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Гимназију. Након тога је уписала основне академске студије на Физичком факултету,
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електрона у Хабардовом моделу на троугаоној решетки“, је урађен под менторством др.
Дарка Танасковића у оквиру Лабораторије за примену рачунара у науци Института за
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склопу израде мастер рада, при чему је била и стипендиста CEEPUS програма. Наредне
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Преглед научне активности Ане Вранић

За време докторских студија, под руководством др Марије Митровић Данкулов, Ана
Вранић се бави физиком комплексних система и изучавањем колективних феномена у
многочестичним системима. Методи статистичке физике, као и методи комплексних мрежа
се успешно могу применити на социо-економске системе што је довело до развоја области
социо-физике. Током свог доктората Ана Вранић анализира структуру и раст социјалних
мрежа у различитим онлајн и офлајн заједницама.

У стандардним моделима који описују еволуцију комплексних мрежа, подразумева се да
мрежа расте линеарно. Међутим раст реалних заједница није константан у времену, па се
као једно од важних питања намеће како неконстантан број нових чланова који се
придружују систему може да измени структуру комплексне мреже. Број нових чланова се
може представити сигналом. У објављеном раду, модел раста комплексних мрежа, који као
параметре узима степен и старост чвора, је прилагођен како би се аналазирали различити
типови раста социјалних система. За разлику од Поасоновог сигнала у коме налазимо
краткодометне корелацијe, код сигнала раста реалних заједница се срећу дугодометне
кореалиције, мултифракталност, али и трендови који су типични за активност људи. У
раду је показано да постоји критичан регион параметара модела где се јављају значајне
разлике у повезаности међу чворовима, између мрежа насталих под утицајем побуде и
константног сиганалa, а тoм региону управо налазимо scale-free мреже. Мреже које су
расле под утицајем побуде су кластерисане и корелисане за разлику од мрежа раслих
константним сигналом. Такође на структуру мреже већи утицај имају сигнали са
дугодометним корелацијама и мултифракталним особинама. Добијени резултати указују
на то да у моделима раста комплексних мрежа сигнал раста представља важан параметар
који би требало укључити при анализи комплексних мрежа.

Током мастер студија, под менторством др Дарка Танасковића, Ана Вранић се бавила
изучавањем јако корелисаних система. Динамичка теорија средњег поља (Dynamical
Mean-Field Theory - DMFT) је метод помоћу кога се могу описати јако-корелисани
системи, заснива се на решавању модела нечистоће а нелокалне електронске корелације се
занемарују. Међутим поставља се питање колико су нелокалне корелације битне за опис
јако-корелисаних система. Анализиран је Хабардов модел на троугаоној решетки,
коришћењем DMFT метода. Рачунате су проводне, термодинамиче, тако и транспортне
особине електрона a резултати су потом поређени са резултатима коначно температурног
Lanczos метода, који укључује нелокалне корелације. На вишим температурама нелокалне



корелације постају занемарљиве тако да не постоје ни разлике између DMFT и Lanczos
резултата, док је на нижим температурама та разлика мала. Иако се троугаона решетка
одликује магнетном фрустрацијом решетке, и сопствена енергија је више локализована,
слични закључци се доносе и у случају квадрадне решетке. Са друге стране у раду је
показано да допринос вертекс корекција у оптичкој проводности опстаје чак и на високим
температурама за оба типа решетке.
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Abstract. Network science provides an indispensable theoretical framework for
studying the structure and function of real complex systems. Different network
models are often used for finding the rules that govern their evolution, whereby
the correct choice of model details is crucial for obtaining relevant insights. Here,
we study how the structure of networks generated with the aging nodes model
depends on the properties of the growth signal. We use different fluctuating
signals and compare structural dissimilarities of the networks with those obtained
with a constant growth signal. We show that networks with power-law degree
distributions, which are obtained with time-varying growth signals, are correlated
and clustered, while networks obtained with a constant growth signal are not.
Indeed, the properties of the growth signal significantly determine the topology
of the obtained networks and thus ought to be considered prominently in models
of complex systems.
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1. Introduction

Emergent collective behavior is an indispensable property of complex systems [1]. It
occurs as a consequence of interactions between a large number of units that compose
a complex system, and it cannot be easily predicted from the knowledge about the
behavior of these units. The previous research offers definite proof that the interaction
network structure is inextricably associated with the dynamics and function of the
complex system [2–9]. The structure of complex networks is essential for understanding
the evolution and function of various complex systems [10–13].

The structure and dynamics of real complex systems are studied using complex
network theory [1, 10, 11]. It was shown that real networks have similar topological prop-
erties regardless of their origins [14]. They have broad degree distribution, degree–degree
correlations, and power-law scaling of clustering coefficient [11, 14]. Understanding
how these properties emerge in complex networks leads to the factors that drive their
evolution and shape their structure [2].

The complex network models substantially contribute to our understanding of the
connection between the network topology and system dynamics and uncover underlying
mechanisms that lead to the emergence of distinctive properties in real complex networks
[15–17]. For instance, the famous Barabási–Albert model [15] finds the emergence of
broad degree distribution to be a consequence of preferential attachment and network
growth. Degree–degree anti-correlations of the internet can be explained, at least to a
certain extent, by this constraint [18, 19]. Detailed analysis of the emergence of clustered
networks shows that clustering is either the result of finite memory of the nodes [20] or
occurs due to triadic closure [21].

Network growth, in combination with linking rules, shapes the network topology
[22]. While various rules have been proposed to explain the topology of real networks
[10], most models assume a constant rate of network growth, i.e., the addition of a
fixed number of nodes at each time step [15, 20, 21]. However, empirical analysis of
numerous technological and social systems shows that their growth is time-dependent
[23–26]. The time-dependent growth of the number of nodes and links in the networks
has been considered as a parameter in uncovering network growth mechanisms [27]. The
accelerated growth of nodes in complex networks is the cause of the high heterogeneity
in the distribution of web pages among websites [23] and the emergence of highly cited
authors in citation networks [26]. The accelerated growth of the number of new links
added in each time step changes the shape and scaling exponent of degree distribution
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in the Barabási–Albert model [28] and model with preferential attachment with aging
nodes [29].

The growth of real systems is not always accelerated. The number of new nodes
joining the system varies in time, has trends, and exhibits circadian cycles typical for
human behavior [24, 25, 30]. These signals are multifractal and have long-range corre-
lations [31]. Some preliminary evidence shows that the time-varying growth influences
the structure and dynamics of the social system and, consequently, the structure of
interaction networks in social systems [25, 30, 32–34]. Still, which properties of the real
growth signal have the most considerable influence, how different properties influence
the topology of the generated networks, and to what extent is an open question.

In this work, we explore the influence of real and computer-generated time-varying
growth signals on complex networks’ structural properties. We adapt the aging nodes
model [35] to enable time-varying growth. We compare the networks’ structure using the
growing signals from empirical data and randomized signals with ones grown with the
constant signal using D-measure [36]. We demonstrate that the growth signal determines
the structure of generated networks. The networks grown with time-varying signals
have significantly different topology compared to networks generated through constant
growth. The most significant difference between topological properties is observed for the
values of model parameters for which we obtain networks with broad degree distribution,
a common characteristic of real networks [10]. Our results show that real signals, with
trends, cycles, and long-range correlations, alter networks’ structure more than signals
with short-range correlations.

This paper is divided as follows. In section 2, we provide a detailed description of
growth signals. In section 3, we briefly describe the original model with aging nodes and
structural properties of networks obtained for different values of model parameters [35].
We also describe the changes in the model that we introduce to enable time-varying
growth. We describe our results in section 4 and show that the values of D-measure
indicate large structural differences between networks grown with fluctuating and ones
grown with constant signals. This difference is particularly evident for networks with
power-law degree distribution and real growth signals. The networks generated with real
signals are correlated and have hierarchical clustering, properties of real networks that
do not emerge if we use constant growth. We discuss our results and give a conclusion
in section 5.

2. Growth signals

The growth signal is the number of new nodes added in each time step. Real complex
networks evolve at a different pace, and the dynamics of link creation define the time unit
of network evolution. For instance, the co-authorship network grows through establishing
a link between two scientists when they publish a paper [37]. In contrast, the links in an
online social network are created at a steady pace, often interrupted by sudden bursts
[38]. A paper’s publication is thus a unit of time for the evolution of co-authorship
networks, while the most appropriate time unit for social networks is 1 min or 1 h.
While systems may evolve at a different pace, their evolution is often driven by the
related mechanisms reflected by the similarity of their structure [10].
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Figure 1. Growth signals for TECH (a) and MySpace (b) social groups, their ran-
domized counterparts, and random signal drawn from Poissonian distribution with
mean 1. The cumulative sums of signals’ deviations from average mean value are
shown in insets.

