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06pll3Jlolll:e1Le npe.11;J1ora )J,p Ja.11;pau11:e BaceJbeeeli 1a .11;06eTBRKa Cry.11;eeTcKe uarpa.11;e 
HucreTyra 1a tj,R3etcy y 6eorpa.11;y 1a 2021. ro.11;euy 

,Qp JazwaHI<a BacH.lbeaH1i je ,110KTopcey ,11Hcep·nuuijy no,11 H33HBOM "Propagation, 
localization and control of light in Mathieu lattices" (cpn. ,,Jlpocmupa161!, 1101<aJ1U3flJ<Uja u 
1<01t.n,po11a CBemJIOCmu y MamjeoBUM peurem1<aMa") ypa.11HJ1a y Jia6oparopHjH 3a He.rIHHeapHy 
(pOTOHHK)' 11HCTH1)'Ta 3a (pH3HK)' no,11 MeHTOpCTBOM ,Qp ,QparaHe JoBHil CaaHli H KOMeHTOJ)CTBOM 
,Qp ,l{ejaHa THMOTHjeaHlia, a o,116paHHJiaje Ha <l>H3H'IKOM 4>aeymeTy YHHeep3HTeTa y Eeorpa,11y. 
Hcrp3lKHBlllba y OKBnpy lbeHe ,11Hcep-rru.\nje ycMepeHa cy Ha H3Y'laBlllbe Ma:rjeoaHX 3paKa: 
(peHOMeHa KOjH cy Be3aHH 3a UJ)OCTHpalbe pa3JIH'IHTHX MaTjeoamc 3paKa y He.rIHHeapHoj cpe,IIHHH, 
Kao H (pOpMHplllbe HOBIDC BpCTa anepHO,IIH'IHIDC (pOTOHCKIDC peweTKH UOMoliy lbHX, 3aTHM 
HeypegeHHX peweTKH H aogelbe TaJiaca y lbHMa a y I.IH.lbY H3)''1aBlllba e4>eKaTa JIOKaJIH3aQHje 
CBeTJIOCTH. 

Caa HCTll)KHBlllba y OKBHJ>Y ,110KTopcKe ,11Hcep-rru.\uje pe3yJITaT cy Teopejc11:or, 
eyMepe'IKor e e11:cnepeMeeTaJIHor HCTpIDKHBalba KaH,IIH,llaTKHlba je Hajnpe p33BHJia 
0,lll'OBapajyliH TepopHjCKH MO,lle.rI, 3aTHM HanpaBHJia eyMepH'IKH KO.II H Tlll(O ,11o6HJ1a eyMepH'!Ka 
pewelba, KOja cy nopegeHa ca eKcnepHMeHTaJIHHM pe3yJITaTHMa, KaKO 6H ce KBaJIHTaTHBHO H 
KBaHTHTltTHBHO o6jaCHHJIH 'PYH.llaMeHTaJIHH (peHOMeHH HeJIHHeapHe (pOTOHHKe y OBaKBHM 

cpe,IIHHaMa. HyMeJ>H'IKe CHMYJiru.\Hje je ypa,11Hna y 0KBHJ>Y Jia6oparopHje 3a HeJIHHeapey 
(pOTOHHK}' 11HCTHyYTa 3a (pH3HK)', a UOTOMje ,1106HjeHe pe3yJITare eKcnepHMeHTaJIHO peaJIH30BaJia 
,lleJIOM Ha 11HCTHTY1)' 3a (pH3HK)' a ,lleJIOM Ha 11HCTH1)'1)' 3a DJ)HMelbeey (pH3HK}', YHHBep3HTeTa 
y MHHcrepy. Y OKBHpy CBOjHx noceTa liHCTHTyry 3a UJ)HMelbeey (pH3HK}', YHHBep3HTeTa y 
MHHCTepy, Ja,11paHI<a je ycaapWHna eKcnepHMeHTaJIHY TeXHHK}' OUTH'!Ke HH,zzy1a.urje KOja 
OMOryliaaa reHepHClllbe (pOTOHCKIDC peweTKH KOpHwlielbeM He,IIH(pparyjyliHx 3paKa H 
npoy'laBlllba 4>eHOMeHa npOCTHpalba CBeTJIOCTH y (pOTOHCKHM peweTKaMa 

Pe3ymarH Koje je KaH.IIH.llaTKHlba npHK33aJia y caojoj ,11Hcep-rru.\Hj~ no,11e.n,eHH cy y TJ)H 
l.le.rIHHe. Y npo6oj l.leJIHHH HCUHTHBaJia je He.rIHHeapey CaMO-HHTepaKI.1Hjy noje,11HHa'IHOr 
Marjeoaor 3paKa y KJ)HCTaJIY c-rpoHI.1ajyM 6apHjyM HHo6ary. TTpoHawna je ,11a 3pru.\H HajHIDKer 
pe,11a UOK33yjy noHawlllbe CJIH'IHO ,IIHCKJ)eTHOj ,IIH(pJ)aKI.IHjH y je,11H0,11HMeH3HOHaJIHOj peweTKH y 
JIHHeapHOM pelKHMY, ,IIOK MaTjeOBH 3Pal.lH BHwer pe,11a U0Ka3yjy e(peKTe ,IIHCKpeTHe ,IIH(pJ)aKI.IHje 
npHJIHKOM npenacKa ca jeJJ;HO- Ha ,11B0,IIHMeH3HOHaJIHH CHCTeM. HcnHTana je H eJIHDTH'IHe 
Marjoeae 3paKe y pa3HHM HeJ:IHHeapHHM pelKHMHMa H UOKa3aJia ,11a cy noro,11HH 3a peaJIH3ru.\Hjy 
,IIHHaMH'IKHX CTJ)yKTypa KOje J)OTHpajy TOKOM nponaraQHje y npaaey npOTOKa eHeprnje. TaKBe 
pOTHpajylie ,IIHHaMH'IKe CTpyKType noro,11He cy 3a H3pa,lly 3aKpHBJbeHHX TaJiacoao,11a ca 
MOl'}'IlHOwliy KOHTJ)OJIHCalba 3aKpHBJbeHOCTH Kao H 6poja TaJiacoBO,lla. Oao HCTJ)alKHBlllbe 
npe,11c-raBJba 3Ha'lajaH ,11onpHH0C y o6JiaCTH jep YB0,IIH U0TDYH0 H0BH npHc-ryn 3a peMH3ru.\Hjy 
XHJ)MHHX ,11B0,IIHMeH3H0HaJIHHX (pOTOHCKHX peweTKH ca no,11eCHBHM oco6HHaMa JJ.pyza l.leJ:IHHa 
lbeHe Te3e 0,IIH0CH ce Ha HCUHTHBlllbe np0CTHplllba eJIHDTH'IH0I' B0p-reKCH0r 3paKa y (pOTOHCKHM 
peweTKaMa KpeHpaHHM noMoliy noje,11HHa'IHHX MarjoesHX 3paKa TTpoHawJia je spcry 
,IIHCKpeTHHX sop-reKCHHX 3paKa, T3B. eJIHUTH'IHe 0I'pJIHl.le H U0Ka3aJia ,11a ce npoMeH0M pe,11a 
peweTKe Kao H lbeH0r eJIHUTHI.IHTeTa, Mory K0HTJ)0JIHCaTH o6JIHK H BeJIH'IHHa OBaKBHX orpJIH1.1a 
Y mpehoj l.le.rIHHH KaH,IIH,llaTKHlba je ysena noTnyH0 H0BH npHCl)'U 3a reHepHClllbe 
,11B0,IIHMHe3H0HHX anepH0,IIH'IHHX peweTKH KOpHWnelbeM HHTep4>epeH1.1Hje BHWe MarjeOBHX 
3paKa. y 3aBHCH0CTH 0,11 KOH(pHrypa1.1Hje 3paKa, lbHX0B0r Megyco6Hor pacrojalba H yma pOTal.lHje 



HJIH cl>a3He Pe.riaIIHje Me~y H,HMa, )I.06HjeHe cy Pa3JIH'IHTC KJiace CJI0lKCHHX <jlOTOHCKHX c-rpyK'lj'pa 
EKcnepHMCIITaJIHa TCXHHKa je 633Hpatta Ha MeT0,!111 0nTHqKe HHAYKll,Hje y je,!UIOM napaJie.rIH0M 
npouecy ynHCHBaH>a H npOCTHpaH>a Y TaKBHM peweraaMa HcnHTHBaJia je npoc-rHpaH>e ycKor 
raycHjaHCKOr npo6Hor 3paKa Kao H KaK0 JI0KaJIH0 0KpylKeH>e yTHqe Ha ,!U!cl>p~jy npo6Hor 
3paKa H yCJiose 38 4>opMHpaH>e jaKo JI0KaJIH30B8HHX CTaH>a Kao WT0 cy npocTOpHH C0JIHT0HH. 
l-fayqasana je jow je)l.aH CTeneH CJI060)l.e K0HTpone npOT0Ka H JIOK8JIH3aHje CBeTJIOCTH )1.0)1.aBaH>CM 
Heype~eHOCTH y anepHo,n,wrny Ma:rjeoey peweTK)'. IToK33ana j e )I.a y oeruceuM Heype~eHuM 
peweTKaMa Hajnpe )I.0JJ33H /1.0 nojaqattor TpattcnoPTa a 3!ITHM H /1.0 AH)l.epcoHose JJOKaJIH3aQHje 
CBeTJI0CTH. 

Haj60JbH n0K338TCJb KB8JIHTeTa J8)1.paHKHHOr HCTpalKHBaH>a Kao H H>eHor /1.0KT0pa-ra jecy 
KareropHje qaconHCa y KOjHMa cy H,CHH pe3yJJTarH o6j8BJbeHH. Truco~e TPe6a HarJJaCHTH H H,CH 
BHC0K HHB0 K0MneTCHTH0CTH y ceojoj o6naCTH. 0 T0Me Haj60Jbe CBC/1.0qH TO WT0 cy CBH H,CHH 
p8/I.0BH y qaconHCHMa KOjH cy K0HQe!ITpHCaHH HajacHO )l.ecl>HHHCatty o6nac-r 0nTHKe. IToje,!UIHH 
qaconHCH cy H>eHe pe3yJJTaTe H3)1.BOjHJIH Kao 3HaqajaH )I.0npHH0C H CBpCTaJIH HX Me~y Haj6oJbe y 
TOj f0)I.HHH: 

1. PM ,,Visualizing the Energy F1ow of Tailored Light" o6jasJbeH y qaconHcy Advanced 
Optical Materials O)l.a6pattje Kao je)l.att 0/1. Haj6oJbHX 3a 2018. r0/1.HffY. Kao TaKas yepWTCHje y 
cneuHjanHo H3)1.aH>e qaconHcaBesl of Advanced Optical Materials 2018. 
https:/ /onlinelibrary. wilev .com/page/journal/21 95I 071/homepage/best-of-advanced-optical-materials-2018.html 

2. Pe3yJJTirrH H>eHHX HCTpalKHBaH>a no)). Ha3HB0M ,,Expanding Discrete Optics with 
Mathieu Beams" o6j8BJbeHH cy y cneuajanHOM )l.eQeM6apcKOM H3/l.aH>Y Optics & Photonics News-
a. Optics & Photonics News je cneQHjaJJHH Mece'IHH Mara3HH Hajno3HirrHjer H3)1.asaqa y o6naCTH 
onTHKe - Optical Society of America, KOjH Kao TaKaB HeMa HMnaKT cl>aKTop aJJH o6jaeJbyje 
HajHOBHja /1.eTaJbHa /J.OCTHrttyha Ha noJby onTHKe. H,eroso noce6Ho (/J.eueM6apcKo) H3)1.aH>e 
Optics in 2019, tt3)1.Baja Haj3Ha'lajHttjapel{el13UpaHa ttCTpalKHBalba 0IITttKe Koja cy ce nojaeuna 
TOK0M npOTCKJie ro,!U!He. 
https://www.osa-opn.org/home/articles/volwne 30/deccmber 2019/features/optics in 2019/ 

OCHM Tora J8)1.paHKa je H )I.06HTHHK Harp8)1.e 38 Haj6oJbH cry)l.e!ITCKH noc-rep Ha 
KOHcl>epeHQHjH PHOTONICA 2019, EeorpM 26-30 Asryc-r, 2019. 

MMajyhH y BHAY KBaJJHTeT H>eHor Hay'IH0-HCTpalKHBa~or pMa, /1.0CTHfHYTH CTeneH 
HCTpalKHBaqKe K0MneTCIITH0CTH, JIH'IHH )I.0npHH0C KaH)I.H)l.aTa Kao H KBaJJHTeT )I.0KTOpCKe 
/J.HCCPTaIIHje H3Y3eTH0 MH je 38/1.0BOJbCTB0 )I.a npe)I.J!0lKHM AP JMpaHK)' BacHJbeBHh 3a 
CTY/1.CHCTCK)' Harp8/l.y 11HCTHryT8 3a cl>H3HK)' 38 OBY r0)I.HffY. 
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ABSTRACT

We investigate light propagation in a two-dimensional aperiodic refractive index lattice realized using the interference of multiple
Mathieu–Gauss beams. We demonstrate experimentally and numerically that such a lattice effectively hinders linear light expansion and
leads to light localization, compared to periodic photonic lattices in a photorefractive crystal. Most promisingly, we show that such an aperi-
odic lattice supports the nonlinear confinement of light in the form of soliton-like propagation that is robust with respect to changes in a
wide range of intensities.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013174

Diffraction is a fundamental feature of wave dynamics in any
branch of physics that involves waves: optics, acoustics, quantum
mechanics, etc. However, in many applications, propagation-invariant
transverse intensity distributions, referred to as nondiffracting beams,
are needed. Nondiffracting beams are exact solutions of the Helmholtz
equation, which exist in different coordinate systems:1 superposition
of plane waves in Cartesian, Bessel beams in circular cylindrical,2

Mathieu beams in elliptic cylindrical,3 and parabolic beams in para-
bolic cylindrical coordinates.4

The potential of nondiffracting structures is well recognized in
modern photonic research.5–9 Among them, the propagation of light
through tailored refractive index modulations optically fabricated in
photosensitive media by propagation-invariant intensity profiles
became the subject of extensive theoretical and experimental investiga-
tions since the resulting refractive index structure represents a pure 2D
material.10–14 This field of linear and nonlinear optics in photonic latti-
ces typically uses simple nondiffracting Cartesian beam configurations,
often hexagonal light structures, to modulate the refractive index since
this allows mimicking features of 2D graphene,15 its famous bandgap
structure,16 or its nonlinear light matter interaction, leading to spatial
soliton formation.17 In a few recent studies, solitons, elliptically shaped
vortex solitons, or even vortex necklaces are observed in optically
induced photonic lattices by nondiffracting Mathieu beams.12,18–20

Moreover, the superposition of this kind of elliptic nondiffracting beam
allows the formation of different aperiodic photonic structures.21

Although the physics of periodic photonic systems is of funda-
mental interest, deviation from periodicity is important as it leads to
higher complexity. One such deviation in optics results in the realiza-
tion of photonic quasicrystals,8 structures with a reduced degree of
order between periodic and disordered ones.

The localization of waves is an intriguing research subject
observed in a variety of classical and quantum systems,22,23 including
light waves,24–27 Bose–Einstein condensates,28 and sound waves.29

Although the transverse expansion properties in periodic photonic
lattices,30–33 as well as in disordered ones,34–36 have been investigated
extensively, light localization and transverse expansion in photonic
quasicrystals37,38 is still an open question.

In this paper, we investigate the effects of light propagation in
aperiodic photonic structures created by synthesized Mathieu–Gauss
(MG) beams in a photorefractive crystal,21 experimentally and
numerically. We investigate how various input beam positions
influence the diffraction and compare them with appropriate peri-
odic waveguide arrays. We find that our approach effectively sup-
presses the beam expansion depending on the refractive index
modulation Dn. Most importantly, in the nonlinear regime, we
find localized states that are robust with respect to changes in the
probing light intensities and propagation distance. Such stable soli-
tary states are, thus, much more appealing for applications than
typical spatial solitons, especially gap solitons, which react sensi-
tively on changes in the strength of the nonlinearity.39
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Figure 1 shows the experimental setup to fabricate and probe
MG beam-based photonic lattices. A frequency-doubled, expanded,
and collimated Nd:YVO4 laser with a wavelength of k ¼ 532 nm is
split into two separate beams—an ordinary polarized writing and an
extraordinary polarized probe beam. Both beams are spatially tailored
in intensity and phase by phase-only spatial light modulators (SLMs),
Holoeye Pluto VIS. For this purpose, pre-encoded digital holograms
are addressed to the SLMs, and their diffraction patterns are bandpass
filtered in Fourier space (FF1 and FF2).

40 The ordinarily polarized
structure beam optically induces a refractive index modulation in a
photorefractive cerium-doped strontium barium niobate (SBN:Ce)
crystal, thereby addressing the weaker electro-optic coefficient
r13 ¼ 47 pm=V. Probing the artificial photonic structure with extraor-
dinarily polarized probe beams addresses the stronger electro-optic
coefficient r33 ¼ 237 pm=V. Although the electro-optic coefficients
differ roughly by a factor of 5, the ordinary writing process of two-
dimensional lattices can be considered to be fairly linear. Previous
studies that applied the same technique for the optical induction of
photonic lattices demonstrated a neglectable self-action and, thus, lon-
gitudinally invariant refractive index modulations.6,7,9,15,41 The bire-
fringent crystal with dimensions of 5� 5� 20mm3 has refractive
indices of no ¼ 2:325 and ne ¼ 2:358 and is externally biased with an
electric field of Eext ¼ 2000V=cm aligned along the optical c ¼ x-axis,
perpendicular to the direction of propagation, the z-axis parallel to the
long axis of the crystal. An imaging system consisting of a microscope
objective (MO) and a camera detects transverse intensity distributions
of writing and/or probing beams at the backface of the crystal. When
we are recording the intensity distribution of the Gaussian probe beam
at the backface of the crystal, the writing beam is turned off.

We model our experiment by solving the nonlinear Schr€odinger
equation for an initial scalar electric field AðrÞ numerically by using a
spectral split-step beam propagation method42 of the equation

i@zAðrÞ þ
1
2kz

D?AðrÞ þ
kz

2n2o;e
dn2 jAðrÞj2
� �

AðrÞ ¼ 0: (1)

By this, the nonlinear propagation of the field AðrÞ with longitudi-
nal wave vector kz in a photorefractive nonlinearity is evaluated.
While the writing beam is a complex nondiffracting aperiodic light
field, we use Gaussian beams as probe beams. The wave number

k ¼ 2p=k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2? þ k2zÞ

p
is defined by wavelength k. The potential

is given by dn2ðjAðrÞj2Þ ¼ �n4o;er13;33E. The electric field E ¼
Eext þ Esc that builds up inside the SBN crystal is a superposition of
an external electric field Eext and an internal space charge field Esc,
which is due to the incident intensity distribution Ip ¼ jAðrÞj2. In
order to take the electric bias of the SBN crystal into account, we
use an anisotropic model to calculate the refractive index modula-
tion by solving the potential equation,43

D?/sc þr? ln 1þ Ið Þ � r?/sc

¼ Eext@x ln 1þ Ið Þ þ kBT
e

D? ln 1þ Ið Þ þ r? ln 1þ Ið Þð Þ2
� �

;

(2)

which yields Esc ¼ @x/sc. Based on the probe beam power, we denote
the scenario in which the lattice is fabricated by intensity I¼ Ig and
subsequently illuminated by the low power probe beam as the linear
regime. For higher powers of the probe beam, we take into account
mutual nonlinear interaction of the probe and writing beams by
including them together in the term I ¼ Ig þ Ip, which we denote as
the nonlinear regime. IgðrÞ is the writing beam intensity of the MG
beams21 and IpðrÞ the Gaussian probe beam intensity. Note that the
intensities used in the simulations are normalized by a dark current
intensity Idark, which can be determined experimentally.44 However, in
most cases, the intensities used in the simulations and in the experi-
ment are conformed by comparing the light propagation in variously
realized refractive index modulations.

We investigate the influence of an aperiodic photonic lattice cre-
ated by synthesized MG beams21 on the beam propagation and com-
pare our experimental results with numerical simulations. The lattice
writing beam is synthesized using a combination of the spatially
shifted patterns created by the interference of two second-order even
MG beams with an ellipticity of q¼ 25 and a structure size of
a ¼ 25lm, oriented at 90� with respect to each other and p out-of-
phase configuration, with a detailed description of fabrication given in
Ref. 21. The pattern is created with a finite number of MG beams
(elliptic shape, each MG beam has no translational symmetry), the
“repeating” area is finite, the lattice has boundaries; in general, the syn-
thesized lattice has no translational symmetry as well. The “typical
patterns” only look similar, but they are never identical. In Figs. 2(a)
and 2(b), the aperiodic lattice and the characteristic lattice typical pat-
terns are depicted. The lattice writing beam has an invariant transverse
intensity profile during propagation, and hence, its Fourier

FIG. 1. Scheme of the experimental setup. BS: beam splitter, FF: Fourier filter, L:
lens, MO: microscope objective, SBN: photorefractive strontium barium niobate
crystal, and SLM: phase-only spatial light modulator.

FIG. 2. (a) Transverse aperiodic lattice structure fabricated with synthesized MG
beams. (b) Typical pattern, where the yellow arrows indicate some of the probe
beam excitation sites.
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components are located on a ring with radius k? ¼ 2p=a related to
the structure size a of the MG beams. The nondiffracting character of
such a Mathieu lattice in the 20mm long SBN crystal is demonstrated
in Ref. 21. In order to characterize the light-matter interaction within
such a medium, a probe beam is launched into a single site. The probe
beam experiences lateral transport within the lattice as it propagates
along its axis, resulting in a diffraction pattern characteristic of the
local structure. While in a simple periodic lattice, each site looks like
any other and discrete diffraction looks the same irrespective of the
initial site of excitation, in an aperiodic lattice, however, different local
environments exist, so that the transport behavior is expected to vary
significantly from site to site.45 The chosen points differ from each
other by their local interaction since some have a higher local symme-
try than others.

We investigate this behavior in the suggested aperiodic photonic
lattice by comparing the linear diffraction for different probe beam
excitation positions, numerically and experimentally. The lattice is fab-
ricated with an experimental laser power of P0 ¼ 50 lW, which corre-
sponds to a simulated maximum lattice intensity of Ig ¼ I0 ¼ 0:7.
Subsequently, after the lattice writing beam and the external electric
field Eext are switched off, the Gaussian probe beam with a FWHM of
w0 ¼ 8lm illuminates the lattice. Its power of a few 10lW is chosen
to be sufficiently low so that it does not change the refractive index
modulation but is only affected by it. Figure 3 shows the transverse
intensity distributions of the probe beam after propagating through
the lattice as a function of the excitation sites marked by numbers 1, 2,
and 3 in Fig. 2(b). The first column shows transverse intensity distri-
butions obtained at the backface of the SBN crystal in the linear
regime. The importance of which local lattice site is excited is clearly
visible in the simulated and experimentally obtained intensity distribu-
tions, where discrete diffraction is clearly visible as in D2, unlike for
other two excitation sites. We note a clear agreement between the
experimentally and numerically obtained results.

Further, we perform a series of experiments and numerical calcu-
lations to observe nonlinear localization of the discrete diffraction
pattern. Therefore, in both numerical simulations and experiment,
with the external electric field switched on, we increase the lattice and
probe beam maximum intensities, which now interact and create a
common refractive index pattern, resulting in the lattice modified by
nonlinear self-and cross action. The second column of Fig. 3 shows
the transverse intensity distribution of only the probe beam when
propagating through the commonly fabricated lattice with a beam
power of P0 ¼ 50lW or a maximum intensity of Ip ¼ I0 ¼ 0:7.
Subsequently, we increase the strength of the nonlinearity by doubling
the beam power 2P0 in the experiment and simulation. The corre-
sponding intensity distributions are shown in the third column of
Fig. 3. For input position 1 and sufficiently high beam powers, we
observe a spatial soliton in the aperiodic lattice, shown in Figs. 3(c1)
and 3(c2). Other input positions 2 and 3 do not support this localized
state, depicted in Figs. 3(e), 3(f), 3(h), and 3(i).

To verify the robustness of the spatial soliton, in numerical simu-
lations, we change the nonlinearity strength by increasing the maxi-
mum intensities of the writing and probe beams, while keeping all
other parameters fixed. We find that the output intensity distribution
of the soliton at the exit crystal face remains largely unchanged with
an up to three times higher beam power. The results are shown in
Fig. 4. For even higher intensities, the localized state starts to

experience modulation instabilities, leading to a breakup of the beam
into filaments. Further, numerical simulations for propagation distan-
ces longer than the length of our crystal are performed, obtaining sta-
ble output intensity distributions up to 10 cm (not shown here).

In order to examine the localization properties of the aperiodic
Mathieu lattice in general, independent of the concrete excitation site,
we simulate the light propagation in the lattice coming from 100 dif-
ferent probe beam excitation positions and average their expansion.
For that purpose, the probe beam excitation positions are selected at
an equidistant spacing to cover one complete typical pattern depicted
in Fig. 2(b). Figure 5 presents these results, with a gradual transition
from suppressed discrete diffraction to nonlinear localization, using
the same intensities as in Fig. 3. The output averaged transverse

FIG. 3. Probe beam propagation in an aperiodic photonic lattice. Numerically and
experimentally observed transverse intensity distributions at the crystal’s backface
in the linear regime (the first column) and two nonlinear regimes: (the second col-
umn) numerical probe beam maximum intensity of Ip ¼ I0 ¼ 0:7 and appropriate
experimental beam power of P0 ¼ 50lW and (the third column) numerical probe
beam maximum intensity of Ip ¼ 2I0 and experimental beam power of 2P0. The
yellow arrows indicate the probe beam excitation sites, while the blue contour
denotes the layout of the lattice beams.
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intensity profiles in Figs. 5(a)–5(c) narrow with increasing nonlinear-
ity. Still, due to the diverse contributions that are averaged, nonlinear
profiles shown in (d) do not show the soliton shape as typically known
from spatial bright solitons in the bulk.

For a more quantitative analysis and to characterize the amount
of beam expansion, we introduce the effective beam width
xeff ¼ PRðzÞ�1=2, where

PRðzÞ ¼

ð
jAðx; y; zÞj4dxdy

�ð
jAðx; y; zÞj2dxdy

�2 (3)

is the inverse participation ratio.25 In such a structure, we perform
averaging over different incident beam positions in order to remove
effects of the local environment, i.e., the influence of the neighboring
waveguides. The averaged normalized effective beam width is calcu-
lated along the propagation distance for the propagation length longer
than the crystal length. We perform statistical analysis of the normal-
ized effective beam width for the cases demonstrated in Fig. 3. These
results are shown in Fig. 6 and reveal that the beam expansion during
propagation is hindered when increasing the input beam power. We
compare propagation of light in our aperiodic lattice with a periodic
square lattice. The square lattice is created with period d equal to the
characteristic structure size a ¼ 2p=k? of MG beams used to create
the aperiodic Mathieu lattice, d ¼ a ¼ 25lm. We observe the ten-
dency of this aperiodic lattice to suppress diffraction, especially for
longer propagation distances. In these cases, light is less localized in
the periodic square lattice than in the aperiodic Mathieu lattice.

In summary, we demonstrate various propagation effects in an
aperiodic lattice created by synthesized Mathieu–Gauss beams. The
aperiodic structure hinders the beam expansion during propagation,
compared to the propagation of light in comparable periodic lattices.
Even stronger light localization, which can be interpreted as robust
spatial soliton formation with respect to intensity changes, can be
observed for nonlinearly propagating probe beams in such aperiodic
lattices. Our experimental results pave the way for exploiting light
propagating in a broad range of aperiodic photonic lattices and will
find applications in capacity-enhanced optical information processing.

The authors acknowledge partial support from the Ministry of
Education, Science, and Technological development, Republic of
Serbia (Project No. OI 171036), and support from the German
Academic Exchange Service (Project No. 57219089).
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Discrete optical gratings are essential components to custom-
ize structured light waves, determined by the band structure
of the periodic potential. Beyond fabricating static devices,
light-driven diffraction management requires nonlinear
materials. Up to now, nonlinear self-action has been limited
mainly to discrete spatial solitons. Discrete solitons, how-
ever, are restricted to the eigenstates of the photonic lattice.
Here, we control light formation by nonlinear discrete dif-
fraction, allowing for versatile output diffraction states.
We observe morphing of diffraction structures for discrete
Mathieu beams propagating nonlinearly in photosensitive
media. The self-action of a zero-order Mathieu beam in a
nonlinear medium shows characteristics similar to discrete
diffraction in one-dimensional waveguide arrays. Mathieu
beamsof higher orders showdiscrete diffraction along curved
paths, showing the fingerprint of respective two-dimensional
photonic lattices. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.001592

Manipulating waves by customizing their interaction with
functional materials enables a variety of photonic applications,
e.g., tailored diffraction at gratings to discretize the waves’ spec-
tral components [1,2]. Waves in periodically structured media
show dynamics that cannot be realized in homogeneous media,
determined by the media’s band structure. Propagation of light
in dielectric media with a periodically varying refractive index
can mimic the spatio–temporal characteristics that are typically
encountered in discrete systems, and the underlying field evo-
lution effectively becomes “discretized” [1]. Most importantly,
the vision to control light with light is realizable only by exploit-
ing nonlinear materials as mediators [3]. Thus, shaping the peri-
odically varying refractive index structure allows for diffraction
management to control in turn the light distribution [4].

Different types of periodic photonic structures, including
arrays of evanescently coupled optical waveguides [5], optically
induced lattices in photorefractive materials [6], and photonic
crystals [7], have been employed to engineer and control

fundamental properties of wave propagation. Arrays or lattices
of evanescently coupled waveguides are prime examples of
structures in which discrete diffraction [2,5,8] can be observed.
These arrays consist of equally spaced identical waveguide
elements or sites, possessing all essential characteristics of a pho-
tonic crystal structure (Brillouin zones, band structure, etc.).
In such a physical setting, light couples between waveguides
through tunneling, showing its diffraction characteristics.
When low intensity light is injected into one or a few neigh-
boring waveguides, it couples to more and more waveguides,
broadening its spatial distribution. Fundamentally new physics
occur in contrast to diffraction in homogeneous media. High-
intensity light producing nonlinear responses in the refractive
index is capable of forming discrete spatial solitons [9]. A
renewed interest in nonlinear light–matter interaction goes be-
yond soliton formation. It is devoted to physical systems with
dimensionality morphing, e.g., the continuous transformation
of the lattice structure from 1D to 2D [10–12].

