




2. Биографски подаци кандидаткиње 
 
   Соња Предин је рођена у Београду 04.01.1986. Детињство је провела у Бечеју, где је завршила 
Основну школу "Здравко Гложански" и Гимназију као носилац Вукове дипломе. Дипломирала 
је 2012. године на смеру теориjска и експериментална физика са просечном оценом 9.12 (девет 
и 12/100) и оценом 10 (десет) на дипломском испиту. Дипломски рад, под називом 
"Коегзистенција тополошке суперпроводности и антиферомагнетизма", урадила је под 
руководством др Милице Миловановић на Институту за физику у Београду. Током студија, 
похађала је зимски семестар школске 2008./2009. године на Физичком факултету 
Универзитета у Грацу, Аустрија, као студент на размени студената и стипендиста 
Универзитета у Грацу.   
    По завршетку основних академских студија, Соња Предин уписала је докторске студије на 
Универзитету у Регензбургу из области теоријске физике. Докторску дисертацију под 
насловом "Entaglement spectrum of graphene systems" (Спектар квантне сплетености 
графенских система) урадила је под руководством prof. dr. John Schliemann-a и одбранила је 
25.07.2017. Диплома докторских студија нострификована је у Републици Србији дана 
22.01.2018., од стране Министарства просвете, науке и технолошког развоја Републике Србије, 
решењем број 612-01-03131/2017-06.  
   У периоду од 01.09.2012. до 31.03.2017., Соња Предин је радила као научни сарадник 
Факултета за физику Универзитета у Регензбургу, а од 01.04.2017. до 31.07.2017. била је 
ангажована као докторанткиња на поменутом факултету. На Универзитету у Регензбургу, 
Соња Предин се бавила научним радом у оквиру научних пројеката GRK 1570 "Electronic 
Properties of Carbon Based Nanostructures" и SFB 631 "Solid-State Based Quantum Information 
Processing" финансираних од стране Deutsche Forschungsgemeinschaft. Током докторских 
студија, од 2012. до 2016. била је стипендиста Фонда за младе таленте "Доситеја" Републике 
Србије за најбоље студенте у иностранству.  
   Од 01.08.2018. запослена је као научни сарадник на Институту за информационе системе у 
Хофу, Савезна Република Немачка. Од 2018. до 2020. била је ангожована на пројекту "Digital 
mobility of Hochfranken" (MobiDig), који је финансиран од стране Министарства саобраћаја и 
дигиталне инфраструктуре Савезне Републике Немачке. Након тога, од 2020. ангожавана је на 
пројекту "Shuttle-Modellregion Oberfranken"(SMO), који је већински финансиран од стране 
Министранства саобраћаја и дигиталне инфраструктуре Савезне Републике Немачке. За 
разлику од пројекта Mobidig, који је реализован искључиво од стране академских партнера и 
локалне самоуправе, на пројекту SMO укључена су и три индустријска партнера "Valeo 
Schalter und Sensoren GmbH", "REHAU AG + Co", "DB Regio Bus". 
   Као асистент на Факултету за физику Универзитета у Регензбургу, Соња Предин држала је 
теоријске вежбе сваког семестра из предмета Експериментална физика I: Механика и 
нелинеарна динамика, Теоријска механика, Квантни и таласи (Оптика), Квантна физика I, 
Квантна физика II на основним студијама. Такође, на мастер студијама држала је вежбе из 
Квантне теорије кондензоване материје. У летњем семестру школске 2019. године хонорално 
је држала предавања из Увода у квантне рачунаре на Факултету за информатику Високе школе 
у као доценткиња. 
   У тренутку подношења овог извештаја, Соња Предин је коаутор осам радова објављених у 
међународним часописима са ISI листе, од којих три у категорији М21, једног у категорији 
М22 и четири у категорији М34. Укупан број цитата је 30, односно 28 не рачунајући 
аутоцитате, са Хиршовим индексом 2. Соња Предин  има сарадњу са групама у Регензбургу, 
Хофу, Минхену и Нинбергу.  
 
 
 



3. ПРЕГЛЕД НАУЧНЕ АКТИВНОСТИ 
 
   Научна активност кандидаткиње може се поделити у две фазе. Прва фаза је реализована 
током израде дипломског рада у Лабораторији за примену рачунара у науци на Институту за 
физику у Београду, под менторством др Милице Миловановић и током докторских студија из 
теоријске физике на Факултету за физику Универзитета у Регензбургу у Савезној Републици 
Немачкој, под менторством проф. др John Schliemann-а. Уже научне области истраживања 
спроведеног током докторских студија су физика кондензоване материје и квантна 
информатика. Друга фаза обухвата кандидаткино постдокторско усавршавање на Институту 
за информатику у Хофу. 
   Током прве фазе истраживања кандидаткиња се бавила теоријским проучавањем спектра 
квантне сплетености различитих система кондензоване материје са посебним освртом на 
проучавање односа између енергетског спектра и спектра квантне сплетености. Досадашња 
научна активност кандидаткиње укључује проучавање следећих система кондензоване 
материје: графенског двослоја, суперпроводности и антиферомагнетизма на графену и 
Хајзенбергових спинских мердевина у временском зависном магнетном пољу.  
   Однос између енергетског спектра и спектра квантне сплетености био је фокус многих 
нумеричких и аналитичких студија. У свом раду кандидаткиња је користила пертурбациону 
теорију, разматрајући и дегенерисана и недегенерисана основна стања, у односу на претходне 
студије када су само недегенерисана стања била разматрана. Закључак претходних студија био 
је да у случају недегенерисаног основног стања када су испуњени одређени услови, 
Хамилтонијан спектра квантне сплетености може бити пропорционалан Хамилтонијану једног 
подсистема и на тај начин имати исте особине. Један од два услова који гарантују да су 
Хамилтонијани пропорционални у првој апроксимацији пертурбативне теорије је да 
непертурбативни Хамилтонијан спектра квантне сплетености има тривијални, недегенерисан 
спектар. Кандидаткиња је самостално током докторских студија, као једини аутор рада, 
проучавала спектар квантне сплетености Хајзенбергових мердевина у временском зависном 
магнетном пољу, користивши теорију пертурбације. У том случају, Хамилтонијан квантне 
сплетености је пропорционалан Хамилтонијану спинског ланца у првој апроксимацији, иако 
непертурбативни Хамилтонијан спектра квантне сплетености има нетривијални дегенерисан 
спектар. Резултати проучавања односа између Хамилтонијана спектра квантне сплетености 
Хајзенбергових мердевина у временски зависном магнетном пољу и Хамилтонијана 
подсистема, у овом случају једног спинског ланца, приказани су у раду 

• Sonja Predin, Entanglement spectrum of the degenerative ground state of Heisenberg ladders 
in a time-dependent magnetic field, EPL 119, 57003 (2017). 

    
    Следећи рад се односи на графенски двослој и његов спектар квантне сплетености. У односу 
на претходне радове, кандидаткиња није разматрала само својствене вредности редуковане 
матрице густине (који чине спектар квантне сплетености), већ и њене својствене векторе. Од 
својствених вектора редуковане матрице густине конструисала је тополошке инваријанте, 
Беријеву кривину и Чернов број, да би проучавала тополошка својства спектра квантне 
сплетености. Такође, у односу на ранија проучавања графенског двослоја, кандидаткиња је 
извела аналитичке изразе својственог система за целу Брилуенову зону без апроксимација, 
када је узето у обзир и тригонално савијање енергетског спектра. Аналитичка студија спектра 
квантне сплетености графенског двослоја, када је тригонално савијање присутно у 
енергетском спектру приказана је у раду 

• Sonja Predin, Paul Wenk, John Schliemann, Trigonal Warping in Bilayer Graphene: Energy 
versus Entanglement Spectrum,  Phys. Rev. B 93, 115106 (2016). 

Кандидаткиња је овом раду показала да спектар квантне сплетености, који је добијен 
исецањем једног слоја, има нулте вредности између тачака где енергетски спектар поседује 



три додатна Диракова конуса, која су узрокована тригоналним савијањем. Кандидаткиња је 
аналитички показала да спектар квантне сплетености може бити прекидна функција у односу 
на таласни вектор у овом систему. Тополошке особине спектра квантне сплетености 
графенског двослоја описане Беријевом кривином су у сагласности са тополошким особинама 
графенског једнослоја, иако се њихове геометријске особине јасно разликују.  
 
   Кандидаткиња је у дипломском раду дискутовала t-J-U модел на графену који има исти 
ниско-енергетски опис као графенски двослој, фокусирајући се на коегзистенију 
суперпроводних корелација и антифермогнетизма. Показано је да је тај модел релевантан за 
опис графенског двослоја. Такође, у присуству d + id Куперових корелација модел oписује 
квадратну зависност енергетског процепа од магнетног поља, што је усагласности са 
експериметалним студијама. Анализе дате у дипломском раду су објављене у: 

• M. V. Milovanović, S. Predin, On the coexistence of antiferromagnetism and d + id 
superconducting correlations in the graphene bilayer, Phys. Rev. B 86, 195113 (2012). 
 

    Кандидаткиња је проучавала спектре квантне сплетености и у системима графена са 
основним стањима у којима су присутне суперпроводне корелације. Проучаване су s и d + id 
суперпроводне корелације. Кандидаткиња је да би аналитички  проучавала спектар квантне 
сплетености, самостално извела изразе за својствену енергију и векторе спектра фермиона на 
графенској решетки у целој Брилуеновој зони у присуству суперпроводних корелација. 
Демонстрирала је да се тополошке особине Хамилтонијана квантне сплетености могу 
разликовати од истих особина Хамилтонијана подсистема. Резултати ових проучавања су 
публиковани у раду: 

• Sonja Predin, John Schliemann, Entanglement spectra of superconductivity ground states on 
the honeycomb lattice, Eur. Phys. J. B (2017) 90: 239. 

 
    У другој фази истраживања, задатак кандидаткиње на пројекту Mobidig био је развој модела 
за оптимизацију и симулацију саобраћаја, првенствено градског саобраћаја у периферијским 
регионима Немачке. Периферијски региони у Немачкој нарочито су погођени демографским 
променама, старењем становништва, које је проузроковано негативним природним 
прираштајем и миграцијама ка атрактивним индустријским центрима. Градски превоз у 
оваквим условима је скуп за локалну самоуправу, а за грађене често је недовољно квалитетан, 
због дугачких временских интервала између вожњи и индиректних путања. Побољшање 
градског саобрћаја у оваквим регионима преставља један од приоритета Министраства 
саобраћаја и дигиталне инфраструктуре Савезне Републике Немачке. 
    Моделирање саобраћаја је један од најбољих алата за разумевање и развијање потреба 
градског саобраћаја, као и за предлагање нових линија градског саобраћаја. Симулациони 
модели су уобичајни алати за моделирање саобраћаја. Предходни симулациони модели су 
развијени на основу анкета становништва. Главни недостатак оваквог приступа је мали узорак 
на основу кога се развија симулација, а то доводи у питање и веродостојност саме симулације. 
Међутим, кандидаткиња је развила модел мобилности за регион Hochfranken (Горњу 
Франконију) користећи технике машинског учења у обради статистичких и GPRS података. 
Кандидаткиња је прво симулирала популацију града Хофа, поделивши популацију у групе 
према социо-демографским параметрима (старост, пол, занимање и брачно стање), користећи 
статистичке податке немачких државних институција. Људи се генеришу уз помоћ псеудо-
случајних бројева на такав начин да се постигне стварна дистрибуција ових социо-
демографских параметара у популацији. Овај поступак се понавља неколико пута како би се 
могао проверити утицај ове случајне дистрибуције на резултате симулације. Након тога, други 
случајни поступак користи се за стварање плана активности за сваку особу у популацији. 
Симулирала је помоћу програмског пакета МАTSim у програмском језику Јава, за сваког 



поједница све дневне активности, одлазак и повратак са посла, одлазак у куповину 
прехрабених намерница, у образовне институције и уставове прешколског образовања. У овом 
кораку кандидаткиња је узела у обзир да свака социо-демографска група има различите 
обрасце понашања. Приликом оваквог разматрања непознате су почетна и крајна тачка 
транспорта, време транспорта и превозно средство. У односу на друге ауторе, кандидаткиња 
је развила алгоритме машинског учења и користила методе статистичке анализе ради 
превиђања почетне и крајне тачке. Главни извори података у њеној студији за предвиђање 
почетне и крајне тачке транспорта су статистички подаци и подаци од GPRS уређаја.  У даљем 
кораку, низ догађаја између појединих активности се утврђују за сваки план. У овом кораку 
неопходно је дефинисати изабрано возило или возила и тачну руту између активности. Да би 
симулирала тачне руте кретања између свих активности, кандидаткиња је развила мапу рута 
за сва возила, укључивајући и пешаке. У симулацији са програмским пакетом МАТSim-ом, 
овај корак, одабир рута, плана активности и возила, је део процеса оптимизације. У ту сврху 
генерисана рута и избор возила се мења у различитим итерацијама симулације како би се 
постигао глобални оптимум. Функција процене, дневног плана сваког појединца, узима у 
обзир укупно време за одређену етапу, време потребно за пешачење, укупну удаљеност, 
трошкове и број промењених превозних средстава. Кандидаткиња је извршила калибрацију 
симулације користећи Бајесову статистичку методу. Тако развијен симулациони модел, 
кандидаткиња је користила да оптимизује постојеће линије градског саобраћаја, као и да 
понуди увеђење нових линија. Нарочит бенефит оваког приступа се огледа у могућности 
разумевања и предвиђања стварних потреба за услугама градског превоза различитих 
демографских група.  
   Станице градског превоза у многим малим местима у Немачкој су често неприступачне 
многим потенцијалним путницима због велике удаљености. То значајно отежава употребу 
градског превоза, нарочито осетљивим социо-демографским групама, старијим особама и 
особама са инвалидитетом. Употреба конвенционалног линијског градског превоза обично 
није исплатива на кратким дистенацијама, или је чак и не могућа због инфраструктуре. 
Употреба аутономног шатл возила на таквим релацијима је предложено решење у овом 
истраживачком пројекту. Циљ пројекта је тестирање и даљи развој и унапређивање шатлова 
без возача као допунске и помоћне компоненте градског превоза. Задатак кандидаткиње на 
пројекту SMO је развој и унапређење алгоритама вештачке интелигеције аутономних шатл 
возила. Поред овога, одговорност кандидаткиње је мапирање потреба корисника градског 
превоза, како би се остварило поверење у аутономна возила у контексту интеракције човек-
машина. 
 
4. ЕЛЕМЕНТИ ЗА КВАЛИТАТИВНУ ОЦЕНУ НАУЧНОГ ДОПРИНОСА 
КАНДИДАТА 
 
4.1 Квалитет научних резултата 
 
4.1.1 Научни ниво и значај резултата, утицај научних радова 
 
Најзначајни рад кандидаткиње је:  

• Sonja Predin, Paul Wenk, John Schliemann, Trigonal Warping in Bilayer Graphene: Energy 
versus Entanglement Spectrum,  Phys. Rev. B 93, 115106 (2016), цитиран 11 пута. 

У oвом раду, приликом описивања графенске структуре графенског двослоја, кандидаткиња је 
разматрала и параметар кинетичке енергије између трећих суседа, који узрoкује тригонално 
савијање. Овај параметар је у већини случаја био занемарен. Соња Предин је први аутор који 
је аналитички решио својствени проблем графенског двослоја за целу Брилуенову зону без 
апроксимација, укључујући и својствене вредности и својствене векторе. Ови резултати су 



важни за разумевање физике графенског двослоја и могу мотивисати даља истраживања. 
Користећи овако добијене својствене векторе, кандидаткиња је аналитички конструисала 
спектар квантне сплетености графенског двослоја. Поред тога, кандидаткиња је у овом раду 
разматрала топологију спектра квантне сплетености и однос спектра квантне сплетености и 
Хамилтонијана одговарајућег подсистема. Да би проучавала топологију спектра квантне 
сплетености дефинисала је Чернов број и Беријеву кривину својствених вредности спектра 
квантне сплетености. Модел је омогућио да се прецизно испита утицај тригоналног савијања 
на физику графенског двослоја и спектар квантне сплетености, као и тополошке особине 
спектра квантне сплетености. Кандидаткиња је показала да тополошке особине спектра 
квантне сплетености могу бити исте као и спектра одговарајућег подсистема и када се њихове 
геометријске особине разликују. 
 
4.1.2 Позитивна цитираност научних радова кандидата 
 
Према подацима из базе Web of  Knowledge на дан 07.12.2020., радови кандидаткиње цитирани 
су укупно 30, од чега 28 пута изузимајући аутоцитате. Хиршов индекс је 2. 
 
4.1.3 Параметри квалитета часописа 
 
Соња Предин је публиковала четири рада у међународним часописима и то: 

• два рада у врхунском међународном часопису Physical Review B (IF2012 = 3.767, IF2016 
= 3.836), 

• један рад у истакнутом међународном часопису European Physical Journal B (IF2017 = 
1.465) и 

• један рад у врхунском међународном часопису EPL Journal (IF2017 = 1.957). 
 
Библиометријски показатељи су сумирани у наредној табели: 

 
 ИФ М СНИП 
Укупно 11,025 29 3,92 
Усредњено по чланку 2,756 7,25 0,98 
Усредњено по аутору 5,853 17,167 2,143 

 
4.1.4 Степен самосталности и степен учешћа у реализацији радова у научним центрима 
у земљи и иностранству 
 
   При изради своје докторске дисертације, Соња Предин је показала висок степен 
самосталности у свим корацима научног рада, укључујући поставку проблема, истраживање, 
обраду резултата, и припрему публикација за објављивање у часопису. 
   Кандидаткиња има изражену међународну сарадњу, што се посебно види по томе што је 
завршила докторске студије на Универзитету у Регензбургу, Немачка, а тренутно је запослена 
као научни сарадник на Институту за информационе системе у Хофу, Немачка. Током 
реализације пројекта Mobidig, кандидаткиња је остварила сарадњу са академским партнерима 
на пројекту, катедром за саобраћајни инжињеринг Техничког универзитета у Минхену и 
групом за Supply Chain Services Фраунхофер Института у Нинбергу. 
 



4.2 Нормирање броја коауторских радова, патената и техничких решења 
 
Имајући у виду да сва 4 рада имају највише 3 коаутора, сви радови се рачунају са пуном 
тежином. 
 
4.3 Утицајност научних резултата 
 
Утицајност научних резултата кандидаткиње је наведена у одељку 4.1 овог документа. Пун 
списак радова је дат у одељку 6, а подаци о цитираности са интернет странице Web of Science 
базе су дати након списка свих радова кандидаткиње. 
 
4.4 Учешће у пројектима, подпројектима и пројектним задацима 
 
Соња Предин до сада је учестовала на следећим пројектима: 
 

• Graduiertenkolleg 1570 ''Electronic Properties of Carbon Based Nanostructures'', који је 
фининсиран од стране Deutsche  Forschungsgemeinschaft (2012.-2014., 2015.-2016.), 

• Collaborative Research Center SFB 631 ''Solid-State Based Quantum Information 
Processing'', који је фининсиран од стране Deutsche Forschungsgemeinschaft (2014.-
2015.), 

• "Digital mobility of Hochfranken", који је фининсиран од стране Немачког министарства 
за саобраћај и дигиталну инфраструктуру, укупни буџет пројекта је 2,97 милиона евра. 
Кандидаткиња је учествовала у реализацији пројекта у периоду од 2018.-2020. 

• "Shuttle-Modellregion Oberfranken" (SMO). Овај пројекат је већински финансиран од 
стране Немачког министарства за саобраћај и дигиталну инфраструктуру са 12 милиона 
евра од укупно 15 милиона евра. Преостала 3 милиона евра финансирана су од 
индустријских партнера. Кандидактиња је активна на пројекту од 01.08.2020. 
 

4.5. Активност у научним и научно-стручним друштвима 
 
Током докторских студија кандидаткиња је била активни члан Немачког друштва физичара 
Deutsche Physikalische Gesellschaft. 
 
Рецензије научних радова 
 
Соња Предин је била рецензент једног рада у научном часопису The European Physical Journal 
B. 
 
4.6. Конкретан допринос кандидата у реализацији радова у научним центрима у земљи и 
иностранству 
 
   Кандидаткиња је значајно допринела сваком раду у чијој је припреми учествовала. 
   Један рад објавила је током дипломских студија под менторством др Милице Миловановић. 
Резултати истраживања, које је реализовано на Универзитету у Регенсбургу, публиковани су 
у остала три рада. Дала је кључни допринос у свим радовима у којима је први аутор. Допринос 
кандидаткиње се огледа у изради прорачуна, добијању, интерпретацији и презентацији 



резултата, писању радова и комуникацији са уредницима и рецензентима часописа. 
 
 
 
5. ЕЛЕМЕНТИ ЗА КВАНТИТАТИВНУ ОЦЕНУ НАУЧНОГ ДОПРИНОСА 
КАНДИДАТА 
 
Остварени резултати у периоду након одлуке Научног већа о предлогу за стицање 
претходног научног звања: 
 

Категорија М бодова по 
раду 

Број радова Укупно М 
бодова 

М21 8 3 24 
М22 5 1 5 
М34 0,5 4 2 
М70 6 1 6 

 
Поређење са минималним квантитативним условима за избор у звање виши научни 
сарадник: 
 

 
Минимални број М бодова 

Остварено, 
М бодова без 
нормирања 

Укупно 16 37 
M10+M20+M31+M32+M33+M41+M42 10 29 

М11+М12+М21+М22+М23 6 29 
 
Према бази података Web of Science на дан 07.12.2020 године, радови кандиткиње су цитирани 
укупно 30 пута, односно 28 пута не рачунајући самоцитате. Према истој бази, Хиршов индекс 
кандидаткиње је 2. 
  



6. СПИСАК РАДОВА ДР СОЊЕ ПРЕДИН 
 

6.1 Радови у врхунским међународним часописима (М21) 
 

1. M. V. Milovanovic, S. Predin, On the coexistence of antiferromagnetism and d + id 
superconducting correlations in the graphene bilayer, Phys. Rev. B 86, 195113 (2012). 

2. Sonja Predin, Paul Wenk, John Schliemann, Trigonal Warping in Bilayer Graphene: Energy 
versus Entanglement Spectrum,  Phys. Rev. B 93, 115106 (2016). 

3. Sonja Predin, Entanglement spectrum of the degenerative ground state of Heisenberg ladders 
in a time-dependent magnetic field, EPL 119, 57003 (2017). 

 
6.2 Радови у истакнутим међународним часописима (М22) 
  

4. Sonja Predin, John Schliemann, Entanglement spectra of superconductivity ground states on 
the honeycomb lattice, Eur. Phys. J. B 90: 239 (2017). 

 

 

6.3 Саопштења са међународних скупова штампана у изводу (М34) 
 

5. Sonja Predin, John Schliemann, Bilayer graphene: topological phases and entanglement 
spectrum, Deutsche Physikalische Gesellschaft (DPG) Spring Meeting, Dresden, Germany, 
2014. 

6. Sonja Predin, John Schliemann, An analytical study of the entanglement spectrum of 
graphene bilayers, Deutsche Physikalische Gesellschaft (DPG) Spring Meeting, Berlin, 
Germany, 2015. 

7. Sonja Predin, John Schliemann, The effect of the trigonal warping on the energy and the 
entanglement spectrum of graphene bilayers, Simpozijum fizike kondenzovane materije, 
Beograd, 2015. 

8. Sonja Predin, John Schliemann, Trigonal Warping in Bilayer Graphene: Energy versus 
Entanglement Spectrum, Deutsche Physikalische Gesellschaft (DPG) Spring Meeting, 
Regensburg, Germany, 2016. 

 
6.4. Одбрањена докторска дисертација (M70): 

9. Sonja Predin, Entanglement spectrum in graphene systems, 2017., Физички факултет,     
Универзитет у Регензбургу, Немачка. 

 
Докторска дисертација кандидаткиње се може наћи на сајту: 

• Националне библиотеке Немачке:  
 http://d-nb.info/1139170767 и 

• EPUB Универзитета у Регензбургу:  
https://epub.uni-regensburg.de/36119/ 

 

http://d-nb.info/1139170767
https://epub.uni-regensburg.de/36119/
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M. V. Milovanović1 and S. Predin2

1Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11 080 Belgrade, Serbia
2Department of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade, Serbia

(Received 18 May 2012; published 8 November 2012)

We discuss the t-J -U model on a honeycomb monolayer that has the same low-energy description of the kinetic
term as the graphene bilayer, and in particular study coexistence of antiferromagnetism and superconducting
correlations that originate from Cooper pairs without phase coherence. We show that the model is relevant
for the description of the graphene bilayer and that the presence of the d + id superconducting correlations
with antiferromagnetism can lead to quadratic dependence in small magnetic fields of the gap of the effective
monolayer consistent with the transport measurements of Velasco et al. on the graphene bilayer.

DOI: 10.1103/PhysRevB.86.195113 PACS number(s): 71.10.Pm

I. INTRODUCTION

The interaction effects are important for the physics of the
graphene bilayer; recent experiments reveal gapped phase(s)
in the undoped graphene bilayer which without interactions
would represent a gapless system. In a recent experiment1

with high quality samples, a completely insulating behavior
was detected in transport measurements. Theoretical investi-
gations, mean field, and renormalization group approaches2–16

speak for a close competition of a few, mostly gapped, phases.
One of the most prominent candidates for an explanation of
the experiment in Ref. 1 is a layer antiferromagnetic (LAF)
state. The main reason for the existence of this state would
be an on-site Coulomb repulsion U ; indeed as pointed out
in Ref. 6, a Hubbard model on a honeycomb bilayer lattice
would lead to the LAF state, both in weak and strong U

limit. This may remind us of the behavior of the Hubbard
model on the square lattice and the antiferromagnetic (AF)
behavior due to nesting in the weak coupling limit. The
Hubbard model on a square lattice is usually invoked as a
model for cuprates in its strong coupling limit which forbids
the double occupancy and leads to a “perfect” AF behavior
at half-filling. On the other hand, the estimate for U is hard
to know in the graphene bilayer and certainly depends on the
computational scheme but it is expected to be stronger than
both (inter and intralayer) hoppings. Due to the smallness of the
gap revealed in the experiment in Ref. 1, we will not consider
the large U limit (exclusion of double occupancy) when
modeling the graphene bilayer. But we will keep the on-site
repulsion as a main cause of the insulating behavior detected
in the experiment. As expected from previous approaches this
will lead to AF insulating behavior but seems insufficient
to describe all phenomena detected in the experiment. An
additional order parameter, besides the one that describes the
antiferromagnetism, is necessary for the complete explanation
of the transport data of the experiment.1,8

In this work we will look for the additional order parameter
that can coexist with antiferromagnetism in the graphene
bilayer at half-filling. We will argue that this is d + id (bro-
ken time reversal symmetry)—wave superconducting order
parameter. This (d + id) order parameter and its coexistence
with antiferromagnetism was already found at finite (nonzero)
dopings in a numerical (Grassman tensor product) approach
to the t-J (large U ) model on the honeycomb monolayer

in Ref. 17. Due to the assumed moderate (not large) value
of U in our model of the graphene bilayer the AF and
d + id superconducting order parameter can coexist even at
half-filling. Our model of the graphene bilayer can be described
as a t-J -U model on an effective honeycomb lattice and, in
the following, we will argue why this model is relevant for the
description of graphene bilayer.

II. MODEL AND ITS MOTIVATION

The kinetic part of the Hamiltonian that describes the
graphene bilayer on two honeycomb lattices, which are Bernal
stacked, is

H0 = −t
∑
�n,σ

∑
�δ

(a†
1,�n,σ

b1,�n+�δ,σ + a
†
2,�n,σ

b2,�n−�δ,σ + H.c.)

+ t⊥
∑
�n,σ

(a†
1,�n,σ

a2,�n,σ + H.c.). (1)

The index i = 1,2 denotes the layer index. In Fig. 1 the relative
positions of two triangular sublattices A1 and B1 for lattice
1, and A2 and B2 for lattice 2 are illustrated. In Eq. (1) t is
the hopping energy between nearest sites in each layer, and
t⊥ is the same energy for hopping between the layers. The
on-site creation (annihilation) operators a

†
i,�n,σ

(ai,�n,σ ) are for
the electrons in the sublattice Ai of the layer i with spin σ =
↑,↓, and b

†
i,�n,σ

(bi,�n,σ ) for the electrons in the sublattice Bi.
�δ’s are defined as δ1 = a(0,1/

√
3), δ2 = a/2(1,−1/

√
3), and

δ3 = a/2(−1,−1/
√

3), and a = √
3 acc, acc is the distance

between sites and a is the next to nearest neighbor distance.
The screening of the long-range part of the Coulomb

interaction in two dimensions (2D), in the graphene bilayer,18

is insufficient so this part can be neglected. Nevertheless, in
the experiment we discuss,1 two metallic gates are present and
this must lead to an additional screening of the long-range
part of the Coulomb interaction that will reduce the influence
of the interaction to its short-range part. We will build our
phenomenological model on the understanding based on the
renormalization group method, as described in Refs. 5–10,
of the influence of the short-range part in the context of the
graphene bilayer. This understanding was successful in the
explanation of the experiment of Mayorov et al.19 Namely,
the three most prominent instabilities of these studies are
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FIG. 1. A view of Bernal stacked honeycomb lattices 1 and 2 with
corresponding sublattice sites A1 and B1, and A2 and B2.

antiferromagnetic (LAF), nematic, and anomalus Hall effect
state. Also in mean field studies their close competition was
observed and this indeed points out that the physics cannot
be reduced to just (Hubbard) U , but must be extended to first
and second near neighbors in an effective description. (This
competition is not hard to understand in the graphene bilayer
because the second near neighbors in the effective description
belong to the same layer, while the first neighbors belong to op-
posite layers, see below.) But because the (edge) conductance
of order e2/h was not observed in the experiment,1 we will
neglect the influence of the second near neighbor interaction
(B1 − B1,B2 − B2 in Fig. 1) that (according to the Haldane
model20,21) would lead to the anomalous Hall effect.

Thus, according to the results of renormalization group
approaches5–10 and on phenomenological grounds (i.e.,
on the basis of the experiments1,19), the antiferromagnetic
(LAF) state and a nematic state are the main instabilities that
may arise due to interactions in the graphene bilayer. The
nematic state is a result of an ordering in the particle-hole
channel that can be described by a nonzero expectation value
of the hopping (bond) operator∑

σ

b
†
1,�n+�δ1,σ

b2,�n−�δ2,σ
, (2)

where �n + �δ1 and �n − �δ2 denote sites that are near neighbors
on the honeycomb lattice that make sublattices B1 and B2,
as shown in Fig. 1. On the same lattice the antiferromagnetic
ordering can occur which describes the LAF state.

The nematic, that is, bond ordering as described in Ref. 7,
can be thought as a dx2−y2 CDW (or a d + id CDW as described
in Ref. 5—see below Eq. (13) for the definition of the dx2−y2

and d + id ordering) in the language of Ref. 22. In the same
reference this instability (“hidden order” on a square lattice)
was proposed for cuprates. Just as in the case of the square
lattice and cuprates, this ordering, in the graphene bilayer,
can be thought as the result of short-range interactions and
superexchange processes. These interactions and processes
can also lead to the LAF state. The effective Heisenberg

interaction on the B1 and B2 honeycomb of neighboring sites
i and j (�n + �δ and �n − �δ′) can be rewritten in terms of the
hopping operators [Eq. (2)] as

�Si
�Sj = −1

2

(∑
σ

b
†
1iσ b2jσ

)(∑
σ

b
†
2jσ b1iσ

)
− 1

4
, (3)

and should be a part of an effective description of the graphene
bilayer. According to Refs. 6 and 10, the only instability in the
weak coupling limit of the Hubbard model on the graphene
bilayer is antiferromagnetism. Thus, on phenomenological
grounds, we will assume that the value of J is an independent
parameter in the effective description, favorable for both
instabilities, nematic and antiferromagnetic.

With respect to cuprates the on-site repulsion U is not that
strong to preclude the double occupancy on the graphene
bilayer. Therefore we will explicitly include this interaction
in our model Hamiltonian, which can be described as

H = HJ + HH, (4)

where

HJ = J
∑

�n

∑
�δ1, �δ2

�Sb1(�n + �δ1) �Sb2(�n − �δ2), (5)

and the summation is over the near neighbors, and

HH = −
∑

k∈IBZ

teff γ 2
k b

†
1k b2k + H.c. +

∑
i=1,2

∑
�ni

Un̂↑�ni
n̂↓�ni

,

(6)

with γk = ∑
�δ exp{i�k�δ}, �n1 ≡ �n + �δ1, and �n2 ≡ �n − �δ2. The

kinetic term (written above in the momentum space) in real
space, on the effective honeycomb monolayer of B1 and
B2 sites, describes near-neighbor and two times weaker
third-neighbor hopping. It can be recovered in the case of
the noninteracting honeycomb bilayer by taking interlayer
hopping to be large. In that case teff = t2

t⊥
. In the small

momentum limit the kinetic term in Eq. (6) becomes the one
of the graphene bilayer, that is, teff γ 2

k → t2

t⊥
(kx ∓ iky)2 near

K points: K± = ± 2π
a

( 2
3 ,0).23,24 Because we look for the low

energy properties we will keep the two-band extension with
γ 2

k throughout the Brillouin zone.
This model is similar to the t-J -U model defined on

the square lattice and known from previous investigations.
The t-J -U model appeared also in the context of gossamer
superconductivity,25–29 the superconductivity that can exist
even at half-filling.

III. MEAN FIELD APPROACH

In order to apply a mean field approach we can use the
identity

�Si
�Sj = − 1

2 (bi↑bj↓ − bi↓bj↑)(b†j↓b
†
i↑ − b

†
j↑b

†
i↓) + 1

4 . (7)

We will define the superconducting order parameter,

��δ = 〈b1i↑b2i+�δ↓ − b2i+�δ↑b1i↓〉, (8)

where �δ can be any of the near-neighbor vectors on the
honeycomb lattice, and

m = 〈ni↑ − ni↓〉, (9)
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the antiferromagnetic order parameter. In the following we
will use the following notation: t ≡ teff, and apply to the
Hamiltonian in Eq. (4) the mean field ansatzes. We will
generalize the derivation of Ref. 30 to the case with the
antiferromagnetic order parameter.

If we use spinors,

�k = [b1k↑ b2k↑ b
†
1−k↓ b

†
2−k↓]T , (10)

we can write the mean field Hamiltonian as

HMF = �
†
kH�k + 1

2
NJ

∑
�δ

|��δ|2 + U
m2

2
N, (11)

where N is the number of unit cells,

H =

⎡
⎢⎢⎢⎣

U
2 m −tγ 2

k 0 − J
2 �(k)

−tγ ∗2
k −U

2 m − J
2 �(−k) 0

0 − J
2 �∗(−k) U

2 m tγ ∗2
−k

− J
2 �∗(k) 0 tγ 2

−k −U
2 m

⎤
⎥⎥⎥⎦ ,

(12)

and �(k) = ∑
�δ ��δ exp{i�k�δ}. The symmetry analysis of the

order parameter on a honeycomb lattice, first done in Ref. 31,
concluded that there are three possibilities,

��δ :

� (1, 1, 1)

� (2, −1, −1)

� (0, 1, −1)

(13)

that span the space of order parameter. The last two possi-
bilities belong to a two-dimensional subspace of irreducible
representation of S3, permutation group.32 The s-wave �δ =
�(1,1,1) has nodes at K points because �k = �γk . For
dx2−y2 wave �δ = �(2,−1,−1) near K± points we have

�1(K± + k) = �[3 ±
√

3
2 (kx ± iky)], and for dxy wave �δ =

�(0,1,−1) the expansions are �2(K± + k) = �i[±√
3 −

1
2 (kx ± iky)]. Therefore if the d + id combination �1(k) ±
i
√

3�2(k) is taken near one of the K points the order parameter
is a constant (6�) and at the other K point is linear in kx

and ky . Therefore, instead of having the coefficients of the
same absolute magnitude with b

†
1k↑b

†
2−k↓ and b

†
2k↑b

†
1−k↓ (and

b2−k↓b1k↑ and b1−k↓b2k↑) for a fixed valley point d + id singles
out one spin projection (up or down) to be associated with sites
on layer 1 and the opposite one to be associated with sites on
layer 2. Thus it favors pairing (Cooper pairs) in which the
layer index is associated with definite spin projection just as
in an antiferromagnetically ordered state, that is, LAF state
described above.

d + id wave and s wave can coexist, as rotationally
symmetric states, with the LAF state although only for certain
values of J and U parameters. One can show that for the
coexistence of the LAF state and s-wave J � U , which cannot
be the case in the graphene bilayer. For the d + id wave,
on the other hand, one can find an interval for couplings J

and U for which the LAF state and d + id-wave pairing can
coexist. Expanding the mean field equations to fourth order
in the ratio of superconducting and antiferromagnetic order
parameter and in the weak coupling limit that is, t > J,U , we
find 4

3 − 1
4Jw < J

U
< 4

3 + 1
4Jw, with w = 1√

3πt
. We expect

that the interval will broaden when the short-range correlations
(due to U ) are properly taken into account that will renormalize
(reduce) the effective value of t . This was worked out for the
square lattice in Ref. 27 in a comprehensive (renormalized
mean field) study of the t-J -U model, and a interval of
couplings was identified for which antiferromagnetism and
superconducting correlations can coexist at half-filling. Fur-
thermore, in Ref. 28 a variational Monte Carlo method was
applied to the same system, and a finite value of the pairing
amplitude (�) was found in the antiferromagnetic region (with
no superconducting phase coherence). We expect a similar
situation in our case.

As in the case of honeycomb monolayer in Ref. 31, we can
diagonalize the free part of the above Hamiltonian and come
to the following expressions for order parameters:

C�k =
∑

�δ
��δ cos{�k�δ − 2φ�k}

and

S�k =
∑

�δ
��δ sin{�k�δ − 2φ�k},

where φ�k = arg[γ (k)]. Due to the expansion of �k around K

points in the case of the d + id wave we have

CK±+k ∼ SK±+k ∼ (kx ± iky)2

|k|2 , (14)

where the last sign is independent of K points. Thus we
recovered the basic signatures of d + id pairing: (a) The order
parameter is an eigenfunction of orbital angular momentum
with eigenvalue equal to two, and (b) due to the same sign
(chirality) at both K points this wave is a time reversal
symmetry breaking wave on the bilayer honeycomb lattice.
Therefore in analyzing this wave we can keep the leading
behavior in �1(k) and �2(k) as this effectively captures the
basic phenomenology of the d + id wave. Thus we take

Hd−id =

⎡
⎢⎢⎢⎣

U
2 m −tγ 2

k 0 −J3�

−tγ ∗2
k −U

2 m 0 0

0 0 U
2 m tγ ∗2

−k

−J3� 0 tγ 2
−k −U

2 m

⎤
⎥⎥⎥⎦ (15)

in the case of �(k) = �1(k) − i
√

3�2(k) combination, or

Hd+id =

⎡
⎢⎢⎢⎣

U
2 m −tγ 2

k 0 0

−tγ ∗2
k −U

2 m −J3� 0

0 −J3� U
2 m tγ ∗2

−k

0 0 tγ 2
−k −U

2 m

⎤
⎥⎥⎥⎦ (16)

in the case when �(k) = �1(k) + i
√

3�2(k).
In the same low-momentum limit γK±+k ≈ ∓a

√
3

2 (kx ∓
iky). We will use redefinitions U

2 m ≡ m, J3� ≡ �, and
ta2 3

4 ≡ t in the following.
We take � to be purely real and without the phase [U (1)]

degree of freedom, that is, phase coherence33 that would lead
to supercurrents proportional to the gradient of this phase that
would screen a magnetic field that may be present. We assume
that supercurrents cannot develop in the antiferromagnetic,
insulating background.
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The Bogoliubov spectrum is the same irrespective whether
we ask for energy eigenvalues in the case defined by Eq. (15)
or (16), and with the introduced redefinitions the eigenvalues
are

E = ±

√√√√
m2 +

[
�

2
±

√
t2k4 +

(
�

2

)2]2

. (17)

Therefore the two different chirality states of the d wave
are equally likely in the presence of the antiferromagnetic
ordering.

IV. PRESENCE OF SMALL MAGNETIC FIELD

In the presence of magnetic field, due to the minimal pre-
scription, we may introduce a pair of creation and annihilation
operators and express the resulting Hamiltonian matrix around
K+ point as

Ho
+(d−id)B =

⎡
⎢⎢⎢⎣

m −ωc(a†)2 0 −�

−ωc(a)2 −m 0 0

0 0 m ωc(a†)2

−� 0 ωc(a)2 −m

⎤
⎥⎥⎥⎦ .

(18)

Here we introduced ωc = eB
mc

, where B is the magnetic field
and m is the effective mass of the graphene bilayer 1

m
= 2t .

The eigenvectors can be expressed as 4-spinor coefficients
of eigenvectors �n of a†a operator a†a�n = n�n classified
by integer eigenvalues n: 0,1,2, . . . . In the presence of small
magnetic field we will look for the eigenstates in the form

�n = [c1 c2 c3 c4]T |n〉, n = 0,1,2, . . . . (19)

The Nambu-Gorkov formalism with 4-spinors artificially
doubles the degrees of freedom. This appears in spectra
as doubling of energy levels (±E). Thus when solving the
H+(d−id)B we have to keep levels that are continuously
related to energy levels with no superconducting instability
(� �= 0) and are pertinent to the 2 × 2 upper, left block of the
Hamiltonian matrix.

The Hamiltonian in Eq. (18) we will consider under the
approximation of a small magnetic field and rewrite it as

Ho
+(d−id)B = H0 + V, (20)

where

H0 =

⎡
⎢⎢⎢⎣

m 0 0 −�

0 −m 0 0

0 0 m 0

−� 0 0 −m

⎤
⎥⎥⎥⎦ , (21)

and V denotes the perturbation

V =

⎡
⎢⎢⎢⎣

0 −ωc(a†)2 0 0

−ωc(a)2 0 0 0

0 0 0 ωc(a†)2

0 0 ωc(a)2 0

⎤
⎥⎥⎥⎦ . (22)

Taking as solutions only values that are connected continu-
ously in the limit � → 0 to the upper 2 × 2 left part of H0 we

get for the eigenvalues and eigenvectors of H0:

En
1 = −m, �1 = [0, 1, 0, 0]T |n〉,

En
2 =

√
m2 + �2, �2 = c[m + E, 0, 0, − �]T |n〉,

where E = √
m2 + �2 and c = 1√

2E(E+m)
. Considering the

small magnetic field to second order as perturbation we

get En
1 = −m − (n+2)(n+1)

2
ω2

c

E
and En

2 = E + n(n−1)
2

ω2
c

E
. Con-

sidering the same problem at K ′ ≡ −K point we get Ẽn
1 =

m + (n+2)(n+1)
2

ω2
c

E
and Ẽn

2 = −E − n(n−1)
2

ω2
c

E
.

Thus, by analyzing the spectra of both K points together, we
can conclude that with the inclusion of small magnetic fields

the gap changes from Eg = 2m value to Eg = 2m + 2ω2
c

E
in

the presence of d − id correlations. Without the correlations or
with d + id correlations the gap will not have the correction
quadratic in small magnetic field, which direction is fixed
in Eq. (18). d − id correlations minimize the energy of the
system by shifting also the energy levels closest to the Fermi
point. In the Appendix we compare the energies of the states
with d + id and d − id correlations, and show that d − id are
indeed of the lower energy.

