


Mǐsljenje rukovodioca laboratorije

Dr Marko Vojinović, član Grupe za gravitaciju, čestice i polja, od 2003. godine je zaposlen
u Institutu za fiziku, i bavi se proučavanjem klasičnih i kvantnih aspekata gravitacionog
polja. Diplomirao je 2002. godine sa prosekom 9.68 i priznanjem studenta generacije
Univerziteta u Beogradu. Magistrirao je 2006. godine a doktorirao 2008. godine pod
rukovodstvom dr Milovana Vasilića. U zvanje vǐsi naučni saradnik izabran je 28.09.2016.
godine odlukom Ministarstva prosvete, nauke i tehnološkog razvoja.

Preporučujem Naučnom veću Instituta za fiziku da odobri pokretanje postupka za
reizbor dr Marka Vojinovića u zvanje vǐseg naučnog saradnika iz sledećih razloga:

1. Ispunjenost kvantitativnih i kvalitativnih kriterijuma: zbir poena na osnovu
objavljenih radova i učešća na konferencijama znatno premašuje uslove za reizbor u zvanje
vǐsi naučni saradnik, koji su propisani od strane Ministarstva. Radovi su objavljeni u
vrhunskim med̄unarodnim časopisima u oblasti fizike visokih energija i gravitacije.

2. Pokretanje nove istraživačke teme u Grupi za gravitaciju, čestice i polja: dr Vo-
jinović je, nakon postdoktorskog usavršavanja u Lisabonu, pokrenuo istraživački rad u
oblasti spin-foam i spin-cube modela kvantne gravitacije, i tom temom se sada bavi sa
troje studenata (dvoje doktoranata i jedan master student). Na toj temi se bazira i nje-
gov predlog za projekt iz programa IDEJE Fonda za nauku, koji je trenutno na evaluaciji.

3. Med̄unarodna saradnja: dr Vojinović je proveo šest godina kao postdok saradnik
u Grupi za matematicku fiziku (GFM) na Univerzitetu u Lisabonu, Portugal, i tamo je
uspostavio brojne kontakte sa kolegama koji se bave fizičkim i matematičkim aspektima
kvantne gravitacije. Po povratku, dr Vojinović je uspostavio med̄unarodnu saradnju sa
Institutom za kvantnu optiku i kvantne informacije (IQOQI) u Beču, Austrija, čija je
posledica i bilateralnim projekt sa Austrijom kojim dr Vojinović rukovodi sa srpske strane.

4. Samostalnost i kvalitet naučnog rada: dr Vojinović pokazuje visok nivo samostal-
nosti u radu, što se ogleda kako u broju stručnih seminara koje je održao, radova koje je
publikovao sa svojim studentima, tako i u činjenici da sa vrlo velikim uspehom prezen-
tuje svoj istraživački rad na med̄unarodnim konferencijama. Ovo se prepoznaje i kroz
činjenicu da je na nekoliko med̄unarodnih naučnih skupova držao predavanja po pozivu
organizatora. Dr Vojinović objavljuje radove u časopisima sa visokim impakt faktorima,
a citiranost radova je, s obzirom na relativno mali broj istraživačkih grupa koje se bave
sličnom problematikom, veoma zadovoljavajuća.

5. Pedagoški rad i popularizacija fizike: dr Vojinović je tokom školske 2016/2017.
godine bio mentor za master rad Tijane Radenković na Fizičkom fakultetu Univerziteta u
Beogradu, a počev od školske 2017/2018. godine je i mentor za njenu doktorsku disertaciju,
što se vidi iz zajednički objavljena dva naučna rada:

[1] T. Radenković and M. Vojinović, JHEP 10, 222 (2019),
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u Beogradu
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• Grantovi:

– 04/2008–07/2008: Marie Curie Research Training Network grant (EU FP6, MRTN-CT-
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gravitaciju, čestice i polja

– Od 01.11.2003. angažovan na projektu 101486 “Gradijentne teorije gravitacije — simetrije
i dinamika”, Ministarstva za nauku i tehnološki razvoj

– Od 01.01.2006. angažovan na projektu 141036 “Alternativne teorije gravitacije”, Min-
istarstva za nauku i zaštitu životne sredine

– Od 01.01.2012. angažovan na projektu 171031 “Fizičke implikacije modifikovanog prostor-
vremena”, Ministarstva za obrazovanje, nauku i tehnološki razvoj

– Od 01.03.2008. angažovan na projektu “Constituents, Fundamental Forces and Symme-
tries of the Universe”, Marie Curie Research Training Network (EU FP6) and INRNE,
Sofia, Bulgaria

– Od 01.03.2009. angažovan kao post-dok istraživač u Grupi za Matematičku Fiziku Uni-
verziteta u Lisabonu, Portugal, sa učešćem na četiri projekta:

∗ projekt “Algebroids, geometry, quantum groups and applications”, Faculty of Sciences
and Technology, University of Coimbra, Portugal

∗ projekt “Strategic Project - UI 208 - 2011-2012”, Group of Mathematical Physics,
University of Lisbon, Portugal

∗ projekt “Strategic Project - UI 208 - 2013-2014”, Group of Mathematical Physics,
University of Lisbon, Portugal

∗ projekt “Quantum Gravity and Quantum Integrable Models - 2015-2016” (bilateralni
projekt izmed̄u Portugala i Srbije), Group of Mathematical Physics, University of
Lisbon, Portugal

– Od 01.07.2018. rukovodi projektom “Causality in Quantum Mechanics and Quantum
Gravity - 2018-2020” (bilateralni projekt izmed̄u Austrije i Srbije), Grupa za gravitaciju,
čestice i polja, Institut za fiziku u Beogradu

– Od 01.01.2021. angažovan na projektu “Symmetries and Quantization - 2020-2022” (bi-
lateralni projekt izmed̄u Portugala i Srbije), Grupa za gravitaciju, čestice i polja, Institut
za fiziku u Beogradu

– Od 01.01.2021. angažovan na projektu “Symmetries and Quantization 2020”, program
DIASPORA Fonda za nauku Republike Srbije
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Pregled naučne aktivnosti
dr Marka Vojinovića

Kvantizacija gravitacionog polja je jedan od osnovnih nerešenih problema moderne fundamentalne
teorijske fizike. Ljudsko znanje o prirodi se oslanja na dva velika stuba teorijske fizike. Sa jedne strane,
Ajnštajnova Opšta teorija relativnosti opisuje osnovne osobine prostora, vremena i gravitacije, od
svakodnevnih fenomena na Zemlji pa sve do najvećih kosmoloških skala, ukljucujući i Univerzum kao
celinu. Sa druge strane, Standardni Model fizike elementarnih čestica opisuje mikrosvet, od atomskih
skala pa sve do veoma malih rastojanja koja se mogu meriti u akceleratorskim eksperimentima (reda
10−20 m). Obe ove teorije demonstriraju neprikosnoveno slaganje sa svim eksperimentima koje su je
ljudska vrsta ikada izvela, svaka teorija u svom domenu primenljivosti.

Med̄utim, Opšta teorija relativnosti je klasična teorija, dok Standardni Model predstavlja kvantnu
teoriju, što dovodi do njihove med̄usobne protivrečnosti, već na logičkom nivou aksioma dve teorije.
Vodeći se principom da prirodni svet oko nas nije protivrečan samom sebi i da se može opisati
konzistentnom teorijom, jedan od glavnih zadataka fundamentalne fizike je da na odred̄eni način
modifikuje kako Opštu teoriju relativnosti tako i kvantnu teoriju polja (koja uključuje Standardni
Model) sa ciljem da ukloni protivrečnost dvaju teorija, čuvajući pritom sve njihove dobre osobine
potvrd̄ene eksperimentima.

Ovaj zadatak je krajnje netrivijalan, i postoji mnogo pristupa problemu kvantizacije Ajnštajnove
Opšte teorije relativnosti, med̄u kojima se izdvajaju teorija struna i kvantna gravitacija na petljama
kao dva najzastupljenija programa. Takod̄e, u poslednjih nekoliko godina, pojavila se inicijativa za
rešavanje problema kvantne gravitacije od strane istraživača iz oblasti zasnivanja kvantne mehanike
i kvantne teorije informacija. Dok su teorija struna i kvantna gravitacija na petljama dominantno
geometrijski pristupi konstrukciji teorije kvantne gravitacije, ovaj treći pristup je dominantno orijen-
tisan na informacioni opis fizike, pa samim tim i kvantne gravitacije.

Kandidatova naučna aktivnost je povezana sa sva tri programa, i rezultati kandidatovih is-
traživanja mogu se grubo podeliti u tri grupe.

1. Istraživanje u okviru teorije struna i klasične gravitacije

Centralni rezultati kandidatovog istraživanja u okviru teorije struna i klasične gravitacije objavl-
jeni su u šest radova:

[1] M. Vasilić, M. Vojinović, “Classical String in Curved Backgrounds”,
Phys. Rev. D 73, 124013 (2006).

[2] M. Vasilić, M. Vojinović, “Classical Spinning Branes in Curved Backgrounds”,
JHEP 07(2007)028.

[3] M. Vasilić, M. Vojinović, “Zero-size Objects in Riemann-Cartan Spacetime”,
JHEP 08(2008)104.

[4] M. Vasilić, M. Vojinović, “Interaction of particle with the string in pole-dipole approximation”,
Fortschr. Phys. 56, 542 (2008).
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[5] M. Vasilić, M. Vojinović, “Spinning branes in Riemann-Cartan spacetime”,
Phys. Rev. D 78, 104002 (2008).

[6] M. Vasilić, M. Vojinović, “Test membranes in Riemann-Cartan spacetimes”,
Phys. Rev. D 81, 024025 (2010).

Radovi [1-6], kao i nekoliko drugih radova (iz raznih štampanih izveštaja sa med̄unarodnih i
domaćih konferencija), predstavljaju program istraživanja koji je započet kroz kandidatov magistarski
rad i doktorsku disertaciju. Centralni rezultat radova [1,2,4,5] predstavljaju najopštije realistične
jednačine kretanja p-dimenzionalne brane u D-dimenzionalnom prostorvremenu čija geometrija sadrži
netrivijalnu krivinu, odnosno krivinu i torziju. Ovo je vrlo važan rezultat, jer daje nov uvid u
interpretaciju interakcije materije sa krivinom i torzijom. Rad [6] se nadovezuje na ove rezultate i
daje odgovarajuće tumačenje sigma-modela za 1-branu i 2-branu koji je ugrad̄en u osnove teorije
struna. Rad [3] diskutuje kretanje čestice (0-brane) u prostorvremenu sa krivinom i torzijom, sa
specijalnim naglaskom na Dirakovu česticu koja ispoljava neke zanimljive osobine kroz interakciju sa
torzijom.

Osim toga, rezultati dobijeni ovim programom istraživanja nalaze primenu i u drugim oblastima
fizike, kao što je na primer hidrodinamika ne-Njutnovskih fluida.

2. Istraživanje u okviru kvantne gravitacije na petljama

Najznačajniji rezultati kandidatovog dosadašnjeg istraživanja u okviru kvantne gravitacije na
petljama objavljeni su u sledećih 11 radova:

[7] A. Miković, M. Vojinović, “Large-spin asymptotics of Euclidean LQG flat-space wavefunc-
tions”, Adv. Theor. Math. Phys. 15, 801 (2011).

[8] A. Miković, M. Vojinović, “Effective action and semiclassical limit of spin foam models”, Class.
Quant. Grav. 28, 225004 (2011).

[9] A. Miković, M. Vojinović, “Poincaré 2-group and quantum gravity”,
Class. Quant. Grav. 29, 165003 (2012).

[10] A. Miković, M. Vojinović, “A finiteness bound for the EPRL/FK spin foam model”,
Class. Quant. Grav. 30, 035001 (2013).

[11] M. Vojinović, “Cosine problem in EPRL/FK spinfoam model”,
Gen. Relativ. Gravit. 46, 1616 (2014).

[12] A. Miković, M. Vojinović, “Solution to the Cosmological Constant Problem in a Regge Quantum
Gravity Model”, Europhys. Lett. 110, 40008 (2015).

[13] A. Miković, M. A. Oliveira, M. Vojinović, “Hamiltonian analysis of the BFCG theory for the
Poincaré 2-group”, Class. Quant. Grav. 33, 065007 (2016).
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[14] M. Vojinović, “Causal Dynamical Triangulations in the Spincube Model of Quantum Gravity”,
Phys. Rev. D 94, 024058 (2016).

[15] A. Miković, M. A. Oliveira, M. Vojinović, “Hamiltonian analysis of the BFCG formulation of
general relativity”, Class. Quant. Grav. 36, 015005 (2019).

[16] T. Radenković, M. Vojinović, “Higher gauge theories based on 3-groups”,
JHEP 10(2019)222.

[17] T. Radenković, M. Vojinović, “Hamiltonian Analysis for the Scalar Electrodynamics as 3BF
Theory”, Symmetry 12, 620 (2020).

Radovi [7,8,10,11] se bave tzv. spin-foam formalizmom za kvantizaciju gravitacije, konkretno
otvorenim problemima konačnosti kvantne teorije gravitacije i njenog semiklasičnog limita. U tom
smislu ovi radovi su imali veliki doprinos kako razumevanju ova dva problema, tako i metodama za
njihovo rešavanje. U radu [10] je dokazano da problem konačnosti teorije može da se reši uspešno
odgovarajućom redefinicijom mere u funkcionalnom integralu gravitacionog polja, i da ta redefinicija
ne narušava klasičan limes teorije. Ovo je jedan od prvih rezultata te vrste uopšte. Radovi [7,8,11]
donose nov uvid u pitanje semiklasičnog limesa kvantne gravitacije, i obezbed̄uju efektivan metod
za odred̄ivanje oblika klasične teorije u zadatoj aproksimaciji. Ovo je takod̄e prvi rezultat te vrste.
Kao dodatni rezultat, pokazano je da u teoriji u kojoj je u kvantnom režimu narušena simetrija
difeomorfizama, u klasičnom limesu teorije ova simetrija se ponovo uspostavlja, čime je rešena jedna
dugogodǐsnja zagonetka odnosa diskretizovanog i glatkog prostorvremena.

Radovi [9,12] se bave kategorijskom generalizacijom spin-foam modela na tzv. spincube modele
kvantne gravitacije. Ovim postupkom se efikasno rešava problem kombinovanja gravitacije sa ostalim
interakcijama i fermionskom materijom, što je takod̄e prvi rezultat te vrste. U spin-foam modelima
koji su dosad izučavani u literaturi bilo je efektivno dokazano da fermionsku materiju nije nikako
moguće uključiti u formalizam teorije, i ovo je bio veliki problem svih razmatranih spin-foam mod-
ela. Kategorijska generalizacija spin-foam modela na spincube modele na neočekivan ali elegantan
način prevazilazi ovaj problem, i samim tim predstavlja mnogo bolju osnovu za izgradnju realistične
teorije kvantne gravitacije. Istovremeno, teorija sugerǐse nov pristup rešavanju fundamentalnog prob-
lema kosmološke konstante, a otvara se i mogućnost unifikacije gravitacije sa ostalim interakcijama
— mogućnost koja je bila potpuno nedostižna u svim dosadašnjim modelima kvantne gravitacije.
Kanonska struktura spincube modela je izučena u radovima [13,15], dok je rad [14] posvećen vezi
izmed̄u spincube modela i jednog tehnički sličnog ali konceptualno različitog pristupa kvantizaciji
gravitacionog polja, pod imenom kauzalne dinamičke triangulacije (CDT). Uočen je zanimljiv rezul-
tat da se CDT modeli mogu razumeti kao specijalan slučaj spincube modela, što na izvestan način
povezuje dva pristupa kvantnoj gravitaciji u jednu zajedničku celinu.

Tokom proučavanja spincube modela uočena je potreba da se izvrši još jedna kategorijska gen-
eralizacija, ovaj put prelaskom sa algebarskog pojma grupe (koja odgovara spin-foam modelima)
i 2-grupe (koja odgovara spincube modelima) na pojam 3-grupe. Ovo novo uopštenje omogućava
da se ne samo gravitaciono, nego i sva ostala polja u prirodi opǐsu jednom jedinom unificiranom
algebarskom strukturom 3-grupe. Odgovarajući model klasične gravitacije kuplovan sa Standardnim
Modelom elementarnih čestica baziran na 3-grupi formulisan je u radu [16], i predstavlja pravu po-
laznu osnovu za kvantizaciju svih polja u prirodi na jedinstven način. Rezultati ovog istraživanja
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predstavljeni su predavanjem po pozivu na med̄unarodnom naučnom skupu u Krajovi (Rumunija) u
septembru 2020. godine, i štampani u celini:

[18] T. Radenković, M. Vojinović, “Quantum gravity and elementary particles from higher gauge
theory”, Ann. Univ. Craiova Phys. 30, 74 (2020).

Nakon formulisanja ovog novog modela, počelo je izučavanje njegovih osobina. Rad [17] predstavlja
prvi korak u tom pravcu, i bavi se analizom kanonske strukture specijalnog slučaja modela gravitacije
kuplovane sa skalarnom elektrodinamikom.

Rezultati [15,16,17] ostvareni su nakon kandidatovog izbora u prethodno zvanje.

3. Istraživanje u okviru informacione kvantne gravitacije

Najznačajniji dosadašnji rezultati kandidatovog istraživanja u okviru ove informacione kvantne
gravitacije, koja je vrlo mlada oblast istraživanja, objavljeni su u sledeća tri rada:

[19] N. Paunković, M. Vojinović, “Gauge protected entanglement between gravity and matter”,
Class. Quant. Grav. 35, 185015 (2018).

[20] F. Pipa, N. Paunković, M. Vojinović, “Entanglement-induced deviation from the geodesic mo-
tion in quantum gravity”, Jour. Cosmol. Astropart. Phys. 09, 057 (2019).

[21] N. Paunković, M. Vojinović, “Causal orders, quantum circuits and spacetime: distinguishing
between definite and superposed causal orders”, Quantum 4, 275 (2020).

Rad [19] se bavi pojavom kvantne upletenosti u kontekstu kvantne gravitacije. Ispostavlja se
da grupa difeomorfizama, kao gejdž simetrija gravitacije, nameće ograničenja na moguća kvantna
stanja gravitacionog polja i materije, koja praktično eliminǐsu sva separabilna stanja, ostavljajući
isključivo upletena stanja kao moguće početne uslove za bilo kakvu dinamiku. U radu [20] se razmatra
kretanje čestice u kvantnoj superpoziciji dve različite konfiguracije gravitacionog polja. Prisustvo
drugog gravitacionog polja skreće česticu sa geodezijske putanje u odnosu na prvo gravitaciono polje,
dovodeći do narušenja slabog principa ekvivalencije u kvantnoj gravitaciji. Rad [21] proučava tzv.
kvantni prekidač, kvantni protokol u kome se redosled operacija nad kvantnim sistemom stavlja u
superpoziciju. Analizira se prostorvremenski opis kvantnog prekidača u kontekstu kauzalnog poretka
dogad̄aja. Takod̄e se uvodi pojam tzv. gravitacionog prekidača, koji implementira kvantni prekidač
koristeći superpoziciju dve konfiguracije gravitacionog polja. Ispostavlja se da gravitacioni prekidač
ispoljava kvalitativno nove osobine, koje ne postoje u slučaju običnog kvantnog prekidača.

Rezultati [19,20,21] ostvareni su nakon kandidatovog izbora u prethodno zvanje.
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Pregled kvalitativnih pokazatelja
naučnoistraživačkog rada Marka Vojinovića

1. Kvalitet naučnih rezultata

1.1. Naučni nivo i značaj rezultata, uticaj naučnih radova

Dr Marko Vojinović je u svom dosadašnjem radu objavio preko 30 naučnih publikacija, med̄u
kojima 1 rad u kategoriji M21a, 18 u kategoriji M21, 1 u kategoriji M22, 2 u kategoriji M31, 8 u
kategoriji M33, kao i dva zbornika radova sa med̄unarnodnih skupova, kategorija M36.

Od toga, u periodu nakon izbora u prethodno zvanje, dr Vojinović je objavio 1 rad u kategoriji
M21a, 4 u kategoriji M21, 1 u kategoriji M22, 1 u kategoriji M31, 2 u kategoriji M33, i 2 u kategoriji
M36.

Kao pet najznačajnijih radova kandidata mogu se uzeti:

[1] M. Vasilić and M. Vojinović, “Classical Spinning Branes in Curved Backgrounds”, JHEP 07
028 (2007), citiran 13 puta.

[2] A. Miković and M. Vojinović, “Effective action and semiclassical limit of spin foam models”,
Class. Quant. Grav. 28, 225004 (2011), citiran 7 puta.

[3] M. Vojinović, “Causal Dynamical Triangulations in the Spincube Model of Quantum Gravity”,
Phys. Rev. D 94, 024058 (2016), citiran 1 put.

[4] T. Radenković and M. Vojinović, “Higher gauge theories based on 3-groups”, JHEP 10, 222
(2019), citiran 2 puta.

[5] N. Paunković and M. Vojinović, “Causal orders, quantum circuits and spacetime: distinguishing
between definite and superposed causal orders”, Quantum 4, 275 (2020), citiran 3 puta.

Prvi rad predstavlja reprezentativan deo programa istraživanja koji je započet kroz kandida-
tov magistarski rad i doktorsku disertaciju. Centralni rezultat predstavljaju najopštije realistične
jednačine kretanja p-dimenzionalne brane u D-dimenzionalnom prostorvremenu čija geometrija sadrži
netrivijalnu krivinu. Ovo je vrlo važan rezultat, jer daje nov uvid u interpretaciju interakcije ma-
terije sa krivinom, kao i odgovarajuće tumačenje sigma-modela za 1-branu i 2-branu koji je ugrad̄en
u osnove teorije struna. Takod̄e su detaljno proučene sve simetrije koje imaju dobijene jednačine
kretanja. Rezultati dobijeni u ovom radu nalaze primenu čak i u drugim oblastima fizike, kao što je
na primer hidrodinamika ne-Njutnovskih fluida.

Drugi rad se bavi spin-foam formalizmom za kvantizaciju gravitacije, konkretno otvorenim proble-
mom semiklasičnog limita spin-foam modela kvantne gravitacije. U tom smislu ovaj rad je imao veliki
doprinos kako razumevanju ovog problema, tako i metodama za njegovo rešavanje. Rad uvodi nov
efektivan metod za odred̄ivanje oblika klasične teorije u zadatoj aproksimaciji, baziran na pojmu efek-
tivnog dejstva u kvantnoj teoriji polja. Ovo je prvi rezultat te vrste. Kao dodatni rezultat, pokazano
je da u teoriji u kojoj je u kvantnom režimu narušena simetrija difeomorfizama, u klasičnom limesu
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teorije ova simetrija se ponovo uspostavlja, čime je rešena jedna dugogodǐsnja zagonetka odnosa
diskretizovanog i glatkog prostorvremena.

Treći rad razmatra neočekivanu vezu izmed̄u dva bliska ali različita pristupa kvantovanju gravita-
cionog polja — spincube modela sa jedne strane, i modela kauzalnih dinamičkih triangulacija (CDT)
sa druge strane. Ova dva pristupa su nastala nezavisno jedan od drugog, iz različitih premisa o
dinamici gravitacionog polja. Zato je sasvim neočekivan i veoma značaja rezultat da se CDT pristup
može videti kao specijalan slučaj spincube pristupa kvantnoj gravitaciji. U radu se ta veza eksplicitno
demonstrira, i razmatraju njene posledice. Takod̄e se diskutuju i neki modeli uopštenja CDT pris-
tupa, bazirani na drugim klasama specijalnih slučajeva spincube modela. Značaj ovog rada se dakle
najvǐse ogleda u ujedinjavanju dva različita pristupa kvantnoj gravitaciji u jedinstven matematički
formalizam.

Četvrti rad se bavi kategorijskim uopštenjem spin-foam i spincube modela kvantne gravitacije
na modele bazirane na pojmu 3-grupe. Ovim postupkom se efikasno rešava problem kombinovanja
gravitacije sa ostalim interakcijama i fermionskom materijom. U spin-foam modelima koji su dosad
izučavani u literaturi bilo je efektivno dokazano da fermionsku materiju nije nikako moguće uključiti
u formalizam teorije, i ovo je bio veliki problem svih razmatranih spin-foam modela. Kategorijska
generalizacija spin-foam modela na spincube modele je ukazala na put kojim je moguće prevazići
ovaj problem, dok je uopštenje na strukturu 3-grupe realizovalo tu ideju do kraja, definǐsući mnogo
bolju osnovu za izgradnju realistične teorije kvantne gravitacije, uz unifikaciju gravitacije sa ostalim
poljima prisutnim u Standardnom Modelu elementarnih čestica.

Peti rad je posvećen pojmu kauzalnosti u tzv. informacionom pristupu kvantnoj gravitaciji. In-
formaciona kvantna gravitacija je pristup konstrukciji kvantne teorije gravitacije sa tačke gledǐsta
kvantne teorije informacija. U radu se razmatra tzv. kvantni prekidač, protokol koji stavlja u
superpoziciju dva različita poretka operacija nad kvantnim sistemom. U literaturi je postojala inter-
pretacija koja ulogu kvantnog prekidača posmatra kao superpoziciju dva različita kauzalna poretka
izmed̄u dogad̄aja, i ovaj rad detaljno analizira konceptualnu razliku izmed̄u pojma dogad̄aja kao
interakcije agenta sa kvantnim sistemom (kvantno-informacioni pristup) i pojma dogad̄aja kao pros-
torvremenske tačke (geometrijski pristup). Osnovni rezultat rada je da ova dva pojma dogad̄aja
nisu ekvivalentna, i eksplicitno je konstruisana opservabla koja ih razlikuje, na primeru kvantnog
prekidača. Za ovu analizu je uveden i nov pojam gravitacionog prekidača, protokola nad kvantnim
sistemom koji se odvija u superpoziciji dve različite konfiguracije gravitacionog polja. Dokazano je da
je samo u slučaju gravitacionog prekidača moguće poistovetiti dva pojma dogad̄aja na konzistentan
način, i da se samo u tom slučaju može zaista govoriti o pravoj superpoziciji kauzalnih poredaka.

1.2. Pozitivna citiranost naučnih radova

Prema bazi podataka Web of Science, radovi kandidata su citirani ukupno 124 puta, od toga 74
puta ne računajući samocitate. Prema istoj bazi, Hiršov indeks kandidata je 6. Relevantni podaci o
citiranosti sa internet stranice Web of Science baze dati su u prilogu, nakon spiska svih radova.

1.3. Parametri kvaliteta časopisa

Važan element za procenu kvaliteta naučnih rezultata je i kvalitet časopisa u kojima su radovi
objavljeni, odnosno njihov impakt faktor. Časopisi u kojima je kandidat objavljivao radove i koji
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imaju impakt faktor pripadaju kategorijama M21a, M21 i M22, i to su sledeći (podvučeni su brojevi
koji se odnose na period nakon prethodnog izbora u zvanje):

• Quantum — 1 rad, IF=5,381.

• Journal of High Energy Physics — 1+2 rada, IF=5,875+5,659+5,659.

• Journal of Cosmology and Astroparticle Physics — 1 rad, IF=5,524.

• Classical and Quantum Gravity — 2+4 rada, IF=3,487+3,487+3.119+3,562+3,562+3,320.

• Physical Review D — 4 rada, IF=4,557+5,050+5,050+4,896.

• Europhysics Letters — 1 rad, IF=2,095.

• General Relativity and Gravitation — 1 rad, IF=1,902.

• Advances in Theoretical and Mathematical Physics — 1 rad, IF=2,034.

• Fortschritte der Physik — 1 rad, IF=2,007.

• Symmetry — 1 rad, IF=2,645.

Ukupan impakt faktor radova kandidata je 78,691, a u periodu nakon prethodnog izbora u zvanje
iznosi 26,399. Časopisi u kojima je kandidat objavljivao radove su po svom ugledu veoma cenjeni
u oblastima kojima pripadaju. Med̄u njima se posebno ističu: Quantum, Journal of High Energy
Physics, Physical Review D, Classical and Quantum Gravity i Journal of Cosmology and Astroparticle
Physics.

Dodatni bibliometrijski pokazatelji u vezi sa objavljenim radovima kandidata, nakon odluke o
prethodnom izboru u zvanje, dati su u donjoj tabeli. Ona sadrži impakt faktore (IF) radova, bodove
radova po domaćoj kategorizaciji (M20) naučnoistraživačkih rezultata, kao i impakt faktore nor-
malizovane po impaktu citirajućeg članka (SNIP). U tabeli su date ukupne vrednosti, kao i srednje
vrednosti po članku i po broju autora.

IF M SNIP∗

Ukupno 26,399 47 5.758
Usrednjeno po članku 4.400 7,833 1.152
Usrednjeno po autoru 11,698 20.833 2.518
∗Časopis Quantum ima kategoriju M21a i impakt faktor 5,381, ali mu još uvek

nije dodeljen SNIP, s obzirom da je počeo da izlazi tek od 2017. godine.

1.4. Stepen samostalnosti i stepen učešća u realizaciji rezultata

U oblasti istraživanja kojom se kandidat bavi uobičajeno je da se autori potpisuju na radove
abecednim redom, i ne postoji koncept prvog autora. Ovo je praksa u radovima iz teorijske fizike vi-
sokih energija, i primenjena je sistematski u svim kandidatovim radovima. U tom smislu, kandidatov
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doprinos u objavljenim radovima treba razumeti kao potpuno ravnopravan izmed̄u svih potpisanih
autora.

Takod̄e, od ukupno 20 objavljenih radova u kategorijama M21a, M21 i M22, kandidat je objavio
2 rada samostalno, 15 radova sa jednim koautorom, i 3 rada sa dva koautora. Od toga, u svim
radovima sa dva koautora jedan od koautora je saradnik, a drugi koautor je student (master odnosno
doktorskih studija). U periodu nakon prethodnog izbora u zvanje, kandidat je objavio ukupno 6
radova u kategorijama M21a, M21 i M22, pri čemu su 2 rada objavljena sa po jednim saradnikom,
2 rada sa saradnikom i njegovim studentom, i 2 rada sa kandidatovim mlad̄im saradnikom (student
doktorskih studija, T. Radenković).

Budući da su svi radovi objavljeni sa najvǐse dva koautora, doprinos kandidata izradi svakog
od radova je značajan. Kandidat je učestvovao u osmǐsljavanju, formulaciji i diskusiji problema,
analitičkim proračunima i samom pisanju radova. Dodatno, samostalnost kandidata se ogleda kako
u dva rada koja je objavio sa svojim mlad̄im saradnikom (u časopisima Journal of High Energy
Physics i Symmetry), tako i u dva rada koja je kandidat objavio kao jedini autor (u časopisima
Physical Review D i General Relativity and Gravitation).

2. Angažovanost u formiranju naučnih kadrova

U periodu nakon prethodnog izbora u zvanje, kandidat ima tri mlad̄a saradnika: Tijana Ra-
denković (student doktorskih studija počev od školske 2017/2018. godine), Pavle Stipsić (student
doktorskih studija počev od školske 2020/2021. godine), i Mihailo -Dord̄ević (student master studija
školske 2020/2021. godine). Kandidatova uloga kao mentora za ove studente tek treba da se ozvaniči1

odlukom Naučno-nastavnog veća Fizičkog fakulteta Univerziteta u Beogradu, nakon odbrane njihovih
tema za doktorske disertacije.

Pritom, do sada je kandidat sa jednim od mlad̄ih saradnika objavio dva rada (M21, M22),

• T. Radenković and M. Vojinović, “Higher gauge theories based on 3-groups”, JHEP 10, 222
(2019).

• T. Radenković and M. Vojinović, “Hamiltonian Analysis for the Scalar Electrodynamics as
3BF Theory”, Symmetry 12, 620 (2020).

kao i dva saopštenja sa med̄unarodnih skupova štampana u celini (M31, M33),

• T. Radenković and M. Vojinović, “Quantum gravity and elementary particles from higher gauge
theory”, Ann. Univ. Craiova Phys. 30, 74 (2020).

• T. Radenković and M. Vojinović, “Construction and examples of higher gauge theories”, SFIN
XXXIII, 251 (2020).

Osim toga, Tijana Radenković je pod kandidatovim rukovodstvom odbranila svoju master tezu
školske 2016/2017. godine, na Fizičkom fakultetu Univerziteta u Beogradu. Naslovna strana master
teze i strana sa zahvalnicom date su u prilogu.

1Prema članu 49 važećeg Pravilnika o sticanju istraživačkih i naučnih zvanja (“Službeni glasnik RS” broj 159 od
30.12.2020.), za izbor odnosno reizbor u zvanje vǐsi naučni saradnik formalno mentorstvo za doktorsku disertaciju nije
neophodan kriterijum.

4



U okviru pedagoškog rada, kandidat je bio mentor za istraživački rad dvoje polaznika u Petnici,
iz oblasti gravitacionih talasa. Na osnovu tog istraživanja su polaznici objavili rad

• D. Cvijetić, M. Stošić, “Simulacija idealnih detektora gravitacionih talasa”, Petničke Sveske
78, 67 (2019).

Prva strana njihovog rada, na kojoj je imenovan i dr Vojinović kao mentor, nalazi se u prilogu.

U periodu pre prethodnog izbora u zvanje, tokom 2013-2015. godine, kandidat je bio komentor
doktorske disertacije Migela Angela Oliveire na Univerzitetu u Lisabonu. Disertacija se delom bazira
na zajedničkom radu:

• A. Miković, M. A. Oliveira and M. Vojinović, “Hamiltonian analysis of the BFCG theory for
the Poincaré 2-group”, Class. Quant. Grav. 33, 065007 (2016).

U prilogu se nalaze naslovna strana i strana sa zahvalnicom iz njegove doktorske disertacije, kao i
izjava glavnog mentora, dr Aleksandra Mikovića.

Takod̄e, dr Vojinović se bavio i pedagoškim radom. U periodu 01.09.2012.–30.06.2013. godine bio
je u svojstvu spoljnjeg saradnika angažovan kao predavač predmeta fizika u Matematičkoj Gimnaziji
u Beogradu. U toku tog perioda je bio mentor za šest maturskih radova učenika Matematičke Gim-
nazije, i uručeno mu je priznanje za uspehe njegovih učenika postignute na 51. državnom takmičenju
iz fizike za učenike srednjih škola. Priznanje i ugovor o izvod̄enju nastave se nalaze u prilogu.

3. Normiranje broja koautorskih radova

Kandidat je u periodu od prethodnog izbora u zvanje objavio ukupno 11 publikacija, od toga 1 rad
kategorije M21a, 4 rada kategorije M21, 1 rad kategorije M22, 1 rad kategorije M31, 2 rada kategorije
M33 i dva zbornika radova kategorije M36. Pritom, sve publikacije su objavljene sa jednim odnosno
dva koautora. U skladu sa pravilima, radovi sa ukupno dva odnosno tri autora se ne normiraju, pa
je efektivni broj radova u ovom slučaju jednak ukupnom broju radova.

4. Rukovod̄enje projektima, potprojektima i projektnim zadacima

U periodu nakon prethodnog izbora u zvanje, kandidat rukovodi bilateralnim projektom izmed̄u
Srbije i Austrije, koji sa srpske strane finansira Ministarstvo prosvete, nauke i tehnološkog razvoja.
Projekt nosi naziv “Kauzalnost u kvantnoj mehanici i kvantnoj gravitaciji”, evidencioni broj 451-03-
02141/2017-09/02, i počeo je sa radom 01.07.2018. godine, sa trajanjem od dve godine. Pritom, zbog
posledica COVID-19 pandemije, Ministarstvo je donelo odluku (dva puta) da se trajanje projekta
produži dok se ponovo ne steknu uslovi za mogućnost putovanja. U tom smislu, projekt još uvek
traje, sa trenutno predvid̄enim završetkom 01.07.2021. godine.

Kao dokaz rukovod̄enja projektom, u prilogu se nalazi izveštaj poslat Ministarstvu nakon uspešnog
završetka prve godine projekta, kao i imejl obaveštenje iz Ministarstva o produžavanju trajanja pro-
jekta do 01.07.2021. godine.

Osim rukovod̄enja, dr Vojinović učestvuje kao član u još dva aktuelna projekta. Prvi je jedno-
godǐsnji projekt pod nazivom “Symmetries and Quantization 2020” iz programa DIASPORA Fonda
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za nauku Republike Srbije, evidencioni broj 6427195, koji je počeo sa radom 01.01.2021. godine.
Drugi je dvogodǐsnji bilateralni projekt izmed̄u Srbije i Portugala, koji sa srpske strane finansira
Ministarstvo prosvete, nauke i tehnološkog razvoja, pod nazivom “Simetrije i kvantizacija”, eviden-
cioni broj 337-00-00227/2019-09/57, koji je takod̄e počeo sa radom 01.01.2021. godine.

U periodu pre prethodnog izbora u zvanje, kandidat je bio rukovodilac za tri zadatka na tri
med̄unarodna projekta, u periodu od 2009. do 2014. godine:

• zadatak “Kvantne grupe i geometrija” na projektu “Algebroids, geometry, quantum groups
and applications” Univerziteta u Koimbri, Portugal (2009–2012),

• zadatak “Kvantna gravitacija” na projektu “Strategic Project - UI 208 - 2011-2012” Grupe za
Matematičku Fiziku Univerziteta u Lisabonu (2011–2012),

• zadatak “Kvantna gravitacija” na projektu “Strategic Project - UI 208 - 2013-2014” Grupe za
Matematičku Fiziku Univerziteta u Lisabonu (2013–2014).

Sva tri projekta finansirala je portugalska nacionalna Fondacija za Nauku i Tehnologiju (FCT).
Potvrde o rukovod̄enju su date u prilogu.

5. Aktivnost u naučnim i naučno-stručnim društvima

Kandidat je recenzent u sledećim med̄u narodnim naučnim časopisima:

• Classical and Quantum Gravity,

• Foundations of Physics,

• Symmetry, Integrability and Geometry: Methods and Applications,

• Axioms.

U prilogu se nalaze pisma urednǐstva svakog od časopisa kandidatu sa pozivima za recenzije.

6. Uticaj naučnih rezultata

Uticajnost naučnih rezultata kandidata navedena je u odeljku 1.2 ovog dokumenta. Pun spisak
radova je dat u prilogu, kao i podaci o citiranosti svakog od radova, preuzeti sa internet stranice baze
Web of Science.

Imajući u vidu da su radovi iz fundamentalne teorijske fizike, ostvaren broj citata (ukupno 124,
bez samocitata 74, Hiršov indeks 6) smatra se veoma zadovoljavajućim za oblast istraživanja i teme
kojima se kandidat bavi.

7. Doprinos realizaciji radova u naučnim centrima u zemlji i inostranstvu

Kandidat je značajno doprineo svakom radu koji je objavio. Svi radovi objavljeni u periodu nakon
prethodnog izbora u zvanje urad̄eni su sa saradnicima iz inostranstva i sa mlad̄im kolegama (stu-
dentima master i doktorskih studija). Dr Vojinović je imao ključan doprinos u svim publikacijama,
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bitno je uticao na tok istraživanja tokom izrade radova, učestvovao je u analitičkim proračunima,
metodima i tehnikama pristupa problemima, pisanju teksta radova, kao i u komunikaciji sa recen-
zentima prilikom postupka objavljivanja.

Vezano za dva publikovana zbornika radova sa med̄unarodnih skupova (kategorija M36), dr Voji-
nović je učestvovao u selekciji i recenzijama radova obuhvaćenih zbornicima, tehničkoj obradi teksta
i pripremi zbornika za publikovanje, kao i pisanju uvoda i ostalih delova zbornika.

8. Med̄unarodna naučna saradnja

U periodu nakon prethodnog izbora u zvanje, dr Vojinović je tokom dva meseca (u periodu 16.10.–
15.12.2017.) boravio u Beču, gostujući u grupi prof. Časlava Bruknera u Institutu za kvantnu optiku
i kvantne informacije (IQOQI) Univerziteta u Beču, kao dobitnik JESH granta (Joint Excellence in
Science and Humanities) austrijske Akademije nauka. Tokom tog gostovanja, ostvarena je značajna
saradnja izmed̄u Grupe za gravitaciju, čestice i polja Instituta za fiziku u Beogradu i grupe prof.
Bruknera u institutu IQOQI. Iako je vreme od dva meseca bilo prekratko za objavljivanje zajedničkih
radova, značajan rezultat te saradnje je bilateralni projekt izmed̄u Srbije i Austrije koji je dobijen
2018. godine i kojim dr Vojinović rukovodi. Zajednički naučnoistraživački rad dvaju grupa je još
uvek u toku, i nastaviće se u budućnosti.

U prilogu se nalazi pozivno pismo prof. Antona Cajlingera, predsednika austrijske Akademije
nauka, kao i izveštaj o gostovanju i uspešno ostvarenoj saradnji od prof. Časlava Bruknera, direktora
IQOQI instituta.

U periodu pre prethodnog izbora u zvanje, kandidat je tokom 01.03.2009.–01.03.2012. i tokom
01.03.2013.–01.01.2016. godine bio angažovan kao post-doktorski istraživač u Grupi za Matematičku
Fiziku (GFM) na Univerzitetu u Lisabonu, Portugal. Tokom ukupno šest godina boravka, bio je
angažovan na četiri naučno-istraživačka projekta, tri na Univerzitetu u Lisabonu i jedan na Uni-
verzitetu u Koimbri. Kao rezultat te saradnje, objavio je 6 radova u vrhunskim med̄unarodnim
časopisima (M21), u kolaboraciji sa prof. dr Aleksandrom Mikovićem, redovnim profesorom na Lu-
sofona Univerzitetu u Lisabonu i stalnim članom grupe GFM Univerziteta u Lisabonu. Deklaracija
o post-doktorskom angažmanu u GFM grupi nalazi se u prilogu.

9. Pokazatelji uspeha u naučnom radu

U periodu nakon prethodnog izbora i zvanje, kandidat je održao tri predavanja po pozivu na
med̄unarodnim naučnim skupovima:

• QISS 2020 Workshop, Hong Kong, Kina, 10.01.–19.01.2020. godine,

• 12-th QFND Workshop, Krajova, Rumunija, 24.–29.09.2020. godine,

• SAC-19 Conference, Beograd, Srbija, 13.-17.10.2020. godine.

Pozivna pisma za sva tri skupa se nalaze u prilogu. Pritom, saopštenje sa med̄unarodnog skupa u
Krajovi je štampano u celini (kategorija M31):
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• T. Radenković and M. Vojinović, “Quantum gravity and elementary particles from higher gauge
theory”, Ann. Univ. Craiova Phys. 30, 74 (2020).

Osim toga, dr Vojinović je po pozivu boravio u gostima na Departmanu za filosofiju Univerziteta
u Ženevi, u grupi koju predvodi prof. Christian Wüthrich, u periodu 17.-22.10.2016. godine. Tom
prilikom je takod̄e održao predavanje po pozivu, za članove grupe. Pozivno pismo je dato u prilogu.

Kandidat je učestvovao u organizacionim odborima dva med̄unarodna naučna skupa,

• 9th Meeting on Modern Mathematical Physics, 18.–23.09.2017, Beograd, Srbija,

[http://www.mphys9.ipb.ac.rs/]

• 10th Meeting on Modern Mathematical Physics, 09.–14.09.2019, Beograd, Srbija,

[http://www.mphys10.ipb.ac.rs/]

kao i dva domaća skupa:

• Workshop on Gravity, Holography, Strings and Noncommutative Geometry, 01.02.2018, Beo-
grad, Srbija,

[http://www.gravity.ipb.ac.rs/GHSNG2018/]

• Gravity and String Theory: New ideas for unsolved problems III, 07.–09.09.2018, Zlatibor,
Srbija.

[http://www.gst2018.ipb.ac.rs/]

U periodu pre prethodnog izbora u zvanje, dr Vojinović je održao predavanje po pozivu na
med̄unarodnom simpozijumu V Petrov International Symposium “High Energy Physics, Cosmology
and Gravity”, Kijev, Ukraina, 29.04.–05.05.2012. godine, koje je štampano u celini. Pozivno pismo
direktora Bogoljubovljevog Instituta za Teorijsku Fiziku u Kijevu, akademika A. Zagorodny, dato je
u prilogu.

Takod̄e, dr Vojinović je u periodu 2007–2016. godine učestvovao u organizacionim odborima
sledećih 5 med̄unarodnih skupova:

• 5th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical
Physics, 06.–17.07.2008, Beograd, Srbija.

[http://www.mphys5.ipb.ac.rs/]

• Gravity: New ideas for unsolved problems, 12.–14.09.2011, Divčibare, Srbija.

[http://www.gravity2011.ipb.ac.rs/]

• Quantum Integrable Systems and Geometry, 03.–07.09.2012, Oljao, Portugal.

[http://www.fctec.ualg.pt/qisg/]

8



• 7th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical
Physics, 09.–19.09.2012, Beograd, Srbija.

[http://www.mphys7.ipb.ac.rs/]

• 8th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical
Physics, 24.–31.08.2014, Beograd, Srbija.

[http://www.mphys8.ipb.ac.rs/]

Osim toga, učestvovao je i u organizaciji dva domaća skupa:

• Gravity: New Ideas for Unsolved Problems II, 19.–22.09.2013, Divčibare, Srbija.

[http://www.gravity.ipb.ac.rs/divcibare2013.html]

• GR100: Centennial of General Relativity, 23.06.2015, Beograd, Srbija.

[http://www.gravity.ipb.ac.rs/gr100/]
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[30] A. Miković and M. Vojinović, “Effective action for EPRL/FK spin foam models”,
Jour. Phys. Conf. Ser. 360, 012049 (2012).

DOI: 10.1088/1742-6596/360/1/012049

[kategorija: M33; broj heterocitata: 5]
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Dušan Cvijetiæ i Maja Stošiæ

Simulacija idealnih

detektora gravitacionih

talasa

Nakon prvog direktnog detektovanja gravita-
cionih talasa 2015. godine, istra�ivanja gravita-
cionih fenomena stekla su pa�nju šire javnosti.
Prouèavanje polarizacije gravitacionih talasa
mo�e se iskoristiti za proveravanje valjanosti
razlièitih metrièkih teorija gravitacije, od kojih
je najva�nija Ajnštajnova Opšta teorija relativ-
nosti. U radu je uveden analitièki model za
opisivanje ravnog monohromatskog gravitaci-
onog talasa male amplitude pomoæu promen-
ljive Rimanove metrike prostora, prvo za talas
koji se prostire du� koordinatne ose, a zatim je
model uopšten za talas bilo kakvog pravca pro-
stiranja. Potom je ispitivana interakcija izmeðu
detektora i talasa. Dati su dvodimenzionalni i
trodimenzionalni modeli idealnog detektora.
Prvo je razmatran sluèaj ravanskog detektora u
obliku kru�nice, koji je zatim uopšten do tro-
dimenzionalnog sfernog idealnog detektora.
Odreðena je funkcija odziva detektora na
gravitacioni talas date polarizacije i pravca pro-
stiranja. Dalje prouèavanje analitièkih rezultata
izvršeno je korišæenjem dve simulacije. Prva
prati ponašanje idealnog sfernog detektora koji
intereaguje sa gravitacionim talasom. Druga
prati ponašanje sistema idealnih detektora ras-
poreðenih po Zemlji analogno stvarnim detekto-
rima. Predlo�ene su moguænosti za dalji razvoj i
implementaciju modela u odreðivanju preciz-
nosti merenja sistema detektora.

Uvod

Teorije gravitacije i sam koncept gravitacije
su se znaèajno menjali kroz vreme. Dugo je
smatrano da je gravitacija sila koja deluje izmeðu
tela sa masom, a znaèaju prekretnicu uveo je
Ajnštajn 1915. godine u svojoj Opštoj teoriji
relativnosti (OTR) predstavljajuæi gravitaciju
kao posledicu zakrivljenosti prostorvremena
(Misner et al. 1973; Vojinoviæ 2019). Pošto se
informacija o zakrivljenosti prostorvremena pre-
nosi konaènom brzinom, a zavisi od rasporeda
mase u prostoru, prilikom pomeranja tela sa
masom nastaju gravitacioni talasi kao posledica
konaène brzine prostiranja te informacije (Voji-
noviæ 2000). Oni su vrlo interesantni za posma-
tranje zbog moguænosti da se koriste za testiranje
raznih teorija gravitacije. U tom testiranju zna-
èajnu ulogu ima polarizacija talasa, kojom æemo
se mi baviti.

Za predstavljanje èetvorodimenzionalnog
prostorvremena u kom æemo modelovati gravita-
cioni talas koristiæemo geometriju Rimanovih
prostora (Misner et al. 1973; Vojinoviæ 2010a,
2010b). U analizu æemo uzimati infinitezimalno
bliske taèke koje æe imati isti metrièki tenzor.
Gravitacioni talas æemo modelovati kao pertur-
baciju metrièkog tenzora i razmtraæemo ravan,
monohromatski talas male amplitude sa tri pa-
rametra: talasni èetvorovektor, poèetna faza i
tenzor polarizacije.

Najpre æemo modelovati idelani dvodimen-
zionalni detektor. Model æemo potom uopštiti
prelaskom na trodimenzionalni detektor i na taj
naèin æemo ostvariti moguænost da detektor regi-
struje talase koji dolaze du� svih pravaca, a ne
samo du� z-ose, kao što je bio sluèaj kod 2D

ZBORNIK RADOVA 2019 FIZIKA • 67

Dušan Cvijetiæ (2000), Panèevo, uèenik 4.
razreda Gimnazije „Uroš Prediæ” u Panèevu

Maja Stošiæ (2000), Èaèak, uèenica 4. razreda
Gimnazije u Èaèku

MENTOR: dr Marko Vojinoviæ, Institut za
fiziku Univerziteta u Beogradu



7KH BFCG WKHRU\ DQG FDQRQLFDO

TXDQWL]DWLRQ RI JUDYLW\�

'UDIW

0LJXHO $� 2OLYHLUD

*UXSR GH )LVLFD 0DWHPiWLFD GD 8QLYHUVLGDGH GH /LVERD

$Y� 3URI� *DPD 3LQWR� �� �������� /LVERD� 3RUWXJDO

Thesis submitted for a doctoral degree in Physics at 

University of Lisbon, March 2015. 



$FNQRZOHGJHPHQWV

, ZRXOG OLNH WR WKDQN 'RFWRU 0DUNR 9RMLQRYLü IRU KHOS DQG XVHIXO GLVFXVVLRQV

LQ WKH FRQWH[W RI P\ 3K'� DQG HVSHFLDOO\ UHJDUGLQJ WKH FDQRQLFDO IRUPDOLVP�

�





Deklaracija

Izjavljujem da je dr Marko Vojinović komentor za doktorsku disertaciju
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Subject RE: BIlateralni projekat sa Austrijom

From Snezana Omic <snezana.omic@mpn.gov.rs>

To 'Marko Vojinovic' <vmarko@ipb.ac.rs>

Date 2020-12-24 12:34

Поштовани господине Војиновићу,

Обавештавамо вас да је Министарство просвете, науке и технолошког развоја, имајући у
виду немогућност да се нерализоване активности из Програма билатералне научне и
технолошке сарадње са Аустријом, реализују до краја 2020., одлучило да омогући
продужење реализације билатералних пројеката са Аустријом до краја јуна 2021. године у
већ опредељеним износима по пројекту и пројектној години.

Српска страна ће по устаљеној процедури, финансирати нереализоване активности у оквиру
максимално одобреног износа по пројектној години од 2000 евра у динарској
противвредности, по примљеном Захтеву за финансирање (који можете преузети са нашег
сајта)  са пратећим прилозима.

Молимо да извештај о реализацији пројекта доставите до 15. јула 2021. године.

Срдачно,
Снежана Омић
Сектор за међународну сарадњу и ЕУ интеграције
Министарство просвете, науке и технолошког развоја
Немањина 22-26
11 000 Београд
Тел: +11 3616 589

-----Original Message-----
From: Marko Vojinovic [mailto:vmarko@ipb.ac.rs]
Sent: Tuesday, 7 July 2020 7:51 PM
To: Snezana Omic <snezana.omic@mpn.gov.rs>
Subject: RE: BIlateralni projekat sa Austrijom

Postovana gospodjo Omic,

Hvala najlepse za Zahtev!

Sve najbolje, :-)
Marko

Dr. Marko Vojinovic
Group for Gravitation, Particles and Fields Institute of Physics University of Belgrade
====================== home page: www.markovojinovic.com
e-mail:    vmarko@ipb.ac.rs

On Mon, 6 Jul 2020, Snezana Omic wrote:

Poštovani gospodine Vojinoviću,

U prilogu dostavljam Zahtev za finansiranje.

Srdačno,
Snežana Omić

Institute of Physics Belgrade Roundcube Webmail ... https://mail.ipb.ac.rs/roundcube/?_task=mail&_sa...
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Deklaracija

Ovime se izjavljuje da je dr Marko Vojinović, postdok istraživač u Grupi
za Matematičku Fiziku Univerziteta u Lisabonu (GFMUL) imao vodeću
ulogu za program o Kvantnoj Gravitaciji razvijan u ovom istraživačkom cen-
tru tokom dva sukcesivna projekta Fondacije za Nauku i Tehnologiju (FCT),
konkretno sa referencama

Pest-OE/MAT/UI0208/2013 i Pest-OE/MAT/UI0208/2011

Konkretno, dr Vojinović je doveo do inovativnih metoda za path-integral
pristup u “spin-cube” modelu, kao i do uopštavanja “spin-foam” modela
kvantne gravitacije i nekih topoloških teorija polja.

Vezano za stariji projekt (2011), Marko Vojinović je publikovao neke od
svojih rezultata u Gen. Relativ. Gravit. 46, 1616 (2014). Vezano za projekt
iz 2013 možete konsultovati Mikovic, Vojinovic, Europhys. Letters 110, 40008
(2015). Joďve publikacije su pod recenzijom.

Kao posledica, sledi da je dr Marko Vojinović demonstrirao naučnu neza-
visnost i sposobnost za rukovod̄enje i upravljanje istraživačkim projektima.

Lisabon, 03.10.2015.

Jean-Claude Zambrini

(Direktor GFMUL)

















 

 
 
 
 
 
 

To 

Ass. Prof. Dr. Marko Vojinovic 

University of Belgrade 

Group for Gravitation, Particles and Fields 

vmarko@ipb.ac.rs 

 
 

Vienna, April 20, 2017 
AZ/sb 

 
 
 
 
JESH Application [Joint Excellence in Science and Humanities] 

 

 

 

Dear Professor Vojinovic, 

 

Thank you very much for your interest in the JESH programme and for sending a most intriguing 

proposal. I am very pleased to be able to inform you that you have been awarded JESH funding 

by the Austrian Academy of Sciences for a period of 2 months, subject to compliance with the 

requirements set out in the attached information sheet. 

 

I congratulate you most warmly, and wish you a successful research stay in Austria. 

 

 

 

Sincerely yours, 

 

 

mailto:vmarko@ipb.ac.rs


  

 

 

 

 

 

 

 

S T A T E M E N T 
 

about the research visit of Dr. Marko Vojinović to IQOQI, 
supported by the JESH programme of Austrian Academy of Sciences (ÖAW) 

 

 

Dr. Marko Vojinović has been a guest visitor to our group at IQOQI from 15. October to 16. 
December 2017. During this time, he gave a seminar titled “Causal ordering and quantum gravity”, 
and has actively participated in many discussions related to this topic. In addition, he gave valuable 
contributions at our group meetings and seminars, proposing an interesting research topic for 
joint collaboration. 
 
As a result, after his visit we have jointly applied for a bilateral project between ÖAD and Serbian 
Ministry of Science for the period 2018-2019. The project proposal is currently under review, and 
it will intensify the collaboration between the two groups in the research of causality in quantum 
mechanics and quantum gravity. 
 
Overall, in my opinion the visit of Dr. Vojinovic has been very successful, and our group is looking 
forward to collaborate with him even more in the future. 
 
Sincerely, 
 
 
Yours sincerely, 

 
 

 

 

 

 

Prof. Dr. Časlav Brukner 
Institute Director 

 
February 15, 2018

Prof. Dr. Caslav Brukner | caslav.brukner@univie.ac.at

Tel +43 1 4277 2582





  

By e-mail  December 11, 2019 

Prof. Marko Vojinovic 
Institute of Physics,  
University of Belgrade, 
Belgrade, Serbia  
vmarko@ipb.ac.rs  

Dear Prof. Vojinovic,  

Invitation Letter 

 We would like to invite you to visit our research group for the period January 10 to 
19 in the year 2020, in order to attend the workshop QISS 2020 and give a scientific talk. 
The workshop is organised by the group of Professor Giulio Chiribella and our 
Department at The University of Hong Kong.  

 As to travel and medical insurance, please kindly make your own arrangements as 
necessary. Please also be reminded to follow the immigration entry requirements as 
applicable. 

 
I look forward to meeting you in Hong Kong soon and having fruitful discussions 
and collaborations. 

Yours sincerely, 
 

Dr Christodoulou Marios 



                    
THE JOINT MEETING ON  

QUANTUM FIELDS AND NONLINEAR DYNAMICS 

24-29 September 2020,Craiova, Romania 
The 12-th Workshop “Quantum Fields and Nonlinear Dynamics” (QFND) 

The SEENET PhD School on Computational Methods in Theoretical Physics 
. 

 

To: 

Dr. Marko Vojinovic 

Group for Gravitation, Particles and Fields 

Institute of Physics, University of Belgrade 

 

 

INVITATION LETTER 

 

 

It is our pleasure of inviting you to participate in the 12-th Workshop “Quantum Fields 

and Nonlinear Dynamics” (QFND) that will be held online, from September 27 to 

September 29, 2020, in the organization of the University of Craiova, Romania. 

 

We will be happy if you will accept to include in the Workshop’s Program a scientific 

presentation, paper that can be considered for publication in the Proceedings, a special 

issue of “Physics AUC”, a journal edited by the University of Craiova and indexed by 

SCOPUS.  

 

We are waiting for your reply, hoping you will be able to adjust the meeting to your 

schedule.  

 

      

Coordinator of the Organizing Committee, 

Prof. Univ. dr. Radu Constantinescu 

 
 

Craiova, September 2, 2020 

____________________ 

 

 

 

    
 

 

 



Serbian Astronomical
Conference

Belgrade, October 13-17,
2020

To: Dr. Marko Vojinović

Institution: Institute of Physics
Address: Pregrevica 118, 11080 Belgrade, Serbia

Email: vmarko@ipb.ac.rs

Dear Dr. Vojinović,

On behalf of the Scientific Organizing Committee we are pleased to invite you
to  participate  and  to  present  your  work  Cosmological  constant  problem  in

discretized  quantum  gravity as  an  Invited  Lecture  at  19th  Serbian

Astronomical Conference (19th SAC), to be held in Belgrade, Serbia, October

13-17, 2020 (http://astro.math.rs/kas19/ ).

We will be pleased if you accept our invitation, and we are looking forward to

seeing you at 19th SAC.

Yours Sincerely,

Prof. dr Anđelka Kovačević
Co-chair of the SOC
Department of astronomy

Faculty of Mathematics
University of Belgrade

http://astro.math.rs/kas19/


 
 
 
 
 
 
 
 
 
 
Christian Wüthrich 
Professeur associé 
Ligne directe: 022 379 70 53 
christian.wuthrich@unige.ch 

Uni Bastions - 2 rue De-Candolle - CH-1211 Genève 4 
Tél. 022 379 70 50 - www.unige.ch/lettres/philo 

 
 
 
 
 
 
 
 
 
 Geneva, 10 May 2016 
 
 
 
Letter on invitation for Dr Marko Vojinovic 
 
Dear Dr Vojinovic, 

I am happy to inform you that your application for a visiting fellowship to the University of Geneva 
to visit the Geneva Center of the Templeton-funded project ‘Space and Time after Quantum 
Gravity’, which is a joint project with Professor Nick Huggett Huggett at the University of Illinois at 
Chicago, has been accepted. 

Given our budget we would cover your expenses for travel and accommodation up to 500 Swiss 
francs. If this doesn’t suffice to cover your expenses, we can revisit the issue, but we 
cannot guarantee that we can offer more. Also, we will provide office space. We are working on a 
list of potential accommodations, but you can easily check online to see what kinds of things are 
available. Even though Geneva is expensive, there are a number of hotels (and hostels) available 
that are reasonably priced.  

As for the date, the week of 17-22 October 2016 would suit us best.  

You will be welcome to give a talk during your visit. We plan to skype this talk to our partners at 
Chicago and will record it for publication on our YouTube channel. Ideally, your talk would happen 
during a time slot when this is possible. 

We can work out the other activities during your visit later, but we hope that you will engage with 
the group here. 

We very much hope that you can accept our invitation.  

Please let me know if you need any further information. 

 

 Yours sincerely, 

  
 Christian Wüthrich 

Dr. Marko Vojinovic 
Group for Gravitation, Particles and Fields 
Institute of Physics 
University of Belgrade 





Causal orders, quantum circuits and spacetime: distinguish-
ing between definite and superposed causal orders
Nikola Paunković1 and Marko Vojinović2

1Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Avenida
Rovisco Pais 1049-001, Lisboa, Portugal

2Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

We study the notion of causal orders
for the cases of (classical and quantum)
circuits and spacetime events. We show
that every circuit can be immersed into
a classical spacetime, preserving the com-
patibility between the two causal struc-
tures. Using the process matrix formalism,
we analyse the realisations of the quan-
tum switch using 4 and 3 spacetime events
in classical spacetimes with fixed causal
orders, and the realisation of a gravita-
tional switch with only 2 spacetime events
that features superpositions of different
gravitational field configurations and their
respective causal orders. We show that
the current quantum switch experimen-
tal implementations do not feature super-
positions of causal orders between space-
time events, and that these superpositions
can only occur in the context of super-
posed gravitational fields. We also dis-
cuss a recently introduced operational no-
tion of an event, which does allow for
superpositions of respective causal orders
in flat spacetime quantum switch imple-
mentations. We construct two observables
that can distinguish between the quantum
switch realisations in classical spacetimes,
and gravitational switch implementations
in superposed spacetimes. Finally, we dis-
cuss our results in the light of the modern
relational approach to physics.

1 Introduction

The notion of causality is one of the most promi-
nent in science, and also in philosophy of Nature.

Nikola Paunković: npaunkov@math.tecnico.ulisboa.pt
Marko Vojinović: vmarko@ipb.ac.rs

Its treatment separates Aristotelian from the
modern physics, and its formal meaning within
the latter is likely to have played a significant role,
over the past centuries since Galileo, in forming
our current everyday understanding of the no-
tion of causality. While in Newtonian physics
the cause-effect relations were encompassed by
a rather simple linear and absolute time, Ein-
stein’s analysis of causal relations was pivotal in
the formulation of the theory of relativity. But it
was quantum mechanics (QM) that, through the
EPR argument [1], further formalised by Bell [2],
showed how quantum nonlocality, rooted in the
superposition principle of QM, revolutionised our
everyday notion of causality. Finally, strong the-
oretical evidence that, when combining the two
fundamental theories of the modern physics, one
is to expect explicit dynamical nonlocal effects in
quantum gravity (QG), shows that our basic un-
derstanding of causality and causal orders might
be crucial in the development of new physics.

Recently, causal orders were, mainly within
the quantum information community, discussed
in the context of controlled operations. In par-
ticular, it was argued that the quantum switch,
a specific controlled operation introduced in [3],
exhibits superpositions of causal orders, not only
in the context of quantised gravity, where gen-
uine superpositions of different states of gravity
are present, but also in the experimental realisa-
tions performed in classical spacetimes with fixed
causal structure [4, 5, 6]. Note that the notion of
causal order discussed in these papers is different
from the causal order of the underlying space-
time structure. We discuss in detail the relation
between the two.

In this paper, we analyse the notion of causal
orders in the context of classical and quantum
circuits, and relate it to the spacetime causal
structures. We prove that each circuit can be

Accepted in Quantum 2020-05-12, click title to verify. Published under CC-BY 4.0. 1
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realised in a classical spacetime, preserving the
fixed causal relations of the former, with respect
to the causal relations between spacetime events
of the latter (see the next section for the de-
tails of the theorem). Further, we analyse pos-
sible realisations of the quantum switch, show-
ing that those performed in everyday labs do
not feature superpositions of causal orders be-
tween spacetime events (consistent with our the-
orem), but rather standard non-relativistic quan-
tum mechanical (coherent) superpositions of dif-
ferent evolutions of a system. On the other hand,
we argue that genuine superpositions of different
causal orders are indeed to be expected within
the QG scenario, where superpositions of differ-
ent states of the gravitational field, with their cor-
responding causal orders, are manifestly allowed
(Hardy was one of the first to discuss the notion
of superpositions of causal orders in the context of
QG [7]). In addition, we explicitly construct two
distinct observables that can distinguish between
the realisations of the quantum switch in classi-
cal spacetimes, and implementations of the grav-
itational switch in superposed spacetimes. This
way, we show that the two notions of causal or-
ders, namely one discussed in [4, 5, 6] and the
other discussed in this paper, can be experimen-
tally distinguished, in contrast to the opposite
claim present in the literature [4]. Finally, we
discuss our results in the context of the relational
approach to physics.

The layout of the paper is as follows. In Sec-
tion 2, we introduce the notion of causal order
for circuits, and prove the Theorem of the circuit
immersion in classical spacetimes. Section 3 is
devoted to the analysis of the quantum switch im-
plementations in classical spacetimes that do not
feature superpositions of spacetime causal orders,
as well as implementations in the context of QG.
In Section 4, we compare the quantum switch
implementations discussed, and introduce observ-
ables that can distinguish between those that fea-
ture superpositions of spacetime causal orders,
and those that do not. Section 5 is devoted to
the discussion of the superpositions of causal or-
ders in the context of the relational approach to
physics. Finally, in Section 6, we present and dis-
cuss the results, provide some final remarks, and
list possible future research directions.

2 Causal orders
We begin by discussing circuits and their realisa-
tions in (classical) spacetimes with well defined
fixed causal orders. Given a directional acyclic
graph G = (I, E), where I is the set of graph
nodes, and E = {(u, v) |u, v ∈ I} is the set of
its directed edges (arrows pointing from u to v
representing the wires of the circuit), a circuit C
over the set of operations G is a pair C = (G, g),
where the mapping g : I → G assigns operations
to each node. Depending on the type of the op-
erations from G, we will call the circuit classical
(if the operations are, say, classical logic gates),
or quantum (if the operations are, say, unitaries,
measurements, etc.).

The fact thatG is directional and acyclic allows
one to define a partial order ≺I over the set I as

u ≺I v
def⇐⇒(

∃ n ∈ N ∧ {u ≡ u1, u2, . . . , un ≡ v} ⊂ I
)

(
∀ i ∈ {1, 2, . . . , n−1}

)
(ui, ui+1) ∈ E , (1)

representing the causal relation between the
graph nodes. Next, we define the set of gates of
the circuit C as GC = {gu ≡ (u, g(u)) |u ∈ I}. The
induced causal order between the circuit gates ≺C
is by definition given as

gu ≺C gv
def⇐⇒ u ≺I v . (2)

Moreover, since there exists a canonical bijection
between I and GC , the order relations ≺I and ≺C
are isomorphic.

Finally, we can introduce the set M of all
spacetime events, which is assumed to be a tra-
ditional 4D manifold. On this spacetime mani-
fold we assume to have a gravitational field, de-
scribed in a standard way, using a metric tensor
gµν . The metric is assumed to be of Minkowski
signature, such that the metric-induced light cone
structure determines a partial order relation be-
tween nearby events, denoted ≺gM (or simply ≺M
when the choice of the metric is implicit). Note
that the causal order over the spacetime events is
not an intrinsic property of the spacetime mani-
fold itself, but rather determined by the metric,
i.e., the configuration of the gravitational field
living on the manifold.

One might pose a question if, given a formal cir-
cuit C with gates GC , it is possible to realise it in a
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lab — if it is possible to “immerse” it into space-
time. More precisely, given an arbitrary space-
time manifold M, our goal is to study if there
exists an order-preserving map P : GC →M, i.e.,
if the partial order relations satisfy

gu ≺C gv =⇒ P(gu) ≺M P(gv) , (3)

for every gu, gv ∈ GC . To that end, we formu-
late the following theorem (the proof is given in
Appendix A).

Theorem. Any circuit C can be immersed into
a globally hyperbolic spacetime manifoldM, such
that its relation of partial order ≺C is preserved
by the relation of spacetime events ≺M.

Regarding the physical interpretation of the
Theorem, note that it assigns a spacetime point
to each gate in a circuit, as opposed to a point in
3D space. Since each spatially localised appara-
tus may perform the same operation more than
once, at different moments in time, it may then
correspond to several different gates of the circuit,
and thus several different nodes of the graph, in-
stead of just one. In other words, a single piece
of experimental equipment does not always corre-
spond to a single gate of a circuit.

In addition to the above comment, note that
in reality each operation actually takes place in
some finite volume of both space and time. How-
ever, in theoretical arguments it is convenient to
approximate this finite spacetime volume with a
single point, ignoring the size and time of activ-
ity of the device performing the operation. We
adopt this approximation throughout this paper.

Circuits are seen as operations acting upon cer-
tain inputs to obtain the corresponding outputs.
Usually, the initial/final states (which include in-
structions, measurement results, etc.) are de-
picted by the wires. But in our approach, the
input state is prepared by the “initial gate” I,
while the output state is obtained by the “final
gate” F . This way, the circuit C is seen as an
operation OC acting from I to F .

Note that, given a circuit C, the corresponding
overall operation OC (as well as the input and
the output gates I and F) is uniquely defined.
The opposite is not the case: given the operation
O, one can design different circuits C, C′, . . . that
achieve it. To see this, let us consider the simplest
case of the operation which satisfies O = O2 ◦O1,
where ◦ represents the composition of operations.

This operation can be trivially achieved by the
two circuits: (i) C, which consists of three nodes
— node i whose gate I prepares the input state,
node o that applies the gate go = O, and node f
whose gate F outputs either the quantum state,
the classical outcome(s), or the combination of
the two; (ii) C12, which consists of four nodes —
nodes i and f that perform the same operations
as before, and two intermediate nodes o1 and o2
that perform go1 = O1 and go2 = O2, respec-
tively. For simplicity, here and elsewhere in the
text, by O we denote both the operation and the
gate that implements it. The two situations are
depicted in the following diagrams (see Figure 1).

i

I = gi

o

O = go

f

F = gf

i

I

o1

O1

o2

O2

f

F

Figure 1: Implementing operation O with a single gate
(upper diagram), and by two consecutive gates O1 and
O2 (lower diagram).

Finally, in recent literature one can find a no-
tion of an event which is different from the no-
tion of a spacetime point [3, 4, 5, 6, 8, 9, 10, 11].
Namely, one can talk about events as interactions
between the quantum system under consideration
and the apparatus in the lab. This is motivated
by the operational approach to physics, where the
interactions between objects are taken as funda-
mental. Then, one can introduce the relation of
partial order, which reflects the causal relation-
ships between such events. Of course, in general,
this causal order does not need to coincide with
the spacetime causal order. Throughout this pa-
per, if not explicitly stated otherwise, by causal
order we mean the order between the spacetime
points, which due to our Theorem can also be re-
garded as the order between the circuit gates. We
discuss the difference between the two notions of
causal orders in Section 4.

3 Quantum switch

The most prominent feature of quantum systems
is that they can be found in coherent superposi-
tions of states. This allows for applying the so-
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called control operations. For simplicity, let us
assume that operations O are unitaries, denoted
as U . Given a control system C in a superposi-
tion |ϕ〉C = a|0〉C + b|1〉C (with 〈0|1〉C = 0), the
control operation

UCT = |0〉C〈0| ⊗ U0 + |1〉C〈1| ⊗ U1 (4)

transforms the initial product state |Ψi〉CT =
|ϕ〉C ⊗ |ψi〉T between the control and the target
systems into the final entangled state |Ψf 〉CT =
a|0〉C ⊗ U0|ψi〉T + b|1〉C ⊗ U1|ψi〉T . A simple re-
alisation of such operation by a circuit consisting
of three gates is shown below (see Figure 2).

i

I

o

UCT

f

F

wC

wT

wC

wT

Figure 2: Controlled operation UCT . Applying operation
Ub on a system in the wire wT controlled by the state
|b〉 on a system in the wire wC , with b = 0, 1.

Here, the first node and the corresponding gate
prepares the initial superposition of the control
system, the second implements UCT , and the
third is either an identity, a measurement on the
two systems, or a combination (say, a measure-
ment of the target qubit, while leaving the control
intact). In order to allow for the description of
quantum superpositions, we introduce the notion
of a vacuum in the analysis of quantum circuits,
as is done for example in [12] (for technical de-
tails, see Appendix B).

As noted above, given the operation, many dif-
ferent circuits can achieve it. Indeed, in standard
optical implementations of the above controlled
operation (4), the control qubit is spanned by
two spatial modes of a photon, while the target
one is its polarisation degree of freedom. The
initial superposition state of the control qubit is
prepared by a beam splitter, while the two opera-
tions U0 and U1 are implemented locally in Alice’s
and Bob’s laboratories. Note that, since the con-
trol qubit is achieved by the means of two spatial
modes of a single photon, while the target qubit
is, being the photon’s polarisation, “attached to”
the control, the target is formally achieved by two
degrees of freedom (two wires), one assigned to
Alice (TA), and the other to Bob (TB). Thus, in
such a realization, the control degree of freedom
is redundant in the circuit diagram and can be

omitted. Nevertheless, since we will later discuss
the case of the gravitational quantum switch, in
which the gravitational degree of freedom plays
the role of the control, here we keep its corre-
sponding wire and gate in the diagram, as pre-
sented below (see Figure 3).

i

I

a

U0

b

U1

tA

TA

tB

TB

cf

TC

wTA

wTB

C

F

Figure 3: Implementation of the controlled operation
using the spatial degree of freedom as a control.

The final gate F consists of three “elementary
gates”, represented by the circuit nodes tA and tB
for the two target wires, and the node cf for the
final control wire.

An important instance of controlled operations
is the so-called quantum switch, for which the two
controlled operations are given by U0 = UV and
U1 = V U , where U and V are two arbitrary uni-
taries [3]. Having two pairs of equipment, one
applying U and the other V , it is straightforward
to implement the quantum switch through the
circuit similar to the one above, which instead of
two gates, one in the node a applying U0, and an-
other in node b applying U1, contains four gates
placed in the nodes aU , aV , bV and bU (see Fig-
ure 4).

i

I

aU

U

bV

V

aV

V

bU

U

tA

TA

tB

TB

cf

TC

wTA

wTB

C

F

Figure 4: The quantum switch.

The question arises, is it possible to achieve
the same using less resources, say, using only two
such pieces of equipment, located in two different
points (regions) of 3D space? Indeed, it is possible
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to do so, and recently a number of implementa-
tions of the quantum switch were performed in
flat Minkowski spacetime [4, 5, 6]. Nevertheless,
such implementations still correspond to circuits
that implement U0 and U1 by four, rather than
two gates. The difference is that, when immersing
it in a flat spacetime, the two pairs of gates are
now distinguished only by the temporal, rather
than all four spacetime coordinates. Thus, one
cannot talk of superpositions of causal orders be-
tween spacetime events in such implementations,
as flat (indeed, any globally hyperbolic) space-
time has a manifestly fixed causal order. To im-
plement U0 and U1 of the quantum switch by a
circuit that consists of two gates only (and thus
two corresponding spacetime points), one needs
a superposition of gravitational fields with differ-
ent (incompatible) causal orders. In the following
two subsections, we analyse in more detail the “4-
event” and the “3-event” implementations of the
quantum switch, while the “2-event” case is dis-
cussed in the last subsection (the numbers 4, 3
and 2 refer to the numbers of spacetime events
corresponding to distinct gates used to achieve U0
and U1). A detailed mathematical description us-
ing the process matrix formalism [8], is presented
in the Appendices C, D and E.

Following the previously mentioned distinction
between the spacetime event and the operational
notion of the event, the 4-event and 3-event quan-
tum switch implementations will have a descrip-
tion within the operational approach that is dif-
ferent from the spacetime description. In particu-
lar, in such approach these two implementations
of quantum switch would feature only 2 opera-
tionally defined events, and thus the superposi-
tion of the corresponding causal orders.