Nondiffracting beams, having propagation-invariant inten-
sity distributions, allow creating 1D and 2D photonic lattices
in photosensitive media. Particularly in the areas of optics and
atom physics, these beams enable novel applications [13–16].
Among the variety of different nondiffracting beams, Mathieu
beams [15,17] solve the Helmholtz equation in elliptic cylin-
drical coordinates [18]. They are used for a new type of optical
lattice-writing light [19–23] allowing solitons or even ellipti-
cally shaped vortex solitons, and are beneficially used for
particle manipulation [24]. However, their elliptical character-
istics allow going far beyond soliton investigations and extend-
ing applications of nonlinear self-action.

In this Letter, we exploit Mathieu beams as lattice-writing
light to fabricate discrete waveguide structures and investigate
their nonlinear self-action in these structures, leading to
morphing discrete diffraction. We investigate Mathieu beams
of different orders in a photorefractive crystal, experimentally
and numerically. We link linear discrete diffraction with non-
linear self-effects and demonstrate gradual transition from one
to two dimensions. We use the term morphing diffraction to
describe the nonlinear behavior similar to discrete diffraction.
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We observe discrete diffraction similar to the typical discrete
diffraction observed in 1D waveguide arrays, with Mathieu
beams of zeroth order propagating in nonlinear media. For
lower nonlinearity, we observe a behavior similar to broad
Gaussian beam diffraction in waveguide arrays. Increasing the
order of Mathieu beams, we demonstrate dimensionality
morphing of discrete diffraction, with a gradual transition from
1D to 2D waveguiding geometries. With higher-order Mathieu
beams, we observe discrete diffraction along each layer. For
higher nonlinearities, we observe reflection along one transverse
direction and asymmetric intensity distributions due to the
thermal diffusive effects.

To experimentally investigate the nonlinear propagation of
Mathieu beams, we use the setup shown in Fig. 1. A frequency-
doubled Nd:YVO4 laser illuminates a spatial light modulator
(SLM) “Holoeye Pluto” and is modulated in both amplitude
and phase [25]. An appropriate Fourier filter (FF) is imple-
mented. The extraordinary polarized structure beam interacts
with the photorefractive strontium barium niobate (SBN) crys-
tal, which has dimensions of 5 × 5 × 15 mm3. It is externally
biased with an electric field E ext � 1600 Vcm−1 parallel to
the optical c axis, directed along one of the shorter axes, parallel
to the x axis. The propagation of the paraxial light fields is
mainly in z direction. An adjustable microscope objective
and a camera build the imaging system to scan the entire in-
tensity volume by recording single transverse slices. In order to
measure the phase of the structure beam, we superimpose a
tilted plane wave as a reference beam and use a standard digital
holographic method.

We simulate the light propagation in a nonlinear photore-
fractive medium by solving the nonlinear Schrödinger equa-
tion (1) numerically using a spectral split-step propagation
method [26]:

i∂zψ�r� �
1

2kz
�Δ⊥ � V �I��ψ�r� � 0: (1)

The nonlinear light–matter interaction is calculated by
assuming a light-induced refractive index modulation as pro-
posed in [27]. The paraxial scalar light field ψ�r� with longi-
tudinal wave vector kz propagates in a nonlinear potential
V �I� � −k2z n2e r33Esc�I� defined by photorefractive nonlinear-
ity. The laser wavelength λ � 532 nm defines the wave num-
ber k � 2π∕λ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t � k2z

p
. ne � 2.358 is the extraordinary

bulk refractive index and r33 � 237 pmV−1 the corresponding
linear electro-optic coefficient. The electric space charge field
Esc�I� builds up inside the SBN crystal and depends on the
intensity I � jψ�r�j2. We model the nonlinear optical induc-
tion of the intensity-dependent, saturable, non-local, and
anisotropic refractive index modulation [28], as shown in
our previous works [23,29].

We use even Mathieu beams ψm�ξ, η� [15], mathematically
described as a product of radial cem and angular J em Mathieu
functions of order m:

ψm�ξ, η� � Cm�q�J em�ξ; q�cem�η; q�, (2)

where Cm�q� is a weighting constant that depends on q �
f 2k2t ∕4, a parameter of ellipticity which is related to the posi-
tions f of the two foci and the transverse wave number kt �
2π∕a, where a is a characteristic structure size. ξ and ηare ellip-
tical coordinates and their relation with spatial coordinates x, y is
given by x � iy � f cosh��iη�. Here we choose a � 25 μm.

Before investigating the nonlinear propagation of Mathieu
beams, we exemplarily characterize the free-space propagation
of a zeroth-order even Mathieu writing beam with q � 25
experimentally. The quasi 1D discrete intensity distribution
is shown in Fig. 2(A1), accompanied by the phase pattern (A2).
It propagates invariantly (A3) over a distance of 6.36 mm in
free space, which corresponds to 15 mm in the homogeneous
SBN crystal. The same conclusions are worthy for higher-order
Mathieu beams used later to demonstrate intermediate and 2D
discrete diffraction.

Their discrete intensity distribution with a complex trans-
verse curvature makes Mathieu beams highly suited to inves-
tigate morphing diffraction in self-induced waveguides. We
find that the lattice-fabricating Mathieu beam in Fig. 2 shows
nonlinear discrete diffraction as a consequence of its self-action
in dependence of the beam power P that influences the strength
of the nonlinearity, shown in Fig. 3. The first row depicts the

Fig. 1. Scheme of experimental setup. BS, beam splitter; FF,
Fourier filter; L, lens; MO, microscope objective; SLM, phase-only
spatial light modulator.

Fig. 2. Experimental characterization of a zeroth-order lattice fab-
ricating even Mathieu beam. (A1) Transverse intensity and (A2) phase
distributions. (A3) Cross section through the intensity volume at the
orientation indicated with the white line in (A1).

Fig. 3. (1) Simulated nonlinear propagation of Mathieu beams
shows morphing discrete diffraction for increasing beam powers P.
(2) Simulated and (3) experimentally observed intensity distributions
at the crystal’s back face.
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simulated yz cross section through the intensity volume (A1),
and further the simulated (A2) and the experimentally obtained
(A3) transverse intensity distributions at the back face of the
SBN crystal for P � P0 � 10 μW, showing that the wave-
guides are well fabricated. The observed discrete diffraction
has similarities to that of a broad Gaussian beam propagating
in 1D periodic waveguide arrays [2]. By doubling the beam
power twice [Figs. 3(B) and 3(C)], we observe a spreading
of highest intensities away from the center and towards the
outer parts along the y axis. This effect is the nonlinear counter-
part of linear discrete diffraction in 1D waveguide arrays. Since
the envelope of the 1D intensity distribution along the y axis of
an initial zeroth-order Mathieu beam has its maximum in the
origin, the refractive index modulation and thus the self-action
of the writing beam is strongest in the center. Very high beam
powers of 4P0 increase diffusive effects [23,29] along the
optical c axis, parallel to the x axis, apparent at the shift in
intensity in (B3) and (C3).

Beyond 1D nonlinear discrete diffraction, we realize morph-
ing discrete diffraction along curved 2D paths at the example of
Mathieu lattices showing dimensionality crossover. We chose

the sixth-order even Mathieu beam with q � 325 [10–12],
imaged in Fig. 4, for demonstration of dimensionality cross-
over. The figure shows the simulated (A) and experimentally
observed (B) transverse intensity distributions at the back face
of the SBN crystal in dependence of a successive doubling of
the initial beam power P0 � 10 μW. We observe intensity dis-
tributions that reflect the fingerprint of linear discrete diffrac-
tion; however, the outward directed intensity transport in the
nonlinear lattices follows mainly along each hyperbolic layer of
the Mathieu beam (C).

For the lowest power P0, the highest intensities located in
the center of an initial sixth-order Mathieu beam are redistrib-
uted towards the outer parts in y direction, shown by the
intensity profile along the green line (B1) and (C1). Increasing
the power P, we observe that further hyperbolic arms of the
Mathieu lattice are affected. Central intensities spread outwards
along 2D curves (2 and 3). Additionally, a diffusion driven
shift in x direction and merging intensities due to modulation
instabilities influence the intensity redistribution; however, the
pure effect of 2D nonlinear discrete diffraction along hyper-
bolic paths is predominantly observable.

To demonstrate that discrete Mathieu lattices themselves
imprint the intensity distribution on probing light that is
typical for discrete diffraction, we simulate linear propagation
of narrow Gaussian beams in the lattices presented above.
Figure 5(A) images the intensity distribution of such a Gaussian
probe beam inside the Mathieu lattice in Fig. 3(A). The initial
plane in Fig. 5(A) indicates the lattice. The perpendicularly
launched probe beam couples from waveguide to waveguide,
presenting diffraction characteristics as in 1D waveguide arrays.
Further configurations are launching probe beams in the
2D lattice in Fig. 4(A1) in the center and the outermost layer
[purple hyperbola in Fig. 4(B1)]. The intensity of the central
excitation diffracts discrete in central and neighboring layers,
shown in (B). The outer excitation evolves to discrete diffrac-
tion along the hyperbolic waveguide layer, imaged in (C).

In summary, we demonstrated morphing diffraction of
Mathieu beams with transition from 1D to 2D. These nondif-
fracting beams allow realizing discrete lattices in general elliptic
geometries. We showed that discrete diffraction on unconven-
tional paths is possible as a result of the self-action of Mathieu
beams in nonlinear material. We observed discrete diffraction
similar to that observed in 1D waveguide arrays using Mathieu
beams of zeroth order, or discrete diffraction similar to the one
in 2D photonic lattices with higher-order Mathieu beams.
Increasing the nonlinearity, reflections along one transverse
direction are observed as well as asymmetric intensity distribu-
tions due to thermal diffusive effects. Thus, nonlinear discrete

Fig. 4. Morphing discrete diffraction on curved paths based on the
self-action of sixth-order even Mathieu beams: (A) simulated and
(B) experimentally observed transverse intensity distributions at the
crystal’s back face. (C) Intensity profiles along the hyperbolic wave-
guide layers indicated in (B).

Fig. 5. Gaussian probe beam in Mathieu lattice potentials from: (A) Fig. 3(A1); (B) Fig. 4(B1) central waveguides; (C) Fig. 4(B1) purple wave-
guide layer.
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diffraction allows controlling the light dynamics in lattices by
light itself, providing a simple technique to create novel gratings
and nonlinear switches.

Funding. Deutscher Akademischer Austauschdienst (DAAD)
(57219089);Ministarstvo Prosvete,Nauke i TehnološkogRazvoja
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transverse invariant intensity distributions 
and continuously modulated phase dis-
tributions are suited. The class of nondif-
fracting beams has attracted considerable 
interest and features not only applications 
in optics, but also in solid state and atom 
physics.[7–11] A detailed understanding 
of their energy flows therefore is of high 
importance in many communities. How-
ever, the energy flow of continuously mod-
ulated nondiffracting beams withstands a 
direct observation because it is hidden for 
the case of linear propagation in homo-
geneous media. The transverse intensity 
distribution stays invariant and the energy 
flow is continuously redistributed.

Four nondiffracting beam families exist 
as solutions of the paraxial as well as the 
nonparaxial Helmholtz equation in dif-
ferent coordinate systems:[12–17] Discrete 
beams in Cartesian, Bessel beams[8] in 
spherical, Mathieu beams in elliptic, and 

Weber beams in parabolic coordinates. Among these diverse 
families, Mathieu beams[9,10,18,19] may be interpreted as a gener-
alized beam class, capable to interpolate between Cartesian and 
spherical coordinates. In contrast to parabolic Weber beams, 
their transverse spatial intensity distributions can form closed 
paths on ellipses, with spatially structured orbital angular 
momenta[6,20] showing periodic boundaries.

Mathieu beams are highly appealing to access fundamental 
physical effects in elliptical coordinates.[21] In several studies, 
they have been beneficially used for particle manipulation,[5] 
and served as lattice-writing light,[22–26] featuring the nonlinear 
propagation of (vortex) solitons in these previously linearly 
induced elliptic lattices. However, the self-action of Mathieu 
beams in nonlinear media was not investigated until now.

Scalar even and odd Mathieu beams exhibit only real-valued 
field distributions. Their transverse Poynting vector there-
fore vanishes. In contrast, the complex superposition of even 
and odd Mathieu beams leads to generalized elliptic Mathieu 
beams, showing outstanding continuously modulated spatial 
phase distributions, i.e., OAM.[5,6,20] Thus, for these beams a 
transverse energy flow is present. Until today, only a few works 
have addressed the energy flow in these complex spatially 
modulated beams with its unique OAM characteristics, e.g., 
using the OAM structure of Mathieu beams to transfer orbital 
angular momentum to particles that start to rotate.[5,6,20]

With this work, we present an approach to visualize the 
energy flow of light at the example of elliptic Mathieu beams. 
We demonstrate experimentally and numerically that the 

Exploiting the energy flow of light fields is an essential key to tailor complex 
optical multistate spin and orbital angular momentum (OAM) dynamics. 
With this work, the energy flow is identified and quantified by a novel 
approach that is based on the symmetry breaking induced by nonlinear 
light–matter interaction of OAM carrying beams at the example of Mathieu 
beams, showing transverse invariant intensity distributions. These complex 
scalar nondiffracting beams exhibit outstanding transverse energy flows on 
elliptic paths. Although their energy is continuously redistributed during 
linear propagation in homogeneous media, the beams stay nondiffracting. 
This approach to visualize the energy flow of light is based on the nonlinear 
self-action in a nonlinear crystal. By this, the sensitive equilibrium is per-
turbed and accumulation of rotating high-intensity spots is enabled. Intensity 
distributions on elliptic, chiral paths are demonstrated as a manifestation of 
the energy flow. Furthermore, the formation of corresponding refractive index 
modulations that may be implemented as chiral waveguides, is controlled via 
the beam power and structure size.
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Chiral Photonic Structures

1. Introduction

The energy flow of light is determined by both, its spin angular 
momentum and its orbital angular momentum (OAM), and 
is generally described by the Poynting vector.[1] Controlling 
the spatial polarization and phase structure of light, the com-
bination of binary spin states and multistate orbital angular 
momentum dynamics is an essential key to further establish 
modern high-dimensional singular optics. These abilities ena-
bled breakthrough research in the areas of spatial polarization 
modulation,[2] classical entanglement,[3] high-density signal 
transmission,[4] or optical micromanipulation.[5,6]

In order to investigate two-dimensional energy flows in 
the transverse plane, in particular nondiffracting beams with 
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energy flow of elliptic Mathieu beams becomes observable by 
propagating in a nonlinear photorefractive crystal. The nonlin-
earity breaks the sensitive equilibrium of the energy redistribu-
tion of the beam and enables the formation of high-intensity 
spots that encircle a common center, driven by the OAM in 
the direction of the energy flow. Due to the nonlinear interac-
tion, the intensity distribution is transferred to a correspond-
ingly twisted refractive index modulation. We demonstrate that 
we can control the formation and rotation of high-intensity 
spots by increasing the strength of the nonlinearity or by tai-
loring the size of the initial beam. Note, that by this, photonic 
structures can be implemented as chiral waveguides, sup-
porting the actual and rich field of research on chiral photonic 
structures.[27–31]

2. Characteristics of Elliptic Mathieu Beams

Fundamental Mathieu beams are solutions of the Helmholtz 
equation in elliptical cylindrical coordinates (ξ, η, z). They are 
mathematically described by a product of radial and angular 
Mathieu functions and exist either as even or odd solutions.[9] 
Elliptic Mathieu beams represent a complex linear superposi-
tion of even and odd Mathieu beams of the same order m. For 
a monochromatic, scalar elliptic Mathieu beam of order m, the 
light field is given by[21]

, e ; e ; i o ; e ;ψ ξ η ξ η ξ η( ) ( ) ( ) ( ) ( ) ( )( ) = +C q J q c q S q J q s qm m m m m m  (1)

where Jem and Jom are the even and odd radial Mathieu func-
tions, and cem and sem are the even and odd angular Mathieu 
functions of order m, respectively. Cm(q) and Sm(q) are weighting 
constants that depend on /42

t
2=q f k  that in turn determines 

the ellipticity of the Mathieu beams. It is related to the posi-
tions f of the two foci and the transverse wave number kt = 2π/a 
that corresponds to a characteristic structure size a.

The transverse time-averaged Poynting vector 〈S〉 of a line-
arly polarized, transverse light field ψ is determined by the spa-
tial OAM distribution and given by[32]

i

2
* *0S

ωε ψ ψ ψ ψ( )= ∇ − ∇
 

(2)

where ω = ck is the angular-frequency that connects the speed 
of light c with the wave number k = 2π/λ, defined by the wave-
length λ. ε0 is the vacuum permittivity.

Figure 1 exemplarily shows an elliptic Mathieu beam of 
order m = 10 with an ellipticity of q = 25 (Panels (a,b)), and our 
concept to visualize its energy flow (Panel (c)). The numeri-
cally calculated transverse field as well as the experimentally 
obtained field are shown in intensity and phase at the initial 
plane in Figure 1a,b, respectively. While it is natural to calcu-
late numerically an electric field ψ, experimentally only the 
transverse intensity (I) and phase (φ) are accessible. From 
these, we construct the experimentally obtained electric field 

exp[i ]ψ φ= I . Using Equation (2), we calculate and image the 
transverse Poynting vector of this beam, indicated with over-
lying arrows. Figure 1c shows a characteristic numerical simu-
lation that illustrates how the main intensity that is distributed 
on an ellipse enters the front of a nonlinear crystal, optically 
induces a photonic structure that yields to the formation of 
high-intensity spots which start to rotate in the direction of the 
energy flow. At the back face of the crystal several spots remain 
that prove the existence of the initial energy flow.

In the following, we present our approach to visualize 
numerically and experimentally the energy flow of elliptic 
Mathieu beams and thus tailor the realization of chiral wave-
guides. We further demonstrate that we can control the rotation 
and the degree of filamentation mainly by the strength of the 
nonlinearity and the structure sizes of the Mathieu beams. In 
this work, we exemplary demonstrate our results for an elliptic 
Mathieu beam of order m = 10 and ellipticity q = 25. However, 

Adv. Optical Mater. 2018, 1701355

Figure 1. a,b) Poynting vector of the elliptic Mathieu beam and c) its nonlinear propagation. The energy flow, characterized by the Poynting vector 
(indicated by arrows), is (a) calculated and (b) observed experimentally for the initial beam profiles, shown in (a1, b1) intensity and (a2, b2) phase. 
The formation of rotating high-intensity filaments due to the nonlinear self-interaction is illustrated in (c).
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realizations with elliptic Mathieu beams that differ in their 
order or ellipticity are possible within a certain parameter range 
that also depends on the further properties of the beam and the 
nonlinearity.

3. Details on the Numerical Simulations and the 
Experimental Setup

In the experiment, which is shown in Figure 2, we use a fre-
quency-doubled Nd:YVO4 laser. The broad laser beam illumi-
nates as a plane wave a spatial light modulator “Holoeye Pluto 
VIS.” We adopt the method of Ref. [33] to modulate both, 
amplitude and phase of the initial transverse (x-y-plane) light 
field with one phase-only modulator. An appropriate Fourier fil-
tering is required. The extraordinary polarized structure beams 
interact with a nonlinear Strontium Barium Niobate (SBN) 
crystal which has geometrical dimensions of 5 × 5 × 15 mm3. It 
is biased with an external electric field Eext along the optical c-
axis, directed along one of the shorter axis, parallel to the x-axis. 
The paraxial structured light field propagates mainly in z-direc-
tion. The intensity distribution at the back face of the SBN 
crystal is magnified with a microscope objective and imaged by 
a camera. In order to measure the phase of the structure beam, 
we superimpose a tilted plane wave as reference beam and use 
a digital holographic method.[34]

Numerically, we solve the nonlinear Schrödinger  
Equation (3) by applying a spectral split step propagation 
method[35,36]

i
1

2
0

k
V Iz

z

r rψ ψ[ ]( ) ( ) ( )∂ + ∆ + =⊥

 
(3)

It describes the paraxial propagation of a scalar light field ψ(r) 
with longitudinal wave vector kz in a potential ( ) ( )2

e
2

33= −V I k n r E Iz  
due to the photorefractive nonlinearity. 2 / ( )t

2 2 1/2π λ= = +k k kz  is 
the wave number and defined by the wavelength λ = 532 nm.  
ne = 2.358 is the extraordinary bulk refractive index, and  
r33 = 237 pm V−1 is the corresponding electro–optic coefficient.

Photorefractive SBN provides a strong nonlinearity at 
comparatively low power levels and the ability of reversible 

inductions. The electric field E(I) = Eext + Esc(I) that builds up 
inside the SBN crystal is a superposition of a static external 
electric field Eext = 1600 V cm−1 and an internal space charge 
field Esc(I) that results due to the incident intensity distribution  
I(r) = |ψ(r)|2.[37] We calculate the resulting intensity-depended, 
saturable, nonlocal, and anisotropic refractive index modulation 
via Esc = ∂xφsc by solving the modeling potential Equation (4) 
numerically[38]

ln 1 ln 1sc sc extφ φ ( ) ( )∆ + ∇ ∇ + = ∂ +I E Ix  (4)

4. Visualizing the Energy Flow of Elliptic  
Mathieu Beams

The balanced intensity redistribution of elliptic Mathieu beams 
is only present for their linear propagation in homogeneous 
media. We break this sensitive equilibrium by controlling the 
nonlinear self-action of elliptic Mathieu beams in a photorefrac-
tive crystal. When interacting with the optically induced refrac-
tive index modulation, the energy flow is altered. This leads to 
the accumulation of intensity at defined spots, where in turn 
the refractive index is increased. In this way, helically twisted 
refractive index lattices form and rotate in a predetermined 
direction.

Observing experimentally the formation and accumulation 
of high-intensity spots at the back face of the SBN crystal that 
are substantiated by corresponding numerical simulations and 
additionally controllable by the power and structure size of the 
writing beam represents our concept to visualize the energy 
flow of Mathieu beams. Furthermore, this method features the 
fabrication of chiral waveguide arrays.

We investigate the nonlinear self-action of the Mathieu 
beams with a structure size of a = 15 µm in the SBN crystal 
and reveal their energy flow by optically inducing a refractive 
index modulation with the structure beams. Based on the com-
parison with the numerical simulations, we estimate that the 
optically induced refractive index depth is in the order of 10−4. 
Systematically, we increase the initial beam power P0 ≈ 20 µW 
and double it in two steps in both, numerical simulation and 

Adv. Optical Mater. 2018, 1701355

Figure 2. The experimental setup. BS: beam splitter, FF: Fourier filter, L: lens, M: mirror, MO: microscope objective, SLM: spatial light modulator.
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experiment. Figure 3 shows the transverse intensity distribu-
tions at the back face of the SBN crystal. For the numerical 
simulations, we indicated with arrows that the Poynting vector 
(the energy flow) is still directed along the initial ellipse. Our 
construction scheme to experimentally obtain the complex elec-
tric field ψ and thus calculate the Poynting vector is not appli-
cable here, since the spatial phase distribution φ is not acces-
sible by using holographic techniques when imaging through 
the inhomogeneous refractive index modulation. As well, an 
experimental glance inside the crystal to see the 3D intensity 
distribution is not possible, since the light in the observing 
plane would be refracted by the inhomogeneous photonic 
structure in an unpredictable manner. Thus, we show that the 
experimental intensity distribution obtained at the back face of 
the crystal is tunable by changing the beam power so that spots 
of high intensity can be realized with changing positions and 
connect their individual manifestation with the formation of 
chiral lattices inside the crystal. The back face intensity distri-
butions of simulation and experiment are in high agreement 
and substantiate our numerical simulations for the 3D distribu-
tion of the intensity inside the volume.

In particular, we show the transition from quasi linear propa-
gation to a strong nonlinear self-interaction which introduces a 
symmetry breaking of the energy flow. For a weak beam power 
P0 the beam propagates almost linearly, apparent at an almost 
unchanged output intensity distribution, indicating that the 
beam is still nondiffracting. When doubling the power, modula-
tions emerge in form of occurring accumulations of intensity 
along the beforehand smoothly modulated ellipse. The writing 
beam thus can no longer be considered as nondiffracting nor 
as Mathieu beam. For the highest beam power of 4P0, separated 
spots of high intensity appear and rotate in the direction indi-
cated by the Poynting vector, thereby forming rotating refrac-
tive index strands in analogy to the simulation in Figure 1c. 
The spots that occur at the back face of the SBN crystal are a 
consequence of modulation instabilities[39] on an ellipse. Thus, 

the amount of spots does not only depend on 
the order m of the elliptic Mathieu beams, 
but is influenced by several parameters, like 
the strength of the nonlinearity, the structure 
size, or the propagation distance.

Due to the modulation of the intensity 
distribution along the innermost ellipse and 
the anisotropic medium, the refractive index 
modulation is predominantly established 
in the direction of the optical c-axis. Subse-
quently, the energy flow, which is typically 
located on an ellipse, is now preferentially 
directed perpendicular to the c-axis where 
the refractive index modulation is weak, 
but is especially hindered to flow parallel to 
the c-axis due to the strong variations in the 
potential. Thus, conglomerations of high 
intensity form in particular at the trough of 
high refractive index where enough intensity 
is accumulated to create solitary strands of 
increased refractive index.

Note that these twisted photonic struc-
tures may act as waveguides for further 

probe beams and guide light on elliptical, chiral paths. Our 
numerical simulations and the experimental results both 
indicate that the period of rotation changes during formation 
as well as the radius from the central axis. Moreover, some 
streams of intensity branch and multiple intensity maxima 
occur (cf. Section 5). Our approach therefore provides a flex-
ible and easy to implement method to realize chiral photonic 
media. Further investigations could potentially show advanced 
light–matter interactions, e.g., when probing these diverse 
chiral structures with chiral light.

5. Tailored, Nonlinear Mathieu Lattices

Additional to the previously discussed dependence of the for-
mation of rotating waveguides on the strength of the nonlin-
earity, we demonstrate the control of the induction of elliptic 
Mathieu lattices in the nonlinear medium by changing the 
characteristic structure size a = 2π/kt. Different elliptic Mathieu 
beams show a very rich rotating behavior with different spot 
characteristics.

Figure 4 shows the nonlinear control of the beam rotation by 
changing the beam size parameter a, whereby the beam power 
is constant at P0 ≈ 20 µW. We apply characteristic beam sizes 
of a = [15, 20, 25] µm. Compared are our experimental results 
with corresponding numerical simulations. Arrows again 
indicate the Poynting vector. We found that by increasing the 
structure size a of elliptic Mathieu beams, the local slope of 
the helix of the emerging rotating strands of higher refractive 
index is decreased. We also observe a coupling of the rota-
tion to the quantity of spots. For a = 15 µm in Figure 4, we 
hardly see conglomerations of intensity. For a = 20 µm similar 
rotating waveguides occur as we have observed them for the 
structure size of a = 15 µm with a power P that is comparable 
to be between 2P0 and 4P0, shown in Figure 3. By this, we find 
a regime where the strength of the nonlinearity is suited to 

Adv. Optical Mater. 2018, 1701355

Figure 3. The transverse intensity distributions of elliptic Mathieu beams (a = 15 µm) at the 
back face of the SBN crystal, nonlinearly inscribed with increasing beam powers. Compared 
are numerical simulations (calculated Poynting vector indicated by arrows) with experimental 
results.
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host the rotating photonic structures. This in turn is justified 
by the fact that for a = 25 µm the self-action is strong and tends 
to become stronger for larger structure sizes a, also recogniz-
able by the Poynting vector that directs outward for the outer 
high-intensity spots. Figure 4 shows the numerically simulated 
3D intensity volume for a = 25 µm, and demonstrates exem-
plary for this borderline case the enhanced degree of branching 
for increased beam sizes. In the presented case, new branches 
of high intensity start to form after a propagation distance of 
about 10 mm and rotate. Further branches appear after longer 
propagation distances. Note that for larger structure sizes, 
the intensity spreads to ellipses located more outside due to 
increasing modulation instabilities of the broader beam. Thus, 

rotating strands of high intensity can only 
induce chiral refractive index strands for 
these proper parameters.

6. Conclusion

We presented an approach to identify and 
visualize the energy flow of light based on 
the symmetry breaking by nonlinear light–
matter interaction of OAM carrying beams. 
As an example, we chose elliptic Mathieu 
beams with outstanding continuously modu-
lated OAM distributions. We used a nonline-
arity introduced in form of a photorefractive 
SBN crystal in order to break the sensitive 
equilibrium, which is present for linear 
propagation of nondiffracting beams. We 
demonstrated exemplarily that the nonlinear 
self-action of elliptic Mathieu beams leads 
to the formation of high-intensity filaments, 
which rotated in the direction determined 
by the energy flow. The dependence of these 
emerging photonic structures on the strength  
of the nonlinearity and the structure size 
of the Mathieu beams was investigated and 
we pointed out that the twisted refractive 
index formation could act as chiral wave-
guides. We worked out that the formation 
of chiral Mathieu lattices is possible only in 
this limited regime with proper parameters 
for the nonlinearity and structure size. Cor-
responding numerical simulations substan-
tiate our results. For elliptic Mathieu beams, 
our approach furthermore is well suited 
to fabricate rotating photonic structures 
with elliptic trajectories, thereby consider-
ably advancing the field of chiral light and 
photo nic structures.

