quantum Hall effects using rotational
approach. In 2009, after years of efforts, synthetic magnetic potentials for neutral atoms were
implemented by exploiting atomic coupling to a suitable configuration of external lasers [74, 75].
These techniques were further extended to optical lattices, leading to the realization of strong,
synthetic, magnetic fields. As a result, important condensed-matter models – the Harper-
Hofstadter (1.4) and the Haldane model [76] – are nowadays available in cold-atom setups
[77–80]. The key property of these models is their non-trivial topological content.

1.5 Floquet engineering

One way to enrich the set of models which can be realized using cold atoms in optical lattices is
by adding time-periodic perturbations to the system. Such systems are called driven systems.
This can be done either by lattice shaking – periodic modulation of the lattice position, or
through laser-assisted tunneling, which results in a periodic modulation of the lattice potential.
Both methods have been used in present-day cold-atom realizations of important topological
models [77–79], where they were necessary in order to engineer synthetic magnetic fields. A
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schematic representation of the experimental setup [77] which realized the famous Harper-
Hofstadter model [68] given by Eq. (1.4) can be seen in Fig. 1.5. In this thesis we will mostly
consider laser-assisted tunneling. The resulting time-dependent Hamiltonian can in that case
be written as

Ĥ(t) = Ĥ0 + V̂ (t), (1.6)

where Ĥ0 is typically the underlying Bose-Hubbard Hamiltonian ĤBH and V̂ (t) is a time-
periodic modulation of the lattice potential with frequency ω and amplitude κ

V̂ (t) =
∑
i

n̂iVi(t). (1.7)

Here i is the lattice site index and n̂i is the particle number operator for that lattice site.

Figure 1.5: Schematic of the experimental setup which implements the Harper-Hofstadter
model using ultracold atoms in an optical lattice. Synthetic magnetic field is realized through
Floquet engineering. Hopping along the x-axis is first inhibited by a magnetic field gradient B′
which generates an offset ∆ between neighboring sites. The hopping is then restored using two
additional pairs of laser beams with wave vectors k1, k2 and frequencies ω1, ω2. Laser-assisted
tunneling adds a complex phase to the hopping coefficients. The bare hopping amplitude is
denoted by J and the complex hopping amplitude by K. This setup mimics the complex phase
acquired by a charged particle moving in a magnetic field. In this model, a particle hopping
in counterclockwise direction around a single plaquette acquires a phase π/2, which makes it
equivalent to the Harper-Hofstadter model with α = 1/4. Adapted from Ref. [77].

Using Floquet theory [81], a periodically driven system can be related to a time-independent
effective Hamiltonian. A properly chosen periodic modulation can result in an effective Hami-
latonian which corresponds to a relevant condensed-matter system. The mapping is known as
Floquet engineering and its important features in the context of optical lattices are discussed in
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Refs. [82–88]. The basis of this mapping is Floquet’s theorem [89], which is applicable to time-
periodic Hamiltonians, analogously to the more famous Bloch’s theorem for systems periodic in
space. Ultracold quantum gases provide an optimal platform for Floquet engineering, as these
systems are usually isolated from their environment, which inhibits dissipative processes, and
the highly-controllable parameters of the system can be easily periodically modulated.

Analogously to the Bloch wave states in spatially periodic systems, Floquet states can be
written as

|ψn(t)〉 = e−iεnt|un(t)〉, (1.8)

where εn are the quasienergies and |un(t)〉 = |un(t + T )〉 are the time-periodic Floquet modes
which have the same period T = 2π/ω as the Hamiltonian Ĥ(t). As in the rest of this thesis,
here we work in the units where ~ = 1. Quasienergies εn are only defined up to integer multiples
of the driving frequency ω, similarly to the quasimomenta which are only defined inside the
first Brillouin zone. The Floquet states are the eigenstates of the evolution operator over one
driving period Û(T, 0). When a system governed by a time-periodic Hamiltonian is observed
stroboscopically – at times that are integer multiples of the period, it behaves as if it was
governed by some time-independent effective Hamiltonian. The dynamics during one period –
micromotion – is described by another periodic operator, the so-called kick operator that has
the same periodicity as the original time-dependent Hamiltonian. The time-evolution operator
corresponding to the Hamiltonian (1.6) can be represented as

Û(t, t0) = e−iK̂(t)e−i(t−t0)Ĥeff eiK̂(t0), (1.9)

where Ĥeff is the full time-independent effective Hamiltonian that describes slow motion and
K̂(t) is the time-periodic kick-operator that describes micromotion [82, 83].

The effective Hamiltonian corresponding to a certain time-dependent Hamiltonian always
exists, but in the general case it cannot be analytically calculated. However, there are several
approximation schemes that allow computation of the leading terms of the effective Hamiltonian
and the kick-operator. In cases where the driving frequency ω is large enough compared to the
matrix elements of the Hamiltonian, two most often used approximations are the high-frequency
expansion [82, 83, 90] and the Magnus expansion [91–93], which is in terms of the driving period
T = 2π/ω. The advantage of the former method over the latter is that the effective Hamiltonian
does not depend on the initial driving phase. For this reason, we will only use the high-frequency
expansion in this work. A general time-periodic modulating potential can be written in the
form

V̂ (t) =
∞∑
j=1

(
V̂ (j)eijωt + V̂ (−j)e−ijωt

)
. (1.10)

In the high-frequency expansion, the first few terms of the effective Hamilatonian corresponding
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to the time-dependent Hamilatonian (1.6) are then [82]

Ĥeff = Ĥ0 + 1
ω

∞∑
j=1

1
j

[
V̂ (j), V̂ (−j)

]
+ 1

2ω2

∞∑
j=1

1
j2

([[
V̂ (j), Ĥ0

]
, V̂ (−j)

]
+ H.c.

)

+ 1
3ω2

∞∑
j,l=1

1
jl

([
V̂ (j),

[
V̂ (l), V̂ (−j−l)

]]
−
[
V̂ (j),

[
V̂ (−l), V̂ (l−j)

]]
+ H.c.

)
+O

( 1
ω3

)
. (1.11)

This is a general equation that can be applied to a variety of different setups.
Floquet engineering provides a powerful tool for modern cold-atom experiments. However,

the interactions between atoms can never be completely avoided and the combination of in-
teractions and driving leads to unwanted heating. Thermalization to infinite temperature in
the long-time and thermodynamic limit is practically unavoidable in such systems [94, 95].
Nevertheless, it might still be possible to find some parameter regime where thermalization is
slow enough, for example if the system stays in the prethermalized state [96–98] on experimen-
tally relevant timescales. This would allow experimental measurements in driven systems to be
performed before full thermalization occurs.

1.6 This thesis

Throughout this thesis, we will use numerical simulations to study several interesting models
which can be realized using ultracold bosonic atoms in optical lattices. In particular, we will be
interested in systems which exhibit unusual nonergodic dynamics and systems with nontrivial
topological properties. Both of these topics represent very active fields of research which have
rapidly developed in recent years.

In Chapter 2 we will present a realization of quantum many-body scars in a bosonic model
with density-dependent hopping. Since the first experimental observation in a Rydberg atom
quantum simulator [46] and the subsequent theoretical explanation using the PXP model [47,
48], quantum many-body scars have been shown to exist in a variety of different systems [50–
67]. However, most of the previous realizations have relied on the presence of “hard” kinetic
constraints which restrict the available Hilbert space. For example, in the original PXP model
this constraint arises from the fact that two neighbouring atoms cannot be simultaneously
excited into Rydberg states due to an infinite energy penalty. Another question that was raised
in the literature is proximity of quantum-scarred models to integrability, as adding certain
perturbations to the PXP model can make it integrable. The main goal of Chapter 2 will be
to show that quantum many-body scars can exist in manifestly nonintegrable systems with
“soft” constraints only. To this end we will compare several similar models with different
types of constraints. We will also formulate an analytically tractable approximation which
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can explain and qualitatively predict revivals of quantum fidelity in the model which exhibits
quantum many-body scars. An advantage of this model is that it could be easily realized in an
optical lattice under a suitable Floquet scheme, thus providing a new experimental platform
for quantum many-body scars. This would also allow future probes of this phenomenon to go
beyond one-dimensional systems.

The main objective of the second part of this doctoral dissertation will be to study the
interplay of topological features and interactions by investigating the dynamics of bosons in
driven optical lattices. The approximations necessary for the computation of the effective
Hamiltonian in a Floquet engineering scheme are mostly applied to noninteracting systems
in the high-frequency limit, even though interactions usually cannot be realistically neglected
and the interplay of driving and interactions can heat up the system to a featureless, infinite-
temperature regime according to general considerations [94, 95]. One of the main open questions
is whether it is possible to find some parameter regimes where the system is in the so-called
prethermalized state [96–98] on intermediate timescales and can be described by some model
of interest.

In Chapter 3 we will examine the effects of weak on-site interactions in relation to the
recent Chern number measurement [70]. We take into account a realistic driving scheme and
experimental parameters. Although the interactions are generally thought to complicate the
experimental procedure, we will show that weak repulsive interactions can be beneficial for the
measurement in at least two ways. Firstly, the interactions make the probability distribution in
momentum space more homogeneous, which is important because the Chern number captures
the contributions of Berry curvature from the whole Brillouin zone. Secondly and somewhat
surprisingly, the interactions can cancel-out some unwanted higher-order therms which are a
result of the driving protocol but are not related to the topological model of interest.

In Chapter 4 we will study a similar system as in Chapter 3, but now focusing on strong
interactions. We will investigate the possibility of realizing a strongly correlated phase – frac-
tional quantum Hall state – in driven systems on experimentally relevant timescales. Two
main ingredients for the realization of fractional quantum Hall states, strong interactions and
strong synthetic magnetic fields, are already available in present-day cold-atom experiments.
However, even after years of experimental progress and numerous theoretical proposals, these
states have still not been achieved, mainly due to problems related to heating caused by driving
in the strongly interacting regime. Experimental realization of fractional quantum Hall states
in cold-atom setups would be of particular interest due to their anyonic excitations, which
could be of use for topological quantum computing [99]. Here we identify an optimal regime of
microscopical parameters for the preparation of these highly sought-after states.

Finally, we will summarize all the results from this doctoral dissertation in Chapter 5.
Additional derivations and technical details are provided in Appendices A-G.
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Quantum scars of bosons with correlated
hopping

Semiclassical studies of chaotic stadium billiards have revealed the existence of remarkable
non-chaotic eigenfuctions called “quantum scars” [49]. Scarred eigenfunctions display anoma-
lous enhancement in regions of the billiard that are traversed by one of the periodic orbits in
the classical limit when ~→ 0. It was shown that quantum scars lead to striking experimental
signatures in a variety of systems, including microwave cavities [100], quantum dots [101], and
semiconductor quantum wells [102].

A recent experiment on a quantum simulator [46], and subsequent theoretical work [47, 103],
have shown that quantum many-body scars can occur in strongly interacting quantum systems.
The experiment used a one-dimensional Rydberg atom platform in the regime of the Rydberg
blockade [46, 104, 105], where nearest-neighbour excitations of the atoms were energetically
prohibited. The experiment observed persistent many-body revivals of local observables after
a “global quench” [106] from a certain initial state. In contrast, when the experiment was
repeated for other initial configurations, drawn from the same type of “infinite” temperature
ensemble, the system displayed fast equilibration and no revivals. These observations pointed
to a different kind of out-of-equilibrium behavior compared to previous studies of quantum
thermalization in various experimental platforms [23, 28, 36, 38, 107].

In both single-particle and many-body quantum scars, the dynamics from certain initial
states leads to periodic revivals of the wave function. In the former case, this happens when
the particle is prepared in a Gaussian wave packet initialized along a periodic orbit [49], while
in the latter case the revivals can be interpreted as a nearly-free precession of a large emergent
SU(2) spin degree of freedom [108, 109]. Another similarity between single- and many-body
quantum scars is the existence of non-ergodic eigenstates. In the single-particle case, such eigen-
states are easily identified by their non-uniform probability density that sharply concentrates
along classical periodic orbits. In the many-body case, non-ergodic eigenstates are broadly
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defined as those that violate Eigenstate Thermalization Hypothesis (ETH) [30, 31]. Scarred
eigenstates violate the ETH in a number of ways: for example, they appear at evenly spaced
energies throughout the spectrum [47, 48, 60], they have anomalous expectation values of local
observables compared to other eigenstates at the same energy density, and their entanglement
entropy obeys a sub-volume law scaling [48].

In recent works, the existence of atypical eigenstates has been taken as a more general defini-
tion of quantum many-body scaring. For example, highly-excited eigenstates with low entangle-
ment have previously been analytically constructed in the non-integrable AKLT model [50, 51].
A few of such exact eigenstates are now also available for the Rydberg atom chain model [52].
The collection of models that feature atypical eigenstates is rapidly expanding, including per-
turbations of the Rydberg atom chain [48, 53, 54], theories with confinement [55, 56, 110],
Fermi-Hubbard model beyond one dimension [57, 111], driven systems [58], quantum spin
systems [59, 61], fractional quantum Hall effect in a one-dimensional limit [62], and models
with fracton-like dynamics [63–65]. In a related development, it was proposed that atypical
eigenstates of one Hamiltonian can be “embedded” into the spectrum of another, thermaliz-
ing Hamiltonian [112], causing a violation of a “strong” version of the ETH [33, 41]. This
approach allows to engineer scarred eigenstates in models of topological phases in arbitrary
dimensions [66]. From a dynamical point of view, it has been shown that models with scarred
dynamics can be systematically constructed by embedding periodic on-site unitary dynamics
into a many-body system [67].

A feature shared by many scarred models is the presence of some form of a kinetic con-
straint. In the Rydberg atom chain, the constraint results from strong van der Waals forces,
which project out the neighboring Rydberg excitations [113]. Such Hilbert spaces occur, for
example, in models describing anyon excitations in topological phases of matter [114–118] and
in lattice gauge theories [119–121], including the Rydberg atom system [122, 123]. Recent works
on periodically driven optical lattices have started to explore such physics [124, 125]. On the
other hand, kinetic constraints have been investigated as a possible pathway to many-body
localization without disorder [35]. In classical systems, non-thermalizing behavior without dis-
order is well-known in the context of structural glasses [126–128]. The mechanism of this type
of behavior is the excluded volume interactions that impose kinetic constraints on the dynam-
ics [129, 130]. Similar type of physics has recently been explored in quantum systems where a
“quasi many-body localized” behavior was proposed to occur in the absence of disorder [131–
141].

In this Chapter we investigate the relation between kinetic constraints, slow dynamics and
quantum many-body scars. In contrast to previous work, which focused on models of spins
and fermions that are closely related in one dimension due to the Jordan-Wigner mapping,
here we study one-dimensional models of bosons with density-assisted hoppings, which realize
both “hard” and “soft” kinetic constraints, whilst being non-integrable. In Section 2.1 we
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introduce the models and discuss properties of their Hamiltonians when viewed as adjacency
matrices of graphs in the Fock space. In Section 2.2 we investigate thermalization properties of
these models by studying their energy level statistics, entanglement entropy of eigenstates, and
dynamics under global quench. Depending on the form of the hopping term, we demonstrate
that the models encompass a rich phenomenology, including regimes of fast thermalization, the
existence of periodic revivals and many-body scars, as well as the Hilbert space fragmentation
that has been found in recent studies of fractonic models [63–65]. Unlike the experimentally
realized Rydberg atom system, we find evidence of many-body scars in a bosonic model without
a hard kinetic constraint, i.e., with a fully connected Hilbert space. In Section 2.3 we identify
initial states that give rise to periodic many-body revivals in the quantum dynamics, and we
introduce a “cluster approximation” that captures the scarred eigenstates that are responsible
for periodic revivals. In Section 2.4 we discuss zero-energy eigenstates of our models and their
algebraic structure. Finally, in Section 2.5 we present our conclusions and discuss possible
experimental realizations of these models using ultracold atoms.

2.1 Models and their Hilbert spaces

A fundamental ingredient of kinetically constrained models is “correlated hopping”: a particle
can hop depending on the state of its neighbors. In this Chapter we consider a system of Np

bosons on a one-dimensional lattice with L sites. We consider models where the total filling
factor, ν = Np/L, is conserved, and we will mainly present results in the dense regime, ν = 1.
We have studied models with ν < 1 and ν > 1, but we found them to be either too constrained
or not constrained enough, and therefore less interesting. We emphasize that the bosons in our
study are not hard-core, i.e., the occupancy of any lattice site can take any value from 0 to Np.

2.1.1 Models

We study three different models, defined by the Hamiltonians:

Ĥ1 = −J
L∑
j=1

(
b̂†j b̂j+1n̂j + n̂j−1b̂

†
j b̂j−1

)
, (2.1)

Ĥ2 = −J
L∑
j=1

(
n̂j b̂
†
j b̂j+1 + b̂†j b̂j−1n̂j−1

)
, (2.2)

Ĥ3 = −J
L∑
j=1

(
n̂j+1b̂

†
j b̂j+1n̂j + n̂j−1b̂

†
j b̂j−1n̂j

)
. (2.3)

All three models contain a free-boson hopping term, b̂†j b̂j+1, which is dressed in various ways
by density operators, n̂j = b̂†j b̂j. We will show that the position of the density operator n̂j com-
pletely changes the behavior of these models, ranging from fast thermalization to the breakup
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of the Hamiltonian into disconnected, exactly solvable sectors. For example, note that Ĥ1 and
Ĥ2 are related to each other via free boson hopping,

Ĥ2 = Ĥ1 − J
∑
j

(
b̂†j b̂j+1 + b̂†j b̂j−1

)
, (2.4)

which can be easily proven using bosonic commutation relations. We will see below that this
innocuous free-boson hopping leads to surprisingly different dynamical properties of the two
models.

The motivation behind introducing three different models in Eqs. (2.1)-(2.3) can be sum-
marized as follows. Hamiltonian Ĥ1 describes a model where a particle cannot hop to the left if
that site is not already occupied by at least one particle, and cannot hop to the right if it is the
only particle left on its initial site. This introduces constraints to the system. Conversely, there
are no such constraints in the case of Ĥ2. Indeed, the hopping coefficients are only modified in
intensity by the particle-number operator. Hamiltonian Ĥ3 introduces additional constraints
compared to Ĥ1. The number of unoccupied sites and their positions remain constant under
the action of this Hamiltonian. This leads to different connectivity of the Hilbert space in each
of the models, as we explain in the next Section.

We consider periodic boundary conditions (L + 1 ≡ 1) and set ~ = J = 1. With periodic
boundary conditions, all three Hamiltonians Ĥ1, Ĥ2 and Ĥ3 have translation symmetry, thus
their eigenstates can be labelled by momentum quantum number, k, quantized in units of 2π/L.
In addition, Ĥ3 has inversion symmetry. We denote by I = 0 and I = 1 the sectors that are
even and odd under inversion, respectively.

Without restrictions on the boson occupancy, the Hilbert space of Ĥ1, Ĥ2 and Ĥ3 grows
very rapidly. For L = Np = 12, the Hilbert space size of the k = 0 sector is 112720 (the largest
one we will consider for Ĥ1 and Ĥ2). As previously mentioned (see also the next Section), the
Hilbert space of Ĥ3 splits into many disconnected components, thus it is possible to consider
only one connected component at a time and disregard the unoccupied sites whose positions
do not change. This is more relevant when looking at properties such as thermalization, than
fixing the filling factor. However, the boundary conditions are in that case no longer periodic,
and the system does not have translation symmetry. Considering only a system with the size
L/2, filling factor ν = 2, open boundary conditions and minimal number of particles per site
equal to 1 is completely equivalent to considering the largest component of the full system which
has the size L, filling factor ν = 1, periodic boundary conditions and no restrictions on the
occupancies. The Hilbert space size of the symmetric invariant sector of the largest connected
component of L = Np = 22 is 176484 and this is the largest sector that we will consider for Ĥ3.
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2.1.2 Graph structure and bipartite lattice

Since we will be interested in the dynamical properties, it is convenient to first build some
intuition about the structure of the Hamiltonians of the three models in Eqs. (2.1)-(2.3). A
Hamiltonian can be viewed as the adjancency matrix of a graph whose vertices are Fock states
of bosons, |n1, n2, . . . , nL〉. If the Hamiltonian induces a transition between two Fock states,
the corresponding vertices of the graph are connected by a link. The graphs that show how the
configuration space is connected have very different structure for the three Hamiltonians Ĥ1,
Ĥ2 and Ĥ3, as can be observed in Fig. 2.1.
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Figure 2.1: Connectivity of the Hilbert space. Adjacency graph for (a) Ĥ1, (b) Ĥ2, (c) Ĥ3, all
for L = Np = 3. (d), (e) and (f): same as (a), (b) and (c) but for L = Np = 6. To avoid clutter,
we do not label the vertices in (d), (e) and (f). All graphs are weighted, i.e., the line thickness
is proportional to the magnitude of the corresponding hopping coefficient. Several different
clusters of configurations are visible in the case of Ĥ1. The clusters start to form already for
L = 3 (for example, the configurations 012–021–003 in (a)) and become more prominent for
L = 6 (d). In the case of Ĥ2, almost all configurations are well-connected to the rest of the
graph. The graphs for Ĥ3 show that the Hilbert space is highly reducible: its graph splits into
many disconnected components.

