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Effects of hadronic rescattering on multistrange hadrons in high-energy nuclear collisions
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We study the effects of hadronic rescattering on hadron distributions in high-energy nuclear collisions by using
an integrated dynamical approach. This approach is based on a hybrid model combining (3 + 1)-dimensional
ideal hydrodynamics for the quark gluon plasma (QGP) and a transport model for the hadron resonance gas.
Since the hadron distributions are the result of the entire expansion history of the system, understanding the
QGP properties requires investigating how rescattering during the hadronic stage affects the final distributions of
hadrons. We include multistrange hadrons in our study and quantify the effects of hadronic rescattering on their
mean transverse momenta and elliptic flow. We find that multistrange hadrons scatter less during the hadronic
stage than nonstrange particles, and thus their distributions reflect the properties of the system in an earlier stage
than the distributions of nonstrange particles.
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I. INTRODUCTION

Quark gluon plasma (QGP), strongly interacting matter
composed of quarks and gluons, has been created in high-
energy nuclear collisions at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) and the
Large Hadron Collider (LHC) at CERN [1]. One of the main
discoveries at the RHIC was that the QGP behaves like a nearly
perfect fluid [2–7], and since then the transport properties of
the QGP, especially its shear and bulk viscosity coefficients,
have been under active investigation.

The QGP created in high-energy nuclear collisions expands,
cools down, and turns into a hadron gas. Since hadrons scatter
with each other via the strong interaction, information about
the QGP stage is, in general, contaminated by rescatterings
in the hadronic stage. To probe the QGP more directly,
thermal photons and dileptons were proposed as penetrating
probes [8,9]. Once emitted, photons and dileptons propagate
to detectors without rescattering since they interact only
electromagnetically and their mean free path is therefore
longer than the typical size of the system. However, photons
and dileptons are not perfect probes of the QGP either. They are
emitted during all the stages of high-energy nuclear collisions
such as the primary hard scatterings, pre-equilibrium stage, and
late hadronic stage [10], and it is not possible to distinguish
photons and dileptons emitted from the QGP from those
originating from the other processes.

In this paper, we follow up the previous studies [11–17]
about multistrange hadrons, and claim that their distributions
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allow us to probe the QGP immediately after hadronization.
Multistrange hadrons, in particular φ mesons and � baryons,
have small scattering cross sections with pions since they do
not form any resonances unlike other hadrons. This is a unique
property of the multistrange hadrons: Their distributions reflect
the properties of the system mainly at a specific stage deep
inside the fireball, unlike photons and dileptons, which come
from all stages.

By using a hybrid model in which hydrodynamic descrip-
tion of the QGP fluid is followed by a hadronic cascade
model, violation of the mass ordering of the differential elliptic
flow parameter v2(pT ) was predicted [15]. This phenomenon
was observed recently by the STAR Collaboration [18],
which indicates that φ mesons are less affected by hadronic
rescatterings and, consequently, that they are good probes deep
inside the matter. In this paper, we investigate the hadronic
rescattering effects on observables more systematically by
employing an integrated dynamical approach which we have
previously used to analyze various observables at the RHIC
and the LHC energies [19]. In the previous study of the
violation of mass ordering [15], a first-order phase transition
model for the equation of state (EOS) was employed and only
hadrons up to the mass of �(1232) were taken into account in
the hadron phase. In the present paper, we use a more realistic
equation of state [20] connecting a parametrized lattice QCD
EOS at large temperatures to a hadron resonance gas EOS
at low temperatures. The hadron resonance gas in the EOS
contains all the resonances in the hadron cascade model JAM
(Jet AA Microscopic transport model) [21] used as the last
stage of the integrated dynamical approach. Hence, in addition
to φ, we are able to investigate hadronic rescattering effects
on heavier multistrange hadrons such as � and �.

In the following we introduce the integrated dynamical
model in Sec. II. We compare transverse momentum (pT )
spectra and pT -differential elliptic flow parameters v2(pT )
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with the STAR data in Sec. III. After we confirm that we
can reasonably reproduce the data by using this model, we
discuss the hadronic rescattering effect in Sec. IV. In this
section, we first revisit the violation of mass ordering of
v2(pT ). We next focus on the mean transverse momentum
〈pT 〉 and pT -averaged v2 calculated with or without hadronic
rescatterings and investigate how much these final observables
reflect the information when the hydrodynamic stage finishes.
We summarize our results in Sec. V.

II. THE MODEL

We describe the space-time evolution of high-energy
nuclear collisions by use of an integrated dynamical approach
on an event-by-event basis. We divide the whole reaction
into three separate stages: Initial stage, hydrodynamic stage,
and transport stage. The initial entropy-density distribution
after the collision of energetic heavy nuclei is parametrized
by using a Monte Carlo version of the Glauber model. The
subsequent expansion of the matter is described by relativistic
ideal hydrodynamics. When the system becomes sufficiently
dilute due to strong expansion, we switch the description of
the system from hydrodynamics to kinetic theory.

In the following we briefly overview each part of the
model and the corresponding interfaces. For further details,
see Ref. [19].

A. Hydrodynamics and equation of state

Hydrodynamics is a macroscopic description and an ef-
fective theory of the system’s long wavelength/time behavior.
The hydrodynamical equations of motion are obtained from
the conservation of energy and momentum:

∂μT μν = 0, (1)

where T μν is the energy-momentum tensor. In the ideal
fluid approximation, the energy momentum tensor can be
decomposed as

T μν = euμuν − P (gμν − uμuν), (2)

where e, P , uμ, and gμν = diag(+1,−1,−1,−1) are energy
density, pressure, flow velocity, and the Minkowski met-
ric, respectively. To close the system of partial differential
equations we need to know the EOS of the fluid to obtain
pressure P as a function of energy density e. Once the EOS is
known, the space-time evolution of thermodynamic quantities
and flow velocity is determined for given initial conditions,
i.e., energy-density distribution and flow field at initial
time τ0.

We ignore the baryon number and its continuity equation
since at the collider energies, net baryon density at midrapidity
is tiny. When we solve Eq. (1), temperature is not needed since
it is merely a parameter to connect energy density and pressure.
Nevertheless, we also follow the space-time evolution of
temperature to decide where to switch from fluid to cascade.
We employ the s95p-v1.1 parametrization for the EOS. The
s95p parametrization [20] connects the lattice QCD based
EOS [22] in the high-temperature region to a hadron resonance
gas EOS in the low temperature region. The hadronic part

of s95p-v1.1 contains the same hadronic species as the JAM
hadronic cascade model [21] described in the next subsection.

We numerically solve Eq. (1) in the Milne coordinates
(τ,ηs,x,y), which is appropriate for the description of the
evolution at relativistic energies [23]. Here τ = √

t2 − z2 is
longitudinal proper time, ηs = 1

2 ln[(t + z)/(t − z)] is space-
time rapidity, and x and y are transverse coordinates perpen-
dicular to the collision axis. In the numerical calculations, we
employ the piecewise parabolic method [24], which is known
to be able to describe shock waves. For details about this
numerical algorithm, see also Ref. [25].

B. Particlization and hadronic cascade

We employ the hadronic cascade model JAM [21] to
describe the space-time evolution of hadron gas after “par-
ticlization,” i.e., after switching from fluid to particles. At the
late stage of collisions, the system is too dilute to maintain
equilibrium. We assume this happens around temperature,
which we call the switching temperature Tsw, and switch
description from hydrodynamics to kinetic theory on the
T = Tsw isosurface [13,26–31]. Within the current model, Tsw

is a rather adjustable parameter which controls the final particle
ratios. We choose Tsw = 155 MeV to reproduce the observed
pT spectra of pions, kaons, and protons + antiprotons in the
low-pT region [19] at the full RHIC energy. At T (x) = Tsw, we
calculate the single-particle phase-space distributions fi(p,x)
for all hadrons included in the EOS by employing the Cooper-
Frye prescription [32]

fi(p,x)d3xd3 p = gi

(2π )3E

p · �σd3 p
exp(p · u/Tsw) ± 1

. (3)

Here gi is a degeneracy of the hadronic species i, pμ = (E, p)
is the four-momentum of a particle, and �σμ is a normal
vector of the T (x) = Tsw hypersurface. It is well known
that at some momenta the Cooper-Frye formula (3) gives a
negative contribution for the spacelike hypersurface element
(or even the timelike hypersurface element with negative
time component). These negative numbers correspond to
incoming particles, which one cannot treat in the hadronic
cascade model. So we just neglect these contributions and
consider only outgoing particles. We sample particles by
going through all the hypersurface elements and generate
ensembles of hadrons on an event-by-event basis. Note that
we do not oversample particles to gain statistics for each
event. This means each hydrodynamic event corresponds to
one ensemble of particles. Among all the calculations in the
integrated dynamical approach, sampling particles from the
particlization hypersurface is numerically the most expensive,
which is crucial in event-by-event simulations. In Ref. [19],
we discussed in detail how to sample particles and integrate
the Cooper-Frye formula (3) over momentum at a smaller
numerical cost.

In hadronic cascade models, experimental hadronic cross-
section data are implemented when available. However, there
are many hadronic scattering processes where data do not
exist. In such a case, we use the additive quark model [33–36]
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to describe the scattering cross section,

σ 12
tot = σNN

tot
n1

3

n2

3

(
1 − 0.4

ns1

n1

)(
1 − 0.4

ns2

n2

)
. (4)

Here σNN
tot is the total nucleon-nucleon cross section, ni is

the number of constituent quarks in a hadron, and nsi is the
number of strange quarks in a hadron. Thus hadrons containing
strange quark(s) have a relatively small total cross section
in this model. Moreover, φ mesons and � baryons do not
form resonances when scattering with pions and therefore have
much smaller cross sections than nonstrange hadrons.

In the simulations, the dynamics of the system is described
by a sum of incoherent two-body collisions. Two particles
collide with each other if their minimum distance b in the
center-of-mass frame is smaller than the distance given by the
total cross section,

b <

√
σtot

π
. (5)

This is a classical, geometrical interpretation of the two-body
collision cross section.

Note that in JAM the properties of hadrons are those of
free particles. The medium modifications of hadron properties
such as a broadening and mass shift [37] have been exten-
sively studied by various further developments of transport
models such as the relativistic Vlasov-Uehling-Uhlenbeck
(RVUU) model [38], the Hadron-String-Dynamics (HSD) [39]
and Parton-Hadron-String-Dynamics (PHSD) [40] transport
models, the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU)
model [41], and Isospion Quantum Molecular Dynamics
(IQMD) [42]. Nevertheless, since the main difference in the
cross sections of multistrange particles and the other hadrons
is due to the (non-)existence of resonance channels, we do not
expect the in-medium modifications to significantly affect this
difference, and the use of free particle properties to provide a
conservative baseline is justified.

As mentioned, the interactions in JAM are described as
two-particle scatterings, and multiparticle scatterings are not
included. It has been argued that multipion fusion processes
in particular would have a significant effect on the yields
of proton-antiproton pairs [43], but subsequent calculations
have shown that regeneration is a ∼10% level effect at the
LHC [44,45]. Nevertheless, the multimeson fusion effects for
� baryons are much smaller than for protons or � [46], and
thus their inclusion would make the later-discussed differences
between rescatterings of nonstrange and multistrange particles
even larger.

As a default setting strong interactions and decays are
simulated in JAM. However, we switch off the decay channels
for φ mesons in the present study to investigate hadronic
rescattering effects on φ mesons in an efficient way. Otherwise,
we would need to perform mass reconstruction of φ mesons
from two kaons after numerical simulations. Since the lifetime
of φ mesons (∼47 fm/c) [47] is somewhat larger than the
typical lifetime of the system (∼10 fm/c), the daughter kaons
from φ meson decays (or lack of them) are not expected to
affect the bulk evolution. As we will discuss in Sec. III, the
yield of � measured by STAR contains the feed-down from

electromagnetic 0 decays. This process does not happen
in the default setting in JAM and, therefore, is simulated
separately when we analyze � spectra. We also have an
option in JAM to deactivate all the hadronic rescatterings
and/or resonance decays to investigate how these affect final
observables.

C. Initial conditions

Once initial conditions for the hydrodynamic evolution are
fixed, the subsequent evolution is determined, and we are able
to obtain final particle distributions which can be compared
with experimental data. The prethermalization stage between
the first contact of colliding nuclei and the initial time of
hydrodynamic evolution may be described by nonequilibrium
field theory, although how exactly it could be done is one
of the open issues in the physics of relativistic heavy-ion
collisions. Thus, we do not even try to describe it and
simply rely on the Monte Carlo (MC) Glauber [48] and the
modified Brodsky-Gunion-Kuhn (BGK) models [29] to give
the density distribution at τ0 in the transverse plane and in the
longitudinal direction, respectively. The MC Glauber model
enables us to calculate the number density of participants
and of binary collisions on an event-by-event basis. Our
assumption is that the initial entropy density is proportional
to a linear combination of these two densities. Even at very
high collision energies the matter profile in the longitudinal
direction depends on space-time rapidity, and boost invariance
does not hold. Furthermore, in noncentral collisions the
longitudinal density gradient at mid space-time rapidity may
be nonzero due to the different thicknesses of the colliding
nuclei at each transverse position. This can be deduced from
(pseudo-)rapidity distribution of hadrons in p(d)-A collisions.
In the modified BGK model a smooth initial longitudinal
profile is parametrized by taking into account the difference
in the local thickness of colliding nuclei. It is noted that
we do not employ the Monte Carlo Kharzeev-Levin-Nardi
model [49,50], which was used to calculate initial conditions
in our previous hydrodynamic studies [19] since, in the
present study, we focus on the hadronic rescattering effects on
transverse dynamics, which are not supposed to be sensitive
to the choice of initial conditions.

Assuming local thermalization, energy-density distribution
e(τ = τ0,ηs,x,y) and pressure P (τ = τ0,ηs,x,y) are obtained
from the entropy-density distribution through the s95p-v1.1
EOS. Initial flow velocity at τ0 is supposed to be Bjorken’s
scaling flow [51], namely uτ = 1 and ux = uy = uηs = 0.
Throughout this study, we fix τ0 = 0.6 fm/c. We choose initial
parameters to reproduce the pT distributions of pions, kaons,
and protons + antiprotons in Au + Au collisions at

√
sNN =

200 GeV measured by the PHENIX Collaboration [52]. The
centrality dependence of multiplicity is controlled by a fraction
of soft (participants) and hard (binary collisions) component
in the MC Glauber model, whereas the multiplicity in central
collisions is fixed by the overall normalization parameter of the
initial entropy distribution. On the other hand, as mentioned
particle ratios are controlled by the switching temperature. The
parameters controlling the shape of the rapidity distribution of
particles are kept the same as in our previous study [19]. Since
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here we concentrate on observables at midrapidity, we do not
discuss them further.

In hydrodynamic simulations, one needs to convert the
position distribution (a sum of δ functions in the trans-
verse plane) of collision points in MC Glauber model to a
hydrodynamic density distribution. In our model we obtain the
density at a point x by counting the number of collision points
or participants within radius r0 = √

σin/π around the point
and divide by the inelastic cross section in p + p collisions at√

sNN = 200 GeV, σin. For further details, see Ref. [19].

III. SPECTRA AND FLOW

In this section, we compare invariant pT spectra and
differential elliptic flow parameter v2(pT ) of identified hadrons
with experimental data from the STAR Collaboration. In the
present study, we analyzed 0.6 million “minimum bias” events
(defined as Npart � 2 in the MC Glauber calculations for
hydrodynamic initial conditions). Centrality is defined using
an event distribution of the charged hadron multiplicity in
|η| < 0.5 as done by the STAR Collaboration [53]. Note that
error bars in the theoretical plots denote the statistical errors.