3.1 4-event process

The realisations of the quantum switch are per-
formed in table-top experiments in the gravita-
tional field of the Earth, and can be for all prac-
tical purposes considered as being performed in
flat Minkowski spacetime. In such experiments,
Alice performs the unitary U in her localised lab-
oratory, and Bob performs V in his separate lo-
calised laboratory, such that both are stationary
with respect to each other and the Earth. The
operations are applied on a single particle that
arrives from the beam splitter, in a superposition
of trajectories towards Alice and Bob, and, upon

the exchange between the two agents, is finally
recombined on the same beam splitter (for sim-
plicity, we chose one beam splitter, but the whole
analysis equally holds for two spatially separated
beam splitters), and then measured. Below, we
present a spacetime diagram of this experimen-
tal realisation of the quantum switch, which also
represents a circuit of the implementation scheme
(see Figure 5).

space

timeti t1 t2 tf

Alice

Bob

beam
splitter

I F

A

B′B

A′

Figure 5: Spacetime diagram, as well as the circuit repre-
sentation, of the 4-event implementation of the quantum
switch.

Black horizontal lines represent world lines for
Alice and Bob, as well as the global time coordi-
nate line at the bottom. The black vertical line
represents global space coordinate line. Quantum
gates are represented by big dots. The composite
gate I consists of the two preparation gates and
the initial beam splitter gate, while F consists of
the final beam splitter gate and the target gates
that perform the final measurements (for details,
see Appendix C). For simplicity, from now on we
omit writing the labels of the nodes and keep only
the labels of the corresponding circuit gates. The
two histories of the particle exchanged between
Alice and Bob, representing Alice’s and Bob’s
wires, are full lines coloured in blue and red, re-
spectively.

From the diagram we can see that in the blue
history we have the following chain of gates

I ≺C A ≺C B′ ≺C F , (5)

while for the red history we have

I ≺C B ≺C A′ ≺C F . (6)

In total, there are four spacetime events involving
Alice’s and Bob’s actions on the particle (gates),
namely A, B, A′ and B′. Thus, we call the above
diagram the “4-event diagram”. This setup was
already discussed in the literature (see the very
end of the Supplementary Notes of [13]).
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In order to compare the cases of the quantum
and the gravitational switches, it would be in-
teresting to analyse the two examples within re-
cently introduced powerful process matrix formal-
ism [8]. To do so, one needs to formulate the for-
malism involving the vacuum state (see Appendix
B for details). The straightforward application of
the formalism to the 4-event case is in full accord
with the experimental results, as demonstrated in
Appendix C.

3.2 3-event process
One can imagine that instead of two, one of the
agents implements only one gate. For example,
by conveniently choosing the velocity of the par-
ticle along its trajectory between Alice and Bob,
we can identify Bob’s two gates,

B ≡ B′ . (7)

We thus arrive to the new spacetime diagram
and the associated circuit, called the “3-event di-
agram” (see Figure 6).

space

timeti t1 tB t2 tf

Alice

Bob

beam
splitter

I F

A

B

A′

Figure 6: Spacetime diagram, as well as the circuit repre-
sentation, of the 3-event implementation of the quantum
switch.

Now, the obvious question is the following —
can we, in addition to (7), impose also that

A ≡ A′ , (8)

i.e., also identify Alice’s gates into a single space-
time event? In flat Minkowski spacetime, the an-
swer is negative. Namely, by simply looking at
the 3-event diagram one can see that the trajec-
tory of the particle between Alice and Bob would
require either superluminal speed, or backwards-
in-time trajectory in at least one history (note
that the diagram assumes that light propagates
along the lines that form the 45◦ angle with the
coordinate axes). This is also seen directly from
inequalities (5) and (6): identifying both A ≡ A′

and B ≡ B′ would lead to requiring that both
A ≺C B and B ≺C A are satisfied, i.e., A ≡ B.
As guaranteed by our Theorem from Section 2, in
a curved spacetime it is also impossible to make
both identifications (7) and (8), at least if space-
time were globally hyperbolic. Finally, as in the
4-event case, here also the process matrix formal-
ism is consistent with the experimental results,
see Appendix D.

3.3 2-event process — gravitational switch

Despite the conclusion of the previous subsection,
within the framework of quantum gravity one is
allowed to construct superpositions of different
gravitational field configurations, leading to su-
perpositions of different causal structures for the
spacetime manifold. The assumption of super-
positions of different gravitational field configu-
rations is common to all models of QG. Other
than that, we will not have any additional as-
sumptions, and thus our approach does not de-
pend on any particular QG model.

In what follows, for the sake of concreteness, we
assume the “traditional” approach to the formu-
lation of the QG formalism. Namely, we assume
that there exists a smooth 4D manifold, called
spacetime, and denoted as M. Quantum fields,
including the gravitational field, live on top of
M. The gravitational field is described either via
the metric or via some other degrees of freedom
(for example, tetrads and spin connection), such
that the metric is a function of these. We call
this kind of construction “traditional” because it
represents a minimal deviation from the mathe-
matical structure of quantum field theory (QFT)
in flat Minkowski spacetime, in the sense of pre-
serving the underlying manifold structure. A QG
model implementing this approach is, for exam-
ple, the asymptotic safety framework [14]. Of
course, we do not aim to provide a full-fledged
model of QG, but rather to only specify the sta-
tus of the manifold structure within it. As an
alternative, in Subsection 5.2, we will discuss the
relational framework of QG in which the mani-
fold structure does not exist a priori, but is emer-
gent from relational properties of quantum fields
themselves. Finally, note that the discussion of
the flat-spacetime cases in the previous sections
implicitly assumes the traditional point of view
on spacetime manifold. Nevertheless, it has to
be compatible with the semiclassical limit of any
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viable QG model.
As a consequence of the superposition of causal

structures in QG, it is possible to achieve a gravi-
tational switch, which implements the same quan-
tum switch as described above, with a circuit con-
sisting (in addition to the initial and final gates
I and F) of only two gates: the Alice’s gate A
that applies U , and Bob’s gate B that applies V .
Superposing two gravity-matter states, such that
in the first the spacetime geometry (described by
the metric tensor g0) establishes the causal struc-
ture

I ≺g0
M A ≺g0

M B ≺g0
M F , (9)

while in the second (described by the metric g1)
it is

I ≺g1
M B ≺g1

M A ≺g1
M F , (10)

the overall circuit applies operations U0 = UV
and U1 = V U , conditioned on the state of gravity.
As a side note, it is clear from (9) and (10) that
superpositions of the spacetime causal orders can
occur only in the framework of quantum gravity.

Such a switch was previously introduced by
Zych et al. [15], in the context of two spacetimes
which are solutions of the Einstein equations. In
their proposal, the beam splitter acted only on
the gravitational degree of freedom (and the ac-
companied source, the planet), while leaving the
rest of the matter, in particular the particle, Al-
ice and Bob, unaffected. Upon the final beam
splitter recombination, the matter is left in an
incoherent mixture of two states proportional to
{U , V } |Ψ〉 and [U , V ] |Ψ〉. Subsequently, the
mass (along with its gravitational degrees of free-
dom) is being measured in the superposition ba-
sis. Upon a post-selection conditioned on the out-
come of the measurement, the matter is again in
a pure state.

Another way to obtain a genuine superposition
of two different causal orders is by using a spa-
tially delocalised beam splitter, that acts on both
gravitational and matter fields. This can be de-
picted by the following 2-event diagram (see Fig-
ure 7).

The yellow region in this diagram represents
a compact piece of spacetime where the gravita-
tional field is in a superposition of the two distinct
states, and plays the role of the control degree of
freedom. Along the boundary of that region, both
gravitational configurations smoothly join into a
single configuration outside. The boundary of the

particleAlice Bob

A

B

I

F

Figure 7: Spacetime diagram of the 2-event implemen-
tation of the gravitational switch. Note that formally
this is not a circuit diagram, as the control wire, im-
plemented by the state of the gravitational field in the
yellow region, is missing.

yellow region thus acts as a beam splitter for any-
thing that enters, and again (in the recombining
role) for anything that exits. Therefore, all world-
lines (namely, of Alice, Bob and the particle) are
doubled inside the yellow region. The blue and
red colours represent their spacetime trajectories
in two different gravitational field backgrounds,
respectively.

We model our gravitational switch such that
the overall output state is the product between
the state of the gravitational field and the state
of the particle. The state of the particle is of
the form (αUV + βV U)|Ψ〉, obtained without
performing final selective measurement. In par-
ticular, in order to compare it with the other
quantum switch realizations, we choose either
{U , V } |Ψ〉 or [U , V ] |Ψ〉. In order to achieve
this, the gravitational switch should act upon all
degrees of freedom, both gravitational and mat-
ter. Note that our gravitational switch does re-
quire certain fine tuning, in the sense that the
whole, delocalised beam splitter, that acts non-
trivially on the whole joint gravity-matter sys-
tem, is designed for the particular pair of opera-
tions applied by Alice and Bob: only for those op-
erations, the beam splitter will output the prod-
uct state between gravity and matter. Otherwise,
the output will be the entangled gravity-matter
state, like in the cases of the optical quantum
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switch and the gravitational switch introduced by
Zych et al. (before the final selective measure-
ment). Still, the process matrix describing the
gravitational switch itself is independent of the
choice of the gate operations of the agents. See
Appendix E for details.

The question whether this kind of diagram is
admissible in some theory of quantum gravity
is nontrivial, and model dependent, on several
grounds. First, it is impossible to construct this
diagram by superposing two classical configura-
tions of gravitational field, such that each config-
uration satisfies Einstein equations. The reason is
simple — assuming that the gravitational field is
specified outside the yellow region, Einstein equa-
tions have a unique solution (up to diffeomor-
phism symmetry) for the compact yellow region,
given such a boundary condition. Therefore, one
cannot have two different solutions to superpose
inside. The only two options are to either super-
pose one on-shell and one off-shell configuration
of gravity, or two off-shell configurations. This
scenario can arguably be considered within the
path integral framework for quantum gravity.

Second, the question of the particle trajectory
is nontrivial. Namely, given one gravitational
configuration in which the particle has the space-
time causal structure (9), corresponding to the
blue history, it is not obvious that there can ex-
ist another gravitational configuration (with the
same boundary conditions at the edge of the yel-
low region), in which the particle has the space-
time causal structure (10), corresponding to the
red history. Even if one admits arbitrary off-shell
configurations of gravity, it may turn out that
the order of events inside the yellow region must
be fixed by the boundary conditions. The only
viable way to answer this question is to try and
construct an explicit example of two geometries
implementing (9) and (10) for the same boundary
conditions. Numerical investigations are under-
way to explore this possibility.

4 Distinguishing 2-, 3-, and 4-event re-
alisations of the quantum switch

In a number of both theoretical proposals [3,
8, 9, 10, 11], as well as experimental realisa-
tions [4, 5, 6] of the quantum switch, it is claimed
that they feature genuine superpositions of causal
orders. The reason for this is the introduction of

an alternative, operational notion of the event,
which differs from a spacetime point. The moti-
vation for this lies in the claim that the individual
spacetime points A and A′ (and B and B′) do not
have an operational meaning. In words of the au-
thors of [4] (see the Discussion section):

“The results of the experiment confirm
that such [which way] information is not
available anywhere and that the inter-
pretation of the experiment in terms of
four, causally-ordered events cannot be
given any operational meaning. If, on
the other hand, one requires events to be
defined operationally, in terms of mea-
surable interactions with physical sys-
tems [...], then the experiment should be
described in terms of only two events —
a single use of each of the two gates.”

While it is obvious that the mentioned which-
way information is not available in the quantum
switch experiment, in what follows we argue that
this does not imply that one cannot give an oper-
ational meaning to spacetime points, even in the
context of the quantum switch in classical geome-
tries.

Below, we first present a critical analysis of the
arguments behind introducing the operational
notion of event. Then, we show how one can
experimentally, at least in principle, distinguish
2-, 3-, and 4-event realisations of the quantum
switch.

It is the operational approach to understand-
ing spacetime, applied within the framework of
relationalism (see Section 5 for a detailed discus-
sion of the relation between the two frameworks),
that is arguably the main argument for introduc-
ing the alternative notion of an event. This new
notion of an event gives rise to the superposition
of respective causal orders in the realisations of
the quantum switch even in classical spacetimes.
Assuming that the smooth (classical) spacetime
is an emergent phenomenon, in the operational
approach one considers “closed laboratories” [8]
as the primal entities within which one can lo-
cally apply standard quantum mechanics, while
their connections form the relations from which
the spacetime emerges. Indeed, it seems that the
process matrix formalism was developed precisely
with this idea in mind: to be a mathematical
tool in analysing the emergence of the spacetime
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through the relations between the closed labo-
ratories. We would like to note that, as shown
in Appendices C, D and E, the mentioned for-
malism is also fully applicable within the stan-
dard formulation of quantum mechanics in clas-
sical Minkowski spacetime.

Given that in the case of coherent superposi-
tions of the two paths (a particle first goes to Al-
ice, then to Bob, and vice versa) it is not possible
to know which of the two has actually been taken,
one may conclude that one cannot distinguish be-
tween spacetime events A and A′, and that the
two are operationally given by the single action
of a spatially localised laboratory. However, this
point of view is at odds with our understanding of
the ordinary double slit experiment. Namely, by
exchanging the roles of time and space, and fol-
lowing the above logic, applied to the case of the
standard double slit experiment, one could anal-
ogously conclude that, since in order to obtain
the interference pattern at the screen one must
not (and thus cannot) learn which slit the parti-
cle went through, the two slits represent one and
the same operational “lab”, and one operational
point (region) in space.

Let us explain our argument in slightly more
detail. Consider first the optical quantum switch.
Here, a particle passes through Alice’s lab, de-
scribed by the two spacetime points, (xA, t) and
(xA, t′). Any attempt to distinguish the times t
and t′ at which the particle passes through Al-
ice’s lab would destroy the superposition. Con-
sider now the standard double slit experiment.
Here, a particle passes through the two slits, de-
scribed by the two spacetime points, (xL, t) and
(xR, t). Any attempt to distinguish the positions
of the slits xL and xR through which the parti-
cle passes would destroy the superposition. Note
that by exchanging the roles of space and time,
the descriptions of the above two situations are
essentially identical.

According to the operational approach, as a
consequence of the above, one should describe
Alice’s actions in the optical quantum switch in
terms of only one operational event. Thus, analo-
gously, one should also describe the particle pass-
ing through the slits in terms of only one oper-
ational event. However, such interpretation of
the double slit experiment is, to the best of our
knowledge, absent from the literature.

Note also that the 3-event realisation of the

quantum switch offers a natural alternative in-
terpretation of this phenomenon, as a well known
time double slit experiment [16]. Indeed, the two
events (gates) A and A′ play the role of the two
time-like slits, while the event (gate) B separates
the two in the same way the closed shutter sepa-
rates the two time-like slits in the time double slit
experiment. This comes as no surprise: quantum
superpositions are in general accompanied by the
interference effects, and the quantum switch is,
as already emphasised in Section 3, just another
instance of a superposition of two different states
of the standard quantum mechanics in Minkowski
spacetime.

The operational interpretation of identifying
the events A and A′ in the current experimental
realisations of the quantum switch indeed seems
to be a tempting proposal. Nevertheless, we
would like to point out that in fact it does not
resolve any open problem. In addition, being sim-
ilar to Mach’s ideas, it too may be at odds with
the theory of general relativity (GR), see Subsec-
tion 5.1 for a detailed discussion.

4.1 Distinguishing by decohering the particle

In the above quote from [4], the authors claim
that in order to directly distinguish points A and
A′ (as well as B and B′), one must destroy the su-
perposition in the apparatus. Conversely, being
unable to distinguish those points in any exper-
iment that maintains superposition and realises
the quantum switch, one cannot give them op-
erational meaning. Therefore, those spacetime
points are redundant in the theory, and each pair
should be replaced by a single operational event.
In this subsection, we discuss this type of an ar-
gument. In the next, we give an explicit example
of an observable that does distinguish such space-
time points without obtaining the which way in-
formation.

Let us study one concrete way of distinguishing
the mentioned pairs of points, which decoheres
the particle. For simplicity, we will analyse the
4- and 2-event cases only. To this end, we will in-
troduce a third agent, Alice’s and Bob’s Friend.
At each run of the quantum switch experiment,
Alice will, independently and at random, decide
whether just to apply her operation onto the par-
ticle, or in addition to that, send a photon to
Friend. The same holds for Bob. In 25% of the
cases, both agents just perform their respective
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operations, thus performing the quantum switch.
Next, in the 25% of the cases, both agents de-
cide, in addition to applying their respective op-
erations, to send the photons to Friend, who de-
tects them in his spatially localised lab. The re-
maining 50% of the cases are essentially the same
as the previous ones, so for simplicity we omit
their analysis.

First, we present the spacetime diagram of the
4-event quantum switch for the case when the
agents decide to send the photons to Friend (see
Figure 8).

space

timeti t1 t2 tf

Friend

Alice

Bob

I F

A

B′

FA FB′

B

A′

FB FA′

Figure 8: Distinguishing spacetime points by decohering
the particle in the 4-event quantum switch. The dotted
(dashed) lines represent photons sent by Alice (Bob) to
Friend.

The photons coming from Alice are dotted,
while the photons coming from Bob are dashed.
By knowing the geometry of the whole exper-
iment, Friend would be able to measure, in a
generic setup, four different times of the photon
arrivals: tA and tA′ for spacetime points FA and
FA′ , and two more for the photons sent by Bob.

On the other hand, in the case of the 2-event
gravitational switch realisation, Friend would de-
tect only two times of the photons’ arrival. Be-
low, we extend the diagram of the gravitational
switch we introduced in Section 3.3, by adding
the photons sent to Friend. In order to indicate
the fact that the events A and A′, etc., are in this
setup indeed identified, we write the tilde over the
corresponding letters A, B and F (see Figure 9).

Clearly, the two situations are experimentally
distinguishable.

Nevertheless, as noted in [4], one might argue
that, since the photons sent to Friend in the 4-
event case decohere the particle in the switch, this
situation does not correspond to the experiment
in which the coherence is maintained. Therefore,
in the latter, the pair of spacetime events A and

Friend particleAlice Bob

Ã

B̃

F̃A

F̃B

I

F

Figure 9: Distinguishing spacetime points by decohering
the particle in the 2-event gravitational switch. The
dotted (dashed) lines represent photons sent by Alice
(Bob) to Friend.

A′ still ought to be substituted with a single op-
erational event (and analogously for B and B′).

However, even if instead of spacetime points
one decides to talk about operational events, such
a framework should still be consistent with the
experimentally tested theories, GR in particular.
According to GR, in flat spacetime (or in any
classical configuration of the gravitational field),
regardless of whether we decohere the particle
or not, both experiments feature four spacetime
points, such that A and B (as well as A′ and
B′) can be considered to be simultaneous (see
Figure 8). Therefore, the time of execution of
both experiments is δt = t2 − t1 + C, where
C ≡ (t1 − ti) + (tf − t2). Note that the time
period t2 − t1 represents the travel time of the
particle from one laboratory to the other, and is
therefore strictly positive.

From the operational point of view, the de-
cohered version of the experiment also features
four operational events, and is thus manifestly
consistent with the GR description. Note that
a decohered version of the switch still features
only two events per run: in a classical mixture
between “Alice’s event before Bob’s event” and
“Bob’s event before Alice’s event” each run fea-
tures just two events, and the duration of the
overall experiment in each run is the time be-
tween the two events of that run (plus the above
constant C).
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On the other hand, if the coherence were main-
tained, the operational point of view features only
two operational events, one per laboratory. Then,
the total time of execution of the experiment
ought to be δτ = 0 +C, which is clearly different
from the GR prediction. The total time of execu-
tion of the quantum switch experiment is a mea-
surable quantity. This means that one can eas-
ily determine whether this time is δτ or δt. The
former outcome invalidates GR, which would ne-
cessitate the formulation of an alternative theory.
Note that in this case, a sheer decision to either
decohere a particle or not would allow agents to
influence the time flow in their labs. Moreover,
it raises the question of the time flow in nearby
labs isolated from the experiment during its exe-
cution. The latter outcome poses the problem of
the precise formulation of an operational theory
such that the experiment which features only two
operational events lasts precisely the same time
as the experiment which features four operational
events.

4.2 Distinguishing without decohering the par-
ticle
In addition to the above argument, supported by
the experimental setup presented in the previous
subsection, by erasing the which way information
it is possible for Friend to distinguish the 4-event
and the 2-event realisations even when the “full”
quantum switch is executed. For that, one needs
to supply Friend with a photon non-demolition
measurement. This is in principle possible to con-
struct, although in practice a bit challenging. It
thus might be technically easier to use some par-
ticles other than photons for sending signals to
Friend.

By agreeing in advance of the particular ex-
perimental setup, Friend would be able to pre-
dict the distinct times of arrival of the pho-
tons, tFA

, tFA′ , tFB
and tFB′ in the 4-event case,

and tF̃A
, tF̃B

in the 2-event case, thus defining
the states of the two photons that arrive to his
lab: |FA, FB′〉 , |FA′ , FB〉, and |F̃A, F̃B〉, respec-
tively. Let us define HA≺B′ = span{|FA, FB′〉},
HB≺A′ = span{|FA′ , FB〉}, and HA≺B∧B≺A =
span{|F̃A, F̃B〉}. Then, the relevant Hilbert space
of the two photons is

Hph = HA≺B′ ⊕HB≺A′ ⊕HA≺B∧B≺A . (11)

Let us define P<, P> and P= as orthogonal pro-

jectors onto HA≺B′ , HB≺A′ and HA≺B∧B≺A, re-
spectively. One can then define a dichotomic pho-
ton non-demolition orthogonal observable per-
formed by Friend on the two photons in his lab-
oratory:

M = 1 · (P< + P>) + 0 · P= . (12)

Provided that the experimental setup is either
that of the 4-event, or the 2-event type, such mea-
surement would not change the state of the ex-
perimental setup (the interferometer, the particle
in it, and the photons in the Friend’s apparatus),
while still leaking the information to Friend (via
the measurement outcome) about the type of the
quantum switch realisation. Finally, by perform-
ing the quantum erasing procedure [17, 18], the
which way information is lost, and the final state
of the particle is restored to a coherent superpo-
sition.

Let us examine this more formally. Let the
two states of the particle in the quantum switch
be |R〉 and |B〉, corresponding to the red and
the blue trajectory, respectively. After I, the
state of the particle in the quantum switch is

1√
2(|R〉 + |B〉). As the particle passes through

Alice’s and Bob’s labs, two photons are emitted,
which arrive at the Friend’s lab. The overall state
of the particle and the two photons in the 2-event
quantum switch is then

1√
2

(
|R〉+ |B〉

)
|F̃A, F̃B〉. (13)

The particle in the quantum switch is in super-
position of the two paths, and it stays so upon
measuring M and obtaining the result 0.

On the other hand, the overall state of the par-
ticle and the two photons in the 4-event quan-
tum switch is, upon the photons’ arrival in the
Friend’s lab, given by

1√
2

(
|R〉|FA′ , FB〉+ |B〉|FA, FB′〉

)
(14)

= 1
2
√

2

[(
|R〉+ |B〉

)(
|FA′ , FB〉+ |FA, FB′〉

)
+
(
|R〉 − |B〉

)(
|FA′ , FB〉 − |FA, FB′〉

)]
.

The particle is now decohered by the two pho-
tons, and it remains so upon measuring M and
obtaining 1 as the result. Therefore, to erase the
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which way information, Friend has to perform an
additional measurement in the basis

|±〉 = 1√
2

(
|FA′ , FB〉 ± |FA, FB′〉

)
, (15)

thus collapsing the state of the particle in one of
the two pure states

1√
2

(
|R〉 ± |B〉

)
. (16)

Knowing the outcome of the measurement of M ,
Friend can post-select the output of the particle
coming out of the quantum switch. Alternatively,
in the case of obtaining the |−〉 result, Friend can
change the relative phase between the two of the
particle’s superposed states.

4.3 Other types of gravitational switches
It is important to note that the framework of QG
also allows for the construction of 3- and 4-event
switches, in addition to the 2-event one. This is
straightforward to see, for example by immersing
the above 3- or 4-event spacetime diagram into a
superposition of different geometries.

Moreover, all of these gravitational switches
may give different outcomes when measuring the
observable M , given by (12), followed by the
quantum erasing procedure (15). The criteria
to necessarily obtain the outcome 0 are: (i) that
the photons in red and blue histories meet at the
boundary of the yellow region, and (ii) from that
point on they recombine into a single photon his-
tory. Depending on the details of their construc-
tion, all gravitational switches either may or may
not satisfy the criteria (i) and (ii). On the other
hand, no quantum switch realisations in classical
spacetimes with definite causal order could ever
yield result 0. Finally, we note that even though
some of 2-event gravitational switches may give
the outcome 1 when measuring M , it does not
necessarily mean that there exist no other observ-
able that could distinguish them from the 4-event
quantum switches in a classical geometry. This is
a matter for further research.

Detailed graphical visualisations of various
gravitational switches are presented in the Ap-
pendix F.

5 Relational approach to physics
In the light of the operational framework, which
suggests the substitution of the spacetime events

A and A′ with a single operational event (and
analogously for B and B′), it is important to
comment on one different but related approach
to understanding spacetime, called relationalism.
Note that by this promotion of operational events
as fundamental entities that ought to replace and
play the role of the spacetime events, effectively
means the identification of A with A′, and B with
B′. In this section, we first present a historical re-
view of the relational approach to physics. Then,
we discuss the operational framework within the
context of the modern approach to relationalism.

5.1 Mach principle and the history of relation-
alism
The idea of relationalism is an old one, it traces
back at least as far as Decartes, and is very im-
portant in human thought, in particular in the
history of physics. It was brought back to science
by Mach in the second half of the XIX century
(for an overview and history of the Mach prin-
ciple and the relational approach to space, from
its origins in ancient Greece, see for example [19]
and the references therein). Based on the Leibniz
ideas of a relational world, Mach formulated his
famous Mach principle, an intuitively reasonable
approach in analysing physics, and space(time)
relations in particular. One of the main charac-
teristics of the Mach principle is that (see [20],
page 17):

“Space as such plays no role in physics;
it is merely an abstraction from the to-
tality of spatial relations between mate-
rial objects.”

The same formulation can be found in [21],
slightly re-phrased as “Mach7: If you take away
all matter, there is no more space.” It is interest-
ing to note that the authors attribute this formu-
lation to A. S. Eddington [22], page 164.

As discussed at the beginning of Section 4, in
the operational approach one attributes the ulti-
mate existence to the “closed laboratories” only,
while their mutual relations, epitomised by the
process matrix, are then giving rise to higher level
emergent entities. This clearly shows striking
similarities between the Mach’s and the opera-
tional approaches to space(time).

Mach’s ideas were crucial for Einstein in formu-
lating the theory of relativity. And while many
of Mach’s predictions were indeed realised in the
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new theory, some of them were not. Mach’s idea
that the matter is the basic entity, and that by
abstracting the relations between the objects the
space emerges, led him to the following state-
ment: if the matter in the universe were finite
and had 3D rotational symmetry, it would be im-
possible to determine its angular momentum (in-
deed, even talking about it would have no mean-
ing). This is a plausible idea. Nevertheless, it
does not hold in general relativity (GR), where
one can find two solutions of the Einstein equa-
tions for the isolated black hole (the stationary
Schwarzschild solution and the rotating Kerr so-
lution [23]). Moreover, while according to the
Mach principle the matter completely determines
the space, this is not the case in GR: not only that
there exists a solution for the gravitational field
in the absence of matter (when the stress-energy
tensor T is identically zero), but the solution is
not unique, as it depends on the boundary con-
ditions as well (i.e., flat Minkowski spacetime is
not the only solution — gravitational waves be-
ing a possible alternative [23]). This also holds
for the general T 6= 0 case, as there too boundary
conditions play an important role. Thus, matter
does not fully determine the inertia, as should ac-
cording to Mach principle, which states that the
inertia of a massive body is given solely in terms
of its relations with the other massive bodies.

Motivated by giving the ultimate reality to ma-
terial objects only (closed laboratories in the case
of the operational approach), Mach formulated
the above list of claims. Nevertheless, they were
later shown not to hold in GR. Provided the sim-
ilarities between the Mach ideas and the oper-
ational approach, the latter might face similar
problems as well. We thus believe that introduc-
ing the operationalist notion of an event should
be accompanied by more elaborate proposals of
new physical hypotheses and theories. We hope
that our discussion may serve as a small step to-
wards achieving this goal.

5.2 Modern approach to relationalism

In contrast to the historical approach to relation-
alism and Mach’s ideas, that sounded plausible
at the time but ultimately failed with the devel-
opment of GR, the more elaborate modern ap-
proach to relationalism is epitomised in the words
of Carlo Rovelli (see Section 2.3 of [24]):

“The world is made up of fields. Phys-
ically, these do not live on spacetime.
They live, so to say, on one another.
No more fields on spacetime, just fields
on fields.”

In particular, the modern relational approach to
spacetime defines a particular spacetime point
by the physical processes that are “happening
at that point”. More technically, given an or-
dered set of classical fields φ ≡ (φ1, . . . , φn) used
to describe physics in a given classical theoreti-
cal framework, one traditionally starts from some
spacetime point x̃ and evaluates the fields at that
point, φ̃i = φi(x̃), obtaining an n-tuple of num-
bers (φ̃1, . . . , φ̃n). The idea of relationalism does
the opposite — one starts from n-tuples of field
values, and then defines a spacetime point us-
ing an n-tuple, x̃ ≡ (φ̃1, . . . , φ̃n), so that the
same equation φ̃i = φi(x̃) holds. The question
of how to operationally relate values of differ-
ent fields, and assign and distribute them into
n-tuples, is a matter of a separate study [25].
In this work, we assume that this problem is al-
ready solved. Moreover, note that fields φ need
not be observable, due to potential gauge symme-
tries (for example, the electromagnetic potential
Aµ and the metric gµν). To that end, we intro-
duce an ordered set of gauge invariant functions
O(φ) ≡ (O1(φ), . . . ,Om(φ)), where m ≥ n (for
example, the electromagnetic field strength Fµν
and the curvature Rλµνρ), and define a spacetime
point as an m-tuple of their values Õ.

Unless the physical system features some global
symmetry, each m-tuple Õ defines a unique point
in spacetime. Note that, in the context of GR,
the absence of global symmetries is actually the
generic case. Thus, the essential feature of this
definition is that it does not make sense to say
that the same m-tuple of field strengths can oc-
cur in two different spacetime points, since “both”
spacetime points in question are defined in terms
of the one and the same m-tuple, and therefore
represent a single point.

Moving from classical to the quantum frame-
work, where no system has predetermined phys-
ical properties independent of observation, one
needs to talk about observables. Given an or-
dered set of quantum fields φ ≡ (φ1, . . . , φn), one
constructs one specific complete set of compatible
observables O ≡ (O1(φ), . . . .Om(φ)), where

• compatible means that all observables mutu-

Accepted in Quantum 2020-05-12, click title to verify. Published under CC-BY 4.0. 13



ally commute, [Oi , Oj ] = 0 for every i and
j, while

• complete means that the eigenspaces com-
mon for all these observables are nondegener-
ate, i.e., they are one-dimensional subspaces
of the total Hilbert space.

Here, by “specific” we mean the set of observ-
ables which depend only on fields φ, but not on
their conjugated momenta. This fixes the co-
ordinate representation, such that each common
eigenvector corresponds to one classical configu-
ration of fields. The outcomes of the measure-
ments of these observables can then be grouped
intom-tuples and used to define individual space-
time points, as in the classical case above, thus
giving rise to an emergent classical spacetime. On
the other hand, if the state is not an eigenvector
of O, one cannot speak of a single classical con-
figuration of fields, and thus the notion of emer-
gent spacetime and its points ceases to make sense
globally, according to the relational approach. At
most, one could speak of a superposition of clas-
sical configurations and corresponding emergent
spacetimes, but without any natural way to re-
late spacetime points across different branches in
the superposition. Nevertheless, this does not
mean that establishing such a relation is impos-
sible for certain subregions of spacetime. Indeed,
the whole non-yellow “outside” part of the grav-
itational switch picture from Subsection 3.3 rep-
resents a subregion with a locally classical config-
uration and thus well defined spacetime points.

In order to better appreciate the relational def-
inition of spacetime points given above, it is in-
structive to look at the realisation of spacetime
in the context of a relational quantum gravity
model, such as a spinfoam model in the Loop
Quantum Gravity (LQG) framework [24, 26].
There, the spacetime is “built” out of the spin
foam — a lattice-like structure with vertices,
edges and faces, each labeled by the eigenvalues
of particular field operators that “live” on these
structures, depicted as follows (see Figure 10):

For example, the area operator, which is a func-
tion of the gravitational field, has eigenvalues de-
termined by a half-integer label j ∈ N/2, and each
face of the spin foam carries one such label, spec-
ifying the area of the surface dual to that face.
In particular, the spectrum of the area operator

jfjf ′ ιε

ιε′

Figure 10: A piece of a spin foam diagram. The field
j labels the faces f, f ′, . . . , while the field ι labels the
edges ε, ε′, . . . , of the diagram.

is given as

A(j) = 8πγl2p
∑
f

√
jf (jf + 1) , (17)

where lp is the Planck length, γ is the Barbero-
Immirzi parameter, while the sum goes over all
faces f of the spin foam that intersect the surface
whose area we are interested in, see [24, 26] for
details. All other physical observables similarly
provide appropriate labels for each vertex, edge
and face of the spin foam. Since edges and faces
meet at vertices, a given vertex carries labels of
all observables of all edges and faces that are con-
nected to that vertex. These observables form the
complete set of compatible observables O, and
their eigenvalues label each vertex, determining
the identity of that vertex. In other words, each
labeled vertex of a spin foam defines a “spacetime
point”, and if two vertices have completely identi-
cal properties in the sense of their labels and their
connectedness to neighbouring objects, they ac-
tually represent the one and the same vertex.

At first sight, it is tempting to apply the ideas
of relational spacetime to the case of the quan-
tum switch, as follows. At the spacetime event
A, Alice interacts with the particle as it enters
and exits her lab, while at the spacetime event
A′ Alice also interacts (in exactly the same way)
with the same particle. The idea of relational
spacetime then might suggest that one should de-
fine the spacetime events A and A′ by the phys-
ical event of interaction between Alice and the
particle. Since this interaction is the same in
both cases, one ought to identify the two points,
A ≡ A′, and claim that both of these correspond
to the same spacetime event, defined by the inter-
action between Alice and the particle. The same
argument applies to Bob, and events B and B′.

Unfortunately, this argument is not fully in line
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with relationalism. The reason lies in the fact
that the interaction between Alice and the parti-
cle (and also between Bob and the particle) does
not meet the criteria given in the above relational
definition of a spacetime point. Namely, neither
Alice, nor Bob, performs a measurement of a com-
plete set of compatible observables O. The men-
tioned interaction with the particle is merely a
subset of this. In particular, the interaction of
Alice with the particle does not uniquely fix the
state of, say, the gravitational field, or the elec-
tromagnetic field, or the Higgs field, etc. There-
fore, it may happen that the measurement out-
comes of the whole set of observables O at space-
time events A and A′ are still mutually distinct,
thereby defining the events A and A′ as two dis-
tinguishable spacetime points. In order to be cer-
tain that A and A′ are really the same spacetime
event, Alice would need to measure the complete
set of observables O, and convince herself that
the results of all those measurements at A and at
A′ are identical. The mere interaction with the
particle is not enough to achieve this, and the
experimental setups such as [4, 5, 6] obviously
fall short of accounting for the state of all other
possible physical fields that Alice and Bob can
interact with, in addition to the interaction with
the particle.

We see that, when applied to the case of the
quantum switch in classical gravitational field,
the relational framework is at odds with the op-
erational approach — the former distinguishes A
and A′ while the latter regards them as iden-
tical. This is because the matter fields of the
particle are in a superposition of two classical
configurations. Similarly, in the case of the 2-
event gravitational switch introduced in Subsec-
tion 3.3, the overall state of gravity and matter is
a superposition of two distinct classical configu-
rations. Therefore, within the relational frame-
work, it is not possible to talk about a single
emergent spacetime, nor to compare the points
that belong to different branches. This is differ-
ent from the operational approach, which aims
to identify points from different branches. It is
also different from the traditional approach, since
the latter postulates a unique classical spacetime
manifold.

Note that, if understood as an interpretation,
relational framework ought to have all experi-
mental predictions the same as those from the

traditional approach. Thus, the observable con-
structed in Subsection 4.2 should distinguish the
quantum from the gravitational switch, in the
same way as in the traditional approach. On
the other hand, potential new physics formu-
lated based on the relational framework might,
or might not, feature different experimental pre-
dictions.

It is important to emphasise that, as dis-
cussed in Subsection 4.3, various realisations of
the quantum switch are possible by superposing
different causal orders in the framework of QG.
In particular, regarding the 2-event realisations,
one can consider the following diagram (see Fig-
ure 11):

particleAlice Bob

A

B

I

F

Figure 11: Spacetime diagram of a version of a 2-event
gravitational switch, in which Alice and Bob perform
their respective operations in the regions of spacetime
with a single gravitational configuration.

This diagram features two classical spacetime
subregions surrounding Alice’s and Bob’s labo-
ratories. As such, Alice and Bob can measure
the complete set of compatible observables within
their laboratories, without obtaining which-way
information and destroying the superposition.
Therefore, even from the relational point of view,
this represents an implementation of a 2-event
gravitational switch. Note that in this case Alice
and Bob do not even need Friend in order to verify
the 2-event nature of their gravitational switch.

It is interesting to observe that this realisa-
tion of the quantum switch implements the op-
erational idea of a 2-event quantum switch, in
terms of closed laboratories. However, to achieve
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such an implementation, it is necessary to have
a genuine superposition of metric-induced space-
time causal orders in the yellow region of space-
time, which does not feature in experimental re-
alisations [4, 5, 6].

6 Conclusions

In this paper, we analysed the notion of causal or-
ders both in classical and quantum worlds, with
the emphasis on the latter. We defined the no-
tion of the causal order for the case of (classical
and quantum) circuits, in terms of partial order-
ing between the nodes of the circuit’s underlying
graph that defines the cause-effect structure. We
discussed the possibility of implementing an ab-
stract circuit in the real world, showing that it
is always possible to do so for the case of a glob-
ally hyperbolic (classical) spacetime, in which the
circuit’s causal order is preserved by the metric-
induced relation between the spacetime events.

The superposition principle of quantum me-
chanics offers the possibility of controlled oper-
ations, in particular the quantum switch, whose
experimental realisations have been claimed to
present genuine superpositions of causal orders.
Within the process matrix formalism, we have
analysed the 4- and 3-event realisations of the
quantum switch in classical spacetimes with fixed
spacetime causal orders, and the 2-event realisa-
tion of a gravitational switch that features super-
positions of different gravitational field configu-
rations and their respective spacetime causal or-
ders. To that end, we have extended the process
matrix formalism, by introducing the notion of a
vacuum state. Our analysis shows that the pro-
cess matrix formalism can explain the quantum
switch realisations within the standard physics,
and is thus consistent with it.

Thus, as a consequence of our Theorem, and
the analysis of the quantum switch implementa-
tions, we argued that, in contrast to the grav-
itational switch, the current experimental im-
plementations do not feature superpositions of
spacetime causal orders, and that they are vari-
ants of the time double slit experiment. More-
over, by explicitly constructing two different ob-
servables, presented in Sections 4.1 and 4.2, re-
spectively, we showed that it is possible to ex-
perimentally distinguish between different reali-
sations of the quantum switch.

Finally, in Section 5, we analysed the rela-
tion among the traditional QFT approach to QG
(used throughout this paper), the operational
point of view, and the relational framework of
QG. On the example of the quantum switch, we
showed that the operational viewpoint, while con-
sistent with the approach advocated by Mach, is
nevertheless at odds with the modern relational
framework. On the other hand, the traditional
QFT approach and the relational framework may
or may not be compatible, depending on the con-
crete realisation of the quantum switch. In par-
ticular, for the specific realisation of the gravi-
tational switch given in Subsection 5.2, the two
frameworks are compatible in the prediction that
Alice and Bob can locally (without the help of
Friend) verify that the switch is implemented on
2 events.

In a recent work [27], the authors report on
a violation of the causal inequality [8] in flat
Minkowski spacetime with a definite causal or-
der. To achieve it, they consider laboratories
that are localised in space only, while delocalised
in time. Therefore, their alternative notion of a
“closed laboratory”, and that considered in [8],
do not coincide, this way manifestly violating
the conditions necessary for the causal inequal-
ity to hold. For the same reason, the scenario
considered in [27] falls out of the scope of the
current work as well. Additionally, in another re-
cent work [28], the author discusses the quantum
switch in terms of the time-delocalised quantum
subsystems and operations, and generalises it to
more complex quantum circuits and processes.
The results of these two papers deserve further
analysis and remain to be a subject of future re-
search.

Exploring possible generalisations of our The-
orem, as suggested at the end of Appendix A,
presents a straightforward future line of research.
Also, one could further analyse the process ma-
trix formalism, in particular by exploring the sit-
uations in which the operational approach inter-
pretation fails to describe the known processes.
Or, to search for the opposite — the instances
of physical processes that cannot be explained
by the process matrix formalism, when applied
within the standard physics. In order to show
that the process matrix formalism is perfectly
suitable for describing the quantum switch im-
plementations within the standard physics, we
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formulated its version that features the vacuum
state. One can thus further study possible gen-
eralisations of this formalism and its applica-
tions to the cases that go beyond simple non-
relativistic mechanics. Finally, motivated by our
analysis and discussion from Subsections 4.1 and
5.1, one can try to formulate alternative theories
that would be consistent with the experimentally
tested known physics (GR in particular), while at
the same time substituting the spacetime events
A and A′, from the quantum switch realisations
in classical spacetimes, with a single operational
event (and analogously for B and B′).
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A Proof of the Theorem
Here we give an explicit constructive proof of the Theorem from the main text.

Given the graph G, we begin the proof by partitioning its set of nodes I into disjoint subsets, in the
following way. Since the graph is finite, we introduce the subset M1 ⊂ I which consists of all minimal
nodes of the graph G:

M1 = {u ∈ I | (¬∃v ∈ I) v ≺I u} . (18)

Since all nodes in M1 are minimal, there is no order relation ≺I between any two of them. Therefore,
we can intuitively understand them as “simultaneous”. As a next step, we remove these nodes and the
corresponding edges from G, reducing it to a subgraph G2 = (I2, E2), where

I2 = I\N1 , E2 = {(u, v) |u, v ∈ I2 , (u, v) ∈ E} . (19)

Then we repeat the construction for the graph G2, obtaining the new minimal set M2, and the next
subgraph G3, in an analogous way. Since the graph G is finite, after a certain finite number of steps we
will exhaust all nodes in I, ending up with a partition of “simultaneous” subsets M1, . . . ,Mm (m ∈ N),
such that

(∀i 6= j) Mi ∩Mj = ∅ ,
m⋃
i=1

Mi = I . (20)

Once we have partitioned the set of nodes I into subsets, we turn to the construction of the immersing
map P : I →M, in the following way. Since spacetime is globally hyperbolic, we can writeM = Σ×R,
where Σ is a spatial 3-dimensional hypersurface, and R is timelike. Without loss of generality, one can
then introduce a foliation of spacetime into a family of such hypersurfaces, denoted Σt and labeled
by a parameter t ∈ R. Start from some initial parameter t1, and choose a compact subset St1 ⊂ Σt1 .
Denoting the number of elements in the partition Mi as ‖Mi‖, we pick in an arbitrary way the set of
‖M1‖ points ~xk ∈ St1 (here, k = 1, . . . , ‖M1‖), and define the map P to assign a node from M1 to each
point ~xk in a one-to-one fashion:

P (uk) = (t1, ~xk) ∈M , k = 1, . . . , ‖M1‖ . (21)

Once this assignment has been defined, construct a future-pointing light cone from each spacetime
point (t1, ~xk). Then we find a new hypersurface, Σt2 , which contains a common intersection with all
constructed light cones, and denote this intersection St2 ⊂ Σt2 . In this way, by construction, all points
(t1, ~xk) are in the past of all points in St2 ,

(t1, ~xk) ≺M St2 , k = 1, . . . , ‖M1‖ . (22)

Now extend the definition of P such that it assigns the nodes from the next partition, M2, to a
randomly chosen set of points in St2 in a similar way as before, then construct a set of light cones from
them, and repeat the construction for all partitions Mi. Constructed in this way, the map P ensures
that for every pair of nodes u, v ∈ I, we have

u ≺I v =⇒ P (u) ≺M P (v) , ∀u, v ∈ I . (23)

Once we have constructed the map P : I →M satisfying (23), using the definition (2), it induces the
map P : GC →M, which satisfies the required statement (3).

This completes the proof. �

Note that, while the causal order ≺M indeed preserves the causal order ≺C , it is “stronger” in the
sense that it may introduce additional relations between the images of nodes, which do not hold in the
graph itself. Indeed, the construction of the map P in the above proof is such that each image of a
node from some given partitionMi is in the causal past of all images from the previous partitionMi−1,
which is not necessarily the case for the nodes themselves. One might study if the causal orders over
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the set of nodes and over the set of its images can be equivalent, i.e., if the opposite implication from
equation (23) also holds (in this case the immersion P is called an embedding of G intoM). Whether
such an embedding exists for all hyperbolic spacetimes, or at least for some, is an open question.

Next, one could also discuss the generalisation of the above theorem to the case of countably infinite
graphs G. However, for our purposes, the existence of a partially ordered map P over the set of finite
graphs will suffice.

Regarding the proof itself, one can formulate an alternative (and simpler) approach to the proof of
the theorem. Namely, one can first prove that every circuit can be immersed into the flat Minkowski
spacetime. Then, knowing that the sufficiently small neighbourhood of every spacetime point in an
arbitrary manifold M can be well approximated with its tangent space, one can always immerse the
whole circuit into this small neighbourhood. However, this implies that the geometric size of the circuit
can be considered negligible compared to the curvature scale of the manifold, which may render such
implementation practically unfeasible. Moreover, this alternative approach does not cover the cases
where one actually wants the scale of the circuit to be comparable to the curvature scale. Specifically, if
one wishes to employ the circuit to study gravitational phenomena, its gates must be distributed across
spacetime precisely in a way that is sensitive to curvature. Therefore, the construction of the map P
used in the proof of the theorem is more general than the construction in this alternative approach.

Finally, given the construction in the proof, the gates of the set of minimal nodes M1 define the
initial gate I, the set of maximal nodesMm define the final gate F , while the the gates of the remaining
intermediary sets of nodes M2, . . .Mm−1 define the operation OC . This is illustrated in the diagram
below (see Figure 12).

time

i1 i2 . . . i‖M1‖
I

f1 f2 . . . f‖Mm‖ F

· · · · · · OC

Figure 12: The spacetime diagram of the circuit C, with the initial gate I, the operation gate OC , and the final
gate F .

B Qutrit states, operators and bases

The notion of a qubit can be generalised from a 2-dimensional Hilbert space to a d-dimensional Hilbert
space. The generalised object is called “qudit” in d dimensions [29]. Since we are interested in describing
ordinary 2-dimensional qubits with an additional vacuum state, it is natural to consider qudits in d = 3,
called “qutrits”. We introduce the following notation for the basis states of a qutrit in H3 = C3:

|0〉 ≡

 1
0
0

 , |1〉 ≡

 0
1
0

 , |v〉 ≡

 0
0
1

 . (24)

The states |0〉 and |1〉 will be understood as the usual computational basis for a 2-dimensional qubit,
while the state |v〉 will represent the vacuum, i.e., the “absence of a qubit”. In cases when we take
sums over the basis vectors, we will assume that the vacuum state carries the index 2, i.e., |v〉 ≡ |2〉,
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so that we can write
2∑
i=0
|i〉 = |0〉+ |1〉+ |v〉 , and

1∑
i=0
|i〉 = |0〉+ |1〉 . (25)

Using this notation, we write the unnormalised maximally correlated states for the qutrit and the qubit
as

|1〉〉 =
2∑
i=0
|i〉|i〉 = |0〉|0〉+ |1〉|1〉+ |v〉|v〉 ∈ H3 ⊗H3 , |1〉〉 =

1∑
i=0
|i〉|i〉 = |0〉|0〉+ |1〉|1〉 ∈ H2 ⊗H2 ,

(26)
so that

|1〉〉 = |1〉〉+ |v〉|v〉 . (27)
One can also introduce the standard Hilbert-Schmidt basis in the space L(H3) of linear operators

on H3. This basis consists of 9 matrices 3× 3, labeled as λ0, . . . , λ8, as follows:

• the three symmetric matrices

λ1 =
√

3
2

 0 1 0
1 0 0
0 0 0

 , λ2 =
√

3
2

 0 0 1
0 0 0
1 0 0

 , λ3 =
√

3
2

 0 0 0
0 0 1
0 1 0

 , (28)

• the three antisymmetric matrices

λ4 =
√

3
2

 0 −i 0
i 0 0
0 0 0

 , λ5 =
√

3
2

 0 0 −i
0 0 0
i 0 0

 , λ6 =
√

3
2

 0 0 0
0 0 −i
0 i 0

 , (29)

• and the three diagonal matrices

λ7 =
√

3
2

 1 0 0
0 −1 0
0 0 0

 , λ8 = 1√
2

 1 0 0
0 1 0
0 0 −2

 , λ0 =

 1 0 0
0 1 0
0 0 1

 . (30)

The matrix λ0 is the unit matrix, while λ1, . . . , λ8 are self-adjoint, traceless, and orthogonal with
respect to the standard scalar product:

λ†i = λi , Trλi = 0 , Trλ†iλj = 3δij , i = 1, . . . , 8 . (31)

They represent the generators of the SU(3) group, and are known as the Gell-Mann matrices (up to a
normalisation factor

√
3/2).

If we denote Hv as the 1-dimensional vacuum-spanned subspace of H3, one can see that L(H2) ⊕
L(Hv) ⊂ L(H3). In particular, if we denote the standard Pauli matrices as σx, σy, σz and the unit
2× 2 matrix as I2, they form the basis in L(H2), and the qubit basis can thus be constructed as

√
2
3λ1 =

 σx
0
0

0 0 0

 , √
2
3λ4 =

 σy
0
0

0 0 0

 , √
2
3λ7 =

 σz
0
0

0 0 0

 , (32)

along with

2
3λ0 +

√
2

3 λ8 =

 I2
0
0

0 0 0

 . (33)

Also, the vacuum space L(Hv) is one-dimensional, and the basis is

1
3λ0 −

√
2

3 λ8 =

 0 0 0
0 0 0
0 0 1

 . (34)
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C Process matrix evaluation
Let us give an explicit step by step evaluation of the probability distribution for the 4-event process
discussed in the text, using the process matrix formalism. The complete spacetime diagram of the
process is given as (see Figure 13):

space

timeti t1 t2 tf

Alice

Bob

beam
splitter

Si Sf

A

B′B

A′

PA

PB

I

TA

TB

F

Figure 13: Spacetime diagram of the 4-event implementation of the quantum switch. The internal structures of the
composite gates I and F are explicitly depicted.

The composite event I consists of the two preparation events PA, PB, and the initial beam splitting
event Si, while F consists of the recombination event Sf and the measurement events TA and TB.

The corresponding circuit diagram is obtained from the above one by promoting each event of
interaction to a gate, and the propagation of each particle to a channel. This leads to the following
circuit diagram (see Figure 14):

PA

PB
Si

A

B

A′

B′

Sf

TA

TB

I F

Figure 14: Circuit diagram of the 4-event implementation of the quantum switch. The internal structures of the
composite gates I and F are explicitly depicted.

Its structure is in one-to-one correspondence with the spacetime diagram for the 4-event process,
where the preparation and measurement spacetime events I and F have been split into three sub-gates
each, for clarity.

The operations on each of the gates are given as follows. The preparation gate PA maps from the
input Hilbert space PAI

to the output Hilbert space PAO
, and analogously for gate PB. The input

spaces are trivial, dimPAI
= dimPBI

= 1, while each output space is spanned by vectors |0〉, |1〉
and |v〉. Here, |0〉 and |1〉 represent the two orthogonal qubit states (say, vertical and horizontal
polarisations along certain axis in 3D space), while |v〉 is the vacuum state, representing the absence
of particles in the corresponding arm of the interferometer. The operations performed at these gates,
PA = |Ψ〉 and PB = |v〉, specify the initial conditions for the rest of the circuit diagram, and are
described by the Choi-Jamiołkowski (CJ) states as

|P ∗A〉〉PAI
PAO = |Ψ∗〉PAO , |P ∗B〉〉PBI

PBO = |v〉PBO . (35)

Here, ∗ denotes the complex conjugation.
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Analogously, the target gates TA and TB facilitate the final measurement outcomes of the circuit
diagram. The input spaces TAI

and TBI
are three-dimensional, spanned over the two qubit states and

the vacuum, while the output spaces are one-dimensional. The operations performed at these gates,
Tα = 〈α| and Tβ = 〈β|, read out the measurement results α, β ∈ {0, 1, v}. The corresponding CJ states
are given as

|T ∗α〉〉
TAI

TAO = |α〉TAI , |T ∗β 〉〉
TBI

TBO = |β〉TBI . (36)

The gates A, A′, B and B′ perform the unitaries U and V . The input and output spaces AI and AO
of the Alice’s gate A are both spanned by vectors |0〉, |1〉 and |v〉, and analogously for the input and
output spaces of the remaining three gates. Assuming that in her (spatially) local laboratory Alice
performs the unitary U on the particle’s internal degree of freedom, the induced operation between
the three-dimensional spaces AI and AO that include the vacuum states is given by

ŨAOAI = UAOAIPAIAI
01 + IAOAIPAIAI

v , (37)

where PAIAI
01 = |0〉AI 〈0|AI + |1〉AI 〈1|AI , PAIAI

v = |v〉AI 〈v|AI , and IAOAI represents the identity map
between the Hilbert spaces AO and AI . The analogous construction also holds for the gate A′, so the
respective CJ states for the gates A and A′ are then given by:

|Ũ∗〉〉AIAO =
[
IAIAI ⊗ (Ũ∗)AOAI

]
|1〉〉AIAI ,

|Ũ∗〉〉A
′
IA

′
O =

[
IA

′
IA

′
I ⊗ (Ũ∗)A′

OA
′
I

]
|1〉〉A

′
IA

′
I .

(38)

Here, the “transport vector” is given by (for details of the process matrix formalism for the case of
three-dimensional spaces — qutrits, see Appendix B):

|1〉〉 = |0〉|0〉+ |1〉|1〉+ |v〉|v〉 . (39)

Bob performs V in his (spatially) local laboratory, and therefore the CJ states for the gates B and B′

are given as:

|Ṽ ∗〉〉BIBO =
[
IBIBI ⊗ (Ṽ ∗)BOBI

]
|1〉〉BIBI ,

|Ṽ ∗〉〉B
′
IB

′
O =

[
IB

′
IB

′
I ⊗ (Ṽ ∗)B′

OB
′
I

]
|1〉〉B

′
IB

′
I .

(40)

The gates Si and Sf act as beam splitters, i.e., they both perform the same Hadamard operation
H, given as follows. The beam splitter input and output spaces consist of the Alice’s and Bob’s
factor spaces. For the case of the Alice’s input space, we have SAI

= span{|0〉SAI , |1〉SAI , |v〉SAI }, and
analogously for the output space, as well as for Bob’s factor spaces. The overall input and output
beam splitter spaces are therefore defined as SI = S(AB)I

= SAI
⊗SBI

and SO = S(AB)O
= SAO

⊗SBO
.

Finally, the unitary matrix associated to gate S representing the action of the balanced Hadamard
beam splitter is given by:

HSOSI = 1√
2

(
|0〉SAO |v〉SBO + |v〉SAO |0〉SBO

)
〈0|SAI 〈v|SBI

+ 1√
2

(
|1〉SAO |v〉SBO + |v〉SAO |1〉SBO

)
〈1|SAI 〈v|SBI

+ 1√
2

(
|0〉SAO |v〉SBO − |v〉SAO |0〉SBO

)
〈v|SAI 〈0|SBI

+ 1√
2

(
|1〉SAO |v〉SBO − |v〉SAO |1〉SBO

)
〈v|SAI 〈1|SBI .

(41)

The beam splitter acts such that the system coming from the Alice’s side comes into an equal super-
position of the two output spatial modes coming to Alice and Bob, with zero relative phase, while the
system coming from the Bob’s side (blue line) comes into an equal superposition of the two output
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spatial modes with relative phase π. Thus, in the output space the correlation between the Alice’s and
Bob’s vacuum state is the opposite as in the input case. The corresponding CJ state is then

|H∗〉〉SISO =
[
ISISI ⊗ (H∗)SOSI

]
|1〉〉SISI , (42)

where the transport vector |1〉〉 for the beam splitter, when projected to a single-particle subspace, is
given by

|1〉〉 = |0v〉|0v〉+ |1v〉|1v〉+ |v0〉|v0〉+ |v1〉|v1〉 . (43)

Note that the full transport vector contains nine terms instead of the above four, but for the purpose
of this paper, we do not need those five additional terms.

The process vector encodes the wires between the gates, and it is being constructed by taking the
tensor product over appropriate transport vectors |1〉〉 for Alice’s and Bob’s qutrits, see equations (26)
and (27), such that each transport vector corresponds to one wire in the circuit diagram, connecting
the output of the source gate to the input of the target gate. The process vector is thus given as:

|W4-event〉〉 = |1〉〉PAO
Si

AI |1〉〉PBO
Si

BI︸ ︷︷ ︸
initial

|1〉〉S
i
AO

AI |1〉〉AOB
′
I |1〉〉B

′
OS

f
BI︸ ︷︷ ︸

blue

|1〉〉S
i
BO

BI |1〉〉BOA
′
I |1〉〉A

′
OS

f
AI︸ ︷︷ ︸

red

|1〉〉S
f
AO

TAI |1〉〉S
f
BO

TBI︸ ︷︷ ︸
final

.
(44)

One can now evaluate the probability distribution

p(α, β) =
∥∥∥M(α, β)

∥∥∥2
, (45)

where the probability amplitudeM(α, β) is constructed by acting with the tensor product of all gate
operations (35), (42), (38), (40), (42) and (36), on the process vector (44). Since each of the gate
operations acts in its own part of the total Hilbert space, the order of application of these operations
is immaterial, and we are free to choose the most convenient one.

To see what happens when the operations (35) of the preparation gates act on the process vector,
let us evaluate the action of |P ∗A〉〉

PAI
PAO on |1〉〉PAO

Si
AI :

〈〈P ∗A|
PAI

PAO |1〉〉PAO
Si

AI = 〈Ψ∗|PAO

2∑
k=0
|k〉PAO |k〉S

i
AI =

2∑
k=0

(
〈Ψ|k〉

)∗
|k〉S

i
AI = |Ψ〉S

i
AI . (46)

An analogous calculation can be performed for |P ∗B〉〉
PBI

PBO , so the action of both preparation opera-
tions (35) on the process vector (44) evaluates to:(

〈〈P ∗A|
PAI

PAO ⊗ 〈〈P ∗B|
PBI

PBO

)
|W4-event〉〉 =

|Ψ〉S
i
AI |v〉S

i
BI |1〉〉S

i
AO

AI |1〉〉AOB
′
I |1〉〉B

′
OS

f
BI︸ ︷︷ ︸

blue

|1〉〉S
i
BO

BI |1〉〉BOA
′
I |1〉〉A

′
OS

f
AI︸ ︷︷ ︸

red

|1〉〉S
f
AO

TAI |1〉〉S
f
BO

TBI︸ ︷︷ ︸
final

.

(47)

Next one acts with the initial Hadamard operation (42) on this process vector, transforming it into(
〈〈P ∗A|

PAI
PAO ⊗ 〈〈P ∗B|

PBI
PBO ⊗ 〈〈S∗|S

i
(AB)I

Si
(AB)O

)
|W4-event〉〉 =

1√
2

(
|Ψ〉AI |v〉BI + |v〉AI |Ψ〉BI

)
|1〉〉AOB

′
I |1〉〉B

′
OS

f
BI︸ ︷︷ ︸

blue

|1〉〉BOA
′
I |1〉〉A

′
OS

f
AI︸ ︷︷ ︸

red

|1〉〉S
f
AO

TAI |1〉〉S
f
BO

TBI︸ ︷︷ ︸
final

≡ |WQS4〉〉 .

(48)
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The resulting process vector is the outcome of the action of the composite gate I on (44), before the
actions of Alice and Bob (note that often in the literature this is taken as the initial process vector in
the analysis):

|WQS4〉〉 = 1√
2

(
|Ψ〉AI |v〉BI + |v〉AI |Ψ〉BI

)
|1〉〉AOB

′
I |1〉〉BOA

′
I |1〉〉(A

′
OB

′
O)S(AB)I |1〉〉S(AB)O

T(AB)I . (49)

Continuing the computation, the action of the remaining gate operations (38), (40), (36) and (42) on
the process vector (49) gives us the probability amplitude,

M(α, β) ≡(
〈〈Ũ∗|AIAO ⊗ 〈〈Ũ∗|A

′
IA

′
O ⊗ 〈〈Ṽ ∗|BIBO ⊗ 〈〈Ṽ ∗|B

′
IB

′
O ⊗ 〈〈H∗|SISO ⊗ 〈〈T ∗α|

TAI
TAO ⊗ 〈〈T ∗β |

TBI
TBO

)
|WQS4〉〉 .

(50)
Let us now calculate the action of 〈〈Ũ∗|AIAO on (49):

〈〈Ũ∗|AIAO |WQS4〉〉 = 〈〈1|AIAI

[
IAIAI ⊗ (ŨT )AOAI

]
|WQS4〉〉 . (51)

Looking at the structure of the process vector, one sees that the resulting new process vector will have
the form

〈〈Ũ∗|AIAO |WQS4〉〉 = 1√
2

(
|X〉B

′
I |v〉BI + |Y 〉B

′
I |Ψ〉BI

)
|1〉〉BOA

′
I |1〉〉(A

′
OB

′
O)S(AB)I |1〉〉S(AB)O

T(AB)I , (52)

where |X〉B
′
I and |Y 〉B

′
I are shorthands for the expressions

|X〉B
′
I ≡ 〈〈1|AIAI

[
IAIAI ⊗ (ŨT )AOAI

]
|Ψ〉AI |1〉〉AOB

′
I (53)

and
|Y 〉B

′
I ≡ 〈〈1|AIAI

[
IAIAI ⊗ (ŨT )AOAI

]
|v〉AI |1〉〉AOB

′
I , (54)

which need to be evaluated. The explicit computation of the first expression goes as follows:

|X〉B
′
I = 〈〈1|AIAI

[
IAIAI ⊗ (ŨT )AOAI

]
|Ψ〉AI |1〉〉AOB

′
I

=
2∑

k=0
〈k|AI 〈k|AI

[
IAIAI ⊗ (ŨT )AOAI

]
|Ψ〉AI

2∑
m=0
|m〉AO |m〉B

′
I

=
2∑

m=0

[ 2∑
k=0

(
〈k|AI IAIAI |Ψ〉AI

) (
〈k|AI (ŨT )AOAI |m〉AO

)]
|m〉B

′
I

=
2∑

m=0

[ 2∑
k=0
〈k|Ψ〉AI 〈m|AO ŨAOAI |k〉AI

]
|m〉B

′
I

=
2∑

m=0

[
〈m|AO ŨAOAI |Ψ〉AI

]
|m〉B

′
I .

(55)

Using (37), the coefficient in the brackets can be evaluated as

〈m|AO ŨAOAI |Ψ〉AI = 〈m|AO

(
UAOAIPAIAI

01 + IAOAIPAIAI
v

)
|Ψ〉AI = 〈m|U |Ψ〉 , (56)

since PAIAI
01 |Ψ〉AI = |Ψ〉AI and PAIAI

v |Ψ〉AI = 0. Thus, we have

|X〉B
′
I =

2∑
m=0
〈m|U |Ψ〉 |m〉B

′
I = U |Ψ〉B

′
I ≡ |UΨ〉B

′
I . (57)
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The computation of |Y 〉B
′
I proceeds in an analogous way to (55), and the result is

|Y 〉B
′
I =

2∑
m=0

[
〈m|AO ŨAOAI |v〉AI

]
|m〉B

′
I . (58)

Again, using (37), the coefficient in the brackets can be evaluated as

〈m|AO ŨAOAI |v〉AI = 〈m|AO

(
UAOAIPAIAI

01 + IAOAIPAIAI
v

)
|v〉AI = 〈m|v〉 = δmv , (59)

since PAIAI
01 |v〉AI = 0 and PAIAI

v |v〉AI = |v〉AI . Thus, we have

|Y 〉B
′
I =

2∑
m=0

δmv |m〉B
′
I = |v〉B

′
I . (60)

Finally, substituting (57) and (60) back into (52), we obtain:

〈〈Ũ∗|AIAO |WQS4〉〉 = 1√
2

(
|UΨ〉B

′
I |v〉BI + |v〉B

′
I |Ψ〉BI

)
|1〉〉BOA

′
I |1〉〉(A

′
OB

′
O)S(AB)I |1〉〉S(AB)O

T(AB)I . (61)

One should note, comparing (61) with (49), that the action of the gate A operation onto the process
vector effectively performs the following transformation,

|Ψ〉AI → |UΨ〉AO → |UΨ〉B
′
I , |v〉AI → |v〉AO → |v〉B

′
I , (62)

where the transport vector |1〉〉AOB
′
I has been utilised for “transporting” the state from the output AO

of gate A to the input B′I of the gate B′, in line with the spacetime diagram. This scheme repeats
itself with the action of all remaining gate operations on (61). In particular, the subsequent action of
the gate B operation gives:(

〈〈Ṽ ∗|BIBO ⊗ 〈〈Ũ∗|AIAO
)
|WQS4〉〉 =

1√
2

(
|UΨ〉B

′
I |v〉A

′
I + |v〉B

′
I |VΨ〉A

′
I

)
|1〉〉(A

′
OB

′
O)S(AB)I |1〉〉S(AB)O

T(AB)I , (63)

which can also be verified with an explicit calculation similar to the above. Continuing on, the opera-
tions at the gates A′ and B′ give:(

〈〈Ṽ ∗|B
′
IB

′
O ⊗ 〈〈Ũ∗|A

′
IA

′
O ⊗ 〈〈Ṽ ∗|BIBO ⊗ 〈〈Ũ∗|AIAO

)
|WQS4〉〉 =

1√
2

(
|V UΨ〉SBI |v〉SAI + |v〉SBI |UVΨ〉SAI

)
|1〉〉S(AB)O

T(AB)I .
(64)

Next, the action of the beam splitter at the gate Sf gives(
〈〈H̃∗|SISO ⊗ 〈〈Ṽ ∗|B

′
IB

′
O ⊗ 〈〈Ũ∗|A

′
IA

′
O ⊗ 〈〈Ṽ ∗|BIBO ⊗ 〈〈Ũ∗|AIAO

)
|WQS4〉〉 =

1
2

1∑
i=0

(
〈i| {U , V } |Ψ〉 |i〉TAI |v〉TBI + 〈i| [U , V ] |Ψ〉 |v〉TAI |i〉TBI

)
.

(65)

Finally, the action of the operations of the target gates TA and TB gives us the probability amplitude
as a function of the measurement outcomes α and β,

M(α, β) ≡(
〈〈Ũ∗|AIAO ⊗ 〈〈Ũ∗|A

′
IA

′
O ⊗ 〈〈Ṽ ∗|BIBO ⊗ 〈〈Ṽ ∗|B

′
IB

′
O ⊗ 〈〈H∗|SISO ⊗ 〈〈T ∗α|

TAI
TAO ⊗ 〈〈T ∗β |

TBI
TBO

)
|WQS4〉〉
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= 1
2
[
δβv〈α| {U , V } |Ψ〉+ δαv〈β| [U , V ] |Ψ〉

]
. (66)

At this point we can employ (45) and calculate the probability distribution,

p(α, β) = 1
4
[
δβv

∣∣∣〈α| {U , V } |Ψ〉∣∣∣2 + δαv
∣∣∣〈β| [U , V ] |Ψ〉

∣∣∣2 ] , (67)

where we have used the fact that the vacuum state |v〉 is orthogonal to both {U , V } |Ψ〉 and
[U , V ] |Ψ〉. In particular, we see that for i ∈ {0, 1} we have

p(i, v) = 1
4

∣∣∣〈i| {U , V } |Ψ〉∣∣∣2 , p(v, i) = 1
4

∣∣∣〈i| [U , V ] |Ψ〉
∣∣∣2 , (68)

while all other choices of α and β give p(α, β) = 0. The total probability that Alice will detect a
particle is given by the marginal

pA =
2∑
i=1

p(i, v) = 1
2
(
1 + Re 〈Ψ|U †V †UV |Ψ〉

)
, (69)

while the corresponding total probability that Bob will detect a particle is

pB =
2∑
i=1

p(v, i) = 1
2
(
1− Re 〈Ψ|U †V †UV |Ψ〉

)
. (70)

As a final point, we can verify that the probability distribution is correctly normalised. Using the fact
that the only nonzero values for the probability are given in (68), we have

ptotal =
2∑

α=0

2∑
β=0

p(α, β) = p(0, v) + p(1, v)︸ ︷︷ ︸
pA

+ p(v, 0) + p(v, 1)︸ ︷︷ ︸
pB

= 1 , (71)

as expected.
Instead of recombining the particle on the second beam splitter, one can consider the case in which

the final gate F consists only of local measurements performed onto a particle in the Alice’s and
Bob’s paths. In this case, the final gate is equivalent to two target gates TA and TB. Given that all
the processes considered are pure, the corresponding process vector for the 4-event quantum switch
implementation is given as (in order to compare the current with the previous works, we present the
process that starts after I, as was done in, say, [9]):

|WQS4〉〉 = 1√
2

(
|Ψ〉AI |v〉BI + |v〉AI |Ψ〉BI

)
|1〉〉AOB

′
I |1〉〉BOA

′
I |1〉〉A

′
OTAI |1〉〉B

′
OTBI . (72)

D 3-event process vector
The detailed spacetime diagram for the 3-event quantum switch is given below (see Figure 15).

The process vector for this case is obtained from (44) by identifying the spacetime positions of the
gates B and B′, yet keeping the corresponding Hilbert spaces in the mathematical description (i.e.,
keeping the dimensionality of the problem). Thus, the corresponding circuit is identical to the 4-event
circuit, and the process vector has the identical mathematical form as in the case of four gates. In
order to emphasise the physical difference between the two cases, instead of BI/O and B′I/O, we write
BI1/O1 and BI2/O2 , respectively:

|W3-event〉〉 = |1〉〉PAO
Si

AI |1〉〉PBO
Si

BI︸ ︷︷ ︸
initial

|1〉〉S
i
AO

AI |1〉〉AOBI2 |1〉〉BO2S
f
BI︸ ︷︷ ︸

blue

|1〉〉S
i
BO

BI1 |1〉〉BO1A
′
I |1〉〉A

′
OS

f
AI︸ ︷︷ ︸

red

|1〉〉S
f
AO

TAI |1〉〉S
f
BO

TBI︸ ︷︷ ︸
final

.
(73)

The final probability distribution is identical to the one for the 4-event process, given by (67).
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Figure 15: Spacetime diagram of the 3-event implementation of the quantum switch. The internal structures of the
composite gates I and F are explicitly depicted.

E 2-event
In this Appendix we present process vectors for the two gravitational switches discussed in the main
text. First, the process vector of the gravitational switch without recombination [15], is given by (since
the “control” is now played by gravity, it is thus denoted as G, instead of C):

|WQS2〉〉 = 1√
2

(
|0〉G|Ψ〉AI |1〉〉AOBI |1〉〉BOTBI + |1〉G|Ψ〉BI |1〉〉BOAI |1〉〉AOTAI

)
|1〉〉GTGI . (74)

It is then straightforward to obtain the process vector for the case of recombining only the gravity on
the final beam splitter Sf (a part of a bigger final gate F), obtaining the analogue of (49), while the
particle is not being recombined. Note that in this case the introduction of the vacuum state is not
necessary, as in each branch of superposition all gates are acting upon a particle.

In contrast to the above case, the process vector describing the gravitational 2-event quantum switch
with the recombination of both gravity and the particle is given as follows:

|W (r)
QS2
〉〉 = 1√

2

(
|0〉G|Ψ〉AI |1〉〉AOBI |1〉〉BOSPI + |1〉G|Ψ〉BI |1〉〉BOAI |1〉〉AOSPI

)
⊗|1〉〉GSGI |1〉〉(SGO

SPO
)(TGI

TPI
).

(75)

Here, P stands for “the particle” (whose corresponding input space SPI
is isomorphic to the tensor

product of Alice’s and Bob’s output spaces, SPI
' AO⊗BO), and S stands for a “beam splitter” (whose

corresponding input space is SI = SGI
⊗ SPI

, and analogously for the output space).
While defining the spaces SGI/O

, SPI/O
, TGI

, TPI
, and the vector |1〉〉(SGO

SPO
)(TGI

TPO
) is straight-

forward, it is not so for the “final” recombination vector |U∗BS〉〉
(SGI

SPI
)(SGO

SPO
). Namely, note that in

our gravitational switch all degrees of freedom, both gravitational and matter, are recombined by UBS
such that, by acting on the beam splitter input entangled state,

|Ψi〉SGI
SPI = 1√

2

(
|0〉SGI ⊗

[
UV |Ψ〉SPI

]
+ |1〉SGI ⊗

[
V U |Ψ〉SPI

])
, (76)

the overall output state is a product one, of the form

|Ψo〉SGO
SPO = |Γ〉SGO ⊗ (αUV + βV U) |Ψ〉SPO , (77)

where |Γ〉SGO is some (not necessarily classical) state of gravity. The above evolution is, at least in
principle, allowed by the quantum laws, which is all that we need to know regarding the action of UBS
at this point. Its action on the rest of the overall Hilbert space is, for the purpose of our argument,
irrelevant, and can thus be chosen arbitrarily.
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Finally, we would like to note that the same type of the 4-, or 3-event quantum switches in classical
spacetimes can also be defined, resulting in the same type of the output state as (77), with the gravity
degree of freedom being replaced by any additional matter degree of freedom that plays the role of the
control.

F Various implementations of the gravitational switch
In this Appendix we present a few representative additional constructions of the gravitational quantum
switch. First, we start with a 2-event switch for which the requirement (i) from Subsection 4.3 is not
satisfied. It is obvious from the diagram on the left that each of the photon’s superposed trajectories
fail to meet at the boundary region, violating requirement (i), see the left diagram of Figure 16. Next,
we proceed with the 2-event implementation for which requirement (i) is satisfied, but the requirement
(ii) is not, since the superposed trajectories fail to recombine. This is depicted on the right diagram
of Figure 16.

Finally, we present a 4-event implementation for which both requirements (i) and (ii) are satisfied
(see Figure 17).

Of course, other variations are possible as well.

Friend particleAlice Bob

Ã
B̃F̃A

F̃A

F̃B
F̃B

I

F

Friend particleAlice Bob

Ã
B̃F̃A

F̃A

F̃B
F̃B

I

F

Figure 16: The spacetime diagrams of a 2-event gravitational switch implementations, with Friend’s measurements,
which fail to distinguish them from the optical implementation of the quantum switch.

Friend particleAlice Bob

A

A′

B

B′FAA′

FBB′

I

F

Figure 17: The spacetime diagram of a 4-event gravitational switch implementation, with Friend’s measurement,
which fails to distinguish it from the 2-event implementation of the gravitational switch.
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1 Introduction

The quantization of the gravitational field is one of the most prominent open problems in

modern theoretical physics. Within the Loop Quantum Gravity framework, one can study

the nonperturbative quantization of gravity, both canonically and covariantly, see [1–3] for

an overview and a comprehensive introduction. The covariant approach focuses on the

definition of the path integral for the gravitational field,

Z =

∫
Dg eiS[g] , (1.1)

by considering a triangulation of a spacetime manifold, and defining the path integral as

a discrete state sum of the gravitational field configurations living on the simplices in the

triangulation. This quantization technique is known as the spinfoam quantization method,

and roughly goes along the following lines:

1. first, one writes the classical action S[g] as a topological BF action plus a simplicity

constraint,

– 1 –
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2. then one uses the algebraic structure (a Lie group) underlying the topological sector

of the action to define a triangulation-independent state sum Z,

3. and finally, one imposes the simplicity constraints on the state sum, promoting it

into a path integral for a physical theory.