Note that chiral lattices created by our 
approach show longitudinally increasing 
“helix slopes”, and additionally tailored trans-
verse ellipticities. Both properties may be 
considered as novel degree of freedom to 
design unique band structures and realize 
artificial photonic media with new topologies.
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Figure 4. Numerically calculated (top) and experimentally measured (middle) transverse inten-
sity distributions at the back face of the SBN crystal after nonlinear and self-interacting propa-
gation of elliptic Mathieu beams (P ≈ 20 µW), for beams with different structure sizes a. Arrows 
indicate the Poynting vector. The 3D intensity volume (bottom) visualizes the branching to due 
modulation instabilities on an ellipse for the case that a = 25 µm.
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We demonstrate unusual kinds of discrete vortex beams, elliptical necklaces, realized by Mathieu photonic
lattices. Varying the order of the Mathieu lattices and their ellipticity, we can control the shape and size of such
necklaces. Besides stable vortex states, we observe oscillatory dipole states or dynamical instabilities and study
their orbital angular momentum. Dynamical instabilities occur for higher beam power and higher-order vortices.
Also the decay of higher-order phase singularities and their separation is observed in dependence on the ellipticity.
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I. INTRODUCTION

An optical vortex that possesses a phase singularity and a
rotational flow around the singular point in a given direction
can be found in physical systems of different nature and scale,
ranging from water whirlpools and atmospheric tornadoes
to quantized vortices in superfluids and quantized lines of
magnetic flux in superconductors [1]. The study of optical
vortices and associated localized vortex states is important for
both fundamental and applied physics, leading to applications
in many areas that include optical data storage, distribution
and processing, optical interconnects between electronic chips
and boards, and free-space communication links [2–4]. They
also have potential uses in optical tweezers [5], optical ma-
nipulation and trapping [6,7], microscopy [8], and quantum
information processing [9,10].

The evolution of nonlinear excitations in systems whose
properties are modulated is especially interesting and in optics
can be realized when an intense laser beam propagates in the
material with a suitable transverse refractive index modula-
tion that can be fabricated in nonlinear materials including
semiconductors, liquid crystals, fused silica, polymers, and
photorefractive media [11–18]. The combination of diffrac-
tive and nonlinear effects with transverse refractive index
modulation in photonic lattices opens the possibility to pro-
duce spatially localized states of light [19,20]. To optically
induce two-dimensional photonic lattices it is appropriate to
use nondiffracting light beams that are exact solutions of the
Helmholtz equation in different coordinate systems [21,22]:
plane waves in Cartesian, Bessel beams in circular cylindrical
[23], Mathieu beams in elliptic cylindrical [24], and parabolic
beams in parabolic cylindrical coordinates [25].

In this paper we report on the existence of elliptical necklace
beams in photonic lattices optically induced by Mathieu
nondiffracting beams, using vortices as a probe beam. These
necklace beams show discrete intensity spots on elliptical
curves, associated with discrete phase vortices. We investigate
the conditions for their existence as well as their properties,
both experimentally and theoretically. Changing the lattice el-
lipticity and choosing Mathieu lattices of appropriate order, we
control the shape and the size of an elliptical necklace, as well

as the number of the “pearls” in the necklace. We investigate
the breakup of higher-order vortices (topological charge CT =
2,3,4) into CT = 1 vortices and their rate of separation during
propagation. Phase singularity distances increase with CT ,
higher lattice ellipticity, and propagation distance. Further, we
study the stability of such elliptic necklaces. Supported by the
strong nonlinearity, we show the formation of oscillating dipole
states in the intensity distribution for very long propagation
distances and discuss our results by investigating additionally
the transfer of orbital angular momentum (AM) to the lattice.
Finally, a high intensity of the probe beam leads to nonlinear
dynamical instabilities observable in the intensity distribution
of the necklaces.

II. EXPERIMENTAL METHOD AND MODELING OF
VORTEX BEAM PROPAGATION IN MATHIEU LATTICES

Figure 1 shows the experimental setup to realize elliptical
necklaces. A frequency-doubled, expanded, and collimated
Nd:YVO4 laser with wavelength λ = 532 nm is split into
two separate beams: an ordinary polarized writing and an
extraordinary polarized probe beam. Both are spatially tailored
in intensity and phase by a phase-only spatial light modulator
Holoeye Pluto VIS. For this purpose, special Fourier filters
(FF1 and FF2) are required [26]. The structure beam opti-
cally induces refractive index modulations in the 15-mm-long
photorefractive Strontium Barium Niobate crystal doped by
Cerium (SBN:Ce), thereby addressing the weaker electro-
optic coefficient r13 = 47 pm/V. The birefringent crystal has
refractive indices no = 2.325 and ne = 2.358 and is externally
biased with an electric field Eext = 1600 V/cm aligned along
the optical c = x axis, perpendicular to the direction of propa-
gation (z axis). Probing the artificial photonic structure is done
with the extraordinary polarized probe beam that addresses
the stronger electro-optic coefficient r33 = 237 pm/V. An
imaging system consisting of a microscope objective and
camera detects transverse intensity distributions at the back
of the crystal.

We model our experiment by solving the nonlinear
Schrödinger equation for an initial scalar electric field A(r)
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FIG. 1. Experimental setup for the investigation of vortex beams
in a Mathieu lattice optically induced in a photorefractive SBN
crystal: BS, beam splitter; FF, Fourier filter; L, lens; M, mirror; MO,
microscope objective; and SLM, spatial light modulator.

numerically by using a beam propagation method [27]:

i∂zA(r) + 1

2kz

�⊥A(r) + kz

2n2
o,e

δn2[|A(r)|2]A(r) = 0. (1)

By this, the nonlinear propagation of the field A(r) with
longitudinal wave vector kz in a photorefractive nonlinearity is
evaluated. The wave number k = 2π/λ =

√
k2
⊥ + k2

z is defined
by the wavelength λ. We use elliptical Laguerre Gaussian
vortex beams as probe beams [28]. The potential is given
by δn2[|A(r)|2] = −n4

o,er13,33E. The electric field E = Eext +
Esc that builds up inside the strontium barium niobate (SBN)
crystal is a superposition of an external electric field Eext and
an internal space charge field Esc that results due to the incident
intensity distribution I (r) = |A(r)|2. Owing to the biased SBN
crystal, we use an anisotropic approximation to calculate the
refractive index modulation and solve the potential equation
[29]

�φsc + ∇φsc∇ ln(1 + I + Ilatt) = Eext∂x ln(1 + I + Ilatt),

(2)

where Esc = ∂xφsc and Ilatt is the lattice intensity according
to the corresponding Mathieu beams. We use Mathieu beams
Mm(ξ,η) mathematically described as the product of radial cem

and angular Jem Mathieu functions of order m,

Mm(ξ,η) = Cm(q)Jem(ξ ; q)cem(η; q), (3)

where Cm(q) is a weighting constant. The functions depend on
q = f 2k2

⊥/4, a parameter of ellipticity which is related to the
positions f of the two foci and the transverse wave number
k⊥ = 2π/a, where a is the characteristic structure size; here
Ilatt = |Mm(ξ,η)|2 and a = 90 μm. We present results with
even Mathieu functions, but our conclusions are the same for
odd Mathieu functions.

III. ELLIPTICAL NECKLACE STRUCTURES

To systematically investigate the propagation of vortex
beams in Mathieu lattices, we start our studies by considering
the Mathieu lattices optically induced with even Mathieu
function of order m = 8, dependent on different ellipticity pa-
rameters q. We examine the conditions of existence of spatially
localized vortex states. It is well known that the presence of

FIG. 2. Elliptical necklaces in Mathieu lattices with different
ellipticity parameter q and CT = 1. The input vortex beam is shown
with the layout of the lattice beams indicated by open circles (the first
column). The corresponding intensity distributions are shown at the
exit crystal face in numerics (the second column) and experiment (the
third column). The parameters are E0 = 1600 V/cm, numerical lattice
intensity Ilatt = 0.3, and input vortex intensity 0.005; the experimental
lattice power Platt = 20 μW and input vortex power 8 μW.

the lattice during vortex breakup induces confinement of the
filaments approximately at the location of the incident vortex
ring and the surrounding lattice sites. We choose the input
vortex beam with CT = 1 to cover the lattice sites of the inner
lattice elliptical ring.

Figure 2 summarizes our results for three different values of
ellipticity parameter q. At the beginning, we consider the case
with no ellipticity (q = 0) and observe a stable necklace beam
for very low nonlinearity (almost linear). Increasing the lattice
ellipticity for the same experimental conditions, we observe
elliptical necklaces, with lobes slightly closer to each other,
owing to the shape and distribution of the lattice sites in that
lattice area. Investigating the stability of these necklaces, we
find that these vortex states are stable during propagation along
the crystal. With Mathieu lattices of higher order (m > 8), we
observe elliptical necklaces with a larger number of pearls,
staying stable along the length of the crystal. With broader
vortex beams we find vortex solutions with two necklaces,
covering the inner and next ring of the Mathieu lattice. These
states are not stable during the propagation.

Next we investigate higher-order vortex beams in Mathieu
lattices. We choose the same input ring vortex beam with
different CT (Fig. 3). Energy flow inside the inner lattice
ring causes an increase in asymmetry when incrementing CT .
In the overall phase distribution, we observe a central area
having the expected vortex state. However, on the inner lattice
ring, we observe a vortex state corresponding to the input CT ,
but circularly shifted with respect to the central vortex area.

033848-2
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FIG. 3. Single- and multiple-charged elliptical necklaces for the
numerically observed intensity (the first column) and phase distribu-
tions (the second column). The third column presents experimentally
observed intensity distributions. The lattice ellipticity q = 15 and
other parameters are as in Fig. 2.

Considering phase distributions along the propagation, we
observe the phase distribution shifting along the inner lattice
ring, as well as in the central part of the phase distributions.

For higher-order vortices we observe a spatial separation
of several single-charged phase singularities [30], unlike the
conventional multiple-charged vortex where the embedded
phase singularity is multiply folded. The elliptical necklaces
show an unfolded behavior in the phase distribution, with the

FIG. 4. Phase singularity separation versus CT for various lattice
ellipticities after a 15-mm propagation distance. Separations are
measured as the Euclidean distance between the two singularities.

FIG. 5. Phase singularity separation versus propagation distance
for various CT . Separations are measured between the two singu-
larities for lattice ellipticity q = 15 as a Euclidean distance. The
parameters are as in Fig. 3.

appearance of multiple single-charged phase singularities sep-
arated by a finite distance. We found that the phase singularity
separation depends on the lattice ellipticity, as well as the input
vortex CT . We measure the Euclidean distance between the two
furthest singularities [as indicated in Fig. 3(c ii)] for different
lattice ellipticity and presented results in Fig. 4. Higher values
of separations are observed for higher ellipticities q. Phase
singularity separation distances also increase with propagation
distance, for higher CT = 2,3,4 and q = 15 (Fig. 5). Higher
values of separations are observed for higher CT .

FIG. 6. Dipole states in Mathieu lattices of various ellipticity
(a) q = 0, (b) q = 10, and (c) q = 15. Intensity and phase distri-
butions are presented after 10-cm propagation. (d) Normalized z

component of the angular momentum along the propagation distance.
Other parameters are as in Fig. 2.

033848-3



JADRANKA M. VASILJEVIĆ et al. PHYSICAL REVIEW A 97, 033848 (2018)

FIG. 7. Nonlinear vortex propagation in Mathieu lattices. The
first and third columns present intensity distributions, and the second
column presents the corresponding phase distributions at the exit face
of crystal. Input vortex intensities in numerics are (a i) 0.01 arb. units
and (b i) 0.1 arb. units, and input vortex power in experiment are (a iii)
20 μW and (b iii) 30 μW. The other parameters are as in Fig. 2(c).

IV. ELLIPTICAL NECKLACE INSTABILITIES

Finally, we discuss in detail the (in)stability of elliptical
necklaces. We demonstrated in Sec. III that these vortex states
observed in linear and very low nonlinear regimes (Fig. 2)
are stable during propagation in our nonlinear photorefractive
crystal. We also further investigate their stability for longer
propagation distances numerically, in order to address length
scales that are not accessible in the experiment. While the
elliptical necklaces remain stable for propagation length a few
times longer than our crystal size, after 10 cm they transforms
to oscillating dipole states (Fig. 6). Their phase distributions
remain unchanged in the center, but along the inner lattice
ring their initial phase distribution for stable states is broken.
Higher-order vortex states, observed in the form of slightly
asymmetric necklaces [Figs. 3(b)–3(d)] with lower powers,
are stable only for short propagation distances (crystal size).

Also, we investigate the orbital AM of necklace beams
during propagation [31,32]. The standard definition for the
(normalized) z component of the orbital AM is adopted [32]:

Lz = − i

2

∫ ∫
dx dy A∗(x,y)(x∂y − y∂x)A(x,y) + c.c.

(4)

Figure 6(d) presents the mean orbital AM Lz per transverse
plane dependent on the propagation distance z of the necklace
states along the propagation distance for different ellipticity
parameters q. Less pronounced AM transfer is observed for
higher lattice ellipticity. For lower ellipticities, the neighboring
lobes exchange more power during the propagation and the
transfer of angular momentum from the vortex to the photonic
lattice is more pronounced (red plot).

Increasing the input vortex power, we investigate the stabil-
ity of vortex states. The most illustrative cases are presented
in Fig. 7 for vortex states with CT = 1 and lattice elipticity
q = 15. With lower powers, neighboring lobes exchange some
power, the stable elliptical necklace is broken, and regular
oscillations along the propagation take place [Fig. 7(a)]. When
increasing the beam power, irregular oscillations take place
which are more pronounced for longer propagation distances
[Fig. 7(b)]. With higher beam powers, phase distributions stay
unchanged only in the central part and are broken along the
inner lattice ring.

V. CONCLUSION

In summary, we have demonstrated experimental and nu-
merical investigations of the elliptical necklace in a photore-
fractive medium with optically induced Mathieu lattices. We
have analyzed how various orders of Mathieu lattices and their
ellipticities could control the shape and the size of the elliptical
necklace, as well as the number of pearls in them. Phase
singularity separations were investigated for higher-order vor-
tices. We have observed that such separations increase with
CT , higher lattice ellipticities, and the propagation distance.
The stability of elliptical necklaces was studied as well as
their AM. Stable vortex states were observed for lower beam
powers and shorter distances, but oscillatory dipole states or
dynamical instabilities were observed for longer propagation
distances, higher beam power, and higher-order vortices. Our
results enable further investigations of vortex beam control
in photonic lattices optically induced by other than Mathieu
beams and could find applications in the field of optical
micromanipulation to guide, trap, and sort objects.
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We demonstrate a kind of aperiodic photonic structure realized using the interference of multiple Mathieu-
Gauss beams. Depending on the beam configurations, their mutual distances, angles of rotation, or phase
relations we are able to observe different classes of such aperiodic optically induced refractive index structures.
Our experimental approach is based on the optical induction in a single parallel writing process.
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I. INTRODUCTION

Since nondiffracting beams have been introduced in the late
1980s [1,2] as light structures, only recently these structures
have drawn considerable attention in various topics such as
trapping of colloidal and in vivo particles in biophysics [3],
atom optics [4], applications of optical lattices in quantum
computing [5], as well as quantum optics [6], optical tweez-
ing [7,8], and nonlinear optics [9–11]. Such nondiffracting
structures are coming from the well-known classes of simple
nondiffracting light beams that are exact solutions of the
Helmholtz equation in different coordinate systems [12]: plane
waves in Cartesian, Bessel beams in circular cylindrical [2],
Mathieu beams in elliptic cylindrical [13], and parabolic beams
in parabolic cylindrical coordinates [14].

A simple and robust implementation of optical micro-
manipulation technologies—optical tweezers—based on non-
diffracting beams, has become a standard tool in biological,
medical, and physics research laboratories [15]. Another trend
in optical manipulation is the use of synthesized optical beams
rather than single beams only; such beams enable a much
greater freedom in object manipulation than conventional
Gaussian beams [16].

The potential of nondiffracting structures is of significant
importance for advances in discrete and nonlinear modern
photonics [17–21]. Although the physics of periodic photonic
systems are of fundamental importance, deviations from
periodicity are of importance as they may result in higher
complexity. One such deviation in optics results in the
realization of photonic quasicrystals [20,22], the structures
that lie between periodic and disordered one. They show
sharp diffraction patterns that confirm the existence of wave
interference resulting from their long-range order. Recently,
a new serial approach for the generation of aperiodic de-
terministic Fibonacci and Vogel spirals as refractive index
structures was presented [23,24]. In particular, the Fourier
spectra of tailored aperiodic lattices can be customized to
range from discrete to continuous [25], thus featuring unique
light propagation as well as localization properties in aperiodic
photonic lattices. Of particular interest are also flat-band
lattices with a dispersionless energy band composed of entirely
degenerate states, so that any excitation of these states yields
nondiffracting waves. Such flat band systems have been
studied in a number of lattice models including quasi-one-,

two-, or three-dimensional settings, diamond ladder, Lieb, or
kagome lattices [26–28].

In this paper, we demonstrate a powerful approach for
the creation of two-dimensional (2D) aperiodic photonic
lattices in a single writing process in parallel. It is based
on synthesizing two or more nondiffracting Mathieu-Gauss
(MG) beams [29]. By coherently superimposing MG beams
with different orders, positions, and relative phases we realize
transverse invariant propagating intensity distributions capable
of optically inducing corresponding refractive index lattices in
photosensitive media. Our approach features the fabrication of
versatile aperiodic lattices with controllable properties as well
as quasi-one-dimensional structures.

II. CHARACTERIZATION OF SYNTHESIZED
MATHIEU-GAUSS BEAMS

For the experimental realization of synthesized MG beams
we use the experimental setup shown in Fig. 1. We use a
frequency-doubled Nd:YVO4 laser, expand the laser beam, and
illuminate as a plane wave a phase-only spatial light modulator
“Holoeye Pluto VIS.” The reflected light field is modulated
in both amplitude and phase. This is possible by addressing a
precalculated hologram to the SLM containing the information
of the complex light field encoded with an additional blazed
grating. By applying an appropriate Fourier filter, the tailored
complex light field is realized [30,31]. Additionally, the
telescope L1-L2 scales down the SLM size by a factor of
10. This extraordinary polarized “structure beam” is used to
optically inscribe refractive index modulations in the 15 mm
long photorefractive SBN:Ce crystal which is externally biased
with an electric dc field of Eext = 2000V cm−1 aligned along
the optical c = x axis, perpendicular to the direction of
propagation (z axis).

We simulate the nonlinear light propagation in a photonic
structure by numerically solving the nonlinear Schrödinger
equation:

i∂zA(r) + 1
2�⊥A(r) + 1

2�E(|A(r)|2)A(r) = 0, (1)

where � = k2
0w

2
0n

4
o,er13,33, k0 = 2π/λ is the wave number and

defined by the wavelength λ = 532 nm, no = 2.325 is the
ordinary, ne = 2.358 is the extraordinary bulk refractive index,
r13 = 47 pm/V, r33 = 237 pm/V are the corresponding
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FIG. 1. Experimental setup for the investigation of synthesized
MG beams and their optical induction in a photorefractive SBN
crystal. BS: beam splitter; FF: Fourier filter; L: lens; MO: microscope
objective; SLM: spatial light modulator. Depicted on the left side is
a scheme that shows how two single MG beams interfere to create
more complex light fields, addressed to the SLM.

electro-optic coefficients, respectively, and w0 is an arbitrary
scaling factor. The electric field E = Eext + Esc that builds up
inside the SBN crystal is a superposition of an external electric
field Eext and an internal space charge field Esc that results due
to the incident intensity distribution I (r) = |A(r)|2. Owing to
the biased SBN crystal, we use an anisotropic approximation
to calculate the refractive index modulation [32] and solve the
potential equation:

�φsc + ∇φsc∇ ln (1 + I ) = Eext∂x ln (1 + I ), (2)

where Esc = ∂xφsc.
The complex aperiodic beams in this work are based on

even Mathieu beams Am(ξ,η) [13], mathematically described
as a product of radial cem and angular Jem Mathieu function of
order m:

Am(ξ,η) = Cm(q)Jem(ξ ; q)cem(η; q), (3)

where Cm(q) is a weighting constant that depends on q =
f 2k2

t /4, a parameter of ellipticity which is related to the
positions f of the two foci and the transverse wave number
kt = 2π/a, where a is the characteristic structure size. ξ and
η are elliptical coordinates and their relation with spatial
coordinates x, y are given with x + iy = f cosh(ξ + iη). Here
we use q = 25 and a = 25 μm. Additionally, the Mathieu
beams are apodized with Gaussian beams which yields MG
beams [29].

We start our investigations by considering the interference
of two even MG beams of different order m1 and m2 (Fig. 2),
and present their intensity distributions at the input crystal
face. For MG beams whose orders have the same parity (even
or odd), symmetric synthesized MG structures are observed
that propagate unchanged as nondiffracting beams due to
identical structure sizes of the individual beams. The intensity
distributions are presented for two examples in experiment
as well as in numerical simulations in Figs. 2(a) and 2(b).
We demonstrate that the superposition of two MG beams of
different parity leads to asymmetric intensity distributions
[Figs. 2(c) and 2(d)]. In the case of the π out of phase
interference, mirror symmetric structures are observed (not
shown here). For interfering MG beams of different orders and
different parities it is possible to observe symmetric structures
only for phase differences of π/2 that are comparable to
synthesized mirror symmetric structures.

FIG. 2. Interference of two MG beams of different order. Intensity
distributions of interfering beams with the same parity: (a) both
even: m1 = 0, m2 = 10; (b) both odd: m1 = 1, m2 = 7. Intensity
distributions of interfering beams with different parity: (c) m1 = 2,
m2 = 7; (d) m1 = 13, m2 = 14.

Next, we superimpose two even MG beams with the
same order, oriented at 90◦ with respect to each other,
considering additionally the in phase and π out of phase
configurations. Superimposing MG beams of even parity,
we observe distinctive structures for the two different phase
configurations [Figs. 3(a), 3(e) and 3(b), 3(f)]. However, using
MG beams of odd parity (m = 5 or m = 7), the same intensity
distributions are observed, but mirror symmetric to each other,
when changing the phase configurations [Figs. 3(c), 3(g) and
3(d), 3(h)]. This mirror symmetry of superimposed MG beams
with odd orders m is related to the intrinsic symmetry of the
related Mathieu functions.

Our approach to realize two-dimensional aperiodic lattices
finds its origin in synthesizing versatile standard MG beams at
different mutual distances. This allows one to continuously
increase the degree of aperiodicity. We provide a field

FIG. 3. Transverse interference patterns of two Mathieu-Gauss
beams of the same order oriented at 90◦ with respect to each other:
(a),(e) m1 = m2 = 2, (b),(f) m1 = m2 = 8 and (c),(g) m1 = m2 = 5,
(d),(h) m1 = m2 = 7.
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FIG. 4. Interfering MG beams of the same order at different
vertical mutual distances: (a),(b) m = 6 and (c),(d) m = 7. D =
20 μm.

distribution that serves as “unit cell” for more complex
aperiodic writing light capable of being transferred to tailored
refractive index modulations in photosensitive media. A first
example that demonstrates the concept (Fig. 4) shows the inter-
ference of two even MG beams of the same order. Therefore,
we chose MG beams of the order m = 6 or m = 7 and arrange
them at various mutual distances as shown in Figs. 4(a), 4(b)
and 4(c), 4(d), respectively. For the following synthesization,
we identify the intensity distribution that results for the
displacement of 2D = 40 μm as most suited.

III. GENERATION OF COMPLEX APERIODIC
PHOTONIC STRUCTURES

In order to find conditions for the generation of complex
aperiodic photonic structures, we use previously observed
synthesized MG beams that provide a unit cell of the photonic
lattice. First, we use the example from Fig. 2(b) that has
similarities with the unit cell of a periodic lattice created by the
interference of six plane waves. By multiplying this structure
twice in one row at a distance of Dx = 80 μm, we observe a
single array [Fig. 5(a)]. Subsequently we multiply the resulting
array along the y direction at three different mutual distances
Dy = 80 μm, Dy = 88 μm, and Dy = 96 μm. This leads to
various aperiodic lattice structures shown in Figs. 5(b)–5(d)
that exhibit areas where the initial unit cell is preserving its
shape, while additionally novel unit cells emerge whose shape
depends on the mutual distances between the multiplied arrays.

Next, configurations are investigated that result from the
duplication of the necklace structure from Fig. 3(e). Again,
we start with multiplying the structure in one row at different
distances. One example is presented in Fig. 5(e) for Dx =
144 μm. With such an array, we realize different in two
dimensions extended aperiodic structures by changing the
mutual distances between the arrays this time additionally in y

direction: Dy = 120 μm, Dy = 144 μm, and Dy = 152 μm
[Figs. 5(f)–5(h)]. The initial unit cell is visible in all structures,
and it repeats at proper distances, where as well other unit cell

FIG. 5. Generation of aperiodic photonic structures. The first and
second rows: multiplying of the structure from Fig. 2(b); the third and
fourth rows: multiplying of the structure from Fig. 3(e) at different
distances.

structures are visible that can be controlled by changing the
distances between initial unit structures used for multiplying.

Figure 6 presents some examples of aperiodic photonic
structures, observed using the synthesized MG beams of
the sixth and seventh order [Figs. 4(a2) and 4(c2)], as the
unit cell. For the synthesized MG beams of the sixth order

FIG. 6. Aperiodic photonic structures. The first and second row:
multiplying of the structure from Fig. 4(a2); the third and fourth
row: multiplying of the structure from Fig. 4(c2) at different mutual
distances.
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FIG. 7. Waveguiding in aperiodic photonic structures. (a),(b)
Lattice beam from Fig. 5(h) and (d),(e) lattice beam from Fig. 6(h)
along the longitudinal direction along the propagation, and at the back
face of the crystal, respectively. (c),(f) Probe beam at the exit face of
the crystal.

(the first and second row), the first three examples present
the multiplying of the unit structure along x direction but
at different mutual distances: Dx = 152 μm [Fig. 6(a)],
Dx = 176 μm [Fig. 6(b)], and Dx = 192 μm [Fig. 6(c)]. As
one can see, the shape of the initial structure is preserved, with
slightly different interfering patterns between them. The last
example [Fig. 6(d)] presents the multiplying of the structure
from Fig. 6(b) along y direction for Dy = 104 μm.

Synthesized aperiodic MG beams based on seventh order
MG beams are presented in the third and fourth row. Figure 6(e)
shows the multiplying of the structure from Fig. 4(c2) along
the x direction for Dx = 176 μm. This structure is further
used for multiplying along the y direction at various mutual
distances: Dy = 72 μm, Dy = 96 μm, and Dy = 104 μm,
and new kinds of aperiodic photonic structures are observed
[Figs. 6(f)–6(h)].

We confirm the nondiffracting character of the synthe-
sized MG beams, presented in Figs. 2–6, monitoring their
linear propagation through the 20 mm long homogeneous
crystal. We exemplarily select the two aperiodic beams
demonstrated in Figs. 5(h) and 6(h), and present their linear
propagation through the crystal. Figures 7(a) and 7(d) show
xz cross sections through the intensity volume that prove

their nondiffracting character. In order to verify that this
intensity distribution is capable of realizing aperiodic refrac-
tive index modulations, we transfer these ordinary polarized
writing beams to aperiodic photonic lattices. The illumination
time is 35 s with a moderate laser power of ≈30 μW
and an external electric field of 2000 V/cm. The nonlinear
self-interaction is weak and we show the lattice writing
beams at the back face of the modulated SBN crystal in
Figs. 7(b) and 7(e). Subsequently, we probe the optically
induced aperiodic structures with an extraordinarily polarized
plane wave. Figures 7(c) and 7(f) conclude these results that
clearly demonstrate waveguiding of the initial plane wave in
the two-dimensional aperiodic lattice, manifested in a spatially
modulated intensity distribution according to the underlying
refractive index modulation. Thus the intensity is preferentially
guided in areas where the refractive index is increased and
spots of high intensity are formed.

The presented method enables the creation of various novel
kinds of two-dimensional aperiodic photonic structures in a
single optical induction process in parallel. Our approach
features the realization of a high versatility of aperiodic lattices
that can be tailored in their degree of disorder, ranging from
fundamental Mathieu lattices with a high regularity to highly
disordered aperiodic structures with quasicontinuous power
spectra. It is very flexible owing to the control of the mutual
distance between appropriate structures that is easy to realize
in experiment, especially compared to previously used optical
induction methods [23,24].

IV. CONCLUSIONS

In summary, we have investigated the interference of
synthesized MG beams experimentally and numerically.
Depending on different configurations, the number of beams,
and their mutual distance as well as phase relations, in-
terference effects of two or more spatially displaced or
rotated MG beams could be used for optical induction of
novel light guiding aperiodic structures in a single parallel
writing process. Our experimental results and methods enable
further investigations of light propagating in such aperiodic
photonic lattices, and could find applications in modern optical
information processing.
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We investigate light propagation along one-dimensional quasi-periodic Fibonacci waveguide array optically
induced in Fe:LiNbO3 crystal. Two Fibonacci elements, A and B, are used as a separation between waveguides.
We demonstrate numerically and experimentally that a beam expansion in such arrays is effectively reduced
compared to the periodic ones, without changing beam expansion scaling law. The influence of refractive index
variation on the beam expansion in such systems is discussed: more pronounced diffraction suppression is
observed for a higher refractive index variation. © 2015 Optical Society of America
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1. INTRODUCTION

The discovery of quasi-crystals in condensed matter by
Shechtman et al. [1] and their theoretical analysis by Levine
and Steinhardt [2] has inspired a new field of research in optics
and photonics.

Examples in the field of optics are photonic quasi-crystals
with dielectric multilayers forming the Fibonacci sequence as
proposed by Kohmoto et al. [3], and realized in [4–6], as well
as other deterministic aperiodic structures with long-range
order [7,8]. Photonic quasi-crystals have peculiar optical prop-
erties. Namely, they lie between periodic and disordered struc-
tures and exhibit unique and rich symmetries in Fourier space
that are not possible within periodic lattices. The large variety
of aperiodic structures is very important and could provide sig-
nificant flexibility and richness when engineering the optical
response of devices [9].

The localization of waves is a ubiquitous phenomenon ob-
served in a variety of classical and quantum systems [10–12],
including light waves [13–16], Bose–Einstein condensates
[17,18], and sound waves [19]. Although stated more than
50 years ago [11], Anderson localization is still one of the most
appealing approaches in optical wave manipulation. In this re-
gard, a transverse localization of light in waveguide lattices turns
out to be a particularly interesting concept [13,14]. As the
transverse expansion properties in periodic photonic lattices
[20–23], as well as in disordered ones [14,24–26], have been
investigated extensively, the quasi-periodic photonic lattices
emerged as a further attractive research field. The light locali-
zation in the Aubry–André model of a quasi-periodic lattice is

observed [27], but the transverse expansion in many other
models of photonic quasi-crystals [28] is still an open question.