A. Transverse momentum spectra

In Figs. 1, 2, and 3, we show pT distributions of identified
hadrons around midrapidity in Au + Au collisions at

√
sNN =

200 GeV. For clarity, the results and the experimental data
points are scaled up or down by a common factor.

Figure 1 shows the pT spectra of (a) positive pions
(|η| < 0.5) and (b) positive kaons (|η| < 0.1) compared with
the STAR data (|y| < 0.5 for pions [54] and |y| < 0.1 for
kaons [55]). The Jacobian between η and y is taken into

account to obtain the invariant pT spectra in our results. Even if
we tuned the initial conditions and the switching temperature in
the model using pion, kaon, and proton + antiproton pT spectra
from the PHENIX Collaboration in our previous study, the
results are overall in good agreement with the STAR data, too.

In particular, the model reproduces the pion data up to
pT ∼ 3 GeV/c in central (0–12%) collisions. Above this, our
result gradually deviates from the data due to the appearance
of (semi-)hard components such as recombination and jet
fragmentation. The more peripheral the collision, the lower
the pT where our result begins to deviate from the data. Due
to the limited pT range of the data, the same behavior is not
seen in the kaon spectra. If one looks at the pion spectrum in
peripheral collisions (60–80% centrality) carefully, then one
sees that experimental data are systematically larger than the
results. This is because in peripheral collisions there is a small
discrepancy between the PHENIX [52] and STAR [54] pion
yields. Nevertheless, we did not further tune the parameters to
reproduce the STAR data because we want to keep the same
framework as in our previous study [19].

In Fig. 2, we compare the pT spectra in |η| < 0.5 for (a)
protons and (b) φ mesons with the STAR data [54,56]. Due
to limited statistics, we do not show some data points of the
proton spectra in high-pT regions (above pT ∼ 4 GeV/c) in
20–40, 40–60, and 60–80% centrality. The proton spectra from
STAR are corrected for the � and + feed-down. Weak decays
do not occur in the default setting in JAM, so we are able to
compare our results directly with the STAR-corrected data.
Since we neglect the baryon chemical potential in our model,
our results for protons are slightly below the experimental data
at some pT range. Nevertheless, overall slopes are in good
agreement with the data below pT ∼ 3 GeV/c. On the other
hand, similarly to pions, deviation between the experimental
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FIG. 1. (Color online) Transverse-momentum distributions of (a) π+ (|η| < 0.5) and (b) K+ (|η| < 0.1) obtained from the integrated
dynamical approach (open square) compared with data from the STAR Collaboration [54,55] (filled square) for

√
sNN = 200 GeV Au + Au

collisions. From top to bottom, each spectrum shows the results of 0–12, 10–20, 20–40, 40–60, and 60–80% centrality multiplied by 10n with
n = 0 to −4 for pions and 0–5, 5–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, and 70–80% centrality multiplied by 10n with n = 5 to −3
for kaons.
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FIG. 2. (Color online) Transverse-momentum distributions of (a) protons and (b) φ mesons in |η| < 0.5 obtained from the integrated
dynamical approach (open square) compared with data from the STAR Collaboration [54,56] (filled square) for

√
sNN = 200 GeV Au + Au

collisions. From top to bottom, each spectrum shows the results of 0–12, 10–20, 20–40, 40–60, and 60–80% centrality multiplied by 10n with
n = 0 to −4 for protons and 0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, and 70–80% centrality multiplied by 10n with n = 4 to −3 for
φ mesons.

data and the results gradually increases with pT , and the more
peripheral the collision, the lower the pT where this deviation
appears. As mentioned in the previous section, we switch
off the decays of φ mesons in the hadronic cascade to be
able to analyze φ meson spectra directly without resorting to
mass reconstruction from kaons. Tendencies seen in φ-meson
spectra are similar to those in proton spectra.

Figure 3 shows the pT spectra of strange baryons,
(a) � + �̄ (|η| < 1.0), (b) � + �̄ (|η| < 0.75), and (c) � +
�̄ (|η| < 0.75), compared with the STAR data [57]. Similarly
to the proton case, the more peripheral the collisions, the worse
the agreement between experimental data and the results,
especially above pT = 1.5–2.0 GeV/c. As expected, the
measured � and � yields are larger than the calculated yields.
We had chosen the switching temperature Tsw to reproduce
the observed pion-to-kaon and pion-to-proton ratios, which
leads to a lower temperature than the statistical model fit to all
observed hadrons [58,59] and thus to lower yields of hyperons.
On the other hand, it has been argued that the statistical
model [60] with the common chemical freeze-out temperature
does not reproduce the proton and � yields simultaneously
at the LHC and RHIC energies [61]. It was claimed [44]
that earlier switching from hydrodynamics to UrQMD at
energy density ∼840 MeV/fm3, which corresponds to higher
temperature than Tsw = 155 MeV, would be a key to resolve
the issue, but our results do not improve significantly if we
use higher switching temperature Tsw = 165 MeV. It remains
to be seen whether the origin of this discrepancy lies in a
different description of the proton-antiproton annihilations in
JAM and UrQMD cascades or in different expansion dynamics
in collisions at RHIC and LHC energies.

Note that the experimental yield of � in STAR contains
the feed-down from electromagnetic 0 decays (0 → � +

γ ) [62]. Since this is the dominant mode of 0 decay with the
branching ratio ∼100% and cτ = 2.22 × 10−11 m [47], the
feed-down correction of it is experimentally challenging. We
simulate this decay in JAM and include this contribution in the
final � spectra in Fig. 3(a). Since the mass of 0 is close to
that of �, the yield of the primordial 0 is expected to be of
the same order as the yield of the primordial �. The ratio of
0 to � at switching temperature can be estimated as

n0

n�

≈
exp

(
−m0

Tsw

)

exp
(
−m�

Tsw

) ∼ 0.61. (6)

After correcting for the effects of resonance decay and
rescatterings, we find that the final particle ratio of 0 to � is
around 0.3. We have included both sources of � in our results,
but in general this should be kept in mind when comparing
theoretical results with the data.

Although the number of data points from STAR is limited
for � baryons, their yields and slopes are consistent with
our results. It is worth noticing here that the recent lattice
QCD calculations suggest the existence of resonances in
general [63],1 or strange baryon resonances in particular [22],
which have not been discovered yet.

Such resonances, whether they are of the Hagedorn
type [65] or those predicted by quark models (see, e.g.,
Refs. [66,67]), would contribute to the yields of strange

1It is, however, unknown whether the difference between the lattice
QCD and hadron resonance gas model trace anomalies indicates the
inadequacy of the hadron resonance gas model [64] or the existence
of so-far undiscovered resonance states [63].
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FIG. 3. (Color online) Transverse-momentum distributions of (a) � (|η| < 1.0), (b) � (|η| < 0.75), and (c) � (|η| < 0.75) obtained from
the integrated dynamical approach (open square) compared with data from the STAR Collaboration [57] (filled square) for

√
sNN = 200 GeV

Au + Au collisions. From top to bottom, each spectrum shows data of 0–5, 10–20, 20–40, 40–60, and 60–80% centrality multiplied by 10n

with n = 0 to −4 for � and � and 0–5, 20–40, and 40–60% centrality multiplied by 10n with n = 0 to −2 for �. Note that the pT distributions
of � include the contribution from 0 decay, see the text for details.

hadrons, and might somewhat change the dynamics of the
late hadronic stage [68–70]. Some of those resonances could
be formed in the scattering of φ mesons or � baryons, but
it is unknown whether such resonances would significantly
affect the average scattering cross section of φ mesons and
� baryons in temperatures below the switching temperature.
Investigation of this possibility is beyond the scope of the
present paper.

B. Elliptic flow

In Fig. 4 the two-particle cumulant v2(pT ) of pions, kaons,
and protons in the midrapidity region (|η| < 1.0) are compared

with STAR v2{2} data [71] at three centralities (10–20%,
30–40%, and 50–60%). For pions, we reasonably reproduce
the experimental data for each centrality class. Due to the
limited number of events, it is hard to obtain v2{2} with smaller
statistical errors, and this would be especially difficult for
protons. Thus some points with large error bars, in particular
in the low-pT region, are not shown in these figures for
clarity. We also calculated v2{RP} (not shown), namely v2 with
respect to the theoretically known reaction plane, to reduce the
statistical errors and found that the v2{RP} of pions, kaons, and
protons from our model are in reasonable agreement with the
STAR data in midcentral collisions. However, v2{RP} lacks
initial fluctuations of the event plane angle and, consequently,
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FIG. 4. (Color online) Transverse-momentum dependence of elliptic flow parameter v2{2} of pions (open square), kaons (open circle),
and protons (open triangle) in |η| < 1.0 obtained from the integrated dynamical approach compared with v2{2} data from the STAR
Collaboration [71] (filled symbol) for

√
sNN = 200 GeV Au + Au collisions. Centrality classes are (a) 10–20%, (b) 30–40%, and (c) 50–60%.

is significantly smaller than the data in both central and
peripheral collisions. It is noted that, from the MC Glauber
model analysis, the fluctuation effect on eccentricity is large
in central and peripheral collisions, but almost negligible in
midcentral collisions. See, e.g., Fig. 3(a) in Ref. [72]. At
the centralities shown in Fig. 4 clear mass ordering behavior
among pions, kaons, and protons, namely larger v2 for smaller
mass at fixed pT , is seen both in our results and in the STAR
data.

In Fig. 5, we show the event plane v2(pT ) of φ, �, �, and
� at some centrality classes from the integrated dynamical
approach. In comparison, STAR data from the event plane
method v2{EP} [56,73] are also shown in the figure. We
calculate v2{EP} by employing the η-subevent method using
hadrons in |η| < 1.0 as done by the STAR Collaboration [73],

v2{EP} = 1

R 〈cos[2(φ± − �2,∓)]〉. (7)

The event plane angle �2,+ (�2,−) is defined for the par-
ticles with positive (negative) pseudorapidity. In the actual
experimental analysis, a pseudorapidity gap of |�η| = 0.075
between two subevents was introduced to suppress the nonflow
effects [73]. We found, however, that introduction of the
gap does not change final results within error bars in our
analysis. The resolution factor in this case is calculated as
R = √〈cos[2(�2,+ − �2,−)]〉. In calculating the Q vector,

Q =
∑

j

wj exp(2iφj ), (8)

needed for the event plane angle

�2,± = 1

2
tan−1 ImQ

ReQ
, (9)

a weight factor wj = min{pT,j ,2 GeV/c} was also intro-
duced [73]. However, within statistical errors the results are
similar to those obtained using wj = 1. Therefore, we employ
wj = 1 in all the results shown in Fig. 5. For � and � our

results are systematically larger than the STAR data. For φ
and � our results show similar behavior, but since the data
have large errors, no firm conclusion can be made.

Our results of elliptic flow parameters for identified hadrons
are systematically larger than the STAR data, which suggests
that there is room for finite, but perhaps small, viscosity in
the fluid-dynamical stage. However, we do not go into detail
about the QGP viscosity since the purpose of the present study
is to investigate the effects of rescattering in the late hadronic
stage, which are not affected by the QGP viscosity nor by the
initial state of the system.

IV. HADRONIC RESCATTERING EFFECTS

In this section, we investigate hadronic rescattering effects
on final observables, in particular, how much final observ-
ables reflect the properties of the system at particlization
in the integrated dynamical approach. If some observables
do not change much during the late kinetic stage, then
these observables can be utilized as “penetrating” probes.
Namely, their distributions reflect the properties of the system
immediately after hadronization and are not contaminated
by later hadronic rescatterings. To quantify the effects of
hadronic rescattering we perform simulations of nuclear
collisions with the following three options in the hadronic
cascade calculations: (I) full dynamical evolution (default),
(II) deactivating hadronic rescatterings, and (III) deactivating
both hadronic rescatterings and resonance decays. To simplify
the calculations we calculate elliptic flow parameters with
respect to the theoretically known reaction plane.

In Figs. 6(a) and 6(b), we show v2(pT ) of pions, kaons,
protons, and φ mesons in minimum bias Au + Au collisions
at

√
sNN = 200 GeV from the integrated dynamical approach.

Figure 6(a) represents the results without hadronic rescatter-
ings [option (II)]. These results exhibit the mass ordering
behavior, namely vπ

2 (pT ) > vK
2 (pT ) > v

p
2 (pT ) > v

φ
2 (pT ) for

mπ < mK < mp < mφ , in the low-pT region. In general, the
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FIG. 5. (Color online) Transverse-momentum dependence of the elliptic flow parameter v2{EP} of (a) φ mesons (0–5, 10–40, and 40–80%
centrality), (b) � baryons (0–10, 10–40, and 40–80% centrality), (c) � baryons (0–10, 10–40, and 40–80% centrality), and (d) � baryons
(0–10 and 0–80% centrality) in |η| < 1.0 obtained from the integrated dynamical approach (open symbol) compared with data from the STAR
Collaboration [56,73] (filled symbol) for

√
sNN = 200 GeV Au + Au collisions.

mass ordering results from collective flow in which all the
components of the fluid flow at a common fluid velocity [74].
On the other hand, Fig. 6(b) shows a violation of mass
ordering between protons and φ mesons below pT ∼ 1.5
GeV/c: vp

2 < v
φ
2 even though mp < mφ . If one compares these

two plots, v
p
2 (pT ) decreases below ∼1.5 GeV/c during the

hadronic rescattering stage. On the other hand, v
φ
2 (pT ) stays

almost unchanged during the hadronic rescattering stage. As
a consequence, the order is inversed between protons and
φ mesons. To see this behavior more clearly, we also show
the ratio v

φ
2 /v

p
2 . Below 1 GeV/c, this ratio becomes clearly

positive indicating the violation of mass ordering.
The violation of mass ordering was predicted in Ref. [15]

and observed recently by the STAR Collaboration [18]. It
should be noted that a larger switching temperature (Tsw =
169 MeV) and a first-order phase transition in the EOS
were employed in the calculations of Ref. [15]. We confirm
in the present study that the violation of mass ordering
is also observed when a more realistic EOS from lattice

QCD and a lower switching temperature (Tsw = 155 MeV)
are used.

We can interpret the violation of mass ordering as a result
of the evolution of mean pT and pT -averaged v2 during the
late transport stage. The slope of the pT differential v2 can be
approximated by the ratio of pT -averaged v2 to mean pT [7],

dv2(pT )

dpT

≈ v2

〈pT 〉 . (10)

If v2(pT ) is linearly proportional to pT , then it is easy to
show that Eq. (10) holds exactly. Thus a change of slope
in v2(pT ) due to hadronic rescatterings could be attributed
to changes of v2 and/or 〈pT 〉, which provides us with more
intuitive understanding.