The energy minimization, when the direction of perpendic-
ular magnetic field is opposite, requires that the superconduct-
ing correlations are of d + id kind. Thus the change in the
direction of magnetic field is followed by the change in the
chirality of the superconducting instability, that is, B → −B

followed by d − id → d + id, as one would expect from
the superconducting instability that has orbital and therefore
magnetic moment. This amounts to just switching of the
previously found spectra between K and K ′ points. The gap
is the same irrespective of the direction of the magnetic field
although with the inclusion of superconducting correlations
linear in k [on the diagonal in Eqs. (15) and (16)] leads to an
asymmetry which may be related to the asymmetry detected
in the transport measurements of Ref. 1 with respect to the
change in the direction of the external field.

V. DISCUSSION AND CONCLUSION

In the literature we find several proposals34–36 for the
explanation of the data of Ref. 1. See also Ref. 37 for further
experimental investigations on the same system and possible
explanations based on anomalous quantum Hall physics.
Reference 34 by Kharitonov introduces an additional order
parameter to the Néel order parameter, but the resulting gap
dependence does not have a minimum at B(magnetic field) =
0—compare Fig. 3 in Ref. 34, in contrast to what can be seen
from the transport measurements—compare Fig. 3 in Ref. 1.
Reference 35 by Zhu, Aji, and Varma with the interesting
proposal of taking into account the full four band structure,
still gives linear dependence on B of the gap—compare with
Fig. 6 in Ref. 35, in contrast to the quadratic dependence
on small B as seen in the experiment. Reference 36 by Roy
does describe the quadratic dependence based on a mean
field treatment of spin magnetism, where a phenomenological
ferromagnetic interaction next to the Néel ordering among
the spins of electrons is introduced which existence (with a
precise magnitude) is necessary to obtain a correspondence to
the experimental data.
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Our approach is also mean field and phenomenological,
though clearly motivated microscopically by the physics of
the t-J -U model, as we introduce orbital magnetism of
superconducting correlations. This leads to the quadratic
dependence of the gap on small B as observed in the
experiment. Thus we demonstrated a possibility that the
quadratic dependence on small magnetic field observed in
the experiment of Ref. 1 may be due to the time reversal
symmetry breaking d-wave superconducting correlations that
coexist with antiferromagnetism.

The d + id wave superconductivity and antiferromag-
netism at high dopings of the graphene monolayer were studied
in Refs. 38 and 39. It was shown39 that both instabilities are
connected with the existence of the on-site repulsion U .

The last and important question we would like to discuss is
how our proposal can explain the behavior of the system gap
in strong (and moderate) magnetic fields. In other words, the
question is how does the antiferromagnetic ground state with
d + id superconducting correlations evolve in the many-body
state of half-filled zero-energy Landau level, which is eightfold
degenerate due to flavor [spin and valley (layer)] and orbital
(n = 0,1 Landau index) degrees of freedom. We expect a
gradual formation of a QHFM (quantum Hall ferromagnet)40

due to many-body correlations and the spontaneous ferromag-
netic ordering of the spin degree of freedom. Thus we will
fix the valley and orbital degree of freedom in the following
and discuss how from two (spin up and spin down) Landau
levels we can have effectively a single filled Landau level and
ferromagnetic ordering. d + id wave Cooper pairs, described
in the long distance with the following Cooper pair wave
function:41

f (�r1↑ − �r2↓) ∼ z̄1↑ − z̄2↓
z1↑ − z2↓

, (23)

in the presence of the magnetic flux will be modified by flux
(vortex) attachment due to the particles of opposite spin as in

f (�r1↑ − �r2↓) ∼ z̄1↑ − z̄2↓
z1↑ − z2↓

∏
i

(z1↑ − zi↓)2
∏
j

(z2↓ − zj↑)2.

(24)

This will lead to the following many-body state

Det

(
z̄i↑ − z̄j↓
zi↑ − zj↓

) ∏
i,j

(zi↑ − zj↓)2 =
∏
i,j

(zi↑ − zj↓)χ2, (25)

where Det denotes the determinant of the antisymmetrized
product of Cooper pair wave functions, and χ2 denotes the
filled second Landau level wave function in the Jain notation.
The identity used in Eq. (25) was proved in Ref. 42. The
topological properties of the wave function in Eq. (25) (or the
low energy properties of the system described with the wave
function as discussed in Ref. 43) are equivalent to the Halperin
(1,1,1) state or QHFM, that is, the following state:

∏
i<j

(zi↑ − zj↑)
∏
p<q

(zp↓ − zq↓)
∏
l,m

(zl↑ − zm↓) (26)

for fixed valley and orbital index, and thus lead to the QHFM
state with the effective filling factor νeff = 4. It was shown in
Ref. 44 that this state would lead to the gap with linear depen-
dence on the (strong) magnetic field as observed in Ref. 1. Thus
we described a possible route from antiferromagnetic state
with d + id superconducting correlations to the spin QHFM
state consistent with the experiment.
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APPENDIX: ENERGY MINIMIZATION

To find whether d − id or d + id SC correlations coexist
with antiferromagnetism in the presence of the magnetic field,
which direction is defined as in Eq. (18), we should compare
the two ground state energies,

Ed−id =
n′∑

n=0

[−m − (n + 1)(n + 2)δ]

+
n′′∑

n=0

[−E − n(n − 1)δ] (A1)

and

Ed+id =
n̄′∑

n=0

[−E − (n + 1)(n + 2)δ]

+
n̄′′∑

n=0

[−m − n(n − 1)δ], (A2)

where δ = ω2
c

2E
, and the bounds for the summations are

determined by the lower cutoff −Ec, that is, we have in the
d − id case

(n′ + 2)(n′ + 1) = Ec − m

δ
, (A3)

n′′(n′′ − 1) = Ec − E

δ
, (A4)

(n̄′ + 2)(n̄′ + 1) = Ec − E

δ
, (A5)

and

n̄′′(n̄′′ − 1) = Ec − m

δ
(A6)

in the d + id case. After a few steps of simple algebra we get

Ed−id − Ed+id = 2(m − E). (A7)

Because E > m, the energy minimization favors d − id SC
correlations for the fixed direction of the magnetic field
[Eq. (18)].
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Trigonal warping in bilayer graphene: Energy versus entanglement spectrum
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We present a mainly analytical study of the entanglement spectrum of Bernal-stacked graphene bilayers in
the presence of trigonal warping in the energy spectrum. Upon tracing out one layer, the entanglement spectrum
shows qualitative geometric differences to the energy spectrum of a graphene monolayer. However, topological
quantities such as Berry-phase-type contributions to Chern numbers agree. The latter analysis involves not only
the eigenvalues of the entanglement Hamiltonian but also its eigenvectors. We also discuss the entanglement
spectra resulting from tracing out other sublattices. As a technical basis of our analysis, we provide closed
analytical expressions for the full eigensystem of bilayer graphene in the entire Brillouin zone with a trigonally
warped spectrum.

DOI: 10.1103/PhysRevB.93.115106

I. INTRODUCTION

Although first considered as a source of quantum cor-
rections to the entropy of black holes [1], entanglement
entropy, in particular von Neumann entropy, evolved into a
tool in the field of many-body systems. This brought along
connections between seemingly unrelated research areas. In
condensed matter, the entanglement entropy serves, e.g., as
a geometrical interpretation for the boundary between local
quantum many-body systems. This connection has its origin
in the area laws [2].

However, Li and Haldane have shown that the related
entanglement spectrum contains more information than the
single number expressed by the entanglement entropy [3].
This spectrum is determined by the Schmidt decomposition
of the ground state of a bipartite system, and the reduced
density matrix obtained by tracing out one of the subsystems
can always be formulated as

ρred = e−Hent

Z
(1)

with an entanglement Hamiltonian Hent encoding the entan-
glement spectrum, and a partition function Z = tr(e−Hent ). Fol-
lowing the Li-Haldane conjecture [3], in a gapped phase, the
entanglement spectrum can be directly related to the spectrum
of edge excitations as shown for the fractional quantum Hall
system [4–6]. This relation to edge excitations can also be
seen analytically in the case of noninteracting particles. It can
be shown by mapping the free fermionic system H onto a
flatband Hamiltonian Hflat [7]. Now, the eigenenergies ei of
the latter are related to the eigenenergies of the corresponding
entanglement energies εi as ei ∼ tanh (εi/2)/2 + const [8].
Thereby, the eigenstates of both Hflat and H are the same.
Thus, if H contains topologically protected surface states, the
same holds for the entanglement Hamiltonian.

This is why the entanglement spectrum, beyond the related
entropy, is considered a tower of states and is used as a
fingerprint for topological order. However, this is not true in
general, as shown recently by Chandran et al. [9].

As a result of a multitude of studies, there is a plethora
of revisited effects in the context of an entanglement spec-
trum, such as the Kondo effect, many-body localization, or

disordered quantum spin systems; for recent reviews, see
Refs. [10,11].

A particular situation arises if the edge comprises the entire
remaining subsystem, as is the case for spin ladders [12–21]
and various bilayer systems [22–24]. A typical observation
in such scenarios is, in the regime of strongly coupled
subsystems, a proportionality between the energy Hamiltonian
of the remaining subsystem and the appropriately defined
entanglement Hamiltonian. We note that the entanglement
Hamiltonian entering the reduced density matrix (1) is only
determined up to multiples of the unit operator, which has
consequences regarding thermodynamic relations between the
entanglement entropy and the subsystem energy [22–24].

On the other hand, such a close relation between energy
and the entanglement Hamiltonian is not truly general, as
shown in Ref. [18], where a spin ladder of clearly nonidentical
legs was studied. In the present work, we provide another
counterexample given by graphene bilayers in the presence of
trigonal warping [25,26]. As we shall see in the following,
the geometric properties of the entanglement spectrum of
an undoped graphene bilayer and the energy spectrum of
a monolayer clearly differ qualitatively. However, certain
topological quantities such as Berry-phase-type contributions
to Chern numbers agree. The latter analysis involves not only
the eigenvalues of the entanglement Hamiltonian (i.e., the
entanglement spectrum) but also its eigenvectors.

This paper is organized as follows. In Sec. II, we discuss
the full eigensystem of the tight-binding model of bilayer
graphene in the presence of trigonal warping; a full account
of the technical details is given in Appendixes A and B. To
enable analytical progress, we neglect here terms breaking
particle-hole symmetry. On the other hand, our calculation
considers the entire first Brillouin zone and avoids the Dirac
cone approximation usually employed in studies of trigonal
warping in graphene bilayers [27–35]. We compare our results
for the full four-band model with an effective Hamiltonian
acting on the two central bands [27,34,35]. The entanglement
spectrum obtained from the ground state of undoped graphene
bilayers is analyzed in Sec. III. We discuss the case of one
layer being traced out as well as the situation in which the
trace is performed over two other out of four sublattices.
We close with a summary and an outlook in Sec. IV.
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II. ENERGY SPECTRUM OF GRAPHENE BILAYERS:
TRIGONAL WARPING AND TOPOLOGICAL INVARIANTS

The standard tight-binding Hamiltonian for graphene bi-
layers in Bernal stacking can be formulated as [25,26]

H = −t
∑

�k
(γ (�k)a†

1�kb1�k + γ (�k)a†
2�kb2�k + H.c.)

+ t⊥
∑

�k
(b†

1�ka2�k + a
†
2�kb1�k)

− t3
∑

�k
(γ (�k)b†

2�ka1�k + γ ∗(�k)a†
1�kb2�k)

+ t4
∑

�k
[γ (�k)(a†

1�ka2�k + b
†
1�kb2�k) + H.c.], (2)

where a
†
i�k (ai�k) and b

†
i�k (bi�k) create (annihilate) electrons with

wave vector �k in layers i = 1,2 on sublattices A and B,
respectively. Moreover, γ (�k) = ∑3

l=1 exp(i�k · �δl), where the �δl

are the vectors connecting a given carbon atom with its nearest
neighbors on the other sublattice in a graphene monolayer. In
what follows, we will use coordinates with

�δ1,2 = a

2
(−1,±

√
3), �δ3 = a(1,0), (3)

where a = 1.42 Å is the distance between neighboring carbon
atoms, such that the two inequivalent corners of the first
Brillouin zone can be given as

�K± = 2π

3
√

3a
(
√

3,±1). (4)

The parameter t describes hopping within each layer between
the sublattices while t⊥ parametrizes the vertical hopping

FIG. 1. Brillouin zone with a density plot of |γ (�k)|.

between the two sublattices in different layers lying on top of
each other. The additional hopping processes described by the
skew parameters t3,t4 lead to trigonal warping of the spectrum
and electron-hole asymmetry, respectively. Experimentally
established values [36] for these quantities are t = 3.16 eV,
t⊥ = 0.381 eV, t3 = 0.38 eV, and t4 = 0.14 eV. The geometry
of the first Brillouin zone is visualized in Fig. 1 along with a
color plot of the modulus |γ (�k)|.

The presence of all four couplings in the Hamiltonian
Eq. (2) makes its explicit diagonalization in terms of ana-
lytical expressions a particularly cumbersome task. As the
present study chiefly relies on analytical calculations rather
than resorting to numerics, we will drop the contributions
proportional to the smallest parameter t4 in order to achieve an
analytically manageable situation.

Setting t4 = 0, the full eigensystem of the Hamilto-
nian (2) can be obtained in a closed analytical fash-
ion as detailed in Appendix A. The four dispersion
branches [±E1(�k)],[±E2(�k)] form a symmetric spectrum with

E1/2 =
√

1
2

(
t2
⊥ + t2

3 |γ (�k)|2 + 2t2|γ (�k)|2 ±
√

4t2|γ (�k)|2(t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
) + (

t2
⊥ − t2

3 |γ (�k)|2)2)
(5)

and γ (�k) = |γ (�k)|eiφ�k . The two outer branches [±E1(�k)] are
separated from the inner ones [±E2(�k)] by gaps determined
essentially by the hopping parameter t⊥. The result Eq. (5)
generalizes the energy spectrum given in Ref. [27] within
the Dirac cone approximation to the full Brillouin zone.
Moreover, in Appendix A we also give the complete data of
the corresponding eigenvectors. Figure 2 concentrates on the
vicinity of a given K point using realistic parameters.

The inner branches [±E2(�k)] dominate the low-energy
physics of the system near half-filling and meet at zero energy
for

γ (�k) = 0 (6)

corresponding to the two inequivalent corners K± of the first
Brillouin zone, and for

cos(3φ�k) = −1 ∧ |γ (�k)| = t⊥t3

t2
. (7)

The latter condition defines three additional satellite Dirac
cones around each K point, two of which lie on the edges
(faces) of the Brillouin zone connecting K±. The third satellite
Dirac cone lies formally outside the Brillouin zone but is
equivalent to a satellite cone on the edge around an equivalent
K point. Indeed, the quantity γ (�k) has a constant phase
φ�k ∈ {−π/3,π/3,π} on each face: As an example, consider
the edge connecting the two inequivalent K points given in
Eq. (4), where one finds

γ

(
2π

3a
,ky

)
= e−iπ/3

[
2 cos

(√
3

2
kya

)
− 1

]
(8)

with the parentheses being non-negative for ky ranging
between [±2π/(3

√
3a)]. Thus, solving for ky , the satellite
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FIG. 2. The central energy bands [±E2(�k)] plotted around a given
K point for t⊥ = 0.1t, t3 = 0.15t . The dispersions show a central
Dirac cone accompanied by three satellites. The components of the
wave vector are measured relative to the K point.

Dirac cones on that edge lie at

�k =
(

2π

3a
, ± 2√

3a
arccos

[
1

2

(
1 + t⊥t3

t2

)])
, (9)

and the other satellite cones are located at positions being
equivalent under reciprocal-lattice translation and/or hexag-
onal rotation. Note that for t⊥t3/t2 = 1, the satellite cones
merge in the M points (centers of the faces) and they vanish
for even larger values of that ratio. In Fig. 3 we present a sketch
of the situation in the entire Brillouin zone for moderate values
of t⊥ and t3.

FIG. 3. Contour plot of the energy band [+E2(�k)] plotted for t⊥ =
t, t3 = 0.5t . The contour of the colored region indicates E = 0.2/t⊥.
The edge of the first Brillouin zone is marked by dashed lines.

For t3 = 0, the two energy bands [±E2(�k)] touch only at
the K points where they have a quadratic dispersion. Finite
t3 	= 0 causes a splitting into a total of four Dirac cones with
linear dispersion, an effect known as trigonal warping [25,34].

As a further important property, the eigenvectors corre-
sponding to [±E2(�k)] are discontinuous as a function of
wave vector at the degeneracy points defined by Eq. (7); for
more technical details, we refer the reader to Appendix B.
As a simplistic toy model mimicking such an effect, one can
consider the Hamiltonian H = −kσ z with a one-dimensional
wave number k and the Pauli matrix σ z describing some
internal degree of freedom: In the many-body ground state
of zero Fermi energy all occupied states with k > 0 have spin
up, while for all states with k < 0 the spin points downward,
resulting in a discontinuity of the occupied eigenvectors at
k = 0. As we shall see below, in the present case of graphene
bilayers this discontinuity is also reflected in the entanglement
spectrum.

An effective Hamiltonian providing an approximate de-
scription of the central bands [±E2(�k)] can be given following
Ref. [27]. In up to linear order in 1/t⊥, one finds

H = −
(

0 t2

t⊥
(γ ∗(�k))2 + t3γ (�k)

t2

t⊥
(γ (�k))2 + t3γ

∗(�k) 0

)

(10)

with respect to the basis (b†
2�k,a

†
1�k)|0〉. The eigenstates read

|χ±〉 = 1√
2

(
1

∓eiψ�k

)
(11)

with

eiψ�k =
t2

t⊥
(γ (�k))2 + t3γ

∗(�k)∣∣ t2

t⊥
(γ (�k))2 + t3γ ∗(�k)

∣∣ . (12)

Note that the Hamiltonian (10) vanishes if and only if the
conditions (6) or (7) are fulfilled, implying that the positions of
the central and satellite Dirac cones are the same as for the full
Hamiltonian (2). Moreover, ψ�k is a smooth and well-defined
function of the wave vector except for the locations of Dirac
cones. Accordingly, the Berry curvature

F (�k) = ∂Ay

∂kx

− ∂Ax

∂ky

(13)

arising from the Berry connection

�A(�k) = i〈χ±(�k)| ∂

∂ �k |χ±(�k)〉 = −1

2

∂ψ�k
∂ �k (14)

vanishes everywhere outside the Dirac cones where contri-
butions in terms of δ functions arise. Integrating the Berry
connection along a closed path in �k space leads to geometrical
quantities often referred to as Berry phases, although no
contact to adiabaticity is made here. Moreover, if the Berry cur-
vature has only nonzero contributions in terms of δ functions
(as is the case here and in the following), these geometrical
phases are indeed topological, i.e., they are invariant under
continuous variations of the paths as long as the support of the
δ functions is not touched.
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As discussed in Refs. [31,33,34], integrating along a closed
path around the central Dirac cones at K± yields a Berry phase
of (∓π ), while each of the accompanying satellite cones gives
a contribution of (±π ). Thus, the total Berry phase arising
at and around each K point is, as in the absence of trigonal
warping, (±2π), and the integral over the whole Brillouin zone
of the Berry connection (i.e., the Chern number) vanishes.
Naturally, our present analysis going beyond the Dirac cone
approximation confirms these results.

III. ENTANGLEMENT SPECTRA

For systems of free fermions such as those studied here,
the entanglement Hamiltonian can be formulated as a single-
particle operator [23,37,38],

Hent =
∑

λ

ξλd
†
λdλ. (15)

Here the d
†
λ generate eigenstates of the correlation matrix

Cαβ = 〈�|c†αcβ |�〉, (16)

where |�〉 is the ground state of the composite system, and
single-particle operators cα,cβ act on its remaining part after
tracing out a subsystem. The entanglement levels ξλ are related
to the eigenvalues ηλ of the correlation matrix via

ξλ = ln

(
1 − ηλ

ηλ

)
= 2 artanh (1 − 2ηλ). (17)

In particular, the entanglement Hamiltonian and the correlation
matrix share the same system of eigenvectors.

A. Tracing out one layer

We now consider the ground state of the undoped graphene
bilayer such that all states with negative energies [−E1(�k)],
[−E2(�k)] are occupied while all others are empty. Tracing out
layer 1 leads to the correlation matrix

C(�k) =
(

1
2 u(�k)

u∗(�k) 1
2

)
(18)

where an explicit expression for u(�k) is given in Appendix C.
The entanglement levels corresponding to the eigenvalues
η±(�k) = 1/2 ∓ |u(�k)| are

ξ±(�k) = ± 2 artanh(2|u(�k)|). (19)

The modulus |u| can be formulated as

|u| = 1/2√
1 + {d/[t |γ (�k)|]}2

√
1

2

(
1 − ε1ε2 + b2

E1E2

)
(20)

with [cf. Eqs. (A14) and (A15)]

d =
(
t2
⊥ − t2

3 |γ (�k)|2)/2√
t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
, (21)

b = t⊥t3|γ (�k)|| sin(3φ�k)|√
t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
, (22)

and [cf. Eq. (A21)]

ε1,2 = t |γ (�k)|

±
√(

t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
)2

/4 + d2

(23)

implying

E1,2 =
√

ε2
1,2 + b2. (24)

The right-hand side of Eq. (20) becomes zero if the radicand
vanishes. According to the discussion in Appendixes B and
C, this is the case when cos (3φ�k) = −1 leading to b = 0 and
E1 = ε1 � 0,E2 = |ε2| such that

|u| ∝
√

1

2

(
1 − ε2

|ε2|
)

. (25)

Now Eq. (B2) shows that |u(�k)| = 0 is equivalent to

cos(3φ�k) = −1 ∧ |γ (�k)| ∈ [0,t⊥t3/t2], (26)

where the end point of the above interval defines according
to condition (7) the location of the satellite Dirac cones. As a
result, the entanglement levels (19) vanish along segments of
the faces of the first Brillouin zone bounded by the positions
of the central Dirac cones and their satellites. At the satellite
Dirac cones, the entanglement spectrum is discontinuous as a
function of wave vector. In Fig. 4, we plotted the entanglement
spectrum ξ+(�k) for the whole Brillouin zone. For a better
visualization, large hopping parameters have been chosen.
The contour of the colored region connects all three satellite
Dirac cones. As discussed in Appendix B, this discontinuity
is inherited from a discontinuity in the eigenvectors of the
occupied single-particle states. The entanglement spectrum in
the entire Brillouin zone is illustrated in Fig. 4, whereas Fig. 5
focuses on a given K point.

Moreover, apart from the eigenvalues of the entanglement
Hamiltonian, let us also consider its eigenvector, which

FIG. 4. Contour plot of the entanglement spectrum ξ+(�k) plotted
for t⊥ = t, t3 = 0.5t . The contour of the colored region indicates
ξ = 1.5. The dashed line delineates the first Brillouin zone.
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FIG. 5. The entanglement spectrum (19) plotted around a given
K point for the same parameters as in Fig. 2. The density plot shows
the upper entanglement level. Zero eigenvalues of the entanglement
Hamiltonian occur along lines connecting the K point with the
locations of satellite Dirac cones of the energy spectrum (thick black
lines). The components of the wave vector are measured relative to
the K point.

coincides with the eigenvectors of the correlation matrix (18).
As discussed in Appendix C, the complex function u(�k)
entering the correlation matrix becomes singular at the K

points and the positions of the accompanying satellite Dirac
cones of the energy spectrum, leading again to δ-function-type
contributions to the Berry curvature that vanishes otherwise.
Combining symbolic computer algebra techniques and nu-
merical calculations, we find here a Berry phase of (∓π/2)
around the corners K± of the Brillouin zone, and (±π/2) for
the corresponding satellite positions. For the central positions,
the above calculations can also be done fully analytically
by expanding the eigensystem data around K±. For the
satellite locations, such an expansion is not possible due to
the discontinuity of the eigenvectors.

Thus, the total Berry phase contribution from each K point
K± is (±π) and agrees with the Berry phase around the Dirac
cones in monolayer graphene. As a result, although the entan-
glement spectrum of graphene bilayers generated by tracing
out one layer shows obvious differences from the energy spec-
trum of monolayer graphene regarding qualitative geometrical
properties, the topological Berry phases obtained from the
corresponding eigenvectors still coincide at each K point.

B. Tracing out other sublattices

Now, we will consider the entanglement spectrum obtained
by tracing out sublattices A1 and B2 (or A2 and B1) lying in
different layers. In the former case, one finds

C(�k) =
(

1
2 v(�k)

v∗(�k) 1
2

)
, (27)

where an explicit expression for v(�k) is given in Appendix C.
The above correlation matrix has eigenvalues η±(�k) = 1/2 ∓

FIG. 6. Eigenvalues η−(�k) = 1/2 + |v(�k)| of the correlation ma-
trix plotted around a given K point for t⊥ = 0.1t, t3 = 0.15t . The
thick black lines correspond to the one in Fig. 5, and the components
of the wave vector are again measured relatively to the K point.

|v(�k)| leading to the entanglement levels

ξ±(�k) = ± 2 artanh(2|v(�k)|) . (28)

In Fig. 6, we plotted the eigenvalues η−(�k) = 1/2 + |v(�k)| of
the correlation matrix around a given K point. The modulus
|v(�k)| reads more explicitly

|v(�k)| = 1

2

√
1 − t2|γ (�k)|2

t2|γ (�k)|2 + d2

1

2

(
1 − ε1ε2 + b2

E1E2

)
(29)

= 1
2

√
1 − 4|u(�k)|2 (30)

and has a structure similar to |u(�k)| given in Eq. (20). In
particular, |v(�k)| = 1/2 ⇔ |u(�k)| = 0 if the conditions (26)
are fulfilled. In this case, η+ = 0 and η− = 1, indicating that
the remaining subsystem is unentangled with the system traced
out.

Regarding Berry phases generated from the eigenstates
of the correlation matrix (27), we note that the off-diagonal
element v(�k) does not vanish anywhere. As a consequence,
the Berry curvature defined analogously as in Eqs. (11)–(14)
is zero throughout the Brillouin zone, which in turn holds
for all Berry phases. The nonvanishing of v(�k) follows from
the fact that |v(�k)| = 0 would require |u(�k)| = 1/2 such that
the entanglement (19) would diverge, which is, as seen in
Sec. III A, not the case.

Finally, the correlation matrix obtained by tracing over the
sublattices A1 and A2 (or B1 and B2) is proportional to the
unit matrix,

C(�k) =
( 1

2 0

0 1
2

)
, (31)

indicating that these sublattices are maximally entangled with
the part traced out.
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IV. CONCLUSIONS AND OUTLOOK

We have studied the entanglement properties of the ground
state of Bernal stacked graphene bilayers in the presence of
trigonal warping. Our analysis includes both the eigenvalues
of the reduced density matrix (giving rise to the entanglement
spectrum) as well as its eigenvectors. When tracing out one
layer, the entanglement spectrum shows qualitative geometric
differences to the energy spectrum of a graphene monolayer,
while topological quantities such as Berry-phase-type contri-
butions to Chern numbers agree. The latter finding is in contrast
to the reduced density matrix resulting from tracing out other
sublattices of the bilayer system. Here, all corresponding
Berry phase integrals yield trivially zero. Thus, our study
provides an example for common topological properties of the
eigensystem of the energy Hamiltonian of a subsystem (here
a graphene monolayer) and the entanglement Hamiltonian,
while the geometrical shape of both spectra grossly differs. Our
investigations are based on closed analytical expressions for
the full eigensystem of bilayer graphene in the entire Brillouin
zone with a trigonally warped spectrum.

Future work might address bilayer systems of other geo-
metrical structures such as the Kagome lattice, the influence
of a static perpendicular magnetic field [23,39], and the effect
of time-periodic in-plane electric fields [40].

Note added in proof. Recently, we became aware of
Ref. [41] where also Chern numbers calculated from the

eigenstates of entanglement Hamiltonians are studied. Most
recent work building upon this concept is reported on in
Ref. [42].
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APPENDIX A: DIAGONALIZATION OF THE
BILAYER HAMILTONIAN

Setting t4 = 0 and fixing a wave vector �k, the Hamiltonian
(2) reads with respect to the basis (a†

2�k,b
†
1�k,b

†
2�k,a

†
1�k)|0〉

H =

⎛
⎜⎜⎜⎜⎝

0 t⊥ −tγ (�k) 0

t⊥ 0 0 −tγ ∗(�k)

−tγ ∗(�k) 0 0 −t3γ (�k)

0 −tγ (�k) −t3γ
∗(�k) 0

⎞
⎟⎟⎟⎟⎠. (A1)

Using γ (�k) = |γ (�k)|eiφ�k , we apply the transformation

U1 = 1√
2

⎛
⎜⎝

1 1 0 0
0 0 eiφ�k e−iφ�k

0 0 eiφ�k −e−iφ�k

1 −1 0 0

⎞
⎟⎠ (A2)

such that in

H1 = U1HU
†
1 =

⎛
⎜⎜⎜⎜⎝

t⊥ −t |γ (�k)| 0 0

−t |γ (�k)| −t3|γ (�k)| cos(3φ�k) it3|γ (�k)| sin(3φ�k) 0

0 −it3|γ (�k)| sin(3φ�k) t3|γ (�k)| cos(3φ�k) −t |γ (�k)|
0 0 −t |γ (�k)| −t⊥

⎞
⎟⎟⎟⎟⎠ (A3)

all information on the phase φ�k is contained in the matrix elements being proportional to the skew parameter t3. Proceeding now
with the transformation

U2 = 1√
2

⎛
⎜⎝

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞
⎟⎠, (A4)

we find

H2 = U2H1U
†
2 = 1

2

⎛
⎜⎝

e1 c −is −is

c e2 is is

is −is −e2 c

is −is c −e1

⎞
⎟⎠ (A5)

with

e1 = 2t |γ (�k)| + t⊥ − t3|γ (�k)| cos(3φ�k), (A6)

e2 = −2t |γ (�k)| + t⊥ − t3|γ (�k)| cos(3φ�k), (A7)

c = t⊥ + t3|γ (�k)| cos(3φ�k), (A8)

s = t3|γ (�k)| sin(3φ�k). (A9)
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Here it is useful to split the above matrix as H2 = H
′
2 + H

′′
2 , where

H
′
2 = 1

2

⎛
⎜⎝

e1 0 −is 0
0 e2 0 is

is 0 −e2 0
0 −is 0 −e1

⎞
⎟⎠, H

′′
2 = 1

2

⎛
⎜⎝

0 c 0 −is

c 0 is 0
0 −is 0 c

is 0 c 0

⎞
⎟⎠. (A10)

H
′
2 is diagonalized by

U3 =

⎛
⎜⎝

α+ 0 −iσα− 0
0 −iσα+ 0 α−

−iσα− 0 α+ 0
0 α− 0 −iσα+

⎞
⎟⎠ (A11)

with σ = sign (sin[3φ(�k)]) and

α± =

√√√√√1

2

⎛
⎝1 ± t⊥ − t3|γ (�k)| cos(3φ�k)√

t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)

⎞
⎠ (A12)

such that

H3 = U3H2U
†
3 =

⎛
⎜⎝

ζ1 idσ 0 b

−idσ ζ2 b 0
0 b −ζ2 idσ

b 0 −idσ −ζ1

⎞
⎟⎠, (A13)

where

d =
(
t2
⊥ − t2

3 |γ (�k)|2)/2√
t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
, (A14)

b = t⊥t3|γ (�k)|| sin(3φ�k)|√
t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
, (A15)

and ±ζ1 and ±ζ2 are eigenvalues of H
′
2 given by

ζ1/2 = 1
2

( ± 2t |γ (�k)| +
√

t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
)
. (A16)

Splitting now H3 in the form

H3 =

⎛
⎜⎝

ζ1 id 0 0
−id ζ2 0 0

0 0 −ζ2 id

0 0 −id −ζ1

⎞
⎟⎠ +

⎛
⎜⎝

0 0 0 b

0 0 b 0
0 b 0 0
b 0 0 0

⎞
⎟⎠, (A17)

the first part is diagonalized by

U4 =

⎛
⎜⎝

−iσ τβ+ β− 0 0
β− −iσ τβ+ 0 0
0 0 −iσ τβ+ β−
0 0 β− −iσ τβ+

⎞
⎟⎠ (A18)

with τ = sign(d) and

β± =
√√√√1

2

(
1 ± ζ1 − ζ2√

(ζ1 − ζ2)2 + 4d2

)
(A19)

while the second part is left unchanged by U4, resulting in

H4 = U4H3U
†
4 =

⎛
⎜⎝

ε1 0 0 b

0 ε2 b 0
0 b −ε2 0
b 0 0 −ε1

⎞
⎟⎠ (A20)
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with the diagonal elements given in terms of

ε1/2 = 1
2 (ζ1 + ζ2 ±

√
(ζ1 − ζ2)2 + 4d2). (A21)

Finally, H4 is brought into diagonal form via

U5 =

⎛
⎜⎜⎜⎜⎝

γ
(1)
+ 0 0 γ

(1)
−

0 γ
(2)
+ γ

(2)
− 0

0 γ
(2)
− −γ

(2)
+ 0

γ
(1)
− 0 0 −γ

(1)
+

⎞
⎟⎟⎟⎟⎠ (A22)

with

γ
(1)
± =

√
1

2

(
1 ± ε1

E2

)
, γ

(2)
± =

√
1

2

(
1 ± ε2

E2

)
, (A23)

and

E1/2 =
√

ε2
1,2 + b2 (A24)

=
√

1
2

(
t2
⊥ + t2

3 |γ (�k)|2 + 2t2|γ (�k)|2 ±
√

4t2|γ (�k)|2(t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
) + (

t2
⊥ − t2

3 |γ (�k)|2)2
)
. (A25)

Thus,

U5H4U
†
5 = diag(E1,E2,−E2,−E1), (A26)

and the matrix elements of the corresponding total transformation U = U5U4U3U2U1 can be expressed as

U11 = 1
2 (α− − iσα+)(τβ+ + β−)(γ (1)

+ − iσγ
(1)
− ), (A27)

U12 = 1
2 (α+ − iσα−)(τβ+ + β−)(γ (1)

− − iσγ
(1)
+ ), (A28)

U13 = −eiφ�k

2
(α− − iσα+)(τβ+ − β−)(γ (1)

+ + iσγ
(1)
− ), (A29)

U14 = e−iφ�k

2
(α− + iσα+)(τβ+ − β−)(γ (1)

+ − iσγ
(1)
− ), (A30)

and

U21 = − 1
2 (α+ + iσα−)(τβ+ − β−)(γ (2)

+ − iσγ
(2)
− ), (A31)

U22 = − 1
2 (α+ − iσα−)(τβ+ − β−)(γ (2)

+ + iσγ
(2)
− ), (A32)

U23 = −eiφ�k

2
(α+ + iσα−)(τβ+ + β−)(γ (2)

+ + iσγ
(2)
− ), (A33)

U24 = −e−iφ�k

2
(α+ − iσα−)(τβ+ + β−)(γ (2)

+ − iσγ
(2)
− ), (A34)

which are the complex conjugates of the components of the eigenvectors of the conduction-band states with positive energies
E1(�k),E2(�k), while

U31 = 1
2 (α− − iσα+)(τβ+ − β−)(γ (2)

+ − iσγ
(2)
− ), (A35)

U32 = 1
2 (α− + iσα+)(τβ+ − β−)(γ (2)

+ + iσγ
(2)
− ), (A36)

U33 = −eiφ�k

2
(α+ + iσα−)(τβ+ + β−)(γ (2)

− − iσγ
(2)
+ ), (A37)

U34 = −e−iφ�k

2
(α+ − iσα−)(τβ+ + β−)(γ (2)

− + iσγ
(2)
+ ), (A38)
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and

U41 = 1
2 (α+ + iσα−)(τβ+ + β−)(γ (1)

+ − iσγ
(1)
− ), (A39)

U42 = − 1
2 (α− + iσα+)(τβ+ + β−)(γ (1)

− − iσγ
(1)
+ ), (A40)

U43 = eiφ�k

2
(α+ + iσα−)(τβ+ − β−)(γ (1)

+ + iσγ
(1)
− ), (A41)

U44 = e−iφ�k

2
(α− + iσα+)(τβ+ − β−)(γ (1)

− + iσγ
(1)
+ ), (A42)

correspond to the valence-band states with negative energies [−E2(�k)],[−E1(�k)]. Note that all factors involving α±,γ
(1)
± ,γ

(2)
± in

the above expressions have modulus 1, i.e., they are phase factors.

APPENDIX B: CONTINUITY PROPERTIES

The eigenvectors corresponding to the energy branches [±E2(�k)] are discontinuous at wave vectors determined by the
condition (7). This comes about as follows: The matrix elements U2,n(�k),U3,n(�k),n ∈ {1,2,3,4} contain the quantities γ

(2)
± defined

in Eqs. (A23), whereas the U1,n(�k),U4,n(�k) corresponding to [±E1(�k)] involve γ
(1)
± . Fixing now cos (φ�k) = −1, we have b = 0

such that E1 = ε1 � 0 and E2 = |ε2| such that γ
(1)
± remain continuous while γ

(2)
± become

γ
(2)
± =

√
1

2

(
1 ± ε2

|ε2|
)

. (B1)

Inspection of Eq. (A21) now shows that for cos (φ�k) = −1,

ε2(�k)

{
> 0 |γ (�k)| < t⊥t3/t2,

< 0 |γ (�k)| > t⊥t3/t2,
(B2)

such that ε2(�k) changes sign for |γ (�k)| = t⊥t3/t2, i.e., γ
(2)
± is discontinuous at wave vectors given by the condition (7). This

discontinuity is inherited by the correlation matrix and, in turn, by the entanglement spectrum.
The technical reason for this discontinuity in the eigenvectors is of course the fact that the dispersions [±E2(�k)] become

degenerate at wave vectors fulfilling (7). In fact, the eigenvectors can also be considered as continuous functions of the wave
vector by appropriately relabeling the dispersion branches. In the ground state of the undoped bilayer system, however, only the
lower branch [−E2(�k)] is occupied, which makes the discontinuity unavoidable.

To circumvent this discontinuity, one can open an energy gap between the upper and lower central band such that the
corresponding eigenstates are necessarily continuous for all wave vectors. Among the various mechanisms producing such a gap,
only a few allow for a still halfway convenient analytical treatment of the Hamiltonian. These include introducing identical mass
terms in both layers, i.e., H �→ H + H ′, with

H ′ = diag(m,−m,−m,m), (B3)

or applying a bias voltage � between the layers,

H ′ = diag(−�/2,�/2,−�/2,�/2). (B4)

In the former case, the four dispersion branches [±E1(�k)], [±E2(�k)] are given by

E1/2(�k) = [
m2 + 1

2

(
t2
⊥ + t2

3 |γ (�k)|2 + 2t2|γ (�k)|2)
± 1

2

√
4t2|γ (�k)|2(t2

⊥ + t2
3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)

) + (
t2
⊥ − t2

3 |γ (�k)|2)2]1/2
(B5)

while for a bias voltage one finds [27]

E1/2(�k) =
[
�2

4
+ 1

2

(
t2
⊥ + t2

3 |γ (�k)|2 + 2t2|γ (�k)|2)

± 1

2

√
4t2|γ (�k)|2(t2

⊥ + t2
3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k) + �2

) + (
t2
⊥ − t2

3 |γ (�k)|2)2
]1/2

. (B6)

In both cases, the central energy bands [±E2(�k)] are separated by a gap, and the spectrum can still be given in terms of
comparably simple closed expressions since the characteristic polynomial of the 4 × 4 Hamiltonian matrix is a second-order
polynomial in the energy squared leading to a spectrum being symmetric around zero. Also, the corresponding eigenvectors can
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be obtained in closed analytical forms by procedures analogous to (but in detail somewhat more complicated than) the one given in
Appendix A [43].

Note that applying a bias voltage as well as introducing a mass term in each layer discriminates the layers against each other.
The latter circumstance is due to the fact that t⊥ couples sublattices in different layers for which the mass term has a different
sign. As a result, when tracing out, say, one layer of an undoped (i.e., half-filled) bilayer system, the remaining layer will not be
half-filled, which obscures somewhat the comparison with an undoped graphene monolayer.

APPENDIX C: CORRELATION MATRICES

Upon tracing out layer 1 from the ground state of the undoped bilayer system, the correlation matrix reads in the basis
(a†

2�k,b
†
2�k)|0〉

C(�k) =
(

U31U
∗
31 + U41U

∗
41 U31U

∗
33 + U41U

∗
43

U33U
∗
31 + U43U

∗
41 U33U

∗
33 + U43U

∗
43

)
=

(
1
2 u(�k)

u∗(�k) 1
2

)
(C1)

with

u(�k) = e−iφ�k

4
(β2

+ − β2
−)((γ (1)

+ − iσγ
(1)
− )2 − (γ (2)

+ − iσγ
(2)
− )2). (C2)

This quantity becomes singular at the corners of the Brillouin zone where γ (�k) is zero such that its phase is ill-defined, and at
the positions of the satellite Dirac cones of the energy spectrum where, as discussed in Appendix B, γ

(2)
± is discontinuous.

Tracing out the sublattices A1 and B2, one finds in the basis (a†
2�k,b

†
1�k)|0〉

C(�k) =
(

U31U
∗
31 + U41U

∗
41 U31U

∗
32 + U41U

∗
42

U32U
∗
31 + U42U

∗
41 U32U

∗
32 + U42U

∗
42

)
=

(
1
2 v(�k)

v∗(�k) 1
2

)
(C3)

with

v(�k) = (α− − iσα+)2

4
((τβ+ − β−)2(γ (2)

+ − iσγ
(2)
− )2 + (τβ+ + β−)2(γ (1)

+ − iσγ
(1)
− )2). (C4)

Note that the expressions (C2) and (C4) obey the interesting sum rule

|u(�k)|2 + |v(�k)|2 = 1
4 , (C5)

which is fulfilled whenever the coefficients involved satisfy

α2
+ + α2

− = β2
+ + β2

− = (γ (1/2)
+ )2 + (γ (1/2)

− )2 = 1, (C6)

which is the case here by construction.
Finally, the correlation matrix obtained by tracing out the sublattices A1 and A2 is proportional to the unit matrix,

C(�k) =
(

U32U
∗
32 + U42U

∗
42 U32U

∗
33 + U42U

∗
43

U33U
∗
32 + U43U

∗
42 U33U

∗
33 + U43U

∗
43

)
=

(
1
2 0

0 1
2

)
, (C7)

implying that the remaining subsystem is maximally entangled with the subsystem traced out.
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Abstract – We investigate the relationship between the entanglement and subsystem
Hamiltonians in the perturbative regime of strong coupling between subsystems. One of the
two conditions that guarantees the proportionality between these Hamiltonians obtained by using
the nondegenerate perturbation theory within the first order is that the unperturbed ground state
has a trivial entanglement Hamiltonian. Furthermore, we study the entanglement Hamiltonian of
the Heisenberg ladders in a time-dependent magnetic field using the degenerate perturbation the-
ory, where couplings between legs are considered as a perturbation. In this case, when the ground
state is twofold degenerate, and the entanglement Hamiltonian is proportional to the Hamiltonian
of a chain within first-order perturbation theory, even then also the unperturbed ground state has
a nontrivial entanglement spectrum.