The entire graph of Ĥ2 is well-connected and it has the same structure as the graph of
the standard Bose-Hubbard model: the particle-number operators in Ĥ2 do not introduce any
constraints, but only affect the magnitude of the hopping coefficients. In contrast, the Ĥ1

graph shows several clusters of configurations that are weakly connected to the rest of the
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graph. “Weakly connected” means that there is a small number of connections leading outside
the cluster and that their respective hopping coefficients are smaller in magnitude than those
of the surrounding connections within the cluster. A state that is initially located inside a
cluster is therefore more likely to stay inside during an initial stage of the time evolution, which
increases the probability of revivals and slows down the growth of entanglement entropy. We
will provide a more quantitative description and examples that illustrate this in Section 2.3.
Finally, the graph of Ĥ3, due to even stronger constraints, is actually disconnected, which is
an example of Hilbert space fragmentation that was previously shown to cause non-ergodic
behavior in fracton-like models [64, 65]. This predicts that thermalization and dynamics in the
three models will be very different, which we will confirm in the following Section. However, we
note that the number of connections and the topology of the graph is not the only relevant factor
for the dynamics. The magnitude of the hopping coefficients between different configurations
is also important, see Appendix A.

We note that the relation between Ĥ1 and Ĥ3 is reminiscent of the relation between the
quantum East model [142] and the “PXP” model describing the atoms in the Rydberg blockade
regime [47, 48, 113]. Like Ĥ3, the PXP model is doubly constrained and inversion symmetric,
while Ĥ1 and the quantum East model are asymmetric versions of those two models with only
a single constraint. The graph of the quantum East model is similar to that of Ĥ1, in that it
contains bottlenecks which slow down the growth of entanglement entropy [142].

The graph of Ĥ1 is bipartite, i.e. all the basis configurations can be divided into two dis-
joint sets, and the action of the Hamiltonian connects configurations in one set only to the
configurations in the other and vice-versa (the Hamiltonian is off-diagonal). One way to sort
configurations into these two sets is by parity of the quantity

∆a = |neven − nodd + C|
2 , (2.5)

where C = 0 if L is even and C = 1 if L is odd. We define neven and nodd as the total numbers
of particles at even and odd sites, respectively,

neven =
L1∑
l=1

n2l, nodd =
L2∑
l=1

n2l−1, (2.6)

where L1 = L2 = L/2 if L is even, and L1 = (L − 1)/2, L2 = (L + 1)/2 if L is odd. If only
nearest neighbor hoppings are allowed and if no two odd sites are coupled (if the system has
open boundary conditions for any L or periodic boundary conditions for L-even), each hopping
either increases neven by one and decreases nodd by one, or vice-versa. This means that each
hopping can change ∆a only by ±1.

Another way to sort configurations into two sets is by parity of the distance from the
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configuration |111...111〉, which we define as

da = minn{〈111...111|Ĥn
1 |a〉 6= 0}. (2.7)

In this case, the two sets are the configurations with even and with odd distances da. One
hopping can change da only by ±1 or 0. Changes by other values are not possible by definition
if the Hamiltonian is Hermitian (all hoppings are reversible). Both da and ∆a have the same
parity, thus da must always change after one hopping in even system sizes or in systems with
open boundary conditions. As a consequence, da cannot change by 0 if ∆a can only change by
±1.

We have shown above that the Ĥ1 model is bipartite for open boundary conditions irre-
spective of the system size L parity or for periodic boundary conditions when L is even. Now
we prove that this property of Ĥ1 holds true when L is odd and filling factor ν = 1. Due
to the constraints imposed by Ĥ1, a particle cannot hop to an empty site to its left. At the
filling factor ν = 1, all configurations except 111...111 contain at least one empty site. These
configurations can be connected to 111...111 by hoppings only to the right, which is also the
shortest possible path da, defined in Eq. (2.7). The empty sites can be filled only with particles
that come from the site on their left, as hopping from the other side is forbidden. This implies
that at least for one pair of adjacent sites (an empty site and the filled one on its right) there
will be no particles hopping between them on the path to 111...111. We can then redefine the
numbering of sites to start from the filled site in this pair. This is equivalent to setting the
right (filled) site as the first and the left (empty) site as the last site in the chain and imposing
open boundary conditions. In this way, no two odd sites will be coupled and the argument that
the absolute difference between the numbers of particles on even and odd sites can only change
by ±1 will still be valid.

Unlike Ĥ1, Ĥ2 in the same geometry is not bipartite. The reason for this is that there are
no constraints in the case of Ĥ2, so the shortest path to 111...111 can include hoppings both to
the right and to the left, which means that it is not always possible to choose the numbering in
such a way that no two odd sites are coupled. Because of the open boundary conditions, the
Hamiltonian Ĥ3 in its largest connected component is also bipartite for all system sizes.

The graphs of bipartite systems do not contain any loops of odd dimension (triangles, pen-
tagons, heptagons and so on). Moreover, the energy spectra of bipartite systems are symmetric
around zero. Their Hamiltonians anticommute with the operator (−1)∆a . The presence of such
an operator in a bipartite lattice leads to exact zero-energy states in the spectrum [143, 144].
It can be shown that the exponentially growing number of zero modes of Ĥ1 is related to the
difference between the numbers of elements in the two sets of its bipartite graph, as explained
in Section 2.4. Additionally, the algebraic structure of zero-energy eigenstates can be explained
by the structure of the graph – such eigenstates can be constructed as superpositions of config-
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urations from only one of the sets. Similar properties are found for Ĥ2 for even L, as its graph
is also bipartite in that case. The properties of the zero-energy manifold are discussed in more
detail in Section 2.4.

2.2 Dynamics and entanglement properties

We now investigate the phenomenology of the models introduced in Eqs. (2.1)-(2.3). We use
exact diagonalization to obtain the complete set of energy eigenvalues and eigenvectors, from
which we evaluate the level statistics and the distribution of entanglement entropies for the
three models. Furthermore, we probe dynamical properties of the models by studying a global
quench, simulated via Krylov iteration.

2.2.1 Level statistics and entanglement entropy

The energy level statistics is a standard test for thermalization of models that cannot be solved
exactly. A convenient way to probe the level statistics is to examine the probability distribution
P (r) [145] of ratios between consecutive energy gaps sn = En+1 − En,

r = min(sn, sn+1)
max(sn, sn+1) . (2.8)

The advantage of studying P (r), instead of P (sn), is that there is no need to perform the
spectrum unfolding procedure – see Ref. [94]. For standard random matrix theory ensembles,
both P (r) and the mean 〈r〉 are well-known [146]. When computing the same quantities in a
microscopic physical model, it is crucial to resolve all the symmetries of the model.

The probability distribution P (r) of the ratios of two consecutive energy gaps is shown
in Figs. 2.2(a), (b) and (c) for the three Hamiltonians Ĥ1, Ĥ2 and Ĥ3 respectively, and two
momentum or inversion sectors. In all three cases, the energy levels repel, i.e., the distribution
tends to zero as r → 0. For Ĥ2, the distribution is particularly close to the Wigner-Dyson (non-
integrable) line. For Ĥ1, the distribution is also consistent with Wigner-Dyson when we restrict
to the middle 1/3 of the spectrum (and after removing special states with E = 0). We exclude
the edges of the spectrum because they contain degeneracies which are not symmetry-related.
However, such states do not appear to have a major effect on the level statistics distribution,
which is still closer to the Wigner-Dyson than the Poisson distribution even if they are included.
The level statistics of Ĥ3 within the largest connected component of the Hilbert space is shown
in Fig. 2.2(c) and is also consistent with the Wigner-Dyson distribution without restricting the
spectrum. However, we will demonstrate below that the dynamics in some smaller connected
components of Ĥ3 can be exactly solved.

As a complementary diagnostic of thermalization, we next compute the entanglement en-
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Figure 2.2: Level statistics and entanglement. (a), (b) and (c): Probability distribution
of the ratios of two consecutive energy gaps. (a) Ĥ1 (middle third of the spectrum without
E = 0 states, L = Np = 12), (b) Ĥ2 (full spectrum, L = Np = 12) and (c) Ĥ3 (largest
connected component of L = Np = 22). The black dashed line shows the Poisson distribution,
which corresponds to the integrable case, while the red dashed line is the distribution of the
Gaussian orthogonal ensemble, which corresponds to the thermalizing case. (d), (e) and (f):
Entanglement entropies SL/2 of all eigenstates plotted as a function of the eigenstate energy
per particle, E/Np. (d) Ĥ1 (L = Np = 12, LA = 6, k = 0), (e) Ĥ2 (same) and (f) Ĥ3 in the
largest connected component of L = Np = 20, LA = 10, I = 0. The inset shows all connected
components for L = Np = 12, LA = 6, k = 0.

tropy of all eigenstates. We divide the lattice into two sublattices, A and B, of lengths LA and
LB = L− LA. For a given pure state |ψ〉, the entanglement entropy is defined as

SA = −TrA(ρA ln ρA), (2.9)

where ρA = TrB|ψ〉〈ψ| is the reduced density matrix of the subsystem A. The scatter plots,
showing entanglement entropy of all eigenstates |En〉 as a function of their energy En, are
displayed in Figs. 2.2(d), (e) and (f). Here we take into account the translation symmetry of
the system and work in the momentum sector k = 0 for Ĥ1 and Ĥ2, and consider only the
largest connected component and the inversion sector I = 0 for Ĥ3. The results for other
sectors are qualitatively similar.

Entanglement entropy distribution in Figs. 2.2(d) and (e) reveals a striking difference be-
tween the Hamiltonians Ĥ1 and Ĥ2, even though they only differ by a free-boson hopping term,
Eq. (2.4). The model Ĥ1 is constrained, which leads to a large spread of the entropy distri-
bution and many low-entropy eigenstates including in the bulk of the spectrum. From this
perspective, Ĥ1 is reminiscent of PXP model [48, 53]. By contrast, Ĥ2 has no such constraints
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and in this case the entanglement entropy is approximately a smooth function of the eigenstate
energy. The Hamiltonian Ĥ3 is doubly constrained, and this is reflected in its entanglement
distribution, which also shows a large spread and several disconnected bands, reminiscent of an
integrable system like the XY model [147].

2.2.2 Global quenches

The constraints in the models in Eqs. (2.1), (2.2) and (2.3) have significant effects on the
dynamics governed by these Hamiltonians. We probe the dynamics by performing a global
quench on the system. We assume the system is isolated and prepared in one of the Fock
states, |ψ0〉, at time t = 0. We restrict to |ψ0〉 being product states which are not necessarily
translation-invariant, as such states are easier to prepare in experiment. However, our results
remain qualitatively the same if we consider translation-invariant |ψ0〉. After preparing the
system in the state |ψ0〉, which is not an eigenstate of the Hamiltonian, the system is let to
evolve under unitary dynamics,

|ψ(t)〉 = exp
(
− i
~
Ĥt
)
|ψ0〉. (2.10)

where Ĥ is one of the Hamiltonians of interest. From the time-evolved state, we evaluate the
quantum fidelity,

F (t) = |〈ψ0|ψ(t)〉|2, (2.11)

i.e., the probability for the wave function to return to the initial state. In a general many-body
system, fidelity is expected to decay as F (t) ∼ exp(−L(Jt)2). It thus becomes exponentially
suppressed in the system size for any fixed time t∗, i.e., F (t∗) ∼ exp(−cL), where c is a constant.
In scarred models, such as the Rydberg atom chain, fidelity at the first revival peak occurring
at a time T still decays exponentially, but exponentially slower, i.e., F (T ) ∼ exp(−c′L), with
c′ � c. In Ref. [48], for a finite system with L . 32 atoms, the fidelity at the first revival can
be as high as ∼ 70%, and several additional peaks at times nT are also clearly visible.

We first consider the Hamiltonian Ĥ1. Several configurations exhibit periodic revivals of the
fidelity F (t), which can in some cases be higher than 90%. Most of these configurations involve a
very dense cluster of bosons such as |...0N10...〉. In contrast, a completely uniform configuration
|...111...〉 thermalizes very quickly. Here we focus on periodically-reviving configurations with
density being as uniform as possible. One family of such reviving configurations involves n unit
cells made of 3 lattice sites:

|210210 . . . 210〉 ≡ |(210)n〉. (2.12)
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Figure 2.3: Dynamics of quantum fidelity and entanglement entropy for initial configurations
in Eq. (2.12). (a) Time evolution of fidelity F (t) in Eq. (2.11) for system sizes L = 3n. The
evolution is governed by the Hamiltonian Ĥ1, different colors represent different system sizes
L. (b) Fidelity evolution F (t) for the Hamiltonians Ĥ1, Ĥ2 and Ĥ3 and system size L = 15.
(c) Entanglement entropy evolution SLA(t) for the same cases as in (b).

Time evolution of the fidelity for the initial state |(210)n〉 for different system sizes L = 3n is
shown in Fig. 2.3(a). The initial state is assumed to be the product state, e.g., |ψ0〉 = |210〉
for L = 3. The frequency of the revivals in Fig. 2.3 is approximately the same for all system
sizes. We emphasize that similar results are obtained for a translation-symmetric initial state,
e.g., |ψ0〉 = 1√

3 (|210〉+ |021〉+ |102〉). Both cases converge in the large system limit, and the
differences are only significant for L = 3 when the revival frequency of the initial state with
transition symmetry differs from the frequencies of other system sizes.

In Fig. 2.3(b) we compare the fidelity for the initial state in Eq. (2.12) when it is evolved
by all three Hamiltonians in Eqs. (2.1)-(2.3). The initial state is fixed to be |(210)5〉. We
observe that the dynamics with Ĥ3 has very prominent revivals; in fact as we will later show,
these revivals are perfect and their period is approximately twice the revival period for Ĥ1. In
contrast, for Ĥ2 the fidelity quickly drops to zero without any subsequent revivals.

Finally, in Fig. 2.3(c) we plot the time evolution of entanglement entropy. As expected
from the fast decay of the fidelity, the entropy for Ĥ2 rapidly saturates to its maximal value.
Moreover, as expected from the perfect revivals in Ĥ3, the entropy in that case oscillates around
a constant value close to zero. For Ĥ1, we observe a relatively slow growth of entropy, with
oscillations superposed on top of that growth, again similar to PXP model [47]. For the initial
state that is not translation-invariant, it is important how we cut the system, e.g., |...210|210...〉
versus |...2102|10...〉. In the first case, the entanglement entropy remains zero for Ĥ3 because
no particle can hop from one subsystem to the other, while in the second case the entropy
oscillates around a constant value, which is the case in Fig. 2.3(c).

In Fig. 2.4 we show the Ĥ1 evolution of two local observables, density correlations between
two adjacent sites 〈n̂1n̂2(t)〉 and density on the first site 〈n̂1(t)〉, starting from the initial state
|(210)n〉. Unlike fidelity and entanglement entropy, these observables can be easily measured in
experiment. Both observables robustly oscillate with approximately the same frequency as the
fidelity. The heights of the first few revival peaks are approximately converged for the system
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Figure 2.4: Evolution of local observables for the Hamiltonian Ĥ1. (a) Correlations between
adjacent sites 〈n̂1n̂2(t)〉 for different system sizes and the initial state |(210)n〉. (b) Density on
one site 〈n̂1(t)〉.

sizes ranging from L = 6 to L = 15, which suggests that revivals in such local observables
can be observed in the thermodynamic limit. In the following Section, we will show that the
oscillations observed in the dynamics from |(210)n〉 state in Eq. (2.12) and their frequency can
be explained using a tractable model that involves only a small subset of all configurations in the
Hilbert space, thus providing a realization of quantum scars in a correlated bosonic system. Our
starting point will be the model Ĥ3, whose graph explicitly separates into disconnected subsets
which makes the toy model exact, hence we can analytically calculate the revival frequency.
Based on these results, we then introduce an approximation scheme that describes the dynamics
from the same initial state under the Ĥ1 Hamiltonian.

2.3 Quantum scars in Ĥ1 and Ĥ3 models

The quench dynamics of fidelity and entanglement entropy in Fig. 2.3 suggest that Ĥ1 and Ĥ3

models are candidate hosts for many-body scarred eigenstates that can be probed by initializing
the system in product states |(210)n〉. We now analyze the structure of these states using our
approach called “cluster approximation”.

2.3.1 Perfect revivals in the Ĥ3 model

The dynamics of Ĥ3 within the sector containing the state |(210)n〉 can be solved exactly. We
start with a warmup calculation for Ĥ3 acting on L = 3 sites. The connected subspace of 210
contains only two configurations, 120 and 210. The Hamiltonian reduced to this subspace is

Ĥ
′

3 = −
0 2

2 0

 , (2.13)

where the basis vectors are
1

0

 = |210〉,
0

1

 = |120〉. (2.14)
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The eigenvalues of Ĥ ′3 are E1 = −2 and E2 = 2. The initial state |ψ1(t = 0)〉 = |210〉 evolves as

|ψ1(t)〉 = cos(2t)|210〉 − i sin(2t)|120〉, (2.15)

and the state |ψ2(t = 0)〉 = |120〉 evolves as

|ψ2(t)〉 = −i sin(2t)|210〉+ cos(2t)|120〉. (2.16)

Previous results can be straightforwardly generalized to larger systems. Let the length of the
system be L = 3n for simplicity. The connected component of the state |(210)n〉 consists only of
combinations of patterns 210 and 120, which means that triplets of sites evolve independently,
and dynamically the system behaves as a collection of independent two level systems (spins-
1/2). From Eq. (2.15), the initial state |ψn(t = 0)〉 = |(210)n〉 evolves as

|ψL=3n(t)〉 = cosn(2t)|(210)n〉+ (−i)n sinn(2t)|(120)n〉+ ... (2.17)

where “...” denotes contributions of the basis configurations other than |(210)n〉 or |(120)n〉.
The fidelity is

FL=3n(t) = |〈ψn(0)|ψn(t)〉|2= |cos 2t|2n. (2.18)

It follows that the revivals are perfect, with a period T3 = π/2. This result is also valid for the
translation-invariant initial state |(210)n〉T,

|(210)n〉T ≡
1√
3

(|(210)n〉+ |(021)n〉+ |(102)n〉) , (2.19)

as the connected subspaces of 210, 021 and 102 do not overlap and therefore evolve indepen-
dently.

However, an initial state that is both translation symmetric and inversion symmetric has
different dynamics. The inverse of the configuration |(210)n〉 is the configuration |(012)n〉, which
is a translation of the state |(120)n〉 that belongs to the connected subspace of |(210)n〉. The
initial state

|ψinv
n (t = 0)〉 = 1√

2
|(210)n〉T + 1√

2
|(120)n〉T (2.20)

evolves as

|ψinv
n (t)〉 = (cosn 2t+ (−i)n sinn 2t) |ψinv

n (t = 0)〉+ ... (2.21)
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and the fidelity is

F inv
n (t) = |〈ψinv

n (0)|ψinv
n (t)〉|2= |cosn 2t+ (−i)n sinn 2t|2. (2.22)

The frequency of the revivals is now doubled, so the period is T inv
3 = π/4.

2.3.2 Cluster approximations for the Ĥ1 model

In contrast to the free dynamics in Ĥ3, the Ĥ1 model exhibits decaying revivals and does
not admit an exact description. In order to approximate the quench dynamics and scarred
eigenstates in Ĥ1, we project the Hamiltonian to smaller subspaces of the full Hilbert space.
These subspaces contain clusters of states which are poorly connected to the rest of the Hilbert
space and thereby cause dynamical bottlenecks. The clusters can be progressively expanded to
yield an increasingly accurate description of the dynamics from a given initial state.

Here we introduce a scheme for approximating the dynamics from initial states (210)n in
the Ĥ1 model. As can be observed in Fig. 2.3, the revival periods are approximately the
same for different system sizes. We first focus on the non-trivial case L = 6. Fig. 2.5 shows
part of the graph that contains the initial state, |210210〉. Configurations labelled inside the
ellipses denote representatives of an orbit of translation symmetry, i.e., the configurations are
translation-invariant such as the one in Eq. (2.19).

Figure 2.5: Minimal and extended clusters. Hamiltonian Ĥ1 and system size L = Np = 6.
Configurations labelled inside the ellipses are representatives of an orbit of translation sym-
metry. The minimal cluster is defined by the blue configurations, while green configurations
represent the additional components of the extended cluster. Grey arrows connect to configu-
rations outside the extended cluster. The numbers bellow the graph show the distance da from
the configuration 111111 evaluated using Eq. (2.7).

The minimal subcluster of the graph is highlighted in blue color in Fig. 2.5. This cluster
is indeed weakly connected to the rest of the configuration space, as it has only 3 connections
that lead outside this cluster (dashed lines) and their hopping coefficients are slightly lower in
magnitude than those inside the cluster, meaning that the probability is higher to stay inside
the cluster than to leave. The hopping coefficients leading outside are not significantly smaller
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than the coefficients staying inside, but in combination with the relatively small number of con-
nections this has significant effects on the dynamics. This effect is even more pronounced when
the difference in magnitudes is further increased by squaring the particle number operators, as
shown in Appendix A.

The minimal cluster from Fig. 2.5 contains all the states given by tensor products of 210,
120 and 300 configurations. The set of configurations belonging to this cluster could have been
chosen differently, but this particular choice has at least two advantages. Firstly, inside this
cluster, the evolution of the configuration |210210〉 can be thought of as two subsystems 210
evolving separately. The evolution of all such configurations at different system sizes can be
reduced to the evolution of L = 3 subsystems 210, similar to the case of Ĥ3 in the connected
subspace of (210)n. Secondly, this definition allows easy generalization to different system
sizes L = 3n with initial states (210)n. The dimension of the reduced Hilbert space grows
with the system size as dimHc = 3n. We would like to emphasize that the cluster was not
chosen arbitrarily. The calculations of the probability density distribution starting from the
initial configuration |210210〉 and evolving with Ĥ1 have shown that the probability density
stays high in this region of the Hilbert space as long as the revivals in fidelity are visible. The
configurations important for the dynamics were then identified by analyzing the structure of
the graph around the initial configuration.