We next calculate 〈pT 〉 and pT -averaged v2 for each identi-
fied hadron in |y| < 1 in minimum-bias Au + Au collisions at√

sNN = 200 GeV with the three different options mentioned
above. We show 〈pT 〉 and v2 as functions of hadron mass in
Figs. 7(a) and 7(b), respectively. Default results using option (I)
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FIG. 6. (Color online) Transverse-momentum dependence of elliptic flow parameter v2 for pions (open square), kaons (filled square),
protons (open circle), and φ mesons (filled circle) in |η| < 1.0 obtained from the integrated dynamical approach (a) without hadronic
rescattering and (b) with hadronic rescattering in minimum bias

√
sNN = 200 GeV Au + Au collisions. The lower panels of the plots show the

ratio of v
φ
2 to v

p
2 .

are shown with closed squares. To see the effect of hadronic
rescatterings, we use option (II) in the hadronic cascade
calculation. We also use option (III) to obtain the results
excluding the contributions of both hadronic rescatterings and
resonance decays. In the default option (I) in which both
hadronic rescatterings and resonance decays are included, 〈pT 〉
is not a linear function of the hadron mass. By switching off
hadronic rescatterings by employing option (II), we are able
to extract the hadronic rescattering effects on evolution of
mean pT in the late hadronic stage. The difference of 〈pT 〉
between those with and without hadronic rescatterings are
relatively smaller for π , φ, �, and � than for the others. In

order to confirm a pure flow effect we also calculate 〈pT 〉
with option (III) in which resonance decay contributions are
also not included. As is well known in analysis using the
blast-wave model [75], 〈pT 〉 is a linear function of the hadron
mass in this case [76]. We also confirm that it is the case even
in our fully dynamical calculations. pT -averaged v2 for the
three options (I), (II), and (III) are compared with each other
in Fig. 7(b). By comparing the results (I) and (II) one finds that,
due to hadronic rescatterings, v2 for hadrons other than pions
increases little—by at most ∼6%—but v2 for pions increases
by ∼25% even though elliptic flow parameters are commonly
believed to be sensitive to the early stage of the reaction. On
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FIG. 7. (Color online) (a) Mean transverse momentum 〈pT 〉 and (b) pT -averaged v2 in minimum-bias
√

sNN = 200 GeV Au + Au collisions
around midrapidity (|y| < 1.0) obtained by the hybrid model as a function of the hadron mass. Each point represents the result for π , K , p, φ,
�, �, and � from left to right. Three lines show the results with different options, respectively: (I) full calculations with both resonance decays
and hadronic rescsatterings (filled square), (II) calculations with resonance decays only (open square), and (III) calculations without resonance
decays or hadronic rescatterings (open circle). Lines are to guide the eye.
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FIG. 8. (Color online) Ratio of observables at the fluid stage to the final ones in minimum bias
√

sNN = 200 GeV Au + Au collisions in
|y| < 1.0 obtained by use of the integrated dynamical approach (filled square) for (a) mean transverse momentum 〈pT 〉 and (b) pT -averaged
v2. In comparison, the ratio of 〈pT 〉 obtained from a transverse mass scaling ansatz (open square) is also shown (see the text). Each point
corresponds to a hadron as shown in the caption to Fig. 7.

the other hand, the effect of hadronic rescattering on pion mean
pT is almost absent [7]. It is interesting to note that the effect of
resonance decays on pion v2 is also significant, see Fig. 7(b).
How resonance decays reduce pion v2 was discussed in
Ref. [77]. As we expected, neither 〈pT 〉 nor v2 for multistrange
hadrons is affected by hadronic rescatterings, but at least one
of these two observables is affected for all other particles.

To see how much hadronic rescatterings affect the final
observables, we show ratios of 〈pT 〉 and v2 at particlization
but after decays [option (II)] to the ones in the final state [option
(I)] [78] for each identified hadron in Fig. 8. For comparison,
we also show the ratio obtained from a mT scaling ansatz (open
square) [76] in the case of mean pT . In this ansatz, one can
parametrize the pT distribution as

dN

pT dpT

∝ exp

(
−mT

Teff

)
, (11)

Teff = Tf + 1
2mv2

f , (12)

mT =
√

p2
T + m2, (13)

where Tf , m, and vf are freeze-out temperature, particle mass,
and flow velocity, respectively. Parameters were chosen to
reproduce the slope of the proton pT spectrum in option (II)
(Tf = 0.155 GeV and vf = 0.56) and in option (I) (Tf =
0.130 GeV and vf = 0.71). If all the particles interact strongly
with each other and move at a common collective velocity
during the hadronic stage, then mass ordering would appear. In
fact, the result from the mT scaling depends monotonically on
particle mass, and pions, kaons, and protons follow this mono-
tonic tendency obtained from mT scaling ansatz. However,
multistrange hadrons (including “hidden” strangeness) (φ, �,
and �) in the integrated dynamical approach deviate from
the pattern. This means that multistrange hadrons freeze out
earlier than other hadrons and do not participate in the radial
flow during the transport stage. Multistrange hadrons couple
weakly with the system consisting mostly of pions since they

have small scattering cross sections and hardly rescatter with
pions in the late hadronic stage.

Mean transverse momentum 〈pT 〉 for dominant con-
stituents of the medium, namely pions, decreases during the
hadronic rescattering stage since pdV work done in the
longitudinal direction reduces the transverse energy per unit
rapidity [79,80] but the number of pions is fixed. In this way,

〈pT 〉(fluid)

〈pT 〉(final)
≈ (1/Nπ )(dET /dy)(fluid)

(1/Nπ )(dET /dy)(final)
> 1. (14)

In fact, the two parameter sets in the mT scaling ansatz
mentioned above are chosen to obey this inequality (14).
As for v2 in Fig. 8(b), about 20% of final v2 of pions is
generated during the late transport stage. In other words,
only ∼80% of final v2 reflects elliptic flow generated during
the fluid-dynamical stage. Obviously, this could depend on
centrality (and perhaps collision energy) and the number
can be regarded as an average value at the RHIC energy.
Whereas hadronic rescatterings affect little final v2 for the
other hadrons. By combining these two results in Fig. 8,
we conclude that multistrange hadrons are less affected by
hadronic rescatterings and, therefore, can be used to probe the
hadronization stage in high-energy nuclear collisions.

Coming back to violation of mass ordering in differential v2

shown in Fig. 6 and also in Fig. 5 in Ref. [15], one can interpret
this intriguing phenomenon as follows. For pions, pT -averaged
v2 increases but 〈pT 〉 changes little in the hadronic stage, so
the slope of vπ

2 (pT ) gets steeper, as seen from Eq. (10). On
the other hand, for protons, pT -averaged v2 does not change
so much, but 〈pT 〉 increases in the hadronic stage, so v

p
2 (pT )

decreases. However, for φ mesons, both pT -averaged v2 and
〈pT 〉 after the hydrodynamic stage are almost the same in the
final state and, consequently, v

φ
2 (pT ) is unchanged.

Finally, we show the normalized freeze-out time (defined
as the longitudinal proper time τ of the last interaction
in hadronic cascade simulations) distributions around
midrapidity (|y| < 1.0) in minimum bias Au + Au collisions
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FIG. 9. (Color online) Normalized freeze-out time (τ ) distributions for (a) mesons: π , K , and φ, and (b) baryons: p, �, �, and � in
|y| < 1.0 in minimum bias

√
sNN = 200 GeV Au + Au collisions. The shaded areas correspond to normalized particlization time distributions

of charged hadrons.

at
√

sNN = 200 GeV. In Fig. 9 the results are shown in two
panels, [Fig. 9(a)] for mesons and [Fig. 9(b)] for baryons,
for clarity. The shaded areas represent the particlization time
distribution for charged hadrons. Since the particlization time
does not depend on scattering cross sections, it is almost
equal for all hadrons within error bars. A prominent peak with
small width is seen below τ = 10 fm/c, corresponding to
the time of particlization at different parts of the system. The
freeze-out time distributions of φ and � do not differ from the
particlization time distribution significantly, which reflects
their small scattering cross sections. On the other hand, other
hadrons have broader freeze-out time distributions. For �,
a peak also exists at an early time as for φ and � but its
height is lower and the peak is accompanied by a broad
tail. This is because � has a contribution from long-living
resonance �(1530) (decay width � = 9.9 MeV ∼1/(20
fm/c) [47]) whose decay forms a long tail in the freeze-out
time distribution. So the primordial � freezes out as early
as do φ and �. These results support our findings above that
multistrange hadrons freeze out just after the particlization
due to fewer rescatterings in the late kinetic stage.

V. SUMMARY

We have studied the effects of the hadronic rescatterings
especially on multistrange hadrons and claimed they can be
used to probe the hadronization stage in high-energy nuclear
collisions. We have employed an integrated dynamical model
in which the ideal hydrodynamic model is combined with
the hadronic cascade model, JAM, and confirmed that our
model fairly reproduces the experimental data of pT spectra

and differential v2 not only for pions, kaons, and protons but
also for multistrange hadrons. Within this approach, we have
simulated the hadronic stage with or without the rescatterings
and compared the calculated mean transverse momentum and
pT -averaged v2 in these two cases to investigate the hadronic
rescattering effects. We have found that the multistrange
hadrons are less affected by the rescatterings than nonstrange
hadrons. Because of the small scattering cross sections, the
multistrange hadrons do not fully participate in the radial flow
during the hadronic stage and freeze out earlier than nonstrange
hadrons. With these results we have shown how to interpret
behaviors of mass ordering and its violation in v2(pT ). Changes
of slope of v2(pT ) during the hadronic rescattering stage result
from interplay between changes of mean pT and pT -averaged
v2. We have also showed the freeze-out time distributions for
identified hadrons and confirmed that the multistrange hadrons
freeze out soon after they are “particlized.”

In future, we also plan to investigate the hadronic rescat-
tering effects on observables for multistrange hadrons at the
LHC energy. Although elliptic flow parameters are expected
to be less affected by the hadronic rescatterings at the LHC,
it would be important to quantify how much they do change
and thus how much the observed v2 at LHC reflects the QGP
evolution.
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Hybrid approaches based on relativistic hydrodynamics and transport theory have been successfully applied for
many years for the dynamical description of heavy-ion collisions at ultrarelativistic energies. In this work a new
viscous hybrid model employing the hadron transport approach UrQMD for the early and late nonequilibrium
stages of the reaction, and 3+1 dimensional viscous hydrodynamics for the hot and dense quark-gluon plasma
stage, is introduced. This approach includes the equation of motion for finite baryon number and employs an
equation of state with finite net-baryon density to allow for calculations in a large range of beam energies. The
parameter space of the model is explored and constrained by comparison with the experimental data for bulk
observables from Super Proton Synchrotron and the phase I beam energy scan at Relativistic Heavy Ion Collider.
The favored parameter values depend on energy but allow extraction of the effective value of the shear viscosity
coefficient over entropy density ratio η/s in the fluid phase for the whole energy region under investigation. The
estimated value of η/s increases with decreasing collision energy, which may indicate that η/s of the quark-gluon
plasma depends on baryochemical potential μB .

DOI: 10.1103/PhysRevC.91.064901 PACS number(s): 25.75.Ld, 25.75.Nq

I. INTRODUCTION

Ultrarelativistic heavy-ion collisions allow investigation of
the properties of strongly interacting matter under extreme
conditions. At high temperatures and/or high net-baryon
densities a new state of matter, the so-called quark-gluon
plasma (QGP), is formed. The two main goals of heavy-
ion research are the exploration of the phase diagram of
quantum chromodynamics and the determination of transport
coefficients of this new state of matter.

The studies of high-energy heavy-ion collisions at the Large
Hadron Collider (LHC) at CERN and the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory have
revealed that the quark-gluon plasma behaves like an almost
perfect fluid. In recent years, so-called hybrid approaches [1–5]
based on (viscous) relativistic hydrodynamics for the hot and
dense stage coupled to hadron transport approaches for the
decoupling stage of the reaction have been applied with great
success to extract average values of the shear viscosity over
entropy ratio η/s. The results are very close to the conjectured
universal limit of η/s = 1

4π
, based on the anti–de Sitter and

conformal field theory (AdS-CFT) correspondence [6]. For
example, the values extracted in Ref. [7] for collisions are
η/s = 0.12 at RHIC and η/s = 0.2 at the LHC.

One expects the formation of partonic matter in heavy-ion
collisions at ultrarelativistic energies (see, e.g., Ref. [8]).
However, it is unknown at what collision energy the transition
from hadronic to partonic matter sets in. In addition, as the
collisions at lower energies probe the phase diagram at larger

*karpenko@fias.uni-frankfurt.de

net-baryon densities, it may be possible to experimentally
see signs of the theoretically predicted critical point [9] and
the first-order phase transition beyond it. To investigate these
questions the so-called beam energy scan (BES) programs
at SPS (NA49, NA61 experiments) and at RHIC (STAR,
PHENIX experiments) were started. One of the surprises of
the stage I of the BES program at RHIC has been that the
pT -differential elliptic flow, v2(pT ), of charged hadrons does
not change significantly when the collision energy is reduced
from

√
sNN = 200 to ∼20 GeV [10]. The large values of elliptic

flow measured at
√

sNN = 200 GeV collisions were taken as
a sign of very low shear viscosity of the matter formed in
these collisions. Thus, the large v2(pT ) measured in collisions
at lower energy leads to the question of how η/s changes as
function of net-baryon density and baryochemical potential
μB [11].

Unfortunately, many of the hydrodynamical and hybrid
models used to model collisions at full RHIC and LHC
energies are not directly applicable to collisions at RHIC
BES and CERN SPS energies or to collisions at even
lower energies in the future at Facility for Antiproton and
Ion Research (FAIR), Nuclotron-based Ion Collider Facility
(NICA), and stage II of the BES program at RHIC. The
simplifying approximations of boost invariance and zero
net-baryon density are not valid, and different kinds of
nonequilibrium effects play a larger role. To overcome these
limitations, a novel hybrid approach has been developed. This
approach is based on the Ultrarelativistic Quantum Molecular
Dynamics (UrQMD) transport [12] for the nonequilibrium
early and late stages and on a (3+1)-dimensional viscous
hydrodynamical model [13] for the hot and dense stage of the
reaction.
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In this paper, this approach is applied to extract the shear
viscosity coefficient over entropy density ratio of strongly
interacting matter from the heavy-ion collision data at RHIC
beam energy scan energies in the broad range

√
sNN =

7.7–200 GeV. The details of the model are explained in
Sec. II, and the generic effects of finite shear viscosity on
the hydrodynamical expansion are described in Sec. III. The
sensitivity of particle yields and spectra to the parameters for
the initial- and final-state transitions is explored in Sec. IV.
Section V contains the main results of this work including the
estimated values of the effective shear viscosity over entropy
density ratio as a function of beam energy. Finally, the main
conclusions are summarized and an outlook on future work is
given in Sec. VI.

II. MODEL DESCRIPTION

Our hybrid approach combines the UrQMD transport
model [12] for the early and late stages of the evolution with
a dissipative hydrodynamical model, called VHLLE [13], for
the hot and dense stage. The distinguishing features of the
present model are that the fluid dynamical expansion is solved
numerically in all three spatial dimensions without assuming
boost invariance nor cylindrical symmetry, the equations of
motion for finite net-baryon and charge densities are explicitly
included, and, in contrast to the standard UrQMD hybrid
approach (UrQMD-3.4 at urqmd.org) [3,14], dissipation in
the form of shear viscosity is included in the hydrodynamical
stage. Unlike our previous studies [17,18], event-by-event
fluctuations are now included. The hadronic cascade operates
with the full phase-space distribution of the final particles,
which allows for a proper comparison to experimental data.

A. Prethermal phase

The UrQMD string or hadronic cascade is used to describe
the primary collisions of the nucleons and to create the initial
state of the hydrodynamical evolution. The two nuclei are
initialized according to Woods-Saxon distributions and the
initial binary interactions proceed via string or resonance
excitations, the former process being dominant in ultrarela-
tivistic collisions (including the BES collision energies). All
the strings are fragmented into hadrons before the transition
to fluid phase (fluidization) takes place, although not all
hadrons are yet fully formed at that time; i.e., they do not
yet have their free-particle scattering cross sections and thus
do not yet interact at all. The hadrons before conversion to
fluid should not be considered physical hadrons but rather
marker particles to describe the flow of energy, momentum,
and conserved charges during the pre-equilibrium evolution
of the system. The use of UrQMD to initialize the system
allows us to describe some of the pre-equilibrium dynamics
and dynamically generates event-by-event fluctuating initial
states for hydrodynamical evolution.