In this work, we use two different growth signals from real systems figure 1: (a) the
data set from TECH community from Meetup social website [39] and (b) two months
dataset of MySpace social network [40]. TECH is an event-based community where
members organize offline events through the Meetup site [39]. The time unit for TECH
is event since links are created only during offline group meetings. The growth signal
is the number of people that attend the group’s meetings for the first time. MySpace
signal shows the number of new members occurring for the first time in the dataset [40]
with a time resolution of 1 min. The number of newly added nodes for the TECH signal
is N = 3217, and the length of the signal is T s = 3162 steps. We have shortened the
MySpace signal to T s = 20 221 time steps to obtain the network with N = 10 000 nodes.
The signals in the inset of figures 1(a) and (b) show the cumulative sum of deviations
of signals from their average mean value, which is 1.017 for TECH and random TECH
signal, 0.47 for MySpace and random MySpace, and 1 for Poissonian signal.

Real growth signals have long-range correlations, trends and cycles [25, 30, 40]. We
also generate networks using randomized signals and one computer-generated white-
noise signal to explore the influence of signals’ features on evolving networks’ structure.
We randomize real signals using a reshuffling procedure. The reshuffling procedure con-
sists of E steps. We randomly select two signal values at two distinct time steps and
exchange their position in each step. The number of reshuffling steps is proportional
to the length of the signal T s, and in our case, it equals 100T s. Using this procedure,
we keep the signal length and mean value, the number of added nodes, and the proba-
bility density function of fluctuations intact, but destroy cycles, trends, and long-range
correlations. Besides, we generate a white-noise signal from a Poissonian probability dis-
tribution with a mean equal to 1. The length of the signal is T = 3246, and the number
of added nodes in the final network is the same as for the TECH signal.

We characterize the long-range correlations of the growth signals calculating Hurst
exponent [41, 42]. Hurst exponent describes the scaling behavior of time series
M(xt) = xHM(t). It takes values between 0.5 and 1 for long-range correlated signals
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and H = 0.5 for short-range correlated signals. The most commonly used method for
estimating Hurst exponent of real, often non-stationary, temporal signals is detrended
fluctuation analysis (DFA) [41]. The DFA removes trends and cycles of real signals and
estimates Hurst exponent based on residual fluctuations. The DFA quantifies the scal-
ing behavior of the second-moment fluctuations. However, signals can have deviations
in fractal structure with large and small fluctuations that are characterized by different
values of Hurst exponents [31].

We use multifractal detrended fluctuation analysis (MFDFA) [31, 43] to estimate
multifractal Hurst exponent H(q). For a given time series {xi} with length N , we first
define global profile in the form of cumulative sum equation (1), where 〈x〉 represents
an average of the time series:

Y (j) =

j∑
i=0

(xi − 〈x〉), j = 1, . . . ,N. (1)

Subtracting the mean of the time series is supposed to eliminate global trends.
Insets of figure 1 show global profiles of TECH, MySpace, their randomized signals
and Poissonian distribution. The profile of the signal Y is divided into N s = int(N/s)
non overlapping segments of length s . If N is not divisible with s the last segment will be
shorter. This is handled by doing the same division from the opposite side of time series
which gives us 2N s segments. From each segment ν, local trend pmν,s—polynomial of order

m—should be eliminated, and the variance F 2(ν, s) of detrended signal is calculated as
in equation (2):

F 2(ν, s) =
1

s

s∑
j=1

[
Y (j)− pmν,s(j)

]2
. (2)

Then the qth order fluctuating function is:

Fq(s) =

{
1

2Ns

2Ns∑
ν

[
F 2(ν, s)

] q
2

} 1
q

, q �= 0

F0(s) = exp

{
1

4Ns

2Ns∑
ν

ln
[
F 2(ν, s)

]}
, q = 0.

(3)

The fluctuating function scales as power-law Fq(s) ∼ sH(q) and the analysis of log–log
plots Fq(s) gives us an estimate of multifractal Hurst exponent H(q). Multifractal signal
has different scaling properties over scales while monofractal is independent of the scale,
i.e., H(q) is constant.

Figures 1(a) and 2 show that the TECH signal has long trends and a broad prob-
ability density function of fluctuations. The trends are erased from the randomized
TECH signal, but the broad distribution of the signal and average value remain intact.
MFDFA analysis shows that real signals have long-range correlations with Hurst expo-
nent approximately 0.6 for q = 2, figure 2. The TECH signal is multifractal, resulting
from both broad probability distribution for the values of time series and different long-
range correlations of the intervals with small and large fluctuations. Reshuffling of the
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Figure 2. Dependence of Hurst exponent on parameter q for all five signals shown
in figure 1 obtained with MFDFA.

time series does not destroy the broad distribution of values, which is the cause for the
persistent multifractality of the TECH randomized signal is figure 2.

MySpace signal has a long trend with additional cycles that are a consequence of
human circadian rhythm, figure 1(b). Circadian rhythm is an internal process that regu-
lates the sleep-wake cycle and activity, and its period for humans is 24 h [44]. Circadian
rhythm leads to periodic changes in online activity during the day and the emergence
of a well-defined daily rhythm of activity that we see in figure 1(b). MySpace signal is
multifractal for q < 0, and has constant value of H(q) for q > 0, figure 2. In MFDFA,
with negative values of q, we emphasize segments with smaller fluctuations, while for
positive q, the emphasis is more on segments with larger fluctuations [43]. Segments
with smaller fluctuations have more persistent long-range correlations in both real sig-
nals, see figure 2. Randomized MySpace signal and Poissonian signal are monofractal
and have short-range with H = 0.5 correlations typical for white noise.

Detailed MDFA analysis of real, shuffled, and computer-generated sig-
nals are shown in figure S1 and table S1 of the supplementary material
(https://stacks.iop.org/JSTAT/2021/013405/mmedia). In figure S1 we show in details
how the Fq(s) depends on s for different values of parameter q. The curve Fq(s) exhibits
different slopes for different values of q for multifractal signals, i.e., TECH, random
TECH, and MySpace. Fq(s) curves for monofractal signals are parallel. We provide the
estimated values of H(q) with estimated errors for q in a range from −4 to 4 for all five
signals in table S1 of the supplementary material.

3. Model of aging nodes with time-varying growth

To study the influence of temporal fluctuations of growth signal on network topology,
we need a model with linking rules where linking probability between network nodes
depends on time. We use a network model with aging nodes [35]. In this model, the
probability of linking the newly added node and the old one is proportional to their age
difference and an old node’s degree. In the original version of the model, one node is
added to the network and linked to one old node in each time step. The old node is
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chosen according to probability

Πi(t) ∼ ki(t)
βτα

i (4)

where ki(t) is a degree of a node i at time t, and τ i is age difference between node i
and newly added node. As was shown in [35], the values of model parameters β and α
determine the topological properties of the resulting networks grown with the constant
signal. According to this work, the networks generated using constant growth signals
are uncorrelated trees for all values of model parameters. The phase diagram in α–β
plain, obtained for β > 0 and α < 0, shows that the degree distribution P (k) ∼ k−γ with
γ = 3 is obtained only along the line β(α∗), see [35] and figure S2 in the supplementary
material. For α > α∗ networks have gel-like small world behavior, while for α < α∗ but
close to line β(α∗) networks have stretched exponential shape of degree distribution [35].

Here we slightly change the original aging model [35] to enable the addition of more
than one node and more than one link per newly added node in each time step. In each
time step, we add M � 1 new nodes to the network and link them to L � 1 old nodes
according to probability Πi given in equation (4). Again, the networks with broad degree
distribution are only generated for the combination of the model parameters along the
critical line β(α∗). This line’s position in the α–β plane changes with link density, while
the addition of more than one node in each time step does not influence its position.
Our analysis shows that the critical line’s position is independent of the growth signal’s
properties, see figure S2 in the supplementary material showing phase diagram. For
instance, for L = 1 networks and α = −1.25 and β = 1.5 we obtain networks with power-
law degree, while for L = 2 and β = 1.5 we need to increase the value of parameter α
to −1.0 in order to obtain networks with broad degree distribution. Networks obtained
for the values of model parameters β(α∗), L � 2, and constant growth have power-
law degree distribution, are uncorrelated and have a finite non-zero value of clustering
coefficient which does not depend on node degree, figure 4(b). If we fix the value of
parameter β and lower down the value of parameter α to −1.5, the resulting networks
are uncorrelated with a small value of clustering coefficient, see figure 4(a). For α < α∗ we
obtain networks with stretched exponential degree distribution, without degree–degree
correlations and small value of clustering exponent that does not depend on node degree
(see figure S2 in the supplementary material). For α � α∗ the resulting networks are
regular graphs. If we keep the value of α to 1.0 but increase the value β to 2.0 we enter
the region of small world gels, see figure 4(c). The networks created for the values of
α > α∗ are correlated networks with power-law dependence of the clustering coefficient
on the degree (see figure S2 in the supplementary material). However, these networks
do not have a power-law degree distribution.