In this paper, we extend these concepts to the beam expan-
sion in quasi-periodic Fibonacci waveguide arrays, considering
light propagation along waveguides. We fabricate the array of
identical waveguides (identical refractive index profile). The
distance between successive waveguides is modulated in the
Fibonacci manner. This means that the sequence of separations
consists of two elements, A and B, lined in such a way to make a
Fibonacci word. We consider how various input beam posi-
tions (incident positions) influence diffraction, and compare
them with appropriate periodic waveguide arrays. In general,
we find the beam expansion is slowed in quasi-periodic
Fibonacci waveguide arrays. Increasing the refractive index
variation, the effect is more pronounced.

2. EXPERIMENTAL SETUP AND THEORETICAL
BACKGROUND

For the experimental realization of the Fibonacci waveguide
array we use LiNbO3 crystal, doped with 0.05% of iron.
Dimensions of the crystal are 3mm × 0.5mm × 10mm, with
the optical axis along the z direction (10 mm). Waveguides are
fabricated using an in-house developed laser writing system
with a CW laser at 473 nm and a precise two-axis positioning
platform. The platform can move the crystal in the x–z plane.
The laser beam propagates along the y axis and it is focused by
the 50× microscope objective slightly below the upper surface
of the crystal. In this way, the laser makes a controllable local
change of the refractive index. By moving the sample along the
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z direction, a uniform modification of the refractive index pro-
file is achieved [Fig. 1(a)]. The width of the waveguide obtained
in this way is approximately 5 μm with a maximum refractive
index variation of Δn ∼ 1 × 10−4, estimated from numerical
simulations. The distances between the centers of the adjacent
waveguides are a � 10 μm and b � 16.18 μm, and follow the
Fibonacci word rule, with the golden ratio b∕a � �1� ffiffiffi

5
p �∕2

in our case [Fig. 1(c)].
A scheme of the experimental setup is shown in Fig. 1(b).

A beam from He:Ne laser, after appropriate preparation, is
focused on the front face of the crystal and propagates along
the z direction. The beam waist is around 10.5 μm and the
power is 10 nW. The light is polarized linearly in the y direc-
tion. The crystal is situated in a holder which can be moved in
the x direction in small steps. In this way, we can launch the
beam into appropriate position in the waveguide array. The in-
tensity pattern appearing at the exit face of the crystal is
observed by means of an imaging system which consists of a
microscope objective and CCD camera.

To theoretically model light propagation in quasi-periodic
Fibonacci waveguide arrays, along the propagation distance
z, we consider the paraxial wave equation for the slowly varying
electric field amplitude E :

i
∂E
∂z

� −
1

2

∂2E
∂x2

− V �x�E; (1)

where V �x� � ns � Δn
PN

i�1 e
−�x−xi�2∕2σ2 is the quasi-periodic

refractive index profile of the array, ns is a bulk material
refractive index, and Δn is an optically induced refractive
index variation. The two Fibonacci elements, A and B, are
used as a separation between the waveguides a and b [see
Fig. 1(c)]. An array of N waveguides modeled with
Gaussian functions centered at xi is spaced to follow some
Fibonacci word. For example, we experimentally realized a
waveguide array that represents the following Fibonacci word:
ABAABABAABAABABAABA (the first 20 elements) [see

Fig. 1(c)]. For solving our model equation, we use the split-step
method with the parameters of our experiment.

3. LIGHT PROPAGATION IN FIBONACCI
WAVEGUIDE ARRAYS: EXPERIMENT VERSUS
THEORY

We consider beam propagating in Fibonacci waveguide arrays
fabricated in our crystal, launched at different incident posi-
tions. The propagation characteristics are obtained numerically
and experimentally; Fig. 2 summarizes our results. We choose
three typical incident positions inside waveguides marked by
numbers 1, 2, and 3 in Fig. 1(c). Propagations from these
positions are represented in the first, second, and third row
in Fig. 2. The first column presents intensity distribution along
the propagation distance observed numerically, with output
profiles in the second column. Experimental results for the
same incident positions are presented as intensity distributions
at the exit face of the crystal (the forth column) with corre-
sponding profiles in the third column. One can see a very good
agreement with numerically obtained profiles.

The main reason for more pronounced diffraction suppression
for incident beam positions 1 and 2 [Figs. 2(b) and 2(f)], in com-
parison with position 3 [Fig. 2(j)], is the separation between in-
cident and neighboring waveguides. While propagating in the
medium, the beam displays slowing of beam expansion, compared
to the appropriate periodic waveguide arrays [Fig. 4(b)].

Next, we study beam propagating characteristics for incident
positions between waveguides marked by numbers 4, 5, and 6
in Fig. 1(c). Figure 3 summarizes our numerical and experi-
mental results for these cases. The layout of this figure is the
same as in Fig. 2: incident positions 4, 5, and 6 in Fig. 1(c)
correspond to the results in the first, second, and third row
in Fig. 3, respectively. Beam diffraction for incident positions

Fig. 1. Setup for an investigation of light propagation in Fibonacci
waveguide arrays. (a) Scheme of the laser writing waveguide arrays proc-
ess in an Fe:LiNbO3 crystal. (b) Schematic of the experimental setup:
He:Ne laser at 632.8 nm; L, lens; PH, pinhole; VNDF, variable neutral
density filter; M, mirror; HWP, half-wave plate; MO, microscope ob-
jective; CCD, camera. (c) A schematic of a refractive index profile used
in numerics (V �x�), with two separations between waveguides, a and b.
Arrows with numbers show incident beam positions inside waveguides
(black) and between waveguides (gray). (d) Schematic geometry of
Fibonacci lattice with Gaussian probe beam.

Fig. 2. Light propagation in Fibonacci waveguide arrays. Incident
positions of the beam are inside certain waveguides, marked with num-
bers in Fig. 1(c): the first row corresponds to the position 1; the second
row corresponds to 2; and the third row corresponds to 3. Intensity
distributions of the beam in longitudinal direction during the propa-
gation: (a), (e), and (i) observed numerically. Corresponding intensity
profiles at the exit face of the crystal observed numerically: (b), (f ),
and (j) and experimentally (c), (g), and (k). Experimentally measured
intensity distributions at the exit face of the crystal (d), (h), and (l).
Physical parameters: the crystal length L � 1 cm, refractive index
variation Δn � 1 × 10−4, and Gaussian beam width 10 μm.
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between waveguides is more pronounced than for incident po-
sitions inside waveguides (Fig. 2), but again less pronounced
then in periodic waveguide arrays [Fig. 4(b)]. One can see a
more pronounced tendency toward diffraction suppression
for incident beam position 5 [Fig. 3(g)], compared with 4
[Fig. 3(c)] and 6 [Fig. 3(k)]. We want to stress that these con-
clusions are relevant only for the distance of propagation in our
experiment (1 cm). More general conclusions are drawn in the
next chapter, where numerical simulations are performed on
longer propagation distances.

4. LIGHT PROPAGATION IN WAVEGUIDE
ARRAYS: PERIODIC VERSUS FIBONACCI

We study numerically the beam propagation in Fibonacci
waveguide arrays considering longer propagation distances
(L � 10 cm). To characterize the level of beam expansion,
we use the effective beam width ωeff � P−1∕2, where P �R jE j4�x; L�dx∕fR jE j2�x; L�dxg2 is the inverse participation
ratio. In such a system, it is useful to perform averaging over
different incident beam positions to remove the effects of the
local environment, i.e., the influence of the neighboring wave-
guides. Averaged effective beam width is calculated along the
propagation distance, and compared for the Fibonacci wave-
guide array and three different periodic waveguide arrays.
Separations a and b in Fibonacci waveguide arrays are used
as periods d � 16.18 μm and d � 10 μm for two periodic
waveguide arrays. The third periodic array is produced in such
a way that the same number of waveguides as in quasi-periodic
is arranged in periodic manner in the same space (in our geom-
etry, its lattice period is d � 12.38 μm), aimed as the most
appropriate for comparison with Fibonacci waveguide array.

Figure 4(a) presents the averaged effective width (averaged
over incident positions) along the propagation distance for
Fibonacci lattice and refractive index variation Δn � 1 × 10−4,

with the effective beam width for all previously mentioned
periodic lattices for the same value of refractive index variation.
It should be stressed that the beam width increases more slowly
in a Fibonacci lattice compared to the periodic lattices. Clearly,
the beam propagation in periodic lattice with d � 10 μm
displays the strongest discrete diffraction, followed by other
periodic lattices and then quasi-periodic. We also observe that
the Fibonacci lattice follows the same beam expansion scaling
law [29]. For shorter propagation distances (up to 1.5 cm),
beam diffraction in the periodic lattice with d � 16.18 μm is
slightly less pronounced than in quasi-periodic because of the
weaker coupling between adjacent waveguides in that lattice.

Figure 4(b) presents a typical beam spreading along the
propagation distance, for a periodic lattice with d � 12.38 μm,
simulated for 10 cm of propagation. The averaged intensity
distribution for hundreds of different incident positions in a
Fibonacci lattice is presented in Fig. 4(c). Compared with the
appropriate periodic lattice [Fig. 4(b)], a tendency of
Fibonacci lattice to suppress diffraction is evident [Fig. 4(c)].

5. DEPENDENCE OF LIGHT PROPAGATION ON
THE REFRACTIVE INDEX VARIATION

At the end, we study the influence of various refractive index
variations (Δn) on the beam propagation in Fibonacci wave-
guide arrays. Again, we calculate the averaged effective width
along the propagation distance for each value of Δn. The in-
crease of refractive index variation makes diffraction suppres-
sion more pronounced [Fig. 5(a)]: the broadening of the
beam becomes almost completely suppressed for longer propa-
gation distances. These curves show a transition from ballistic
spreading (normal diffusion) to anomalous diffusion. In addi-
tion, a higher refractive index variation changes the anomalous
diffusion behavior. The averaged intensity distribution, for
hundreds of different incident positions, is presented for Δn �
2 × 10−4 in Fig. 5(b), and Δn � 4 × 10−4 in Fig. 5(c). These
should be compared with the corresponding distribution in
Fig. 4(c) for Δn � 1 × 10−4. The tendency to suppress diffrac-
tion is evident as for a higher refractive index variation; a larger
portion of the beam is confined between adjacent waveguides.

Typical averaged intensity distribution profiles in longitudinal
direction for propagation lengths of 2, 3, and 4 cm are presented

Fig. 3. Light propagation in Fibonacci waveguide arrays with inci-
dent positions of the beam between certain waveguides, marked with
numbers in Fig. 1(c): position 4 corresponds to the first row, 5 to the
second row, and 6 to the third row. Intensity distributions of the beam in
longitudinal direction during the propagation: (a), (e), and (i) observed
numerically. Corresponding intensity profiles at the exit face of the crys-
tal observed numerically (b), (f), and (j) and experimentally (c), (g), and
(k). Experimentally measured intensity distributions at the exit face of
the crystal (d), (h), and (l). Physical parameters are as in Fig. 2.

Fig. 4. Comparison between beam diffraction in periodic and
quasi-periodic waveguide arrays. (a) Averaged effective beam widths
versus the propagation distance, for refractive index variation
Δn � 1 × 10−4. (b) Field intensity of the beam in longitudinal direc-
tion (z) during the propagation for periodic lattice with
d � 12.38 μm. (c) Averaged field intensity distribution for
Fibonacci lattice. Crystal length is L � 10 cm.
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for three values of refractive index variation: Δn � 1 × 10−4,
Δn � 2 × 10−4, and Δn � 4 × 10−4 [Figs. 5(d)–5(f)]. Again,
one can see a transition toward stronger diffraction suppression
with a higher refractive index variation.

6. CONCLUSIONS

In summary, we have observed the beam expansion is slowed
down in optically induced Fibonacci waveguide arrays. We
have analyzed experimentally and numerically how various in-
cident positions influence propagation characteristics. The ex-
perimental results fully agree with the theoretical analysis.
Diffraction suppression is observed with Fibonacci waveguide
arrays, compared to the appropriate periodic waveguide arrays.
We have investigated the influence of refractive index variation
on the beam spreading in Fibonacci waveguide arrays. More
pronounced diffraction suppression is observed for higher re-
fractive index variations.

Funding. Ministry of Education, Science and
Technological Development, Republic of Serbia (OI 171036,
OI 171038, III 45016).
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Localization of Light in Mathieu Aperiodic Photonic Lattices
Jadranka M. Vasiljević 
Institute of Physics, University of Belgrade, Serbia

We demonstrate a kind of aperiodic photonic structure realized using the interference of multiple Mathieu 
beams. Depending on the beam configurations, their mutual distances, angles of rotation, or phase 

relations we are able to observe different classes of such aperiodic optically induced refractive index structures. 
Our experimental approach is based on the optical induction in a single parallel writing process. 

We study light propagation in a two-dimensional aperiodic photonic lattice realized using the interference 
of multiple Mathieu beams. We demonstrate experimentally and numerically that such a lattice effectively 
hinders linear light expansion and leads to light localization. Most promisingly, we show that such an aperiodic 
lattice supports the nonlinear confinement of light in the form of soliton-like propagation that is robust with 
respect to changes in a wide range of intensities. The additional level to control the diffraction of light is to 
add disorder in the aperiodic Mathieu lattice. We realized disordered Mathieu aperiodic lattices and investigate 
light propagation in them. We observed disorder-enhanced light transport and light localization in disordered 
aperiodic M.u lattices.
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Non-diffracting beams are highly relevant in optics and atom physics, particularly because their transverse 

intensity distributions propagate unchanged for hundreds of diffraction lengths. Thus, they feature applications in 

free-space wireless communications, optical interconnections, long-distance laser machining, and surgery. Four 

different fundamental families of propagation invariant light fields exist. They distinguish in the underlying real 

space coordinate system: Discrete, Bessel, Weber, and Mathieu non-diffracting beams. Latter ones obey the 

Helmholtz equation in elliptic cylindrical coordinates and are therefore best suited to address physical effects in 

elliptical coordinates. 

 

Mathieu beams are classified according to their symmetry properties as even and odd. Their transverse discrete 

intensity distributions in elliptical or hyperbolical geometries can be shaped by their order and an ellipticity 

parameter. These real-valued beams have only discrete spatial phase distributions. In contrast, so called elliptical 

and helical Mathieu beams are obtained as complex superpositions of appropriate even and odd Mathieu beams, 

thus showing outstanding continuously modulated spatial phase distributions that act as orbital angular momenta, 

associated with a transverse energy flow. 

 

In our contribution we investigate and control the nonlinear optical induction of photonic Mathieu lattices in 

photosensitive media. As flexible material we chose a photorefractive SBN crystal, showing a non-local, 

anisotropic nonlinearity.  

 

Focusing on elliptic Mathieu beams, during linear propagation their transverse energy redistribution along 

elliptic paths is compensated in each point, enabling for an invariant transverse intensity distribution. However, 

this energy flow withstands a direct observation. We demonstrate that their nonlinear self-action in SBN breaks 

this sensitive equilibrium. Consequently, a new type of rotating beam formation arises with high intensity 

filaments corresponding to the energy flow in an enforced preferential direction. This process is beneficially 

applied to realize chiral twisted photonic refractive index structures with a tunable ellipticity. 

 

Further, we present our studies on the nonlinear dynamics of discrete Mathieu beams in SBN, showing examples 

of appropriate fundamental even Mathieu beams in order to realize one- and two-dimensional transverse lattices. 

The nonlinear optical induction process leads to the formation of discrete refractive index lattices and a self-

interaction of the writing Mathieu beams with the realized photonic structure, capable of altering the writing 

beams’ propagation similar to the well-known linear discrete diffraction. Controlling the strength of the 

nonlinearity allows tailoring the degree of diffraction. Moreover, probing the lattice linearly with Gaussian 

beams and tunable incident angles reveals the signature of discrete and anomalous diffraction. This allows to 

control the strength of diffraction, such that under certain tilts, the probing beams may cross the lattice 

diffractionless.  

 

Our investigations both represent individual contributions towards the realization of advanced complex 

waveguiding in photorefractive crystals.  
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Waveguiding in Mathieu photonic lattices 
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Nondiffracting beams are highly applicable in optics, photonics and atom physics, peculiar 
because their transverse intensity distributions propagate unchanged for hundreds of diffraction 
lengths and allow creating 1D and 2D photonic lattices in photosensitive media [1]. Among the 
variety of different nondiffracting beams [2-5], Mathieu beams solve the Helmholtz equation in 
elliptic cylindrical coordinates [4, 6-7]. Mathieu beams are classified according to their symmetry 
properties as even and odd and their transverse discrete intensity distributions can be shaped by 
their order and an ellipticity parameter. These real-valued beams are characterized by only 
discrete spatial phase distributions. By complex superposition of appropriate even and odd 
Mathieu beams, elliptical Mathieu beams are obtained, showing remarkable continuously 
modulated spatial phase distributions that possess orbital angular momenta, associated with 
transverse energy flow. 
 
We exploit Mathieu beams as lattice-writing light to fabricate discrete waveguide structures and 
investigate their nonlinear self-action in these structures, leading to morphing discrete diffraction. 
We investigate Mathieu beams of different orders in a photorefractive SBN crystal, 
experimentally and numerically. We link linear discrete diffraction with nonlinear self-effects and 
demonstrate a gradual transition from one to two dimensions [8]. The self-action of a zero-order 
Mathieu beam in a nonlinear medium shows characteristics similar to discrete diffraction in one-
dimensional waveguide arrays. Mathieu beams of higher orders show discrete diffraction along 
curved paths, showing the fingerprint of respective two-dimensional photonic lattices. 
 
Linear propagation of elliptic Mathieu beams enables a nondiffracting transverse intensity 
distribution with transverse energy redistribution along elliptic paths compensated in each point. 
In contrast, their nonlinear self-action in SBN breaks this sensitive equilibrium. We demonstrated 
a new type of rotating beam formation arises with high-intensity filaments corresponding to the 
energy flow in an enforced preferential direction [9]. This process is beneficially applied to realize 
chiral twisted photonic refractive index structures with a tunable ellipticity. 
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Over the years, non-diffracting wave configurations have drawn considerable attention, particularly in the 

areas of optics, atom physics, biophysics, as well as optical tweezing [1], and nonlinear optics [2, 3]. The 

interest in such optical waves is due to the fact that, their transverse intensity distributions propagate 

unchanged for hundreds of diffraction lengths. The potential of non-diffracting structures is of significant 

importance for advances in discrete and nonlinear modern photonics [4, 5]. One prominent class of non-

diffracting waves is given by Mathieu beams, which appear as translationally invariant solution of the 

Helmholtz equation in elliptic cylindrical coordinates. 

Synthesizing two or more non-diffracting Mathieu-Gauss (MG) beams, we demonstrate a powerful new 

approach for the creation of two-dimensional (2D) aperiodic photonic lattices, in a single writing process in 

parallel. Depending on the beam configurations of coherently superimposed MG beams, their mutual 

distances, angles of rotation or phase relations we are able to realize transverse invariant propagating intensity 

distributions capable to optically induce corresponding refractive index lattices in photosensitive media. Our 

approach features the fabrication of versatile aperiodic lattices with controllable properties as well as quasi 

one-dimensional structures. Our results and methods enable further investigations of light propagating in such 

aperiodic photonic lattices, and could find applications in modern optical information processing. 
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We have also found a PBG fiber and a gas configuration whose characteristics permit the 
propagation of such stable solitons. Nevertheless, the linear gain, that is possible because 
the gas is only confined in the hollow core but not in the cladding holes, brings 
background instability. 
 
Here, we systematically address the configurations of gases confined in PBG fibers that 
are more suitable for stable dissipative solitons, studying the dependence of sign and 
magnitude of the equation parameters with the experimental conditions. Moreover, we 
will obtain a propagation equation in fourth order which introduces a delayed Raman 
scattering term. This new term creates a new branch of solutions that exist and are stable 
in a limited range of the parameter space for which there is linear loss, so that, the 
background is stable. 
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During the 1980s quasi-crystallographic structures in solid state physics fundamentally 
amazed the scientific community [1], and inspired a new field of research in optics and 
photonics. Owing to the analogy of photonic lattices to solid state systems, the first 
optical experiments were implemented analyzing aperiodic media [2]. Irregular photonic 
lattices are of great interest as these structures offer proper band gaps where propagation 
is forbidden while translation invariance and thus the general scheme of Bloch wave 
propagation within periodic arrangements are broken. Asking for aperiodic structures 
rapidly the nomenclature of Fibonacci grating came up for this often is referred to as the 
embodiment of irregularity [3,4]. Generally spoken, the research field of aperiodic lattices 
is a fertile topic [5] as these structures offer the possibility of light localization in 
deterministic disordered structures that are settled between periodic and disordered 
systems [6]. Light localization in quasi-periodic photonic lattices is observed in Aubry 
André model and also realized experimentally in AlGaAs substrate [7]. 
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We extend these concepts to quasi-periodic Fibonacci waveguide arrays, considering light 
propagation along waveguides. We fabricate the array of identical waveguides (identical 
refractive index profile) in Fe:LiNbO3 crystal. The distance between successive 
waveguides is modulated in Fibonacci manner. This means that the sequence of 
separations consists of two elements, A and B, lined in such a way to make Fibonacci 
word. We have analyzed experimentally and numerically how various incident beam 
positions influence propagation and localization characteristics and compare it with 
appropriate periodic waveguide arrays. In general, we find the beam expansion is slowed 
down in quasi-periodic Fibonacci waveguide arrays, and localization properties in such 
lattice are closer to a random than periodic lattice. However, with a modification of the 
refractive index variation, the localization effects are observed for shorter propagation 
distances by increasing refractive index variation.  
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We construct solitonic solutions for the system of two optical beams propagating in 
opposite directions [1, 2] in parity-time (PT) symmetric [3, 4] photonic lattices by using 
modified Petviashvili method [5]. Our system support PT symmetric fundamental 
solitons, as well as solitary vortices. We propagate them and investigate their basic 
characteristics. We report power transfer between counterpropagating beams and 
symmetry breaking (or split-up) transition. 
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Institut za fiziku, Univerzitet u Beogradu

• Prof. dr Milorad Kuraica, redovni profesor, Fizički fakultet,
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Abstract

The main topic of this thesis is the examination of the propagation and control of light in
Mathieu photonic lattices. The main directions of research are based on the formation of photonic
lattices using single Mathieu beams or superposition of multiple Mathieu beams in a photorefractive
crystal, then the propagation of light in photonic lattices thus formed, and the examination of the
nonlinear propagation of single or elliptic Mathieu beams in a nonlinear photorefractive crystal.

The thesis is divided into seven chapters, and the content of the individual chapters is given in
the following text.

The introductory chapter provides an overview of the results in the field of nonlinear photon-
ics related to one of realizations of photonic crystals, photonic lattices. An overview of the known
research and the achievements in the field of nonlinear optics and their contribution to other related
fields are represented as well as future direction for research.

In the next chapter the photonic lattices are described, as well as achievements related to the
investigation inside this thesis. The optical induction technique for the realization of photonic lattices
is explained specifically by using propagation invariant light fields, i.e. nondiffracting beams.

In the third chapter nondiffracting beams are introduced with emphasis on the large group of
Mathieu beams. Different families of Mathieu beams are shown: single even and odd Mathieu beams,
elliptic and hyperbolic Mathieu beams. These beams will be used in this thesis to generate different
photonic lattices in photorefractive media by optical induction.

The following chapter contains the description of the experimental method used for the research
presented in this thesis to generate photonic lattices using Mathieu beams in a photorefractive stron-
tium barium niobate crystal (SBN). Additionally, the light propagation in such generated Mathieu
photonic lattices is described. This chapter contains the experimental explanation of photorefrac-
tive effect and refractive index modulation in photorefractive crystals as the main effect for optical
induction of photonic lattices inside SBN crystal.

In the next chapter a numerical model for the examination of the propagation of the Math-
ieu light field, inside a photorefractive SBN crystal is described. Single Mathieu beams are used
for experimental realization of photonic Mathieu lattices as well as interference of Mathieu beams,
which produced numerous aperiodic lattices. A numerical model for the study of light propagation in
photonic lattices created by nondiffracting Mathieu beams is also described.

In the next chapter, the results of the experimental and theoretical investigation are presented.
This chapter is divided into three separate sections. In the first section, the nonlinear self-interaction
of a single Mathieu beams in SBN crystal is investigated, numerically and experimentally. New effect,
1D and 2D nonlinear discrete diffraction are demonstrated as well as nonlinear Mathieu lattices. The
nonlinear self-interaction of the elliptical Mathieu beams in the SBN crystal is examined and their
utilization for the realization of dynamical structures which rotates in direction predicted with energy
flow, i.e. Poynting vector. Such rotating dynamic structures are suited for the realization of chiral
waveguides with the possibility of controlling the chirality and number of the waveguides. The second
section of this chapter contains an examination of the propagation of an elliptical vortex beam in
photonic lattices created by single Mathieu beams in SBN crystal. The conditions for the formation of



stable vortex states such elliptical vortex necklaces, how the order or ellipticity of Mathieu beam, size
and topological charge of the elliptical vortex beam influence the stability of vortex states. The third
section an approach for the realization of two-dimensional aperiodic lattices using the interference of
several Mathieu beams is presented. Therefore, the propagation of a narrow probe beam is examined
in such a formed lattice. It is investigated how the local environment will affect the diffraction of the
probe beam in the lattice as well as the conditions for the formation of localized states in such lattices.
The propagation of light in aperiodic lattices is compared with propagation in appropriate periodic
lattices. The periodic square lattice with a period equal to the characteristic structured size of Mathieu
beam is used.

The last chapter summarizes the results of the research and their potential application in other
related fields. Due to the examination of nonlinear propagation of Mathieu beams in the photore-
fractive SBN crystal new effect, nonlinear discrete diffraction is revealed. Examination of elliptical
Mathieu beams significantly contributed to the realization of chiral two-dimensional photonic lattices
with adjustable properties via the optical induction technique facilitated by the elliptical Mathieu
beams. The conditions during which Mathieu beams remain robust in the crystal are shown, as well
as the various photonic lattices created by Mathieu beams, with waveguides located along straight and
curved paths (circle, ellipse or hyperbola), nonlinear Mathieu lattices, chiral lattices, as same as differ-
ent aperiodic lattices created via interference of Mathieu beams. In Mathieu lattices, the propagation
of elliptic vortex is examined and various stable states such as elliptical vortex necklaces are found,
as well as the conditions under which they remain stable. In aperiodic Mathieu lattices propagation of
narrow Gaussian beam is examined the same as parameters for realization of strong localized states
like spatial solitons or Anderson localization.

Key words: Mathieu beams, nonlinear fotorefractive crystal, aperiodic photonic lattices, non-
linear photonic lattices, chiral photonic lattice, nonlinear morphing discrete diffration, energy flow,
vortices, vortex neclases, solitons.

Scientific field: Physics

Research area: Nonlinear photonics



Rezime

Tema ove teze je ispitivanje prostiranja i kontrole svetlosti u Matjeovim rešetkama. Osnovni
pravci istrživanja usmereni su ka formranju fotonskih rešetki korišćenjem pojedinačnih Matjeovih
zraka ili superpozicije više Matjeovih zraka u fotorefraktivnom kristalu, zatim ka prostiranju svet-
losti u tako formiranim fotonskim rešetkama kao i ispitivanju nelinearnog prostiranja pojedinačnih ili
eliptičnih Matjeovih zraka u nelinearnom fotorefraktivnom kristalu.

Rad je podeljen u sedam poglavlja, a sadržaj pojedinačnih poglavlja dat je u daljem tekstu.

U uvodnom poglavlju dat je pregled dosadašnjih rezultata u oblasti nelinearne fotonike povezanih
sa fotonskim kristalima odnosno fotonskim rešetkama kao jedne od realizacija fotonskih kristala. Dat
je pregled istraživanja, i osvrt na dostignuća u oblasti nelinearne optike i njihov doprinos u drugim
srodnim oblastima kao i pravaci za buduća istraživanja.

U sledećem poglavlju opisane su fotonske rešetke kao i neke od važnijih dostignuća u toj oblasti
povezana sa istraživanjem u ovoj tezi. Objašnjena je tehnika optičke indukcije za formiranje fotonskih
rešetki korišćenjem zraka nepromenljivih tokom propagacije tj. nedifragujućih zraka.

U trećem poglavlju opisani su nedifragujući zraci, a posebno jedna obimna grupa Matjeovih
zraka. Prikazane su različite grupe Matjeovih zraka: pojedinačni parni i neparni Matjeovi zraci,
Eliptični i Hiperbolični Matjeovi zraci, koje će se u ovoj tezi koristiti za izradu različitih fotonskih
rešetki.

U sledećem poglavlju opisisana je experimentalna metoda korišćena u toku istraživanja, čiji
rezultati su prikazana u ovoj tezi, za formiranja fotonskih rešetki pomoću Matjeovih zraka u fotore-
fraktivnom kristalu stroncijum barijum niobatu (SBN). Takodje je opisana i metoda za ispitivanje
prostiranja svetlosti u tako formiranim Matjeovim rešetkama. Ovo poglavlje sadrži eksperimentalno
objašnjenje fotorefraktivnog efekta i modulacije indeksa prelamanja u fotorefraktivnom kristalu kao
glavnih efekata pri upisivanju fotonske rešetke.

U narednom poglavlju opisan je numerički model kojim se opisuje prostiranje Matjeovog svet-
losnog polja u fotorefraktivnom SBN kristalu, koji se koristi i za kreiranje Matjeovih rešetki. Mat-
jeove rešetke kreirane su korišćenjem pojedinačnih Matjoeovih zraka ili prethodne interfferencije
više Matjeovih zraka koji stvaraju brojne apreiodične rešetke. Potom je opisan numerički model
za izučavanje linearnog i nelinearnog prostiranja svetlosti u fotonskim rešetkama kreiranim pomoću
nedifragujućih Matjeovih zraka.