This quantization prescription has been implemented for various choices of the action, the

Lie group, and the spacetime dimension. For example, in 3 dimensions, the prototype

spinfoam model is known as the Ponzano-Regge model [4]. In 4 dimensions there are

multiple models, such as the Barrett-Crane model [5, 6], the Ooguri model [7], and the

most sophisticated EPRL/FK model [8, 9]. All these models aim to define a viable theory

of quantum gravity, with variable success. However, virtually all of them are focused on

pure gravity, without matter fields. The attempts to include matter fields have had limited

success [10], mainly because the mass terms could not be expressed in the theory due to

the absence of the tetrad fields from the BF sector of the theory.

In order to resolve this issue, a new approach has been developed, using the categorical

generalization of the BF action, within the framework of higher gauge theory (see [11] for a

review). In particular, one uses the idea of a categorical ladder to promote the BF action,

which is based on some Lie group, into a 2BF action, which is based on the so-called 2-group

structure. If chosen in a suitable way, the 2-group structure should hopefully introduce

the tetrad fields into the action. This approach has been successfully implemented [12],

rewriting the action for general relativity as a constrained 2BF action, such that the tetrad

fields are present in the topological sector. This result opened up a possibility to couple

all matter fields to gravity in a straightforward way. Nevertheless, the matter fields could

not be naturally expressed using the underlying algebraic structure of a 2-group, rendering

the spinfoam quantization method only half-implementable, since the matter sector of the

classical action could not be expressed as a topological term plus a simplicity constraint,

which means that the steps 2 and 3 above could not be performed for the matter sector of

the action.

We address this problem in this paper. As we will show, it turns out that it is necessary

to perform one more step in the categorical ladder, generalizing the underlying algebraic

structure from a 2-group to a 3-group. This generalization then naturally gives rise to the

so-called 3BF action, which proves to be suitable for a unified description of both gravity

and matter fields. The steps of the categorical ladder can be conveniently summarized in

the following table:

categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed differential Lie

2BF theory tetrad fields
module crossed module

Lie 3-group
Lie 2-crossed differential Lie

3BF theory
scalar and

module 2-crossed module fermion fields
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Once the suitable gauge 3-group has been specified and the corresponding 3BF action

constructed, the most important thing that remains, in order to complete the step 1 of the

spinfoam quantization programme, is to impose appropriate simplicity constraints onto

the degrees of freedom present in the 3BF action, so that we obtain the desired classical

dynamics of the gravitational and matter fields. Then one can proceed with steps 2 and 3

of the spinfoam quantization, hopefully ending up with a viable model of quantum gravity

and matter.

In this paper, we restrict our attention to the first of the above steps: we will construct a

constrained 3BF action for the cases of Klein-Gordon, Dirac, Weyl and Majorana fields, as

well as Yang-Mills and Proca vector fields, all coupled to the Einstein-Cartan gravity in the

standard way. This construction will lead us to an unexpected novel result. As we shall see,

the scalar and fermion fields will be naturally associated to a new gauge group, generalizing

the notion of a gauge group in the Yang-Mills theory, which describes vector bosons. This

new group opens up a possibility to use it as an algebraic way of classifying matter fields,

describing the structures such as quark and lepton families, and so on. The insight into

the existence of this new gauge group is the consequence of the categorical ladder and

is one of the main results of the paper. However, given the complexity of the algebraic

properties of 3-groups, we will restrict ourselves only to the reconstruction of the already

known theories, such as the Standard Model (SM), in the new framework. In this sense, any

potential explanation of the spectrum of matter fields in the SM will be left for future work.

The layout of the paper is as follows. In subsection 2.1 we will give a short overview

of the constrained BF actions, including the well-known example of the Plebanski action

for general relativity, and a completely new example of the Yang-Mills theory rewritten

as a constrained BF model. In the subsection 2.2 we also introduce the formalism of the

constrained 2BF actions, reviewing the example of general relativity as a constrained 2BF

action, first introduced in [12]. In addition, we will demonstrate how to couple gravity in

a natural way within the formalism of 2-groups. Section 3 contains the main results of

the paper and is split into 4 subsections. The subsection 3.1 introduces the formalism of

3-groups, and the definition and properties of a 3BF action, including the three types of

gauge transformations. The subsection 3.2 focuses on the construction of a constrained

3BF action which describes a single real scalar field coupled to gravity. It provides the

most elementary example of the insight that matter fields correspond to a gauge group.

Encouraged by these results, in the subsection 3.3 we construct the constrained 3BF action

for the Dirac field coupled to gravity and specify its gauge group. Finally, the subsection 3.4

deals with the construction of the constrained 3BF action for the Weyl and Majorana fields

coupled to gravity, thereby covering all types of fields potentially relevant for the Standard

Model and beyond. After the construction of all building blocks, in section 4 we apply

the results of sections 2 and 3 to construct the constrained 3BF action corresponding to

the full Standard Model coupled to Einstein-Cartan gravity. Finally, section 5 is devoted

to the discussion of the results and the possible future lines of research. The appendices

contain some mathematical reminders and technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted

by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the
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Minkowski metric ηab with signature (−,+,+,+). Spacetime indices are denoted by the

Greek letters µ, ν, . . . , and are raised and lowered by the spacetime metric gµν = ηabe
a
µe
b
ν ,

where eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other indices that

appear in the paper are dependent on the context, and their usage is explicitly defined in

the text where they appear. A lot of additional notation is defined in appendix A. We work

in the natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck length.

2 BF and 2BF models, ordinary gauge fields and gravity

Let us begin by giving a short review of BF and 2BF theories in general. For additional

information on these topics, see for example [11, 13–18].

2.1 BF theory

Given a Lie group G and its corresponding Lie algebra g, one can introduce the so-called

BF action as

SBF =

∫
M4

〈B ∧ F〉g . (2.1)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connection 1-form α ∈
A1(M4 , g) on some 4-dimensional spacetime manifold M4. In addition, B ∈ A2(M4 , g)

is a Lagrange multiplier 2-form, while 〈 , 〉g denotes the G-invariant bilinear symmetric

nondegenerate form.

From the structure of (2.1), one can see that the action is diffeomorphism invariant,

and it is usually understood to be gauge invariant with respect to G. In addition to these

properties, the BF action is topological, in the following sense. Varying the action (2.1)

with respect to Bβ and αβ , where the index β counts the generators of g (see appendix A

for notation and conventions), one obtains the equations of motion of the theory,

F = 0 , ∇B ≡ dB + α ∧B = 0 . (2.2)

From the first equation of motion, one immediately sees that α is a flat connection, which

then together with the second equation of motion implies that B is constant. Therefore,

there are no local propagating degrees of freedom in the theory, and one then says that the

theory is topological.

Usually, in physics one is interested in theories which are nontopological, i.e., which

have local propagating degrees of freedom. In order to transform the BF action into

such a theory, one adds an additional term to the action, commonly called the simplicity

constraint. A very nice example is the Yang-Mills theory for the SU(N) group, which can

be rewritten as a constrained BF theory in the following way:

S =

∫
BI∧F I+λI∧

(
BI−

12

g
MabIδ

a∧δb
)

+ζabI
(
MabIεcdefδ

c∧δd∧δe∧δf−gIJF J∧δa∧δb
)
.

(2.3)

Here F ≡ dA+A∧A is again the curvature 2-form for the connection A ∈ A1(M4 , su(N)),

and B ∈ A2(M4 , su(N)) is the Lagrange multiplier 2-form. The Killing form gIJ ≡
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〈τI , τJ〉su(N) ∝ fIKLfJLK is used to raise and lower the indices I, J, . . . which count the gen-

erators of SU(N), where f IJ
K are the structure constants for the su(N) algebra. In addition

to the topological B ∧ F term, we also have two simplicity constraint terms, featuring the

Lagrange multiplier 2-form λI and the Lagrange multiplier 0-form ζabI . The 0-form MabI

is also a Lagrange multiplier, while g is the coupling constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global coordinate frame

in which its components are equal to the Kronecker symbol δaµ (hence the notation δa).

The 1-form δa plays the role of a background field, and defines the global spacetime metric,

via the equation

ηµν = ηabδ
a
µδ
b
ν , (2.4)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the coordinate system

is global, the spacetime manifold M4 is understood to be flat. The indices a, b, . . . are

local Lorentz indices, taking values 0, . . . , 3. Note that the field δa has all the properties

of the tetrad 1-form ea in the flat Minkowski spacetime. Also note that the action (2.3) is

manifestly diffeomorphism invariant and gauge invariant with respect to SU(N), but not

background independent, due to the presence of δa.

The equations of motion are obtained by varying the action (2.3) with respect to the

variables ζabI , MabI , A
I , BI , and λI , respectively (note that we do not take the variation

of the action with respect to the background field δa):

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (2.5)

−12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (2.6)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJIKζabKδa ∧ δb ∧AJ = 0 , (2.7)

FI + λI = 0 , (2.8)

BI −
12

g
MabIδ

a ∧ δb = 0 , (2.9)

From the algebraic equations (2.5), (2.6), (2.8) and (2.9) one obtains the multipliers as

functions of the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I cd , λIab = F Iab , BIab =

1

2g
εabcdF I

cd .

(2.10)

Here we used the notation FIab = FIµνδa
µδb

ν , where we used the fact that δaµ is invertible,

and similarly for other variables. Using these equations and the differential equation (2.7)

one obtains the equation of motion for gauge field AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + fJK
IAJρF

Kρµ = 0 . (2.11)

This is precisely the classical equation of motion for the free Yang-Mills theory. Note that

in addition to the Yang-Mills theory, one can easily extend the action (2.3) in order to

describe the massive vector field and obtain the Proca equation of motion. This is done

by adding a mass term

− 1

4!
m2AIµA

I
νη
µνεabcdδ

a ∧ δb ∧ δc ∧ δd (2.12)
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to the action (2.3). Of course, this term explicitly breaks the SU(N) gauge symmetry of

the action.

Another example of the constrained BF theory is the Plebanski action for general

relativity [15], see also [13] for a recent review. Starting from a gauge group SO(3, 1), one

constructs a constrained BF action as

S =

∫
M4

Bab ∧Rab + φabcdB
ab ∧Bcd . (2.13)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the usual Lagrange

multiplier 2-form, while φabcd is the Lagrange multiplier 0-form corresponding to the sim-

plicity constraint term Bab ∧ Bcd. It can be shown that the variation of this action with

respect to Bab, ω
ab and φabcd gives rise to equations of motion which are equivalent to

vacuum general relativity. However, the tetrad fields appear in the model as a solution

to the simplicity constraint equation of motion Bab ∧ Bcd = 0. Thus, being intrinsically

on-shell objects, they are not present in the action and cannot be quantized. This renders

the Plebanski model unsuitable for coupling of matter fields to gravity [10, 12, 19]. Never-

theless, as a model for pure gravity, the Plebanski model has been successfully quantized

in the context of spinfoam models, see [1, 2, 8, 9] for details and references.

2.2 2BF theory

In order to circumvent the issue of coupling of matter fields, a recent promising approach

has been developed [12, 19–23] in the context of higher category theory [11]. In particular,

one employs the higher category theory construction to generalize the BF action to the

so-called 2BF action, by passing from the notion of a gauge group to the notion of a gauge

2-group. In order to introduce it, let us first give a short review of the 2-group formalism.

In the framework of category theory, the group as an algebraic structure can be under-

stood as a specific type of category, namely a category with only one object and invertible

morphisms [11]. The notion of a category can be generalized to the so-called higher cat-

egories, which have not only objects and morphisms, but also 2-morphisms (morphisms

between morphisms), and so on. This process of generalization is called the categorical

ladder. Similarly to the notion of a group, one can introduce a 2-group as a 2-category

consisting of only one object, where all the morphisms and 2-morphisms are invertible. It

has been shown that every strict 2-group is equivalent to a crossed module (H
∂→ G ,B),

see appendix A for definition. Here G and H are groups, δ is a homomorphism from H to

G, while B : G×H → H is an action of G on H.

An important example of this structure is a vector space V equipped with an isometry

group O. Namely, V can be regarded as an Abelian Lie group with addition as a group

operation, so that a representation of O on V is an action B of O on the group V , giving

rise to the crossed module (V
∂→ O ,B), where the homomorphism ∂ is chosen to be trivial,

i.e., it maps every element of V into a unit of O. We will make use of this example below

to introduce the Poincaré 2-group.

Similarly to the case of an ordinary Lie group G which has a naturally associated

notion of a connection α, giving rise to a BF theory, the 2-group structure has a naturally
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associated notion of a 2-connection (α , β), described by the usual g-valued 1-form α ∈
A1(M4 , g) and an h-valued 2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie

group H. The 2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (2.14)

Here α ∧B β means that α and β are multiplied as forms using ∧, and simultaneously

multiplied as algebra elements using B, see appendix A. The curvature pair (F ,G) is called

fake because of the presence of the ∂β term in the definition of F , see [11] for details.

Using these variables, one can introduce a new action as a generalization of the BF

action, such that it is gauge invariant with respect to both G and H groups. It is called

the 2BF action and is defined in the following way [16, 17]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h , (2.15)

where the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are Lagrange multipliers.

Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear symmetric nondegenerate forms for

the algebras g and h, respectively. As a consequence of the axiomatic structure of a crossed

module (see appendix A), the bilinear form 〈 , 〉h is H-invariant as well. See [16, 17] for

review and references.

Similarly to the BF action, the 2BF action is also topological, which can be seen from

equations of motion. Varying with respect to B and C one obtains

F = 0 , G = 0 , (2.16)

while varying with respect to α and β one obtains the equations for the multipliers,

dBα − gαβγBγ ∧ αβ −Bαa
bCb ∧ βa = 0 , (2.17)

dCa − ∂aαBα + Bαa
bCb ∧ αα = 0 . (2.18)

One can either show that these equations have only trivial solutions, or one can use the

Hamiltonian analysis to show that there are no local propagating degrees of freedom (see

for example [21, 22]), demostrating the topological nature of the theory.

An example of a 2-group relevant for physics is the Poincaré 2-group, which is con-

structed using the aforementioned example of a vector space equipped with an isometry

group. One constructs a crossed module by choosing

G = SO(3, 1) , H = R4 , (2.19)

while B is a natural action of SO(3, 1) on R4, and the map ∂ is trivial. The 2-connection

(α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (2.20)

where ωab is the spin connection, while Mab and Pa are the generators of groups SO(3, 1)

and R4, respectively. The corresponding 2-curvature in this case is given by

F = (dωab+ωac∧ωcb)Mab ≡ RabMab , G = (dβa+ωab∧βb)Pa ≡ ∇βaPa ≡ GaPa , (2.21)
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where we have evaluated ∧B using the equation Mab B Pc = η[bcPa]. Note that, since ∂ is

trivial, the fake curvature is the same as ordinary curvature. Using the bilinear forms

〈Mab,Mcd〉g = ηa[cηbd] , 〈Pa, Pb〉h = ηab , (2.22)

one can show that 1-forms Ca transform in the same way as the tetrad 1-forms ea under

the Lorentz transformations and diffeomorphisms, so the fields Ca can be identified with

the tetrads. Then one can rewrite the 2BF action (2.15) for the Poincaré 2-group as

S2BF =

∫
M4

Bab ∧Rab + ea ∧∇βa . (2.23)

In order to obtain general relativity, the topological action (2.23) can be modified by

adding a convenient simplicity constraint, like it is done in the BF case:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (2.24)

Here λab is a Lagrange multiplier 2-form associated to the simplicity constraint term, and

lp is the Planck length. Varying the action (2.24) with respect to Bab, ea, ωab, βa and λab,

one obtains the following equations of motion:

Rab − λab = 0 , (2.25)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (2.26)

∇Bab − e[a ∧ βb] = 0 , (2.27)

∇ea = 0 , (2.28)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 . (2.29)

The only dynamical fields are the tetrads ea, while all other fields can be algebraically

determined, as follows. From the equations (2.28) and (2.29) we obtain that ∇Bab = 0,

from which it follows, using the equation (2.27), that e[a ∧ βb] = 0. Assuming that the

tetrads are nondegenerate, e ≡ det(eaµ) 6= 0, it can be shown that this is equivalent to

the condition βa = 0 (for the proof see appendix in [12]). Therefore, from the equa-

tions (2.25), (2.27), (2.28) and (2.29) we obtain

λabµν = Rabµν , βaµν = 0 , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4ab

µ . (2.30)

Here the Ricci rotation coefficients are defined as

4ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (2.31)

where

cabc = eµbe
ν
c (∂µe

a
ν − ∂νeaµ) . (2.32)
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Finally, the remaining equation (2.26) reduces to

εabcdR
bc ∧ ed = 0 , (2.33)

which is nothing but the vacuum Einstein field equation Rµν − 1
2gµνR = 0. Therefore, the

action (2.24) is classically equivalent to general relativity.

The main advantage of the action (2.24) over the Plebanski model and similar ap-

proaches lies in the fact that the tetrad fields are explicitly present in the topological

sector of the theory. This allows one to couple matter fields in a straightforward way, as

demonstrated in [12]. However, one can do even better, and couple gauge fields to gravity

within a unified framework of 2-group formalism.

Let us demonstrate this on the example of the SU(N) Yang-Mills theory. Begin by

modifying the Poincaré 2-group structure to include the SU(N) gauge group, as follows.

We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R4 , (2.34)

and we define the action B of the group G in the following way. As in the case of the

Poincaré 2-group, it acts on itself via conjugation. Next, it acts on H such that the

SO(3, 1) subgroup acts on R4 via the vector representation, while the action of SU(N)

subgroup is trivial. The map ∂ also remains trivial, as before. The 2-connection (α, β)

now obtains the form which reflects the structure of the group G,

α = ωabMab +AIτI , β = βaPa , (2.35)

where AI is the gauge connection 1-form, while τI are the SU(N) generators. The curvature

for α is thus

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (2.36)

The curvature for β remains the same as before, since the action B of SU(N) on R4 is

trivial, i.e., τI B Pa = 0. Finally, the product structure of the group G implies that its

Killing form 〈 , 〉g reduces to the Killing forms for the SO(3, 1) and SU(N), along with the

identity 〈Mab, τI〉g = 0.

Given a crossed module defined in this way, its corresponding topological 2BF ac-

tion (2.15) becomes

S2BF =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (2.37)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. In order to transform this

topological action into action with nontrivial dynamics, we again introduce the appropriate

simplicity constraints. The constraint giving rise to gravity is the same as in (2.24), while

the constraint for the gauge fields is given as in the action (2.3) with the substitution

δa → ea:

S =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
(2.38)

+ λI ∧
(
BI −

12

g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.
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It is crucial to note that the action (2.38) is a combination of the pure gravity action (2.24)

and the Yang-Mills action (2.3), such that the nondynamical background field δa from (2.3)

gets promoted to a dynamical field ea. The relationship between these fields has already

been hinted at in the equation (2.4), which describes the connection between δa and the

flat spacetime metric ηµν . Once promoted to ea, this field becomes dynamical, while the

equation (2.4) becomes the usual relation between the tetrad and the metric,

gµν = ηabe
a
µe
b
ν , (2.39)

further confirming that the Lagrange multiplier Ca should be identified with the tetrad.

Moreover, the total action (2.38) now becomes background independent, as expected in

general relativity. All this is a consequence of the fact that the tetrad field is explicitly

present in the topological sector of the action (2.24), establishing an improvement over the

Plebanski model.

By varying the action (2.38) with respect to the variables Bab, ωab, βa, λab, ζ
abI , MabI ,

BI , λ
I , AI , and ea, we obtain the following equations of motion, respectively:

Rab − λab = 0 , (2.40)

∇Bab − e[a ∧ βb] = 0 , (2.41)

∇ea = 0 , (2.42)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (2.43)

MabIεcdefe
c ∧ ed ∧ ee ∧ ef − FI ∧ ea ∧ eb = 0 , (2.44)

−12

g
λI ∧ ea ∧ eb + ζabIεcdefe

c ∧ ed ∧ ee ∧ ef = 0 , (2.45)

FI + λI = 0 , (2.46)

BI −
12

g
MabIe

a ∧ eb = 0 , (2.47)

−dBI +BK ∧ gJIKAJ + d(ζabI ea ∧ eb)− ζabK ea ∧ eb ∧ gJIKAJ = 0 , (2.48)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed − 24

g
MabIλ

I ∧ eb

+4ζef
I
Mef Iεabcde

b ∧ ec ∧ ed − 2ζab
IFI ∧ eb = 0 . (2.49)

In the above system of equations, we have two dynamical equations for ea and AI , while

all other variables are algebraically determined from these. In particular, from equa-

tions (2.40)–(2.47), we have:

λabµν =Rabµν , βaµν =0, ωabµ=4abµ , λabI =FabI , BµνI =− e

2g
εµνρσF

ρσ
I , (2.50)

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , MabI =− 1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

Then, substituting all these into (2.48) and (2.49) we obtain the differential equation of

motion for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (2.51)
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where Γ λµν is the standard Levi-Civita connection, and a differential equation of motion

for ea,

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ − 1

4g

(
Fρσ

IF ρσIg
µν + 4FµρIFρ

νI
)
. (2.52)

The system of equations (2.50)–(2.52) is equivalent to the system (2.40)–(2.49). Note that

we have again obtained that βa = 0, as in the pure gravity case.

In this way, we see that both gravity and gauge fields can be represented within a

unified framework of higher gauge theory based on a 2-group structure.

3 3BF models, scalar and fermion matter fields

While the structure of a 2-group can successfully accommodate both gravitational and

gauge fields, unfortunately it cannot include other matter fields, such as scalars or fermions.

In order to construct a unified description of all matter fields within the framework of higher

gauge theory, we are led to make a further generalization, passing from the notion of a 2-

group to the notion of a 3-group. As it turns out, the 3-group structure is a perfect fit

for the description of all fields that are present in the Standard Model, coupled to gravity.

Moreover, this structure gives rise to a new gauge group, which corresponds to the choice

of the scalar and fermion fields present in the theory. This is a novel and unexpected result,

which has the potential to open up a new avenue of research with the aim of explaining

the structure of the matter sector of the Standard Model and beyond.

In order to demonstrate this in more detail, we first need to introduce the notion of

a 3-group, which we will afterward use to construct constrained 3BF actions describing

scalar and fermion fields on an equal footing with gravity and gauge fields.

3.1 3-groups and topological 3BF action

Similarly to the concepts of a group and a 2-group, one can introduce the notion of a

3-group in the framework of higher category theory, as a 3-category with only one object

where all the morphisms, 2-morphisms and 3-morphisms are invertible. It has been proved

that a strict 3-group is equivalent to a 2-crossed module [24], in the same way as a 2-group

is equivalent to a crossed module.

A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,B , { , }), is a algebraic structure

specified by three Lie groups G, H and L, together with the homomorphisms δ and ∂, an

action B of the group G on all three groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. See appendix A for more details.

In complete analogy to the construction of BF and 2BF topological actions, one

can define a gauge invariant topological 3BF action for the manifold M4 and 2-crossed

module (L
δ→ H

∂→ G ,B , { , }). Given g, h and l as Lie algebras corresponding to the

groups G, H and L, one can introduce a 3-connection (α, β, γ) given by the algebra-valued
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differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding

fake 3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ , H = dγ + α ∧B γ + {β ∧ β} . (3.1)

see [24, 25] for details. Then, a 3BF action is defined as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (3.2)

where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange multipliers. The

forms 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric nondegenerate forms on

g, h and l, respectively. Under certain conditions, the forms 〈 , 〉h and 〈 , 〉l are also

H-invariant and L-invariant, see appendix B for details.

One can see that varying the action with respect to the variables B, C and D, one

obtains the equations of motion

F = 0 , G = 0 , H = 0 , (3.3)

while varying with respect to α, β, γ one obtains

dBα − gαβγBγ ∧ αβ −Bαa
bCb ∧ βa + BαB

ADA ∧ γB = 0 , (3.4)

dCa − ∂aαBα + Bαa
bCb ∧ αα + 2X{ab}

ADA ∧ βb = 0 , (3.5)

dDA −BαA
BDB ∧ αα + δA

aCa = 0 . (3.6)

Regarding the gauge transformations, the 3BF action is invariant with respect to

three different types of transformations, generated by the groups G, H and L, respectively.

Under the G-gauge transformations, the 3-connection transforms as

α′ = g−1αg + g−1dg , β′ = g−1 B β , γ′ = g−1 B γ , (3.7)

where g : M4 → G is an element of the G-principal bundle over M4. Next, under the

H-gauge transformations, generated by η ∈ A1(M4 , h), the 3-connection transforms as

α′ = α+ ∂η , β′ = β + dη + α′ ∧B η − η ∧ η , γ′ = γ − {β′ ∧ η} − {η ∧ β} . (3.8)

Finally, under the L-gauge transformations, generated by θ ∈ A2(M4 , l), the 3-connection

transforms as

α′ = α , β′ = β − δθ , γ′ = γ − dθ − α ∧ θ . (3.9)

As a consequence of the definition (3.1) and the above transformation rules, the curvatures

transform under the G-gauge transformations as

F → g−1Fg , G → g−1 B G , H → g−1 BH , (3.10)

under the H-gauge transformations as

F → F , G → G + F ∧B η , H → H− {G′ ∧ η}+ {η ∧ G} , (3.11)
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and under the L-gauge transformations as

F → F , G → G , H → H−F ∧B θ . (3.12)

For more details, the reader is referred to [25].

In order to make the action (3.2) gauge invariant with respect to the transforma-

tions (3.7), (3.8) and (3.9), the Lagrange multipliers B, C and D must transform under

the G-gauge transformations as

B → g−1Bg , C → g−1 B C , D → g−1 BD , (3.13)

under the H-gauge transformations as

B → B+C ′∧T η−η∧D η∧DD , C → C+D∧X1 η+D∧X2 η , D → D , (3.14)

while under the L-gauge transformations they transform as

B → B −D ∧S θ , C → C , D → D . (3.15)

See appendix B for details, for the definition of the maps T , D, X1, X2, S, and for the

notation of the ∧T , ∧D, ∧X1 , ∧X2 , and ∧S products.

3.2 Constrained 3BF action for a real Klein-Gordon field

Once the topological 3BF action is specified, we can proceed with the construction of the

constrained 3BF action, describing a realistic case of a scalar field coupled to gravity. In

order to perform this construction, we have to define a specific 2-crossed module which

gives rise to the topological sector of the action, and then we have to impose convenient

simplicity constraints.

We begin by defining a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows. The

groups are given as

G = SO(3, 1) , H = R4 , L = R . (3.16)

The group G acts on itself via conjugation, on H via the vector representation, and on L

via the trivial representation. This specifies the definition of the action B. The map ∂ is

chosen to be trivial, as before. The map δ is also trivial, that is, every element of L is

mapped to the identity element of H. Finally, the Peiffer lifting is trivial as well, mapping

every ordered pair of elements in H to an identity element in L. This specifies one concrete

2-crossed module.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γI , (3.17)

where I is the sole generator of the Lie group R. From (3.1), the fake 3-curvature (F ,G ,H)

reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (3.18)
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where we used the fact that G acts trivially on L, that is, Mab B I = 0. The topological

3BF action (3.2) now becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (3.19)

where the bilinear form for L is 〈I, I〉l = 1.

It is important to note that the Lagrange multiplier D in (3.2) is a 0-form and trans-

forms trivially with respect to G, H and L gauge transformations for our choice of the

2-crossed module, as can be seen from (3.13), (3.14) and (3.15). Thus, D has all the hall-

mark properties of a real scalar field, allowing us to make identification between them, and

conveniently relabel D into φ in (3.19). This is a crucial property of the 3-group structure

in a 4-dimensional spacetime and is one of the main results of the paper. It follows the

line of reasoning used in recognizing the Lagrange multiplier Ca in the 2BF action for the

Poincaré 2-group as a tetrad field ea. It is also important to stress that the choice of the

third gauge group, L, dictates the number and the structure of the matter fields present in

the action. In this case, L = R implies that we have only one real scalar field, correspond-

ing to a single generator I of R. The trivial nature of the action B of SO(3, 1) on R also

implies that φ transforms as a scalar field. Finally, the scalar field appears as a degree of

freedom in the topological sector of the action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, in order to obtain nontrivial dynamics, we need

to impose convenient simplicity constraints on the variables in the action (3.19). Since we

are interested in obtaining the scalar field φ of mass m coupled to gravity in the standard

way, we choose the action in the form:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed . (3.20)

Note that the first row is the topological sector (3.19), the second row is the familiar

simplicity constraint for gravity from the action (2.24), the third row contains the new

simplicity constraints corresponding to the Lagrange multiplier 1-forms λ and Λab and

featuring the Lagrange multiplier 0-form Habc, while the fourth row is the mass term for

the scalar field.

Varying the total action (3.20) with respect to the variables Bab, ωab, βa, λab, Λab, γ,

λ, Habc, φ and ea one obtains the equations of motion:

Rab − λab = 0 , (3.21)

∇Bab − e[a ∧ βb] = 0 , (3.22)

∇ea = 0 , (3.23)

– 14 –



J
H
E
P
1
0
(
2
0
1
9
)
2
2
2

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.24)

Habcε
cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb = 0 , (3.25)

dφ− λ = 0 , (3.26)

γ − 1

2
Habce

a ∧ eb ∧ ec = 0 , (3.27)

−1

2
λ ∧ ea ∧ eb ∧ ec + εcdefΛab ∧ ed ∧ ee ∧ ef = 0 , (3.28)

dγ − d(Λab ∧ ea ∧ eb)−
1

4!
m2φεabcde

a ∧ eb ∧ ec ∧ ed = 0 , (3.29)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
3

2
Habcλ ∧ eb ∧ ec + 3HdefεabcdΛef ∧ eb ∧ ec

−2Λab ∧ dφ ∧ eb − 2
1

4!
m2φεabcde

b ∧ ec ∧ ed = 0 . (3.30)

The dynamical degrees of freedom are ea and φ, while the remaining variables are alge-

braically determined in terms of them. Specifically, the equations (3.21)–(3.28) give

λabµν = Rabµν , ωabµ = 4ab
µ , γµνρ = −e

2
εµνρσ∂

σφ ,

Λabµ =
1

12e
gµλε

λνρσ∂νφe
a
ρe
b
σ , βaµν = 0 , Babµν =

1

8πl2p
εabcde

c
µe
d
ν ,

Habc =
1

6e
εµνρσ∂µφe

a
νe
b
ρe
c
σ , λµ = ∂µφ .

(3.31)

Note that from the equations (3.22), (3.23) and (3.24) it follows that βa = 0, as in the

pure gravity case. The equation of motion (3.29) reduces to the covariant Klein-Gordon

equation for the scalar field, (
∇µ∇µ −m2

)
φ = 0 . (3.32)

Finally, the equation of motion (3.30) for ea becomes:

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ ∂µφ∂νφ− 1

2
gµν

(
∂ρφ∂

ρφ+m2φ2
)
. (3.33)

The system of equations (3.21)–(3.30) is equivalent to the system of equations (3.31)–(3.33).

Note that in addition to the correct covariant form of the Klein-Gordon equation, we have

also obtained the correct form of the stress-energy tensor for the scalar field.

3.3 Constrained 3BF action for the Dirac field

Now we pass to the more complicated case of the Dirac field. We first define a 2-crossed

module (L
δ→ H

∂→ G ,B , { , }) as follows. The groups are:

G = SO(3, 1) , H = R4 , L = R8(G) , (3.34)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ and the Peiffer

lifting are trivial. The action of the group G on itself is given via conjugation, on H

via vector representation, and on L via spinor representation, as follows. Denoting the
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8 generators of the Lie group R8(G) as Pα and Pα, where the index α takes the values

1, . . . , 4, the action of G on L is thus given explicitly as

Mab B Pα =
1

2
(σab)

β
αPβ , Mab B Pα = −1

2
(σab)

α
βP

β , (3.35)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the anticommutation

rule {γa , γb} = −2ηab.

As in the case of the scalar field, the choice of the group L dictates the matter content

of the theory, while the action B of G on L specifies its transformation properties. To see

this explicitly, let us construct the corresponding 3BF action. The 3-connection (α , β , γ)

now takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (3.36)

while the 3-curvature (F ,G ,H), defined in (3.1), is given as

F = RabMab ,G = ∇βaPa , (3.37)

H =

(
dγα +

1

2
ωab(σab)

α
βγ

β

)
Pα +

(
dγ̄α −

1

2
ωabγ̄β(σab)

β
α

)
Pα ≡ (

→
∇γ)αPα + (γ̄

←
∇)αP

α ,

where we have used (3.35). The bilinear form 〈 , 〉l is defined as

〈Pα, Pβ〉l = 0 , 〈Pα, P β〉l = 0 , 〈Pα, P β〉l = −δβα , 〈Pα, Pβ〉l = δαβ . (3.38)

Note that, for general A,B ∈ l, we can write

〈A,B〉l = AIBJgIJ , 〈B,A〉l = BJAIgJI . (3.39)

Since we require the bilinear form to be symmetric, the two expressions must be equal.

However, since the coefficients in l are Grassmann numbers, we have AIBJ = −BJAI , so

it follows that gIJ = −gJI . Hence the antisymmetry of (3.38).

Now we use the properties of the group L and the action B of G on L to recognize

the physical nature of the Lagrange multiplier D in (3.2). Indeed, the choice of the group

L dictates that D contains 8 independent complex Grassmannian matter fields as its com-

ponents. Moreover, due to the fact that D is a 0-form and that it transforms according

to the spinorial representation of SO(3, 1), we can identify its components with the Dirac

bispinor fields, and write

D = ψαPα + ψ̄αP
α , (3.40)

where it is assumed that ψ and ψ̄ are independent fields, as usual. This is again an

illustration of the fact that information about the structure of the matter sector in the

theory is specified by the choice of the group L in the 2-crossed module, and another main

result of the paper.

Given all of the above, now we can finally write the 3BF action (3.2) corresponding

to this choice of the 2-crossed module as

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (3.41)
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In order to promote this action into a full theory of gravity coupled to Dirac fermions, we

add the convenient constraint terms to the action, as follows:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α
)

+ λ̄α ∧
(
γα +

i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

− 1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd . (3.42)

Here the first row is the topological sector, the second row is the gravitational simplicity

constraint term from (2.24), while the third row contains the new simplicity constraints for

the Dirac field corresponding to the Lagrange multiplier 1-forms λα and λ̄α. The fourth row

contains the mass term for the Dirac field, and a term which ensures the correct coupling

between the torsion and the spin of the Dirac field, as specified by the Einstein-Cartan

theory. Namely, we want to ensure that the torsion has the form

Ta ≡ ∇ea = 2πl2psa , (3.43)

where

sa = iεabcde
b ∧ ecψ̄γ5γdψ (3.44)

is the spin 2-form. Of course, other couplings should also be straightforward to imple-

ment, but we choose this particular coupling because we are interested in reproducing the

standard Einstein-Cartan gravity coupled to the Dirac field.

Varying the action (3.42) with respect to Bab, λ
ab, γ̄α, γα, λα, λ̄α, ψ̄α, ψα, ea, βa and

ωab one obtains the equations of motion:

Rab − λab = 0 , (3.45)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.46)

(
→
∇ψ)α − λα = 0 , (3.47)

(ψ̄
←
∇)α − λ̄α = 0 , (3.48)

γ̄α −
i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α = 0 , (3.49)

γα +
i

6
εabcde

a ∧ eb ∧ ec(γdψ)α = 0 , (3.50)

dγα + ωαβ ∧ γβ +
i

6
λβ ∧ εabcdea ∧ eb ∧ ecγdαβ +

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψα

+i2πl2pεabcde
a ∧ eb ∧ βc(γ5γdψ)α = 0 , (3.51)

dγ̄α − γ̄β ∧ ωβα +
i

6
λ̄β ∧ εabcdea ∧ eb ∧ ecγdβα −

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψ̄α

−i2πl2pεabcdea ∧ eb ∧ βc(ψ̄γ5γd)α = 0 , (3.52)
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∇βa + 2εabcdλ
bc ∧ ed − i

2
εabcdλ

α ∧ eb ∧ ec(ψ̄γd)α +
i

2
εabcdλ̄α ∧ eb ∧ ec(γdψ)α

−1

3
εabcde

b ∧ ec ∧ edmψ̄ψ − 4πl2piεabcde
b ∧ βcψ̄γ5γdψ = 0 , (3.53)

∇ea − i2πl2pεabcdeb ∧ ecψ̄γ5γdψ = 0 , (3.54)

∇Bab − e[a ∧ βb] + γ̄
1

8
[γa, γb]ψ + ψ̄

1

8
[γa, γb]γ = 0 . (3.55)

The dynamical degrees of freedom are ea, ψα and ψ̄α, while the remaining variables are

determined in terms of the dynamical variables, and are given as:

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = (

→
∇µψ)α , λ̄αµ = (ψ̄

←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe
b
νe
c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcdeaµebνecρ(γdψ)α , (3.56)

λabµν = Rabµν , ωabµ = 4ab
µ +Kab

µ .

Here Kab
µ is the contorsion tensor, constructed in the standard way from the torsion tensor,

whereas from (3.54) we have

Ta ≡ ∇ea = 2πl2psa , (3.57)

which is precisely the desired equation (3.43). Further, from the equation (3.46) one obtains

∇Bab = − 1

8πl2p
εabcd (ec ∧∇ed) . (3.58)

Substituting this expression in the equation (3.55) it follows that

2εabcde
c ∧
(
− 1

16πl2p
∇ed +

1

8
sd
)
− e[a ∧ βb] = 0 . (3.59)

The expression in the parentheses is equal to zero, according to the equation (3.54). From

the remaining term e[a ∧ βb] = 0 it again follows that

β = 0 . (3.60)

Using this result, the equation of motion (3.51) for fermions becomes

i

6
εabcde

a ∧ eb ∧
(

2ec ∧ γd
→
∇+

im

2
ec ∧ ed − 3(∇ec)γd

)
ψ = 0 . (3.61)

Using equation (3.54), the last term in the parentheses vanishes, and the equation reduces

to the covariant Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (3.62)

where eµa is the inverse tetrad. Similarly, the equation (3.52) gives the conjugated Dirac

equation:

ψ̄(i
←
∇µeµaγa +m) = 0 . (3.63)
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Finally, the equation of motion (3.53) for tetrad field reduces to

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ i

2
ψ̄γν

↔
∇aeµaψ −

1

2
gµνψ̄

(
iγa
↔
∇ρeρa − 2m

)
ψ , (3.64)

Here, we used the notation
↔
∇ =

→
∇−

←
∇. The system of equations (3.45)–(3.55) is equivalent

to the system of equations (3.56), (3.60), (3.62)–(3.64). As we expected, the equations

of motion (3.57), (3.62), (3.63) and (3.64) are precisely the equations of motion of the

Einstein-Cartan theory coupled to a Dirac field.

3.4 Constrained 3BF action for the Weyl and Majorana fields

A general solution of the Dirac equation is not an irreducible representation of the Lorentz

group, and one can rewrite Dirac fermions as left-chiral and right-chiral fermion fields that

both retain their chirality under Lorentz transformations, implying their irreducibility.

Hence, it is useful to rewrite the action for left and right Weyl spinors as a constrained

3BF action. For simplicity, we will discuss only left-chiral spinor field, while the right-

chiral field can be treated analogously. Both Weyl and Majorana fermions can be treated

in the same way, the only difference being the presence of an additional mass term in the

Majorana action.

We being by defining a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows. The

groups are:

G = SO(3, 1) , H = R4 , L = R4(G) . (3.65)

The maps ∂, δ and the Peiffer lifting are trivial. The action B of the group G on G, H

and L is given in the same way as for the Dirac case, whereas the spinorial representation

reduces to

Mab B Pα =
1

2
(σab)

α
βP

β , Mab B Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (3.66)

where σab = −σ̄ab = 1
4(σaσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in which ~σ denotes

the set of three Pauli matrices. The four generators of the group L are denoted as Pα and

Pα̇, where the Weyl indices α, α̇ take values 1, 2.

The 3-connection (α , β , γ) now takes the form corresponding to this choice of Lie

groups,

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (3.67)

while the fake 3-curvature (F ,G ,H) defined in (3.1) is

F = RabMab , G = ∇βaPa , (3.68)

H =

(
dγα +

1

2
ωab(σab)βαγβ

)
Pα +

(
dγ̄α̇ +

1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇

)
P α̇ ≡ (

→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

Introducing the spinor fields ψα and ψ̄α̇ via the Lagrange multiplier D as

D = ψαP
α + ψ̄α̇Pα̇ , (3.69)

and using the bilinear form 〈 , 〉l for the group L,

〈Pα, P β〉l = εαβ , 〈Pα̇, Pβ̇〉l = εα̇β̇ , 〈Pα, Pβ̇〉l = 0 , 〈Pα̇, P β〉l = 0 , (3.70)
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where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita symbols, the

topological 3BF action (3.2) for spinors coupled to gravity becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (3.71)

In order to obtain the suitable equations of motion for the Weyl spinors, we again introduce

appropriate simplicity constraints, so that the action becomes:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γα +

i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇

)
− λ̄α̇ ∧

(
γ̄α̇ +

i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ
)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄dα̇βψβ) . (3.72)

The new simplicity constraints are in the third row, featuring the Lagrange multiplier

1-forms λα and λ̄α̇. Also, using the coupling between the Dirac field and torsion from

Einstein-Cartan theory as a model, the term in the fourth row is chosen to ensure that the

coupling between the Weyl spin tensor

sa ≡ iεabcdeb ∧ ec ψασdαβ̇ψ̄
β̇ , (3.73)

and torsion is given as:

Ta = 4πl2psa . (3.74)

The case of the Majorana field is introduced in exactly the same way, albeit with an

additional mass term in the action, of the form:

− 1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (3.75)

Varying the action (3.72) with respect to the variables Bab, λ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα,

ψ̄α̇, ea, βa and ωab one again obtains the complete set of equations of motion, displayed

in the appendix C. The only dynamical degrees of freedom are ψα, ψ̄α̇ and ea, while the

remaining variables are algebraically determined in terms of these as:

λabµν = Rabµν , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄α̇ , (3.76)

γαµνρ = iεabcde
a
µe
b
νe
c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe
b
νe
c
ρσ̄

dα̇βψβ , ωabµ = 4abµ +Kabµ .

In addition, one also maintains the result β = 0 as before. Finally, the equations of motion

for the dynamical fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄β̇ = 0 , (3.77)

and

Rµν − 1

2
gµνR = 8πl2p T

µν , (3.78)
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where

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄ − gµν

1

2

(
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄

)
. (3.79)

Here we have suppressed the spinor indices. In the case of the Majorana field, the equations

of motion (3.76) remain the same, while the equations of motion for ψα and ψ̄α̇ take the

form

iσaαβ̇e
µ
a∇µψ̄β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (3.80)

whereas the stress-energy tensor takes the form

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

− gµν 1

2

[
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −

1

2
m
(
ψψ + ψ̄ψ̄

)]
.

(3.81)

4 The Standard Model

The Standard Model 3-group can be defined as:

G = SO(3, 1)×SU(3)×SU(2)×U(1) , H = R4 , L = R4(C)×R64(G)×R64(G)×R64(G) ,

(4.1)

where C denotes the field of complex numbers. The motivation for this choice of the group

L is given in the table below.

1. lepton generation

red color

1. quark generation

green color

1. quark generation

blue color

1. quark generation(
νe

e−

)
L

(
ur

dr

)
L

(
ug

dg

)
L

(
ub

db

)
L

(νe)R (ur)R (ug)R (ub)R

(e−)R (dr)R (dg)R (db)R

We see that in order to introduce one generation of matter one needs to provide 16

spinors, or equivalently the group L has to be chosen as L = R64(G). As there are three

generations of matter, the part of the group L that corresponds to the fermion fields in

the theory is chosen to be L = R64(G)×R64(G)×R64(G). To define the Higgs sector one

needs two complex scalar fields

(
φ+

φ0

)
, or equivalently the scalar sector of the group L is

given as L = R4(C).

The maps ∂, δ and the Peiffer lifting are trivial. The action of the group G on itself

is given via conjugation. The action of the SO(3, 1) subgroup of G on H is via vector

representation and the action of SU(3)× SU(2)×U(1) subgroup on H is via trivial repre-

sentation. The action of the SO(3, 1) on L is via trivial representation for the generators

corresponding to the scalar fields, i.e. the R4(C) subgroup of L, and via spinor represen-

tation for the every quadruple of generators corresponding to the fermion fields, given as
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in the section 3. The information how spinors transform under the SU(3) × SU(2)× U(1)

group is encoded in the action of that subgroup of G on L, as specified in the table above.

For simplicity, in the following, only one family of the lepton sector and only electroweak

part of the gauge sector of the Standard model is considered.

The groups are chosen as:

G = SO(3, 1)× SU(2)×U(1) , H = R4 , Lleptons = R16(G)× R4(C) . (4.2)

The 3-connection then takes the form

α = ωabMab +W ITI +AY , β = βaPa ,

γ = γα
L̃PαL̃ + γα̇L̃Pα̇

L̃ + γα
R̃PαR̃ + γα̇R̃Pα̇

R̃ + γãPã .
(4.3)

Here the indices I, J, . . . take the values 1, 2, 3 and counts the Pauli matrices, generators

of the group SU(2), the indices L̃, L̃′, . . . take the values 1, 2 and count the components of

left doublet, R̃ denotes the right singlet (e−)R and right singlet (νe)R, and indices ã, b̃, . . .

take values 1, 2 and count the components of the scalar doublet. It is also useful to define

ĩ = (L̃, R̃) which takes values 1, . . . , 4.

The action of the group G on L is defined as:

Mab B Pαi =
1

2
(σab)

α
βP

β
i , Mab B Pα̇i =

1

2
(σ̄ab)

β̇
α̇Pβ̇i , Mab B Pã = 0 ,

TI B PαL̃ =
1

2
(σI)

L̃′

L̃P
α
L̃′ , TI B Pα̇L̃ =

1

2
(σI)

L̃′

L̃Pα̇L̃′ ,

TI B PαR̃ = 0 , TI B Pα̇R̃ = 0 , TI B Pã =
1

2
(σI)

b̃
ãPb̃ ,

Y B PαL̃ = −PαL̃ , Y B PαeR = −2PαeR , Y B PανR = −2PανR , Y B Pã = Pã ,

Y B Pα̇L̃ = −Pα̇L̃ , Y B Pα̇eR = −2Pα̇eR , Y B Pα̇νR = −2Pα̇νR . (4.4)

The 3-curvatures are given as:

F = RabMab + F ITI + FY , G = ∇βaPa ,

H = (
→
∇γL̃)αP

α
L̃ + (γ̄L̃

←
∇)α̇P α̇

L̃ + (
→
∇γR̃)αP

α
R̃ + (γ̄R̃

←
∇)α̇P α̇

R̃ + dγãPã .
(4.5)

The topological 3BF action is defined as:

S =

∫
BabR

ab +BIF
I +BF + ea∇βa + ψαĩ(

→
∇γ ĩ)α + ψ̄α̇

ĩ(γ̄ ĩ
←
∇)α̇ + φãdγã . (4.6)

At this point, it is useful to simplify the notation and denote all indices of the group G by

α̂, of the group H by â and L by Â. In order to promote this action to a full theory of

first lepton family coupled to electroweak gauge fields, Higgs field, and gravity, we again
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introduce the appropriate simplicity constraint, as follows

S =

∫
Bα̂ ∧ F α̂ + eâ ∧ Gâ +DÂ ∧H

Â

+
(
Bα̂ − Cα̂β̂Mcdβ̂e

c ∧ ed
)
∧ λα̂ −

(
γÂ − e

a ∧ eb ∧ ecCÂ
B̂MabcB̂

)
∧ λÂ

+ ζabα̂ ∧
(
Mab

α̂εcdefec ∧ ed ∧ ee ∧ ef − F α̂ ∧ ec ∧ ed
)

+ ζabÂ ∧
(
Mabc

Âεcdefed ∧ ee ∧ ef − F Â ∧ ea ∧ eb
)

− εabcdea ∧ eb ∧ ec ∧ ed
(
YÂB̂ĈD

ÂDB̂DĈ +MÂB̂D
ÂDB̂ + LÂB̂ĈD̂D

ÂDB̂DĈDD̂
)

− 4πi l2p εabcde
a ∧ eb ∧ βcDÂT

dÂ
B̂D

B̂ , (4.7)

where:

Bα̂ =
[
Bab BI B

]
, F α̂ =

[
Rab FI F

]
T , DÂ =

[
ψαL̃ ψ̄α̇L̃ ψ

α
R ψ̄α̇R φã

]
,

HÂ =
[

(
→
∇γL̃)α (γ̄L̃

←
∇)α̇ (

→
∇γR̃)α (γ̄R̃

←
∇)α̇ dγã

]
T , γÂ =

[
γαL̃ γ̄α̇L̃ γ

α
R̃ γ̄α̇R̃ γã

]
,

λα̂ =
[
−λab λI λ

]
T , ζcdα̂ =

[
0 ζcdI ζ

cd
]
, ζabÂ =

[
ζab 0 0

]
,

λÂ =
[
λαL λ̄

α̇
L λαR λ̄α̇R λã

]
T , Mcdα̂ =

[
εabcd McdI Mcd

]
,

MabcÂ =
[
εabcdσ

d
αβ̇ψ̄

β̇
L εabcdσ̄

dα̇βψβL εabcdσ
d
αβ̇ψ̄

β̇
R εabcdσ̄

dα̇βψβR Mabcã

]
.

The matrices Cα̂β̂ , CÂB̂, MÂB̂, YÂB̂Ĉ , LÂB̂ĈD̂ and T dÂB̂ are constant matrices, and

carry the information about gauge coupling constants, mass of the Higgs field, Yukawa

couplings and mixing angles, Higgs self-coupling constant and torsion coupling, respectively.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short reminder

of the BF theory and described how one can use it to construct the action for general

relativity (the well known Plebanski model), and the action for the Yang-Mills theory

in flat spacetime, in a novel way. Passing on to higher gauge theory, we have reviewed

the formalism of 2-groups and the corresponding 2BF theory, using it again to construct

the action for general relativity (a model first described in [12]), and the unified action

of general relativity and Yang-Mills theory, both naturally described using the 2-group

formalism. With this background material in hand, in section 3 we have used the idea

of a categorical ladder yet again, generalizing the 2BF theory to 3BF theory, with the

underlying structure of a 3-group instead of a 2-group. This has led us to the main insight

that the scalar and fermion fields can be specified using a gauge group, namely the third

gauge group, denoted L, present in the 2-crossed module corresponding to a given 3-group.

This has allowed us to single out specific gauge groups corresponding to the Klein-Gordon,

Dirac, Weyl and Majorana fields, and to construct the relevant constrained 3BF actions

that describe all these fields coupled to gravity in the standard way.
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The obtained results represent the fundamental building blocks for the construction of

the complete Standard Model of elementary particles coupled to Einstein-Cartan gravity

as a 3BF action with suitable simplicity constraints, as demonstrated in section 4. In

this way, we can complete the first step of the spinfoam quantization programme for the

complete theory of gravity and all matter fields, as specified in the Introduction. This is

a clear improvement over the ordinary spinfoam models based on an ordinary constrained

BF theory.

In addition to this, the gauge group which determines the matter spectrum of the

theory is a completely novel structure, not present in the Standard Model. This new

gauge group stems from the 3-group structure of the theory, so it is not surprising that

it is invisible in the ordinary formulation of the Standard Model, since the latter does

not use any 3-group structure in an explicit way. In this paper, we have discussed the

choices of this group which give rise to all relevant matter fields, and these can simply be

directly multiplied to give the group corresponding to the full Standard Model, encoding

the quark and lepton families and all other structure of the matter spectrum. However,

the true potential of the matter gauge group lies in a possibility of nontrivial unification

of matter fields, by choosing it to be something other than the ordinary product of its

component groups. For example, instead of choosing R8(G) for the Dirac field, one can try a

noncommutative SU(3) group, which also contains 8 generators, but its noncommutativity

requires that the maps δ and { , } be nontrivial, in order to satisfy the axioms of a

2-crossed module. This, in turn, leads to a distinction between 3-curvature and fake 3-

curvature, which can have consequences for the dynamics of the theory. In this way, by

studying nontrivial choices of a 3-group, one can construct various different 3-group-unified

models of gravity and matter fields, within the context of higher gauge theory. This idea

resembles the ordinary grand unification programme within the framework of the standard

gauge theory, where one constructs various different models of vector fields by making

various choices for the Yang-Mills gauge group. The detailed discussion of these 3-group

unified models is left for future work.

As far as the spinfoam quantization programme is concerned, having completed the

step 1 (as outlined in the Introduction), there is a clear possibility to complete the steps 2

and 3 as well. First, the fact that the full action is written completely in terms of differential

forms of various degrees, allows us to adapt it to a triangulated spacetime manifold, in the

sense of Regge calculus. In particular, all fields and their field strengths present in the

3BF action can be naturally associated to the appropriate d-dimensional simplices of a

4-dimensional triangulation, by matching 0-forms to vertices, 1-forms to edges, etc. This

leads us to the following table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄α̃ Ga

4 4-simplex vertex 4-form H, Hα̃, H̄α̃
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Once the classical Regge-discretized topological 3BF action is constructed, one can

attempt to construct a state sum Z which defines the path integral for the theory. The

topological nature of the pure 3BF action, together with the underlying structure of the 3-

group, should ensure that such a state sum Z is a topological invariant, in the sense that it is

triangulation independent. Unfortunately, in order to perform this step precisely, one needs

a generalization of the Peter-Weyl and Plancharel theorems to 2-groups and 3-groups, a

mathematical result that is presently still missing. The purpose of the Peter-Weyl theorem

is to provide a decomposition of a function on a group into a sum over the corresponding

irreducible representations, which ultimately specifies the appropriate spectrum of labels

for the d-simplices in the triangulation, fixing the domain of values for the fields living on

those d-simplices. In the case of 2-groups and especially 3-groups, the representation theory

has not been developed well enough to allow for such a construction, with a consequence of

the missing Peter-Weyl theorem for 2-groups and 3-groups. However, until the theorem is

proved, we can still try to guess the appropriate structure of the irreducible representations

of the 2- and 3-groups, as was done for example in [12], leading to the so-called spincube

model of quantum gravity.

Finally, if we remember that for the purpose of physics we are not really interested in a

topological theory, but instead in one which contains local propagating degrees of freedom,

we are therefore not really engaged in constructing a topological invariant Z, but rather

a state sum which describes nontrivial dynamics. In particular, we need to impose the

simplicity constraints onto the state sum Z, which is the step 3 of the spinfoam quantization

programme. In light of that, one of the main motivations and also main results of our paper

was to rewrite the action for gravity and matter in a way that explicitly distinguishes the

topological sector from the simplicity constraints. Imposing the constraints is therefore

straightforward in the context of a 3-group gauge theory, and completing this step would

ultimately lead us to a state sum corresponding to a tentative theory of quantum gravity

with matter. This is also a topic for future work.

In the end, let us also mention that aside from the unification and quantization pro-

grammes, there is also a plethora of additional studies one can perform with the constrained

3BF action, such as the analysis of the Hamiltonian structure of the theory (suitable for

a potential canonical quantization programme), the idea of imposing the simplicity con-

straints using a spontaneous symmetry breaking mechanism, and finally a detailed study

of the mathematical structure and properties of the simplicity constraints. This list is of

course not conclusive, and there may be many more interesting related topics to study in

both physics and mathematics.
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A Category theory, 2-groups and 3-groups

Definition 1 (Pre-crossed module and crossed module) A pre-crossed module

(H
∂→ G ,B) of groups G and H, is given by a group map ∂ : H → G, together with a

left action B of G on H, by automorphisms, such that for each h1 , h2 ∈ H and g ∈ G the

following identity hold:

g∂hg−1 = ∂(g B h) .

In a pre-crossed module the Peiffer commutator is defined as:

〈h1 , h2〉p = h1h2h
−1
1 ∂(h1) B h−12 .

A pre-crossed module is said to be a crossed module if all of its Peiffer commutators are

trivial, which is to say that

(∂h) B h′ = hh′h−1 ,

i.e. the Peiffer identity is satisfied.

Definition 2 (2-crossed module) A 2-crossed module (L
δ→ H

∂→ G, B, {−, −}) is

given by three groups G, H and L, together with maps ∂ and δ such that:

L
δ→ H

∂→ G ,

where ∂δ = 1, an action B of the group G on all three groups, and an G-equivariant map

called the Peiffer lifting:

{− ,−} : H ×H → L .

The following identities are satisfied:

1. The maps ∂ and δ are G-equivariant, i.e. for each g ∈ G and h ∈ H:

g B ∂(h) = ∂(g B h) , g B δ(l) = δ(g B l) ,

the action of the group G on the groups H and L is a smooth left action by automor-

phisms, i.e. for each g, g1, g2 ∈ G, h1, h2 ∈ H, l1, l2 ∈ L and e ∈ H,L:

g1B(g2Be) = (g1g2)Be , gB(h1h2) = (gBh1)(gBh2) , gB(l1l2) = (gBl1)(gBl2) ,

and the Peiffer lifting is G-equivariant, i.e. for each h1, h2 ∈ H and g ∈ G:

g B {h1 , h2} = {g B h1, g B h2} ;

2. the action of the group G on itself is via conjugation, i.e. for each g , g0 ∈ G:

g B g0 = g g0 g
−1 ;
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3. In a 2-crossed module the structure (L
δ→ H, B′) is a crossed module, with action of

the group H on the group L is defined for each h ∈ H and l ∈ L as:

hB′ l = l {δ(l)−1, h} ,

but (H
∂→ G ,B) may not be one, and the Peiffer identity does not necessary hold.

However, when ∂ is chosen to be trivial and group H Abelian, the Peiffer identity is

satisfied, i.e. for each h, h′ ∈ H:

δ(h) B h′ = hh′ h−1 ;

4. δ({h1, h2}) = 〈h1 , h2〉p, ∀h1, h2 ∈ H,

5. [l1, l2] = {δ(l1) , δ(l2)}, ∀l1 , l2 ∈ L. Here, the notation [l, k] = lkl−1k−1 is used;

6. {h1h2, h3} = {h1, h2h3h−12 }∂(h1) B {h2, h3}, ∀h1, h2, h3 ∈ H;

7. {h1, h2h3} = {h1, h2}{h1, h3}{〈h1, h3〉−1p , ∂(h1) B h2}, ∀h1, h2, h3 ∈ H;

8. {δ(l), h}{h, δ(l)} = l(∂(h) B l−1), ∀h ∈ H , ∀l ∈ L.

Definition 3 (Differential pre-crossed module, differential crossed module)

A differential pre-crossed module (h
∂→ g ,B) of algebras g and h is given by a Lie algebra

map ∂ : h→ g together with an action B of g on h such that for each h ∈ h and g ∈ g:

∂(g B h) = [g, ∂(h)] .

The action B of g on h is on left by derivations, i.e. for each h1, h2 ∈ h and each g ∈ g:

g B [h1, h2] = [g B h1, h2] + [h1, g B h2] .

In a differential pre-crossed module, the Peiffer commutators are defined for each h1, h2 ∈ h

as:

〈h1, h2〉p = [h1, h2]− ∂(h1) B h2 .

The map (h1, h2) ∈ h× h→ 〈h1, h2〉p ∈ h is bilinear g-equivariant map called the Peiffer

paring, i.e. all h1 , h2 ∈ h and g ∈ g satisfy the following identity:

g B 〈h1 , h2〉p = 〈g B h1 , h2〉+ 〈h1 , g B h2〉p .

A differential pre-crossed module is said to be a differential crossed module if all of its

Peiffer commutators vanish, which is to say that for each h1, h2 ∈ h:

∂(h1) B h2 = [h1, h2] .

Definition 4 (Differential 2-crossed module) A differential 2-crossed module is given

by a complex of Lie algebras:

l
δ→ h

∂→ g ,
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together with left action B of g on h, l, by derivations, and on itself via adjoint represen-

tation, and a g-equivariant bilinear map called the Peiffer lifting:

{− , −} : h× h→ l

Fixing the basis in algebra TA ∈ l, ta ∈ h and τα ∈ g:

[TA, TB] = fAB
C TC , [ta, tb] = fab

c tc , [τα, τβ ] = fαβ
γ τγ ,

one defines the maps ∂ and δ as:

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta ,

and action of g on the generators of l, h and g is, respectively:

τα B TA = BαA
B TB , τα B ta = Bαa

b tb , τα B τβ = Bαβ
γ τγ .

Note that when η is g-valued differential form and ω is l, h or g valued differential form

the previous action is defined as:

η B ω = ηα ∧ ωA BαA
B TB , η B ω = ηα ∧ ωa Bαa

b tb , η B ω = ηα ∧ ωβfαβγ τγ .

The coefficients Xab
A are introduced as:

{ta, tb} = Xab
ATA .

The following identities are satisfied:

1. In the differential crossed module (L
δ→ H ,B′) the action B′ of h on l is defined for

each h ∈ h and l ∈ l as:

hB′ l = −{δ(l), h} ,

or written in the basis where ta B′ TA = B′aABTB the previous identity becomes:

B′aA
B

= −δAbXba
B ;

2. The action of g on itself is via adjoint representation:

Bαβ
γ = fαβ

γ ;

3. The action of g on h and l is equivariant, i.e. the following identities are satisfied:

∂a
βfαβ

γ = Bαa
b∂b

γ , δA
a Bαa

b = BαA
BδB

b ;

4. The Peiffer lifting is g-equivariant, i.e. for each h1, h2 ∈ h and g ∈ g:

g B {h1, h2} = {g B h1, h2}+ {h1, g B h2} ,

or written in the basis:

Xab
BBαB

A = Bαa
cXcb

A + Bαb
cXac

A ;
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5. δ({h1, h2}) = 〈h1, h2〉 p , ∀h1, h2 ∈ h, i.e.

Xab
AδA

c = fab
c − ∂aαBαb

c ;

6. [l1, l2] = {δ(l1), δ(l2)} , ∀l1, l2 ∈ l, i.e.

fAB
C = δA

aδB
bXab

C ;

7. {[h1, h2], h3} = ∂(h1)B {h2, h3}+ {h1, [h2, h3]}−∂(h2)B {h1, h3}−{h2, [h1, h3]} ,
∀h1, h2, h3 ∈ h, i.e.

{[h1, h2], h3} = {∂(h1)Bh2, h3}−{∂(h2)Bh1, h3}−{h1, δ{h2, h3}}+{h2, δ{h1, q, h3}},

fab
dXdc

B = ∂a
αXbc

ABαA
B +Xad

Bfbc
d − ∂bαBαA

BXac
A −Xbd

Bfac
d ;

8. {h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} , ∀h1, h2, h3 ∈ h, i.e.

Xad
Afbc

d = Xab
BδB

dXdc
A −Xac

BδB
dXdb

A ;

9. {δ(l), h}+ {h, δ(l)} = −∂(h) B l , ∀l ∈ l , ∀h ∈ h, i.e.

δA
aXab

B + δA
aXba

B = −∂bαBαA
B .

Note that the property 6. implies that either trivial map δ or the trivial Peiffer lifting imply

that L is an Abelian group. Conversely, if L is Abelian, property 6. implies that either the

map δ or the Peiffer lifting is trivial, or both.

In the case of an Abelian group H and trivial map ∂, among the aforementioned

properties the only non-trivial remaining are:

1. δ{h1, h2} = 0 , ∀h1 , h2 ∈ h ;

2. [l1, l2] = {δ(l1), δ(l2)} , ∀l1 , l2 ∈ l ;

3. {δ(l), h} = −{h, δ(l)} , ∀h ∈ h , ∀l ∈ l .

A reader intrested in more details about 3-groups is referred to [25].

B The construction of gauge-invariant actions for 3BF theory

Symmetric bilinear invariant nondegenerate forms are defined as:

〈TA , TB〉l = gAB , 〈ta , tb〉h = gab , 〈τα , τβ〉g = gαβ .

They satisfy the following properties:

• 〈 , 〉g is G-invariant:

〈gταg−1 , gτβg−1〉g = 〈τα , τβ〉g , ∀g ∈ G ;
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• 〈 , 〉h is G-invariant:

〈g B ta , g B tb〉h = 〈ta , tb〉h , ∀g ∈ G ,

and, when (H
∂→ G ,B) is a crossed module, consequently H-invariant:

〈htah−1 , htbh−1〉h = 〈∂(h) B ta , ∂(h) B tb〉h = 〈ta , tb〉h , ∀h ∈ H ;

• 〈 , 〉l is G-invariant:

〈g B TA , g B TB〉l = 〈TA , TB〉l , ∀g ∈ G ,

and in the case when the Peiffer lifting or the map δ is trivial consequently H-

invariant:

〈hB′ TA , hB′ TB〉l = 〈TA − {δ(TA), h} , TB − {δ(TB), h}〉l = 〈TA , TB〉l , ∀h ∈ H .

From the H-invariance of 〈 , 〉l and properties of a crossed module (L
δ→ H ,B′)

follows L-invariance:

〈lTAl−1 , lTBl−1〉l = 〈δ(l) B′ TA , δ(l) B′ TB〉l = 〈TA , TB〉l , ∀l ∈ L .

From the invariance of the bilinear forms follows the existence of gauge-invariant topological

3BF action of the form:

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧ H〉l , (B.1)

where B ∈ A2(M4 , g), C ∈ A1(M4 , h) and D ∈ A0(M4 , l) are Lagrange multipliers, and

F ∈ A2(M4 , g), G ∈ A3(M4 , h) and H ∈ A4(M4 , l) are curvatures defined as in (3.1).

Written in the basis:

F =
1

2
Fαµνταdxµ ∧ dxν , G =

1

3!
Gaµνρtadxµ ∧ dxν ∧ dxρ ,

H =
1

4!
HAµνρσTAdxµ ∧ dxν ∧ dxρ ∧ dxσ ,

the coefficients are:

Fαµν = ∂µα
α
ν − ∂νααµ + fβγ

ααβµα
γ
ν − βaµν∂aα ,

Gaµνρ = ∂µβ
a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν

+ ααµβ
b
νρBαb

a + αανβ
b
ρµBαb

a + ααρβ
b
µνBαb

a − γAµνρδAa ,
HAµνρσ = ∂µγ

A
νρσ − ∂νγAρσµ + ∂ργ

A
σµν − ∂σγAµνρ

+ 2βaµνβ
b
ρσX{ab}

A − 2βaµρβ
b
νσX{ab}

A + 2βaµσβ
b
νρX{ab}

A

+ ααµγ
B
νρσBαB

A − αανγBρσµBαB
A + ααργ

B
σµνBαB

A − αασγBµνρBαB
A .

Note that the wedge product A ∧ B when A is a 0-form and B is a p-form is defined

as A ∧B = 1
p!ABµ1...µpdxµ1 ∧ · · · ∧ xµp .
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Given G-invariant symmetric non-degenerate bilinear forms in g and h, one can define

a bilinear antisymmetric map T : h× h→ g by the rule:

〈T (h1, h2) , g〉g = −〈h1, g B h2〉h, ∀h1, h2 ∈ h , ∀g ∈ g .

See [17] for more properties and the construction of 2BF invariant topological action using

this map. To define 3BF invariant topological action one has to first define a bilinear

antisymmetric map S : l× l→ g by the rule:

〈S(l1, l2), g〉g = −〈l1, g B l2〉l , ∀l1, ∀l2 ∈ l , ∀g ∈ g .

Note that 〈 , 〉g is non-degenerate and

〈l1, g B l2〉l = −〈g B l1, l2〉l = −〈l2, g B l1〉l , ∀g ∈ g, ∀l1, l2 ∈ l .

Morever, given g ∈ G and l1, l2 ∈ l one has:

S(g B l1, g B l2) = g S(l1, l2) g
−1 ,

since for each g ∈ g and l1, l2 ∈ l:

〈g, g−1S(g B l1 , g B l2)g〉g = 〈ggg−1, S(g B l1, g B l2)〉g
= −〈(g g g−1) B g B l1, g B l2〉l
= −〈g B l1 , l2〉l = 〈g ,S(l1, l2)〉g ,

where the following mixed relation has been used:

g B (g B l) = (g g g−1) B g B l . (B.2)

We thus have the following identity:

S(g B l1, l2) + S(l1, g B l2) = [g, S(l1, l2)] .

As far as the bilinear antisymmetric map S : l × l→ g, one can write it in the basis:

S(TA, TB) = SABατα ,

so that the defining relation for S becomes the relation:

SABαgαβ = −Bα[B
CgA]C .

Given two l-valued forms η and ω, one can define a g-valued form:

ω ∧S η = ωA ∧ ηBSABατα .

Now one can define the transformations of the Lagrange multipliers under L-gauge trans-

formations (3.15).
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Further, to define the transformations of the Lagrange multipliers under H-gauge

transformations one needs to define the bilinear map X1 : l× h→ h by the rule:

〈X1(l, h1), h2〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l ,

and bilinear map X2 : l× h→ h by the rule:

〈X2(l, h2), h1〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l .

As far as the bilinear maps X1 and X2 one can define the coefficients in the basis as:

X1(TA, ta) = X1Aa
b tb , X2(TA, ta) = X2Aa

b tb .

When written in the basis the defining relations for the maps X1 and X2 become:

X1Ab
cgac = −Xba

BgAB , X2Ab
cgac = −Xab

BgAB .

Given l-valued differential form ω and h-valued differential form η, one defines a h-valued

form as:

ω ∧X1 η = ωA ∧ ηaX1Aa
btb , ω ∧X2 η = ωA ∧ ηaX2Aa

btb .

Given any g ∈ G, l ∈ l and h ∈ h one has:

X1(g B l, g−1 B h) = g B X1(l, h) , X2(g B l, g B h) = g−1 B X2(l, h) ,

since for each h1, h2 ∈ h and l ∈ l:

〈h2, g−1 B X1(g B l, g B h1)〉h = 〈g B h2, X1(g B l, g B h1)〉h = 〈g B l, {g B h1, g B h2}〉l
〈g B l, g B {h1, h2}〉l = 〈l, {h1, h2}〉l = 〈h2, X1(l, h1)〉h ,

and similarly for X 2. Finaly, one needs to define a trilinear map D : h× h× l→ g by the

rule:

〈D(h1, h2, l), g〉g = −〈l, {g B h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g ,

One can define the coefficients of the trilinear map as:

D(ta, tb, TA) = DabAατα ,

and the defining relation for the map D expressed in terms of coefficients becomes:

DabAβgαβ = −Bαa
cXcb

BgAB .

Given two h-valued forms ω and η, and l-valued form ξ, the g-valued form is given by the

formula:

ω ∧D η ∧D ξ = ωa ∧ ηb ∧ ξADabAβτβ .

The following compatibility relation between the maps X1 and D hold:

〈D(h1, h2, l), g〉g = 〈X1(l, g B h1), h2〉h , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g , (B.3)

– 32 –



J
H
E
P
1
0
(
2
0
1
9
)
2
2
2

which one can prove valid from the defining relations in terms of the coefficients. One can

demonstrate that for each h1, h2 ∈ h, l ∈ l and g ∈ G:

D(g B h1, g B h2, g B l) = gD(h1, h2, l) g
−1 ,

since for each h1, h2 ∈ h, l ∈ l, g ∈ g and g ∈ G:

〈g−1D(g B h1, g B h2, g B l)g, g〉g = 〈D(g B h1, g B h2, g B l), ggg−1〉g
= 〈X1(g B l, ggg−1 B g B h1), g B h2〉h
= 〈X1(g B l, g B g B h1), g B h2〉h
= 〈g B X1(l, g B h1), g B h2〉h
= 〈X1(l, g B h1), h2〉h
= 〈D(h1, h2, l) , g〉g ,

where the relation (B.2) and the compatibility relation (B.3) were used. We thus have for

each h1, h2 ∈ h, l ∈ l and g ∈ g the following identity:

D(g B h1, h2, l) +D(h1, g B h2, l) +D(h1, h2, g B l) = [g, D(h1, h2, l)] .

Now one can define the transformations of the Lagrange multipliers under H-gauge trans-

formations as in (3.14).

C The equations of motion for the Weyl and Majorana fields

The action for the Weyl spinor field coupled to gravity is given by (3.72). The variation of

this action with respect to the variables Bab, λ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇, ea, βa and ωab

one obtains the complete set of equations of motion, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

∇ψα + λα = 0 ,

∇ψ̄α̇ + λ̄α̇ = 0 ,

−γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇ = 0 ,

−γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ = 0 ,

∇γα −
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇λ̄
β̇ = 0 ,

∇γ̄α̇ − i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βλβ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcde

b ∧ ec ∧ (λ̄α̇σ̄
dα̇βψβ + λασdαβ̇ψ̄

β̇)

−8πil2pεabcde
bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,
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∇ea − 4πl2pεabcde
b ∧ ec ∧ (ψ̄α̇σ̄

dα̇βψβ) = 0 ,

∇Bab − e[a ∧ βb] −
1

2
γσabα

βψβ −
1

2
γ̄α̇σ̄

abα̇
β̇ψ̄

β̇ = 0 .

In the case of the Majorana field, one adds the mass term (3.75) to the action (3.72). Then,

the variation of the action with respect to Bab, ψ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇I , ea, βa and ωab

gives the equations of motion for the Majorana case, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

−∇ψα + λα = 0 ,

−∇ψ̄α̇ + λα̇ = 0 ,

γα − i

6
εabcde

a ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α = 0 ,

γ̄α̇ −
i

6
εabcde

a ∧ eb ∧ ecψβ(σd)βα̇ = 0 ,

∇γα +
i

6
εabcdλ

β̇ ∧ ea ∧ eb ∧ ec(σd)αβ̇ −
1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα

−4iπl2pεabcde
a ∧ eb ∧ βcψ̄β̇(σ̄d)β̇α = 0 ,

∇γ̄α̇ +
i

6
εabcdλβ ∧ ea ∧ eb ∧ ec(σ̄d)α̇β −

1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα̇

−4iπl2pεabcde
a ∧ eb ∧ βcψβ(σd)βα̇ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcdλα ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α +

i

2
εabcdλ

α̇ ∧ eb ∧ ecψβ(σd)βα̇

−1

3
mεabcde

b ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇)− 8πil2pεabcde

bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇ea − 4iπl2pεabcde
b ∧ ec

(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇Bab − e[a ∧ βb] −
1

2
ψα(σab)α

βγβ −
1

2
ψ̄α̇(σ̄ab)α̇β̇ γ̄

β̇ = 0 .
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[17] J.F. Martins and A. Miković, Lie crossed modules and gauge-invariant actions for 2-BF

theories, Adv. Theor. Math. Phys. 15 (2011) 1059 [arXiv:1006.0903] [INSPIRE].

[18] L. Crane and M.D. Sheppeard, 2-categorical Poincaré representations and state sum
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quantization, Gen. Rel. Grav. 47 (2015) 58 [arXiv:1409.3751] [INSPIRE].
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1 Introduction

The formulation of the theory of quantum gravity (QG) is one of the most fundamental
open problems in modern theoretical physics. In models of QG, as in any quantum theory,
superpositions of states are allowed. In a tentative “theory of everything”, which includes
both gravity and matter at a fundamental quantum level, superpositions of product gravity-
matter states are particularly interesting. Entangled states are highly nonclassical, and
as such are especially relevant because they give rise to a drastically different behavior of
matter from what one would expect based on classical intuition, as confirmed by numerous
examples from the standard quantum mechanics (QM). Therefore, it is interesting to study
such states in the context of a QG coupled to matter, in particular the Schrödinger cat-like
states. Moreover, a recent study [1] suggests that physically allowed states of a gravity-matter
system are generically entangled due to gauge invariance, providing additional motivation for
our study.