As an example, consider system size L = 3. The reduced Hilbert space of the cluster Hc is
spanned by the (non-translation-invariant) configurations


1
0
0

 = |300〉,


0
1
0

 = |210〉,


0
0
1

 = |120〉. (2.23)

The Hamiltonian reduced to this subspace is

Ĥc
1 = −


0 2

√
3 0

2
√

3 0 2
0 2 0

 , (2.24)

and its eigenvalues are E1 = −4, E2 = 4, E3 = 0. The initial configuration |210〉 evolves
according to

|ψc
1(t)〉 = − i2 sin(4t)

(√
3|300〉+ |120〉

)
+ cos(4t)|210〉. (2.25)

By generalizing this result to larger systems, it is easy to prove that the time-evolved state
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within the cluster is given by

|ψc
n(t)〉 = cosn(4t)|(210)n〉+ . . . , (2.26)

where the dots denote other configurations, and the fidelity is

F c
n(t) = |〈ψc

n(0)|ψc
n(t)〉|2= |cos(4t)|2n. (2.27)

As in the case of Ĥ3, this result is also valid for the translation-invariant initial state. We see
that the period of revivals is T1 = π/4, which is the same as for Ĥ3 with a translation and
inversion symmetric initial state.

The minimal clusters can be expanded by adding several neighboring configurations. For
similar reasons as in the case of minimal clusters, the extended clusters are defined as sets of
all states which can be obtained using tensor products of the configurations 210, 120, 300 and
111. In the case of L = 6, the enlarged cluster can be observed in Fig. 2.5. It contains the
minimal cluster studied previously, but it also includes additional configurations shown in green
ellipses. Again, the approximation could be improved by including more configurations, but
this particular choice is well suited for analytical treatment (see Appendix B) and, as shown
above, it gives a good prediction for the first revival peak height.
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Figure 2.6: Comparison of the full dynamics against the minimal cluster (1) and extended
cluster (2) approximation schemes. We consider the system size L = 15 with the initial state
|(210)5〉. (a) Time evolution of the fidelity. The frequency of revivals is approximately the same
in both cases, but the results for the extended cluster show better agreement with the results
for the full Hilbert space. (b) Time evolution of the entanglement entropy.

The result of the cluster approximation is compared against the exact result for system size
L = 15 in Fig. 2.6. The frequency of the fidelity revival, shown by the blue line in Fig. 2.6(a),
is accurately reproduced in this approximation, however the approximation does not capture
the reduction in the magnitude of F (t). Similarly, the dynamics of entanglement entropy, blue
line in Fig. 2.6(b), is only captured at very short times. In particular, we observe that the
maximum entanglement within the cluster remains bounded even at long times t ∼ 10, while
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the exact entropy continues to increase and reaches values that are several times larger.
To obtain a more accurate approximation, we can expand the minimal cluster with several

neighboring configurations on the graph. We define the extended cluster as a set of all states
which can be obtained using tensor products of the configurations 210, 120, 300 and 111.
The enlarged cluster clearly contains the minimal cluster studied above, but it also includes
additional configurations, resulting in a much better prediction for the first revival peak height,
while still allowing for analytical treatment. The dimension of the extended cluster grows
as dimHc̃ = 4L/3, and is thus exponentially larger than the minimal cluster approximation.
Nevertheless, the extended cluster dimension is still exponentially smaller compared to the
full Hilbert space, and within this approximation it is possible to numerically simulate the
dynamics of larger systems, L . 30 – see Fig. 2.7(a). The revivals are no longer perfect, while
their frequency is independent of the system size and closer to the frequency of revivals for the
full Hilbert space compared to to the minimal cluster approximation in Fig. 2.6. The overlap
between the eigenstates of the Hamiltonian Ĥ1 reduced to both the minimal and extended
cluster and the state |(210)8〉 is given in Fig. 2.7(b). The eigenstates that correspond to the
minimal cluster approximately survive in the extended cluster, where they form a band with
the highest overlap.
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Figure 2.7: Cluster approximations. (a) Fidelity F (t), for the Hamiltonian Ĥ1 and initial
states |(210)n〉, in the extended cluster approximation for various system sizes. (b) Eigenstate
overlap with the initial state |(210)8〉 plotted on a log scale, for both cluster approximations.
In the case of degenerate eigenstates the sum of their overlaps is shown.

For the initial product state (210)n, it is possible to analytically obtain the fidelity within
the improved approximation for arbitrary system size. Similar to the previous methods, it can
be shown (see Appendix B)

F c̃
L=3n(t) = 4n|b2 cos(αt) + d2 cos(βt)|2n, (2.28)

where α =
√

9 +
√

57 ≈ 4.06815, β =
√

9−
√

57 ≈ 1.20423, b ≈ 0.694113 and d ≈ 0.134933.
Eq. (2.28) is in excellent agreement with the numerical results in Fig. 2.7(a). It was also found
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to be a very good approximation for the translation-invariant initial state when L ≥ 9 (data
not shown).
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Figure 2.8: First peak height. (a) Logarithm (base 10) of the first revival peak divided by
the system size, log(F (T ))/L, seems to saturate at a finite value in the thermodynamic limit.
(b) Comparison of the logarithm of the first revival peak height for the full dynamics and the
improved cluster approximation. The approximation serves as a lower bound.

Fig. 2.8(a) shows that the logarithm of the fidelity per site, log(F (T ))/L, at the first peak,
saturates at a finite value for large L. In the improved cluster approximation, the first peak
height decays as e−0.04L, as shown in Appendix B. For a completely random state, the fidelity
would be F ∼ 1/dimH. In the case ν = 1 and large L, the Hilbert space dimension grows with
the system size as

dimH =
(

2L− 1
L

)
≈
(

2L
L

)
≈ 4L√

πL
. (2.29)

This back-of-the-envelope estimate suggests the fidelity of a random state is F ∼ e−1.39L,
which decays considerably faster than the first peak height in Fig. 2.8. The improved cluster
approximation correctly reproduces the short-time dynamics, including the first revival peak,
and sets a lower bound for the first peak height – see Figs. 2.6 and 2.8(b).

The evolution of the entanglement entropy for the extended cluster approximation is shown
in Fig. 2.6(b). Inside the cluster, entropy remains approximately constant with periodic os-
cillations that have the same frequency as the wave function revivals. Any further growth of
the entanglement entropy can be attributed to the spreading of the wave-function outside the
cluster. To illustrate the “leakage” of the wave function outside the cluster, in Fig. 2.9 we
compute the time evolution of the overlap with a cluster, i.e., the probability to remain inside
a cluster at time t,

OCluster =
∑

a∈Cluster
|〈a|ψ(t)〉|2. (2.30)

We consider several initial configurations that lie inside or outside the cluster. The configura-
tions initially inside the cluster mostly stay there, and the configuration |(210)4〉 that has the
highest revivals also has the highest overlap. Similarly, configurations initially outside the clus-
ter continue to have negligible overlaps. The overlap starting from the configuration |(210)4〉
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approximately predicts the revival peak heights for the full dynamics.
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Figure 2.9: Evolution of the probability to remain inside the minimal cluster. OCluster, as
defined in Eq. (2.30). Initial configurations are indicated in the legend. Solid lines: configura-
tions initially inside the cluster. Dashed lines: configurations initially outside the cluster (all
except |(111)4〉 are randomly chosen). Similar results are obtained for the extended cluster (not
shown). System size L = 12.

We now summarize the relation between Ĥ3 and Ĥ1 from the point of view of the cluster
approximation. For the initial state |(210)n〉, the two models yield similar dynamics, compare
Eqs. (2.18) and Eq. (2.28). The only difference is that the revival frequency is doubled in the
latter case, which can be easily explained by the symmetry of the initial state and that of the
Hamiltonian. Hamiltonian Ĥ3 is inversion-symmetric. If the initial state is also chosen to be
inversion-symmetric, the frequency of the revivals doubles. The period is then T inv

3 = π/4,
which is equal to the period of revivals T1 of Ĥ1 in the cluster approximation. This was proven
analytically in Section 2.3.1, see Eq. (2.22). For comparison, the revival period for the full
Hilbert space is approximately 0.77, which is slightly less than π/4 ≈ 0.79. The Hamiltonian
Ĥ1 is not inversion-symmetric, so the frequency does not double for an inversion-symmetric
initial state, but the revivals are lower in that case. This shows that it is important for the
symmetry of the initial state to match the symmetry of the Hamiltonian.

Finally, the eigenstates of Ĥ1, projected to the subspace of the minimal cluster approxima-
tion, form several degenerate bands whose eigenenergies are equally spaced in integer multiples
of 4. Interestingly, some of these eigenstates approximately survive in the full Ĥ1 model, and
they are precisely the eigenstates that have the highest overlap with the configurations |(210)n〉,
see Fig. 2.10(a). In small system sizes, such as L = 6, the surviving eigenstates are also the
lowest entropy eigenstates in the middle of the spectrum, which is reminiscent of quantum scars
in the PXP model [48]. In larger systems, e.g., L = 12, the surviving eigenstates are slightly
lower in entropy than their neighbors, but are far from being the lowest entropy eigenstates, as
can be seen in Fig. 2.10. The lowest entropy eigenstates have high overlaps with other config-
urations, such as |(3100)3〉, as shown in Figs. 2.10(b) and 2.10(c). In the case of |(210)n〉, the
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Figure 2.10: Non-ergodic eigenstates. (a) Overlap of the configuration |(210)4〉 with all the
eigenstates of Ĥ1, Ĥc

1 and Ĥ c̃
1 versus the eigenstate energy for sector k = 0 and system size

L = Np = 12. (b) Same for |(3100)3〉. (c) Entanglement entropy, eigenstates which have the
highest overlap with some product states are marked in different colors.

eigenstates surviving in the full system belong to every other band of eigenstates in the cluster
approximation and the number of the surviving eigenstates is n + 1. For even system sizes
this counting includes a zero-energy eigenstate. In Section 2.3.3 we discuss in more details the
generalization of the cluster approximations to the states of the form |(N10...0)n〉, which were
also found to have robust revivals and high overlaps with some low-entropy eigenstates.

2.3.3 Generalization to other clusters

Building on the previous observation that some of the low-entropy eigenstates have large weight
on |(3100)3〉 product state, we have investigated periodic revivals from such a larger class of
initial states. We find that robust revivals are associated with initial product states of the form

|((N − 1)1 0...0︸ ︷︷ ︸
N−2

)n〉, (2.31)

where N is the length of the unit cell (L = Nn). For example, some of these configurations
are |(3100)n〉, |(41000)n〉 and |(510000)n〉. Combinations of those patterns such as |310041000〉
also exhibit similar properties, but we will restrict ourselves to the simpler former cases.

We can construct a generalization of the cluster approximation for configurations of the
form in Eq. (2.31). As in the case of |(210)n〉, the dynamics inside one unit cell explains the
dynamics of the full system. The generalized clusters can be chosen in such a way that their
Hilbert spaces are spanned by N configurations

|i〉 = |((N + 1− i)(i− 1) 0...0︸ ︷︷ ︸
N−2

)n〉, (2.32)

where i takes values 1, 2, . . . N . If we consider only one unit cell (n = 1), the graph that
connects these configurations has a linear structure without any loops, i.e., each configuration
|i〉 is solely connected to the configurations |i± 1〉, except the two configurations at the edges,
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|1〉 and |N〉, which are only connected to |2〉 and |N − 1〉, respectively.

The projection of the Hamiltonian Ĥ1 to this cluster, which we denote by Ĥc
1, has a very

simple structure: it has the form of a tight-binding chain with the only nonzero matrix elements
on the upper and lower diagonals:

Hc
1;i,i+1 = Hc

1;i+1,i = (N − i)
√
i(N + 1− i). (2.33)

The dynamics within a single unit cell under Ĥc
1 corresponds to density fluctuations between the

first and the second site. Following the same procedure as previously, we can now diagonalize Ĥc
1

and compute the fidelity time series for the initial configuration |(N−1)10...0〉. This result can
be directly generalized to configurations of the form |((N−1)10...0)n〉. The derivation is valid for
both translation-invariant and non-translation-invariant initial configurations, as the cluster in
Eq. (2.32) is disconnected from its translated copies. We stress that this disconnection, namely
the absence of a hopping term between |1(N − 1)0...0〉 and |0N0...0〉, is a consequence of the
constraints imposed by Ĥ1 and it would not hold for Ĥ2. In this way, we have calculated the time
evolution of the fidelity starting from the configurations |(3100)n〉 (for n = 1, 2, 3, 4), |(41000)n〉
(n = 1, 2, 3) and |(510000)n〉 (n = 1, 2), and compared it with the exact numerical results for
the full Ĥ1. The cluster approximation captures both the revival frequency and the height
of the first peak. Similar to the |(210)n〉 case, the approximation can be improved by adding
further configurations to the clusters. Moreover, if we want to consider translation-invariant
initial states, we can follow the same recipe for |(210)n〉 by summing translated patterns with
the required phase factors given in terms of momenta in multiples of 2π/N . We have checked
that revivals appear in these momentum sectors, with roughly the same frequency.

We note that the configurations with larger units cells thermalize more quickly on shorter
timescales, but slower at long times. Initially, the states starting from configurations with
smaller N have lower entanglement entropies than those with larger N . The Hilbert spaces of
large N unit cells are larger, so the entanglement entropy starting from these configurations
rapidly grows to the maximal value for that unit cell. However, the only way for the wave-
function to spread through the entire Hilbert space is that a unit cell reaches a state close
to 111...111, so that particles can hop to the other unit cells. This is less likely for large N ,
and therefore such configurations need long times to fully thermalize. As a result, smaller N
entanglement entropies grow faster and after long enough time they overtake those for larger
N . For example, in the case of L = 12 and translation-invariant initial states, (210)4 overtakes
(3100)3 and (510000)2 around t ∼ 2, and (3100)3 overtakes (510000)2 around t ∼ 80, as shown
in Fig. 2.11.

Finally, we note that non-thermal behavior reminiscent of the one studied here was previ-
ously observed in an unconstrained Bose-Hubbard model, for example in the context of “arrested
expansion” [148, 149] and quenches from superfluid to Mott insulator phase [150, 151]. In these
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Figure 2.11: Time evolution of entanglement entropy for three different translation-invariant
initial states which exhibit slow thermalization. (a) Short timescale. (b) Long timescale.
System size L = 12. Configurations with larger unit cells (such as |(510000)2〉), thermalize
more quickly than those with smaller unit cells (such as |(210)4〉) on shorter timescales, but
slower at longer times.

cases, the main ingredient is the strong on-site interaction, which causes the energy spectrum
to split into several bands. Due to the large energy differences between bands, the dynamics of
an initial state from a particular band is at first limited only to the eigenstates that belong to
the same band. Additionally, these energy bands are approximately equally spaced, which can
lead to revivals in fidelity if several bands are populated. In contrast, our models do not feature
on-site interaction, and the mechanism which slows down the spread of the wave function is cor-
related hopping, which suppresses connections between certain configurations and modifies the
hopping amplitudes between others, thus creating bottlenecks that separate different clusters
of states.

2.4 Zero modes

An interesting feature of Ĥ1 model is the large number of zero-energy states in the middle of
its spectrum. The number of these zero modes, found by brute force diagonalization, is listed
in Table 2.1 for different system sizes and momentum sectors. Similar property is found for Ĥ2

– see Table 2.2, with the notable difference that there are no zero modes when the number of
sites L is odd.

The origin of the zero modes is the underlying bipartite structure of the Hamiltonian [143,
144]. As explained in Section 2.1.2, all the basis configurations of the Ĥ1 model can be separated
into two disjoint classes, and the action of the Hamiltonian Ĥ1 only connects configurations
in one class to the configurations in the other class, while Ĥ1 does not connect configurations
within the same class. For example, a graph that shows how the configurations for L = Np = 4
are connected is displayed in Fig. 2.12. Here we will refer to the two classes as the “green”
(even) and the “red” (odd) configurations. Each basis configuration can be uniquely assigned a
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Table 2.1: The number of zero-energy states for the Hamiltonian Ĥ1 and different system
sizes. The number of states is resolved per momentum sectors, denoted by their momentum
indices i that parametrize the momenta ki = 2π

L
i.
kiL
2π

L = Np 0 1 2 3 4 5 6 7 8 9 10 total
2 0 1 1
3 0 1 1 2
4 2 0 1 0 3
5 2 1 1 1 1 6
6 2 3 0 4 0 3 12
7 2 3 3 3 3 3 3 20
8 10 0 8 0 9 0 8 0 35
9 8 8 8 7 8 8 7 8 8 70
10 4 25 2 25 2 26 2 25 2 25 138
11 22 23 23 23 23 23 23 23 23 23 23 252

Table 2.2: The number of zero-energy states for the Hamiltonian Ĥ2 and different system
sizes. The columns are the same as in Table 2.1.

kiL
2π

L = Np 0 1 2 3 4 5 6 7 8 9 10 total
2 0 1 1
3 0 0 0 0
4 2 0 1 0 3
5 0 0 0 0 0 0
6 0 3 0 4 0 3 10
7 0 0 0 0 0 0 0 0
8 10 0 8 0 9 0 8 0 35
9 0 0 0 0 0 0 0 0 0 0
10 0 25 0 26 0 26 0 26 0 25 128
11 0 0 0 0 0 0 0 0 0 0 0 0

green or a red label according to the parity of its distance da from the configuration |111...111〉,
Eq. (2.7). If this number is even, the configuration is green, and if it is odd, the configuration
is red.

This separation into two classes is a consequence of the constraints present in the Hamilto-
nian Ĥ1. Hamiltonians without such constraints, for example Ĥ2 or the standard Bose-Hubbard
model, do not exhibit this bipartite structure for odd system sizes, see Section 2.1.2. for more
details. In these cases, it is not possible to uniquely determine whether a particular configura-
tion is green or red. The lack of bipartite structure is the reason for the absence of zero-energy
eigenstates of Ĥ2 in odd dimensions, which was observed in Table 2.2. However, the configu-
ration space of Ĥ2 is still bipartite in even dimensions, allowing for the existence of some zero
modes in those cases.

Low-entropy zero-energy states can be constructed as superpositions of either only green or
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Figure 2.12: Bipartite graph for Ĥ1 and L = Np = 4. The two classes of configurations are
shown in green (even) and red (odd) ellipses. The configurations are written in the translation-
invariant basis. The arrows represent the action of the Hamiltonian Ĥ1 and the numbers above
the arrows are the magnitudes of the corresponding hopping coefficients. The numbers bellow
the graph show the distance da from the configuration 1111, as defined in Eq. (2.7).

only red configurations. For example, in the case of L = Np = 4, the simplest and therefore the
lowest-entropy zero mode can be constructed using only two green product states (encircled by
a dashed line in Fig. 2.12)

|ψ0〉 = 1√
3
|1111〉 −

√
2
3 |2020〉T, (2.34)

where | . . .〉T was defined in Eq. (2.19). There is another zero mode in this case, and it can be
formed by adding more green configurations to the superposition. The number of zero-energy
eigenstates is related to the difference between the numbers of green and red configurations [143],
as we will now explain.

As the Hamiltonian Ĥ1 only connects green configurations to red configurations and red to
green, we can rewrite it in the following way:

Ĥ1 =
∑
i,j

cij|Ri〉〈Gj|+
∑
i,j

c†ij|Gj〉〈Ri|, (2.35)

where |Ri〉 are the red product states and |Gj〉 are green. Its square, Ĥ2
1 , connects green

configurations to green and red to red, and it is therefore block diagonal. The blocks are ĈĈ†

and Ĉ†Ĉ, where Ĉ is a matrix with the elements cij. The dimensions of Ĉ are r × g, where r
is the number of red configurations and g of green. Ĉ and Ĉ† can be factorized using singular
value decomposition. From this structure we can see that the energy spectrum is symmetric
around zero and that the minimal number of zero-energy states is |g − r|. The zero-energy
eigenvectors can also be obtained as the ground states of Ĥ2

1 . Similar analysis and counting of
the zero modes in PXP model was performed in Ref. [47, 152].

Table 2.3 shows the difference between the numbers of red and green states g−r for different
system sizes and the number of zero-energy states N0 in those systems. The number of zero-
energy states, found by exact diagonalization, in all cases satisfies the anticipated inequality
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Table 2.3: The difference between the number of green and red configurations g − r and the
number of zero-energy states N0 (determined by exact diagonalization) for different system
sizes. Overall, the derived bound for the number of zero modes is found to be very tight
in finite systems where it can be independently confirmed by explicit diagonalization (“NA”
denotes cases where this was not possible).

all sectors k = 0
L = Np g − r N0 g − r N0

2 −1 1 0 0
3 −2 2 0 0
4 3 3 2 2
5 6 6 2 2
6 −10 12 0 2
7 −20 20 −2 2
8 35 35 10 10
9 70 70 8 8
10 −126 138 0 4
11 −252 252 −22 22
12 462 NA 80 80
13 924 NA 72 NA
14 −1716 NA 0 NA
15 −3432 NA −228 NA
16 6435 NA 810 NA

N0 ≥ |g − r|. In fact, the bound is almost always saturated, N0 = |g − r|, except when
L = Np = 4n + 2, n ∈ Z. Interestingly, the minimal number of zero modes |g − r| for
L = Np = 4n is equal to the Hilbert space dimension for L = Np = 2n (both total and for
k = 0 sector only). This leads to the conclusion that the number of zero-energy states grows
exponentially with the system size. It can also be noticed that the total difference g − r for
L = Np = 2n+ 1 is always twice the difference for L = Np = 2n.