Copyright c© EPLA, 2017

Introduction. – Quantum entanglement, primarily a
source of quantum information, has developed into one
of the most studied subfields of many-body physics. In
the last decade, quantum entanglement has mainly been
used to study the phase structure in condensed-matter
physics [1]. The entanglement spectrum of a bipartite
system of subsystems A and B is defined in terms of the
Schmidt decomposition of its ground state |ψ〉 as

|ψ〉 =
∑

n

e−
ξn
2 |ψA

n 〉|ψB
n 〉 (1)

where the states |ψA
n 〉 (|ψB

n 〉) are orthonormal states of the
subsystem A (B), respectively, and the non-negative quan-
tities ξn represent the levels of the entanglement spectrum.
Further, Haldane and Li in ref. [2] have reported a remark-
able relationship between the excitation spectrum and the
edges separating the subsystems, considering the entan-
glement spectrum of the fractional quantum Hall system
obtained using a spatial cut. This connection between
the edge spectrum and entanglement spectrum is observed
in many condensed-matter systems including ladders sys-
tems [3–5]. In many previous studies, the proportionality
between the energetic Hamiltonian of the subsystem A HA

and the entanglement Hamiltonian Hent in the strong cou-
pling regime [6–12] has been observed. However, this does
not hold in general, even in the strong coupling limit which

is illustrated by counterexamples in ref. [13] where four
spin terms of the Kugel-Khomskii model are considered
in ref. [11], in which anisotropic spin ladders of arbitrary
spin length were considered, where even the unperturbed
nondegenerate ground state has a nontrivial entanglement
spectrum.

Here we study the entanglement spectrum of the Heisen-
berg spin ladders in a time-dependent magnetic field via
the degenerate perturbation theory, where couplings be-
tween legs are considered as a perturbation. The entangle-
ment Hamiltonian is, within the first-order perturbation
theory, proportional to the energy Hamiltonian of a chain
in the magnetic field when the ground state is degenerate.
This holds, although the entanglement spectrum of the
unperturbed ground state has a nontrivial entanglement
spectrum.

Motivation. – We consider a bipartite system consist-
ing of two subsystems described by the Hamiltonians HA

of subsystem A and HB of subsystem B, which are coupled
by the Hamiltonian H0. We assume that the Hamiltoni-
ans HA and HB are small compared to H0, and it will
be treated as a small perturbation. This problem can be
illustrated by two leg spin ladders, where the interaction
between rungs is considered as a small perturbation (see
fig. 1).
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Fig. 1: (Colour online) Illustration of the two leg spin ladder
considered in this paper. The entanglement spectrum is per-
formed by tracing out subsystem A.

The projector onto the subsystem orthogonal to the non-
degenerative ground state |ψ0〉 is defined as

Ql = 1 − |ψ0〉〈ψ0| =
∑
l �=0

|ψl〉〈ψl|. (2)

Then, the first correlation |ψ(1)
l 〉 of the nondegenerative

ground state |ψ0〉 reads

|ψ(1)
l 〉 = |ψ0〉

+
1

E0 −H0
Ql ((HA + HB) − 〈ψ0| (HA + HB) |ψ0〉) |ψl〉,

(3)

where E0 = 〈ψ0|H0|ψ0〉. We also use that 1
E0−H0

Ql =∑
l �=0

|ψl〉〈ψl|
E0−El

, where El = 〈ψl|H0|ψl〉 and the fact that
1

E0−H0
Ql|ψ0〉 = 0 by definition. In the following, we will

assume that 1
E0−El

is equal for every l. This allows us to
rewrite eq. (3) as

|ψ(1)
l 〉 = |ψ0〉 +

1
E0 − El

(HA + HB)|ψ0〉. (4)

The density matrix within the first order of the perturba-
tion theory has the following form:

ρ = |ψ(1)
l 〉〈ψ(1)

l |,
ρ = |ψ0〉〈ψ0|

+
1

E0 − El
((HA + HB)|ψ0〉〈ψ0| + |ψ0〉〈ψ0|(HA + HB)).

(5)

Owing to the fact that, here, the Hamiltonian HA acts
only on the subsystem A, the reduced density matrix can
be calculated by tracing out the subsystem B:

ρred = ρ1 +
1

E0 − El
(HAρ1 + ρ1HA) , (6)

where ρ1 = tr2|ψ0〉〈ψ0| is the reduced density matrix
within the zeroth order of the perturbation theory. When
the two subsystems are maximally entangled, ρ1 is pro-
portional to the unit matrix. In this case, we obtain

ρred = ρ1

(
1 − 2

E0 − El
HA

)
. (7)

The reduced density matrix can be reformulated as

ρred =
1
Z

exp(−H(1)
ent), (8)

where the entanglement Hamiltonian Hent is the entan-
glement Hamiltonian, and the partition function Z is
Z = tr(exp(−H(1)

ent)). The entanglement Hamiltonian

Hent =
2

E0 − El
HA (9)

is proportional to the Hamiltonian of subsystem A, with
the proportionality factor β = 2

E0−El
interpreted as an

inverse temperature.
To conclude, we assume that

1) 1
E0−El

is equal for every l, and

2) ρ1 is proportional to the unit matrix.

These two assumptions directly lead to the proportionality
between the entanglement and subsystem Hamiltonians in
the strong coupling limit within the first order of the per-
turbation theory, when the ground state is nondegenerate.

In ref. [6], Poilblanc stressed a remarkable similarity be-
tween the chain-chain entanglement spectrum in the two-
leg spin-1/2 ladders and the energy spectrum of a single
spin-1/2 Heisenberg chain. Läuchli and Schliemann [10]
analytically showed that the entanglement Hamiltonian of
the two coupled anisotropic XXZ chains is proportional to
the energy Hamiltonian of the single chain with renormal-
ized anisotropy in the first order of the perturbation theory
in the strong coupling limit. There, the first assump-
tion (1) is not valid. In the case of the isotropic Heisenberg
ladders, both assumptions (1) and (2) are valid, and for
that reason, they found that the entanglement spectrum
is directly proportional to the energy of the single chain.
The authors in ref. [11] generalized this observation for the
isotropic Heisenberg ladders to the case of the arbitrary
spin length S. They found that for arbitrary spin, the en-
tanglement spectrum of the isotropic Heisenberg ladders
is proportional to the energy of the single chain within the
first-order perturbation theory. This is also a consequence
of the fact that both assumptions (1) and (2) hold. How-
ever, they found that there is no proportionality between
the entanglement Hamiltonian of anisotropic spin ladders
of arbitrary spin length. Since here, the reduced density
matrix in zeroth order of the perturbation theory is not
proportional to the unit matrix, there is no mention of
proportionality.

Model. – We investigate the Hamiltonian of the
Heisenberg spin-1/2 ladder in a time-dependent circularly
polarized magnetic field B described by the Hamiltonian

H̃ = Jrung

∑
i

�S2i
�S2i+1 + B

∑
i

(Sx
i cos ωt − Sy

i sin ωt)

+ Jleg

∑
i

�S2i
�S2i+2 + Jleg

∑
i

�S2i+1
�S2i+3. (10)

where ω is the angular velocity of the rotation of the mag-
netic field. The sites on the first (second) leg are denoted
by even (odd) labels, such that the i-th rung consists of
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sites 2i and 2i + 1. All spin-1/2 operators are taken to
be dimensionless, such that the couplings along the rungs
Jrung and the legs Jleg have the dimensions of energy. We
will consider antiferromagnetic coupling when Jrung > 0.

This time-dependent Hamiltonian can be factorized to
a time-independent Hamiltonian by unitary transforma-
tions that represent a rotation around the z-axis R(t) =
exp(−iSzωt/h̄) [14]. Since

R(t)SxR−1(t) = Sx cos ωt + Sy sin ωt,

R(t)SyR−1(t) = −Sx sinωt + Sy cos ωt,

R(t)SzR
−1(t) = Sz, (11)

the Hamiltonian equation (10) can be transformed into a
time-independent Hamiltonian:

Ĥ = R(t)H̃(t)R(t)−1, (12)

Ĥ = Jrung

∑
i

�S2i
�S2i+1 + B

∑
i

Sx
i + Jleg

∑
i

�S2i
�S2i+2

+Jleg

∑
i

�S2i+1
�S2i+3. (13)

Defining the propagator that confirms

∂

∂t
K(t, t0) = − i

h̄
H̃(t)K(t, t0), (14)

∂

∂t
K(t, t0) = − i

h̄
R−1(t)Ĥ(t)R(t)K(t, t0), (15)

we find

∂

∂t

(
R(t)K(t, t0)R−1(t0)

)
= − i

h̄
H

(
R(t)K(t, t0)R−1(t0)

)
.

Then, the Hamiltonian becomes

H = Jrung

∑
i

�S2i
�S2i+1 + B

∑
i

Sx
i + ω

∑
i

Sz
i

+ Jleg

∑
i

�S2i
�S2i+2 + Jleg

∑
i

�S2i+1
�S2i+3, (16)

where the propagator is

K(t, t0) =

exp
(

i

h̄
Szωt

)
exp

(
− i

h̄
H(t − t0)

)
exp

(
− i

h̄
Szωt0

)
.

(17)

In order to use the perturbation theory, we will rewrite
the Hamiltonian equation (16) as H = H0 + H1, where

H0 = Jrung

∑
i

�S2i
�S2i+1 + B

∑
i

Sx
i + ω

∑
i

Sz
i (18)

and

H1 = Jleg

∑
i

�S2i
�S2i+2 + Jleg

∑
i

�S2i+1
�S2i+3 (19)

and consider H1 as a small perturbation. The Hamiltonian
equation (18) is independent of the direction of the

magnetic field and it can be considered as the isotropic
Heisenberg chain in the magnetic field

√
B2 + ω2

H0 = Jrung

∑
i
�S2i

�S2i+1 +
√

B2 + ω2
∑

i Sz
i (20)

and

H1 = Jleg

∑
i
�S2i

�S2i+2 + Jleg

∑
i
�S2i+1

�S2i+3. (21)

The energies of a rung of the singlet and triplet
states are

Esi
= −3

4
Jrung, (22)

Et+i
=

1
4
Jrung +

√
B2 + ω2, (23)

Et0i
=

1
4
Jrung, (24)

Et−i
=

1
4
Jrung −

√
B2 + ω2. (25)

The ground state changes from the spin singlet |si〉 to
the triplet state |t−i 〉 by increasing the value of

√
B2 + ω2.

When Jrung =
√

ω2 + B2, the ground state is twofold de-
generate, since the singlet states |si〉 and triplet states
|t−i 〉 have the same eigenenergy. The situation when the
ground state is twofold degenerate is quite interesting and
it will be considered in the following section.

Entanglement spectrum. – When Jrung =√
ω2 + B2, it is necessary to use the degenerate per-

turbation theory, while any combination of eigenstates
|si〉 and |t−i 〉 can be taken as the ground state |ψ0〉. In
order to achieve an analytically manageable situation,
we will assume a finite number of rungs i = 4. Let us
suppose that the unperturbed ground state |psi0〉 of the
Hamiltonian H0 is an unknown combination of eigenvec-
tors |si〉 and |t−i 〉. In the following, we will note eigenvec-
tors of the ground state |ψ0〉 as {|nλ〉|, λ = 1, . . . , 4}, where

|n1〉 = |s1〉|s2〉|s3〉|s4〉, |n2〉 = |s1〉|s2〉|s3〉|t−4 〉,
|n3〉 = |s1〉|s2〉|t−3 〉|s4〉, |n4〉 = |s1〉|t−2 〉|s3〉|s4〉,
|n5〉 = |t−1 〉|s2〉|s3〉|s4〉, |n6〉 = |t−1 〉|t−1

2 〉|s3〉|s4〉,
|n7〉 = |t−1

1 〉|s2〉|t−1
3 〉|s4〉, |n8〉 = |t−1

1 〉|s2〉|s3〉|t−1
4 〉,

|n9〉 = |s1〉|t−1
2 〉|t−1

3 〉|s4〉, |n10〉 = |s1〉|t−1
2 〉|s3〉|t−1

4 〉,
|n11〉 = |s1〉|s2〉|t−1

3 〉|t−1
4 〉, |n12〉 = |t−1

1 〉|t−1
2 〉|t−1

3 〉|s4〉,
|n13〉 = |t−1

1 〉|t−1
2 〉|s3〉|t−1

4 〉, |n14〉 = |t−1
1 〉|s2〉|t−1

3 〉|t−1
4 〉,

|n15〉 = |s1〉|t−1
2 〉|t−1

3 〉|t−1
4 〉, |n16〉 = |t−1

1 〉|t−1
2 〉|t−1

3 〉|t−1
4 〉.
(26)

The projector P
(0)
n of H0 projects on the subspace,

and is defined by the eigenvalue E
(0)
n = − 3

4Jrung of the
Hamiltonian H0. Furthermore, the projector P

(0)
n satisfies

P (0)
n H′

P (0)
n |ψ0〉 = E(1)|ψ0〉, (27)

where E(1) is the eigenvalue of P
(0)
n H′

P
(0)
n for eigenvector

|ψ0〉. In order to find the eigenvalue E(1) of the pertur-
bation H′

and the ground state |ψ0〉, it is sufficient to
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diagonalize a 16 × 16 matrix⎡
⎣ 〈n1|H′ |n1〉 · · · 〈n1|H′ |n16〉

· · · · · · · · ·
〈n16|H′ |n1〉 · · · 〈n16|H′ |n16〉

⎤
⎦ . (28)

By elementary calculations, one finds the uniquely
determined ground state |ψ0〉 and the first correction of
the energy E(1).

The unperturbed density matrix is constructed from
this ground state and is given, after simplification, by

ρ(0) =
∑16

λ |nλ〉〈nλ|. (29)

By again tracing out one leg, we obtain the reduced un-
perturbed density matrix

ρ
(0)
red =

1
24

4⊗
i=1

(
1 − Sz

2i+1

)
. (30)

It is obvious that this reduced density matrix is not pro-
portional to the unitary matrix and possesses a nontriv-
ial entanglement spectrum. The first corrections to the
ground state in the degenerate perturbation theory are
defined by

|1〉 =
∑
n�=n

|nλ〉 〈nλ|H1|ψ0〉
E

(0)
n − E

(0)
n

, (31)

|1′〉 =
∑

n�=n,n′

∑
λ′

|nλ〉 〈nλ|H1|n′λ〉
E(1) − E

(1)
λ

〈n′λ|H1|ψ0〉
E

(0)
n − E

(0)
n′

. (32)

One finds the reduced density matrix to the first order

ρ
(1)
red =

1
24

4⊗
i=1

(
1−Sz

2i+1

)
− Jleg

8Jrung

(
(1−Sz

1 )(1−Sz
3 )�S5

�S7

+ (1 − Sz
1 )�S3

�S5(1 − Sz
7 ) + �S1

�S3(1 − Sz
5 )(1 − Sz

7 )
)
. (33)

The reduced density matrix can be rewritten as

ρred =
1
Z

exp(−H(1)
ent), (34)

where the partition function Z is Z = tr exp(−H(1)
ent) and

the entanglement Hamiltonian within the first order of the
perturbation theory has the following form:

H(1)
ent =

1
Jrung

3∑
i=0

(
2Jleg

�S2i+1
�S2i+3 + JrungS2i+1

)
. (35)

The entanglement Hamiltonian is simply proportional
to the Hamiltonian of a chain in the magnetic field with
the proportional factor β = 1

Jrung
defined as an inverse

temperature.
The system of the Heisenberg chain in the longitudinal

magnetic field is exactly solvable by the Bethe ansatz. The
ground state becomes the spin-liquid one and gapless up
to when

√
B2+ω2

Jleg
= 2, where the phase transition of the

Pokrovsky-Talapov type takes place and the ground state

becomes a completely ordered gapped ferromagnetic state.
One of the most important features of the energy spectra
of spin chains is the absence of an excitation gap over
the ground state for the integer spin length. We restrict
ourselves to the case when the two chains are strongly
coupled; therefore,

√
B2+ω2

Jleg
� 1 and the Hamiltonian of a

subsystem stays gapless in this region. The entanglement
spectrum eq. (35) remains gapless owing to the propor-
tionality to the energy spectrum.

Summary. – Here we investigated the entanglement
spectrum of Heisenberg ladders in a time-dependent mag-
netic field using the degenerate perturbation theory, where
couplings between legs are taken as a small perturba-
tion. When the ground state is not degenerate, the ex-
istence of the trivial entanglement Hamiltonian in the
zeroth order of the perturbation theory is identified as an
important condition that guarantees the proportionality
between the entanglement and subsystem Hamiltonians.
We find that although the entanglement spectrum of the
unperturbed ground state has a nontrivial entanglement
spectrum, the entanglement Hamiltonian of Heisenberg
ladders in a time-dependent magnetic field, within the
first-order perturbation theory, is proportional to the en-
ergy Hamiltonian of a chain in the magnetic field when
the ground state is degenerate.
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Abstract. We analytically evaluate the entanglement spectra of the superconductivity states in graphene,
primarily focusing on the s-wave and chiral dx2−y2 + idxy superconductivity states. We demonstrate that the
topology of the entanglement Hamiltonian can differ from that of the subsystem Hamiltonian. In particular,
the topological properties of the entanglement Hamiltonian of the chiral dx2−y2 + idxy superconductivity
state obtained by tracing out one spin direction clearly differ from those of the time-reversal invariant
Hamiltonian of noninteracting fermions on the honeycomb lattice.

1 Introduction

In graphene, the sixfold symmetry of the honeycomb
lattice favors the degenerate dx2−y2- and dxy-wave super-
conductivity states. Recent theoretical studies have shown
that a s-wave superconductivity state [1] and a chi-
ral dx2−y2 ± idxy superconducting state emerges from
electron–electron interactions in graphene doped to the
vicinity of the van-Hove singularity point [2–7], and in
lower doped bilayer graphene [8–10] (for a recent review,
see Ref. [11]). Below the superconducting transition tem-
perature TC , this degeneracy yields the time-reversal
symmetry-breaking dx2−y2 ± idxy state [11,12]. In the
past two years, considerable experimental progress has
been made regarding the observation of superconduc-
tivity in graphene. Evidence of superconductivity has
been experimentally observed on Ca-intercalated bilayer
graphene and graphene laminates at 4 [13] and 6.4 K
[14], respectively. Furthermore, additional experimental
progress has been made regarding evidence of super-
conductivity in Li-decorated monolayer graphene with a
transition temperature of approximately 5.9 K [15].

The discovery of topological phases, which possess
topological order and cannot be classified by a broken
symmetry, has revealed the urgent need for a tool for char-
acterization of these phases. It has been proven that the
entanglement entropy obtained from the reduced density
matrix can be an indicator of the topology in a system
[16–18]. Further, Haldane and Li [19] have suggested that
the entanglement spectrum of a system (the full set of
eigenvalues of the reduced density matrix) contains more
information about that system than the entanglement
entropy, a single number. They have reported a remark-
able relationship between the excitation spectrum and the

a e-mail: sonja.predin@physik.uni-regensburg.de

edges separating the subsystems, considering the entan-
glement spectrum of the fractional quantum Hall system
obtained using a spatial cut. It has been suggested that
the entanglement spectrum constitutes a tower of states,
which can be regarded as a fingerprint of the topological
order [20–36] (for recent reviews, see Refs. [37,38]). The
relationship between the entanglement, which can be cal-
culated from the ground state, and the edge states, which
are excited states of the Hamiltonian in a sample with
boundaries, has been explored in this context. However,
this relationship is not valid in general, as shown in refer-
ences [39–41], in which the various entanglement spectra
fail to describe the topological phase transitions.

The relationship between the entanglement spectrum
obtained by tracing out one subsystem and the energy
spectrum of the remaining subsystem is attracting con-
siderable research attention. Particular focus has been
placed on various spin ladder systems [42–50] and on
bilayer systems [51–53], where a proportionality between
the entanglement and subsystem Hamiltonians is realized
by the strong coupling limit. However, this relationship is
not valid in general, as indicated in reference [54], in which
spin ladders of clearly nonidentical legs are studied, and
in the case of graphene bilayers in the presence of trigonal
warping [55].

In a two-dimensional topological superconductor with
broken time-reversal symmetry, the topology can be char-
acterized by a Chern number, which is an integral of the
Berry curvature over the Brillouin zone. The entanglement
Chern number C, i.e., the Chern number of the entan-
glement Hamiltonian obtained from the eigenvectors of
that Hamiltonian, has been suggested to be a topological
invariant of the entanglement Hamiltonian [55–57]. Note
that some investigation of the relationship between the
energetic and entanglement Hamiltonian topologies has
already been performed [55].

https://epjb.epj.org/
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In this paper, we present a fully analytical study of
the entanglement spectrum of the fermionic ground state
on a graphene honeycomb lattice, in the presence of
superconductivity instability and as obtained by tracing
out a single spin direction. We investigate the relation-
ship between the entanglement and energy spectra of the
remaining noninteracting part, placing a special focus on
the correlation between their topologies. We show that the
entanglement Hamiltonian obtained by tracing out one
of the subsystems and the Hamiltonian of the remain-
ing subsystem can have completely different topologies.
This difference is due to the fact that the entangle-
ment Hamiltonian is a ground-state property. That is,
the dx2−y2 + idxy superconductivity state breaks the
time-reversal symmetry of the superconductivity Hamil-
tonian; this behavior is reflected in the ground state of
the composite superconductivity Hamiltonian. Further,
the entanglement Hamiltonian is constructed from that
ground state. We also discuss the case of sublattices B is
traced out.

This paper is organized as follows: In Section 2, we
introduce the model Hamiltonian and discuss the differ-
ent superconductivity paired states that can arise on the
honeycomb lattice. Classification of the topological phases
of the superconductivity states on the honeycomb lattice
based on their different symmetries is also performed in
this section. The entanglement spectrum obtained from
the Bardeen-Cooper-Schrieffer ground state by tracing out
a single spin direction is analyzed in Section 3. Our pri-
mary interest in this section is to explore the relationship
between the geometrical and topological properties of the
entanglement Hamiltonian and the remaining noninter-
acting Hamiltonian. We close with a summary and an
overview of the future research outlook, which is presented
in Section 4. Some technical details on the analytical
derivation of the full eigenstates of the noninteracting
fermionic system on the honeycomb lattice in the presence
of superconductivity instabilities are presented, along with
correlation matrix calculations, in Appendices A and B.

2 Model Hamiltonian

The tight-binding Hamiltonian for free fermions on a
graphene honeycomb lattice with a single 2pz orbital per
carbon (C) atom is

H0 =− t
∑
〈ij〉

∑
σ=↑,↓

(
a†i,σbj,σ + h.c.

)
− µ

∑
i,σ

(
a†i,σai,σ + b†i,σbi,σ

)
, (1)

where t is the hopping energy between the nearest-
neighbor C atoms, µ is the chemical potential and ai,σ
(a†i,σ) and bi,σ (b†i,σ) are the onsite annihilation (creation)
operators for electrons on sublattices A and B, respec-
tively, with spin σ =↑, ↓. Diagonalization of equation (1)
yields the energy spectrum ±E±, with

E± = ±t|γ(k)| − µ, (2)

where γ(k) =
∑
δ exp (ik · δ) and δ is a nearest-neighbor

vector. In what follows, we use coordinates with

δ1 = a

(
0,

1√
3

)
, (3)

δ2,3 =
a

2

(
±1,− 1√

3

)
, (4)

where a = 1.42 Å is the distance between neighboring C
atoms, such that the two inequivalent corners of the first
Brillouin zone can be expressed as

K± = ±
(

4π

3a
, 0

)
. (5)

The energy spectrum of the free fermions over the first
Brillouin zone is visualized in Figure 1.

In order to apply the mean-field approximation, we
define the superconductivity order parameter as a three-
component complex vector

−→
∆ ≡ (∆δ1 , ∆δ2 , ∆δ3) , (6)

where the components are defined by

∆δ = 〈ai↑bi+δ↓ − ai↓bi+δ↑〉 . (7)

We study the superconductivity pairing arising from the
nearest-neighbor attractive interaction

Hint =
∑
i,δ

∆δ

(
a†i↑b

†
i+δ↓ − a

†
i↓b
†
i+δ↑

)
, (8)

with the limit of strong onsite interaction. The resulting
mean-field Hamiltonian can be expressed in momentum
space as

HMF = −t
∑
kσ

(
γ(k)a†kσbkσ + h.c.

)
− µ

∑
kσ

(
a†kσakσ + b†kσbkσ

)
− J

∑
k,δ

(
∆δe

ikδ
(
a†k↑b

†
−k↓ − a

†
k↓b
†
−k↑

)
+ h.c.

)
, (9)

where J is the effective pairing potential arising from the
electron–electron interaction. The kinetic part of the pre-
vious Hamiltonian can be diagonalized by introducing the
following transformations

ck,σ =
1√
2

(ak,σ − ei·φkbk,σ),

dk,σ =
1√
2

(ak,σ + ei·φkbk,σ), (10)

where the phase φk is defined as φk = arg(γk). Note that

c†k,σ and d†k,σ create an electron in the upper and lower
Bogoliubov bands, respectively.

https://epjb.epj.org/


Eur. Phys. J. B (2017) 90: 239 Page 3 of 13

Thus, introducing the energy basis, the Hamiltonian
becomes

HMF = −t
∑
k,σ

|γk|(d†k,σdk,σ − c
†
k,σck,σ)

− µ
∑
k,σ

(d†k,σdk,σ + c†k,σck,σ)

− J
∑
k

∑
δ

(
∆δ

(
cos(kδ − φk)(d†k,↑d

†
−k,↓ − c

†
k,↑c

†
−k,↓)

+ i sin(kδ − φk)(c†k,↑d
†
−k,↓ − d

†
k,↑c

†
−k,↓)

)
+ h.c.

)
. (11)

The third line in this Hamiltonian is the intraband pairing,
containing an order parameter that is even in k-space and
corresponding to the spin-singlet pairing. The fourth line
is the interband pairing, containing an order parameter
that is odd in k-space and corresponding to the spin-triplet
pairing. We use the definitions

Ck = J
∑
δ

∆δ cos(kδ − φk), (12)

and

Sk = J
∑
δ

∆δ sin(kδ − φk). (13)

The corresponding span of the superconducting order
parameter is

−→
∆ =

{
∆(1, 1, 1),
∆(2,−1,−1),
∆(0,−1, 1),

(14)

where ∆ is the self-consistent superconductivity order
parameter. In what follows, we use the redefinition J∆ ≡
∆. The linearized self-consistence equations of the order
parameter are invariant with respect to the hexagonal
group C6v [2], i.e., the symmetry group of the honey-
comb lattice. The first solution corresponds to the s-wave,−→
∆ = ∆(1, 1, 1), belonging to the natural A1 irreducible
representation of the C6v group of the honeycomb lat-
tice. The A1 irreducible representation is spanned by

the vector u1 = (1, 1, 1). The final two solutions,
−→
∆ =

∆(2,−1,−1) and
−→
∆ = ∆(0,−1, 1), belong to the two-

dimensional subspace of the S3 group [58], the span of
which is u2 = (2,−1,−1) and u3 = (0,−1, 1). The second
(corresponding to the dx2−y2 wave) and third (correspond-
ing to the dxy wave) solutions belong to the E1 and E2
irreducible representations of the S3 group, respectively.
From the symmetry perspective, it is noteworthy that
every combination of the dx2−y2 and dxy waves is possible.
However, it has been shown that the dx2−y2 ± idxy-wave
superconductivity state with an order parameter

−→
∆dx2−y2±idxy =

1√
3
∆

 1

e±
2iπ
3

e∓
2iπ
3

 , (15)

Fig. 1. Brillouin zone with density plot of |γ(k)| − µ
t

for: (a)
µ
t

= 0.2; (b) µ
t

= 0.8; and (c) µ
t

= 1. The edge of the first
Brillouin zone is marked by dashed blue lines.

is preferred in graphene below TC for a superconductivity
coupling strength J that is not excessively large, and
for doping up to and in the vicinity of the van-Hove
singularity point [2].

The s-wave superconductivity order parameter is given
by ∆(k) = γ(k), while the dx2−y2 + idxy-wave supercon-
ductivity order parameter is

∆d±id(k)=cos
(π

3

)
∆dx2−y2

(k)±sin
(π

3

)
∆dxy (k), (16)

https://epjb.epj.org/
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with

∆dx2−y2
(k) = 2∆

(
eiakx − e−i a2 kx cos(

a
√

3

2
ky)

)
, (17)

∆dxy (k) = −2i∆ sin

(
a
√

3

2
ky

)
e−i

a
2 kx . (18)

Introducing the spinor

ϕ†k =
(
a†k↑, b

†
k↑, a

†
k↓, b

†
k↓, a−k↑, b−k↑, a−k↓, b−k↓

)
, (19)

the Hamiltonian of equation (9) can be expressed as

HMF =
1

2

∑
k

ϕ†kMkϕk, (20)

where

Mk=


ζ(k) 0 0 −∆(k)

0 ζ(k) ∆(k) 0

0 ∆
∗
(−k) −ζ∗(−k) 0

−∆∗(−k) 0 0 −ζ∗(−k)

 , (21)

with

ζ(k) =

(
−µ −tγ(k)

−tγ∗(k) −µ

)
, (22)

∆(k) =

(
0 ∆(k)

∆(−k) 0

)
. (23)

The resultant Hamiltonian indicates that the spin-
singlet superconductivity state without spin-orbit cou-
pling is invariant under the spin SU(2) rotation. Hence,
we obtain the condition

[Ji,M(k)] = 0, Ji =

(
si 0
0 −s∗i

)
, (i = x, y, z). (24)

As a result of the spin SU(2) rotation, it is sufficient to use

the spinor Ψ†k = (a†k↑, b
†
k↑, a−k↓, b−k↓) in order to express

the Hamiltonian of the superconductivity state on the
honeycomb lattice in the form

HMF =
∑
k

Ψ†kh(k)Ψk, (25)

where

h(k)=

 −µ −tγ(k) 0 −∆(k)
−tγ∗(k) −µ −∆(−k) 0

0 −∆∗(−k) µ tγ∗(−k)
−∆∗(k) 0 tγ(−k) µ

 . (26)

When the superconductivity order parameter is pure real
the Hamiltonian h(k) satisfies

Th(k)T−1 = h(−k), (27)

where T = K mimics time-reversal symmetry. The con-
dition given in equation (27) can satisfy a real supercon-
ductivity order parameter only. The dx2−y2 + idxy-wave
superconductivity order parameter given by equation (16)
breaks the time-reversal symmetry. It appertains to the
CI-class in the Altland-Zirnbauer classification of topolog-
ical insulators and superconductors [59–61]. Furthermore,
it is possible to classify two-dimensional C-class supercon-
ductors using the Chern number C. Note that the nontriv-
ial topology of the dx2−y2 + idxy-wave superconductivity
state is denoted by the Chern number C = 2.

3 Entanglement spectra

A method for analytically calculating the entanglement
spectrum of a free-fermion system is given in references
[52,62,63]. Here, we generalize this method to super-
conductivity systems, using an approach similar to that
described in references [64,65].

The entanglement Hamiltonian can be constructed as a
single-particle operator in a quadratic matrix [52,62,63],
as it is completely determined by any correlation matrix
of operators acting on the remaining part after the sub-
system has been traced out. Our system consists of two
subsystems, A and B. The reduced density matrix for
subsystem A, defined as ρA = trBρ, can be formulated
as in the free fermion case, such that ρA = 1

Z e
−Hent ,

using the entanglement spectrum Hent and the partition
function Z = tr

(
e−Hent

)
. Furthermore, the average 〈O〉

of a local operator in subsystem A can be calculated as
〈O〉 = tr(ρAOA).

By tracing out a single spin direction, e.g., the negative
spin ↓, from the ground state on the honeycomb lattice in
the presence of the s-wave and chiral d + id-wave super-
conductivity, the correlation matrix can be formulated
as

C(k) =

(
〈a†k↑ak↑〉 〈a

†
k↑bk↑〉

〈b†k↑ak↑〉 〈b
†
k↑bk↑〉

)
. (28)

For more technical details of the analytical calculations of
the correlation matrix, we refer the reader to Appendix B.
Here, one can show that the eigenvalues of the correlation
matrix ηl are related to the entanglement spectrum ξl,
such that

ξl = ln

(
1− ηl
ηl

)
. (29)

3.1 s-wave scenario

The s-wave superconductivity order parameter corre-
sponds to the bond-independent superconductivity state;
thus, Sk is identically zero.

We analytically obtain the entanglement levels (Eq.
(29))

ξ1(k) = −2arcsinh

(
t|γ(k)|+ µ

|Ck|

)
(30)

https://epjb.epj.org/
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and

ξ2(k) = 2arcsinh

(
t|γ(k)| − µ
|Ck|

)
. (31)

The entanglement Hamiltonian has the form

Hent =
∑
k

(
ξ1e
†
k,+ek,+ + ξ2f

†
k,+fk,+

)
, (32)

where ek,+ and fk,+ are Bogoliubov transformations given
in Appendix B by equations (B.1) and (B.2). The entan-
glement levels for different values of µ, with t = 2.5 eV,
and ∆ = 3 eV are shown in Figure 2.

The undoped graphene is a gapless semi-metal and is
not a superconductor at low temperatures. However, when
the system is at half-filling (with µ = 0), the entanglement
levels are

ξ1,2(k) = ±2arcsinh

(
t

∆

)
, (33)

being constant over the entire Brillouin zone. In the strong
coupling regime, when ∆� t, one finds

ξ1,2(k) ≈ ±2
t

∆
. (34)

The canonical entanglement Hamiltonian at half-filling is
independent of the inverse temperature [53] β = kE/∆,
such that

Hcan =

2∑
i=1

1

kE

(
e†k,+ek,+ + f†k,+fk,+

)
, (35)

where kE is a constant. In general, there is no propor-
tionality between the entanglement Hamiltonian and the
energy Hamiltonian of free fermions, because the coupling
between subsystems Ck is k-dependent in the Brillouin
zone. When Ck = 0, at the Dirac points, the entanglement
levels are not entangled. However, at finite doping, the
maximally entangled states, when the entanglement levels
are zero, correspond to the zero-energy state of the nonin-
teracting fermions. To provide a superior visualization, a
thick black line is used to connect the zero-energy states in
Figure 1 and the maximally entangled states in Figure 2.

3.2 Chiral d-wave scenario

To enable analytical calculations, we diagonalize the
Hamiltonian (26)

HMF =
∑
k

Eα(o†k,+ok,+ + o†−k,−o−k,−)

+
∑
k

Eβ(p†k,+pk,+ + p†−k,−p−k,−), (36)

by the Bogoliubov quasiparticles ok,+, o−k,−, pk,+ and
p−k,− given in Appendix A with equations (A.30) and

Fig. 2. Contour plot of entanglement level ξ1(k) of s-wave
superconductivity state on honeycomb lattice plotted for J

t
= 3

and: (a) µ
t

= 0.2; (b) µ
t

= 0.8; and (c) µ
t

= 1. The thin blue
dashed and thick black lines represent the first Brillouin zone
and connect the zero energy states, respectively.

(A.31). The energies of the Bogoliubov quasiparticles are
±Eα and ±Eβ , where

Eα=

√
t2|γ(k)|2+µ2+(|Sk|2+|Ck|2)+2

√
u+v, (37)

https://epjb.epj.org/
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and

Eβ =

√
t2|γ(k)|2 + µ2 + (|Sk|2 + |Ck|2)− 2

√
u+ v (38)

with

u =
(
µ2 + |Sk|2

)
t2|γ(k)|2, (39)

and

v = (Re(Ck)Im(Sk)− Re(Sk)Im(Ck))
2
. (40)

When the superconductivity order parameters ∆δ are
pure real, i.e., when no time-reversal symmetry breaking
occurs, v vanishes.

From analytical calculations, one obtains the correlation
matrix at T = 0

C(k) =

(
C11(k) C12(k)
C∗12(k) C22(k)

)
, (41)

where

C11 = 〈a†k↑ak↑〉

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 +m)

× 1

Eα

(
1− m√

t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 +m)

× 1

Eβ

(
1 +

m√
t2|γ(k)|2 +m2

)
, (42)

C22 = 〈b†k↑bk↑〉

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 −m)

× 1

Eα

(
1 +

m√
t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 −m)

× 1

Eβ

(
1− m√

t2|γ(k)|2 +m2

)
, (43)

C12 = 〈a†k↑bk↑〉

=
1

4
e−iφk

((
ε1
Eα
− ε2
Eβ

)
− in

(
1

Eα
− 1

Eβ

))
× t|γ(k)|√

t2|γ(k)|2 +m2
(44)

with

ε1,2 =
√
µ2 + |Sk|2 ±

√
t2|γ(k)|2 +m2, (45)

while

m =
Re(Ck) · Im(Sk)− Im(Ck) · Re(Sk)√

µ2 + |Sk|2
, (46)

and

n =
Re(Ck)Re(Sk) + Im(Ck)Im(Sk)√

µ2 + |Sk|2
. (47)

Thus, the entanglement spectrum obtained from the
eigenvalues of the correlation matrix given in equation
(29) consists of entanglement levels ξ1 and ξ2 where:

ξ1,2 = −2arctanh

×(C11 + C22 − 1±
√

(C11 − C22)
2

+ 4|C12|2). (48)

As the d-wave spin-singlet superconductivity order
parameter involves both Ck and Sk, there is no rela-
tionship between states with the zero-value states of the
entanglement spectrum and the zero-energy states of the
free fermions. At the van-Hove singularity point, i.e., when
µ = t, both the entanglement spectrum and the energy
spectrum of the free fermions are zero at the M point. The
results of our analytical calculations of the entanglement
spectrum of the dx2−y2 + idxy-wave superconductivity on
the honeycomb lattice are presented in Figure 3.

As we have discussed above, the dx2−y2- and dxy-wave
superconductivity order parameters preserve the time-
reversal symmetry (Eq. (27)). Based on the time-reversal
symmetry and provided Ψk are the eigenstates of the
Hamiltonian given in equation (26), we can state that

Ψ∗k = Ψ−k, (49)

where the Ψ∗−k are also eigenstates of the Hamiltonian of
equation (26). This yields

Φ∗k = Φ−k. (50)

Hence, the real d-wave superconductivity order parameter
preserves the time-reversal symmetry in the correlation
matrix, which is constructed from the Φk as C(k) =

〈Φ†kΦk〉. The entanglement Hamiltonian satisfies:

TEHent(k)T−1E = Hent(−k), (51)

with TE = K.
When the dx2−y2 + idxy-wave superconductivity order

parameter is considered, Ck and Sk are complex func-
tions. Then, the m and n terms are non-zero. Hence,
the average occupancy number at site A, C11(k), and
the average occupancy number at site B, C22(k), are
not equal and the off-diagonal element of the correla-
tion matrix C12(k) is complex. Because Sk is an odd

https://epjb.epj.org/
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Fig. 3. Contour plot of the entanglement level ξ1(k) of
dx2−y2 + idxy-wave superconductivity state on the honeycomb

lattice plotted for J
t

= 3 and (a) µ
t

= 0.2, (b) µ
t

= 0.8 and (c)
µ
t

= 1. The dashed blue line delineates the first Brillouin zone,
while the thick black line shows maximally entangled states.

function in the momentum space, while Ck is a even
function, it can be shown that elements of the correla-
tion matrix C11(k), C22(k), and C12(k) are constrained
as C11(−k) = C22(k) and C∗12(−k) = C12(k). Therefore,
it follows that the complex dx2−y2 + idxy-wave super-
conductivity order parameter breaks the time-reversal

symmetry in the entanglement Hamiltonian. The topol-
ogy of the entanglement Hamiltonian in two-dimension
with broken time-reversal symmetry is characterized by
the entanglement Chern number.

For further analysis of the topological properties of the
entanglement Hamiltonian, we require not only its eigen-
values, but also its eigenstates. The eigenstates of the
correlation matrix are identical to the eigenstates of the
entanglement Hamiltonian and can be expressed as

qk↑ = δ+(k)ak↑ + δ−(k)bk↑, (52)

rk↑ = δ+(−k)ak↑ − δ∗−(−k)bk↑, (53)

where explicit expressions for δ+(k) and δ−(k) are given in
Appendix B by equation (B.17). Using these eigenstates,
we can calculate the Berry curvature

F (k) =
∂Ay
∂kx

− ∂Ax
∂ky

(54)

and the Berry connection

A(k) = i〈r(k)| ∂
∂k
|r(k)〉, (55)

which vanish everywhere outside the Dirac points where
quantized “monopole” sources of the δ-function type exist.

Through numerical integrations of the Berry curvature
along the Brillouin zone, we find that the entanglement
Chern number is C = 1, in the case of the chiral dx2−y2 +
idxy-wave superconductivity state. In the presence of
SU(2) rotation and broken time-reversal symmetry, as in
the case of an energetic Hamiltonian, the Chern number
C can have even values only. For the entanglement Hamil-
tonian, it is possible to obtain an odd value for the Chern
number, as it is not invariant to the SU(2) rotation. As
a result, the topology of the entanglement Hamiltonian,
which is obtained by tracing out the spin-down subsys-
tem of the ground state of the chiral dx2−y2 + idxy-wave
superconductivity state on the honeycomb lattice, clearly
differs from the topology of the energetic Hamiltonian of
free fermions without the superconductivity instabilities.

3.3 Tracing out B sublattices

3.3.1 s-wave scenario

We will now consider the ground state of interacting
fermions on the honeycomb lattice in the presence of the
s-wave superconductivity instability. Upon tracing out B
sublattices the entanglement levels:

ξ± = ±2arctanh

(
t2|γ(k)|2 − µ2 +∆2|γ(k)|2

EαEβ

)
, (56)

where Eα =

√
(t|γ(k)| − µ)

2
+∆2|γ(k)|2 and

Eβ =

√
(t|γ(k)|+ µ)

2
+∆2|γ(k)|2. When system is at

half-filling the subsystems are maximally entangled. The
entanglement levels are plotted at Figure 4.
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Fig. 4. Contour plot of entanglement level ξ1(k) of s-wave
superconductivity state on honeycomb lattice plotted for J

t
= 3

and µ
t

= 0.8. The first Brillouin zone is border by the dashed
blue line, while the thick line connects maximally entangled
states.

3.3.2 Chiral d-wave scenario

Upon tracing out B sublattices, the entanglement spec-
trum of d-wave superconductivity state on the honeycomb
lattice is completely determined by the correlation matrix:

C(k) =

(
C11(k) C13(k)
C∗13(k) C33(k)

)
, (57)

where C11, C33 and C13 are given in Appendix B. The
eigenvalues η1,2 of the correlation matrix

η1,2 =
1

2

(
(C11+C33+±

√
(C11 − C33)

2
+ 4|C13|2

)
. (58)

are related to the entanglement levels ξ1,2 = ln
(

η±
1−ηpm

)
.

At finite doping the entanglement levels never vanish.
Here, space inversion symmetry of the entanglement
spectrum is broken and the entanglement levels satisfy
ξ±(−k) = −ξ∓(k). The entanglement level ξ2(k) is visu-
alized in Figure 5. The broken time-reversal symmetry in
the entanglement Hamiltonian leads to the entanglement
Chern number C = 1.

4 Conclusion and outlook

We analytically evaluated the entanglement spectra of
the superconductivity states on the graphene honey-
comb lattice, primarily focusing on the s-wave and chiral
dx2−y2 + idxy superconductivity states. When one spin
direction was traced out, exact correspondence between
the maximally entangled states of the s-wave superconduc-
tor and the zero energies of the noninteracting fermionic
honeycomb lattice at finite doping was observed. The
relationship between the topologies of the entanglement

Fig. 5. Contour plot of entanglement level ξ2(k) of dx2−y2 +
idxy superconductivity state on honeycomb lattice plotted for
J
t

= 3 and µ
t

= 0.8. The thin blue dashed and thick black lines
represent the first Brillouin zone and connect the zero energy
states, respectively.

and subsystem Hamiltonians was found to depend on
the coupling between the subsystems. Further, the chiral
dx2−y2 + idxy superconductivity order parameter breaks
the time-reversal symmetry in the entanglement Hamil-
tonian. The topological properties of the entanglement
Hamiltonian, characterized by the topological nontrivial
entanglement Chern number C = 1, clearly differ from
those of the time-reversal invariant Hamiltonian of the
noninteracting fermions on the honeycomb lattice. The
investigations presented herein are based on closed ana-
lytical expressions for the full eigensystems of the s- and
d-wave superconductivity states on the honeycomb lat-
tice over the entire Brillouin zone. The method used to
examine these eigensystems may constitute a useful tool
for new studies of superconductivity in graphene. Future
work may investigate the relationship between the topolo-
gies of the entanglement and subsystem Hamiltonians
through the topological phase transition; for example, in
the coexistence region between antiferromagnetism and
dx2−y2 + idxy superconducting correlations in graphene
[66] and graphene bilayers [8].