In standard QM, entanglement is generically a consequence of the interaction. Nev-
ertheless, there exist situations which give rise to entanglement even without interaction.
For example, the Pauli exclusion principle in the case of identical particles generates entan-
glement without an interaction, giving rise to an effective force (also called the “exchange
interaction”). We investigate in detail whether an entanglement between gravity and matter
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could also be described as a certain type of an effective interaction, and if so, what are its
aspects and details. In order to study this problem, we analyze the motion of a free test par-
ticle in a gravitational field. In general relativity (GR), this motion is described by a geodesic
trajectory. However, we show that in the presence of the gravity-matter entanglement, the
resulting effective interaction causes a deviation from a classical geodesic trajectory. In par-
ticular, we generalize the standard derivation of a geodesic equation from the case of classical
gravity to the case of a full QG model, and derive the equation of motion for a particle which
contains a non-geodesic term, reflecting the presence of the entanglement-induced effective
interaction. The effects we discuss are purely quantum with respect to both gravity and
matter, unlike previous studies of quantum matter in classical curved spacetime [2–5].

As a consequence of the modified equation of motion for a particle, we also discuss
the status of the equivalence principle in the context of QG, and a possible violation of its
weak flavor.

The paper is organized as follows. Section 2 is devoted to a review of the derivation
of the geodesic equation in classical gravity, particularly in GR. The multipole formalism is
employed and the geodesic equation for a particle is derived from the covariant conservation
of the stress-energy tensor. In section 3 we generalize this procedure and derive our main
results. Subsection 3.1 contains the general setup, the abstract quantum gravity framework
that will be used, and the main assumptions. In subsection 3.2 we discuss the effective
covariant conservation equation, which receives a correction to the classical one, due to the
quantum gravity effects. In subsection 3.3 we put everything together and derive our main
result — the effective equation of motion for a point particle, with the leading quantum
correction. In subsection 3.4 we discuss the consistency of the assumptions that enter the
approximation scheme used to derive the effective equation of motion. Section 4 is devoted
to the discussion of the consequences of our results in the context of the weak equivalence
principle. For the purpose of clarity, in subsection 4.1 we first provide the definitions of
various flavors of the equivalence principle. Then, in subsection 4.2 we discuss the status
of the equivalence principle in the context of quantum gravity and the results obtained
in section 3. Subsection 4.3 provides further analysis of universality and equality between
inertial and gravitational masses, in the context of the Newtonian approximation. Finally,
section 5 contains our conclusions, discussion of the results and possible lines of further
research. In the Appendix we give a short review of the multipole formalism used in the
main text, with some mathematical details.

Our notation and conventions are as follows. We will work in the natural system of
units in which c = ~ = 1 and G = l2p, where lp is the Planck length and G is the New-
ton’s gravitational constant. By convention, the metric of spacetime will have the spacelike
Lorentz signature (−,+,+,+). The spacetime indices are denoted with lowercase Greek let-
ters µ, ν, . . . and take the values 0, 1, 2, 3. These can be split into the timelike index 0 and the
spacelike indices denoted with lowercase Latin letters i, j, k, . . . which take the values 1, 2, 3.
The Lorentz-invariant metric tensor is denoted as ηµν . Quantum operators always carry a

hat, φ̂(x), ĝ(x), etc. The parentheses around indices indicate symmetrization with respect
to those indices, while brackets indicate antisymmetrization:

A(µν) ≡
1

2
(Aµν +Aνµ) , A[µν] ≡

1

2
(Aµν −Aνµ) .

Finally, we will systematically denote the values of functions with parentheses, f(x), while
functionals will be denoted with brackets, F [φ].
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2 Geodesic equation in general relativity

In the context of the classical theories of gravity, like GR, the question of deriving the
geodesic equation for a particle has initially been studied by Einstein, Infeld and Hoffmann [6],
Mathisson [7], Lubánski [8], Fock [9], and others. Slightly later, the question was revisited
in the seminal paper by Papapetrou [10], with generalizations followed by a number of au-
thors [11–22], developing the so-called multipole formalism, see the appendix A. Recently, the
multipole formalism has been reformulated in a manifestly covariant language and extended
from pointlike objects to strings, membranes and further to p-branes, with general equations
of motion studied in Riemann and Riemann-Cartan spaces [23–28]. Today, the multipole for-
malism and the resulting classes of effective equations of motion have found applications in a
wide range of topics, from string theory [29] to cosmology [30] to blackbrane dynamics [31–33]
to elasticity and the studies of the shape of red blood cells in biological systems [34].

In this section we will demonstrate the application of the multipole formalism in its
crudest single pole approximation, and employ it to derive the geodesic equation of motion
for a point particle in classical Riemannian spacetime. The results presented in this section
are well known in the literature, and illustrate the derivation procedure of the geodesic motion
for a point particle. After reviewing the standard results in this section, in section 3 the same
procedure will be utilized to study the quantum gravity case.

The derivation procedure is based on two main assumptions. The first assumption is
that the matter fields have internal dynamics such that they form particle-like kink solutions
which are stable (i.e., non-decaying) across the spacetime regions under consideration. If that
is the case, one can employ the multipole formalism and expand the stress-energy tensor into
a series of derivatives of the Dirac δ function as (see the appendix A for details):

Tµν(x) =

∫
C
dτ

[
Bµν(τ)

δ(4)(x− z(τ))√
−g

+∇ρ

(
Bµνρ(τ)

δ(4)(x− z(τ))√
−g

)
+ . . .

]
. (2.1)

Here we assume that the stress-energy tensor of matter fields has nonzero value only near some
timelike curve C represented by parametric equations xµ = zµ(τ), where τ is a parameter
counting the points along the curve C. In that case, the B-coefficients in the δ series will
be smaller and smaller with each new term in the series. We introduce a series of smallness
scales for the coefficients,

Bµν ∼ O0 , Bµνρ ∼ O1 , Bµνρσ ∼ O2 , . . .

such that one can consider the multipole scales to behave as

O0 � O1 � O2 � . . . (2.2)

Next we choose to work in the so-called single pole approximation, in which all quantities of
order O1 and higher can be neglected. It is also assumed that the typical radius of curvature
of spacetime near the curve C will be large enough not to interfere in the internal dynamics
of the matter fields along C and break the kink configuration apart. Physically speaking,
the sequence of inequalities (2.2) states that one can systematically approximate the full
solution of the matter field equations of motion by neglecting various degrees of freedom
which describe the “size” and “shape” of the kink compared to its orbital motion (i.e.,
motion along the curve C). Given this setup, in the single pole approximation the matter
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fields are in a configuration that looks like a point particle traveling along a worldline curve
C, and terms of order O1 and higher can be dropped from the stress-energy tensor, giving:

Tµν(x) =

∫
C
dτ Bµν(τ)

δ(4)(x− z(τ))√
−g

. (2.3)

The second assumption is the validity of the local Poincaré invariance for the matter
field equations. Namely, the classical action which describes the gravity-matter system can
be generally written as

S[g, φ] = SG[g] + SM [g, φ] ,

where g and φ denote gravitational and matter degrees of freedom, respectively, and it is
generally considered to feature local Poincaré invariance. Our assumption is that the matter
action SM and the gravitational action SG are invariant even taken separately. If this is the
case, the Noether theorem gives us the covariant conservation of the stress-energy tensor of
matter fields,

∇νTµν = 0 . (2.4)

Taken together, assumptions (2.3) and (2.4) are sufficient to establish two results:

(a) that the parametric functions z(τ) of the curve C satisfy the geodesic equation,

d2zλ(τ)

dτ2
+ Γ λµν

dzµ(τ)

dτ

dzν(τ)

dτ
= 0 , (2.5)

where Γ λµν is the Christoffel connection for the background spacetime metric gµν , and

(b) that the leading order coefficient Bµν(τ) in the stress-energy tensor for the particle has
the form

Bµν(τ) = muµ(τ)uν(τ) , (2.6)

where m ∈ R\{0} is an arbitrary constant parameter, while uµ is the normalized
tangent vector to the curve C,

uµ ≡ dzµ(τ)

dτ
, uµuνgµν = −1 .

In order to demonstrate these two statements, we start from (2.4), contract it with an
arbitrary test function fµ(x) of compact support, and integrate over the whole spacetime,∫

M4

d4x
√
−g fµ∇νTµν = 0 .

Then we perform the partial integration to move the covariant derivative from the stress-
energy tensor to the test function. The boundary term vanishes since the test function has
compact support, giving ∫

M4

d4x
√
−g Tµν∇νfµ = 0 .

Then we substitute (2.3), switch the order of integrations and perform the integral over
spacetime M4, ending up with ∫

C
dτBµν∇νfµ = 0 . (2.7)
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The spacetime covariant derivative of the test function can be split into a component tangent
to the curve C and a component orthogonal to it, in the following way. Using the identity

δλµ = −uλuµ + P λ⊥µ , (2.8)

where −uλuµ and P λ⊥µ are projectors along uµ and orthogonal to uµ, respectively, we rewrite
the derivative of fν as

∇νfµ = −uν∇fµ + f⊥νµ , (2.9)

where ∇ ≡ uλ∇λ is the covariant derivative in the direction of the curve C, while f⊥νµ ≡
P λ⊥ν∇λfµ is a quantity orthogonal to the curve C with respect to its first index. Substitut-
ing (2.9) into (2.7), and performing another partial integration, we find∫

C
dτ
[
fµ∇(Bµνuν) +Bµνf⊥νµ

]
= 0 ,

where the boundary term again vanishes due to the compact support of the test function.
Given that the values of fµ and f⊥νµ are both arbitrary and mutually independent along

the curve C, the coefficients multiplying them must each be zero. The first term gives us

∇(Bµνuν) = 0 , (2.10)

while the second term, knowing that f⊥νµ is orthogonal to the curve C in its first index, gives

BµνP λ⊥ν = 0 . (2.11)

Focus first on (2.11). Knowing that Bµν is symmetric, we can use (2.8) to decompose it into
orthogonal and parallel components with respect to its two indices,

Bµν = Bµν
⊥ +Bµ

⊥u
ν +Bν

⊥u
µ +Buµuν ,

where Bµν
⊥ , Bµ

⊥ and B are unknown coefficients, the first two being orthogonal to the curve
C in all their indices. Substituting this expansion into (2.11), one finds that

Bµν
⊥ = 0 , Bµ

⊥ = 0 ,

leaving the scalar B as the only nonzero component of Bµν . Changing the notation from B
to m, one obtains

Bµν(τ) = m(τ)uµuν . (2.12)

This equation looks very similar to (2.6) but is still not equivalent to it, since the coefficient
m(τ) is still not known to be a constant.

Next, focus on (2.10). Substituting (2.12), it reduces to

∇(muµ) = 0 . (2.13)

Projecting onto the tangent direction uµ and using the identity uµ∇uµ = 0, one obtains

∇m ≡ dm

dτ
= 0 , (2.14)

establishing that the parameter m is actually a constant. Given this, equation (2.13) re-
duces to

∇uµ = 0 . (2.15)
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Remembering that ∇ ≡ uλ∇λ and expanding the covariant derivative, we see that this is the
geodesic equation (2.5). Finally, (2.14) and (2.12) together give (2.6), which completes the
proof of statements (a) and (b).

There are three general remarks one should make regarding the above procedure. The
first remark is about the physical interpretation and properties of the free parameter m.
Namely, it can be given the interpretation of the total mass of the particle — substituting (2.6)
into the stress-energy tensor (2.3) and integrating the T 00 component over the volume of the
spatial hypersurface orthogonal to uµ, one can easily verify that the total rest-energy of the
matter fields at a given time is equal to m. Note, however, that the sign of m is not fixed
to be positive. This is not surprising, since the covariant conservation equation (2.4) and
the stress-energy tensor (2.3) do not contain any information (or assumption) about the
positivity of energy. Instead, the positive energy condition m > 0 has to be established from
the full matter field equations, which take into account the internal dynamics of the matter
fields that make up the particle.

The second remark is about the metric gµν of the background geometry. When dis-
cussing the motion of a particle, the background geometry is usually assumed to be fixed,
and backreaction of the gravitational field of the particle itself is not taken into account, lead-
ing to the notion of a “test particle”. However, ignoring the backreaction is not a necessary
assumption. Namely, one can take the full stress-energy tensor of the matter fields which form
the kink solution (as opposed to the approximate single pole stress-energy tensor (2.3)), put
it as a source into the Einstein’s field equations and solve for the metric gµν . The resulting
metric does include the backreaction, and can then be reinserted into the geodesic equation
for the particle. Note that this procedure is self-consistent, since the geodesic motion of the
particle is a consequence of the covariant conservation equation (2.4) which is in turn itself a
consequence of Einstein’s field equations. Also note that the metric gµν obtained in this way
does not necessarily give rise to the black hole geometry in the neighborhood of the particle.
This is because the Schwarzschild radius of the kink may be (and usually is) much smaller
than the scale O1 which defines the precision of the single pole approximation (2.3). A simple
example would be the motion of a planet around the Sun — in the single pole approximation,
the radius of the planet (itself far larger than the planet’s gravitational radius) is considered
to be of the order O1 and the planet is treated as a pointlike object, but the spacetime metric
used in the geodesic equation can still take into account the planet’s gravitational field in
addition to the field of the Sun.

The third remark is about going beyond the single pole approximation. This has been
studied in detail in the literature [10–21, 25–28], so here we merely point out the main
physical interpretation. Namely, keeping the second term in the multipole expansion (2.1)
physically amounts to giving the particle a nonzero “thickness”, in the sense that its internal
angular momentum can be considered nonzero. In the resulting equation of motion for the
particle, this angular momentum couples to the spacetime curvature tensor, giving rise to
a deviation from the geodesic motion. This can intuitively be understood as an effect of
tidal forces acting across the scale of the kink’s width, pushing it off the geodesic trajectory.
Similarly, including quadrupole and higher order terms in (2.1) takes into account additional
internal degrees of freedom of the kink, which also couple to spacetime geometry and produce
a further deviation from geodesic motion.

The above review of the multipole formalism, and its application to the derivation of
the geodesic equation in GR, will be used in the next section to discuss the corrections to
the motion of a particle stemming from quantum gravity. As we shall see, these quantum
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corrections will give rise to additional terms in the effective equation of motion for a particle,
pushing it slightly off the geodesic trajectory, even in the single pole approximation.

3 Geodesic equation in quantum gravity

In this section we discuss the motion of a particle within the framework of quantum gravity.
The exposition is structured into four parts — first, we introduce the abstract quantum
gravity formalism, and give some technical details about the description of the states. In the
second part, we discuss the quantum version of the covariant conservation equation of the
stress-energy tensor. In the third part we adapt the derivation presented in section 2 to the
quantum formalism, and obtain the effective equation of motion for the particle. Finally, in
the fourth part we discuss the self-consistency assumptions that go into the calculation.

3.1 Preliminaries and the setup

We work in the so-called generic abstract quantum gravity setup, as follows. Starting from
the Heisenberg picture for the description of quantum systems, we assume that gravitational
degrees of freedom are described by some gravitational field operators ĝ(x), while matter
degrees of freedom are described by matter field operators φ̂(x), where x represents the
coordinates of some point on a 4-dimensional spacetime manifoldM4. Both sets of operators
have their corresponding canonically conjugate momentum operators, π̂g(x) and π̂φ(x), such
that the usual canonical commutation relations hold. The total (kinematical) Hilbert space
of the theory is Hkin = HG ⊗ HM , where the gravitational and matter Hilbert spaces HG
and HM are spanned by the bases of eigenvectors for the operators ĝ and φ̂, respectively.
The total state of the system, |Ψ〉 ∈ Hkin, does not depend on x, in line with the Heisenberg
picture framework.

There are several important points that need to be emphasized regarding the above
setup. First, we do not explicitly state what are the fundamental degrees of freedom ĝ for
the gravitational field. They can be chosen in many different ways, giving rise to different
models of quantum gravity. Since we aim to present the analysis of geodesic motion which is
model-independent, we refrain from specifying what are the fundamental degrees of freedom
ĝ. Instead, we merely assume that the operators describing the spacetime geometry, i.e.,
the metric, connection, curvature, etc., depend somehow on ĝ and π̂g, and are expressible as
operator functions in terms of them:

ĝµν = ĝµν(ĝ, π̂g) , Γ̂ λµν = Γ̂ λµν(ĝ, π̂g) , R̂λµνρ = R̂λµνρ(ĝ, π̂g) , . . .

When discussing these geometric operators, for simplicity we will usually not explicitly write
their (ĝ, π̂g)-dependence.

Second, in order for any operator function to be well defined, some operator ordering
has to be assumed. However, since we aim to work in an abstract model-independent QG
formalism, we do not choose any particular ordering, but merely assume that one such
ordering has been fixed. In a similar fashion, we also simply assume that all operators and
spaces are well defined, convergent, and otherwise specified in enough mathematical detail to
have a well defined and unique QG model. In a nutshell, our calculations are formal, in the
sense that one should be able to repeat them in a detailed fashion if one is given a specific
model of QG. This also means that our analysis and results should not depend on any of
these details, but are rather common to a large class of QG models, and are based only on
very few assumptions given above.
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Third, we employ a natural distinction between gravitational and matter degrees of
freedom. Namely, whereas geometric operators such as metric, curvature, and so on, depend
only on ĝ and π̂g, matter operators like field strengths, stress-energy tensor, etc., will gener-

ically be operator functions of both ĝ, π̂g, and the fundamental matter degrees of freedom φ̂
and π̂φ. In other words, we assume that the separation between gravity and matter present
in the classical theory, described by an action of the form

Stotal[g, φ] = Sgravity[g] + Smatter[g, φ] ,

remains present also in the full quantum regime. That is to say, we assume that one can
construct a theory of quantum gravity without matter fields, using only gravitational degrees
of freedom g, so that this theory gives sourceless Einstein’s equations of GR in the classical
limit. Once such a pure-QG model has been constructed, we assume one can couple matter
φ to it without changing the structure of the gravitational sector, obtaining the full QG
model which features Einstein’s equations with appropriate matter sources in the classical
limit. While we do not consider this to be a strong assumption, we feel that it is nevertheless
important to spell it out explicitly, since there may exist some QG models which fail to satisfy
it, and our analysis may be inapplicable to such models.

After the introduction of the above conceptual setup, we turn to some more practical
details. For the purpose of discussing geodesic motion, we are mostly interested in the
effective classical theory of the abstract QG introduced above. To that end, the main objects
of attention are classical states of gravity and matter, denoted by |Ψ〉 ∈ HG ⊗ HM . By
classical, we mean that the “effective classical” values for the metric tensor and the matter
stress-energy tensor, given by the expectation values of the corresponding operators

gµν = 〈Ψ|ĝµν |Ψ〉 , Tµν = 〈Ψ|T̂µν |Ψ〉 (3.1)

satisfy classical Einstein equations of the GR. A recent study suggests that physical states of
gravity and matter are generically entangled [1]. For our analysis, we do not need to assume
that the overall gravity-matter state is separable, and thus we will work with a generic state
|Ψ〉 (see appendix B for the discussion of the separable case).

For the purpose of our paper, we will consider a toy example state, defined as

|Ψ〉 = α|Ψ〉+ β|Ψ̃〉 , (3.2)

where |Ψ̃〉 is some other classical state analogous to |Ψ〉, but giving different expectation
values for the classical metric and stress-energy tensors:

g̃µν = 〈Ψ̃|ĝµν |Ψ̃〉 , T̃µν = 〈Ψ̃|T̂µν |Ψ̃〉 . (3.3)

One can see that our toy-example state (3.2) is a Schrödinger-cat type of state, describing a
coherent superposition of two classical configurations of gravitational and matter fields. It
will become evident later on that qualitative conclusions of the paper do not depend on the
fact that (3.2) has precisely two terms in the sum. Choosing the state with three, four or more
terms will lead to analogous conclusions, although quantitative details of the computation
may become technically more involved.

Given that (3.2) is a Schrödinger-cat type of state, there are some phenomenological
restrictions on the values of the independent parameters β and S ≡ 〈Ψ|Ψ̃〉. Namely, in
the ordinary experimental situations we basically never observe this kind of states, which
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means that the overall entangled state |Ψ〉 looks pretty much like a classical state, say
the state |Ψ〉. In other words, we want the fidelity between these two states to be large,
F (|Ψ〉, |Ψ〉) = |〈Ψ|Ψ〉| ≈ 1. From (3.2) we obtain

〈Ψ|Ψ〉 = α+ βS ≡ κ .

Define |Ψ⊥〉, such that
|Ψ̃〉 = S|Ψ〉+ ε|Ψ⊥〉 ,

〈Ψ|Ψ⊥〉 = 0 and ε =
√

1− |S|2. Thus,

F 2 = |〈Ψ|Ψ〉|2 = 1− η2 , (3.4)

where we introduce the small parameter

η ≡ βε .

Here, we have used the normalization condition for the entangled state (3.2),

〈Ψ|Ψ〉 = α2 + β2 + 2αβRe(S) = 1 .

Given the above definitions for κ and η, we can rewrite the total state (3.2) as

|Ψ〉 = κ|Ψ〉+ η|Ψ⊥〉 , (3.5)

where |κ|2 = F 2 = 1 − η2. The physical requirement of large fidelity implies that we study
the limit |κ| ≈ 1, η → 0. We will therefore systematically expand the expectation values of
all operators into power series in η, up to order O(η2).

At this point we can evaluate the expectation values for the metric and stress-energy
operators in the state (3.5), obtaining

gµν = 〈Ψ|ĝµν |Ψ〉 = (1− η2)gµν + η2〈Ψ⊥|ĝµν |Ψ⊥〉+ 2ηRe
(
κ〈Ψ⊥|ĝµν |Ψ〉

)
, (3.6)

Tµν = 〈Ψ|T̂µν |Ψ〉 = (1− η2)Tµν + η2〈Ψ⊥|T̂µν |Ψ⊥〉+ 2ηRe
(
κ〈Ψ⊥|T̂µν |Ψ〉

)
. (3.7)

It is easy to see that interference terms from the above expressions are generically nonvan-
ishing. Indeed, even if, say, κ〈Ψ⊥|ĝµν |Ψ〉 were purely imaginary, a simple change of relative
phase between |Ψ〉 and |Ψ̃〉 would give rise to a nontrivial real part. Namely, given a fixed
choice of |Ψ̃〉, the set of choices for |Ψ〉 for which the interference term is purely imaginary
is of measure zero compared to the full set of possible phase shifts of |Ψ〉. An analogous
argument applies for κ〈Ψ⊥|T̂µν |Ψ〉 as well. For a detailed analysis, see appendix C.

Let us denote the metric and stress-energy interference terms as ḡµν and T̄µν , respec-
tively. Since we want to expand (3.6) and (3.7) into power series in η up to linear order, we
can write

ḡµν ≡ 2 Re
(
κ〈Ψ⊥|ĝµν |Ψ〉

)
= hµν +O(η) , (3.8)

T̄µν ≡ 2 Re
(
κ〈Ψ⊥|T̂µν |Ψ〉

)
= tµν +O(η) . (3.9)

Here, hµν and tµν are η-independent parts of ḡµν and T̄µν . Thus, we can finally write:

gµν = gµν + η hµν +O(η2) , (3.10)

Tµν = Tµν + η tµν +O(η2) . (3.11)
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In what follows, we will refer to the classical state |Ψ〉 as the dominant state, while the
other classical state |Ψ̃〉 will be called the sub-dominant state. To justify this terminology,
recall the above requirement (3.4) that the overall entangled state |Ψ〉 looks like the classical
state |Ψ〉, i.e., F 2 = 1 − η2, with the parameter η ≡ βε being small. Therefore, in the case
β → 0 and ε finite, the state |Ψ̃〉 enters (3.2) with a very small contribution, and is thus
sub-dominant. On the other hand, in the case when β is finite and ε → 0, the states |Ψ〉
and |Ψ̃〉 are essentially indistinguishable, and their roles can be exchanged, as either can be
considered sub-dominant to the other. By convention, we choose |Ψ̃〉 to again play the role
of the sub-dominant state.

While in any quantum theory entangled states are allowed, note that when considering
a product state of the gravity-matter system (i.e., the case η = 0), there is a danger that
such a state may fail to be gauge invariant, as argued in [1]. So we need to introduce at
least a small sub-dominant state, in order to ensure the gauge invariance of the total state.
The simplest possible candidate state which describes the classical physics sufficiently well,
and simultaneously stands a chance of being gauge invariant, is the genuinely entangled
state (3.2), with β 6= 0 and |Ψ̃〉 6= |Ψ〉, leading to η being very small, but nonzero.

Regarding the effective entangled metric and stress-energy tensors (3.10) and (3.11), it
is important to stress that they do not satisfy classical Einstein’s equations of GR. Namely,
we assume that Einstein’s equations are separately satisfied by the metric and stress-energy
tensors (3.1) coming from the classical state |Ψ〉, and by the metric and stress-energy ten-
sors (3.3) coming from the other classical state |Ψ̃〉, as two different classical solutions:

Rµν(g)− 1

2
gµνR(g) = 8πl2p Tµν , Rµν(g̃)− 1

2
g̃µνR(g̃) = 8πl2p T̃µν .

However, due to the nonlinearity of Einstein’s equations, and due to the presence of the
interference terms hµν and tµν in (3.10) and (3.11), quantities gµν and Tµν do not satisfy
Einstein’s equations, as long as η 6= 0. This leads us to the following physical interpreta-
tion. First, it is natural to expand all quantities as corrections to the dominant classical
configuration (gµν , Tµν), including the equation of motion for a point particle. Second, as we
shall see in the remainder of the text, given that (gµν ,Tµν) contains quantum gravity cor-
rections through the interference terms, the presence of these quantum corrections in (3.10)
and (3.11) will introduce an “effective force” term into the effective equation of motion for
the particle. Finally, this effective force term will be pushing the particle off the geodesic
trajectory defined by the classical dominant metric gµν .

3.2 Effective covariant conservation equation

After the discussion of the general QG setup and the state (3.2), we move on to the discussion
of the quantum analog of the covariant conservation equation (2.4). As in the classical theory,
our basic assumption is that the matter sector of our QG model features local Poincaré
invariance, i.e., that this symmetry is preserved at the quantum level. This assumption gives
rise to a Gupta-Bleuler-like condition on the physical states, in the form

〈Ψ|∇̂ν T̂µν |Ψ〉 = 0 , (3.12)

where ∇̂µ is the covariant derivative operator, defined by promoting the metric appearing in
the Christoffel symbols into a corresponding operator. In general, the action of the stress-
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energy operator on the state |Ψ〉 can be written1 as

T̂µν |Ψ〉 = T µν |Ψ〉+ ∆T µν |Ψ⊥〉 , (3.13)

where T µν and ∆T µν are the expectation value and the uncertainty of the operator T̂µν in
the state |Ψ〉, respectively,

T µν ≡ 〈Ψ|T̂µν |Ψ〉 , ∆T µν ≡
√
〈Ψ|

(
T̂µν

)2
|Ψ〉 −

(
〈Ψ|T̂µν |Ψ〉

)2
,

while |Ψ⊥〉 is some state orthogonal to |Ψ〉. Note that the equation of the form (3.13)
is completely general, holding for any stress-energy operator acting on an arbitrary state.
Substituting (3.13) into (3.12), we obtain

∇νT
µν + 〈Ψ|∇̂ν |Ψ⊥〉∆T µν = 0 , (3.14)

where ∇ν is the expectation value of the operator ∇̂ν ,

∇ν ≡ 〈Ψ|∇̂ν |Ψ〉 .

At this point we need to make one more assumption. Namely, we assume that the error
scale of the single pole approximation is bigger than the uncertainty of the stress-energy
operator, ∆T µν . Symbolically,

O1 & ∆T µν . (3.15)

This means that in the single pole approximation we do not see the effects of the quantum
fluctuations of matter fields. Intuitively, this is a reasonable assumption in most cases. For
example, in the case of the kink solution describing the hydrogen atom, the scale on which
one can detect quantum fluctuations (i.e., the Lamb shift effects) is much smaller than the
size of the atom itself (i.e., the radius of the first Bohr orbit). Therefore, we expect that if our
single pole approximation ignores the size of the atom itself, it also ignores the corresponding
quantum fluctuations. An analogous assumption is made in relation to the uncertainty of
the metric operator ĝµν ,

O1 & ∆gµν , (3.16)

given that the quantum gravity fluctuations can arguably also be ignored in the single pole
approximation.

Applying (3.15) to (3.14), in the single pole approximation the second term can be
dropped, leading to the effective classical covariant conservation equation,

∇νT
µν = 0 . (3.17)

In a similar fashion, one can employ (3.16) to drop the off-diagonal components in the
Christoffel symbol operators, leading to an effective classical expression

Γ λµν =
1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) , (3.18)

where gµν ≡ 〈Ψ|ĝµν |Ψ〉 is the effective classical metric and gµν is its inverse matrix.

1Given any self-adjoint operator Â and any state |Ψ〉, one can write

Â|Ψ〉 = a|Ψ〉+ b|Ψ⊥〉 ,

where 〈Ψ|Ψ⊥〉 ≡ 0 and a, b ∈ C. Multiplying this equation by 〈Ψ| and by 〈Ψ|Â from the left, one easily obtains
that a and b are the expectation value and the uncertainty of the operator Â in the state |Ψ〉, respectively.
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With effective classical expressions (3.17) and (3.18) in hand, we can now employ (3.10)
and (3.11) to expand them into the dominant and correction parts. First we use (3.10) and
gµλg

λν = δνµ to find the inverse entangled metric gµν = gµν − ηgµρgνσhρσ +O(η2), and then
substitute into (3.18) to obtain

Γ λµν = Γ λµν +
η

2
gλσ (∇µhσν +∇νhσµ −∇σhµν) +O(η2) , (3.19)

where the Christoffel symbols in ordinary ∇µ are defined with respect to the dominant
classical metric gµν . Then, expanding (3.17) into the form

∂νT
µν + Γ µσνT

σν + Γ νσνT
µσ = 0 ,

we substitute (3.11) and (3.19), and after a bit of algebra we rewrite it as:

∇νTµν + η

[
∇νtµν + T σν

(
∇σhµν −

1

2
∇µhνσ

)
+

1

2
Tµσ∇σhνν

]
+O(η2) = 0 . (3.20)

This equation is the one we sought out — it represents the analog of the classical covariant
conservation equation (2.4), while taking into account the interference terms between the
two classical states in (3.2), approximated to the linear order in η.

As a final step, (3.20) can be rewritten in a more compact form. For convenience,
introduce the following shorthand notation (see our conventions from the last paragraph of
the Introduction),

Fµνσ ≡ ∇(σh
µ
ν) −

1

2
∇µhνσ , (3.21)

and also note that

F ννσ =
1

2
∇σhνν +

1

2
∇νhνσ −

1

2
∇νhνσ =

1

2
∇σhνν ,

so that, dropping the term O(η2), equation (3.20) is rewritten as:

∇ν (Tµν + ηtµν) + 2ηF (µ
νσT

ν)σ = 0 . (3.22)

The equation (3.22) represents the effective classical covariant conservation law for the
stress-energy tensor, with the included quantum correction, represented to first order in η.
It is the starting point for the remainder of our analysis, and replaces equation (2.4) in the
derivation of the equation of motion for a point particle.

Finally, note that the quantum correction term in (3.22) has two distinct parts — one
part comes from the quantum correction to the dominant classical stress-energy tensor, i.e.,
the interference term tµν , while the other part comes from the quantum correction to the
dominant classical metric, i.e., the interference term hµν . This latter quantum correction
enters through the Christoffel connection terms present in the covariant derivative. As we
shall see in the next subsection, its presence will be crucial for the “force term” in the equation
of motion for the particle, responsible for the deviation from the classical geodesic trajectory.

3.3 Effective equation of motion

We are now ready to derive the equation of motion for a particle in the single pole approxi-
mation, using the technique presented in section 2. However, instead of (2.4), we start from
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the effective covariant conservation law (3.22), which contains the quantum correction terms.
Throughout, we assume the following relation of scales,

O(η) > O1 ≥ O(η2) .

In other words, we assume that the quantum correction terms linear in η are not smaller
than the width of our particle, since otherwise one could simply ignore them and recover the
classical geodesic motion for the particle.

Repeating the method of section 2, we begin by contracting (3.22) with an arbitrary
test function fµ(x) of compact support, and integrating over the whole spacetime,∫

M4

d4x
√
−g fµ

[
∇ν (Tµν + ηtµν) + 2ηF (µ

νσT
ν)σ
]

= 0 .

We then perform the partial integration to move the covariant derivative from the stress-
energy tensors to the test function. As before, the boundary term vanishes since the test
function has compact support, giving∫

M4

d4x
√
−g
[
− (Tµν + ηtµν)∇νfµ + 2ηF (µ

νσT
ν)σfµ

]
= 0 . (3.23)

Now we need to model the dominant and correction parts of the stress-energy tensor.
For the dominant part, it is straightforward to assume the single pole approximation, as was
done in the classical case:

Tµν(x) =

∫
C
dτBµν(τ)

δ(4)(x− z(τ))√
−g

. (3.24)

Regarding the correction term, we also use the single pole approximation,

tµν(x) =

∫
C
dτB̄µν(τ)

δ(4)(x− z(τ))√
−g

, (3.25)

but one should note that in the case of tµν it is less obvious why this approximation is
adequate, and requires some justification. However, in order to focus on the derivation of
the particle equation of motion, for the moment we simply adopt (3.25), and postpone the
analysis and the meaning of this approximation for subsection 3.4.

Then we substitute (3.24) and (3.25) into (3.23), switch the order of integrations and
perform the integral over spacetime M4, ending up with∫

C
dτ
[
−
(
Bµν + ηB̄µν

)
∇νfµ + 2ηF (µ

νσB
ν)σfµ

]
= 0 . (3.26)

The next step is to employ the identity (2.9) to separate the tangential and orthogonal
components of the derivative of the test function. Substituting it into (3.26), and performing
another partial integration, we find∫

C
dτ
[ (
Bµν + ηB̄µν

)
f⊥νµ +

[
∇
(
Bµνuν + ηB̄µνuν

)
− 2ηF (µ

νσB
ν)σ
]
fµ

]
= 0 ,

where the boundary term again vanishes due to the compact support of the test function.
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After these transformations, we make use of the same argument that both fµ and f⊥νµ
are arbitrary and mutually independent along the curve C, concluding that the coefficients
multiplying them must each be zero. The first term gives us

∇
(
Bµνuν + ηB̄µνuν

)
− 2ηF (µ

νσB
ν)σ = 0 , (3.27)

while the second term, knowing that f⊥νµ is orthogonal to the curve C in its first index, gives(
Bµν + ηB̄µν

)
P λ⊥ν = 0 .

As in the previous case, given that Bµν and B̄µν are symmetric, one can decompose them
into tangential and orthogonal components using (2.8), and then from (2.11) read off that
all orthogonal components must be zero, concluding that

Bµν + ηB̄µν = (B + ηB̄)uµuν ≡ m(τ)uµuν , (3.28)

where again we emphasized that the parameter m may depend on the particle’s proper time τ .

Next, substituting this into (3.27) and neglecting the term O(η2), we obtain

∇ (muµ) + ηmuσ (Fµνσu
ν + F ννσu

µ) = 0 . (3.29)

Projecting onto the tangent direction uµ and using the identity uµ∇uµ = 0, one obtains

∇m = ηmuσ
(
uνuλF

λ
νσ − F ννσ

)
, (3.30)

establishing that, in contrast to the classical case, here the parameter m fails to be constant.
Substituting this back into the equation (3.29), after some simple algebra we obtain

∇uµ + ηuνuσPµ⊥λF
λ
νσ = 0 ,

where the parameter m cancels out of the equation. As a final step, introducing the shorthand
notation Fµ⊥νσ ≡ P

µ
⊥λF

λ
νσ, we can rewrite the equation of motion in its final form

∇uµ + ηuνuσFµ⊥νσ = 0 . (3.31)

The presence of the orthogonal projector in the second term should not be surprising. Namely,
since acceleration must always be orthogonal to the velocity, the second term in the equation
must also be orthogonal to velocity, and this is guaranteed by the presence of the orthogo-
nal projector.

Equations (3.28), (3.30) and (3.31) are the main result of this paper, and we discuss
them in turn. Equation (3.28) determines the structure of the stress-energy tensor describing
the point particle, as a function of tangent vectors of its world line and a scalar parameter
m(τ). Formally, it has the same form as its classical counterpart (2.12), and provision-
ally the parameter m may be even called effective mass. Namely, in the rest frame of the
particle, integration of the T 00 component of the entangled stress-energy tensor over the
3-dimensional spatial hypersurface can be interpreted as the total rest-energy of the kink
configuration of fields that represents the particle. This terminology is of course provisional,
since all these notions are merely a part of the semiclassical approximation of the full quantum
gravity description.
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Equation (3.30) determines the proper time evolution of the parameterm(τ). In contrast
to the classical case, where m(τ) was determined by (2.14) to be a constant, here we see
that its time derivative is proportional to (covariant derivatives of) the interference term
hµν between the dominant and sub-dominant classical geometry, via (3.21). If one puts
η = 0, (3.30) reduces to the classical case, as expected. The interference between the two
geometries gives rise to an effective force that is responsible for the change in time of the
particle’s effective mass. Since the particle is (effectively) not isolated, its total energy is
therefore not conserved, in the sense of equation (3.30).

Finally, and most importantly, equation (3.31) represents the effective equation of mo-
tion of the particle, determining its world line. It has the form of the classical geodesic
equation (2.15) with an additional correction term proportional to η and to the interfer-
ence term hµν . This additional term represents an effective force, pushing the particle off
the classical geodesic trajectory. It is analogous to the notion of the “exchange interaction”
force in molecular physics, in the region where the wavefunctions of the two electrons in a
molecule overlap.

In our case, however, the force term is determined by the interference between the two
classical spacetime and matter configurations superposed in the state (3.2), and in particular
by the off-diagonal components of the metric operator ĝµν , see (3.8). It is thus a pure
quantum gravity effect, a consequence of the nontrivial structure of the metric operator. Of
course, the detailed properties and the magnitude of the force term depend on the choice of
the two classical gravity-matter configurations and on the details of the quantization of the
gravitational field.

3.4 Consistency of the approximation scheme

Regarding the analysis and the derivation of the effective equation of motion for a particle
discussed in the previous subsection, there is one issue that we should reflect on. It is related
to the additional consistency conditions that stem from our assumption that the quantum
correction to the stress-energy tensor is approximated with a single pole term (3.25).

Namely, the two stress-energy tensors that enter the derivation of the effective equation
of motion — the classical dominant stress-energy tensor Tµν , and the interference stress-
energy tensor tµν — can in general be written in the single pole approximation as:

Tµν =

∫
C
dτ Bµν(τ)

δ(4)(x− z(τ))√
−g

+O1(T ) , (3.32)

tµν =

∫
C
dτ B̄µν(τ)

δ(4)(x− z(τ))√
−g

+O1(t) . (3.33)

Note that we have introduced two different O1 scales, one for each tensor. This is because,
although we assume that both can be expanded into the δ series around the same curve C,
each tensor may have different “width”, or in other words, the two configurations of matter
fields may be such that they can be well approximated with a single pole term up to a priori
two different O1 scales. In particular, if one chooses the O1 scale to write Tµν in a single pole
approximation, O1 = O1(T ), it is not obvious that tµν can also be approximated by a single
pole term, compared to the same scale, and vice versa. Therefore, there is an assumption
about the relationship between scales that we have made when we used expressions (3.24)
and (3.25) in the derivation of the effective equation of motion.
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Looking at the structure of the equation (3.23) into which (3.24) and (3.25) have been
substituted, the consistency condition for the approximation scheme can be written as

O1 ≡ O1(T ) ≥ ηO1(t) . (3.34)

In particular, if this inequality were not valid, the dipole term in (3.33) would contribute
to (3.23) with a magnitude comparable to the single pole term of (3.32), and it would be
inconsistent to ignore it in the derivation of the effective equation of motion.

The consistency condition (3.34) can be rewritten into a more explicit form. Substitut-
ing (3.33) and (3.9) into (3.34), we get

O1(T ) ≥ η

[
2 Re

(
〈Ψ⊥|T̂µν |Ψ〉

)
−
∫
C
dτ B̄µν(τ)

δ(4)(x− z(τ))√
−g

]
.

In addition, one can use (3.28) and (3.32) to eliminate the coefficient B̄µν in favor of Tµν

and m(τ), which are arguably more observable, obtaining

O1(T ) ≥ 2ηRe
(
〈Ψ⊥|T̂µν |Ψ〉

)
+ Tµν −

∫
C
dτ m(τ)uµuν

δ(4)(x− z(τ))√
−g

. (3.35)

This inequality should be interpreted as follows. Given an explicit model of quantum
gravity, and within it an explicit configuration of matter fields that make up a particle, one
can estimate all three quantities on the right-hand side of (3.35), namely the off-diagonal
components of the stress-energy operator, its expectation value in the dominant classical
state, and the total mass of the particle, respectively. Then, the consistency condition (3.35)
gives a lower bound on the scale O1, which represents an estimate of the error when discussing
the effective equation of motion for the particle. In other words, the equation of motion can
be considered to be approximately valid only across scales much larger than the O1 scale,
bounded from below by inequality (3.35).

Finally, if one needs better precision than the scale determined by (3.35), one should
take into account the dipole term in (3.33) and rederive a more precise form of the equation of
motion. Still better precision would be obtained by including the dipole term in (3.32), which
would amount to the equation of motion in the full pole-dipole approximation, and so on.

4 Status of the weak equivalence principle

In light of the results of section 3, it is important to discuss the status of the equivalence
principle (EP). Throughout the literature, one can find various different formulations of
EP, in various flavors such as weak, medium-strong, strong, and so on (see [35, 36] for a
review, and [2–5, 37, 38] for various examples). Often these formulations and flavors are
interpretation-dependent, and it is not always clear whether they are mutually equivalent or
not, and what are the underlying assumptions and definitions used to express them.

Needless to say, such situation is less than satisfactory [35, 36], and in order to circum-
vent it, in this section we opt to specify one particular definition of the weak and strong
equivalence principles (WEP and SEP, respectively) and to use this definition in the rest
of the text. We do not aspire to claim that our definition is either equivalent to, or in any
sense better than, other definitions present in the literature, and may not even correspond
to the usual usage of the terminology. But for the purpose of clarity, it is prudent to fix
one definition and stick to it. Therefore, in light of the results obtained in section 3, in this
section we discuss the status of WEP defined as below.
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4.1 Definition and flavors of the equivalence principle

The purpose of the equivalence principle is to prescribe the coupling of matter to gravity [39].
Its precise formulation therefore depends on the particular choice of the gravitational and
matter degrees of freedom which one uses to describe matter and gravity. For the purpose
of this paper, we assume that the classical limit of quantum gravity corresponds to general
relativity, which means that in this limit the fundamental gravitational degrees of freedom
give rise to a nonflat spacetime metric. Given any choice of the gravitational degrees of
freedom that belong to this class, in the classical framework one can formulate the equivalence
principle as a two-step recipe to couple matter to gravity (we will discuss the quantum
framework in subsection 4.2).

Start from the classical equation of motion for matter degrees of freedom in flat space-
time, written symbolically as

Dflat[φ, ηµν ] = 0 , (4.1)

where φ denotes the matter degrees of freedom, ηµν is the Minkowski metric, while Dflat is
an appropriate functional describing the equation of motion for φ in flat spacetime and is
assumed to be local. Given this equation of motion, couple it to gravity as follows:

1. Rewrite the equation of motion in a manifestly diffeomorphism-invariant form, typically
by a change of variables to a generic curvilinear coordinate system,

Dcurvilinear[φ, g
(0)
µν ] = 0 ,

where g
(0)
µν is still the flat spacetime metric, appropriately transformed from ηµν , and

similarly for Dcurvilinear.

2. Promote the curvilinear equation of motion to the equation of motion in curved space-

time by replacing the flat spacetime metric g
(0)
µν with an arbitrary metric gµν ,

Dcurvilinear[φ, gµν ] = 0 ,

thereby specifying the equation of motion for matter coupled to gravity.

The first step describes the matter equation of motion from a perspective of a generic curvi-
linear (or “arbitrarily accelerated”) coordinate system, reflecting the principle of general
relativity. The second step simply promotes that same equation to curved spacetime as it
stands, with no additional coupling of any kind. This can be loosely formulated as a state-
ment of local equivalence between gravity and acceleration, which is how the EP historically
got its name. Also, note that these two steps operationally correspond to the standard
minimal coupling prescription [39].

It is important to stress the local nature of EP, which manifests itself in the assump-
tion that the initial equation of motion (4.1) is local, and that the EP essentially does not
change it at all, at any given point in spacetime. This has one important implication — the
gravitational degrees of freedom manifest themselves only through nonlocal measurements,
as tidal effects induced by spacetime curvature. We will return to this point and comment
more on it later in the text.

Depending on the further specification of the matter degrees of freedom, one can dis-
tinguish between various flavors of the EP. For example, if one talks about the mechanics
of point particles, one can start from the Newton’s first law of motion, which states that
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in the absence of any forces, a particle has a straight-line trajectory in Minkowski space-
time. According to the step 1 above, the differential equation for a straight line in a generic
curvilinear coordinate system is the geodesic equation,

d2zλ

dτ2
+ Γ λ(0)µν

dzµ

dτ

dzµ

dτ
= 0 ,

where the index (0) on the Christoffel symbol indicates that it is calculated using the metric

g
(0)
µν , which is obtained by a curvilinear coordinate transformation from the Minkowski metric
ηµν . Then, according to step 2, one again writes the same equation, only dropping the
requirement of flat spacetime metric,

d2zλ

dτ2
+ Γ λµν

dzµ

dτ

dzµ

dτ
= 0 ,

so that this time the Christoffel symbol is calculated using an arbitrary metric gµν , and now
encodes the interaction with the gravitational degrees of freedom. So one starts from the
Newton’s first law of motion for a particle in the absence of the gravitational field, and ends
up with a geodesic equation in the presence of the gravitational field. We define this flavor
of the EP as the weak equivalence principle (WEP).

Instead of mechanical particles, one can study matter degrees of freedom described
by a field theory. For example, if one starts from the equation of motion for a single real
scalar field,

(ηµν∂µ∂ν −m)φ = 0 ,

according to the step 1 of the EP, one can rewrite it in a general curvilinear coordinate
system as (

gµν(0)∇µ∇ν −m
)
φ = 0 ,

where the Christoffel symbol inside the covariant derivative is again calculated using the

flat-space metric g
(0)
µν . Then, according to step 2 of the EP, this equation is promoted to

curved spacetime as it stands, leading to

(gµν∇µ∇ν −m)φ = 0 ,

where now the covariant derivative is given with respect to an arbitrary metric gµν describing
curved spacetime. Thus one arrives to the equation of motion for a scalar field coupled to
gravity. We define this flavor of the EP as the strong equivalence principle (SEP).

So in short, WEP is a statement about mechanical systems such as particles and small
bodies, while SEP is a statement about fields. We emphasize again that the above definitions
may or may not correspond to what is known in other literature as WEP and SEP, depending
on the particular source one compares our definitions to. For example, one can often find
a definition of WEP as a statement about equality of inertial and gravitational masses.
As another example, one can also find a definition of WEP as Galileo’s statement that the
acceleration of a particle due to the gravitational field is independent of the particle’s internal
details such as mass or chemical composition, a property also called universality, emphasizing
the fact that gravitation interacts with all types of particles in the same way. For an excellent
review of the various formulations and flavors of EP present in the literature, see [35].

In relation to these alternative formulations of WEP, one should note two comments.
First, while the notion of “gravitational mass” may be useful in the context of Newtonian
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theory, in frameworks such as GR it is not useful, since the source in Einstein’s equations is
the whole stress-energy tensor, rather than any particular mass-like parameter. This renders
any definition of WEP which relies on the notion of the gravitational mass unsuitable for
analysis in a fundamental QG framework. Second, one can argue (see for example [35]) that
the property of universality is implicitly present even without gravitational interaction, in
the Newton’s first law of motion. Namely, the first Newton’s law can be formulated more
precisely as follows: in the absence of any forces, a particle has a straight-line trajectory in
Minkowski spacetime, regardless of its internal details such as mass or chemical composition.
The Newton’s first law is never spelled out in this way in textbooks, making room for a point
of view that universality has something to do with gravity or the EP. However, if one accepts
our definition of WEP given above, it is more natural to say that universality is a property of
Newtonian mechanics, and is merely being preserved by the WEP when one lifts the straight-
line equation of motion to curved spacetime. So from this point of view, one should arguably
say that WEP is merely compatible with universality, rather than equivalent to it.

Given all these reasons, and despite the fact that these alternative definitions of WEP
may be suitable in various other contexts, they are not quite adequate for the analysis given
in this paper. We therefore choose to retain our own definition of WEP, while the principles
of universality and equality between inertial and gravitational mass will be called as such.
They are discussed in more detail in subsection 4.3.

4.2 Equivalence principle and quantum theory

Adopting the above definitions of WEP and SEP, it is important to discuss their relationship.
From the perspective of the classical field theory (CFT), the notion of a particle can be
introduced as a localized kink-like configuration of matter fields, described as a solution of
the (usually quite complicated) matter field equations. One can then employ the apparatus
of multipole formalism and describe the evolution of this kink configuration in the single
pole approximation, as was discussed in section 2. Using this method, one can recover the
equation of motion for a particle in classical mechanics (CM) as an approximation of the field
theory. Moreover, all this can be done before or after the application of the EP, leading to
the following diagram:

CFTη CMη

CFTg CMg

single pole approx.

SEP WEP

single pole approx.

Here the indices η and g indicate that equations of motion in a given theory are written in
flat and in curved spacetime, respectively.

The question whether this diagram commutes is nontrivial. Namely, on one hand, one
can start from a flat-space classical field theory, approximate it to derive the equations of
motion for a particle in flat-space classical mechanics, and then invoke WEP to reach classical
mechanics coupled to gravity. On the other hand, one can first invoke SEP to couple matter
to gravity at the field theory level, and then approximate it to derive the equation of motion
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for a particle in curved spacetime. A priori, there is no guarantee that one will reach the
same equation of motion for a particle in curved spacetime using both methods.

It is in fact the existence of the local Poincaré symmetry that leads to the commutativity
of the diagram. Namely, as was discussed in section 2, in the curved spacetime local Poincaré
symmetry gives rise to the covariant conservation equation for the stress-energy tensor of
matter fields, and this is all one needs to reach the geodesic equation as an equation of
motion for the particle, in the sense that one does not need to know the full matter field
equations in curved spacetime. This establishes the 〈SEP→ single pole〉 path of the diagram.
On the other hand, in flat spacetime one can also perform the calculation of section 2, this
time using the ordinary (noncovariant) conservation equation for the stress-energy tensor,
which is a consequence not of the local, but rather of the global Poincaré invariance of
Minkowski spacetime. Repeating the calculation of section 2 with the symbolic substitutions
g → η and ∇ → ∂, it is not hard to conclude that one will obtain the equation of motion
for a straight line in flat spacetime, again without knowing all details of the full matter field
equations in flat spacetime. Then, applying WEP as discussed in subsection 4.1, one reaches
the geodesic equation in curved spacetime. This establishes the 〈single pole → WEP〉 path
of the diagram, concluding that the resulting equation of motion for the particle is the same
in both cases, i.e., that the diagram commutes.

Let us also note that, going beyond the single pole approximation, WEP is known to
be violated, with SEP remaining valid. For example, in the pole-dipole approximation, it is
well known that the analogous diagram

CFTη CMη

CFTg CMg

pole-dipole approx.

SEP WEP

pole-dipole approx.

fails to commute. Namely, the 〈SEP → pole-dipole〉 path leads to an effective equation of
motion for the particle in which there is an explicit coupling of the particle’s total angular
momentum to the spacetime curvature [10]. On the other hand, the 〈pole-dipole → WEP〉
path produces the equation of motion without the curvature term. Thus, in the pole-dipole
approximation, WEP fails to reproduce the correct equation of motion, since the particle is
coupled to gravity in a nonminimal way, in spite of the fact that the fields which make up the
particle are still minimally coupled to gravity, in line with SEP. Of course, this situation is to
be expected, given that in the pole-dipole approximation the particle is no longer completely
pointlike, and the coupling of the angular momentum to the curvature can be understood
as a tidal effect of gravity across the “width” of the particle. On the other hand, one can
instead argue that it would be wrong to apply WEP to the pole-dipole equation of motion for
a particle. Namely, despite the fact that the latter is formally still local, it describes an object
that is “less-than-perfectly pointlike”, in the sense that its stress-energy tensor is proportional
not only to a δ function but also to its derivative. From that point of view, one should not
be allowed to apply the two-step prescription of EP defined above. Either way, the bottom
line is that one can either declare WEP as violated or as inapplicable beyond the single pole
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approximation, but it cannot be declared as valid. This results in the noncommutativity of
the above diagram.

Let us now turn to the quantum theory. Starting first from some quantum field theory
(QFTη) which describes the fundamental matter fields in Minkowski spacetime, one can take
its classical limit, giving rise to some effective classical field theory (ECFTη). Then, assuming
that the latter features kink solutions, one can describe those using the single pole approxima-
tion, leading to classical mechanics (CMη) of the corresponding particles. Finally, applying
WEP one couples those particles to gravity. The resulting equation of motion will always
be a geodesic equation, assuming that the initial QFT and all subsequent approximations
respect the global Poincaré invariance of Minkowski spacetime. This symmetry guarantees
the conservation of the stress-energy tensor of the matter fields throughout the sequence of
approximations, leading invariably to the geodesic equation of motion for the particle.

On the other hand, it is arguably more appropriate to take an alternative, more fun-
damental route — start from some fundamental quantum gravity (QG) model, and take the
classical limit leading to some effective classical field theory (ECFTg) for both matter and
gravity. Then, again assuming that this theory features kink solutions, employ the single
pole approximation to obtain the classical mechanics for the particle in the gravitational
field (CMg). Note that this is in fact precisely the program that was performed in section 3,
leading to the non-geodesic equation of motion (3.31) for the particle. In effect, one can
conclude that the following diagram fails to commute:

QFTη ECFTη CMη

QG ECFTg CMg

classical limit

QSEP

single pole approx.

WEP

classical limit single pole approx.

As a side comment, note that the dashed QSEP arrow represents some hypothetical map
leading from a QFT in Minkowski spacetime to a full-blown model of QG, according to a
notion that might be called a “quantum strong equivalence principle”. It is unclear whether
such a principle exists or not, let alone what its formulation is supposed to be, even if one
is given precisely defined models of QFT and QG in question. We introduce it here simply
for completeness, speculating that such a notion should exist, as a generalization of SEP
from classical to quantum physics. It is also convenient to introduce it, in order to close the
diagram and discuss its commutativity.

It is important to stress the reason why this diagram does not commute. Recalling the
details of section 3, the local Poincaré symmetry is assumed to be respected at the funda-
mental level of QG and onwards, just like in the classical case. Moreover, the single pole
approximation is used, avoiding any nonminimal coupling of the tidal forces that may be
present. And yet, in spite of all that, the resulting equation of motion is not a geodesic.
Looking at the equation of motion (3.31), the reason for this is the nontrivial interference
between classical states describing two classical configurations of matter, and more impor-
tantly, of gravity. In other words, the deviation from the geodesic motion is a pure quantum
gravity effect — it is not present in the classical case, nor in the case of quantum matter in
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classical Minkowski spacetime. A testimony of this fact is the quantum correction term for
the metric (3.8), which features off-diagonal matrix elements of the metric operator ĝµν :

hµν = 2 Re
(
κ〈Ψ⊥|ĝµν |Ψ〉

)
+O(η) .

In this sense, due to the noncommutativity of the above diagram, one can argue that
(within the discussed framework) quantum gravity violates the weak equivalence principle.
Nevertheless, we would like to stress that our discussion regarding both strong and weak
equivalence principles, based on the above prescription from subsection 4.1, is inherently
classical. Indeed, in steps 1 and 2 which define the implementation of EP, one considers
classical equations of motion. In our case, such definition suffices, as our entangled state (3.2)
consists of a dominant and a sub-dominant term. Thus, we could expand our entangled
equations (3.10) and (3.11) around the dominant classical terms, and discuss WEP in such a
scenario. In fact, according to the definition of WEP, in general one can discuss its violation
only with respect to some (perhaps unspecified, but assumed) classical spacetime metric. In
our case, this role is played by the dominant classical metric gµν .

In the more general case of superpositions of states which are more equally weighted,
α ≈ β, and which consist of almost orthogonal states, 〈Ψ|Ψ̃〉 ≈ 0, one cannot single out
a preferred classical metric, and therefore the classical definitions of SEP and WEP are
inapplicable in this regime. Therefore, both equivalence principles ought to be extended to
their respective quantum domains, denoted QSEP and QWEP respectively, in the sense of
the following diagram:

QFTη QMη

QG QMg

quantum particle approx.

QSEP QWEP

quantum particle approx.

Note that here all arrows are dashed, indicating the speculative nature of all these maps.
Also, QMg represents a hypothetical theory of quantum particles coupled to a quantum
gravitational field.

In this highly quantum regime (α ≈ β and 〈Ψ|Ψ̃〉 ≈ 0), one could try to define the
quantum weak equivalence principle (QWEP) in terms of the classical WEP, applied sepa-
rately to each “branch” in the superposition. As long as the two “branches” |Ψ〉 and |Ψ̃〉 are
themselves classical states, corresponding to the respective solutions of Einstein’s equations,
such a definition might seem suitable. Note that this approach is compatible with the notion
of a superposed observer (see recent work [40] and the references therein). However, the
formulation of the quantum strong and weak equivalence principles for the case of generic
non-classical quantum states is an open question, outside of the scope of the current work.

Finally, the quantum version of the single pole approximation, called “quantum par-
ticle approximation” in the diagram above, is also not well defined — neither conceptually
nor technically. Essentially, the whole diagram represents merely a speculation about the
prescriptions which ought to map between the respective theories. In addition, like in the
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previous cases, the commutativity of the diagram (i.e., the violation of QWEP, given the
validity of QSEP) would also be an open question. In some sense, the QSEP would represent
a “true” equivalence principle, while QWEP would be a particle-like approximate image of
QSEP. Being approximate, QWEP could possibly be violated in some cases, giving rise to
noncommutativity of the diagram.

4.3 Universality, gravitational and inertial mass

In light of the results of section 3, in addition to the discussion of WEP violation, it is also
important to discuss the status of the principle of universality, and the principle of equality
between inertial and gravitational masses. In order to discuss them, it is instructive to study
the Newtonian limit of the effective equation of motion (3.31), as follows.

We define the Newtonian limit in the standard way [39] — by assuming small spacetime
curvature, nonrelativistic motion, and ignoring the backreaction of the particle on the back-
ground spacetime geometry. These approximations are implemented in the following way.
First, ignoring the backreaction of the particle allows us to choose the dominant classical
metric gµν as specified by the Newtonian line element

ds2 = −
(

1− 2GM

r

)
dt2 + dx2 + dy2 + dz2 , (4.2)

where xµ ≡ (t, x, y, z) are spacetime coordinates, M is the mass of the gravitational source,
r ≡

√
x2 + y2 + z2, and G ≡ l2p is Newton’s gravitational constant. We will discuss the

motion of a test-particle in this background, given by the effective equation of motion (3.31).
Second, the assumption of nonrelativistic motion of the particle allows us to neglect its
spacelike velocity,

uk ≡ dzk

dτ
≈ 0 ,

leaving only the timelike component u0 ≡ dz0/dτ nonzero (the position of the particle zµ(τ)
should not be confused with the label for the third spatial coordinate z ≡ x3). Finally,
the assumption of small spacetime curvature allows us to neglect all terms of order O(M2)
and higher.

Given this setup, one can easily calculate all nonzero Christoffel symbols corresponding
to the dominant metric, obtaining:

Γ 0
0k = Γ 0

k0 = Γ k00 =
GM

r3
xk , k ∈ {1, 2, 3} .

One can then employ them to write the time and space components for the particle’s effective
equation of motion (3.31). Using (2.8) and (3.21), after some straightforward algebra, the
time component of the equation of motion reduces to

d2z0(τ)

dτ2
= 0 ,

owing to the normalization condition uµuνgµν = −1 and the presence of the orthogonal
projector in (3.31). Using convenient initial conditions, this equation can be integrated to
make an identification between the proper time τ and the time component of the particle’s
parametric equation of trajectory xµ = zµ(τ) as

t = z0(τ) = τ ,
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reflecting the notion of global universal time of Newtonian theory. Using this result, one can
show that the space components of the particle’s equation of motion obtain the following
form (note that the spacelike indices can be raised and lowered at will, since the spatial part
of the metric (4.2) is a unit matrix):

d2zk

dτ2
+
GM

r3
zk + η

[
∂0h0k −

1

2
∂kh00 −

GM

r3
zjhjk

]
= 0 . (4.3)

Note that here r has been evaluated at the position of the particle, r =
√
zkzk, and similarly

for the gradients of h0k and h00. The first two terms in the equation come from the classical
geodesic part ∇uk in (3.31), while the third term is the quantum correction, coming from
the effective force term ηuνuσF k⊥νσ.

The most important aspect of equation (4.3) is the similarity between the second term
of the classical part and the final term of the quantum correction. The spacelike components
hjk can be separated into the trace and traceless part,

hjk ≡
1

3
hii δjk + h̃ij , h̃kk ≡ 0 ,

and the trace can be grouped together with the classical term, giving

d2zk

dτ2
+
GM

r3
zk
(

1− 1

3
ηhii

)
+ η

[
∂0h0k −

1

2
∂kh00 −

GM

r3
zj h̃jk

]
= 0 . (4.4)

Finally, multiplying the whole equation (4.4) with an arbitrary positive number, called the
particle’s inertial mass and denoted mI , it takes the form of the Newton’s second law
of motion,

mI
d2zk

dτ2
= −mI

(
1− 1

3
ηhii

)
GM

r3
zk − ηmI

[
∂0h0k −

1

2
∂kh00 −

GM

r3
zj h̃jk

]
. (4.5)

One can recognize two force terms on the right-hand side. The second term is of purely
quantum origin, and represents the effective force acting on the particle ultimately due to
the presence of the quantum state |Ψ̃〉 in (3.2). It has a non-Newtonian form, in the sense
that none of its parts can be grouped together with the first force term, as was done with
the trace part. The first force term, however, can be recognized as the classical Newton’s
gravitational force law, provided that one defines the ratio between the gravitational mass
mG and the inertial mass mI of the particle as

mG

mI
≡
(

1− 1

3
ηhii

)
. (4.6)

At this point we are ready to discuss the principles of universality and of the equality
between gravitational and inertial masses. To begin with, it is obvious from (4.6) that the
gravitational mass is equal to the inertial mass only up to a quantum correction term. This
term contains the trace of spatial components of the metric interference tensor hµν , defined
by equation (3.8), from which we obtain:

hii = 2δij Re
(
κ〈Ψ⊥|ĝij |Ψ〉

)
+O(η) . (4.7)
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It is crucial to notice that, in addition to the dependence of the off-diagonal matrix element
of the metric operator, this expression also depends on the matter fields (which are present
in |Ψ〉 and |Ψ⊥〉), including the particle itself. Therefore, the term in the parentheses in (4.6)
cannot be reabsorbed into the constants G and M , since these describe the external source of
gravity which should remain independent of the properties of the test particle. Thus, the only
possibility to cast the first force term in (4.5) into the form of the Newton’s law of gravitation,
is to define the ratio between the gravitational and the inertial mass as in (4.6). As a
consequence, the principle of equality between gravitational and inertial masses is violated
by the presence of the correction term coming from quantum gravity.

A similar argument can be made regarding the principle of universality. One may
cancel away the inertial mass from the Newton’s law (4.5), returning to (4.4) which describes
the acceleration of the particle in the presence of an external gravitational field. Again,
the presence of (4.7) in the classical gravitational acceleration term guarantees that this
term depends not only on the external gravitational source, but also on the structure of the
test particle itself. Moreover, the remaining quantum correction terms also depend on hµν ,
and therefore they too carry information about the internal structure of the particle. In
this sense, test particles described by different matter configurations may therefore display
different accelerations, given the same background gravitational field. This means that the
principle of universality is violated by the presence of the quantum gravity correction terms.

As a final comment, we should also note that mI (and consequently mG as well) is a
completely free parameter in the Newtonian setup, and should be determined by the interac-
tions of nongravitational type. In particular, the Newtonian framework does not allow us to
connect mI ,mG with the effective mass m of the particle, discussed in the context of (3.28)
and (3.30). This is because the total rest-energy of a particle is an inherently relativistic
concept, not defined in Newtonian mechanics. On the other hand, if one goes to the rela-
tivistic framework, the notions of inertial and gravitational masses become ill-defined, since
gravitational interaction cannot be described anymore by a mere force law in the Newtonian
sense. Therefore, the relationship between m on one side, and both mI , mG on the other
side, remains undefined.

5 Conclusions

5.1 Summary of the results

In this paper, we have discussed the effective motion of a point particle within the framework
of quantum gravity, in particular the case where both matter and gravity are in a quantum
superposition of the Schrödinger cat type. In section 2 we gave a recapitulation of the
results of the classical theory, introducing the multipole formalism framework and illustrating
the derivation of the geodesic equation for the motion of a particle in GR. Section 3 was
devoted to the generalization of these results to the realm of the full quantum gravity. In
subsection 3.1 we introduced the abstract quantum gravity framework, discussed the model
of the superposition of two classical states, and established the main assumptions for the
derivation of the effective equation of motion. In subsection 3.2 we have analyzed in detail
the quantum version of the equation for the covariant conservation of stress-energy tensor,
which is a crucial ingredient in the derivation of the effective equation of motion. The explicit
derivation of the equation of motion itself was then given in subsection 3.3, giving rise to the
main results of the paper — the equation for the stress-energy kernel (3.28), the equation
for the time-evolution of the particle’s mass (3.30), and the effective equation of motion for
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the particle (3.31). Most importantly, the effective equation of motion turns out to contain a
non-geodesic term, giving rise to an effective force acting on the particle, as a consequence of
the interference terms between the two classical states of the gravity-matter system. The last
subsection 3.4 discusses the self-consistency of the assumptions used in the above analysis,
giving rise to the equation (3.35) for the error estimate of the single pole approximation scale.

In light of the nongeodesic motion established in section 3, it is important to discuss it
in the context of the equivalence principle. This topic was taken up in section 4. After we
have defined various flavors of the equivalence principle in subsection 4.1, the main analysis
was presented in subsection 4.2, discussing a possible violation of (various forms of) the
weak equivalence principle, as a consequence of the nongeodesic correction to the equation
of motion (3.31). Also, given the inherently classical nature of the equivalence principle,
we have also speculated on possible generalizations to the quantum realm, introducing the
notions of the quantum strong and weak equivalence principles, albeit without giving explicit
statements about their definitions. Finally, in subsection 4.3 we have discussed the notions of
universality and equality between inertial and gravitational masses in the context of quantum
gravity, by studying the Newtonian limit of the equation of motion (3.31). This analysis gave a
clear interpretation that both universality and the equality between gravitational and inertial
masses are violated in our context, corroborating the conclusions of the abstract analysis of
the EP given in subsection 4.2.

5.2 Discussion of the results

By far the most interesting topic to discuss in the context of the equation of motion (3.31)
is how to estimate the magnitude of the nongeodesic term. As far as the analysis of this
paper goes, we can only say that this term is very small, given that it is proportional to η,
which is in turn bounded from above by phenomenological argument that we do not observe
superpositions of the gravitational field in nature. However, aside from this qualitative
argument, in order to estimate the actual magnitude of the nongeodesic term one would need
to go beyond the abstract quantum gravity formalism, and construct an explicit quantum
gravity model coupled to matter fields, find some explicit kink solutions of the matter sector,
and then calculate the overlap terms and the off-diagonal interference terms of the metric
operator. Of course, any estimate obtained in such a way would be model-dependent. We
consider this to be a feature of the abstract quantum gravity approach, since the magnitude
of the nongeodesic term represents one way to operationally distinguish between different QG
models. In other words, one could use equation (3.31) to experimentally test and compare
these models, at least in principle. Probably the most obvious such test would employ
equation (4.6) which relates the gravitational and inertial mass of the particle.

One result that was not discussed in detail is the nonconservation law for the effective
mass of the particle, (3.30). However, it is not really surprising that the particle’s total rest
energy fails to be constant in the presence of gravity-matter entanglement. As (3.30) tells
us, the nonconservation is actually a consequence of the additional effective force, which is
itself a consequence of the quantum interference between two classical geometries and matter
states. Nevertheless, it would indeed be interesting to study the mass nonconservation in
more detail.

It is also important to discuss the generalization of our results from the case of the
superposition of two classical states to many classical states. In particular, one could discuss
the case where the state |Ψ̃〉 in (3.2) is not a single classical state, but a superposition of
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many classical states,

|Ψ̃〉 =
∑
i

γi|Ψi〉 .

As long as we maintain the assumption that the fidelity F (|Ψ〉, |Ψ〉) ≈ 1, it is straightforward
to see that all our results and conclusions still hold in the generic case. Therefore, there is no
substantial difference in the analysis of a state which is a superposition of two classical states,
compared to the analysis of a superposition of many classical states, as long as one of them
is dominant while all others are sub-dominant. Note that in this case, even when β is finite
and ε→ 0, the role of the metrics generated by |Ψ〉 and |Ψ̃〉 cannot be exchanged anymore,
as the latter generically does not satisfy Einstein’s equations. This fixes the choice of |Ψ〉 as
the dominant state. A detailed quantitative description is technically more complicated, but
qualitatively all results will hold for both types of states.

5.3 Future lines of research

One of the main lines of future work would be to perform a similar analysis as was done in
this paper, but keeping the η2 terms. This would naturally include the sub-dominant effective
metric and stress-energy (3.3), giving qualitatively new insight into the notion of quantum
superpositions of two classical geometries. That analysis might provide clues about the prop-
erties of quantum gravity which could arguably hold even in the equal-weight superpositions
of two classical states, defined by the choice α ≈ β ≈ 1/

√
2 in (3.2).

Alternatively, one could repeat the analysis of this paper, but in a pole-dipole approx-
imation. This would also lead to novel effects, one of which might be a coupling of various
quantum interference terms to the spacetime curvature and the angular momentum of the
particle, generalizing the classical pole-dipole equation of motion [10].

Also, given that the multipole formalism is also applicable to Riemann-Cartan space-
times [19–22], the analysis of this paper could be generalized to include coupling of quantum
interference terms to spacetime torsion and the spin of the particle.

Finally, one could further discuss a more general setup in which the off-diagonal terms
in the covariant conservation equation (3.14) are not ignored, in the sense of going beyond
the approximations (3.15) and (3.16).

In addition to all of the above, one important line of research would be to study possible
connections to experiments. First, one should study the counterpart of the so-called geodesic
deviation equation. Namely, in GR, the geodesic motion as such is not observable, as a
consequence of the equivalence principle. As we have emphasized in subsection 4.1, the
EP dictates that the only way to observe gravitational degrees of freedom is via nonlocal
measurements, which are not encoded in the geodesic equation. Therefore, what one can
actually observe is the change in the relative separation of two nearby geodesic trajectories,
due to the tidal effects. This is in turn described by the geodesic deviation equation, which
explicitly features the Riemann curvature tensor. In our case, the equation of motion (3.31)
is not a geodesic, but is still local in character, in the sense that it does contain gravitational
degrees of freedom at the given point, but still it does not combine gravitational degrees of
freedom of two or more points. Thus, one ought to compare the trajectories of two nearby
particles, both following a trajectory determined by (3.31). The equation governing the
separation between two particles in such a setup would be a counterpart to the geodesic
deviation equation of GR with a corresponding quantum correction term. It should be
derived and studied in detail, in order to better understand what effects could be in principle
directly experimentally observable.
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Second, one could also test our results by measuring the violation of the universality and
of the equality of the gravitational and the inertial mass in the semiclassical Newtonian limit.

The above list of possible topics for further research is of course not exhaustive — one can
probably study various additional aspects and topics related to this work, in particular giving
more precise meaning to the notions of the quantum strong and weak equivalence principles.
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A Short review of the multipole formalism

In this appendix we give a short review of the multipole formalism, providing some basic
motivation for its introduction and a few elementary properties. A more rigorous treatment
and more details can be found in [25].

The multipole formalism revolves around the idea of expanding a function into a series of
derivatives of the Dirac δ function, or δ series for short. Perhaps the easiest way to understand
the δ series is to introduce it as a Fourier transform of a power series. For example, given a
real-valued function f(x), one can write it as a Fourier transform of f̃(k) as

f(x) =

∫
R
dk f̃(k) eikx . (A.1)
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In principle, we can expand f̃(k) into power series as

f̃(k) =

∞∑
n=0

cnk
n ,

where cn are some coefficients, substitute the expansion back into (A.1), and integrate term
by term. Using the identity

kneikx = (−i)n ∂
n

∂xn
eikx

and the integral representation of the Dirac δ function

δ(x) =
1

2π

∫
R
dk eikx ,

we obtain

f(x) =

∞∑
n=0

cn

∫
R
dk kn eikx =

∞∑
n=0

(−i)ncn
dn

dxn

∫
R
dk eikx

=

∞∑
n=0

2π(−i)ncn
dn

dxn
δ(x) ≡

∞∑
n=0

bn
dn

dxn
δ(x) .

In the last step, we have merely renamed the coefficients in the expansion.
The above example is the most elementary construction of the δ series, providing some

intuition. It is straightforward to see that one can generalize the procedure to perform the
expansion around an arbitrary point z instead of zero, such that

f(x) =

∞∑
n=0

bn
dn

dxn
δ(x− z) .

The coefficients bn can be evaluated using the inverse formula,

bn =
(−1)n

n!

∫
R
dx (x− z)nf(x) , (A.2)

and are usually called n-th order moments of the function f(x). From (A.2) one sees that the
δ series is well defined for every function f(x), which falls off to zero faster than any power
of x at both infinities.

Let us study an instructive example. Let the function f(x) be an ordinary Gaussian,
peaked around the point x0,

f(x) =
1√
π
e−(x−x0)2 .

One can evaluate the coefficients in the corresponding δ series using (A.2) to obtain:

bn =



n/2∑
k=0

(z − x0)n−2k

4k k! (n− 2k)!
for even n ,

−
(n−1)/2∑
k=0

(z − x0)n−2k

4k k! (n− 2k)!
for odd n .
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It is important to note the following property — if the expansion point z does not coincide
with the peak of the Gaussian, x0, the magnitude of the coefficients bn in general grows with
n. For example, if z − x0 = 2, we have

f(x) = δ(x− z)− 2
d

dx
δ(x− z) +

9

4

d2

dx2
δ(x− z)− 11

6

d3

dx3
δ(x− z) +

115

96

d4

dx4
δ(x− z) + . . .

However, if the expansion point coincides with the peak, z − x0 = 0, the magnitude of the
coefficients falls off as n grows:

f(x) = δ(x− z) +
1

4

d2

dx2
δ(x− z) +

1

32

d4

dx4
δ(x− z) +

1

384

d6

dx6
δ(x− z) + . . .

From this simple example one can infer an important property of δ series — the coefficients
bn decrease as n grows, if the expansion point is near the peak of the function f(x). Turning
the argument around, if we require that the coefficients decrease with n,

|bn| > |bn+1| , ∀n ∈ N0 ,

this places a restriction on the possible values of the expansion point z. This is the crucial
property of the δ series, and is being used to define the “position of the particle” which
corresponds to a distribution of matter fields described by a localized function f(x).

Also, assuming that the expansion point z has been chosen to be near the peak of
the function, the decreasing nature of the coefficients bn allows one to approximate the
function f(x) by a truncated series. This formalizes the intuitive idea that if one looks at
some localized distribution of matter fields from “far away”, it will look roughly as a point
particle. The truncation point then quantifies the amount of “internal structure” that is
known about f(x). One can therefore study the function f(x) at various approximation
levels: the single pole approximation,

f(x) ∼ b0δ(x− z) ,

the pole-dipole approximation,

f(x) ∼ b0δ(x− z) + b1
d

dx
δ(x− z) ,

the pole-dipole-quadrupole approximation,

f(x) ∼ b0δ(x− z) + b1
d

dx
δ(x− z) + b2

d2

dx2
δ(x− z) ,

and so on.
It is completely straightforward to generalize the δ series to three (or more) dimensions,

with the δ series of a function f(~x) around the point ~z defined as

f(~x) =

∞∑
n=0

bi1...inn

∂

∂xi1
. . .

∂

∂xin
δ(3)(~x− ~z) . (A.3)

Here the indices i1, . . . in take values 1, 2 and 3, and the inverse formula for the coefficients is

bi1...inn =
(−1)n

n!