The master equation approach is useful for studying the model with aging nodes
when M(t) = 1 [45]. However, this approach is not sufficient for time-varying growth
signals. In this work, we use numerical simulations to explore the case when M(t) is a
correlated time-varying function and study how these properties influence the structure
of generated networks for different values of parameter −∞ < α � 0 and β � 1 and
constant L.
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4. Structural differences between networks generated with different growth
signals

We generate networks for different values of L, and different growth signal profiles
M(t). To examine how these properties influence the network structure, we compare
the network structure obtained with different growth signals with networks of the same
size grown with constant signal M = 1. The M = 1 is the closest constant value to
average values of the signals, which are 1.017 for TECH, 0.47 for MySpace, and 1 for
Poissonian signals. We explore the parameter space of the model by generating networks
for pairs of values (α, β) in the range −3 � α � −0.5 and 1 � β � 3 with steps 0.5. For
each pair of (α, β) we generated networks of different link density by varying parameter
L ∈ 1, 2, 3, and for each combination of (α, β,L), we generate a sample of 100 networks
and compare the structure of the networks grown with M = 1 with the ones grown with
M(t) shown in figure 1.

We quantify topological differences between two networks using D-measure defined
in [36]

D(G,G′) = ω

∣∣∣∣∣∣
√

J(P1, . . . ,PN)

log(d+ 1)
−

√
J(P ′

1, . . . ,P
′
N)

log(d′ + 1)

∣∣∣∣∣∣+ (1− ω)

√
J(μG,μG′)

log 2
. (5)

D-measure captures the topological differences between two networks, G and G′, on a
local and global level. The first term in equation (5) evaluates dissimilarity between two
networks on a local level. For each node in the network G one can define the distance dis-
tribution P i = {pi(j)}, where pi(j) is a fraction of nodes in network G that are connected
to node i at distance j. The set of N node-distance distributions {P 1, . . . ,PN} contains a
detailed information about network’s topology. The heterogeneity of a graph G in terms
of connectivity distances is measured through node network dispersion (NND). In [36]
authors estimate NND as Jensen–Shannon divergence between N distance distributions
J(P 1, . . . ,PN) normalized by log(d+ 1), where d is diameter of network G, and show
that NND captures relevant features of heterogeneous networks. The difference between
NNDs for graph G and G′ captures the dissimilarity between the graph’s connectivity
distance profile.

However, certain graphs, such as k -regular graphs, have NND = 0 and can not be
compared using NND. For these reasons, authors also introduce average node distance
distribution of a graph μ(G) = {μ(1), . . . , μ(d)}, where μ(k) is the fraction of all pair
of nodes in the network G that are at a distance k. The Jensen–Shannon divergence
between μ(G) and μ(G′) measures the difference between nodes’ average connectivity in
a graph G and G′. This term captures the differences between nodes on a global scale.

The original definition of D-measure also includes the third term, which quantifies
dissimilarity in node α-centrality. The term can be omitted without precision loss [36].
The parameter ω in equation (5) determines the weight of each term. The extensive
analysis shows that the choice ω = 0.5 is the most appropriate for quantifying structural
differences between two networks [36].

The D-measure takes the value between 0 and 1. The lower the value of D-measure
is the more similar two networks are, with D = 0 for isomorphic graphs. The D-measure
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Figure 3. The comparison of networks grown with growth signals shown in figure 1
versus ones grown with constant signal M = 1, for value of parameter α ∈ [−3,−1]
and β ∈ [1, 3]. M(t) is the number of new nodes, and L is the number of links
added to the network in each time step. The compared networks are of the same
size.

outperforms previously used network dissimilarity measures such as Hamming distance
and graph editing distance and clearly distinguishes between networks generated with
the same model but with different values of model parameters [36].

For each pair of networks, one grown with constant and one with the fluctuating
signal, we calculate the D-measure. The structural difference between networks grown
with constant and fluctuating growth signal for fixed L and values of parameters α and β
is obtained by averaging the D-measure calculated between all possible pairs of networks,
see figure 3. We observe the non-zero value of D-measure for all time-varying signals.
The D-measure has the largest value in the region around the line β(α∗). The values
of D-measure in this region are similar to ones observed when comparing Erdös–Rényi
graphs grown with linking probability below and above critical value [36]. For values
β < β(α∗), the structural differences between networks grown with constant signal and
M(t) still exist, but they become smaller as we are moving away from the critical line.
Networks obtained with constant signal and fluctuating signals have statistically similar
structural properties in the region of small-world network gels, i.e., α > α∗.
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We focus on the region around the critical line and observe the significant structural
discrepancies between networks created for constant versus time-dependent growth sig-
nals for all signals regardless of their features. However, the value of D-measure depends
on the signal’s properties, figure 3. Networks grown with multifractal signals, TECH,
random TECH, and MySpace signals, are the most different from those created by a
constant signal. The D-measure has the maximum value for the original TECH signal,
with Dmax = 0.552, the signal with the most pronounced multifractal properties among
all signals shown in figure 2. Networks generated with randomized MySpace signal and
Poisson signal are the least, but still notably dissimilar from those created with M = 1.

Randomized MySpace signal and Poissonian signal are monofractal signals with
Hurst exponent H = 0.5. To investigate the influence of monofractal correlated sig-
nals on the network structure, we generate six signals with a different value of
H ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, see figure S3 in the supplementary material. We use
each of these signals to generate networks following the same procedure as for signals
shown in figure 1. The results shown in figure S4 of the supplementary material confirm
that short-range correlated signals create networks with different structures from ones
grown with the constant signal. The increase of the Hurst exponent leads to increases
in the D-measure. However, D-measure’s maximal value is smaller than one observed
for multifractal signals shown in figure 3.

The value of D-measure rises with a decline of α∗. This observation can be explained
by examining linking rules and how model parameters determine linking dynamics
between nodes. The ability of a node to acquire a link declines with its age and grows
with its degree. A node’s potential to become a hub, node with a degree significantly
larger than average network degree, depends on the number of nodes added to the net-
work in the T time steps after its birth. The length of the interval T decreases with
parameter α. For constant signal, the number of nodes added during this time inter-
val is constant and equal to MT . For fluctuating growth signals, the number of added
nodes during the time T varies with time. In signals that have a broad distribution of
fluctuations, like TECH signals, the peaks of the number of newly added nodes lead to
the emergence of one or several hubs and super hubs. The emergence of super hubs,
nodes connected to more than 30% of the nodes in the network, significantly alters the
network’s topology. For instance, super hubs’ existence lowers the value of average path
length and network diameter [10]. The emergence of hubs occurs for values of parame-
ter α relative close to −1.0 for signals with long-range correlations. As we decrease the
parameter α, the fluctuations present in the time-varying signals become more impor-
tant, and we observe the emergence of hubs even for the white-noise signals. The trends
present in real growth signals further promote the emergence of hubs. The impact of
fluctuations and their temporal features on the structure of complex networks increases
with link density.

The large number of structural properties observed in real networks are often conse-
quences of particular degree distributions, degree correlations, and clustering coefficient
[47]. Figure 4 shows the degree distribution P (k), dependence of average neighboring
degree on node degree 〈k〉nn(k), and dependence of clustering coefficient on node degree
c(k) for networks with average number of links per node L = 2. The significant struc-
tural differences between networks grown with real time-varying and constant signals
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Figure 4. Degree distribution, the dependence of average first neighbor degree on
node degree, dependence of node clustering on node degree for networks grown
with different time-varying and constant signals. Model parameters have the values
α = −1.5, β = 1.5 (a), α = −1.0, β = 1.5 (b), α = −1.0, β = 2.0 (c), and L = 2 for
all networks.
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are observed for the values of model parameters α = −1.0 and β = 1.5, figures 3 and
4(b). The degree distribution of networks generated for real signals shows the occur-
rence of super hubs in these networks. In contrast, degree distributions of networks
generated with white-noise like signals do not differ from one created with constant
signal, figure 4(b). Networks obtained for the real signals are disassortative and have a
hierarchical structure, i.e., their clustering coefficient decreases with the degree. On the
other hand, networks generated with constant and randomized signals are uncorrelated,
and their clustering weakly depends on the degree.

We observe a much smaller, but still noticeable, difference between the topologi-
cal properties of networks evolved with constant and time-varying signal for α < α∗,
figure 4(a). The difference is particularly observable for degree distribution and depen-
dence of average neighboring degree on node degree of networks grown with real TECH
signal. The fluctuations of time-varying growth signals do not influence the topological
properties of small-world gel networks, figure 4(c). For α > α∗, the super hubs emerge
even with the constant growth. Since this is the mechanism through which the fluctu-
ations alter the structure of evolving networks for α � α∗, the features of the growth
signals cease to be relevant.

5. Discussion and conclusions

We demonstrate that the resulting networks’ structure depends on the time-varying
signal features that drive their growth. The previous research [25, 30] indicated the pos-
sible influence of temporal fluctuations on network properties. Our results show that
growth signals’ temporal properties generate networks with power-law degree distribu-
tion, non-trivial degree–degree correlations, and clustering coefficient even though the
local linking rules, combined with constant growth, produce uncorrelated networks for
the same values of model parameters [35].