The interactions in the pre-equilibrium UrQMD evolution
are allowed until a hypersurface of constant Bjorken proper
time τ0 = √

t2 − z2 is reached, since the hydrodynamical
code is constructed using the Milne coordinates (τ,x,y,η),
where τ = √

t2 − z2 [13]. The UrQMD evolution, however,
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hydro starting time vs collision energy

FIG. 1. The earliest possible starting time of the hydrodynamic
evolution as a function of

√
sNN according to Eq. (1).

proceeds in Cartesian coordinates (t,x,y,z), and thus evolving
the particle distributions to constant τ means evolving the
system until large enough time tl in such a way that the col-
lisional processes and decays are only allowed in the domain√

t2 − z2 < τ0. The resulting particles on t = tl surface are
then propagated backwards in time to the τ = τ0 surface
along straight trajectories to obtain an initial state for the
hydrodynamic evolution.

The lower limit for the starting time of the hydrodynamic
evolution depends on the collision energy according to

τ0 = 2R/

√
(
√

sNN/2mN )2 − 1, (1)

which corresponds to the average time when two nuclei have
passed through each other, i.e., all primary nucleon-nucleon
collisions have happened. This is the earliest possible moment
in time where approximate local equilibrium can be assumed.
The τ0 values calculated according to this formula are plotted
in Fig. 1.

To perform event-by-event hydrodynamics using fluctu-
ating initial conditions, every individual UrQMD event is
converted to an initial-state profile. As mentioned, the hadron
transport does not lead to an initial state in full local
equilibrium and the thermalization of the system at τ = τ0

has to be artificially enforced. The energy and momentum of
each UrQMD particle at τ0 is distributed to the hydrodynamic
cells ijk assuming Gaussian density profiles

�P α
ijk = P αC exp

(
−�x2

i + �y2
j

R2
⊥

− �η2
k

R2
η

γ 2
η τ 2

0

)
, (2)

�N0
ijk = N0C exp

(
−�x2

i + �y2
j

R2
⊥

− �η2
k

R2
η

γ 2
η τ 2

0

)
, (3)

where �xi , �yj , �ηk are the differences between particle’s
position and the coordinates of the hydrodynamic cell {i,j,k}
and γη = cosh(yp − η) is the longitudinal Lorentz factor of
the particle as seen in a frame moving with the rapidity η. The
normalization constant C is calculated from the condition that
the discrete sum of the values of the Gaussian in all neighboring
cells equals one. The resulting �P α and �N0 are transformed
into Milne coordinates and added to the energy, momentum,
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FIG. 2. An example of a fluctuating (single-event) initial energy
density profile in the transverse plane at η = 0. The profile is obtained
with R⊥ = Rη = 1 fm Gaussian smearing and corresponds to a
20–30% Au-Au collision at

√
sNN = 39 GeV.

and baryon number in each cell. This procedure ensures that in
the initial transition from transport to hydrodynamics energy,
momentum and baryon number are conserved.

For the present study energy and momentum of the initial
particles are converted at τ0 into a perfectly equilibrated fluid,
i.e., the initial values for the viscous terms in the energy-
momentum tensor are set to zero: πμν(τ0) = 	(τ0) = 0. In
other words the T 0μ components of the energy-momentum
tensor stay the same but the T ij components change when we
switch from UrQMD to the fluid. Thus, we do not consider
how much the energy-momentum tensor of UrQMD deviates
from the ideal fluid energy-momentum tensor but leave this
topic for further studies.

One typical example of the initial energy density distribu-
tions in the transverse plane at midrapidity for one event is
presented in Fig. 2. The parameters R⊥ and Rη regulate the
granularity of the initial state. At the same time they influence
the initial entropy of the hydrodynamic evolution, while the
total initial energy and momentum are always fixed to be equal
to the energy and momentum of the pre-equilibrium UrQMD
event. The dependence of the final results on these two
parameters is discussed later in Sec. IV.

B. Hydrodynamic evolution

The (3+1)-dimensional viscous hydrodynamical code VH-
LLE is described in full detail in Ref. [13]. We repeat here
only its main features. The code solves the usual local
energy-momentum conservation equations

∂;νT
μν = 0, (4)

∂;νN
ν
B,Q = 0, (5)

where Nν
B and Nν

Q are net baryon and electric charge cur-
rents respectively, and the semicolon denotes the covariant

derivative. The calculation1 is done in Milne coordinates
(τ,x,y,η), where τ = √

t2−z2 and η=1/2 ln[(t+z)/(t − z)].
In the Israel-Stewart framework of causal dissipative

hydrodynamics [19], the dissipative currents are independent
variables. For the purpose of the present work we set the bulk
viscosity to zero, ζ/s = 0. We work in the Landau frame,
where the energy diffusion flow is zero, and neglect the baryon
and charge diffusion currents, which is equivalent to zero heat
conductivity. For the shear stress evolution we choose the
relaxation time τπ = 5η/(T s), the coefficient δππ = 4/3τπ ,
and approximate all the other coefficients [20,21] by zero. For
the shear-stress tensor πμν we obtain the evolution equation

〈uγ ∂;γ πμν〉 = −πμν − π
μν
NS

τπ

− 4

3
πμν∂;γ uγ , (6)

where the brackets denote the traceless and orthogonal to uμ

part of the tensor and π
μν
NS is the Navier-Stokes value of the

shear-stress tensor.
Another necessary ingredient for the hydrodynamic stage

is the equation of state (EoS) of the medium. We use the chiral
model EoS [22], which features correct asymptotic degrees
of freedom—i.e., quarks and gluons in the high-temperature
limits and hadrons in the low-temperature limits, crossover-
type transition between confined and deconfined matter for all
values of μB—and qualitatively agrees with lattice QCD data
at μB = 0.

The tests to confirm the accuracy of the code have been
reported in Ref. [13]. In particular the solutions have been
compared to the ideal Gubser solution [23] and to a numerical
solution of dissipative hydrodynamics calculated using the
VISH2+1 hydro code [24].

C. Particlization and hadronic rescattering

It is well known that hydrodynamics loses its validity when
the system becomes dilute. To deal with this problem we apply
the conventional Cooper-Frye prescription [25] to convert the
fluid to individual particles at a hypersurface of constant local
rest frame energy density and use the UrQMD cascade to
describe the further evolution of these particles. This switching
hypersurface is evaluated during the hydrodynamic evolution
using the Cornelius routine [26], and as a default value for the
switching density we use εsw = 0.5 GeV/fm3, which in the
chiral model EoS corresponds to T ≈ 175 MeV at μB = 0.
At this energy density the crossover transition is firmly on the
hadronic side, but the density is still a little higher than the
chemical freeze-out energy density suggested by the thermal
models [27]. Thus the hadronic transport can take care of both
chemical and kinetic decoupling of hadrons. We discuss the
sensitivity of the results to the value of the switching density
in Sec. IV.

1Typical grid spacing used in the calculations: �x = �y = 0.2 fm,
�η = 0.05–0.15, and time step �τ = 0.05–0.1 fm/c depending on
the collision energy. A finer grid with �x = �y = 0.125 fm was
taken to simulate peripheral collisions.
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As given by the Cooper-Frye prescription, the hadron
distribution on each point of the hypersurface is

p0 d3Ni(x)

d3p
= dσμpμf (pu(x),T (x),μi(x)). (7)

The phase space distribution function f is usually assumed to
be the one corresponding to a noninteracting hadron resonance
gas in or close to the local thermal equilibrium. This is
inconsistent with mean fields included in the chiral model
EoS used during the evolution. To solve this inconsistency we
evaluate the switching surface using the chiral model EoS, but
use a free hadron resonance gas EoS to recalculate the energy
density, pressure, flow velocity uμ, temperature, and chemical
potentials from the ideal part of the energy-momentum tensor
and charge currents, and use these values to evaluate the
particle distributions on the switching surface. For example,
the above mentioned temperature of T ≈ 175 MeV in chiral
model EoS at zero baryon density and εsw = 0.5 GeV/fm3

drops to T ≈ 165 MeV in the free hadron resonance gas EoS.
This procedure ensures that the total energy of the produced
particles is reasonably close to the overall energy flow through
the particlization hypersurface (up to negative contributions to
the Cooper-Frye formula), although a small error arises since
we use a different energy density to evaluate the position of the
surface and the properties of the fluid on it.2 We have checked
that in a case of event-averaged initialization, this error is on the
level of a few percent. In addition, the conservation of energy
and momentum in the 3+1-dimensional numerical solution
of the fluid-dynamical equations using Milne coordinates is
slightly violated as discussed in Refs. [13,21].

To take into account the dissipative corrections to the
distribution function f , we use the well-known Grad’s 14-
moment ansatz for a single-component system and assume that
the correction is the same for all hadron species. We evaluate
the particle distribution in the rest frame of the fluid at each
surface element using the Cooper-Frye formula

d3�Ni

dp∗d(cos θ )dφ
= �σ ∗

μp∗μ

p∗0︸ ︷︷ ︸
Wresidual

p∗2feq(p∗0; T ,μi)︸ ︷︷ ︸
isotropic

×
[

1 + (1 ∓ feq)
p∗

μp∗
νπ

∗μν

2T 2(ε + p)

]
︸ ︷︷ ︸

Wvisc

. (8)

The distribution function in Eq. (8) is expressed in terms of
temperature and chemical potential(s), which implies a grand
canonical ensemble. This allows to do the particle sampling
independently on each surface element. To create an ensemble
for particles, we perform the following steps at each element
�σi :

2The exact procedure suggested in Ref. [28] requires a numerical
solution of a cubic equation for each surface element and is therefore
too slow for event-by-event studies.

(a) First, the average number of hadrons of every sort is
calculated:

�Ni = �σμuμni,th = �σ ∗
0 ni,th

(b) For a given 〈Ntot〉 = ∑
i Ni , the number of particles

to be created is generated according to a Poisson
distribution with a mean value 〈Ntot〉.

(c) For each created particle, the type is randomly chosen
based on the probabilities Ni/Ntot.

(d) A momentum is assigned to the particle in two steps:
(1) The modulus of the momentum is sampled in

the local rest frame of the fluid, according to
the isotropic part of Eq. (8), and the direction of
momentum is picked randomly in 4π solid angle.

(2) The correction for Wresidual or WresidualWvisc in
Eq. (8) is applied via rejection sampling: A random
number x in the range [0,Wmax] is generated.
If x < W , the generated momentum is accepted;
if not, the momentum generating procedure is
repeated.

(e) The particle momentum is Lorentz boosted to the
center-of-mass frame of the system.

(f) The particle position is taken to be equal to the
coordinate of the centroid of the corresponding surface
element, except for the space-time rapidity of the
particle, which is uniformly distributed within the
longitudinal size of the volume element.

For the current study, no correction over the grand canonical
procedure is made to effectively account for the exact con-
servation of the total baryon-electric charge, strangeness, and
total energy-momentum for every sampled event.3 As a result,
these quantities fluctuate from event to event.

The generated hadrons are then fed into the UrQMD
cascade. Since the cascade accepts only a list of particles
at an equal Cartesian time as an input, the created particles
are propagated backwards in time to the time when the first
particle was created. The particles are not allowed to interact
in the cascade until their trajectories cross the particlization
hypersurface.

III. SENSITIVITY TO SHEAR VISCOSITY

The overall effects of shear viscosity on hydrodynamical
expansion have been extensively discussed in the litera-
ture [24,30–32]. Here we show that the results from high
energy collisions, e.g., entropy increase, enhancement of
transverse and inhibition of longitudinal expansion, and
suppression of anisotropies are also manifested in calculations
at lower collision energies.

We have carried out event-by-event simulations for different
collision energies, centralities, and two fixed values of shear
viscosity: η/s = 0 (ideal hydro evolution) and η/s = 0.2. For
these simulations we use the values of the Gaussian radii for
the particles’ energy/momentum deposition R⊥ = Rη = 1 fm

3For a suggested procedure to impose the conservation laws, see
Ref. [26].
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[see Eqs. (2) and (3)]. The initial time is chosen according to
Eq. (1); however, for the collisions at energies equal or higher
than

√
sNN = 27 GeV we set τ0 = 1 fm/c.

To reduce the need for processing time, we use the
so-called oversampling technique, as in Ref. [33]. For each
collision energy, centrality, and parameter set we have created
around 500 hydrodynamic events with randomly generated
initial conditions. For each hydrodynamic event, or transition
hypersurface, we generate Noversample = 50–100 final-state
events, which results in 25 000–50 000 events used to calculate
observables. We have checked that the oversampling procedure
does not significantly affect the final observables by creating
1000 or 10 000 hydrodynamic events, with Noversample =
20 and 2, respectively, for several parameter sets. In both cases,
the calculated observables agreed within statistical errors.

The available experimental data set for the basic bulk
hadron observables at the BES energies is inhomogeneous.
(Pseudo)rapidity spectra of all charged hadrons for Au-Au
collisions are available from the PHOBOS analysis [34] for√

sNN = 19.6, 62.4, and 200 GeV energies only. The pT

spectra are published for
√

sNN = 62.4 GeV by the PHOBOS
Collaboration [35] and for

√
sNN = 200 GeV by the PHENIX

Collaboration [36]. To cover the lower collision energies we
use dN/dy and pT spectra from the NA49 [29] Collaboration
for Pb-Pb collisions at Elab = 40 and 158 A GeV, which
correspond to

√
sNN = 8.8 and 17.6 GeV, and set up the

simulations accordingly for Pb-Pb system. For the elliptic flow
we compare to the STAR results at

√
sNN = 7.7, 11.5, 19.6, 27,

39 GeV [10] and 200 GeV [37] collision energies. In the model
we define the centrality classes as impact parameter intervals
based on the optical Glauber model estimates [38,39].

The transverse momentum distributions of identified par-
ticles at

√
sNN = 8.8 GeV (Elab = 40 A GeV) collision, and

(pseudo)rapidity distributions of identified or charged particles
at collision energies

√
sNN = 8.8–200 GeV are shown in

Figs. 3 and 4, respectively. As can be seen, the inclusion
of shear viscosity in the hydrodynamic phase hardens the
pT spectra and increases dN/dy (and similarly dN/dη) at
midrapidity, squeezing the overall rapidity distribution. This
effect can be attributed to the effect of shear viscosity on
the strong longitudinal expansion of the system in the initial
state for the hydrodynamic phase. Shear viscosity attempts to
isotropize the expansion by decelerating it in the longitudinal
direction and accelerating it in the transverse direction. The
energy of the hydrodynamic system is always conserved,
whereas additional entropy is produced during the viscous
hydrodynamic evolution, which explains the increased total
particle multiplicity. By comparing it to the experimental
data one observes that η/s = 0.2 gives a good estimate
of the rapidity and transverse momentum distributions at
the lowest collision energy point

√
sNN = 8.8 GeV (Elab =

40 A GeV), while overestimating dN/dη at midrapidity for
the rest of collision energies except for the highest energy,√

sNN = 200 GeV, where we underestimate the PHOBOS
results.

In Fig. 5 the pT -averaged elliptic and triangular flow
coefficients v2 and v3 are shown as a function of colli-
sion energy. The flow coefficients are calculated using the
event-plane method as described in Ref. [33], including the
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FIG. 4. (Color online) Pion and kaon dN/dy in Elab = 40 A
GeV (

√
sNN = 8.8 GeV) central Pb-Pb collisions (top) and charged

hadron dN/dη distributions at
√

sNN = 19.6, 39, 62.4, and 200 GeV
central Au-Au collisions (bottom). The experimental data from the
NA49 [29] and the PHOBOS Collaborations [34] are compared
to the hybrid model calculations with η/s = 0 (dashed lines) and
η/s = 0.2 (solid lines) in the hydrodynamic phase.