∫
R3

d3x (xi1 − zi1) . . . (xin − zin)f(~x) . (A.4)
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For example, in electrostatics, one can expand the charge density ρ(~x) localized around the
point ~z = 0 as

ρ(~x) = b0δ
(3)(~x) + bi1

∂

∂xi
δ(3)(~x) + . . .

According to (A.4), the coefficients are

b0 =

∫
R3

d3x ρ(~x) ≡ Q , ~b1 = −
∫
R3

d3x~xρ(~x) ≡ −~p ,

where we recognize the total charge Q and the electrostatic dipole moment ~p of the source.
Thus we have

ρ(~x) = Qδ(3)(~x)− ~p · ∇δ(3)(~x) + . . .

Substituting the δ series expansion of ρ(~x) into the formula for the electrostatic potential,

ϕ(~r) =

∫
R3

d3x
ρ(~x)

|~r − ~x|
,

and evaluating the integral, one obtains the familiar expression for the multipole expansion
in electrostatics [41]:

ϕ(~r) =
Q

|~r|
+
~p · ~r
|~r|3

+ . . .

This example also illustrates what type of approximation is achieved with the truncation of
the δ series.

Next we generalize to time-dependent functions. If the function f(~x) evolves in time,
while remaining localized in space, one can expand it into δ series by choosing the most
convenient reference point z(t) at each moment of time,

f(~x, t) =
∞∑
n=0

bi1...in(t)
∂

∂xi1
. . .

∂

∂xin
δ(3)(~x− ~z(t)) , (A.5)

where t ∈ R is a time variable, and the coefficients b are now time-dependent. Then one can
introduce the proper time τ , and use the identity∫

R
dτ δ(t− τ) = 1

to rewrite (A.5) in a 4-dimensional manifestly Lorentz-invariant form

f(x) =

∫
R
dτ

∞∑
n=0

bµ1...µn(τ)∂µ1 . . . ∂µnδ
(4)(x− z(τ)) , (A.6)

where we have relabeled (~x, t) ≡ x, introduced z0(τ) = τ , used shorthand notation ∂µ ≡
∂/∂xµ, and defined b0 = b00 = b000 = · · · = 0, since the time derivatives do not actually
appear in (A.5). The introduction of these auxiliary timelike components of the b-coefficients,
demanded by Lorentz invariance, gives rise to an additional gauge symmetry of the expan-
sion coefficients, since only the “spatial” components carry nontrivial information about the
function f(x). This additional gauge symmetry is called extra symmetry 1, and is studied in
detail in [25].
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Finally, one can make one more generalization, and introduce the notion of a δ series
around a p-brane, a (p + 1)-dimensional submanifold living in a D-dimensional spacetime
manifold. Namely, we have seen that one can expand a function into a δ series around a point
and around a one-dimensional line (equations (A.3) and (A.6), respectively). Generalizing in
that direction, one can introduce the world-trajectory of a p-dimensional object through D-
dimensional spacetime M, with parametric equations xµ = zµ(ξa) describing the trajectory
as a (p + 1)-dimensional submanifold Σ ⊂ M. Here µ ∈ {0, . . . , D − 1} and a ∈ {0, . . . p},
where xµ are coordinates on M while ξa are intrinsic coordinates on Σ. Then, given a
function f(x) whose support is localized near the submanifold Σ, one can write its δ series
expansion around Σ in a fully diffeomorphism- and reparametrization-invariant way as:

f(x) =

∫
Σ
dp+1ξ

√
−γ

∞∑
n=0

∇µ1 . . .∇µn

[
Bµ1...µn(ξ)

δ(D)(x− z(ξ))√
−g

]
. (A.7)

Here γ is the determinant of the induced metric γab = gµνu
µ
auνb on Σ, where gµν is the

metric on M and uµa ≡ ∂zµ/∂ξa are the tangent vectors of Σ. Note that, in order to ensure
the correct tensorial behavior, the B-coefficients have been moved inside the action of the
covariant derivatives. Namely, despite the fact that the covariant derivatives act with respect
to x and B’s do not depend on x, covariant derivatives still act nontrivially on B’s with the
connection terms. For similar reasons, the term

√
−g has been introduced to combine with

the δ function into a quantity which transforms as a scalar under diffeomorphisms. Its
introduction amounts merely to a suitable redefinition of B’s and does not modify the δ
series in any nontrivial way.

The fully general δ series (A.7) has been studied in detail in [25]. For the purpose of
the discussion given in the main text of this paper, we are interested in the case of a particle,
i.e., a (p = 0)-brane, moving along a 1-dimensional timelike curve C which is a submanifold
of the (D = 4)-dimensional spacetimeM. In this case, there is only one intrinsic coordinate
on C, denoted ξ0 ≡ τ , only one tangent vector

uµ0 ≡
∂zµ(ξ)

∂ξ0
=
dzµ(τ)

dτ
= uµ ,

while the induced metric tensor is a 1× 1 matrix γ00 = gµνu
µ
0u

ν
0 . The parametrization of the

curve C with the coordinate τ can be chosen to fix the reparametrization gauge symmetry
via the gauge-fixing condition γ00 = −1, which is actually the natural normalization of the
tangent vector, gµνu

µuν = −1. Finally, one can then apply the δ series expansion (A.7) to
the stress-energy tensor Tµν(x) of the matter fields as

Tµν(x) =

∫
C
dτ

∞∑
n=0

∇ρ1 . . .∇ρn

[
Bµνρ1...ρn(τ)

δ(D)(x− z(τ))√
−g

]
.

Note that the coefficients B now carry two additional indices inherited from the stress-energy
tensor. In the single pole approximation, one drops all terms in the sum except the n = 0
term, truncating the series to the form

Tµν(x) =

∫
C
dτ Bµν(τ)

δ(D)(x− z(τ))√
−g

,

as used in the main text.
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B Separable classical states

As mentioned in the main text, a recent study suggests that physical states of gravity and
matter are generically entangled [1]. In this appendix, we analyze a simple, yet possibly
intriguing, consequence of the assumption that the overall classical gravity-matter state can
be approximated by (or indeed is) the product of the gravity and the matter classical states,
|Ψ〉 = |g〉 ⊗ |φ〉, where |g〉 ∈ HG and |φ〉 ∈ HM are classical states for the gravity and the
matter sector, respectively (and analogously for |Ψ̃〉).

To begin with we introduce the overlaps as follows:

SG ≡ 〈g|g̃〉 , SM ≡ 〈φ|φ̃〉 , S ≡ 〈Ψ|Ψ̃〉 = SGSM .

Note that, since in (3.2) only the relative phase between |Ψ〉 and |Ψ̃〉 is important, we
can reabsorb the phases of the coefficients α and β into |Ψ〉 and |Ψ̃〉, respectively. In this
way, we have α, β ∈ R, while only the overlap S between the two coherent states carries
the information about the relative phase, and is therefore complex. Moreover, since S is a
product between SG and SM , the phase of S can be distributed between SG and SM in an
arbitrary way. A convenient choice is to have the phase in the matter sector, so that SG ∈ R
and SM ∈ C. Next, we can decompose |g̃〉 and |φ̃〉 into parts proportional to and orthogonal
to |g〉 and |φ〉, respectively,

|g̃〉 = SG|g〉+ εG|g⊥〉 , |φ̃〉 = SM |φ〉+ εM |φ⊥〉 , (B.1)

where 〈g|g⊥〉 ≡ 0, 〈φ|φ⊥〉 ≡ 0, and

εG ≡
√

1− (SG)2 , εM ≡
√

1− |SM |2 .

Note that εG, εM ∈ R. Additionally, one can use (B.1) to rewrite |Ψ̃〉 into the form

|Ψ̃〉 = S|Ψ〉+ ε|Ψ⊥〉 ,

where

ε =
√
ε2M + ε2G − ε2M ε2G ,

and

|Ψ⊥〉 =
εMSG
ε
|g〉 ⊗ |φ⊥〉+

εGSM
ε
|g⊥〉 ⊗ |φ〉+

εGεM
ε
|g⊥〉 ⊗ |φ⊥〉 . (B.2)

Note that in the cases when SG and SM are large (and consequently εG and εM are small),
we can neglect the final term from (B.2), obtaining the Schmidt form of the “orthogonal
correction” of the state |Ψ̃〉, with respect to |Ψ〉. It is interesting to observe that such a
state is always necessarily entangled, as its entanglement entropy is always bigger than zero.
In other words, to obtain a nearby classical product state of gravity and matter |Ψ̃〉, one
has to perturb the original (classical product) state |Ψ〉 with an entangled state |Ψ⊥〉 ≈
ε−1εMSG|g〉 ⊗ |φ⊥〉+ ε−1εGSM |g⊥〉 ⊗ |φ〉.

C Phase of interference terms

In this appendix, we analyze the expressions for the expectation values of the metric and
the stress-energy tensors in the entangled state (3.5), given by (3.6) and (3.7), respectively.
We show that their third, interference, terms are generically different from zero, and thus
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contain non-trivial contributions linear in η. Since the two terms have the same form, we
will consider the case of the metric operator only.

By writing κ = |κ|eiϕκ = Feiϕκ and 〈Ψ⊥|ĝµν |Ψ〉 = |〈Ψ⊥|ĝµν |Ψ〉|eiϕg , the third term
of (3.6) has the form

2ηRe
(
κ〈Ψ⊥|ĝµν |Ψ〉

)
= 2ηF |〈Ψ⊥|ĝµν |Ψ〉| cos(ϕκ + ϕg) . (C.1)

In case ϕκ +ϕg = ±π/2, i.e., the interference term is zero, then for any other generic choice
of |Ψ′〉 = eiδ|Ψ〉, we have that ϕ′κ + ϕ′g 6= ±π/2.

Indeed, changing |Ψ〉 → |Ψ′〉 = eiδ|Ψ〉 induces the change of the other classical state

|Ψ̃〉 = S|Ψ〉+ ε|Ψ⊥〉 −→ |Ψ̃′〉 = S|Ψ′〉+ ε|Ψ⊥〉 = S′|Ψ〉+ ε|Ψ⊥〉

with S′ = Seiδ = |S|ei(ϕs+δ) (where S = |S|eiϕs), but the orthogonal state |Ψ⊥〉 does not
change. Thus, the phase of the matrix element from (C.1) changes to ϕ′g = ϕg + δ. On

the other hand, the phase of κ changes to ϕ′κ = ϕκ + δ̃ (note that δ̃ is a function of δ,
see below). Since

κ = α+ β|S|eiϕs = |κ|eiϕκ ,

κ′ = α+ β|S|ei(ϕs+δ) = |κ|eiϕ′
κ ,

it is obvious that for a generic choice of the parameters, i.e., in but a discrete number of points,
we have δ̃ = ϕ′k−ϕk 6= −δ, obtaining ϕ′κ+ϕ′g = (ϕs+ϕκ)+(δ+ δ̃) = ±π/2+(δ+ δ̃) 6= ±π/2.

Thus, the linear correction to (3.6), and to (3.7) as well, is zero only for a discrete
number of the relative phases between the classical states |Ψ〉 and |Ψ̃〉. Otherwise, it is
generically non-trivial.
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Abstract
We perform the complete Hamiltonian analysis of the BFCG action for 
general relativity. We determine all the constraints of the theory and classify 
them into the first-class and the second-class constraints. We also show how 
the canonical formulation of BFCG general relativity reduces to the Einstein–
Cartan and triad canonical formulations. The reduced phase space analysis 
also gives a 2-connection which is suitable for the construction of a spin-foam 
basis which will be a categorical generalization of the spin-network basis 
from loop quantum gravity.

Keywords: BFCG model, Poincaré 2-group, general relativity, Hamiltonian 
analysis, algebra of constraints, spin-cube model, spin-foam model

1. Introduction

Among the fundamental problems of modern theoretical physics, by far the most prominent 
one is the construction of the tentative theory of quantum gravity (QG). There are many 
approaches to QG, one of which is called loop quantum gravity (LQG), see [1–4]. As with 
any other physical system, the quantization of the gravitational field can be performed either 
canonically, using the Hamiltonian framework, or covariantly, using the Lagrangian, i.e. 
the path integral framework. Within the LQG approach, in the canonical framework [2] one 
chooses the connection variables and their momenta as fundamental fields for gravity, and 
uses them to construct an appropriate physical Hilbert space, giving rise to the spin-network 
states. In the covariant framework, one puts the connection variables onto a spacetime trian-
gulation, see [3, 4], and uses this construction to define a path integral for gravity, giving rise 
to the spin-foam (SF) models.
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The BFCG  formulation of GR [5] was invented in order to find a categorical generaliza-
tion of the SF models. A categorical generalization of a SF model is called a spin-cube model, 
since the path integral is based on a colored 3-complex where the colors are the representa-
tions of a 2-group [5, 6]. The 2-group, see [7] for a review and references, replaces the Lorentz 
group, and becomes the fundamental algebraic structure. The reason for introducing spin-cube 
models was that the SF models have two problems. One problem is that the classical limit of 
a SF model is described by the area-Regge action [6, 8]. The second problem is that the fer-
mions cannot be coupled to a SF model [5]. These two problems are caused by the fact that 
the tetrads are absent from the Plebanski action, see [3, 9–11], which is used as the classical 
action to build the SF amplitudes. The BFCG  action for GR is a categorical generalization of 
the Plebanski action, and the BFCG  action contains both the B field and the tetrads [5].

The path integral quantization of BFCG  GR reduces to the Regge path integral [6]. 
However, in the case of the canonical quantization, it is not known what kind of theories can 
be obtained. It was argued in [12] that a spin-foam basis should exist, as a categorical generali-
zation of the spin-network basis from LQG, but in order to rigorously prove such a statement, 
one needs a canonical formulation of the BFCG  GR theory. The canonical analysis of BFCG  
GR action is much more complicated than the canonical analysis of the Einstein–Hilbert 
action. One can see what kind of canonical analysis will be necessary from the canonical 
analysis of simpler but related actions given by the unconstrained BFCG  action [13] or the 
Einstein–Cartan action [14].

In this paper we present the Hamiltonian analysis of the BFCG  GR theory in full detail. 
Despite being straightforward, the calculations involved are quite nontrivial, so it is important 
to perform the full analysis in a systematic manner. Due to the amount of material presented, 
subsequent topics such as quantization schemes and similar have been postponed for future 
work, while the present paper deals only with the canonical structure of the classical theory.

The paper is organized as follows. In section 2 we give an overview of the BFCG  GR 
action, discuss the Lagrange equations of motion, and prepare for the Hamiltonian analysis. 
The first part of the Hamiltonian analysis is done in section 3. We evaluate the conjugate 
momenta for the fields, obtain the primary constraints and construct the Hamiltonian of the 
theory. Then we impose consistency conditions on on all constraints in turn, giving rise to a 
full set of primary, secondary and tertiary constraints, along with some determined Lagrange 
multipliers. Section 4 is devoted to the second part of the Hamiltonian analysis—the separa-
tion of the constraints into first and second class, computing their algebra, and determining the 
number of physical degrees of freedom. Building on these results, in section 5 we discuss vari-
ous avenues for the elimination of the second class constraints from the theory, gauge fixing 
conditions and the analysis of the first class constraints, and the resulting possible reductions 
of the phase space of the theory. Section 6 contains our concluding remarks, discussion of the 
results and future lines of research. The appendix contains four sections with a lot of technical 
details about the calculations performed in the main text.

Our notation and conventions are as follows. The spacetime indices are denoted with 
lowercase Greek alphabet letters from the middle of the alphabet λ,µ, ν, ρ, . . . and take the 
values 0, 1, 2, 3. When discussing the foliation of spacetime into space and time, the spa-
cetime indices are split as µ = (0, i), where the lowercase indices from the middle of the 
Latin alphabet i, j, k, . . . take only spacelike values 1, 2, 3. The Poincaré group indices are 
denoted with lowercase letters from the beginning of the Latin alphabet, a, b, c, . . . and take 
the values 0, 1, 2, 3, while their spacelike counterparts are denoted by the lower-case Greek 
letters from the beginning of the alphabet α,β, . . ., and take the values 1, 2, 3. The group 
indices are raised and lowered with the Minkowski metric ηab = diag(−1, 1, 1, 1). Capital 
Latin indices A, B, C, . . . represent multi-index notation, and are used to count the second 
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class constraints, fields and momenta, and various other objects, depending on the context. 
Antisymmetrization is denoted with the square brackets around the indices with the 1/2 fac-
tor, X[ab] ≡ (Xab − Xba) /2. In order to simplify the notation involving Poisson brackets, we 
will adopt the following convention. The left quantity in every Poisson bracket is assumed to 
be evaluated at the point x = (t,�x), while the right quantity at the point y = (t,�y). In addition, 
we use the shorthand notation for the 3-dimensional Dirac delta function δ(3) ≡ δ(3)(�x −�y). 
For example, an expression

{Uα(t,�x) , Vβ(t,�y) } = Wαβ(t,�x)δ(3)(�x −�y) + Zαβi(t,�x) ∂iδ
(3)(�x −�y), (1)

where ∂i = ∂/∂xi , can be written more compactly as

{Uα , Vβ } = Wαβδ(3) + Zαβi ∂iδ
(3), (2)

usually without any ambiguity. In the rare ambiguous cases, the expressions will be written 
more explicitly. This notation will be used systematically unless stated otherwise.

2. BFCG action for GR

Given a Lie group G  and its Lie algebra g, and the g-valued connection one-form A on a space-
time manifold M, the BF  action (see [15] for a review and applications to gravity)

SBF =

∫

M
〈B ∧ F〉g, (3)

describes the dynamics of flat connections, where F = dA + A ∧ A is the curvature two-form. 
B is a g-valued Lagrange multiplier two-form and 〈, 〉g represents the invariant nondegener-
ate symmetric bilinear form in g. The BF  theory relevant for the construction of spin-foam 
models is based on the Lorentz group SO(3, 1). A categorical generalization of the BF  theory 
is based on the concept of a strict 2-group, which is a pair of groups (G,H) with certain maps 
between them (see [7] for details). The corresponding theory of flat 2-connections is called the 
BFCG  theory [16, 17], and its dynamics is given by the action

SBFCG =

∫

M
[〈B ∧ F〉g + 〈C ∧ G〉h] . (4)

The second term in (4) consists of a h-valued one-form Lagrange multiplier C, and a curvature 
three-form G = dβ + A ∧ β for the h-valued two-form β, where h is the Lie algebra of the 
group H. The pair (A,β) is called the 2-connection for the 2-group, while the pair (F, G) is the 
corresponding 2-curvature. The 〈, 〉h is the invariant nondegenerate symmetric bilinear form 
in h, which is g-invariant.

The Poincaré 2-group, defined by G = SO(3, 1) and H = R4, is relevant for GR since the 
Einstein equations can be obtained from a constrained BFCG  action [5], given by

SGR =

∫

M
[〈B ∧ R〉g + 〈e ∧ G〉h − 〈φ ∧ (B − �(e ∧ e))〉g] . (5)

Here we have relabeled C ≡ e and F ≡ R, since in the case of the Poincaré 2-group these 
fields have the interpretation of the tetrad field and the curvature two-form for the spin con-
nection A ≡ ω. The g-valued two-form φ is an additional Lagrange multiplier, featuring in the 
simplicity constraint term. The � is the Hodge dual operator for the Minkowski space.
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The action (5) can be written as

SGR =

∫

M

[
Bab ∧ Rab + ea ∧ Ga − φab ∧

(
Bab − εabcd ec ∧ ed)] , (6)

where the curvatures Rab and Ga are given by

Rab = dωab + ωa
c ∧ ωcb, (7)

Ga = ∇βa ≡ dβa + ωa
b ∧ βb. (8)

The action (6) can even be extended to include the cosmological constant, and it is related to 
the MacDowell–Mansouri action [18–22], see appendix E for details.

It is convenient to introduce the torsion 2-form

Ta = ∇ea ≡ dea + ωa
b ∧ eb, (9)

so that one can rewrite the action as

SPGT =

∫

M

[
Bab ∧ Rab + βa ∧ Ta − φab ∧

(
Bab − εabcd ec ∧ ed)] (10)

by using the integration by parts. The action (10) is a constrained BF  action for the Poincaré 
group, since the tetrads and the spin connection can be considered as components of a Poincaré 
group connection, while the curvature and the torsion are the components of the Poincaré 
group curvature [12]. This equivalence of a Poincaré gauge theory formulation to a 2-group 
gauge theory formulation is specific to 4 spacetime dimensions only.

The relationship between the topological, unconstrained versions of the actions (6) and (10) has 
been discussed in detail in [13]. There, a real parameter ξ was introduced to interpolate between 
the two actions, the full Hamiltonian analysis was performed, and the implications of the param-
eter ξ for the structure of the resulting phase space were studied in detail. It is noteworthy that the 
actions (6) and (10) differ from the actions discussed in [13] only by the presence of the simplic-
ity constraint term, which is the same for both actions and does not contain any time derivatives. 
Therefore, the presence of the simplicity constraint does not change any results of [13] pertaining 
to the ξ parameter, and all conclusions related to ξ given in [13] carry over unmodified to the con-
strained actions (6) and (10) discussed in this paper. Given this situation, we opt not to introduce 
and discuss the ξ parameter again in this paper, and refer the reader to [13] instead.

It is clear that the actions (6) and (10) give rise to the same set of equations of motion, 
since these do not depend on the boundary. Taking the variation of (6) with respect to all the 
variables, one obtains

δB : Rab − φab = 0, (11)

δβ : Ta = 0, (12)

δe : Ga + 2εabcd φ
bc ∧ ed = 0, (13)

δω : ∇Bab − e[a ∧ βb] = 0, (14)

δφ : Bab − εabcd ec ∧ ed = 0, (15)

where the covariant exterior derivative of Bab is defined as

∇Bab ≡ dBab + ωa
c ∧ Bcb + ωb

c ∧ Bac. (16)
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One can simplify the equations of motion in the following way. Taking the covariant exterior 
derivative of (15) and using (12) one obtains ∇Bab = 0. Substituting this into (14) one further 
obtains e[a ∧ βb] = 0. Under the assumption that det(ea

µ) �= 0, it follows that βa = 0 (see 
appendix in [5] for proof), and therefore also Ga = 0. As a consequence, we see that the equa-
tions of motion (11)–(15) are equivalent to the following system:

 •  the equation that determines the multiplier φab in terms of curvature,

φab = Rab, (17)

 •  the equation that determines the multiplier Bab in terms of tetrads,

Bab = εabcd ec ∧ ed, (18)

 •  the equation that determines βa,

βa = 0, (19)

 •  the equation for the torsion,

Ta = 0, (20)

 •  and the Einstein field equation,

εabcd Rbc ∧ ed = 0. (21)

Finally, for the convenience of the Hamiltonian analysis, we need to rewrite both the action 
and the equations of motion in a local coordinate frame. Choosing dxµ as basis one-forms, we 
can expand the fields in the standard fashion:

ea = ea
µdxµ, ωab = ωab

µdxµ, (22)

Bab =
1
2

Bab
µνdxµ ∧ dxν , βa =

1
2
βa

µνdxµ ∧ dxν , φab =
1
2
φab

µνdxµ ∧ dxν .
 (23)

Similarly, the field strengths for ω, e and β are

Rab =
1
2

Rab
µνdxµ ∧ dxν ,

Ta =
1
2

Ta
µνdxµ ∧ dxν ,

Ga =
1
6

Ga
µνρdxµ ∧ dxν ∧ dxρ.

 

(24)

Using the relations (7)–(9), we can write the component equations

Rab
µν = ∂µω

ab
ν − ∂νω

ab
µ + ωa

cµω
cb

ν − ωa
cνω

cb
µ,

Ta
µν = ∂µea

ν − ∂νea
µ + ωa

bµeb
ν − ωa

bνeb
µ,

Ga
µνρ = ∂µβ

a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν + ωa

bµβ
b
νρ + ωa

bνβ
b
ρµ + ωa

bρβ
b
µν .

 (25)
Substituting expansions (22)–(24) into the action, we obtain

S =

∫

M
d4x εµνρσ

[
1
4

BabµνRab
ρσ +

1
6

eaµGa
νρσ − 1

4
φab

µν

(
Babρσ − 2εabcd ec

ρed
σ

)]
. (26)
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Assuming that the spacetime manifold has the topology M = Σ× R, where Σ is a 3-dimen-
sional spacelike hypersurface, from the above action we can read off the Lagrangian, which is 
the integral of the Lagrangian density over the hypersurface Σ:

L =

∫

Σ

d3x εµνρσ
[

1
4

BabµνRab
ρσ +

1
6

eaµGa
νρσ − 1

4
φab

µν

(
Babρσ − 2εabcd ec

ρed
σ

)]
. (27)

Finally, the component form of equations of motion (17)–(21) is:

φab
µν = Rab

µν , Babµν = 2εabcd ec
µed

ν ,

βa
µν = 0, Ta

µν = 0,

ελµνρεabcd Rbc
µνed

ρ = 0.

 

(28)

3. Hamiltonian analysis

Now we turn to the Hamiltonian analysis. A detailed review of the general formalism can be 
found in [14], chapter V. In addition, a good pedagogical example of the Hamiltonian analysis 
which is relevant for our case is the topological BFCG  gravity [13].

3.1. Primary constraints and the Hamiltonian

As a first step, we calculate the momenta π corresponding to the field variables Bab
µν, φab

µν, 
ea

µ, ωab
µ and βa

µν . Differentiating the action (26) with respect to the time derivative of the 
appropriate fields, we obtain the momenta as follows:

π(B)ab
µν =

δS
δ∂0Bab

µν
= 0,

π(φ)ab
µν =

δS
δ∂0φab

µν
= 0,

π(e)a
µ =

δS
δ∂0ea

µ
= 0,

π(ω)ab
µ =

δS
δ∂0ωab

µ
= ε0µνρBabνρ,

π(β)a
µν =

δS
δ∂0βa

µν
= −ε0µνρeaρ.

 

(29)

None of the momenta can be solved for the corresponding ‘velocities’, so they all give rise to 
primary constraints:

P(B)ab
µν ≡ π(B)ab

µν ≈ 0,

P(φ)ab
µν ≡ π(φ)ab

µν ≈ 0,

P(e)a
µ ≡ π(e)a

µ ≈ 0,

P(ω)ab
µ ≡ π(ω)ab

µ − ε0µνρBabνρ ≈ 0,

P(β)a
µν ≡ π(β)a

µν + ε0µνρeaρ ≈ 0.

 

(30)

A Miković et alClass. Quantum Grav. 36 (2019) 015005



7

The weak, on-shell equality is denoted ‘≈’, as opposed to the strong, off-shell equality which 
is denoted by the usual symbol ‘=’.

Next we introduce the fundamental simultaneous Poisson brackets between the fields and 
their conjugate momenta,

{Bab
µν , π(B)cd

ρσ } = 4δa
[cδ

b
d]δ

ρ
[µδ

σ
ν]δ

(3),

{φab
µν , π(φ)cd

ρσ } = 4δa
[cδ

b
d]δ

ρ
[µδ

σ
ν]δ

(3),

{ ea
µ , π(e)b

ν } = δa
bδ

ν
µδ

(3),

{ωab
µ , π(ω)cd

ν } = 2δa
[cδ

b
d]δ

ν
µδ

(3),

{βa
µν , π(β)b

ρσ } = 2δa
bδ

ρ
[µδ

σ
ν]δ

(3),

 

(31)

and we employ them to calculate the algebra of primary constraints,

{P(B)abjk , P(ω)cd
i } = 4ε0ijkδa

[cδ
b
d]δ

(3),

{P(e)ak , P(β)b
ij } = −ε0ijkδa

bδ
(3),

 

(32)
while all other Poisson brackets vanish.

Next we construct the canonical, on-shell Hamiltonian:

Hc =

∫

Σ

d3�x
[

1
4
π(B)ab

µν∂0Bab
µν +

1
4
π(φ)ab

µν∂0φ
ab

µν + π(e)a
µ∂0ea

µ

+
1
2
π(ω)ab

µ∂0ω
ab

µ +
1
2
π(β)a

µν∂0β
a
µν

]
− L.

 

(33)

The factors 1/4 and 1/2 are introduced to prevent overcounting of variables. Using (25) and 
(27), one can rearrange the expressions such that all velocities are multiplied by primary con-
straints, and therefore vanish from the Hamiltonian. After some algebra, the resulting expres-
sion can be written as

Hc = −
∫

Σ

d3�x ε0ijk
[

1
2

Bab0i
(
Rab

jk − φab
jk
)
+ ea

0

(
1
6

Gaijk + εabcd φ
bc

ijed
k

)

+
1
2
βa0kTa

ij +
1
2
ωab0

(
∇iBab

jk − ea
iβ

b
jk
)
− 1

2
φab

0i
(
Babjk − 2εabcd ec

jed
k
)]

,

 

(34)

up to a boundary term. The canonical Hamiltonian does not depend on any momenta, but only 
on fields and their spatial derivatives. Finally, introducing Lagrange multipliers λ for each of 
the primary constraints, we construct the total, off-shell Hamiltonian:

HT = Hc +

∫

Σ

d3�x
[

1
4
λ(B)ab

µνP(B)ab
µν +

1
4
λ(φ)ab

µνP(φ)ab
µν

+λ(e)a
µP(e)a

µ +
1
2
λ(ω)ab

µP(ω)ab
µ +

1
2
λ(β)a

µνP(β)a
µν

]
.

 

(35)

3.2. Consistency procedure

We proceed with the calculation of the consistency requirements for the constraints. The con-
sistency requirement is that the time derivative of each constraint (or equivalently its Poisson 
bracket with the total Hamiltonian (35)) must vanish on-shell. This requirement can either 
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give rise to a new constraint, or determine some multiplier, or be satisfied identically. In our 
case, the consistency requirements give rise to a complicated chain structure, depicted in the 
following diagram:

Here every arrow represents one consistency requirement, and numbers on the arrows denote 
the order in which we will discuss them. Steps 8 and 16 involve multiple constraints simulta-
neously, and will require special consideration. Primary, secondary and tertiary constraints are 
denoted as P , S  and T , respectively.

We begin by discussing consistency conditions 1–7,

Ṗ(β)a
0i ≈ 0, Ṗ(B)ab

0i ≈ 0, Ṗ(φ)ab
ij ≈ 0, Ṗ(φ)ab

0i ≈ 0,

Ṗ(B)ab
ij ≈ 0, Ṗ(β)a

ij ≈ 0, Ṗ(ω)ab
i ≈ 0.

 (36)

Calculating the corresponding Poisson brackets with the total Hamiltonian, these give rise to 
the following secondary constraints,

S(T)ai ≡ ε0ijkTa
jk ≈ 0,

S(Rφ)abi ≡ ε0ijk
(
Rab

jk − φab
jk
)
≈ 0,

S(Bee)abij ≡ ε0ijk
(
Bab

0k − 2εabcd ec0edk
)
≈ 0,

S(Bee)abi ≡ ε0ijk
(
Bab

jk − 2εabcd ecjedk
)
≈ 0,

 

(37)

and determine the following multipliers,

λ(ω)ab
i ≈ ∇iω

ab
0 + φab

0i,
λ(e)a

i ≈ ∇iea
0 − ωa

b0eb
i,

λ(B)ab
ij ≈ 4εabcd (∇[iec0 − ωcf 0e f

[i
)

edj] + e[a0β
b]

ij − 2e[a[iβb]
0j].

 

(38)

In step 8 we discuss the consistency conditions

Ṡ(Bee)abi ≈ 0, Ṗ(ω)ab
0 ≈ 0, (39)

simultaneously. Calculating the time derivatives, we obtain

ε0ijk
(

e[a0β
b]

jk − 2e[ajβ
b]

0k

)
≈ 0, ε0ijk e[aiβ

b]
jk ≈ 0, (40)

which can be jointly written as a covariant equation

εµνρσ e[aνβb]
ρσ ≈ 0. (41)
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With the assumption that det(ea
µ) �= 0, this can be solved for βa, giving a set of very simple 

tertiary constraints:

T(β)a
µν ≡ βa

µν ≈ 0. (42)

At this point we can immediately analyze the consistency step 9 as well. Taking the time 
derivative of (42), one easily determines the corresponding multipliers,

λ(β)a
µν ≈ 0. (43)

Next, in steps 10 and 11, from the consistency conditions for the remaining two primary 
constraints,

Ṗ(e)a
0 ≈ 0, Ṗ(e)a

i ≈ 0, (44)

we obtain two new secondary constraints,

S(eR)a ≡ ε0ijkεabcdeb
iRcd

jk ≈ 0,
S(eRφ)a

i ≡ ε0ijkεabcd
(
eb

0Rcd
jk − 2eb

jφ
cd

0k
)
≈ 0.

 (45)

In step 12 we need to discuss the consistency condition for the constraint S(eR)a. After a 
straightforward but tedious calculation, one eventually ends up with the following expression:

Ṡ(eR)a = ∇iS(eRφ)a
i + ωb

a0S(eR)b + 2εabcdφ
cd

0kS(T)bk, (46)

up to terms proportional to primary constraints. Since the time derivative is already expressed 
as a linear combination of constraints, the consistency condition is trivially satisfied, which is 
denoted with a zero in the diagram above.

Moving on to steps 13–15, the consistency conditions

Ṡ(Rφ)abi ≈ 0, Ṡ(Bee)abij ≈ 0, Ṡ(T)ai ≈ 0, (47)

determine the multipliers

λ(φ)ab
jk ≈ 2ω[a

c0Rb]c
jk + 2∇[ jφ

ab
0k],

λ(B)ab0k ≈ 2εabcd
[
ed

kλ(e)c
0 − ed

0∇kec
0 + ωc

f 0ed
0e f

k
]

,
 (48)

and another tertiary constraint

T(eRφ)ai ≡ ε0ijk (Rab
jkeb0 + 2φab

0jebk
)
≈ 0. (49)

Now we turn to step 16. At this point there are only two constraints, T(eRφ)ai and S(eRφ)ai, 
whose consistency conditions have not been discussed yet. To this end, note that these two 
constraints can be rewritten into a very similar form,

S(eRφ)a
i = εabcdε

0ijk (eb
0Rcd

jk − 2eb
jφ

cd
0k
)

,
T(eRφ)a

i = ηacηbdε
0ijk (eb

0Rcd
jk − 2eb

jφ
cd

0k
)

,
 (50)

where the identical expression in parentheses is contracted with εabcd  in the first constraint and 
with ηacηbd  in the second. This suggests that we should discuss their consistency conditions 
simultaneously. As suggested in the diagram above, we will first rewrite these 24 constraints 
(50) into a system of 18 + 6 constraints (to be denoted T(eRφ)abk and T(eRφ)jk respectively) 
as follows. Given that the tetrad ea

µ is nondegenerate, we can freely multiply the constraints 
with it and split the index μ into space and time components. The µ = 0 part is
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ea
0S(eRφ)a

i = −2εabcdε
0ijkea

0eb
jφ

cd
0k,

ea
0T(eRφ)a

i = −2ηacηbdε
0ijkea

0eb
jφ

cd
0k,

 (51)

where the curvature terms have automatically vanished, while the µ = m part is

ea
mS(eRφ)a

i = ea
mεabcdε

0ijk (eb
0Rcd

jk − 2eb
jφ

cd
0k
)

,
ea

mT(eRφ)a
i = ea

mηacηbdε
0ijk (eb

0Rcd
jk − 2eb

jφ
cd

0k
)

.
 (52)

The system of 18 constraints (52) can be shown to be equivalent to the following constraint:

T(eRφ)ab
k ≡ φab

0k − e f
0Rcd

ijFabij
fcdk, (53)

where Fabij
fcdk is a complicated function of ea

i only. The proof that the system (52) is equiva-
lent to (53) is given in appendix C, and the explicit expression for Fabij

fcdk is given in equa-
tion  (C.27). Second, introducing the shorthand notation Kabcd ∈ {εabcd, ηacηbd} and using 
(53), we define

T(eRφ)i ≡ −2Kabcdε
0ijkea

0eb
je f

0Rgh
mnFcdmn

fghk, (54)

which represents a set of 3 + 3 = 6 constraints equivalent to (51). However, a straightforward 
and meticulous (albeit very long) calculation shows that the expression (54) is already a linear 
combination of known constraints and Bianchi identities, and is thus already weakly equal to 
zero. Therefore, T(eRφ)i is not a new independent constraint, and its consistency condition is 
automatically satisfied.

Summing up the step 16, we have replaced the set of constraints (50) by an equivalent set 
(53). It thus follows that the consistency conditions for S(eRφ)a

i  and T(eRφ)a
i are equivalent 

to the consistency condition for T(eRφ)ab
k . Consequently, in step 17, we find that the consist-

ency condition

Ṫ(eRφ)ab
k ≈ 0 (55)

determines the multiplier λ(φ)ab
0k as

λ(φ)ab
0k ≈ λ(e) f

0Rcd
ijFabij

fcdk + 2e f
0
[
Rc

hijω
hd

0 +∇iφ
cd

0j
]

Fabij
fcdk

+ e f
0Rcd

ij
∂Fabij

fcdk

∂eh
m

(
∇meh

0 − ωh
g0eg

m
)

.
 

(56)

This concludes the consistency procedure for all constraints.

3.3. Results

Let us sum up the results of the consistency procedure. We have determined the full set of 
constraints and multipliers as follows: the primary constraints are

P(B)ab
µν , P(φ)ab

µν , P(β)a
µν , P(ω)ab

µ, P(e)a
µ, (57)

and they have 36, 36, 24, 24 and 16 components, respectively, or 136 in total. The secondary 
constraints are

S(T)ai, S(Rφ)abi, S(Bee)abij, S(Bee)abi, S(eR)a, (58)

and they have 12 + 18 + 18 + 18 + 4 = 70 components in total. The tertiary constraints are

T(β)a
µν , T(eRφ)ab

i (59)
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and they have 24 + 18 = 42 components. In addition, the determined multipliers are

λ(B)ab
µν , λ(φ)ab

µν , λ(β)a
µν , λ(ω)ab

i, λ(e)a
i, (60)

and they have 36 + 36 + 24 + 18 + 12 = 126 components. Finally, there are 10 remaining 
undetermined multipliers,

λ(ω)ab
0, λ(e)a

0. (61)

In total, there are C = 136 + 70 + 42 = 248 constraints, 126 determined and 10 undetermined 
multipliers, the latter corresponding to the 10 parameters of the local Poincaré symmetry of 
the action.

4. The physical degrees of freedom

Once we have found all the constraints in the theory, we need to classify each constraint as 
a first-class or a second-class constraint. While some of the second class constraints can be 
identified from (32), the classification is not easy since constraints are unique only up to linear 
combinations. The most efficient way to tabulate all first class constraints is to substitute all 
determined multipliers into the total Hamiltonian (35) and rewrite it in the form

HT =

∫
d3�x

[
1
2
λ(ω)ab

0 Φ(ω)ab + λ(e)a
0 Φ(e)a +

1
2
ωab

0 Φ(T)ab + ea
0 Φ(R)a

]
.

 (62)
The quantities Φ are linear combinations of the constraints, and they must all be of the first 
class, since the total Hamiltonian weakly commutes with all constraints. Written in terms of 
the primary and the secondary constraints, the first-class constraints are given by

Φ(ω)ab = P(ω)ab0,

Φ(e)a = P(e)a
0 +

1
2

Rcd
ijF fbij

acdkP(φ)fb
0k + εabcdeb

kP(B)cd0k,

Φ(T)ab = 4εabcdeciS(T)d
i −∇iS(Bee)abi + ε0ijke[aiT(β)b]

jk

+2εabcde f
iecjP(B)fd

ij −∇iP(ω)abi + 2e[aiP(e)b]i

−R[ac
ijP(φ)c

b]ij,

Φ(R)a = −S(eR)a + Rc
hijω

hd
0F fbij

acdkP(φ)fb
0k

+Rcd
ij
∂F fbij

acdk

∂eh
m

(
∇meh

0 − ωh
g0eg

m
)

P(φ)fb
0k

−ε0ijk∇iT(β)ajk + εabcdeb
i∇jP(B)cdij −∇iP(e)a

i

+εabcd
(
∇keb

0 − ωb
f 0e f

k
)

P(B)cd0k

+
1
2

Rcd
ijF fbij

acdk
[
S(Bee)fb

k + P(ω)fb
k +∇mP(φ)fb

km

−2∇m
(
ee

0Fghmk
efbnP(φ)gh

0n)] .

 

(63)

The constraints (63) are the first-class constraints in the theory. The remaining constraints 
are of the second class

A Miković et alClass. Quantum Grav. 36 (2019) 015005



12

χ(T)ai = S(T)ai,
χ(Rφ)abi = S(Rφ)abi,
χ(Bee)abij = S(Bee)abij,
χ(Bee)abi = S(Bee)abi,
χ(β)a

µν = T(β)a
µν ,

χ(eRφ)ab
i = T(eRφ)ab

i.

χ(B)ab
µν = P(B)ab

µν ,
χ(φ)ab

µν = P(φ)ab
µν ,

χ(β)a
µν = P(β)a

µν ,
χ(ω)ab

i = P(ω)ab
i,

χ(e)a
i = P(e)a

i.

 (64)

Note that χ(β)a
µν  and χ(β)a

µν  are different constraints, despite similar notation. Of 
course, there is no possibility of confusion since we will never raise or lower spacetime indi-
ces of these constraints in the rest of this paper. Also, note that despite the fact that there are 
12 components of χ(T)ai, only 6 of them can be considered second class, since the other 6 are 
part of the first class constraint Φ(T)ab.

At this point we can count the physical degrees of freedom. Given a field theory with N  
fields whose canonical formulation possesses F  first-class constraints, one can gauge fix F  
fields. The second-class constraints do not generate any gauge symmetries and S  second-class 
constraints are equivalent to vanishing of S/2 fields and S/2 canonically conjugate momenta. 
Hence the number of independent (physical) fields is given by

n = N − F − S
2

. (65)

The number of field components for each of the fundamental fields is

ωab
µ βa

µν ea
µ Bab

µν φab
µν

24 24 16 36 36

which gives the total N = 136. The number of components of the first class constraints is

Φ(e)a Φ(ω)ab Φ(R)a Φ(T)ab

4 6 4 6

which gives the total of F = 20. Similarly, the number of components for the second class 
constraints is

χ(Rφ)abi χ(Bee)abij χ(Bee)abi χ(β)a
µν χ(eRφ)ab

i

18 18 18 24 18

and

χ(B)ab
µν χ(φ)ab

µν χ(β)a
µν χ(ω)ab

i χ(e)a
i χ(T)ai

36 36 24 18 12 12 − 6

where we have denoted that only 6 of the total 12 components of χ(T)ai are independent. 
Thus the total number of independent second class constraints is S = 228. This number can 
also be deduced as the difference between the previously counted total number of constraints 
C = 248 and the number of first class constraints F = 20.

Finally, substituting N , F  and S  into (65), we obtain:

n = 136 − 20 − 228
2

= 2. (66)

We conclude that the theory has two physical degrees of freedom, as expected for general 
relativity.
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At this point it is convenient to rewrite the last term in (62) in the traditional ADM form. 
This is done by projecting the constraint Φ(R)a onto the hypersurface Σ and its orthogonal 
direction. Using the inverse tetrad eµa, define the unit vector na orthogonal to Σ as

na ≡ e0
a√

−g00 (67)

where g00 ≡ ηabe0
ae0

b is the time-time component of the inverse metric gµν. The vector na 
is thus normalized, nana = −1, and we can define the orthogonal and parallel projectors with 
respect to Σ as

Pa
⊥b ≡ −nanb, Pa

‖b ≡ δa
b + nanb. (68)

One can then employ these projectors to rewrite the final term in (62) as

ea
0Φ(R)a = ea

0

(
Pb
⊥a + Pb

‖a

)
Φ(R)b

= −ea
0nanbΦ(R)b + ea

0Pb
‖a (eµbec

µ) Φ(R)c

=
[
ea

0na

] [
−nbΦ(R)b

]
+
[
ea

0Pb
‖aei

b

] [
ec

iΦ(R)c

]
+
[
ea

0Pb
‖ae0

b

] [
ec

0Φ(R)c

]

= NH⊥ + NiDi.
 

(69)

Note that the final term in the second-to-last equality drops out because 

Pb
‖ae0

b =
√
−g00Pb

‖anb ≡ 0. In the last equality we have introduced the well known ADM 
lapse and shift functions,

N ≡ ea
0na =

1√
−g00

, Ni ≡ ea
0Pb

‖aei
b = − g0i

g00 , (70)

and we have split the constraint Φ(R)a into the scalar constraint and 3-diffeomorphism 
constraint,

H⊥ ≡ −nbΦ(R)b, Di ≡ ec
iΦ(R)c. (71)

The constraints Φ(T)ab are equivalent to the local Lorentz constraints J ab, which generate 
the local Lorentz transformations, and together with the 10 momentum constraints Φ(ω)ab and 
Φ(e)a, one can use the scalar constraint H⊥ and the 3-diffeomorphism constraint Di to find the 
Poisson bracket algebra of the first-class constraints. This algebra takes the form

{J ab(x) , J cd(y) } =
1
2

[
ηa[cJ d]b(x)− ηb[cJ d]a(x)

]
δ(3),

{Di(x) , Dj(y) } =
[
Di(x) +Di(y)

]
∂jδ

(3) + Rab
ij(x)Jab(x) δ(3),

{Di(x) , H⊥(y) } =
[
H⊥(x) +H⊥(y)

]
∂iδ

(3) + Rab
i0(x)Jab(x) δ(3),

{H⊥(x) , H⊥(y) } =
[
g̃ij(x)Dj(x) + g̃ij(y)Dj(y)

]
∂iδ

(3),
 

(72)

while all other first-class Poisson brackets are zero, see [23]. Here it is assumed that x ≡ (t,�x), 
y ≡ (t,�y) and δ(3) ≡ δ(3)(�x −�y), while g̃ij is the 3D inverse metric, defined in appendix B.

The Poisson brackets between the second class constraints and the Poisson brackets 
between the first and the second class constraints can be calculated, but we do not give their 
explicit form because we do not need these Poisson brackets for the purposes of this paper. 
Their generic structure is given by
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{χI(x) , χJ(y) } = ∆IJ(x, y) + ∆̃IJ(x, y), (73)

and

{ΦA(x) , χI(y) } = fAI
B(x, y) ΦB(x) + f̃AI

B(x, y) ΦB(y)
+fAI

J(x, y)χJ(x) + f̃AI
J(x, y)χJ(y).

 (74)

If we denote all the fields collectively as θN = (ea
µ,ωab

µ,βa
µν , Bab

µν ,φab
µν) and their corre-

sponding momenta as πN = (π(e)a
µ,π(ω)ab

µ,π(β)a
µν ,π(B)ab

µν ,π(φ)ab
µν), we can denote 

Δ and f  as generalized functions of the type

F(θ(x),π(x))δ(3) + Fi(θ(x),π(x)) ∂iδ
(3) + · · ·

so that all the coefficients are evaluated at the point x, while ∆̃ and f̃  as

F(θ(y),π(y))δ(3) + Fi(θ(y),π(y)) ∂iδ
(3) + · · ·

so that all the coefficients are evaluated at the point y.

5. The phase space reductions

The results of the Hamiltonian analysis imply that the BFCG  GR action (6) can be written as

S0 =

∫ t2

t1
dt
∫

Σ

d3x
[
πN θ̇

N − λ(e)a
0Φ(e)a −

1
2
λ(ω)ab

0Φ(ω)ab

−ea
0Φ(R)a −

1
2
ωab

0Φ(T)ab − µLχL

]
,

 

(75)

where χL  counts over the set of all second-class constraints (64), while µL are Lagrange mul-
tipliers for the second-class constraints.

This action can be reduced to an action for a smaller number of canonical variables by par-
tially solving some of the constraints. Solving M first-class constraints φm = 0 requires that 
we make M gauge-fixing conditions Gm = 0, such that {Gm, Gm′} = 0 and det{Gm,φm′} �= 0. 
We can then solve the equations φm = 0 for the momenta π(Gm). The simplest way to do this 
is to chose Gm to be a set of M coordinates θm, and then to solve the corresponding M first-
class constraints φm = 0 for the momenta πm. As far as the second-class constraints are con-
cerned, we can solve 2K  of them for K  coordinates and their K  momenta.

It is not difficult to see that one can solve the following 192 second-class constraints

χ(B)ab
µν ≡ π(B)ab

µν ≈ 0,

χ(φ)ab
µν ≡ π(φ)ab

µν ≈ 0,

χ(β)a
µν ≡ βa

µν ≈ 0,

χ(β)a
µν ≡ π(β)a

µν + ε0µνρeaρ ≈ 0,

χ(Bee)abij ≡ ε0ijk (Bab
0k − 2εabcdec0edk

)
≈ 0,

χ(Bee)abi ≡ ε0ijk (Bab
jk − 2εabcdecjedk

)
≈ 0,

χ(Rφ)abi ≡ ε0ijk (Rab
jk − φab

jk
)

≈ 0,

χ(eRφ)ab
i ≡ φab

0i − e f
0Rcd

jkFabjk
fcdi ≈ 0,

 (76)
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for (B,β,φ) and their momenta. This will give (B,β,φ) and their momenta as functions of 
the canonical coordinates (e,ω,π(e),π(ω)) so that one obtains a reduced phase-space (RPS) 
theory described by the action

S1 =

∫
d4x

[
π(e)a

µ ėa
µ +

1
2
π(ω)ab

µ ω̇ab
µ − λ(e)a

0Φ̃(e)a −
1
2
λ(ω)ab

0Φ̃(ω)ab

−ea
0Φ̃(R)a −

1
2
ωab

0Φ̃(T)ab − µLχ̃L

]
,

 

(77)

where C̃ denotes a constraint C on the RPS (e,ω,π(e),π(ω)). There are still 20 first-
class constraints, namely Φ̃(ω)ab, Φ̃(e)a, Φ̃(T)ab, Φ̃(R)a, and 36 second-class constraints 
χ̃L = (χ̃(e)a

i, χ̃(ω)ab
i, χ̃(T)ai) on the RPS, so that S1 is equivalent to the Hamiltonian form of 

the Einstein–Cartan action [14].
One would like to understand a reduction of S1 to an action for the triads and spatial spin 

connections (eαi,ωαβ
i). This can be done by gauge fixing ea

0 = 0 and solving the corre-
sponding momenta from Φ̃(e)a = 0. One can also gauge fix ωab

0 = 0 and eliminate the corre-
sponding momenta from Φ̃(ω)ab = 0, as well as to set e0

i = 0 and eliminate the corresponding 
momenta from Φ̃(T)0α = 0. Note that here we have split the group indices into space and time 
components, a = (0,α) where α = 1, 2, 3, see appendix B for details and the notation.

As far as the second-class constraints χ̃L  are concerned, one can eliminate ω0 α
i and the 

corresponding momenta from

χ̃(ω)0α
i = 0, χ̃(e)a

i = 0, χ̃(T)0i = 0. (78)

Note that there are 24 constraints in (78), but there are six relations among them, so that we 
have only 18 independent constraints.

Solving the constraints (78) leads to a RPS based on (eαi,ωαβ
i) ∼= (eαi,ωα

i) and their 
momenta. However, there are still 7 first-class constraints

Φ̃(R)a = 0, Φ̃(T)αβ = 0, (79)

and 18 second-class constraints

χ̃(T)αi = 0, χ̃(ω)αβ
i = 0. (80)

The corresponding action is given by

S2 =

∫
d4x

[
π(e)αiėαi + π(ω)α

iω̇α
i − NH̃⊥ − NiD̃i −

1
2
ωαβ

0J̃αβ − µLχ̃L

]
,

 (81)

where χ̃L = (χ̃(T)αi, χ̃(ω)αβ i) and ωα
i ≡ 1

2ε
αβγωβγi.

We can further eliminate ωα
i  and their momenta from the 18 second-class constraints (80) 

so that one obtains a RPS based on (e,π(e)) variables and the action

S3 =

∫
d4x

[
π(e)αiėαi − NH̃⊥ − NiD̃i −

1
2
ωαβ

0J̃αβ

]
. (82)

This action corresponds to the triad Hamiltonian formulation of general relativity. The ADM 
formulation is obtained by using the 3D metric gij ≡ ea

ieaj = eαieαj  and the corresponding 
momenta. The ADM variables are invariant under the local rotations generated by J̃ αβ, so 
that the corresponding action is given by
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S4 =

∫
d4x

[
π(g)ij ġij − NH̃⊥ − NiD̃i

]
, (83)

where H⊥ and Di are the ADM constraints.

6. Conclusions

We found all the constraints and determined the Lagrange multipliers for the BFCG  GR action 
(6). We also determined the total Hamiltonian (62), the first-class constraints (63), the second-
class constraints (64) and the algebra of the constraints (72)–(74). The obtained constraints 
also give the correct number of the physical DOF, see (66). We also showed how the other 
known canonical formulations of GR, namely Einstein–Cartan, triad and ADM, arise from 
the canonical formulation of BFCG  GR by performing the RPS analysis. This analysis also 
gave a new canonical formulation for GR, namely the action S2, which is based on the reduced 
phase space of triads and SO(3) connections and their canonically conjugate momenta.

Since the main motivation for finding a canonical formulation of the BFCG  GR theory 
is the construction of a spin-foam basis which will be a categorical generalization of the 
spin-network basis from LQG, then the results of the RPS analysis in section 5 are of great 
importance for this goal. Namely, in order to construct such a spin-foam basis one needs a 
2-connection (A,β) for the Euclidean 2-group (SO(3),R3) on the spatial manifold Σ, see 
[12]. This makes the RPS space (eαi,ωαβ

i,π(e)αi,π(ω)αβ i) and the corresponding action S2 a 
natural starting point for the canonical quantization. Furthermore, this RPS provides a natural 
2-connection on Σ 

(Aαβ
i ,βα

ij) = (ωαβ
i, εijkẽkα ), (84)

where ẽk
α are the inverse triads.

Hence one can use the 2-holonomy invariants for the 2-connection (84) associated to 
embedded 2-graphs in Σ, see [24], in order to construct the wavefunctions corresponding 
to the spin-foam basis. However, the existence of the second-class constraints χm will com-
plicate the task of obtaining the physical Hilbert space. One can avoid the second-class con-
straints by using the Dirac brackets, but this may produce non-canonical commutators among 
the fields and their canonical momenta. If one wants to preserve the Heisenberg algebra of 
the canonical variables, then one can use the Gupta–Bleuler quantization approach, where the 
second-class constraints would be imposed weakly, as 〈Ψ|χ̂m|Ψ〉 = 0.

A simpler approach to the problem of second-class constraints in quantum theory is to 
solve classically the second-class constraints χm, which is equivalent to using the (eαi,π(e)αi) 
RPS and the action S3. Then the spin connection ωαβ

i becomes a function of the triads and the 
components of the 2-connection (84) will still commute as operators, so that a spin-foam basis 
can be constructed, and the e-representation will be the most convenient for this.

Note that in the triad formulation of GR the Ashtekar variables can be defined via a series 
of canonical transformations,

(eαi,π(e)αi) → (ẽi
α ,π(ẽ)i

α) →
(

f (ζ)Ei
α = |e|3 ẽi

α , Aα
i = ω(e)αi +

ζ

|e|3
π(ẽ)i

α
)

, (85)

where |e|3 = det(eαi) and for ζ =
√
−1, f (ζ) = 1 [25] while for ζ ∈ R, f (ζ) = ζ  [26]. Then 

one can define the spin-network basis by using spin-network graphs and the associated holo-
nomies for the connection A, see [1]. This suggests that the Ashtekar variables could be also 
a natural starting point for the construction of a spin-foam basis. However, the corresponding 
2-connection components
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Aαβ
i = εαβγAγi, βα

ij = εijkEkα, (86)

will not commute as operators and one has to use again the 2-connection (84).
Let us also note that the results obtained about the Hamiltonian structure of the theory 

can be important if one considers minisuperspace or midisuperspace models of quantum 
gravity, as is commonly done in the context of cosmology. For example, in Loop Quantum 
Cosmology (for a review, see [27–30] and references therein), one typically performs some 
type of symmetry reduction or gauge fixing prior to quantization, and then considers a result-
ing quantum-mechanical model of the Universe. However, in this work we have discussed 
only pure gravity, without matter fields. For this reason, our results are not directly applicable 
in the context of cosmology, since cosmological models without matter fields are not realistic. 
Repeating our analysis with included matter fields therefore represents an interesting avenue 
for further research.

Acknowledgments

MV would like to thank Prof Milovan Vasilić for discussion and helpful suggestions.
AM was partially supported by the FCT projects PEst-OE/MAT/UI0208/2013 and EXCL/

MAT-GEO/0222/2012. MAO was supported by the FCT grant SFRH/BD/ 79285/2011. 
MV was supported by the FCT project PEst-OE/MAT/UI0208/2013, the FCT grant 
SFRH/BPD/46376/2008, the bilateral project ‘Quantum Gravity and Quantum Integrable 
Models—2015–2016’ number 451-03-01765/2014-09/24 between Portugal and Serbia, and 
partially by the project ON171031 of the Ministry of Education, Science and Technological 
Development, Serbia.

Appendix A. Bianchi identities

Recalling the definitions of the torsion and curvature 2-forms,

Ta = dea + ωa
b ∧ eb, Rab = dωab + ωa

c ∧ ωcb, (A.1)

one can take the exterior derivative of Ta and Ra, and use the property dd ≡ 0 to obtain the 
following two identities:

∇Ta ≡ dTa + ωa
b ∧ Tb = Ra

b ∧ eb,
∇Rab ≡ dRab + ωa

c ∧ Rcb + ωb
c ∧ Rac = 0.

 (A.2)

These two identities are universally valid for torsion and curvature, and are called Bianchi 
identities. By expanding all quantities into components as

Ta =
1
2

Ta
µνdxµ ∧ dxν , Rab =

1
2

Rab
µνdxµ ∧ dxν , (A.3)

ea = ea
µdxµ, ωab = ωab

µdxµ, (A.4)

and using the formula dxµ ∧ dxν ∧ dxρ ∧ dxσ = εµνρσd4x, one can rewrite the Bianchi identi-
ties in component form as

ελµνρ
(
∇µTa

νρ − Ra
bµνeb

ρ

)
= 0, (A.5)
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and

ελµνρ∇µRab
νρ = 0. (A.6)

For the purpose of Hamiltonian analysis, one can split the Bianchi identities into those 
which do not feature a time derivative and those that do. The time-independent pieces are 
obtained by taking λ = 0 components:

ε0ijk (∇iTa
jk − Ra

bijeb
k
)
= 0, (A.7)

ε0ijk∇iRab
jk = 0. (A.8)

These identities are valid as off-shell, strong equalities for every spacelike slice in spacetime, 
and can be enforced in all calculations involving the Hamiltonian analysis. The time-depen-
dent pieces are obtained by taking λ = i components:

ε0ijk (∇0Ta
jk − 2∇jTa

0k − 2Ra
b0jeb

k − Ra
bjkeb

0
)
= 0, (A.9)

and

ε0ijk (∇0Rab
jk − 2∇jRab

0k
)
= 0. (A.10)

Due to the fact that they connect geometries of different spacelike slices in spacetime, they 
cannot be enforced off-shell. Instead, they can be derived from the Hamiltonian equations of 
motion of the theory.

In light of the Bianchi identities, we should note that the action (6) features three more 
fields, βa, Bab and φab, which also have field strengths Ga, ∇Bab, ∇φab , and for which one can 
similarly derive Bianchi-like identities,

∇Ga = Ra
b ∧ βb,

∇2Bab = Ra
c ∧ Bcb + Rb

c ∧ Bac,

∇2φab = Ra
c ∧ φcb + Rb

c ∧ φac.

 (A.11)

However, due to the fact that all three fields are two-forms, in 4-dimensional spacetime these 
identities will be single-component equations, with no free spacetime indices,

ελµνρ
(

2
3
∇λGa

µνρ − Ra
bµνβ

b
νρ

)
= 0, (A.12)

and similarly for ∇2Bab and ∇2φab . Therefore, these equations necessarily feature time deriv-
atives of the fields, and do not have a purely spatial counterpart to (A.7) and (A.8). In this 
sense, like the time-dependent pieces of the Bianchi identities, they do not enforce any restric-
tions in the sense of the Hamiltonian analysis, but can instead be derived from the equations of 
motion and expressions for the Lagrange multipliers.

Appendix B. Inverse tetrad and metric

We perform the split of the group indices into space and time components as a = (0,α) where 
α = 1, 2, 3, and write the tetrad ea

µ as a 1 + 3 matrix
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ea
µ =




e0
0 e0

m

eα0 eαm


 . (B.1)

Then the inverse tetrad eµb can be expressed in terms of the 3D inverse tetrad ẽm
β as

eµb =




1
σ

− 1
σ

ẽm
β e0

m

− 1
σ

ẽm
α eα0 ẽm

β +
1
σ
(ẽm

α eα0)
(
ẽk

β e0
k
)




, (B.2)

where

σ ≡ e0
0 − e0

kẽk
α eα0 (B.3)

is the 1 × 1 Schur complement [31] of the 4 × 4 matrix ea
µ. By definition, the 3D tetrad satis-

fies the identities

eαmẽm
β = δαβ , eαmẽn

α = δn
m. (B.4)

In addition, if we denote e ≡ det ea
µ and e3≡ det eαm, the Schur complement σ satisfies the 

Schur determinant formula

e = σe3, (B.5)

which can be proved as follows.
Given any square matrix divided into blocks as

∆ =

[
A B
C M

]
 (B.6)

such that A and M are square matrices and M has an inverse, we can use the Aitken block 
diagonalization formula [31]

[
I −BM−1

0 I

] [
A B
C M

] [
I 0

−M−1C I

]
=

[
S 0
0 M

]
, (B.7)

where

S = A − BM−1C (B.8)

is called the Schur complement of the matrix Δ. The Aitken formula can be written in the 
compact form

P∆Q = S ⊕ M, (B.9)

where P  and Q are the above triangular matrices. Taking the determinant, we obtain

detP det∆detQ = det S detM. (B.10)

Since the determinant of a triangular matrix is the product of its diagonal elements, we have 
detP = detQ = 1, which then gives the famous Schur determinant formula:

det∆ = det S detM. (B.11)
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Now, performing the 1 + 3 block splitting of the tetrad matrix ∆ = [ea
µ]4×4, we obtain the 

Schur complement S = [σ]1×1, while M = [eαm]3×3. The Schur determinant formula then 
gives

e = σe3, (B.12)

which completes the proof.
Similarly to the tetrad, one can perform a 1 + 3 split of the metric gµν,

gµν =




g00 g0j

gi0 gij


 . (B.13)

The inverse metric gµν can be expressed in terms of the 3D inverse metric g̃ij as

gµν =




1
ρ

−1
ρ

g̃ing0i

− 1
ρ

g̃mjg0j g̃mn +
1
ρ

(
g̃mjg0j

) (
g̃ing0i

)




, (B.14)

where

ρ ≡ g00 − g0ig̃ijg0j (B.15)

is the 1 × 1 Schur complement of gµν. By definition, the 3D metric satisfies the identity

gijg̃ jk = δk
i . (B.16)

In addition, if we denote g ≡ det gµν and g3 ≡ det gij, the Schur complement ρ satisfies the 
Schur determinant formula

g = ρg3. (B.17)

The components of the metric can of course be written in terms of the components of the 
tetrad,

gµν = ηabea
µeb

ν . (B.18)

Regarding the inverse metric, the only nontrivial identity is between g̃ij and ẽi
α. Introducing 

the convenient notation eα ≡ ẽi
α e0

i, it reads:

g̃ij = ẽi
α ẽj

β

[
ηαβ +

eαeβ

1 − eγeγ

]
. (B.19)

The relationship between determinants and Schur complements is:

g = −e2, g3 = (e3)
2
(1 − eαeα) , ρ =

σ2

eαeα − 1
. (B.20)

Finally, there is one more useful identity,

g0jg̃ij = ẽi
α eα0 −

σ

1 − eβeβ
ẽi
α eα, (B.21)

which can be easily proved with some patient calculation and the other identities above.
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Appendix C. Solving the system of equations

In order to show that the constraints (52) are equivalent to the constraint (53), we proceed as 
follows. Introducing the shorthand notation Kabcd ∈ {εabcd, ηacηbd}, we can rewrite (52) in a 
convenient form

ea
mKabcdε

0ijk (eb
0Rcd

jk − 2eb
jφ

cd
0k
)
≈ 0. (C.1)

Next we multiply it with the Levi-Civita symbol ε0iln in order to cancel the ε0ijk , relabel the 
index m → i and obtain

Kabcd
(
ea

ieb
jφ

cd
0k − ea

ieb
kφ

cd
0j
)
≈ Kabcdea

ieb
0Rcd

jk. (C.2)

The antisymmetrization in jk  indices can be eliminated by writing each equation three times 
with cyclic permutations of indices ijk , then adding the first two permutations and subtracting 
the third. This gives:

Kabcdea
ieb

jφ
cd

0k ≈ Kabcdea
0

[
1
2

eb
kRcd

ij − eb
[iRcd

j]k

]
. (C.3)

Introducing the shorthand notation Pijk  and Qijk  for the expression on the right-hand side as

Pijk ≡ ηacηbdea
0

[
1
2

eb
kRcd

ij − eb
[iRcd

j]k

]
,

Qijk ≡ εabcdea
0

[
1
2

eb
kRcd

ij − eb
[iRcd

j]k

]
,

 (C.4)

our system can be rewritten as

ηacηbdea
ieb

jφ
cd

0k ≈ Pijk, εabcdea
ieb

jφ
cd

0k ≈ Qijk. (C.5)

This system consists of 18 equations for the 18 variables φab
0k . We look for a solution in the 

form

φcd
0k = AcdmnPmnk + BcdmnQmnk, (C.6)

where the coefficients Acdmn  and Bcdmn  are to be determined, for arbitrarily given values of Pijk  
and Qijk . Substituting (C.6) into (C.5) we obtain

[
ηacηbdea

ieb
jAcdmn − δ

[m
i δ

n]
j

]
Pmnk +

[
ηacηbdea

ieb
jBcdmn

]
Qmnk ≈ 0,[

εabcdea
ieb

jAcdmn
]
Pmnk +

[
εabcdea

ieb
jBcdmn − δ

[m
i δ

n]
j

]
Qmnk ≈ 0.

 (C.7)

Since Pmnk and Qmnk are considered arbitrary, the expressions in the brackets must vanish, giv-
ing the following equations for Acdmn ,

ηacηbdea
ieb

jAcdmn ≈ δ
[m
i δ

n]
j , εabcdea

ieb
jAcdmn ≈ 0, (C.8)

and for Bcdmn ,

ηacηbdea
ieb

jBcdmn ≈ 0, εabcdea
ieb

jBcdmn ≈ δ
[m
i δ

n]
j . (C.9)

Focus first on (C.8). The first equation can be rewritten in the form

eciedjAcdmn ≈ δ
[m
i δ

n]
j , (C.10)

A Miković et alClass. Quantum Grav. 36 (2019) 015005



22

and we want to rewrite the second equation in a similar form as well. In order to do that, we 
need to get rid of the Levi-Civita symbol on the left-hand side, by virtue of the identity

det(eaµ)εabcd = εµνρσeaµebνecρedσ . (C.11)

Noting that det(eaµ) = det(ηabeb
µ) = − det(ea

µ) = −e and introducing the metric 
gµν ≡ ea

µeaν, we can multiply this identity with ea
ieb

j  to obtain:

εabcdea
ieb

j = −1
e
εµνρσgµigνjecρedσ . (C.12)

Substituting this into the second equation in (C.8) gives

εµνρσgµigνjecρedσAcdmn ≈ 0. (C.13)

Next we expand the ρ and σ indices into space and time components as ρ = (0, k) and σ = (0, l) 
to obtain

2εµν0lgµigνjec0edlAcdmn + εµνklgµigνjeckedlAcdmn ≈ 0. (C.14)

The second term on the left can be evaluated using (C.10), which gives:

2εµν0lgµigνjec0edlAcdmn + εµνmngµigνj ≈ 0. (C.15)

The Levi-Civita symbol in the first term is nonzero only if µν  are spatial indices, so we can 
write

2εrs0lgrigsjec0edlAcdmn + εµνmngµigνj ≈ 0. (C.16)

At this point we need to introduce 3D inverse metric, g̃ij, and to split the group indices into 
3 + 1 form a = (0,α) where α = 1, 2, 3, see appendix B. Multiplying (C.16) with two inverse 
spatial metrics and another Levi-Civita symbol, we can finally rewrite it as:

ec0ediAcdmn ≈ g0jg̃ j[mδ
n]
i . (C.17)

The goal of all these transformations was to rewrite the system (C.8) into the form

eciedjAcdmn ≈ δ
[m
i δ

n]
j , ec0ediAcdmn ≈ g0jg̃ j[mδ

n]
i . (C.18)

At this point we can expand the group indices on the left-hand side into 3 + 1 form, to obtain:

eγieδjAγδmn +
(
e0

jeδi − e0
ieδj

)
A0δmn ≈ δ

[m
i δ

n]
j , (C.19)

eγ0eδjAγδmn +
(
e0

jeδ0 − e0
0eδj

)
A0δmn ≈ g0kg̃k[mδ

n]
j . (C.20)

Now we multiply (C.19) with ẽi
α eα0 and subtract it from (C.20). The first terms on the left 

cancel, and (C.20) becomes

−σeδjA0δmn ≈ g0kg̃k[mδ
n]
j − ẽ[mα δ

n]
j eα0, (C.21)

where σ is the 1 × 1 Schur complement matrix of the tetrad ea
µ (see appendix B). Multiplying 

with another inverse 3D tetrad and using the identity (B.21), we finally obtain the first half of 
the coefficients A:

A0αmn ≈ 1
1 − eγeγ

ẽ[mδ ẽn]α eδ . (C.22)
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Finally, substituting this back into (C.19) and multiplying with two more inverse 3D tetrads 
we obtain the second half of the coefficients A:

Aαβmn ≈ ẽ[mα ẽn]β +
eδ

1 − eγeγ

[
eαẽ[mδ ẽn]β − eβ ẽ[mδ ẽn]α

]
. (C.23)

Next we turn to the system (C.9) for coefficients B. The method to solve it is completely 
analogous to the above method of solving (C.8), and we will not repeat all the steps, but rather 
only quote the final result:

B0βmn ≈ 1
4
ε0βγδ

[
ẽm

γ ẽn
δ + 2ẽ[mα ẽn]

δ
eαeγ

1 − eεeε

]
, (C.24)

and

Bαβmn ≈ 1
2

1
1 − eεeε

ε0αβγ ẽ[mγ ẽn]
δ eδ . (C.25)

To conclude, by determining the A and B coefficients in (C.6) we have managed to solve 
the original system of equations (C.1) for φab

0k . Substituting (C.4) into (C.6) the expression 
for φab

0k  can be arranged into the form

φab
0k ≈ e f

0Rcd
mnFabmn

fcdk, (C.26)

where

Fabmn
fcdk ≡ 1

2

[
Aabmnηfcedk − 2Aabimηfcediδ

n
k

+ Babmnεfhcdeh
k − 2Babimεfhcdeh

iδ
n
k

]
,

 
(C.27)

and coefficients A and B are specified by (C.22)–(C.25). Note that (C.27) depends only on ea
i 

components of the metric (in a very complicated way), while the dependence of φab
0k  on ea

0 
and ωab

i is factored out in (C.26).

Appendix D. Levi-Civita identity

The identity for the Levi-Civita symbol in 4 dimensions used in the main text is:

A[aεb]cdf CcDdF f = −1
2
εabcdAf

[
CdD f Fc + CcDdF f + C f DcFd] . (D.1)

The proof goes as follows. Denote the left-hand side of the identity as

Kab ≡ A[aεb]cdf CcDdF f (D.2)

and take the dual to obtain:

εaba′b′Kab = εaba′b′εbcdf AaCcDdF f . (D.3)

Next expand the product of two Levi-Civita symbols into Kronecker deltas and use them to 
contract the vectors A, C, D and F :

εaba′b′Kab = 2
[
(A · D)F[a′Cb′] + (A · F)C[a′Db′] + (A · C)D[a′Fb′]

]
. (D.4)
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Now take the dual again, i.e. contract with εa′b′cd to obtain

−4Kcd = εa′b′cdε
aba′b′Kab

= 2εa′b′cd

[
(A · D)F[a′Cb′] + (A · F)C[a′Db′] + (A · C)D[a′Fb′]

]
.

 (D.5)
Finally, multiply by −1/4 and relabel the indices to obtain

Kab = −1
2
εabcdAf

[
CdD f Fc + CcDdF f + C f DcFd] , (D.6)

which proves the identity.

Appendix E. Relation between the BFCG and the MacDowell–Mansouri 
models

Given that the constrained BFCG  action (6) is equivalent to GR, it is a straightforward exer-
cise to include a cosmological constant term:

SGRΛ =

∫

M

[
Bab ∧ Rab + ea ∧ Ga − φab ∧

(
Bab − εabcd ec ∧ ed)

−Λ

6
εabcd ea ∧ eb ∧ ec ∧ ed

]
,

 
(E.1)

Working out the corresponding equations of motion, one obtains the same set (17)–(20) as for 
the action (6), except for the Einstein field equation (21) which is modified into

εabcd

(
Rbc − Λ

3
eb ∧ ec

)
∧ ed = 0,

 (E.2)
which can in turn be rewritten into the standard component form

Rµν − 1
2

R gµν + Λ gµν = 0.
 (E.3)

Here the parameter Λ ∈ R is the cosmological constant.
It is interesting to note that one can obtain the MacDowell–Mansouri action for GR  

[18–22] from the action (E.1). In particular, the relationship between (E.1) and the MacDowell–
Mansouri action is analogous to the relationship between the Palatini and Einstein–Hilbert 
actions, respectively, as we shall now demonstrate. To this end, first add and subtract a term 
ζBab ∧ ea ∧ eb to (E.1), where ζ = ±1, and rewrite it in the form

SGRΛ =

∫

M

[
Bab ∧

(
Rab − ζea ∧ eb

)
+ ea ∧ Ga − φab ∧

(
Bab − εabcd ec ∧ ed)

+ea ∧ eb ∧
(
ζBab −

Λ

6
εabcd ec ∧ ed

)]
.

 

(E.4)

Next we perform the partial integration over the ea ∧ Ga  term, and rewrite the action as

SGRΛ =

∫

M

[
Bab ∧

(
Rab − ζea ∧ eb

)
+ βa ∧∇ea − φab ∧

(
Bab − εabcd ec ∧ ed)

+ea ∧ eb ∧
(
ζBab −

Λ

6
εabcd ec ∧ ed

)]
.

 

(E.5)
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Now we want to eliminate the Lagrange multiplier φab from the action. This is performed in 
analogy with the way the Palatini action is transformed into the Einstein–Hilbert action—we 
take the variation of the action with respect to φab to obtain the corresponding equation of 
motion, and then substitute this equation back into the action. The equation of motion is alge-
braic rather than differential,

Bab = εabcdec ∧ ed, (E.6)

which suggests that no propagating degrees of freedom will be lost upon substituting it back 
into the action. So we solve it for the product of two tetrads,

ea ∧ eb = −1
4
εabcdBcd, (E.7)

and substitute it back into (E.5), eliminating the product of the tetrads from all terms except 
the first one, to obtain:

S =

∫

M

[
Bab ∧

(
Rab − ζea ∧ eb

)
+ βa ∧∇ea +

Λ− 6ζ
24

εabcd Bab ∧ Bcd
]

.

 (E.8)
Note that the term containing φab has vanished from the action, while the final term has been 
transformed into the B ∧ B term.