U narednom poglavlju prikazani su rezultati ekperimentalnog i teorijskog istraživanja. Ovo
poglavlje je podeljeno na tri zasebne celine. U prvoj celini ispitivana je nelinearna samo-interakcija
pojedinačnog Matjeovog zraka u SBN kristalu, numerički i eksperimentalno. Pokazan je novi efekat,
1D and 2D nelinearna diskretna difrakcija kao i nelinarne Mathjeove rešetke. Ispitana je nelinearna
samo-interakcija eliptičnih Matjeovih zraka u SBN kristalu kao i njihova upotreba za realizaciju di-
namičkig struktura koje rotiraju u tokom protiranja u pravcu protoka energije, koji je odredjen Pointin-
govim vektorom. Takve rotirajuće dinamičke strukture pogodne su za izradu iskrivljenih talasovoda sa
mogućnošću kontrolisanja zakrivljenosti i broja talasovoda. Druga celina ovog poglavlja sadrži ispiti-
vanje prostiranja eliptičnog vorteksnog zraka u fotonskim rešetkama kreiranih pomoću pojedinačnih
Mathijeovih zraka. Ispitivani su uslovi za formiranje stabilnih vorteksnih stanja kao što su vortek-
sne ogrlice, kako red ili eliptičnost Matjeovog zraka ili širana i toplološko naelktrisanje eliptičnog



vorteksa utiču na stabilnost vorteksnih stanja. U trećoj celini je prikazan pristup za generisanje novih
dvodimenzionalnih aperiodičnih rešetki pomocu interferencije više Matjeovih zraka. U tako fomi-
ranim rešetkama ispitivano je prostiranje uskog probnog zraka. Ispitivano je kako lokalno okruženje
utiče na difrakciju probnog zraka u rešetci kao i uslova za formiranje lokalizovanih stanja u takvim
rešetkama. Prostiranje svetlosti u aperiodičnim rešetkama poredjeno je sa prostiranjem svetlosti u
odgovarajućoj periodičnoj rešetki. Korišćena je periodična kvadratna rešetka sa periodom jednakim
karakterističnoj veličini Matjeovog zraka korišćenog za izradu aperiodične rešetke.

U poslednjem poglavlju sumirani su rezultati istraživanja i njihova potencijalna primena u
drugim srodnim oblastima. Prilikom ispitivanja nelinearnog prostiranja Matjeovih zraka u fotrefrak-
tivnom SBN kristalu otktiven je novi efekat, nelinearna diskretena difrakcija. Ispitivanje eliptičnih
Mtjeovih zraka omogućio je značajan doprinos za realizaciju hiralnih dvodimenzionalnih fotonskih
rešetki sa podesivim osobinama pomoću optički indukovane tehnike olakšane korišćenjem eliptičnih
Maijeovih zraka. Pokazani su uslovi tokom kojih Matjeovi zrak ostaje robustan u kristalu kao i ra-
zličite fotonske rešetke kreirane pomoću Matjeovih zraka sa talasovodima rasporedjenim duž prave
ili krive linije (krug, elipsa ili hiperbola), nelinearne Matjeove rešetke, hiralne Matjeove rešetke, kao
i brojne aperiodične rešetke kreirane interferencijom Matjeovih zraka. U Matjevim rešetkama ispiti-
vano je prostiranje eliptičnog vorteksa u kojima su pokazana stabilna vorteksna stanja kao sto su elip-
tične vorteksne ogrlice kao i uslovi pod kojima ostaju stabilne. U aperiodičnim Matjeovim rešetkama
ispitana je propagacija uskog Gausjanskog zraka i parametri za nastanak jako lokalizovanih stanja
kao što su prostorni solitoni ili Andersonove lokalizacije .

Ključne reči: Matjeovi zraci, nelinearni fotorefraktivni kristal, aperiodične
fotonske rešetke, nelinearne fotonske rešetke, zakrivljene fotonske rešetke, neinearna
diskretna difrakcija, protok energije, vorteksi, vorteksne ogrlice, solitoni.
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Uža naučna oblast: Nelinearna fotonika
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Chapter 1

Introduction

Research in the field of photonics involves the overlap of three basic scientific disciplines that
are leading in today’s technological development: electronics, optics, and material physics. The
results of such research are applicable in many fields, and during the years the scope and level of re-
search and investment in this area are explosively increasing. The physics of semiconductors had the
main role in information and communication technologies, but the advances are accomplished during
the past decade by using a new class of materials - photonic crystals [1]. They are optical materi-
als with a periodically modulated refractive index. According to the refractive index variations and
period in space, there are one-dimensional (1D), and Bragg reflectors, dielectric mirrors, thin films,
dielectric Fabry-Perot filters, etc.) are some of examples, two-dimensional (2D) e.g. commercially
used holey fibers, and three-dimensional (3D) (Yablonovite, wood-pile, or opal geometry structures,
etc.) photonic crystals. They have been used to control light propagation and emission. Because
of their periodic nature, photonic crystals form allowed and forbidden photonic bands, the same as
electronic bands in semiconductors. It is shown that light in photonic crystals propagates like an elec-
tron in semiconductors with periodic potential. Thus, photonic crystals can be considered analogs of
semiconductor materials. Besides, photonic crystals are noticed in nature in different forms. But their
artificial realization started from Lord Rayleigh, permit investigation of light propagation phenomena
promising useful applications in other fields.

Photonic lattices are one of the realizations of photonic crystals, they represent optical waveg-
uides with periodic changes in the refractive index of the medium, with low refractive index contrast.
The studies about the photonic lattices are modeled by the paraxial equation formally identical to
the Schrödinger equation, which describes crystal lattices of solid-state physics. In photonic lattices
propagation coordinate z is equivalent to the time coordinate in the Schrödinger equation. Periodical
refractive index change, provides photonic band gaps in photonic lattices. They are recognized as
electronic band gaps of crystal lattices of solid-state physics where the periodic potential of the atoms
leads to forbidden regions in the transmission spectrum. The photonic band gaps show forbidden
regions for electromagnetic wave propagate.

An important feature of photonic lattices is the ability to manipulate light propagation in the
direction of periodicity. In photonic lattices, phenomena analogous to phenomena from solid-state
physics such as Bloch oscillations, Zener tunneling, Anderson localization, etc. are found. To in-
crease the control opportunities of electromagnetic wave nonlinear optical materials e.g. nonlinear
photorefractive crystals are used. In such materials light-matter interaction is established, allowing
light to influence the optical properties of materials and thus the light itself. Due to the nonlinear-
ity and periodic change of the refractive index in the photonic lattices, a competition of linear and
nonlinear phenomena occurs and self-trapping lights, the appearance of spatial, or lattices solitons,
modulation instabilities, etc. are observed in photonic lattices.
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The optical induction technique allows the realization of different photonic lattices inside a
photosensitive material. Photonic lattices, characterized by refractive index modulation in a certain
direction opposite to translationally invariance through the direction of propagation are frequently re-
alized in different photorefractive crystals. Nondiffracting beams due to their propagation invariant
transverse intensity distributions have been utilized in the realization of photonic lattices by optical
induction technique. Their transverse spatial frequency components lie on a circle in the correspond-
ing Fourier plane, to demonstrate their nondiffracting character [2]. They are exact solutions of the
Helmholtz equation in different coordinate systems. Depending on the underlying real space coordi-
nate system, mostly, four families of nondiffracting beams are used for optical induction of photonic
lattices: in Cartesian coordinate system discrete nondiffracting beams (plane wave interference pat-
terns i.e. discrete beams ), in cylindrical coordinates Bessel beams, in elliptic cylindrical coordinate
system Mathieu beams, and in parabolic cylindrical coordinates system parabolic beams. Besides
nondiffracting character, they possess other peculiar characteristics like robustness and self-healing,
and they had been used in different fields such as atomic optics, optical tweezers, nonlinear optics,
etc.

Until now, different researches about photonic lattices as well as control and manipulation of
light in photonic lattices are done. In periodic photonic lattices, it is shown that control of light propa-
gation is determined by bandgap properties [3]. The discrete diffraction behavior of the evanescently
coupled waveguide arrays (1D periodic waveguide arrays) was examined first. In weakly guiding
waveguides the light was readily confined at discrete sites, or light would be exchanged through
waveguides via coupling during propagation. When only one waveguide is initially excited by light,
diffraction is different from that occurring in continuous systems, the most of the light energy is car-
ried out along two major lobes far from the center excited waveguide. This diffraction pattern today is
known as discrete diffraction [4]. Also, discrete diffraction is observed in two-dimensional photonic
lattices [5]. The optical solitons in waveguides arrays are explained as a balance between nonlinearity
of waveguides and discrete diffraction effects arising from linear coupling among adjacent waveg-
uides [6, 7]. Light is nonlinearly confined in a few waveguides and it can propagate diffractionless.
Optical discrete solitons in two-dimensional nonlinear waveguide lattices were observed in photore-
fractive crystals [5, 8].

Research in the field of photonics has been extended from the periodic lattices and the propaga-
tion of light in them to the study of disordered photonic structures [9, 10] and deterministic aperiodic
structures, which are at the transition between periodic and disordered structures [11]. Disorder in
photonic systems creates weak or strong localization of light, known as Andersen localization and
coherent backscattering [12, 13, 14]. Deterministic aperiodic structures, discovered 1984, are the
structures with fifth-order symmetry, which was considered nonexistent in crystals, and a long-range
order that was considered nonexistent in amorphous bodies [15]. When quasicrystals are found in
solid-state physics, many new research fields are open in optics and photonics [16, 17, 18]. Qua-
sicrystals are unique structures that can be viewed as extensions of the periodic crystal concept in
which translational symmetry is replaced by long-range order. Sharp diffraction patterns confirm the
existence of wave interference as a consequence of long-range order [19]. They do not have tran-
sitional symmetry, so it is not possible to define a unit cell. However, due to the long-range order,
phenomena characteristic for periodic structures, such as Brag diffraction, are observed in quasicrys-
tals. They can be formed by a substitution paving rule based on two or more building blocks. The
most famous example of these structures is the Penrose lattice, and over time various other schemes
have been developed to form new kinds of quasicrystals (Fibonacci, Thue-Morse, Rudin-Shapiro,
etc.).

2



Light control is crucial for many scientific fields from classical nonlinear optics to plasma
physics, Bose-Einstein condensate, solid-state physics, and recently in information technology. The
leading trend is the search for optical analogs for electronically integrated circuits that enable routing,
control, and processing of optical signals. Deterministic aperiodic photonic structures are appropri-
ate for the control and manipulation of light and future utilization in optical devices. Control and
manipulation of light in such specially designed structures is an active topic of research in optic and
photonics.

The realization of various aperiodic structures and their further investigation are some of the
main motivations for research in this thesis. The versatility of aperiodic structures is very important
and provides considerable flexibility and richness in modeling the optical response. Propagation of
light in such structures is still an exciting area for researchers and essential for the application of
future devices. Nondiffracting Mathieu beams are outstanding candidates for the creation of new
aperiodic photonic lattices. The interference of Mathieu beams in a different spatial disposition one
to another provides an approach realization of aperiodic patterns and their optical induction in pho-
tosensitive media to induce aperiodic lattice. Moreover, further examination of light propagation in
these aperiodic lattices in the linear and nonlinear regimes is one of the main topics in this thesis.

Straight waveguides were the first and simplest step for the examination of light propagation.
Further, waveguides with bending in the longitudinal direction, periodically oscillating waveguides,
or chiral waveguides have been realized and manipulation of light propagation was examined in some
of them [20, 21, 22]. Two-dimensional twisted lattices still are a challenge in experimental realiza-
tion and this is a very appealing area of research. They require compound experimental setup, longer
experimental realization time, or expensive equipment. The realization of chiral structures using the
optical induction technique and Mathieu beams is the motivation for research in this thesis. Ellipti-
cal Mathieu beams would be investigated in different nonlinear regimes to inspect if they can create
stable or dynamic structures. The realization of 2D twisted dynamic structures inside nonlinear pho-
torefractive crystal via elliptical Mathieu beams would be a substantial contribution to the simplify
realization of chiral lattices by optical induction.
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Chapter 2

Photonic lattices

Photonic crystals exist in nature, however, they can be realized artificial. Resulting in previous
research their properties are a great replacement for semiconductors. Researchers around the world
investigate the propagation of electromagnetic waves in photonic crystals as well as the potential
application of photonic crystals in technological development. Photonic crystal fibers. i.e holey fibers
and photonic lattices are some of the realizations of photonic crystals. Holey fibers are applied in
many areas like fiber-optic communications, fiber lasers, nonlinear devices, etc., therefore, already
present in our everyday life.

Photonic lattices are artificial structures with periodical refractive index modulation, with low
contrast of refractive index compared to photonic crystals. 1D photonic waveguides are periodic in
one transversal direction and invariant through the longitudinal direction, 2D photonic lattices are
characterized by periodical modulation in both transversal directions and invariant through the longi-
tudinal direction, while 3D photonic lattices have periodically modulation in whole three dimensions.
Propagation of light differs in photonic lattices then in homogeneous media, so they are powerful
tools to manipulate light propagation. Many new phenomena, like discrete diffraction, lattice and gap
solitons, harmonic generation, stimulated scattering etc. are allowed in them.

According to many examinations about photonic lattices, which possess Brillouin zones, al-
lowed and forbidden bands, and so on, it is observed analogous between light propagation in pho-
tonic lattices and motion of electrons in semiconductors [23]. Electromagnetic wave propagates in
photonic lattices the same as electron in crystal lattices of solid-state physics. Many experimental
studies of photonic lattices are done to prove and other phenomena predicted by quantum mechan-
ics like Bloch oscillations [24], Zener tunneling [25] and Anderson localization [13]. Investigation
of light propagation in photonic lattices is explained by the paraxial equation which is the analog
of the quantum-mechanical Schrödinger equation but time coordinate is replaced with propagation
coordinate z [26].

In the past, various periodic photonic structures have been exploited to control the propagation
properties of electromagnetic waves. 1D arrays of evanescently coupled optical waveguides are cre-
ated with an equal distance between waveguides, with all characteristics of a photonic crystal structure
(Brillouin zones, band structure, etc.) [27]. In such systems (Fig. 2.1 (A1)), light couples between
waveguides through tunneling, showing its diffraction characteristics. When low-intensity light is
injected into one or a few neighboring waveguides, it couples to more and more further waveguides,
broadening its spatial distribution. This is a new physical effect in comparison to diffraction in homo-
geneous media. In the linear regime, light diffracts from inner excited waveguide to outer waveguides.
This characteristic diffraction pattern is known as discrete diffraction and the same effect is observed
in both 1D and 2D periodic photonic lattices as shown in Fig. 2.1 [7, 27, 28].

4



Figure 2.1: Discrete diffraction in (A) 1D arrays of evanescently coupled optical waveguides [3] (B)
2D periodic photonic lattices [29].

Nonlinear optic, as an active research area includes fundamental studies of light-matter interac-
tions to numerous optical applications. The high-intensity light of the probe beam produces nonlinear
responses of light in photosensitive material. When high-intensity light excites into one or a few
neighboring waveguides light diffraction is confined with the nonlinearity of media and spatial and
lattice solitons were achieved in 1D and 2D periodic photonic lattices [3, 30, 31].

Propagation of light in periodic lattices results in many fascinating effects but using disorder
lattices and photonic quasi-crystals, which are in between periodic and disorder structures, the new
fields of research are opened. In the last decade’s examination of disorder photonic lattices acquire
the attention. Since the first experimental observation of Anderson localization, new investigations
about the Anderson localization in disorder systems were revealed like Anderson localization of light
near boundaries of disorder lattices or dimensionality switching and with the continuous transforma-
tion of the lattice structure from one-dimensional to two-dimensional were done [9, 32, 33, 34, 35].

Examination of light propagation in photonic quasi-crystals, and deterministic aperiodic struc-
tures like Penrose quasicrystals, Fibonacci arrays, Thue-Morse, Rudin-Shapiro sequences, Vogel lat-
tice etc. [16, 19, 36, 11], extensively increase. Localization of light is observed in some of them. The
quasi-crystals with the increasing disorder as well as light propagation in them were examined. In
such structures, light localization is observed, while enhancing wave transport was established. How-
ever, new approaches for the realization of different aperiodic lattices and light expansion in them
is still an open question in optics. Such researches would provide fundamental explanations of light
transport in aperiodic lattices.
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2.1 Photonic lattices and the optical induction technique

There are several methods used for the experimental realization of photonic lattices, like waveg-
uides detached in semiconductors [37], lithography, lattices optically induced in photosensitive me-
dia [8], laser-written arrays in silica [38] etc.

The optical induction technique is significant because allows an arbitrary structuring of pho-
torefractive materials and fast and simple erase of such structures with white light. By this technique,
it is possible to generate different photonic lattices: periodic, aperiodic, or disordered for fundamen-
tal investigations of wave propagation in such structures. The basic idea of the optical induction
technique is to modulate the refractive index of nonlinear material by external illumination (photore-
fractive effect). By spatial light modulator, the linearly polarized light wave (lattice beam) is spatially
modulated. Thus, refractive index modulation into the biased photosensitive crystal is induce and
photonic lattices is generated into the crystal. Such photonic lattices are suited for study of additional
probe beam propagation.

Some of the photorefractive materials, such as strontium barium niobate crystal SBN crystal,
show a strong polarization anisotropy, where the strength of the nonlinearity is dependent on a light
wave polarization (equivalently the corresponding electro-optic coefficient) [39]. Ordinary polarized
light wave in SBN propagates in an effectively linear regime, does not show any self-action, but
induces the required refractive index modulation i.e. photonic lattices. An extraordinary polarized
light wave, in general, used as a probe beam, feels different nonlinear response of such crystal in
the dependency of the beam power (nonlinearity strength). For low-intensity, probe beam feels low
nonlinearity strength, while if the intensity of the probe beam is sufficiently increased, it modifies
the refractive index and propagates nonlinearly through crystal. Photonic lattices, optically induced
in SBN crystal, are used for studying linear and nonlinear propagation effects in dependency on the
probe beam power.

In order to achieve desired 1D or 2D photonic structures using the optical induction technique,
the transversally periodic intensity distribution, invariant along the propagation directions are used.
Nondiffracting beams are convenient for the realization of photonic lattices by optical induction tech-
nique due to their transverse-invariant propagation. They can conveyance their intensity distribution
to the complete length of the photorefractive crystals. Nondiffracting beams are used for optically
induction of different periodic structures (strip, square, diamond, hexagonal, etc. patterns), a new
class of photonic structures like Bessel, Mathieu, or Weber lattices, quasi-periodic Penrose lattice, or
deterministic aperiodic structures like Vogel or Fibonacci lattices, etc. Also, three-dimensional peri-
odical lattices and helical structures are produced by using nondiffracting beams and reconfigurable
optical induction method [40, 41]. Mathieu beams are one of the nondiffracting beams with diversity
intensity distribution. So far such beams are only in few realization of photonic lattices. In this thesis,
Mathieu beams would be examined for optical induction of different photonic lattices.

6





Chapter 3

Nondiffracting beams

Nondiffracting beams are monochromatic optical fields with propagation-invariant transverse
intensity distributions. The term nondiffracting beam was introduced by Durnin in 1987 for the prop-
agation in vacuum [42]. They were examined as exact solutions of the homogeneous Helmholtz
equation in different coordinate systems [42, 43, 44]. Nondiffracting beams were obtained in the
system of the cylindrical coordinates under the limitation that their complex amplitude is separable
as the product of the functions which depend on the transverse coordinates and propagation coor-
dinate [42]. The transverse amplitude profile of such beams was mathematically described by the
Bessel functions and they are named Bessel beams. Later, different kinds of nondiffracting beams
were introduced [45, 46] and their properties and applications are examined.

Nondiffracting beams with finite energy are reviled bounded or by the homogeneously trans-
mitting aperture of finite dimensions or by the Gaussian aperture, known as pseudo-nondiffracting
beams. Numerically and experimentally investigations show that the nondiffracting and pseudo-
nondiffracting beams own the sharp δ-like angular spectrum, represented by a circle in the Fourier
plane, which proves their propagation-invariant character [47]. Propagation-invariant characteristics
of such beams make them useful in optical micromanipulation [48], nonlinear optics [8, 3], wireless
communication, etc.

Beside completely eliminated diffraction of the such beams, additional properties, helpful for
potential applications are detected. One highly valuable property is the robustness of the nondiffract-
ing beams [49, 50]. It was shown that the nondiffracting beam shows the resistance of the against
amplitude and phase distortions, also they are able to regenerate its intensity profile to the original
form in the free propagation behind the nontransparent obstacle [51], verified by the simple experi-
ment [47]. Nondiffracting beams also possess a self-reconstruction ability (The Talbot effect and self-
imaging) [52]. Efficient methods of generating nondiffracting beams require the use of the computer-
generated holograms [53], the axicon [54] or the programmable spatial light modulators [55].

Two-dimensional scalar time-independent Helmholtz equation:

52
tU(x, y) + k2

tU(x, y) = 0 (3.0.1)

is separable in 11 coordinate systems but admits separation into the transverse and longitudinal parts
only in four coordinate systems: Cartesian, circular cylindrical, elliptical cylindrical, and parabolic
cylindrical coordinates [2]. Each of these coordinate systems gives rise to a certain type of non-
diffracting beam such as discrete (plane wave and superposition of plane waves), Bessel, Mathieu,
and Parabolic beams, respectively.

Periodic intensity patterns are generated as a superposition of the plane waves. Plane waves
whose transverse Fourier components are located on the same ring determined by their wave vectors,
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create stationary intensity distribution along the propagation direction. One dimensional periodic
intensity distribution would be achieved if two plane waves have interfered, also two-dimensional
periodic (square, hexagonal, etc.) intensity can be created by the superposition of multiple plane
waves [40, 56, 8]. Moreover, quasiperiodic pattern e.g. Penrose lattice is generated withe superposi-
tion of five plane waves [19, 57, 58, 59].

By transforming and solving the Helmholtz EQ. (3.0.1) in circular cylindrical coordinates
Bessel beams are obtained and their transverse intensity distributions are characterized by concen-
tric rings [42]. Fig. 3.1 (A) depicts a zero-order Basel beam. In recent studies, Bessel beams were
applied to induces periodic lattices, and even 2D Fibonacci lattices [60].

Mathieu beams are solutions of the Helmholtz equation in the elliptical coordinates system [45].
Their transverse intensity distribution consists of discrete spots along elliptic or hyperbolic paths. The
numerically calculated transverse intensity distribution for the fourth-order Mathieu beam is shown
in Fig. 3.1 (B).

Parabolic beams are the fourth family of nondiffracting beams. They are the solution of the
Helmholtz equation in the parabolic cylindrical coordinate system [46]. In Fig. 3.1 (C) transverse
intensity distribution of the Parabolic beam withe continuous parameter a = 0 is depicted.

Figure 3.1: Intensity distributions of (A) Bessel, (B) Mathieu and (C) Parabolic nondiffracting beams.

3.1 Mathieu functions

Plenty of scientific and engineering problems lead to differential equations of the Mathieu type.
Solutions of these equations are known as Mathieu functions. First, they are analyzed by Mathieu
in 1868 [61]. Later these functions were further investigated in numerous investigations like the
motion of an electron in a one-dimensional potential [62], wave propagation in periodic structure [63],
analysis of vibrating modes in the elliptical membrane [64], or used for the formulation of invariant
optical fields [45].

Mathieu equations originate from the separation of Helmholtz equation in elliptical cylindrical
coordinates. By transformation rectangular coordinates (x, y) to elliptical cylindrical coordinates (ξ,
η) by coordinate transformation

x+ iy = f cosh (ξ + iη) (3.1.2)

(x = f cosh(ξ) cos(η), y = f sinh(ξ) sin(η)) with corresponding Laplacian transformation EQ. (3.0.1)
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is transformed to the two-dimensional Helmholtz equation in elliptic coordinates[
∂2
ξ + ∂2

η +
f 2k2

t

2
cos(2ξ)− cos(2η)

]
U(ξ, η) = 0. (3.1.3)

The solutions of EQ. (3.1.3) are separable as the product of the functions which depend on the
elliptical cylindrical coordinates (ξ, η) as U(ξ, η) = R(ξ)A(η). The functions R(ξ) and A(η) must
satisfy the equations [

d2
ξ + (a− 2q cosh(2ξ))

]
R(ξ) = 0, (3.1.4)

[
d2
η + (a− 2q cos(2η))

]
A(η) = 0. (3.1.5)

where q is a dimensionless parameter related to the transverse propagation constant kt as q =
f2k2t

4
,

where f is semi-focal distance and a is the separation constant arising from the separation of variables
method.

In physics and engineering literature EQs. (3.1.4) and (3.1.5) are known as the Radial Mathieu
Equation, and the Angular Mathieu Equation, respectively. Their solutions are the Radial Mathieu
Functions and the Angular Mathieu Functions. This nomenclature originates from the similarity
between elliptical (ξ, η) and polar coordinates: the elliptic variable η has a domain 0 ≤ η < 2π and
plays a similar role to a polar angle, whereas the variable ξ, with domain 0 ≤ ξ < ∞ behaves as a
radial variable (Fig. 3.2).

Figure 3.2: Elliptic coordinate system. Curves ξ = constant are confocal ellipses, curves η = constant
are orthogonal hyperbolas; 0 ≤ η < 2π, 0 ≤ ξ <∞. For limit f → 0 polar coordinates are review.

In this thesis, Mathieu functions are used to create an enormous family of Mathieu nondiffract-
ing beams.
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3.2 Mathieu nondiffracting beams

Among diverse families of nondiffracting beams, Mathieu beams may be interpreted as a gen-
eralized beam class, which interpolate between Cartesian and spherical coordinates [45, 46, 65, 66].
Their transverse spatial intensity distributions can form paths on ellipses or hyperbola. Mathieu func-
tions are used for mathematical observation of Mathieu beams.

Single Mathieu beams of order m are mathematically described by a product of Radial and
Angular Mathieu functions of order m, introduced in the previous section. SIngle Mathieu beams
have two parity: even (e) and odd (o) represented as [67]

M e
m(ξ, η) = Cm (q) Jem (ξ; q) cem (η; q) , (3.2.6)

M o
m(ξ, η) = Sm (q) Jom (ξ; q) sem (η; q) . (3.2.7)

where Cm(q) and Sm(q) are weighting constants, depend on parameter of ellipticity q =
f2k2t

4
related

with position f of the two foci and transverse wave number kt = 2π/a, where a is characteristic
beams size. Jem and Jom are even and odd Radial Mathieu functions of order m, and ellipticity q. cem

and sem are even and odd Angular Mathieu functions of order m, and ellipticity q.

Order of even Mathieu beams starts from zero, in contrast, odd Mathieu beams stars from order
one. In Figs. 3.3 and 3.4 there are shown even and odd Mathieu beams of different order m, with
the same parameter of ellipticity q = 25, and characteristic structure size a = 25µm. As the order of
Mathieu beams increases, intensity distributions become more complex, because they are separated
in compound sites arranged over different paths straight or curved lines.

Figure 3.3: Intensity and phase distribution of even Mathieu beams of different order m, with same
parameter of ellipticity q = 25, and characteristic structure size a = 25µm.
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Mathieu beams rely on the elliptic cylindrical coordinate system, which is reflected in their
transverse intensity and phase distributions. From phase distributions shown in Figs. 3.3 and 3.4,
separate regions of different phases values on the ellipses and hyperbolas with joint foci are noticeable,
therefore the elliptical character of Mathieu beams displayed.

Figure 3.4: Intensity and phase distribution of odd Mathieu beams of different order m, with same
parameter of ellipticity q, and same characteristic structure size a = 25µm.

Figure 3.5: Intensity and phase distribution of even Mathieu beam of orderm = 8, with characteristic
structure size a = 25µm and different parameter of ellipticity q.
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Parameter of ellipticity changes the shape of Mathieu beam. The shape of even Mathieu beam
of order m = 8 and structure size a = 25µm is examined according to increasing different values of
ellipticity q = [0, 25, 125, 325] as depicted in Fig. 3.5 while characteristic structure size a influence
on the size of Mathieu beams.

Next, the influence of beams size a is examined. Even Mathieu beam of order m = 4 and
ellipticity q = 25 for different structure sizes a = [6.25, 12.5, 25, 50]µm are depicted in Fig. 3.6.
While the characteristic size of Mathieu beams increases, the distance between the sites increases too.

Figure 3.6: Intensity and phase distribution of even Mathieu beam of order m = 4, with parameter of
ellipticity q = 25 and different characteristic structure size a.

A complex superposition of even and odd Mathieu beams of the same order m represents el-
liptic Mathieu (ElM) beams which intensity and phase distribution are shown in Fig. 3.7. For a
monochromatic, scalar elliptic Mathieu beam of order m, the light field is given by

ElM(ξ, η) = M e
m + iM o

m. (3.2.8)

The transversal intensity distributions of elliptic Mathieu beams are distinguished by a series concen-
tric ellipses, while the phase distributions are continuously modulated along ellipses.
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Figure 3.7: Intensity and phase distribution of elliptic Mathieu beams of different order m, with same
parameter of ellipticity q, and same characteristic structure size a=25µm.

A complex superposition of even Mathieu beams of order m and odd Mathieu beams of the
order (m + 1) represents hyperbolic Mathieu beams which intensity and phase distribution are shown
in Fig. 3.8.

HyM(ξ, η) = M e
m + iM o

m+1 (3.2.9)

The transversal intensity distributions of Hyperbolic Mathieu beams are distinguished by a series of
hyperbolas, while the phase distributions are continuously modulated along hyperbolas.

Figure 3.8: Intensity and phase distribution of Hyperbolic Mathieu beams of different order m, with
same parameter of ellipticity q, and same characteristic structure size a=25µm.
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Scalar even and odd Mathieu beams exhibit only real-valued field distributions, therefore their
transverse Poynting vector vanishes. In contrast, the elliptic Mathieu beams are complex spatial
modulated beams, owing to the occurrence as a complex superposition of even and odd Mathieu
beam of the same order, showing outstanding continuously modulated spatial phase distributions, i.e.,
orbital angular momentum [66, 68, 69]. Thus, for these beams a transverse energy flow is present,
described by their Poynting vector.
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Chapter 4

Experimental methods for photonic lattices
generation and light propagation in photonic
lattices

In this thesis, nondiffracting Mathieu beams are used as light fields for optical induction of
refractive index modulations in 15mm or 20mm long photorefractive SBN crystal. Moreover, linear
and nonlinear propagation of single Mathieu beams and elliptical Mathieu beams is investigated in
such crystal.