We observe the most substantial dissimilarity in network structure along the critical
line, the values of model parameters for which we generate broad degree distribution
networks. Figure 3 shows that dissimilarity between networks grown with time-varying
signals and ones grown with constant signals always exists along this line regardless of
the features of the growth signal. However, the magnitude of this dissimilarity strongly
depends on these features. We observe the largest structural difference between networks
grown with multifractal TECH signal and networks that evolve by adding one node in
each time step. The identified value of D-measure is similar to one calculated in the
comparison between sub-critical and super-critical Erdös–Rényi graphs [36] indicating
the considerable structural difference between these networks. Our findings are further
confirmed in figure 4(b). The networks generated with signals with trends and long-
range temporal correlations differ the most from those grown with the constant signal.
Our results show that even white-noise type signals can generate networks significantly
different from ones created with constant signal for low values of α∗.

Randomized and computer-generated signals do not have trends or cycles. Never-
theless, networks grown with these signals have a significantly different structure from
ones grown with constant M . Our results demonstrate that growth signals’ temporal
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fluctuations are the leading cause for the structural differences between networks evolved
with the constant and time-varying signal. We observe the smallest, but significant,
difference between networks generated with constant M and monofractal signal with
short-range correlations. As we increase the Hurst exponent, the value of the D-measure
increases. The most considerable differences are observed for multifractal signals TECH,
random TECH, and MySpace.

The value of D-measure declines as we move away from the critical line, figure 3. The
primary mechanism through which the fluctuations influence the structure of evolved
networks is the emergence of hubs and super hubs. For values of α � α∗, the nodes
attache to their immediate predecessors creating regular networks without hubs. For
α � α∗ graphs have stretched exponential degree distribution with low potential for the
emergence of hubs. Still, multifractal signal TECH enables the emergence of hub even
for the values of parameters for which we observe networks with stretched-exponential
degree distribution in the case of constant growth figure 4(a). By definition, small-world
gels generated for α > α∗ have super-hubs [35] regardless of the growth signal. Therefore
the effects that fluctuations produce in the growth of networks do not come to the fore
for values of model parameters in this region of α–β plane.

In this work, we focus on the role of the node growth signal in evolving networks’
structure. However, real networks do not evolve only due to the addition of new nodes,
but also through addition of new links [27–29, 38]. Furthermore, the deactivation of
nodes [48] and the links [48] influence the evolving networks’ structure. Each of these
processes alone can result in a different network despite having the same linking rules.
The next step would be to examine how different combinations of these processes influ-
ence the evolving networks’ structure. For instance, in [28], authors have examined the
influence of the time-dependent number of added links L(t) on the Barabási–Albert
networks’ structure. They show that as long as the average value of time-dependent
signal 〈L(t)〉 is independent of time, the generated networks have a similar structure
as Barabási–Albert networks, and that the degree distribution depends strongly on the
behavior of 〈L(t)〉. It would be interesting to examine how correlated L(t) signals influ-
ence networks’ structure with aging nodes, where the age of a node plays a vital role
in linking between new and old nodes. Moreover, we expect that the combination of
time-varying growth of the number of nodes and the number of links will significantly
influence these networks’ structure.

Evolving network models are an essential tool for understanding the evolution of
social, biological, and technological networks and mechanisms that drive it [10]. The
most common assumption is that these networks evolve by adding a fixed number of
nodes in each time step [10]. So far, the focus on developing growing network models was
on linking rules and how different rules lead to networks of various structural properties
[10]. Growth signals of real systems are not constant [25, 30]. They are multifractal,
characterised with long-range correlations [25], trends and cycles [40]. Research on tem-
poral networks has shown that temporal properties of edge activation in networks and
their properties can affect the dynamics of the complex system [12]. Our results imply
that modeling of social and technological networks should also include non-constant
growth. Its combination with local linking rules can significantly alter the structure of
generated networks.
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[25] Dankulov M M, Melnik R and Tadić B 2015 The dynamics of meaningful social interactions and the emergence

of collective knowledge Sci. Rep. 5 1

https://doi.org/10.1088/1742-5468/abd30b 14

https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1103/revmodphys.81.591
https://doi.org/10.1103/revmodphys.81.591
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1088/1742-5468/aac140
https://doi.org/10.1088/1742-5468/aae84f
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1126/science.1173299
https://doi.org/10.1126/science.1173299
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/s0378-4371(01)00014-0
https://doi.org/10.1016/s0378-4371(01)00014-0
https://doi.org/10.1103/physreve.80.026123
https://doi.org/10.1103/physreve.80.026123
https://doi.org/10.1016/j.physa.2003.06.002
https://doi.org/10.1016/j.physa.2003.06.002
https://doi.org/10.1103/physreve.68.026112
https://doi.org/10.1103/physreve.68.026112
https://doi.org/10.1103/physreve.65.036123
https://doi.org/10.1103/physreve.65.036123
https://doi.org/10.1103/physreve.72.036133
https://doi.org/10.1103/physreve.72.036133
https://doi.org/10.1103/physreve.67.056104
https://doi.org/10.1103/physreve.67.056104
https://doi.org/10.1038/43604
https://doi.org/10.1038/43604
https://doi.org/10.1140/epjb/e2009-00431-9
https://doi.org/10.1140/epjb/e2009-00431-9
https://doi.org/10.1038/srep12197
https://doi.org/10.1038/srep12197
https://doi.org/10.1088/1742-5468/abd30b


J.S
tat.

M
ech.

(2021)
013405

Growth signals determine the topology of evolving networks

[26] Liu J, Li J, Chen Y, Chen X, Zhou Z, Yang Z and Zhang C-J 2019 Modeling complex networks with accelerating
growth and aging effect Phys. Lett. A 383 1396

[27] Pham T, Sheridan P and Shimodaira H 2016 Joint estimation of preferential attachment and node fitness in
growing complex networks Sci. Rep. 6 32558

[28] Sen P 2004 Accelerated growth in outgoing links in evolving networks: deterministic versus stochastic picture
Phys. Rev. E 69 046107

[29] Dorogovtsev S N and Mendes J F F 2001 Effect of the accelerating growth of communications networks on their
structure Phys. Rev. E 63 025101
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High-temperature bad-metal transport has been recently studied both theoretically and in experiments as one
of the key signatures of strong electronic correlations. Here we use the dynamical mean field theory and its
cluster extensions, as well as the finite-temperature Lanczos method to explore the influence of lattice frustration
on the thermodynamic and transport properties of the Hubbard model at high temperatures. We consider the
triangular and the square lattices at half-filling and at 15% hole doping. We find that for T � 1.5t the self-energy
becomes practically local, while the finite-size effects become small at lattice size 4×4 for both lattice types and
doping levels. The vertex corrections to optical conductivity, which are significant on the square lattice even at
high temperatures, contribute less on the triangular lattice. We find approximately linear temperature dependence
of dc resistivity in doped Mott insulator for both types of lattices.

DOI: 10.1103/PhysRevB.102.115142

I. INTRODUCTION

Strong correlation effects in the proximity of the Mott
metal-insulator transition are among the most studied prob-
lems in modern condensed matter physics. At low temper-
atures, material-specific details play a role, and competing
mechanisms can lead to various types of magnetic and
charge density wave order, or superconductivity [1–5]. At
higher temperatures, physical properties become more univer-
sal, often featuring peculiarly high and linear-in-temperature
resistivity (the bad-metal regime) [6–12] and gradual metal-
insulator crossover obeying typical quantum critical scaling
laws [13–17].

There are a number of theoretical studies of transport
in the high-T regime based on numerical solutions of the
Hubbard model [10,12,13,18,19], high-T expansion [20], and
field theory [21–23]. Finding numerically precise results is
particularly timely having in mind a very recent laboratory
realization of the Hubbard model using ultracold atoms on
the optical lattice [24]. This system enables fine tuning of
physical parameters in a system without disorder and other
complications of bulk crystals, which enables a direct com-
parison between theory and experiment. In our previous
work (Ref. [25]) we have performed a detailed analysis of
single- and two-particle correlation functions and finite-size
effects on the square lattice using several complementary
state-of-the-art numerical methods, and established that a
finite-temperature Lanczos method (FTLM) solution on the
4×4 lattice is nearly exact at high temperatures. The FTLM,
which calculates the correlation functions directly on the real-
frequency axis, is recognized [25] as the most reliable method
for calculating the transport properties of the Hubbard model
at high temperatures. The dependence of charge transport and

thermodynamics on the lattice geometry has not been exam-
ined in Ref. [25] and it is the subject of this work.

Numerical methods that we use are (cluster) dynamical
mean field theory (DMFT) and FTLM. The DMFT treats an
embedded cluster in a self-consistently determined environ-
ment [26]. Such a method captures long-distance quantum
fluctuations, but only local (in single-site DMFT), or short-
range correlations (in cluster DMFT) [27]. The results are
expected to converge faster with the size of the cluster than
in the FTLM, which treats a finite cluster with periodic
boundary conditions [28]. FTLM suffers from the finite-size
effects in propagators as well as in correlations. The con-
ductivity calculation in DMFT is, however, restricted just to
the bubble diagram, while neglecting the vertex corrections.
Approximate calculation of vertex corrections is presented
in few recent works [29–34]. This shortcoming of DMFT is
overcome in FTLM where one calculates directly the current-
current correlation function which includes all contributions
to the conductivity. Also, the FTLM calculates conductivity
directly on the real-frequency axis, thus eliminating the need
for analytical continuation from the Matsubara axis which
can, otherwise, lead to unreliable results (see Supplemental
Material of Ref. [25]). Both DMFT and FTLM methods are
expected to work better at high temperatures [35] when single-
and two-particle correlations become more local, and finite-
size effects less pronounced. Earlier work has shown that the
single-particle nonlocal correlations become small for T � t
for both the triangular and the square lattices [25,36,37].