The authors kindly acknowledge Milica V. Milovanović. This
work was supported by Deutsche Forschungsgemeinschaft via
GRK1570.

Appendix A: Derivation of the eigensystem

In this appendix we present analytical diagonalization
of the Hamiltonian of the chiral d + id-wave supercon-
ductivity state on the honeycomb lattice. Complexity
of the order parameter makes the analytical approach
more difficult. The starting point of our analysis is
the Bardeen-Cooper-Schrieffer mean-field Hamiltonian in

https://epjb.epj.org/
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H1(k) =

 t|γ(k)| − µ 0 Ck −iSk
0 −t|γ(k)| − µ iSk −Ck
C∗k −iS∗k −t|γ(k)|+ µ 0
iS∗k −C∗k 0 t|γ(k)|+ µ

 (A.4)

H
′

1(k) =

 t|γ(k)| − µ 0 0 −iSk
0 −t|γ(k)| − µ iSk 0
0 −iS∗k −t|γ(k)|+ µ 0
iS∗k 0 0 t|γ(k)|+ µ

 (A.5)

momentum space

HMF (k) = −t
∑
k

(
γ(k)a†kσbkσ + h.c.

)
− µ

∑
k

(
a†kσakσ + b†kσbkσ

)
− J

∑
k,δ

(
∆δe

ikδ
(
a†k↑b

†
−k↓ − a

†
k↓b
†
−k↑

)
+ h.c.

)
, (A.1)

where we define the superconductivity order parameter

∆(k) =
∑
δ

∆δe
ikδ, (A.2)

as a combination of the dx2−y2 and dxy-wave super-

conductivity state ∆d±id(k) = cos
(
π
3

)
∆d2x−y2(k) ±

sin
(
π
3

)
∆dxy (k) which minimalizes a free energy.

We apply the transformations

ck,σ =
1√
2

(ak,σ − ei·φkbk,σ),

dk,σ =
1√
2

(ak,σ + ei·φkbk,σ), (A.3)

such that in

see equation (A.4) above

diagonalize the kinetic part of the Hamiltonian. Ck =
J
∑
δ∆δ cos(kδ − φk) and Sk = J

∑
δ∆δ sin(kδ − φk)

are complex functions.
Here it is useful to split this Hamiltonian as H1 = H

′

1 +

H
′′

1 where

see equation (A.5) above

and

H
′′

1 (k) =

 0 0 Ck 0
0 0 0 −Ck
C∗k 0 0 0
0 −C∗k 0 0

 . (A.7)

H
′

1 is diagonalized by

ek+ = iα∗−ck↑ + α+d
†
−k↓ (A.8)

fk+ = −iα∗−dk↑ + α+c
†
−k↓ (A.9)

with

α+ =

√√√√1

2

(
1 +

µ√
µ2 + |Sk|2

)

α− =
Sk√

2
√
µ2 + |Sk|2

(
µ+

√
µ2 + |Sk|2

) . (A.10)

This leads to

H2 = U2H1U
†
2 =

 e1 m −l 0
m e2 0 l
−l∗ 0 −e1 m
0 l∗ m −e2

 (A.11)

with

m =
Re(Ck) · Im(Sk)− Im(Ck) · Re(Sk)√

µ2 + |Sk|2
(A.12)

and

l = α2
+C
∗
k + (α∗−)2Ck (A.13)

and ±e1 and ±e2 are eigenenergies of the Hamiltonian H
′

1
given by

e1 = t|γ(k)|+
√
µ2 + |Sk|2 (A.14)

and

e2 = −t|γ(k)|+
√
µ2 + |Sk|2. (A.15)
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We can now split this Hamiltonian as H2 = H
′

2 + H
′′

2
where

H
′

2 =

 e1 m 0 0
m e2 0 0
0 0 −e1 m
0 0 m −e2

 ,

H
′′

2 =

 0 0 −l 0
0 0 0 l
−l∗ 0 0 0
0 l∗ 0 0

 . (A.16)

Proceeding now with the transformations

gk+ = β+ek+ + σβ−fk+ (A.17)

hk+ = σβ−ek+ − β+fk+ (A.18)

where σ = sign(m) and

β± =

√√√√1

2

(
1± t|γ(k)|√

t2|γ(k)|2 +m2

)
(A.19)

we diagonalize first part of the Hamiltonian H
′

2 and we
get

H3 = U3H2U
†
3 =

 ε1 0 0 −l
0 ε2 −l 0
0 −l∗ −ε2 0
−l∗ 0 0 −ε1

 (A.20)

where ±ε1 and ±ε2 are eigenenergies of the Hamiltonian
H
′

2

ε1 =
√
µ2 + |Sk|2 +

√
t2|γ(k)|2 +m2 (A.21)

and

ε2 =
√
µ2 + |Sk|2 −

√
t2|γ(k)|2 +m2. (A.22)

Finally, this Hamiltonian is brought to the diagonalized
form with transformations

ok+ = γ
(1)
+ gk+ − γ(1)− g†k− (A.23)

pk+ = γ
(2)
+ hk+ − γ(2)− h†k− (A.24)

with

γ
(1)
+ =

√
1

2

(
1 +

ε1
Eα

)
, γ

(1)
− =

l√
2Eα (Eα + ε1)

(A.25)

and

γ
(2)
+ =

√
1

2

(
1 +

ε2
Eβ

)
, γ

(2)
− =

l√
2Eβ (Eβ + ε2)

(A.26)

and

Eα =

√
t2|γ(k)|2+µ2+|Sk|2+|Ck|2+2

√
u+v (A.27)

and

Eβ =

√
t2|γ(k)|2+µ2+|Sk|2+|Ck|2−2

√
u+v (A.28)

where

u =
(
µ2 + |Sk|2

)
t2|γ(k)|2

v = (ReCkImSk − ReSkImCk)
2
. (A.29)

Bogoliubov transformations ok+ and pk+ in the basis
ak↑, bk,↑

ok+ = − 1√
2

(
α+γ

(1)
− − iα∗−γ

(1)
+

)
(β+ − σβ−) ak↑

− 1√
2
eiφk

(
α+γ

(1)
− + iα∗−γ

(1)
+

)
(β+ + σβ−) bk↑

+
1√
2

(
α+γ

(1)
+ + iα−γ

(1)
−

)
(β+ + σβ−) a†−k↓

+
1√
2
eiφk

(
α+γ

(1)
+ − iα−γ(1)−

)
(β+ − σβ−) b†−k↓ (A.30)

pk+ = − 1√
2

(
α+γ

(2)
− + iα∗−γ

(2)
+

)
(β+ + σβ−) ak↑

+
1√
2
eiφk

(
α+γ

(2)
− − iα∗−γ

(2)
+

)
(β+ − σβ−) bk↑

+
1√
2

(
α+γ

(2)
+ − iα−γ(2)−

)
(β+ − σβ−) a†−k↓

− 1√
2
eiφk

(
α+γ

(2)
+ + iα−γ

(2)
−

)
(β+ + σβ−) a†−k↓ (A.31)

Appendix B: Correlation martix

B.1 s-wave scenario

The Hamiltonian equation (26) for s-wave superconduc-
tivity state in graphene can be diagonalized by using
Bogoluibov transformations

ek+ = α+
1√
2

(ak,↑ − ei·φkbk,↑)

+α−
1√
2

(a†−k,↓ − e
i·φkb†−k,↓) (B.1)

fk+ = β−
1√
2

(ak,↑ + ei·φkbk,↑)

−β+
1√
2

(a†−k,↓ + ei·φkb†−k,↓) (B.2)
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where α+ =

√
1
2

(
1 + t|γ(k)|−µ√

(t|γ(k)|−µ)2+|Ck|2

)
,

α− = Ck√
2Eα(Eα+t|γ(k)|−µ)

,

β+ =

√
1
2

(
1 + t|γ(k)|+µ√

(t|γ(k)|+µ)2+|Ck|2

)
, and

β− = Ck√
2Eβ(Eβ+t|γ(k)|+µ)

with Eα and Eβ are energies of

Bogoliubov quasi-particles

Eα =

√
(t|γ(k)| − µ)

2
+ |Ck|2 (B.3)

and

Eβ =

√
(t|γ(k)|+ µ)

2
+ |Ck|2. (B.4)

The e (f) sections are determined by equations (B.1)
and (B.2), respectively. These sections are decoupled in
Bogoliubov description and we are allowed than to obtain
their contributions to the ground state separative. We can

demand ek+|G〉 = 0 and e†k−|G〉 = 0 where |G〉 is the
ground state. The e section contributes to the ground state
as:

∏
k∈IBZ

(
α+(k)− α−(k)c†k↑c

†
−k↓

)
|0〉 (B.5)

where |0〉 is the vacuum state. Similar, the contribution of
the f section to the ground state:

∏
k∈IBZ

(
β−(k) + β+(k)d†k↑d

†
−k↓

)
|0〉 (B.6)

the ground state |G〉 is determined by conditions:

fk+|G〉 = 0 and f†k−|G〉 = 0. This leads to the complete
ground state vector:

∏
k∈IBZ

(
α+(k)− α−(k)c†k↑c

†
−k↓

)
∏

q∈IBZ

(
β−(q) + β+(q)d†q↑d

†
−q↓

)
|0〉. (B.7)

Similar findings are obtained for the ground state of the
p-wave superconductivity state in graphene [67].

This ground state leads to the correlation matrix when
spin ↓ is traced out:

C(k)

=

(
1
2

(
|α−|2+|β+|2

)
1
2e
−iφk

(
|β+|2−|α−|2

)
1
2e
iφk
(
|β+|2−|α−|2

)
1
2

(
|α−|2+|β+|2

) )
. (B.8)

B.2 Chiral d-wave scenario

Using

ak↑ = − 1√
2

(
α+

(
γ
(1)
−

)∗
+ iα−γ

(1)
+

)
(β+ − σβ−) ok,+

− 1√
2

(
α+

(
γ
(2)
−

)∗
+ iα−γ

(2)
+

)
(β+ + σβ−) pk,+

+
1√
2

(
α+γ

(2)
+ − iα−γ(2)−

)
(β+ + σβ−) p†−k,−

+
1√
2

(
α+γ

(1)
+ − iα−γ(1)−

)
(β+ − σβ−) o†−k,− (B.9)

we can calculate the mean occupancy at cite A:

〈a†k↑ak↑〉 =
1

2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ(1)− |2

− i α+γ
(1)
+

(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)

2

+
1

2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ(2)− |2 − iα+γ

(2)
+

(
α−γ

(2)
−

−α∗−
(
γ
(2)
−

)∗))
(β+ + σβ−)

2
. (B.10)

After basic algebra we find that the correlation matrix
obtained by tracing out spin ↓ at T = 0 reads

C(k) =

(
C11(k) C12(k)
C∗12(k) C22(k)

)
(B.11)

with

C11(k) =
1

2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ(1)− |2 − α+γ

(1)
+

×
(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)

2

+
1

2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ(2)− |2 − iα+γ

(2)
+

×
(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ + σβ−)

2

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 +m)

× 1

Eα

(
1− m√

t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 +m)

× 1

Eβ

(
1 +

m√
t2|γ(k)|2 +m2

)
, (B.12)
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C22(k) =
1

2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ(1)− |2 + iα+γ

(1)
+

×
(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ + σβ−)

2

+
1

2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ(2)− |2 + iα+γ

(2)
+

×
(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ − σβ−)

2

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 −m)

× 1

Eα

(
1 +

m√
t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 −m)

× 1

Eβ

(
1− m√

t2|γ(k)|2 +m2

)
, (B.13)

and

C12(k) =
1

2
e−iφk

(
α2
+(γ

(1)
+ )2 − |α−|2|γ(1)− |2 − iα+γ

(1)
+

×
(
α
(1)
− γ

(1)
− +

(
α
(1)
−

)∗ (
γ
(1)
−

)∗)) (
β2
+ − β2

−
)

−1

2
e−iφk

(
α2
+(γ

(2)
+ )2 − |α−|2|γ(2)+ |2 − iα+γ

(2)
+

×
(
α
(1)
− γ

(2)
− +

(
α
(1)
−

)∗ (
γ
(2)
−

)∗)) (
β2
+ − β2

−
)

=
1

4
e−iφk

((
ε1
Eα
− ε2
Eβ

)
−i n

(
1

Eα
− 1

Eβ

))
t|γ(k)|√

t2|γ(k)|2 +m2
(B.14)

where n = Re(Ck)Re(Sk)+Im(Ck)Im(Sk)√
µ2+ |Sk|2

. Here, one should

notice that C11(−k) = C22(k) and C12(k) = (C12(−k))
∗
.

Eigenvectors of the correlation matrix

qk↑ = δ+(k)ak↑ + δ−(k)bk↑ (B.15)

rk↑ = δ+(−k)ak↑ − δ∗−(−k)bk↑ (B.16)

where:

δ+(k) =

√√√√√1

2

1 +
C11 − C22√

(C11 − C22)
2

+ 4|C12|2


δ−(k) =

2C12√
2

√
(C11 − C22)

2
+ 4|C12|2w

(B.17)

with w = (C11 − C22 +

√
(C11 − C22)

2
+ 4|C12|2).

Finally, we find that the correlation matrix obtained by
tracing out one sublattice, B for example

C(k) =

(
C11(k) C13(k)
C∗13(k) C33(k)

)
(B.18)

with

C11(k) =
1

2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ(1)− |2 − iα+γ

(1)
+

×
(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)

2

+
1

2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ(2)− |2 − iα+γ

(2)
+

×
(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ + σβ−)

2

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 +m)

× 1

Eα

(
1− m√

t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 +m)

× 1

Eβ

(
1 +

m√
t2|γ(k)|2 +m2

)
, (B.19)

C33(k) =
1

2

(
α2
+(γ

(1)
− )2 + |α−|2|γ(1)+ |2 − iα+γ

(1)
+

×
(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ + σβ−)

2

+
1

2

(
α2
+(γ

(2)
− )2 + |α−|2|γ(2)+ |2 − iα+γ

(2)
+

×
(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ − σβ−)

2

=
1

2
− 1

4

µ√
µ2 + |Sk|2

(ε1 −m)

× 1

Eα

(
1 +

m√
t2|γ(k)|2 +m2

)

−1

4

µ√
µ2 + |Sk|2

(ε2 −m)

× 1

Eβ

(
1− m√
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HL 83: Poster: Graphene (with MA/O)

Time: Wednesday 17:00–20:00 Location: P1

HL 83.1 Wed 17:00 P1
Semi-empirical phonon calculations for graphene on different
substrates — •Henrique Miranda, Alejandro Molina-Sanchez,
and Ludger Wirtz — Physics and Materials Science Research Unit,
UNIVERSITÉ DU LUXEMBOURG, Luxembourg

We investigate the graphene-substrate interaction via changes in the
phonon dispersion of graphene. Ab-initio calculations on these systems
are of high computational cost due to the non-commensurability of the
unit cells of graphene and the substrate. This leads to the formation
of Moiré patterns with accordingly large supercell sizes. We use a
semi-empirical force constant model for the calculation of phonons of
graphene on different metallic and insulating substrates. The interac-
tion of graphene with the substrate is described via suitably chosen
spring constants. The phonon dispersion in the primitive unit cell of
graphene is obtained via an ”unfolding procedure” similar to the ones
used for the discussion of ARPES (angular resolved photo-emission
spectroscopy) of graphene on incommensurate substrates.

HL 83.2 Wed 17:00 P1
Bilayer graphene: topological phases and entanglement spec-
trum — •Sonja Predin and John Schliemann — Institute for The-
oretical Physics,University of Regensburg, D-93040 Regensburg, Ger-
many

We present a calculation of the entanglement spectrum of fermions in
bilayer graphene. In particular, a non-trivial topological order of the
Abelian phase of the time-reversal symmetry breaking d-wave state is
studied. We show that the entanglement spectrum is gapped, addi-
tionally we show that edge excitations in the entanglement spectrum
form doublet Dirac fields around every K point.

HL 83.3 Wed 17:00 P1
Ultrafast dynamics and photoluminescence of hot carriers in
graphene — •Thomas Danz, Andreas Neff, Reiner Bormann,
Sascha Schäfer, and Claus Ropers — IV. Physical Institute, Uni-
versity of Göttingen, 37077 Göttingen, Germany

The ultrafast dynamics of optically excited carriers in graphene can
be monitored by pump-probe spectroscopy [1,2]. Furthermore, it was
recently shown that the thermalization of hot carriers leads to photo-
luminescence at wavelengths far away from the exciting pump [3,4].
Here, we present the implementation of an experimental setup which
combines transient spectroscopy with sub-15-fs temporal resolution
with hot carrier photoluminescence detection under the same exci-
tation conditions. With this approach, we aim at a comprehensive
picture of the ultrafast carrier response and the disentanglement of
the timescales underlying different relaxation pathways. First experi-
mental results will be presented.

[1] J. M. Dawlaty et al., Appl. Phys. Lett. 92, 042116 (2008)
[2] M. Breusing et al., Phys. Rev. B. 83, 153410 (2011)
[3] C. H. Lui et al., Phys. Rev. Lett. 105, 127404 (2010)
[4] W. Liu et al., Phys. Rev. B. 82, 081408 (2010)

HL 83.4 Wed 17:00 P1
Electron spin resonance of ion-irradiation induced single va-
cancies on monolayer graphene characterized by scanning
tunneling spectroscopy — •Sven Just1, Stephan Zimmermann2,
Vladislav Kataev2, Marco Pratzer1, Bernd Büchner2, and
Markus Morgenstern1 — 1II. Physikalisches Institut B, RWTH
Aachen — 2Leibniz-Institut für Festkörper- und Werkstoffforschung,
Dresden

Single vacancies with densities of 0.003/nm2 − 3/nm2 are prepared
on HOPG and on single layer graphene on SiO2 produced by chemical
vapour deposition using Ar ions with 50 eV kinetic energy. The vacan-
cies exhibit a peak at EF in scanning tunneling spectroscopy, which
survives 3 h of air exposure, afterwards a small broadening of the peak
is observed. Electron spin resonance shows a peak corresponding to
g = 2.0022, if the defect density is above 0.3/nm2, and a peak width
of 10 G with an anisotropy below 0.5 G between in-plane and out-of-
plane magnetic field. The peak width hardly depends on temperature,
while the peak intensity decreases with increasing temperature in the
range of 4 K - 20 K.

HL 83.5 Wed 17:00 P1
Enhancing the Raman signal of graphene on SiC(0001) by
using a solid immersion lens in top-down geometry — •Felix
Fromm1, Martin Hundhausen2, Michl Kaiser3, Julia Krone1, and
Thomas Seyller1 — 1TU Chemnitz, Institut für Physik — 2FAU
Erlangen-Nürnberg, Lehrstuhl für Laserphysik — 3FAU Erlangen-
Nürnberg, Lehrstuhl für Werkstoffwissenschaften

We present a study of epitaxial graphene by recording Raman spectra
from the backside through the silicon carbide (SiC) substrate. In that
top-down geometry we profit from the fact, that the graphene layer
emits approximately 96 % of the Raman intensity into the SiC [1].
However, we only observe an intensity enhancement of approximately
a factor of 4 compared to the conventional top-up geometry. This
is because the solid angle of detection is decreased by refraction at
the SiC/air interface and is limited by the total internal reflection.
To further improve the detection efficiency, we use a high refractive
index solid immersion lens (SIL) made of cubic zirconia combined
with a suitable immersion liquid. By that, the angle of total internal
reflection, as well as the solid angle of detection are increased. We
eventually observe an increase of the detected Raman intensity towards
the top-up geometry to a factor of 25. As an additional advantage,
the background signal of the two-phonon Raman modes of the SiC is
suppressed to a large extent.

[1] F. Fromm et al., New J. Phys. 15, 113006 (2013)

HL 83.6 Wed 17:00 P1
Growth of graphene on 6H-SiC(0001) under ammonia/argon
atmosphere — •Christian Raidel, Felix Fromm, Samir Mam-
madov, Martina Wanke, and Thomas Seyller — TU Chemnitz,
Insitut für Physik, Germany

In this work we investigated the nitrogen incorporation into epitaxial
grown monolayer graphene by using ammonia as process gas within
argon flow during thermal decomposition of SiC. The growth parame-
ters as temperature and ammonia concentration were studied by var-
ious surface sensitive methods as XPS, LEED, RAMAN, AFM, and
STM. ARPES shows that the ammonia grown graphene shows more
p-type doped graphene than undoped graphene on SiC(0001). Due to
the dissociation of ammonia during the growth process etch pits are
produced. Vacancy associated nitrogen incorporation was observed by
XPS and STM.

HL 83.7 Wed 17:00 P1
Characterization and transfer of 2D dichalcogenides pro-
duced by anodic bonding — •Philipp Nagler, Gerd Plechinger,
Christian Schüller, and Tobias Korn — Institut für Experi-
mentelle und Angewandte Physik, Universität Regensburg, 93040 Re-
gensburg, Germany

Atomically thin MoS2 and WS2 structures have attracted growing at-
tention as promising 2D semiconductors. As monolayers, both mate-
rials exhibit a direct bandgap and therefore are suitable candidates for
future opto-electronical devices. We produced singlelayer MoS2 and
WS2 by means of anodic bonding. In this process, the material is
bonded by electrostatic forces on a borosilicate glass substrate. Com-
pared to mechanical exfoliation, this technique usually yields larger
flakes. Anodic bonded MoS2 flakes were characterized by Raman and
photoluminescence (PL) spectroscopy. Performing low-temperature
PL measurements, we observed similar behaviour as in SiO2-supported
MoS2. Furthermore, PL measurements for anodic bonded WS2 are
presented. By applying the wedging transfer technique, we transferred
anodic bonded monolayer WS2 from the glass to a SiO2 substrate.
Additionally, using this method, heterostructures consisting of various
2D materials could be produced and characterized.

HL 83.8 Wed 17:00 P1
Graphene nanostructures produced from transfered layers —
•Christopher Belke, Dmitri Smirnov, Johannes C. Rode, Hen-
nrik Schmidt, and Rolf J. Haug — Institut für Festkörperphysik,
Leibniz Universität Hannover, D-30167 Hannover, Germany

Graphene consists of carbon atoms, which are arranged in a two-
dimensional honeycomb lattice. It has unique electronic properties,
which can be examined in high quality samples [1]. These are often
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prepared by mechanical exfoliation on a silicon wafer with silicon diox-
ide on top. This substrate has a strong influence on the transport prop-
erties due to charge traps and surface roughness [2]. To reduce these
effects or to produce novel complexe layersystems, graphene sheets can
be stacked by a transfer methode e. g. onto other substrates or one
upon the other to fabricate twisted flakes. The latter has been done
and was under examination with magnetotransport measurements.
Graphene is exfoliated on a thin PMMA layer, which can be detached
from the silicon wafer. This layer is then placed on another graphene
mono- or bilayer flakes. The samples were characterized at low tem-
peratures and in dependence of a magnetic field. Magnetic field inde-
pendent oscillations could be observed in a multilayer system.

[1] K. S. Novoselov et al. Science 306, 666 (2004)
[2] P. Barthold et al. NJP 13, 0433020 (2011)

HL 83.9 Wed 17:00 P1
Twisted graphene bilayers, folded via atomic force micro-
scope — •Johannes C. Rode, Dmitri Smirnov, Christopher
Belke, and Rolf J. Haug — Institut für Festkörperphysik, Leibniz
Universität Hannover

Naturally occurring double-layer graphene consists of two hexagonal
lattices in Bernal stacking. We investigate the folding of single-layer
graphene via atomic force microscope (AFM) and the electronic prop-
erties of thusly created bilayers. The crystal lattices of these are
twisted against each other which affects the interlayer coupling, giv-
ing rise to interesting electronic properties like a screening effect and
reduced Fermi velocities at higher twist angles. Furthermore, the in-
fluence of a moiré-superlattice or twist induced van-Hove-singularities
can be expected at lower twist angles. Our samples are obtained by
micromechanical cleavage of natural graphite and placed on a silicon
substrate with a top layer of silicon dioxide. The atomic force mi-
croscope then serves as a tool to mechanically manipulate the sample
by programmed tip movements. We show AFM-induced folding of
graphene on a µm-scale which can afterwards be contacted via e-beam
lithography. Magnetotransport measurements over the folded areas
show interesting signatures like multiple origins of landau fans in the
charge carrier concentration.

HL 83.10 Wed 17:00 P1
The Effect of the Chemical Potential of Graphene on THz De-
tection — •Markus Göthlich1, Fathi Gouider1, André Müller2,
Yuri B. Vasilyev3, and Georg Nachtwei1 — 1Institut für Ange-
wandte Physik, Technische Universität Braunschweig, Mendelssohn-
straße 2, D-38106 Braunschweig — 2Physikalisch Technische Bunde-
sanstalt, Bundesallee 100, D-38116 Braunschweig — 3A.F.Ioffe Physi-
cal Technical Institute, RU-194021 St.Petersburg, Russia

One particular fact about graphene is its remarkable Landau quanti-

zation En = sgn(n)
√

∆2 + 2~ev2F |n|B with n being the Landau level

(LL) index. This would allow a transition at 2.4 THz (correspond-
ing to an energy of about 10 meV) to happen at a magnetic field
as low as 0.2 T. But theoretical investigations show the opening of a
bandgap and a high chemical potential in epitaxial graphene on Si-face
SiC due to graphene–substrate interactions. On the other hand our
calculations—based on Gusynin et al. Phys. Rev. Lett. 98, 157402
(2007)—show that at high chemical potential the photoresponse can
only be observed at higher magnetic fields of some Tesla. Gating is dif-
ficult due to the insolating behaviour of SiC substrate on the one hand

and THz intransparency of top gates on the other hand. Therefore our
aim is to design a new sample geometry that allows the manipulation
of the chemical potential of the graphene while not blocking the THz
radiation before reaching the detector.

HL 83.11 Wed 17:00 P1
Gate-controlled STM study of magnetic impurities on a
graphene surface — •Paul Punke1, Christian Dette1, Roberto
Urcuyo1, Christopher Kley1, Sören Krotzky1, Rico Gutzler1,
Marko Burghard1, Soon Jung Jung1, and Klaus Kern1,2 —
1Max-Planck-Institute for Solid State Research, Heisenbergstr. 1,
70569 Stuttgart, Germany — 2Institut de Physique de la Matière
Condensée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lau-
sanne, Switzerland

Graphene has been regarded as an ideal material for post silicon elec-
tronic application due to its unique electronic properties. To realize
a field effect transistor for logic applications out of graphene, there
has been a lot of effort to understand the gating effect on the charge-
carrier-density-dependent properties of graphene, such as electronic
scattering, spin based phenomena and collective excitations. We have
designed a gatable low temperature scanning tunneling microscope
(STM) by adding contacts to the sample holder. To prepare the gate-
tunable graphene devices, we use graphene grown by chemical vapor
deposition (CVD), transferred with or without a supporting layer of
polymethylmethacrylate (PMMA) or polystyrene (PS), on an insulat-
ing layer of SiO2 or hexagonal boron nitride (h-BN) on SiO2. We also
grow the graphene on h-BN directly on Ni substrate by CVD method.
The quality of these samples will be compared by means of optical mi-
croscopy, atomic force microscopy (AFM), Raman spectroscopy and
STM. Finally, we will present the gate-controlled electronic structure
of graphene.

HL 83.12 Wed 17:00 P1
Ion Implantation of Graphene - Toward IC Compatible Tech-
nologies — •H. Hofsäss1, U. Bangert2,3, W. Pierce2, D. M.
Kepaptsoglou3, Q Ramasse3, R Zan1, M. H. Gass3,4, J.A. van
den Berg5, C. Boothroyd6, and J Amani1 — 1II. Physikalisches
Institut, Georg-August-Universität Göttingen, Göettingen, Germany
— 2School of Materials, The University of Manchester, Manchester,
United Kingdom — 3SuperSTEM Laboratory, Daresbury, United
Kingdom — 4AMEC, Walton House, 404 The Quadrant, Birchwood,
United Kingdom — 5School of Computing, Science and Engineer-
ing, University of Salford, Salford, United Kingdom — 6Ernst Ruska-
Centre for Microscopy and Spectroscopy, Juelich Research Centre,
Juelich, Germany

Doping of graphene via ultra low energy ion implantation could open
possibilities for fabrication of nanometer-scale patterned graphene-
based devices as well as for graphene functionalization compatible with
large-scale integrated semiconductor technology. Using advanced elec-
tron microscopy/spectroscopy methods, we show for the first time di-
rectly that graphene can be doped with B and N via ion implantation
of mass selected ions at energies of 20 - 30 eV and that the retention is
in good agreement with predictions from calculation-based literature
values. Atomic resolution high-angle dark field imaging (HAADF)
combined with single-atom electron energy loss (EEL) spectroscopy
reveals that for sufficiently low implantation energies ions are predom-
inantly substitutionally incorporated into the graphene lattice with a
very small fraction residing in defect-related sites.
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Invited Talk TT 44.1 Wed 9:30 H22
Ultrafast photo-thermoelectric currents in graphene —
∙Alexander Holleitner — Walter Schottky Institut and Physics
Department, Technical University of Munich, Am Coulombwall 4a, D-
85748 Garching, Germany.
We show that photo-thermoelectric currents occur on a picosec-
ond time-scale in graphene [1]. To this end, we apply an on-chip
pump/probe photocurrent spectroscopy [2,3] to double-gated junc-
tions of graphene. Our experiments reveal the interplay of photogen-
erated hot electrons with so-called photovoltaic currents. Moreover,
we demonstrate that hot electrons allow to read-out an ultrafast non-
radiative energy transfer from fluorescent emitters, namely nitrogen-
vacancy centers in nano-diamonds. The non-radiative energy transfer
can be exploited as an ultrafast, electronic read-out process of the elec-
tron spin in nitrogen vacancy centers in the diamond nanocrystals. The
detection gives access to fast energy transfer processes, which have not
yet been observed by fluorescence measurements because of quenching
of the optical signal for short transfer distances [4].

We thank A. Brenneis, F. Schade, L. Gaudreau, M. Seifert, H.
Karl, M.S. Brandt, H. Huebl, J.A. Garrido, F.H.L. Koppens, for a
very fruitful collaboration, and the ERC-grant ‘NanoREAL’ for finan-
cial support.
[1] A. Brenneis et al., (2016)
[2] L. Prechtel et al., Nature Comm. 3, 646 (2012)
[3] C. Kastl et al. Nature Comm. 6, 6617 (2015)
[4] A. Brenneis et al. Nature Nanotech. 10, 135 (2015)

TT 44.2 Wed 10:00 H22
Double-logarithmic velocity renormalization at the Dirac
points of graphene — ∙Peter Kopietz, Anand Sharma, and
Carsten Bauer — Institut für Theoretische Physik, Universität
Frankfurt, Max-von-Laue Str. 1, 60438 Frankfurt
Using a functional renormalization group approach with partial
bosonization in the forward scattering channel we reconsider the ef-
fect of long-range Coulomb interactions on the quasi-particle veloc-
ity 𝑣𝑘 close to the Dirac points of graphene. In contrast to calcula-
tions based on perturbation theory and field theoretical renormaliza-
tion group methods, we find that 𝑣𝑘 is proportional to ln[𝜅𝑘/𝑘] where
k is the deviation of the quasiparticle momentum from the Dirac points
and the cutoff scale 𝜅𝑘 vanishes logarithmically for small 𝑘. We show
that this double-logarithmic singularity is compatible with experiments
and with the known three-loop expansion of 𝑣𝑘 which contains terms
of order ln 𝑘 and ln2 𝑘.

TT 44.3 Wed 10:15 H22
Dirac fermion wave packets in oscillating potential barriers
— Walter Pötz1, Sergey E. Savel’ev2, Peter Hänggi3, and
∙Wolfgang Häusler3 — 1Karl Franzens Univ. Graz, Inst. Phys.,
A-8010 Graz, Austria — 2Department of Physics, Loughborough Uni-
versity, Loughborough LE11 3TU, United Kingdom — 3Institut für
Physik, Univ. Augsburg, 86135 Augsburg, Germany
We integrate the time-dependent (2+1)D Dirac equation for mass-
less fermions in graphene or topological insulator surfaces. A recently
developed staggered-grid leap-frog scheme is employed [1,2]. We con-
sider an initial Gaussian wave packet which moves in the 𝑥-direction
towards a potential barrier that is homogeneous along 𝑦 and oscillates
periodically in time. As for the 𝑥-dependence, we investigate square-
well, sinusoidal, and linear-ramp potential profiles. Small transversal
momentum components 𝑘𝑦 of the wave packet were analyzed analyti-
cally [3] and predicted to generate non-zero current densities 𝑗𝑦 , even
at normal incidence 𝑘𝑦 = 0 [4]. These findings are consistent with
the present numerical studies of particle-, current-, and spin-density.
We also investigate massive fermions: regarding some properties they
resemble massless fermions, regarding other properties, however, pe-
culiar intrinsic oscillations, reminiscent of Zitterbewegung, appear.
[1] R. Hammer and W. Pötz, PRB 88, 235119 (2013)
[2] R. Hammer et al., J. Comp. Phys. 265, 50 – 70 (2014)
[3] S.E. Savel’ev, W. Häusler, and P. Hänggi, PRL 109, 226602 (2012)
[4] S.E. Savel’ev, W. Häusler, and P. Hänggi, EPJB 86, 433 (2013).

TT 44.4 Wed 10:30 H22

Electric and magnetic control of electron guiding in graphene
— ∙Ming-Hao Liu and Klaus Richter — Institut für Theoretische
Physik, Universität Regensburg
Electrons in graphene are known to behave like massless Dirac
fermions, whose transport properties can be best revealed by exper-
iments using ultra-clean graphene. Reliable quantum transport sim-
ulations for ballistic graphene is naturally a powerful tool for under-
standing and predicting high-quality transport experiments. In this
talk we show gate-controlled electron guiding along electrically con-
fined channels in suspended graphene, which is a combined work of
our transport simulations and the experiment done by the Schönen-
berger group [1]. We have recently further applied our simulation
(Green’s function method within the scalable tight-binding model [2])
to revisit the transverse magnetic focusing experiment [3], where the
guiding of the electrons is controlled by an external magnetic field, in-
stead of electrical gates. Besides good agreement with the experiments
[1,3], our simulations further allow for probing charge flow through an
additional scanning probe tip.
[1] P. Rickhaus et al., Nano Lett. 15, 5819 (2015).
[2] M.-H. Liu et al., Phys. Rev. Lett. 114, 036601 (2015).
[3] T. Taychatanapat et al., Nat. Phys. 9, 225 (2013).

TT 44.5 Wed 10:45 H22
Current flow paths in deformed graphene: from quantum
transport to classical trajectories in curved space — ∙Nikodem
Szpak1 and Thomas Stegmann1,2 — 1Fakultät für Physik, Univer-
sität Duisburg-Essen, Duisburg — 2Instituto de Ciencias Fisicas, Uni-
versidad Nacional Autonoma de Mexico, Cuernavaca
We compare two contrasting approaches to the electronic transport in
deformed graphene: a) the condensed matter approach in which cur-
rent flow paths are obtained by applying the non-equilibrium Green’s
function (NEGF) method to the tight-binding model with local strain,
b) the general relativistic approach in which classical trajectories of
relativistic point particles moving in a curved surface with a pseudo-
magnetic field are calculated. The connection between the two is es-
tablished in the long-wave limit via an effective Dirac Hamiltonian in
curved space. Geometrical optics approximation, applied to focused
current beams, allows us to directly compare the wave and the parti-
cle pictures. We obtain very good numerical agreement between the
quantum and the classical approaches for a fairly wide set of parame-
ters. The presented method offers an enormous reduction of complexity
from irregular tight-binding Hamiltonians defined on large lattices to
geometric language for curved continuous surfaces. It facilitates a com-
fortable and efficient tool for predicting electronic transport properties
in graphene nanostructures with complicated geometries, paving the
way to new interesting transport phenomena such as bending or focus-
ing (lensing) of currents depending on the shape of the deformation. It
can be applied in designing ultrasensitive sensors or in nanoelectronics.

TT 44.6 Wed 11:00 H22
Trigonal Warping in Bilayer Graphene: Energy versus En-
tanglement Spectrum — ∙Sonja Predin, Paul Wenk, and John
Schliemann — Institute for Theoretical Physics, University of Re-
gensburg, D-93040 Regensburg, Germany
We present a mainly analytical study of the entanglement spectrum of
Bernal-stacked graphene bilayers in the presence of trigonal warping
in the energy spectrum. Upon tracing out one layer, the entanglement
spectrum shows qualitative geometric differences to the energy spec-
trum of a graphene monolayer. However, topological quantities such
as Berry phase type contributions to Chern numbers agree. The latter
analysis involves not only the eigenvalues of the entanglement Hamil-
tonian but also its eigenvectors. We also discuss the entanglement
spectra resulting from tracing out other sublattices.

15 min. break

TT 44.7 Wed 11:30 H22
Valley-based Cooper pair splitting via topologically con-
fined channels in bilayer graphene — ∙Alexander Schroer1,
Peter G. Silvestrov1, and Patrik Recher1,2 — 1Institut für
Mathematische Physik, Technische Universität Braunschweig, D-38106
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Braunschweig, Germany — 2Laboratory for Emerging Nanometrology
Braunschweig, D-38106 Braunschweig, Germany
Bilayer graphene hosts valley-chiral one-dimensional modes at domain
walls between regions of different interlayer potential or stacking order.
When such a channel is close to a superconductor, the two electrons
of a Cooper pair, which tunnel into it, move in opposite directions
because they belong to different valleys related by the time-reversal
symmetry. This kinetic variant of Cooper pair splitting requires nei-
ther Coulomb repulsion nor energy filtering but is enforced by the
robustness of the valley isospin in the absence of atomic-scale defects.
We derive an effective normal/superconducting/normal (NSN) model
of the channel in proximity to an 𝑠-wave superconductor, calculate the
conductance of split and spin-entangled pairs, and interpret it as a
result of local Andreev reflection, in contrast to the widespread identi-
fication of Cooper pair splitting with crossed Andreev reflection in an
NSN geometry.

TT 44.8 Wed 11:45 H22
The decisive role of stacking faults for understanding trans-
port in bilayer graphene — ∙Heiko B. Weber1, Ferdinand
Kisslinger1, Christian Ott1, and Sam Shallcross2 — 1Lehrstuhl
für Angewandte Physik, FAU Erlangen-Nürnberg (FAU), Erlangen,
Germany — 2Lehrstuhl für Theoretische Festkörperphysik, FAU
Erlangen-Nürnberg (FAU)
Charge transport in bilayer graphene provides rich low-temperature
phenomena, often assigned to interaction-driven phase transitions. We
will discuss charge transport in bilayer graphene in a single-particle pic-
ture, but including stacking faults. Such partial dislocations are un-
avoidable in bilayer graphene and were recently imaged [1]. Depending
on details, partial dislocations can introduce improved conductance,
fully insulating behaviour or linear magnetoresistance. The latter is
reliably found in transport experiments at elevated temperatures [2].
[1] B. Butz, C. Dolle, F. Niekiel, K. Weber, D. Waldmann,

H. B. Weber, B. Meyer, E. Spiecker, Nature 505, 533 (2014)
[2] F. Kisslinger, C. Ott, C. Heide, E. Kampert, B. Butz, E. Spiecker,

S. Shallcross, H. B. Weber, Nature Phys. 11, 650 (2015).

TT 44.9 Wed 12:00 H22
Linear magnetoresistance in two-dimensional disordered con-
ductors — ∙Ferdinand Kisslinger1, Christian Ott1, Erik
Kampert2, and Heiko B. Weber1 — 1Lehrstuhl für Ange-
wandte Physik, FAU Erlangen-Nürnberg (FAU), Erlangen, Germany.
— 2Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum
Dresden-Rossendorf, Dresden, Germany.
The recent observation of linear magnetoresistance (MR) in large-area
bilayer graphene gives a key to the understanding of this old and barely
understood phenomenon [1]. In bilayer graphene, it can be traced back
to mosaic-like pattern of a partial dislocation network [2]. In this talk
we discuss how linear MR evolves in disordered samples, using a two
dimensional resistor network model conceptually introduced by Parish
and Littlewood [3]. This model is in the weak disorder regime dom-
inated by boundary effects. We identified a new regime representing
the bulk situation in a disordered conductor. We investigated differ-
ent possible sources of disorder: mobility, charge carrier density and
network structure. The slope of the MR turned out to be simply gov-
erned by the Hall resistance and therefore by the inverse of the charge
carrier density. An equivalent circuit model finally gives a consistent
explanation as to why the magnetoresistance is linear in mosaic like
samples.
[1] F. Kisslinger et al., Nature Physics 11, 650 (2015)
[2] B. Butz et al., Nature 505, 533 (2014).
[3] M. M. Parish & P. B. Littlewood, Nature 426, 162 (2003)

TT 44.10 Wed 12:15 H22
Mechanically strained graphene nanojunctions — ∙Seddigheh
Nikipar1, Dmitry Ryndyk1, and Gianaurelio Cuniberti1,2 —
1Institute for Materials Science and Max Bergmann Center of Bioma-
terials, TU Dresden, Germany — 2Dresden Center for Computational
Materials Science (DCMS), TU Dresden, Germany
It has been demonstrated recently that mechanically strained graphene
presents interesting electrical properties, which have great potential
for novel applications in electronic devices. In particular, the strain in
graphene nanoribbons can lead to substantial changes in its electronic
properties. Besides, it provides a possibility to develop atomic point
contacts and break junctions. The main purpose of this work is to in-
vestigate theoretically the influence of uniaxial mechanical strains on

graphene nanojunctions in order to design graphene point contact.
To this aim, we developed the computational model by combining

density functional theory and molecular dynamics methods. First, we
investigated the change of the junction shape with increasing strain
and the breaking with the formation of the nanogap. As expected,
our theoretical model predicts the deformation of the break junction
bottleneck into carbon chains before the rupture of the structure. we
evaluated the electronic transmission function of graphene quantum
junction by employing a coupled tight bonding and nonequilibrium
green function methods. Interestingly it is found that graphene point
contact can present resonance transmission in contrast to the conven-
tional metallic point contacts with quantized conductance. This might
be originated from influence of other parameters on transmission.

TT 44.11 Wed 12:30 H22
Graphene nanoribbons as effective spin ladders — ∙Cornelie
Koop, Manuel J. Schmidt, and Stefan Wessel — Institut für
Theoretische Festkörperphysik, RWTH Aachen University
Zigzag edges of graphene nanoribbons host particular, localized edge
states. Since the density of states is strongly enhanced near the edges
in graphene, interaction effects between the spins of these edge states
become important. We can significantly simplify the analysis of such
systems by means of an effective model that separates the edge and
bulk states. Treating the effective interactions to first order proves suf-
ficient in most cases, while second order corrections do not dramatically
change the results. In many cases, the edge system can be reduced to a
general spin ladder model, where the decay of the spin-spin interaction
is determined by the shape of the edges. We examine these effective
spin ladders at finite temperatures by means of quantum Monte Carlo
simulations, using the stochastic series expansion method. Thereby,
correlation functions and spin structure factors can be determined for
realistically large graphene nanoribbons.