2.5 Conclusions

In this Chapter, we have introduced three models of bosons with “soft” kinetic constraints, i.e.,
density-dependent hopping. We have demonstrated that some of these models exhibit similar
phenomenology to other realizations of quantum many-body scars, for example the Rydberg
atom system [46]. We have studied quantum dynamics of these systems by performing global
quenches from tensor-product initial states. We have shown that both the connectivity of the
Hilbert space and the relative magnitude of the hopping coefficients have dramatic effects on
the dynamics. For certain initial configurations, the constraints can lead to slow thermalization
and revivals in the quantum fidelity. The revival frequency can be predicted by considering
an exponentially reduced subset of the Hilbert space. For a family of initial configurations of
the form |(210)n〉, we have derived analytical expressions for the evolution of quantum fidelity
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within this approximation, which accurately capture the revival frequency obtained from exact
numerical data. One notable difference between scarred dynamics in the present bosonic models
and the PXP model is that the revivals exist in the absence of a hard kinetic constraint, i.e.,
in the fully connected Hilbert space. Our cluster approximation also explains the structure of
some low-entropy eigenstates in the middle of the many-body spectrum. In addition, we have
calculated the evolution of two local observables which are experimentally measurable, density
correlations between two neighboring sites and density on a single site, and both of them show
robust oscillations over a range of system sizes. We have also shown that the introduced models
contain additional special properties, like the exponentially large zero-energy degeneracy which
is related to the bipartite structure of the model.

We now comment on the possible experimental realizations of the models we studied. The
implementation of a correlated hopping term (n̂kb̂†i b̂j) in optical lattices has attracted lot of
attention due to a possible onset of quantum phases related to high-Tc superconductivity [153].
An early theoretical proposal exploits asymmetric interactions between the two atomic states
in the presence of a state-dependent optical lattice [153]. As a result, the obtained effective
model corresponds to the inversion-symmetric form of Ĥ1. In addition, the same term has
been found to feature as a higher-order correction of the standard Bose-Hubbard model [154–
157]. Although in this case the term typically represents a modification of the regular hopping
term of the order of several percent, its contribution was directly measured [158, 159]. More
recently, the set of quantum models accessible in cold-atom experiments has been enriched
through the technique of Floquet engineering [86]. As a notable example, a suitable driving
scheme can renormalize or fully suppress the bare tunneling rate [160]. On top of that, by
modulating local interactions an effective model with the density-dependent tunneling term
has been engineered [161]. For the models considered in this Chapter the most promising is
a more recent driving scheme exploiting a double modulation of a local potential and on-site
interactions [162]. Related sophisticated driving schemes have already enabled a realization of
dynamical gauge fields [124, 125, 163] where both the amplitude and the phase of the effective
tunneling are density-dependent. Although these experimental proposals explain how to realize
some of the correlated hopping terms present in our models using ultracold atoms in optical
lattices, finding a scheme that exactly realizes our models requires further study. We emphasize
that other models which would exhibit non-ergodic dynamics and scarred eigenstates as a result
of the same mechanism that was explained in this work could be built, for example a linear
combination of Ĥ1 and Ĥ2.

During the completion of this work, we became aware of Ref. [164] which identified non-
thermal eigenstates and slow dynamics in the quantum East model. Moreover, a recent
study [165] proposed a Floquet scheme for a bosonic model with density-assisted hopping,
finding signatures of quantum many-body scars.
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Dynamics of weakly interacting bosons in
optical lattices with flux

As already discussed in Section 1.4, a big challenge in the field of ultracold atoms was
realization of synthetic magnetic fields, due to the fact that charge-neutral atoms do not feel
the Lorentz force. Magnetic field is a key ingredient in various condensed-matter models with
nontrivial topological content, such as the the Harper-Hofstadter [68] and the Haldane model
[76]. In recent years, the implementation of artificial gauge potentials for neutral atoms [74, 75]
has finally enabled the realization of these important models using ultracold atoms in optical
lattices [77–80].

Cold-atom realizations of topological models exploit periodic driving, either through laser-
assisted tunneling [77, 78] or by lattice shaking [79]. Using Floquet theory [81, 89], a periodically
driven system can be related to the time-independent effective Hamiltonian that describes a
condensed-matter system of interest. The mapping is known as Floquet engineering and its
important features in the context of optical lattices are discussed in Section 1.5 and Refs. [82–
88, 166]. Because of important differences of cold-atom setups and their condensed-matter
counterparts, new quench protocols for probing topological features were proposed [167–171].
Following up on these studies, a novel experimental protocol was developed which allowed for
the first-ever measurement of the Chern number (1.5) in a nonelectronic system by investigating
the anomalous deflection of an atomic cloud as a response to external force [70]. The Chern
number is a topological invariant which was directly related to the quantization of the Hall
conductivity in the integer Hall effect [69].

While Floquet engineering is a highly flexible and powerful technique, it poses several con-
cerns. One of the main open questions is related to the interplay of driving and interactions
which causes heating and can quickly lead the system to a featureless, infinite-temperature
regime [94, 96]. In particular, it is shown that an initial Bose-Einstein condensate in a period-
ically driven optical lattice may become unstable due to two-body collisions [172] or through
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the mechanism of parametric resonance [96, 173–179]. The preparation protocol, stability and
a lifetime of strongly correlated phases, expected in the regime of strong interactions under
driving is a highly debated topic at the moment [96, 180, 181].

In order to further explore the role of weak atomic interactions in probing topological
features, here we consider the dynamics of weakly interacting incoherent bosons in a driven
optical lattice exposed to an external force. The setup that we consider includes all basic
ingredients for the Chern-number measurement [70, 168] – the Chern number of the topological
band can be extracted from the center-of-mass motion of atomic cloud in the direction transverse
to the applied force. We assume an ideal initial state where the lowest topological band of the
effective model is almost uniformly populated. The optimal loading sequence necessary to
reach this state is considered in Refs. [182, 183]. Following the recent experimental study
[70], we assume that atoms are suddenly released from the trap and exposed to a uniform
force. We perform numerical simulations for the full time-dependent Hamiltonian and take
into account the effects of weak repulsive interactions between atoms within the mean-field
approximation. We make a comparison between the dynamics governed by the effective and
time-dependent Hamiltonian and delineate the contribution of interactions to the center-of-
mass response and to the overall cloud expansion dynamics. Our results show that interactions
lead to the undesirable atomic transitions between topological bands [184], but we also find
that a weak atomic repulsion can facilitate the Chern-number measurements in several ways.

This Chapter is organized as follows. In Section 3.1 we describe the model and introduce a
method that we apply for the description of incoherent bosons. In Section 3.2 we address the
dynamics of noninteracting incoherent bosons, and then in Section 3.3 we address the regime
of weak repulsive interactions. Finally, we summarize our results in Section 3.4. Appendixes C
to F provide further details.

3.1 Model and method

In this section, we first present the driven model introduced in Ref. [70], and then derive the
corresponding effective model and discuss its basic characteristics. At the end, we explain our
choice of the initial state and outline the method that we use to treat the dynamics of weakly
interacting incoherent bosons.
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3.1.1 Effective Floquet Hamiltonian

Interacting bosons in a two-dimensional optical lattice can be described by the Bose-Hubbard
Hamiltonian

ĤBH = −Jx
∑
l,m

(
â†l+1,mâl,m + â†l−1,mâl,m

)
− Jy

∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)

+ U

2
∑
l,m

n̂l,m (n̂l,m − 1) , (3.1)

where â†l,m and âl,m are creation and annihilation operators that create and annihilate a particle
at the lattice site (l,m) = laex + maey (a is the lattice constant), n̂l,m = â†l,mâl,m is the
number operator, Jx and Jy are the hopping amplitudes along ex and ey, and U is the on-
site interaction. In the derivation of the model (3.1) we use the single-band tight-binding
approximation [5]. Although the experimental setup [70] is actually three dimensional, with
an additional confinement in the third direction, our study is simplified to a two-dimensional
lattice.

In order to engineer artificial gauge field in the experiment [70], hopping along ex was at
first inhibited by an additional staggered potential

Ŵ = ∆
2
∑
l,m

(−1)ln̂l,m, (3.2)

and then restored using resonant laser light. For more details, see Fig. 1.5 in Chapter 1. The
experimental setup can be described by a time-dependent Hamiltonian

H̃(t) = ĤBH + V̂ (t) + Ŵ , (3.3)

where V̂ (t) is a time-dependent modulation

V̂ (t) = κ
∑
l,m

n̂l,m

[
cos

(
lπ

2 −
π

4

)
cos

(
ωt− mπ

2 + φ0

)

+ cos
(
lπ

2 + π

4

)
cos

(
−ωt− mπ

2 + π

2 + φ0

) ]
, (3.4)

κ is the driving amplitude, and ω = ∆ is the resonant driving frequency. We set the relative
phase φ0 between the optical-lattice potential and the running waves used for laser-assisted
tunneling to φ0 = π/4.

Using Floquet theory, see Eq. (1.9), the time-evolution operator corresponding to the Hamil-
tonian (3.3) can be represented as

Û(t, t0) = e−iŴ te−iK̂(t)e−i(t−t0)Ĥeff eiK̂(t0)eiŴ t0 , (3.5)
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Figure 3.1: Schematic representation of the model. The unit cells are shaded. (a) Effective
Hamiltonian without correction, Ĥeff,0 (3.6). Vertical links correspond to real hopping ampli-
tudes (along ey direction), while the horizontal links to the right of lattice sites labeled A, B,
C, and D correspond to complex hopping amplitudes with phases 3π

4 , π
4 , −π

4 , and −3π
4 , respec-

tively (when hopping from left to right). (b) Effective Hamiltonian with correction, Ĥeff,1 (3.7).
Red lines represent positive next-nearest-neighbor hopping amplitudes (connecting uppercase
letters), while the blue lines represent negative next-nearest-neighbor hopping amplitudes (con-
necting lowercase letters). Nearest-neighbor hopping amplitudes are the same as in (a).

where Ĥeff is the full time-independent effective Hamiltonian that describes slow motion and
K̂(t) is the time-periodic kick operator that describes micromotion [82, 83].

For the moment, in this subsection we first consider the noninteracting model U = 0. We
also assume that the driving frequency ω is the highest energy scale, but that it is still low
enough that the lowest-band approximation used in deriving Eq. (3.1) is still valid. In the
leading order of the high-frequency expansion, the effective Hamiltonian Ĥeff is given by

Ĥeff,0 = J ′x
∑
l,m

[
ei
(

(m−l−1)π/2−π/4
)
â†l+1,mâl,m + H.c.

]
− J ′y

∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
, (3.6)

where the renormalized hopping amplitudes are J ′x = Jxκ√
2ω = Jy and J ′y = Jy

(
1 − 1

2
κ2

ω2

)
. A

schematic representation of this model is presented in Fig. 3.1(a). The unit cell is shaded and
the full lattice is spanned by the vectors R1 = (4, 0) and R2 = (1, 1). Particle hopping around
a plaquette in the counterclockwise direction acquires a complex phase −π

2 and the model is
equivalent to the Harper-Hofstadter Hamiltonian [68] for the case α = 1/4 [68]. The explicit
form of the kick operator K̂(t) from Eq. (3.3) is given in Appendix C.

Following Refs. [82, 83], we find that additional corrections of the order J2
x/ω contribute to

the system’s dynamics and we introduce another approximation for the effective Hamiltonian

Ĥeff,1 = Ĥeff,0 + J2
x

ω

∑
l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)
. (3.7)

The derivation of Hamiltonian (3.7) is given in Appendix C and its schematic representation
is given in Fig. 3.1(b). The J2

x/ω correction introduces next-nearest-neighbor hopping along x
direction with opposite signs for lattice sites with either even or odd x-coordinate l. This term
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does not change the total complex phase per plaquette, but the unit cell is now doubled and
thus the first Brillouin zone is halved. A similar term was engineered on purpose in order to
implement the Haldane model [79].

In the next subsection we investigate properties of energy bands of both effective Hamil-
tonians, Ĥeff,0 and Ĥeff,1. We use the units where ~ = 1 and a = 1. Unless otherwise stated,
we set the parameters to the following values: lattice size 100× 100 sites, hopping amplitudes
J ′x = Jy = 1 ≡ J , and the driving amplitude κ = 0.58 ω. This value of the driving amplitude
was chosen to be the same as in the experiment [70]. In order to set the renormalized hopping
amplitude along ex to J ′x = 1, the initial hopping amplitude has to be Jx =

√
2ω/κ = 2.44, and

the correction term is therefore proportional to J2
x/ω = 5.95/ω, so it cannot be safely neglected

unless the driving frequency is very high.

3.1.2 Band structure

Momentum-space representations of the effective Hamiltonians Ĥeff,0 and Ĥeff,1, denoted by
Ĥeff,0(k) and Ĥeff,1(k), respectively, are derived in Appendix C. Band structures for the effec-
tive Hamiltonian Ĥeff,0 without the J2

x/ω correction, Eq. (C.20), as well as for the effective
Hamiltonian Ĥeff,1 including the correction term, Eq. (C.21), are shown in Fig. 3.2 for the two
values of driving frequencies ω = 20 and ω = 10.

Figure 3.2: Energy bands of the effective Hamiltonians. (a) Ĥeff,0(k) Eq. (C.20), which is
without the J2

x/ω correction term. (b) Ĥeff,1(k) Eq. (C.21), which includes the correction term.
Driving frequency ω = 20; gaps are open. (c) Same as (b), but with ω = 10. Gaps are closed.

The Hamiltonian Ĥeff,0 is the Harper-Hofstadter Hamiltonian (1.4) for the flux α = 1/4.
It has four energy bands, where the middle two bands touch at E = 0 and can therefore be
regarded as a single band; see Fig. 3.2(a). The topological content of these bands is characterized
by the topological index called the Chern number (1.5). The Chern numbers of the three well-
separated bands are c1 = 1, c2 = −2, and c3 = 1.

Because the correction from Eq. (3.7) includes next-nearest-neighbor hopping terms, the
elementary cell in real space is doubled [see Fig. 3.1(b)] and, as a consequence, the first Brillouin
zone for the Hamiltonian Ĥeff,1 is reduced by a factor of 2 compared to Ĥeff,0. There are now
eight lattice sites in the unit cell and eight energy bands, but the number of gaps depends on the
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driving frequency. The new bands touch in pairs, in such a way that there are always maximally
three well-separated bands. When the driving frequency is high enough, the correction is small
and the gaps between the three bands remain open; see Fig. 3.2(b). The original band structure
of Ĥeff,0 is recovered in the limit ω →∞. The Berry curvature and the Chern number can be
calculated using the efficient method presented in Ref. [185]. Our calculations confirm that the
Chern numbers of Ĥeff,1 are equal to those of Ĥeff,0 (c1 = 1, c2 = −2, and c3 = 1), as long as
the gaps between the energy bands are open. The gaps close when the driving frequency is too
low, see Fig. 3.2(c), and the Chern numbers of the subbands can no longer be properly defined.

3.1.3 Dynamics of incoherent bosons

We need to take into account a contribution of weak, repulsive interactions. Full numerical
simulations of an interacting many-body problem are computationally demanding, so we need
a reasonable, numerically tractable approximation. To this end we will use the classical field
method [186], which belongs to a broader class of truncated Wigner approaches [187]. This
method is similar to the approach used to treat incoherent light in instantaneous media [188,
189], known in optics as the modal theory.

The underlying idea of the method is to represent the initial state as an incoherent mixture
of coherent states |ψ〉, âl,m|ψ〉 = ψl,m|ψ〉 [186]. This is explained in more detail in Appendix D.
In our study, we sample initial configurations of these coherent states with

|ψ(t = 0)〉 =
Nm∑
k=1

eiφk |k〉, (3.8)

where φk ∈ [0, 2π) are random phases and the states |k〉 correspond closely to the lowest-band
eigenstates of Ĥeff. Each of Nsamples initial states is time evolved and physical variables can be
extracted by averaging over an ensemble of different initial conditions.

The time evolution of each of these coherent states is governed by

i
dψl,m(t)
dt

=
∑
ij

Hlm,ij(t)ψi,j(t)− F mψl,m(t) + U |ψl,m(t)|2ψl,m(t), (3.9)

where Hlm,ij(t) = 〈l,m|Ĥ(t)|i, j〉 are matrix elements of Ĥ(t) from Eq. (3.3), F is the external
force, and interactions U contribute with the last, nonlinear term. Formally, Eq. (3.9) takes
the form of the Gross-Pitaevskii equation [1, 190, 191]. The performances and limitations of
the method are discussed and reviewed in Ref. [192].

For comparison, we also consider the related time evolution governed by the effective Hamil-
tonian

i
dψl,m(t)
dt

=
∑
ij

heff
lm,ijψi,j(t)− F mψl,m(t) + U |ψl,m(t)|2ψl,m(t), (3.10)
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where heff
lm,ij = 〈l,m|ĥeff|i, j〉, with ĥeff being either Ĥeff,0 from Eq. (3.6), or Ĥeff,1 from Eq. (3.7).

Equation (3.10) should be considered only as a tentative description of the system: the mapping
between Ĥ(t) and Ĥeff is strictly valid only in the noninteracting regime and the interaction
term may introduce complex, nonlocal, higher-order corrections [94]. However, we expect their
contribution to be small in the limit U → 0, and for time scales which are not too long
[97, 98, 193, 194].

In the following we use Nm = 300 modes and accommodate Np = 300 particles per mode,
so in total in the simulations we have N = NmNp = 90, 000 bosons. Typical densities in real
space are up to 100 particles per site and we choose the values of U in the range U ∈ [0, 0.05].
Other parameters: J ′x = Jy = 1, κ/ω = 0.58, ω = 10, 20, and F = 0.25J/a. The correction
terms are non-negligible in this frequency range. In practice, we first numerically diagonalize
the Hamiltonian (D.2) from Appendix D and set our parameters in such a way that the lowest
Nm modes have high overlap with the lowest band of the effective model. In the next step,
we sample initial configurations (3.8). For each of Nsamples = 1, 000 sets of initial conditions
we then time evolve Eq. (3.9) and extract quantities of interest by averaging over resulting
trajectories. This value of Nsamples is chosen to be high enough, so that the fluctuations are
weak. We present and discuss results of our numerical simulations in the following sections.

3.2 Noninteracting case

We start by addressing the dynamics of noninteracting bosons. In this case we set U = 0
in Eq. (3.9) and numerically solve the single-particle Schrödinger equation without further
approximations. Our aim is to numerically validate and compare the two approximations,
Eqs. (3.6) and (3.7), for the effective Hamiltonian. To this purpose, we juxtapose results of the
two approximative schemes with the numerically exact results obtained by considering the full
time evolution governed by Ĥ(t). For clarity, the four different time evolutions that we consider
in this section are summarized in Table 3.1. We calculate the center-of-mass position x(t) and
plot the results in Fig. 3.3. In this way we also find the regime of microscopic parameters where
the Chern-number measurement can be optimally performed.

First, we consider the basic Harper-Hofstadter Hamiltonian (3.6) and select the occupied
modes |k〉 of the initial state (D.1) as eigenstates of the model from Eq. (3.8) for ĥeff = Ĥeff,0.
As explained in the previous section, at the initial moment t0 = 0, the confinement is turned
off and the force F = −Fey is turned on. As a consequence of the applied external force
and the nonzero Chern number of the lowest band of the model (3.6), the particles exhibit an
anomalous velocity in the direction perpendicular to the force [71]. In the ideal case, when the
lowest band is fully populated, the theoretical prediction for the center-of-mass position in the
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Table 3.1: Four different cases: the same effective Hamiltonian is always used for the initial
state and band definitions, either with or without the correction. The evolution is governed
either by the time-dependent Hamiltonian or by the same effective Hamiltonian as the one that
was used for the initial state and calculation of band populations.

case initial state band populations evolution
1 Ĥeff,1 Ĥeff,1 Ĥeff,1

2 Ĥeff,1 Ĥeff,1 Ĥ(t)
3 Ĥeff,0 Ĥeff,0 Ĥeff,0

4 Ĥeff,0 Ĥeff,0 Ĥ(t)

ex direction is [70]

x(t) = x(t0) + c1
2Fa2

π~
t, (3.11)

where c1 = 1 is the Chern number (1.5) of the lowest band. However, even in the ideal case, due
to the sudden quench of the linear potential, a fraction of particles is transferred to the higher
bands. To take this effect into account, the authors of Ref. [70] introduced a filling factor γ(t)

γ(t) = η1(t)− η2(t) + η3(t), (3.12)

where ηi(t) are populations of different bands of Hamiltionian (3.6) from Eq. (D.4) in Appendix
D and the plus and minus signs in Eq. (3.12) are defined according to the Chern numbers c1 = 1,
c2 = −2, and c3 = 1. The final theoretical prediction is then [70]

x(t) = x(t0) + c1
2Fa2

π~

∫ t

0
γ(t′)dt′. (3.13)

In Fig. 3.3(a) we consider the anomalous drift for a high value of the driving frequency
ω = 20, where we expect the expansion in 1/ω to be reliable. We find an excellent agreement
between the prediction (3.13) (dotted black line) and numerical calculation based on Ĥeff,0

(solid green line). However, some deviations between the full numerical results (dashed purple
line) and the results of the approximation scheme (solid green line) are clearly visible. These
deviations are even more pronounced for ω = 10, Fig. 3.3(b).