Finally, to see that (E.8) is actually the MacDowell–Mansouri action, introduce the follow-
ing change of variables:

BAB ≡




Bab βa

2

−βb

2 0


 , AAB ≡




ωab ea

−eb 0


 , (E.9)

and

FAB ≡ dAAB + AA
C ∧ ACB =




Rab − ζea ∧ eb ∇ea

−∇eb 0


 , VA ≡




0
0
0
0
1




. (E.10)

These represent the 5-dimensional 2-form BAB, connection 1-form AA, its field strength 2-form 
FAB and a 0-form VA. The capital Latin indices take values 0, 1, 2, 3, 5, and we can also intro-
duce the 5-dimensional Levi-Civita symbol εABCDE , which is related to the ordinary 4-dimen-
sional one as εabcd5 ≡ εabcd . Using all this, the action (E.8) can be rewritten into the form

S =

∫

M

[
BAB ∧ FAB +

Λ− 6ζ
24

Bab ∧ Bcd εABCDE VE
]

, (E.11)

which is manifestly covariant with respect to the action of the groups SO(4, 1) or SO(3, 2), 
depending on the choice of ζ = ±1, which enters the 5-dimensional metric

ηAB ≡




−1
1

1
1

ζ




, (E.12)
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where the off-diagonal values are assumed to be zero. The action (E.11) is precisely the 
BF-form ulation of the MacDowell–Mansouri action [18–22], as we have set out to demonstrate.
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Abstract
We show that, as a consequence of the local Poincaré symmetry, gravity and 
matter fields have to be entangled, unless the overall action is carefully fine-
tuned. First, we present a general argument, applicable to any particular theory 
of quantum gravity with matter, by performing the analysis in the abstract 
nonperturbative canonical framework, demonstrating the nonseparability 
of the scalar constraint, thus promoting the entangled states as the physical 
ones. Also, within the covariant framework, using a particular toy model, we 
show explicitly that the Hartle–Hawking state in the Regge model of quantum 
gravity is entangled. Our result is potentially relevant for the quantum-
to-classical transition, taken within the framework of the decoherence 
programme: due to the gauge symmetry requirements, the matter does not 
decohere, it is by default decohered by gravity. Generically, entanglement 
is a consequence of interaction. This new entanglement could potentially, 
in form of an ‘effective interaction’, bring about corrections to the weak 
equivalence principle, further confirming that spacetime as a smooth four-
dimensional manifold is an emergent phenomenon. Finally, the existence of 
the gauge-protected entanglement between gravity and matter could be seen 
as a criterion for a plausible theory of quantum gravity, and in the case of 
perturbative quantisation approaches, a confirmation of the persistence of the 
manifestly broken gauge symmetry.

Keywords: quantum entanglement, quantum gravity, diffeomorphism 
invariance, scalar constraint
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1. Introduction

The unsolved problems of formulating quantum theory of gravity (QG) and interpreting 
quant um mechanics (QM) are arguably the two most prominent ones of the modern theor-
etical physics. So far, most of the approaches to solve the two were studied independently. 
Indeed, the majority of the interpretations of QM do not involve explicit dynamical effects 
(with notable exceptions of the spontaneous collapse and the de Broglie–Bohm theories), 
while the researchers from the QG community often just adopt some particular interpretation 
of QM, assuming that it contains no unresolved issues. Nevertheless, the two problems share 
a number of similar unsolved questions and counter-intuitive features. A prominent example is 
nonlocality: entanglement-based nonlocality in QM, as well as the anticipated explicit dynam-
ical nonlocality in QG (a consequence of quantum superpositions of different gravitational 
fields, i.e. different spacetimes and their respective causal orders). Another prominent issue 
relevant for both standard QM and QG is the quantum-to-classical transition and the related 
measurement problem.

In relation to the latter, decoherence is in QM the standard approach to the emergence of 
classicality: due to huge complexity of macroscopic (‘classical’) systems and the surround-
ing environment (bath), the ( for all practical purposes) inevitable interaction between the 
two leads to the entanglement and the loss of coherence. While technically this is completely 
within the standard QM, when coupled with additional assumptions, such as the many-world 
interpretation (likely to be the predominant within the community working on decoherence 
and quantum-to-classical transition), the decoherence offers a possible solution to the meas-
urement problem. In an alternative approach, problems with quantising gravity led to the 
half century old idea of gravitationally induced objective collapse of the wave function [1] 
(for an overview, see for example [2], chapter III.B): roughly speaking, due to the position 
uncertainty of massive bodies, which are the sources of gravitational field, the latter exhib-
its quantum fluctuations that decohere the matter, forcing it (or, rather both the matter and 
gravity) to collapse in a well defined (classical) state. Without invoking objective collapse, 
decoherence of quantum matter by purely classical gravity was studied in [3, 4]. In the context 
of perturbative quantum gravity, the topic of gravitationally induced decoherence of matter, 
taken purely within the scope of standard QM (i.e. in the same fashion in which macroscopic 
bodies decohere due to inevitable interaction with surrounding photons, neutrinos, microwave 
background radiation, etc), became recently an intensive field of research [5], see also [6] 
and the references therein for decoherence in the context of cosmological inflation. In addi-
tion, a lot of research focuses on entanglement induced by the presence of horizons in curved 
spacetime, in approaches based on the holography conjecture and in the studies of the black 
hole information problem [7] (for a review, see recent lecture notes [8]). In particular, these 
approaches study the entanglement between the degrees of freedom (both gravitational and 
matter) on the two sides of the horizon.

In this paper we study the entanglement between gravitational and matter fields, in the 
context of an abstract nonperturbative theory of quantum gravity, as well as on the example 
of the Hartle–Hawking state in the Regge quantum gravity model, and show that the two 
fields should always be entangled. Our approach is different from the standard one, studied in 
the perturbative framework: instead of ‘for all practical purposes’ inevitable fast interaction-
induced decoherence from initially product states between two sub-systems [5, 9–13], we 
show that the gauge symmetry requirements (coming in particular from the local Poincaré 
symmetry) secure the entangled states between matter and gravity as physical states. We call 
the latter the gauge-protected decoherence, in contrast to the dynamical decoherence of the 
former. In addition, unlike the horizon-based studies, we discuss the entanglement between 
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the gravitational and the matter degrees of freedom, rather than between the two specially 
chosen regions of spacetime.

Our analysis rests on two main assumptions. First, we assume the validity of the local 
Poincaré symmetry at the quantum level. In the classical field theory, the local Poincaré sym-
metry is a formalisation of the principle of general relativity, which is one of the foundational 
principles of Einstein’s theory of gravity. It is therefore natural to assume that this gauge sym-
metry exists at the quantum level as well. Second, at the classical level we assume the validity 
of the equivalence principle, which is also the main ingredient of Einstein’s general relativity. 
In particular, we assume its ‘strong’ version, namely that the equivalence principle applies to 
all matter fields (i.e. all non-gravitational fields) present in nature.

Given these two assumptions, we focus on the general nonperturbative abstract canonical 
quantisation of the gravitational and matter fields, thus giving a generic model-independent 
argument for a theory of quantum gravity with matter. We analyse the consequences of the 
local Poincaré symmetry-enforced scalar, 3-diffeomorphism and local Lorentz constraints on 
the structure of the total Hilbert space of the theory. Namely, since the physical states must be 
invariant with respect to the gauge symmetry, the constraints induce the Gupta–Bleuler-like 
conditions on the state vectors. Based on the equivalence principle, we then show that the par-
ticular non-separable form of the scalar constraint renders typical product states non-invariant. 
Thus, it eliminates the product states from the physical Hilbert space of the quantum theory, 
unless the interaction between gravity and matter is specifically designed to circumvent the 
non-invariance of product states. In this way, the local Poincaré symmetry protects the exist-
ence of entanglement between the gravitational and matter fields.

In order to verify our results obtained within the abstract canonical framework, we also 
study the covariant (i.e. path integral) quantisation. In particular, knowing that the Hartle–
Hawking state [14] satisfies the scalar constraint, and is therefore an element of the physical 
Hilbert space, we explicitly test whether the matter and gravitational fields are entangled for 
this state vector. We perform the calculation in the Regge quantum gravity model, since it is 
one of the simplest models which provide an explicit definition of the gravitational path int-
egral with matter, and show that the gravitational and matter fields are indeed entangled for the 
Hartle–Hawking state constructed on a simple toy example triangulation.

Therefore, our analysis shows that either gravity and matter fields are indeed entangled, 
or there exists an additional, unknown property of the action, implementing the fine tuning 
needed to allow for the invariance of separable states.

The paper is organised as follows. Section 2 is divided into three subsections. The first is 
devoted to the recapitulation of the Hamiltonian structure of Poincaré gauge theories. The 
second outlines the procedure of nonperturbative canonical quantisation of constrained sys-
tems and its application to the case of gravity with matter fields. In the third subsection we use 
those results to show that the scalar constraint suppresses the existence of separable states of 
a matter-gravity system. In section 3, we present a standard entanglement criterion for pure 
bipartite quantum states and discuss it, within the framework of the path integral quantisation, 
for the case of the Hartle–Hawking state of quantum fields of gravity and matter. In section 4, 
we first introduce the Regge model of quantum gravity, and then apply it to evaluate the 
entanglement criterion for the Hartle–Hawking state, demonstrating that gravity and matter 
are indeed entangled in this state. Finally, in section 5 we present the summary of the results, 
their discussion, and possible future lines of research.

It is important to stress that the gauge-protected entanglement is not an automatic con-
sequence of the universal coupling between gravity and matter, or the fact that matter fields 
are always defined over some background spacetime geometry. For example, in perturbative 
gravity approach, it is quite possible to write the separable state between gravity and matter as
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|Ψ〉 = |g〉 ⊗ |φ〉,

where |g〉 is the graviton state vector, while |φ〉 is the state vector of a scalar particle (both vec-
tors obtained by acting with graviton and scalar creation operators on the Minkowski vacuum 
state |0〉 ≡ |0〉G ⊗ |0〉M). The reason why such a state can be considered legitimate is that 
local Poincaré symmetry is explicitly broken in the perturbative gravity approach, with both 
matter and gravity being treated as spin-zero and spin-two fields, respectively, living on a 
Minkowski spacetime manifold. A similar situation arises in perturbative string theory, where 
local Poincaré symmetry is also manifestly broken. However, in quantum gravity models 
where the local Poincaré symmetry is not violated, our analysis shows that a generic product 
state between gravity and matter would fail to be gauge invariant. Thus, the gauge-protected 
entanglement between gravity and matter is a nontrivial statement and a consequence of local 
Poincaré symmetry, rather than an automatic property of matter fields living on a spacetime 
manifold.

Our notation and conventions are as follows. We will work in the natural system of units 
in which c = � = 1 and G = l2p, where lp is the Planck length. By convention, the metric of 
spacetime will have the spacelike Lorentz signature (−,+,+,+). The spacetime indices are 
denoted with lowercase Greek letters µ, ν, . . . and take the values 0, 1, 2, 3. The spatial part 
of these, taking values 1, 2, 3, will be denoted with lowercase Latin letters i, j, . . . from the 
middle of the alphabet. The SO(3, 1) group indices will be denoted with the lowercase Latin 
letters a, b, . . . from the beginning of the alphabet, and take the values 0, 1, 2, 3. The Lorentz-
invariant metric tensor is denoted as ηab. The capital Latin indices A, B, . . . count the field 
components in a particular representation of the SO(3, 1) group, and take the values from 1 
up to the dimension of that representation. Quantum operators will always carry a hat, φ̂(x), 
ĝ(x), etc. Finally, we will systematically denote the values of functions with parentheses, f (x), 
while functionals will be denoted with brackets, F[φ].

2. Entanglement from the scalar constraint

This section is dedicated to the analysis of the constraints imposed by the relativity and equiv-
alence principles. In section 2.1 we briefly recapitulate the classical Hamiltonian structure of 
gravitational interaction, followed by a short review of canonical quantisation, presented in 
section 2.2. After that, in section 2.3 we present the main result of our paper: we show that 
the scalar constraint, and possibly the 3-diffeomorphism constraint, bring about the generic 
entanglement between gravity and matter.

2.1. Hamiltonian structure of Poincaré gauge theories

We begin with a short review of the Hamiltonian structure of gravitational interaction, based 
on the local Poincaré symmetry. This subsection is aimed to be only a review of the main 
results, so we will skip all proofs and derivations. The details of the Hamiltonian structure for 
Poincaré gauge theories (PGT) can be found in many textbooks, see for example [15], chapter 
V, and the references therein.

We will assume a foliation of spacetime into space and time, with the spacetime topol-
ogy M4 = Σ3 × R, where Σ3 is the 3D hypersurface. For the purpose of generality, we will 
describe the gravitational field as g(x) and matter fields as φ(x), without specifying their exact 
field content, except in examples. A typical example would be the Einstein–Cartan gravity 
coupled to a Dirac matter field, so that the choice of fundamental gravitational fields g would 
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be the tetrads ea
µ(x) and the spin connection ωab

µ(x), while the choice for the fundamental 
matter field φ would be a Dirac fermion field ψ(x). However, other choices for g and φ are also 
possible, for example the metric tensor gµν for gravity and the electromagnetic potential Aµ 
for matter, etc. Since our analysis is largely independent of such choices, we will stick to the 
abstract notation g and φ, assuming that one can apply our analysis to each particular concrete 
choice of fundamental fields.

Given the above notation, we will assume that the action of the theory can be written as

S[g,φ] = SG[g] + SM[g,φ], (1)

where SG[g] is the action of the pure gravitational field, while SM[g,φ] is the action of the 
matter fields coupled to gravity. Since the spacetime metric must both be a function of the 
gravitational field g and is always present in the definition of the dynamics of matter fields, 
the action for the matter fields cannot contain terms independent of g. This elementary fact 
is the crux of our main argument below, and is justified by the equivalence principle, which 
dictates how matter couples to gravity.

To a large extent, we also do not need to specify the details of the actions SG[g] and SM[g,φ]. 
We will only assume that the action (1) belongs to the PGT class of theories, i.e. that it is 
invariant with respect to local Poincaré group P(4) = R4 � SO(3, 1). Every theory belonging 
to the PGT class has the Hamiltonian with the following general structure [15]:

H =

∫

Σ3

d3�x
[
NC + NiCi + NabCab

]
, (2)

up to a 3-divergence. Here N, Ni and Nab are Lagrange multipliers, the first two of which are 
commonly known as lapse and shift functions. The quantities C, Ci  and Cab are usually known 
as the scalar constraint, 3-diffeomorphism constraint, and the local Lorentz constraint (some-
times also called the Gauss constraint), respectively. They are a (g,φ)-field representation of 
the 10 generators of the Poincaré group P(4), in particular the time translation generator, the 
three space translation generators, and six local Lorentz generators (rotations and boosts). 
Note that the Hamiltonian (2) is always a linear combination of these constraints.

The constraints in (2) have the structure similar to the structure of the gravity-matter action 
(1), namely

C = CG(g,πg) + CM(g,πg,φ,πφ),
Ci = CG

i (g,πg) + CM
i (g,πg,φ,πφ),

Cab = CG
ab(g,πg) + CM

ab(g,πg,φ,πφ),
 

(3)

where πg and πφ are the momenta canonically conjugated to the fields g and φ, respectively, 
defined as functional derivatives of the action with respect to the time-derivatives of the fields,

πg(x) =
δS

δ∂0g(x)
, πφ(x) =

δS
δ∂0φ(x)

.

The general dependence (3) on the fields and momenta reflects the corresponding dependence 
in (1).

The exact forms of the gravitational terms of the constraints, namely CG, CG
i  and CG

ab, will 
be immaterial for our main argument presented in the section 2.3 below. In contrast, the struc-
ture of the matter terms CM, CM

i  and CM
ab will be crucial, so we discuss it here in more detail. 

Choose a matter field such that it transforms according to some specific irreducible transfor-
mation of the Poincaré group, and denote it as φA(x), where the capital index A counts the field 
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components in that representation. Then the 3-diffeo constraint CM
i  and the Gauss constraint 

CM
ab are given as

CM
i (g,πg,φ,πφ) = πφA∇i

A
Bφ

B,
CM

ab(g,πg,φ,πφ) = πφA(Mab)
A

Bφ
B,

 (4)

where ∇i
A

B is a covariant derivative for the irreducible representation according to which the 
field φ transforms, while (Mab)

A
B is the representation of the generator Mab of the Lorentz 

group SO(3, 1) in the same representation. In general, the covariant derivative depends on the 
spacetime metric or connection, which is a function of the fundamental gravitational fields 
g, and possibly their momenta πg. The Lorentz group generators, on the other hand, do not 
depend on the spacetime geometry, so the Gauss constraint is actually independent of g and 
πg, and we can write CM

ab(g,πg,φ,πφ) = CM
ab(φ,πφ).

In order to illustrate the two constraints, we will write (4) for the scalar and Dirac fields, as 
the most elementary examples. In the case of the scalar field, we write φA(x) = ϕ(x), where 
the index A takes only a single value. The covariant derivative acts on the scalar field as an 
ordinary derivative, while the representation of the Lorentz generators is trivial, so we can 
write

CM
i (ϕ,πϕ) = πϕ∂iϕ, CM

ab(ϕ,πϕ) = πϕϕ. (5)

We see that in the case of the scalar field, both constraints are independent of the gravitational 
fields and their momenta. In the case of the Dirac fields, we write φA(x) = (ψA(x), ψ̄A(x)), 
where the index A now represents the spinorial index, and we will omit writing it. The covari-
ant derivative acts on the Dirac field in the standard way,

→
∇µψ ≡ ∂µψ +

1
2
ωab

µσabψ,

ψ̄
←
∇µ ≡ ∂µψ̄ − 1

2
ωab

µψ̄σab,
 (6)

where ωab
µ is the spin connection, σab = 1

4 [γa, γb], and γa are the standard Dirac gamma-
matrices satisfying the anticommutation relation {γa, γb} = −2ηab. The representation of 
the Lorentz generators for the case of the Dirac field is Mab = σab. Denoting the conjugate 
momentum for ψ as π̄ and conjugate momentum for ψ̄ as π, we can write the constraints (4) 
as:

CM
i (ω,ψ, π̄, ψ̄,π) = π̄

→
∇iψ + (ψ̄

←
∇i)π,

CM
ab(ψ, π̄, ψ̄,π) = π̄σabψ − ψ̄σabπ.

 (7)

Note that here, unlike in the scalar field example, the 3-diffeo constraint contains the spin con-
nection ωab

µ, which is a part of the gravitational field g = (ea
µ,ωab

µ) for the Einstein–Cartan 
gravity.

In contrast to the 3-diffeo and Gauss constraints (4), the scalar constraint CM has a more 
complicated form,

CM(g,πg,φ,πφ) = πφA∇⊥
A

Bφ
B − 1

N
LM(g,πg,φ,πφ), (8)

where the matter Lagrangian density is defined via

SM[g,φ] =
∫

d4xLM(g, ∂g,φ, ∂φ),
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and ∇⊥ ≡ nµ∇µ is the covariant derivative in the direction of the timelike vector nµ orthogo-
nal to the spacelike hypersurface Σ3. The vector nµ obviously depends on the spacetime met-
ric gµν, and is thus a function of the fundamental gravitational fields g.

There are several things to note regarding the scalar constraint (8). First, it is clear that 
NCM  is the Legendre transformation of the Lagrangian density LM with respect to the ‘veloc-
ity’ N∇⊥φ. Second, in contrast to the constraints (4), which depend only on the symmetry 
transformation properties of the fields, the form of the scalar constraint (8) depends also on 
the choice of the matter Lagrangian density LM, and is therefore described by the dynamics 
of the matter fields coupled to gravity. And third, the scalar constraint CM always necessarily 
depends on the gravitational fields g, in contrast to the 3-diffeo constraint which may or may 
not depend on g, and the Gauss constraint which never depends on g. As we already suggested 
above, this is because the Lagrangian of the matter fields coupled to gravity always contains 
the gravitational degrees of freedom, courtesy of the equivalence principle.

Let us illustrate this dependence of CM on the gravitational fields g in the case of the 
Dirac field. The action for the Dirac field φ = (ψ, ψ̄) coupled to the gravitational fields 
g = (ea

µ,ωab
µ) is given as

SM[e,ω,ψ, ψ̄] =
∫

d4x e
(

i
2
ψ̄γaeµa

↔
∇µψ − mψ̄ψ

)
, (9)

where e is the determinant of the tetrad ea
µ, while eµa is the inverse tetrad. In addition, 

↔
∇µ ≡

→
∇µ−

←
∇µ, and the covariant derivatives 

→
∇µ and 

←
∇µ act to the right and to the left as 

defined in (6), from which one can see that the action also explicitly depends on the connec-
tion ωab

µ. From the action one can read off the Lagrangian density, and calculate the scalar 
constraint (8) as

CM(e,ω,ψ, ψ̄) = − e
N

(
i
2
ψ̄γaeµa (δ

µ
ν + nµnν)

↔
∇νψ − mψ̄ψ

)
.

Note that the quantity δµν + nµnν is a projector to the hypersurface Σ3.

2.2. Canonical quantisation

Having discussed the Hamiltonian structure of the action (1), we now pass on to a short descrip-
tion of the canonical quantisation of the theory. The quantisation of an arbitrary physical sys-
tem with constraints is performed in the standard way, using the Dirac’s procedure [16, 17]  
(see [15] for a review). One begins by classifying all constraints of the theory into the first and 
the second class. The second class constraints are then eliminated by passing from the Poisson 
brackets to the Dirac brackets. The first class constraints remain and represent the generators 
of the gauge symmetry. In general, the Hamiltonian of the theory can be written as

H = H0 + λACA, (10)

where λA are Lagrange multipliers, CA are first class constraints, and H0 is the part of the 
Hamiltonian which describes the evolution of the physical degrees of freedom. Given all this, 
the quantisation is performed in the Heisenberg picture, promoting fundamental fields φ(x) 
to quantum mechanical operators φ̂(x), and introducing the state vectors |Ψ〉 ∈ Hkin, where 
Hkin is the kinematical Hilbert space of the theory. The Dirac brackets between the fields and 
their momenta are then promoted to the commutators of the corresponding operators. The 
Hamiltonian, being a functional of the fields and momenta, also becomes an operator, provid-
ing the usual Heisenberg equations of motion for the field operators,
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i
∂φ̂(x)
∂t

= [φ̂(x), Ĥ].

Finally, the kinematical Hilbert space Hkin is projected onto its gauge invariant subspace 
Hphys, by requiring that every state vector |Ψ〉 ∈ Hphys is annihilated by the generators of the 
gauge symmetry group,

ĈA|Ψ〉 = 0.

In quantum electrodynamics these conditions are known as Gupta–Bleuler quantisation con-
ditions [18, 19]. This requirement ensures that the gauge symmetry of the classical theory 
remains to be a symmetry of the quantum theory as well.

Of course, one cannot hope to implement the above quantisation programme in full detail for 
the general action (1), especially without the detailed specification of the fundamental degrees 
of freedom that define the theory. Instead, we assume that the quantisation programme has 
been carried out in detail, and that all quantities we will write are well defined. This approach 
has one important feature and one important drawback. The feature is generality—our main 
argument for the inevitable entanglement between gravity and matter, to be presented in sec-
tion 2.3, should hold for every particular quantum theory constructed in the above way, as it 
does not actually depend on the details of the quantisation. The drawback is abstractness—in 
using such a general formalism and making a flat assumption that all details are well defined, 
we lose the capability to provide any concrete examples. That said, in section 4 we discuss 
one rigorously defined example of a theory of quantum gravity with matter (Regge quantum 
gravity), and demonstrate the entanglement between gravity and matter fields. Unlike the 
canonical quantisation discussed in this section, that example will be done in the framework 
of the path integral quantisation.

Keeping this disclaimer in mind, we proceed along the lines outlined above and perform 
the canonical quantisation. The most prominent property of our model is the structure of the 
Hilbert space of the theory. The initial kinematical Hilbert space Hkin = HG ⊗HM has a natu-
ral product structure between the gravitational and matter Hilbert spaces, since we have two 
sets of fields, ĝ and φ̂, corresponding to gravity and matter, respectively. Thus, we have a natu-
rally preferred bipartite physical system, because gravitational and matter degrees of freedom 
can be fully distinguished from each other. Second, in order to preserve the Poincaré gauge 
symmetry of the theory at the quantum level, we have to pass from the kinematical Hilbert 
space to the gauge invariant, physical Hilbert space Hphys. By definition, a state |Ψ〉 ∈ Hkin is 
an element of Hphys iff it satisfies

Ĉab|Ψ〉 ≡
[
CG

ab(ĝ, π̂g) + CM
ab(φ̂, π̂φ)

]
|Ψ〉 = 0,

Ĉi|Ψ〉 ≡
[
CG

i (ĝ, π̂g) + CM
i (ĝ, π̂g, φ̂, π̂φ)

]
|Ψ〉 = 0,

 
(11)

and

Ĉ|Ψ〉 ≡
[
CG(ĝ, π̂g) + CM(ĝ, π̂g, φ̂, π̂φ)

]
|Ψ〉 = 0. (12)

As stated above, we assume that the operators Ĉab, Ĉi  and Ĉ are well defined, that operator 
ordering choice has been fixed, as well as all other necessary technical choices, in order for 
the expressions above to make sense mathematically.

We argue that, due to these constraint equations, there are no states in Hphys which can be 
written as product states of the form |ΨG〉 ⊗ |ΨM〉, where |ΨG〉 ∈ HG and |ΨM〉 ∈ HM, i.e. 
the states in Hphys are entangled. We focus on the scalar constraint (12), while the constraints 
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(11) are either irrelevant or redundant for our analysis. This main argument of our paper is 
presented in the next subsection.

2.3. Entanglement

Given a state vector |Ψ〉 ∈ Hkin = HG ⊗HM , it is an element of the physical Hilbert space 
Hphys if it satisfies the Gauss and 3-diffeo constraints (11) and the scalar constraint (12). 
Choosing the eigenbases {|g〉} and {|φ〉} of the quantum field operators ĝ and φ̂, respectively, 
we can work in the so-called field representation, defined as

〈g|ĝ = g〈g|, 〈g|π̂g = −i
δ

δg
〈g|,

〈φ|φ̂ = φ〈φ|, 〈φ|π̂φ = −i
δ

δφ
〈φ|.

 
(13)

Acting on (12) with 〈g,φ| ≡ 〈g| ⊗ 〈φ| from the left, the scalar constraint becomes a functional 
partial differential equation of Wheeler–DeWitt type:

[
CG

(
g,−i δ

δg

)
+ CM

(
g,−i δ

δg ,φ,−i δ
δφ

)]
Ψ[g,φ] = 0, (14)

where Ψ[g,φ] ≡ 〈g,φ|Ψ〉 is the wavefunctional of the combined gravity-matter system. We 
now try to look for a separable state, in the form |Ψ〉 = |ΨG〉 ⊗ |ΨM〉, where |ΨG〉 ∈ HG and 
|ΨM〉 ∈ HM, as a solution of this equation. Using the field representation (13), we write the 
wavefunctional Ψ[g,φ] as

Ψ[g,φ] ≡ 〈g,φ|Ψ〉
= (〈g| ⊗ 〈φ|) (|ΨG〉 ⊗ |ΨM〉)
= 〈g|ΨG〉〈φ|ΨM〉
≡ ΨG[g]ΨM[φ].

 

(15)

Equation (14) can have separable solutions Ψ[g,φ] = ΨG[g]ΨM[φ] if the functional differ-
ential operator CM  can be written as a product of two operators, denoted KG and KM, depend-

ing only on (g, δ
δg ) and on (φ, δ

δφ ), respectively,

CM

(
g,−i δ

δg ,φ,−i δ
δφ

)
= KG

(
g, δ

δg

)
KM

(
φ, δ

δφ

)
. (16)

If such operators KG and KM exist so that (16) holds, the scalar constraint equation (14) can 
be rewritten as

ΨM[φ] CG

(
g,−i δ

δg

)
ΨG[g] = −

[
KG

(
g, δ

δg

)
ΨG[g]

] [
KM

(
φ, δ

δφ

)
ΨM[φ]

]
.

Dividing this with ΨM[φ] KG

(
g, δ

δg

)
ΨG[g], assuming it is well-defined, we obtain

1

KG

(
g, δ

δg

)
ΨG[g]

CG

(
g,−i δ

δg

)
ΨG[g] = − 1

ΨM[φ]
KM

(
φ, δ

δφ

)
ΨM[φ] = A,

where A is a constant, since the terms on the left and the right of the first equality depend on 
different sets of variables. Therefore, the above equation splits into two independent equations,

[
CG

(
g,−i δ

δg

)
− A KG

(
g, δ

δg

)]
ΨG[g] = 0,[

KM

(
φ, δ

δφ

)
+ A

]
ΨM[φ] = 0,

 
(17)
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which are to be solved independently for ΨG[g] and ΨM[φ], thus providing a separable solution 
of (14).

The whole procedure above rests on the assumption (16) that the matter part CM  of the 
scalar constraint operator can be written as a product of two operators KG and KM. Our main 
argument is to demonstrate that the assumption (16) is never satisfied for the usual matter 
fields, due to the universal nature of the coupling of gravity to matter, ultimately dictated by 
the equivalence principle. Namely, given the structure of the classical scalar constraint for 
matter (8), the corresponding operator can be written as

CM(ĝ, π̂g, φ̂, π̂φ) = π̂φA∇̂⊥
A

Bφ̂
B − 1

N
LM(ĝ, π̂g, φ̂, π̂φ), (18)

where a certain ordering of the operators is assumed. The constraint (18) features the operator-
valued matter Lagrangian LM. Therefore, in order to demonstrate that CM  does not satisfy the 
separability criterion (16) it is enough to demonstrate that the matter Lagrangian does not 
satisfy it. This can be done on a case-by-case basis, for each particular matter field. Invoking 
the equivalence principle, we can write the operator-valued Lagrangian for the scalar field 
coupled to gravity as

LM(ĝ, ϕ̂, ∂ϕ̂) =
1
2

ê
[
ĝµν(∂µϕ̂)(∂νϕ̂)− m2ϕ̂2 + U(ϕ̂)

]
,

where ê is the square-root of the minus determinant operator of the metric tensor,

ê ≡
[

1
4!
εαβγδεµνρσĝαµĝβν ĝγρĝδσ

] 1
2

,

and U is some interaction potential of the scalar field. Ignoring the multiplicative factor ê that 
acts only on HG, the Lagrangian is a sum of two types of terms: the kinetic term, containing 
the inverse metric ĝµν, and the mass and potential terms not featuring the gravitational field 
in any form. The sum cannot therefore be factored into the form KG(ĝ)KM(φ̂, ∂φ̂), since the 
Lagrangian is not a homogeneous function of the gravitational degrees of freedom. Even in 
the case of the massless free scalar field, i.e. when m  =  0 and U  =  0, the kinetic term is a sum 
of several different components of the metric and the derivatives of the scalar field,

ĝ00(∂0ϕ̂)(∂0ϕ̂) + ĝ01(∂0ϕ̂)(∂1ϕ̂) + ĝ12(∂1ϕ̂)(∂2ϕ̂) + . . .

and this still cannot be factored into a product of two operators KG and KM.
In the case of the Dirac field, again invoking the equivalence principle, the operator-valued 

Lagrangian is given by (9),

LM(ê, ω̂, ψ̂, ˆ̄ψ) = ê
(

i
2
ˆ̄ψγaêµa

↔̂
∇µψ̂ − m ˆ̄ψψ̂

)
.

Like in the case of the scalar field, the kinetic and mass terms in the Lagrangian depend dif-
ferently on the gravitational fields êa

µ and ω̂ab
µ, and LM cannot be factored. Moreover, the 

kinetic term itself cannot be factored, since it is a sum of two terms (see equations (6)), only 
one of which contains the spin connection ω̂ab

µ.
Next, the operator-valued Lagrangian for the electromagnetic field coupled to gravity has 

the form

LM(ĝ, Â, ∂Â) = −1
4

ê ĝµρĝνσF̂µν F̂ρσ,
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where F̂µν ≡ ∂µÂν − ∂ν Âµ. Applying the same argument as in the case of the free massless 
scalar field, this Lagrangian also cannot be factored into the form KGKM. The same argument 
also applies to the case of the non-Abelian Yang–Mills Lagrangians.

Summing up, given the ways the matter fields are coupled to gravity, based on the equiva-
lence principle, we conclude that the separability criterion (16) is never satisfied for the physi-
cally relevant cases of scalar, spinor and vector fields. Therefore, according to the discussion 
above, the scalar constraint (12) should not admit separable state vectors into Hphys.

Regarding the above analysis, it is important to emphasize the following. Namely, one 
should note that it is in principle possible for equation (14) to have product state solutions 
(15) despite the fact that it does not satisfy the separability criterion (16). In other words, the 
criterion (16) is a sufficient condition for the existence of product state solutions of (14), but 
it is not necessary, so its violation does not strictly imply the absence of product state solu-
tions. Nevertheless, given the arguably highly complex structure of equation (14)—meaning 
that it represents a nonlinear functional partial differential equation of at least second order in 
g and φ—it is natural to regard any potential product state solutions as completely accidental. 
Moreover, it is questionable if the boundary conditions required for such solutions correspond 
to any realistic physical situation in nature, i.e. they could be irrelevant for realistic physics. 
Due to all these arguments, the existence of product state solutions, in spite of the violation of 
the separability criterion (16), is in our opinion an extraordinary claim, and as such requires 
extraordinary evidence. In other words, the burden of proof is in fact with the statement that 
any product state solution exists, rather than the opposite. Consequently, product states (15) 
are generically not elements of Hphys, and even if one can prove that there exist some product 
states which do happen to belong to Hphys, such states would arguably be completely acci-
dental, with questionable relevance for physics. Otherwise, if there exists a whole class of 
separable states which solve (14) despite the violation of the criterion (16), there must be some 
deep eluding property of the scalar constraint equation, which is both completely unknown 
and very interesting to study.

Finally, while it turns out that the analysis of the scalar constraint equation  (12) is suf-
ficient for our conclusions, let us briefly mention the status of the remaining two constraint 
equations (11). First, the Gauss constraint Ĉab obviously admits separable state vectors. On 
the other hand, the situation with the 3-diffeo constraint Ĉi  is more complicated, and the con-
clusion depends on the type of the field. For example, in the case of the scalar field, from (5) 
we read that ĈM

i  depends only on the scalar field and its momentum, which means that the 
constraint equation does admit separable state vectors. However, in the case of the Dirac field, 
from (7) we read that ĈM

i  depends on the spin connection in addition to the Dirac field, and this 
dependence is not homogeneous in the spin connection, see (6). Thus, the 3-diffeo constraint 
equation does not admit separable state vectors. However, the behaviour of the Gauss and 
3-diffeo constraint equations is redundant for our argument, since the scalar constraint equa-
tion (12) already suppresses separable state vectors for all fields, due to the dynamical form of 
the coupling of matter to gravity. Therefore, our initial assumption of local Poincaré symmetry 
can be weakened to the localisation of its translational subgroup, while the generators of the 
local Lorentz subgroup are irrelevant for our argument.

3. Entanglement in the path integral framework

In the previous section we have discussed the gauge-protected entanglement within the frame-
work of the canonical quantisation of the gravitational field with matter. In this section, we 
focus instead on the path integral framework of quantisation. We analyse the entanglement 
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on the example of the Hartle–Hawking state, which is known to satisfy all constraints of the 
theory. In the next section, we are going to apply the results of this section to the concrete case 
of Regge quantum gravity.

First, we discuss an entanglement criterion for the case of pure overall state of the gravity 
and matter fields. We begin with a brief recapitulation of basic results from the standard QM 
and quantum information theory. A pure bipartite state |Ψ〉12 ∈ H1 ⊗H2 of systems 1 and 2 
can be written in the Schmidt bi-orthogonal form (see, for example [20]):

|Ψ〉12 =
∑

i

√
ri|αi〉1 ⊗ |βi〉2, (19)

where {|αi〉1} and {|βi〉2} are two sets of mutually orthogonal states from H1 and H2, respec-
tively. The partial sub-system states are then given as

ρ̂1 =
∑

i

ri|αi〉1 ⊗ 〈αi|1, (20)

for the system 1, and analogously for the system 2. Squaring ρ̂1, we have

ρ̂2
1 =

∑
i

r2
i |αi〉1 ⊗ 〈αi|1. (21)

If the overall state |Ψ〉12 is separable (i.e. a simple product state), the above sum in (20) will be 
trivial, consisting of a single projector onto the ray |α1〉1 ⊗ 〈α1|1, with r1  =  1. Thus, we have 
that ρ̂2

1 = ρ̂1, or simply, Tr ρ̂2
1 = Tr ρ̂1 = 1. In case the state |Ψ〉12 is entangled, the sum (20) 

will consist of more than just one term, resulting in (∀ i) ri < 1. Therefore, (∀ i) r2
i < ri, and 

we finally have

Tr ρ̂2
1 =

∑
i

r2
i <

∑
i

ri = Tr ρ̂1 = 1. (22)

Due to the symmetry of the Schmidt form (19), the same is valid for the system 2 (for the 
formal proof of the above entanglement criterion (22), see for example [20]).

After this recapitulation of the standard results from QM, we proceed with the analysis of 
the bipartite system of the gravity (G) and matter (M) fields, applying the above entanglement 
criterion (22) to the case of quantum fields. For simplicity, we omit the subscripts G and M for 
pure states of gravity and matter, respectively.

Let Hkin = HG ⊗HM be the combined kinematical gravity-matter Hilbert space. Denote 
the bases in HG and HM as {|g〉} and {|φ〉}, respectively. These are the eigenbases of the 
corre sponding quantum field operators ĝ and φ̂, evaluated on the 3D boundary Σ3 = ∂M4 
of the 4D spacetime manifold M4. The general state vector |Ψ〉 ∈ Hkin of the gravity-matter 
system can then be written as

|Ψ〉 =
∫

Dg
∫

DφΨ[g,φ] |g〉 ⊗ |φ〉, (23)

where Ψ[g,φ] = 〈g,φ|Ψ〉 is called the wavefunctional (in analogy to wavefunction from 
quant um mechanics), and the functional integrals over gravitational degrees of freedom g and 
matter degrees of freedom φ are assumed to be well defined in some way (in section 4 we 
present an explicit example of this). The bases {|g〉} and {|φ〉} are assumed to be orthonormal, 
satisfying

〈g|g′〉 = δ[g − g′], 〈φ|φ′〉 = δ[φ− φ′], (24)

where the Dirac delta functional is assumed to satisfy the formal functional integral identities
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∫
Dg F[g] δ[g − g′] = F[g′],

∫
DφF[φ] δ[φ− φ′] = F[φ′],

 
(25)

for any functionals F[g] and F[φ] belonging to some suitable relevant class.
From the state (23) one can construct a reduced density matrix ρ̂M  for matter fields, 

by taking the partial trace over gravitational degrees of freedom of the full density matrix 
ρ̂ ≡ |Ψ〉 ⊗ 〈Ψ|, as

ρ̂M = TrG ρ̂ =

∫
Dg 〈g|

(
|Ψ〉 ⊗ 〈Ψ|

)
|g〉.

Substituting (23) we get

ρ̂M =

∫
Dg

∫
Dg′

∫
Dφ′

∫
Dg′′

∫
Dφ′′

Ψ∗[g′,φ′] Ψ[g′′,φ′′] 〈g|
(
|g′′〉 ⊗ |φ′′〉 ⊗ 〈g′| ⊗ 〈φ′|

)
|g〉.

Using (24) and (25), the expression for the reduced density matrix can be evaluated to

ρ̂M =

∫
Dg

∫
Dφ′

∫
Dφ′′ Ψ∗[g,φ′]Ψ[g,φ′′] |φ′′〉 ⊗ 〈φ′|. (26)

Taking the square and using (24) and (25) again, one obtains

ρ̂2
M =

∫
Dg

∫
Dg′

∫
Dφ′

∫
Dφ′′

∫
Dφ′′′

Ψ∗[g,φ′] Ψ[g,φ′′] Ψ∗[g′,φ′′′] Ψ[g′,φ′] |φ′′〉 ⊗ 〈φ′′′|.

Finally, taking the trace over matter fields,

TrM ρ̂2
M =

∫
Dφ 〈φ|ρ̂2

M|φ〉,

we get

TrM ρ̂2
M =

∫
Dg

∫
Dg′

∫
Dφ

∫
Dφ′ Ψ∗[g,φ′] Ψ[g,φ] Ψ∗[g′,φ] Ψ[g′,φ′].

 

(27)

Now we want to evaluate (27) for one specific state, namely the Hartle–Hawking state, 
denoted |ΨHH〉. This state is known to satisfy the scalar constraint equation  (12), see [14], 
and thus belongs to the physical Hilbert space Hphys. Our aim is to demonstrate that the 
Hartle–Hawking state is nonseparable, and the strategy is to argue that TrM ρ̂2

M < 1 for 
ρ̂ = |ΨHH〉 ⊗ 〈ΨHH|. The Hartle–Hawking state is defined by specifying the wavefunctional 
Ψ[g,φ] in (23) as

ΨHH[g,φ] = N
∫

DG
∫

DΦ eiStot[g,φ,G,Φ]. (28)

Here N  is a normalisation constant, the variables G and Φ (denoted with the capital letters) 
live in the bulk spacetime M4, while g and φ (denoted with lowercase letters) live on the 
boundary Σ3 = ∂M4, as before. The path integrals are taken over the bulk while keeping the 
boundary fields constant. Finally, the total action functional Stot has the following structure
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Stot[g,φ, G,Φ] = SG[g, G] + SM[g,φ, G,Φ], (29)

where SG is the action for the gravitational field (for example the Einstein–Hilbert action with 
a cosmological constant), while SM is the action for the matter fields coupled to gravity—
hence its dependence on both the gravitational and matter fields. See [14] for details on the 
construction of the expression (28).

In order to analyse the expression (27) more efficiently, it is convenient to introduce the 
following quantity,

Z[φ,φ′] ≡
∫

DgΨHH[g,φ]Ψ∗
HH[g,φ′], (30)

which represents the matrix element of the reduced density matrix ρ̂M . Namely, by evaluating 
(26) for the Hartle–Hawking state, one obtains

ρ̂M =

∫
Dφ

∫
Dφ′ Z[φ,φ′] |φ〉 ⊗ 〈φ′|. (31)

In addition, Z[φ,φ′] has an important geometric structure. Namely, one can consider two 
copies of the spacetime manifold M4, where the boundary Σ3 of the first copy features the 
fields g,φ, while the boundary of the second copy features the fields g,φ′, i.e. such that the 
gravitational field g is the same, while matter fields φ and φ′ are different on the boundaries. 
Then one takes the second copy of M4, inverts it with respect to the boundary Σ3 (the result is 
denoted as M̄4), and glues it to the first copy along the common boundary, to obtain a mani-
fold M4 ∪ M̄4, which has no boundary. This can be illustrated by the following diagrams:

M4

Σ3 M̄4

Σ3

M4

M̄4

Σ3

The quantity Z[φ,φ′] is then obtained by integrating over all gravitational degrees of freedom, 
and all bulk matter degrees of freedom, weighted by the kernel eiStot  of the Hartle–Hawking 
wavefunction (28). This construction is important because the trace of Z[φ,φ′] is the state sum 
of the gravitational and matter fields over the manifold M4 ∪ M̄4:

∫
Dφ Z[φ,φ] = Z ≡

∫
DG

∫
DΦ eiS[G,Φ]. (32)

Here, S[G,Φ] is the total gravity-matter action similar to (29), defined over the manifold 
M4 ∪ M̄4, and thus features no boundary fields. From (30)–(32) it is then easy to see that the 
normalization of the state sum, Z  =  1, and simultaneously the normalization of the reduced 
density matrix, Tr ρ̂M = 1, i.e.

∫
Dφ Z[φ,φ] = 1, (33)

are equivalent to the normalisation of the Hartle–Hawking state, 〈ΨHH|ΨHH〉 = 1. Finally, 
from the definition (30) it is easy to see that Z[φ,φ′] is self-adjoint,

Z[φ,φ′] = Z∗[φ′,φ],

as the matrix elements of the density matrix ρ̂M  are supposed to be.
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Returning to the evaluation of (27) for the Hartle–Hawking state, one can use (30) to 
rewrite it into the compact form

TrM ρ̂2
M =

∫
Dφ

∫
Dφ′ ∣∣Z[φ,φ′]

∣∣2 . (34)

At this point the general analysis cannot proceed any further, since the right-hand side cannot 
be evaluated explicitly without specifying the details of the theory. The calculation will there-
fore proceed further in the next section, where we consider one detailed model of quantum 
gravity with matter.

Despite the inability to evaluate the integral (34) in the general case, one can give a qualita-
tive argument that the result is not equal to one, leading to the nonseparability of the Hartle–
Hawking state. Namely, given the definition (28) of the Hartle–Hawking state, it is easy to see 
that it essentially depends on two quantities—the normalisation constant N , and the choice 
of the action Stot. The normalisation constant is fixed by the requirement that (33) holds. This 
leaves the value of the integral (34) depending solely on the choice of the classical action of 
the theory. It is qualitatively straightforward to see that different choices of the action will 
lead to different values of TrM ρ̂2

M, so any generic choice of Stot is likely to give TrM ρ̂2
M < 1. A 

tentative choice for (29) would be the Einstein–Hilbert action for SG and the Standard Model 
of elementary particle physics for SM, based on the gauge group SU(3)× SU(2)× U(1). 
However, we know that the Standard Model action is incomplete, for example due to the fact 
that dark matter is not included in the description. Therefore, the choice of the classical action 
is a sort of a moving target, and it is unlikely that any candidate action we choose will give 
TrM ρ̂2

M = 1. In this sense, one can only conclude that in a generic case the Hartle–Hawking 
state is nonseparable, supporting the abstract argument from section 2.

Finally, let us note that our assumption of local Poincaré gauge symmetry implies that we 
are discussing the Lorentzian path integral formulation of the theory. In contrast, within the 
Euclidean approach, the Hartle–Hawking state has some problematic characteristics, see for 
example [21] and references therein.

4. Regge quantum gravity example

In this section we will present a short review of the Regge quantum gravity model coupled 
to scalar matter, and then use this model to evaluate (34) for the Hartle–Hawking state. The 
Regge quantum gravity model is intimately connected to the covariant loop quantum gravity 
research framework [22, 23], its generalisations [24–26], and various related research areas 
[27, 28] (see also [29] for an interesting connection to the noncommutative geometry approach 
in the 3D case). Nevertheless, it can be introduced and studied as a simple standalone model of 
quantum gravity independent of any other context, as was done in [30], where some prelimi-
nary results regarding the entanglement in the Hartle–Hawking state have been announced.

4.1. Formalism of Regge quantum gravity

The Regge quantum gravity model is arguably the simplest toy-model of quantum gravity 
constructed by providing a rigorous definition for the gravitational path integral, generically 
denoted as

ZG = N
∫

Dg eiSEH[g],
 (35)
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where SEH[g] is the Einstein–Hilbert action for general relativity. The construction of the path 
integral follows Feynman’s original idea of path integral definition-by-discretisation. We begin 
by passing from a smooth 4D spacetime manifold M4 to a piecewise-linear 4D manifold, 
most commonly a triangulation T(M4). This structure naturally features 4-simplices σ as basic 
building blocks, which themselves consist of tetrahedra τ, triangles Δ, edges ε and vertices v. 
The invariant quantities associated to these objects are the 4-volume of the  4-simplex (4)Vσ, 
the 3-volume of the tetrahedron (3)Vτ , the area of the triangle A∆ and the length of the edge lε, 
respectively, while the vertices do not have nontrivial quantities assigned to them.

It is important to emphasise that the edge lengths are most fundamental of all these quanti-
ties, since one can always uniquely express (4)Vσ, (3)Vτ  and A∆ as functions of lε. For exam-
ple, the most well-known is the Heron formula for the area of a triangle in terms of its three 
edge lengths,

A∆(l) =
√

s(s − l1)(s − l2)(s − l3), s ≡ l1 + l2 + l3
2

,

where the three edges ε = 1, 2, 3 belong to the triangle Δ.
Given a spacetime triangulation, the Einstein–Hilbert action of general relativity,

SEH[g] = − 1
16πl2p

∫

M4

d4x
√
−g R(g),

can be reformulated in terms of edge lengths of the triangulation as the Regge action

SR[l] = − 1
8πl2p

∑
∆∈T(M4)

A∆(l)δ∆(l),

where δ∆ is the so-called deficit angle at triangle Δ, measuring the amount of spacetime cur-
vature around Δ. See [31] and [27] for details and a review.

Once the classical action for general relativity has been adapted to a piecewise-linear mani-
fold structure, we can take the edge lengths of the edges in the triangulation as the fundamen-
tal degrees of freedom of the theory, and define the gravitational path integral (35) as:

ZG = N
∫

D

∏
ε∈T(M4)

dlε µ(l)eiSR[l]. (36)

Here N  is a normalisation constant, while µ(l) is the measure term which ensures the conv-
ergence of the state sum ZG. For the purpose of this paper, we choose the exponential measure

µ(l) = exp


− 1

L4
µ

∑
σ∈T(M4)

(4)Vσ(l)


 , (37)

where Lµ > 0 is a constant and a free parameter of the model (see [32–34] for motivation and 
analysis). Note that the sum of the 4-volumes of all 4-simplices gives the total 4-volume of the 
triangulation T(M4), and will sometimes be denoted simply as V4.

The choice of edge lengths as the fundamental gravitational degrees of freedom in (36) 
determines the integration domain D as a subset of the Cartesian product (R+

0 )
E , where E is 

the total number of edges in T(M4), while R+
0  is the maximum integration domain of each 

individual edge length. We should note that D is a strict subset of (R+
0 )

E  due to the presence 
of triangle inequalities which must be satisfied for all triangles, tetrahedra and 4-simplices in 
a given triangulation.
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Once we have defined the gravitational path integral (35) via the state sum (36), it is 
straightforward to generalise this definition to the situation which includes matter fields. For 
simplicity, we will discuss only a single real scalar field ϕ, although it is not a problem to 
include other fields as well. The path integral we are interested in can be denoted as

ZG+M = N
∫

Dg
∫

Dϕ eiStot[g,ϕ], (38)

where Stot[g,ϕ] is the sum of the Einstein–Hilbert action and the action for the scalar field in 
curved spacetime,

Stot[g,ϕ] = − 1
16πl2p

∫

M4

d4x
√
−g R(g)

+
1
2

∫

M4

d4x
√
−g

[
gµν(∂µϕ)(∂νϕ) + m2ϕ2 + U(ϕ)

]
,

where U(ϕ) is a self-interaction potential of the scalar field. The corresponding lattice version 
of this action is given as

Stot[l,ϕ] = − 1
8πl2p

∑
∆∈T(M4)

A∆(l)δ∆(l)+

+
1
2

∑
σ∈T(M4)

(4)Vσ(l)g
µν
(σ)(l)∂ϕµ∂ϕν

+
1
2

∑
v∈T(M4)

(4)V∗
v (l)

[
m2ϕ2

v + U(ϕv)
]

.

 

(39)

Here, a value of the scalar field ϕv ∈ R is assigned to each vertex v ∈ T(M4). Given any 
4-simplex σ ∈ T(M4), one can label its five vertices as 0, 1, 2, 3, 4, and then define a skew-
coordinate system taking the vertex 4 as the origin and edges 4  −  0, 4  −  1, 4  −  2, 4  −  3, 
respectively as coordinate lines for coordinates xµ, µ ∈ {0, 1, 2, 3}. In these coordinates, the 
derivative ∂µϕ is replaced by the finite difference between the values of the field at the vertex 
v = µ and at the coordinate origin of the 4-simplex σ (divided by the distance between them),

∂ϕµ ≡ ϕµ − ϕ4

lµ4
.

In addition, the metric tensor between vertices μ and ν is given in terms of edge lengths as

g(σ)
µν (l) ≡

l2µ4 + l2ν4 − l2µν
2lµ4lν4

,

while gµν
(σ)(l) is its inverse matrix. Finally, (4)V∗

v (l) is the 4-volume of the 4-cell surrounding 
the vertex v in the Poincaré dual lattice of the triangulation T(M4).

After we have defined the classical action on T(M4), we finally proceed to define the path 
integral (38) as the state sum:

ZG+M = N
∫ ∏

ε∈T(M4)

dlε µ(l)
∫ ∏

v∈T(M4)

dϕv eiStot[l,ϕ]. (40)

Here, the domain of integration for the scalar field is the Cartesian product RV , where V  is the 
total number of vertices in the triangulation.
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The state sum (40) defines one concrete QG model, called the Regge quantum gravity 
model. While it goes without saying that this is just a toy model, it is nevertheless a realistic 
one, since it is finite and has a correct semiclassical continuum limit (see [32] for proofs). 
Therefore it can be used to study various aspects of quantum gravity, including the entangle-
ment between gravity and matter fields, as we discuss next.

4.2. Calculation of the trace formula

Having formulated the Regge quantum gravity model and having the state sum (40) in hand, 
we can proceed to study the entanglement between gravity and matter, in particular by evalu-
ating the expression for the trace of ρ̂2

M  given by equation (34). In order to evaluate it, we first 
need to formulate the Hartle–Hawking state (28) in the framework of Regge quantum gravity 
model, then work out the matrix elements of the reduced density matrix (30), and finally plug 
them into (34) to obtain a number. If this number is different from 1, we can conclude that 
the Hartle–Hawking state features entanglement between the gravitational and matter fields.

We begin by formulating the Hartle–Hawking state (28). Consider a 4-manifold M4 with 
a nontrivial boundary Σ3 = ∂M4, such that the triangulation T(M4) induces a triangula-
tion T(Σ3) on the boundary. In this sense we can distinguish the vertices, edges, areas, and 
tetrahedra which belong to the boundary triangulation T(Σ3) (from now on shortly called 
‘boundary’, and denoted as ∂T ), from the vertices, edges, areas, tetrahedra and 4-simplices 
belonging to T(M4) but not to T(Σ3) (from now on shortly called ‘bulk’, and denoted as T). 
Since the Regge quantum gravity model encodes gravitational degrees of freedom as lengths 
of the edges, and matter degrees of freedom as real numbers attached to vertices, we can eas-
ily split them into boundary variables lε,ϕv and bulk variables Lε,Φv , where we maintain our 
previous convention to denote the bulk variables with capital letters and boundary variables 
with lowercase letters.

Given the bulk and the boundary, we use the formulation of the Regge quantum gravity 
state sum (40) to write down the Hartle–Hawking wavefunction as

ΨHH[l,ϕ] = N
∫ ∏

ε∈T

dLε µ(l, L)
∫ ∏

v∈T

dΦv eiStot[l,ϕ,L,Φ]. (41)

Next we want to construct the matrix elements of the reduced density matrix (30). To this end, 
we need two copies of the Hartle–Hawking state: one with matter fields ϕv on the boundary 
∂T  of the bulk T, and the other with matter fields ϕ′

v on the boundary ∂T  of the bulk T̄  defined 
as the mirror-reflection of T with respect to the boundary ∂T . This mirror-reflection gives rise 
to an additional overall minus sign in the action (39) which is then cancelled by the complex 
conjugation of the imaginary unit in the exponent of the second Hartle–Hawking wavefunc-
tion in (30). Integrating over the boundary edge lengths, we end up with:

Z[ϕ,ϕ′] = |N |2
∫ ∏

ε∈T∪T̄∪∂T

dLε µ(L)
∫ ∏

v∈T∪T̄

dΦv eiStot[ϕ,ϕ′,L,Φ]. (42)

Note that all edge lengths are being integrated over in the ‘total’ triangulation T ∪ T̄ ∪ ∂T  
(and we have thus denoted them all with a capital letter L for simplicity). In contrast, the scalar 
field is being integrated only over the two bulks T ∪ T̄ , while the boundary scalar field values 
ϕ,ϕ′ remain fixed on two identical copies of the boundary ∂T . Also, note that

Stot[ϕ,ϕ′, L,Φ] ≡ Stot[ϕ, L,Φ]
∣∣∣
T∪∂T

+ Stot[ϕ
′, L,Φ]

∣∣∣
T̄∪∂T

,
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where the boundary edge lengths l have been relabelled as L and reabsorbed into the set of 
bulk edge lengths.

The next step one should perform is to take the trace of (42) and equate it to 1 as in (33), in 
order to make sure that the Hartle–Hawking wavefunction (41) is properly normalised. This 
leads to the equation

|N |2
∫ ∏

ε∈T∪T̄∪∂T

dLε µ(L)
∫ ∏

v∈T∪T̄∪∂T

dΦv eiStot[L,Φ] = 1,

which determines the normalisation constant N  up to an overall phase factor. Note that the 
boundary scalar fields ϕ have been integrated over and consequently reabsorbed into the bulk 
variables Φ, similarly to edge lengths L. Both the integration over L and the integration over 
Φ is now being performed over the ‘total’ triangulation T ∪ T̄ ∪ ∂T  which has no boundary.

As the final step of the construction of the trace formula (34), we substitute (42) and N  
into it, to obtain:

TrM ρ̂2
M =

∫ ∏
v∈∂T

dϕv

∫ ∏
v∈∂T

dϕ′
v

∣∣∣∣∣∣

∫ ∏
ε∈T∪T̄∪∂T

dLε µ(L)
∫ ∏

v∈T∪T̄

dΦv eiStot[ϕ,ϕ′,L,Φ]

∣∣∣∣∣∣

2



∫ ∏

ε∈T∪T̄∪∂T

dLε µ(L)
∫ ∏

v∈T∪T̄∪∂T

dΦv eiStot[L,Φ]




2 . (43)

This is the final expression we set out to derive. It represents a concrete realisation of the trace 
formula (34), it is completely well defined, and can in principle be evaluated. In practice, 
though, for a generic choice of the triangulation, this expression is very hard to evaluate even 
numerically. Therefore, in what follows we shall enforce some very hard approximations in 
order to make it more manageable for study. Nevertheless, by looking at the structure of the 
numerator and the denominator, one can already see that the two expressions can be equal to 
each other only in some very special cases, if at all. However, the dependence of the action Stot 
on the boundary and bulk variables is such that one cannot rely on any special mathematical 
properties of the action which could help make the final result be 1, for a generic choice of the 
spacetime triangulation. In this sense, we can conjecture already at this level that in generic 
cases we have

TrM ρ̂2
M < 1,

as we wanted to demonstrate.
But in order to give a more convincing argument, let us study a special case and try to 

evaluate this trace to the very end. The simplest possible example of a triangulation T is a sin-
gle 4-simplex. Labelling its vertices as 1, 2, 3, 4, 5, we can depict it with a following diagram:

1

23

4

5

The 4-simplex has five boundary tetrahedra, namely

τ1234, τ1235, τ1245, τ1345, τ2345.
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The first tetrahedron, τ1234, is depicted with thick edges, and we will choose it to be the bound-
ary ∂T . Since we do not want the four remaining tetrahedra to belong to the boundary, we will 
glue them onto each other in pairs, as

τ1235 ≡ τ1245, τ1345 ≡ τ2345.

This means that every point in τ1235 is identified with the corresponding point in τ1245, and 
similarly with the other pair of tetrahedra. In this way we obtain a manifold with a nontrivial 
topology, but described with only five vertices and one boundary tetrahedron. In order for this 
gluing to be consistent, the gravitational and matter degrees of freedom living on T ∪ ∂T  must 
satisfy the following constraints:

l14 = l23 = l24 = l13, L25 = L15, L45 = L35,
ϕ2 = ϕ1, ϕ4 = ϕ3. (44)

This leaves us with the following independent degrees of freedom living on the 4-simplex:

l12, l13, L15, l34, L35, ϕ1, ϕ3, Φ5,

where we have denoted the bulk degrees of freedom with capital letters and boundary degrees 
of freedom with lowercase letters. The 4-simplex diagram above is the graphical representa-
tion of the Hartle–Hawking wavefunction ΨHH[l,ϕ] (41).

Next we construct T̄ . Since the boundary tetrahedron ∂T  defines a single 3-dimensional 
hypersurface, there is precisely one axis in 4-dimensional space which is orthogonal to ∂T . 
Performing the reflection of T with respect to ∂T  is therefore identical to reversing the orienta-
tion of this orthogonal axis. In this way we construct another 4-simplex, with vertices labeled 
1, 2, 3, 4, 6 and depicted as

1

23

4

6

One can see that the main difference between the 4-simplex σ12346 and the previously con-
structed 4-simplex σ12345 is that the vertex 6 is on the ‘opposite side’ of the tetrahedron τ1234 
as compared to the vertex 5 of σ12345.

Like we did for σ12345, we again want to glue the boundary tetrahedra pairwise, so that only 
the tetrahedron τ1234 remains as the boundary ∂T̄ . The pairwise gluing of tetrahedra

τ1236 ≡ τ1246, τ1346 ≡ τ2346

gives rise to the constraints

l14 = l23 = l24 = l13, L26 = L16, L46 = L36,
ϕ′

2 = ϕ′
1, ϕ′

4 = ϕ′
3,

where only the constraints containing the vertex 6 are additional to (44). This leaves us with 
the following independent degrees of freedom living on σ12346:

l12, l13, L16, l34, L36, ϕ′
1, ϕ′

3, Φ6.

As noted in the general discussion leading to equation (43), the matter degrees of freedom 
on the boundary of T are different than the corresponding degrees of freedom living on the 
boundary of T̄ , despite the fact that the boundary is identical, ∂T̄ ≡ ∂T . To that end, we have 
added a prime to ϕ in the above equations. Like for the 4-simplex σ12345, the diagram of the 
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4-simplex σ12346 above is the graphical representation of the (complex-conjugate) Hartle–
Hawking wavefunction Ψ∗

HH[l,ϕ
′].

At this point we are ready to glue T and T̄  along the common boundary ∂T , to obtain the 
manifold T ∪ T̄ ∪ ∂T  which has no boundary. It is depicted on the diagram below.

1

23

4

5

6

It consists of two 4-simplices σ12345 and σ12346 constructed above and glued along the common 
tetrahedron τ1234. The full set of independent gravitational degrees of freedom is

l12, l13, l34, L15, L16, L35, L36,

while the independent matter degrees of freedom are

ϕ1, ϕ3, ϕ′
1, ϕ′

3, Φ5, Φ6.

This diagram is the graphical representation for the matrix element Z[ϕ,ϕ′] of the reduced 
density matrix ρ̂M  (see equations (42) and (30)).

Applying the general trace formula (43) to our case then gives

TrM ρ̂2
M =

∫
dϕ1dϕ3dϕ′

1dϕ′
3

∣∣∣∣
∫

d7Lµ(L)
∫

dΦ5dΦ6 eiStot[ϕ,ϕ′,L,Φ]

∣∣∣∣
2

(∫
d7Lµ(L)

∫
d4Φ eiStot[L,Φ]

)2 , (45)

where

d7L ≡ dl12dl13dl34dL15dL16dL35dL36,

and

d4Φ ≡ dϕ1dϕ3dΦ5dΦ6.

Note that the action in the denominator is evaluated using ϕ′
1 = ϕ1 and ϕ′

3 = ϕ3, as explained 
in the general discussion above. In order to make the equation (45) fully explicit, we need to 
choose the values of the free parameters in the classical action (39) and the measure (37). The 
parameters of the action are the Planck length lp, the mass m of the scalar field, and the self-
interaction potential U(ϕ). For the purpose of this example, the simplest possible choice is the 
free massless scalar field, so that we have

lp = 10−35 m, m = 0, U(ϕ) = 0.

Second, the measure (37) contains a single free parameter Lµ. This parameter can be con-
nected to the value of the effective cosmological constant Λ, via the relation

Λ =
l2p

2L4
µ

,
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see [32–34] for details. Taking the observed value Λ = 10−52 m−2 (also often quoted as a 
dimensionless product Λl2p = 10−122), we obtain

Lµ = 10−5 m.

Using these numeric values of the parameters, the right-hand side of (45) is fully specified, 
and can be evaluated using a computer. However, in order to render the calculation more man-
ageable, for the purpose of this paper we instead choose to evaluate (45) with Lµ = 10−33 m, 
which corresponds to a larger cosmological constant, Λl2p = 10−8, to speed up the conv ergence 
of the Monte-Carlo integration method. The result is strictly less than one,

TrM ρ̂2
M = 0.977 ± 0.002,

as we had set out to demonstrate. Note that, although close to one, the above result is: (i) 
strictly smaller than one (within the computational error); (ii) obtained within extremely sim-
plified toy model whose system consists of only two 4-simplices of spacetime. Thus, our 
result can serve as a proof of principle that gravity-matter entanglement is always present. 
The total amount of such entanglement in realistic models, as well as its spatial distribution, 
remains to be further explored. Namely, note that even though the approximation of prod-
uct gravity-matter states has been up to now successfully applied, the overall entanglement 
between the two systems, considered within complex realistic situations/models, does not at 
all have to be small, nor its effects negligible. Indeed, the standard entanglement that is con-
sidered to cause the decoherence of matter by the environment and the quantum-to-classical 
transition has profoundly striking effects, despite the fact of being difficult to characterise, 
evaluate and manipulate.

5. Conclusions

5.1. Summary of the results

We analyse the quantum gravity coupled to the most common matter fields (namely, scalar, 
spinor and vector fields), and show that the gravity and matter are generically entangled, as a 
consequence of the nonseparability of the scalar constraint C, and in some cases the 3-diffeo 
constraint CM

i . Thus, simple separable gravity-matter product states are excluded from the 
physical Hilbert space, unless the constraint equations feature some deep unknown property 
which allows for the invariance of a whole class of product states. We demonstrate this in 
two different ways: (i) within the general abstract nonperturbative canonical formalism, by 
directly analysing the mathematical structure of the constraints, and (ii) within the path int-
egral formalism, by directly checking for entanglement of the Hartle–Hawking state in the 
Regge model of quantum gravity.

5.2. Discussion of the results

This gauge-protected decoherence due to the entanglement (in contrast to the standard ‘for all 
practical purposes’ dynamical one) offers a possibly deeper fundamental explanation of the 
long-standing problem of the quantum-to-classical transition: the matter does not decohere, it 
is by default decohered.

Any potential entanglement, either dynamical or gauge-protected one, depends on the 
details of the coupling between matter and gravity. For the purpose of this paper, the coupling 
is prescribed by the strong equivalence principle, which states that the equations of motion for 
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all matter fields must locally be identical to the equations of motion for those fields in flat spa-
cetime. This is implemented by choosing the action for matter fields with minimal coupling 
prescription, and employed in both the canonical and the path integral frameworks. We should 
stress that the validity of the strong equivalence principle is a sufficient, but potentially not a 
necessary assumption for our main result. Namely, it is plausible that nonminimal coupling 
choices, involving explicit spacetime curvature terms in the matter Lagrangian, could also 
lead to the conclusion that entanglement between gravity and matter is unavoidable. However, 
it is also possible that one could come up with some particular complicated choice of non-
minimal coupling which does admit some nonentagled states. In order to avoid complicating 
the analysis with such cases, given that nonminimal coupling between gravity and matter has 
absolutely no experimental evidence in its favor so far, we have chosen to assume the validity 
of the strong equivalence principle throughout the paper.

In standard QM entanglement is a generic consequence of the interaction. Nevertheless, 
there exist alternative mechanisms for creating it, such as the indistinguishability of identi-
cal particles, leading to effective ‘exchange interactions’. This new gauge-protected gravity-
matter entanglement can thus introduce additional ‘effective interaction’, which can possibly 
result in corrections to Einstein’s weak equivalence principle (see for example [35]).

It is interesting to note that a possible peculiar impact of the quantised gravity to the 
whole decoherence programme was already inferred in Zurek’s seminal paper [36], where 
on page 1520 the author writes: (the assumption of pairwise interactions) ‘is customary and 
clear, even though it may prevent one from even an approximate treatment of the gravi-
tational interaction beyond its Newtonian pairwise form’. Our result confirms Zurek’s 
disclaimer—gravity (environment E) is generically entangled with the whole matter (both 
the system S  and the apparatus A), that way allowing for non-trivial tripartite system-
apparatus-environment effective interaction of the form HSAE, explicitly excluded in [36]. 
In other words, the environ ment (spacetime) interaction with the matter could potentially 
disturb the system-apparatus correlations, thus violating the stability criterion of a faithful 
measurement (see [37], p 1271).

As a consequence of generic gravity-matter entanglement, the effective interaction 
between gravity and matter forbids the existence of a single background spacetime. Thus, 
when  concerning quantum effects of gravity, one cannot talk of ‘matter in a point of space’, 
confirming the conjecture that spacetime is an ‘emergent phenomenon’. In contrast to this, 
Penrose argues that spacetime, seen as a (four-dimensional) differentiable manifold, does not 
support superpositions of massive bodies and the corresponding (relative) states of gravity 
(i.e. the gravity-matter entanglement), leading to the objective collapse onto the product states 
of matter and (classical) spacetime [38]. Our result can therefore be treated as a possible cri-
terion for a plausible candidate theory of quantum gravity.

Finally, not allowing product states between the matter and gravity is in tune with the rela-
tional approach to physics [22], in particular to quantum gravity (note that the original name 
for the many-world interpretation of QM was the ‘Relative State’ Formulation of Quantum 
Mechanics [39]). See also [40] for an interesting treatment of relative state and decoherence 
approaches.

5.3. Relation to common quantum gravity research programs

In order to discuss our results in the context of various quantum gravity research programs, 
note that the gauge-protected entanglement between gravity and matter should exist in any 
model of quantum gravity with matter which respects local Poincaré symmetry. In this sense, 
various approaches to quantum gravity can be classified into four distinct categories.
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 (i)  The first category represents models which explicitly respect (or at least aim to respect) 
local Poincaré symmetry. These include nonperturbative string theory/M-theory [41–43], 
loop quantum gravity [22, 23], Wheeler–DeWitt quantization [44, 45], and similar 
approaches.

 (ii)  The second category represents models in which local Poincaré symmetry is explicitly 
broken. These include perturbative quantum gravity [46], petrurbative string theory [43], 
causal dynamical triangulations approach [28], doubly-special relativity models [47], 
Hořava–Lifshitz gravity [48], various nonrelativistic quantization proposals, and so on.

 (iii)  The third category represents models in which it is not clear whether local Poincaré sym-
metry is broken or not. For example, in the asymptotic safety approach [49] this may 
depend on the properties of the fixed point. In noncommutative geometry [50, 51] it 
depends on the particular choice of the algebra. In higher-derivative theories and theories 
with propagating torsion [52] it may depend on various details of the model, etc.

 (iv)  Finally, the fourth category represents models which have not been developed enough to 
allow for coupling of matter fields. In models like entropic gravity [53, 54] and causal set 
theory [55, 56], it is not obvious how to couple matter fields to gravity, and whether this 
coupling would violate local Poincaré invariance or not.

It should be clear that our results apply to the first category of quantum gravity models, 
while for other three categories it either does not apply, or it is an open question. We should 
also state that the validity of local Poincaré symmetry is ultimately an experimental question, 
one over which various quantum gravity proposals may disagree.

In relation to the previous comment, it is worthwhile to also discuss the impact of pos-
sible anomalies to the gauge protected entanglement. As we have discussed in the final para-
graph of section 2, the entanglement is a consequence of the scalar constraint Ĉ, see (12), 
and for certain types of matter fields also of the 3-diffeo constraint Ĉi  in (11), while the local 
Lorentz constraint Ĉab in (11) does not require entanglement. From this one can see that if the 
theory features anomalies due to the breaking of the 4D diffeomorphism symmetry, one can-
not impose Ĉ and Ĉi  as the Gupta–Bleuler-like conditions on the Hilbert space of the theory, 
and thus all subsequent results regarding the entanglement are void. In short, there cannot 
be any gauge protected entanglement if there is no relevant gauge symmetry to begin with. 
Nevertheless, if the theory features anomalies due to the breaking of the local Lorentz or any 
internal symmetries, while maintaining diffeomoprhism symmetry at the quantum level, the 
gauge protected entanglement will not be influenced by the anomaly.

5.4. Future lines of research

One of the main lines of future work would be to perform a detailed numerical analysis of 
Tr ρ̂2

M and the von Neumann entropy S(ρ̂M) for the Hartle–Hawking state (either within the 
Regge, or some other QG model). The latter quantity, called the entropy of entanglement, rep-
resents the measure of the entanglement in pure and bipartite states [57], in our case between 
gravity and matter in the Hartle–Hawking state. The precise numerical deviation of the Tr ρ̂2

M 
from its maximal value 1 could indicate in which cases this new entanglement has relevant 
physical consequences. This way, it would be possible to determine the boundaries of validity 
of the assumption of the product gravity-matter states of the form |G〉|M〉, which has been up 
to now used in numerous studies (analogously to the case of determining the regimes in which 
two coherent states become effectively orthogonal). In connection to this, one could analyse 
in more detail quantitatively to what extent the gauge-protected gravity-matter entanglement 
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constrains the existence of macroscopic superpositions, and its effect to the quantum-to-clas-
sical transition (see the related work [3, 4, 9, 58–60]).

Further, studying the structure of the gauge-imposed entanglement for a tripartite system of 
gravity-matter-EM fields might bring qualitatively new effects. Unlike the case of pure bipar-
tite states, where any two entangled states could be obtained from each other by local opera-
tions and classical communication (LOCC), thus forming a single class of entangled states and 
providing a unique measure of entanglement, the multipartite entanglement has a more com-
plex structure. Indeed, in the tripartite case, in addition to the trivial classes of purely bipartite 
entanglement, say, |a〉(|b1c1〉+ |b2c2〉), genuine tripartite entanglement consists of a number 
of inequivalent classes of entangled states: in the simplest case of three qubits we have two 
classes of tripartite entanglement, represented by the states |GHZ〉 = (|0 0 0〉+ |1 1 1〉)/

√
2 

and |W〉 = (|0 0 1〉+ |0 1 0〉+ |100〉)/
√

3, which cannot be obtained from each other by the 
means of LOCC, but as soon as neither of the subsystems is a qubit, there exist infinitely many 
inequivalent classes [61].

It would also be interesting to see how other QG candidates incorporate the general gravity 
constraints regarding the entanglement with matter, in particular the string theory. Namely, 
perturbative string theory is formulated by manifestly breaking the gauge symmetry (a con-
sequence of perturbative expansion of the gravitational field). The existence of the gravity-
matter entanglement in, say Hartle–Hawking state, would then present a strong argument 
that the gauge symmetry can be restored in a tentative nonperturbative formulation of string 
theory. In connection to this, one could analyse the entanglement between different space-
time regions induced by the gauge-protected gravity-matter entanglement, and compare it to 
that present in theories based on the AdS/CFT correspondence and the holographic principle 
[7, 8]. Namely, entanglement is a property of a quantum state with respect to a particular 
factorisation of a composite system into its factor sub-systems. To illustrate this, consider a 
particle in a two-dimensional plane. Given orthogonal axes x and y of a 2D plane, the Hilbert 
space of the system is given by H = Hx ⊗Hy, and the equal spatial superposition (for sim-
plicity, we omit the overall normalisation constant) |ϕ〉 ∼ (|a〉x + |b〉x)|0〉y, with a, b ∈ R, 
is clearly separable, with respect to the given factorisation of H. Nevertheless, with respect 
to any other factorisation of H, defined by any other axes X and Y inducing the Hilbert-
space factorisation H = HX ⊗HY , the system is entangled. As an example, for axes X and Y 
obtained by rotating x and y by −π/4, the same state of the system is maximally entangled, 
|ϕ〉 ∼ (|a/

√
2〉X|a/

√
2〉Y + |b/

√
2〉X|b/

√
2〉Y) (for the entanglement in the second quantisa-

tion formalism, and its dependence on the choice of fundamental modes, see for example 
[62]). Following the above example, one might expect that the existence of the entangle-
ment between gravity and matter would induce the entanglement between two generic space-
time regions (each containing a portion of both gravitational and matter degrees of freedom). 
Possible relationship between this, gauge-protected entanglement, and that present as a con-
sequence of assumptions that do not explicitly rely on the existence of local Poincaré sym-
metry (holography and the AdS/CFT correspondence) would indicate interesting fundamental 
connections that could help breaching the long-standing gap between quantum mechanics and 
general relativity.

Finally, detecting gravity-matter entanglement in the experiment might not be that far from 
the reach of the current or the near-future technology, see [63] for a recent proposal of testing 
gravitational decoherence. Proposing, and possibly performing, experiments to distinguish 
different contributions of the gravitational interaction to the decoherence of matter, in par-
ticular the generic one based on the gauge symmetry constraints, presents a relevant direction 
of further research.
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Abstract: The higher category theory can be employed to generalize the BF action to the so-called
3BF action, by passing from the notion of a gauge group to the notion of a gauge 3-group. The theory
of scalar electrodynamics coupled to Einstein–Cartan gravity can be formulated as a constrained 3BF
theory for a specific choice of the gauge 3-group. The complete Hamiltonian analysis of the 3BF action
for the choice of a Lie 3-group corresponding to scalar electrodynamics is performed. This analysis is
the first step towards a canonical quantization of a 3BF theory, an important stepping stone for the
quantization of the complete scalar electrodynamics coupled to Einstein–Cartan gravity formulated
as a 3BF action with suitable simplicity constraints. It is shown that the resulting dynamic constraints
eliminate all propagating degrees of freedom, i.e., the 3BF theory for this choice of a 3-group is
a topological field theory, as expected.