TT 44.12 Wed 12:45 H22
Edge State Structure of the 𝜈 = 0 quantum Hall State
in monolayer Graphene — ∙Angelika Knothe1,2 and Thierry
Jolicoeur2 — 1Physikalisches Institut, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg — 2Université Paris
11, CNRS, LPTMS, UMR 8626, Orsay 91405 France
Single-layer graphene at neutrality under a magnetic field is a many-
body insulator whose phase structure is under intense scrutiny. When
tilting the applied magnetic field, there is a phase transition towards a
conducting state [1]. A plausible description is to start from a SU(4)
spin-valley symmetric quantum Hall ferromagnet and add some lattice-
scale anisotropies in valley space [2]. In the manifold of ground states
captured by this approach, it has been proposed that graphene un-
dergoes a transition between a canted antiferromagnetic state and a
ferromagnetic state. While this picture is clear in the bulk of the sys-
tem, it remains to understand the effect of this phase change on the
current-carrying edge states that are formed a the physical boundaries
of a real sample [3]. We use an extended Hartree-Fock approach to
describe a finite-size system with a simple model for the edge and ex-
tract the one-body spectrum. We then describe the current-carrying
edge textures.

[1] A. F. Young et al., Nature (London) 505, 528 (2014) [2] M.
Kharitonov, Phys. Rev. B 85, 155439 (2012) [3] M. Kharitonov, Phys.
Rev. B 86, 075450 (2012); G. Murthy et al., Phys. Rev. B 90, 241410
(2014) and arXiv:1510.04255; A. Knothe and T. Jolicoeur, Phys. Rev.
B 92, 165110 (2015)

TT 44.13 Wed 13:00 H22
Spin lifetimes exceeding 12 ns in graphene non-local spin
valves at room temperature — ∙Christopher Franzen1,
Marc Drögeler1, Frank Volmer1, Tobias Pohlmann1, Maik
Wolter1, Kenji Watanabe2, Takashi Taniguchi2, Christoph
Stampfer1, and Bernd Beschoten1 — 12nd Institute of Physics
and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
— 2National Institute for Materials Science, 1-1 Namiki, Tsukuba,
305-0044, Japan
We present spin transport measurements on graphene non-local spin
transport devices by fabricating the electrodes first and subsequently
transfer graphene with hexagonal boron nitride on top [1]. We achieve
spin lifetimes of 12.6 ns and a spin diffusion length as high as 30 𝜇m
at room temperature.
This improvement exceeds all current models for contact-induced spin
dephasing which paves the way towards probing intrinsic spin proper-
ties of graphene. Furthermore, we investigate the contact properties
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of our devices using scanning force microscopy (SFM) and conductive
SFM. We discuss the importance of using large area hexagonal boron
nitride for the transfer process and for achieving such high spin life-

times and spin diffusion lengths.

[1] M. Drögeler et al. Nano Letters 14, 6050 (2014).
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TT 101: Low-Dimensional Systems: Topological Order 2 (jointly with DS, HL, MA, O)

Time: Thursday 15:00–18:30 Location: H 3010

TT 101.1 Thu 15:00 H 3010
Topological entropy in the classical toric code model —
∙Johannes Helmes and Simon Trebst — Institut für Theoretische
Physik, Universität zu Köln, Germany
For interacting quantum many-body systems the study of entangle-
ment entropies is well established to analyze the fundamental nature
of their ground states. In particular, the O(1) correction to the preva-
lent boundary-law can be used to identify topological order. However,
not only in quantum systems, but also in classical systems we can
track topological contributions to the classical entropy by employing
an analogous approach.

We report results for the classical toric code model in a magnetic
field which has a topologically protected zero field degeneracy. We
show, how the classical entropy tracks the break-down of the classical
topological order upon increasing the external field or temperature.
In more technical terms, we apply the replica technique to calculate
Renyi entropies from classical Monte Carlo simulations using a newly
developed update scheme for efficient loop-gas sampling.

TT 101.2 Thu 15:15 H 3010
Symmetry fractionalization in SU(2n) antiferromagnetic
Heisenberg chains — ∙Andreas Weichselbaum1 and Thomas
Quella2 — 1Ludwig Maximilians University, Munich, Germany —
2University of Cologne, Germany
We explore generalizations of the Affleck-Kennedy-Lieb-Tasaki
(AKLT, 1987) model for spin-1 antiferromagnetic Heisenberg chains
to higher-rank SU(2n) symmetries. In particular we show that by
proper tuning of higher order spin interactions there also exist exact
low-dimensional matrix-product ground states with fractionalized edge
states. These states are adiabatically connected to the ground state of
the plain SU(2n) Heisenberg model. The parameter space is explored
using state of the art density matrix renormalization group (DMRG),
explicitly utilizing SU(N) symmetry up to N=6 based on the QSpace
tensor library.

TT 101.3 Thu 15:30 H 3010
Protection of topological phases by quantum deformed sym-
metries — ∙Thomas Quella — Universität zu Köln, Institut für
Theoretische Physik, Köln, Germany
We show that topological phases of quantum spin systems may enjoy
protection even in the absence of ordinary group symmetries. The rel-
evant mechanism is explained in full detail for the example of 1D spin
chains with quantum group (𝑞-deformed) symmetry 𝑆𝑂𝑞(3). We also
sketch the generalization to quantum deformations of other continu-
ous Lie groups such as those associated with 𝑆𝑈(𝑁) or 𝑆𝑂(𝑁). Our
results provide a complete classification of quantum group symmetry
protected topological phases for real values of 𝑞.

TT 101.4 Thu 15:45 H 3010
Topological phase transition in the quench dynamics of a
Fermi gas — ∙Pei Wang — Department of Physics, Zhejiang Uni-
versity of Technology, Hangzhou 310023, China and Institute for The-
oretical Physics, University of Goettingen, German
We study the quench dynamics of a one-dimensional ultracold Fermi
gas with synthetic spin-orbit coupling. At equilibrium, the ground
state of the system can undergo a topological phase transition and
become a topological superfluid with Majorana edge states. As the
interaction is quenched near the topological phase boundary, we iden-
tify an interesting dynamical phase transition of the quenched state in
the long-time limit, characterized by an abrupt change of the pairing
gap at a critical quenched interaction strength. We further demon-
strate the topological nature of this dynamical phase transition from
edge-state analysis of the quenched states. Our findings provide inter-
esting clues for the understanding of topological phase transitions in
dynamical processes, and can be useful for the dynamical detection of
Majorana edge states in corresponding systems.

TT 101.5 Thu 16:00 H 3010
Diagnosing the statistics of excitations from the dynamical
structure factor — ∙Siddhardh Morampudi1, Ari Turner2, and
Frank Pollmann1 — 1Max-Planck-Institut für Physik komplexer
Systeme, Dresden, Germany — 2Department of Physics and Astron-

omy, The Johns Hopkins University, Baltimore, Maryland
We show that the statistics of excitations in quantum spin liquids yield
characteristic features in the dynamical structure factor. Quantum
spin liquids are exotic phases of matter which fall beyond the tradi-
tional paradigm of symmetry breaking. Originally proposed by Ander-
son with regard to high temperature superconductivity, they are now
widely believed to arise in frustrated spin systems such as the antifer-
romagnetic Heisenberg model on the kagome lattice. Recently, various
theoretical methods to characterize spin liquids have been introduced,
especially with regard to numerical simulations. In this work, we ob-
tain results connecting the statistics of the excitations to features of
the dynamical structure factor which can be obtained from neutron
scattering. We furthermore demonstrate how the results can be used
to distinguish different types of gapped spin liquids.

TT 101.6 Thu 16:15 H 3010
Dissipative Chern Insulators — ∙Jan Carl Budich1,2, Pe-
ter Zoller1,2, and Sebastian Diehl3 — 1Institute for Theoretical
Physics, University of Innsbruck, 6020 Innsbruck, Austria — 2Institute
for Quantum Optics and Quantum Information, Austrian Academy of
Sciences, 6020 Innsbruck, Austria — 3Institute of Theoretical Physics,
TU Dresden, D-01062 Dresden, Germany
Engineered dissipation can be employed to prepare interesting quan-
tum many body states in a non-equilibrium fashion. The basic idea is
to obtain the state of interest as the unique steady state of a quantum
master equation, irrespective of the initial state. Due to a fundamen-
tal interference of topology and locality, the dissipative preparation
of gapped topological phases with a non-vanishing Chern number has
so far remained elusive. Here, we study the open quantum system
dynamics of fermions on a two-dimensional lattice in the framework
of a Lindblad master equation. In particular, we discover a novel
mechanism to dissipatively prepare a topological steady state with
non-zero Chern number by means of short-range system bath interac-
tion. Quite remarkably, this gives rise to a stable topological phase in
a non-equilibrium phase diagram. We demonstrate how our theoret-
ical construction can be implemented in a microscopic model that is
experimentally feasible with cold atoms in optical lattices.

TT 101.7 Thu 16:30 H 3010
Absence of an interaction driven Chern insulating phase
on the honeycomb lattice — ∙Johannes Motruk, Adolfo G.
Grushin, and Frank Pollmann — Max-Planck-Institut für Physik
komplexer Systeme, Dresden, Deutschland
Mean field calculations in the literature have suggested the existence
of an interaction-induced Chern insulator (CI) phase in a tight-binding
model of spinless fermions on a honeycomb lattice with nearest- and
next-nearest-neighbor interactions. The CI phase is an example of a
state that breaks time-reversal symmetry spontaneously and possesses
a quantized Hall conductance. However, it has been proven elusive in
exact diagonalization (ED) studies of this system. Since ED is limited
to small system sizes, the fate of this phase in the thermodynamic limit
still remains unclear. Using the infinite density matrix renormaliza-
tion group (iDMRG) algorithm we reach system sizes exceeding those
accessible in ED calculations while keeping track of quantum fluctua-
tions neglected in mean field studies. We map out the phase diagram
as a function of both nearest- and next-nearest-neighbor interaction
strengths for an infinite cylinder geometry and find different charge-
ordered phases but no sign of the interaction driven Chern insulator
phase.

15 min. break.

TT 101.8 Thu 17:00 H 3010
Quasiparticle interference patterns from different impurities
on the surface of pyrochlore iridates: signatures of the Weyl
phase — ∙Fabian Lambert1, Andreas Schnyder2, Roderich
Moessner3, and Ilya Eremin1 — 1Institut für Theoretische Physik
III, Ruhr-Universität Bochum, D-44801 Bochum, Germany — 2Max-
Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569
Stuttgart, Germany — 3Max Planck Institute for the Physics of Com-
plex Systems, D-01187 Dresden, Germany
Weyl semi-metals exhibit topologically protected surface Fermi arcs,
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which pairwise connect projections of bulk band touchings in the sur-
face Brillouin zone. The nontrival spin and orbital character of these
topological surface states can be tested experimentally using quasi-
particle interference (QPI) measurements. Here, we compute the QPI
patterns for a Hubbard Hamiltonian on a pyrochlore lattice. For weak
impurity potentials, the QPI patterns can be computed within the
First Born approximation. To account for the antiferromangetic spin
configuration of R2Ir2O7, we treat the Hubbard interaction at the
mean-field level. In the antiferromagnetic state the quadratic band
touching of the model is split into eight linear band touchings, each
of which carries a non-trivial Chern number, thereby realizing a Weyl
phase with broken time- reversal symmetry. Using exact diagonaliza-
tion, we compute the surface spectrum and quasiparticle interference
patterns of this Weyl phase for various surface impurities. We show
that the spin and orbital texture of the surface states can be inferred
from the absence of certain backscattering processes and from the sym-
metries of the QPI features.

TT 101.9 Thu 17:15 H 3010
Interacting surface states of three-dimensional topologi-
cal insulators — ∙Titus Neupert1, Stephan Rachel2, Ronny
Thomale3, and Martin Greiter3 — 1Princeton Center for Theoret-
ical Science, Princeton University, Princeton, New Jersey 08544, USA
— 2Institute for Theoretical Physics, Technische Universitaet Dresden,
01171 Dresden, Germany — 3Institute for Theoretical Physics, Uni-
versity of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
We numerically investigate the surface states of a strong topological
insulator in the presence of strong electron-electron interactions. We
choose a spherical topological insulator geometry to make the surface
amenable to a finite size analysis. The single-particle problem maps
to that of Landau orbitals on the sphere with a magnetic monopole at
the center that has unit strength and opposite sign for electrons with
opposite spin. Assuming density-density contact interactions, we find
superconducting and anomalous (quantum) Hall phases for attractive
and repulsive interactions, respectively, as well as chiral fermion and
chiral Majorana fermion boundary modes between different phases.
Our setup is preeminently adapted to the search for topologically or-
dered surface terminations that could be microscopically stabilized by
tailored surface interaction profiles.

TT 101.10 Thu 17:30 H 3010
Resonant scattering in the topological Dirac semimetal
Cd3As2 — Vladimir Gnezdilov1,2, Azat Sharafeev1, ∙Peter
Lemmens1, Raman Sankar3, and Fangcheng Chou3 — 1IPKM,
TU-BS, Braunschweig — 2ILTPE NAS, Ukraine — 3CCMS, National
Taiwan Univ., Taipei, Taiwan
In the symmetry-broken topological Dirac semimetal with strong
spin-orbit coupling, Cd3As2, a pronounced temperature evolution of
quasielastic electronic Raman scattering and resonant effects are ob-
served. These effects are then compared to observations in topological
insulators, as Bi2Se3.

Work supported by RTG-DFG 1953/1, Metrology for Complex
Nanosystems and the Laboratory for Emerging Nanometrology Braun-
schweig, TU Braunschweig.

TT 101.11 Thu 17:45 H 3010
Angle-resolved Photoemission Investigation of SmB6 —
∙Peter Hlawenka1, Oliver Rader1, Konrad Siemensmeyer1,
Eugen Weschke1, Andrei Varykhalov1, Natalya Shitsevalova2,
Slavomir Gabani3, Karol Flachbart3, and Emile Rienks1 —
1Helmholtz-Zentrum Berlin — 2Institute for Problems of Material Sci-
ence, Kiev — 3IEP, Slovak Academy of Science, Kosice
Recently the mixed valence compound SmB6 has drawn great atten-
tion. Theoretically predicted surface states, which should result from
a hybridisation of localised f-bands with conduction electrons and a

band inversion, would make SmB6 the first realisation of a so called
topological Kondo insulator [1-2]. Conductivity and transport mea-
surements, as well as spin-resolved photoemission spectroscopy seem
to fortify the scenario of a topological nature of the conductive surface
[3-5]. We investigate the surface electronic structure of SmB6 by means
of high resolution angle-resolved photoemission spectroscopy measure-
ments below 1 K. We will present new insights into the surface states
that determine the low temperature conductivity of this material.

[1] Dzero et al., PRL 104, 106408 (2010).
[2] Lu et al., PRL 110, 096401 (2013).
[3] Wolgast, PRB 88, 180405 (2013).
[4] Kim, Sci. Rep. 3, 3150 (3013).
[5] Xu et al., Nat. Com. 5, 4566 (2014).

TT 101.12 Thu 18:00 H 3010
Calculation of topological properties of strongly correlated
electrons without inversion symmetry using Wannier charge
centres. — ∙Robert Triebl and Markus Aichhorn — Institute
of Theoretical Physics and Computational Physics, Graz University of
Technology, Petersgasse 16, 8010 Graz, Austria
We study the topological properties of a role model for interacting
𝑍2 topological insulators, namely the Kane-Mele-Hubbard model in-
cluding a staggered sublattice potential controlled by a parameter
𝜆𝜈 , which breaks inversion symmetry. The applicability of a naïve
mean field approach was analysed by comparing to a variational clus-
ter approach, employing a two-site dynamical impurity approxima-
tion (DIA). The obtained Greens function determines the topological
Hamiltonian, which maps the interacting system to an effective free-
particle model with the same topological properties. Since inversion
symmetry is lost, we calculate the 𝑍2 invariant for both Mean Field
and topological Hamiltonian using Wannier charge centers. We con-
clude that a two-site DIA in combination with Wannier charge centers
is an easy-to-implement and stable method to determine topological
invariants for interacting systems. Comparing with mean field results
we find that the direction of magnetisation is crucial for topological
properties and hence an inherent mean field magnetisation may lead
to incorrect results.

TT 101.13 Thu 18:15 H 3010
An analytical study of the entanglement spectrum of
graphene bilayers — ∙Sonja Predin and John Sliemann — Insti-
tute for Theoretical Physics, University of Regensburg, D-93040 Re-
gensburg, Germany
We present an analytical study of the entanglement spectrum of
graphene bilayers. The entanglement spectrum has been proposed
as a ground state property that exhibits characteristic energy excita-
tions[1]. Futhermore, it was claimed that gapless systems possess the
same number of Dirac cones as their entanglement spectrum [2]. In
addition, it was suggested that the entanglement spectrum is a promis-
ing tool to characterize topological phases. In this work we will show
that the energy spectrum of an gapless system and its entanglement
spectrum can have a different topology. In particular, we will show
that Lifshitz transitions change the topology of the energy spectrum
of graphene bilayers in a different way than the topology of entan-
glement spectrum. The topology of the energy spectrum of graphene
bilayers for small energies is changed by Lifshitz transitions by chang-
ing the connectivity by the appearance of the three additional Dirac
cones around every Dirac point [3]. The entanglement spectrum, on
the other hand, is changed by deforming a Dirac cone into a neck chara-
terized by vanishing eigenvalues of the entanglement Hamiltonian.

[1] H. Li and F. D. M. Haldane,
Phys. Rev. Lett. 101, 010504 (2008)
[2] A. M. Turner, et al., Phys. Rev. B, 82, 241102R (2010)
[3] J. Cserti, et al., Phys. Rev. Lett. 99, 066802 (2007)
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The effect of the trigonal warping on the energy
and the entanglement spectrum of graphene

bilayers

Sonja Predina and John Schliemanna

aInstitute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

Abstract. We present an analytical study of the entanglement spectrum of graphene bilayers. We
mainly focus on the influence of the skew parameter, which causes the trigonal warping in the energy
spectrum, on the topology of the entanglement spectrum. Furthermore, we explore a connection
between two characteristics: the entanglement spectrum of a bilayer structure, given by tracing out
one of the layer, and the energy of the resulting monolayer structure, which is shown in many
previous analytical and numerical studies. An explicit relation between the entanglement spectrum
and the energy spectrum of remaining monolayer graphene is shown when the skew tight binding
parameter, which causes the trigonal warping is neglected. However, the trigonal warping of the
graphene bilayers is reflected to the topology of the entanglement spectrum and a similarity between
the entanglement spectrum of graphene bilayers and the energy spectrum of the monolayer graphene
is broken.

REFERENCES

1. Sonja Predin and John Schliemann, in preparation.
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ABSTRACT

In the present thesis, the properties of the entanglement spectra of
the ground state of graphene bilayers Bernal-stacked is analytically
investigated. In addition, the entanglement spectra of the ground
state of the honeycomb lattice in the presence of superconductiv-
ity instabilities are analytically studied. We consider not only the
eigenvalues of the reduced density matrix that form the entangle-
ment spectrum, but also, its eigenstates. From these eigenstates,
we construct topological quantities, such as the Berry phase and
the Chern number, in order to investigate the topological proper-
ties of the entanglement spectrum.
In the first part of this thesis, we present an analytical study of

the graphene bilayers, mainly focusing on the effects of the trigonal
warping. When the term causing the trigonal warping is neglected,
the entanglement Hamiltonian obtained by tracing out one layer
shows a proportionality with the energetic Hamiltonian of the re-
maining monolayer graphene, in the limit of strongly coupled lay-
ers. We demonstrate that this proportionality leads to an agree-
ment of the topological quantities of these Hamiltonians. Moreover,
we demonstrate that the entanglement spectrum of graphene bilay-
ers with a trigonal warping spectrum clearly differs in the geomet-
ric shape from the energy spectrum of the remaining monolayer
graphene. However, there is an agreement of the topological quan-
tities such as Berry phase contributions to Chern numbers.
In the second part of this thesis, we give a detailed study of

graphene in the presence of superconductivity instabilities, mainly
considering the s-wave and the chiral dx2−y2 + idxy state. We inves-
tigate the relationship between the entanglement and energy spec-
trum, making use of the concepts of the Chern number constructed
from eigenstates of the entanglement Hamiltonian. We demon-
strate that the entanglement and remaining subsystem Hamiltoni-
ans can have different topologies. These findings are illustrated by
considering the entanglement Hamiltonian of the ground state of
graphene with dx2−y2 + idxy superconductivity obtained by trac-
ing out one spin direction.
Our investigations are based on closed analytical expressions for

the full eigensystem in the entire Brillouin zone of bilayer graphene
with a trigonally warped spectrum and graphene with supercon-
ductivity instabilities.
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1
INTRODUCTION

Quantum entanglement is the counterintuitive prediction of quan-
tum mechanics that has no analogous phenomenon in classical
physics. The entanglement arises from nonlocal quantum correla-
tions between two or more subsystems of the quantum system.
The concept of entanglement was first introduced in 1935 by Ein-
stein, Podolsky, and Rosen in Ref. [Einstein et al., 1935], while
the term entanglement was first introduced by Schrödinger in
Ref. [Schrödinger, 1935]. Two entangled quantum subsystems can-
not be described separately. Thus, the wavefunction of the whole
system cannot be written as a product of the wavefunctions of
the entangled subsystems. A well-known example of an entan-
gled state is the spin singlet state of two spin-1/2 particles |ψ〉 =

1√
2 (|↑〉 |↓〉− |↓〉 |↑〉). After an interaction in which the spin-singlet

state is produced, these two particles are separated in different lo-
cations. If one measures the spin of one particle and gets the spin
direction |↑〉, then the spin of the second particle is projected on
the state |↓〉. Thus, the measurement of one particle changes the
state of the other particle, although the particles are in different
locations and cannot communicate with each other. This was a
paradox for Einstein, Podolsky, and Rosen, (EPR paradox) since,
according to special relativity, the locality condition assumes that
nothing can travel faster than the speed of light. If we can predict
with certainty the result of the measurement of a physical quantity
then this quantity is an element of physical reality. Furthermore,
they concluded that the description of the quantum mechanics of
physical reality is not complete and proposed hidden local vari-
ables as a solution to this problem. This means that each particle
possesses all the necessary information, and no information should
be transmitted from one particle to another during the measure-
ment. In 1965, John Bell showed that in local realism, the correla-
tions between distant measurements satisfy inequalities. He math-
ematically proved that the quantum theory predicts a violation of
these inequalities [Bell, 2004]. Bell-inequality violations have been

1



2 introduction

experimentally demonstrated [Freedman and Clauser, 1972,Aspect
et al., 1982,Garg and Mermin, 1987,Eberhard, 1993,Weihs et al.,
1998, Rowe et al., 2001, Barrett et al., 2002,Matsukevich et al.,
2008, Ansmann et al., 2009, Scheidl et al., 2010, Hensen et al.,
2015]. Nowadays, we believe that quantum mechanics is an ad-
equate theory for the description of the microscopic world and
entanglement can successfully describe nonlocal and nonclassical
correlations.
The idea of a quantum computer was proposed by Richard Feyn-

man in 1982. [Feynman, 1982]. A quantum computer based on
the quantum mechanical principles of superposition and entangle-
ment would be much more powerful than a classical one. In recent
decades, much effort has been invested in experimental and theo-
retical physics work to develop the quantum computer, owing to
its possible uses, mainly in civil, business, and national security
applications. The study of the many-body entangled state has re-
cently become a very attractive topic, since it was realized that
entanglement could be useful in quantum informatics. In particu-
lar, the quantum correlations between entangled states could be
a useful resource for communications, because when a system is
entangled, measurements of distant subsystems of the system can
be much more correlated than is classically allowed [Bell, 2004]. It
makes the quantum entanglement an attractive topic of research
in various fields of physics.
The entanglement of the bipartite system of the subsystems A

and B is defined in terms of the Schmidt decomposition of its
ground state because the Hilbert space of the whole system is the
direct product of two subsystems: H = HA ⊗HB. The reduced
density matrix for the subsystem A ρA = trBρ is obtained by
tracing out all degrees of freedom of the subsystem B. One of
the most popular measurements of entanglement is entanglement
entropy. The entanglement entropy of the subsystem A can be
defined as:

SA = −trB (ρA ln ρA) . (1.1)

Although first considered a source of quantum corrections to the
entropy of black holes [Bombelli et al., 1986], entanglement en-
tropy, in particular, the von Neumann entropy, evolved into a tool
in the field of many-body systems. This heralded connections be-
tween seemingly unrelated research areas. In condensed matter,
entanglement entropy serves, for example, as a geometrical inter-
pretation for the boundary between local quantum many-body sys-
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tems. This connection has its origin in the area laws [Eisert et al.,
2010].

Another common tool for the measurement of entanglement is
the entanglement spectrum. Since the reduced density matrix does
not have negative eigenvalues, it can be always reformulated:

ρA =
1
Z
e−HA (1.2)

with the entanglement Hamiltonian HA and the partition function
Z = tr

(
e−HA

)
. The spectrum of the entanglement Hamiltonian

is the entanglement spectrum.
In condensed matter physics, the study of phases of matter and

phase transitions is one of the most important topics of research.
The phase and phase transitions are usually distinguished by Lan-
dau’s theory of phase transitions, which involves the existence of
a local order parameter, as opposed to the topological phases and
topological phase transitions, which cannot be distinguished by a
local order parameter. The latter phases possess so-called topo-
logical order [Wen, 1990,Wen, 1991]; their ground states might
be degenerate and no local measurement can distinguish these de-
generate ground states. The significance of the topological phase
was underlined in 2016, when the Nobel Prize for Physics was
awarded to David J. Thouless, F. Duncan M. Haldane, and J.
Michael Kosterlitz "for theoretical discoveries of topological phase
transitions and topological phases of matter". The entanglement
spectrum is constructed from the ground state, which consists all
the correlations that give rise to the various phases of matter. Li
and Haldane found that one signature of the Fractional Quantum
Hall effect, the low-energy excitations, can be related to the entan-
glement spectrum and suggested that the entanglement spectrum
has information about a given phase [Li and Haldane, 2008]. Fur-
ther, they concluded that the entanglement spectrum is beyond
entanglement entropy, which extracts all the information from the
reduced density matrix and proposed it as a new order parameter
for distinguishing topological phases. Nowadays, the framework of
the entanglement spectrum in condensed matter physics is very
broad and is applied to many condensed matter systems, such
as Quantum Hall liquids [Regnault et al., 2009, Zozulya et al.,
2009, Läuchli et al., 2010, Thomale et al., 2010b, Ardonne and
Regnault, 2011,Chandran et al., 2011,Hermanns et al., 2011,Schlie-
mann, 2011, Sterdyniak et al., 2011, Thomale et al., 2011, Alba
et al., 2012,Dubail et al., 2012, Liu et al., 2012,Rodriguez et al.,
2012,Sterdyniak et al., 2012], topological insulators and supercon-
ductors [Fidkowski, 2010,Turner et al., 2010,Bray-Ali et al., 2009,



4 introduction

Prodan et al., 2010,Borchmann et al., 2014,Kim, 2014], the frac-
tional Chern insulator [Regnault and Bernevig, 2011], superfluids
[Dubail and Read, 2011], spin systems [Nienhuis et al., 2009,Poil-
blanc, 2010,Pollmann and Moore, 2010,Pollmann et al., 2010,Yao
and Qi, 2010, Cirac et al., 2011, Huang and Lin, 2011, Lou et al.,
2011, Peschel and Chung, 2011, Thomale et al., 2010a,De Chiara
et al., 2012,Läuchli and Schliemann, 2012,Lundgren et al., 2012,
Schliemann and Läuchli, 2012,Tanaka et al., 2012,Chen and Frad-
kin, 2013,Lundgren et al., 2013,Lundgren et al., 2014,Lundgren,
2016, Predin, 2017], and Hofstadter bilayers [Schliemann, 2013];
for recent reviews, see Ref. [Regnault, 2015,Laflorencie, 2016]. As
a result of this study, the entanglement spectrum possesses uni-
versal information about a phase and this is reflected to an ex-
act equivalence between the low-lying entanglement spectrum and
edge energy spectrum.
The statement that the entanglement spectrum has fundamen-

tal and universal information about the phase was criticized in
Ref. [Chandran et al., 2014]. These authors have indicated that
topological phase transitions can occur in the entanglement Hamil-
tonian, even though a physical system remains in the same state.
The physical reason for this is that they have defined the entangle-
ment Hamiltonian asHent = − ln(ρred), implying Z ≡ 1 at a finite
effective temperature TE = 1/β ≡ 1, with β is a inverse effective
temperature. This makes the entanglement thermodynamics an
important task of research.
A particular situation arises if the edge comprises the entire

remaining subsystem. A typical observation in such a scenario
is the proportionality between the entanglement spectrum, given
by a traced out subsystem, and the energy spectrum of a re-
maining subsystem in the limit of strongly coupled subsystems.
These findings are illustrated by many important examples, in-
cluding spin systems [Poilblanc, 2010, Cirac et al., 2011, Peschel
and Chung, 2011, Läuchli and Schliemann, 2012, Schliemann and
Läuchli, 2012, Tanaka et al., 2012, Lundgren et al., 2013, Chen
and Fradkin, 2013,Lundgren, 2016,Predin, 2017], and bilayer sys-
tems [Schliemann, 2011,Schliemann, 2013,Schliemann, 2014]. This
proportionality can be illustrated by

Hent ∼ λHA/t (1.3)

where λ is inverse proportional to the coupling between subsys-
tems and t has the dimensions of energy. We note that the entan-
glement Hamiltonian entering the reduced density matrix Eq.(1.2)
is only determined up to multiples of the unit operator, which
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has consequences regarding the thermodynamic relations between
the entanglement entropy and the subsystem energy [Schliemann,
2011,Schliemann, 2013,Schliemann, 2014].

On the other hand, such a close relationship between the en-
ergy and entanglement Hamiltonian is not truly general, as shown
in Ref. [Lundgren et al., 2012], in which a spin ladder of clearly
nonidentical legs was studied.
In the present thesis, we will represent a detailed analytical

study of the entanglement spectra of the ground states of graphene
systems. This includes considerations of graphene bilayers focusing
on trigonal warping [McCann and Koshino, 2013,Rozhkov et al.,
2016], and as well graphene in the presence of superconducting in-
stabilities [Black-Schaffer and Doniach, 2007]. Our analytical ap-
proach of the entanglement includes the eigenvalues of the reduced
density matrix (giving rise to the entanglement spectrum) as well
as its eigenvectors. From these eigenvectors, we construct topologi-
cal quantities, the Berry phase, and the Chern number, in order to
study the topological properties of the entanglement Hamiltonian.
This ensures that our consideration of the relationship between
the energy Hamiltonian of the remaining subsystem and the ap-
propriately defined entanglement Hamiltonian includes not only
their geometric but also topological properties. We will show that
although the geometric shapes of the entanglement spectrum of an
undoped graphene bilayer with a trigonal warped spectrum clearly
differ from the energy spectrum of the remaining monolayer, their
topological quantities such as the Berry phase contribution to the
Chern number agree. On the other hand, the entanglement Hamil-
tonian of the dx2−y2 + idxy superconductivity ground states on
the honeycomb lattice obtained by tracing out one spin direction
and the Hamiltonian of the remaining subsystem have completely
different topologies.
Our investigations are based on closed analytical expressions for

the full eigensystem in the entire Brillouin zone of bilayer graphene
with a trigonally warped spectrum and of graphene in the presence
of superconductivity instabilities.
In the following, we give an outline of this thesis:
In Chapter 2, the lattice structure, tight-binding model, and en-

ergy description around the Dirac points in graphene are addressed.
Here, we derive the tight-binding models assuming that electrons
can hop to a nearest-neighbor atom. The topological properties of
graphene are also discussed, and the density of states is presented.
Chapter 3 is dedicated to an investigation of Bernal-stacked

graphene bilayers, taking into account only the nearest-neighbor
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hopping parameter and the hoping parameter between the atoms
on opposite sites which are on top of each other. First, we recapit-
ulate the tight-binding model of graphene bilayers. Here, as well
as in Chapter 4, the entanglement Hamiltonian of the noninteract-
ing free fermionic system on the graphene bilayers is analytically
calculated as a single particle operator [Schliemann, 2013,Peschel,
2003,Cheong and Henley, 2004]. We demonstrate that upon trac-
ing out one layer, in the limit of strongly coupled layers the propor-
tionality between the entanglement Hamiltonian and the energy
Hamiltonian of the graphene monolayer leads to the equivalence
of their topological and thermodynamic properties. Here, the en-
tanglement spectrum given by tracing out another two of four sub-
lattices is considered, as well as the influence of the bias voltage
or the mass term.
In Chapter 4, we analytically study the entanglement and the

energy spectrum of the graphene bilayers in a Bernal stacking
arrangement when the trigonal warping is present in the energy
spectrum. In contrast with all earlier works, our analytical investi-
gations of the energy spectrum of graphene bilayers with the pres-
ence of trigonal warping cover the entire Brillouin zone and avoid
the Dirac cone approximation and the low-energy description of
graphene bilayers. We demonstrate that the entanglement spec-
trum obtained by tracing out one layer vanishes between points
where the energy spectrum possesses three additional Dirac cones
caused by the trigonal warping. The topological properties of the
entanglement spectrum of graphene bilayers, described by the Berry
phase contributions to the Chern number, agree with the topo-
logical properties of graphene monolayers. Furthermore, we ver-
ify that the entanglement spectrum can be a discontinuous func-
tion of the momentum as a consequence of the fact that the trig-
onal warping produces discontinuities in the eigenvectors of the
energetic Hamiltonian from which the entanglement spectrum is
constructed. These discontinuities play an important role in both
the geometric and topological properties of the entanglement spec-
trum. When an identical mass term in both layers or bias voltage is
introduced, these discontinuities vanish and an entanglement gap
opens. We also discuss the geometric and topological properties of
the entanglement spectra given by tracing out other two of four
sublattices. Technical details of the calculations of the full eigen-
system of the Hamiltonian of graphene bilayers are presented in
Appendix A. Furthermore, analytical derivations of the entangle-
ment spectra are given in Appendix B.
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Chapter 5 is dedicated to the entanglement spectra resulting
from the superconductivity ground states on the honeycomb lat-
tice tracing out one spin direction, mainly focusing on the s-wave
and dx2−y2 + idxy -wave superconductivity states. Here, in order
to analytically study the entanglement spectrum, we modify the
method for analytical calculations of a free fermionic system to a
system with superconductivity instabilities. We demonstrate that
the topology of the entanglement Hamiltonian can differ from that
of the subsystem Hamiltonian. In particular, the topological prop-
erties of the entanglement Hamiltonian of the chiral dx2−y2 + idxy
superconductivity state obtained by tracing out one spin direction
clearly differ from those of the time-reversal-invariant Hamiltonian
of noninteracting fermions on the honeycomb lattice. Some tech-
nical details on the analytical derivation of the full eigenstates of
the noninteracting fermionic system on the honeycomb lattice in
the presence of superconductivity instabilities, as well as the cor-
relation matrix calculations, are presented in Appendices C and
D.





2
GRAPHENE : NEW PHYS ICS IN
TWO-D IMENS ION

Graphene is an allotrope of carbon, a nonmetal that is a corner-
stone of all organic compounds and thus of life on Earth. Since
graphene is one atom thick, it can be considered as a two-dimensional
object. Graphite, a three-dimensional crystal, is built of layers of
graphene bonding via weak van der Walls bonds and is a well-
known material since the 16th century, used in the cores of pen-
cils. Graphene can be wrapped up as zero-dimensional fullerenes
and rolled out as one-dimensional carbon nanotubes. The first
molecules of fullerenes were fabricated in 1985 by Richard Smalley,
Robert Curl, James Heath, Sean O’Brien, and Harold Kroto, while
carbon nanotubes were discovered in 1991 by Sumio Iijima. A the-
oretical description of the band structure of graphene was written
down by Wallace in 1947 as an important step in the research
of graphite [Wallace, 1947]. Notwithstanding, it was believed that
graphene could not exist as a free and stable two-dimensional crys-
tal. Pierls and Landau indicated that two-dimensional crystals
are thermodynamically unstable and cannot exist [Peirls, 1934,
Landau and Lifshitz, 1980]. Mermin and Wagner amplified their
contention, and it was illustrated with many experiments [Mer-
min and Wagner, 1966, Mermin, 1968]. Meanwhile, it was no-
ticed that two-dimensional crystal structures can be stabilized
by three-dimensional structures. Geim and Novoselov developed
the method for isolation graphene by using Scotch tape in 2004
[Novoselov et al., 2004]. They were rewarded by the Nobel prize
for this simple, groundbreaking, and inspiring discovery in 2010.
Since it was isolated, it has been one of the most intensively stud-

ied materials. Graphene is a light, strong, flexible, and conductive
two-dimensional material with remarkable optical and electrical
properties. This extraordinary combination of properties makes
graphene a promising material for a new generation of devices,
such as transistors, sensors, solar cells, and smartphones. Apart
from the huge interest in investigations of graphene due to its

9
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potential applications in various devices, there is an enormous
interest in fundamental research. The low-energy excitations in
graphene are massless Dirac fermions, which were believed to be re-
alizable in accelerators. The half-integer Quantum Hall effect and
Berry’s phase of π are consequences of the existence of the mass-
less Dirac fermions in graphene [Zhang et al., 2005]. The existence
of massless Dirac fermions enables measurements of high-energy
phenomena, such as the Klein paradox [Katsnelson et al., 2006]
and Zitterbewegung [Rusin and Zawadzki, 2008]. Thus, graphene
has become a noteworthy bridge between condensed matter and
high-energy physics, as quantum entanglement is a bridge between
condensed matter physics and quantum informatics.
The electronic structure of graphene rapidly changes with the

number of layers and ten layers can already be considered as
graphite. Strictly speaking, only graphene and its bilayer have a
simple electronic structure: both are either zero-gap semiconduc-
tors or zero-overlap semimetals. Furthermore, graphene possesses
massless chiral quasiparticles as opposed to the massive ones in
its bilayers. In the case of multilayer graphene, which consists of
three to ten layers, the valence and conduction bands overlap and
there are a few kinds of charge carriers. Monolayer, bilayer, and
multilayer graphene can be realized as three different structures.
Carbon belongs to group IV of the periodic system. One carbon

atom contains six electrons with the electronic structure 1s22s22p2.
Two atoms are in the inner shell 1s and are more or less inert, while
four valence electrons are described by 2s, 2px, 2py and 2pz, since
one electron from the 2s orbital excites to the 2pz orbital, in order
to build covalent bonds. Three valence electrons in 2s, 2px and 2py
hybridize in planar sp2 bonds, σ bonds. The three sp2 orbitals lie
in the x-y plane with an angle 120◦ between them. σ bonds are the
strongest type of covalent bonds, because of the direct overlap be-
tween the orbitals. These bonds are responsible for the robustness
of the honeycomb lattice of graphene [Castro Neto et al., 2009].
The remaining delocalized 2pz orbitals are perpendicular to the
plane. They are responsible for forming half-filled π-bonds by co-
valent bonding. The π electrons are responsible for the low-energy
excitations, while σ electrons form energy bands far away from the
Fermi energy. pz orbitals allow hopping between carbon atoms and
thus can be described by the tight-binding model. Considering pz
orbitals of graphene, Wallace derived the tight-binding model of
graphene for the first time in 1947 [Wallace, 1947].
This chapter is organized as follows: The lattice structure of

graphene is briefly described in the first section 2.1. In Section
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Figure 2.1: a) Lattice of graphene with ~a1 and ~a2 denoting lattice vec-
tors, and ~δ1, ~δ2, and ~δ3 the nearest-neighbor vectors b) first
Brillouin zone of graphene with the reciprocal-lattice vec-
tors ~b1 and ~b2 and the Dirac points K+ and K−.

2.2, we derive the tight-binding approximation of the valence and
conduction band of graphene considering the nearest-neighbor in-
teractions and overlap interactions. The topological properties of
graphene are addressed in Section 2.3. Numerical calculations of
the density of states are given in Section 2.4.

2.1 lattice structure

Graphene consists of carbon atoms arranged in honeycomb lattice,
as shown in Fig.(2.1). The honeycomb lattice is not a Bravais lat-
tice and can be considered as two triangular Bravais lattices with
the basis formed by two atoms, sites A and B.
The span of the triangular Bravais lattice is defined by two lat-

tice vectors ~ai

~a1 =
a

2
(
1,
√

3
)

~a2 =
a

2
(
−1,
√

3
)

(2.1)

where a =
√

3aC−C with aC−C ≈ 0.142 nm is the distance be-
tween two nearest carbon atoms. Using a Fourier transform of the
Brillouin zone Fig.(2.1), the primitive cell in the momentum space
is defined by the reciprocal lattice vectors

~b1 =
2π√
3a

(
√

3, 1), ~b2 =
2π√
3a

(−
√

3, 1) (2.2)

as

~ai~bj = 2πδij (2.3)
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where δij denotes the Kronecker delta. The corners of the Bril-
louin zone are called Dirac points and only two of them are not
equivalent

K± = ±4π
3a (1, 0) . (2.4)

Every A atom is connected with three nearest B atoms with
nearest–nearest vectors

~δ1 = a(0, 1√
3
), ~δ2 =

a

2 (1,− 1√
3
), ~δ3 =

a

2 (−1,− 1√
3
).

(2.5)

2.2 electronic structure of graphene

The tight-binding model is a simple and effective tool to describe
the energy bands of a crystal structure. In this model, it is assumed
that in the vicinity of every lattice point, the crystal Hamiltonian
can be approximated by the Hamiltonian of a single atom Hat
[Ashcroft and Mermin, 1976]

Hatψn(~r) = Ejψn(~r). (2.6)

A further assumption is that the bound levels of the Hamiltonian
Hat are well localized, i.e. the ψn(~r) are very small when ~r is
larger than the distance of the lattice spacing. The entire crystal
is described by the Hamiltonian

H = Hat + U(~r) (2.7)

which includes the spatially periodic lattice potential U(~r). Be-
cause the honeycomb lattice of graphene has two atoms per unit
cell, the eigenstates of the Hamiltonian Eq.(2.7) are given as a
linear combination of two Bloch functions ψA~k (~r) and ψ

B
~k
(~r)

ψ~k(~r) =cAψ
A
~k
(~r) + cBψ

B
~k
(~r)

=
1√
N

∑
j

ei
~k ~Rj

(
cA(~k)φ(~r− ~RAj ) + cB(~k)φ(~r− ~RBj )

)
(2.8)

where N is the number of elementary cells, and cA(~k) and cB(~k)
are complex functions of the momentum ~k. The φ(~r− ~RAj )(φ(~r−
~RBj )) are atomic wavefunctions around the positions of the A (B)
atoms at the lattice site, respectively

RAj =n1~a1 + n2~a2
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RBj =RAj + ~δ1. (2.9)

where n1 and n2 are integers. By multiplication of the Schrödinger
equation Hψ~k(~r) = ε~kψ~k(~r) with ψ~k(~r), one can obtain

(c∗A(~k), c∗B(~k))H~k

 cA(~k)

cB(~k)

 = ε~k(c
∗
A(~k), c∗B(~k))S~k

 cA(~k)

cB(~k)


(2.10)

where the ε~k are the energy bands. Considering only the hopping
of the electrons between nearest– sites, the transfer matrix H~k and
the overlap map S~k become

H~k =

 εA −tγ(~k)
−tγ∗(~k) εB

 , S~k =

 1 s0γ(~k)

s0γ
∗(~k) 1


(2.11)

where t is the nearest– neighbor hopping energy, s0 is the on-site
energy and εA (εB) are on-site energies of the A(B) lattice sites,
respectively; the function γ(~k) = ∑

~δi
ei
~k~δi is the geometric struc-

tural factor and depends up to a phase factor of the choice of the
nearest-neighbor vectors ~δi. For details of the calculations of the
elements of H~k and S~k we refer the reader to the recent reviews
Refs. [McCann and Koshino, 2013,Goerbig, 2011]. Solving the sec-
ular equation of the Eq.(2.10), we find the energies for intrinsic
graphene when εA = εB = 0

E± =
±t|γ(~k)|

1∓ s0|γ(~k)|
. (2.12)

The tight-binding parameter values are t ≈ 3.033eV and s0 ≈
0.129eV [Saito et al., 1998]. The energy description of graphene is
visualized over the entire Brillouin zone in Fig.(2.2).