This chapter presents mechanisms of photorefractive effect and refractive index modulation in
photorefractive SBN crystal. Two experimental realizations are illustrated, one for experimental real-
ization of photonic Mathieu lattices by optical induction, and the other for experimental investigation
linear and nonlinear light propagation of the probe beam (plane wave, Gaussian or elliptical vortex)
in such photonic lattices optically induced in a nonlinear photorefractive SBN crystal.

4.1 Photorefractive effect

Photorefractive optics is a field of nonlinear optics important in scientific research as well as in
technological applications. This field of physics studies the phenomena associated with the propaga-
tion of laser beams in nonlinear photorefractive materials. Photorefractive materials have been known
for 40 years. Mostly, these are translucent and anisotropic ferroelectric crystals pure or with certain
impurities whose energy states are in between the valence and the conduction band. Impurities are
select to be acceptors or donors for the crystal. When the photorefractive crystal is illuminated with
the light of the appropriate wavelength some of the electrons or holes from donors or acceptors are
photoionized and they elevate from the valence to the conduction zone (Fig. 4.1). Free electrons and
holes are generated in illuminated areas. Diffusion or drift can affect the movement of charges in the
conduction zone.
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Figure 4.1: Illustration of photorefractive effect.

In diffusion, mechanism charges are recombined with empty donors or traps. Static space-
charge field Esc is build up by such recombination process, This space charge field creates the re-
fractive index modulation via the linear electro-optic effect (the Pockels effect). The strength of the
refractive index modulation depends on the illumination intensity and the intrinsic parameters of the
crystal.

The second mechanism for index modulation is the drift. Opposite to the diffusion, the drift
occurs only if an external electric field is applied to the crystal. Excited electrons and holes are
accelerated by the external field and move until the force created with the external field is compensated
by the internal field, which is created by the resulting inhomogeneous charge distribution. Electrons
are more drifted then holes. Drift distance of electrons depends on the external field. In general, a
combination of both effects exists with an external field, but in this thesis, drift effect is much stronger
than diffusion, hence the effects of diffusion mechanism would be neglected is some examinations.

The photorefractive effect has several distinctive properties: dependence of doped element, it is
the highly sensitive effect (observed at low light intensities), slow effect (depend on the light intensity,
doped element mobility, and external field intensity). In some photorefractive materials, the refractive
index modulation is highly persistent in the dark. Also, the refractive index modulation is erasable by
homogenous illumination like LED light or high temperature, without crystals damaged.

The photorefractive effect is found in several classes of electro-optic materials such as barium
titanate (BaTiO3), lithium niobate (LiNbO3), zinc telluride (ZnTe), potassium niobate (KNbO3),
strontium barium niobate (SBN), organic photorefractive materials, certain photopolymers, and some
multiple quantum well structures. Such crystals are used for frequency filtering in the field of mobile
communications, as electro-optic modulators, in nonlinear photonics, etc. In photorefractive crystals,
holograms [70] or photonic lattices [39, 8] are formed.
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4.1.1 The linear electro-optic effect

The photorefractive effect depends on the linear electro-optic effect i.e. Pockels effect as men-
tioned in the previous section. This effect describes the change of the refractive index of a material
induced by the presence of a static electric field Esc [71, 72, 73]. This is a second-order nonlinear
effect related to second-order nonlinear susceptibility. The refractive index change is described by the
impermeability tensor η̂ i.e. the inverse of the dielectric permittivity tensor ε̂ as

∆η̂i,j = ∆ ˆε−1 = ∆

(
1

n2
0

)
i,j

=
3∑

k=1

ri,j,kE
sc
k (4.1.1)

where, ri,j,k is the linear electro-optic tensor, Esc
k is the applied electric field and k, i, j = 1 , 2, 3 (or

x, y, z). The dielectric permittivity tensor ε̂ is a symmetric tensor of rank 2 (matrix 3 x 3)

ε̂ = ε0n
2
0 = ε0


(no0)2 0 0

0 (no0)2 0

0 0 (ne0)2

 , (4.1.2)

η̂n2
0 = 1 (4.1.3)

where no0, ne0 are unperturbed refractive indices of ordinary and extraordinary polarization, respec-
tively. The linear electro-optic tensor ri,j,k is third-rank tensor, which 27 components can be reduced
to 18 independent, because ε̂ and η̂ are symmetric so indices i and j may be interchanged ri,j,k = rj,i,k.
In this manner, new notation for linear electro-optic tensor is introduced

r1k = r11k, (4.1.4)

r2k = r22k, (4.1.5)

r3k = r33k, (4.1.6)

r4k = r23k = r32k, (4.1.7)

r5k = r13k = r31k, (4.1.8)

r6k = r12k = r21k. (4.1.9)

Some of these components are equal to zero or identical in many of the photorefractive crystals in
dependency on the crystal point group symmetry.

4.2 Properties of photorefractive SBN crystal

In optics different photonic lattices have been optically induced in photorefractive media and
use for further investigation of light propagation. In photorefractive SBN crystal, due to his proper-
ties, refractive index changes are controlled locally by an external electric field, thereby allowing the
realization of adaptive waveguides and complex photonic structures by light.

SBN crystal (SbxBa1−xNb2O6, 0.25 ≤x≤ 0.75) communally pure and doped with Ce, Cr, Co,
Fe is an excellent optical and photorefractive material frequently used in electro-optics, acousto-optics
or photorefractive nonlinear optics. Pure SBN crystals are used in optical information storage and in-
vestigations of relaxor phase transitions. Megumi et al. were the first who discovered a noticeable
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improvement of the photorefractive properties when doping SBN with cerium [70]. SBN crystal was
doped by adding different amounts of CeO2 to the melt. The nowadays growing technique (Modified
Stepanov technique [74]) provides outstanding optical quality crystals with a definite cross-section
and linear dimensions up to 100 mm. This unique crystal growing technique allows fabrication of
high-quality SBN crystal with particularly large electro-optic, thermo-optic, pyro-electric and piezo-
electric coefficients, and excellent optical quality. The possibility of inducing reversible refraction
index modulation by inhomogeneous illumination (photorefractive effect) is the most important char-
acteristic of SBN crystal. Such crystal possesses huge flexibility, provided since inscribed structures
can easily be erased with homogeneous white light illumination.

SBN is a birefringent, uniaxial and anisotropic material with crystallographic symmetry 4mm.
For SBN crystal dominant effect that leads to a refractive index modulation is linear electro-optic
effect, where refractive index modulation is related to the linear electro-optic coefficients. Due to the
point group symmetry of 4mm the only non-vanishing electro-optic coefficients for SBN are r13, r33,
and r42, where especially r13, r42 � r33:

ri,j,k =



0 0 r13

0 0 r13

0 0 r33

0 r42 0

r42 0 0

0 0 0


. (4.2.10)

Due to this new relation for the change of impermeability tensor EQ. (4.1.1) in SBN crystal is define
as

∆η̂ = ∆

(
1

n2
0

)
=


r13E

sc
z 0 r42E

sc
x

0 r13E
sc
z r42E

sc
y

r42E
sc
z r42E

sc
y r33E

sc
z

 . (4.2.11)

Biased on EQ. (4.2.11), the refractive index change is defined as ∆n2 = −n2(∆η̂)n2 or

∆n2 = −


(no0)4r13E

sc
z 0 (no0)2(ne0)2r42E

sc
x

0 (no0)4r13E
sc
z (no0)2(ne0)2r42E

sc
y

(no0)2(ne0)2r42E
sc
z (no0)2(ne0)2r42E

sc
y (no0)4r33E

sc
z

 . (4.2.12)

The refractive index can be separate on part without light n2
0 i.e. refractive index of SBN

crystal and part with refractive index change ∆n induces by light. Expression for ∆n is obtained by
the approximation n2 = n0

2 + ∆n2 = (n0 + ∆n)2 = n0
2 + 2n0

2∆n + O [∆n)2]. Since ∆n2 � n
quadratic term ∆n2, can be neglected and refractive index change is obtained

∆n ≈ −1

2


(no0)3r13E

sc
z 0 (no0)(ne0)2r42E

sc
x

0 (no0)3r13E
sc
z (no0)(ne0)2r42E

sc
y

(no0)2(ne0)r42E
sc
z (no0)2(ne0)r42E

sc
y (no0)3r33E

sc
z

 . (4.2.13)
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For SBN crystal, the optical c-axis coincides with the x-axis (Fig. (4.2)), same the direction the
electric field Esc = Esc ·ex. SBN crystal shows strong polarization anisotropy so the index change for
a light that is ordinary (normal to c-axis) polarized is much smaller than for extraordinary polarized
light. According to EQ. (4.2.13), the following expressions for the refractive index change induced
by of ordinary and extraordinary light are

∆no ≈ −1

2
no0

2r13Esc, (4.2.14)

∆ne ≈ −1

2
ne0

2r33Esc. (4.2.15)

Figure 4.2: Geometry of SBN crystal and axis orientation.

SBN (Sb0.6Ba0.4Nb2O6) crystal doped with 0.002 wt. % CeO2, with typical geometrical di-
mensions of 5 × 5 × 15mm3 or 5 × 5 × 20mm3 is used in this thesis for experimental realizations
as well as in numerical simulations. Such crystal is characterized with unperturbed refractive indices
no0 = 2.325 and ne0 = 2.358 and corresponding the electro-optic coefficients r13 = 47.1 pm/V and
r33 = 237.0 pm/V for ordinary and extraordinary polarization, respectively [75].
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4.3 Experimental realization of photonic lattices

Photonic lattices can be created by modulating the refractive index of the medium, which in-
cludes direct laser writing, optical lithography, or drilling techniques. A very practical method is
the optical induction technique in photorefractive material that produces permanent, reversible pho-
tonic structures represented by the intensity profile of a nondiffracting light field. It has an advantage
over other techniques because it is simply possible to write and erase structures without permanently
damaging the crystal. Photorefractive SBN crystal is a suitable material to optical induce photonic
lattice. The basic conception of the optical induction technique in SBN crystal is to modulate the re-
fractive index by external illumination (photorefractive effect). According to recalculated modulation
illumination, different refractive index modulations are acquired. This technique was used for gener-
ation of periodic lattices [8], aperiodic lattices [60, 76], random lattices [9] or dielectric structures by
artificially designed refractive index modulation, i.e. helical twisted photonic lattices [41].

Figure 4.3 presents the experimental setup for the optical induction of photonic lattices in SBN
crystal. As a light source is used the frequency-doubled Nd: YVO4 (neodymium-doped yttrium
orthovanadate) laser which gives continuously light with a wavelength λ = 532nm. The laser beam is
expanded and collimated to illuminate spatial light modulator (SLM) as a plane wave (Fig. 4.3). SLM
(Holoeye Pluto VIS) is a phase-only modulator that has full HD 1920×1080 px2 displays, with a pixel
size of 8× 8 µm 2 and dimensions of 11.25× 8.64 mm2, created from Liquid Crystal on Silicon. By
SLM the reflected light field is modulated in both amplitude and phase [77]. Different paraxial scalar
light fields are used for refractive index modulation by addressing a precalculated hologram to the
SLM containing the information of the complex light field encoded with an additional blazed grating.
The telescope L1 - L2 scales down the SLM size by a factor of 10 and by applying an appropriate
Fourier filter inside this telescope the tailored complex light field is realized [77, 78]. The SBN
crystal shown in Fig. 4.2 is installed in the experimental setup with its optical c-axis perpendicular to
the direction of propagation, declared to be the z-axis. The SBN crystal is placed in the beam path,
therefore the modulation is envisioned at the front face of the crystal.

Figure 4.3: Experimental setup for realization of photonic lattices in SBN crystal: SLM - spatial light
modulator, BS - beam splitter, L - lens, FF - Fourier filter, MO - macroscopic objective.

The crystal is externally biased with an electric dc field of Eext aligned along the optical c =
x-axis, perpendicular to the direction of propagation (z-axis) via electrodes as depicted in Fig. 4.2.
The ordinary polarized light linearly polarized in the y-direction, address the electro-optic coefficient
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r13 on SBN crystal. Such structure beams are used for experimental examination of linear propaga-
tion or optical induction of photonic lattices via Mathieu beams. The extraordinary polarized light
linearly polarized in the x-direction, addressing the electro-optic coefficient r33 of SBN crystal con-
trols the nonlinear response of SBN crystal. Due to this the extraordinary polarized beam is used for
experimental examination of nonlinear propagation of Mathieu beams in SBN crystal. Typically, the
strength of the electric field is Eext = 0.8 − 2 kV/cm. By this redistribution of charge is fast and
distinguished refractive index modulations in the order of ∆nmax = 10−4 are achieved.

Behind the SBN crystal, an imaging system with a microscope objective (MO) and the camera
is placed. The imaging system is mobile in the z-direction. The back face of the photorefractive
crystal is imaged by a microscope objective onto the camera. Because the refractive index of the
material is spatially modulated the light distribution inside the SBN crystal can not be imaged from
experimental realization. Numerical simulations are used to predict the experimental realization.
When experimental and numerical results have a good agreement, numerical simulations are used to
present light distributions inside the crystal.

4.4 Experimental realization of light propagation in photonic lat-
tices

For the investigation of light propagation in photonic lattices, the optical induction technique
has been extended in the photorefractive SBN crystal by using ordinary polarized writing beam for
lattice induction and extraordinary for probe beam [39], because SBN crystal feels different nonlin-
earity strength according to light polarization depending on the electro-optic coefficient rij . Ordinary
polarized light with appropriate electro-optic coefficient r13 propagates in almost linear regime, while
extraordinary polarized light with higher electro-optic coefficient r33 � r13 feels stronger nonlinear-
ity.
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Figure 4.4: Experimental setup for light propagation in optically induced photonic lattices in SBN
crystal: SLM - spatial light modulator, BS - beam splitter, L - lens, FF - Fourier filter, MO - macro-
scopic objective.

The experimental setup for the investigation of light propagation in photonic lattices is shown
in Fig. 4.4. The new setup is more complex then the previous one. The same laser source is used. The
continuous laser beam is splitted via beam splitter into two separate beams: the ordinary polarized
writing beam and the extraordinary polarized probing beam. The writing beam is used for optical
induction of refractive index modulations in a photorefractive SBN crystal in the same way as in the
previous section. Both beams are spatially tailored in intensity and phase by two phase-only SLMs.
For this purpose, pre-encoded holograms are addressed to the SLMs Holoeye Pluto and Heo and
their diffraction patterns are bandpass filtered in Fourier space (FF1 & FF2). Both SLMs have full
HD resolution displays, with a pixel size of 8 × 8µm2 and dimensions of 11.25 × 8.64mm2. By
telescopes (L1 - L2 and L3 - L4) the SLMs size is scaled down and both spatially tailored light beams
and superimposed with beam splitterBS3 to send modulated light to the front face of the SBN crystal.

SBN crystal is externally biased with an electric field aligned along the optical c = x-axis, per-
pendicular to the direction of propagation, the z-axis parallel to the long axis of the crystal presented
in Fig. (4.2). Probing the artificial photonic structure is done with the extraordinary polarized probe
beam that addresses the stronger electro-optic coefficient r33 responsible for the nonlinear response.
Strength of nonlinearity is determined by applied external field Eext and laser power P . Typically, the
strength of the electric field is Eext = 0.8− 2 kV/cm and distinguished refractive index modulations
is in the order of ∆nmax = 10−4.

An imaging system made of a microscope objective and camera detects transverse intensity
distributions at the back of the crystal. Intensity distributions of the probe beam or writing beam
could be recorded. While the intensity distribution of the probe beam at the back face of the crystal is
recording the writing beam and external field are turned off and vice versa.
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Chapter 5

Numerical tools for photonic lattices
generation and light propagation in photonic
lattices

In this chapter, the numerical model for the examination of Mathieu light beams propagation
and creation of Mathieu lattices in photorefractive SBN crystal is presented. Afterwards, the numer-
ical model for investigation of light propagation in such created photonic lattices by using Mathieu
beams is introduced.

Such numerical methods are used to simulate earlier presented experiments. But in experiments
exist some limits like the length of the crystal, inability to record the crystal volume, hence numeri-
cal simulations are a good opportunity to present requirements that are not feasible in experimental
realization.

5.1 Basic equation of light propagation in nonlinear photorefrec-
tive media

In the purpose of examination in this thesis, investigation of light propagation in nonlinear
photorefractive media starts from the Maxwell’s equations in regions containing no free charges or
currents, ρ = 0 and j = 0:

∂D
∂t

= ∇×H, (5.1.1)

∂B
∂t

= −∇× E, (5.1.2)

∇ · B = 0, (5.1.3)

∇ · D = 0. (5.1.4)

where D is the electric displacement, B is the magnetic induction, E is the electric field, and H is the
magnetic field. They are related by following equations:

D = ε0 · E + P, (5.1.5)

B = µ0 · H (5.1.6)
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where ε0, and µ0 denotes the permittivity and permeability of free space, and P the induced polariza-
tion of the material. By mathematical calculation the wave equation of electric filed is obtained

∇×∇× E +
1

c2

∂2E
∂t2

= − 1

ε0c2

∂2P
∂t2

(5.1.7)

where c=
1

√
µ0ε0

is the sped of light in vacuum.

For nonlinear photorefractive media, polarization of light is dependent on the electric field
as P = ε0χeffE, where χeff (I = |E|2) is effective intensity dependent susceptibility. According
to this the electric displacement and effective refractive index are define as D = ε0(1 + χeff )E,
n(I) =

√
1 + χeff . The wave equation (5.1.7) can be rewrite according to the relation∇×∇×E =

∇(∇E)−∇2E as

∇(∇E)−∇2E = −n
2(I)

c2

∂2E
∂t2

. (5.1.8)

Term ∇2E is small for most cases of interest and can be neglected, thus, the Helmholtz equation is
obtained

−∇2E +
n2(I)

c2

∂2E
∂t2

= 0. (5.1.9)

Propagation of light in photorefractive media induce refractive index change, according to that
refractive index n2(I) = n2

0 + ∆n2(I) is divided into two parts: the part without light n2
0 (refractive

index of the crystal) and part with refractive index change ∆n induces by light. Through this thesis,
the propagation of the light field is in the z-direction, examined with linearly polarized light, thus,
electric field is specified via

E(r, t) = U(r)e(kz ·z−ω·t)ex (5.1.10)

with longitudinal wavevector kz = n0k0, k0 =
ω

c
, and r = {x, y, z}.

In the standard paraxial approximation, the wave envelope slowly varying in the z-direction in
contrast with the fast oscillating part of the wave in the z-direction, |kz∂zU | � |∂2

zU |. A significance
of paraxial approximation is to permit that the double partial z derivative of the envelope can be
neglected |∂2

zU | ≈ 0. EQ. (5.1.10) is substituted in EQ. (5.1.9) with respect of paraxial approximation,
resulting in two-dimensional nonlinear paraxial Schrödinger equation (NPE)

i
∂U(r)

∂z
+

1

2kz
∇2
⊥U(r) +

kz
2n2

0

∆n2(I)U(r) = 0 (5.1.11)

with ∇2
⊥ =

(
∂

∂x2
+

∂

∂y2

)
. The EQ. (5.1.11) describes paraxial light wave propagation (k2

x + k2
x �

k2
z ) and includes nonlinear response of media. Light propagates in the z-direction, linearly polarized,

parallel to the optical c-axis of the crystal, with slowly varying wave envelope U(r) in the z-direction
on a scale much more longer then the wavelength λ = 2π/k.

By NPE (EQ. (5.1.11)) linear and nonlinear light propagation phenomena in photorefractive
media can be described. In photorefractive material, main effect for refractive index modulation
is the linear electro-optic effect in combination with charge transport mechanisms and requires an
external electric field. The presence of a dc field leads to the change in the dielectric permittivity,
thus light induced refractive index change ∆n in dependence of the electro-optic coefficient rijk and
the electric field E (EQ. (4.2.13)). The band transport model describes the dynamics of the charge
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carriers inside the crystal [79]. The electron movement in the conduction zone is affected by different

process: drift due to the electric field E and diffusion, with diffusion constant D =
kbT

e
where T is

the absolute temperature, kb Boltzmann constant, and e the elementary charge of electron. Therefore,
it is crucial to know how the space-charge field generated by the incident light looks like. When
an external electric field is applied in one transverse dimension the distinct anisotropic properties
of biased photorefractive crystals have to be used. Zozulya and Anderson first introduced such a
model [80]. For the anisotropic model, the general potential equation is defined as

∆φsc +∇ ln(1 + I)∇φsc = Eext
∂

∂x
ln(1 + I)−D

[
∆ ln(1 + I) + (∇ ln(1 + I))2] . (5.1.12)

In 2D case the potential equation has no analytical solution, therefore it has to be solved numerically.
Afterward, the resulting potential can be used to calculate the total electric field and the refractive
index modulation dependent on initial intensity distribution.

In some cases of this thesis, the diffusion effect is taken into account particularly when the
strong nonlinearities are applied along the direction of the optical c-axis. Due to the diffusion shift,
asymmetry in intensity distribution is noticed along the optical c-axis of the crystal. But in some
examination in this thesis diffusion effect is neglected D = 0. Therefore, the potential equation is
simplified

∆φsc +∇ ln(1 + I)∇φsc = Eext
∂

∂x
ln(1 + I), (5.1.13)

and the space-charge field is express in terms of its electrostatic potential Esc = ∂xφsc. Due to this,
the total electric field E(I) = Eext + Esc (I) that builds up inside the photorefractive crystal is the
sum of the external light field Eext and internal space charge field Esc which depends on the initial
light intensity I = |U |2. The potential equation carries all information about the photorefractive non-
linearity i.e. the dependency Esc(I). Photorefractive nonlinearity is saturable due to bounded space
charge field Esc with applied external field Eext. Also, it is nonlocal, refractive index change depends
in each point on the intensity distribution in the whole transverse plane. Self-focusing nonlinearity is
determined with Eext > 0, in contrast to defocusing nonlinearity where Eext < 0. Linear and nonlin-
ear light propagation effects in photorefractive SBN crystal throughout this thesis are explained by the
basic propagation model which includes joined propagation (EQ. (5.1.11)) and potential (EQ. (5.1.12)
or EQ. (5.1.13)) equations.

This model is used for examination of linear and nonlinear propagation of paraxial light beam
with initial intensity distribution defined by Mathieu beam (single or elliptic Mathieu beam) in nonlin-
ear photorefractive SBN crystal. The strength of nonlinearity is varied by the strength of the external
electric field Eext (typically Eext = 0.8 − 2 kV/cm) or intensity I of certain Mathieu beam. This
model allows simulation of experimental realization of Mathieu lattices in photorefractive SBN crys-
tal, biased by the external electric field Eext along the crystal’s optical c-axis (as shown in Fig. 4.2).
As a writing beam for lattice is used ordinary polarized Mathieu beam. According to this writing
beam propagates in linear regime inside the crystal, and due to refractive index modulation creating
1D or 2D Mathieu photonic lattices.

In some cases, the two-dimensional nonlinear paraxial Schrödinger equation can be solved
analytically, but according to the requirements in this thesis, comprehensive numerical model have to
be implemented to solve this equation and model the light propagation in nonlinear media. One of
the methods to numerically solve propagation (EQ. (5.1.11)) and potential (EQ. (5.1.12) or (5.1.13))
equations is a symmetrized split step propagation method [81]. First, the model equations are rewrite
in dimensionless form, introducing the dimensionless variables: X = x/x0, Y = y/x0, Z = z/kzx

2
0

and Φsc = φsc/x0Eext, (x0 is a transverse scaling factor)
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i
∂U

∂Z
+

1

2kz
[∇2
⊥ + V (I)]U = 0,

∆Φsc +∇ ln(1 + I)∇Φsc =
∂

∂x
ln(1 + I)

(5.1.14)

with ∇2
⊥ =

(
∂

∂X2
+

∂

∂Y 2

)
, where V (I) =

k2
zx

2
0

n2
0

∆n2(I) = −k2
z(n

e,o
0 )4rijEsc is potential opti-

cally induced in nonlinear phorefractive crystal (ne,o0 - ordinary or extraordinary refractive index with
corresponding linear electro-optic coefficient r13 or r33, respectively).

5.2 Propagation of light in photonic lattices

To propagation of light in optically induced photonic lattice into photorefractive SBN crystal is
examined by the nonlinear Schrödinger equation for an initial paraxial scalar light field U (r) with
longitudinal wavevector kz

i
∂U(r)

∂Z
+

1

2kz
[∇2
⊥ + V (I)]U(r) = 0. (5.2.15)

Nonlinear potential depends on the incident light intensity, defined by photorefractive nonlinearity

a V (I) =
k2
zx

2
0

n2
0

∆n2(I) = −k2
z(n

o,e
0 )4r13,33Esc, where no0 and ne0 are ordinary and extraordinary

refractive index with corresponding linear electro-optic coefficient r13 and r33, respectively. The laser

wavelength λ related with the wavenumber k =
2π

λ
=
√
k2
t + k2

z , kt is the transverse wavenumber.
The electric field build inside the SBN crystal E = Eext+Esc is dependent on the external light field
Eext and the internal space charge field Esc, which is a result of the incident intensity distribution
I(r) = |U(r)|2. The refractive index modulation ∆n2(I) according to the anisotropic approximation
is calculation via solving potential equation (Esc = ∂xφsc) where diffraction effect is neglected

∆φsc +∇ ln(1 + I + Ilatt)∇φsc = Eext
∂

∂x
ln(1 + I + Ilatt), (5.2.16)

and Ilatt denotes the lattice intensity distribution. Propagation (5.2.15) and potential (5.2.16) equa-
tions are related and for their numerically solution is used symmetrized split-step beam propagation
method [81]. Again, the model equations are rewrites in dimensionless form, introducing the dimen-
sionless variables: X = x/x0, Y = y/x0, Z = z/kzx

2
0 and Φsc = φsc/x0Eext, (x0 is a transverse

scaling factor)

i
∂U

∂Z
+

1

2kz
[∇2
⊥ + V (I)]U = 0,

∆Φsc +∇ ln(1 + I + Ilatt)∇Φsc =
∂

∂x
ln(1 + I + Ilatt)

(5.2.17)

This model is used for examination of linear and nonlinear effects of probe beam propaga-
tion (plane wave, elliptic optical vortex, or Gaussian beam) in different Mathieu photonic lattices.
One possibility is to use a single Mathieu beam to create photonic lattices. Furthermore, numerous
aperiodic lattices are formed via the interference of Mathieu beams.
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5.3 The symmetrized split-step beam propagation method and
calculation of Potential equation

In past, various numerical methods are revealed to calculate NPE. Due to the problem a con-
venient numerical method is chosen. The symmetrized split-step beam propagation method (Sym-
metrized SSBM) or the symmetrized split-step Fourier method is one technique for numerical solving
NPE and potential equations. Symmetrized SSBM has been revealed as a rather fast and reliable
method, appropriate for problems inside this thesis.

Primarily, NPE and potential equation are written in dimensionless form like EQ. (5.1.14) or
EQ. (5.2.17). The dimensionless NPE is separated in terms of dispersion and nonlinearity. To use
Symmetrized SSBM for solving NPE dispersion and nonlinearity terms are decoupled for a small
propagation distance, ∆Z. Operators D̂ and N̂ are written to correspond to the dispersion and nonlin-
earity terms, respectively. Operator form of NPE is

∂U(r⊥, Z)

∂Z
= i(D̂ + N̂)U(r⊥, Z) (5.3.18)

with dispersion D̂ =
1

kz
∇2
⊥ and nonlinear opeator N̂ = V (I).

Whole propagation length is divided into small spatial steps, with step size ∆Z. To avoid
errors proper choice of step size and optimal computational window in the transverse plane (X, Y)
are required. Propagation in one step, from Z to Z + ∆Z, is calculated in alternating steps in which
either diffraction effect or nonlinear effect are considered. A formal solution of equation EQ. (5.3.18)
for the propagation from Z to Z + ∆Z is given as

U(r⊥, Z + ∆Z) = e∆Z(D̂+N̂)U(r⊥, Z), (5.3.19)

where r⊥ = (X, Y ) yields transverse coordinates.

The numerical model is derived by applying the Baker-Hausdorff formula for noncommutative
operators D̂ and N̂ [82]. For Symmetrized SSBM, first is computed diffraction effect over the half

step size,
∆Z

2
, then is computed nonlinearity effect at the step midpoint for the whole step, and in the

end diffraction effect is computed over
∆Z

2
.

Diffraction is obtained by using a pseudospectral method, which includes the Fast Fourier
Transform (FFT) and the nonlinear effect is neglected. FFT of the envelope at the propagation dis-
tance Z facilitates computation of the differential operator by ∇2

⊥ = −(k2
x + k2

x). An inverse Fourier
transform then gives the diffracted field envelope at the propagation distance Z + ∆Z.

The nonlinear correction depends on incident intensity distribution. To implement nonlinear
correction over the whole step ∆Z first the potential equation is calculated in over propagation step
by an iterative procedure in order to potential dependence on initial intensity, afterwards propagation
of the light field is calculated for the whole step including potential.

To compute the propagation four Fourier Transforms are used in one step via Symmetrized
SSBM. The computation of one step of the propagation can be summarized as (schema represented
in Fig. 5.1 )

U(r⊥, j∆z) = F−1
[
exp(

∆z

2
D̂(iω))F

[
exp(

∫ z+∆z

z

N̂(z′)dz)

F−1
[
exp(

∆z

2
D̂(iω))F

[
U(r⊥, (j − 1)∆z)

]]]]
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Figure 5.1: Schematic for the computation of one step propagation via Symmetrized SSBM.