In this paper we calculate the kinetic and potential energy,
specific heat, charge susceptibility, optical and dc conductivity
in the Hubbard model on a triangular lattice and make a com-
parison with the square-lattice results. We consider strongly
correlated regime at half-filling and at 15% hole doping. In
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agreement with the expectations, we find that at high temper-
atures, T � 1.5t , the nonlocal correlations become negligible
and the results for thermodynamic quantities obtained with
different methods coincide, regardless of the lattice type and
doping. At intermediate temperatures, 0.5t � T � 1.5t , the
difference between DMFT and FTLM remains rather small.
Interestingly, we do not find that the thermodynamic quanti-
ties are more affected by nonlocal correlations on the square
lattice in this temperature range, although the self-energy be-
comes more local on the triangular lattice due to the magnetic
frustration. On the other hand, the vertex corrections to opti-
cal conductivity remain important even at high temperatures
for both lattice types, but we find that they are substantially
smaller in the case of a triangular lattice. For the doped
triangular and square lattice the temperature dependence of
resistivity is approximately linear for temperatures where the
finite-size effects become negligible and where the FTLM
solution is close to exact.

The paper is organized as follows. In Sec. II we briefly
describe different methods for solving the Hubbard model.
Thermodynamic and charge transport results are shown in
Sec. III, and conclusions in Sec. IV. The Appendix contains
a detailed comparison of the DMFT optical conductivity ob-
tained with different impurity solvers, a brief discussion of
the finite-size effects at low temperatures, and an illustration
of the density of states in different transport regimes.

II. MODEL AND METHODS

We consider the Hubbard model given by the Hamiltonian

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓ − μ
∑

iσ

niσ , (1)

where t is the hopping between the nearest neighbors on either
triangular or square lattice. c†

iσ and ciσ are the creation and
annihilation operators, U is the onsite repulsion, niσ is the
occupation number operator, and μ is the chemical potential.
We set U = 10t , t = 1, lattice constant a = 1, e = h̄ = kB =
1 and consider the paramagnetic solution for p = 1 − n =
1 − ∑

σ nσ = 0.15 hole doping and at half-filling.
We use the FTLM and DMFT with its cluster extensions

to solve the Hamiltonian. FTLM is a method based on the
exact diagonalization of small clusters (4×4 in this work). It
employs the Lanczos procedure to obtain approximate eigen-
states and uses sampling over random starting vectors to
calculate the finite-temperature properties from the standard
expectation values [28]. To reduce the finite-size effects, we
further employ averaging over twisted boundary conditions.

The (cluster) DMFT equations reduce to solving a (cluster)
impurity problem in a self-consistently determined effective
medium. We consider the single-site DMFT, as well as two
implementations of cluster DMFT: cellular DMFT (CDMFT)
[38,39] and dynamical cluster approximation (DCA) [27]. In
DMFT the density of states is the only lattice-specific quantity
that enters into the equations. In CDMFT we construct the
supercells in the real space and the self-energy obtains short-
ranged nonlocal components within the supercell. In DCA we
divide the Brillouin zone into several patches and the num-
ber of independent components of the self-energy equals the
number of inequivalent patches. The DCA results on 4×4 and

FIG. 1. DCA patches in the Brillouin zone. The irreducible Bril-
louin zone is marked by the black triangle. The dispersion relation is
shown in gray shading. Note the position of the � point in the center
of the first Brillouin zone which is not marked in this figure.

2×2 clusters are obtained by patching the Brillouin zone in a
way that obeys the symmetry of the lattice, as shown in Fig. 1.
As the impurity solver we use the continuous-time interaction
expansion (CTINT) quantum Monte Carlo (QMC) algorithm
[40,41]. In the single-site DMFT we also use the numerical
renormalization group (NRG) impurity solver [42–45].

The (cluster) DMFT with QMC impurity solver (DMFT-
QMC) gives the correlation functions on the imaginary
(Matsubara) frequency axis, from which static quantities can
be easily evaluated. The kinetic energy per lattice site is equal
to

Ekin = 1

N

∑
k

εknkσ = 2

N

∑
k

εkGk(τ = 0−), (2)

where for the triangular lattice εk = −2t[cos kx +
2 cos( 1

2 kx ) cos(
√

3
2 ky)] and for the square lattice εk =

−2t (cos kx + cos ky) (gray shading in Fig. 1). The
noninteracting band for the triangular lattice goes from
−6t to 3t with the van Hove singularity at ε = t . The
potential energy is equal to

Epot = Ud = 1

N
T

∑
k,iωn

eiωn0+
Gk(iωn)�k(iωn), (3)

where d = 〈ni↑ni↓〉 is the average double occupation. In DCA
the cluster double occupation is the same as on the lattice,
and we used the direct calculation of d in the cluster solver
to cross check the consistency and precision of the numerical
data. In CDMFT we calculated Epot from periodized quantities
G and �, where the periodization is performed on the self-
energy and then the lattice Green’s function is calculated from
it. The total energy is Etot = Ekin + Epot. The specific heat
C = dEtot/dT |n is obtained by interpolating Etot (T ) and then
taking a derivative with respect to temperature. C is shown
only in the DMFT solution where we had enough points
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at low temperatures. The charge susceptibility χc = ∂n/∂μ

is obtained from a finite difference using two independent
calculations with μ that differs by a small shift δμ = 0.1t .
In the FTLM, C and χc are calculated without taking the
explicit numerical derivative since the derivation can be done
analytically from a definition of the expectation values,

C = Cμ − T ζ 2

χc

= 1

N

1

T 2

[
〈H2〉 − 〈H〉2 − (〈HNe〉 − 〈H〉〈Ne〉)2〈

N2
e

〉 − 〈Ne〉2

]
, (4)

which is directly calculated in FTLM. Here, Cμ =
1
N

1
T 2 [〈(H − μNe)2〉−〈H−μNe〉2], ζ = 1

N2
1

T 2 [〈(H−μNe)Ne〉−
〈H − μNe〉〈Ne〉], χc = 1

N
1
T (〈N2

e 〉 − 〈Ne〉2), and Ne = ∑
iσ niσ

is the operator for the total number of electrons on the lattice.
We calculate the conductivity using DMFT and FTLM.

Within the DMFT the optical conductivity is calculated from
the bubble diagram as

σ (ω) = σ0

∫∫
dε dν X (ε)A(ε, ν)A(ε, ν + ω)

× f (ν) − f (ν + ω)

ω
, (5)

where X (ε) = 1
N

∑
k ( ∂εk

∂kx
)
2
δ(ε − εk ) is the transport function,

A(ε, ν) = − 1
π

Im[ν + μ − ε − �(ν)]−1, and f is the Fermi
function. For the square lattice σ0 = 2π and for triangular
σ0 = 4π/

√
3. For the calculation of conductivity in DMFT-

QMC we need the real-frequency self-energy �(ω), which
we obtain by Padé analytical continuation of the DMFT-QMC
�(iωn). In the DMFT with NRG impurity solver (DMFT-
NRG) we obtain the correlation functions directly on the
real-frequency axis, but this method involves certain numer-
ical approximations (see Appendix A).

In order to put into perspective the interaction strength
U = 10t and the temperature range that we consider, in Fig. 2
we sketch the paramagnetic (cluster) DMFT phase diagram
for the triangular and square lattices at half-filling adapted
from Refs. [46,47] (see also Refs. [36,37,48–54]). In the
DMFT solution (blue lines) the critical interaction for the Mott
metal-insulator transition (MIT) is Uc ∼ 2.5D, where the half-
bandwidth D is 4.5t and 4t for the triangular and the square
lattice, respectively. The phase diagram features the region
of coexistence of metallic and insulating solution below the
critical end point at Tc ≈ 0.1t . In this work we consider the
temperatures above Tc. We set U = 10t , which is near Uc for
the MIT in DMFT, but well within the Mott insulating part of
the cluster DMFT and FTLM phase diagram.

III. RESULTS

We will first present the results for the thermodynamic
properties in order to precisely identify the temperature range
where the nonlocal correlations and finite-size effects are
small or even negligible. In addition, from the thermodynamic
quantities, e.g., from the specific heat, we can clearly identify
the coherence temperature above which we observe the bad-
metal transport regime. We then proceed with the key result

FIG. 2. Sketch of the paramagnetic phase diagram at half-filling,
adapted from Refs. [46,47]. There is a region of the coexistence of
metallic and insulating solution below the critical end point at Tc. The
critical interaction is smaller in the cluster DMFT solution. Above Tc

there is a gradual crossover from a metal to the Mott insulator. In this
work we consider T > Tc and U = 10t .

of this work by showing the contribution of vertex corrections
to the resistivity and optical conductivity.