The valence band is completely filled and touches the completely
empty conduction band at the Dirac points. Furthermore, γ(~k)
can be approximated around Dirac points up to linear order of
the momentum as

γ(Kν + ~k) ≈
√

3a
2 (−νkx + iky) (2.13)

where ν = ±1 detonates the valley degeneracy. Neglecting the
s0, of which the effects are small and irrelevant at low energies
around the Dirac points, see Fig.(2.3), the low-energy excitations
have linear dispersion

ε(Kν + ~k) ≈ νvF |k| (2.14)
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Figure 2.2: Energy description of graphene within the entire Brillioun
zone for t = 3.033 eV, and s0 = 0.129eV. The dispersions
show a linear dispersion relation around every Dirac cone.

and propagate with the Fermi–Dirac velocity vF =
√

3at/2, which
is independent of their momentum p = h̄k (as photons with the
speed of light ”vF ”). These kinds of excitations are protected by
the symmetry of the honeycomb lattice of graphene and described
by the Hamiltonian

H(Kν + ~k) = vF~σν~k (2.15)

which has essentially the form of the Dirac equation which de-
scribes relativistic massless fermions (with velocity vE). Here, ~σν =
(νσx,σy) are Pauli Matrices, which represent the sublattice pseu-
dospin with valley degeneracy. To summarize, the low-energy exci-
tations are massless chiral Dirac fermions with a linear dispersion
relation.

2.3 topological invariants

Among other interesting and fascinating properties, graphene pos-
sesses nontrivial topological properties.
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Figure 2.3: Energy bands of graphene plotted along the kx axis. The
effects of the parameter s0 are small and irrelevant at low
energies around the Dirac points.

The space inversion and time-reversal symmetry have essential
roles in the topological properties of graphene. The space inversion
is defined as

I : H(~k) = σxH(−~k)σx. (2.16)

Whereas, the time-reversal symmetry is defined as

T : H(~k) = H∗(−~k). (2.17)

In the context of graphene, the Berry phase is the phase that
an eigenstate acquires after the electron wavevector in graphene
completes a full cycle at constant energy around a Dirac point.
The eigenstates of graphene read

χ±(~k) =
1√
2

 1
∓eiφ(~k)

 (2.18)

where the phase φ(~k) is φ(~k) = γ(~k)/|γ(~k)|. The eigenstates are
smooth and well-defined functions of the wavevector, except for at
the locations of Dirac cones.
The degeneracy points of the eigenstates act as sources of the

Berry curvature, defined as

F (~k) =
∂Ay
∂kx
− ∂Ax
∂ky

(2.19)

where the Berry connection

~A(~k) = i〈χ±(~k)|
∂

∂~k
|χ±(~k)〉. (2.20)
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Figure 2.4: Single particle density of states of graphene as a function
of energy ε in units of t. The van-Hove singularity points
occur at ε/t = ±1.

In graphene, the Berry curvature due to the time-reversal and
space inversion symmetry vanishes everywhere outside the Dirac
cones where quantized "monopole" sources of the δ-function type
exist.
The Berry is defined as an integral over a closed path in ~k space

[Xiao et al., 2010]. Thus, integrating over a closed path around
one Dirac cone K± yields the Berry phase ±π. The nontrivial
topological quantity, the Berry phase, implies that the Dirac cones
are topologically protected.

2.4 density of states

Fig.(2.4) shows the single particle density of states, obtained by
numerically integrating the spectral function [Bena and Kivelson,
2005]

ρ(ε) =
∫ dk2

4π2A(
~k, ε) (2.21)

over first Brillioun zone, where

A(~k, ε) = −2Im
((
ε− t|γ(~k)|+ iη

)−1
+
(
ε+ t|γ(~k)|+ iη

)−1)
.

(2.22)

We perform the numerical calculations for a finite inverse lifetime
of the quasiparticle η = 0.005 t. The van-Hove singularity points
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are points where the density of states possesses singularities. As
can be seen from Fig.(2.4), the van-Hove singularity points occur
at ε/t = ±1. Furthermore, at low energies |ε|/t < 1 the density
of states has a v-shape, while at energies |ε|/t > 3 the density of
states goes to zero.
The finite value of the inverse lifetime η, which goes to zero, has

two consequences:

1. the density of states at ε = 0 has a very small value and goes
to zero as ρ(0) ≈ η ln (1/η),

2. the divergence of the density of states at van-Hove singularity
points as ρ(±t) ≈ ln (1/η).





3
GRAPHENE B ILAYERS : ENERGY VERSUS
ENTANGLEMENT

Graphene bilayers were isolated soon after the graphene monolayer.
The low-energy excitations are massive chiral fermions, which do
not exist in high-energy physics. The main consequences of this
are the integer Quantum Hall effect without plateau at zero and
the non-trivial Berry’s phase of 2π [Novoselov et al., 2006].
Quantum entanglement, primarily a source of quantum infor-

mation, has developed into one of the most studied subfields of
many-body physics. In the last decade, quantum entanglement
has mainly been used to study phase structure in condensed mat-
ter physics [Amico et al., 2008]. The entanglement spectrum of a
bipartite system of subsystems A and B is defined in terms of the
Schmidt decomposition of its ground state |ψ〉 as

|ψ〉 =
∑
n
e−

ξn
2 |ψAn 〉|ψBn 〉 (3.1)

where the states |ψAn 〉 (|ψBn 〉) are orthonormal states of the subsys-
tem A (B), respectively, and the non-negative quantities ξn rep-
resent the levels of the entanglement spectrum. In many previous
studies, the proportionality between the energetic Hamiltonian of
the subsystem A HA and the entanglement Hamiltonian Hent in
the strong coupling regime between rungs [Poilblanc, 2010,Cirac
et al., 2011, Schliemann, 2011, Peschel and Chung, 2011, Läuchli
and Schliemann, 2012,Schliemann and Läuchli, 2012,Schliemann,
2013,Predin, 2017] has been observed.

The starting point of this chapter is to recapture the energy
description of graphene bilayers considering only the hopping pa-
rameter between nearest neighbors on honeycomb lattice and the
hopping parameter between neighbor sites that are on top of each
other. The effects of the term that causes the trigonal warping [Mc-
Cann and Koshino, 2013,Rozhkov et al., 2016] in graphene bilayers
will be a central point of Chapter 4. Furthermore, we will neglect
the term breaking the particle–hole symmetry. In this chapter,
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we analytically consider the entanglement spectrum of the free
fermionic system on a graphene bilayers in a Bernal stacking ar-
rangement. In the limit of strongly coupled layers, there is a pro-
portionality between the entanglement Hamiltonian of graphene
bilayers obtained by tracing out one layer, and the energetic Hamil-
tonian of the graphene monolayer. Then, we place a special focus
on the effects of this proportionality on thermodynamic and topo-
logical properties of the entanglement Hamiltonian. We also study
the entanglement spectrum of graphene bilayers in the presence of
the bias voltage and the mass term.
The tight-binding description of graphene bilayers is studied in

Section 3.1. In Section 3.2, we start with a brief review of the
method for analytical derivation of the entanglement spectrum of
the free fermionic system given in Refs. [Peschel, 2003, Cheong
and Henley, 2004, Schliemann, 2013]. Then, we analyze the en-
tanglement spectrum of graphene bilayers obtained by tracing out
one layer and applied the concept of the entanglement thermo-
dynamics. Furthermore, we also stress here an agreement in the
topology of the entanglement Hamiltonian of graphene bilayers
and the energy Hamiltonian of a graphene monolayer, due to the
proportionality between these Hamiltonians. Then, we study the
entanglement spectrum of graphene bilayers obtained by tracing
out other two of possible four sublattices. In Section 3.3, we give
an explicit equation for entanglement levels when the bias voltage
or mass term are included. Finally, we close this chapter with a
brief conclusion and an outlook in Section 3.4.

3.1 electronic structure of graphene bilayers

Graphene bilayers consist of two coupled layers via Van der Walls
forces. The unit cell of graphene bilayers has four carbon atoms,
A1, B1 on the lower layer and A2, B2 on the upper layer. The layers
are arranged in the Bernal stacking [McCann and Koshino, 2013,
Rozhkov et al., 2016], where one atom at the B1 site is directly
below an atom at the A2 site Fig.(3.1).
Then, the integral matrix of the graphene bilayers has the fol-

lowing form [McCann and Koshino, 2013]

H~k =


εA1 −tγ(~k) t4γ(~k) −t3γ∗(~k)

−tγ∗(~k) εB1 t⊥ t4γ(~k)

t4γ
∗(~k) t⊥ εA2 −tγ(~k)

−t3γ(~k) t4γ
∗(~k) −tγ∗(~k) εB2

 (3.2)
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Figure 3.1: Schematic representation of Bernal-stacked bilayer
graphene. Two sublattices of each layer are represented by
red and blue spheres. The intralayer hopping parameter
t between nearest electrons and also interlayer hopping
parameters t, t3, and t4 are represented by red lines.

in the basis
(
a†

1~k
, b†

1~k
, a†

2~k
, b†

2~k

)
|0〉 where a†

i~k
(a
i~k
) and b†

i~k
(b
i~k
) cre-

ate (annihilate) electrons layers i = 1, 2 on sublattice A and B,
respectively.. Here, γ(~k) =

∑
~δ

exp(i~k · ~δ) with ~δ being nearest–
neighbor vectors on a graphene monolayer, defined by Eq.(2.5).
εA1, εB1, εA2 and εB2 are on-site energies. The parameter t is the
hopping parameter between nearest-neighbor atoms within each
layer, while t⊥ describes coupling between atoms at the sites B1
and A2. The parameter t3 is the interlayer hopping parameter be-
tween atoms A1 and B2 and causes trigonal warping. Whereas
the parameter t4 is the interlayer hoping parameter between A1
and A2 and B1 and B2 and leads to the electron–hole asymmetry.
Hopping parameters are represented in Fig.(3.1). Effects of the pa-
rameters t3 on the energy, and as well entanglement spectrum will
be discussed in Chapter 4. Since, the eigenvalues and eigenstates of
the Hamiltonian Eq.(3.2) cannot be obtained in closed analytical
form when the hopping parameter t4 is included, we will neglect
it in this thesis. The experimentally established values [Kuzmenko
et al., 2009] for these parameters are t = 3.16eV, t⊥ = 0.381eV,
t3 = 0.38eV, and t4 = 0.14eV.
Furthermore, we will neglect the overlap matrix, since it has

only a small and irrelevant influence around the Dirac cones. For
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Figure 3.2: The energy bands of graphene bilayers plotted along the
kx axis for t = 3.16eV, and t⊥ = 0.381eV. The dispersions
show a quadratic dispersion relation around every Dirac
cone.

intrinsic graphene bilayers when εA1 = εA2 = εB1 = εB2 = 0 solv-
ing the eigenproblem of the Hamiltonian Eq.(3.2) we obtain the
symmetric energy spectrum with four bands ±E1(~k) and ±E2(~k)

E1,2(~k) = ±
1
2t⊥ +

√
t2⊥
4 + t2|γ(~k)|2, (3.3)

a pair of conduction bands and a pair of the valence bands. The
energy bands structure of graphene bilayers is plotted along the
kx axis in the momentum space in Fig.(3.2).
The Hamiltonian that describes the properties of electrons in

the vicinity of the Dirac points ~k +Kν (ν = ±1 detonates the
valley degeneracy) can be approximated within the Dirac cone
approximation

H~k+Kν =


0 vFπ

† 0 0
vFπ 0 t⊥ 0

0 t⊥ 0 vFπ
†

0 0 vFπ 0

 (3.4)

where vF is the Fermi-Dirac velocity, and π = νpx+ ipy and π† =
νpx − ipy. Energy bands Eq.(3.3) can be approximated around
Dirac points

E1,2 = νm∗v2
F +

√
(m∗v2

F )
2 + p2v2

F (3.5)

where m∗ is the effective mass of the quasiparticles m∗ = t⊥
2v2
F

and it is directly proportional to the hopping parameter t⊥. Thus,
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the mass of the quasiparticles directly arises from the interaction
between the layers. Even more, at small momentum, the energy
band Eq.(3.3)

E1 =
p2

2m∗ (3.6)

shows the quadratic dispersion. However, these excitations are not
classical massive quasiparticles, which are the most common in
the condensed matter physics. Similar to the case of graphene, we
will prove the chirality of the quasiparticle in graphene bilayers by
showing that they can be described by the generalized Dirac Hamil-
tonian with elements p2

2m∗ . In this sense, it is necessary to rewrite
the Hamiltonian Eq.(3.4), which possesses information about the
high-energy bands ±E1 as the low-energy effective Hamiltonian
which possesses the information only about the low-energy bands
±E2 [McCann and Fal’ko, 2006]. Keeping only terms up to linear
in t⊥ we find

H(eff)
~k

= −

 0 t2

t⊥

(
γ∗(~k)

)2

t2

t⊥

(
γ(~k)

)2
0

 (3.7)

in the basis
(
b†
2~k

, a†
1~k

)
|0〉 and it is good approximation in the en-

ergy range |E2| < 1
4t⊥. It the vicinity of the Dirac point Kν the

effective Hamiltonian Eq.(3.7) can be approximated by the Dirac
cone approximation to

H(eff)
~k+Kν

= −ν h̄
2v2
F

t⊥

 0 (π†)2

π2 0

 (3.8)

It is more convenient to write this Hamiltonian in the following
form

H(eff)
~k+Kν

= −ν h̄
2k2

2m∗ ~σ~n (3.9)

where ~k = (k cos(φ~k), k sin(φ~k)) and ~n = (n cos(2φ~k),n sin(2φ~k)).
~σ denote Pauli matrices. To conclude, the low-energy excitations
are massive chiral particles with the quadratic dispersion. In quan-
tum electrodynamics, only massless particles are chiral and thus
graphene bilayers become an exciting playground for studying
properties of massive chiral quasiparticles that do not exist in
quantum electrodynamics.
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3.1.1 Topological invariants

The Hamiltonian Eq.(3.2) of intrinsic graphene fulfills the time-
reversal symmetry

H∗(~k) = H(−~k) (3.10)

and the space inversion symmetry

(σx ⊗ σx)H(~k) (σx ⊗ σx) = H(−~k). (3.11)

The eigenstates of the effective Hamiltonian Eq.(3.7)

|χ±〉 =
1√
2

 1
∓e2iφ(~k)

 (3.12)

with φ(~k) = γ(~k)/|γ(~k)|. The singularities of these eigenstates at
the Dirac points act as the sources of the Berry curvature flux

F (~k) =
∂Ay
∂kx
− ∂Ax
∂ky

(3.13)

where the Berry connection

~A(~k) = i〈χ±(~k)|
∂

∂~k
|χ±(~k)〉. (3.14)

Integrating the Berry connection ~A over a closed path, it is found
that the Dirac cone K± contributes ±2π to the Berry phase.

3.2 entanglement spectrum

3.2.1 Method

For systems of free fermions as studied here, the entanglement
Hamiltonian can be formulated as a single-particle operator [Peschel,
2003,Cheong and Henley, 2004,Schliemann, 2013].

Consider first a system of free fermions described by Hamilto-
nian

H =
∑
i,j
tijc
†
icj (3.15)

where tij-hopping parameter, and c†i (ci) creates (annihilates) an
electron on the i-th site.
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The one-particle function determined by the ground state |ψ〉
of the previous Hamiltonian Eq. (3.15) reads

Cij = 〈ψ|c†icj |ψ〉 = tr
(
ρc†icj

)
(3.16)

where ρ is the density matrix.
In this thesis, we restrict our considerations to a bipartite sys-

tem, which consists of two subsystems A and B. Since the reduced
density ρA, obtained by tracing out subsystem B, does not have
any negative eigenvalues, it can be always reformulated as

ρA =
1
Z
e−HA (3.17)

with the entanglement spectrum HA and the partition function
Z = tr

(
e−HA

)
.

Now, we will consider only the subsystem A, which has L sides.
It is clear that the correlation matrix in this subsystem has the
following form

Cαβ = trA(ρAc†αcβ) = 〈ψ|c†αcβ|ψ〉 (3.18)

where |ψ〉 is the ground state of the composite system, and single-
particle operators cα, cβ act on its remaining part after tracing
out a subsystem.
In order to represent all correlation functions in the free fermion

subsystem A, the entanglement HamiltonianHA of the non-interacting
system must have the following form

HA =
∑

α,β∈A
Hαβc†αcβ. (3.19)

Furthermore, every Hamiltonian of free fermions Eq. (3.15) can be
diagonalized using the unitary matrix U as

H = UDU † (3.20)

where D = diag (E1,E2, ...,EN/2,−E1,−E2, ...,−EN/2), with Ei
are eigenenergies. We use a new kind fermion operations aα

aα =
∑
β

Uβαcβ (3.21)

to calculate the correlation function in the set {|λ〉} of many-body
eigenstates of HA

Cαβ =〈c†αcβ〉A
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=

∑
λ〈λ|c†αcβe−HA |λ〉∑
λ
′ 〈λ′|e−HA |λ′〉

=

∑
λ〈λ|

∑
mn a

†
mUαmUβnane

−HA |λ〉∑
λ
′ 〈λ′|e−HA |λ′〉

. (3.22)

where∑
λ
′
〈λ
′
|e−HA|λ

′
〉 =

∑
{nα}
〈{nα}|e−

∑
α ξαnα |{nα}〉 =

∏
α

∑
nα={0,1}

e−ξαnα

and∑
λ

〈λ|
∑
mn

a†mUαmUβnane
−HA |λ〉 =

∑
mn

UαmUβn
∑
λ

〈λ|a†mane−HA |λ〉

=
∑
l

UαlUβl
∑
λ

〈λ|nle−HA |λ〉

=
∑
l

UαlUβl
∑
{nα}
〈{nα}|nle−

∑
α
ξαnα |{nα}〉

=
∑
l

UαlUβl

∏
α6=l

∑
nα={0,1}

e−ξαnα

 ∑
nl={0,1}

e−ξlnlnl

=
∑
l

UαlUβl

(∏
α

(
1 + e−ξαnα

)) e−ξl

1 + e−ξl
.

Finally, we get

Cαβ =
∑
l

UαlUβl
e−ξl

1 + e−ξl
(3.23)

where we sum only over states with negative energies, because
only these states are occupied. The eigenvalues ξα of the entangle-
ment Hamiltonian, known as entanglement levels. The entangle-
ment Hamiltonian then can be reformulated as a single particle
operator

HA =
L∑
α=1

ξαa
†
αaα. (3.24)

The eigenvalues ξα are related to the eigenvalues ηα of the corre-
lation matrix via

ξα = ln
(

1− ηα
ηα

)
= 2artanh (1− 2ηα) . (3.25)

The entanglement levels form the entanglement spectrum. In par-
ticular, the entanglement Hamiltonian and the correlation matrix
share the same system of eigenvectors.
Here, the only condition is that the eigenvalues of the correlation

matrix lie between 0 and 1, which is always the case because they
can be written in the form 〈a†αaα〉.
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3.2.2 Tracing out one layer

Here, we will analytically obtain the entanglement spectrum by
tracing out layer 1 from the ground state of the undoped graphene
bilayers where all states with negative energies (−E1(~k)), (−E2(~k))
are occupied, while all others are empty. Then, the correlation ma-
trix has the following form

C(~k) =

 〈a†2~ka2~k〉 〈a
†
2~k
b2~k〉

〈b†
2~k
a2~k〉 〈b

†
2~k
b2~k〉


=

 1
2 u(~k)

u∗(~k) 1
2

 (3.26)

where u(~k) = 1
2e
iφ(~k) t|γ(~k)|√

t2|γ(~k)|2+ 1
4 t

2
⊥

.

The eigenvalues of the correlation matrix

η±(~k) =
1
2

1∓ t|γ(~k)|√
t2|γ(~k)|2 + 1

4t
2
⊥

 (3.27)

lead to the entanglement levels

ξ±(~k) = ±2arcsinh
2t|γ(~k)|

t⊥

 . (3.28)

These entanglement levels get into the entanglement Hamiltonian
as

Hent =
∑
n=±

ξnc
†
~kn
c~kn. (3.29)

Here, the operators c~kn diagonalize the energetic Hamiltonian.
The entanglement levels ξ± are represented in Fig. (3.3) in the

entire Brilloun zone. At every Dirac point, two layers are maxi-
mally entangled (1/t⊥ = 0) and the entanglement spectrum van-
ishes ξ± = 0.
One can notice that the entanglement spectrum Eq. (3.28) for

a given energy spectrum of a graphene monolayer depends only on
the coupling parameter t⊥. Furthermore, the entanglement spec-
trum ξ± in the limit of strongly coupled layers t⊥ >> t|γ(~k)| can
be approximated as

ξ± ≈ ±
4t|γ(~k)|
t⊥

∓ 8t3|γ(~k)|3
3t3⊥

+O
(

1
t5⊥

)
. (3.30)
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Figure 3.3: The entanglement spectrum ξ±(~k) plotted for t = 3.16eV,
t⊥ = 0.381eV over entire Brillouin zone. The contour plot
represents the lower entanglement level ξ−.

This implies the direct proportionality, in the limit of the strong
coupling layers, between the entanglement spectrum ξ± of graphene
bilayers and the energy spectrum t|γ(~k)| of a graphene monolayer

ξ± ≈
4
t⊥
t|γ(~k)| (3.31)

with the proportionality factor λ = 4/t⊥, which is indeed the
phenomenological inverse temperature [Schliemann, 2014]. As we
shall see in the following, this proportionality has crucial conse-
quences on the topological quantities of the entanglement Hamil-
tonian [Predin et al., 2016] and the entanglement thermodynam-
ics [Schliemann, 2011,Schliemann, 2013,Schliemann, 2014].
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Topological invariants

The entanglement Hamiltonian and the correlation matrix share
the same eigenstates. Integrating the Berry connection constructed
from the eigenstates of the correlation matrix over a closed path
around the Dirac coneK±, we find a Berry phase of±π. This result
agrees with the Berry phase around the Dirac cones in monolayer
graphene.

Entanglement thermodynamics

The entanglement entropy and entanglement energy are defined as
functions of the reduced density matrix [Schliemann, 2011, Schlie-
mann, 2013,Schliemann, 2014]

S =〈− ln ρred〉 (3.32)
E =〈Hent〉 (3.33)

where 〈·〉 = tr (ρred · ). Since the reduced density matrix can be
rewritten as

ρred(λ) =
e−Hent(λ)
Z(λ)

=
∑
n

e−ξn(λ)c
†
ncn

1 + e−ξn(λ)
. (3.34)

the entanglement entropy and energy have the following forms

S(λ) =
∑
n

 ln
(
1 + e−ξn(λ)

)
1 + e−ξn(λ)

+
ln
(
1 + eξn(λ)

)
1 + eξn(λ)


=
∑
n

(
ln
(
1 + e−ξn(λ)

)
+

ξn(λ)

1 + eξn(λ)

)
(3.35)

E(λ) =
∑
n

ξn(λ)

1 + eξn(λ)
, (3.36)

respectively. This leads to the expression for the entanglement free
energy defined as

F = E − S. (3.37)

Here, the thermodynamic relation

∂S

∂E
=
∂S

∂λ

∂λ

∂E
= β(λ) (3.38)

holds, where β(λ) is the inverse thermodynamic temperature. Fur-
thermore, the connection between the entanglement Hamiltonian
and canonical entanglement Hamiltonian Hcan is

Hent = β(λ)Hcan (3.39)
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and allows us to define the entanglement inner energy as

E(λ) = 〈Hcan〉 (3.40)

and the free energy as

F (λ) = E(λ)− S(λ)/β(λ). (3.41)

It is easy to obtain from Eq.(3.38)

β
∂F

∂β
= E. (3.42)

Thus, the connection between the inverse thermodynamic temper-
ature β(λ) and the phenomenological inverse temperature λ is
given by

∂β(λ)

∂λ
=

1
E

∂F

∂λ
=

1
E

∂
(
E − S

)
∂λ

. (3.43)

Here, the entanglement entropy and entanglement energy is

S(λ) = 2ln
(
1 + λt|γ(~k)|

)
− λt|γ(~k)|

(
1 + tanh

(1
2λt|γ(

~k)|
))

,

E(λ) = −λt|γ(~k)| tanh
(1

2λt|γ(
~k)|
)

, (3.44)

respectively. This leads to

∂
(
E − S

)
∂λ

= −t|γ(~k)| tanh
(1

2λt|γ(
~k)|
)

(3.45)

and further to

∂β(λ)

∂λ
=

1
λ

. (3.46)

The inverse thermodynamic temperature is proportional the phe-
nomenological inverse temperature

β(λ) = kEλ (3.47)

where kE is a constant. Finally, the canonical entanglement Hamil-
tonian is independent of the inverse temperature β = 4kE/t⊥,
such that

Hcan =
1
kE

(
c†~k,+

c~k,+ − c
†
~k,−

c~k,−

)
. (3.48)
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3.2.3 Tracing out A1 and B2 (or A2 and B1) sublattices

The correlation matrix obtained by tracing out sublattices A1 and
B2 lying in opposite layers has the following form

C(~k) =

 〈a†2~ka2~k〉 〈a
†
2~k
b1~k〉

〈b†
1~k
a2~k〉 〈b

†
1~k
b1~k〉


=

 1
2 −v(~k)

−v(~k) 1
2

 (3.49)

where v(~k) = 1
4

t⊥√
t2|γ(~k)|2+ 1

4 t
2
⊥

.

One can notice that the off-diagonal terms of the correlation
matrix Eq.(3.26) and the correlation matrix Eq.(3.49) satisfy the
relation

|u(~k)|2 + |v(~k)|2 =
1
4. (3.50)

The eigenvalues η± of this correlation matrix

η± =
1
2

1±
1
2t⊥√

t2|γ(~k)|2 + 1
4t

2
⊥

 (3.51)

escort the entanglement levels

ξ± = ±2arsinh
(

t⊥

2t|γ(~k)|

)
. (3.52)

In Fig.(3.4) we visualize the eigenvalue η− of the correlation matrix
around a given K-point.
In the Dirac points, the eigenvalues of the correlation matrix

become η+ = 1 and η− = 0 and thus, the remaining subsystem is
not entangled with the subsystem which is traced out.

Topological invariant

The entanglement gap is always opened, because the off-diagonal
elements v(~k) of the correlation matrix do not vanish anywhere.
This implies that the Berry curvature and all Berry phases are
zero in entire Brillouin zone.

3.2.4 Tracing out A1 and A2 (or B1 and B2) sublattices

The correlation matrix given by tracing out A1 and A2 sublatties

C(~k) =

 〈b†1~kb1~k〉 〈b†1~kb2~k〉
〈b†

2~k
b1~k〉 〈b

†
2~k
b2~k〉


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Figure 3.4: The eigenvalue η− = 1/2 + |v(~k)| of the correlation ma-
trix plotted over entire Brillouin zone for the same value of
parameters as Fig.(3.2).

=

 1
2 0
0 1

2

 (3.53)

is proportional to the unit matrix. Thus, the remaining subsystem
is maximally entangled with the traced out subsystem.

3.3 effects of bias voltage and mass term

3.3.1 Energy spectrum

Bias voltage

Applying the bias voltage makes the difference of on-site energies
Λ of different layers, thus the lower layer 1 of graphene bilayers is
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on the energy εA1 = εB1 = −Λ
2 and the upper layer 2 is on the

energy εA2 = εB2 = Λ
2 . Then the Hamiltonian Eq.(3.2) becomes

H~k =


−Λ

2 −tγ(~k) 0 0
−tγ∗(~k) −Λ

2 t⊥ 0
0 t⊥

Λ
2 −tγ(~k)

0 0 −tγ∗(~k) Λ
2

 . (3.54)

The energy bands of this Hamiltonian are given by ±ε1,2 where

ε1,2 =

√√√√t2|γ(~k)|2 + t2⊥
2 +

(
Λ
2

)2
± 2

√
t2|γ(~k)|2 (Λ2 + t2⊥) +

(
t⊥
2

)4
.

(3.55)
Thus, the changing of the bias voltage opens the band gap Λ be-
tween central energy bands (±E2). The energy bands are plotted
over entire Brillouin zone for t = t⊥ and Λ = 0.2t⊥ in Fig. 3.5.

Mass term

The mass term m makes the difference between the A and B sub-
lattices. The Hamiltonian reads

H~k =


m −tγ(~k) 0 0

−tγ∗(~k) −m t⊥ 0
0 t⊥ m −tγ(~k)
0 0 −tγ∗(~k) −m

 . (3.56)

The eigenenergies of the Hamiltonian Eq.(3.56) are given by ±ε1,2
where

ε1,2 =

√√√√√1
2t⊥ ±

√
t2|γ(~k)|2 + 1

4t
2
⊥

2

+m2. (3.57)

. The energy difference between two central bands (±ε2) is 2m.
In Fig.(3.6), we plot these eigenergies throughout Brillouin zone

for t = t⊥ and m = 0.1t⊥.

3.3.2 Entanglement spectrum

Bias voltage

Tracing out one layer 1 of ground state of bilayer graphene in the
presence of the bias voltage leads to the correlation matrix

C(~k) =

 C11 C12

C∗12 C22

 (3.58)
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Figure 3.5: The central energy bands ±ε2 plotted over entire Brillouin
zone for t = t⊥ and Λ = 0.2t⊥. The contour plot represents
the energy band (ε2).

where

C11(~k) = 〈a†
2~k
a

2~k
〉

=
1
2 −

1
4

1−
1
2
t2⊥√

t2|γ(~k)|2(t2⊥ + Λ2) + 1
4
t4⊥

 Λ√
Λ2 + t2⊥

1
ε2

e2 −
t21√

Λ2 + t2⊥


+

1
4

1 +
1
2
t2⊥√

t2|γ(~k)|2(t2⊥ + Λ2) + 1
4
t4⊥

 Λ√
Λ2 + t2⊥

1
ε1

e1 −
t21√

Λ2 + t2⊥


C22 = 〈b†

2~k
b

2~k
〉

=
1
2 −

1
4

1 +
1
2
t2⊥√

t2|γ(~k)|2(t2⊥ + Λ2) + 1
4
t4⊥

 Λ√
Λ2 + t2⊥

1
ε2

e2 +
t21√

Λ2 + t2⊥


+

1
4

1−
1
2
t2⊥√

t2|γ(~k)|2(t2⊥ + Λ2) + 1
4
t4⊥

 Λ√
Λ2 + t2⊥

1
ε1

e1 +
t21√

Λ2 + t2⊥


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Figure 3.6: The central energy bands ±ε2 plotted over entire Brillouin
zone for t = t⊥ andm = 0.1t⊥. The contour plot represents
the energy band (ε2).

C12 = 〈a†
2~k
b

2~k
〉

=
1
2e

iφ(~k) t|γ(~k)|√
t2|γ(~k)|2 + 1

4

t4⊥
t2⊥+Λ2

(
e1

ε1
− e2

ε2

)
(3.59)

with

e1,2 =
1
2

√Λ2 + t2⊥ ±

√√√√4t2|γ(~k)|2 + t4⊥
t2⊥ + Λ2

 (3.60)

The entanglement levels analytically obtained from this correlation
matrix will be discussed later in 3.3.2.
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Mass term

The correlation matrix of ground state of graphene bilayers in the
presence of the mass term m given by tracing out one layer 1 reads

C(~k) =

 C11 C12

C∗12 C22

 (3.61)

where

C11(~k) = 〈a†2~ka2~k〉

=
1
2 −

1
4

1−
1
2t⊥√

t2|γ(~k)|2 + 1
4t

2
⊥

 m

ε2
+

1 +
1
2t⊥√

t2|γ(~k)|2 + 1
4t

2
⊥

 m

ε1

C22(~k) = 〈b†2~kb2~k〉

=
1
2 +

1
4

1 +
1
2t⊥√

t2|γ(~k)|2 + 1
4t

2
⊥

 m

ε2
+

1−
1
2t⊥√

t2|γ(~k)|2 + 1
4t

2
⊥

 m

ε1

C12(~k) = 〈a†2~kb2~k〉

=
1
2e

iφ(~k) t|γ(~k)|√
t2|γ(~k)|2 + 1

4t
2
⊥

(
e1
ε1
− e2
ε2

)
(3.62)

with

e1,2 =
1
2t⊥ ±

√
t2|γ(~k)|2 + 1

4t
2
⊥. (3.63)

Analytical results

The entanglement levels obtained from the correlation matrices
Eq.(3.58) and Eq.(3.61) have the following form

ξ± = −2arctanh
(
C11 +C22 − 1±

√
(C11 −C22)2 + |C12|2

)
.

(3.64)

Our analytically obtained entanglement levels Eq.(3.64) are visu-
alized in the Fig.(3.7) of graphene bilayers in the presence of the
bias voltage along the axis kx for t/t⊥ = 1 and U/t⊥ = 0.2. Mean-
while, the entanglement levels of graphene bilayers in the presence
of mass term are represented in Fig. (3.8) along the axis kx.
When the bias voltage or mass term are included, the average

occupancy number at site A, C11(~k), and the average occupancy
number at site B, C22(~k) are not equal and differ from the 1/2.
This leads to the remaining layer 2 not being half-filled obtained
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Figure 3.7: The central energy bands ±ε2 plotted over entire Brillouin
zone along the kx axis for t = t⊥ and Λ = 0.2t⊥.

from ground state of half-filed graphene bilayers, and the entangle-
ment gap between entanglement levels is opened. In this context,
there is no the relation of the entanglement spectrum of undoped
graphene bilayers and the energy of doped graphene monolayer.
All this is just a consequence of the hopping parameter t⊥ couples
A1 and B2 sites which have different sign.

3.4 conclusion and outlook

We have analytically derived the entanglement Hamiltonian of
ground state of Bernal stacked graphene bilayers. When the entan-
glement Hamiltonian is obtained by tracing out one layer, there is
a proportionality between it and the energetic Hamiltonian of the
remaining monolayer of graphene in the limit of strong coupling
layers. The proportionality factor represents the phenomenologi-
cal inverse temperature, and there is an exact relation between
this phenomenological scale and the inverse temperature. Further-
more, this relation leads to that the canonical Hamiltonian being
independent of temperature.
The proportionality between the entanglement Hamiltonian of

graphene bilayers and the energetic Hamiltonian of monolayer
graphene also leads to the equivalence of their topological quanti-
ties. In this case, this is the Berry phase contribution to the Chern
number.
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Figure 3.8: The entanglement spectrum of graphene bilayers in the
presence the mass term plotted along the kx axis for
t/t⊥ = 1 and m/t⊥ = 0.1.

In the presence of the on-site energy or the mass term, the re-
maining layer is doped which is obtained by tracing other layer
from ground state of undoped graphene bilayers. In such a way,
there is no relation between the entanglement Hamiltonian of
graphene bilayers and the energetic Hamiltonian of graphene mono-
layer.
The relation between the phenomenological inverse temperature

and the inverse thermodynamic temperature given by Eq.(3.43),
depends on the lattice geometry, Ref. [Schliemann, 2013]. Thus,
one possible extension of this is to consider other lattice geometry.



4
TRIGONAL WARPING IN B ILAYER
GRAPHENE : ENERGY VERSUS
ENTANGLEMENT SPECTRUM

Most of the work presented in this chapter has been published to

the Physical Review Journal B.

Sonja Predin, Paul Wenk and John Schliemann, Trigonal Warping

in Bilayer Graphene: Energy versus Entanglement Spectrum, Phys.

Rev. B 93, 115106, (2016). [Predin et al., 2016]

In the previous Chapter 3, we have shown that upon tracing
out one layer, the entanglement Hamiltonian of ground state of
free fermions in graphene bilayers arranged in Bernal stacking is
proportional to the energetic Hamiltonian of graphene monolayer
in the strong coupling limit. However, this does not hold in general
even in the strong coupling limit what is illustrated by counterex-
amples in Ref. [Lundgren et al., 2012] where a spin ladders of
clearly nonidentical legs were considered and in Ref. [Schliemann
and Läuchli, 2012] where the anisotropic spin ladders of the arbi-
trary spin length were considered, while then even the unperturbed
non-degenerate ground state has a nontrivial entanglement spec-
trum. In this Chapter we provide another counter example given by
graphene bilayers in the presence of trigonal warping [McCann and
Koshino, 2013,Rozhkov et al., 2016]. As we shall see in the follow-
ing, the geometric properties of the entanglement spectrum of an
undoped graphene bilayer and the energy spectrum of a monolayer
clearly differ qualitatively. However, certain topological quantities
such as Berry phase type contributions to Chern numbers agree.
After we had made our work available as an arXiv preprint and
submitted to the journal, we became aware of a little bit earlier
study Ref. [Fukui and Hatsugai, 2014], where also Chern numbers
calculated from the eigenstates of entanglement Hamiltonians are
studied.
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This Chapter is organized as follows. In Section 4.1 we discuss
the full eigensystem of the tight-binding model of bilayer graphene
in the presence of trigonal warping. To enable analytical progress
we neglect here terms breaking particle-hole symmetry. On the
other hand, our calculation considers the entire first Brillouin zone
and avoids the Dirac cone approximation usually employed in stud-
ies of trigonal warping in graphene bilayers [McCann and Fal’ko,
2006, Nilsson et al., 2006, Koshino and Ando, 2006, Kechedzhi
et al., 2007,Manes et al., 2007, Cserti et al., 2007,Mikitik and
Sharlai, 2008,Mariani et al., 2012,Cosma and Fal’ko, 2015]. We
compare our results for the full four-band model with an effec-
tive Hamiltonian acting on the two central bands [McCann and
Fal’ko, 2006,Mariani et al., 2012,Cosma and Fal’ko, 2015]. The
entanglement spectrum obtained from the ground state of undoped
graphene bilayers is analyzed in Section 4.2. We discuss the case of
one layer being traced out as well as the situation where the trace
is performed over two other out of four sublattices. In Section 4.3
we will show that discontinuities of wave vector in eigenvectors
of the Hamiltonian are reflected on the entanglement Hamiltonian
and have a large influence on the geometric and topological proper-
ties of the entanglement Hamiltonian. We close with a conclusion
and an outlook in Section 4.4.

4.1 energy spectrum of graphene bilayers: trig-
onal warping and topological invariants

The standard tight-binding Hamiltonian for graphene bilayers in
Bernal stacking can be formulated as [McCann and Koshino, 2013,
Rozhkov et al., 2016]

H = − t
∑
~k

(
γ(~k)a†

1~k
b1~k + γ(~k)a†

2~k
b2~k + h.c.

)
+ t⊥

∑
~k

(
b†
1~k
a2~k + a†

2~k
b1~k

)
− t3

∑
~k

(
γ(~k)b†

2~k
a1~k + γ∗(~k)a†

1~k
b2~k

)
+ t4

∑
~k

(
γ(~k)

(
a†

1~k
a2~k + b†

1~k
b2~k

)
+ h.c.

)
, (4.1)

where a†
i~k
(a
i~k
) and b†

i~k
(b
i~k
) create (annihilate) electrons with wave

vector ~k in layers i = 1, 2 on sublattice A and B, respectively.
Moreover, γ(~k) =

∑3
l=1 exp(i~k · ~δl) where the ~δl are the vectors

connecting a given carbon atom with its nearest neighbors on the
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Figure 4.1: Contour plot of the energy band (+E2(~k)) plotted for t⊥ =

t, t3 = 0.5t. The contour of the colored region indicates
E = 0.2/t⊥. The edge of the first Brillouin zone is marked
by dashed lines.

other sublattice in a graphene monolayer defined by Eq(2.5). The
hopping parameters t, t⊥, t3, t4 are plotted at Fig(3.1).
The presence of all four couplings in the Hamiltonian Eq. (4.1)

makes its explicit diagonalization in terms of analytical expressions
a particularly cumbersome task. As the present study chiefly relies
on analytical calculations rather than resorts to numerics, we will
drop the contributions proportional to the smallest parameter t4
in order to achieve an analytically manageable situation.
Putting t4 = 0 the full eigensystem of the Hamiltonian (4.1) can

be obtained in a closed analytical fashion as detailed in appendix
A. The four dispersion branches (±E1(~k)), (±E2(~k)) form a sym-
metric spectrum with

E1/2(~k) =

[
1
2

(
t2⊥ + t23|γ(~k)|2 + 2t2|γ(~k)|2

)

± 1
2

√
4t2|γ(~k)|2

(
t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos

(
3φ~k

))
+
(
t2⊥ − t

2
3|γ(~k)|2

)2
]1/2

(4.2)
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and γ(~k) = |γ(~k)|eiφ~k . The two outer branches (±E1(~k)) are
separated from the inner ones (±E2(~k)) by gaps determined essen-
tially by the hopping parameter t⊥. The result Eq. (4.2) general-
izes the energy spectrum given in Ref. [McCann and Fal’ko, 2006]
within the Dirac cone approximation to the full Brillouin zone.
Moreover, in appendix A we also give the complete data of the
corresponding eigenvectors. Fig. 4.2 concentrates on the vicinity
of a given K-point using realistic parameters.
The inner branches (±E2(~k)) dominate the low-energy physics

of the system near half filling and meet at zero energy for

γ(~k) = 0 (4.3)

corresponding to the two inequivalent corners K± of the first Bril-
louin zone, and for

cos
(
3φ~k

)
= −1 ∧ |γ(~k)| = t⊥t3

t2
. (4.4)

The latter condition defines three additional satellite Dirac cones
around each K-point two of which lying on the edges (faces) of the
Brillouin zone connecting K±. The third satellite Dirac cone lies
formally outside the Brillouin zone but is equivalent to a satellite
cone on the edge around an equivalent K-point. Indeed, the quan-
tity γ(~k) has a constant phase φ~k ∈ {−π/3, π/3, π} on each face:
As an example, consider the edge connecting the two inequivalent
K-points given by ~K± = 2π√

3a

(
± 1√

3 , 1
)
where one finds

γ

(
kx, 2π√

3a

)
= e−iπ/3

(
2 cos

(
a

2kx
)
− 1

)
(4.5)

with the parenthesis being nonnegative for kx ranging between
(±2π/(3a)). Thus, solving for kx the satellite Dirac cones on that
edge lie at

~k =

(
±2
a

arccos
(1

2

(
1 + t⊥t3

t2

))
, 2π√

3a

)
, (4.6)

and the other satellite cones are located at positions being equiv-
alent under reciprocal lattice translation and/or hexagonal rota-
tion. Note that for t⊥t3/t2 = 1 the satellite cones merge in the
M -points (centers of the faces) and they vanish for even larger
values of that ratio. In Fig. 4.1 we give a sketch of the situation
in the entire Brillouin zone for moderate values of t⊥ and t3. As
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Figure 4.2: The central energy bands (±E2(~k)) plotted around a given
K-point for t⊥ = 0.1t, t3 = 0.15t. The dispersions show
a central Dirac cone accompanied by three satellites. The
components of the wave vector are measured relatively to
the K-point.

we have already seen in Chapter 3, for t3 = 0 the two energy
bands (±E2(~k)) touch only at the K-points where they have a
quadratic dispersion. Finite t3 6= 0 causes a splitting into in total
four Dirac cones with linear dispersion, an effect known as trigonal
warping [McCann and Koshino, 2013,Mariani et al., 2012].