Nonlinear paraxial and potential equations are coupled in problems involved in this thesis. The
potential equation provides information about the photorefractive nonlinearity during propagation,
determined by initial intensity distribution,Esc(I). For numerical simulation of such equations model,
the iterative calculation procedure is applied. In every iteration step, the Symmetrized SSBM is
applied with determined refractive index modulation and light field distribution at the initial position.
Hence, this is an initial value problem, which makes it computationally efficient.
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Chapter 6

Results and discussion

6.1 Nonlinear self-action of Mathieu beams in SBN crystal and
Mathieu photonic lattices

In this section nonlinear self-action of single and elliptic Mathieu beams in photorefractive SBN
crystal is explored with increasing nonlinearity strength. They would be exploited as writing light for
fabricating discrete nonlinear photonic waveguide structures or dynamical chiral photonic structures
with a tunable chirality.

6.1.1 Switching discrete diffraction in nonlinear Mathieu lattices

Mathieu beams, as nondiffracting beams, have the propagation-invariant intensity distributions
in a vacuum. However, the question is does they remain nondiffracting in the nonlinear photosensitive
medium? Thus, linear and nonlinear propagation of single Mathieu beams would be investigated
experimentally and numerically in the photorefractive SBN crystal. The experimental setup for this
investigation is depicted in Fig. 4.3.

In the beginning, the free-space propagation of even Mathieu Beam of order zero, with elliptic-
ity q = 25 and characteristic structure size a = 25µm is examined. The transverse intensity distribution
is shown in Fig. 6.1 (A1) has the quasi 1D discrete intensity distribution, with corresponding phase
distribution Fig. 6.1 (A2). In free-space it propagates invariant over a 6.36mm, which corresponds to
15mm in the homogenous SBN crystal as shown in Fig. 6.1 (A3). The same conclusions are worthy
of higher-order Mathieu beams.
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Figure 6.1: Experimental properties of a zeroth-order even Mathieu beam. (A1) Transverse intensity
and (A2) phase distribution in 15mm long SBN crystal. (A3) Cross section through the volume at the
orientation indicate with dashed line in (A1).

Fig. 6.2 (A) shows that the zeroth-order Mathieu beam has one path which corresponds to 1D
discrete intensity distribution. Hence, the zeroth-order Mathieu beam is appropriate for the examina-
tion of nonlinear self-action in the 1D path. If the Mathieu beam order is incremented the number of
paths increases as shown in Figs. 6.2 (B), (C), (D), but now straight and curved paths are noticeable.
The transverse intensity distribution of higher-order Mathie beams consist of multiple paths, which
can serve as 2D photonic lattices. Thus, the dimensional crossover from 1D to 2D photonic lattices
is apparent from the zeroth-order Mathieu beam to fifteenth-order Mathieu beams. The higher order
Mathieu beams are appropriate for an examination of nonlinear self-action in curved 2D paths. One
interesting property of higher-order Mathieu beams is that while the order increase inner paths are
straight with equidistant intensity spots. By changing order or ellipticity, different distances between
spots are achievable. Due to this, higher-order Mathieu beams are convenient for facile realization od
periodic patterns, reducing realization time.

Figure 6.2: Dimensional crossover based on increasing beam order of the Mathieu beam. Transverse
intensity distributions of: (A) zeroth-order, (B) sixth-order, (C) eleventh-order and (D) fifteenth-order
Mathieu beams.

Mathieu beams are suited for the investigation of switching diffraction in self-induced waveg-
uides, experimentally and numerically. The lattice-fabricating zeroth-order Mathieu beam depicts
in Fig.6.1 shows nonlinear discrete diffraction as a result of self-action in dependence of the beam
power P that influences the strength of the nonlinearity, shown in Fig. 6.3. In the first column
(Figs. 6.3 (A1) - (A3)) are represented simulated yz cross-sections through the intensity volume,
in the second one (Figs. 6.3 (B1) - (B3)) the simulated transverse intensity distributions, while in the
third one (Figs. 6.3 (C1) - (C3)) the experimentally obtained transverse intensity distributions at the
back face of the SBN crystal.

For lowest power P = P0 = 10µW the waveguides are well fabricated as presented in the
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first row of Fig. 6.3. The noticed discrete diffraction of Mathieu beam is like as broad Gaussian
beam propagation in 1D periodic waveguide arrays [27]. For doubled beam powers P = 2P0 and
P = 4P0 spreading of the highest intensities are observed away from the center and towards the outer
parts along the y-axis as shown in Figs. 6.3 ((A2) - (C2)) and (A3) - (C3)). Considering that the
initial zeroth-order Mathieu beam has its maximum in the origin and the envelope of the 1D intensity
distribution is along the y-axis the refractive index modulation and thus the self-action of the writing
beam is strongest in the center. For high beam power of 4P0 thermal diffusive effects are increased
along the optical c axis, parallel to the x-axis, noticeable along the x-axis as the shift in intensity
in (B3) and (C3). According to this investigation, the new effect is founded, named 1D nonlinear
discrete diffraction or morphing discrete diffraction. This effect is a nonlinear pandan of linear
discrete diffraction in 1D waveguide arrays.

Figure 6.3: Nonlinear discrete diffraction of zeroth-order Mathieu beam in dependence of the strength
of the nonlinearity controlled by beam power P. First column presents simulated cross section through
the volume at the orientation indicate with dashed line in (B1) for increasing beam powers. Second
and third column presents simulated and experimentally observed intensity distributions at the back
face of SBN 15mm long crystal. P0 = 10µW.

Also, higher order Mathieu beams with ellipticity q = 325 and characteristic structure size a
= 25µm were investigated with increasing beam powers P. Figure 6.4 shows the result of nonlinear
self-action of sixth-order Mathieu beam. First row (A) shows simulated and second row (B) experi-
mentally observed transverse intensity distributions at the back face of the 15mm long SBN crystal in
the according to a successive doubling of the initial beam power P0 = 10µW. Intensity profiles along
each hyperbolic layer depicted in (B) are shown in treed row (C).

For the lowest power P = P0, the highest intensities, located in the center of an initial sixth-
order Mathieu beam, are redistributed towards the outer parts in the y-direction, which confirms by
the intensity profile along the green line Figs. 6.4 (B1) and (C1). Only central hyperbolic arms
of the Mathieu lattice feel the lowest nonlinearity, also visible on the intensity profile along fur-
ther hyperbolic layers. When nonlinearity strength is incremented by doubling the power P = 2P0
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and P = 4P0, even further hyperbolic arms of the Mathieu lattice are affected. Central intensities
spread outwards along 2D curves (Figs. 6.4 ((A2), (B2)) and ((A3), (B3))), confirmed and by in-
tensity profiles (Figs. 6.4 ((C2), (C2))). Thermal diffusion additionally introduces the shift in the
x-direction, intensities merging due to modulation instabilities influence the intensity redistribution
and both experimental and numerical results are asymmetric. Still the pure effect of 2D nonlinear
discrete diffraction along hyperbolic paths is in general recognizable. When the diffusive term in
potential equation is neglected, numerically simulated intensity distribution would be symmetric (not
shown).

Figure 6.4: Switching discrete diffraction on curved paths based on the self-action of sixth-order even
Mathieu beam: (A) simulated and (B) experimentally observed transverse intensity distributions at
the crystal’s back face. (C) Intensity profiles along the hyperbolic waveguide layers indicated in (B).
P0 = 10µW.

Figure 6.5 shows the result of nonlinear self-action of the eleventh-order Mathieu beam. The
first row shows simulated and second row experimentally observed transverse intensity distributions
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at the back face of the 15mm long SBN crystal in the dependency of a successive increase of the initial
beam power P0 = 20µW. For the lowest power, the only central arm of eleventh-order Mathieu beam
is slightly affected by nonlinearity and the highest intensity located in the center is diffracted to out
parts in the y-direction (Figs. 6.5 (A1), (A2)). But, with power increasing additional hyperbolic arms
are affected and central intensities are spreading outwards along 2D curves, depicted in Fig. 6.5 (B1),
(B2), (C1), (C2). For higher power thermal diffusion shift in x-direction appears, creating modulation
instabilities, merging of the intensities visible as asymmetric intensity distributions.

Figure 6.5: Switching discrete diffraction on curved paths based on the self-action of elevent-order
even Mathieu beam: first row simulated and second experimentally observed transverse intensity
distributions at the crystal’s back face. P0 = 20µW.

Once more, intensity distributions that reflect linear discrete diffraction are observed but in the
nonlinear regime and the outward-directed intensity transport in the nonlinear lattices follows mainly
along with each hyperbolic layer of the higher order Mathieu beam. In this examination switching
discrete diffraction along curved 2D paths is realized.

Figure 6.6: Narrow Gaussian probe beam in Mathieu lattice potentials from: (A) Fig. 6.3 (A1); (B)
Fig. 6.4 (A1) central waveguides; and (C) Fig. 6.4 (A1) purple waveguide layer.
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Linear propagation of narrow Gaussian beams in Mathieu lattices presented in the previous
paragraphs are numerically simulated and presented in Fig. 6.6. Discrete Mathieu lattices by them-
selves imprint the intensity distribution on probing light beam that is typical for discrete diffraction.
Figure 6.6 (A) images the intensity distribution of such a Gaussian probe beam inside the Mathieu
lattice shown in Fig. 6.3 (A1). The initial plane in Fig. 6.6 marks the lattice. The perpendicularly
launched probe beam flows from one waveguide to another, generating diffraction characteristics as
in 1D waveguide arrays. Next, the probe beam is launched in the central spot of the central arm of
the 2D lattice shown in Fig. 6.4 (A1). The intensity distribution of the probe beam inside the lattice is
depicted in Fig. 6.6 (B) showing that probe beam diffraction characteristics as discrete diffraction in
2D lattices. In the end, probe beam is launched in a central spot of an outer hyperbolic layer imaged in
Fig. 6.4 (A1). The intensity distribution of the probe beam inside the lattice is depicted in Fig. 6.6 (C),
demonstrating 1D discrete diffraction along the hyperbolic waveguide layer.

This subsection presents nonlinear self-action in Mathieu beams leading to switching discrete
diffraction. Mathieu beams of different orders are investigated in nonlinear photorefractive SBN crys-
tal, numerical and experimentally. First, linear discrete diffraction is connected with nonlinear self-
effects in the quasi one-dimensional lattice. Then the same effect is observed in the two-dimensional
lattice with a gradual transition from one to two dimensions. The term switching diffraction is used to
explain nonlinear behavior similar to discrete diffraction, phenomena characteristic for linear propa-
gation of light in periodic arrays or lattices.

6.1.2 The self-action of elliptical Mathieu beams in nonlinear media

The self-action of elliptical Mathieu beams in nonlinear 20mm long SBN crystal is investigated
experimentally and numerically as well as their orbital angular momentum. Single scalar even and
odd Mathieu beams exhibit only real-values field distribution and their transverse Poyinting vector
therefore vanishes. Elliptic Mathieu beams are the complex superposition of even and odd Math-
ieu beam mathematically described with EQ. (3.2.8). In contrast to single Mathieu, their intensity
distributions are distinguished by a series of concentric ellipses, while the phase distributions are
continuously modulated along that ellipses and they possess transverse energy flow [69].

Generally, the energy flow of light is determined by both, its spin angular momentum and its
orbital angular momentum (OAM), which is described by the Poynting vector [83]. For linear prop-
agation of continuously modulated nondiffracting beams in homogeneous media, the energy flow is
hidden because the transverse intensity distribution stays invariant and the energy flow is continuously
redistributed. Linearly polarized, the transverse light field has the transverse time-averaged Poynting
vector 〈S〉 determined by the spatial OAM distribution and given by [84]

〈S〉 =
iωε0

2
(Ely∗∇Ely − Ely∇Ely∗), (6.1.1)

where ω = ck is the angular-frequency that connects the speed of light c with the wave number
k = 2π/λ, defined by the wavelength λ. ε0 is the vacuum permittivity, and Ely denotes elliptic
Mathieu beam. Here is considered only the transverse (x, y) component of the Poynting vector.

34



Figure 6.7: The elliptic Mathieu beam characterized by the Poynting vector (indicated by arrows).
(A1), (A2) numerically calculated intensity and phase, and (B1), (B2) intensity and phase experi-
mentally observed of the elliptic Mathieu beam order m = 10, q = 25 and a = 25µm. (C) Numerical
simulation of the 3D intensity distribution of initial ellipse of the elliptic Mathieu beam inside 20mm
long SBN crystal.

Figure 6.7 depicts the intensity and phase distribution of an elliptic Mathieu beam of order m =
10 with an ellipticity q = 25 and characteristic structure size a = 25µm at the initial plane of the crystal
((A), (B)). Numerical and experimental transverse Poynting vectors are calculated with EQ. (6.1.1),
and corresponding Pointing vectors are indicated in Fig. 6.7 with overlying arrows. Also, Fig. 6.7 (C)
presents numerically simulated visualization intensity distribution of the such Mathieu beam through
the 2mm long crystal.

In numerical simulations, the electric field, ψ = Ely is calculated and by using relation ψ =
Ieiφ, intensity (I) and phase (φ) distributions are obtained as shown in the first row in Fig. 6.7 (A1),
(A2)). Such calculated electric field is used for numerical Poynting vector calculation of the ellip-
tic Mathieu beams according to EQ. (6.1.1). In contrast, in the experimental realization, only the
transverse intensity (I) and phase (φ) distributions are accessible (Fig. 6.7 (B1, B2)). Using rela-
tion ψ = Ieiφ the experimentally electric field is obtained and used for calculation od experimental
Poynting vector of the elliptic Mathieu beam toward to EQ. (6.1.1).

Linear propagation of elliptic Mathieu beams in homogeneous media has balanced intensity re-
distribution (Fig. 6.7 (C)). In the following, elliptic Mathieu beams are examined in nonlinear regimes.
The results are demonstrated for the elliptic Mathieu beam of order m = 10 (Fig. 6.7) but the same
conclusions would be demonstrated for different parameters of elliptic Mathieu beams. Nonlinear
propagation of elliptic Mathieu beams in SBN crystal is investigated with the experimental setup
shown in Fig. 4.3, and corresponding transverse intensity distributions from the back face of the SBN
crystal are imaged. Experimental results are compared with matching numerical simulations.
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Figure 6.8: Nonlinear self-action of elliptic Mathieu beam with increasing beam powers. The trans-
verse intensity distributions of elliptic Mathieu beams (a = 15µm) at the back face of the SBN crystal,
nonlinearly inscribed with increasing beam powers. (Top) numerical simulations (calculated Poynting
vector indicated by arrows) compared with the (bottom) experimental results. P0 ≈ 20µW

The investigation starts with the nonlinear self-action of the elliptic Mathieu beam with a struc-
ture size of a = 15µm in the SBN crystal. Refractive index modulation is optically induced with
elliptic Mathieu beam as a writing beam. Such induced refractive index depth estimates in the order
of 10−4, both experimentally and numerically. The initial beam power P0 ≈ 20µW is increased twice,
by doubling in two steps, both in numerical simulations and experiments. The results are shown in
Fig. 6.8, where the first row represents the transverse intensity distributions at the back face of the
SBN crystal from numerical simulations while the second row shows corresponding experimental re-
sults. For a demonstration of energy flow of elliptic Mathieu beam in SBN crystal, only the numerical
calculated Poynting vector is observed and they are indicated with arrows in Figs. 6.8.

At the front face of the crystal, the Poynting vector is along the initial ellipse (Fig. 6.7). For
low power P = P0 the Poynting vector stays directed along the initial ellipse even at the back face
of the crystal after nonlinear self-action as depicted in Fig. 6.8 (A1). Numerically and experimentally
observed intensity distributions at the back face shows a high agreement. It is shown that elliptic
Mathieu beam propagates almost linearly for low power and output intensity distribution is almost
unchanged, so the beam is still nondiffracting.

Nonlinear self-interaction is gradually increased by doubling the power of P = 2P0, due to that
the intensity distribution is changed and the breaking of the energy flow is demonstrated. Beforehand
smoothly ellipse is modulated in the form of occurring accumulations of intensity, and the writing
beam thus can not be considered as nondiffracting Mathieu beam. For the highest beam power of
4P0, the ellipse is broken in separated spots of high intensity. These high spots intensity rotate in
the direction indicated by the Poynting vector(Fig. 6.8 (A3)). The number of spots depends on the
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order m of the elliptic Mathieu beams, but the strength of nonlinearity or the propagation distance
also changes the number of high intensity spots.

The spots that emerged at the back face of crystal are a consequence of modulation instabilities
on an ellipse [85]. The anisotropic medium and the modulation of the intensity distribution, which
mostly occurs along the intrinsic ellipse, establish the refractive index modulation in the direction of
the optical c =x -axis. The energy flow, along the intrinsic ellipse, is directed perpendicular to the
optical axis where the refractive index modulation is weak, while the flow parallel to the c-axis is
hindered because the refractive index modulation is strong. The conglomerations of high-intensity
appear in particular at the trough of the high refractive index thus enough intensity is accumulated to
create solitary strands of increased refractive index. These solitary strands of the increased refractive
index form a twisted photonic structure inside the photorefractive crystal.

Experimental intensity distribution shows asymmetry due to the thermal diffusion effect along
the optical c-axis. But, the numerical intensity distributions are simulated with neglected diffusion
part in potential equation (EG. (5.1.12)).

Numerical simulations are used for illustration of how the main intensity, distributed on an
ellipse in the front face, propagate through the nonlinear 20mm long SBN crystal. In Fig. 6.9 (A)
is presented the 3D distribution of the main intensity inside the crystal for the photonic structure
depicted in Fig. 6.8 (A3). It is visible that after some propagation distance the main intensity is
separated into high intensity spots, which rotates in the direction determined by energy flow, thereby,
rotating refractive index strands are forming.

Figure 6.9: Numerical simulation of the 3D intensity volume inside 20mm long SBN crystal. Fabri-
cation of photonic structure (A) from Fig. 6.8 (A3) and (B) from Fig. 6.10 (A3).

The investigation is dedicated to how characteristic structure size a = 2π/kt of elliptic Mathieu
beam influence on intensity filamentations in the nonlinear medium. Figure 6.10 shows the influence
of increasing characteristic beam sizes a = [15, 20, 25] µm to the nonlinear propagation for constant
beam power of P0 ≈ 20µW, experimentally and numerically. Arrows again indicate the numerically
calculated Poynting vector. For a = 15µm (Fig.6.10 (A1)) conglomerations of intensity is not visible,
but for a = 20µm filamentation occurs as depict in Fig.6.10 (A2). This filamentation is similar to one
occur for a = 15µm with the higher power P in between 2P0 and 4P0 depicted in Figure 6.8.
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Figure 6.10: Nonlinear self-action with increasing structure sizes a. Numerically calculated (top)
and experimentally measured (bottom) transverse intensity distributions at the back face of the SBN
crystal after nonlinear self-interacting propagation of elliptic Mathieu beams (P ≈ 20 µW), for beams
with different structure sizes a. Arrows indicate the Poynting vector.

For structure size a = 25µm the self-action is strong and tends to become stronger for larger
structure sizes a. In contrast to previous cases, the intensity spreads to ellipses located more outside
due to increasing modulation instabilities and more spots with high intensity are observed. Conse-
quently, the Poynting vector directs outward for the outer high-intensity spots (Fig.6.10 (A3)). Ex-
perimental results are asymmetric due to the thermal diffusion effect, which is neglected in numerical
calculation.

For this structure size 3D distribution of the main intensity inside the crystal is presented in
Fig. 6.9 (B). After some propagation distance, the main and next intensities are separated into high
intensity spots, which rotates in the direction determined by energy flow generating rotating refractive
index strands. It is demonstrated that by increasing the structure size a of elliptic Mathieu beams, the
local slope of the helix of the emerging rotating strands of higher refractive index is decreased.

Figure 6.9 presents the numerical visualization of rotating high-intensity filaments, i.e. 2D
twisted waveguides through the crystal due to the nonlinear self-interaction of elliptic Mathieu beams.
An enhanced degree of branching could be observed in the dependency of beam size a of elliptic
Mathieu beam. By changing beam size a and power P it is possible to manage the number of rotating
strands and their slope. This illustrates optically induced chiral Mathieu photonic lattice where the
rotation of waveguides is directed by the direction of the energy flow of elliptic Mathieu beams,
with the opportunity to change the period of rotation as well as the radius of waveguides. Further
investigations could potentially show advanced light-matter interactions, e.g., when probing these
diverse chiral structures with chiral light.

This section represents an approach to identify and visualize the energy flow of light based
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on the symmetry breaking by nonlinear light-matter interaction of OAM carrying beams. Elliptic
Mathieu beams with outstanding continuously modulated OAM distributions are used for the purpose.
It is revealed that the nonlinear self-action of elliptic Mathieu beams managed the formation of high-
intensity filaments, which rotated in the direction determined by the energy flow. It is examined how
the strength of the nonlinearity and the structure size of the Mathieu beams influence the emerging
photonic structure. Twisted refractive index formations, which could act as chiral waveguides, are
observed in the limited regime with proper parameters of the nonlinearity and structure size. Hence,
by this approach, it is provided a new method for the realization of the chiral photonic lattices with
longitudinally increasing ”helix slopes”, and additionally tailored transverse ellipticities.

6.2 Elliptical vortex necklaces in Mathieu lattices

In this section, linear and nonlinear excitation of two-dimensional Mathieu photonic lattices
induces in photorefractive SBN crystal is investigated experimentally and numerically. Elliptical
vortex beam is used as probe beam. First, a single Mathieu beam is used to fabricate Mathieu lattices
and the propagation of elliptic vortices is examined in them. The main goal of this examination is to
provide the conditions for the existence of spatially localized vortex stats.

The optical vortex possesses a phase singularity and a rotational flow around the singular point
in a given direction can be applied in many physical systems [86]. Different single Mathieu beams are
used as writing light for the optical induction of Mathieu lattices with different shapes. Certain Math-
ieu lattices optically induced in nonlinear SBN crystal are an exemplary two-dimensional photonic
structure for the examination of the propagation of elliptical vortex beams.

The experimental setup for this investigation is depicted in Fig. 4.4. The experiment is realized
in photorefractive SBN crystal with a geometrical dimension 5x5x15mm3. Nd: YVO4 laser is used as
the light source. Crystal is externally biased with an electric field Eext = 1600 V/cm aligned along the
optical c = x-axis, perpendicular to the direction of propagation (z-axis). As for writing beam, even
Mathieu beams of order m = 8, characteristic beam size a = 90µm, and various ellipticity parameters
q is used, and the elliptic vortex is used as the probe beam, shown in Fig. 6.11.

Figure 6.11: Characteristic of Mathieu lattice and elliptic vortex. (A) Intensity distribution for Math-
ieu lattice of order m = 8, ellipticity q = 15 and structure size a = 90µm in the front face of the SBN
crystal. (B), (C) Intensity and phase distributions of elliptic vortex in the front face of the SBN crystal.
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This investigation starts by considering the Mathieu lattices optically induced with even Math-
ieu beam of order m = 8, with increasing ellipticity parameter q. The ellipticity parameter q is grad-
ually increased allowing change of the photonic structure shape from a circle to an ellipse. The
presence of the lattice during vortex propagation induces separation of confinement elliptic vortex in
filaments around the location of the incident vortex ring and the surrounding lattice sites.

Figure 6.12: Elliptical necklaces in Mathieu lattices with different elllipticity parameter q and topo-
logical charge CT = 1. The input vortex beam is shown with the layout of the lattice beams indicated
by open circles (the first column). The corresponding intensity distributions are shown at the exit
crystal face in numerical results (second column) and experiment (third column). Numerical lattice
intensity Ilatt = 0.3, and input vortex intensity I = 0.005; the experimental lattice power Platt = 20µW
and input vortex power P = 8 µW.

Figure 6.12 summarizes results for three different values for ellipticity parameter q of Mathieu
lattices. The input vortex beam with topological charge CT = 1 varies to cover the sites on the inner
lattice ring. The first two columns show results from numerical simulations while in the third one
experimentally observed results are presented. In the case with no ellipticity (q = 0), a stable necklace
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beam is observed for a quasi-linear case (very low nonlinearity) (Fig. 6.12 (A)). Next, the lattice
ellipticity is increased while other parameters are unchanged. Again elliptical necklaces are obtained
but necklace ”pearls” are slightly close to each other, determined by shape and distribution of the
lattice sites in that lattice area. These vortex states are stable during propagation inside the 15mm
long crystal.

When beam order (m > 8) is increased, elliptical necklaces with a larger number of pearls
are observed. These structures are stable along with propagation for the length of the crystal and
topological charge CT = 1. Figure 6.13 presents the intensity distributions of elliptical necklaces in
Mathieu lattices of order m = [9, 10, 11, 12] at the exit crystal face from numerical simulations. If the
broader vortex beam covers more rings of the Mathieu lattices multiple necklaces are observed but
they are not stable during propagation (Fig. 6.14).

Figure 6.13: Stable elliptical necklaces in Mathieu lattices of different order m with elllipticity pa-
rameter q = 0 and topological charge CT = 1: (A) m = 9, (B) m = 10, (C) m = 11, (D) m = 12.

Figure 6.14: Multiple elliptical necklaces in Mathieu lattices of order m = 8 with elllipticity parameter
q = 0 and topological charge CT = 1: (A) The input vortex beam is shown with the layout of the lattice
beams indicated by open circles. Numerically observed (B) phase and, (C) intensity distributions at
the back face of the crystal. Numerical lattice intensity Ilatt = 0.3, and input vortex intensity I =
0.005.

In further, higher-order vortex beams are investigated in Mathieu lattices with q = 15. As the
probe beam is used the same vortex beam but with different topological charge CT . The results
are depicted in Fig. 6.15. While CT increment, energy flow inside the inner lattice ring causes an
increase in asymmetry. But from the overall phase distribution, it is noticeable that the central area
still preserves the expected vortex state. The phase on the inner lattice ring still corresponds to the
input CT , but it is circularly shifted with respect to the central vortex area. Phase distributions along
the propagation are shifted along the inner lattice ring, as well as in the central part of the phase
distributions.
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Figure 6.15: Single- and multiple-charged elliptical necklaces. (A1) - (D1) Numerically observed
intensity and (A2) - (D2) phase distributions. (A3) - (D3) experimentally observed intensity distri-
butions at the back face of the crystal. The lattice ellipticity q = 15 and other parameters are as in
Fig. 6.15.

In contrast to the conventional multiple-charged vortex where the embedded phase singularity
is multiply folded, the elliptical necklaces show an unfolded behavior in the phase distribution. For
higher-order elliptical vortices, a spatial separation of several single-charged phase singularities is
observed [87]. Phase singularities separation has the finite distance and depends on the lattice ellip-
ticity, or the topological charge of input vortex CT . The Euclidean distance between the two furthest
singularities, as indicated in Fig. 6.15 (B2), are calculated for different lattice ellipticity and the re-
sults are presented in Fig. 6.16 (A). For higher ellipticities, q higher values of separations distance are
observed. When CT increase, phase singularity separation distances also increases for all ellipticities.
Phase singularity separation distances are also calculated during propagation, for higher CT = 2, 3, 4
and q = 15 (Fig. 6.16 (B)). As propagation distance increase higher values of separations are observed
for higher CT .
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Figure 6.16: Phase singularity separation. (A) Phase singularity separation versus CT for various lat-
tice ellipticity after 15mm propagation distance. (B) Phase singularity separation versus propagation
distance for various CT for q = 15 (Fig. 6.15). Separations are measured between the two singularities
for lattice ellipticity as a Euclidean distance.

The elliptical necklaces are obtained in the quasi-linear regime. Their stability is investigated
for propagation distances longer than crystal size via numerical simulations. It is established that
elliptical necklaces are stable for propagation length of few crystal sizes, but they transform to oscil-
lating dipole states after 10cm propagation length, as shown in Fig. 6.17 (A)-(C). Their central part
of phase distribution remains unchanged, in contrast along the inner lattice ring where initial phase
distribution is completely broken. Higher-order vortex states shown in Fig. 6.15 (B)-(D) are slightly
asymmetric and stable only for short propagation distance comparable with crystal size.

The standard definition for the (normalized) z component of the orbital angular momentum
(AM) gave as [88]

Lz = − i
2

∫ ∫
dxdyA∗(x, y)(x∂y − y∂x)A(x, y) + cc. (6.2.2)

is used to calculate the orbital AM of necklace beams A(x,y) during propagation. Figure 6.17 (D)
presents the mean orbital AM, Lz per transverse plane dependent on the propagation distance z of
the necklace states along the propagation distance for different ellipticity parameters q. For higher
lattice ellipticity, AM transfer is less in compression for lower ellipticities where the neighboring
lobes exchange more power during the propagation (depicted with a red plot in Fig. 6.17 (D)).

Figure 6.17: Dipole states in Mathieu lattices of various ellipticity (A) q = 0, (B) q = 10, and (C)
q = 15. Intensity and phase distributions are presented after 10cm propagation. (D) Normalized z
component of the angular momentum along the propagation distance. Other parameters are as in
Fig. 6.12.
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In the end vortex stability with increasing nonlinearity is investigated. Experimental and nu-
merical results are presented in Fig. 6.18 for vortex states with CT = 1 and lattice ellipticity q = 15 for
15mm long crystal. With lower powers, neighboring lobes exchange some power, the elliptical neck-
lace is damaged, and regular oscillations along the propagation are found [Fig. 6.18 (A)]. For higher
beam power, irregular oscillations are observed, even more noticeable for longer propagation dis-
tances [Fig. 6.18 (B)]. From phase distribution, it is visible that only the central part stays unchanged,
in contrast to the inner lattice ring.

Figure 6.18: Nonlinear vortex propagation in Mathieu lattices. (A1), (B1) intensity distributions,
(A2), (B2) corresponding phase distributions at the exit face of crystal obtained from numerical sim-
ulations, (A3), (B3) intensity distributions at the exit face of crystal experimentally obtained. Input
vortex intensities in numerical simulation are (A1) I=0.01 and (B1) I = 0.1, with appropriate input
vortex power in experiment (A3) P = 20µW and (B3) P = 30µW.