Before going into this detailed analysis, and in order to ob-
tain a quick insight into the strength of nonlocal correlations,
we compare in Fig. 3 the self-energy components in the cluster
DMFT solution at two representative temperatures. We show
the imaginary part of the DCA 4×4 self-energy at different
patches of the Brillouin zone according to the color scheme of
Fig. 1. The statistical error bar of the Im � results presented
in Fig. 3 we estimate by looking at the difference in Im �

between the last two iterations of the cluster DMFT loop.
We monitor all K points and the lowest three Matsubara fre-
quencies. At lower temperature (bottom row), this difference
is smaller than 0.05 (0.01) for the square (triangular) lattice,
respectively. At higher temperature (upper row), these values
are both 10 times lower and the error bar is much smaller
than the size of the symbol. At T = 0.4t the differences in the
self-energy components are more pronounced on the square
than on the triangular lattice, which goes along the general
expectations that the larger connectivity (z = 6) and the frus-
trated magnetic fluctuations lead to the more local self-energy.
At T ∼ 1.5t all the components of the self-energy almost
coincide for both lattices. We note that for the triangular
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FIG. 3. Imaginary part of the self-energy at the Matsubara fre-
quencies at different patches of the Brillouin zone for several
temperatures for p = 0.15 hole doping. The position of the patches
is indicated by the same colors as in Fig. 1. The solid lines are guide
to the eye.

lattice the components of the self-energy marked by red and
cyan colors are similar, but they do not coincide completely.
There are four independent patches in this case. For the square
lattice the red and cyan components of the self-energy are very
similar, while we have six independent patches.

A. Thermodynamics

1. p = 0.15

We first show the results for hole doping p = 0.15. The
results for the triangular lattice are shown in the left column of
Fig. 4, and the results for the square lattice in the right column.
Different rows correspond to the kinetic energy per lattice
site Ekin, potential energy Epot, total energy Etot, specific heat
C = dEtot/dT |n, and charge susceptibility χc. The DMFT
results are shown with blue solid lines and FTLM with red
dashed lines. The red circles correspond to DCA 4×4, light
green to DCA 2×2, green to CDMFT 2×2, and magenta to
the CDMFT 2×1 result.

The FTLM results are shown down to T = 0.2t . The
FTLM finite-size effects in thermodynamic quantities are
small for T � 0.2t (see Appendix B). The DMFT results are
shown for T � 0.05t and cluster DMFT for T � 0.2t . Over-
all, the (cluster) DMFT and FTLM results for 15% doping
look rather similar. The kinetic and potential energy do not
differ much on the scale of the plots, and the specific heat
looks similar.

The Fermi-liquid region, with C ∝ T , is restricted to very
low temperatures. For the triangular lattice we find a distinct
maximum in C(T ) at T ≈ 0.4t in FTLM, and at T ≈ 0.3t
in DMFT. This maximum is a signature of the coherence-
incoherence crossover, when the quasiparticle peak in the
density of states gradually diminishes and the bad-metal
regime starts. The increase in the specific heat for T � 2t is

FIG. 4. Kinetic, potential, total energy, specific heat, and charge
susceptibility as a function of temperature for the triangular and the
square lattice at 15% doping.

caused by the charge excitations to the Hubbard band. The
specific heat of the square lattice looks qualitatively the same.
[A very small dip in the DMFT specific heat near T = 0.4t
for the square lattice may be an artifact of the numerics,
where C is calculated by taking a derivative with respect to
temperature of the interpolated Etot (T ).] We note that the
specific heat, shown here for the fixed particle density, is
slightly different than the one for the fixed chemical potential
Cμ = dEtot/dT |μ, as in Refs. [28,51,55].

For the square lattice all thermodynamic quantities
obtained with different methods practically coincide for
T � t . This means that both the nonlocal correlations and
the finite-size effects have negligible effect on thermodynamic
quantities. For T � t the DMFT and FTLM results start to
differ. Interestingly, for the triangular lattice there is a small
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difference in the DMFT and FTLM kinetic energy up to higher
temperatures T ∼ 1.5t . The FTLM and DCA 4×4 results
coincide for T � t , implying the absence of finite-size effects
in the kinetic energy for both lattice types. We also note
that the agreement of the CDMFT and DMFT solutions for
the total energy on the square lattice at low temperatures is
coincidental, as a result of a cancellation of differences in Ekin

and Epot.
The intersite correlations in the square lattice lead to an in-

crease in the charge susceptibility at low temperatures (bottom
panel in Fig. 4). Here, the FTLM and DCA 4×4 results are in
rather good agreement. For the triangular lattice we found a
sudden increase of χc at low temperatures in the DCA results
(see Appendix B) but not in FTLM. These DCA points are not
shown in Fig. 4 since we believe that they are an artifact of the
particular choice of patching of the Brillouin zone. In order to
keep the lattice symmetry, we had only four (in DCA 4×4)
and two (in DCA 2×2) independent patches in the Brillouin
zone for triangular lattice (Fig. 1). The average over twisted
boundary conditions in FTLM reduces the finite-size error
(see Appendix B), and hence we believe that the FTLM result
for χc is correct down to T = 0.2t . We note that an increase of
χc cannot be inferred from the ladder dual-fermion extension
of DMFT [37] either. Still, further work would be needed to
precisely resolve the low-T behavior of charge susceptibility
for the triangular lattice.

2. p = 0

We now focus on thermodynamic quantities at half-filling
(Fig. 5). In this case, the results can strongly depend on
the method, especially since we have set the interaction to
U = 10t , which is near the critical value for the Mott MIT
in DMFT, while well within the insulating phase in the clus-
ter DMFT and FTLM. The results with different methods
almost coincide for T � 2t and are very similar down to
T ∼ t . The difference between the cluster DMFT and FTLM
at half-filling is small, which means that the finite-size effects
are small down to the lowest shown temperature T = 0.2t .
Therefore, the substantial difference between the FTLM and
single-site DMFT solutions at half-filling is mostly due to the
absence of nonlocal correlations in DMFT.

The specific heat at half-filling is strongly affected by non-
local correlations and lattice frustration. For triangular lattice
the low-temperature maximum in C(T ) has different origin
in the DMFT and FTLM solutions. The maximum in the
FTLM is due to the low-energy spin excitations in frustrated
triangular lattice, while in DMFT it is associated with the
narrow quasiparticle peak since the DMFT solution becomes
metallic as T → 0. Our DMFT result agrees very well with
the early work from Ref. [36] for T � t . At lower tempera-
tures there is some numerical discrepancy which we ascribe
to the error due to the imaginary-time discretization in the
Hirsch-Fye method used in that reference. For the square lat-
tice the DMFT and FTLM solutions are both insulating. The
maximum in the FTLM C(T ) is due to the spin excitations at
energies ∼4t2/U = 0.4t , and it is absent in the paramagnetic
DMFT solution which does not include dynamic nonlocal
correlations. The increase in C(T ) at higher temperatures is
due to the charge excitations to the upper Hubbard band.

ki
n

FIG. 5. Kinetic, potential, total energy, specific heat, and charge
compressibility as a function of temperature for the triangular and
the square lattice at half-filling.

B. Charge transport

The analysis of thermodynamic quantities has shown that
the FTLM results for static quantities are close to exact down
to T ∼ 0.5t or even 0.2t . For charge transport we show the
results for higher temperatures T � t since the finite-size ef-
fects are more pronounced in the current-current correlation
function at lower temperatures.

An indication of the finite-size effects in optical conductiv-
ity can be obtained from the optical sum rule

∫ ∞

0
dω σ (ω) = π

4Vu.c.
(−Ekin ), (6)

where Vu.c is equal to 1 and
√

3
2 for the square and triangular

lattice, respectively. The deviation from the sum rule in FTLM
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FIG. 6. Resistivity as a function of temperature.

can be ascribed to the finite charge stiffness and δ function at
zero frequency in optical conductivity [28]. The FTLM result
for dc resistivity, shown by the red lines in Fig. 6, corresponds
the temperature range where the weight of the δ-function peak
at zero frequency (charge stiffness) [28] is smaller than 0.5%
of the total spectral weight. The other finite-size effects are
small and the FTLM resistivity is expected to be close to the
exact solution of the Hubbard model. The remaining uncer-
tainty, due to the frequency broadening, is estimated to be
below 10% (see Supplemental Material in Ref. [25]). Small-
ness of the finite-size effects for the square lattice at T � t was
also confirmed from the current-current correlation function
calculated on the 4×4 and 8×8 lattices using CTINT QMC
(see Ref. [25]). For doped triangular lattice we show the con-
ductivity data for T � 1.5t since below this temperature the
weight of the charge stiffness δ function is larger than 0.5% of
the total weight, which indicates larger finite-size effects.