As a further important property, the eigenvectors corresponding
to (±E2(~k)) are discontinuous as a function of wave vector at the
degeneracy points defined by Eq. (4.4); for more technical details
we refer to chapter 4.3. As a simplistic toy model mimicking such
an effect one can consider the Hamiltonian H = −kσz with a one-
dimensional wave number k and the Pauli matrix σz describing
some internal degree of freedom: In the many-body ground state
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of zero Fermi energy all occupied states with k > 0 have spin
up while for all states with k < 0 the spin points downwards,
resulting in a discontinuity of the occupied eigenvectors at k = 0.
As we shall see below, in the present case of graphene bilayers this
discontinuity is also reflected in the entanglement spectrum.
An effective Hamiltonian in the presence of the trigonal warp-

ing providing an approximate description of the central bands
(±E2(~k)) can be given following Ref. [McCann and Fal’ko, 2006].
In up to linear order in 1/t⊥ one finds

H = −

 0 t2

t⊥

(
γ∗(~k)

)2
+ t3γ(~k)

t2

t⊥

(
γ(~k)

)2
+ t3γ

∗(~k) 0

 (4.7)

with respect to the basis
(
b†
2~k

, a†
1~k

)
|0〉. The eigenstates read

|χ±〉 =
1√
2

 1
∓eiψ~k

 (4.8)

with

eiψ~k =
t2

t⊥

(
γ(~k)

)2
+ t3γ

∗(~k)∣∣∣∣ t2t⊥ (γ(~k))2
+ t3γ∗(~k)

∣∣∣∣ . (4.9)

Note that the Hamiltonian (4.7) vanishes if and only if the con-
ditions (4.3) or (4.4) are fulfilled implying that the positions of
the central and satellite Dirac cones are the same as for the full
Hamiltonian (4.1). Moreover , ψ~k is a smooth and well-defined
function of the wave vector except for the locations of Dirac cones.
Accordingly, the Berry curvature

F (~k) =
∂Ay
∂kx
− ∂Ax
∂ky

(4.10)

arising from the Berry connection

~A(~k) = i〈χ±(~k)|
∂

∂~k
|χ±(~k)〉 = −

1
2
∂ψ~k
∂~k

(4.11)

vanishes everywhere outside the Dirac cones where contributions in
terms of δ-functions arise. Integrating the Berry connection along
closed path in ~k-space leads to geometrical quantities often re-
ferred to as Berry phases, although no contact to adiabaticity is
made here. Moreover, if the Berry curvature has only nonzero con-
tributions in terms of δ-functions (as it is the case here and in
the following) these geometrical phases are indeed topological, i.e.
they are invariant under continuous variations of the paths as long
as the support of the δ-functions is not touched.
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As discussed in Refs. [Manes et al., 2007,Mikitik and Sharlai,
2008,Mariani et al., 2012], integrating along a closed path around
the central Dirac cones at K± yields a Berry phase of (∓π), while
each of the accompanying satellite cones gives a contribution of
(±π). Thus, the total Berry phase arising at and around each K-
point is, as in the absence of trigonal warping, (±2π), and the
integral over the whole Brillouin zone of the Berry connection (i.e.
the Chern number) vanishes. Naturally, our present analysis going
beyond the Dirac cone approximation confirms these results.

4.2 entanglement spectra

Here we analytically derive the entanglement Hamiltonian of free
fermions on bilayer honeycomb lattice in the presence of trigonal
warping by using the method described in Chapter 3. In particular,
we formulate the entanglement Hamiltonian for systems of free
fermions as a single-particle operator [Peschel, 2003,Cheong and
Henley, 2004,Schliemann, 2013].

4.2.1 Tracing out one layer

We now consider the ground state of the undoped graphene bilayer
such that all states with negative energies (−E1(~k)), (−E2(~k)) are
occupied while all others are empty. Tracing out layer 1 leads to
the correlation matrix

C(~k) =

 1
2 u(~k)

u∗(~k) 1
2

 (4.12)

where an explicit expression for u(~k) is given in appendix B. The
entanglement levels corresponding to the eigenvalues η±(~k) =
1/2∓ |u(~k)| are

ξ±(~k) =± 2 artanh
(
2|u(~k)|

)
. (4.13)

The modulus |u| can be formulated as

|u| = 1/2√
1 + (d/(t|γ(~k)|))2

√√√√1
2

(
1− ε1ε2 + b2

E1E2

)
(4.14)

with (cf. Eqs. (A.14),(A.15))

d =

(
t2⊥ − t23|γ(~k)|2

)
/2√

t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos
(
3φ~k

) , (4.15)
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b =
t⊥t3|γ(~k)|| sin

(
3φ~k

)
|√

t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos
(
3φ~k

) , (4.16)

and (cf. Eq. (A.21))

ε1,2 = t|γ(~k)|

±
√(

t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos
(
3φ~k

))2
/4 + d2

(4.17)

implying
E1,2 =

√
ε21,2 + b2 . (4.18)

The r.h.s of Eq. (4.14) becomes zero if the radicand vanishes. Ac-
cording to the discussion in Section 4.3 and Appendix B this is
the case when cos

(
3φ~k

)
= −1 leading to b = 0 and E1 = ε1 ≥ 0,

E2 = |ε2| such that

|u| ∝

√√√√1
2

(
1− ε2
|ε2|

)
(4.19)

Now equation (4.27) shows that |u(~k)| = 0 is equivalent to

cos
(
3φ~k

)
= −1 ∧ |γ(~k)| ∈

[
0, t⊥t3/t2

]
, (4.20)

where the endpoint of the above interval defines according to con-
dition (4.4) the location of the satellite Dirac cones. As a result,
the entanglement levels (4.13) vanish along segments of the faces
of the first Brillouin zone bounded by the positions of the central
Dirac cones and their satellites. At the satellite Dirac cones the
entanglement spectrum is discontinuous as a function of wave vec-
tor. In Fig. 4.3 we plotted the entanglement spectrum ξ+(~k) for
the whole Brillouin zone. For a better visualization large hopping
parameters have been chosen. The contour of the colored region
connects all three satellite Dirac cones. As discussed in chapter 4.3,
this discontinuity is inherited from a discontinuity in the eigenvec-
tors of the occupied single-particle states. The entanglement spec-
trum in the entire Brillouin zone is illustrated in Fig. 4.3, whereas
Fig. 4.4 focuses on a given K-point.
Moreover, apart from the eigenvalues of the entanglement Hamil-

tonian, let us also consider its eigenvector which coincide with
the eigenvectors of the correlation matrix (D.8). As discussed in
appendix B, the complex function u(~k) entering the correlation
matrix becomes singular at the K-points and the positions of
the accompanying satellite Dirac cones of the energy spectrum,
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Figure 4.3: Contour plot of the entanglement spectrum ξ+(~k) plotted
for t⊥ = t, t3 = 0.5t. The contour of the colored region indi-
cates ξ = 1.5. The dashed line delineates the first Brillouin
zone.

leading again to δ-function-type contributions to the Berry curva-
ture which vanishes otherwise. Combining symbolic computer al-
gebra techniques and numerical calculations we find here a Berry
phase of (∓π/2) around the corners K± of the Brillouin zone, and
(±π/2) for the corresponding satellite positions. For the central
positions the above calculations can also be done fully analytically
by expanding the eigensystem data around K±. For the satellite
locations such an expansion is not possible due to the discontinuity
of the eigenvectors.
Thus, the total Berry phase contribution from each K-point K±

is (±π) and agrees with the Berry phase around the Dirac cones in
monolayer graphene. As a result, although the entanglement spec-
trum of graphene bilayers generated by tracing out one layer shows
obvious differences to the energy spectrum of monolayer graphene
regarding qualitative geometrical properties, the topological Berry
phases obtained from the corresponding eigenvectors still coincide
at each K-point.
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Figure 4.4: The entanglement spectrum (4.13) plotted around a given
K-point for the same parameters as in Fig. 4.2. The density
plot shows the upper entanglement level. Zero eigenvalues of
the entanglement Hamiltonian occur along lines connecting
theK-point with the locations of satellite Dirac cones of the
energy spectrum (thick black lines). The components of the
wave vector are measured relatively to the K-point.

4.2.2 Tracing out other sublattices

Now, we will consider the entanglement spectrum obtained by trac-
ing out sublattices A1 and B2 (or A2 and B1) lying in different
layers. In the former case one finds

C(~k) =

 1
2 v(~k)

v∗(~k) 1
2

 (4.21)

where an explicit expression for v(~k) is given in appendix B. The
above correlation matrix has eigenvalues η±(~k) = 1/2 ∓ |v(~k)|
leading to the entanglement levels

ξ±(~k) = ± 2 artanh
(
2|v(~k)|

)
. (4.22)
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In Fig. 4.5 we plotted the eigenvalues η−(~k) = 1/2+ |v(~k)| of the
correlation matrix around a given K-point. The modulus |v(~k)|
reads more explicitly

|v(~k)| = 1
2

√√√√1− t2|γ(~k)|2

t2|γ(~k)|2 + d2
1
2

(
1− ε1ε2 + b2

E1E2

)
(4.23)

=
1
2

√
1− 4|u(~k)|2 (4.24)

and has a similar structure as |u(~k)| given in Eq. (4.14). In par-
ticular, |v(~k)| = 1/2 ⇔ |u(~k)| = 0 if the conditions (4.20) are
fulfilled. In this case η+ = 0 and η− = 1 indicating that the
remaining subsystem is unentangled with the system traced out.
Regarding Berry phases generated from the eigenstates of the

correlation matrix (4.21) we note that the off-diagonal element
v(~k) nowhere vanishes. As a consequence the Berry curvature is
zero throughout the Brillouin zone, which in turn holds for all
Berry phases. The nonvanishing of v(~k) follows from the fact that
|v(~k)| = 0 would require |u(~k)| = 1/2 such that the entanglement
(4.13) would diverge which is, as seen in section 4.2.1, not the case.

Finally, the correlation matrix obtained by tracing over the sub-
lattices A1, A2 (or B1, B2) is proportional to the unit matrix,

C(~k) =

 1
2 0
0 1

2

 , (4.25)

indicating that these sublattices are maximally entangled with the
part traced out.

4.3 continuity properties

The eigenvectors corresponding to the energy branches (±E2(~k))
are discontinuous at wave vectors determined by the condition
(4.4). This comes about as follows: The matrix elements U2,n(~k),
U3,n(~k), n ∈ {1, 2, 3, 4} contain the quantities γ(2)± defined in
Eqs. (C.25) whereas the U1,n(~k), U4,n(~k) corresponding to
(±E1(~k)) involve γ(1)± . Fixing now cos

(
φ~k

)
= −1 we have b = 0

such that E1 = ε1 ≥ 0 and E2 = |ε2| such that γ(1)± remain con-
tinuous while γ(2)± become

γ
(2)
± =

√√√√1
2

(
1± ε2
|ε2|

)
. (4.26)



50 trigonal warping in bilayer graphene

Figure 4.5: Eigenvalues η−(~k) = 1/2+ |v(~k)| of the correlation matrix
plotted around a given K-point for t⊥ = 0.1t, t3 = 0.15t.
The thick black lines correspond to the one in Fig. 4.4,
and the components of the wave vector are again measured
relatively to the K-point.

Inspection of Eq. (A.21) now shows that for cos
(
φ~k

)
= −1

ε2(~k)

 > 0 |γ(~k)| < t⊥t3/t2

< 0 |γ(~k)| > t⊥t3/t2
(4.27)

such that ε2(~k) changes sign for |γ(~k)| = t⊥t3/t2, i.e. γ(2)± is dis-
continuous at wave vectors given by the condition (4.4). This dis-
continuity is inherited by the correlation matrix and, in turn, by
the entanglement spectrum.
The technical reason for this discontinuity in the eigenvectors is

of course the fact that the dispersions (±E2(~k)) become degener-
ate at wave vectors fulfilling (4.4). In fact the eigenvectors can also
be considered as continuous functions of the wave vector by appro-
priately relabeling the dispersion branches. In the ground state
of the undoped bilayer system, however, only the lower branch
(−E2(~k)) is occupied, which makes the discontinuity unavoidable.
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To circumvent this discontinuity one can open an energy gap
between the upper and lower central band such that the corre-
sponding eigenstates are necessarily continuous for all wave vec-
tors. Among the various mechanisms producing such a gap only
few allow for a still halfway convenient analytical treatment of the
Hamiltonian. These include introducing identical mass terms in
both layers, i.e. H 7→ H +H ′ with

H ′ = diag (m,−m,−m,m) , (4.28)

or applying a bias voltage Λ between the layers,

H ′ = diag (−Λ/2, Λ/2,−Λ/2, Λ/2) . (4.29)

In the former case the four dispersion branches (±E1(~k)), (±E2(~k))
are given by

E1/2(~k) =

[
m2 +

1

2

(
t2⊥ + t23|γ(~k)|

2 + 2t2|γ(~k)|2
)

±
1

2

√
4t2|γ(~k)|2

(
t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos

(
3φ~k

))
+
(
t2⊥ − t

2
3|γ(~k)|2

)2
]1/2

(4.30)

while for a bias voltage one finds [McCann and Fal’ko, 2006]

E1/2(~k) =

[
Λ2

4
+

1

2

(
t2⊥ + t23|γ(~k)|

2 + 2t2|γ(~k)|2
)

±
1

2

√
4t2|γ(~k)|2

(
t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos

(
3φ~k

)
+ Λ2

)
+
(
t2⊥ − t

2
3|γ(~k)|2

)2
]1/2

.

(4.31)

In both cases the central energy bands (±E2(~k)) are separated
by a gap, and the spectrum can still be given in terms of compara-
bly simple closed expressions since the characteristic polynomial
of the 4× 4 Hamiltonian matrix is a second-order polynomial in
the energy squared leading to a spectrum being symmetric around
zero. Also the corresponding eigenvectors can be obtained in closed
analytical forms by procedures analogous to (but in detail some-
what more complicated than).

Note that applying a bias voltage as well as introducing a mass
term in each layer discriminates the layers against each other. As
we have shown in previous Chapter 3, the latter circumstance is
due to the fact that t⊥ couples sublattices in different layers for
which the mass term has different sign.



52 trigonal warping in bilayer graphene

4.4 conclusion and outlook

We have studied entanglement properties of the ground state of
Bernal stacked graphene bilayers in the presence of trigonal warp-
ing. Our analysis includes both the eigenvalues of the reduced den-
sity matrix (giving rise to the entanglement spectrum) as well as its
eigenvectors. When tracing out one layer, the entanglement spec-
trum shows qualitative geometric differences to the energy spec-
trum of a graphene monolayer while topological quantities such
as Berry phase type contributions to Chern numbers agree. The
latter finding is in contrast to the reduced density matrix resulting
from tracing out other sublattices of the bilayer system. Here, all
corresponding Berry phase integrals yield trivially zero. Thus, our
study provides an example for common topological properties of
the eigensystem of the energy Hamiltonian of a subsystem (here
a graphene monolayer) and the entanglement Hamiltonian, while
the geometrical shape of both spectra grossly differs. Our inves-
tigations are based on closed analytical expressions for the full
eigensystem of bilayer graphene in the entire Brillouin zone with
a trigonally warped spectrum.
Future work might address bilayer systems of other geometrical

structures such as the Kagome lattice.
Furthermore, the graphene monolayer under a circularly polar-

ized light exhibits ten different topological phases and high-Chern
number behaviour is found in Ref. [Wang and Li, 2016]. The under-
standing of the topological phases of driven graphene bilayers un-
der polarized light, especially in the presence of the trigonal warp-
ing in the energy and entanglement spectrum might be an exten-
sion of the present study. Moreover, the combination of influences
of a static perpendicular magnetic field [Schliemann, 2013,Nemec
and Cuniberti, 2007] and a circularly polarized light on the en-
ergy and entanglement spectrum of graphene bilayers could be an
interesting research task.
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ENTANGLEMENT SPECTRA OF
SUPERCONDUCTIV ITY GROUND STATES ON
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Most of the work presented in this chapter has been submitted to

the European Physical Journal B.

Sonja Predin, and John Schliemann, Entanglement spectra of su-

perconductivity ground states on the honeycomb lattice, preprint

(submitted to the European Physical Journal B), arxiv:1611.01039.

[Predin and Schliemann, 2016]

Soon after the birth of graphene has begun the searching for
its complex electronic phases and phase transitions, such as super-
conductivity or exciton condensation [Sorella and Tosatti, 1992,
Khveshchenko, 2001,Herbut, 2006,Hou et al., 2007,Honerkamp,
2008,Raghu et al., 2008,Liu et al., 2009,Drut and Lähde, 2009,
Herbut et al., 2009,Gamayun et al., 2010,Meng et al., 2010,Sorella
and Yunoki, 2012,Ulybyshev et al., 2013]. First searches were done
in the vicinity of the Dirac point using the Dirac cone approxima-
tions. However, nowadays investigations of possible superconduc-
tivity states in graphene are in opposite limit, far away from the
Dirac points.
In graphene, the sixfold symmetry of the honeycomb lattice fa-

vors the degenerate dx2−y2- and dxy-wave superconductivity states.
Recent theoretical studies have shown that an s-wave superconduc-
tivity state [Uchoa and Castro Neto, 2007] and a chiral dx2−y2 ±
idxy superconducting state emerge from electron-electron interac-
tions in graphene doped to the vicinity of the van-Hove singular-
ity point [Black-Schaffer and Doniach, 2007, Honerkamp, 2008,
Pathak et al., 2010, Nandkishore et al., 2011, Kiesel et al., 2012,
Wang et al., 2012], and in lower doped bilayer graphene [Milo-
vanović and Predin, 2012,Vučićević et al., 2012] (for a recent re-
view, see Ref. [Black-Schaffer and Honerkamp, 2014]). Below the
superconducting transition temperature TC , this degeneracy yields
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the time-reversal symmetry-breaking dx2−y2 ± idxy state [Platt
et al., 2013, Black-Schaffer and Honerkamp, 2014]. In the past
two years, considerable experimental progress has been made re-
garding the observation of superconductivity in graphene. Evi-
dence of superconductivity has been experimentally observed on
Ca-intercalated bilayer graphene and graphene laminates at 4 [Ichi-
nokura et al., 2016] and 6.4 K [Chapman et al., 2016], respectively.
Furthermore, additional experimental progress has been made re-
garding evidence of superconductivity in Li-decorated monolayer
graphene with a transition temperature of approximately 5.9 K
[Ludbrook et al., 2015].
In this Chapter, we present an analytical study of the entangle-

ment spectrum of the fermionic ground state on a graphene honey-
comb lattice, in the presence of superconductivity instability and
as obtained by tracing out a single spin direction. We investigate
the relationship between the entanglement and energy spectra of
the remaining noninteracting part, placing a special focus on the
correlation between their topologies. We show that the entangle-
ment Hamiltonian obtained by tracing out one of the subsystems
and the Hamiltonian of the remaining subsystem can have com-
pletely different topologies. This difference is due to the fact that
the entanglement Hamiltonian is a ground-state property. That is,
the dx2−y2 + idxy superconductivity state breaks the time-reversal
symmetry of the superconductivity Hamiltonian; this behaviour
is reflected in the ground state of the composite superconductiv-
ity Hamiltonian. Further, the entanglement Hamiltonian is con-
structed from that ground state.
In the next section, the topological phases of the superconduc-

tivity states on the honeycomb lattice are classified based on their
different symmetries. In Section 5.2, we introduced the model
Hamiltonian and discuss the different superconductivity paired
states that can arise from the electron–electron interaction on the
honeycomb lattice. The renormalized mean-field treatment of self-
consistent order parameter is given in Section 5.3. Then, we dis-
cuss classification of topological superconductors on a honeycomb
lattice based on symmetry of systems in Section 5.4. The entan-
glement spectrum obtained from the Bardeen-Cooper-Schrieffer
ground state by tracing out a single spin direction is analyzed in
Section 5.5. Our primary interest in this section is to explore the
relationship between the geometrical and topological properties of
the entanglement Hamiltonian and the remaining noninteracting
Hamiltonian. We close with a conclusion and an outlook, which
are presented in Section 5.6.
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C6v E C2 2 C3 2 C6 3 σv 3 σd form

A1 +1 +1 +1 +1 +1 +1 s-wave
A2 +1 +1 +1 +1 -1 -1
B1 +1 -1 +1 -1 +1 -1 f-wave
B2 +1 -1 +1 -1 -1 +1 f-wave
E1 +2 -2 -1 +1 0 0 px, py
E2 +2 +2 -1 -1 0 0 dx2−y2 , dxy

Table 5.1: Character table of C6v point groups. The identity operator
is given by E. C2 is the trace of a 1800 rotation matrix. C3

and C6 are 1200 and 600 rotation, respectively. σv and σd
denote reflections at distinct lattice axis.

5.1 symmetry group representation

An understanding of the symmetry of the hexagonal lattice of
graphene is essential for its physical properties. Possible super-
conductivity states and their symmetries are determined by the
symmetry of the lattice and can be characterized by group theory.
Furthermore, the form of the superconductivity order parameter
is denoted by the symmetry group, as we shall see in 5.2.2. The
crystal symmetry group for the hexagonal lattice of graphene is
C6v and it is presented in Table 5.1.
The fully isotropic A1 is the fully gapped s-wave superconductiv-

ity state. The superconductivity state that breaks additional sym-
metries (except global U(1) symmetry) in respect of the normal
state is called an unconventional superconductivity state. These
additional broken symmetries include time-reversal symmetry, crys-
tal lattice symmetry, and spin-rotation symmetry, among others.
In this sense, since the s-wave superconductivity state does not
break any additional symmetry, is a conventional superconduct-
ing state.
The B1 and B2 states are spin-triplet f-wave states.
Any linear combination of the elements of the two-dimensional

representations of E1 and E2 are possible from symmetry require-
ments. For the two-dimensional representation, E2 are dx2−y2 and
dxy superconductivity states and are degenerate at TC according
to group theory. However, below TC , the complex combination, chi-
ral dx2−y2 + idxy superconductivity states are a fully gapped for
graphene doped at and beyond the van Hove singularity point, and
minimize the free energy [Black-Schaffer and Honerkamp, 2014].
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Recently, it was predicted that the graphene doped to the van
Hove singularity point is a chiral d-wave superconductor [Nandk-
ishore et al., 2011,Kiesel et al., 2012,Wang et al., 2012]. The chiral
dx2−y2 + idxy superconductivity states breaks time-reversal sym-
metry and in this sense, is an unconventional superconductivity
state.
Finally, a chiral px+ ipy combination that belongs to the E1, is

characterized for the square lattice.

5.2 model hamiltonian

The tight-binding Hamiltonian for free fermions on a graphene
honeycomb lattice with a single 2pz orbital per carbon (C) atom
is

H0 =− t
∑
〈ij〉

∑
σ=↑,↓

(
a†i,σbj,σ + h.c.

)
− µ

∑
i,σ

(
a†i,σai,σ + b†i,σbi,σ

)
, (5.1)

where t is the hopping energy between the nearest-neighbor C
atoms, µ is the chemical potential and ai,σ (a†i,σ), and bi,σ (b†i,σ)
are the on-site annihilation (creation) operators for electrons on
sublattices A and B, respectively, with spin σ =↑, ↓. Diagonaliza-
tion of Eq. (5.1) yields the energy spectrum ±E±, with

E± = ±t|γ(~k)| − µ, (5.2)

where γ(~k) =
∑
~δ

exp
(
i~k · ~δ

)
and ~δ is a nearest-neighbor vector

defined by Eq. (2.5). The energy spectrum of the free fermions
over the first Brillouin zone is visualized in Fig. 5.1.

5.2.1 Effective t-J model

The interaction effects and the symmetry of the lattice are very im-
portant for the physics of superconductivity, and condensed matter
physics in general. In the presence of the strong Coulomb repulsion,
d-wave superconductivity state is the most favorable superconduc-
tivity state of the high-temperature cuprate superconductors. Us-
ing quantum Monte Carlo simulations, it is found that undoped
graphene in the presence of the Coulomb repulsion U > 3.9t could
exhibit the order of the antiferromagnetic ground state [Wehling
et al., 2011].
In the following, we will consider a simple effective model that

gives superconductivity instabilities.
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Figure 5.1: Brillouin zone with density plot of |γ(~k)| − µ
t for: (a) µ

t =

0.2; (b) µ
t = 0.8; and (c) µ

t = 1. The edge of the first
Brillouin zone is marked by dashed black lines.

The repulsive Hubbard model has the following form in the half-
filled case:

HU = −t
∑
〈ij〉

∑
σ

(
a†i,σbj,σ + h.c.

)
+ U

∑
i

ni↑ni↓ (5.3)

where U is the on-site Coulomb repulsion and ni is the number op-
erator on the site i. Wehling et al. determined the strength of the
on-site Coulomb repulsion to be U = 3.3t by first-principles calcu-
lations [Wehling et al., 2011]. The Hubbard Hamiltonian Eq.(5.3)
consists of the kinetic part T = −t∑〈ij〉∑σ

(
a†i,σbj,σ + h.c.

)
and

the on-site interaction U = U
∑
i ni↑ni↓. The on-site interaction

has a tendency to localize electrons, while the kinetic part resists
this localization. We will consider the limit U >> t. Hopping of
one electron to a neighbor site would cost energy of the order U .
While the potential energy is much higher than the kinetic energy,
the motion of electrons is frozen.
The Fock space can be divided into two subspaces:
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1. subspace spanned by the sites that are maximally occupied
by at most one electron per site: S = {|n1,↑,n1,↓,n2,↑,n2,↓〉 :
∀i,ni,↑ + ni,↓ ≤ 1},

2. subspace spanned by at least one site that is double-occupied
D = {|n1,↑,n1,↓,n2,↑,n2,↓〉 : ∃i,ni,↑ + ni,↓ = 2}.

Thus, the kinetic part T of the Hubbard Hamiltonian Eq.(5.3)
connects subspaces S and D.
We use the projector P , which projects on the subsystem S in

order to find the effective Hubbard model Eq.(5.3) in this subspace
[Auerbach, 1994]

GSS(E) = P (E −HU )−1
P = (E −Heff )

−1 (5.4)

where we define the effective Hamiltonian Heff . Furthermore, the
decomposition of the Hubbard Hamiltonian Eq.(5.3) obtained by
the projector P is

HU =

 P (U + T )P PT (I − P )
(I − P )PT (I − P )(U + T )(I − P )

 (5.5)

where I is a unitary matrix. Thus, using A B

C D

−1

=
(
A−BD−1C

)−1
(5.6)

we obtain the following form of the effective Hamiltonian

Heff = P (U + T )P

+ PT (I − P ) [(I − P )(E − (U + T ))(I + P )]
−1 (I − P )TP .

(5.7)

Further approximations E
U << 1 and I

U << 1 lead to

Heff = PTP − PTU−1TP

= P

T − t2

U

∑
i,j,k

∑
σ,σ′

c†iσcjσnj↑nj↓c
†
jσ
′ckσ′

P (5.8)

Finally, when i = k, we are able to rewrite the effective Hamilto-
nian in the following form

Heff =− t
∑
〈ij〉

∑
σ

(
a†i,σbj,σ + h.c.

)
+ J

∑
〈ij〉

∑
σ

(
~Si~Sj −

1
4ninj

)
(5.9)
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with an antifferomagnetic exchange constant J = 2t2/U , the spin
operator ~Si = 1

2
∑
σ,σ′ c

†
iσ~σciσ′ on the site i. The Heisenberg an-

tiferromagnetism part of the effective Hamiltonian Eq.(5.9) can
be seen as a consequence of virtual hopping processes, where an
electron with a certain spin direction hops to its neighbor site with
opposite spin direction, builds a virtual double occupied site and
hops back to the empty site. Thus, the electron reduces its kinetic
energy in such a way and electrons are organized in antiferromag-
netic order. This process is called a "super-exchange" process.
According to the above considerations, in the large-U limit, the

Hubbard model can be rewritten as a t-J Hamiltonian:

Ht−J =− t
∑
〈ij〉

∑
σ

(
a†i,σbj,σ + h.c.

)
+ µ

∑
i,σ

(
a†i,σai,σ + b†i,σbi,σ

)

+J
∑
〈ij〉

∑
σ

(
~Si~Sj −

1
4ninj

)
. (5.10)

The interaction term can be rewritten as a spin-singlet nearest
neighbor attraction

J
∑
〈ij〉

∑
σ

(
~Si~Sj −

1
4ninj

)
= −J

∑
〈i,j〉

g†ijgij (5.11)

with g†ij = 1√
2

(
a†i↑b

†
j↓ − a

†
i↓b
†
j↑
)
when i ∈ A site and the same with

a ↔ b when i ∈ B. Thus, the interaction term in Eq.(5.11) is an
effective resonance valence bond interaction term emphasized by
Pauling [Pauling, 1960]. Baskaran estimated the parameter J as
J = 1

2

(√
U2 + 16t2 −U

)
which in graphite with t ≈ 2.5eV and

U ≈ 6eV gives J
t ∼ 1 [Baskaran and Jafari, 2002]. This model

predicts that Tc vanishes for the undoped graphene, while the den-
sity of states vanishes at the Dirac points. The doped graphene
has a finite density of states and it can be a superconductor.

5.2.2 Mean-field superconductivity order parameter

In order to apply the mean-field approximation, we define the su-
perconductivity order parameter as a three-component complex
vector

−→
∆ ≡

(
∆~δ1

, ∆~δ2
, ∆~δ3

)
, (5.12)

where the components are defined by

∆~δ =
〈
ai↑bi+~δ↓ − ai↓bi+~δ↑

〉
. (5.13)
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We study the superconductivity pairing arising from the nearest-
nearest neighbor attractive interaction

Hint = J
∑
i,~δ

∆~δ

(
a†i↑b

†
i+~δ↓
− a†i↓b

†
i+~δ↑

)
. (5.14)

The resulting mean-field Hamiltonian can be expressed in momen-
tum space as

HMF =− t
∑
~kσ

(
γ(~k)a†~kσ

b~kσ + h.c.
)

− µ
∑
~kσ

(
a†~kσ

a~kσ + b†~kσ
b~kσ

)

− J
∑
~k,~δ

(
∆~δe

i~k~δ
(
a†~k↑

b†
−~k↓
− a†~k↓b

†
−~k↑

)
+ h.c.

)
, (5.15)

where J is the effective pairing potential arising from the electron-
electron interaction.
The corresponding span of the superconducting order parameter

is

−→
∆ =


∆(1, 1, 1),
∆(2,−1,−1),
∆(0,−1, 1),

(5.16)

where ∆ is the self-consistent superconductivity order parameter.
The first solution corresponds to the s-wave,

−→
∆ = ∆(1, 1, 1), be-

longing to the natural A1 irreducible representation of the C6v
group of the honeycomb lattice. The A1 irreducible representation
is spanned by the vector ~u1 = (1, 1, 1). The final two solutions,

−→
∆ =

∆(2,−1,−1) and
−→
∆ = ∆(0,−1, 1), belong to the two-dimensional

representation E2, the span of which is ~u2 = (2,−1,−1) and
~u3 = (0,−1, 1). The second solution corresponds to the dx2−y2

wave, while the third corresponds to the dxy wave, respectively.
From the symmetry perspective, it is noteworthy that every com-
bination of the dx2−y2 and dxy waves is possible. However, the
dx2−y2 ± idxy-wave superconductivity state with an order parame-
ter

−→
∆ dx2−y2±idxy = ∆


1

e∓
2iπ
3

e±
2iπ
3

 (5.17)

is energetically preferred.
The resulting order parameters obtained in correspondence to

the symmetry group representation have the following analytical
forms

∆s(~k) = ∆
(
ei~k~δ1 + ei~k~δ2 + ei~k~δ3

)
,
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∆s(~k) = ∆
(
eia

1√
3
ky + 2 cos

(
a

2kx
)
e−ia

1
2
√

3
ky
)

, (5.18)

for the s-wave with
−→
∆ = ∆(1, 1, 1),

∆dx2−y2 (
~k) = ∆

(
2ei~k~δ1 − ei~k~δ2 − ei~k~δ3

)
,

∆dx2−y2 (
~k) = 2∆

(
e
i a√

3
ky − e−i

a
2
√

3
ky cos(a2kx)

)
, (5.19)

for the dx2−y2-wave order parameter with
−→
∆ = ∆(2,−1,−1), and

∆dxy(~k) = ∆
(
−ei~k~δ2 + ei~k~δ3

)
,

∆dxy(~k) = −2i∆ sin
(
a

2kx
)
e
−i a

2
√

3
ky , (5.20)

for the dxy-wave order parameter with
−→
∆ = ∆(0,−1, 1).

Whereas, the dx2−y2 + idxy-wave superconductivity order pa-
rameter is

∆d±id(~k) = cos
(
π

3

)
∆dx2−y2 (

~k)± sin
(
π

3

)
∆dxy(~k). (5.21)

5.2.3 Energy band basis

The kinetic part of the Hamiltonian Eq.(5.15) can be diagonalized
by introducing the following transformations

c~k,σ =
1√
2
(a~k,σ − e

i·φ~kb~k,σ),

d~k,σ =
1√
2
(a~k,σ + ei·φ~kb~k,σ), (5.22)

where the phase φ~k is defined as φ~k = arg(γ~k). Note that c
†
~k,~σ

and

d†~k,~σ
create an electron in the upper and lower Bogoliubov bands,

respectively. Thus, introducing the energy basis, the Hamiltonian
becomes

HMF = −t
∑
~k,σ

|γ~k|(d
†
~k,σ
d~k,σ − c

†
~k,σ
c~k,σ)

− µ
∑
~k,σ

(d†~k,σ
d~k,σ + c†~k,σ

c~k,σ)

− J
∑
~k

∑
~δ

(
∆~δ

(
cos(~k~δ− φ~k)(d

†
~k,↑
d†
−~k,↓
− c†~k,↑

c†
−~k,↓

)

+ i sin(~k~δ− φ~k)(c
†
~k,↑
d†
−~k,↓
− d†~k,↑

c†
−~k,↓

)
)
+ h.c.

)
. (5.23)
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The third line in this Hamiltonian is the intraband pairing, contain-
ing an order parameter that is even in k-space and corresponding
to the spin-singlet pairing. The fourth line is the interband pairing,
containing an order parameter that is odd in k-space and corre-
sponding to the spin-triplet pairing. We use the definitions

C~k =
∑
~δ

∆~δ cos(~k~δ− φ~k), (5.24)

and

S~k =
∑
~δ

∆~δ sin(~k~δ− φ~k). (5.25)

In a small-momentum expansion k << a around Dirac points
K± for the dx2−y2-wave yields

C
K±+~k

(dx2−y2) ≈ ∓3∆
kx√

k2
x + k2

y

,

S
K±+~k

(dx2−y2) ≈ −3∆
ky√

k2
x + k2

y

. (5.26)

Here, near Dirac points px (py) symmetries are found for C~k (S~k),
respectively. For the dxy-wave we obtain

C
K±+~k

(dxy) ≈ ±
√

3∆
ky√

k2
x + k2

y

,

S
K±+~k

(dxy) ≈ −
√

3∆
kx√

k2
x + k2

y

. (5.27)

The combination of dx2−y2 + idxy in the small-momentum expan-
sion has the following form

C
K±+~k

(dx2−y2 + idxy) ≈ ∓
3
2∆

kx − iky√
k2
x + k2

y

,

iS
K±+~k

(dx2−y2 + idxy) ≈
3
2∆

kx − iky√
k2
x + k2

y

. (5.28)

This is effectively a px − ipy pairing.
Furthermore, for the s-wave we find the following a small-momentum

expansion

C
K±+~k

≈ ∓a
√

3
2 ∆

√
k2
x + k2

y,

S
K±+~k

= 0. (5.29)

C~k in the first Brillouin zone are plotted in Fig. (5.2).
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Figure 5.2: The interband order parameter C~k plotted over Brillouin
zone for a) the s-wave with symmetry ~∆ = ∆(1, 1, 1), b)
the dx2−y2-wave with symmetry ~∆ = ∆(2,−1,−1), and c)
the dxy-wave with symmetry ~∆ = ∆(0,−1, 1). The thick
black line indicates zero values, while plus indicates positive
values, and minus indicates negative values. The dashed
black line delineates the first Brillouin zone.

5.3 renormalized mean-field theory

As we have seen in 5.2.1, the Gutzwiller projector reduced the
space of t-J Hamiltonian Eq.(5.10) by excluding double occupied
sites. However, within the renormalized mean-field theory the con-
dition of the exclusion of doubly occupied sites is relaxed by re-
placing the tight-binding parameters by statistical weights t→ gtt

where gt = 2δ
1+δ and J → gsJ , where gs = 4

(1+δ2)
with δ = 1− n

is the doping away from half-filling per site, where δ = 0 corre-
sponds to the undoped graphene [Vollhardt, 1984]. The numerical
approach for solving of the self-consistency equations for the su-
perconducting bond order in order to get the superconductivity
critical temperature Tc and the order parameter ∆ has already
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been preformed in Refs. [Wu et al., 2013, Black-Schaffer et al.,
2014].

5.3.1 s-wave scenario

The Hamiltonian Eq.(5.23) for s-wave superconductivity state can
be diagonalized by Bogoliubov transformations

H =E
(1)
0 +

∑
~k

Eα(e~k†e~k + e†
−~k
e−~k)

+E
(2)
0 +

∑
~k

Eβ(f
†
~k
f~k + f †

−~k
f−~k) +

Ns|∆|2

gsJ
(5.30)

where

E
(1)
0 =−

∑
~k

(
t|γ(~k)| − µ

)
−
∑
~k

Eα, (5.31)

E
(2)
0 =

∑
~k

(
t|γ(~k)|+ µ

)
−
∑
~k

Eβ. (5.32)

The energies of Bogoliubov quasi-particles are

Eα =

√(
tγ(~k)| − µ

)2
+ J2|C~k|2 (5.33)

Eβ =

√(
tγ(~k)|+ µ

)2
+ J2|C~k|2. (5.34)

The Bogoliubov transformations e~k,+ and f~k,+ are given in Ap-
pendix D by Eqs.(D.1, D.2). The total number of unit cells is Ns.
The free energy then becomes

F =− 2
β

∑
~k

ln
(

2 cosh
(
βEα

2

))

− 2
β

∑
~k

ln
(

2 cosh
(
βEβ

2

))

−Nsµ+
Ns|∆|2

gsJ
(5.35)

where β = 1
kBT

denotes the inverse temperature, with kB is the
Bolztmann constant.
The conditions for the minimum of the free energy are given by

∂F

∂δ
= 0, ∂F

∂∆
= 0. (5.36)



5.3 renormalized mean-field theory 65

The superconductivity critical temperature Tc and the order
parameter ∆ can be found by solving the self-consistence equations

δ =
1
Ns

∑
~k

t|γ(~k)| − µ
Eα

tanh
(
βEα

2

)

− 1
Ns

∑
~k

t|γ(~k)|+ µ

Eβ
tanh

(
βEβ

2

)
(5.37)

∆ =
Jgs
8Ns

∑
~k

∆|γ(~k)|
Eα

tanh
(
βEα

2

)

+
Jgs
4Ns

∑
~k

∆|γ(~k)|
Eβ

tanh
(
βEβ

2

)
. (5.38)

We solve the self-consistence equations Eq.(5.38) in two opposite
limits, close to the Tc when the order parameter ∆ is very small
and when temperature is T = 0. The numerical solutions of these
equations will be discussed in 5.3.3.

5.3.2 d-wave scenario

To enable further calculations, we diagonalize the Hamiltonian
Eq.(5.55) for the chiral d-wave superconductivity state

HMF =
∑
~k

Eα(o
†
~k,+

o~k,+ + o†
−~k,−

o−~k,−)

+
∑
~k

Eβ(p
†
~k,+

p~k,+ + p†
−~k,−

p−~k,−) (5.39)

by the Bogoliubov quasiparticles o~k,+, o−~k,−, p~k,+ and p−~k,− given
in Appendix (C) with Eqs.(C.30)-Eq.(C.31). The energies of the
Bogoliubov quasiparticles are ±Eα and ±Eβ, where

Eα =

√
t2|γ(~k)|2 + µ2 +

(
|S~k|2 + |C~k|2

)
+ 2
√
u+ v, (5.40)

and

Eβ =

√
t2|γ(~k)|2 + µ2 +

(
|S~k|2 + |C~k|2

)
− 2
√
u+ v (5.41)

with

u =
(
µ2 + |S~k|

2
)
t2|γ(~k)|2, (5.42)

and

v =
(
Re(C~k)Im(S~k)−Re(S~k)Im(C~k)

)2
. (5.43)
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Figure 5.3: The superconductivity transition temperature TC
(TC ∼ gt∆) for the s-wave and the dx2−y2 + idxy-wave
as a function of doping δ and for J/t = 0.8. The
superconductivity order parameter ∆ is given units 3

4
gsJ .

When the superconductivity order parameters ∆~δ are purely real,
i.e., when no time-reversal symmetry breaking occurs, v vanishes.
We obtain the following self-consistence equations

∂Eα
∂∆

=
|C~k|

2

∆Eα
+
|S~k|

2

∆Eα
+

1
2∆Eα

|S~k|
2t2|γ(~k)|2 + 2v2
√
u2 + v2 (5.44)

∂Eβ
∂∆

=
|C~k|

2

∆Eβ
+
|S~k|

2

∆Eβ
− 1

∆Eβ

|S~k|
2t2|γ(~k)|2 + 2v2
√
u2 + v2 (5.45)

∂Eα
∂µ

=
µ

Eα
+

1
2∆Eα

µt2|γ(~k)|2√
u2 + v2 (5.46)

∂Eβ
∂µ

=
µ

Eβ
− 1

2∆Eβ

µt2|γ(~k)|2√
u2 + v2 . (5.47)

5.3.3 Numerical results

The value of TC and the superconductivity order parameter ∆ are
obtained as solutions of the self-consistence equations to fix the val-
ues of t, J , and the finite electron doping or hole doping, δ (chem-
ical potential is a function of the doping). In Fig.(5.3), we plot
∆gt for the s-wave and chiral dx2−y2 + idxy-wave superconductiv-
ity state for a fixed value J/t = 0.8 as a function of doping δ. ∆gt
is an approximation for TC within renormalized mean-field theory.
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Figure 5.4: The-self consistent superconductivity order parameter ∆ for
the s-wave and the dx2−y2 + idxy as a function of doping δ
and for J/t = 0.8 in units 3

4
gsJ .

In this work, we will consider graphene doped below and around
the van-Hove singularity point, which corresponds to δ = 1/4. For
this doping, TC for the chiral dx2−y2 + idxy-wave is much higher
than for the s-wave and is preferred. As we have pointed out in
5.1, any combination of the dx2−y2- and dxy-wave is allowed from
a symmetry point of view. Black-Schaffer and Doniach numeri-
cally solved the self-consistence equations to obtain that the chiral
dx2−y2 + idxy-wave with ~∆ = ∆(1, e∓ 2iπ

3 , e± 2iπ
3 ) is energetically fa-

vored. We present our numerical results for the superconductivity
order parameter ∆ for s-wave and chiral dx2−y2 + idxy- wave at
T = 0 in Fig. (5.4).

5.4 symmetry analysis

Introducing the spinor

ϕ†~k
=
(
a†~k↑

, b†~k↑, a
†
~k↓

, b†~k↓, a−~k↑, b−~k↑, a−~k↓, b−~k↓
)

, (5.48)

the Hamiltonian of Eq. (5.15) can be expressed as

HMF =
1
2
∑
~k

ϕ†~k
M~k

ϕ~k, (5.49)
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where

M~k
=


ζ(~k) 0 0 −∆(~k)

0 ζ(~k) ∆(~k) 0
0 ∆∗(−~k) −ζ∗(−~k) 0

−∆∗(−~k) 0 0 −ζ∗(−~k)

 , (5.50)

with

ζ(~k) =

 −µ −tγ(~k)
−tγ∗(~k) −µ

 , (5.51)

∆(~k) =

 0 ∆(~k)
∆(−~k) 0

 . (5.52)

The resultant Hamiltonian indicates that the spin-singlet super-
conductivity state without spin-orbit coupling is invariant under
the spin SU(2) rotation. Hence, we obtain the condition

[
Ji,M(~k)

]
= 0, Ji =

 si 0
0 −s∗i

 , (i = x, y, z).