064901-5



KARPENKO, HUOVINEN, PETERSEN, AND BLEICHER PHYSICAL REVIEW C 91, 064901 (2015)

  [GeV]NNs
10 210

nv

0

0.02

0.04

0.06

0.08

0.1
{EP}2STAR v
{EP}3STAR v

ideal
/s=0.2η

pure UrQMD

{EP}2STAR v
{EP}3STAR v

ideal
/s=0.2η

pure UrQMD

, 20-30% central{EP}nv

2v

3v

FIG. 5. (Color online) pT integrated (0.2 < pT < 2.0 GeV and
|η| < 1) elliptic (v2) and triangular (v3) flows of all charged hadrons
in 20–30% central Au-Au collisions as a function of collision energy,
calculated with the event-plane method. The elliptic and triangular
flow data is from the STAR Collaboration [10,40]. The solid line
depicts the calculation with η/s = 0.2, the dashed line shows the
calculation with η/s = 0, whereas the dotted line corresponds to
the “pure” UrQMD calculation with no intermediate hydrodynamic
stage.

event-plane resolution correction. As expected, the elliptic
and triangular flow coefficients are suppressed by the shear
viscosity. However, when comparing the results for η/s = 0.2
to the STAR experimental results at 20–30% centrality we find
that the suppression is too weak for

√
sNN � 30 GeV and too

strong otherwise. The latter is consistent with the fact that the
optimal value of η/s required to fit the elliptic flow data at√

sNN = 200 A GeV is η/s = 0.08 assuming the initial energy
density profile from Monte Carlo–Glauber approach [41].
Another particular feature of both v2 curves is that, in the region√

sNN ≈ 20–62 GeV, the elliptic flow decreases as a function
of

√
sNN. If we do not limit the initial time τ0 from below at

energies
√

sNN > 25 GeV, but take it directly from Eq. (1), we
do not see this decrease, but v2 increases monotonously with
increasing collision energy. Thus we expect that the reason for
the nonmonotonous behavior is in our choice for the initial
time of the hydrodynamic evolution.

The results from the standard UrQMD cascade (without
intermediate hydrodynamic phase) are also shown for com-
parison in Figs. 3 and 4 with dotted lines. One may conclude
that whereas standard UrQMD does a good job for pT spectra
and rapidity distributions at the lowest energy, it clearly
underestimates v2 when the collision energy increases (which
repeats the conclusion about the v2 excitation function from
Ref. [42], and later results from v3 analysis in Ref. [14]).
This is an indication of too large viscosity of the high-density
medium and served historically as a motivation to introduce
the intermediate hydrodynamic stage.

IV. INVESTIGATION OF PARAMETER SPACE

After investigating the generic influence of a finite shear
viscosity during the hydrodynamic evolution on basic bulk
observables, it is clear that we cannot fit all the available
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FIG. 6. Parameter dependence of the total yield at midrapidity
(top) and the effective temperature of pion, kaon, and proton pT

spectra (bottom) in 0–5% central Au-Au collisions at
√

sNN =
19.6 GeV.

experimental data using the same set of parameters.4 Thus
we have to adjust the model parameters according to the
collision energy before drawing any conclusions about the
physical properties of the system.

In this section we study systematically the sensitivities of
the particle yield at midrapidity, which is a measure for the
final entropy, the effective slope parameter that measures the
strength of the transverse expansion, and the anisotropic flow
to the main parameters of the model. Due to the limited space,
and to emphasize the main features of the dependencies, we
restrict ourselves to one collision energy,

√
sNN = 19.6 GeV,

in the middle of the investigated range. Since the influence of
shear viscosity was discussed above, we now concentrate on
the remaining parameters of the model: the two Gaussian radii

4The internal parameters of UrQMD, e.g., particle properties and
cross sections, are fixed by experimental data as explained in
Ref. [15]. The effects of changes in resonance properties were studied
in Ref. [16]. It was found that if the changes stay within experimen-
tally acceptable limits, the effects on final particle distributions are
small.
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FIG. 7. (Color online) Parameter dependence of pT integrated
elliptic flow v2 of charged hadrons in 20–30% central Au-Au
collisions at

√
sNN = 19.6 GeV. The experimental value of the elliptic

flow is shown with a solid red (gray) line for comparison.

R⊥ and Rη for the initial distribution of energy, momentum
and charges, the starting time for the hydro phase τ0, and
the energy density εsw when the switch to the hadronic
cascade happens. The default case is R⊥ = Rη = 1.0 fm,
τ0 = 1.22 fm/c [calculated according to Eq. (1)], η/s = 0 (for
simplicity), and εsw = 0.5 GeV/fm3. The dependencies are
presented in Figs. 6 and 7, where each curve corresponds to
the variation of only one of the parameters, while keeping the
default values for the others. All values are normalized to their
default values to allow a direct comparison to each other. The
effective temperatures of the hadron spectra in the lower panel
of Fig. 6 are defined as the parameter of the exponential fit,

dN

mT dmT dy
= C exp

(
−mT

Teff

)
,

where the mT − m range is 0.2–1 GeV for pions and protons
and 0.05–1 GeV for kaons.5 In general we do observe only a
very weak dependence on the parameters, that is less than 10%
for a 10% change in parameters. The observed dependencies
can be summarized as follows:

(a) Increased R⊥ smoothens the initial energy density
profile in the transverse plane, which leads to smaller
gradients and less explosive transverse expansion. The
latter leads to a decrease of the effective temperature
(inverse slope) Teff of the pT spectra; see Fig. 6, lower
panel. Larger R⊥ also results in decreased ellipticity
and triangularity of an initial energy density profile,
which is hydrodynamically translated into smaller
final elliptic (v2, see Fig. 7) and triangular (v3) flow
components.

(b) In a similar manner, the increase of Rη leads to shal-
lower longitudinal gradients and weaker longitudinal

5Smaller mT − m range for pions and protons is taken since the
lowest mT − m part of the spectrum has a different slope than the
intermediate mT − m range.

TABLE I. Schematical representation of the response (increase or
decrease) of the observables to the increase of a particular parameter
of the model.

R⊥ ↑ Rz ↑ η/s ↑ τ0 ↑ εsw ↑
Teff ↓ ↑ ↑ ↓ ↓
dN/dy ↑ ↑ ↑ ↓ ↑
v2 ↓ ↑ ↓ ↓ ↓

expansion. Thus more energy remains at midrapidity
to form stronger transverse expansion, which increases
Teff and v2. On the other hand, larger Rη also results in
larger initial entropy of the system, which considerably
increases the final particle multiplicity; see Fig. 6,
upper panel.

(c) Increased τ0 has two effects:
(1) It leads to a shorter lifetime of the hydrodynamic

phase, as a result of longer prethermal phase.
(2) At the same time τ0 enters the Gaussian energy-

momentum smearing profile. Thus its increase acts
opposite to the increase of Rη.

From the response of the observables to the increase of
τ0 we find that the second effect is stronger.

(d) Increased εsw shortens the effective lifetime of the
hydrodynamic phase. The shorter time to develop radial
and elliptic flows is not fully compensated by the
longer cascade phase, which results in the decrease
of both final Teff and final v2. Since the total entropy
is conserved in the ideal hydrodynamic expansion
but increases in the cascade stage, the final particle
multiplicity increases with the increase of εsw.

The observed dependencies are schematically depicted in
Table I, where the signs of the responses of the observables
to the increase of a particular model parameter are shown. As
for the magnitudes of the response, one can see from the plots
that by varying the parameters of the initialization procedure
one has a nearly linear influence on the final dN/dy, Teff ,
and v2. From Fig. 7 one can see that by choosing a larger
value of R⊥ it is possible to approach the experimental value
of v2 with zero shear viscosity in the hydrodynamic phase.
However, such value is inconsistent with the pT spectra and
charged particle multiplicity.

Investigating all the dependencies in detail allows us
to choose parameter values which lead to a reasonable
reproduction of the data. These values are shown in Table II.
For reasons of simplicity we keep εsw = 0.5 GeV/fm3 for all
collision energies, since the other parameters provide enough
freedom for adjustment. Note that since the model requires
a lot of processing time to obtain results for each particular
collision energy and centrality, it is at the moment impractical
to provide χ2-optimized values of the model parameters and
their errors. Thus the parameters are adjusted manually based
on a visual correspondence to the data. A full-fledged χ2 fit to
the data is planned for the future using a model emulator, as
suggested in Refs. [43–45].
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TABLE II. Collision energy dependence of the model parameters
chosen to reproduce the experimental data in the BES region and
higher RHIC energies. Asterisks denote the values of starting time
τ0, which are adjusted instead of being taken directly from Eq. (1).

√
sNN (GeV) τ0 (fm/c) R⊥ (fm) Rη (fm) η/s

7.7 3.2 1.4 0.5 0.2
8.8 (SPS) 2.83 1.4 0.5 0.2
11.5 2.1 1.4 0.5 0.2
17.3 (SPS) 1.42 1.4 0.5 0.15
19.6 1.22 1.4 0.5 0.15
27 1.0 1.2 0.5 0.12
39 0.9* 1.0 0.7 0.08
62.4 0.7* 1.0 0.7 0.08
200 0.4* 1.0 1.0 0.08

V. RESULTS FOR BULK OBSERVABLES

Finally, let us have a look at the results for bulk observables
with the energy-dependent parameters for the hydrodynamic
description (see Table II).

The (pseudo)rapidity spectra are presented in Fig. 8. One
can see that whereas the parameters were adjusted to reproduce
the total multiplicities, the resulting shapes of the pseudora-
pidity distributions are also in a reasonable agreement with
the data. From the model results one can observe the change
in shape from the single peak structure at

√
sNN < 20 GeV

to a doubly peaked distribution (or from a Dromedary to a
Bactrian camel shape), which starts to form at

√
sNN = 39 GeV.

At higher collision energies we observe a shallow dip around
zero pseudorapidity.

The pT spectra of pions, kaons, and protons in collisions
at

√
sNN = 62.4, 17.6, and 8.8 GeV energies are shown in

Fig. 9. In general the spectra and especially the pT slopes
are reproduced, which indicates that both the collective radial
flow (generated in the hydrodynamic and cascade stages), and
thermal motion are combined in the right proportion.

The elliptic and triangular flow coefficients for 20–30%
central Au-Au collisions as a function of collision energy are
presented in Fig. 10. As expected, the calculated values of
the elliptic flow follow the data closely, since this quantity
was used to fix the parameters. In contrast to that, triangular
flow v3 is calculated from the same simulated events, and thus
can be considered as a prediction of the model. We expect
that the nonmonotonous behavior of v3 is an artifact of our
fitting procedure, and more careful adjustment of the model
parameters would further smoothen the behavior of v3(

√
s).

The 20–30% centrality class was chosen because the elliptic
flow signal is strongest around this centrality class. Also, at this
centrality nonflow contributions from minijets, which are not
included in the model, are small. The centrality dependence
of elliptic flow at

√
sNN = 39 GeV is shown in Fig. 11.

The parameters are the same at all centralities. In peripheral
collisions the model significantly undershoots the data. This is
due to the smoothening procedure used to convert individual
particles to the fluid-dynamical initial state. With the present
smearing parameters the eccentricity of the system is too small
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FIG. 8. (Color online) Pseudorapidity distributions of charged
hadrons (top) in Au-Au collisions at

√
sNN = 19.6, 39, 62.4, and

200 GeV energies, and rapidity distributions of identified hadrons
in Pb-Pb collisions at Elab = 158 and 40 A GeV (

√
sNN = 17.6

and 8.8 GeV) energies (middle and bottom panels, respectively).
The calculations were done using the collision energy-dependent
parameters listed in Table II. The data are from the PHOBOS [34]
and the NA49 [29] Collaborations.

in peripheral collisions, where the size of the entire system is
comparable to the smearing radius.

The most important conclusion from the adjustment proce-
dure is that reproduction of the data requires an effective η/s
which decreases as a function of increasing collision energy;
see Table II and Fig. 12. In Fig. 12 one can also see an estimated
error band around the optimal values of η/s. As mentioned,
a proper determination of the error bars would require a χ2
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FIG. 9. (Color online) pT spectra of identified hadrons in Au-Au
collisions at

√
sNN = 62.4 GeV energy (top) and in Pb-Pb collisions

at Elab = 158 and 40 A GeV (
√

sNN = 17.6 and 8.8 GeV) energies
(middle and bottom panels, respectively). The model calculations
were carried out using the collision energy-dependent parameters
listed in Table II, and the data are from the PHOBOS and NA49
Collaborations [29,35,46].

fit. Currently the error band is estimated from the variations of
two parameters of the model (η/s and RT ) which result in the
same value of pT integrated elliptic flow and a 5% variation in
the slope of proton pT spectrum, which is the most sensitive
to a change in radial flow.

In the present calculations η/s is taken to be constant
during the evolution of the system, and its value changes only
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FIG. 10. (Color online) pT integrated elliptic and triangular flow
coefficients v2 and v3 as a function of collision energy. Both the
experimental and calculated coefficients were evaluated using the
event-plane method. The calculation was done using the collision
energy-dependent parameters listed in Table II, and the data are from
the STAR Collaboration [10,40].

with the collision energy. However, we expect that physical
η/s depends on both the temperature and baryon chemical
potential, and that η/s has a minimum around Tc and zero
μb [47–50]. As the collision energy becomes smaller, the
average baryon chemical potential in the system increases.
This indicates that the physical value of η/s should increase
with increasing μB .

In Ref. [51] it was argued that η/s is not an appropriate
measure of the fluidity of the system. However, the measure of
fluidity proposed in that paper, Lη/Ln = (ηn1/3)/(wcs), where
n is the total particle number density, w is enthalpy, and cs is
the speed of sound, is difficult to implement in the present
fluid-dynamical calculation since n is not well defined in our
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FIG. 11. (Color online) pT integrated elliptic flow coefficient v2

in
√

sNN = 39 GeV Au-Au collisions as function of centrality. Both
the experimental and calculated v2 was evaluated using the event
plane method. The calculation was done using the collision energy-
dependent parameters listed in Table II, and the data are from the
STAR collaboration [10].
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FIG. 12. (Color online) Effective values of shear viscosity over
entropy density η/s used to describe the experimental data at different
collision energies as shown in Table II. The green (gray) band
represents an estimate of uncertainty in η/s resulting from the allowed
variation of model parameters around their optimal values.

two-phase EoS. Instead, we use as an alternative measure
of fluidity the combination ηT /w = ηT /(ε + P ) = η/(s +∑

α μαnα/T ), where nα are the charge densities (baryon,
strange, electric) and μα are the corresponding chemical
potentials, and which approaches η/s in the limit of small
charge densities. We have performed an additional round
of simulations, keeping ηT /w = 0.08 and η/s = 0.08 at all
collision energies to see whether different measures of fluidity
make any difference. The resulting elliptic and triangular flow
coefficients are shown in Fig. 13. One can see that at all
considered collision energies there is no visible difference
in the elliptic flow coefficient between the η/s = 0.08 and
ηT /w = 0.08 cases. We have also checked that the two
scenarios result in virtually same pT spectra and dN/dy
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FIG. 13. (Color online) pT integrated elliptic and triangular flow
coefficients v2 and v3 as a function of collision energy. Solid
red (gray) line represents the results from Fig. 10 obtained using
collision energy-dependent η/s. Dashed (blue) and dotted (green)
lines correspond to collision independent ηT/w = 0.08 and η/s =
0.08, respectively. In all three cases the other model parameters were
taken to depend on the collision energy as shown in Table II. The
experimental data are from the STAR Collaboration [10,40].

distributions. This indicates that the contribution from baryon-
electric charge density to the entropy density does not induce
baryon density dependence of the η/s ratio that is strong
enough to affect the hydrodynamic evolution.