Now we turn to the effective model (3.7). In this case we select the modes of the initial state
as eigenstates of Eq. (3.8) for ĥeff = Ĥeff,1. Moreover, we also consider band populations (D.4)
of the same model. In the case when ω = 20, Fig. 3.3(c), the anomalous drift obtained using the
effective Hamiltonian (3.7) (solid green line) closely follows the theoretical prediction (3.13).
Moreover, from the same figure we can see that the effective Hamiltonian Ĥeff,1 reproduces
the behavior of the time-dependent Hamiltonian very well. All three curves almost overlap for
intermediate times (5−40 ms); see Fig. 3.3(c). We attribute the long-time (> 45 ms) deviations
to the finite-size effects introduced by the next-nearest-neighbor hopping terms, which cause
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Figure 3.3: Anomalous drift x(t). Dashed purple lines: numerical simulations using the
time-dependent Hamiltonian Ĥ(t) (cases 2 and 4 from Table 3.1). Solid green lines: effective
Hamiltonians Ĥeff,1 (c) and (d) and Ĥeff,0 (a) and (b) (cases 1 and 3). Dotted black lines:
theoretical prediction (3.13) from γeff,1(t) or γeff,0(t). (a) Initial states and band populations
obtained using the effective Hamiltonian Ĥeff,0 without the correction (cases 3 and 4). Driving
frequency ω = 20. (b) ω = 10. (c) Hamiltonian Ĥeff,1 with the J2

x/ω correction (cases 1 and 2).
Driving frequency ω = 20. (d) ω = 10.

the atomic cloud to reach the edge of the lattice faster. This effect is explained in more detail
in Section 3.3.2.

For a lower driving frequency ω = 10, the effective and the time-dependent Hamiltonians do
not agree so well anymore; see Fig. 3.3(d). The finite-size effects can be observed even earlier in
this case (around 25 ms). This happens because the next-nearest-hopping terms are inversely
proportional to the driving frequency. It is interesting to note that the prediction (3.13) is close
to numerical data for short times even in this case when the gaps of the effective model are
closed, see Fig. 3.2(c), and the Chern number of the lowest band is not well defined. In fact, it
is surprising that the anomalous drift even exists in this case, as all subbands are now merged
into a single band. We attribute this effect to our choice of the initial state. When the gaps are
closed, it is hard to set the parameters in such a way that the lowest band is completely filled.
The top of this band usually remains empty, and the particles thus do not “see” that the gap
is closed.

Time evolution of the filling factor γ(t) is plotted in Fig. 3.4 for four different cases from
Table 3.1 – evolution using the effective Hamiltonian without correction Ĥeff,0 [γeff,0(t), case 3,
dashed green line in Fig. 3.4(a)], the effective Hamiltonian with correction Ĥeff,1 [γeff,1(t), case 1,
dashed green line in Fig. 3.4(b)], or the time-dependent Hamiltonian Ĥ(t) [γ(t), cases 2 and 4,
solid purple lines]. At the initial moment γ(t0 = 0) < 1, because the initial state was multiplied
by the operator e−iK̂(0). This introduces a shift between γ(t) and γeff,1(t). Apart from the shift,
these two curves behave similarly, unlike the γeff,0(t) curve that exhibits completely different
behavior. Because of this, we use only γeff,1(t) to estimate the value of the prediction (3.13).

We find that the values of γeff,1(t) for ω = 20 are high: ≥ 0.95; see Fig. 3.4. For this
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Figure 3.4: Time evolution of the filling factor γ(t) for driving frequency ω = 20. Solid purple
lines: evolution governed by the time-dependent Hamiltonian Ĥ(t) (cases 2 and 4 from Table
3.1). Dashed green lines: evolution governed by the effective Hamiltonian Ĥeff,1 or Ĥeff,0 (cases 1
and 3). Dotted black lines: green lines shifted in order to compare them with purple lines. Shift
is chosen so that the two lines approximately overlap. (a) Initial states and band populations
obtained using the effective Hamiltonian Ĥeff,0, which is without the J2

x/ω correction term
(cases 3 and 4). (b) Hamiltonian Ĥeff,1 which is with the correction term (cases 1 and 2).

reason, up to 50 ms the center-of-mass position x(t) exhibits roughly linear behavior with some
additional oscillations. Interestingly, the anomalous drift x(t) exhibits quadratic behavior on
short time scales in all cases from Fig. 3.3. In Appendix E, we explain this feature using the
time-dependent perturbation theory and Fermi’s golden rule.

3.3 Interacting case

We now investigate the effects of weak repulsive interactions. We work in the high-frequency
regime and set ω = 20. As shown in Section 3.1.2, for U = 0 the effective Hamiltonian
with correction, Ĥeff,1, is in this case equivalent to the Harper-Hofstadter Hamiltonian with
flux α = 1/4. Moreover, the same approximative form of the full effective model accurately
reproduces the behavior of the time-dependent Hamiltonian up to 50 ms and thus provides
a good starting point for the study of weakly interacting particles. We first consider the
anomalous drift of the center of mass of the atomic cloud and then we inspect the expansion
dynamics more closely in terms of atomic density distributions in real and momentum space.

3.3.1 Anomalous drift and dynamics of band populations

To simulate the dynamics of many incoherent bosons, we use the classical field method presented
in Section 3.1.3 and propagate Eq. (3.9) in time. We assume that at t0 = 0 atoms are uniformly
distributed over the lowest band of Ĥeff,1. For this reason, the initial state is the same as the
one that we use in the noninteracting regime. In this way, the dynamics is initiated by an
effective triple quench: at t0 = 0 the confining potential is turned off, atoms are exposed to the
force F = −Fey, and also the interactions between particles are introduced. The total number
of particles is set to N = 90, 000, which amounts to approximately 100 particles per lattice site
in the central region of the atomic cloud. We consider only weak repulsion U ≤ 0.05.
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Figure 3.5: Effects of interactions. (a) Anomalous drift x(t) for several different values of the
interaction coefficient U . U is given in units where J = 1. Thick lines: numerical simulations
using the time-dependent Hamiltonian Ĥ(t). Thin lines: theoretical prediction (3.13) from
γeff,1(t). (b) Corresponding γeff,1(t) = η1(t)− η2(t) + η3(t), obtained from simulations using the
effective Hamiltonian Ĥeff,1.

The anomalous drift x(t) obtained using the full time-dependent Hamiltonian is shown in
Fig. 3.5(a) for several different values of the interaction strength U . In comparison to the
noninteracting regime, we find that the weak repulsive interactions inhibit the response of the
center of mass to the external force. In particular, at t = 50 ms the drift is reduced by about
15% for U = 0.005 and it is further lowered by an increase in U . Finally, at U = 0.05, the
anomalous drift is barely discernible. Interestingly, for weak U ∈ (0.001, 0.01) we find that the
drift x(t) in the range of t ∈ (10, 50) ms looks “more linear” as a function of time in comparison
to the noninteracting result.

We now analyze the anomalous drift in terms of the filling factor γ(t) and compare the
results of Eq. (3.9) with the description based on Eq. (3.10). By solving Eq. (3.10) we obtain
the filling factor γeff,1(t) following Eq. (D.4) and present our results in Fig. 3.5(b). Whenever
the results of Eq. (3.9) reasonably agree with the results obtained from Eq. (3.10), we are close
to a steady-state regime with only small fluctuations in the total energy, as Eq. (3.10) preserves
the total energy of the system. In this regime, during the expansion dynamics the interaction
energy is converted into the kinetic energy and atoms are transferred to higher bands of the
effective model. Consequently, the filling factor γeff,1(t) is reduced. Typically, we find three
different stages in the decrease of γeff,1(t).

In an early stage, t ≤ t1 = 5 ms, a fast redistribution of particles over the bands of the
effective model sets in due to the sudden quench of U . The factor γeff,1(t) decays quadratically
as a function of time down to γeff,1(t1) ≈ 0.75 for U = 0.01, and γeff,1(t1) ≈ 0.25 for U = 0.05.
In this process the interaction energy of the system is quickly lowered as described in Appendix
F. At later times t > 5 ms, we observe a linear decay of the filling factor γeff,1(t) as a function
of time, that finally turns into an exponential decay at even later times (t > 10 ms). Similar
regimes are observed in other dynamical systems. For example, a decay rate of an initial state
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suddenly coupled to a bath of additional degrees of freedom exhibits these three stages [195].
The initial quadratic decay is often denoted as “the Zeno regime.” For longer propagation
times, Fermi’s golden rule predicts the linear decay. At even longer time scales, when the
repopulation of the initial state is taken into account, the time-dependent perturbation theory
yields the exponential regime, known under the name of the Wigner-Weisskopf theory [195].

We now investigate this last regime in more detail. For the population of the lowest band
η1(t), an exponential decay function f(t) = a+be−ct provides high quality fits for t ∈ (10, 50) ms;
see Fig. 3.6(a) for an example. Similarly, the populations of two higher bands can also be fitted
to exponential functions. The obtained exponential decay coefficients c for the lowest band
population are plotted as a function of the interaction strength U in Fig. 3.6(b). The resulting
dependence is approximately quadratic: c(U) = α0 + α1 U + α2 U

2. For small values of U ,
the exponents c(U) obtained for the dynamics governed by Ĥ(t) and Ĥeff, 1 agree very well
and exhibit linear behavior. At stronger interaction strengths U ≥ 0.03, the approximation of
Eq. (3.10) becomes less accurate as it omits the quadratic contribution in c(U) found in the
full time evolution. In addition, the values of the exponents c are affected by the force strength
F and driving frequency ω.

As we now understand some basic features of γeff,1(t), we make an explicit comparison
between the numerical results for the anomalous drift and the expectation (3.13). The dashed
lines in Fig. 3.5(a) correspond to the theoretical prediction (3.13) calculated from γeff,1(t). For
the intermediate interaction strengths U ≤ 0.01, we find a very good agreement between the
two. From this we conclude that the interaction-induced transitions of atoms to higher bands
are the main cause of the reduced anomalous drift x(t) as a function of U . When the interactions
become strong enough (U ∼ 0.02), the numerical results start to deviate from the theoretical
prediction (3.13) with γeff,1(t). In this regime, Eq. (3.10) does not provide a reliable description
of the dynamics, as higher-order corrections need to be taken into account.

Figure 3.6: (a) Evolution of the band populations ηi(t). Dashed lines: numerical results
obtained using the time-dependent Hamiltonian Ĥ(t). Solid black lines: exponential fit using
f(t) = a+ be−ct. The coefficient a was fixed to a1 = 0.25, a2 = 0.50 and a3 = 0.25 for the first,
second and third band respectively. (b) Dependence of the exponential decay coefficients for
the lowest band population η1(t) on the interaction strength. U is given in units where J = 1.
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Figure 3.7: Real-space density distribution, noninteracting case U = 0. (a) Initial state. (b)
After 50 ms (75 driving periods), evolution using the time-dependent Hamiltonian Ĥ(t). (c)
Evolution using effective Hamiltonian without correction Ĥeff,0. (d) Evolution using effective
Hamiltonian with correction Ĥeff,1.

3.3.2 Real and momentum-space dynamics

So far we have considered the averaged response of the whole atomic cloud. We now inspect
the expansion dynamics in a spatially resolved manner. The real-space probability densities at
the initial moment and after 50 ms (75 driving periods) are shown in Figs. 3.7 and 3.8, and the
corresponding momentum-space probability densities in Appendix F.

At the initial moment, the atomic cloud is localized in the center of the lattice. By setting
r0 = 20 in the confining potential of Eq. (D.2) and populating the lowest-lying states, we fix the
cloud radius to r = 20, Fig. 3.7(a). The cloud density is of the order of 100 atoms per lattice
site and a weak density modulation is visible along x direction. After the confining potential is
turned off, and the external force in the −ey direction is turned on, the cloud starts to expand
and move in the +ex direction. As shown in the previous subsection, the band populations and
therefore the anomalous drift are significantly altered by the interaction strength, and this is
also the case with the expansion dynamics; see Figs. 3.7 and 3.8.

In the noninteracting case, Fig. 3.7(b), the atomic cloud nearly separates into two parts
moving in opposite directions along x axes (while the center of mass still moves in the +ex
direction). By comparing Fig. 3.7(c) and Fig. 3.7(d), we conclude that this effect stems from
the next-nearest-neighbor hopping along x present in the effective Hamiltonian (3.7), as it does
not happen in the effective model without the correction term (3.6). This type of separation
was already observed in Ref. [168], where the next-nearest-neighbor hopping terms were also
present.

When the interactions between particles are included, this separation is not so prominent
[Fig. 3.8(a), U = 0.01], and it almost completely disappears when the interactions are strong
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Figure 3.8: Real-space density distribution after 50 ms (75 driving periods), interacting case.
U is given in units where J = 1. (a) Evolution using the time-dependent Hamiltonian Ĥ(t),
U = 0.01. (b) Same with U = 0.05. (c) Evolution using the effective Hamiltonian Ĥeff,1,
U = 0.01. (d) Same with U = 0.05.

enough [Fig. 3.8(b), U = 0.05]. This is also the case when the evolution is governed by the
effective Hamiltonian Ĥeff,1; see Figs. 3.8(c) and 3.8(d). Atomic cloud widths dx =

√
〈x2〉 − 〈x〉2

during the expansion are plotted in Fig. 3.9. We observe a slow expansion of the cloud in y

direction, Fig. 3.9(b), and much faster expansion along x direction, Fig. 3.9(a), which comes
about as a consequence of the cloud separation. On top of this, we observe that the interactions
enhance expansion along y. Surprisingly, the opposite is true for the dynamics along x. This
counterintuitive effect is often labeled as self-trapping and its basic realization is known for the
double-well potential [196, 197]. In brief, strong repulsive interactions can preserve the density
imbalance between the two wells, as the system can not release an excess of the interaction
energy. In our case, the situation is slightly more involved as the cloud splitting is inherent
(induced by the corrections of the ideal effective Hamiltonian). Apart from this, due to the
driving the total energy is not conserved. However, our numerical results indicate that the
interaction energy is slowly released in the second expansion stage, Fig. F.1. Effectively, in this

Figure 3.9: Atomic cloud width for different interaction strengths, evolution using the time-
dependent Hamiltonian Ĥ(t). U is given in units where J = 1. (a) dx =

√
〈x2〉 − 〈x〉2. (b)

dy =
√
〈y2〉 − 〈y〉2.
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Figure 3.10: (a) Comparison of anomalous drifts obtained from evolution using the time-
dependent Hamiltonian Ĥ(t) (solid purple line), effective Hamiltonian without correction Ĥeff,0

(dashed green line) and effective Hamiltonian with correction Ĥeff,1 (dotted black line). Inter-
mediate interaction strength U = 0.01. U is given in units where J = 1. (b) Time evolution of
the inverse participation ratio in momentum space for several different values of U . Evolution
is performed using the time-dependent Hamiltonian Ĥ(t). When the interactions are strong
enough, IPR approaches the maximal possible value (10, 000 in this case), which is equal to
the total number of states and corresponds to the completely delocalized state. U is given
in units where J = 1. (c) Chern number of the lowest band obtained for different interaction
strengths as the ratio of the theoretical prediction for the anomalous drift and numerical results:
c1(t) =

(
2Fa2

π~
∫ t

0 γeff,1(t′)dt′
)
/ (x(t)− x(t0)).

way the interactions cancel out the contribution of the next-nearest-neighbor hopping and favor
the measurement of the properties of the model (3.6). In Fig. 3.10(a) we show that deviations
between different approximations based on Ĥ(t), Ĥeff, 1, and Ĥeff, 0 in the anomalous drift x(t)
nearly vanish at U = 0.01.

Another desirable effect might be that the interactions make the momentum-space proba-
bility density more homogeneous, see Appendix F, so that the real-space probability density
becomes more localized. We can quantify momentum-space homogeneity using the inverse par-
ticipation ratio R(t) = 1∑

i
P 2
i (t) , where Pi(t) = |ψi(t)|2 is the probability that the state ψi is

occupied at time t. Minimal value of the inverse participation ratio (IPR) is 1 and it corre-
sponds to a completely localized state, while the maximal value is equal to the total number
of states (in our case 10, 000) and corresponds to the completely delocalized state, where the
particles have the same probability of being at any quasimomentum k. As stated before, the
first Brillouin zone of the lowest band has to be as homogeneously populated as possible in
order to properly measure the lowest band Chern number. From Fig. 3.10(b), we see that IPR
increases in time when the interaction coefficient U is large enough, so we can conclude that
the interactions are actually beneficial for measuring the Chern number, as they can “smooth-
out” the momentum-space probability density. In Fig. 3.10(c) we give estimates for the Chern
number that can be extracted from our numerical data for different values of U . We find the
best estimate c1 ∼ 0.99 for the intermediate interaction strength U ∼ 0.01.
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3.3.3 Staggered detuning

Here we briefly consider the effects of staggered detuning that was introduced in the experimen-
tal study [70] during the loading and band mapping sequences. This detuning can be described
by an additional term

δ

2
∑
l,m

[
(−1)l + (−1)m

]
n̂l,m (3.14)

in the Hamiltonians Ĥ(t) and Ĥeff,1. We will ignore the higher-order [at most O
(

1
ω2

)
] correc-

tions that this term introduces to the effective Hamiltonian. Staggered detuning does not break
the symmetry of the effective Hamiltonian Ĥeff,1, but if δ is large enough, it can cause a topo-
logical phase transition and make all bands topologically trivial. By numerically calculating
the Berry curvature and Chern numbers c′i, we find that this transition occurs at δc ≈ 1.38 J ;
see Fig. 3.11. This value is lower than the one for the ordinary Harper-Hofstadter Hamiltonian
for α = 1/4, which is δc = 2 J [70], due to the different hopping amplitudes J ′x and J ′y, and due
to the additional J2

x/ω correction that we consider.

We now investigate how this topological transition can be probed through the dynamical
protocol used in the experiment. We again numerically calculate the anomalous drift and
the evolution of the filling factor, but now with staggered detuning (3.14) included in the
Hamiltonian Ĥinitial (D.2) used to obtain the initial state, in the equations of motion (3.9) and
(3.10), and in the definitions of the band populations ηi(t) (D.4). Using these results, we repeat
the procedure for the extraction of the lowest band Chern number from numerical data that was
carried out in the previous section. The Chern number obtained by comparing the anomalous
drift to the prediction calculated from the filling factor is then averaged over the time interval
t ∈ (20, 40) ms. This interval was chosen in order to avoid the initial quadratic regime and the
finite-size effects at later times. The resulting lowest band Chern numbers for several different
values of detuning δ in both the noninteracting case and the case of intermediate interaction
strength U = 0.01 are presented in Fig 3.11.

We can see that the calculated value of the Chern number decreases from c1 = 1 to c1 = 0
with increasing detuning δ. The obtained value of the Chern number is lower than 1 even before
the phase transition occurs. This is due to our choice of the initial state, which is not perfectly
homogeneous in momentum space. Close to the phase transition, both the energy bands and
the Berry curvature have pronounced peaks at the same regions of the first Brillouin zone, and
these regions are initially less populated. Because of this, the Berry curvature at these regions
contributes less to the anomalous drift, which lowers the measured Chern number. This effect
is somewhat reduced by the interactions, as they smooth out the momentum-space probability
density, and might also cancel out the detuning term. Similar interplay of interactions and
staggering was observed in the fermionic Hofstadter-Hubbard model [198]. The obtained results
are in line with experimental measurements [70].
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Figure 3.11: Lowest band Chern numbers extracted from numerical data for several different
values of detuning δ. Purple circles: noninteracting case, U = 0. Green triangles: U = 0.01.
Blue squares: Theoretical values of the lowest band Chern number c′1. A topological phase
transition is visible at δc ≈ 1.38. The lines between points are only a guide to the eye.

3.4 Conclusions

Motivated by the recent experimental results reporting the Chern numbers of topological bands
in cold-atom setups, we studied numerically bosonic transport in a driven optical lattice. The
considered driving scheme and the range of microscopic parameters were chosen to be close to
those in a recent experimental study [70]. The driving frequency was set to be high enough in
order to avoid strong energy absorption for the relevant time scales. Additionally, the system
was restricted to a two-dimensional lattice, even though the actual experimental setup had
continuous transverse degrees of freedom. This restriction stabilizes the system [172, 174, 184]
and leads to lower heating rates than those in the experiment. It corresponds to the case of
strongly confined third dimension.

We investigated bosonic dynamics for the full time-dependent Hamiltonian, the effective
Floquet Hamiltonian, and included the effects of weak repulsive interactions between atoms
using the mean-field approximation. In the noninteracting case, we found that the effective
Hamiltonian and its band structure depend on the frequency of the drive ω through an ad-
ditional J2

x/ω correction term. The initial state was set as a mixture of incoherent bosons
homogeneously populating the lowest band, but a possible direction of future research could
be to simulate the full loading sequence of an initial Bose-Einstein condensate and to try to
obtain the incoherent state through driving, as it was done in the experiment.