Keywords: Hamiltonian analysis; higher gauge theory; BF theory; topological theory; scalar
electrodynamics

1. Introduction

The vast majority of physics community agrees that the quantum theory of gravity is necessary,
even if they disagree on the quantization approach. The theory of loop quantum gravity is one of
the well-formulated possible candidates for the desired theory of quantum gravity [1–3]. There are
two approaches within the theory—the canonical and the covariant quantization method. The covariant
quantization method is focused on obtaining a generating functional, by considering a triangulated
spacetime manifold and defining the functional as a state sum over all configurations of a field living
on simplices of the triangulation [2].

One of the key tools in the covariant quantization approach is the so-called BF theory. Given a Lie
group G and its corresponding Lie algebra g, one considers a g-valued connection 1-form A, and its
corresponding field strength 2-form F ≡ dA + A ∧ A. Multiplying F with a g-valued Lagrange
multiplier 2-form B and integrating over a four-dimensional spacetime manifoldM, one obtains the
action of the BF theory,

SBF[A, B] =
∫
M
〈B ∧ F〉g ,

where 〈_ , _〉g is a G-invariant non-degenerate symmetric bilinear form. The BF theory derives its
name from the symbols B and F for the Lagrange multiplier and the field strength present in the action.
As it is defined, the BF theory is topological, containing no local propagating degrees of freedom.
Therefore, for the purpose of building physically relevant actions, attention usually focuses not on
the pure BF theory, but rather on the theory with constraints. The constrained BF models are based
on deformations of the BF theory [4], by adding constraints to the topological BF action that promote
some of the gauge degrees of freedom into physical ones. The well known example is the Plebanski
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model for general relativity [5]. Constrained BF models represent a starting point in the spinfoam
approach to the construction of quantum gravity models [2].

The main shortcoming of building a quantum gravity model using a BF theory is the fact that it is
very hard, if not impossible, to write the action for matter fields (specifically scalar and fermion fields)
in the form of a constrained BF theory. Thus, the spinfoam quantization method is limited to pure
gravity, and the problem of consistently coupling matter fields to gravity in this framework becomes
highly nontrivial. One of the proposed ways to circumvent this issue is to generalize the notion of a BF
theory using the mathematical apparatus of higher category theory.

The higher category theory [6] can be employed to generalize the BF action to the so-called
nBF action, by passing from the notion of a gauge group to the notion of a gauge n-group
(for a comprehensive review of n-groups see for example [7], and also Appendix C). Specifically,
the notion of a 3-group in the framework of higher category theory is introduced as a 3-category with
only one object where all the morphisms, 2-morphisms and 3-morphisms are invertible. Based on
this generalization, recently a constrained 3BF action has been introduced, which describes the full
Standard Model coupled to Einstein–Cartan gravity [8].

As a first step to the study of the Hamiltonian structure of such theories, in this work, we discuss
the simplest nontrivial toy example, namely the theory of scalar electrodynamics coupled to gravity.
The standard way to define scalar electrodynamics coupled to gravity is by the action:

S =
∫

d4x
√
−g

[
− 1

16πl2
p

R− 1
4

gµρgνσFµνFρσ + gµν∇µφ∗∇νφ−m2φ∗φ

]
. (1)

Here, gµν is the spacetime metric, g ≡ det(gµν) is its determinant, R is the corresponding
curvature scalar, and lp is the Planck length, its square being equal to the Newton’s gravitational
constant, l2

p = G, in the natural system of units h̄ = c = 1. The total covariant derivative ∇µ of the
complex scalar field φ is defined as ∇µφ = (∂µ + iqAµ)φ, and thus coupled to the electromagnetic
potential Aµ via the coupling constant q (the electric charge of the field φ). See Appendix A for more
detailed notation. In the next section, we will reformulate this model as a classically equivalent
constrained 3BF theory for a specific choice of the gauge 3-group. Moreover, for reasons of simplicity,
in the Hamiltonian analysis, we will focus only on the topological sector, disregarding the simplicity
constraints. The Hamiltonian structure of the theory is important for various reasons, primarily for the
canonical quantization program.

The layout of the paper is as follows. In Section 2, we introduce the 3-group structure
corresponding to the theory of scalar electrodynamics coupled to Einstein–Cartan gravity and the
corresponding constrained 3BF action. Section 3 contains the Hamiltonian analysis for the topological,
3BF sector of the action, with the resulting first-class and second-class constraints present in the theory,
and their mutual Poisson brackets. In Section 4, we analyze the Bianchi identities that the first-class
constraints satisfy, which enforce restrictions in the sense of Hamiltonian analysis, and reduce the
number of independent first-class constraints present in the theory. Section 5 focuses on the counting
of the dynamical degrees of freedom present in the theory, based on the results from Sections 3 and 4.
Encouraged by these results, in Section 6, we construct the generator of the gauge symmetries for
the topological theory and we find the form variations of all variables and their canonical momenta.
Finally, Section 7 is devoted to the discussion of the results and the possible future lines of research.
The Appendices contain various technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted by the Latin
letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the Minkowski metric ηab
with signature (−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . , and are
raised and lowered by the spacetime metric gµν = ηabea

µeb
ν, where ea

µ are the tetrad fields.
The inverse tetrad is denoted as eµ

a, so that the standard orthogonality conditions hold: ea
µeµ

b = δa
b

and ea
µeν

a = δν
µ. When needed, spacetime indices will be split into time and space indices,
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denoted with a 0 and lowcase Latin indices i, j, . . . , respectively. All other indices that appear in
the paper are dependent on the context, and their usage is explicitly defined in the text where they
appear. The antisymmetrization over two indices is introduced with the factor one half that is
A[a1|a2 ...an−1|an ] =

1
2
(

Aa1a2 ...an−1an − Aana2 ...an−1a1

)
, and the total antisymmetrization is introduced as

A[a1 ...an ] =
1
n! ∑σ∈Sn(−1)sign(σ)Aaσ(1) ...aσ(n) .

2. Scalar Electrodynamics as a Constrained 3BF Action

Let us begin by providing a short introduction into the construction and structure of a 3BF theory,
after which we will impose appropriate simplicity constraints, in order to obtain the equations of
motion for scalar electrodynamics coupled to gravity.

As was discussed in detail in [8], one formulates a topological 3BF action by specifying a particular
gauge Lie 3-group. It has been proved that any strict 3-group is equivalent to a 2-crossed module [9,10].

A gauge theory for the manifold M4 and 2-crossed module (L δ→ H ∂→ G ,� , {_ , _}) can be
constructed for the following choice of the three Lie groups as:

G = SO(3, 1)×U(1) , H = R4 , L = R2 .

The maps ∂ and δ are chosen to be trivial. The action of the algebra g on h and l is chosen as:

Mab � Pc = �ab,c
d Pd = δ[a|

dη|b]c Pd = η[b|c P|a] , T � Pa = 0 ,
Mab � PA = 0 , T � PA = �A

B PB
(2)

where Mab denote the six generators of so(3, 1), T is the sole generator of u(1), Pa are the four generators
of R4 and PA are the two generators of R2. In the previous expression, the action of the algebra u(1) on
the algebra R2 is defined via

�A
B = iq

[
1 0
0 −1

]
.

The action of the algebra g on itself is by definition given via the adjoint representation and, for
the choice g = so(3, 1)× u(1), one obtains

Mab � Mcd = �ab ,cd
e f Me f = fab ,cd

e f Me f = ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac ,

Mab � T = 0 , T � Mab = 0 , T � T = 0 ,
(3)

as the consequence of the direct product structure and the Abelian nature of the subgroup U(1).
The Peiffer lifting

{_ , _} : H × H → L

is also trivial, i.e., all the coefficients Xab
A are equal to zero:

{Pa , Pb} ≡ Xab
ATA = 0 . (4)

Given Lie algebras g, h, and l, one can introduce a 3-connection (α, β, γ) given by the
algebra-valued differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l).
The corresponding fake 3-curvature (F ,G ,H) is then defined as:

F = dα + α ∧ α− ∂β , G = dβ + α ∧� β− δγ , H = dγ + α ∧� γ + {β ∧ β} , (5)
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see [9,10] for details. For this specific choice of a 3-group, where α = ω+ A, given by the algebra-valued
differential forms ω ∈ A1(M4 , so(3, 1)), A ∈ A1(M4 , u(1)), β ∈ A2(M4 ,R4) and γ ∈ A3(M4 ,R2),
the corresponding 3-curvature (F ,G ,H) is defined as

F = Rab Mab + FT =
(
dωab + ωa

c ∧ωcb)Mab + dA T ,

G = GaPa =
(
dβa + ωa

b ∧ βb)Pa ,

H = HAPA =
(
dγA +�B

A A ∧ γB)PA .

(6)

Note that the connection ωab is not present in the last expression, as follows from the definition of
the action � and the Peiffer lifting {_ , _}, see Equations (2) and (4):

H = dγ + α ∧� γ + {β ∧ β}

= dγAPA + (ωab Mab + AT) ∧� (γAPA)

= dγAPA + ωab ∧ γA Mab � PA + A ∧ γAT � PA

= dγAPA + A ∧ γA �A
BPB

= (dγA +�B
A A ∧ γB)PA .

(7)

The coefficients of the differential 2-forms F and Rab, 3-form G, and 4-formH are:

Fµν = ∂µ Aν − ∂ν Aµ ,

Rab
µν = ∂µωab

ν − ∂νωab
µ + ωa

cµωcb
ν −ωa

cνωcb
µ ,

Ga
µνρ = ∂µβa

νρ + ∂νβa
ρµ + ∂ρβa

µν + ωa
bµ βb

νρ + ωa
bν βb

ρµ + ωa
bρ βb

µν ,

HA
µνρσ = ∂µγA

νρσ − ∂νγA
ρσµ + ∂ργA

σµν − ∂σγA
µνρ

+�B
A AµγB

νρσ −�B
A AνγB

ρσµ +�B
A AργB

σµν −�B
A AσγB

µνρ .

(8)

Now, one can define a gauge invariant 3BF action as:

S3BF =
∫
M4

(
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l

)
, (9)

where B ∈ A2(M4 , so(3, 1)), C ∈ A1(M4 ,R4) and D ∈ A0(M4 ,R2) are Lagrange multipliers.
The forms 〈_ , _〉g, 〈_ , _〉h and 〈_ , _〉l are G-invariant bilinear symmetric nondegenerate forms on g, h
and l, respectively, defined as

〈Mab , Mcd〉g = gab, cd , 〈T , T〉g = 1 , 〈Mab , T〉g = 0 , 〈Pa , Pb〉h = gab , 〈PA , PB〉l = gAB ,

where

gab, cd = ηa[c|ηb|d] , gab =

[
1 0
0 1

]
, gAB =

[
0 1
1 0

]
.

Identifying the Lagrange multiplier Ca as the tetrad field ea, and the Lagrange multiplier DA as the
doublet of scalar fields φA,

φ = φAPA = φP1 + φ∗P2 ,
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based on their transformation properties as discussed in [8,11], the Lagrangian of the action (9) obtains
the form:

S3BF =
∫
M4

d4x εµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1
4

BµνFρσ +
1
3!

ea
µ Gb

νρσ gab +
1
4!

φAHB
µνρσ gAB

)
. (10)

Varying the action with respect to all the variables, one obtains the equations of motion:

varied variable equation of motion

δBab Rab = 0

δωab ∇Bab − e[a| ∧ β|b] = 0

δea Ga = 0

δφA ∇γA = 0

varied variable equation of motion

δB F = 0

δA dB + φA �B
A γB = 0

δβa ∇ea = 0

δγA ∇φA = 0

(11)

Since one is interested in the doublet of scalar fields φA of mass m and charge q minimally
coupled to gravity and electromagnetic field, we impose additional simplicity constraint terms to
the topological action (9), in order to obtain the appropriate equations of motion equivalent to the
equations of motion for the action (1):

S =
∫
M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(

Bab − 1
16πl2

p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1
2

HabcAea ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)
+ λ ∧

(
B− 12

q
Mabea ∧ eb

)
+ ζab

(
Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)
− 1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(12)

For the notation used here and the equations of motion obtained by varying the action (12),
see Appendix A.

The dynamical degrees of freedom are the tetrad fields ea, the scalar doublet φA, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them, as shown in Appendix A. The equation of motion for the field φA reduces to the covariant
Klein-Gordon equation for the scalar field,(

∇µ∇µ −m2
)

φA = 0 . (13)

The differential equation of motion for the field A is:

∇µFµν = jν , jµ ≡ 1
2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (14)

Finally, the equation of motion for ea becomes:

Rµν − 1
2

gµνR = 8πl2
p Tµν ,

Tµν ≡ ∇µφA∇νφA − 1
2

gµν
(
∇ρφA∇ρφA + m2φA φA

)
− 1

4q
(

FρσFρσgµν + 4FµρFρ
ν
)

.
(15)
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3. The Hamiltonian Analysis

The Hamiltonian analysis of the constrained 3BF action (12) for scalar electrodynamics is
exceedingly complicated to study. A testament to this is the level of complexity of the constrained
2BF formulation of general relativity [12], which is merely one sector in the action (12). Therefore,
in this paper, we will limit ourselves to the topological sector of the theory, namely the unconstrained
3BF theory (9), which consists of the terms in the first row of Equation (12), and is written in full
detail in Equation (10). One should be aware that this restriction changes various properties of the
theory. Namely, the simplicity constraints (everything but the first row in Equation (12)) substantially
modify the dynamics of the theory—they increase the number of local propagating degrees of freedom
of the theory, a property that was known since the original Plebanski model [5]. On the other hand,
the unconstrained 3BF theory (9) is important even in its own right, and the Hamiltonian analysis may
give important insight into the structure of both the unconstrained and the constrained theory.

In what follows, the complete Hamiltonian analysis for the action (9) is presented, see [13] for
an overview and a comprehensive introduction of the Hamiltonian analysis. The Hamiltonian analysis
for a 2BF action is performed in [12,14–16].

Under the standard assumption that the spacetime manifold is globally hyperbolic,M4 = R×Σ3,
the Lagrangian of the action (9) has the form:

L3BF =
∫

Σ3

d3~x εµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1
4

BµνFρσ +
1
3!

ea
µ Gb

νρσ gab +
1
4!

φAHB
µνρσ gAB

)
. (16)

The canonical momentum π(q) corresponding for the canonical coordinate q from the set of all
variables in the theory, q ∈ {Bab

µν, ωab
µ, Bµν, Aµ, ea

µ, βa
µν, φA, γA

µνρ}, is obtained as a derivative of
the Lagrangian with respect to the appropriate velocity,

π(q) ≡ δL
δ∂0q

,

giving:

π(B)ab
µν = 0 , π(ω)ab

µ = ε0µνρBabνρ ,

π(B)µν = 0 , π(A)µ =
1
2

ε0µνρBνρ ,

π(e)a
µ = 0 , π(β)a

µν = −ε0µνρeaρ ,

π(φ)A = 0 , π(γ)A
µνρ = ε0µνρφA .

(17)

Since these momenta cannot be inverted for the time derivatives of the variables, they all give rise
to primary constraints:

P(B)ab
µν ≡ π(B)ab

µν ≈ 0 , P(ω)ab
µ ≡ π(ω)ab

µ − ε0µνρBabνρ ≈ 0 ,

P(B)µν ≡ π(B)µν ≈ 0 , P(A)µ ≡ π(A)µ − 1
2 ε0µνρBνρ ≈ 0 ,

P(e)a
µ ≡ π(e)a

µ ≈ 0 , P(β)a
µν ≡ π(β)a

µν + ε0µνρeaρ ≈ 0 ,

P(φ)A ≡ π(φ)A ≈ 0 , P(γ)A
µνρ ≡ π(γ)A

µνρ − ε0µνρφA ≈ 0 .

(18)

Here, the symbol “≈” denotes the so-called “weak” equality, i.e., the equality that holds on
a subspace of the phase space determined by the constraints, while the equality that holds for any
point of the phase space is referred to as the “strong” equality and it is denoted by the symbol “=”.
The expressions “on-shell” and “off-shell” are used for weak and strong equalities, respectively,
and henceforth will be used in this paper.
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The fundamental Poisson brackets are defined as:

{ Bab
µν(x) , π(B)cd

ρσ(y) } = 4δa
[cδb

d]δ
ρ
[µδσ

ν] δ(3)(~x−~y) ,

{ωab
µ(x) , π(ω)cd

ν(y) } = 2δa
[cδb

d]δ
ν

µ δ(3)(~x−~y) ,

{ Bµν(x) , π(B)ρσ(y) } = 2δρ
[µδσ

ν] δ(3)(~x−~y) ,

{ Aµ(x) , π(A)ν(y) } = δν
µ δ(3)(~x−~y) ,

{ ea
µ(x) , π(e)b

ν(y) } = δa
bδν

µ δ(3)(~x−~y) ,

{ βa
µν(x) , π(β)b

ρσ(y) } = 2δa
b δρ

[µδσ
ν] δ(3)(~x−~y) ,

{ φA(x) , π(φ)B(y) } = δA
B δ(3)(~x−~y) ,

{ γA
µνρ(x) , π(γ)B

αβγ(y) } = 3!δA
B δα

[µδβ
νδγ

ρ] δ(3)(~x−~y) .

(19)

Using these relations, one can calculate the algebra between the primary constraints,

{ P(B)ab jk(x) , P(ω)cd
i(y) } = 4ε0ijk δa

[cδb
d] δ(3)(~x−~y) ,

{ P(B)jk(x) , P(A)i(y) } = ε0ijk δ(3)(~x−~y) ,

{ P(e)ak , P(β)b
ij(y) } = −ε0ijk δa

b(x) δ(3)(~x−~y) ,

{ P(φ)A(x) , P(γ)B
ijk(y) } = ε0ijk δA

B δ(3)(~x−~y) ,

(20)

while all other Poisson brackets vanish. The canonical on-shell Hamiltonian is defined by

Hc =
∫

Σ3

d3~x
[

1
4

π(B)ab
µν ∂0Bab

µν +
1
2

π(ω)ab
µ ∂0ωab

µ +
1
2

π(B)µν ∂0Bµν + π(A)µ ∂0 Aµ

+ π(e)a
µ ∂0ea

µ +
1
2

π(β)a
µν ∂0βa

µν + π(φ)A ∂0DA +
1
3!

π(γ)A
µνρ ∂0γA

µνρ

]
− L .

(21)

Rewriting the Hamiltonian (21) such that all the velocities are multiplied by the first class
constraints and therefore in an on-shell quantity they drop out, one obtains:

Hc =−
∫

Σ3

d3~x ε0ijk
[

1
2

Bab0i Rab
jk +

1
2

B0iFjk +
1
6

ea0 Ga
ijk + βa

0i∇jeak

+
1
2

ωab
0

(
∇iBab jk − e[a|i β|b]jk

)
+

1
2

A0

(
∂iBjk +

1
3

φA �B
A γB

ijk

)
+

1
2

γA
0ij∇kφA

]
.

(22)

This expression does not depend on any of the canonical momenta and it contains only the fields
and their spatial derivatives. By adding a Lagrange multiplier λ for each of the primary constraints we
can build the off-shell Hamiltonian, which is given by:

HT = Hc+
∫

Σ3

d3~x
[

1
4

λ(B)ab
µνP(B)ab

µν +
1
2

λ(ω)ab
µP(ω)ab

µ +
1
2

λ(B)µνP(B)µν + λ(A)µP(A)µ

+λ(e)a
µP(e)a

µ +
1
2

λ(β)a
µνP(β)a

µν + λ(φ)AP(φ)A +
1
3!

λ(γ)A
µνρP(γ)A

µνρ

]
.

(23)

Since the primary constraints must be preserved in time, one must impose the
following requirement:

Ṗ ≡ { P , HT } ≈ 0 , (24)
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for each primary constraint P. By using the consistency condition (24) for the primary constraints
P(B)ab

0i, P(ω)ab
0, P(B)0i, P(A)0, P(e)a

0, P(β)a
0i, and P(γ)A

0ij,

Ṗ(B)ab
0i ≈ 0 , Ṗ(ω)ab

0 ≈ 0 , Ṗ(B)0i ≈ 0 , Ṗ(A)0 ≈ 0 ,

Ṗ(e)a
0 ≈ 0 , Ṗ(β)a

0i ≈ 0 , Ṗ(γ)A
0ij ≈ 0 ,

(25)

one obtains the secondary constraints S ,

S(R)ab
i ≡ ε0ijkRab jk ≈ 0 , S(∇B)ab ≡ ε0ijk(∇iBab jk − e[a|i β|b] jk

)
≈ 0 ,

S(F)i ≡ 1
2 ε0ijkFjk ≈ 0 , S(∇B) ≡ 1

2 ε0ijk(∂iBjk +
1
3 φA �B

A γB
ijk
)
≈ 0 ,

S(G)a ≡ 1
6 ε0ijkGaijk ≈ 0 , S(∇e)a

i ≡ ε0ijk∇jeak ≈ 0 ,

S(∇φ)A
ij ≡ ε0ijk∇kφA ≈ 0 ,

(26)

while in the case of P(B)ab
jk, P(ω)ab

k, P(B)jk, P(A)k, P(e)a
k, P(β)a

jk, P(φ)A and P(γ)A
ijk the

consistency conditions

Ṗ(B)ab
jk ≈ 0 , Ṗ(ω)ab

k ≈ 0 , Ṗ(B)jk ≈ 0 , Ṗ(A)k ≈ 0 ,

Ṗ(e)a
k ≈ 0 , Ṗ(β)a

jk ≈ 0 , Ṗ(φ)A ≈ 0 , Ṗ(γ)A
ijk ≈ 0 ,

(27)

determine the following Lagrange multipliers:

λ(ω)ab
i ≈ ∇i ωab 0 , λ(B)ij ≈ 2∂[i| B0|j] + γA

0ij �B
A φB ,

λ(A)i ≈ ∂i A0 , λ(β)a
ij ≈ 2∇[i| βa

0|j] −ωab
0 βb ij ,

λ(φ)A ≈ A0 � A
B φB , λ(e)a

i ≈ ∇i ea
0 −ωa

b 0 eb
i ,

λ(B)ab
ij ≈ 2∇[i|Bab

0|j] + e[a| 0β|b]
ij − 2e[a| [i|β|b]0|j] + 2ω[a|

cB|b]c ij ,

λ(γ)A
ijk ≈ −A0 � A

B γB
ijk +∇iγA

0jk −∇jγA
0ik +∇kγA

0ij .

(28)

Note that the consistency conditions leave the Lagrange multipliers

λ(B)ab
0i , λ(ω)ab

0 , λ(B)0i , λ(A)0 , λ(e)a
0 , λ(β)a

0i , λ(γ)A
0ij (29)

undetermined. The consistency conditions of the secondary constraints do not produce new constraints,
since one can show that

Ṡ(R)abi = {S(R)abi , HT} = ω[a|
c0 S(R)c|b]i ,

Ṡ(∇B) = {S(∇B), HT} = −�B
A γB

0ij S(∇φ)A
ij ,

Ṡ(G)a = {S(G)a , HT} = βb0k S(R)abk −ωab
0 S(G)b ,

Ṡ(∇e)a
i = {S(∇e)a

i , HT} = eb
0 S(R)ab

i −ωa
b

0 S(∇e)b
i ,

Ṡ(∇φ)A
ij = {S(∇φ)A

ij , HT} = A0 � A
BS(∇φ)B

ij ,

Ṡ(F)i = {S(F)i , HT} = 0 ,

Ṡ(∇B)ab = {S(∇B)ab , HT} = S(R)[a|ck Bc
|b]0k + ω[a|

c
0S(∇B)|b]c

−β[a|0k S(∇e)|b]k + e[a|0 S(G)|b] .

(30)
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Then, the total Hamiltonian can be written as

HT =
∫

Σ3

d3~x
[

1
2

λ(B)ab
0i Φ(B)ab

i +
1
2

λ(ω)ab
0 Φ(ω)ab + λ(B)0i Φ(B)i + λ(A)0 Φ(A)

+ λ(e)a
0 Φ(e)a + λ(β)a

0i Φ(β)a
i +

1
2

λ(γ)A
0ijΦ(γ)A

ij

− 1
2

Bab0i Φ(R)abi − 1
2

ωab0 Φ(∇B)ab − B0i Φ(F)i − A0 Φ(∇B)

− ea0 Φ(G)a − βa0i Φ(∇e)ai − 1
2

γA0ij Φ(∇φ)Aij
]

,

(31)

where

Φ(B)ab
i = P(B)ab

0i , Φ(γ)A
ij = P(γ)A

0ij ,

Φ(ω)ab = P(ω)ab
0 , Φ(F)i = S(F)i − ∂jP(B)ij ,

Φ(B)i = P(B)0i , Φ(R)abi = S(R)abi −∇jP(B)ab ij ,

Φ(A) = P(A)0 , Φ(G)a = S(G)a +∇iP(e)a i − 1
4 βb ij P(B)ab ij ,

Φ(e)a = P(e)a
0 , Φ(∇e)a i = S(∇e)a i −∇jP(β)a ij + 1

2 eb j P(B)ab ij ,

Φ(β)a
i = P(β)a

0i , Φ(∇φ)A ij = S(∇φ)A ij +∇kP(γ)A ijk −�B
A φB P(B)ij ,

Φ(∇B) = S(∇B) + ∂iP(A)i +
1
3!

γA
ijk �A

B P(γ)B
ijk − φA �B

A P(φ)B ,

Φ(∇B)ab = S(∇B)ab +∇iP(ω)abi + B[a|
c ij P(B)c|b] ij − 2e[a|i P(e)|b] i − β[a|

ij P(β)|b] ij ,

(32)

are the first-class constraints, while

χ(B)ab
jk = P(B)ab

jk , χ(B)jk = P(B)jk , χ(e)a
i = P(e)a

i , χ(φ)A = P(φ)A ,

χ(ω)ab
i = P(ω)ab

i , χ(A)i = P(A)i , χ(β)a
ij = P(β)a

ij , χ(γ)A
ijk = P(γ)A

ijk ,
(33)

are the second-class constraints.
The PB algebra of the first-class constraints is given by:

{Φ(G)a(x) , Φ(∇e)b
i(y) } = −Φ(R)a

b
i(x) δ(3)(~x−~y) ,

{Φ(G)a(x) , Φ(∇B)bc(y) } = 2δa
[b| Φ(G)|c](x) δ(3)(~x−~y) ,

{Φ(∇e)a
i(x) , Φ(∇B)bc(y) } = 2δa

[b|Φ(∇e)|c]i(x) δ(3)(~x−~y) ,

{Φ(R)abi(x) , Φ(∇B)cd(y) } = −4δ[a| [c Φ(R)|b]d]i(x) δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , Φ(∇B)cd(y) } = −4δ[a| [c| Φ(∇B)|b] |d](x) δ(3)(~x−~y) ,

{Φ(∇B)(x) , Φ(∇φ)A
ij(y) } = −2 �B

A Φ(∇φ)B
ij(x)δ(3)(~x−~y) .

(34)
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The PB algebra between the first and the second-class constraints is given by:

{Φ(R)abi(x) , χ(ω)cd
j(y) } = 4 δ[a| [c| χ(B)|b] |d]ij(x)δ(3)(~x−~y) ,

{Φ(G)a(x) , χ(ω)cd
i(y) } = 2 δa

[c| χ(e)|d]i(x)δ(3)(~x−~y) ,

{Φ(G)a(x) , χ(β)c
jk(y) } = −1

2
χ(B)a

c
jk(x) δ(3)(~x−~y) ,

{Φ(∇e)ai(x) , χ(ω)cd
j(y) } = −2 δa

[c| χ(β)|d]
ij(x) δ(3)(~x−~y) ,

{Φ(∇e)ai(x) , χ(e)b
j(y) } =

1
2

χ(B)a
b

ij δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(ω)cd
i(y) } = 4 δ[a| [c| χ(ω)|d]

|b]i δ(3)(~x−~y) ,

{Φ(∇B)(x) , χ(A)i(y) } = 2 χ(A)i δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(β)c
jk(y) } = −2δ[a|c χ(β)|b]jk δ(3)(x− y) ,

{Φ(∇B)(x) , χ(γ)A
ijk(y) } = �A

B χ(γ)B
ijk(x) δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(B)cd
jk(y) } = 4 δ[a| [c χ(B)d]

|b]jk δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(e)a
i(y) } = −2δ[a|c χ(e)|b]i δ(3)(~x−~y) ,

{Φ(∇B)(x) , χ(φ)A(y) } = −�B
A χ(φ)B(x) δ(3)(~x−~y) ,

{Φ(∇φ)Aij(x) , χ(A)k(y) } = −�B
A χ(γ)Bijk(x) δ(3)(~x−~y) ,

{Φ(∇φ)Aij(x) , χ(φ)B(y) } = −�B
A χ(B)ij(x) δ(3)(~x−~y) .

(35)

The PB algebra between the second-class constraints has already been calculated, and is given
in Equations (20).

4. The Bianchi Identities

In order to calculate the number of degrees of freedom in the theory, one needs to make use of the
Bianchi identities (BI), as well as additional, generalized Bianchi identities (GBI) that are an analogue of
the ordinary BI for the additional fields present in the theory.

One uses BI associated with the 1-form fields ωab and ea, as well as the GBI for the 1-form A.
Namely, the corresponding 2-form curvatures

Rab = dωab + ωa
c ∧ωcb , Ta = dea + ωa

b ∧ eb , F = dA , (36)

satisfy the following identities:

ελµνρ∇µRab
νρ = 0 , (37)

ελµνρ
(
∇µTa

νρ − Rab
µν ebρ

)
= 0 , (38)

ελµνρ∇µFνρ = 0 . (39)

Choosing the free index to be time coordinate λ = 0, these indentities, as the time-independent
parts of the Bianchi identities, become the off-shell restrictions in the sense of the Hamiltonian analysis.
On the other hand, choosing the free index to be a spatial coordinate, one obtains time-dependent
pieces of the Bianchi identities, which do not enforce any restrictions, but can instead be derived as
a consequence of the Hamiltonian equations of motion.
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There are also GBI associated with the 2-form fields Bab, B and βa. The corresponding 3-form
curvatures are given by

Sab = dBab + 2ω[a|
c ∧ Bc |b] , P = dB , Ga = dβa + ωa

b ∧ βb . (40)

Differentiating these expressions, one obtains the following GBI:

ελµνρ

(
1
3
∇λ Sab

µνρ − R[a| c
λµ Bc

|b]
νρ

)
= 0 , (41)

ελµνρ∂λ Pµνρ = 0 , (42)

ελµνρ

(
2
3
∇λ Ga

µνρ − Rab
λµ βb νρ

)
= 0 . (43)

However, in four-dimensional spacetime, these identities will be single-component equations,
with no free spacetime indices, and therefore necessarily feature time derivatives of the fields.
Thus, they do not impose any off-shell restictions on the canonical variables.

Finally, there is also GBI associated with the 0-form φ. The corresponding 1-form curvature is:

QA = dφA +�B
A A ∧ φB , (44)

so that the GBI associated with this curvature is:

ελµνρ

(
∇νQA

ρ −
1
2
�B

A FνρφB
)
= 0. (45)

This GBI consists of 12 component equations, corresponding to six possible choices of the
free antisymmetrized spacetime indices λµ, and the 2 possible choices of the free group index A.
However, not all of these 12 identities are independent. This can be seen by taking the derivative of the
Equation (45) and obtaining eight identities of the form

�B
A ελµνρ ∂µ Fνρ φB = 0 , (46)

which are automatically satisfied because of the GBI (39). One concludes there are only four
independent identities (45). Now, fixing the value λ = 0, one obtains the time-independent components
of both Equations (45) and (46),

ε0ijk
(
∇jQA

k −
1
2
�B

A FjkφB
)
= 0 , (47)

and
�B

A ε0ijk ∂i Fjk φB = 0 . (48)

Of these, there are six components in Equation (47), but, because of the two components of
Equation (48), there are overall only four independent GBI relevant for the Hamiltonian analysis.

5. Number of Degrees of Freedom

Let us now show that the structure of the constraints implies that there are no local degrees of
freedom (DoF) in a 3BF theory. In the general case, if there are N initial fields in the theory and there
are F independent first-class constraints per space point and S independent second-class constraints
per space point, then the number of local DoF, i.e., the number of independent field components,
is given by

n = N − F− S
2

. (49)
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Equation (49) is a consequence of the fact that S second-class constraints are equivalent to
vanishing of S/2 canonical coordinates and S/2 of their momenta. The F first-class constraints are
equivalent to vanishing of F canonical coordinates, and since the first-class constraints generate
the gauge symmetries, we can impose F gauge-fixing conditions for the corresponding F canonical
momenta. Consequently, there are 2N − 2F− S independent canonical coordinates and momenta and
therefore 2n = 2N − 2F− S, giving rise to Equation (49).

In our case, N can be determined from the Table 1, giving rise to a total of N = 120 canonical
coordinates. Similarly, the number of independent components for the second class constraints is
determined by the Table 2, so that S = 70.

Table 1. The number of components for all fields present in the theory.

ωab
µ Aµ βa

µν γA
µνρ Bab

µν Bµν ea
µ φA

24 4 24 8 36 6 16 2

Table 2. The number of components for the second class constraints present in the theory.

χ(B)ab
jk χ(B)jk χ(e)a

i χ(φ)A χ(ω)ab
i χ(A)i χ(β)a

ij χ(γ)A
ijk

18 3 12 2 18 3 12 2

The first-class constraints are not all independent because of BI and GBI. To see that, take the
derivative of Φ(R)abi to obtain

∇iΦ(R)abi = ε0ijk∇iRab
jk +

1
2

Rc[a|
ijP(B)c

|b]ij . (50)

The first term on the right-hand side is zero off-shell because εijk∇iRab
jk = 0, which is a λ = 0

component of the BI (37). The second term on the right-hand side is also zero off-shell, since it is
a product of two constraints,

Rc[a|
ij P(B)c

|b]ij ≡ 1
2

ε0ijkS(R)c[a|k P(B)c
|b]ij = 0 . (51)

Therefore, we have the off-shell identity

∇iΦ(R)abi = 0 , (52)

which means that six components of Φ(R)abi are not independent of the others. In an analogous
fashion, taking the derivative of Φ(F)i, one obtains

∂iΦ(F)i = ε0ijk ∂iFjk +
1
2

Fij P(B)ij . (53)

The first term on the right-hand side is zero off-shell because εijk ∂iFjk = 0, which is a λ = 0
component of the GBI (37). The second term on the right-hand side is also zero off-shell, since it is a
product of two constraints,

Fij P(B)ij ≡ 1
2

ε0ijk S(F)k P(B)ij = 0 . (54)

Therefore, we have the off-shell identity

∂iΦ(F)i = 0 , (55)
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which means that one component of Φ(F)i is not independent of the others. Similarly, one can
demonstrate that

∇iΦ(∇e)a
i − 1

2
Φ(R)ab

i eb
i +

1
4

ε0ijkS(R)abk P(β)b
ij =

1
2

ε0ijk
(
∇iTajk − Rab ij eb

k

)
. (56)

The right-hand side of the Equation (56) is the λ = 0 component of the BI (38), so that Equation (56)
gives the relation:

∇iΦ(∇e)a
i − 1

2
Φ(R)ab

i eb
i = 0 , (57)

where we have omitted the term that is the product of two constraints. This relation means that four
components of the constraints Φ(∇e)a

i and Φ(R)ab
i can be expressed in terms of the rest. Finally,

one can also demonstrate that

∇iΦ(∇φ)A
ij − 1

2
ε0ikl �A S(F)l χ(γ)B

ijk +�B
A φB Φ(F)j

+
1
2

ε0ilm �B
A P(B)ij S(∇φ)B

lm = ε0ijk
(
∇iQAk +

1
2
�B

A Fik φB

)
,

(58)

which gives

∇iΦ(∇φ)A
ij +

1
2
�B

A φB Φ(F)j = 0 , (59)

for λ = 0 component of the GBI (45), where we have again used that the product of two contraints
is zero off-shell. This relation suggests that six components of two first-class constraints, Φ(∇φ)A

ij

and Φ(F)j, are not independent of the others. However, in the previous section, we have discussed
that only four of these six identities are mutually independent, which means that we have only
four independent identities (59). A rigorous proof of this statement entails the evaluation of the
corresponding Wronskian, and is left for future work.

Taking into account all of the above indentites (52), (55), (57), and (59), we can finally evaluate
the total number of independent first-class constraints. From the Table 3, one can see that the total
number of components of the first-class constraints is given by F∗ = 100. However, the number
of independent components of the first-class constraints is F = 85, obtained by subtracting the six
relations (52), one relation (55), four relations (57) and four relations (59).

Table 3. The number of components for the first class constraints present in the theory. The identities (52),
(55), (57), and (59) reduce the number of components which are independent. This reduction is explicitly
denoted in the table.

Φ(B)ab
i Φ(B)i Φ(e)a Φ(ω)ab Φ(A) Φ(β)a

i Φ(γ)A
ij Φ(R)ab

i Φ(F)i Φ(G)a Φ(∇e)a
i Φ(∇B)ab Φ(∇B) Φ(∇φ)A

ij

18 3 4 6 1 12 6 18− 6 3− 1 4 12− 4 6 1 6− 4

Therefore, substituting all the obtained results into Equation (49), one gets

n = 120− 85− 70
2

= 0, (60)

which means that there are no propagating DoF in a 3BF theory described by the action (10).

6. Generator of the Gauge Symmetry

Based on the results of the Hamiltonian analysis of the action (10), it can also be interesting to
calculate the generator of the complete gauge symmetry of the action. The gauge generator of the theory
is obtained by using the Castellani’s procedure (see Chapter V in [13] for details of the procedure),
and one gets the following result (see Appendix B for details of the calculation):
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G =
∫

Σ3

d3~x
(

1
2
(∇0εab

i)Φ(B)ab
i − 1

2
εab

iΦ(R)ab
i +

1
2
(∇0εab)Φ(ω)ab −

1
2

εabΦ(∇B)ab

+ (∂0εi)Φ(B)i − εiΦ(F)i + (∂0ε)Φ(A)− εΦ(∇B)

+ (∇0εa)Φ(e)a − εaΦ(G)a + (∇0εa
i)Φ(β)a

i − εa
iΦ(∇e)a

i

+
1
2
(∇0εA

ij)Φ(γ)A
ij − 1

2
εA

ijΦ(∇φ)A
ij

+ εab
(

β[a|0iP(β)|b]
i + e[a|0P(e)|b] + B[a|c0iP(B)c

|b]
i
)
− ε γA0ij �B

A P(γ)Bij

+ εaβb0iP(B)abi + εa
i eb0P(B)a

bi
)

.

(61)

Here, εab
i, εab, εi, ε, εa, εa

i and εA
ij are the independent parameters of the gauge transformations.

Furthermore, one can employ the gauge generator to calculate the form-variations for all canonical
coordinates and their corresponding momenta, by computing the Poisson bracket of the chosen variable
A(t,~x) and the generator (61):

δ0 A(t,~x) = {A(t,~x) , G} . (62)

The results are given as follows:

δ0ωab
0 = ∇0εab , δ0π(ω)ab

0 = −2ε[a|
c
iπ(B)c|b]

0i − 2ε[a|
cπ(ω)c|b]

0 ,

+2ε[a|π(e)|b]0 + 2ε[a|iπ(β)|b]
0i ,

δ0ωab
i = ∇iε

ab , δ0π(ω)ab
i = −2ε[a|

c
j π(B)c|b]

ij − 2ε[a|
c
i π(ω)|b]c

i

+2ε[a| π(e)|b]i + 2ε[a| jπ(β)|b]
ij

+2ε0ijk∇[j|εab |k] + ε0ijkε[a|β|b] jk ,

δ0Bab
0i = ∇0εab

i + ε[a|ie|b]0 δ0π(B)ab
0i = 2ε[a|c π(B)|b]ci ,

+2ε[a|cB|b]c0i + ε[a|β|b]0i ,

δ0Bab
ij = 2∇[i|ε

ab
|j] + 2ε[a|cB|b]cij δ0π(B)ab

ij = 2ε[a|c π(B)|b]cij ,

+2ε[a| [ie|b] j] + ε[a|β|b]ij ,

δ0 A0 = ∂0ε , δ0π(A)0 = − 1
2 εA

ij �
B

A π(γ)B
0ij ,

δ0 Ai = ∂iε , δ0π(A)i = ε0ijk∂jεk − 1
2 εA

jk �B
A π(γ)B

ijk ,

δ0B0i = ∂0εi , δ0π(B)0i = 0 ,

δ0Bij = 2 ∂[i|ε|j] + εA
ij �

B
A φB , δ0π(B)ij = −ε0ijk∂kε ,

δ0βa
0i = ∇0εa

i − εabβb0i , δ0π(β)a
0i = −εabπ(β)b0i + 1

2 εbπ(B)ab
0i ,

δ0βa
ij = 2∇[i|ε

a
|j] − εab βbij , δ0π(β)a

ij = −εab π(β)bij + 1
2 εb π(B)ab

ij

−ε0ijk∇kεa ,

δ0ea
0 = ∇0εa − εab eb0 , δ0π(e)a

0 = −εab π(e)b0 + 1
2 εb

i π(B)ab
0i ,

δ0ea
i = ∇iε

a − εab ebi , δ0π(e)a
i = −εab π(e)bi + ε0ijk

(
∇[j|εa |k] + εabβbjk

)
+ 1

2 εb
j π(B)ab

ij ,
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δ0γA
0ij = ∇0εA

ij − ε γB
0ij �

A
B , δ0π(γ)A

0ij = ε �B
A π(γ)B

0ij ,

δ0γA
ijk = − ε γB

ijk �B
A +∇iε

A
jk δ0π(γ)A

ijk = ε �A
B
(

π(γ)B
ijk + ε0ijk φB

)
,

−∇jε
A

ik +∇kεA
ij ,

δ0φA = ε φB � A
B , δ0π(φ)A = −ε �B

A π(φ)B +
1
3!

ε ε0ijk �B
A γBijk

−1
2
�A B εB

ij π(B)ij − 1
2

ε0ijk∇iε
A

jk ,

(63)

These transformations are an extension of the form-variations in the case of the Poincaré 2-group
obtained in [17].

7. Conclusions

Let us summarize the results of the paper. In Section 2, we have demonstated in detail how to use
the idea of a categorical ladder to introduce the 3-group structure corresponding to the theory of scalar
electrodynamics coupled to Einstein–Cartan gravity. We have introduced the topological 3BF action
corresponding to this choice of a 3-group, as well as the constrained 3BF action which gives rise to
the standard equations of motion for the scalar electrodynamics. In order to perform the canonical
quantization of this theory, the complete Hamiltonian analysis of the full theory with constraints has to
be performed, but the important step towards this goal is the Hamiltonian analysis of the topological
3BF action. This has been done in Section 3. Here, the first-class and second-class constraints of
the theory, as well as their Poisson brackets, have been obtained. In Section 4, we have discussed the
Bianchi identities and also the generalized Bianchi identities, since they enforce restrictions in the
sense of Hamiltonian analysis, and reduce the number of independent first-class constraints present
in the theory. With this background material in hand, in Section 5, the counting of the dynamical
degrees of freedom present in the theory has been performed and it was established that the considered
3BF action is a topological theory, i.e., the diffeomorphism invariant theory without any propagating
degrees of freedom. In Section 6, we have constructed the generator of the gauge symmetries for
the theory, and we found the form-variations for all the variables and their canonical momenta.

The results obtained in this paper represent the straightforward generalization of Hamiltonian
analysis done in [15] for the Poincaré 2-group, and a first example of the Hamiltonian analysis of
a 3BF action. The fact that the theory was found to be topological is nontrivial, since it relies on the
existence of the generalized Bianchi identities, which have been identified for the first time. In addition
to that, it was demonstrated that the algebra of constraint closes, which is an important consistency
check for the theory. There is another very interesting aspect of the constraint algebra. Namely,
one can recognize, looking at the structure of Equations (34) that the subalgebra generated by the
first-class constraint Φ(∇φ)A

ij is in fact an ideal of the constraint algebra because the Poisson bracket
between this constraint and all other constraints is again proportional to that constraint. It is curious
that precisely the constraint Φ(∇φ)A

ij is the only one related to the Lie group L from the 3-group,
according to its index structure, and also that the structure constant of the ideal is determined by
the action � of the group G on L. Let us also note that the action � appears as well in the structure
constants of the algebra between the first-class and second-class constraints.

The results of this work open several avenues for future research. From the point of view of
mathematics, the relationship between the algebraic structures mentioned above should be understood
in more detail. More generally, one should understand the correspondence between the gauge
group generated by the generator (61) and the 3-group structure used to define the theory. This is
not viable in the special case of the 3-group discussed in this work, but instead needs to be done
in the case of a generic 3-group, where homomorphisms δ and ∂ and the Peiffer lifting {_ , _} are
nontrivial. From the point of view of physics, the obtained results represent the fundamental building
blocks for the construction of the quantum theory of scalar electrodynamics coupled to gravity, as
well as a convenient model to discuss before proceeding to the Hamiltonian analysis and canonical
quantization of the full Standard Model coupled to gravity, formulated as a 3BF action with suitable
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constraints [8]. Both the Hamiltonian analysis of constrained 3BF models and the corresponding
canonical quantization programme need to be further developed in order to achieve these goals.
Our work is a first step in this direction.

Finally, let us note in the end that the above list of topics for future research is by no means
complete, and there are potentially many other interesting topics that can be studied in this context.
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Appendix A. The Equations of Motion for the Scalar Electrodynamics

The action of scalar electrodynamics coupled to Einstein–Cartan gravity is given in the form (12):

S =
∫
M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(

Bab − 1
16πl2

p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1
2

HabcAea ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)
+ λ ∧

(
B− 12

q
Mabea ∧ eb

)
+ ζab

(
Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)
− 1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(A1)

Varying the total action (12) with respect to the variables Bab, B, ωab, βa, λab, ΛabA, γA, λA, HabcA,
ζab, Mab, λ, A, φA and ea, one obtains the equations of motion:

Rab − λab = 0 , (A2)

F + λ = 0 , (A3)

∇Bab − e[a| ∧ β|b] = 0 , (A4)

∇ea = 0 , (A5)

Bab − 1
16πl2

p
εabcdec ∧ ed = 0 , (A6)
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HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb = 0 , (A7)

∇φA − λA = 0 , (A8)

γA −
1
2

HabcAea ∧ eb ∧ ec = 0 , (A9)

− 1
2

λA ∧ ea ∧ eb ∧ ec + εcde f ΛabA ∧ ed ∧ ee ∧ e f = 0 , (A10)

Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb = 0 , (A11)

− 12
q

λ ∧ ea ∧ eb + ζabεcde f ec ∧ ed ∧ ee ∧ e f = 0 , (A12)

B− 12
g

Mabea ∧ eb = 0 , (A13)

− dB + d(ζabea ∧ eb)− φA �B
AγB −ΛabA �B

A φB ∧ ea ∧ eb = 0 , (A14)

∇γA −∇(Λab
A ∧ ea ∧ eb)−

1
4!

m2 φAεabcdea ∧ eb ∧ ec ∧ ed = 0 , (A15)

∇βa +
1

8πl2
p

εabcdλbc ∧ ed +
3
2

HabcAλA ∧ eb ∧ ec + 3Hde f AεabcdΛe f A ∧ eb ∧ ec

− 2ΛabA ∧∇φA ∧ eb − 2
1
4!

m2φA φAεabcdeb ∧ ec ∧ ed

− 24
q

Mabλ ∧ eb + 4ζe f Me f εabcdeb ∧ ec ∧ ed − 2ζabF ∧ eb = 0 .

(A16)

The dynamical degrees of freedom are the tetrad fields ea, the scalar field φA, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them. Specifically, Equations (A2)–(A13) give

λabµν = Rabµν , ωab
µ = 4ab

µ , γA
µνρ = − 1

2e
εµνρσ∇σφA ,

ΛabA
µ =

1
12e

gµλελνρσ∇νφA ea
ρeb

σ , βa
µν = 0 , Babµν =

1
8πl2

p
εabcdec

µed
ν ,

HabcA =
1
6e

εµνρσ∇µφA ea
νeb

ρec
σ , λA

µ = ∇µφA ,

λµν = Fµν , Bµν = − 1
2eq

εµνρσFρσ ,

Mab = − 1
4e

εµνρσFµν ea
ρeb

σ , ζab =
1

4eq
εµνρσFµν ea

ρeb
σ .

(A17)

Note that from the Equations (A4)–(A6) it follows that βa = 0, as in the pure gravity case. The
equation of motion (A15) reduces to the covariant Klein–Gordon equation for the scalar field coupled
to the electromagnetic potential A, (

∇µ∇µ −m2
)

φA = 0 . (A18)

From Equation (A14), we obtain the differential equation of motion for the field A:

∇µFµν = jν , jµ ≡ 1
2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (A19)
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Finally, the equation of motion (A16) for ea becomes:

Rµν − 1
2

gµνR = 8πl2
p Tµν ,

Tµν ≡ ∇µφA∇νφA − 1
2

gµν
(
∇ρφA∇ρφA + m2φA φA

)
− 1

4q
(

FρσFρσgµν + 4FµρFρ
ν
)

.
(A20)

The system of Equations (A2)–(A16) is equivalent to the system of Equations (A17)–(A20).

Appendix B. The Calculation of the Gauge Generator

The gauge generator of the theory is obtained by the standard Castellani procedure (see [13] for
an introduction). One starts from the generic form for the generator,

G =
∫

Σ3

∂3~x
(1

2
(∂0εab

i)G1ab
i +

1
2

εab
iG0ab

i +
1
2
(∂0εab)G1ab +

1
2

εabG0ab

+ (∂0εi)G1
i + εiG0

i + (∂0ε)G1 + εG0

+ (∂0εa)G1a + εaG0a + (∂0εa
i)G1a

i + εa
iG0a

i

+
1
2
(∂0εA

ij)G1 A
ij +

1
2

εA
ijG0 A

ij
)

,

(A21)

where the generators G0 and G1 are obtained by the standard prescription [13]:

G1 = CPFC ,

G0 + {G1 , HT } = CPFC ,

{G0 , HT } = CPFC ,

(A22)

where CPFC is a primary first-class constraint. For example, one choses G1ab
i = Φ(B)ab

i. From
the conditions

G0ab
i + {Φ(B)ab

i , HT } = G0ab
i + Φ(R)ab

i = CPFC ,

{G0ab
i , HT } = CPFC

∗ = {CPFC −Φ(R)ab
i , HT } ,

(A23)

we solve for G0ab
i by determining CPFC from the second equation. Evaluating one PB, one can reexpress

the second equation in the form:

{CPFC , HT } = CPFC
∗ + 2ω[a|

d
0Φ(R)|b]d

i = { 2ω[a|
d

0P(B)|b]d
i , HT } . (A24)

From the second equality, we recognize that

CPFC = 2ω[a|
d

0P(B)|b]d
i , (A25)

which can then be substituted into the first condition above, giving

G0ab
i = 2ω[a|

d
0Φ(B)|b]d

i −Φ(R)ab
i . (A26)

One thus obtains

1
2
(∂0εab

i)(G1)ab
i +

1
2

εab
iG0ab

i =
1
2
∇0εab

iΦ(B)ab
i − 1

2
εab

iΦ(R)ab
i .

The other G0 and G1 terms are obtained in a similar way, and the generator (61) is derived.
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Appendix C. Introduction to 3-Groups

The notion of a 3-group is usually introduced in the framework of higher category theory [6].
In category theory, every group can be understood as a category which has only one element,
and morphisms which are all invertible. The group elements are then individual morphisms that
map the category element to itself, while the group operation is the categorical composition of the
morphisms. In such a case, the axioms of the category guarantee the validity of all axioms of a group.
This kind of construction can be generalized to 2-groups, 3-groups and, in general, n-groups. Namely,
a 2-group is by definition a 2-category which has only one element, and whose morphisms and
2-morhisms (i.e., morphisms between morphisms) are invertible. Similarly, a 3-group is by definition
a 3-category which has only one element, while its morphisms, 2-morphisms, and 3-morphisms
are invertible.

The above definition of a 3-group is very abstract, and while theoretically very important, in itself
not very useful for practical calculations and applications in physics. Fortunately, there is a theorem
of equivalence between 3-groups and the so-called 2-crossed modules, which are algebraic structures
with more familiar properties [9,10]. For the applications in physics, attention focuses on the so-called
strict Lie 3-groups, and their corresponding differential (Lie algebra) structure, which corresponds to
the differential Lie 2-crossed module. Let us therefore give a brief overview of the latter.

A differential Lie 2-crossed module (l
δ→ h

∂→ g, �, {_ , _}) is given by three Lie algebras g, h and l,
maps δ : l→ h and ∂: h→ g, together with a map called the Peiffer lifting,

{_ , _} : h× h→ l , (A27)

and an action � of the algebra g on all three algebras.
Let us introduce the bases in the three algebras, τα ∈ g, ta ∈ h and TA ∈ l, and structure constants

in those bases, as follows:

[τα , τβ] = fαβ
γτγ , [ta , tb] = fab

ctc , [TA TB] = fAB
CTC . (A28)

Now, the maps ∂ and δ can be written as

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta , (A29)

and the action of the algebra g on g, h and l as:

τα � τβ = �αβ
γ τγ , τα � ta = �αa

b tb , τα � TA = �αA
B TB . (A30)

Finally, the Peiffer lifting can be encoded into coefficients Xab
A as:

{ta, tb} = Xab
A TA . (A31)

A differential Lie 2-crossed module has the following properties (we write all equations in the
abstract and their corresponding component forms, side by side):

1. The action of the algebra g on itself is via the adjoint representation, i.e., ∀g, g1 ∈ g:

g � g1 = [g, g1] , �αβ
γ = fαβ

γ . (A32)

2. The action of the algebra g on algebras h and l is g-equivariant, i.e., ∀g ∈ g, h ∈ h, l ∈ l:

∂(g � h) = g � ∂(h) , ∂a
β fαβ

γ = �αa
b ∂b

γ , (A33)

δ(g � l) = g � δ(l) , δA
a �αa

b = �αA
B δB

b . (A34)
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3. The Peiffer lifting is a g-equivariant map, i.e., for every g ∈ g and h1, h2 ∈ h:

g � {h1, h2} = {g � h1, h2}+ {h1, g � h2} , Xab
B �αB

A = �αa
c Xcb

A +�αb
c Xac

A . (A35)

4. For every h1, h2 ∈ h, the following identity holds:

δ({h1, h2}) = [h1 , h2]− ∂(h1)� h2 , Xab
A δA

c = fab
c − ∂a

α �αb
c . (A36)

5. For all l1, l2 ∈ l, the following identity holds:

[l1, l2] = {δ(l1), δ(l2)} , fAB
C = δA

a δB
b Xab

C . (A37)

6. For all h1, h2, h3 ∈ h:

{[h1, h2], h3} = ∂(h1)� {h2, h3}+ {h1, [h2, h3]} − ∂(h2)� {h1, h3} − {h2, [h1, h3]} ,

fab
d Xdc

B = ∂a
α Xbc

A �αA
B + Xad

B fbc
d − ∂b

α �αA
B Xac

A − Xbd
B fac

d .
(A38)

7. For all h1, h2, h3 ∈ h:

{h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} ,

Xad
A fbc

d = Xab
B δB

d Xdc
A − Xac

B δB
dXdb

A .
(A39)

8. For all l ∈ l and ∀h ∈ h:

{δ(l), h}+ {h, δ(l)} = −∂(h)� l , 2 δA
a X{ab}

B = −∂b
α �αA

B . (A40)

Finally, when dealing with various algebra valued differential forms, one multiplies them as
differential forms using the ordinary wedge product ∧, and simultaneously as algebra elements using
one of maps defined above. For example, the product with an action ∧� of the g-valued n-form ρ on
the h-valued m-form η is defined as:

ρ ∧� η =
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn τα � ta dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn

=
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn �αa

btb dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn .
(A41)
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14. Miković, A.; Oliveira, M.A.; Vojinović, M. Hamiltonian analysis of the BFCG theory for a generic Lie 2-group.

arXiv 2016, arXiv:1610.09621.
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16. Miković, A.; Oliveira, M.A. Canonical formulation of Poincare BFCG theory and its quantization.

Gen. Relat. Gravity 2015, 47, 58. [CrossRef]
17. Oliveira, M.A. The BFCG Theory and Canonical Quantization of Gravity. arXiv 2018, arXiv:1801.04818.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



Quantum gravity and elementary particles from 
higher gauge theory

Tijana Radenkovíc1;� and Marko Vojinovíc1;y
1Institute of Physics, University of Belgrade,

Pregrevica 118, 11080 Belgrade, Serbia
�E-mail: rtijana@ipb.ac.rs yE-mail: vmarko@ipb.ac.rs

Abstract

We give a brief overview how to couple general relativity to the Standard Model
of elementary particles, within the higher gauge theory framework, suitable for
the spinfoam quantization procedure. We begin by providing a short review of all
relevant mathematical concepts, most notably the idea of a categorical ladder, 3-
groups and generalized parallel transport. Then, we give an explicit construction of
the algebraic structure which describes the full Standard Model coupled to Einstein-
Cartan gravity, along with the classical action, written in the form suitable for
the spinfoam quantization procedure. We emphasize the usefulness of the 3-group
concept as a superior tool to describe gauge symmetry, compared to an ordinary
Lie group, as well as the possibility to employ this new structure to classify matter
�elds and study their spectrum, including the origin of fermion families.

1 Introduction

The quantization of the gravitational �eld is one of the most fundamental open problems of
modern theoretical physics. Since the inceptions of general relativity (GR) and quantum
�eld theory (QFT), many attempts have been made over the years to unify the two into
a self-consistent description of gravitational and matter �elds as basic building blocks of
nature. Some of the attempts have developed into vast research areas, such as String
Theory, Loop Quantum Gravity, Causal Set Theory, and so on. One of the prominent
approaches is Loop Quantum Gravity (LQG) [1, 2], which has branched into the canonical
and covariant frameworks, the latter known as the spinfoam approach [3].
The spinfoam approach to the quantization of the gravitational �eld revolves around

the idea of providing a precise mathematical de�nition to the Feynman path integral for
the gravitational �eld,

Z =

Z
Dg eiSGR[g] ;

where g denotes the gravitational degrees of freedom, and SGR[g] is the GR action ex-
pressed in terms of variables g. The strategy of de�ning the path integral can be roughly
expressed in three main steps, called the spinfoam quantization procedure:

1. Choose convenient variables g and rewrite the classical action in the form

SGR[g] = Stopological[g] + Ssimp[g] ; (1)
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where the �rst term represents a topological theory (with no propagating degrees of
freedom), while the second term corresponds to the so-called simplicity constraint
terms, whose purpose is to transform the full action into a realistic non-topological
action with propagating degrees of freedom.

2. Employ the methods of topological quantum �eld theory (TQFT) to de�ne the path
integral for the topological part of the action. This is typically implemented by
passing from a smooth spacetime manifold to a simplicial complex (triangulation),
and writing the path integral in the form of a discrete state sum,

Z =
X
g

Y
v

Av(g)
Y
�

A�(g)
Y
�

A�(g)
Y
�

A� (g)
Y
�

A�(g) :

Here g represents the gravitational �eld variables living on the vertices v, edges �,
triangles �, terahedra � , and 4-simplices � of the simplicial complex, describing its
geometry, while the corresponding amplitudesAv(g), . . . , A�(g) are chosen to render
the whole state sum Z independent of the particular choice of the triangulation of
the spacetime manifold.

3. Enforce the simplicity constraints of the theory by a suitable deformation of the
amplitudes A and the set of independent variables g, thereby obtaining a modi�ed
state sum Z which corresponds to one possible rigorous de�nition of the realistic
gravitational path integral.

Since its inception, the spinfoam quantization procedure has been formulated and
implemented for various choices of the classical action, leading to a plethora of spinfoam
models of quantum gravity, starting from the Ponzano-Regge model for 3D gravity [4],
and leading up to the currently most sophisticated EPRL/FK model for the realistic 4D
case [5, 6]. However, one property common to all spinfoam models is the fact that they
all describe pure gravity, without matter �elds. This is due to the common choice of the
classical action � it is the well known BF theory [7], which is usually de�ned for the
Lorentz group SO(3; 1), with some form of the simplicity constraint terms. The prototype
description of GR in this form is the Plebanski action [8]. The reason why matter �elds
are absent from all such models lies in the fact that the BF action does not feature tetrad
�elds at the fundamental level. Instead, the tetrads appear as a consequence of classical
equations of motion, and are thus inherently classical, on-shell quantities. This renders
the approach based on the BF theory incapable of adding matter �elds at the quantum
level, since matter is coupled to gravity using precisely the tetrad �elds.
The issue of the absence of the tetrad �elds at the fundamental level has been suc-

cessfully resolved in [9], where a categorical generalization has been made, and the 2BF
action (introduced in [10, 11]) has been employed to build an action for GR, featuring
tetrads explicitly in the topological sector of the action. The categorical generalization is
based on a concept of a categorical ladder, an abstraction scheme introducing a chain of
new objects: from categories to 2-categories to 3-categories and so forth. This powerful
mathematical language gave rise to the idea that the notion of gauge symmetry in physics
may be described by objects other than Lie groups. The new approach is called higher
gauge theory (HGT), see [12] for an introduction. In the context of the spinfoam quanti-
zation procedure, HGT has been successfully applied to build a quantum gravity model,
based on the Poincaré 2-group [13] as a gauge symmetry structure, and the corresponding
2BF action, leading to the so-called spincube model of quantum gravity [9]. Having the
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tetrads as fundamental �elds in the 2BF action, the new model could be extended to
include matter �elds in a straightforward way. Nevertheless, the matter �eld action does
not have the form analogous to (1), which renders the steps 2 and 3 of the spinfoam
quantization procedure moot, since they can be applied only to the gravitational sector
of the theory.
Thus, a natural need appeared to generalize the theory once more, in order to include

the matter �elds into the topological sector of the theory, in a similar way that was done
to include the tetrad �elds. The basic idea was to pass from the notion of a 2-group to a
notion of a 3-group as a mathematical descriptor of gauge symmetry [12, 14, 15], giving
rise to a topological 3BF action. With suitable simplicity constraint terms added, a
3BF action perfectly �ts together all �elds necessary for a uni�ed description of quantum
gravity coupled to matter �elds � it features tetrads, spin connection, gauge �elds, scalar
�elds and fermions. The explicit construction was done in [16], where the full Standard
Model (SM) coupled to GR in the Einstein-Cartan formulation was rewritten in the
form (1), suitable for the implementation of the spinfoam quantization procedure and
building a full quantum theory. This demostrates the power and expressiveness of the
HGT approach, and it provides us with novel mathematical tools to study the algebraic
properties of the matter sector of the SM, in analogy to the gauge �eld sector which is
being described in terms of ordinary Lie groups. In this paper we will review the essential
properties of the new approach.
The layout of the paper is the following. In section 2 we give a brief introduction to

the category theory, categorical ladder, and the notion of n-groups. Our attention focuses
on 3-groups, in particular their representation in terms of 2-crossed modules. Section 3
reviews the construction and general properties of the 3BF action, and its relationship
with the 3-group structure. Then, in section 4 we apply this developed formalism to
construct the Standard Model 3-group, and explicitly build the action for the Standard
Model coupled to Einstein-Cartan gravity in the form of the 3BF action with suitable
simplicity constraints. Section 5 contains our concluding remarks.

2 Category theory and 3-groups

Let us begin by giving a short introduction to the category theory, and in particular the
notion of category theory ladder, a concept used in higher gauge theory to generalize the
notion of gauge symmetry. A nice introduction to this topic can be found in [12] and
further technical details in [14, 15].
A category C = (Obj;Mor) is a structure which has objects and morphisms between

them,
X; Y; Z; � � � 2 Obj ; f; g; h; � � � 2Mor ;

where
f : X ! Y; g : Z ! X; h : X ! Y; : : :

such that certain rules are respected, like the associativity of composition of morphisms,
and similar. Similarly, a 2-category C2 = (Obj;Mor1;Mor2) is a structure which has ob-
jects, morphisms between them, and morphisms between morphisms, called 2-morphisms,

X; Y; Z; � � � 2 Obj ; f; g; h; � � � 2Mor1 ; �; �; � � � 2Mor2 ;

where
f : X ! Y; g : Z ! X; h : X ! Y; : : : � : f ! h ; : : :
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such that similar rules about compositions are respected. Then, a 3-category C3 =
(Obj;Mor1;Mor2;Mor3) additionally has morphisms between 2-morphisms, called 3-
morphisms,

�;�; � � � 2Mor3 ; � : �! � ; : : :

again with a certain set of axioms about compositions of various n-morphisms. One can
further generalize these structures to introduce 4-categories, n-categories, 1-categories,
etc. The process of raising the �dimensionality� of a categorical structure is called a
categorical ladder.
It is useful to understand other algebraic structures as special cases of categories. As

a particularly important example, the algebraic structure of a group is a special case
of a category � it is a category with only one object, while all morphisms (i.e., group
elements) are invertible. It is straightforward to verify that axioms of a group follow from
this de�nition and the axioms of a category. Any group can be represented in this way,
for example �nite groups, Lie groups, and so on.
The notion of a categorical ladder then provides us with a natural way to introduce

novel, more general algebraic structures, by extending the above de�nition to 2-categories,
3-categories, etc. In particular,

� a 2-group is a 2-category with only one object, while all 1-morphisms and 2-
morphisms are invertible;

� a 3-group is a 3-category with only one object, while all 1-morphisms, 2-morphisms
and 3-morphisms are invertible.

It is important to emphasize that an n-group is not a particular type of group. Instead,
it is a di¤erent algebraic structure, which shares some of the features of groups, but is
governed by a qualitatively di¤erent set of axioms.
The framework of higher gauge theory is centered around the idea that gauge sym-

metries in physics can be better described using these alternative algebraic structures
than using the ordinary Lie groups. To that end, our attention will mostly focus on the
so-called Lie 3-groups and their corresponding Lie 3-algebras. While the abstract de�ni-
tion in terms of n-category theory is particularly appealing from the conceptual point of
view, for applications in physics there exists a more practical way to talk about 3-group.
Namely, every strict Lie 3-group is known to be equivalent to a so-called 2-crossed module,
de�ned as an exact sequence of three Lie groups G, H and L,

L
�! H

@! G ; (2)

and equipped with two �boundary homomorphisms� � and @, an action . of G onto G,
H and L,

. : G�G! G ; . : G�H ! H ; . : G� L! L ;

and a bracket operation called Pei¤er lifting over H to L,

f_ ;_g : H �H ! L :

Certain set of axioms is assumed to hold true among all these maps. In particular, for all
g 2 G, h 2 H and l 2 L, we have:

� the axiom stating that (2) is an exact sequence,

@� = 1G ; (3)
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� the axiom specifying that the action of G onto itself is conjugation,

g . g0 = g g0 g
�1 ; (4)

� the axioms stating that the action of G on H and L is equivariant with respect to
homomorphisms @ and � and the Pei¤er lifting,

g . @h = @(g . h) ;
g . �l = �(g . l) ;
g . fh1; h2g = fg . h1; g . h2g ;

(5)

� and �nally the axioms determining the properties of the Pei¤er lifting,

� fh1; h2g = h1h2h
�1
1 (@h1) . h

�1
2 ;

f�l1; �l2g = l1l2l
�1
1 l

�1
2 ;

fh1h2; h3g = fh1; h2h3h�12 g @h1 . fh2; h3g ;
f�l; hg fh; �lg = l(@h . l�1) :

(6)

Since it is constructed from three Lie groups, a Lie 3-group has a corresponding Lie
3-algebra, also called a di¤erential 2-crossed module,

l
�! h

@! g ;

where l, h, g are Lie algebras of L, H, G, the maps �, @, . and f_ ;_g are inherited from
the 3-group via natural linearization, and �nally, the set of corresponding axioms applies.
In addition to all this, Lie algebras have their own usual Lie structure � the generators,

TA 2 l ; ta 2 h ; �� 2 g

the corresponding structure constants,

[TA; TB] = fAB
CTC ; [ta; tb] = fab

ctc ; [��; ��] = f��
�  ;

and G-invariant nondegenerate symmetric bilinear forms (for example Killing forms),

hTA; TBil = gAB ; hta; tbih = gab ; h��; ��ig = g�� :

The main purpose of the 3-group structure is to generalize the notion of parallel trans-
port from curves to surfaces to volumes. Namely, given a 4-dimensional manifoldM, one
de�nes a 3-connection (�; �; ) as a triple of 3-algebra-valued di¤erential forms,

� = ���(x) �� dx
� 2 �1(M; g) ;

� =
1

2
�a��(x) ta dx

� ^ dx� 2 �2(M; h) ;

 =
1

3!
A���(x)TA dx

� ^ dx� ^ dx� 2 �3(M; l) :
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Then one can introduce the line, surface and volume holonomies,

g = Pexp
Z
P1
� ; h = Sexp

Z
S2
� ; l = Vexp

Z
V3
 ;

and corresponding curvature forms,

F = d�+ � ^ �� @� ;
G = d� + � ^. � � � ;
H = d + � ^.  � f� ^ �g :

The 3-group structure ensures that all these quantities are well de�ned, in particular the
surface- and volume-ordered exponentials and the respective holonomies.

3 Higher gauge theories

The basic idea behind the higher gauge theory approach is to employ the structure of
n-groups as a mathematical representation of gauge symmetries in physics, generalizing
the ordinary notion of gauge symmetry described via a Lie group. Namely, in ordinary
gauge theory, the prototype action functional was the so-called BF action [7], based on
a chosen gauge group G. In the HGT approach, one generalizes the BF action in accord
with the chosen n-group structure, leading to the nBF action. For the case of 3-groups,
one de�nes a 3BF action as:

S3BF =

Z
M
hB ^ Fig + hC ^ Gih + hD ^Hil :

Here B, C, and D are Lagrange multipliers, in particular a g-valued 2-form, an h-valued
1-form, and an l-valued 0-form, respectively.
As in the case of a BF theory, one can demonstrate that 3BF theory is a topological

gauge theory, having no local propagating degrees of freedom. Nevertheless, it can be
transformed into a physically relevant action by adding the so-called simplicity constraint
terms to the action, changing the dynamical structure of the theory. The prototype of
this procedure is represented by transforming the topological BF theory based on the
Lorentz group SO(3; 1) into a Plebanski action [8], which describes general relativity.
One can even do more, and provide a physical interpretation of the Lagrange multi-

pliers C and D in the 3BF action, as follows:

� the h-valued 1-form C can be interpreted as the tetrad �eld, if H = R4 is the
spacetime translation group,

C ! e = ea�(x) ta dx
� ;

� the l-valued 0-formD can be interpreted as the set of real-valued matter �elds, given
some Lie group L,

D ! � = �A(x)TA :

An interested reader can see [16] for further details.
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4 The Standard Model

One natural question that can be asked is what choice of a 3-group can be relevant for
physics. There are various answers to this question, but perhaps the most illustrative
example is a choice of the 3-group which reproduces the Standard Model of elementary
particles, coupled to general relativity in the Einstein-Cartan version. This is called the
Standard Model 3-group, and in the remainder of this section we will demonstrate how it
can be constructed, step by step.
The �rst step is to specify the groups G and H as the usual Lorentz, internal, and

translational symmetries:

G = SO(3; 1)� SU(3)� SU(2)� U(1) ; H = R4 :

Note that the Poincaré group has been broken into the separate Lorentz and transla-
tional parts, and these have been associated with two di¤erent groups within the 3-group
structure.
The next step is to de�ne the homomorphisms � and @, as well as the Pei¤er lifting,

to be trivial,
�l = 1H = 0 ; @~v = 1G ;

and
f~u;~vg = 1L ;

for all l 2 L and ~u;~v 2 H. Additionally, we de�ne the action of the group G on H
via vector representation for the SO(3; 1) sector and via trivial representation for the
SU(3)� SU(2)� U(1) sector. Finally, the choice of the group L and the action of G on
L will be discussed below. But already now one can verify that all axioms (3)�(6) are
satis�ed, thus making sure that these choices represent one genuine 3-group.
The next step is to choose the group L. One general property of L that can be

determined immediately comes from the second axiom in (6). Namely, due to the trivial
choices for the Pei¤er lifting and the homomorphism �, the axiom implies that L must be
Abelian. Aside from this, the choice of the group L is guided by physical requirements,
as follows.
Begin by rewriting the 3BF action in the form

S3BF =

Z
M
B� ^ F�g�� + e

a ^ Gbgab + �AHBgAB :

Since the groupG is a direct product of the Lorentz and internal groups, the corresponding
indices � ofG split according to this structure, as � = (ab ; i), leading to the corresponding
splitting of the connection � and its curvature F ,

� = !abJab + A
i� i ; F = RabJab + F i� i :

Here !ab is the ordinary spin connection 1-form, Jab are Lorentz generators, while Ai are
internal gauge potential 1-forms and � i the generators of SU(3)�SU(2)�U(1). Also, Rab
and F i are the Riemann curvature and gauge �eld strength 2-forms, respectively. Also,
given that the action of SO(3; 1) onto H = R4 is via vector representation, and given that
the bilinear symmetric nondegenerate form for H must be G-invariant, the only available
choice is

gab = �ab � diag(�1;+1;+1;+1) :
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Finally, given that the matter �elds are elements in the Lie algebra l of the group L,
namely � = �ATA, we observe that there should be precisely one real-valued �eld �

A(x)
for each generator TA 2 l. This information allows us to determine the dimension of the
algebra l, by counting the total number of real-valued components of all matter �elds in
the Standard Model. The matter �elds have two sectors � fermions and the Higgs.
The number of the real-valued components of all fermion �elds can be counted accord-

ing to the following scheme:� �e
e�

�
L

�
ur
dr

�
L

�
ug
dg

�
L

�
ub
db

�
L

(�e)R (ur)R (ug)R (ub)R

(e�)R (dr)R (dg)R (db)R

9>>>>>>>>=>>>>>>>>;
= 16

Weyl spinors
family

�

�3 families � 4 real-valued �elds
Weyl spinor

= 192 real-valued �elds �A :

Similarly, the Higgs sector gives us:�
�+

�0

��
= 2 complex scalar �elds = 4 real-valued �elds �A :

This suggests the structure for L in the form:

L = Lfermion � LHiggs ; dimLfermion = 192 ; dimLHiggs = 4 :

The structure of L can be further understood by looking at the action of the gauge
group G on various components of �elds �A. This is �xed by the choice of the action of
G on L, chosen as follows. Given that G is constructed from Lorentz and internal gauge
symmetry groups, the action . : G � L ! L speci�es the transformation properties of
each real-valued �eld �A with respect to those symmetries. For example, if we look at a
Weyl spinor ub that sits in the doublet �

ub
db

�
L

;

the action g . ub (where g 2 SO(3; 1)� SU(3)� SU(2)� U(1)) encodes that ub consists
of 4 real-valued �elds which transform as:

� a left-handed spinor with respect to SO(3; 1),

� as a �blue�component of the fundamental representation of SU(3),

� and as �isospin +1
2
�of the left doublet with respect to SU(2)� U(1).