VI. SUMMARY AND OUTLOOK

A hybrid model featuring a 3+1-dimensional viscous
hydrodynamic phase with an explicit treatment of finite baryon
and charge densities is introduced. The model employs a chiral
model equation of state for the hydrodynamic stage. The initial
and late nonequilibrium stages are modeled using the UrQMD
hadron cascade on an event-by-event basis.

This hybrid model was applied to describe the dynamics
of relativistic heavy-ion collisions at energies ranging from
the lowest RHIC beam energy scan energy to full RHIC
energy,

√
s = 7.7–200 GeV. After tuning the parameters, it

was possible to reproduce the observed pseudorapidity and
transverse momentum distributions of produced hadrons and
their elliptic flow coefficients. The reproduction of the data
requires a finite shear viscosity over entropy density ratio η/s,
which depends on collision energy. This ratio was found to
decrease from η/s = 0.2 to 0.08 as collision energy increases
from

√
sNN = 7.7 to 39 GeV, and to stay at η/s = 0.08

for 39 � √
s � 200 GeV. Since the average baryochemical

potential at midrapidity decreases with increasing collision
energy, the required collision energy dependence of the
effective η/s indicates that the physical η/s ratio may
depend on baryochemical potential and that η/s increases
with increasing μB . It was also found that a constant and
collision energy-independent ηT /w = 0.08 and η/s = 0.08
in hydrodynamic phase yield quantitatively similar results.
This indicates that the μBnB term in entropy density does
not induce the baryon density dependence of η/s required to
reproduce the data when ηT /w is kept independent of collision
energy.

In addition we have explored the parameter dependence
of the model results and generally found a <10% variation
of the results, when the individual parameters were varied
by 10%. Of course, the proper evaluation of the effect
of finite baryochemical potential on η/s would require
reproducing all the data using the same temperature- and
baryochemical-potential-dependent parametrization of η/s at
all energies and centralities. This will be addressed in future
studies.
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In most heavy ion collision simulations involving relativistic hydrodynamics, the Cooper-Frye formula is
applied to transform the hydrodynamical fields to particles. In this article the so-called negative contributions
in the Cooper-Frye formula are studied using a coarse-grained transport approach. The magnitude of negative
contributions is investigated as a function of hadron mass, collision energy in the range of Elab = 5–160A

GeV, collision centrality, and the energy density transition criterion defining the hypersurface. The microscopic
results are compared to negative contributions expected from hydrodynamical treatment assuming local thermal
equilibrium. The main conclusion is that the number of actual microscopic particles flying inward is smaller
than the negative contribution one would expect in an equilibrated scenario. The largest impact of negative
contributions is found to be on the pion rapidity distribution at midrapidity in central collisions. For this
case negative contributions in equilibrium constitute 8–13% of positive contributions, depending on collision
energy, but only 0.5–4% in cascade calculation. The dependence on the collision energy itself is found to be
nonmonotonous with a maximum at 10–20A GeV.
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I. INTRODUCTION

Relativistic hydrodynamics is now the standard approach
for modeling ultrarelativistic heavy ion collisions at highest
RHIC (Relativistic Heavy Ion Collider) and LHC (Large
Hadron Collider) energies. These dynamical descriptions are
either based on ideal [1,2] or dissipative hydrodynamics [3,4]
and describe the entire expansion fluid dynamically. In so-
called hybrid approaches [5,6] only the early hot and dense
stage of the expansion is described using hydrodynamics and
the later dilute stage is described by hadron transport.

Most of these models use a conceptually similar procedure:
Given an initial condition, the hydrodynamic equations are
solved in the whole forward light cone. Near the boundary
of vacuum and at the late times of evolution hydrodynamics
is not applicable any more, when the density is small and
the mean free path is larger than the system size. Therefore,
models switch to an off-equilibrium microscopic description in
terms of particles in this region. In hybrid approaches particles
can scatter, while other models allow only free-streaming and
resonance decays. In any case, the most commonly used way to
convert the fluid-dynamical fields to particles, a process that we
call here “particlization,” is by using the Cooper-Frye formula.

The Cooper-Frye formula assumes particlization to take
place on an infinitesimally thin three-dimensional hypersur-
face in four-dimensional space-time. This hypersurface � is
usually determined a posteriori from the hydrodynamical solu-
tion in the whole forward light cone, usually as a hypersurface

*oliiny@fias.uni-frankfurt.de
†huovinen@th.physik.uni-frankfurt.de
‡petersen@fias.uni-frankfurt.de

of constant time, energy density, temperature, or Knudsen
number. Particle distributions on an infinitesimal element of
hypersurface, d�, are calculated using the following formula:

p0 d3N

d3p
= pμdσμf (p), (1)

where f (p) is a distribution function and dσμ is a normal
four-vector of hypersurface with length equal to the area of
the infinitesimal surface element. This formula was obtained
by Cooper and Frye [7] with the main feature that it respects
four-momentum conservation. Though formula (1) is valid
for any f (p), the distribution function is usually assumed
to be either the boosted thermal distribution f (p) = f0(p) =
[exp(pμuμ−μ

T
) ± 1]−1 (ideal fluid), or a distribution close to the

boosted thermal distribution f (p) = f0(p) + δf (p) (viscous
fluid), where δf (p) is the dissipative correction. Here T , μ,
and uμ = γ (1,v) are temperature, chemical potential, and the
flow velocity of the fluid, respectively.

There is, however, a conceptual problem with the Cooper-
Frye formula. Where the surface is spacelike, i.e. its normal
vector dσμ is spacelike, pμdσμ < 0 for some p. Thus if
f (p) > 0 for all p, as is the case for the thermal distribution,
d3N
d3p

< 0 for some p. This can be easily seen in the local
rest frame of a spacelike surface (which always exists since
vsurf < c for spacelike surfaces), where pμdσμ = p · n and
thus d3N

d3p
< 0 for momenta directed inward the surface. On

the other hand, for those timelike surfaces in which normal
vector points toward the future (i.e., dσ0 > 0), d3N

d3p
> 0 for

any p. This can be also understood as follows: The surface
is “escaping” faster than the speed of light, so no particle can
cross it inward. (For a summary of the properties of timelike
and spacelike surfaces, see Table I.)
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TABLE I. Properties of surface elements. gμν = (1, −1,

−1,−1). The normal vector is directed toward lower density. RF

denotes reference frame, and d3NCF

d3p
denotes particle distribution from

the hypersurface element calculated using the Cooper-Frye formula.

Timelike surface Spacelike surface

Timelike normal Spacelike normal

dσμdσμ > 0 dσμdσμ < 0

vsurf > c vsurf < c

∃ RF: dσμ = (±dx dy dz,0,0,0) ∃ RF: dσμ = (0,0,0,dt dx dy)

dσ0 > 0 ⇒ ∀pμ: pμdσμ > 0 ∃pμ: pμdσμ < 0

dσ0 > 0 ⇒ ∀pμ: d3NCF

d3p
> 0 ∃pμ: d3NCF

d3p
< 0

If d3N
d3p

is interpreted as a phase-space density, negative
values of it are clearly unphysical, but instead of giving a literal
phase-space density, Cooper-Frye formula counts the world
lines of particles crossing the surface element d� and gives
positive weight to particles moving “outward” and negative
weight to particles moving “inward.” Thus the negative values
of d3N

d3p
, the so-called negative Cooper-Frye contributions, refer

to particles flying inward toward the hydrodynamical region,
and which should thus be absorbed back to the fluid.

In pure hydrodynamical models, this poses a problem:
Particlization takes place at freeze-out when rescatterings
cease and particles stream free. Thus, once particles cross the
particlization surface, there is nothing from where particles
could scatter back toward the surface, and thus there should be
no particles flying back. To avoid this problem, one could
choose a completely timelike particlization hypersurface,
for example, a hypersurface of a constant time without
any negative contributions. However, it was shown [8] that
particle spectra obtained in such an approach are dramatically
different from spectra on a constant temperature hypersurface.
Another way is to consider cutoff distribution [9]: p0 d3N

dp3 =
pμdσμf (p)�(pμdσμ). Such a prescription violates conserva-
tion laws, unless one adjusts temperature, chemical potentials,
and flow velocity in the particle distribution f (p) [10,11].

On the other hand, there is no such a problem in hybrid
models. Particlization takes place where rescatterings are
abundant, and thus it is natural to have particles flying back to
the fluid-dynamical region. The problem is rather a practical
one: What does the negative weight of a particle mean when
one samples the particle distributions at particlization surface
to create an initial state for the hadron transport? Usually
one simply ignores them (see, e.g., Ref. [12]), which violates
conservation laws. An attempt to include these negative
weights to the hadron transport was recently made in Ref. [13].
Alternatively, if the transition from fluid to transport takes
place in a region where hydrodynamics and transport are
equivalent, the negative Cooper-Frye contributions coincide
with the distribution of particles that backscatter to hydrody-
namical region. Thus all one needs to do is to remove these
particles from the cascade, but such removal is technically
challenging, and the problem remains of how to find the region

where hydrodynamics and transport lead to equal solutions—
assuming that such a region exists at all! Thus the ultimate
solution to the problem would be to construct a model, solving
coupled hydrodynamical and kinetic equations with the kinetic
model providing boundary condition for hydrodynamics. An
attempt in this direction was undertaken by Bugaev [14–16],
but these ideas have not yet been implemented in practice.

Fortunately, at high collision energies, the explosive ex-
pansion dynamics keeps the negative contributions on the
level of a few percent. Emission of particles from timelike
areas of surface where no negative contributions appear
(so-called volume emission) is much larger than emission
from spacelike areas (so-called surface emission), and as we
discuss later, large flow velocity reduces negative contributions
from spacelike surfaces. Nevertheless, there are very few
studies that actually quote the values of negative contributions,
and investigations at lower collision energies are lacking
completely. In this article the negative contributions arising
on the Cooper-Frye transition surface, assuming distribution
functions in local equilibrium, are compared to the actual
underlying microscopic dynamics to investigate the systematic
differences between a transport and a hybrid approach.

Therefore, the aim of the current study is to compare
the expected negative contributions in a locally equilibrated
hydrodynamical approach with the actual number of particles
that scatter back through a hypersurface in a coarse-grained
microscopic transport approach. A constant energy density
transition surface is constructed and negative Cooper-Frye
contributions are compared to actual backscattered particles. In
addition, the magnitude of negative contributions is calculated
in a systematic way depending on hadron sort, collision energy,
centrality, and choice of the transition surface. In Sec. II
the framework for the calculation is explained. Section III
shows results of tests of the numerical setup and sensitivity to
internal parameters of the calculation. Finally, Sec. IV contains
physical results: the quantification of Cooper-Frye negative
contributions and their comparison to backscattered particles.

II. METHODOLOGY

Our calculation is based on the hadronic transport
approach, Ultrarelativistic Quantum Molecular Dynamics
(UrQMD 3.3p2) [17]. The degrees of freedom in UrQMD
are hadrons, resonances up to a mass of 2.2 GeV, and strings.
The implemented processes include binary elastic and inelastic
scatterings, which mainly proceed via resonance formation
and decays, or string excitation and fragmentation at higher
collision energies. The UrQMD particles move along classical
trajectories and scatter according to their free-particle cross
sections. In our studies there are no long-range potentials
and particle trajectories between collisions are always straight
lines. Using UrQMD we simulate Au + Au collisions at
laboratory frame energies Elab = 5, 10, 20, 40, 80, and 160A
GeV. This energy region is chosen because we expect UrQMD
to provide a reasonable description of the collision dynamics
at those energies and the Cooper-Frye negative contributions
to become significant in this energy range.
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The general procedure for our calculations is as follows:

(i) Generate many UrQMD events and coarse-grain them
using a 3 + 1D space-time grid.

(ii) Find the local energy density in the Landau rest frame
of each grid cell, εLRF(t,x,y,z), and the collective flow
velocity in each cell, v(t,x,y,z).

(iii) Construct the hypersurface � of a constant energy
density εLRF(t,x,y,z) = εc.

(iv) Calculate the particle spectra on � by using the
Cooper-Frye formula and by counting the actual
UrQMD particles that cross �. To obtain these spectra
and to compare them to each other is the goal of the
current work.

This procedure mimics switching from hydrodynamics to
transport in a hybrid model, but here the “hydrodynamical”
picture is obtained by averaging over particle distributions on
a space-time grid. Since all the information is still available in
the underlying microscopic approach we are able to compare
the negative Cooper-Frye contributions to the spectrum of
actual backscattered particles. In the following we explain all
necessary details for each of these steps of the calculation.

A. Calculating physical quantities on a grid

To obtain the energy density in the Landau rest frame as
a function of space-time, which is necessary to construct the
Cooper-Frye transition surface, the energy momentum tensor
and the net baryon current in the computational frame are
calculated:

T μν(t,x,y,z) = 1

	x	y	z

〈∑ pμpν

p0

〉
N

, (2)

j
μ
B (t,x,y,z) = 1

	x	y	z

〈∑ pμ

p0
B

〉
N

, (3)

where the sum is over all particles in each grid cell at the
moment t , and B is the baryon number of each particle.
Angular brackets denote averages over N UrQMD events.
The cell sizes need to be small enough so that gradients of
all relevant physical quantities within the cell are small. On
the other hand, if the cell sizes are too small, one needs to
generate infeasibly many events to damp statistical fluctuations
of T μν components from cell to cell and obtain a smooth
surface �. To satisfy these conditions and to ensure energy
conservation precisely, we choose 	x = 	y = 1 fm, 	z =
0.3 fm, and time step 	t = 0.1 fm. For the highest collision
energy, Elab = 160A GeV, the gradients are larger, so even
smaller grid sizes were taken: 	x = 	y = 0.3 fm and 	z
= 0.1 fm. This choice is further discussed in Sec. III, where
the sensitivity of results to the grid size is studied. Since even
N = 10 000 events does not provide enough statistics to obtain
a smooth hypersurface, and increase of N is not feasible
due to limited storage capacities, the individual particles
are smeared by marker particles distributed according to a
Gaussian distribution.

Every UrQMD particle with coordinates (tp,xp,yp,zp)
and four-momentum pμ is substituted by Nsplit parti-
cles with coordinates distributed with probability density

f (x,y,z) ∼ exp(− (x−xp)2

2σ 2 − (y−yp)2

2σ 2 − γ 2
z

(z−zp)2

2σ 2 ), where γz =
(1 − pz/p0)−1/2. These marker particles are attributed the
4-momentum and quantum numbers of the original particle
divided by Nsplit. In our calculation Nsplit = 300 and σ = 1 fm.
The sensitivity of our results to the width of the Gaussian is
discussed in Sec. III. When this Gaussian smearing is applied,
stable results are obtained with only N = 1500 events, which
we employ for our calculations.