(5.53)

As a result of the spin SU(2) rotation, it is sufficient to use the
spinor Ψ†~k = (a†~k↑

, b†~k↑, a−~k↓, b−~k↓) in order to express the Hamil-
tonian of the superconductivity state on the honeycomb lattice in
the form

HMF =
∑
~k

Ψ†~kh(
~k)Ψ~k

, (5.54)

where

h(~k) =


−µ −tγ(~k) 0 −∆(~k)

−tγ∗(~k) −µ −∆(−~k) 0
0 −∆∗(−~k) µ tγ∗(−~k)

−∆∗(~k) 0 tγ(−~k) µ

 . (5.55)

When the superconductivity order parameter is purely real, the
Hamiltonian h(~k) satisfies

Th(~k)T−1 = h(−~k), (5.56)

where T = K mimics time-reversal symmetry. The condition given
in Eq. (5.56) can satisfy a real superconductivity order parame-
ter only. The dx2−y2 + idxy-wave superconductivity order param-
eter given in Eq. (5.21) breaks the time-reversal symmetry. It ap-
pertains to the CI-class in the Altland-Zirnbauer classification of
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topological insulators and superconductors [Sato and Fujimoto,
2016, Altland and Zirnbauer, 1997, Schnyder et al., 2008]. Fur-
thermore, it is possible to classify two-dimensional C-class super-
conductors using the Chern number C. Note that the nontrivial
topology of the dx2−y2 + idxy-wave superconductivity state is de-
noted by the Chern number C = 2.

5.5 entanglement spectra

A method for analytically calculating the entanglement spectrum
of a free-fermion system is given in Refs. [Peschel, 2003,Cheong
and Henley, 2004,Schliemann, 2013]. Here, we generalize this method
to superconductivity systems, using an approach similar to that
described in Refs. [Borchmann et al., 2014,Kim, 2014].
The entanglement Hamiltonian can be constructed as a single-

particle operator in a quadratic matrix [Peschel, 2003,Cheong and
Henley, 2004,Schliemann, 2013], as it is completely determined by
any correlation matrix of operators acting on the remaining part
after the subsystem has been traced out. Our system consists of
two subsystems, A and B. The reduced density matrix for subsys-
tem A, defined as ρA = trB ρ, can be formulated as in the free
fermion case, such that ρA = 1

Z e
−Hent , using the entanglement

spectrum Hent and the partition function Z = tr
(
e−Hent

)
. Fur-

thermore, the average 〈O〉 of a local operator in subsystem A can
be calculated as 〈O〉 = tr(ρAOA).
By tracing out a single spin direction, e.g., the negative spin
↓, from the ground state on the honeycomb lattice in the pres-
ence of the s-wave and chiral d+ id-wave superconductivity, the
correlation matrix can be formulated as

C(~k) =

 〈a†~k↑a~k↑〉 〈a†~k↑b~k↑〉
〈b†~k↑a~k↑〉 〈b

†
~k↑
b~k↑〉

 . (5.57)

For more technical details of the analytical calculations of the cor-
relation matrix, we refer the reader to Appendix (D). Here, one can
show that the eigenvalues of the correlation matrix ηl are related
to the entanglement spectrum ξl, such that

ξl = ln
(

1− ηl
ηl

)
. (5.58)
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Figure 5.5: Contour plot of entanglement level ξ1(~k) of s-wave super-
conductivity state on honeycomb lattice plotted for J

t = 3
and: (a) µ

t = 0.2; (b) µ
t = 0.8; and (c) µ

t = 1. The thin
dashed and thick black lines represent the first Brillouin
zone and connect the zero energy states, respectively.

5.5.1 s-wave scenario

The s-wave superconductivity order parameter corresponds to the
bond-independent superconductivity state; thus, S~k is identically
zero.
We analytically obtain the entanglement levels (Eq. (5.58))

ξ1(~k) = −2 arsinh
t|γ(~k)|+ µ

|C~k|

 (5.59)

and

ξ2(~k) = 2 arsinh
t|γ(~k)| − µ

|C~k|

 . (5.60)

The entanglement Hamiltonian has the form

Hent =
∑
~k

(
ξ1e
†
~k,+

e~k,+ + ξ2f
†
~k,+

f~k,+

)
, (5.61)



5.5 entanglement spectra 71

where e~k,+ and f~k,+ are Bogoliubov transformations given in Ap-
pendix D by Eqs.(D.1)- (D.2). The entanglement levels for different
values of µ, with t = 2.5eV , and ∆ = 3eV , are shown in Fig. 5.5.

In general, there is no proportionality between the entangle-
ment Hamiltonian and the energy Hamiltonian of free fermions,
because the coupling between subsystems C~k is ~k-dependent in
the Brillouin zone. When C~k = 0, at the Dirac points, the entan-
glement levels are not entangled. However, at finite doping, the
maximally entangled states, when the entanglement levels are zero,
correspond to the zero energy state of the noninteracting fermions.
To provide a superior visualization, a thick black line is used to
connect the zero-energy states in Fig. 5.1 and the maximally en-
tangled states in Fig. 5.5.

Entanglement thermodynamic

The undoped graphene is a gapless semi-metal and is not a super-
conductor at low temperatures. However, when the system is at
half-filling (with µ = 0), the entanglement levels are

ξ1,2(~k) = ±2 arsinh
(
t

∆

)
, (5.62)

being constant over the entire Brillouin zone. In the strong cou-
pling regime between subsystems, when ∆� t, one finds

ξ1,2(~k) ≈ ±2 t
∆

. (5.63)

In what follows we will use the redefinition λ ≡ 1
∆ for the phe-

nomenological scale.
The concept of the entanglement thermodynamics given in Ref.

[Schliemann, 2011,Schliemann, 2013,Schliemann, 2014] have been
already discussed in Chapter 3.
Here, the entanglement entropy and energy are

S =2 ln
(
1 + e2tλ

)
− 2tλ (1 + tanh (tλ))

E =− 2tλ tanh (tλ) , (5.64)

respectively. This leads

∂
(
E − S

)
∂λ

= −2t tanh (tλ) (5.65)

and further to

∂β(λ)

∂λ
=

1
λ

. (5.66)
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The inverse thermodynamic temperature is proportional the phe-
nomenological inverse temperature

β(λ) = kEλ (5.67)

where kE is a constant. Finally, the canonical entanglement Hamil-
tonian at half-filling is independent of the inverse temperature
β = kE/∆, such that

Hcan =
1
kE

(
e†~k,+

e~k,+ − f
†
~k,+

f~k,+

)
(5.68)

where operators e~k,+ and f~k,+ are given in the Appendix D with
Eqs.(D.1)-(D.2), respectively.

5.5.2 chiral d-wave scenario

From analytical calculations, one obtains the correlation matrix at
T = 0

C(~k) =

 C11(~k) C12(~k)

C∗12(~k) C22(~k)

 , (5.69)

where

C11 = 〈a†~k↑a~k↑〉

=
1
2 +

1
4

µ√
µ2 + |S~k|2

(ε1 +m)
1
Eα

1− m√
t2|γ(~k)|2 +m2


+

1
4

µ√
µ2 + |S~k|2

(ε2 +m)
1
Eβ

1 + m√
t2|γ(~k)|2 +m2

 , (5.70)

C22 = 〈b†~k↑b~k↑〉

=
1
2 +

1
4

µ√
µ2 + |S~k|2

(ε1 −m)
1
Eα

1 + m√
t2|γ(~k)|2 +m2


+

1
4

µ√
µ2 + |S~k|2

(ε2 −m)
1
Eβ

1− m√
t2|γ(~k)|2 +m2

 , (5.71)

C12 = 〈a†~k↑b~k↑〉

=
1
4e
−iφ~k

((
ε1
Eα
− ε2
Eβ

)
− in

(
1
Eα
− 1
Eβ

))
t|γ(~k)|√

t2|γ(~k)|2 +m2

(5.72)

with
ε1,2 =

√
µ2 + |S~k|2 ±

√
t2|γ(~k)|2 +m2, (5.73)
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while
m =

Re(C~k) · Im(S~k)− Im(C~k) ·Re(S~k)√
µ2 + |S~k|2

, (5.74)

and
n =

Re(C~k)Re(S~k) + Im(C~k)Im(S~k)√
µ2 + |S~k|2

. (5.75)

Thus, the entanglement spectrum obtained from the eigenvalues
of the correlation matrix given in Eq. (5.58) consists of entangle-
ment levels ξ1 and ξ2 where

ξ1,2 = −2 artanh(C11 +C22 − 1±
√
(C11 −C22)

2 + 4|C12|2). (5.76)

As the d-wave spin-singlet superconductivity order parameter
involves both C~k and S~k, there is no relationship between states
with the zero-value states of the entanglement spectrum and the
zero-energy states of the free fermions. At the van-Hove singularity
point, i.e., when µ = t, both the entanglement spectrum and the
energy spectrum of the free fermions are zero at the M point. The
results of our analytical calculations of the entanglement spectrum
of the dx2−y2 + idxy-wave superconductivity on the honeycomb
lattice are presented in Fig. 5.6.
As we have discussed above, the dx2−y2- and dxy-wave supercon-

ductivity order parameters preserve the time-reversal symmetry
(Eq. (5.56)). Based on the time-reversal symmetry and provided
Ψ~k

are the eigenstates of the Hamiltonian given in Eq.(5.55), we
can state that

Ψ∗~k = Ψ−~k, (5.77)

where the Ψ∗−~k are also eigenstates of the Hamiltonian of Eq. (5.55).
This yields

Φ∗~k = Φ−~k. (5.78)

Hence, the real d-wave superconductivity order parameter pre-
serves the time-reversal symmetry in the correlation matrix, which
is constructed from the Φ~k

as C(~k) = 〈Φ†~kΦ~k
〉. The entanglement

Hamiltonian satisfies:

TEHent(~k)T−1
E = Hent(−~k), (5.79)

with TE = K.
When the dx2−y2 + idxy-wave superconductivity order parame-

ter is considered, C~k and S~k are complex functions. Then, the m
and n terms are non-zero. Hence, the average occupancy number
at site A, C11(~k), and the average occupancy number at site B,
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Figure 5.6: Contour plot of entanglement level ξ1(~k) of dx2−y2 + idxy
-wave superconductivity state on honeycomb lattice plotted
for J

t = 3, and a) µ
t = 0.2, b) µ

t = 0.8 and c) µ
t = 1. The

dashed black line delineates the first Brillouin zone, while
the thick black line shows maximally entangled states.



5.5 entanglement spectra 75

C22(~k), are inequivalent and the off-diagonal element of the corre-
lation matrix C12(~k) is complex. Because S~k is an odd function in
the momentum space, while C~k is a even function, it can be shown
that elements of the correlation matrix C11(~k), C22(~k), and C12(~k)
are constrained as C11(−~k) = C22(~k) and C∗12(−~k) = C12(~k).
Therefore, it follows that the complex dx2−y2 + idxy-wave supercon-
ductivity order parameter breaks the time-reversal symmetry in
the entanglement Hamiltonian. The topology of the entanglement
Hamiltonian in two-dimension with broken time-reversal symme-
try is characterized by the entanglement Chern number.
For further analysis of the topological properties of the entan-

glement Hamiltonian, we require not only its eigenvalues, but also
its eigenstates. The eigenstates of the correlation matrix are iden-
tical to the eigenstates of the entanglement Hamiltonian and can
be expressed as

q~k↑ =δ+(
~k)a~k↑ + δ−(~k)b~k↑ (5.80)

r~k↑ =δ+(−~k)a~k↑ − δ
∗
−(−~k)b~k↑ (5.81)

where explicit expressions for δ+(~k) and δ−(~k) are given in Ap-
pendix (D) by Eq.(D.21). Using these eigenstates, we can calculate
the Berry curvature

F (~k) =
∂Ay
∂kx
− ∂Ax
∂ky

, (5.82)

and the Berry connection

~A(~k) = i〈r(~k)| ∂
∂~k
|r(~k)〉. (5.83)

Through numerical integrations of the Berry curvature along
the Brillouin zone, we find that the entanglement Chern number
is C = 1, in the case of the chiral dx2−y2 + idxy-wave superconduc-
tivity state. In the presence of SU(2) rotation and broken time-
reversal symmetry, as in the case of an energetic Hamiltonian, the
Chern number C can have even values only. For the entanglement
Hamiltonian, it is possible to obtain an odd value for the Chern
number, as it is not invariant to the SU(2) rotation. As a result,
the topology of the entanglement Hamiltonian, which is obtained
by tracing out the spin-down subsystem of the ground state of
the chiral dx2−y2 + idxy-wave superconductivity state on the hon-
eycomb lattice, clearly differs from the topology of the energetic
Hamiltonian of free fermions without the superconductivity insta-
bilities.
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5.6 conclusion and outlook

We analytically evaluated the entanglement spectra of the super-
conductivity states on the graphene honeycomb lattice, primarily
focusing on the s-wave and chiral dx2−y2 + idxy superconductivity
states. When one spin direction was traced out, exact correspon-
dence between the maximally entangled states of the s-wave super-
conductor and the zero energies of the noninteracting fermionic
honeycomb lattice at finite doping was observed. The relation-
ship between the topologies of the entanglement and subsystem
Hamiltonians was found to depend on the coupling between the
subsystems. Further, the chiral dx2−y2 + idxy superconductivity or-
der parameter breaks the time-reversal symmetry in the entangle-
ment Hamiltonian. The topological properties of the entanglement
Hamiltonian, characterized by the topological nontrivial entangle-
ment Chern number C = 1, clearly differ from those of the time-
reversal invariant Hamiltonian of the noninteracting fermions on
the honeycomb lattice.
The investigations presented herein are based on closed ana-

lytical expressions for the full eigensystems of the s- and d-wave
superconductivity states on the honeycomb lattice over the entire
Brillouin zone. The method used to examine these eigensystems
may constitute a useful tool for new studies of superconductivity
in graphene.
Future work may investigate the relationship between the topolo-

gies of the entanglement and subsystem Hamiltonians through the
topological phase transition; for example, in the coexistence re-
gion between antiferromagnetism and dx2−y2 + idxy superconduct-
ing correlations in graphene [Black-Schaffer and Hur, 2015] and
graphene bilayers [Milovanović and Predin, 2012].
Superconducting states possess particle-hole symmetry for fermionic

excitations. A particle can become a hole by creating a Cooper pair.
Hence, the fermionic excitations are expressed by cσ(ε) (c†σ(ε)) be-
ing the annihilation (creation) operator of a quasiparticle with
energy ε and the spin σ. From particle-hole symmetry, we obtain

cσ(ε) = c†σ(−ε) (5.84)
lim
ε→0

(cσ(ε)) = lim
ε→0

(
c†σ(−ε)

)
(5.85)

cσ(0) = c†σ(0) (5.86)
γ = γ†. (5.87)

Thus, because of the particle-hole symmetry of the superconduc-
tivity state, the quasi-particle and its antiparticle are equal at zero
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energy. This self-conjugate condition is called the Majorana con-
dition, which is satisfied by a class of fermions called Majorana
fermions [Sato and Ando, 2017]. A fascinating feature of the Ma-
jorana fermions is that they obey non-Abelian statistics, which dif-
fers from Abelian statistics. Particles that obey Abelian statistics
satisfy the anticommutation relation 〈Ψ1Ψ2〉 = 〈Ψ2Ψ1〉eiφ, where
φ = 0 denotes bosons and φ = π denotes fermions. Let us now
consider N Majorana zero energy modes given by γ1, γ2, γ3, ..., γN .
Then, all Majorana fields satisfy

γ2
i =1, (5.88)

γiγj =− γjγi for i 6= j. (5.89)
The non-Abelian statistics is reflected by branding of any pair of
Majorana fields.

γi → γj , γj → −γi. (5.90)
As we have already seen in this Chapter, the doped graphene can

be a chiral dx2−y2 + idxy superconductor. Graphene, in the pres-
ence of the spin-singlet dx2−y2 + idxy state, could exhibit incredi-
bly rich physics. Because graphene is a two-dimensional material,
the possibility of tuning of the Rashba spin-orbit coupling is re-
markable and its manipulation could be easier than that in other
materials [Min et al., 2006]. For realistic values of the Rashba
spin-orbit, in the possible dx2−y2 + idxy state in doped graphene
to the van-Hove singularity point, Majorana fermions could ap-
pear at edges by tuning a Zeeman field [Black-Schaffer, 2012]. Fur-
thermore, by increasing the spin-orbit coupling, the dx2−y2 + dxy
superconductor undergoes a topological phase transition from a
chiral superconductor to a helical superconductor. In the region
where the energy gap is closed, the low energy excitations are
Majorana fermions [Sun et al., 2016,Huang et al., 2016]. The Ma-
jorana fermion of this system obeys non-Abelian statistics, which
is at the heart of the idea of the quantum computer [Nayak et al.,
2008]. The Majorana fermions reduce the probability of a random
change of the ground state, and this state is very stable to thermal
fluctuations. The state obtained by the exchange of two Majorana
fermions does not take a simple phase due to the non-Abelian
statistics. This corresponds to the manipulations of qubits, which
are superposition of |0〉 and |1〉. The superposition and entangle-
ment can make a quantum computer operate much faster than a
classical one.
The above makes further research on the spin-singlet dx2−y2 +

idxy state, particularly with the Rashba spin-orbit coupling and
entanglement, quite interesting.





A
DIAGONAL IZAT ION OF THE B ILAYER
HAMILTONIAN

Putting t4 = 0 and fixing a wave vector ~k the Hamiltonian (4.1)
reads with respect to the basis

(
a†

2~k
, b†

1~k
, b†

2~k
, a†

1~k

)
|0〉

H =


0 t⊥ −tγ(~k) 0
t⊥ 0 0 −tγ∗(~k)

−tγ∗(~k) 0 0 −t3γ(~k)
0 −tγ(~k) −t3γ∗(~k) 0

 . (A.1)

Using γ(~k) = |γ(~k)|eiφ~k we apply the transformation

U1 =
1√
2


1 1 0 0
0 0 eiφ~k e−iφ~k

0 0 eiφ~k −e−iφ~k
1 −1 0 0

 (A.2)

such that in

H1 =U1HU
†
1

=


t⊥ −t|γ(~k)| 0 0

−t|γ(~k)| −t3|γ(~k)| cos
(
3φ~k

)
it3|γ(~k)| sin

(
3φ~k

)
0

0 −it3|γ(~k)| sin
(
3φ~k

)
t3|γ(~k)| cos

(
3φ~k

)
−t|γ(~k)|

0 0 −t|γ(~k)| −t⊥


(A.3)

all information on the phase φ~k is contained in the matrix el-
ements being proportional to the skew parameter t3. Proceeding
now with the transformation

U2 =
1√
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 (A.4)

we find

H2 = U2H1U
†
2 =

1
2


e1 c −is −is
c e2 is is

is −is −e2 c

is −is c −e1

 (A.5)
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with

e1 = 2t|γ(~k)|+ t⊥ − t3|γ(~k)| cos
(
3φ~k

)
, (A.6)

e2 = −2t|γ(~k)|+ t⊥ − t3|γ(~k)| cos
(
3φ~k

)
, (A.7)

c = t⊥ + t3|γ(~k)| cos
(
3φ~k

)
, (A.8)

s = t3|γ(~k)| sin
(
3φ~k

)
. (A.9)

Here it is useful to split the above matrix as H2 = H
′
2 +H

′′
2 where

H
′
2 =

1
2


e1 0 −is 0
0 e2 0 is

is 0 −e2 0
0 −is 0 −e1



H
′′
2 =

1
2


0 c 0 −is
c 0 is 0
0 −is 0 c

is 0 c 0

 . (A.10)

H
′
2 is diagonalized by

U3 =


α+ 0 −iσα− 0
0 −iσα+ 0 α−

−iσα− 0 α+ 0
0 α− 0 −iσα+

 (A.11)

with σ = sign
(
sin(3φ(~k))

)
and

α± =

√√√√√√√1
2

1±
t⊥ − t3|γ(~k)| cos

(
3φ~k

)
√
t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos

(
3φ~k

)

(A.12)

such that

H3 = U3H2U
†
3 =


ζ1 idσ 0 b

−idσ ζ2 b 0
0 b −ζ2 idσ

b 0 −idσ −ζ1

 (A.13)

where

d =

(
t2⊥ − t23|γ(~k)|2

)
/2√

t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos
(
3φ~k

) , (A.14)
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b =
t⊥t3|γ(~k)|| sin

(
3φ~k

)
|√

t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos
(
3φ~k

) , (A.15)

and ±ζ1 and ±ζ2 are eigenvalues of H ′2 given by

ζ1/2 =
1
2

(
±2t|γ(~k)|+

√
t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos

(
3φ~k

))
.

(A.16)
Splitting now H3 in the form

H3 =


ζ1 id 0 0
−id ζ2 0 0

0 0 −ζ2 id

0 0 −id −ζ1

+


0 0 0 b

0 0 b 0
0 b 0 0
b 0 0 0

 (A.17)

the first part is diagonalized by

U4 =


−iστβ+ β− 0 0
β− −iστβ+ 0 0
0 0 −iστβ+ β−

0 0 β− −iστβ+

 (A.18)

with τ = sign(d) and

β± =

√√√√√1
2

1± ζ1 − ζ2√
(ζ1 − ζ2)2 + 4d2

 (A.19)

while the second part is left unchanged by U4 resulting in

H4 = U4H3U
†
4 =


ε1 0 0 b

0 ε2 b 0
0 b −ε2 0
b 0 0 −ε1

 (A.20)

with the diagonal elements are given in terms of

ε1/2 =
1
2

(
ζ1 + ζ2 ±

√
(ζ1 − ζ2)

2 + 4d2
)

. (A.21)

Finally, H4 is brought into diagonal form via

U5 =


γ
(1)
+ 0 0 γ

(1)
−

0 γ
(2)
+ γ

(2)
− 0

0 γ
(2)
− −γ(2)+ 0

γ
(1)
− 0 0 −γ(1)+

 (A.22)
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with

γ
(1)
± =

√
1
2

(
1± ε1

E2

)
, γ

(2)
± =

√
1
2

(
1± ε2

E2

)
(A.23)

and

E1/2 =
√
ε21,2 + b2 (A.24)

=
1
2

[
t2⊥ + t23|γ(~k)|2 + 2t2|γ(~k)|2

±
√

4t2|γ(~k)|2
(
t2⊥ + t23|γ(~k)|2 − 2t⊥t3|γ(~k)| cos

(
3φ~k

))
+
(
t2⊥ − t

2
3|γ(~k)|2

)2
]

.

(A.25)

Thus,

U5H4U
†
5 = diag (E1,E2,−E2,−E1) , (A.26)

and the matrix elements of the corresponding total transformation
U = U5U4U3U2U1 can be expressed as

U11 =
1
2 (α− − iσα+) (τβ+ + β−)

(
γ
(1)
+ − iσγ

(1)
−

)
(A.27)

U12 =
1
2 (α+ − iσα−) (τβ+ + β−)

(
γ
(1)
− − iσγ

(1)
+

)
(A.28)

U13 = −e
iφ~k

2 (α− − iσα+) (τβ+ − β−)
(
γ
(1)
+ + iσγ

(1)
−

)
(A.29)

U14 =
e−iφ~k

2 (α− + iσα+) (τβ+ − β−)
(
γ
(1)
+ − iσγ

(1)
−

)
(A.30)

and

U21 = −1
2 (α+ + iσα−) (τβ+ − β−)

(
γ
(2)
+ − iσγ

(2)
−

)
(A.31)

U22 = −1
2 (α+ − iσα−) (τβ+ − β−)

(
γ
(2)
+ + iσγ

(2)
−

)
(A.32)

U23 = −e
iφ~k

2 (α+ + iσα−) (τβ+ + β−)
(
γ
(2)
+ + iσγ

(2)
−

)
(A.33)

U24 = −e
−iφ~k

2 (α+ − iσα−) (τβ+ + β−)
(
γ
(2)
+ − iσγ

(2)
−

)
(A.34)

which are the complex conjugates of the components of the eigen-
vectors of the conduction-band states with positive energies E1(~k),
E2(~k), while

U31 =
1
2 (α− − iσα+) (τβ+ − β−)

(
γ
(2)
+ − iσγ

(2)
−

)
(A.35)
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U32 =
1
2 (α− + iσα+) (τβ+ − β−)

(
γ
(2)
+ + iσγ

(2)
−

)
(A.36)

U33 = −e
iφ~k

2 (α+ + iσα−) (τβ+ + β−)
(
γ
(2)
− − iσγ

(2)
+

)
(A.37)

U34 = −e
−iφ~k

2 (α+ − iσα−) (τβ+ + β−)
(
γ
(2)
− + iσγ

(2)
+

)
(A.38)

and

U41 =
1
2 (α+ + iσα−) (τβ+ + β−)

(
γ
(1)
+ − iσγ

(1)
−

)
(A.39)

U42 = −1
2 (α− + iσα+) (τβ+ + β−)

(
γ
(1)
− − iσγ

(1)
+

)
(A.40)

U43 =
eiφ~k

2 (α+ + iσα−) (τβ+ − β−)
(
γ
(1)
+ + iσγ

(1)
−

)
(A.41)

U44 =
e−iφ~k

2 (α− + iσα+) (τβ+ − β−)
(
γ
(1)
− + iσγ

(1)
+

)
(A.42)

correspond to the valence-band states with negative energies
(−E2(~k)), (−E1(~k)). Note that all factors involving α±, γ(1)± , γ(2)±
in the above expressions have modulus one, i.e. they are phase
factors.





B
CORRELATION MATRICES

Upon tracing out layer 1 from the ground state of the undoped bi-
layer system the correlation matrix reads in the basis

(
a†

2~k
, b†

2~k

)
|0〉

C(~k) =

 U31U
∗
31 + U41U

∗
41 U31U

∗
33 + U41U

∗
43

U33U
∗
31 + U43U

∗
41 U33U

∗
33 + U43U

∗
43


=

 1
2 u(~k)

u∗(~k) 1
2

 (B.1)

with

u(~k) =
e−iφ~k

4
(
β2
+ − β2

−
)((

γ
(1)
+ − iσγ

(1)
−

)2
−
(
γ
(2)
+ − iσγ

(2)
−

)2)
.

(B.2)
This quantity becomes singular at the corners of the Brillouin zone
where γ(~k) is zero such that its phase is ill-defined, and at the
positions of the satellite Dirac cones of the energy spectrum where,
as discussed in appendix 4.3, γ(2)± is discontinuous.
Tracing out the sublattices A1 and B2 one finds in the basis(
a†

2~k
, b†

1~k

)
|0〉

C(~k) =

 U31U
∗
31 + U41U

∗
41 U31U

∗
32 + U41U

∗
42

U32U
∗
31 + U42U

∗
41 U32U

∗
32 + U42U

∗
42


=

 1
2 v(~k)

v∗(~k) 1
2

 (B.3)

with

v(~k) =
(α− − iσα+)2

4

(
(τβ+ − β−)2

(
γ
(2)
+ − iσγ

(2)
−

)2

+ (τβ+ + β−)
2
(
γ
(1)
+ − iσγ

(1)
−

)2)
. (B.4)

Note that the expressions (B.2),(B.4) obey the interesting sum
rule

|u(~k)|2 + |v(~k)|2 =
1
4 (B.5)

which s fulfilled whenever the coefficients involved satisfy

α2
+ + α2

− = β2
+ + β2

− =
(
γ
(1/2)
+

)2
+
(
γ
(1/2)
−

)2
= 1 , (B.6)
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which is the case here by construction.
Finally, the correlation matrix obtained by tracing out the sub-

lattices A1, A2 is proportional to the unit matrix,

C(~k) =

 U32U
∗
32 + U42U

∗
42 U32U

∗
33 + U42U

∗
43

U33U
∗
32 + U43U

∗
42 U33U

∗
33 + U43U

∗
43


=

 1
2 0
0 1

2

 (B.7)

implying that the remaining subsystem is maximally entangled
with the subsystem traced out.



C
DIAGONAL IZAT ION OF THE d + i d -WAVE
SUPERCONDUCTIV ITY STATE ON THE
HONEYCOMB LATTICE

In this Appendix we present analytical diagolazation of the Hamil-
tonian of the chiral d + id-wave superconductivity state on the
honeycomb lattice. Complexity of the order parameter makes the
analytical approach more difficult. The starting point of our anal-
ysis is the Bardeen-Cooper-Schrieffer mean-field Hamiltonian in
momentum space is

HMF (~k) =− t
∑
~k

(
γ(~k)a†~kσ

b~kσ + h.c.
)

− µ
∑
~k

(
a†~kσ

a~kσ + b†~kσ
b~kσ

)

− J
∑
~k,~δ

(
∆~δe

i~k~δ
(
a†~k↑

b†
−~k↓
− a†~k↓b

†
−~k↑

)
+ h.c.

)
(C.1)

where we define the superconductivity order parameter

∆(~k) =
∑
~δ

∆~δe
i~k~δ (C.2)

as a combination of the dx2−y2 and dxy-wave superconductivity
state ∆d±id(~k) = cos

(
π
3

)
∆d2

x−y2(~k)± sin
(
π
3

)
∆dxy(~k) which min-

imalizes a free energy.
We apply the transformations

c~k,σ =
1√
2
(a~k,σ − e

i·φ~kb~k,σ),

d~k,σ =
1√
2
(a~k,σ + ei·φ~kb~k,σ) (C.3)

such that in

H1(~k) =


t|γ(~k)| − µ 0 C~k −iS~k

0 −t|γ(~k)| − µ iS~k −C~k
C∗~k −iS∗~k −t|γ(~k)|+ µ 0
iS∗~k −C∗~k 0 t|γ(~k)|+ µ

 .

(C.4)
diagonalize the kinetic part of the Hamiltonian. C~k = J

∑
~δ
~∆~δ cos(~k~δ−

φ~k) and S~k = J
∑
~δ
~∆~δ sin(~k~δ− φ~k) are complex functions.
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Here it is useful to split this Hamiltonian as H1 = H
′
1 +H

′′
1

where

H
′
1(~k) =


t|γ(~k)| − µ 0 0 −iS~k

0 −t|γ(~k)| − µ iS~k 0
0 −iS∗~k −t|γ(~k)|+ µ 0
iS∗~k 0 0 t|γ(~k)|+ µ

 .

(C.5)
and

H
′′
1 (~k) =


0 0 C~k 0
0 0 0 −C~k
C∗~k 0 0 0
0 −C∗~k 0 0

 . (C.6)

H
′
1 is diagonalized by

e~k+ =iα∗−c~k↑ + α+d
†
−~k↓

(C.7)

f~k+ =− iα∗−d~k↑ + α+c
†
−~k↓

(C.8)

with

α+ =

√√√√√1
2

1 + µ√
µ2 + |S~k|2


α− =

S~k√
2
√
µ2 + |S~k|2

(
µ+

√
µ2 + |S~k|2

) . (C.9)

This leads to

H2 = U2H1U
†
2 =


e1 m −l 0
m e2 0 l

−l∗ 0 −e1 m

0 l∗ m −e2

 (C.10)

with
m =

Re(C~k) · Im(S~k)− Im(C~k) ·Re(S~k)√
µ2 + |S~k|2

(C.11)

and
l = α2

+C
∗
~k
+ (α∗−)

2C~k (C.12)

and ±e1 and ±e2 are eigenenergies of the Hamiltonian H
′
1 given

by
e1 = t|γ(~k)|+

√
µ2 + |S~k|2 (C.13)
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and
e2 = −t|γ(~k)|+

√
µ2 + |S~k|2. (C.14)

We can now split this Hamiltonian as H2 = H
′
2 +H

′′
2 where

H
′
2 =


e1 m 0 0
m e2 0 0
0 0 −e1 m

0 0 m −e2

 , H
′′
2 =


0 0 −l 0
0 0 0 l

−l∗ 0 0 0
0 l∗ 0 0

 .

(C.15)
Proceeding now with the transformations

g~k+ =β+e~k+ + σβ−f~k+ (C.16)
h~k+ =σβ−e~k+ − β+f~k+ (C.17)

where σ = sign(m) and

β± =

√√√√√1
2

1± t|γ(~k)|√
t2|γ(~k)|2 +m2

 (C.18)

we diagonalize first part of the Hamiltonian H ′2 and we get

H3 = U3H2U
†
3 =


ε1 0 0 −l
0 ε2 −l 0
0 −l∗ −ε2 0
−l∗ 0 0 −ε1

 (C.19)

where ±ε1 and ±ε2 are eigenenergies of the Hamiltonian H ′2

ε1 =
√
µ2 + |S~k|2 +

√
t2|γ(~k)|2 +m2 (C.20)

and
ε2 =

√
µ2 + |S~k|2 −

√
t2|γ(~k)|2 +m2. (C.21)

Finally, this Hamiltonian is brought to the diagonalized form with
transformations

o~k+ =γ
(1)
+ g~k+ − γ

(1)
− g†~k−

(C.22)

p~k+ =γ
(2)
+ h~k+ − γ

(2)
− h†~k−

(C.23)

with

γ
(1)
+ =

√
1
2

(
1 + ε1

Eα

)
, γ

(1)
− =

l√
2Eα (Eα + ε1)

(C.24)
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and

γ
(2)
+ =

√√√√1
2

(
1 + ε2

Eβ

)
, γ

(2)
− =

l√
2Eβ (Eβ + ε2)

(C.25)

and

Eα =

√
t2|γ(~k)|2 + µ2 + |S~k|2 + |C~k|2 + 2

√
u+ v (C.26)

and

Eβ =

√
t2|γ(~k)|2 + µ2 + |S~k|2 + |C~k|2 − 2

√
u+ v. (C.27)

where

u =
(
µ2 + |S~k|

2
)
t2|γ(~k)|2 (C.28)

and

v =
(
ReC~kImS~k −ReS~kImC~k

)2
. (C.29)

Bogoliubov transformations o~k+ and p~k+ in the basis a~k↑, b~k,↑

o~k+ =− 1√
2

(
α+γ

(1)
− − iα∗−γ

(1)
+

)
(β+ − σβ−) a~k↑

− 1√
2
eiφ~k

(
α+γ

(1)
− + iα∗−γ

(1)
+

)
(β+ + σβ−) b~k↑

+
1√
2

(
α+γ

(1)
+ + iα−γ

(1)
−

)
(β+ + σβ−) a

†
−~k↓

+
1√
2
eiφ~k

(
α+γ

(1)
+ − iα−γ

(1)
−

)
(β+ − σβ−) b†−~k↓ (C.30)

p~k+ =− 1√
2

(
α+γ

(2)
− + iα∗−γ

(2)
+

)
(β+ + σβ−) a~k↑

+
1√
2
eiφ~k

(
α+γ

(2)
− − iα∗−γ

(2)
+

)
(β+ − σβ−) b~k↑

1√
2

(
α+γ

(2)
+ − iα−γ

(2)
−

)
(β+ − σβ−) a†−~k↓

− 1√
2
eiφ~k

(
α+γ

(2)
+ + iα−γ

(2)
−

)
(β+ + σβ−) a

†
−~k↓

(C.31)



D
CORRELATION MARTIX

d.1 s-wave scenario

The Hamiltonian Eq.(5.55) for s-wave superconductivity state in
graphene can be diagonalized by using Bogoluibov transformations

e~k+ = α+
1√
2
(a~k,↑ − e

i·φ~kb~k,↑) + α−
1√
2
(a†
−~k,↓
− ei·φ~kb†

−~k,↓
) (D.1)

f~k+ = β−
1√
2
(a~k,↑ + ei·φ~kb~k,↑)− β+

1√
2
(a†
−~k,↓

+ ei·φ~kb†
−~k,↓

)

(D.2)

where α+ =

√√√√√1
2

1 + t|γ(~k)|−µ√
(t|γ(~k)|−µ)

2
+|C~k|

2

, α− =
C~k√

2Eα(Eα+t|γ(~k)|−µ)
,

β+ =

√√√√√1
2

1 + t|γ(~k)|+µ√
(t|γ(~k)|+µ)

2
+|C~k|

2

, and β− =
C~k√

2Eβ(Eβ+t|γ(~k)|+µ)

with Eα and Eβ are energies of Bogoliubov quasi-particles

Eα =

√(
t|γ(~k)| − µ

)2
+ |C~k|2 (D.3)

and
Eβ =

√(
t|γ(~k)|+ µ

)2
+ |C~k|2. (D.4)

The e (f) sections are determined by Eq. (D.1) (Eq. (D.2)), re-
spectively. These sections are decoupled in Bogoliubov description
and we are allowed than to obtain their contributions to the ground
state separative. We can demand e~k+|G〉 = 0 and e†~k−

|G〉 = 0
where |G〉 is the ground state. The e section contributes to the
ground state as:

∏
~k∈IBZ

(
α+(~k)− α−(~k)c†~k↑c

†
−~k↓

)
|0〉 (D.5)

where |0〉 is the vacuum state. Similar, the contribution of the f
section to the ground state:

∏
~k∈IBZ

(
β−(~k) + β+(~k)d

†
~k↑
d†
−~k↓

)
|0〉 (D.6)
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the ground state |G〉 is determined by conditions: f~k+|G〉 = 0 and
f †~k−
|G〉 = 0. This leads to the complete ground state vector:

∏
~k∈IBZ

(
α+(~k)− α−(~k)c†~k↑c

†
−~k↓

)
∏

~q∈IBZ

(
β−(~q) + β+(~q)d

†
~q↑d
†
−~q↓

)
|0〉. (D.7)

Similar findings are obtained for the ground state of the p-wave
superconductivity state in graphene.
This ground state leads to the correlation matrix when spin ↓

is traced out:

C(~k) =

 1
2

(
|α−|2 + |β+|2

)
1
2e
−iφ~k

(
|β+|2 − |α−|2

)
1
2e
iφ~k

(
|β+|2 − |α−|2

)
1
2

(
|α−|2 + |β+|2

)
 .

(D.8)

d.2 chiral d-wave scenario

Here, o section is defined by Eq. (C.30), while p section is defined
by Eq. (C.31). We can consider o and p sections separative. Thus,
the o section contributes to the ground state as

∏
~k∈IBZ

(
γ
(1)
+ (~k) + γ

(1)
− (~k)g†~k+

g†
−~k−

)
|0〉 (D.9)

where |0〉 is the vacuum state. While, the p section contributes to
the ground state

∏
~k∈IBZ

(
γ
(2)
+ (~k) + γ

(2)
− (~k)h†~k+

h†
−~k−

)
|0〉. (D.10)

The complete ground state vector |G〉 can be determined by condi-
tions g~k+|G〉 = 0 and g†~k−|G〉 = 0 and h~k+|G〉 = 0 and h†~k−|G〉 =
0, which leads to the following form
∏

~k∈IBZ

(
γ
(1)
+ (~k) + γ

(1)
− (~k)g†~k+

g†
−~k−

) ∏
~q∈IBZ

(
γ
(2)
+ (~q) + γ

(2)
− (~q)h†~q+h

†
−~q−

)
|0〉.

(D.11)

Using

a~k↑ =−
1√
2

(
α+

(
γ
(1)
−

)∗
+ iα−γ

(1)
+

)
(β+ − σβ−) o~k,+
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− 1√
2

(
α+

(
γ
(2)
−

)∗
+ iα−γ

(2)
+

)
(β+ + σβ−) p~k,+

+
1√
2

(
α+γ

(2)
+ − iα−γ

(2)
−

)
(β+ + σβ−) p

†
−~k,−

+
1√
2

(
α+γ

(1)
+ − iα−γ

(1)
−

)
(β+ − σβ−) o†−~k,−

(D.12)

we can calculate the mean occupancy at cite A:

〈a†~k↑a~k↑〉 =

1
2

(
α2
+|γ

(1)
− |2 + |α−|2

(
γ
(1)
+

)2
+ iα+γ

(1)
+

(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))

(β+ − σβ−)2
n
(0)
~k

+
1
2

(
α2
+|γ

(2)
− |2 + |α−|2

(
γ
(2)
+

)2
+ iα+γ

(2)
+

(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))

(β+ + σβ−)
2
n
(0)
~k

+
1
2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ

(1)
− |2 − iα+γ

(1)
+

(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)2 (1− n(0)~k

)

+
1
2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ

(2)
− |2 − iα+γ

(2)
+

(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ + σβ−)

2 (1− n(0)~k
). (D.13)

The average number n(0)~k
of fermions with momentum k at tem-

perature T = 0 is n(0)~k
= 0.

Further, we get the mean occupancy at the cite A

〈a†~k↑a~k↑〉 =
1
2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ

(1)
− |2 − iα+γ

(1)
+

(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)2

+
1
2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ

(2)
− |2 − iα+γ

(2)
+

(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ + σβ−)

2 . (D.14)

After basic algebra we find that the correlation matrix obtained
by tracing out spin ↓ at T = 0 reads

C(~k) =

 C11(~k) C12(~k)

C∗12(~k) C22(~k)

 (D.15)
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with

C11(~k) =
1
2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ

(1)
− |2 − iα+γ

(1)
+

(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)2

+
1
2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ

(2)
− |2 − iα+γ

(2)
+

(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ + σβ−)

2

=
1
2 +

1
4

µ√
µ2 + |S~k|2

(ε1 +m)
1
Eα

1− m√
t2|γ(~k)|2 +m2


+

1
4

µ√
µ2 + |S~k|2

(ε2 +m)
1
Eβ

1 + m√
t2|γ(~k)|2 +m2

 , (D.16)

C22(~k) =
1
2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ

(1)
− |2 + iα+γ

(1)
+

(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ + σβ−)

2

+
1
2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ

(2)
− |2 + iα+γ

(2)
+

(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ − σβ−)2

=
1
2 +

1
4

µ√
µ2 + |S~k|2

(ε1 −m)
1
Eα

1 + m√
t2|γ(~k)|2 +m2


+

1
4

µ√
µ2 + |S~k|2

(ε2 −m)
1
Eβ

1− m√
t2|γ(~k)|2 +m2

 , (D.17)

and

C12(~k) =

1
2e
−iφ~k

(
α2
+(γ

(1)
+ )2 − |α−|2|γ

(1)
− |2 − iα+γ

(1)
+

(
α
(1)
− γ

(1)
− +

(
α
(1)
−

)∗ (
γ
(1)
−

)∗))
(
β2
+ − β2

−
)

− 1
2e
−iφ~k

(
α2
+(γ

(2)
+ )2 − |α−|2|γ

(2)
+ |2 − iα+γ

(2)
+

(
α
(1)
− γ

(2)
− +

(
α
(1)
−

)∗ (
γ
(2)
−

)∗))
(
β2
+ − β2

−
)

=
1
4e
−iφ~k

( ε1
Eα
− ε2
Eβ

)
− i

Re(C~k)Re(S~k) + Im(C~k)Im(S~k)√
µ2 + |S~k|2

(
1
Eα
− 1
Eβ

)
t|γ(~k)|√

t2|γ(~k)|2 +m2
. (D.18)

Here, one should notice that C11(−~k) = C22(~k) and C12(~k) =(
C12(−~k)

)∗
.
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Eigenvectors of the correlation matrix

q~k↑ =δ+(
~k)a~k↑ + δ−(~k)b~k↑ (D.19)

r~k↑ =δ+(−~k)a~k↑ − δ
∗
−(−~k)b~k↑ (D.20)

where:

δ+(~k) =

√√√√√1
2

1 + C11 −C22√
(C11 −C22)

2 + 4|C12|2


δ−(~k) =

2C12√
2
√
(C11 −C22)

2 + 4|C12|2(C11 −C22 +
√
d)

. (D.21)
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