The action . : G�L! L similarly de�nes the transformation properties for all other
fermions in the theory, as well as for the Higgs �eld.
From such a de�nition of the action ., one can observe that G acts on L in precisely

the same way across the three fermion families. This implies that Lfermion can be written
as

Lfermion = L1st family � L2nd family � L3rd family ; dimLk-th family = 64 :
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Ultimately, given that the components of Weys spinors mutually anticommute, given
that the group L is Abelian, and given that it has the structure and dimension as given
above, we can �x the choice of the group L which corresponds to the Standard Model as

L = R4(C)� R64(G)� R64(G)� R64(G) ;

where G is the algebra of Grassmann numbers. This completes the construction of the
Standard Model 3-group.
The �nal step in specifying the theory is to spell out its classical action. As was

previously discussed, the action has the form of a 3BF action, with the addition of
appropriate simplicity constraints which will transform it into a non-topological theory,
i.e., a theory with local propagating degrees of freedom. The choice of the Standard Model
3-group completely �xes the structure of the 3BF action, and the only thing left to do
is to add the appropriate simplicity constraints. The details of the construction of these
terms is given in detail in [16], and will not be repeated here. We will only quote the
result,

SSM+EC = S3BF + Ssimp ;

where

S3BF =

Z
B�̂ ^ F �̂ + eâ ^ G â + �Â ^HÂ ;

and

Ssimp =
�
B�̂ � C�̂�̂Mcd�̂e

c ^ ed
�
^ ��̂ �

�
Â � ea ^ eb ^ ecCÂB̂MabcB̂

�
^ �Â

�4�i l2p "abcdea ^ eb ^ �c�ÂT dÂB̂�B̂

+�ab�̂ ^
�
Mab

�̂"cdefec ^ ed ^ ee ^ ef � F �̂ ^ ec ^ ed
�

+�abÂ ^
�
Mabc

Â"cdefed ^ ee ^ ef � F Â ^ ea ^ eb
�

�"abcdea ^ eb ^ ec ^ ed
�
� +MÂB̂�

Â�B̂ + YÂB̂Ĉ�
Â�B̂�Ĉ + LÂB̂ĈD̂�

Â�B̂�Ĉ�D̂
�
:

See [16] for details and notation.
By varying the action with respect to all variables, and with a little technical e¤ort, one

can demonstrate that the corresponding equations of motion are precisely the classical
equations of the Standard Model, coupled to general relativity in the Einstein-Cartan
formulation.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short introduction
into the category theory, introduced the notions of categorical ladder and n-categories,
and in the resulting framework, provided a de�nition for the notion of an n-group. Our
attention focused on the case of 3-groups, which are relevant for applications in physics,
and the equivalent notion of a 2-crossed module, which is more convenient for practical
applications. Section 3 was devoted to introducing the higher gauge theory formalism
and the 3BF action corresponding to a choice of a 3-group, as a generalization of the well
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known BF action in terms of the categorical ladder. Also, we have interpreted the addi-
tional Lagrange multipliers appearing in the 3BF action as the tetrad and matter �elds,
providing the setup for the application in physics. This application was then demon-
strated in detail in section 4, where the Standard Model 3-group has been de�ned, and
utilized to construct a physically relevant constrained 3BF action, which is classically
equivalent to the Standard Model of elementary particles coupled to general relativity
in the Einstein-Cartan formulation. This is the main result, which successfully estab-
lishes the �rst step of the spinfoam quantization procedure, and opens up a possibility of
straightforward implementation of the second and third steps, hopefully leading to a full
model of quantum gravity with matter.
It should be noted that the most important feature of the higher gauge theory frame-

work is its ability to treat gravity, gauge �elds, fermions and scalar �elds on completely
equal footing, describing all of them via the underlying algebraic structure of a 3-group.
The 3-group also provides us with a natural geometric description of a generalized notion
of parallel transport, namely along a surface and along a volume, in addition to the stan-
dard notion of parallel transport along a curve. This relationship opens up a possibility
for a fully geometric interpretation of all �elds present in physics.
Moreover, just as the gauge group dictates the number and properties of gauge �elds in

Yang-Mills theories, the sector of the 3-group described by the Lie group L determines the
number and properties of the fermion and scalar �elds. This fact enables us to classify the
spectrum of matter �elds in terms of group theory, generalizing the constructions present
in the Standard Model, where only gauge �elds are classi�ed in such terms. The choice
of the group L thus opens up novel avenues for research on the uni�cation of all �elds,
and speci�cally the origin of particle families, Higgs and fermion sectors, and so on.
Finally, the higher gauge theory framework may have applications in other areas of

physics and mathematics as well, and various possible research directions are yet to be
explored.

Acknowledgments. The authors have been supported by the Ministry of Education,
Science and Technological Development of the Republic of Serbia.
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Abstract

We provide several examples of higher gauge theories, constructed as gener-
alizations of a BF model to 2BF and 3BF models with constraints. Using the
framework of higher category theory, we introduce appropriate 2-groups and 3-
groups, and construct the actions for the corresponding constrained 2BF and
3BF theories. In this way, we can construct actions which describe the correct
dynamics of Yang-Mills, Klein-Gordon, Dirac, Weyl, and Majorana fields coupled
to Einstein-Cartan gravity. Each action is naturally split into a topological sector
and a sector with simplicity constraints. The properties of the higher gauge group
structure opens up a possibility of a nontrivial unification of all fields.

1. Introduction

The quantization of the gravitational field is one of the fundamental open
problems in modern physics. There are various approaches to this prob-
lem, some of which have developed into vast research frameworks. One of
such frameworks is the Loop Quantum Gravity approach, which aims to
establish a nonperturbative quantization of gravity, both canonically and
covariantly [1, 2, 3]. The covariant approach is slightly more general, and
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focuses on providing a possible rigorous definition of the path integral for
the gravitational field,

Z =

∫
Dg eiS[g] . (1)

This is done by considering a triangulation of a spacetime manifold, and
defining the path integral as a discrete state sum of the gravitational field
configurations living on the simplices in the triangulation. This quanti-
zation technique is known as the spinfoam quantization method, and is
performed via the following three steps:

(1) one writes the classical action S[g] as a constrained BF action;

(2) one uses the Lie group structure, underlying the topological sector of
the action, to define a triangulation-independent state sum Z;

(3) one imposes the simplicity constraints on the state sum, promoting it
into a triangulation-dependent state sum, which serves as a definition
for the path integral (1).

So far, this quantization prescription has been implemented for various
choices of the gravitational action, of the Lie group, and of the spacetime
dimension. For example, in 3 dimensions, historically the first spinfoam
model is known as the Ponzano-Regge model [4]. In 4 dimensions there are
multiple models, depending on the choice of the Lie group and the way one
imposes the simplicity constraints [5, 6, 7, 8, 9]. While these models do
give a definition for the gravitational path integral, none of them are able
to consistently include matter fields. Including the matter fields has so far
had limited success [10], mainly due to the absence of the tetrad fields from
the topological sector of the theory.

In order to resolve this issue, a new approach has been developed, using
the framework of higher gauge theory (see [11] for a review). In particu-
lar, one uses the idea of a categorical ladder to generalize the BF action
(based on a Lie group) into a 2BF action (based on the so-called 2-group
structure). A suitable choice of the Poincaré 2-group introduces the needed
tetrad fields into the topological sector of the action [12]. While this result
opened up a possibility to couple matter fields to gravity, the matter fields
could not be naturally expressed using the underlying algebraic structure
of a 2-group, rendering the spinfoam quantization method inapplicable.
Namely, the matter sector could indeed be added to the classical action,
but could not be expressed itself as a constrained 2BF theory, which means
that the steps 1–3 above could not be performed for the matter sector of
the action, but only for gravity.

This final issue has recently been resolved in [13], by passing from the
2-group structure to the 3-group structure, generalizing the action one step
further in the categorical ladder. This generalization naturally gives rise
to the so-called 3BF action, which turns out to be suitable for a unified
description of both gravity and matter fields. The steps of the categorical
ladder and their corresponding structures are summarized as follows:
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categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed

module
differential Lie
crossed module

2BF theory tetrad fields

Lie 3-group
Lie 2-crossed

module
differential Lie

2-crossed module
3BF theory

scalar and
fermion fields

The purpose of this paper is to give a systematic overview of the con-
structions of classical BF , 2BF and 3BF actions, both pure and con-
strained, in order to demonstrate the categorical ladder procedure and the
construction of higher gauge theories. In other words, we focus on the step
1 of the spinfoam quantization programme.

The layout of the paper is as follows. Section 2 deals with models based
on a BF theory. First we discuss the pure, topological BF theory, and
then pass on to the the physically more interesting Yang-Mills theory in
Minkowski spacetime and the Plebanski formulation of general relativity.
In Section 3 we study the first step in the categorical ladder, namely models
based on the 2BF theory. After introducing the pure 2BF theory, we study
the relevant formulation of general relativity [12], and then the coupled
Einstein-Yang-Mills theory. Then, in Section 4 we perform the second step
in the categorical ladder, passing on to models based on the 3BF theory.
After the introduction of the pure 3BF model, we construct constrained
3BF actions for the cases of Klein-Gordon, Dirac, Weyl and Majorana
fields, all coupled to the Einstein-Cartan gravity in the standard way. As
we shall see, the scalar and fermion fields will be naturally associated to a
new gauge group, generalizing the purpose of a gauge group in the Yang-
Mills theory, which opens up a possibility of an algebraic classification of
matter fields. Finally, Section 5 contains a discussion and conclusions.

The notation and conventions are as follows. The local Lorentz in-
dices are denoted by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and
are raised and lowered using the Minkowski metric ηab with signature
(−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . ,
and are raised and lowered by the spacetime metric gµν = ηabe

a
µe
b
ν , where

eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other
indices that appear in the paper are dependent on the context, and their
usage is explicitly defined in the text where they appear. We work in the
natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck
length.

2. BF theory

We begin with a short review of BF theories. See [14, 15, 16] for additional
information.
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2.1. Pure BF theory

Given a Lie group G, and denoting its corresponding Lie algebra as g,
one introduces the pure BF action as follows (we limit ourselves to the
physically relevant case of 4-dimensional spacetime manifolds M4):

SBF =

∫
M4

〈B ∧ F〉g . (2)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connec-
tion 1-form α ∈ A1(M4 , g), and B ∈ A2(M4 , g) is a Lagrange multiplier
2-form, while 〈 , 〉g denotes a G-invariant bilinear symmetric nondegener-
ate form.

One can see from (2) that the action is diffeomorphism invariant, and
it is also gauge invariant with respect to G, provided that B transforms as
a scalar with respect to G.

Varying the action (2) with respect to Bβ and αβ, where the index β
is the group G index (which counts the generators of g), one obtains the
following equations of motion,

Fβ = 0 , ∇Bβ ≡ dBβ + fγδ
βαγ ∧Bδ = 0 , (3)

where fγδ
β are the structure constants of the Lie group G. From the first

equation of motion, one immediately sees that α is a flat connection, mean-
ing that α = 0 up to gauge transformations. Given this, the second equa-
tion of motion implies that B is constant. Therefore, there are no local
propagating degrees of freedom, and the theory is called topological.

2.2. Yang-Mills theory

In physics one is usually interested in theories which are not topological, i.e.,
which have local propagating degrees of freedom. As a rule of thumb, one
recognizes that the theory does have local propagating degrees of freedom if
one of the equations of motion is a second-order partial differential equation,
usually featuring a D’Alambertian operator � in some form. In order to
transform the pure BF action into such a theory, one adds an additional
term to the action, commonly called the simplicity constraint. The resulting
action is called a constrained BF theory. A nice example is the Yang-
Mills theory for the SU(N) group in Minkowski spacetime, which can be
rewritten as a constrained BF theory in the following way:

S =

∫
BI ∧ F I + λI ∧

(
BI −

12

g
MabIδ

a ∧ δb
)

+ ζabI
(
MabIεcdefδ

c ∧ δd ∧ δe ∧ δf − gIJF J ∧ δa ∧ δb
)
.

(4)

Here F ≡ dA + A ∧ A is again the curvature 2-form for the connection
A ∈ A1(M4 , su(N)), and B ∈ A2(M4 , su(N)) is the Lagrange multiplier
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2-form. The Killing form gIJ ≡ 〈τI , τJ〉su(N) ∝ fIK
LfJL

K is used to raise

and lower the indices I, J, . . . which count the generators of SU(N), while
f IJ

K are the structure constants for the su(N) algebra. In addition to
the topological B ∧ F term, there are also two simplicity constraint terms
present, featuring two Lagrange multipliers, a 2-form λI and a 0-form ζabI .
The 0-form MabI is also a Lagrange multiplier, while g is the coupling
constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global co-
ordinate frame in which its components are equal to the Kronecker symbol
δaµ (hence the notation δa). The 1-form δa plays the role of a background
field, and defines the global spacetime metric, via the equation

ηµν = ηabδ
a
µδ
b
ν , (5)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the co-
ordinate system is global, the spacetime manifold M4 is understood to be
flat. The indices a, b, . . . are local Lorentz indices, taking values 0, . . . , 3.
Note that the field δa has all the properties of the tetrad 1-form ea in the
flat Minkowski spacetime. Also note that the action (4) is manifestly dif-
feomorphism invariant and gauge invariant with respect to SU(N), but not
background independent, due to the presence of δa.

Varying the action (4) with respect to the variables ζabI , MabI , A
I , BI ,

and λI , respectively (but not with respect to the background field δa), we
obtain the equations of motion:

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (6)

−12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (7)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJIKζabKδa ∧ δb ∧AJ = 0 , (8)

FI + λI = 0 , (9)

BI −
12

g
MabIδ

a ∧ δb = 0 , (10)

From the equations (6), (7), (9) and (10) one obtains the multipliers as
algebraic functions of the field strength F Iµν for the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I cd ,

λIab = F Iab , BIab =
1

2g
εabcdF I

cd .
(11)
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Here we used the notation FIab = FIµνδa
µδb

ν , and similarly for other vari-
ables, where we exploited the fact that δaµ is invertible. Using these equa-
tions and the differential equation (8) one obtains the equation of motion
for gauge field AIµ,

∇ρF Iρµ ≡ ∂ρF Iρµ + fJK
IAJρF

Kρµ = 0 . (12)

This is precisely the classical equation of motion for the free Yang-Mills
theory. Note that this is a second-order partial differential equation for the
field AIµ, and moreover contains the � operator in the first term.

In addition to the Yang-Mills theory, one can easily extend the action (4)
in order to describe the massive vector field and obtain the Proca equation
of motion. This is done by adding a mass term

− 1

4!
m2AIµA

I
νη
µνεabcdδ

a ∧ δb ∧ δc ∧ δd (13)

to the action (4). Of course, this term explicitly breaks the SU(N) gauge
symmetry of the action.

2.3. Plebanski general relativity

The second example of the constrained BF theory is the Plebanski action
for general relativity [16, 14]. Using the Lorentz group SO(3, 1) as a gauge
group, one constructs a constrained BF action as

S =

∫
M4

Bab ∧Rab + φabcdB
ab ∧Bcd . (14)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the
usual Lagrange multiplier 2-form, while φabcd is the additional Lagrange
multiplier 0-form multiplying the term Bab ∧Bcd to form a simplicity con-
straint. It can be shown that the variation of this action with respect to
Bab, ω

ab and φabcd gives rise to the equations of motion of vacuum general
relativity. However, in this model the tetrad fields appear only as a solution
of the simplicity constraint equation of motion Bab ∧ Bcd = 0. Therefore,
being intrinsically on-shell objects, the tetrad fields are not present in the
action itself and cannot be quantized. This renders the Plebanski model
unsuitable for coupling of matter fields to gravity [10, 12, 20]. Neverthe-
less, regarded as a model for pure gravity, the Plebanski model has been
successfully quantized in the context of spinfoam models [8, 9, 1, 2].

3. 2BF theory

In this section we perform the first step of the categorical ladder, general-
izing the algebraic notion of a group to the notion of a 2-group. This leads
to the generalization of the BF theory to the 2BF theory, also sometimes
called BFCG theory [11, 17, 18, 19].



Construction and examples of higher gauge theories 257

3.1. Pure 2BF theory

In order to circumvent the issue of tetrad fields not being present in the
Plebanski action, in the context of higher category theory [11] a recent
promising approach has been developed [12, 21, 22, 23, 20, 24]. As an
essential ingredient, let us first give a short review of the 2-group formalism.

Within the framework of category theory, the group as an algebraic
structure can be understood as a category with only one object and in-
vertible morphisms [11]. Additionally, the notion of a category can be
generalized to the so-called higher categories, which have not only objects
and morphisms, but also 2-morphisms (morphisms between morphisms),
and so on. This process of generalization is called the categorical ladder.
Using this process, one can introduce the notion of a 2-group as a 2-category
consisting of only one object, where all the morphisms and all 2-morphisms
are invertible. It has been shown that every strict 2-group is equivalent to

a crossed module (H
∂→ G ,B), see [13] for detailed definitions. Here G and

H are groups, ∂ is a homomorphism from H to G, while B : G ×H → H
is an action of G on H.

Similarly to the case of an ordinary Lie group G which has a naturally
associated notion of a connection α, giving rise to a BF theory, the 2-
group structure has a naturally associated notion of a 2-connection (α , β),
described by the usual g-valued 1-form α ∈ A1(M4 , g) and an h-valued
2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie group H. The
2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (15)

Here α∧Bβ means that α and β are multiplied as forms using ∧, and simul-
taneously multiplied as algebra elements using B, see [13]. The curvature
pair (F ,G) is called “fake” because of the presence of the additional term
∂β in the definition of F [11].

Using the structure of a 2-group, or equivalently the crossed module,
one can generalize the BF action to the so-called 2BF action, defined as
follows [17, 18]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h . (16)

Here the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are La-
grange multipliers. Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear
symmetric nondegenerate forms for the algebras g and h, respectively. As
a consequence of the axiomatic structure of a crossed module (see [13]),
the bilinear form 〈 , 〉h is H-invariant as well. See [17, 18] for review and
references.

Similarly to the BF action, the 2BF action is also topological, which
can be seen from equations of motion. Varying with respect to Bα and Ca

one obtains
Fα = 0 , Ga = 0 , (17)
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where indices a count the generators of the group H. Varying with respect
to αα and βa one obtains the equations for the multipliers,

dBα + fαβ
γBγ ∧ αβ −BαabCb ∧ βa = 0 , (18)

dCa − ∂aαBα +Bαa
bCb ∧ αα = 0 . (19)

We can again see that the equations of motion are only first-order and
have only very simple solutions (note that this is not a sufficient argument
for the absence of local propagating degrees of freedom — a counterexam-
ple is the Dirac equation, being a first-order partial differential equation
which does have propagating degrees of freedom). One can additionally
use the Hamiltonian analysis to rigorously demonstrate that there are no
local propagating degrees of freedom [22, 23]. Thus the 2BF theory is also
topological.

3.2. General relativity

An important example of a crossed module structure is a vector space V
equipped with an isometry group O. Namely, V can be regarded as an
Abelian Lie group with addition as a group operation, so that a represen-
tation of O on V is an action B of O on the group V , giving rise to the

crossed module (V
∂→ O ,B), where the homomorphism ∂ is chosen to be

trivial (it maps every element of V into a unit of O).
We can employ this construction to introduce the Poincaré 2-group.

One constructs a crossed module by choosing

G = SO(3, 1) , H = R4 . (20)

The map ∂ is trivial, while B is a natural action of SO(3, 1) on R4, defined
by the equation

Mab B Pc = η[bcPa] , (21)

where Mab and Pa are the generators of groups SO(3, 1) and R4, respec-
tively. The action B of SO(3, 1) on itself is given via conjugation. At
the level of the algebra, conjugation reduces to the action via the adjoint
representation, so that

Mab BMcd = [Mab , Mcd ] ≡ ηadMbc − ηacMbd + ηbcMad − ηbdMac . (22)

The 2-connection (α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (23)

where ωab is called the spin connection. The corresponding 2-curvature in
this case is given by

F = (dωab + ωac ∧ ωcb)Mab ≡ RabMab ,

G = (dβa + ωab ∧ βb)Pa ≡ ∇βaPa ≡ GaPa ,
(24)
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Note that, since ∂ is trivial, the fake curvature is the same as ordinary
curvature. Introducing the bilinear forms

〈Mab ,Mcd〉g = ηa[cηbd] , 〈Pa , Pb〉h = ηab , (25)

one can show that 1-forms Ca transform in the same way as the tetrad
1-forms ea under the Lorentz transformations and diffeomorphisms, so the
fields Ca can be identified with the tetrads. Then one can rewrite the pure
2BF action (16) for the Poincaré 2-group as

S2BF =

∫
M4

Bab ∧Rab + ea ∧∇βa . (26)

Note that the above step of recognizing that Ca ≡ ea was crucial, since we
now see that the tetrad fields are explicitly present in the 2BF action for
the Poincaré 2-group.

In order to promote (26) to an action for general relativity, we add a
convenient simplicity constraint term:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (27)

Here λab is a Lagrange multiplier 2-form associated to the simplicity con-
straint term, and lp is the Planck length. Note that the term “simplicity
constraint” derives its name from the fact that the constraint imposes the
property of simplicity on Bab — a 2-form is said to be simple if it can be
written as an exterior product of two 1-forms.

Varying the action (27) with respect to Bab, ea, ωab, βa and λab, we
obtain the following equations of motion:

Rab − λab = 0 , (28)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (29)

∇Bab − e[a ∧ βb] = 0 , (30)

∇ea = 0 , (31)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 . (32)

Given this system of equations, all fields can be algebraically determined in
terms of the tetrads eaµ, as follows. From the equations (31) and (32) we

obtain that ∇Bab = 0, from which it follows, using the equation (30), that
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e[a∧βb] = 0. Assuming that the tetrads are nondegenerate, e ≡ det(eaµ) 6=
0, it can be shown that this is equivalent to βa = 0 [12]. Therefore, from
the equations (28), (30), (31) and (32) we obtain

λabµν = Rabµν , βaµν = 0 , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4ab

µ .

(33)
Here the Ricci rotation coefficients are defined as

4ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (34)

where
cabc = eµbe

ν
c (∂µe

a
ν − ∂νeaµ) . (35)

The last equation establishes that the spin connection 1-form ωab is ex-
pressed as a function of the tetrads, which then implies the same for the
curvature 2-form Rab. Finally, the remaining equation (29) then reduces to

εabcdR
bc ∧ ed = 0 , (36)

which is nothing but the vacuum Einstein field equation,

Rµν −
1

2
gµνR = 0 .

Therefore, the action (27) is classically equivalent to general relativity.

3.3. Einstein-Yang-Mills theory

As we have already mentioned above, the main advantage of the action (27)
over the Plebanski model lies in the fact that the tetrad fields are explicitly
present in the topological sector of the action. This allows one to couple
matter fields in a straightforward way [12]. However, one can do even more
[13], and couple the SU(N) Yang-Mills fields to gravity within a unified
framework of 2-group formalism.

Namely, we can modify the Poincaré 2-group structure to include the
SU(N) gauge group, as follows. We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R4 , (37)

and we define the action B of the group G in the following fashion. As in
the case of the Poincaré 2-group, it acts on itself via conjugation. Next,
it acts on H such that the SO(3, 1) subgroup acts on R4 via the vector
representation (21), while the action of the SU(N) subgroup is trivial,

τI B Pa = 0 , (38)
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where τI are the SU(N) generators. The map ∂ also remains trivial, as
before. The form of the 2-connection (α, β) now reflects the structure of
the group G,

α = ωabMab +AIτI , β = βaPa , (39)

where AI is the gauge connection 1-form. Next, the curvature for α then
becomes

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (40)

The curvature for β remains the same as before, because of (38). Finally,
the product structure of the group G implies that its Killing form 〈 , 〉g
reduces to the Killing forms for the SO(3, 1) and SU(N), along with the
identity 〈Mab , τI〉g = 0.

Given a crossed module defined in this way, its corresponding pure 2BF
action (16) becomes

S2BF =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (41)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. The action
(41) is topological, and again we add appropriate simplicity constraint
terms, in order to transform it into action with nontrivial dynamics. The
constraint giving rise to gravity is the same as in (27), while the con-
straint for the gauge fields is given as in the action (4) with the substitution
δa → ea. Putting everything together, we obtain:

S =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λI ∧

(
BI −

12

g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.

(42)
It is crucial to note that the Yang-Mills simplicity constraints in (42) are
obtained from the Yang-Mills action (4) by substituting the nondynamical
background field δa from (4) with a dynamical field ea. The relationship
between these fields has already been hinted at in the equation (5), which
describes the connection between δa and the flat spacetime metric ηµν .
Once promoted to ea, this field becomes dynamical due to the presence
of gravitational terms, while the equation (5) becomes the usual relation
between the tetrad and the metric,

gµν = ηabe
a
µe
b
ν , (43)
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further confirming the identification Ca = ea. Moreover, the total action
(42) now becomes background independent, as expected in general relativ-
ity. All this is a consequence of the fact that the tetrad field is explicitly
present in the topological sector of the action (27), and represents a clear
improvement over the Plebanski model.

Taking the variations of the action (42) with respect to the variables
Bab, ωab, βa, λab, ζ

abI , MabI , BI , λ
I , AI , and ea, we obtain equations of

motion. Similarly as before, all variables can be algebraically expressed as
functions of AI and ea and their derivatives:

λabµν = Rabµν , βaµν = 0 , ωabµ = 4abµ , λabI = FabI ,

BµνI = − e

2g
εµνρσF

ρσ
I , Babµν =

1

8πl2p
εabcde

c
µe
d
ν ,

MabI = − 1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

(44)
In addition, we obtain two differential equations — An equation for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (45)

where Γ λµν is the standard Levi-Civita connection, and an equation for ea,

Rµν − 1

2
gµνR = 8πl2p T

µν , (46)

where

Tµν ≡ − 1

4g

(
Fρσ

IF ρσIg
µν + 4FµρIFρ

νI
)
. (47)

In this way, we see that both gravity and gauge fields can be successfully
represented within a unified framework of higher gauge theory, based on a
2-group structure. A generalization from SU(N) Yang-Mills case to more
complicated cases such as SU(3)×SU(2)×U(1) is completely straightfor-
ward.

4. 3BF theory

While the structure of a 2-group can successfully describe both gravitational
and gauge fields, unfortunately it cannot accommodate other matter fields,
such as scalars or fermions. In order to remedy this drawback, we make
one further step in the categorical ladder, passing from the notion of a 2-
group to the notion of a 3-group. As it turns out, the 3-group structure is
excellent for the description of all fields that are present in the Standard
Model, coupled to gravity. Moreover, a 3-group contains one more gauge
group, which is novel and corresponds to the choice of the scalar and fermion
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fields present in the theory. This is an unexpected and beautiful result, not
present in ordinary gauge theory.

As before, we will begin by introducing the notion of a 3-group, and
constructing the corresponding 3BF action. Afterwards, we will modify
this action by adding appropriate simplicity constraints, giving rise to the-
ories with expected nontrivial dynamics. Along the way, we shall see that
scalar and fermion fields are being treated pretty much on an equal footing
with gravity and gauge fields.

4.1. Pure 3BF theory

Similarly to the concepts of a group and a 2-group, one can introduce the
notion of a 3-group in the framework of higher category theory, as a 3-
category with only one object where all the morphisms, 2-morphisms and
3-morphisms are invertible. Also, in the same way as a 2-group is equivalent
to a crossed module, it was proved that a strict 3-group is equivalent to a
2-crossed module [25].

A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,B , { , }), is an
algebraic structure specified by three Lie groups G, H and L, together
with the homomorphisms δ and ∂, an action B of the group G on all three
groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. The maps ∂, δ, B and the Peiffer lifting satisfy
certain axioms, so that the resulting structure is equivalent to a 3-group
[13].

Like in the cases of BF and 2BF actions, we can introduce a gauge
invariant topological 3BF action over the manifoldM4 for a given 2-crossed

module (L
δ→ H

∂→ G ,B , { , }). Denoting g, h and l as Lie algebras
corresponding to the groups G, H and L, respectively, one can introduce
a 3-connection (α, β, γ) given by the algebra-valued differential forms α ∈
A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding fake
3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ ,
H = dγ + α ∧B γ + {β ∧ β} ,

(48)

see [25, 26] for details. Note that γ is a 3-form, while its corresponding
field strength H is a 4-form, necessitating that the spacetime manifold be
at least 4-dimensional. Then, a 3BF action is defined as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (49)
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where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange
multipliers. Note that in precisely 4 spacetime dimensions the Lagrange
multiplier D corresponding to H is a 0-form, i.e. a scalar function. The
functionals 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric non-
degenerate forms on g, h and l, respectively. Under certain conditions, the
forms 〈 , 〉h and 〈 , 〉l are also H-invariant and L-invariant.

One can see that varying the action with respect to the variables Bα,
Ca and DA (where indices A count the generators of the group L), one
obtains the equations of motion

Fα = 0 , Ga = 0 , HA = 0 , (50)

while varying with respect to αα, βa, γA one obtains

dBα + fαβ
γBγ ∧ αβ −BαabCb ∧ βa +BαB

ADA ∧ γB = 0 , (51)

dCa − ∂aαBα +Bαa
bCb ∧ αα + 2X{ab}

ADA ∧ βb = 0 , (52)

dDA −BαABDB ∧ αα + δA
aCa = 0 . (53)

4.2. Klein-Gordon theory

Now we proceed to demonstrate that one can use the 3-group structure and
the corresponding 3BF theory to describe the Klein-Gordon field coupled to
general relativity. We begin by specifying a 2-crossed module, which is used
to construct the topological 3BF theory, and then we impose appropriate
simplicity constraints to obtain the desired equations of motion.

We specify a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows.
The groups are given as

G = SO(3, 1) , H = R4 , L = R . (54)

The group G acts on itself via conjugation, on H via the vector represen-
tation, and on L via the trivial representation. This specifies the definition
of the action B. The map ∂ is chosen to be trivial, as before. The map δ is
also trivial, that is, every element of L is mapped to the identity element of
H. Finally, the Peiffer lifting is trivial as well, mapping every ordered pair
of elements in H to an identity element in L. This specifies one concrete
2-crossed module which, as we shall see below, corresponds to gravity and
one real scalar field.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes
the form

α = ωabMab , β = βaPa , γ = γI , (55)

where I is the sole generator of the Lie group R. Since the homomorphisms
∂ and δ are trivial, as well as the Peiffer lifting, the fake 3-curvature (48)
reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (56)
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where we used the fact that G acts trivially on L, that is, Mab B I = 0.
This means that the 3-form γ transforms as a scalar with respect to Lorentz
symmetry. Consequently, its Lagrange multiplier D also transforms as a
scalar, since it also belongs to the algebra l. Since D is also a 0-form, it
transforms as a scalar with respect to diffeomorphisms as well. In other
words, D completely behaves as a real scalar field, so we relabel it into
more traditional notation, D ≡ φ, and write the pure 3BF action (49) as:

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (57)

where the bilinear form for L is 〈I , I〉l = 1.
The existence of a scalar field in the 3BF action is a crucial property of

a 3-group in a 4-dimensional spacetime, just like identifying the Lagrange
multiplier Ca with a tetrad field ea was a crucial property of the 2BF
action and the Poincaré 2-group. We can also see that the choice of the
third gauge group, L, dictates the number and the structure of the matter
fields present in the action. In this case, L = R implies that we have only
one real scalar field, corresponding to a single generator I of R. The trivial
nature of the action B of SO(3, 1) on R implies that φ transforms as a
scalar field. Finally, the scalar field appears in the topological sector of the
action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, we need to add appropriate
simplicity constraints to the action (57). In order to obtain the Klein-
Gordon field φ of mass m coupled to gravity in the standard way, the
action takes the form:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed .

(58)

The first row is the topological sector (57), the second row is the familiar
simplicity constraint for gravity from the action (27), the third and fourth
rows contain the new simplicity constraints featuring the Lagrange multi-
plier 1-forms λ and Λab and the 0-form Habc, while the fifth row is the mass
term for the scalar field.

The variation of (58) with respect to the variables Bab, ωab, βa, λab,
Λab, γ, λ, Habc, φ and ea gives us the equations of motion. As before, all
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variables can be algebraically expressed in terms of the tetrads ea and the
scalar field φ:

λabµν = Rabµν , ωabµ = 4ab
µ , γµνρ = −e

2
εµνρσ∂

σφ ,

βaµν = 0 , Λabµ =
1

12e
gµλε

λνρσ∂νφe
a
ρe
b
σ , λµ = ∂µφ ,

Habc =
1

6e
εµνρσ∂µφe

a
νe
b
ρe
c
σ , Babµν =

1

8πl2p
εabcde

c
µe
d
ν .

(59)

The equations of motion for ea and φ, however, are differential equations.
The equation for the scalar field becomes the covariant Klein-Gordon equa-
tion, (

∇µ∇µ −m2
)
φ = 0 , (60)

while the equation for the tetrads is

Rµν − 1

2
gµνR = 8πl2p T

µν , (61)

where

Tµν ≡ ∂µφ∂νφ− 1

2
gµν

(
∂ρφ∂

ρφ+m2φ2
)

(62)

is the stress-energy tensor for a single real scalar field.

4.3. Einstein-Cartan-Dirac theory

In order to describe the Dirac field coupled to Einstein-Cartan gravity, we
follow the same procedure as for the case of the scalar field, but now we

choose the 2-crossed module (L
δ→ H

∂→ G ,B , { , }) in a different way, as
follows. The groups are:

G = SO(3, 1) , H = R4 , L = R8(G) , (63)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ
and the Peiffer lifting are trivial, as before. The action of the group G on
itself is given via conjugation, on H via vector representation, and on L
via spinor representation, in the following way. Denoting the 8 generators
of the Lie group R8(G) as Pα and Pα, where the index α takes the values
1, . . . , 4, the action B of G on L is thus given explicitly as

Mab B Pα =
1

2
(σab)

β
αPβ , Mab B P

α = −1

2
(σab)

α
βP

β , (64)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the

anticommutation rule {γa , γb} = −2ηab.
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As in the case of the scalar field, the choice of the group L dictates the
matter content of the theory, while the action B of G on L specifies its
transformation properties.

Let us now proceed to construct the 3BF action. The 3-connection
(α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (65)

while the 3-curvature (F ,G ,H) is given as

F = RabMab , G = ∇βaPa ,

H =
(

dγα +
1

2
ωab(σab)

α
βγ

β
)
Pα+

(
dγ̄α −

1

2
ωabγ̄β(σab)

β
α

)
Pα

≡ (
→
∇γ)αPα + (γ̄

←
∇)αP

α ,

(66)

where we have used (64). The bilinear form 〈 , 〉l is defined via its action
on the generators:

〈Pα , Pβ〉l = 0 , 〈Pα , P β〉l = 0 ,

〈Pα , P β〉l = −δβα , 〈Pα , Pβ〉l = δαβ .
(67)

Note that the bilinear form defined in this way is antisymmetric, rather
than symmetric, when it acts on the generators. The reason for this is the
following. For general A,B ∈ l, we want the bilinear form to be symmetric.
Expanding A and B into components, we can write

〈A ,B〉l = AIBJgIJ , 〈B ,A〉l = BJAIgJI . (68)

Since we require the bilinear form to be symmetric, the two expressions
must be equal. However, since the coefficients in l are Grassmann num-
bers, we have AIBJ = −BJAI , so it follows that gIJ = −gJI . Hence the
antisymmetry of (67) — it compensates for the anticommutativity prop-
erty of the Grassman coefficients, making the bilinear form symmetric for
general algebra elements A,B ∈ l.

Now we employ the action B of G on L to determine the transformation
properties of the Lagrange multiplier D in (49). Indeed, the choice of the
group L dictates that D contains 8 independent complex Grassmannian
matter fields as its components. Moreover, due to the fact that D is a
0-form and that it transforms according to the spinorial representation of
SO(3, 1), we can identify its components with the Dirac bispinor fields, and
write

D = ψαPα + ψ̄αP
α . (69)

This is again an illustration of the fact that information about the structure
of the matter sector in the theory is specified by the choice of the group L
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in the 2-crossed module, and its transformation properties with respect to
the Lorentz group are fixed by the action B.

Given all of the above, we write the corresponding pure 3BF action as:

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (70)

In order to obtain the action that gives us the dynamics of Einstein-Cartan
theory of gravity coupled to a Dirac field, we add the following simplicity
constraints:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α
)

+ λ̄α ∧
(
γα +

i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

− 1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd.
(71)

Similarly to the previous case of the scalar field, we recognize the topological
sector in the first row, the gravitational simplicity constraint in the second
row, while the third and fourth rows contain the new simplicity constraints
for the Dirac field, featuring the Lagrange multiplier 1-forms λα and λ̄α.
The fifth row contains the mass term for the Dirac field, and a term which
ensures the correct coupling between the torsion and the spin of the Dirac
field. In particular, we want to obtain

Ta ≡ ∇ea = 2πl2psa , (72)

as one of the equations of motion, where

sa = iεabcde
b ∧ ecψ̄γ5γdψ (73)

is the Dirac spin 2-form. Of course, other alternative coupling choices are
possible, but we choose this one since this is the traditional coupling most
often discussed in textbooks.

The variation of the action (71) with respect to Bab, λ
ab, γ̄α, γα, λα,

λ̄α, ψ̄α, ψα, ea, βa and ωab, again gives us equations of motion, which can
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be algebraically solved for all fields as functions of ea, ψ and ψ̄:

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = (

→
∇µψ)α , λ̄αµ = (ψ̄

←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe
b
νe
c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcdeaµebνecρ(γdψ)α ,

βaµν = 0 , λabµν = Rabµν , ωabµ = 4ab
µ +Kab

µ .

(74)
Here Kab

µ is the contorsion tensor, constructed in the standard way from
the torsion tensor. In addition, we also obtain

Ta ≡ ∇ea = 2πl2psa , (75)

which is precisely the desired equation (72) for the torsion. Finally, the
differential equations of motion for ψ and ψ̄ are the standard covariant
Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (76)

and its conjugate,

ψ̄(i
←
∇µeµaγa +m) = 0 , (77)

where eµa is the inverse tetrad. The differential equation of motion for ea

is

Rµν − 1

2
gµνR = 8πl2p T

µν , (78)

where

Tµν ≡ i

2
ψ̄γa

↔
∇νeµaψ −

1

2
gµνψ̄

(
iγa
↔
∇ρeρa − 2m

)
ψ , (79)

Here, we used the notation
↔
∇ =

→
∇ −

←
∇. As expected, the equations of

motion (75), (76), (77) and (78) are precisely the equations of motion of
the Einstein-Cartan-Dirac theory.

4.4. Weyl and Majorana fields coupled to Einstein-Cartan grav-
ity

As is well known, the Dirac fermions are not an irreducible representation
of the Lorentz group, and one can rewrite them as left-chiral and right-
chiral irreducible Weyl fermion fields. Hence, it is useful to construct the
2-crossed module and a constrained 3BF action for left and right Weyl
spinors. For simplicity, we will discuss only the left-chiral spinor field (the
right-chiral can be studied analogously). Additionally, we can also describe
Majorana fermions using the same formalism, the only difference being the
presence of an additional mass term in the Majorana action.
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We soecify a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), in a way similar
to the Dirac case, as follows. The groups are:

G = SO(3, 1) , H = R4 , L = R4(G) . (80)

The maps ∂, δ and the Peiffer lifting are trivial. The action B of the group
G on G, H and L is given in the same way as for the Dirac case, whereas
the spinorial representation reduces to

Mab B P
α =

1

2
(σab)

α
βP

β , Mab B Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (81)

where σab = −σ̄ab = 1
4(σaσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in

which ~σ denotes the set of three Pauli matrices. The four generators of the
group L are denoted as Pα and Pα̇, where the Weyl indices α, α̇ take values
1, 2.

The 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (82)

while the 3-curvature (F ,G ,H) is

F = RabMab , G = ∇βaPa ,

H =
(
dγα +

1

2
ωab(σab)βαγβ

)
Pα +

(
dγ̄α̇ +

1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇
)
P α̇

≡ (
→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

(83)

The Lagrange multiplier D now contains as coefficients the spinor fields ψα
and ψ̄α̇,

D = ψαP
α + ψ̄α̇Pα̇ , (84)

and the bilinear form 〈 , 〉l for the group L is

〈Pα , P β〉l = εαβ , 〈Pα̇ , Pβ̇〉l = εα̇β̇ ,

〈Pα , Pβ̇〉l = 0 , 〈Pα̇ , P β〉l = 0 ,
(85)

where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita

symbols.
The pure 3BF action (49) now becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (86)
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In order to obtain the suitable equations of motion for the Weyl spinors,
we again introduce appropriate simplicity constraints, to obtain:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧ (Bab − 1

16πl2p
εabcdec ∧ ed)

− λα ∧ (γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇)

− λ̄α̇ ∧ (γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄dα̇βψβ) .

(87)

The new simplicity constraints, in the third and fourth rows, feature the
Lagrange multiplier 1-forms λα and λ̄α̇. Also, in analogy to the coupling
between the spin and the torsion in Einstein-Cartan-Dirac theory, the term
in the fifth row is chosen to ensure that the coupling between the Weyl spin
tensor

sa ≡ iεabcdeb ∧ ec ψασdαβ̇ψ̄
β̇ (88)

and torsion is given as:
Ta = 4πl2psa . (89)

The action for the Majorana field is precisely the same, but for an additional
mass term in the action:

− 1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (90)

The variation of the action (87) with respect to the variables Bab, λ
ab,

γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇, ea, βa and ωab gives us the equations of motion,
which can be algebraically solved for all variables as functions of ψα, ψ̄α̇

and ea:

βaµν = 0 , λabµν = Rabµν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄α̇ ,

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4abµ +Kabµ ,

γαµνρ = iεabcde
a
µe
b
νe
c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe
b
νe
c
ρσ̄

dα̇βψβ .

(91)

In addition, one also obtains (89). Finally, the differential equations of
motion for the spinor and tetrad fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄β̇ = 0 , (92)
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and

Rµν − 1

2
gµνR = 8πl2p T

µν , (93)

where

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

−1

2
gµν
(
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄

)
.

(94)

Here we have suppressed the spinor indices, for simplicity. In the case of
the Majorana field, the equations of motion (91) remain the same. The
equations of motion for ψα and ψ̄α̇ obtain the additional mass term,

iσaαβ̇e
µ
a∇µψ̄β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (95)

while the stress-energy tensor becomes

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

−gµν 1

2

[
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −

1

2
m
(
ψψ + ψ̄ψ̄

)]
.

(96)

5. Conclusions

Let us summarize the results of the paper. In Section 2 we have introduced
the BF theory and discussed models based on constrained BF action, in
particular the Yang-Mills theory in Minkowski spacetime and the Plebanski
formulation of general relativity. Section 3 was devoted to the first step in
the categorical ladder and the 2BF theory. After introducing the notions
of a 2-group, a crossed module, and the corresponding 2BF theory, we
have studied the 2BF formulation of general relativity and the Einstein-
Yang-Mills theory. Then, in Section 4 we have performed one more step in
the categorical ladder, and introduced the notions of a 3-group, 2-crossed
module, and the 3BF theory. This structure was employed to construct
the constrained 3BF actions for the cases of Klein-Gordon, Dirac, Weyl
and Majorana fields, each coupled to the Einstein-Cartan gravity in the
standard way. In those descriptions, it turned out that the scalar and
fermion fields are associated to a new gauge group, similar to the gauge fields
being associated to a gauge group in the Yang-Mills theory. This opens up a
possibility of a classification of matter fields based on an algebraic structure
of a 3-group.

All the obtained results serve to complete the first step of the spinfoam
quantization programme, as outlined in the Introduction. This paves the
way to the study of steps 2 and 3 of the programme. Namely, the full action
for gravity, gauge fields and matter is written completely in the langulage of
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differential forms, which can be easily adapted to a triangulated spacetime
manifold, in the sense of Regge calculus. This can be seen in the following
table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄α̃ Ga

4 4-simplex vertex 4-form H, Hα̃, H̄α̃

This data can be utilized to construct a Regge-discretized topological
3BF action, and from that a state sum Z, giving rise to a rigorous definition
of the path integral

Z =

∫
Dg
∫
Dφ eiS[g,φ] , (97)

which is a generalization of (1) in the sense that it adds matter fields
(including the gauge boson sector) to gravity at the quantum level. Being
a topological theory, and given the underlying structure of the 3-group, a
pure 3BF action ought to ensure the topological invariance of the state sum
Z, i.e., Z should be triangulation independent. This step, however, requires
the generalizations of the Peter-Weyl and Plancharel theorems to 2-groups
and 3-groups, which are unfortunately still missing (though there are some
attempts to circumvent them at least in the 2-group case [27, 28]). Namely,
the purpose of the Peter-Weyl and Plancharel theorems is to provide a
decomposition of a function on a group into a sum over the corresponding
irreducible representations, which then specifies the spectrum of labels for
the simplices in the triangulation, and fixes the domain of values for the
fields living on those simplices. In the absence of the two theorems, one
can still try to guess the irreducible representations of the 2- and 3-groups,
as was done for example in the spincube model of quantum gravity [12],
or to try to construct the state sum using other techniques, as was done
in [27, 28]).

Of course, when building a realistic theory, we are not interested in a
topological theory, but instead in one which contains local propagating de-
grees of freedom. Thus the state sum Z need not be a topological invariant.
This is obtained via the step 3 of the spinfoam quantization programme, by
imposing the simplicity constraints on Z. The classical actions discussed in
this paper manifestly distinguish the topological sector from the simplicity
constraints, which have been explicitly determined. Imposing them should
thus be a straightforward procedure for a given Z. Completing this pro-
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gramme would ultimately lead us to a tentative state sum describing both
gravity and matter at a quantum level, which is a topic for future research.

In addition to the construction of a full quantum theory of gravity,
there are also many additional possible studies of the classical constrained
3BF action. For example, a Hamiltonian analysis of the theory could be
interesting for the canonical quantization programme, and some work has
begun in this area [29]. Also, it is worth looking into the idea of imposing
the simplicity constraints using a spontaneous symmetry breaking mecha-
nism. Finally, one can also study in more depth the mathematical structure
and properties of the simplicity constraints. The list is not conclusive, and
there may be many other interesting topics to study.
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Abstract

We describe a theory of quantum gravity which is based on the assumption
that the spacetime structure at small distances is given by a piecewise linear (PL)
4-manifold corresponding to a triangulation of a smooth 4-manifold. The funda-
mental degrees of freedom are the edge lengths of the triangulation. One can work
with finitely many edge lengths, so that the corresponding Regge path integral can
be made finite by using an appropriate path-integral measure. The semi-classical
limit is computed by using the effective action formalism, and the existence of
a semi-classical effective action restricts the choice of the path-integral measure.
The classical limit is given by the Regge action, so that one has a quantum gravity
theory for a piecewise-flat general relativity. By using the effective action formal-
ism we show that the observed value of the cosmological constant can be recovered
from the effective cosmological constant. When the number of 4-simplices in the
spacetime triangulation is large, then the PL effective action is well approximated
by a quantum field theory effective action with a physical cutoff determined by
the smallest edge length.

1. Introduction

The standard approach to the problem of constructing a quantum gravity
(QG) theory [1, 2] can be described as the following problem. Let M be a
smooth 4-manifold, of topology Σ × I, where Σ is a 3-manifold and I an
interval from R. Let g be a Minkowski-signature metric on M and Φ a set
of matter fields on M . Then the goal is to find a triple (ĝ, Φ̂, Û), where

ĝ and Φ̂ represent Hermitian operators parametrized by the points of M ,

∗ This work has been supported by GFMUL (Mathematical Physics Group at Uni-
versity of Lisbon) and the project ON 171031 of the Ministry of Education, Science and
Technological Development, Serbia.
† e-mail address: amikovic@ulusofona.pt
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acting in some Hilbert space H, while Û is a unitary evolution operator
parametrized by I, such that the the classical limit (~→ 0) of the quantum
time-evolution is equivalent to the Einstein equations.

The best known example of this approach is Loop Quantum Gravity
(LQG), see [3] for a recent review and references. In the LQG case, the
Hilbert space H is only known to be a subset of a non-separable Hilbert
space and Û can be constructed only for a triangulation T (M) of M , so
that it is not clear what is the classical limit. Note that in the standard QG
approach, the structure of M is not changed after the quantization, and it is
well known that this is the main source of the difficulties for a quantization
of gravity [1, 2]. This leads us to an alternative approach where M is

replaced by a quantum spacetime M̂ . The obvious choice would be a non-
commutative manifold based on M , like in the case of noncommutative
geometry (NCG) [4], where the coordinates of M become elements of a
noncommutative algebra. Another choice is made in the superstring theory
[5], where the coordinates of M become coordinates of the loop manifold
LM and new Grassmann (anticommuting) coordinates are added, so that

M̂ is a loop super manifold.

In this paper we would like to present the case when M̂ = T (M), see

[12, 13]. This is clearly a much simpler choice for M̂ than the one made in
NCG or in the superstring theory, but the price paid is that the spacetime
triangulation becomes a physical structure. However, the PL manifold
T (M) looks like the smooth manifold M when the number of 4-simplices is
large. Also, by using T (M) one reduces the infinite number of the degrees
of freedom (DOF) for g and Φ to a finite number, which then simplifies the
quantization.

Note that Regge was the first to use T (M) in order to define the path
integral for general relativity (GR) [6], see [7] for a modern review. How-
ever, in Regge’s approach the triangulation was an auxiliary structure and
had to be removed via the smooth limit T (M) → M . However, obtaining
the smooth limit in the Regge approach is a difficult problem. The same
applies to the case of spin-foam models of LQG, which can be only defined
when the spacetime is a PL manifold. In causal dynamical triangulations
(CDT) approach [8], T (M) is also used to define the path integral, but it is
also considered an auxiliary structure. Obtaining the smooth limit in CDT
is proposed by performing a sum over the triangulations.

2. PL gravity path integral

Let T (M) be a regular1 triangulation of a smooth 4-manifold M . We will
assign positive numbers Lε to the edges ε of T (M). If we think of an Lε as
a distance between two vertices of T (M) induced by some metric, then we

1Any two k-simplices of T (M) cannot have more than one common (k − 1)-simplex,
where k = 1, 2, 3, 4.
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can define a constant metric in each 4-simplex σ

g
(σ)
kl =

L2
0k + L2

0l − L2
kl

2L0kL0l
, 1 ≤ k, l ≤ 4 , (1)

where the indices 0, 1, 2, 3, 4 denote the vertices of a 4-simplex σ. Hence we
replace a smooth metric g on M by a PL version (1). We want that the PL
metric has the Minkowski signature, and this can be ensured by requiring
that Lε satisfy the triangle inequalities for the triangles which belong to
one of the tetrahedrons of σ, for example the tetrahedron (1, 2, 3, 4), while
the Lε of the triangles (0, i, j) must not satisfy the triangle inequalities.

Having all Lε > 0 means that all triangles in T (M) are spacelike. For
M = Σ× I manifolds, this gives an accordion-like triangulation (triangula-
tion of a cylinder). A more natural triangulation is to take a finite number
of spacelike slices Tk(Σ) which are linked by timelike edges such that each
4-simplex has a spacelike tetrahedron in Tk and a vertex in Tk−1 or in Tk+1.
This class of triangulations is used in CDT models [8]. We will then require
that the Lε of Tk satisfy the triangle inequalities, while a timelike edge will
be assigned an imaginary length iLε. Hence the labels of the edges of time-
like triangles will not satisfy the triangle inequalities and the metric (1)
will have the correct signature.

The curvature scalar R will be concentrated on the triangles and R will
be given by the deficit angle divided by the area of the dual face. Hence in
each σ we have a flat metric (1) so that we can say the corresponding PL
metric is a piecewise-flat metric.

Note that an Lε label represents a proper length, so that Lε is invariant
under the local Lorentz transformations in each 4-simplex. We will also
have (Lε)

2 > 0 for a spacelike edge, while (Lε)
2 < 0 for a timelike edge.

The Einstein-Hilbert action for the PL metric (1) becomes the Regge
action

SRc =
1

GN

F∑
∆=1

A∆(L)θ∆(L) + ΛcV4(L) , (2)

whereGN is the Newton constant, A∆(L) is the area of a triangle ∆ ∈ T (M)
and θ∆ is the deficit angle. Λc is the cosmological constant and V4 is the
4-volume of T (M). See [8] how to define (2) when the timelike triangles are
present. Note that the Regge action describes a theory with a finite number
of DOF when Σ is compact, while in the case when Σ is non-compact, we
can restrict Lε to be non-zero only in a ball B ⊂ Σ.

One can also couple the matter fields to a Regge PL metric and the cor-
responding smooth actions will become the PL actions for a finite number
of matter DOF. For example, a scalar field will be defined by the values of
the field at the vertices of T (M), which is equivalent to a PL function on
the 4-polytopes of the dual triangulation.
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In the case of a scalar field matter, the Regge path integral will be given
by the following (E + V )-dimensional integral

Z =

∫
DE

µ(L) dEL

∫
RV

V∏
ν=1

dφν e
i[SRc(L)+Sm(L,φ)]/~ , (3)

where E is the number of the edges in T (M) and V is the number of the
vertices in T (M) [13]. Sm is the PL form of the scalar-field action and
the integration region DE is a subset of RE

+ where the triangle inequalities
hold. The measure µ has to be chosen such that it makes Z finite. The
matter PI measure is taken to be trivial and we will assume that the matter
path integral is finite. This is true, because the matter path integral will
be given by a finite product of the integrals of the type

I(α, β) =

∫ ∞
−∞

dx e−αx
2−βx4 , (4)

where α, β ∈ C. Since I is convergent for α, β > 0, the analytic continua-
tion I(iα, iβ) will be finite.

Note that in the standard Regge formulation the spacetime metric is of
the Euclidean signature. This was done in analogy to the QFT case where
the Euclidean signature improves the convergence of the path integral (3).
However, in the QG case this does not help, because the scalar curvature
also changes the sign in the Euclidean case and can be unbounded. Actually,
the Lorentzian integral has better convergence properties, which can be
seen on a toy example R(x) = αx2 where x ∈ R+ and α is a constant

different from zero. Then ZE =
∫∞

0 dx e−R(x) is convergent only for α > 0

while ZL =
∫∞

0 dx eiR(x) is convergent for any sign of α. The presence of
imaginary edge lengths and imaginary angles in the Lorentzian case is not
a problem, since all the geometric quantities can be defined [8].

Finding the smooth limit T (M)→M for Z is a difficult problem. How-
ever, there is a promising approach, based on the Wilson renormalization
group [7]. In this approach one considers Z as function of the dimensionless
couplings γ e λ

γ = l20/(GN~) = l20/l
2
P , λ = l40Λc/~ = l40/(L

2
c l

2
P ) ,

where L2
c = GN/Λc and l0 is an arbitrary length. One then looks for

a critical point P0 = (γ0, λ0) where the second derivatives of Z diverge
so that there is a second-order phase transition. At the critical point the
correlation length diverges, so that a transition to the smooth phase occurs.
However, the problem with this approach is that at P0 the perturbation
theory does not apply, so that the calculation has to be done by using
numerical methods. Also the semiclassical limit l2P → 0 corresponds to a
strong coupling region γ →∞ and λ→∞ so that it is difficult to determine
it analytically.
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However, the easiest way to determine the semiclassical limit in a QG
theory defined by a path integral is to use the effective action, see [9, 10,
11, 12, 13]. Namely, the effective action can be calculated analytically in
the ~ → 0 limit. Also the PI measure µ(L) has to be such that allows a
semiclassical expansion for the effective action for large Lε. This gives us
an additional constraint on the choice of µ(L).

3. Effective action for PL quantum gravity

We will assume that T (M) is the fundamental spacetime structure, i.e. the
spacetime is a piecewise linear 4-manifold T (M) with a flat metric in each
cell (4-simplex σ). If N is the number of cells of T (M), then for N � 1,
T (M) will look like the smooth manifold M on a scale much larger than
the maximal edge length.

By an appropriate choice of the measure µ the integral Z(T (M)) can
be made finite. Since T (M) is the physical spacetime, there is no need
to define the smooth limit T (M) → M . Instead, we need a large-N ap-
proximation for the observables. This is analogous to the fluid dynamics
situation where on the scales much larger than the inter-molecular distance
we can approximate the molecular velocities as a smooth field and use the
Navier-Stokes equations.

We will determine the semiclassical limit of PL quantum gravity by
using the effective action. It can be computed by using the effective action
equation in the limit Lε � lP =

√
GN~.

Let us recall first the effective action definition from quantum field
theory (QFT). Let φ be a real scalar field on M and let

S(φ) =
1

2

∫
M
d4x
√
|g|
[
gµν ∂µφ∂νφ−

1

2
ω2φ2 − λφ4

]
,

be a flat-spacetime action. The effective action Γ (φ) can be determined
from the following integro-differential equation

eiΓ (φ)/~ =

∫
Dh exp

[
i

~
S(φ+ h)− i

~

∫
M
d4x

δΓ

δφ(x)
h(x)

]
, (5)

see [14, 15].
Note that a generic solution Γ (φ) is a function with values in C. The

Wick rotation is used to obtain a real-valued function Γ (φ). This is done
by solving first the EA equation in the Euclidean spacetime

e−ΓE(φ)/~ =

∫
Dh exp

[
−1

~
SE(φ+ h) +

1

~

∫
M
d4x

δΓE
δφ(x)

h(x)

]
. (6)

Then x0 = −it is inserted into a solution ΓE(φ), where (x0, xk) are the
spacetime coordinates, so that

Γ (φ) = iΓE(φ)|x0=−it .
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However, the Wick rotation cannot be used in quantum gravity, since
in many problems of interest, introducing a flat background metric does
not make sense. One way to resolve this difficulty is to use the fact that
the Wick rotation in QFT is equivalent to

Γ (φ)→ ReΓ (φ) + ImΓ (φ) , (7)

see [9, 10]. This prescription is convenient for quantum gravity because it
does not involve a background metric, nor a system of coordinates.

In the case of PL quantum gravity without matter, the effective action
(EA) equation is given by

eiΓ (L)/l2P =

∫
DE(L)

dExµ(L+ x)eiSRc(L+x)/l2P−i
∑E
ε=1 Γ

′
ε(L)xε/l2P , (8)

where l2P = GN~ and DE(L) is a subset of RE obtained by translating DE

by a vector −L [12]. Note that DE(L) ⊆ [−L1,∞)× · · · × [−LE ,∞).
We will look for a semiclassical solution

Γ (L) = SRc(L) + l2PΓ1(L) + l4PΓ2(L) + · · · ,

where Lε � lP and
|Γn(L)| � l2P |Γn+1(L)| .

When Lε →∞, then DE(L)→ RE and

eiΓ (L)/l2P ≈
∫
RE

dExµ(L+ x)eiSRc(L+x)/l2P−i
∑E
ε=1 Γ

′
ε(L)xε/l2P . (9)

Actually, one can use the equation (9) to determine Γ (L) for large L
when µ falls off sufficiently quickly [12]. The reason is that

DE(L) ≈ [−L1,∞)× · · · × [−LE ,∞) ,

for Lε → ∞, so that the relevant behaviour is captured by the following
one-dimensional integral∫ ∞

−L
dx e−zx

2/l2P−wx =
√
π lP exp

[
− 1

2
log z + l2P

w2

4z

+lP
e−zL̄

2/l2P

2
√
πzL̄

(
1 +O(l2P /zL̄

2)
) ]
,

where L̄ = L + l2P
w
2z and Re z = −(logµ)′′. The non-analytic terms in ~

will be absent if

lim
L→∞

e−zL̄
2/l2P = 0⇔ (logµ)′′ < 0 for L→∞ .
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Hence the perturbative solution exists for the exponentially damped mea-
sures and it will be given by the equation (9).

For DE(L) = RE and µ(L) a constant, the perturbative solution is
given by the EA diagrams

Γ1 =
i

2
Tr logS′′Rc , Γ2 = 〈S2

3G
3〉+ 〈S4G

2〉 ,

and

Γ3 = 〈S4
3G

6〉+ 〈S2
3S4G

5〉+ 〈S3S5G
4〉+ 〈S2

4G
4〉+ 〈S6G

3〉 , ...

where G = i(S′′Rc)
−1 is the propagator and Sn = iS

(n)
Rc /n! for n > 2, are the

vertex weights, see [15, 12]. The contractions 〈X · · ·Y 〉 are the sums over
the repeated DOF indices

〈X · · ·Y 〉 =
∑
k,...,l

Xk...l · · ·Yk...l .

When µ(L) is not a constant, then the perturbative solution is given by

Γ (L) = S̄Rc(L) + l2P Γ̄1(L) + l4P Γ̄2(L) + · · · ,

where
S̄Rc = SRc − il2P logµ ,

while Γ̄n is given by the sum of n-loop EA diagrams with Ḡ propagators
and S̄n vertex weights [12].

Therefore

Γ1 = −i logµ+
i

2
Tr logS′′Rc ,

Γ2 = 〈S2
3G

3〉+ 〈S4G
2〉+Res[l−4

P Tr log Ḡ] ,

Γ3 = 〈S4
3G

6〉+ · · ·+ 〈S6G
3〉+Res[l−6

P Tr log Ḡ]

+Res[l−6
P 〈S̄

2
3Ḡ

3〉] +Res[l−6
P 〈S̄4Ḡ

2〉] ,
see [12].

Since the PI measure µ has to vanish exponentially for large edge
lengths, a natural choice is

µ(L) = exp
(
−V4(L)/(L0)4

)
, (10)

where L0 is a length parameter [12]. Since log µ(L) = O
(
(L/L0)4

)
2 then

for Lε > Lc and
L0 >

√
lP Lc , (11)

2The notation f(x1, ..., xn) = O(xα) means that f(λx1, ..., λxn) = O(λα) for λ→∞.
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where L−2
c = Λc, we get the following large-L asymptotics [13, 16]

Γ1(L) = O(L4/L4
0) + logO(L2/L2

c) + log θ(L) +O(L2
c/L

2) (12)

and
Γn+1(L) = O

(
(L2

c/L
4)n
)

+ L−2n
0c O

(
(L2

c/L
2)
)
, (13)

where L0c = L2
0/Lc.

4. Effective cosmological constant

The asymptotics (12) and (13) imply that the series

Γ (L) =
∑
n≥0

(lP )2nΓn(L)

is semiclassical (SC) for Lε � lP and L0 �
√
lP Lc.

Let Γ → Γ/GN so that Seff = (ReΓ+ImΓ )/GN . The effective action
is then given by

Seff =
SRc
GN

+
l2P

GNL4
0

V4 +
l2P

2GN
Tr logS′′Rc +O(l4P ) ,

for Lε � lP . Hence the O(~), or the one-loop, cosmological constant (CC)
for pure gravity is given by

Λ = Λc +
l2P
L4

0

= Λc + Λqg . (14)

One can show that the one-loop cosmological constant is exact because
there are no O(L4) terms beyond the one-loop order [13, 16]. This is a
consequence of the large-L asymptotics

log S̄′′Rc(L) = logO(L2/L̄2
c) + log θ(L) +O(L̄2

c/L
2)

Γ̄n+1(L) = O
(
(L̄2

c/L
4)n
)
,

where L̄2
c = L2

c

[
1 + il2P (L2

c/L
4
0)
]−1/2

.
Hence the one-loop formula (14) is exact in the case of pure gravity. If

Λc = 0, the observed value of Λ is obtained for L0 ≈ 10−5m so that l2PΛ ≈
10−122 [12]. Note that L0 ≈ 10−5m is consistent with the requirement that
L0 � lP , which replaces the SC condition L0 �

√
LclP when Λc = 0.

The formula (14) is intriguing but unrealistic, since there is matter in
the universe. In order to obtain a realistic expression for the effective CC,
we need to study the EA equation with matter. This study also requires
the understanding of the emergence of the smooth spacetime from a PL
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manifold T (M). If T (M) has a large number of the edges (E � 1) then
the following approximations are valid

SR(L) ≈ 1

2

∫
M
d4x
√
|g|R(g) , (15)

and

ΛcV4(L) ≈ Λc

∫
M
d4x
√
|g| = Λc VM , (16)

where |g| = | det g|. These are the standard formulas of the Regge cal-
culus and they nicely illustrate how the PL manifold T (M) with many
4-simplices can be approximated by a smooth manifold M with a smooth
(differentiable) metric g.

Similarly, the effective action Γ (L) will be approximated by a QFT
effective action Γ ∗(g), where g is a smooth metric on M . Let LK be a
minimal length in a triangulation, so that Lε ≥ LK and let LK � lP .
When E � 1 the following approximation is valid

Tr logS′′R(L) ≈
∫
M
d4x
√
|g|
[
aR2 + bRµνR

µν
]

log(K/K0) , (17)

where Rµν is the Ricci tensor, and a, b,K0 are some constants.
The formula (17) follows from the fact that a PL function on a lattice

with a cell size LK can be written as a Fourier integral over a compact
region |q| ≤ π/LK where q is the wave vector3. Hence the PL trace-log
term can be approximated by using the QFT formulation of GR with a
momentum cutoff K = 2π~/LK .

The effect of the matter on the CC can be studied by introducing a
scalar field on M

Sm(g, φ) =
1

2

∫
M
d4x
√
|g| [gµν ∂µφ∂νφ− U(φ)] , (18)

where U = 1
2ω

2φ2 + λφ4.
On a PL manifold T (M) the action (18) becomes

Sm =
1

2

∑
σ

Vσ(L)
∑
k,l

gklσ (L)φ′k φ
′
l −

1

2

∑
p

V ∗p (L)U(φp) ,

where φ′k = (φk − φ0)/L0k and k, l, 0 are vertices in a 4-simplex σ, p labels
the vertices of T (M) and V ∗ is the volume of the dual cell. Then the total
classical action of gravity plus matter on T (M) is given by

S(L, φ) =
1

GN
SRc(L) + Sm(L, φ) .

3This region is known as the first Brillouin zone.
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The corresponding EA equation is given by

e
i

l2
P

Γ (L,φ)
=

∫
DE(L)

dEl

∫
RV

dV χ

exp

[
i

l2P

(
S̄(L+ l, φ+ χ)−

∑
ε

∂Γ

∂Lε
lε −

∑
p

∂Γ

∂φp
χp

)]
, (19)

where S̄ = SRc − il2P logµ+GNSm, see [13].
We will look for a perturbative solution

Γ (L, φ) = S(L, φ) + l2PΓ1(L, φ) + l4PΓ2(L, φ) + · · · ,

and require it to be semiclassical for Lε � lP and |
√
GN φ| � 1. This can

be checked on the E = 1 toy model

S(L, φ) = (L2 + L4/L2
c)θ(L) + L2θ(L)φ2(1 + ω2L2 + λφ2L2) ,

where θ(L) is a homogeneous function of degree zero.
It is not difficult to see that

Γ (L, φ) = Γg(L) + Γm(L, φ) ,

and
Γm(L, φ) = V4(L)Ueff (φ)

for constant φ where Ueff (0) = 0. Furthermore,

Γg(L) = Γpg(L) + Γmg(L) ,

where Γpg is the pure gravity contribution and Γmg is the matter induced
contribution.

In the smooth-manifold approximation one has

Γmg(L) ≈ ΛmVM + Ωm(R,K) ,

where K = 2π~/LK is the momentum cutoff. One can show that

Ωm = Ω1l
2
P +O(l4P )

and

Ω1(R,K) = a1K
2

∫
M
d4x
√
|g|R

+ log(K/ω)

∫
M
d4x
√
|g|
[
a2R

2 + a3R
µνRµν

+ a4R
µνρσRµνρσ + a5∇2R

]
+ O(1/K2) ,

(20)
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where Rµνρσ is the Riemann curvature tensor, see [13].
The effective CC will be then given as

Λ = Λc + Λqg + Λm ,

where Λqg is given by (14). Note that the matter contribution to CC can
be approximated by a sum

Λm ≈
∑
γ

v(γ,K) (21)

where v(γ,K) is a one-particle irreducible vacuum Feynman diagram for
the field-theory action Sm in flat spacetime with the cutoff K. One can
show that∑

γ

v(γ,K) ≈ l2P K
4
[
c1 ln(K2/ω2) +

∑
n≥2

cn(λ̄)n−1(ln(K2/ω2))n−2

+
∑
n≥4

dn(λ̄)n−1(K2/ω2)n−3
]
, (22)

for K � ω, where λ̄ = l2Pλ, see [16]. Therefore one has a highly divergent
sum of matter vacuum-energy contributions to the cosmological constant
when K → ∞. This is the famous cosmological constant problem which
appears in any QFT formulation of quantum gravity.

However, in the PL formulation of quantum gravity (PLQG), the QFT
which produces the infinite sum in (22) is just an approximation. The
fundamental theory has finitely many DOF so that the exact solution of the
EA equation will give a finite and cutoff-independent value for Λ. Therefore

Λm = V (ω2, λ, l2P ) , (23)

and

Λ = ± 1

L2
c

+
l2P

2L4
0

+ V (ω2, λ, l2P ) . (24)

The equation (24) can be used to fix the free parameters L0 and Lc. By
equating Λ with the experimentally observed value, we obtain

λ = x+ y + λm (25)

where λ = l2PΛ ≈ 10−122, x = ± l2P /L2
c , y = l4P /2L

4
0 and λm = l2PV . The

equation (25) has infinitely many solutions, but we also have to impose the
condition for the existence of the semi-classical limit (11). This gives the
restriction

0 < y < 2|x| . (26)

The value of λm is not known, but for any value of λm the equation
(25) has infinitely many solutions which obey the restriction (26). Note
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that the solution x = −λm and y = λ, which was proposed in [13], will be
acceptable if |λm| > λ/2. This solution is special because it gives a value
for L0 which is independent of the value of λm, L0 ≈ 10−5m. This is the
same value which was obtained in the case of pure PL gravity without the
cosmological constant [12].

5. The CC problem in quantum gravity

The formula (24) for the exact effective cosmological constant is an essential
ingredient for the resolution of the CC problem from QFT in the context
of a QG theory. The result (24) can be better understood if we recall the
definition of the CC problem given by Polchinski [17]. According to this
definition, the CC problem in a QG theory has two parts:

1) show that the observed CC value is in the CC spectrum,

2) explain why the CC takes the observed value.

The meaning of the first part (P1) of the CC problem is obvious if the
cosmological constant is represented by an operator. In the case when one
has a quantum corrected expression of the classical CC value, one has to
show that there are values of the free parameters which give the observed
CC value. The PLQG theory clearly solves P1, while the second part (P2) of
the CC problem cannot be addressed by the current formalism. The reason
is that one has to generalise the standard formalism of quantum mechanics
in order to provide a mechanism for a selection of a wavefunction of the
universe with a particular value of the cosmological constant.

Note that demonstrating P1 is a highly non-trivial task in any QG
theory. The problem P1 has been addressed so far only in PLQG theory
and in string theory. In the string theory case there are only plausibility
arguments that P1 is true [18, 19]. The CC spectrum in string theory is
discrete with O(10500) values [18]. Although positive CC values are not
natural in string theory, a mechanism for their appearance was provided in
[19]. Hence it is plausible to assume that the CC spectrum is sufficiently
dense around zero such that the observed value is sufficiently close to some
CC spectrum value.

The second part of the CC problem has been only addressed in string
theory. This is the multiverse proposal, see [21], and the assumption is
that there are many universes, each having a fixed CC value from the
CC spectrum. We live in the universe with the CC value Λcl

2
P ≈ 10−122,

because this is the value that allows formation of galaxies, planets and life,
see [20] for the anthropic determination of the CC value.

Note that there are many proposals for P2 which are not derived from
a QG theory, but instead it is assumed that a certain effective action exists
such that its equations of motion give the required CC value, see for example
[22].



Quantum gravity for piecewise flat spacetimes 279

6. Conclusions

The PLQG theory is a theory of quantum gravity which has finitely many
degrees of freedom and no infinities. The underlying spacetime structure
is a PL manifold T (M) and the smooth spacetime M is recovered as an
approximation valid when the number of 4-simplices is large and at a length
scale much larger than the typical edge length. The smooth spacetime
approximation is analogous to the smooth vector field approximation for
the molecular velocities in a fluid.

The PLQG theory is defined by the Regge path integral with a non-
trivial measure. The measure is chosen such that it gives a finite path
integral, and also it has to admit a semi-classical solution of the effective
action equation. These criteria select the exponentially vanishing measures
for large edge lengths, and a simple and natural choice for the measure
is (10). This measure simplifies the analysis of the effective cosmological
constant and one can obtain the formula (24) for the exact effective CC,
i.e. to all orders in ~. The two free parameters in (24) can be consistently
chosen such that the observed CC value is obtained. This is an important
requirement for any QG theory and PLQG is the only existing QG theory
where this property has been demonstrated explicitly.

Another nice property of the PLQG theory is that the effective action Γ
can be approximated by a QFT effective action Γ ∗ when the number of 4-
simplices in T (M) is large. Γ ∗ can be calculated by using the perturbative
QFT for GR with matter and with a momentum cutoffK, when Lε ≥ LK �
lP . Hence the minimal edge length LK in the triangulation determines the
momentum cutoff K and

Γ (L1, · · · , LE , φ1, · · · , φV ) ≈ Γ ∗(g(x), φ(x),K) , (27)

for E � 1 and V � 1.
The QFT approximation (27) will be still valid for LK ≤ lP , but in this

case Γ ∗ cannot be calculated by the perturbative QFT methods. Instead,
one has to use a non-perturbative method to solve the EA equation. The
existence of the QFT approximation (27) implies that one can obtain the
running of the elementary particle masses and the coupling constants with
K, see for example the equation (20).

Note that the effective action only makes sense for the spacetimes which
are given by the direct product of a 3-manifold with an interval. In order to
study the quantum cosmology questions, one needs to consider 4-manifolds
of general topology, which is different from Σ×I topology. WhenM 6= Σ×I,
the concept of the effective action cannot be used. However, the Hartle-
Hawking (HH) wavefunction [23] can be defined for any T (M) by using the
PLQG path integral (3). By choosing a triangulation for a manifold

M ∪ (Σ× I) , ∂M = Σ ,

one can describe a Big-Bang quantum cosmology with an initial HH state,
which evolves by the evolution operator defined by the PLQG path integral
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for the T (Σ× I) part of the spacetime. It is then plausible to assume that
the effective dynamics which corresponds to the time evolution of the HH
state will be given by the PLQG effective action, defined by the equation
(19).

References

[1] C. Isham, Lect. Notes Phys. 434 (1994) 1-21.

[2] C. Isham, Lect. Notes Phys. 434 (1994) 150-169.

[3] D.W. Chiou, Int. J. Mod. Phys. D, Vol. 24, No. 1 (2015) 1530005, arxiv:1412.4362.

[4] A. Connes, Noncommutative geometry, Academic Press, San Diego (1994).

[5] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Cambridge Uni-
versity Press (1987).

[6] T. Regge, Nuovo Cim. 19 (1961) 558-571.

[7] H. W. Hamber, Gen. Rel. Grav. 41 (2009) 817, arXiv:0901.0964.

[8] J. Ambjorn, A. Goerlich, J. Jurkiewicz, R. Loll, Phys. Rept. 519 (2012) 127-210.
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[11] A. Miković, Rev. Math. Phys. 25 (2013) 1343008.
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Dejan Simić (Institute of Physics, Belgrade)

v





P R E F A C E

This volume contains some reviews and original research contributions,
which are related to the 10th Mathematical Physics Meeting: School
and Conference on Modern Mathematical Physics, organized by
the Institute of Physics, Belgrade (Serbia), September 9–14, 2019. The
programme of this meeting was mainly oriented towards some recent de-
velopments in gravity and cosmology, string and quantum field theory, and
some relevant mathematical methods. We hope that articles presented here
will be valuable literature not only for the participants of this meeting but
also for many other PhD students and researchers in modern mathematical
and theoretical physics. We are grateful to all authors for writing their
contributions for these proceedings.

The previous nine meetings in this series of schools and conferences on
modern mathematical physics were also held in Serbia: Sokobanja 2001,
Kopaonik 2002, Zlatibor 2004, Belgrade 2006, 2008, 2010, 2012, 2014, and
2017. The corresponding proceedings of all these meetings were published
by the Institute of Physics Belgrade, and are available in the printed form
as well as online at the websites. According to an agreement with the jour-
nal Symmetry, several papers are published in the special issue “Selected
Papers: 10th Mathematical Physics Meeting”.

This jubilary tenth meeting took place at two different venues — the
opening and the first day of lectures was held in the grand lecture hall of the
Serbian Academy of Sciences and Arts, while the lectures for the remaining
five days were held at the Mathematical Institute. Both venues are located
in Belgrade downtown, across the road of each other. We hope that all
attendees of this meeting will recall it as a useful and pleasant event, and
will wish to participate again in the future.

We wish to thank all lecturers and other speakers for their interesting
and valuable talks. We also thank all participants for their active partic-
ipation. Financial support of our sponsors, Ministry of Education, Sci-
ence and Technological Development of the Republic of Serbia, Belgrade;
Telekom Srbija; Open access journal “Symmetry”, and the support of our
media partner, Open access journal “Entropy”, were very significant for
realization of this activity.

April 2020 E d i t o r s

B. Dragovich
I. Salom
M. Vojinović
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