B. The hypersurface construction

After obtaining T μν in the computational frame, it has
to be transformed to the Landau rest frame (LRF) in each
cell. By definition, T 0i

LRF = 0, i.e., the energy flow in the
LRF is zero. To find the LRF we solve the generalized
eigenvalue problem (T μν − λgμν)hν = 0. The eigenvector
corresponding to the largest eigenvalue is proportional to the
4-velocity of the LRF and the proportionality constant is fixed
by the constraint that

√
uμuμ = 1. After finding T

μν
LRF the

hypersurface of constant Landau rest frame energy density
is constructed where T 00

LRF ≡ εLRF(t,x,y,z) = εc, with εc a
parameter that characterizes the hypersurface. In such a way
we mimic the transition surface in hybrid models, which
typically use εc = 0.3−1 GeV/fm3 [12]. The isosurface is
constructed using the Cornelius subroutine [12], that provides
a continuous surface without holes and avoids double counting
of hypersurface pieces. The subroutine provides the normal
4-vectors dσμ of the hypersurface. The physical quantities
on the grid, i.e., the energy, net baryon density, and the flow
velocity, are linearly interpolated to the geometrical centers of
the hypersurface elements.

C. Thermodynamic quantities

To apply the Cooper-Frye formula one needs the temper-
ature T and chemical potentials on the surface, which do
not exist in the microscopic picture. Strictly speaking they
make sense only in the vicinity of thermal and chemical
equilibrium, which may not be the case in our UrQMD
simulation. Nevertheless, we take the LRF energy density and
net baryon density to mean equilibrium densities—as is the
case when deviations from equilibrium are small—and obtain
temperature and chemical potentials from an ideal hadron
resonance gas (HRG) equation of state (EoS) containing the
same hadrons and resonances as UrQMD. Since our EoS
assumes zero strangeness density, we impose this constraint as
well, even if UrQMD itself allows local nonzero strangeness.
In practice, this means solving the following coupled equations
to find the temperature T , baryon chemical potential μB , and
strangeness chemical potential μS :

εLRF =
∑

p

gp

(2π )3

∫ d3k
√

k2 + m2
p

e(
√

k2+m2
p−μBBp−μSSp)/T ± 1

, (4)

nLRF
B =

∑
p

gpBp

(2π )3

∫
d3k

e(
√

k2+m2
p−μBBp−μSSp)/T ± 1

, (5)

nLRF
S =

∑
p

gpSp

(2π )3

∫
d3k

e(
√

k2+m2
p−μBBp−μSSp)/T ± 1

. (6)

024906-3



D. OLIINYCHENKO, P. HUOVINEN, AND H. PETERSEN PHYSICAL REVIEW C 91, 024906 (2015)

Here εLRF = T 00 is the energy density in LRF, nLRF
B is the

baryon density in LRF, ns is the strangeness density, and the
sum runs over all hadron species that appear in UrQMD; mp

is the mass of a hadron p, gp is its spin and isospin degeneracy
factor, and Bp and Sp are its baryon number and strangeness,
respectively.

D. Cooper-Frye and “by particles” calculations

After the hypersurface of constant LRF energy density
� is obtained and T and μ are evaluated using the EoS,
the Cooper-Frye formula is applied on the hypersurface. The
spectrum from the Cooper-Frye formula is split into positive
and negative parts:

dN+
CF

pT dpT dϕdy
= g

(2π )3

∫
σ

�(pμdσμ) pμdσμ

e(pνuν−μ)/T ± 1
, (7)

dN−
CF

pT dpT dϕdy
= −g

(2π )3

∫
σ

�(−pμdσμ) pμdσμ

e(pνuν−μ)/T ± 1
. (8)

To evaluate dN/dy or dN/pT dpT the integrations are
performed numerically, applying the 36 × 36 points Gauss-
Legendre method to integrals transformed to finite limits.

For comparison with the Cooper-Frye calculation we count
the actual microscopic (not marker) particles crossing the same
hypersurface � that is used for Cooper-Frye calculations.
Inward and outward crossings are counted separately. To find
the point where a particle trajectory crosses � we use the
fact that by construction the energy density ε > εc inside
the surface and ε < εc outside of it. The energy density is
interpolated to the particle trajectory to find the point where
ε − εc changes sign. Each of these crossings is counted as
positive if the particle streams outward and as negative if the
particle flies toward higher energy densities.

Both Cooper-Frye calculation and particle counting start
at the same time tstart, which depends on the collision energy.
Following the prescription from hybrid models, we take tstart =
2R
vγ

. This is the time two nuclei need to pass through each
other. Numerical values are 8 fm/c for 5A GeV, 5.6 fm/c for
10A GeV, 4 fm/c for 20A GeV, 2.8 fm/c for 40A GeV, 2 fm/c
for 80A GeV, and 1.4 fm/c for 160A GeV. The same tstart is
used for all centralities.

III. SENSITIVITY TO INTERNAL PARAMETERS AND
FULFILLMENT OF CONSERVATION LAWS

Besides physical parameters like the beam energy, Elab, and
centrality of the collision controlled by the impact parameter b,
our simulation contains internal parameters like grid spacing,
the width of the smearing Gaussian σ , and the number of
events N . Ideally, we should work in such a region of internal
parameters, where our results are independent of them. To
see how sensitive our results are to these internal parameters,
the positive and negative contributions to the pion yield at
midrapidity, dN

dy
|y=0, at different values of these parameters

are evaluated.
The calculation is more sensitive to the grid spacing in the

z direction, dz, than to the spacings in x and y directions, dx
and dy, since gradients of T μν are largest in the longitudinal

(a)

E = 10A GeV, b = 0 fm,
 1500 events, σ = 1 fm

CF positive/10
outward crossings/10
CF negative
inward crossings

dN
/d

y|
y=

0

0

5

dz [fm]0 0.2 0.8 1

(b)

E = 10A GeV
 b = 0 fm
 σ = 1 fm

CF positive/10
outward crossings/10
CF negative
inward crossings

dN
/d

y|
y=

0

0

25

N101 102 103 104

(c)

E = 10A GeV
 b = 0 fm
 1500 events

CF positive/10
outward crossings/10
CF negative
inward crossings

dN
/d

y|
y=

0

0

5

σ [fm]0 0.5 1.5 2

FIG. 1. Sensitivity of results to internal parameters of the simu-
lation: grid spacing along the z axis, dz (a), number of events, N (b),
and the width σ of Gaussian smearing (c).

direction, although, as shown in Fig. 1(a), even the sensitivity
to dz is weak over a reasonable range of values. The main
motivation for choosing the grid spacing and time step comes
in fact from the requirement of energy conservation, discussed
later.

The results are very sensitive to the small number of events
[see Fig. 1(b)], but already N = 500 events provides sufficient
statistics for stable results. To be on the safe side, we have
analyzed N = 1500 events for our final results. Unfortunately,
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FIG. 2. (Color online) Energy flux through the surface at different times evaluated as actual flow, 	E1(t)/dt = ∫ t

t−dt
T μ0dσμ/dt (circles),

and as a difference in energy within the surface at different times, 	E2(t)/dt = (Ein(t) − Ein(t − dt))/dt (rectangles). Lower panel shows the
relative difference between these two measures in percent (%), and thus the conservation of energy in the calculation.

our results are not completely independent of the width σ of
the Gaussian smearing, as shown on Fig. 1(c). The number
of inward crossing UrQMD pions is most sensitive to σ . Two
effects play a role here: At small σ the surface still has large
statistical fluctuations and small-scale structures, “lumps” (see
Fig. 2 of Ref. [18]), whereas at large σ Gaussian smearing
pushes the transition surface further out in space. Further out,
the densities are smaller, and the UrQMD particle distributions
are further away from equilibrium so that especially the
number of particles moving toward the center is strongly
reduced. We choose σ = 1 fm as a reasonable value for our
calculations, but keep in mind that varying σ in the range from
0.6 fm to 1.4 fm causes ∼20% difference in the number of
inward crossings. We consider this a systematic error in our
analysis, but fortunately this uncertainty does not affect our
main conclusions.

To check that energy is conserved in the coarse-graining
procedure, we evaluate the energy flow through the surface
during the time step dt , 	E1(t) = ∫ t

t−dt
T μ0dσμ, and compare

it to the change in energy within the surface during the
same time step, 	E2(t) = Ein(t) − Ein(t − dt), where Ein is
total energy of particles inside the surface. Ideally 	E1(t) =
	E2(t) for any dt , but finite cell sizes limit the precision and
break the conservation of energy. The accuracy of 	E1 ≈ 	E2

improves when grid spacing and time step are decreased.
Figure 2 shows the energy flux through the surface and the
relative difference between 	E1(t) and 	E2(t) in central
collisions at energies Elab = 10, 40, and 160A GeV. To achieve
better than 5% percent accuracy at all times, we use small grid
spacing with 	x = 	y = 1 fm, 	z = 0.3 fm, and time step
	t = 0.1 fm/c in collisions with Elab � 80A GeV, and an
even finer grid with 	x = 	y = 0.3 fm, and 	z = 0.1 fm
for collisions at Elab = 160A GeV. When integrated over the
whole collision time, the violation of energy conservation is

less than 1% at all collision energies. We have done a similar
check for the net baryon charge and obtained similar results.

IV. RESULTS AND DISCUSSION

Let us start by investigating the properties of the transition
hypersurface itself as a function of beam energy. Figure 3
depicts the surface � in longitudinal direction along the x axis.
We see that with increasing energy the lifetime of the system
increases. This indicates longer lasting surface emission (from
spacelike parts of the surface), which might lead to larger
negative contributions. On the other hand, with increasing
energy the longitudinal expansion leads to larger volume of
the final volume emission (from timelike parts of the surface),
which indicates smaller negative contributions. Thus we have
two competing effects, and one has to carry out the actual
calculation to find out how the negative contributions depend
on energy.

Distributions of the (apparent) temperature of the hyper-
surface elements are shown on the right panel of Fig. 3.
At each collision energy temperature distribution is rather
narrow, which means that constant energy density surface
approximately coincides with constant temperature surface.
As well, the average temperature increases with increasing
collision energy as expected from thermal model fits to particle
yields [19].

In Fig. 4 we compare rapidity spectra of identified particles
in Elab = 40A GeV Au + Au collisions obtained by Cooper-
Frye calculation and by counting of the microscopic particles.
Even though, we are showing the results only for one collision
energy, all results are qualitatively the same at all other
energies. If UrQMD is close to equilibrium on a surface
at εc = 0.3 GeV/fm3, both approaches should yield similar
distributions. At midrapidity this is the case for nucleons, with
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FIG. 3. (Color online) Upper panel: Hypersurface of constant
LRF energy density ε(t,0,0,z) = εc = 0.3 GeV/fm3. Lower panel:
The fraction of hypersurface elements with (apparent) temperature T

in central Au + Au collisions at the collision energy of Elab = 5, 10,
20, 40, 80, and 160A GeV.

a lesser accuracy for kaons. 	, , ρ, and η which are not shown
in the figure depict a behavior similar to nucleons. However, the
pion yields are wildly different, indicating that pions are—and
thus the entire system is—far away from chemical equilibrium
at least. To cancel the effect of nonequilibrium and to make the
differences in momentum distributions visible, we consider
not the absolute value of the negative contributions but the
ratio of negative to positive ones, (dN−/dy)/(dN+/dy) or
(dN−/dpT )/(dN+/dpT ). From Fig. 4 it is also apparent that
the magnitude of the negative contributions is always small
compared to the positive ones, as expected.

The dependence of the ratio (dN−/dy)/(dN+/dy) on the
hadron type is illustrated in Fig. 5 by the Cooper-Frye results.
Since for all cases the microscopic negative contributions of
backstreaming particles are much smaller than the Cooper-
Frye ones, we concentrate on showing the maximal effect.
Surface temperature and velocity profiles are identical for
all hadrons, so the plot demonstrates first of all the effect
of particle mass. One can see that the average value of
(dN−/dy)/(dN+/dy) decreases with particle mass. This can
be understood by considering a small volume of fluid in its
rest frame, and a spacelike surface moving through it with a

(a)

π
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Cooper-Frye total
particles outward crossings
particles outward - inwarddN

π/d
y

0
50

10
0

15
0
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(b)

K-
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Cooper-Frye total
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K
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(c)

N
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Cooper-Frye total
particles outward crossings
particles outward - inwarddN

N
/d

y
0

20
40

y-3 -2 -1 1 2 3

FIG. 4. (Color online) Rapidity distribution of identified parti-
cles obtained from Cooper-Frye formula on the surface � and from
explicit counting of particles that cross the same surface. Positive
contributions and the net distribution, i.e., positive-negative, are
shown separately. Elab = 40A GeV, central Au + Au collisions.

velocity 0 < vsurf < c so that lower density, i.e., outside, is in
the negative direction. To be counted as a negative contribution,
a particle must enter the fluid, and thus have a larger velocity
than the surface. Average thermal velocity decreases with
increasing mass, and therefore as the particles are heavier,
fewer of them cross the surface inward. Since relative negative
contributions for pions are several times larger than for other
hadrons, we consider only pions in the following.
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FIG. 5. (Color online) Rapidity distribution of the ratio of neg-
ative to positive contributions for different hadron species: pions
(circles), K+ (crosses), ρ (bars), nucleons (rectangles), and 	s
(triangles). Cooper-Frye calculation in central Au + Au collisions
at Elab = 40A GeV.

As could be seen in Fig. 4, imposing equilibrium for
Cooper-Frye calculation leads to a significantly larger negative
to positive contribution ratio at midrapidity than the counting
of UrQMD particles. As shown in Fig. 6 this holds for all
the energies we have considered, showing that the system
is out not only of chemical but also of kinetic equilibrium.
Either the collective flow velocity of pions is different from the
collective velocity of other particles [20,21] or the dissipative
corrections to pion distribution are very large. We have also
checked that the relative microscopic negative contributions
are much smaller in UrQMD at all centralities, for all particle
species, and on isosurfaces of energy density εc = 0.3 and
0.6 GeV/fm3.

(dN-/dy)/(dN+/dy) @ |y| < 0.05

Cooper-Frye
by particles

[%
]

0
5

10

Elab [GeV/nucleon]
0 25 50 75 100 125 150 175

FIG. 6. (Color online) The ratio of negative to positive contri-
butions on the ε(t,x,y,z) = εc = 0.3 GeV/fm3 surface for pions
at midrapidity in central Au + Au collisions at various collision
energies. Circles depict Cooper-Frye result and rectangles the explicit
counting of UrQMD particles.

Cooper-Frye, 10A GeV
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FIG. 7. (Color online) The ratio of negative to positive pion
contributions as a function of transverse momentum at midrapidity in
central Au + Au collisions at Elab = 5, 10, 20, 40, and 80A GeV.

On the other hand, the trend as a function of collision
energy in Cooper-Frye and UrQMD calculations is the same:
Both curves have a maximum at 10–20A GeV and then
decrease with increasing energy. This behavior is a result of a
complicated interplay of several factors: temperature, relative
velocities between surface and fluid, and relative amounts of
volume and surface emission, i.e., emission from the time-
and spacelike parts of the surface. To gain some insight we
consider all these factors separately. The same argument used
to explain the sensitivity of negative contributions to particle
mass also explains why larger temperature leads to larger
negative contributions. Temperature on the constant density
surface grows with increasing collision energy (see Fig. 3),

π

Cooper-Frye, εc = 0.3 GeV/fm3

Cooper-Frye, εc = 0.6 GeV/fm3

by particles, εc = 0.3 GeV/fm3

by particles, εc = 0.6 GeV/fm3

E = 40A GeV
 b = 0 fm

(d
N

- π/d
y)

/(d
N

+ π/d
y)

 [%
]
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20
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FIG. 8. (Color online) Rapidity distribution of the ratio of neg-
ative to positive contributions for pions on ε(t,x,y,z) = εc =
0.3 GeV/fm3 (circles) and εc = 0.6 GeV/fm3 (crosses) surfaces
in central Au + Au collisions at Elab = 40A GeV. Full symbols
correspond to Cooper-Frye calculation and open symbols to explicit
counting of UrQMD particles.
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which would lead one to expect an increase of negative
contributions with increasing collision energy. On the other
hand, larger relative velocity between the fluid and surface
reduces the negative contributions (again the same argument),
and we see that the average relative velocity increases with
increasing collision energy. Finally, as argued when discussing
Fig. 3, we have seen that as the collision energy increases, so
does the fraction of volume emission, which, as mentioned,
reduces the negative contributions.