The main focus of this work is on the effects of weak interactions. For a weak atomic re-
pulsion, atomic transitions to higher effective bands obtained in our simulations mainly occur
due to a release of the initial interaction energy during the atomic-cloud expansion. Although
the effect is undesirable, it can be properly taken into account in the extraction of the Chern
number. At larger interaction strengths, the transitions are more pronounced as the system
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absorbs energy from the drive. In this regime the good agreement between the full and ef-
fective description is lost and the measurement should become more complicated. In addition
to causing redistribution of atoms over bands, our results show that weak interactions can
also be beneficial in measuring the Chern number. Their desirable effect comes about due to
smoothening the atomic distribution over the topological band and due to canceling out the
contribution of some less relevant terms to the bosonic dynamics.
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Bosonic fractional quantum Hall states in
driven optical lattices

Since early experiments with quantum gases, there has been a strong interest in the real-
ization of fractional quantum Hall (FQH) states in these setups [199–213]. Despite numerous
experimental achievements and a variety of theoretical proposals, FQH physics has still not been
reached in cold-atom experiments. At first glance, both key requirements for the emergence of
FQH states - atomic interactions and strong synthetic magnetic fields - are now experimentally
available. However, there are several specific details in the implementation of strong synthetic
magnetic fields for cold atoms that make the realization of FQH states still challenging.

The most advanced recent realizations of artificial gauge potentials exploit periodically
driven optical lattices [70, 75, 77–80, 86, 87, 173, 214]. However, general arguments and nu-
merical studies [94, 95, 215] suggest that the interplay of interactions and driving in a ther-
modynamically large system introduces heating, leading to a featureless infinite-temperature
state in the long-time limit. Although this general result might sound discouraging, the heating
process can be very slow in some driven systems for specific regime of microscopic parameters.
There, the system can be described by a physically interesting “prethermal” Floquet state on
experimentally relevant time-scales [96–98, 193, 194, 216, 217]. Moreover, the onset of ther-
malization in a finite-size interacting system may exhibit unexpected features, not found in the
thermodynamic limit [218, 219]. Heating rates and resulting instabilities have been recently
investigated both theoretically and experimentally for the driven Bose-Hubbard model in the
weakly interacting regime [96, 174, 178, 179]. Moreover, experimental studies of the driven
Fermi-Hubbard model in a honeycomb lattice have established a timescale of the order of 100
tunneling times for the regime where the effective-model description applies [124, 220].

In this Chapter, we consider small systems of several interacting bosonic atoms in a pe-
riodically driven optical lattice featuring synthetic magnetic flux. The focus of our study is
on finding optimal microscopic parameters that would allow to prepare and probe the basic
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bosonic Laughlin state in this setup. To this end, we employ exact numerical simulations of
the driven Bose-Hubbard model [169] for small system sizes.

From one point of view, it is expected that a small driven system exhibits low heating rates
for a driving frequency set above a finite bandwidth of an effective model [94]. However, driving
a system with such a high frequency may lead to undesirable effects, such as coupling of the
lowest band to higher bands of the underlying optical lattice, thus making the initial description
based on the lowest-band Hubbard model inapplicable. These effects have been addressed in a
recent study [88] where an optimal intermediate frequency window for Floquet engineering has
been established.

In our study, we go a step further in the search for the optimal regime that might allow for
the bosonic Laughlin states under driving. In particular, for a realistic, intermediate value of a
driving frequency, the interaction term complicates the effective model by introducing several
higher-order terms. Their effect on the topological states has been addressed only recently
[221, 222] and it has been found that typically these terms work against the topological state.
For this reason, the stability of the Laughlin state at intermediate driving frequency requires a
separate study, that we perform here. Moreover, we numerically investigate an experimentally
relevant preparation protocol for the Laughlin state in a driven system [183]. For a reference,
we note that a simpler but closely related question concerning the static (undriven systems)
has gained lot of attention [181, 202, 203, 211].

This Chapter is organized as follows: in Section 4.1 we introduce the model under study
and briefly review key features of the particle-entanglement spectra that we will exploit in the
identification of the Laughlin-like state. Then, in Section 4.2.1 we investigate general heating
effects of interacting bosons exposed to the driving. By extending this approach, in Section 4.2.2
we construct the stroboscopic time-evolution operator and inspect its eigenstates in order to
identify possible FQH states. Finally, in Section 4.3 we address the possibility of accessing
these states in an experiment through a slow ramp of the driving term.

4.1 Model and method

In this section we first introduce the driven model and explain the basis of Floquet engineering.
Then we summarize several key features of the particle-entanglement spectra that we use to
characterize the bosonic Laughlin states.

4.1.1 Driven model

Properties of bosonic atoms in a deep optical lattice can be realistically described within the
framework of the Bose-Hubbard model given by Eq. (1.1) [5]. We consider a basic driving
scheme [169] that introduces a uniform, synthetic magnetic flux into a square optical lattice
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Figure 4.1: Lattice geometry used throughout this Chapter. The parallelogram gives the
exemplary lattice size (Lx, Ly) = (4, 8). The color scale is defined by mod (m + n, 4), in
accordance with the driving term from Eq. (4.1). The vectors R1 = 4 ex,R2 = −ex + ey are
used to implement periodic boundary conditions. The small rectangle gives the magnetic unit
cell for the effective model in Eq. (4.2).

here spanned by the two vectors ex and ey. The corresponding Hamiltonian is given by the
driven Bose-Hubbard model

Ĥ(t) = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
− Jy

∑
m,n

(
eiωtâ†m,n+1âm,n + H. c.

)
+ κ

2
∑
m,n

sin (ω t− (m+ n− 1/2)φ) n̂m,n + U

2
∑
m,n

n̂m,n(n̂m,n − 1), (4.1)

where operators âm,n (â†m,n) annihilate (create) a boson at lattice position (m,n), and local
density operators are n̂m,n = â†m,nâm,n. Jx and Jy are tunneling amplitudes and U is the on-site
local repulsive interaction. We use the units where ~ = 1 and the lattice constant a = 1. The
driving scheme is defined by the driving frequency ω, the driving amplitude κ and by a phase
φ. In the following we set φ = π/2 and κ/ω = 0.5. These values were recently used in an
experimental realization of the Harper-Hofstadter model [70]. The derivation of this model is
briefly reviewed in Appendix G. We assume periodic boundary conditions implemented using
the vectors R1 = 4 ex,R2 = −ex + ey, as presented in Fig. 4.1. This choice is compatible with
the driving term and it allows us to exploit translational symmetry by working in the fixed
quasimomentum basis.

Formally, by using the Floquet theory [81–83], it can be shown that the full time-evolution
operator corresponding to this model is given by Eq. (1.9). The full-time evolution operator
is periodic as well and consequently the (quasi)eigenenergies of the time-independent effective
Hamiltonian Ĥeff are defined up to modulo ω. Eq. (1.9) gives formal mapping of a periodically
driven system to an effective model that captures the stroboscopic time evolution of the model.
However, according to general analytical arguments and numerical insights, the corresponding
effective model of a driven interacting many-body system in the thermodynamic limit exhibits
nonphysical features [94, 95]. In particular, the system thermalizes and in the long-time limit
its steady state is a featureless, infinite-temperature state, independent of the initial state.
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Here we consider small samples of several bosonic atoms. Due to a finite spectrum band-
width, we expect the high-frequency expansion to be relevant for a finite range of the driving
frequency. Within these assumptions, the leading-order (in 1/ω) effective Hamiltonian is

Ĥeff = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
− J ′y

∑
m,n

(
ei(m+n)φâ†m,n+1âm,n + H. c.

)
+ U

2
∑
m,n

n̂m,n (n̂m,n − 1) . (4.2)

The Hamiltonian (4.2) features complex hopping phases ei(m+n)φ that result in a uniform syn-
thetic magnetic flux φ per lattice plaquette. Due to the driving, the renormalized hopping
amplitude along the y direction turns into

J ′y ≡
κ

2ω sin(φ/2) Jy. (4.3)

For the values φ = 2πα, where the flux density α is set to α = 1/4, and κ/ω = 0.5, the tunneling
amplitude along y direction in the effective model is J ′y ≈ Jy × 0.1768.

In a certain regime of microscopic parameters, the ground state of the model defined in
Eq. (4.2) is given by the lattice version of the Laughlin state [203, 205, 223–225]. The Laughlin
state is stabilized for the filling factor ν = Np/Nφ = 1/2, where Nφ = αLx × Ly is the total
number of fluxes (Nφ being an integer) and Np is the number of bosons, and for a strong-
enough repulsion U . Another important requirement for the Laughlin state is to avoid the
strong hopping anisotropy and to keep Jx ≈ J ′y, so we set Jx = 0.2Jy. We consider system sizes
Np = 4, 5, 6 and the respective lattices sizes (Lx, Ly) = (4, 8), (4, 10), and (4, 12), see Fig. 4.1,
where we expect the ground state to correspond to the ν = 1/2 Laughlin state. The Hilbert
space sizes for kx = ky = 0 are dimH = 6564, 108604, and 1913364 respectively. For this
choice of microscopic parameters, the model ground state of Eq. (4.2) is approximately twofold
degenerate. The two ground-states are found in the sectors kx = 0, ky = 0 and kx = 0, ky = π.
We denote them by |ψ0,0

LGH〉 and |ψ0,π
LGH〉.

As we are mainly interested in the driven regime, not only the ground state, but the full
spectrum of the model from Eq. (4.2) plays a role. A rough argument is that the system does
not absorb energy provided that the driving frequency ω is set above the bandwidth of the
effective model. Several spectra of the model from Eq. (4.2) for kx = 0, ky = 0 are presented
in Fig. 4.2(a). It can be seen that the ground-state energy is weakly affected by the value of
U ≥ Jx, while the top part of the spectrum with few states is found at UNp(Np − 1)/2. For
higher values of U the spectrum splits into bands where the lowest band corresponds to the
hard-core bosons and higher bands include double and higher occupancies.

62



Chapter 4 Bosonic fractional quantum Hall states in driven optical lattices

-20
-10
0
10
20
30
40
50
60
70

0 2000 4000 6000
3
4
5
6
7
8
9
10
11
12
13
14

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(a) (b) (c)

Figure 4.2: (a) The energy spectrum En of the model from Eq. (4.2) in the kx = 0, ky = 0
sector for Np = 4 and different values of interaction U/Jx = 1, 10, 40 and U/Jx = ∞ (hard-
core bosons). The top part of the spectrum is at ≈ (U/Jx)Np (Np − 1) /2. (Not shown for
U/Jx = 40.) For a high ratio U/Jx the spectrum splits into bands. The lowest band corresponds
to hard-core bosons. (b) The low-lying part of the particle-entanglement spectrum − ln ξn of the
ground-state incoherent superposition, Eq. (4.5), in the region A momentum sectors kAy = 0 and
kAy = π/6, and for Np = 6, U/Jx = 2.5. (c) The particle-entanglement gap ∆ of the incoherent
superposition Eq. (4.5) as a function of interaction strength U for Np = 4, 5, 6.

4.1.2 Particle-entanglement spectra

There are several ways to characterize the ground states of the model from Eq. (4.2) as the
Laughlin states. Usually, the starting point in this direction is the identification of the twofold
degeneracy expected in the implemented torus geometry for ν = 1/2. Another relevant quantity
is the overlap of the numerically obtained state with the Laughlin analytical wave function in the
torus geometry [205, 225]. More direct evidence can be obtained through the calculation of the
relevant topological index (Chern number) or the quantized Hall conductance. An additional
convincing approach, that we pursue here, is based on the analysis of the entanglement spectra
of the relevant states.

In the following we will use the particle-entanglement spectrum (PES) [225, 226] to dis-
tinguish possible topologically nontrivial states. In order to obtain this type of entanglement
spectrum, we partition Np particles into two sets of NA and NB = Np − NA particles. For a
given mixed state ρ, we construct a reduced density matrix ρA = trBρ by performing a partial
trace over NB particles. The resulting PES is given by − ln ξn, where ξn are eigenvalues of ρA.
The related particle-entanglement entropy is given by [227, 228]

SA = −tr (ρA ln ρA) . (4.4)

By partitioning particles, we keep the geometry of the system unchanged. For this reason, we
will inspect the PES for the different momentum sectors kAy of the remaining NA particles. An
example of a PES is presented in Fig. 4.2(b). As proposed in Refs. [225, 226], we have considered
the incoherent superposition of the almost twofold degenerate ground state of Eq. (4.2) as the
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density matrix
ρGS = 1

2
(
|ψ0,0

LGH〉〈ψ
0,0
LGH|+ |ψ

0,π
LGH〉〈ψ

0,π
LGH|

)
. (4.5)

For simplicity, we only present the PES for the two momenta kAy = 0 and kAy = π/6. We observe
a clear particle-entanglement gap ∆. In addition, the counting of low-lying modes below this
gap (ten modes for kAy = 0 and nine modes for kAy = π/6, at NA = 3, Np = 6) corresponds to
the Laughlin state [225, 226]. In this way the PES encodes topological features of the state
ρ in the form of well defined number of excitations per momentum sector kAy [225, 226]. This
type of analysis is useful as it can identify topological features even without model states, as
done for the case of fractional Chern insulators [229, 230].

In the following we will consider specific particle partitions NA = 2, Np = 4; NA = 2, Np = 5;
and NA = 3, Np = 6. For these cases the counting of excitations NL(kAy ) per momentum sector
kAy is well established and given in Table 4.1. In Fig. 4.2(c) we show the particle-entanglement
gap of the mixtures, Eq. (4.5), obtained at different values of U . Numerical results for the
obtained PES indicate that a reasonably large gap is found starting at U ∼ 0.5Jx and the
characteristic features of the Laughlin state persist with a further increase in U . We note that
at lower values of the flux density, α < 1/4, the Laughlin state can be found at even lower
values of the repulsion U [205, 225].

Table 4.1: Counting of modes NL
(
kAy
)

in the PES of the Laughlin state for several system
sizes and particle partitions. The last column lists the NL(kAy ) values for each momentum sector
kAy = 2πi/Ly, i = 0, . . . , Ly − 1.

Np (Lx, Ly) NA PES: NL(kAy )
4 (4, 8) 2 3, 2, 3, 2, 3, 2, 3, 2
5 (4, 10) 2 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
6 (4, 12) 3 10, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 9

By analyzing the effective model from Eq. (4.1), we have obtained a guidance for the regime
of microscopic parameters and for the geometry of the small system that can give rise to
Laughlin states. In the next sections our aim is to go beyond the effective model from Eq. (4.2)
and to identify topological states supported by the full driven dynamics as captured by the
model given in Eq. (4.1).

4.2 Driven dynamics

In this section we discuss the full driven dynamics as captured by the model given in Eq. (4.1).
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4.2.1 Heating

First we address the onset of heating following the standard procedure discussed in Refs. [217,
231]. The initial state of the system is prepared using the ground state of the effective model

|ψ(t = 0)〉 = e−iK̂(t=0)|ψ0,0
LGH〉 (4.6)

and we monitor the stroboscopic time-evolution t = N T , T ≡ 2π/ω governed by the full driven
model defined in Eq. (4.1). In our numerical simulations, we approximate the micromotion
operator K̂(t = 0) using the leading-order high-frequency expansion; see Eq. (G.12). The
quantity of interest is the expectation value of the effective Hamiltonian: (4.2)

〈Ĥeff(t = NT )〉K = 〈ψ(t)|e−iK̂(t=0)Ĥeffe
iK̂(t=0)|ψ(t)〉. (4.7)

We expect this quantity to reasonably correspond to the ground-state energy of the effective
model E0 in the regime of very high frequency. On the other hand, for a “low” driving frequency
we expect the system to quickly reach the infinite-temperature β → 0 regime defined by

lim
β→0
〈Ĥeff〉 = 1

dimHtr
(
Ĥeff

)
. (4.8)

For this reason we monitor the normalized total energy

Q(t = NT ) = 〈Ĥeff(t = NT )〉K − E0

limβ→0〈Ĥeff〉 − E0
(4.9)

and we present it in Fig. 4.3(a), for U/Jx = 10. In agreement with the known results [231], we
find that the thermalization is quick for both a “high” driving frequency ω/Jx ≥ 20 and for a
“low” driving frequency ω/Jx ≤ 10. For the intermediate values of ω, the heating process is
slow [231] and the total energy exhibits a slow exponential growth captured by Q(t = NT ) ≈
1 − b exp(−c t), t � 1. An example of this behavior is given for ω/Jx = 15 in Fig. 4.3(a).
The heating process can also be monitored through the particle-entanglement entropy SA as a
function of time. In Fig. 4.3(b) for Np = 5 and low driving frequency we find that this quantity
quickly saturates to its maximal value. Indeed, for a thermal state at infinite temperature, SA
is given by

Smax
A ≈ ln

(
Lx Ly +NA − 1

NA

)
, (4.10)

marked by the horizontal, dot-dashed line in Fig. 4.3(b). Except for the highest frequency
considered (ω/Jx = 50), we find that, in the process of heating, the particle-entanglement gap
of the initial state quickly closes (not shown in the plots).

Here we briefly discuss finite-size effects by comparing numerical results for the normalized
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Figure 4.3: (a) The normalized total energy Q(t = NT ) from Eq. (4.9), and the (b) particle-
entanglement entropy SA(t = NT ), Eq. (4.4), during the time evolution governed by Eq. (4.1)
for several driving frequencies ω/Jx = 50, 20, 15, 10. Parameters: Np = 5, U/Jx = 10.
Note that the asymptotic value of SA for ω/Jx = 10 and ω/Jx = 15 matches the one
given in Eq. (4.10), as presented by the horizontal, dot-dashed line. (c) The long-time limit
limN→∞Q(NT ) for Np = 4 and the on-site interactions U/Jx = 1, 10 and U/Jx =∞ (hard-core
bosons). The lines are only guides to the eye.

total energy for Np = 4, Np = 5, and Np = 6. In line with the known results [94–96], the
“high-frequency” regime with low heating rates moves toward higher ω as the system size
increases. However, we find that the estimates obtained in this section (ω/Jx ≥ 20 for the
high- and ω/Jx ≤ 10 for the low-frequency regime, for U/Jx = 10) apply to all the three sizes
Np = 4, 5, 6, at least for the time-scales that we consider. A comprehensive study of the leading
finite-size effects in driven systems can be found in Refs. [94, 217, 231].

4.2.2 The stroboscopic time-evolution operator

In order to better understand the limitations of the effective model, here we time evolve all
relevant basis states for a single driving period T = 2π/ω and construct the stroboscopic
time-evolution operator

ÛF ≡ Û(t0 + T, t0 = 0) (4.11)

such that Û(NT+t0) = ÛN
F . In the next step, for a system size Np = 4, (Lx, Ly) = (4, 8) we fully

diagonalize this operator and inspect its eigenstates |n〉. Following the described procedure, we
obtain the long-time limit

lim
N→∞

〈Ĥeff(NT )〉K =
∑
n

|〈n|ψ(t = 0)〉|2〈n|Ĥeff|n〉K (4.12)

where we define
〈n|Ĥeff|n〉K = 〈n|e−iK̂(t=0)Ĥeffe

iK̂(t=0)|n〉. (4.13)

Results for Q(t = NT ) from Eq. (4.9) obtained in this way are summarized in Fig. 4.3(c),
where we make a comparison between the long-time energies for the case of hard-core bosons
(U →∞) and soft-core bosons (finite values of U). The obtained results indicate that heating
rates of hard-core bosons are closer to the case of U/Jx = 1 in comparison to U/Jx = 10,
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Figure 4.4: Properties of the eigenstates |n〉 of the stroboscopic time-evolution operator ÛF ,
Eq. (4.11), in the kx = 0, ky = 0 sector for Np = 4. Expectation values 〈n|Ĥeff|n〉K defined in
Eq. (4.13) for (a) U/Jx = 1, ω/Jx = 10, 20 and (b) U/Jx = 10, ω/Jx = 10, 15, 20, 50. The black
solid lines mark eigenenergies of Ĥeff, Eq. (4.2). Note that in (b) we do not include few states
from the top of the spectrum of Ĥeff, Eq. (4.2), for clarity. (c) The particle-entanglement gap
∆ of the incoherent superposition ρF , Eq. (4.14), for U/Jx = 1 and U/Jx = 10, Np = 4. The
lines are only guides to the eye.

which is expected from the bandwidths shown in Fig. 4.2(a). Overall we observe that the
“high-frequency regime” is wider for lower ratios U/Jx.

In Fig. 4.4, we make a comparison between the exact driven model captured by ÛF and
Ĥeff. In Figs. 4.4(a) and 4.4(b) we inspect the distribution of expectation values 〈n|Ĥeff|n〉K . By
comparing these values to the eigenenergies of the effective model, Eq. (4.2), we get an insight
into the pertinence of the effective description [94, 95]. In particular, for an interacting system
in the thermodynamic limit, the distribution is flat and the effective description is useless. We
state again that we consider only small atomic samples. For this reason, it is expected that for
high values of ω the full stroboscopic description nicely matches to the effective model values.
Such an example is given in Fig. 4.4(a) for U/Jx = 1 and ω/Jx = 20. As the value of ω gets
lower the distribution becomes flatter, as can be seen in Fig. 4.4(b) for U/Jx = 10 by comparing
results for ω/Jx = 50 and ω/Jx = 10.