In this section, experimental and numerical investigation of the elliptical vortex inside the op-
tically induced Mathieu lattices in 15mm long SBN crystal is presented. Stable elliptic necklaces are
obtained, control of the shape and size of the elliptical necklace was analyzed, as well as the number
of pearls in them by changing order of the Mathieu lattices and their ellipticities. For higher-order vor-
tices, it has been noticed separation of phase singularity, which is calculated. It is demonstrated that
separation increase with increasing CT , ellipticity or propagation distance. The conditions for stable
elliptic necklaces were found and their orbital AM is measured. Oscillating dipole states or dynamic
instabilities were observed for longer propagation distances, higher beam power, and higher-order
vortices. These results enable further investigations of vortex beam control in photonic lattices opti-
cally induced by other than Mathieu beams and they have potential applications in the field of optical
micromanipulation to guide, trap, and sort objects.
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6.3 Creation of aperiodic photonic lattices and investigation of
light propagation in the aperiodic Mathieu lattice

In this section, would be considered an influential approach for the creation of the two-dimensional
(2D) aperiodic photonic lattices in a SBN crystal by using Mathieu nondiffracting beams as well as
the linear and nonlinear propagation of light in such formed lattices.

6.3.1 Creating aperiodic photonic structures by synthesized Mathieu-Gauss
beams

Even Mathieu beams have different intensity distributions as shown in Fig. 3.3, hence it is pos-
sible to create different 2D photonic lattices only by changing the order m, or ellipticity q of a single
Mathieu beam. Such photonic lattices are well-suited systems for control and manipulation of light
propagation. However, in this section 2D aperiodic photonic lattices are created by synthesizing two
or more even Mathieu beams. Even Mathieu beams with the same ellipticity q = 25 and characteristic
beams size a = 25µm are used. Additionally, the Mathieu beams are apodized with Gaussian beams
which yield to finite energy pseudo-nondiffracting beams, Mathieu - Gauss beams (MG) [89].

Three different ideas presented in this section for the creation of various complex aperiodic
Mathieu beams would be used for optically-induced photonic lattices. These results will open new
future research especially in the field of light propagation in such aperiodic photonic lattices and
potential application in the realization of optical devices.

The interference of two even MG beams of a different order m1 and m2 is investigated and
their transversal intensity distribution is reproduced from numerical simulations and experiment in
Fig.6.19. When MG beams with the same orders parity in phase configuration (m1, m2 - both even
or both odd) interfere the observed structures are symmetric according to y-axis. Two examples for
m1 = 0, m2 = 10 and m1 = 1, m2 = 7 are shown in Figs. 6.19 (A) and 6.19 (B), respectively. But,
if the interfering MG beams have different orders parity and in phase configuration (m1 = 2, m2 = 7
and m1 = 13, m2 = 14) asymmetric intensity distributions are realized and depicted in Figs. 6.19 (C)
and 6.19 (D), respectively.
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Figure 6.19: Interference of two MG beams of different order. Transverse intensity distribution ob-
tained by interfering MG beams with the same parity: (A) both even m1 = 0 and m2 = 10; (B) both
odd m1 = 1 and m2 = 7, or different parity: (C) m1 = 2 and m2 = 7 (D) m1 = 13 and m2 = 14.

Figure 6.20: Interference of two MG beams of different order and phase configurations. Transverse
intensity distribution of superimposing beams with the same parity: (A) m2 = 7, m1 = 2, π out of
phase; (B) m2 = 2, m1 = 7, π/2 out of phase; (C) m2 = 13, m1 = 14, π out of phase; (D) m2 = 13,
m1 = 14, π/2 out of phase.

In the previous cases, both interfering beams are in phase. In the case of the π out of phase
interference, mirror-symmetric structures are revealed (Fig. 6.20 (A), (C)). It is possible to observe
symmetric structures by interfering MG beams of different orders parties only if they have phase
differences of π/2 (Fig. 6.20 (B), (D)). The comparable structures could be produced by synthesizing
mirror-symmetric structures.
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In second approach two even MG beams with the same order m, but oriented at 90◦ with respect
to each other are superimposed, considering additionally the in-phase and π out of phase configura-
tions and results are depicted in Figs. 6.21 and 6.22, respectively. First, two MG beams of even order
parity m are superimposed and results for m = 2 and m = 8 are presented in Figs. 6.21 (A), (B)
and Figs. 6.22 (A), (B) for in-phase and π out of phase configurations, respectively. Afterward, MG
beams of odd order parity (m = 5 or m = 7) are used and results are depicted in Figs. 6.21 (C), (D)
for in-phase configurations and in Figs. 6.22 (C), (D) for π out of phase configurations.

Figure 6.21: Transverse interference patterns of two MG beams of the same order m, in-phase and
oriented at 90◦ with respect to each other: even parity (A) m = 2; (B) m = 8; and odd parity (C)
m = 5; (D) m = 7.

Figure 6.22: Transverse interference patterns of two MG beams of the same order m oriented at 90◦

with respect to each other in π out of phase configurations: even parity (A) m = 2; (B) m = 8; and
odd parity (C) m = 5; (D) m = 7.

All results are variable according to phase configurations. It is noticeable that for interference
of MG beams with even order parity distinguish structures are observed for two different phase con-
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figurations, while for MG beams with odd order parity the same intensity distributions are observed
but mirror-symmetric to each other. This mirror symmetry of superimposed MG beams with odd
orders m is related to the intrinsic symmetry of the related Mathieu functions.

The next approach for the realization of 2D complex aperiodic structures is established on the
superposition of MG beams at different mutual distances. The most opportunities for the realization
of different patterns are provided by this approach. Figure 6.23 shows the interference of two even
MG beams of the same order, m = 6 or m = 7 arrange along x-axis at various mutual distances D, 2D
and 3D, where D = 20µm.

Figure 6.23: Interference of MG beams with same order at different mutual distances along x-axis:
(A), (B) m = 6 and (C), (D) m = 7. First row: interference at mutual distance D = 20µm, second:
doubled distance 2D, and third: triple distance 3D.

In order to generate different complex aperiodic photonic structures via Mathieu beams, the
previous approach of synthesizing multiple MG beams at different mutual distances is used. By using
previous approaches, new field distributions are provided and they serve as a ”unit cell” for more
complex aperiodic beams. Such complex aperiodic beams could be used as writing light capable
of being transferred to tailored refractive index modulations in photosensitive media i.e. photonic
lattices. The unit cell would be multiplied in x or y direction which allows continuously increase the
degree of aperiodicity.
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In continuation new aperiodic photonic structures would be produced. First, pattern from
Fig. 6.19 (B) is used as unit cell and multiply twice in x-direction at the distance of Dx = 80µm.
The single array is observed and presented in Fig. ?? (A). Afterward, the resulting array is multiplied
along the y-direction at three different mutual distances Dy = 80µm, Dy = 88µm, and Dy = 96µm.
Various aperiodic lattice structures are observed as shown in Figs. ?? (B) - (D). Those examples ex-
hibit areas where the initial unit cell is preserving its shape, but additionally novel unit cells appear in
depends on the mutual distances between the multiplied arrays.

Figure 6.24: Realization of aperiodic photonic lattices by multiplying the structure (A)-(D) from
Fig. 6.19 (B) and (E)-(H) Fig. 6.22 (A) at various distances.

Next, the necklace structure from Fig. 6.22 (A) is investigated as unit cell. The unite cell is
multiplied in x-direction at different distances. One example is presented in Fig. 6.24 (E), for Dx =
144µm. Such observed structure is multiplied in y-direction to create a complex aperiodic structure
by changing the mutual distances between them: Dy = [120, 144, 152]µm (Figs. 6.24 (F) - (H)).
Initial unit cell and additional ones, which can be control by changing the distances between initial
unit cell used for multiplying, are observed.

Figure 6.25 presents novel 2D aperiodic photonic structures crated via Mathieu beams. The
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unit cell depicted in Fig. 6.23 (A2) is multiplied along x-axis at different mutual distances: Dx =
[152, 176, 192] µm and equivalent results are shown in Figs. 6.25 (A) - (C), respectively. By this,
the initial structure shape is preserved but with slightly different interfering patterns between them.
Then the structure from Fig. 6.25 (D) is multiplied along y-direction for Dy = 104µm, and a new 2D
complex structure is observed.

Figure 6.25: Various aperiodic photonic structures realized by multiplying (A) - (D) the structure
from Fig. 6.23 (A2) and (E) - (H) the structure from Figs. 6.23 (C2) at different mutual distances.

Figure 6.25 presents novel 2D aperiodic photonic structures, with the structure from Figs. 6.23 (C2)
as unit cell. Such structure is multiplied in x-axis for distance Dx = 176µm and result is shown in
Fig. 6.25 (E). Observed structure is multiplied along the y-direction at various mutual distances: Dy

= 72µm, Dy = 96µm, and Dy = 104µm, and additional shapes of 2D aperiodic photonic structures are
observe, as shown in Figs. 6.25 (F) - (H).
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Such formed complex aperiodic structures would be use as writing light to create 2D pho-
tonic lattices in photosensitive SBN crystal and examine light propagation in them (next subsection).
Therefore, their nondiffracting character have to be confirmed in SBN crystal. Two aperiodic struc-
tures, presented in Figs. 6.24 (H) and 6.25 (H), are investigated during linear propagation through
the 20mm long crystal. Figures 6.26 (A) and (D) depict xz cross-sections through the intensity vol-
ume at the orientation indicated with the white line in Figs. 6.26 (B) and (E), respectively. This xz
cross-section prove that the complex beams propagate invariant thought the SBN crystal. Experimen-
tal setup presented in Fig. 4.3 is used for optical induction of aperiodic photonic lattices by ordinary
polarized writing beams. The illumination time is 35s with a moderate laser power of P ≈ 30µW and
an external electric field of Eext = 2000 V/cm. Due weak nonlinear self-action, lattice writing beams
inscribe stationary photonic lattice in crystal. Numerically and experimentally intensity distribution
at the back face of the crystal are represented in Figs. 6.26 (B) and (E).

Figure 6.26: Waveguiding in aperiodic photonic structures. As writing beam is used structure from:
(A), (B): Fig. 6.24 (H); (D), (E): Fig. 6.25 (H). Intensity distribution of probe beam at the exit face of
the crystal (C), (F).

In addition, the optically induced 2D aperiodic lattice were probe with an extraordinarily po-
larized plane wave to demonstrate waveguiding using experimental setup shown in Fig. 4.4. Figures
6.26 (C) and (F) demonstrate waveguiding of the initial plane wave in the 2D aperiodic lattices, man-
ifested in a spatially modulated intensity distribution according to the underlying refractive index
modulation. As expected, the intensity is preferentially guided in areas where the refractive index is
increased and high intensity spots are formed.
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In this research, an approaches for realization of numerous new aperiodic patterns by coherently
superimposing Mathieu-Gauss beams with different orders, positions, and relative phases is presented.
The various 2D aperiodic photonic Mathieu lattices are created by the optical induction technique in
SBN crystal. This research is extend, with light propagation study in such aperiodic photonic lattices.

6.3.2 Light propagation in aperiodic photonic lattices created by synthesized
Mathieu-Gauss beams

In this section, the effects of light propagation in the aperiodic photonic lattices created by syn-
thesized MG beams in a SBN crystal are investigated experimentally and numerically. The influence
of various input beam positions on light diffraction is investigated in linear and nonlinear regimes.

Figure 4.4 shows the experimental setup to fabricate and probe MG beam based photonic
lattices. Photonic structure is probed with extraordinarily polarized Gaussian probe beams to feel
stronger nonlinearity effect. Figs. 6.27 (A) and (B) present an aperiodic lattice and the characteristic
lattice unit cell. The probe beam is launched into a single site inside aperiodic lattice unite cell and
experiences lateral transport within the lattice as it propagates along its axis. Thus, the probe beam
propagation resulting in a diffraction pattern in dependence of the local structure, which is in contrast
to a simple periodic lattice where probe beam expansion is the same for each initial site excitation.
In an aperiodic lattice different local environments exist, hence the transport behavior is expected to
vary significantly from site to site. Three excitation positions with different local environment are
chosen as depicted in Fig 6.27 (B).

Figure 6.27: Transverse intensity distribution of periodic and aperiodic lattices. (A) Aperiodic lat-
tice created via MG beams, (B) typical unit cell, where the yellow arrows indicate the probe beam
excitation sites. (C) Periodic square lattice with period d equal to the characteristic structure size
a = 2π/k⊥ of used MG beams, d = a = 25µm.
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First, the linear propagation of light is investigated in such lattice. The lattice is fabricated with
the external electric field of Eext = 2000 V/cm and laser power of P0 = 50µW , which corresponds to
a simulated lattice intensity of Ilatt = I0 = 0.7. After the lattice writing beam and the external electric
field Eext are switched off, the Gaussian probe beam with a FWHM of w0 = 8µm and low power of
a few I = 10µW illuminates one site into the lattice to display linear propagation.

Figure 6.28 presents the intensity distributions of the probe beam after propagating through the
lattice inside 20mm long SBN crystal for three distinguish excitation sites marked by numbers 1, 2,
and 3 in Fig. 6.27 (B). The first row in Fig. 6.28 shows transverse intensity distributions for those
three probing, obtained at the back face of the 20mm long SBN crystal. The propagation through the
lattice differs in dependency on which local lattice site is excited. Therefore, the discrete diffraction
profiles at the lattice output differ from each other.

Figure 6.28: Discrete diffraction and lattice solitons in an aperiodic photonic lattice. Numerically and
experimentally observed transverse intensity distributions at the crystal’s back face in linear regime
(the first row) and two nonlinear regimes: (the second row) numerical probe beam intensity of I =
I0 = 0.7 and appropriate experimental beam power of P0 = 50µW and (the third roe) numerical
probe beam intensity of 2I0 and experimental beam power of 2P0.

Further, numerous experiments and numerical calculations are performed to observe nonlinear
localization of the discrete diffraction pattern. Consequently, the intensity of the probe beam is incre-
mented to increase nonlinearity strength. The second row of Fig. 6.28 shows the transverse intensity
distribution of the probe beam when propagating through the commonly fabricated lattice with a beam
power of P0 = 50µW or I = I0 = 0.7. Next, the strength of the nonlinearity is increased by doubling
the beam power 2P0 in the experiment and simulation, and the results are presented in the third row
of Fig. 6.28.

For the input position 1 and sufficiently high beam powers a spatial soliton in the aperiodic
lattice are observed (Figs. 6.27 (C1), (C2)), while the other input positions 2 & 3 do not support this
localized state (Figs. 6.27 (E), (F), (H), (I) for the same beam power. Robustness of such spatial
soliton is examined numerically by changing the intensities of the probe beams while keeping all
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other parameters fixed, and it was found that such solitons remain unchanged an up to 3 times higher
beam power. The stability of spatial soliton is studied numerically in dependence of the propagation
distance and stable output intensity distribution is obtained up to 10cm (not shown).

For the investigation of localization properties of the aperiodic Mathieu lattice in general, in-
dependent of the concrete excitation site, the light propagation in the lattice is numerically simulated
for 100 different probe beam excitation positions and their expansion is averaged. The probe beam
is moved with equidistant spacing across the unit cell depicted in Fig. 6.27 (B). Figure 6.29 presents
results for the identical intensities as in Fig. 6.28. The gradual transition from suppressed discrete
diffraction to nonlinear localization is noticed. While nonlinearity increases, the output averaged
transverse intensity profiles in Fig. 6.29 (A), (B), (C) narrow. But, due to the diverse contributions
that are averaged (on- and off-lattice sites are included), their profiles shown in (D) do not show the
soliton shape as typically known from spatial bright solitons in the bulk.

Figure 6.29: Averaged intensity distributions at the lattice output, for 100 different probe beam ex-
citation sites, in (A) linear and (B), (C) nonlinear cases. (D1) and (D2) present averaged intensity
profiles, taken along the horizontal and vertical transverse direction (indicated with the white lines in
(A)), respectively. Parameters are as in Fig. 6.28.
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The effective beam width ωeff = PR(z)−1/2, is calculated to characterize the amount of beam
expansion, where

PR(z) =

∫
|A(x, y, z)|4dxdy

(
∫
|A(x, y, z)|2dxdy)2

(6.3.3)

is the inverse participation ratio [9]. For aperiodic lattices, it is useful to calculate effective width
over different incident beam positions and to present averaging effective width in order to remove
the effects of the local environment. The averaged effective beam width is calculated along with the
propagation distance. A statistical analysis of the effective beam width for the cases demonstrated in
Fig. 6.29 is performed. Figure 6.30 shows these results. Hence, it is noticeable that beam expansion
during propagation is more hindered while the input beam power increase.

The propagation of light in Mathieu aperiodic lattice is compared with the propagation of light
in periodic square lattice. The square lattice is created with period d equal to the characteristic struc-
ture size a = 2π/k⊥ of MG beams used to create the aperiodic lattice, d = a = 25µm (Fig. 6.27 (C))
(angular spectrum of aperiodic lattice and square lattice lie on same ring). It is demonstrated that light
is less localized in the periodic square lattice than in the aperiodic lattice crated by synthesizing MG
beams.

Figure 6.30: Comparison between beam spreading in linear and two nonlinear regimes inside the
aperiodic lattice and an appropriate periodic square lattice. Numerical simulation of averaged effec-
tive width (averaged over 100 excitation positions) along the propagation distance. ωin is the initial
effective width. Parameters are as in Fig. 6.28.
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6.3.3 Localization of light in disordered aperiodic Mathieu lattices

In this section there were introduced new kind of aperiodic lattices realized by synthesizing MG
beams, and demonstrated enhanced localization of light with increasing input beam power. In further
studies of light localization such aperiodic lattices realized by synthesizing MG beams are used for
realization of new lattices with both aperiodic lattice and disorder. Transverse localization of light in
solid-state physic is demonstrated in random media without nonlinearity, today known as Anderson
localization. Realizing that the Anderson localization is a wave phenomenon relying on interference,
these concepts were extended to optics and photonics. In past decades Anderson localization is stud-
ied in photonic lattices, both numerically and experimentally in one- and two-dimensional systems
with the disorder. After the first experimental transverse localization in the two-dimensional peri-
odic lattice with the disorder (a periodic structure superimposed with the disorder) [9] many studies
followed in a different one- and two-dimensional photonic lattices, periodic, quasicrystals, etc. A
narrow probe beam is launched in disorder photonic lattices and his linear propagation was examined
through the lattices with increasing disorder level. These studies are demonstrating the transition
from the diffraction of light to Anderson localization when the disorder level is increased. Aperi-
odic lattices, located between periodic and disorder lattices, are suitable for an investigation of light
localization and light transport properties in such lattices containing disorder.

For the investigation of light localization, a propagation invariant optical systems are required.
Aperiodic lattices realized by synthesizing MG beams are propagation invariant. One transverse in-
tensity distribution of such lattice is shown in Fig. (6.31) (A). The realization of propagation invariant
two-dimensional disordered pattern has to be provided. The spectra of propagation invariant beams
are located on circles in the transverse Fourier space. By choosing a constant amplitude but random
phases, as indicated in Fig. (6.31) (B), the random granular intensity distribution is realized in the
real-space transverse plane. Their mean grain size a is adjustable as it is connected to the radius of
the Fourier space circle k = 2π/a, here directly related with characteristic structure size a of MG
beam used for the realization of aperiodic lattices. Now, when propagation invariant aperiodic lattices
and disorder patterns are obtained, new two-dimensional photonic lattices with random fluctuation
can be realized according to relation Lattice = (1 - nu) AP + p D, where AP denotes aperiodic lattice,
nu disorder strength and DP is disorder pattern. Disorder strength is controllable same as maximum
lattice intensity. Intensity distribution of new lattice with 30% of disorder with maximum lattice
intensity Ilatt = 0.5 observed by this approach is represented in Fig. (6.31) (C).

Figure 6.31: The transition from aperiodic Mathieu lattice to disorder lattices.

First, linear light propagation properties are studied in such lattice depending on the disorder
strength. The Gaussian probe beam with a FWHM of w0 = 8µm is launched into a single site inside
lattice. As shown previously for the investigation of localization properties of the aperiodic Mathieu
lattice in general, independent of the concrete excitation site, the light propagation in the lattice is
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numerically simulated for numerous different probe beam excitation positions and their expansion
is averaged. Likewise, to obtain transverse localization of light in random lattices, averaging over
multiple different probe beam excitation positions or different spatial realization of the disorder has
to be performed.

Figure 6.32: Numerical simulated averaged intensity distributions at the lattice output, for 60 different
probe beam excitation sites and different disorder strength (A) - (F). (G) Averaged effective width
along the propagation distance for different disorder strength. Lattice maximum intensity Ilatt = 0.5.

Aperiodic lattice is between the periodic and disordered one, hence, it was necessary to perform
analysis for different incident beam positions in order to remove the effects of the local environment.
For such statistical analysis, the participation ration determined by equation (6.3.3) is used as a mea-
sure of localization, i.e. the effective beam width is calculated and averaged for 60 different probe
beam excitation positions of the probe beam. Figure (6.32) presents numerical simulated averaged
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intensity distributions for 60 different probe beam excitation positions of the probe beam after linear
propagating through the lattice with increasing percent of disorder in 20mm long SBN crystal. The
effective beam width is calculated to characterize the amount of beam diffraction, i.e. light transport.
Figure (6.32) (G) displays the averaged effective beam width of 60 different probe beam excitation
positions along with the propagation distance for different disorder strength. The averaged effective
beam width in the aperiodic lattice with any percent of disorder (Fig. (6.32) (B-F)) is greater than
in the averaged effective beam width without disorder (Fig. (6.32) (A)). This indicates that the light
diffracts more along the propagation distance if a disordered fluctuation exists, and this demonstrates
enhanced light transport caused by a disorder in the aperiodic lattice realized by synthesizing MG
beams. In contrast, the averaged effective beam width in the lattice with higher disorder strength
(>70%) is smaller than for lower percent of the disorder indicating that light is more localized for
higher disorder strength. According to the logarithm of the intensity profile, it is noticed that for
higher disorder strength Anderson localization of light is obtained.

Next, the averaged effective beam width over 60 different excitation positions of the probe
beam after 2cm propagation distance is calculated for different percents of disorder and for various
maximum lattice intensities, and results are shown in Fig. (6.33). It is obvious if the maximum
lattice intensity is weak, diffraction, and localization of light are less noticeable as disorder strength
increases. In contrast, for higher lattice intensities, diffraction and localization of light are more
pronounced while disorder increases.

Figure 6.33: Numerical simulated results of averaged effective beam width of probe beam versus
disorder strength after 2cm for different maximum lattice intensities.

This section presents new aperiodic lattices realized by MG beams, as well as experimental and
numerical investigation of linear and nonlinear propagation of the Gaussian probe beam in them. It
is observed that Mathieu beams, due to their different intensity distribution shapes create versatility
aperiodic structures. This research endorses the realization od aperiodic lattices with the versatility
in aperiodic which provides considerable flexibility and richness in light propagation modeling It is
observed that the excitation of the probe beam in dependency of the input beam position in aperiodic
Mathieu lattice creates different diffraction of light. By comparing light propagation in such lattice
and appropriate periodic lattice light it is demonstrated that in aperiodic latticed light is more local-
ized. Moreover, an approach for the realization of disoder Mathieu aperiodic lattices is introduced.
Mathieu aperiodic lattices in this section are used for examination of light localization. Localization
of light in them is obtained with increasing nonlinearity of probe beams or disorder strength of used
disordered Mathieu lattice.
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Chapter 7

Conclusion

Photonic lattices offer great potential for controlling and manipulating light propagation, there-
fore, they become an important research area of modern optics during the last decades. Many re-
searches from this field are applicable in the development of other areas, particularly in information
and communication technologies. Moreover, when the photonic lattices are inscribed in some nonlin-
ear material, a combination of photonic lattice properties and nonlinearity provides a unique opportu-
nity to achieve ultimate control over linear and nonlinear light propagation. Optical induction in the
photorefractive medium provides a successful experimental realization of photonic lattices. Due to the
fast and easy reconfiguration of refractive index modulations with optical induction technique easy
fabrication of different photonic lattices is provided. Through this thesis different optically induc-
tion photonic lattices are realized and fundamental studies of wave propagation in such deterministic
aperiodic photonic lattices are examined.

Nondiffracting Mathieu beams facilitate the realization of various photonic lattices in photore-
fractive crystal via optical induction, even using single or elliptical Mathieu beams, as well as the
superposition of multiple Mathieu beams. By this plentiful family of nondiffracting beams, photonic
lattices with the configurable shape are realized in this thesis. Single Mathieu beams with manage-
able ellipticity q, and characteristic structure size a provides realization of both 1D and 2D photonic
lattices. Photonic waveguides are realized along different paths like straight layer, circle, ellipse, or
even hyperbola only by using Mathieu beams. Also, higher-order Mathieu beams make progress in
the realization of the periodic lattice with a manageable period between waveguides.

The realization of discrete aperiodic lattices and propagation of light in them is an unfasten area
for research. Mathieu beams, due to diversity of intensity distribution, are great candidates for the
creation of various discrete aperiodic lattices. In these thesis, several approaches for the realization
of aperiodic lattices using the interference of Mathieu beams in different relations one to another are
involved. Thus, different aperiodic photonic lattices are presented light propagation is investigated.
Due to different environments in such lattices control of light propagation is possible in both linear
or nonlinear regimes. Conditions for light localization are examined. Strong light localization such
as robust spatial soliton formation with respect to intensity changes and propagation length is demon-
strated in the nonlinear regimes in such lattices. Aperiodic lattices created by synthesizing Mathieu
beams hinders the beam expansion during propagation compared to periodic lattices. These results
open new directions to exploit light propagating in a broad range of aperiodic photonic lattices and
may have applications in capacity-enhanced optical information processing.

The study of the nonlinear propagation of single Mathieu beams of different orders provides
nonlinearity strength range in which Mathieu beams preserve nondiffracting character during propa-
gation. Hence, in these range realization of nonlinear Mathieu lattices are feasible. In such nonlinear
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lattices, a narrow Gaussian beam propagates the same as in 1D or 2D periodic lattices creating well-
known discrete diffraction intensity distribution during the propagation. The potential of using Math-
ieu beams for the realization of such nonlinear lattices is due to the opportunity to arrange waveguides
in the straight array as same as in the hyperbolic array. Therefore, in such nonlinear waveguides 1D
discrete diffraction along the straight and hyperbolic waveguide layer is demonstrated.

Research of nonlinear propagation of elliptical Mathieu beams reveals that for very low nonlin-
earities elliptical Mathieu beams remain nondiffracting beams. Opposite, for higher nonlinearities, the
intensity distribution is modulated in the form of high-intensities filament, and the elliptical Mathieu
beams are no longer nondiffracting. It is demonstrated that during propagation, these high-intensity
modulations along inner ellipse are rotating in the direction determined by energy flow i.e. Poynting
vector. The filamentation is investigated in dependence of nonlinearity strength, stricter size, and
order of Mathieu beam. Due to this, it is demonstrated that the number of filaments and the velocity
of rotation filaments can be increased by increasing these parameters. By elliptical Mathieu beams,
dynamical rotation structures are achieved inside SBN crystal.

According to the previous study about elliptical Mathieu beams, 2D chiral waveguides with
manageable properties, as well as the possibilities to change the number of chiral waveguides or
their slope are demonstrated. It is established that the strength of nonlinearity, order, and charac-
teristic structure size of used Mathieu beams increase the number of chiral waveguides, while the
characteristic structure size strongly influences the slope of waveguides. This is an improvement for
the realization of 2D chiral photonic lattices with manageable properties. In past realization, chiral
lattices are experimentally realized demanding a long realization time because every waveguide is
separably inscribed into the crystal using complex experimental setups. By using elliptical Mathieu
beams, chiral lattices can be fast and easily realized in photosensitive media by optical induction
techniques. Such lattices open new fields for research of light propagation.

Due to investigation in this thesis new phenomena, nonlinear discrete diffraction, or morphing
discrete diffraction are demonstrated by using Mathieu beams in nonlinear SBN crystal. 1D non-
linear discrete diffraction is specified by nonlinear propagation of zero-order Mathieu beam inside
photorefractive media. When the order of the Mathieu beam increases also the number of spots over
straight or hyperbolic layers increases, allowing dimensional cross over from one- to two-dimensional
structures. Several higher-order Mathieu beams were investigated during nonlinear propagation in
photorefractive media, and consequently, 2D nonlinear discrete diffraction is demonstrated.

Control of light propagation in Mathieu lattices is examined, such as the propagation of el-
liptical vortex in appropriate Mathieu lattices. It is demonstrated that elliptical vortex propagated in
Mathieu lattices creating the stable elliptical vortex necklaces during propagation, oscillating dipoles,
dynamic instabilities. The stability of vortex necklaces is examined for different Mathieu beam orders
and ellipticities, different sizes, and topological charge of the elliptical vortex, over long propagation
distances, and strength of nonlinearity. It is revealed that higher beam order provides more pearls in
elliptical vortex necklaces, as well as the size of the elliptical vortex, while the ellipticity changes
the distance between the pearls, while higher orders topological charges harm the stability of ellipti-
cal vortex necklaces. Higher orders topological charges visible influence on the phase distributions,
creating phase separation which increases while the ellipticity, topological charge, and propagation
distance increase. For longer propagation distances elliptical necklaces are stable for propagation
length of few crystal sizes, but for further propagation distances, the oscillating dipole states are real-
ized. According to nonlinearity strength, elliptical necklaces are stable only for low nonlinearities. In
contrast, for higher nonlinearities, elliptical necklaces are damaged. This research supports the future
examination of the elliptical vortex in different suitable lattices realized with optical induction tech-
nique. Such research leads to the potential application of elliptical vortex beams in optical tweezers,
quantum information processing, or optical manipulation and trapping.
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In this thesis different photonic lattices are featured, accomplished with Mathieu nondiffracting
beams as well as manipulation of light transport in different Mathieu lattices. In particular, different
Mathieu aperiodic lattices created in this thesis can be extended to studies of other deterministic aperi-
odic photonic lattices optically induced by other than Mathieu beams. Further examination of various
aperiodic lattices would contribute to a fundamental understanding of light transport characteristics
in these artificially designed structures. Such examination opens and new applications of aperiodic
lattices to control of light or future devices realizations.
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[34] D. M. Jović, M. R. Belić, and C. Denz, Phys. Rev. A 84, 043811 (2011).

[35] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silber-
berg, Phys. Rev. Lett. 100, 013906 (2008).
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