The DMFT resistivity is shown in Fig. 6 by the blue lines.
It is obtained using the NRG impurity solver. Numerical error
of the DMFT-NRG method is small, as we confirmed by a
comparison with the DMFT-QMC calculation followed by the
Padé analytical continuation (see Appendix A). We note that
we do not show the conductivity data in the DCA since in this
approximation we cannot reliably calculate the conductivity
beyond the bubble term. At high temperatures the bubble-term
contribution in cluster DMFT does not differ from the one in
single-site DMFT since the self-energy becomes local [25].

Since the FTLM resistivity in Fig. 6 is shown only for
temperatures when both the nonlocal correlations and the
finite-size effects are small, the difference between the DMFT
and FTLM resistivity is due to the vertex corrections. Their
contribution corresponds to the connected part of the current-
current correlation function whereas the DMFT conductivity

FIG. 7. Optical conductivity at T = 1.4.

is given by the bubble diagram. A detailed analysis of vertex
corrections for the square lattice is given in our previous work
(Ref. [25]). Here, our main focus is on the comparison of
the importance of vertex corrections for different lattices: the
numerical results show that the vertex corrections to conduc-
tivity are less important in the case of the triangular lattice.

In the doped case, the FTLM solution gives the resistiv-
ity which is approximately linear in the entire temperature
range shown in Fig. 6. This bad-metal linear-T temperature
dependence is one of the key signatures of strong electronic
correlations. The resistivity is here above the Mott-Ioffe-Regel
limit which corresponds to the scattering length one lattice
spacing within the Boltzmann theory. The Mott-Ioffe-Regel
limit can be estimated as [6] ρMIR ∼ √

2π ≈ 2.5.
At half-filling and low temperatures the result qualitatively

depends on the applied method. For the half-filled triangular
lattice at U = 10t the DMFT solution gives a metal, whereas
the nonlocal correlations lead to the Mott insulating state.
Still, similar as for thermodynamic quantities, the numerically
cheap DMFT gives an insulatinglike behavior and a rather
good approximation down to T ∼ 0.5t .

The optical conductivity, shown in Fig. 7 for T = 1.4t ,
provides further insight into the dependence of the vertex
correction on the lattice geometry. The DMFT-QMC conduc-
tivity is calculated using Eq. (5) with �(ω) obtained by the
Padé analytical continuation of �(iωn) (see Appendix A for
a comparison with DMFT-NRG). In the DMFT solution, the
Hubbard peak is determined by the single-particle processes
and it is centered precisely at ω = U . The vertex corrections
in FTLM shift the position of the Hubbard peak to lower
frequencies. The total spectral weight is the same in FTLM
and DMFT solution since it obeys the sum rule of Eq. (6),
while the kinetic energies coincide. The Ward identity for
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vertex corrections [25,31]

�conn(iν = 0) = −2T
1

N

∑
k

vk

∑
iωn

G2
k(iωn)∂kx �k(iωn) (7)

also implies that the vertex corrections do not affect the sum
rule if the self-energy is local. Here, �(iν) is the current-
current correlation function and �(iν = 0) = 1

π

∫
dω σ (ω).

The results clearly show the much stronger effect of ver-
tex corrections on the square lattice on all energy scales. In
addition to a very different ω → 0 (dc) limit, we observe
the more significant reduction of the Drude-like peak width
and a larger shift of the Hubbard peak on the square lattice,
with a more pronounced suppression of the optical weight at
intermediate frequencies. We note that a broad low-frequency
peak in conductivity is due to incoherent short-lived excita-
tions characteristic of the bad-metal regime. The structure of
the density of states in different transport regimes is discussed
in Appendix C.

IV. CONCLUSION

In summary, we have performed a detailed comparison
of the thermodynamic and charge transport properties of the
Hubbard model on a triangular and square lattice. We iden-
tified the temperatures when the finite-size effects become
negligible and the FTLM results on the 4×4 cluster are close
to exact. In the doped case, for both lattice types, the resistivity
is approximately linear in temperature for T � 1.5t . In partic-
ular, we found that the contribution of vertex corrections to the
optical and dc conductivity is smaller in the case of a triangu-
lar lattice, where it leads to ∼20% decrease in dc resistivity
as compared to the bubble term. The vertex corrections also
leave a fingerprint on the position of the Hubbard peak in the
optical conductivity, which is shifted from ω = U to slightly
lower frequencies.

On general grounds, higher connectivity and/or magnetic
frustration should lead to more local self-energy and smaller
vertex corrections in the case of triangular lattice, as it is
observed. However, the precise role of these physical mech-
anisms and possible other factors remains to be established.
Another important open question is to find an efficient ap-
proximate scheme to evaluate the vertex corrections, which
would be sufficiently numerically cheap to enable calculations
of transport at lower temperatures and in real materials. These
issues are to be addressed in the future, but we are now better
positioned as we have established reliable results that can
serve as a reference point.

With this work we also made a benchmark of several
state-of-the-art numerical methods for solving the Hubbard
model and calculating the conductivity at high temperatures.
This may be a useful reference for calculations of conduc-
tivity using a recent approach that calculates perturbatively
the correlation functions directly on the real-frequency axis
[56–59], thus eliminating a need for analytical continuation,
while going beyond the calculation on the 4×4 cluster.
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APPENDIX A: COMPARISON OF THE DMFT-NRG
AND DMFT-QMC CONDUCTIVITY

Here, we compare the DMFT results for the dc resistivity
and optical conductivity obtained with two different impurity
solvers. The optical conductivity σ (ω) is calculated according
to Eq. (5). The dc resistivity is equal to ρ = σ−1(ω → 0).

Within DMFT-NRG solver the self-energy is obtained di-
rectly on the real-frequency axis. There are three sources of
errors in this approach: discretization errors, truncation er-
rors, and (over)broadening errors. The method is based on
the discretization of the continuum of states in the bath; the
ensuing discretization errors can be reduced by performing the
calculation for several different discretization meshes with in-
terleaved points and averaging these results. It has been shown
[45] that in the absence of interactions, the discretization error
can be fully eliminated in a systematic manner. For an inter-
acting problem, the cancellation of artifacts is only approxi-
mate, but typically very good, so that this is a minor source of
errors. The truncation errors arise because in the iterative di-
agonalization one discards high-energy states after each set of
diagonalizations. For static quantities this error is negligible,
but it affects the dynamical (frequency-resolved) quantities
because they are calculated from contributions linking kept
and discarded states [61–63]. Finally, the raw spectral func-
tion in the form of δ peaks needs to be broadened in order to
obtain the smooth spectrum. If the results are overbroadened,
this can result in a severe overestimation of resistivity, and this
is typically the main source of error in the NRG for this quan-
tity. Fortunately, the resistivity is calculated as an integrated
quantity, thus, the broadening kernel width can be systemat-
ically reduced [20,64]. The lower limit is set by the possible
convergence issues in the DMFT self-consistency cycle due
to jagged aspect of all quantities, where the actual limit value
is problem dependent. In the NRG results reported in this
work, it was possible to use very narrow broadening kernel.
By studying the dependence of the ρ(T ) curves on the kernel
width, we estimate that the presented results have at most a
few percent error even at the highest temperatures considered.

The DMFT-QMC gives the self-energy �(iωn) at the
Matsubara frequencies and the analytical continuation is nec-
essary to obtain �(ω). The statistical error in QMC makes
the analytical continuation particularly challenging. However,
at high temperatures the CTINT QMC algorithm is very ef-
ficient. Running a single DMFT iteration for 10 minutes on
128 cores and using 20 or more iterations, we obtained the
self-energies with the statistical error |δ�(iω0)| ≈ 5×10−4

and |δG(iω0)| ≈ 2×10−5 at the first Matsubara frequency at
T = t . Such a small statistical error makes the Padé analytical
continuation possible for temperatures T � 2t .
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FIG. 8. DMFT-QMC (blue dots) and DMFT-NRG (red lines)
resistivity as a function of temperature. The analytical continuation
of the self-energy is performed with the Padé method. At high tem-
peratures the DMFT-NRG result agrees rather well with the RAIPT
(green dashed lines).

We have checked that Padé continuation gives similar re-
sults for �(ω) when performed on �(iωn) taken from last
few DMFT iterations. We than used �(iωn) averaged over the
last five iterations to further reduce the noise in �(iωn), be-
fore performing the Padé analytical continuation subsequently
used in the calculation of the conductivity. We also obtained
G(ω) directly by the Padé analytical continuation of G(iωn),
and checked that the result is consistent with the one cal-
culated as G(ω) = ∫

dε ρ0(ε)[ω + μ − ε − �(ω)]−1. These
cross checks have confirmed that Padé analytical continuation
is rather reliable.

Figure 8 shows the temperature dependence of resistivity
calculated with the DMFT-NRG (red lines) and DMFT-QMC
(blue dots). For the square lattice we find excellent agreement
between the two methods. For the triangular lattice we find
some discrepancy for T ∼ 1.5t , which is likely due to the
approximations in DMFT-NRG. We also find that the real-axis
iterative perturbation theory [65–67] (RAIPT) agrees rather
well with the DMFT-NRG solution for T � 2t .