The intermediate regime of frequencies, e. g., ω/Jx = 20 for U/Jx = 10, is of the main
experimental relevance [88]. We now investigate whether the driven stroboscopic dynamics
supports some Laughlin-like states, by calculating the PES of the mixture

ρF = 1
2
(
|n0(0, 0)〉〈n0(0, 0)|+ |n0(0, π)〉〈n0(0, π)|

)
(4.14)

where |n0(kx, ky)〉 is the state from the kx, ky sector with the lowest expectation value 〈n|Ĥeff|n〉K .
The results are presented in Fig. 4.4(c). We find that the states with a well defined gap and
the Laughlin-like PES can be found down to ω/Jx ≥ 10 for U/Jx = 1, and down to ω/Jx ≥ 20
for U/Jx = 10. Having established existence of these states for small samples of Np = 4 parti-
cles, in the next section we discuss dynamical protocol which can be exploited to prepare these
states.

67



Chapter 4 Bosonic fractional quantum Hall states in driven optical lattices

4.3 Slow ramp

The question about an optimal adiabatic protocol that can be used to prepare the Laughlin
state in a cold-atom setup has gained lot of attention [181, 202, 203, 211]. The situation becomes
even more complex once the full driving process is taken into account. A general wisdom is
that, by starting from a topologically trivial state, the topological index of a thermodynamically
large system cannot be changed adiabatically. We consider a small atomic sample and follow
the proposal of Ref. [211]. Our main contribution is that we extend this protocol to the case
of the driven, interacting Bose-Hubbard model.

4.3.1 Model

Following results of Ref. [211], we consider a slow ramp of the tunneling amplitude along y

direction, Jy(t), as well as a slow ramp of the driving amplitude κ(t). Namely, we start from a
series of decoupled wires along the x direction and start coupling them. More precisely, initial
states are selected as the ground states of Ĥini:

Ĥini = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
+ U

2
∑
m,n

n̂m,n(n̂m,n − 1). (4.15)

For the filling factors that we consider, the ground states of the Ĥini are simple noninteracting
states with the ground state energy E0,ini = −2JxNp. Out of the several degenerate ground
states, we select those where atoms occupy every second wire. There are two such states and
we label them as |ψ+〉 (even wires occupied) and |ψ−〉 (odd wires occupied). These states have
finite projections only onto the sectors kx = 0, ky = 0 and kx = 0, ky = π of the driven model
from Eq. (4.1). Therefore we may expect the two initial states |ψ±(t = 0)〉 to be transformed
into the two Laughlin states during the ramp.

Having prepared the initial state, we slowly restore the tunneling amplitude along the y
direction, Jy(t), and slowly ramp up the driving amplitude κ(t). The time-evolution is governed
by

Ĥsr(t) = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
− Jy(t)

∑
m,n

(
eiωtâ†m,n+1âm,n + H. c.

)
+ κ(t)

2
∑
m,n

sin (ωt− (m+ n− 1/2)φ) n̂m,n + U

2
∑
m,n

n̂m,n(n̂m,n − 1), (4.16)

where Jy(t) = Jy tanh(η t), κ(t) = κ tanh(η t), η being the ramping rate. In the long-time limit,
we recover the original Hamiltonian from Eq. (4.1). During the ensuing time evolution we
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Figure 4.5: (a) The expectation value E(t) defined in Eq. (4.18) and (b) the particle-
entanglement gap ∆(t) of ρ(t), Eq. (4.17), during the time evolution governed by Eq. (4.16) for
several driving frequencies ω/Jx = 25, 20, 15, 10. Parameters: Np = 5, U/Jx = 10, η/Jx = 0.05.
(c) The overlap tr (ρ(t)ρF ) of the time evolved state with the target eigenstates of ÛF for
ω/Jx = 25, 20. Parameters: Np = 4, U/Jx = 10, η/Jx = 0.05.

construct the mixture

ρ(t) = 1
2
(
|ψ+(t)〉〈ψ+(t)|+ |ψ−(t)〉〈ψ−(t)|

)
. (4.17)

We monitor stroboscopically the energy expectation value

E(t) = tr
(
ρ(t)Ĥeff

)
(4.18)

and the PES of ρ(t).

4.3.2 Results

In Fig. 4.5(a) we present the energy expectation value from Eq. (4.18) for U/Jx = 10 and
several driving frequencies ω/Jx = 25, 20, 15, 10. Our numerical results indicate that ramps
with the rates up to η/Jx ∼ 0.1 work reasonably well. Slower ramps give better results, but are
less practical [211]. By construction, the initial state is a noninteracting state with particles
delocalized along the x direction and therefore the initial energy is E(t = 0) = −2Np Jx.
During the ramp with the rate η/Jx = 0.05, for the regime of high driving frequencies, down
to approximately ω/Jx = 20, we find that the energy initially decreases and reaches an almost
constant value at around tJx ∼ 20. On the other hand, for ω/Jx = 15, the system slowly heats
up during the ramping process, and for ω/Jx = 10 the system quickly reaches the infinite-
temperature state.

One of our main results is summarized in Fig. 4.5(b), where we plot the particle-entanglement
gap of ρ(t), from Eq. (4.17), as a function of time. In the high-frequency regime ω/Jx ≥ 20,
starting around tJx ∼ 20 we find a persistent particle-entanglement gap, marking the onset of
a topologically nontrivial state. It is even more interesting that, even for ω/Jx ∼ 15, the state
seems to exhibit a finite gap on intermediate time-scales. This is not the case for ω/Jx ≤ 10,
where the gap quickly vanishes. In Fig. 4.5(c), we present the value of the overlap tr (ρ(t)ρF ),
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Figure 4.6: The low-lying part of the particle-entanglement spectra − ln ξn of ρ(t), Eq. (4.17),
during the time evolution governed by Eq. (4.16) in the (a) kAy = 0 and (b) kAy = π/6 momentum
sectors. The low-lying part of the PES in the sectors (c) kAy = 0 and (d) kAy = π/6, at two
instances of time t = 0 and t/T = 100. Parameters: Np = 6, U/Jx = 5, ω/Jx = 15, η/Jx = 0.05.

of the time-evolved mixed state with the relevant state from Eq. (4.14) for Np = 4. Clearly, the
slow ramp of the type given in Eq. (4.16) allows for the preparation of the relevant eigenstates
of ÛF with high fidelity (better than 1%).

In Figs. 4.6(a) and 4.6(b) we show the time evolution of the PES in the two momentum
sectors kAy = 0 and kAy = π/6 for Np = 6, U/Jx = 5, and η/Jx = 0.05. The PES of the
initial state is easy to understand. As the Ly/2 wires are occupied by single atoms, the reduced
density matrix is proportional to the identity matrix with the proportionality factor yielding
− ln ξn = ln

(
2
(
Ly/2
NA

))
≈ 3.69. During the ramp we find that additional modes in PES are

gaining weight and moving down in the spectrum. Finally, the state ρ(t) reached around
t ≈ 50T exhibits a well defined gap and the correct counting of the low-lying modes: there are
ten low-lying modes for kAy = 0 and nine low-lying modes for kAy = π/6; see Figs. 4.6(c) and
4.6(d) and also Table 4.1.

In Fig. 4.7 we discuss a satisfactory range of ramping rates η for a given interaction strength
U and a given driving frequency ω that we fix at ω/Jx = 15. The obtained numerical results
suggest that at weaker interaction strengths U/Jx ≤ 2, slower ramping rates are needed. One
way to explain this behavior is by using the effective model and arguing that the gap protecting
the Laughlin state is smaller at weaker U . On the other hand, for stronger interaction strengths
U/Jx ≥ 8 the particle-entanglement gap closes at later stages as the heating process becomes
dominant. Finally, in the intermediate range U/Jx ∼ 5, faster ramps with η/Jx = 0.1 lead to
the sought-after state ρ(t) from Eq. (4.17), with persistent features in the PES up to t = 500T .
These results indicate that, when optimizing the ramping protocol in an actual experiment,
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Figure 4.7: The particle-entanglement gap ∆(t) as a function of time during the time evolution
governed by Eq. (4.16), for several interaction strengths (a) U/Jx = 1.25 (b) U/Jx = 5 and
(c) U/Jx = 10, and several ramping rates η/Jx = 0.025, 0.05, 0.1. Other parameters: Np =
5, ω/Jx = 15.

there will be a tradeoff between the unfavorable heating and a faster ramping into the desired
state, as both of these processes are promoted by interactions.

4.4 Conclusions

The technique of Floquet engineering has been successfully exploited for the implementation of
synthetic magnetic fields in driven optical lattices. Following up on these achievements and on a
long-standing pursuit for the FQH states in cold-atom setups, in this Chapter we have addressed
possible realization of the bosonic Laughlin state in a small atomic sample in a periodically
driven optical lattice. While a thermodynamically large interacting system generally heats up
into an infinite-temperature state under driving, the heating process can be controlled to some
extent in a few-particle system.

We have assumed a realistic driving protocol and finite on-site interactions, and we have
identified the FQH state based on analysis of its particle-entanglement spectra. Results of our
numerical simulations show that the stroboscopic dynamics of Np = 4, 5, 6 particles supports
the topological ν = 1/2 Laughlin state down to ω/Jx = 20 for U/Jx = 10, and down to
ω/Jx = 15 for U/Jx = 1, for the driving amplitude κ/ω = 0.5. These results are in reasonable
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agreement with the recent estimates of the optimal heating times [88] that take into account
the contribution of the higher bands of the underlying optical lattice. In addition, we have
investigated slow ramping of the driving term and found that it allows for the preparation of
the Laughlin state on experimentally realistic time-scales of the order of 20 ~/Jx, where ~/Jx
is the tunneling time. Interestingly, we find that some topological features persist during an
intermediate stage even in the regime where the system exhibits a slow transition into the
infinite-temperature state (e. g., ω/Jx = 15 for U/Jx = 10).

In the future, we plan to address the preparation scheme for the relevant correlated states in
a driven honeycomb lattice, which exhibits lower heating rates in comparison to a cubic lattice
according to the recent experiments [124, 220]. Another highly relevant question, that we have
not tackled and that we postpone to future investigation, concerns suitable experimental probes
of topological features. The recent progress in the field has led to the development of several
detection protocols specially suited for the cold-atom systems [167, 168, 232–235]. For the type
of systems considered in this Chapter, the most promising are results of the recent study [235]
showing that fractional excitations can be probed even in small systems of several bosons.
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Conclusions

The study of ultracold quantum gases is an important topic in modern physics. The pos-
sibility of using ultracold atoms to build versatile quantum simulators is especially promising.
These are highly-controllable macroscopic many-particle systems that obey the laws of quan-
tum mechanics and can be used to simulate and study other complex quantum systems, such
as those relevant for condensed-matter physics.

Quantum many-body scars have recently been introduced as new paradigm of weak ergod-
icity breaking in interacting quantum systems. This phenomenon has been first observed in
the form of persistent oscillations in the quench dynamics probed in experiments on a Rydberg
atom quantum simulator [46]. As a weak form of ergodicity breaking, many-body scars are
believed to constitute a new universality class of systems that are distinct from other types
of strong ergodicity breaking, such as in integrable models and many-body localized systems.
Currently, major efforts are under way to understand the origins of quantum many-body scars.
Similar properties have been found in other physical systems, including lattice gauge theories
and topological phases of matter.

In Chapter 2 we proposed a realization of quantum many-body scars in a one-dimensional
bosonic lattice with kinetically-constrained hopping. This model could be experimentally re-
alized in ultracold atoms under a suitable Floquet engineering scheme. An important open
question in this field was the necessity of hard kinetic constraints for the realization of scars.
The standard “PXP” model of Rydberg atoms exhibits hard kinetic constraints, while some
theoretical works on certain spin models suggested that constraints may not be necessary. Our
bosonic models with density-dependent hopping provided a way to tunably control the kinetic
constraints and study both limits on an equal footing. Using this approach we demonstrated
that scars can occur in the absence of hard kinetic constraints. Another open problem was the
relation between scars and integrability, following the observation that certain perturbations
can enhance scarring while at the same time making the system non-ergodic. From this point

73



Chapter 5 Conclusions

of view, our bosonic models are important because they demonstrate the presence of scars in
a robustly non-integrable regime. Finally, our work points to an experimental platform that
could realize quantum many-body scars and potentially allow new probes of this complex phe-
nomenon. To this day there is only a single experiment on a system of Rydberg atoms, in
contrast to the wealth of theoretical results. Given the large body of work on bosonic ultracold
atoms and the variety of available experimental probes, such systems are the prime candidates
for further experimental progress on many-body scars.

The effects of both strong local and long-range interactions have been studied in recent cold-
atom experiments, as they can lead to rich phase diagrams. In order to observe topological
phases of matter, the effects of magnetic field were also included in some recent experiments.
Using periodic driving, synthetic magnetic fields have been experimentally realized in cold-
atom systems, which has enabled the realization of seminal condensed-matter models such as
the Harper-Hofstedter and Haldane model in cold-atom setups. However the interplay of driving
and interactions introduces heating that may preclude the study of relevant topological states.
A possibility of finding optimized parameter regimes with slow heating rates is still open and it
was the main research topic in the second part of this thesis. These results could contribute to
implementing new, even more advanced simulations, which could reveal new quantum phases.

The recent Chern-number measurement [70] was a milestone marking a realization of a
topological band in a cold-atom setup. Motivated by the this experiment, in Chapter 3 we
investigated the response of incoherent bosons to an external force in driven optical lattices
featuring topological bands. The focus of this study was on the role of weak atomic interac-
tions. Using numerical simulations based on a classical-field method, we found that interactions
contribute to atomic transitions between different bands, thus complicating the experimental
procedure in line with expectations. However, it was also shown that the weak atomic repulsion
makes the Chern-number measurement easier in several ways. As this experimental approach
is expected to become a routine tool in the near future, a first step in the preparation of more
interesting topological phases, the so-far obtained results on the effects of weak interactions are
of relevance for the future experiments.

Nowadays, cold-atom setups provide access to both strong synthetic magnetic fields and
strong interactions. These ingredients are in principle enough to realize fractional Hall states
and address their excitations. The complexity arises when using the driving protocol in the
strongly interacting regime, due to heating. A solution for this problem would be to find
some optimal parameter regime where the system stays in the prethermalized state for long
enough time. At the moment, the possibility of finding fractional quantum Hall states in cold-
atom setups is still open and the questions about how to prepare and manipulate these states
using cold atoms prompt further theoretical studies. Our work on the stability and lifetime
of bosonic fractional quantum Hall states presented in Chapter 4 should provide guidelines in
this direction. In our study we took into account important experimental features, such as
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a realistic driving scheme and finite on-site interactions. We used the particle-entanglement
spectra in order to confirm that the state prepared in our driven model for a high enough
driving frequency is indeed a bosonic Laughlin state. By performing numerical simulations, we
identified an optimal regime of microscopic parameters for the preparation of these interesting
strongly correlated states.

There are many possibilities to further extend the research presented in this thesis. Potential
directions of future research are discussed at the ends of Chapters 2-4. It would be particularly
exciting to explore whether it is possible to realize quantum many-body scars in topologically-
nontrivial driven systems, as this would be a way to slow down the thermalization and increase
the lifetimes of interesting topological states.
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Relative magnitude of the hopping
coefficients

Constraints are not the only factor that slows down the dynamics and leads to weakly-
entangled eigenstates in spectrum of the Hamiltonian Ĥ1 (2.1) from Chapter 2. The relative
magnitude of the hopping coefficients between different configurations mapped to each other
under the action of the Hamiltonian also has important effects. In order to show this, we
introduce two additional Hamiltonians

Ĥ1a = −J
∑
j

(
b̂†j b̂j+1n̂

2
j + n̂2

j−1b̂
†
j b̂j−1

)
, (A.1)

Ĥ1b = −J
∑
j

(
b̂†j b̂j+1(1− δnj ,0) + (1− δnj−1,0)b̂†j b̂j−1

)
. (A.2)

These two Hamiltonians have the same constraints as the Hamiltonian Ĥ1 and therefore the
same graphs as in Fig. 2.1. However, the particle number operators n̂j are squared in Ĥ1a and
replaced with delta functions (1− δnj ,0) in Ĥ1b. This makes the minimal and extended clusters
even less connected to the rest of the configurations in the case of Ĥ1a and more connected in
the case of Ĥ1b.

As anticipated, the revivals become more prominent for Ĥ1a, with fidelity peaks reaching
more than 95%, while the peaks almost disappear for Ĥ1b, as illustrated in Fig. A.1(a). In
addition, the entanglement entropy quickly saturates in the case Ĥ1b, while the growth is
significantly suppressed in the case of Ĥ1a, as can be observed in Fig. A.1(b). The distribution
of entanglement entropy across all eigenstates is also affected by the change of coefficients (not
shown). Ĥ1a has a spectrum with many low-entropy eigenstates, while the spectrum of Ĥ1b

is almost thermal and resembles that of Ĥ2. The probability distribution of consecutive gaps
in the energy spectrum of Ĥ1a is close to the Poisson distribution, which implies that Ĥ1a is
almost integrable. On the other hand, the distribution for Ĥ1b is Wigner-Dyson, like in Ĥ1.
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Derivation of fidelity in the extended
cluster approximation

Here we derive Eq. (2.28) from Chapter 2. For system size L = 3, the Hilbert space of the
extended cluster is spanned by only four configurations:



1
0
0
0

 = |300〉,



0
1
0
0

 = |210〉,



0
0
1
0

 = |120〉,



0
0
0
1

 = |111〉. (B.1)

The Hamiltonian reduced to this subspace is

Ĥ c̃
1 = −



0 2
√

3 0 0
2
√

3 0 2 0
0 2 0

√
2

0 0
√

2 0

 . (B.2)

Its eigenvalues are

E1 = −α, E2 = α, E3 = −β, E4 = β, (B.3)

and its eigenvectors

|1〉 =



a

b

c

d

 , |2〉 =



−a
b

−c
d

 , |3〉 =



−c
−d
a

b

 , |4〉 =



c

−d
−a
b

 , (B.4)
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where α =
√

9 +
√

57 ≈ 4.06815, β =
√

9−
√

57 ≈ 1.20423, a ≈ 0.591050, b ≈ 0.694113,
c ≈ 0.388150 and d ≈ 0.134933. There are no simple analytical expressions for the coefficients
a, b, c and d.

The configuration |210〉 evolves as

|ψc̃
1(t)〉 = −2i (ab sinαt+ cd sin βt) |300〉

+2
(
b2 cosαt+ d2 cos βt

)
|210〉

−2i (bc sinαt− ad sin βt) |120〉

+2bd ( cosαt− cos βt) |111〉, (B.5)

which can also be generalized to larger systems

|Ψc̃
n(t)〉 = |(210)n(t)〉 = 2n

(
b2 cosαt+ d2 cos βt

)n
|(210)n〉+ ... (B.6)

Finally, the fidelity evolves as

F c̃
n(t) = |〈Ψc̃

n(0)|Ψc̃
n(t)〉|2= 4n|b2 cosαt+ d2 cos βt|2n. (B.7)

The period of revivals is approximately T ≈ π/α ≈ 0.772241, and the first peak height expo-
nentially decreases as

F c̃
L=3n(T ) = 4n|d2 cos πβ

α
− b2|2n≈ 0.887017n ≈ e−0.119891n ≈ e−0.039964L. (B.8)

Eqs. (B.6) and (B.7) are exact for non-translation-invariant initial states, but just an approx-
imation for the translation symmetric case. This is due to the fact that different translations
of 300, 210 and 120 no longer evolve independently in that case, as they are connected to
each other through the configuration 111. However, this approximation becomes better with
increasing the system size, as the configuration (111)n becomes further away from the initial
state (210)n and the probability that this configuration will be reached decreases.
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The effective model from Chapter 3

In this Appendix we derive the effective Hamiltonian Ĥeff,1 (3.7) which corresponds to the
time-dependent Hamiltonian (3.3) from Chapter 3. We also show the explicit form of its
momentum-space representation Ĥeff,1(k).

C.1 Real space

After a unitary transformation into the rotating frame ψ̃ = e−iŴ tψ, where ψ̃ and ψ are the
old and the new wave functions, and Ŵ is the staggered potential, the new time-dependent
Hamiltonian that describes the experimental setup is given by [70]

Ĥ(t) = Jy
∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
+ V̂ (+1)eiωt + V̂ (−1)e−iωt + U

2
∑
l,m

n̂l,m (n̂l,m − 1) , (C.1)

where
V̂ (+1) = κ/2

∑
l,m

n̂l,mg(l,m)− Jx
∑
lodd,m

(
â†l+1,mâl,m + â†l−1,mâl,m

)
(C.2)

V̂ (−1) = κ/2
∑
l,m

n̂l,mg
∗(l,m)− Jx

∑
leven,m

(
â†l+1,mâl,m + â†l−1,mâl,m

)
(C.3)

g(l,m) = cos(lπ/2− π/4)ei(φ0−mπ/2) + cos(lπ/2 + π/4)ei(mπ/2−φ0−π/2). (C.4)

The kick operator is given by

K̂(t) = 1
iω

(
V̂ (+1)eiωt − V̂ (−1)e−iωt

)
+O

( 1
ω2

)
, (C.5)
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and the effective Hamiltonian by

Ĥeff = Ĥ0︸︷︷︸
Ĥ

(0)
eff

+ 1
ω

[
V̂ (+1), V̂ (−1)

]
︸ ︷︷ ︸

Ĥ
(1)
eff

+ 1
2ω2

([[
V̂ (+1), Ĥ0

]
, V̂ (−1)

]
+
[[
V̂ (−1), Ĥ0

]
, V̂ (+1)

])
︸ ︷︷ ︸

Ĥ
(2)
eff

+O
( 1
ω3

)
. (C.6)

If we assume that the driving frequency is high and interactions are weak, the interaction
term and almost all O

(
1
ω2

)
terms can be neglected. After substituting Eqs. (C.1), (C.2) and

(C.3) into Eq. (C.6) we obtain:

Ĥ
(0)
eff =− Jy

∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
(C.7)

Ĥ
(1)
eff = 1

ω

[
κ

2
∑
l,m

â†l,mâl,m g(l,m)− Jx
∑
lodd,m

(
â†l+1,mâl,m + â†l−1,mâl,m

)
,

κ

2
∑
l,m

â†l,mâl,m g∗(l,m)− Jx
∑

leven,m

(
â†l+1,mâl,m + â†l−1,mâl,m

) ]
(C.8)

= Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4.