It is also interesting to note how the lattice geometry can
influence the range of the Fermi liquid ρ ∝ T 2 behavior in the
DMFT solution. In the DMFT equations the lattice structure
enters only through the noninteracting density of states. We

FIG. 9. DMFT-QMC and DMFT-NRG optical conductivity at
T = 1.4.

observe ρ ∝ T 2 behavior up to much lower temperatures on
the square lattice. In this case, ρ ∝ T 2 region is hardly visible
on the scale of the plot, while ρ ∝ T 2 up to T ∼ 0.3t on the
triangular lattice. This observation is in agreement with the
extension of the C ∝ T region in C(T ), which is restricted to
lower temperatures in the case of a square lattice (Fig. 4).

A comparison of the DMFT-NRG (red lines) and DMFT-
QMC (blue lines) optical conductivity at T = 1.4t is shown in
Fig. 9. The overall agreement is very good. We, however, find
a small discrepancy at ω ∼ 10t . The DMFT-QMC result has
the Hubbard peak in σ (ω) centered exactly at ω = U , whereas
it is shifted to slightly lower frequency in the DMFT-NRG
solution. This shift is an artifact of numerical approximations
in DMFT-NRG. A position of the Hubbard peak at U = 10t
is another manifestation of the precision of analytical contin-
uation of the QMC data.

APPENDIX B: FINITE-SIZE EFFECTS
IN CHARGE SUSCEPTIBILITY

In Fig. 10 we show the charge susceptibility obtained
with different methods. The single-site DMFT result agrees
very well with the 4×4 FTLM after averaging over the
twisted boundary conditions. We show χc averaged over
Ntbc = 1, 4, 16, 64, and 128 clusters with different bound-
ary conditions. χc obtained with a single setup of boundary
conditions deviates at low temperatures from the averaged
values. The DCA results for T � 0.5t are also inconsistent.
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FIG. 10. Charge susceptibility as a function of temperature for
the triangular lattice at p = 0.15 hole doping.

We believe that this is an artifact of the particular choice of
the Brillouin zone patches. In DCA 4×4 and 2×2 we have
just four and two independent patches in the Brillouin zone
for triangular lattice, respectively.

APPENDIX C: DMFT DENSITY OF STATES

Here, we illustrate the density of states in different trans-
port regimes in the DMFT solution. The results in Fig. 11 are
obtained with the QMC solver followed by the Padé analyt-
ical continuation. We have checked that the density of states
agrees with the DMFT-NRG result.

In the Fermi-liquid regime at low temperatures there is a
peak in the density of states around the Fermi level. In the
doped case the coherence-decoherence crossover is at temper-
ature T ∼ 0.3, as we established from the specific-heat data
(see Fig. 4) and from the condition that the resistivity reaches
the Mott-Ioffe-Regel limit (see Sec. III B). In agreement with
earlier work [10,12], we see that at T ∼ 0.3 there is a peak in
the density of states even though long-lived quasiparticles are
absent. At even higher temperatures (here shown T = 1.4),
deeply in the bad-metal regime, the peak at the density of
states at the Fermi level is completely washed out.

FIG. 11. Density of states in the Fermi liquid at low temperatures
and in the bad-metal regime at high temperatures.

At half-filling the result is very sensitive to the exact posi-
tion of parameters on the U -T phase diagram (see Fig. 2). For
the triangular lattice at U = 10 the solution is metallic even
at low temperature which leads to the formation of narrow
quasiparticle peak at the Fermi level. This peak is quickly
suppressed by thermal fluctuations which is accompanied by
a sudden increase in the resistivity. For the square lattice at
U = 10 the system is insulating above for T � 0.03, while
the Mott gap gradually gets filled as the temperature increases.
We note that the low-temperature peak in optical conductivity
in Fig. 7 is not connected to the existence of quasiparticles.
It is just a consequence of a finite spectral density at the
Fermi level (the absence of an energy gap), as expected in
the bad-metal regime.
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The role of driving signal in the evolution of social
networks

Ana Vranić and Marija Mitrović Dankulov

Scientific Computing Laboratory, Center for Study of Complex Systems, Institute of Physics
Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

1 Introduction

Dynamics and emergence of collective behavior in social system strongly depend on the
structure of the interactions between actors in the social network. The nature of connec-
tions has been studied through empirical analysis and theoretical models of evolving
networks [1]. Models of evolving networks start with one, or the small number of ran-
domly connected nodes. The network grows by the addition of new nodes, which link to
ones already present in the system, following some linking rule. These rules can shape
the network in a specific way. For example, the preferential attachment mechanism is
essential for reproducing the networks with a heterogeneous distribution of the number
of first neighbors.

The role of driving, i.e., non-constant addition of new nodes in the network is still
poorly understood. While standard networks models assume that the addition of new
nodes is constant in time, the growth signal of real social systems varies and influences
network structure [2]. It is of great importance to understand the interplay between
the driving signal and network topology, and how they, separately and in combination,
shape the collective behaviour in social systems. We use a model of network with aging
nodes to examine the role of driving signal in a network.

2 Results

The aging model incorporates the time in a non-trivial manner by introducing nodes
aging [3]. The network is generated by adding one node with one link to the target node
in each time step, t. Probability for connecting new node in the network depends on
degree k of the target node and the age difference τ between the new and target node,

Πi(t)∼ ki(t)β τα
i (1)

Different values of parameters α and β lead to networks with different structural prop-
erties.

We customised the aging model by allowing the addition of multiple nodes (M > 1)
and links (L > 1), in each time step. As input in the simulation, we used the driving sig-
nal from the Meetup website, TECH social group [4]. Driving signal shows the number
of new members that joined a group at a single event.

COMPLEX
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



We run the simulations for TECH signal and randomized TECH signal, for all com-
binations of parameters −3 < α < 0 and 1 < β < 3, generating a sample of 100 net-
works. New members in network can make one (L = 1), or more (L = 3) connections.
As the average number of added nodes per time step is M = 1, we looked into differ-
ences of networks driven with original and randomized TECH signal and ones with
constant growth in the time. We use dissimilarity measure (D-distance) [5] to compare
samples of networks grown with different signals. D-distance considers Jensen-Shenon
divergence and node distance distribution.
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Fig. 1. (a) Dissimilarity distance between networks with (randomized) TECH and constant M = 1
signal, for number of links L = 1 and L = 3 in α-β plain. Network properties of (randomized)
TECH signal for different values of L: (b) degree distribution, (c) dependence of average neighbor
degree on node degree, (d) node clustering coefficient; for fixed model parameters α = −1. and
β = 1.5

Figure 1(a) shows calculated D-distance between networks obtained for original
driving signal vs. M = 1 (upper panel) and for randomized driving signal vs. M = 1
(lower panel). We notice a critical region around β = 1.5 and α =−1, where D-distance
between TECH and M1 signal is greater than between randomized TECH signal and
M1. For these parameters, we represent the topological features of networks. For de-
gree distribution (Fig.1(b)) we observe the only difference in slope between original
and randomized TECH signal, with linking parameters L = 1 and L = 3. Networks gen-
erated with the original and reshuffled signal have significantly different topology if we
compare degree-degree correlations and clustering coefficient.
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Networks obtained for the real signals are strongly disassortative (Fig.1(c)) and
have hierarchical structure, i.e., their clustering coefficient (Fig.1(d)) decreases with
k. On the other hand, networks observed from driving the model with the randomized
signal are uncorrelated, and their clustering weakly depends on the degree. Networks
generated with the aging network model for L=1 are tree-like networks. They don’t
have triangles and their clustering is equal to 0.

Summary. Our results show that for the certain values of model parameters networks
obtained from the driving with original signals have different topological features than
ones obtained from the driving with random signals, although they evolve under the
same linking rules. We find that driving signals alter the shape of the degree distribution,
degree-degree correlations and clustering in the network. The effect is the largest for
the values of model parameters for which we obtained networks with broad degree
distribution. This difference disappears as we move away from these parameters. Our
results strongly support the conclusion that driving signal is an important factor in the
evolution of social networks and it has to be included, as a parameter, in modeling social
systems.
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Summary:The application of wireless sensor networks (WSN) grows by the day. It is not
surprising that methods for the design of energy-efficient and resilient WSN are one of the 
critical tasks for scientists working in this field. Complex network theory provides methods 
for studying and designing WSN. Models of complex networks are an efficient tool for 
uncovering mechanisms that can lead to networks with desired structural and dynamical 
properties. The main ingredients of a network model are growth and linking rules. The 
connection between linking rules and emergent topologies of complex networks has been 
extensively studied. On the other hand, how the properties of growth signal influence the 
structure of generated networks is still unknown to a large extent. Here we explore how 
the temporal correlation in growth signals change the structure of the networks with 
ageing nodes. We find that scale-free networks grown with time-varying signals have
different global and local properties compared to ones grown with the constant signal. 
Signals with long-range correlations change the structure of the networks more than 
signals similar to white noise. Our results imply that growth signals and their properties 
need to be considered in the modelling of real complex networks, including WSN. 

Keywords: complex networks, complex networks models, time-varying growthsignals 
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