We will now separately calculate each term:

Ĥ1 =− Jxκ

2ω
∑

lodd,m,l′,m′
g∗(l′,m′)

[
â†l+1,mâl,m + â†l−1,mâl,m, â

†
l′,m′ âl′,m′

]

=− Jxκ

2ω
∑
lodd,m

[(
g∗(l,m)− g∗(l + 1,m)

)
â†l+1,mâl,m +

(
g∗(l,m)− g∗(l − 1,m)

)
â†l−1,mâl,m

]
(C.9)

Ĥ2 =− Jxκ

2ω
∑

leven,m,l′,m′
g(l′,m′)

[
â†l′,m′ âl′,m′ , â

†
l+1,mâl,m + â†l−1,mâl,m

]

=Jxκ2ω
∑

leven,m

[(
g(l,m)− g(l + 1,m)

)
â†l+1,mâl,m +

(
g(l,m)− g(l − 1,m)

)
â†l−1,mâl,m

]
(C.10)

Ĥ3 =J
2
x

ω

∑
lodd,m,l′even,m

′

[
â†l+1,mâl,m + â†l−1,mâl,m, â

†
l′+1,m′ âl′,m′ + â†l′−1,m′ âl′,m′

]

=J
2
x

ω

∑
lodd,m

(
2â†l+1,mâl+1,m + â†l+3,mâl+1,m + â†l−1,mâl+1,m − 2â†l,mâl,m − â

†
l+2,mâl,m − â

†
l−2,mâl,m

)

=J
2
x

ω

∑
l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)
(C.11)
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Ĥ4 = κ2

4ω
∑

l,m,l′,m′
g(l,m)g∗(l′,m′)

[
â†l,mâl,m, â

†
l′,m′ âl′,m′

]
= 0. (C.12)

Using trigonometric identities and

g(l,m)− g(l ± 1,m) =±
√

2
(

sin((2l ± 1− 1)π/4)ei(π/4−mπ/2)

+ sin((2l ± 1 + 1)π/4)ei(mπ/2−3π/4)
)
, (C.13)

we can rewrite the sum of terms (C.9) and (C.10) in a more convenient form

Ĥ1 + Ĥ2 = Jxκ√
2ω

∑
l,m

(
ei
(

(m−l)π/2−π/4
)
â†l,mâl−1,m + e−i

(
(m−l−1)π/2−π/4

)
â†l,mâl+1,m

)
. (C.14)

The only O
(

1
ω2

)
(Ĥ(2)

eff ) term that cannot be neglected in the parameter range that we use is
[70]

Jy
2
κ2

ω2

∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
. (C.15)

Finally, the effective Hamiltonian becomes

Ĥeff,1 = Jxκ√
2ω

∑
l,m

(
ei
(

(m−l−1)π/2−π/4
)
â†l+1,mâl,m + e−i

(
(m−l)π/2−π/4

)
â†l−1,mâl,m

)

− Jy
(

1− 1
2
κ2

ω2

)∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
(C.16)

+ J2
x

ω

∑
l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)
(C.17)

with the renormalized nearest-neighbor hopping amplitudes

J ′x = Jxκ√
2ω

= Jy (C.18)

and
J ′y = Jy

(
1− 1

2
κ2

ω2

)
, (C.19)

and a next-nearest-neighbor along ex hopping term proportional to J2
x

ω
in (C.17).

C.2 Momentum space

If we choose the unit cell as in Fig. 3.1(a) (lattice sites A = (1, 0), B = (2, 0), C = (3, 0) and
D = (4, 0)), the momentum-space representation of the effective Hamiltonian without correction
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Ĥeff,0 (3.6) is given by a 4× 4 matrix

Ĥeff,0(k) =


0 J′xe−i

3π
4 −J′ye−ikR2 0 J′xe−i

3π
4 −ikR1−J′yeik(R2−R1)

J′xei
3π
4 −J′yeikR2 0 J′xe−i

π
4 −J′ye−ikR2 0

0 J′xei
π
4 −J′yeikR2 0 J′xei

π
4 −J′ye−ikR2

J′xei
3π
4 +ikR1−J′yeik(R1−R2) 0 J′xe−i

π
4 −J′yeikR2 0

, (C.20)

where R1 and R2 are the lattice vectors R1 = (4, 0) and R2 = (1, 1), and k is in the first
Brillouin zone, which is given by the reciprocal lattice vectors b1 = π

2 (1,−1) and b2 = 2π(0, 1).
When the J2

x

ω
correction is included in the effective Hamiltonian, Ĥeff,1 (3.7), the unit cell is

doubled, see Fig. 3.1(b), and the first Brillouin zone is therefore halved. If we now choose the
lattice sites a = (1, 0), B = (2, 0), c = (3, 0), D = (4, 0), A = (2, 1), b = (3, 1), C = (4, 1) and
d = (5, 1) for the unit cell, the momentum-space representation of the effective Hamiltonian
will be an 8× 8 matrix

Ĥeff,1(k)=



−
2J2
x
ω

J′xe−i
3π
4 −

J2
x
ω

(1+eikR1 ) J′xe−i(
3π
4 −kR1) 0 −J′yeikR2 0 −J′yeikR1

J′xei
3π
4 2J2

x
ω

J′xe−i
π
4 J2

x
ω

(1+eikR1 ) −J′y 0 −J′yeikR2 0

−
J2
x
ω

(1+e−ikR1 ) J′xei
π
4 −

2J2
x
ω

J′xei
π
4 0 −J′y 0 −J′yeikR2

J′xei(
3π
4 −kR1) J2

x
ω

(1+e−ikR1 ) J′xe−i
π
4 2J2

x
ω

−J′ye−ik(R1−R2) 0 −J′y 0

0 0 0 −J′yeik(R1−R2) 2J2
x
ω

J′xe−i
3π
4 J2

x
ω

(1+eikR1 ) J′xe−i(
3π
4 −kR1)

−J′ye−ikR2 0 −J′y 0 J′xei
3π
4 −

2J2
x
ω

J′xe−i
π
4 −

J2
x
ω

(1+eikR1 )

0 −J′ye−ikR2 0 −J′y
J2
x
ω

(1+e−ikR1 ) J′xei
π
4 2J2

x
ω

J′xei
π
4

−J′ye−ikR1 0 −J′ye−ikR2 0 J′xei(
3π
4 −kR1) −

J2
x
ω

(1+e−ikR1 ) J′xe−i
π
4 −

2J2
x
ω


,

(C.21)

with the lattice vectors R1 = (4, 0) and R2 = (2, 2). The reciprocal lattice vectors are then
b1 = π

2 (1,−1) and b2 = π(0, 1).
The energy bands of Ĥeff,1(k) are shown in Figs. 3.2 and C.1.
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Figure C.1: Eight energy subbands of Ĥeff,1(k) for the driving frequency ω = 20. Subbands
1 and 2 form the lowest band with Chern number c1 = 1, subbands 3, 4, 5, and 6 form the
middle band with c2 = −2, and subbands 7 and 8 form the highest band with c3 = 1.
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Description of incoherent bosons

Here we explain in more details the method which we use to treat weakly interacting bosons
in Chapter 3. In a typical condensed-matter system constituent particles are electrons. Due to
their fermionic statistics, at low enough temperatures, and with Fermi energy above the lowest
band, that band of the topological model is uniformly occupied, and consequently the transverse
Hall conductivity can be expressed in terms of the Chern number (1.5) [69]. In contrast, weakly
interacting bosons in equilibrium form a Bose-Einstein condensate in the band minima and only
probe the local Berry curvature [167].

Yet in the experiment [70] the Chern number was successfully measured using bosonic atoms
of 87Rb. This was possible because in the process of ramping up the drive (3.4), the initial
Bose-Einstein condensate was transferred into an incoherent bosonic mixture. Conveniently,
it turned out that the bosonic distribution over the states of the lowest band of the effective
Floquet Hamiltonian was nearly uniform. Motivated by the experimental procedure, we model
the initial bosonic state by a statistical matrix

ρ(t = 0) =
Nm∏
k=1
|k,Np〉〈k,Np| (D.1)

where the states |k〉 = a†k|0〉 approximately correspond to the lowest-band eigenstates of Ĥeff

and each of these Nm states is occupied by Np atoms |k,Np〉 = N (a†k)Np |0〉.

A procedure for selecting the states |k〉 is described in Refs. [70, 168]. In order to probe the
Chern number of the lowest band, the states |k〉 should correspond closely to the lowest-band
eigenstates of Ĥeff. At the same time, in the experiment in the initial moment the atomic cloud
is spatially localized. According to Refs. [70, 168] the optimal approach is to consider a steep
confining potential and to use the low-lying eigenstates of

Ĥinitial = ĥeff +
(
r

r0

)ζ
, (D.2)

87



where in our calculations ĥeff is either Ĥeff,0 from Eq. (3.6) or Ĥeff,1 from Eq. (3.7) and the
parameters of the confining potential are set to r0 = 20, ζ = 20.

The dynamics of the initial state (D.1) is induced by a double quench: at t0 = 0 the atomic
cloud is released from the confining potential and exposed to a uniform force of intensity F

along the y direction. During the whole procedure the driving providing the laser-assisted
tunneling, defined in Eq. (3.4), is running.

The main observables of interest are the center-of-mass position along x direction

x(t) =
〈∑
l,m

l|ψl,m(t)|2
〉
, (D.3)

and the population of the ith band of the effective model

ηi(t) =
〈 ∑
|k〉∈i-th band

∣∣∣∣∑
l,m

αk∗lmψlm(t)
∣∣∣∣2〉, (D.4)

where the states |k〉 = ∑
l,m α

k
lm|l,m〉 correspond to the eigenstates of the effective model. Here,

angle brackets 〈 〉 denote averaging over Nsamples sets of initial conditions.
In the case of non-interacting particles, these and other quantities can be numerically ac-

cessed by solving the single-particle time-dependent Schrödinger equation for Nm different
initial states |k〉. This is equivalent to sampling the initial state according to Eq. (3.8).

In the end, we give two technical remarks. First, all our calculations are done in the
rotating frame; see Eq. (C.1) in Appendix C. The staggered potential (3.2) is removed in this
way. Second, in the case when the evolution is governed by the time-dependent Hamiltonian
(3.9), the initial state is multiplied by the operator e−iK̂(0) in order to properly compare these
results to the ones obtained from the evolution governed by the effective Hamiltonian (3.10);
see Eq. (3.5).
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Initial quadratic regime

In this Appendix we explain the initial quadratic behavior exhibited by several observables
in Chapter 3. For simplicity, we will consider only the case without the confining potential
and with very weak force F = 0.01. The initial state is a Bose-Einstein condensate in one of
the eigenstates of the effective Hamiltonian. The results are later averaged over all first band
eigenstates.

Figure E.1: Population in higher bands, comparison of numerical results (solid line) with the
Fermi’s golden rule in the first and second approximation (dashed lines). Band populations are
calculated for an initial BEC in an eigenstate of the effective Hamiltonian and then averaged
over (approximately) all states in the first band. (a) Initial state and evolution from the effective
Hamiltonian with correction Ĥeff,1, Eq. (3.7). (b) Without the correction, Ĥeff,0, Eq. (3.6).

Fermi’s golden rule predicts that the probability for transition from an initial state ψi to a
final state ψf , induced by a perturbation ∆Ĥ, is proportional to the square of matrix elements
|〈ψi|∆Ĥ|ψf〉|2. In this case, the perturbation is ∆Ĥ = F ŷ. If we assume that the probability
of a particle being in the initial state is always Pi(t) = |ψi(t)|2≈ 1, Fermi’s golden rule predicts
[236]

PFGR1
i→f (t) = 1

~2 |〈ψi|∆Ĥ|ψf〉|
2t2. (E.1)
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If we now also consider transitions from the other states to the initial state, but keep the
assumption that the populations in other states are small Pj 6=i(t) = |ψj 6=i(t)|2� 1, the time-
dependent perturbation theory then predicts [236]

PFGR2
i→f (t) = |〈i|∆Ĥ|f〉|2

1− 2e− Γ
2~ t cos

(
Ef−Ei

~ t
)

+ e−Γ
~ t

(Ef − Ei)2 + Γ2

4
, (E.2)

where Γ = 2π
~ |〈i|∆Ĥ|f〉|

2 and Ei (Ef ) is the energy of the initial (final) state.
We plot the numerical results and both theoretical predictions from Fermi’s golden rule

in Fig. E.1. Here we can see that all three curves agree well for short times, the second
approximation longer remains close to the numerical results, and that the initial quadratic
regime is reproduced by theory. This is the so-called quantum Zeno regime [195].
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Effects of interactions

Here we provide further details about the effects of interactions on the dynamics of weakly
interacting incoherent bosons described in Chapter 3. In particular, we consider the evolution of
the kinetic and interaction energy, as well as the probability density distribution in momentum
space.

F.1 Energy

Time evolution of kinetic and interaction energy per particle for different interaction strengths
is plotted in Fig. F.1. Here we define the kinetic energy per particle as the expectation value
of the time-dependent Hamiltonian (C.1) divided by the total number of particles

Ekin(t) = 1
N

〈 ∑
l,m,i,j

ψ∗l,m(t)Hlm,ij(t)ψi,j(t)
〉
, (F.1)

while the interaction energy per particle is

Eint(t) = 1
N

U

2

〈∑
l,m

|ψl,m(t)|2
(
|ψl,m(t)|2 − 1

)〉
. (F.2)

Both energies grow with increasing interaction coefficient U .
When the interactions are strong enough and after long enough time, the atoms become

equally distributed between the eigenstates of the Hamiltonian Ĥ(t). As the energy spectrum
of Ĥ(t) is symmetric around zero, the expectation value of Ĥ(t) (kinetic energy) should be zero
when all bands are equally populated. We can see this in Fig. F.1(a), where the kinetic energy
approaches zero at t ≈ 50 ms for the case U = 0.05.

The interaction energy at first rapidly decreases, as the cloud rapidly expands after turning
off the confinement potential V̂conf , and after that continues to slowly decrease as the cloud
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Figure F.1: (a) Kinetic energy per particle (expectation value of the time-dependent Hamil-
tonian Ekin(t) = 1

N

〈∑
l,m,i,j ψ

∗
l,m(t)Hlm,ij(t)ψi,j(t)

〉
divided by the total number of particles

N) for several different interaction strengths. (b) Interaction energy per particle Eint(t) =
1
N
U
2

〈∑
l,m|ψl,m(t)|2 (|ψl,m(t)|2 − 1)

〉
. U is given in units where J = 1.

slowly expands; see Fig. F.1(b).
These considerations also provide a possibility to discuss the applicability of the approxi-

mative method introduced in Section 3.3. As we work in the regime of high frequency ω = 20,
we find that for weak interaction, at short enough times of propagation, the energy is approxi-
mately conserved. At stronger values of U ≥ 0.01 we observe a slow increase in the total energy
on the considered time scales. In both cases we do not find the onset of parametric instabilities
[174]. If present, these instabilities are signaled by an order of magnitude increase in energy on
a short time scale, that we do not find.

In addition, the two-body interaction can deplete the occupancies of initial coherent modes
[172, 184] and limit the validity of our approach. In principle, these types of processes can
be addressed by including quantum fluctuations along the lines of the full truncated Wigner
approach [187]. Yet, we set our parameters in such a way that these additional contributions
are small.

F.2 Momentum-space density distribution

The momentum-space probability densities at the initial moment and after 75 driving periods
(50 ms) are shown in Fig. F.2. The interactions deplete the lowest band, but also smooth out
the density distribution.
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Figure F.2: Momentum-space density distribution in all bands, η1(k) + η2(k) + η3(k). U
is given in units where J = 1. Left: evolution using the time-dependent Hamiltonian Ĥeff,1.
Right: evolution using the time-dependent Hamiltonian Ĥ(t). (a), (b) Initial state. (c), (d)
Final state after 50 ms (75 driving periods), noninteracting case U = 0. (e), (f) U = 0.01. (g),
(h) U = 0.05.
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The effective model from Chapter 4

In this appendix we review the derivation of the model given in Eq. (4.1) from Chapter 4.
The system is described by

Ĥlab(t) = ĤBH + Ĥdrive(t) + ω V̂ , (G.1)

where we start with the Bose-Hubbard model

ĤBH =− Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
− Jy

∑
m,n

(
â†m,n+1âm,n + H. c.

)
+ U

2
∑
m,n

n̂m,n(n̂m,n − 1), (G.2)

and we introduce an offset ωV̂ :
V̂ =

∑
m,n

n n̂m,n. (G.3)

This shifted Bose-Hubbard model is exposed to a suitable resonant driving scheme:

Ĥdrive(t) = κ

2
∑
m,n

sin
(
ωt− φm,n + φ

2

)
n̂m,n, φm,n = (m+ n)φ. (G.4)

We assume periodic boundary conditions compatible with the driving term (G.4) in the labo-
ratory frame. To this purpose we use vectors R1 = 4 ex and R2 = −ex + ey as presented in
Fig. 4.1. For simplicity, we work in the rotating frame

|ψrot(t)〉 = eiωtV̂ |ψlab(t)〉 (G.5)

and derive the Schrödinger equation

i
d|ψrot(t)〉

dt
= Ĥrot(t)|ψrot(t)〉, (G.6)
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where
Ĥrot(t) =

(
eiωtV̂ Ĥlab(t)e−iωtV̂ − ωV̂

)
. (G.7)

Now we calculate Ĥrot(t) explicitly. The only nontrivial action of this rotation on Ĥlab comes
from the nearest-neighbor hopping along y direction. Indeed, we have

eiωtV̂ â†m,nâm,n′e
−iωtV̂ = eiωt(n−n

′)â†m,nâm,n′ . (G.8)

In total we obtain

Ĥrot(t) = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
+ U

2
∑
m,n

n̂m,n(n̂m,n − 1)

+ eiωtĤ1 + e−iωtĤ−1 + e−iωt(Ly−1)ĤLy−1 + eiωt(Ly−1)Ĥ−Ly+1, (G.9)

with

Ĥ1 = −Jy
OBC∑
m,n

(
â†m,n+1âm,n −

i

4κe
i(−φm,n+φ

2 )n̂m,n

)
, Ĥ−1 = Ĥ†1, (G.10)

Ĥ−Ly+1 = −Jy
∑
m

â†m,0âm−Ly ,Ly−1, ĤLy−1 = Ĥ†−Ly+1. (G.11)

In the terms Ĥ−Ly+1 and ĤLy−1 we take into account periodic boundary conditions along the
direction parallel to R2 as imposed in the laboratory frame. In order to limit the complexity of
the numerical calculation, we keep translational invariance and impose the periodic boundary
conditions in both directions in the rotating frame. This implies that we will neglect “phasors”
e−iωt(Ly−1) and eiωt(Ly−1). Under these assumptions, we can recast Eq. (G.9) into the time-
dependent Hamiltonian given in Eq. (4.1). In practice, this would require engineering additional
non-trivial terms in the laboratory frame.

The leading order of the kick operator is given by

K̂(t = 0) ≈ − κ

2ω
∑
m,n

cos(φm,n − φ/2)n̂m,n. (G.12)
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[8] A. A. Houck, H. E. Türeci, and J. Koch, Nat. Phys. 8, 292 (2012).

[9] A. Aspuru-Guzik and P. Walther, Nat. Phys. 8, 285 (2012).

[10] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L.
Hollenberg, Phys. Rep. 528, 1 (2013).

[11] R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Annu. Rev. Phys. Chem. 65, 83
(2014).

[12] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T. Esslinger, Science 340, 1307 (2013).

[13] P. T. Brown et al., Science 363, 379 (2019).

[14] W. Xu, W. R. McGehee, W. N. Morong, and B. DeMarco, Nat. Commun. 10, 1588
(2019).

[15] A. Mott, J. Job, J.-R. Vlimant, D. Lidar, and M. Spiropulu, Nature 550, 375 (2017).
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T. Sowiński, and J. Zakrzewski, Rep. Prog. Phys. 78, 066001 (2015).

[158] O. Jürgensen, F. Meinert, M. J. Mark, H.-C. Nägerl, and D.-S. Lühmann, Phys. Rev.
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[221] A. G. Grushin, A. Gómez-León, and T. Neupert, Phys. Rev. Lett. 112, 156801 (2014).

[222] M. Račiūnas, G. Žlabys, A. Eckardt, and E. Anisimovas, Phys. Rev. A 93, 043618 (2016).

[223] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[224] F. D. M. Haldane and E. H. Rezayi, Phys. Rev. B 31, 2529 (1985).

[225] A. Sterdyniak, N. Regnault, and G. Möller, Phys. Rev. B 86, 165314 (2012).
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