It is instructive to evaluate the negative contributions as
function of transverse momentum pT as well, as shown in
Fig. 7 for Cooper-Frye calculation and “by particles.” One can
see that the largest negative contributions are located at small
pT , which means that one can reduce the uncertainty caused by
the negative contributions by a low pT cut. Also as a function
of transverse momentum, the amount of microscopically
backward streaming particles is much smaller than in an
equilibrium scenario.

When discussing Fig. 6 we mentioned that, independent of
the energy density of the surface, the negative contributions
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FIG. 9. (Color online) Upper panel: Rapidity distribution of the
ratio of negative to positive contributions for pions in Au + Au
collisions at Elab = 40A GeV at various centralities: b = 0 (circles),
b = 6 fm (crosses), and b = 12 fm (rectangles). Lower panel:
hypersurfaces along the z axis in the same collisions at the same
centralities.

are much smaller when counting the UrQMD particles.
Furthermore, in Cooper-Frye calculations the strength of the
negative contributions depends on the value of εc where the
distributions are evaluated as shown in Fig. 8. Larger εc leads
to larger negative contribution at midrapidity and lower at
back- and forward rapidities. This result arises from interplay
of two factors: larger temperature and smaller average vrel

for larger energy density. Quite surprisingly the negative
contributions evaluated by counting the UrQMD particles are
almost independent of the value of εc. This indicates that
even in much higher temperature T ∼ 155−160 MeV the
microscopic system is not fully thermalized.

Dependence of the contribution ratio on centrality is shown
in Fig. 9. The negative contributions decrease with decreasing
centrality because as the collision is more peripheral, the
fraction of timelike hypersurface elements increases. This
behavior is illustrated in the right panel of Fig. 9. In the limit of
very peripheral collisions the lifetime of the system becomes
zero, and thus the surface is timelike everywhere and there
are no negative contributions at all. Temperature and relative
velocities appear to be less important factors in this case
than relative amount of timelike and spacelike hypersurface
elements.

Let us finally compare our results to previous stud-
ies. In Ref. [12] negative contributions were evaluated
on the ε = 0.3 GeV/fm3 transition surface of a hybrid
model at SPS and RHIC energies—Elab = 160A GeV and√

sNN = 200 GeV, respectively—and found to be around
(dN−

π /dy)/(dN+
π /dy) 	 13% and 9% at y = 0. The negative

contributions for 160A GeV are slightly larger than in our
calculation. The reason for this discrepancy lies in the
difference of the velocity profiles on the hypersurfaces: In
hydrodynamics the average relative velocity between flow and
surface is smaller than in our transport-based approach, which
leads to larger negative contributions.

V. CONCLUSIONS

We have investigated negative Cooper-Frye contributions
and backscattering using a coarse-grained molecular dynamics
approach. Au + Au collisions at Elab = 5–160A GeV energies
have been simulated using UrQMD, and a hypersurface
� of constant Landau rest frame energy density has been
constructed. On this surface we have calculated two quantities:
the ratio of Cooper-Frye negative to positive contributions,
which assumes local thermal equilibrium, and the ratio of
UrQMD particles crossing � inward to crossing � outward,
which assumes no equilibrium.

We found that at all collision energies the ratio of inward-
to outward-moving particles calculated counting the UrQMD
particles is much smaller than the same ratio calculated assum-
ing equilibrium, i.e., the Cooper-Frye negative to positive ratio.
This finding poses a question for the construction of hybrid
models and the treatment of freeze-out in hydrodynamical
models: If the cascade leads to distributions nowhere near
equilibrium, how are the hydrodynamical and cascade stages
to be connected in a consistent fashion? On the other hand,
this result shows that an ideal fluid dynamics hybrid approach
contains the worst-case scenario for negative contributions
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and even then they are on the order of maximum 15% for the
pion yield at midrapidity. What remains to be seen, however,
is whether we could get closer to the UrQMD result if we
allowed dissipative corrections to the distribution function of
Cooper-Frye, or whether the deviations from equilibrium are
so large that dissipative expansion is not feasible.

The largest observed impact of negative contributions
is to the pion rapidity spectrum at midrapidity in central
collisions. In thermally equilibrated Cooper-Frye calculations
it constitutes 8–13%, but only 0.5–4% in the counting of
UrQMD particles. The Cooper-Frye value roughly agrees
with the values obtained previously for hydrodynamics at
160 GeV. We found several systematic features in these ratios.
They are smaller for larger hadron mass and therefore largest
for pions. The relative negative contributions decrease as a
function of collision energy and by going from central to
peripheral collisions. On the other hand, they increase if a
higher energy density is chosen as a surface criterion. The
small-scale structures of the surface, its “lumpiness”, play a

significant role: If the surface is not smooth enough, both ratios
can increase dramatically. Therefore, an interesting future
study could compare single fluctuating events to the averaged
result.
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We explore the influence of a temperature-dependent shear viscosity over entropy density ratio ηs/s on
the azimuthal anisotropies v2 and v4 of hadrons at various rapidities. We find that in Au + Au collisions at
full Relativistic Heavy Ion Collider energy,

√
sNN = 200 GeV, the flow anisotropies are dominated by hadronic

viscosity at all rapidities, whereas in Pb + Pb collisions at the Large Hadron Collider energy,
√

sNN = 2760 GeV,
the flow coefficients are affected by the viscosity in both the plasma and hadronic phases at midrapidity, but the
further away from midrapidity, the more dominant the hadronic viscosity becomes. We find that the centrality and
rapidity dependence of the elliptic and quadrangular flows can help to distinguish different parametrizations of
(ηs/s)(T ). We also find that at midrapidity the flow harmonics are almost independent of the decoupling criterion,
but they show some sensitivity to the criterion at backward and forward rapidities.

DOI: 10.1103/PhysRevC.90.044904 PACS number(s): 25.75.Ld, 12.38.Mh, 24.10.Nz

I. INTRODUCTION

Determining the transport properties of the quark-gluon
plasma (QGP) formed in ultrarelativistic nuclear collisions [1]
is nowadays one of the main goals in high-energy nuclear
physics. Fluid-dynamical models indicate a very low shear
viscosity to entropy density ratio ηs/s,1 when tuned to repro-
duce the azimuthal anisotropies of the transverse momentum
distributions of observed hadrons. For recent reviews see, for
example, Refs. [2–4]. The values favored by state-of-the-art
calculations are in the vicinity of the conjectured lower limit
for shear viscosity, ηs/s = 1/(4π ), based on the anti–de
Sitter/conformal field theory (AdS/CFT) correspondence [5].
For example, the values found in Ref. [6] are ηs/s = 0.12
for collisions at the Relativistic Heavy-Ion Collider (RHIC) at
Brookhaven National Laboratory and ηs/s = 0.2 at the Large
Hadron Collider (LHC) at CERN.

The values quoted above were obtained by using a constant
ηs/s ratio during the entire evolution of the system. For a
physical system ηs/s depends at least on temperature [7] and
on baryon density [8]. A constant value of ηs/s represents
only an effective average over the entire space-time evolution
of the system. The slightly larger effective ηs/s obtained for
collisions at the LHC, i.e., at larger collision energy, thus may
be interpreted as an indication of the temperature dependence
of ηs/s [9,10]. Unfortunately, extracting the temperature
dependence of ηs/s from the experimental data is a challenging
problem.

In our previous works [11–13], we have studied the
consequences of relaxing the assumption of a constant ηs/s.
We found that the relevant temperature region where the

1In this work ηs denotes the coefficient of shear viscosity, ηch the
pseudorapidity, and η the space-time rapidity.

shear viscosity affects the elliptic flow most varies with the
collision energy. At the RHIC the most relevant region is
around and below the QCD transition temperature, while for
higher collision energies the temperature region above the
transition becomes more and more important. To constrain
the temperature dependence of ηs/s better, it would thus
be necessary to find observables which are sensitive to the
shear viscosity at different stages of the evolution of a single
collision.

In this work we relax the assumption of boost invariance of
our earlier works, solve the evolution equations numerically
in all three dimensions, and study whether the azimuthal
anisotropies have similar dependence on (ηs/s)(T ) at all
rapidities. If not, the measurements of vn at backward and
forward rapidities could bring further constraints to (ηs/s)(T ).

We also approach the problem of extracting the temper-
ature dependence of ηs/s in a fashion similar to that of
Ref. [9]: We tune different parametrizations to reproduce
the anisotropies at one collision energy and centrality and
check whether anisotropies at different centralities, rapidi-
ties, and collision energies can distinguish between these
parametrizations.

Furthermore, we check the sensitivity of our results to
different decoupling criteria. To this end we carry out the
calculations using a dynamical freeze-out criterion, i.e., freeze-
out at constant Knudsen number [14–16], and compare the
results to those obtained using the conventional freeze-out at
constant temperature.

In the following we describe the structure and freeze-out
in our (3+1)-dimensional dissipative fluid-dynamical model
in Sec. II and the parameters in our calculations in Sec. III.
Section IV contains the comparison of our results with
experimental data, while in Secs. V and VI we discuss
whether it is possible to distinguish the details of different
parametrizations of (ηs/s)(T ), as well as the effects of a
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dynamical freeze-out criterion. We summarize our results in
Sec. VII.

Specific details of the fluid-dynamical equations are rele-
gated to Appendix A. The numerical algorithm and details of
our implementation and the numerical accuracy of our code
are discussed in Appendices B, and C, respectively.

In this work we use natural units � = c = k = 1.

II. FLUID DYNAMICS

A. Equations of motion

Relativistic fluid dynamics corresponds to the local
conservation of energy-momentum and net-charge currents
(if any),

∂μT μν = 0, ∂μN
μ
i = 0, (1)

where T μν is the energy-momentum tensor and N
μ
i are the

net-charge four-currents.
These macroscopic fields can be decomposed with respect

to the fluid flow velocity defined by Landau and Lifshitz [17],
uμ = T μνuν/e, as

T μν = euμuν − P�μν + πμν, (2)

N
μ
i = niu

μ + V
μ
i , (3)

where e = T μνuμuν and ni = N
μ
i uμ are the energy and

net-charge densities in the local rest frame, respectively,
P = −T μν�μν/3 is the isotropic pressure, and V

μ
i = Nα

i �μ
α

are the charge diffusion currents. The shear-stress tensor,
πμν = T 〈μν〉, is the traceless and orthogonal part of the energy-
momentum tensor. With the (+,−,−,−) convention for the
metric tensor gμν , the projection tensor is �μν = gμν − uμuν .
The angular brackets 〈〉 denote an operator leading to the
symmetric, traceless, and orthogonal to the flow velocity part
of a tensor: T 〈μν〉 = [ 1

2 (�μ
α�ν

β + �
μ
β�ν

α) − 1
3�μν�αβ]T αβ .

Landau’s matching condition allows one to associate
the rest-frame densities with their equilibrium values, e =
e0(T ,{μi}) and ni = ni,0(T ,{μj }). The difference between the
isotropic and equilibrium pressures defines the so-called bulk
viscosity, 	 = P − P0.

Equations (2) and (3) can be closed by providing an equa-
tion of state (EoS), together with the equations determining
the evolution of dissipative quantities πμν , 	, and V

μ
i . These

quantities represent the dissipative forces in the system as
well as deviations from the local thermal equilibrium. In the
Navier-Stokes approximation they are linearly proportional to
the gradients of velocity and temperature, with proportionality
coefficients for shear viscosity ηs(T ,{μi}), bulk viscosity
ζ (T ,{μi}), and charge diffusion κi(T ,{μj }) quantifying the
transport properties of the matter.

It is well known that the bulk viscosity coefficient of a
relativistic gas is about three orders of magnitude smaller
than its shear viscosity coefficient, and it vanishes in the
ultrarelativistic limit [18]. However, it is still important for
relativistic systems around phase transitions; therefore, even
if the bulk viscosity is negligible in the QGP-phase, it may be
large near and below the phase transition [19]. A large bulk
viscosity at those stages may or may not have a significant
effect on the observables [20–25]. Since disentangling the

effects of shear and bulk on the observed spectra is difficult,
and beyond the scope of this work, we adopt the approach
of Ref. [21]. We assume that bulk viscosity is large only in
the vicinity of the QCD phase transition but due to the critical
slowing down its effect is so small that it can be safely ignored.

At midrapidity the matter formed in ultrarelativistic colli-
sions at the RHIC and at the LHC is to a good approximation
net-baryon free, and thus in boost-invariant calculations it
has been an excellent approximation to neglect all con-
served charges. Since in this study we want to investigate
the backward and forward rapidity regions of the system
where net-baryon density is finite, in principle we should
include the net-baryon current and baryon charge diffusion
in the description of the system. However, the baryon charge
diffusion in a QGP as well as in a hadron gas is largely unknown
at the moment. Also, at low values of net-baryon density where
the lattice QCD results [26,27] can be used, the effect of the
finite density on the EoS is small [28]. Therefore, to simplify
the description of the system, and to allow us to concentrate
solely on the effects of shear viscosity on the spectra, we ignore
the finite baryon charge in the fluid as well. Thus we are left
with the shear-stress tensor πμν as the only dissipative quantity
in the system.

In so-called second-order or causal fluid-dynamical theories
by Müller and by Israel and Stewart [29–31], the dissipative
quantities fulfill certain coupled relaxation equations. Here
we recall the relaxation equation for the shear-stress tensor
obtained from the relativistic Boltzmann equation [32–34],

τπDπμν = 2ηsσ
μν − πμν − τπ (πλμuν + πλνuμ)Duλ

− δπππμνθ − τπππ
〈μ
λ σ ν〉λ

+ 2τππ
〈μ
λ ω ν〉λ + ϕ7π

〈μ
λ π ν〉λ. (4)

Here τπ is the shear-stress relaxation time, Dπμν = uαπ
μν
;α

denotes the time derivative, θ is the expansion rate, σμν is the
shear tensor, and ωμν is the vorticity. The other coefficients can
be calculated self-consistently from microscopic theory and,
for example, in case of an ultrarelativistic massless Boltzmann
gas we obtain, in the 14-moment approximation, τπ = 5

3λmfp,
δππ = (4/3) τπ , τππ = (10/7) τπ , while ϕ7 = (9/70) /P0,
where λmfp is the mean free path between collisions. For
QCD these coefficients are mostly unknown; however, for
high-temperature QCD matter the coefficients given above
may be acceptable as a first approximation.

For the sake of simplicity we ignore the last two terms
in Eq. (4). This is justified since the relative contribution of
the ϕ7 coefficient was shown to be negligible compared to
the others [34]. Similarly, we have observed that the term
proportional to the vorticity has little effect on the overall
evolution of the system and is thus omitted from the final
calculations shown here.

B. The freeze-out stage

During the fluid-dynamical evolution the system cools and
dilutes due to the expansion, and consequently the microscopic
rescattering rate of particles, � ∼ nσ � λ−1

mfp, decreases, until
the rescatterings cease and particles stream freely toward
detectors. The transition from an (almost) equilibrated fluid
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to free-streaming particles is a gradual process, but since
implementing such a gradual process into a fluid-dynamical
description is very complicated [35,36], it is usually assumed
to take place on an infinitesimally thin space-time layer, on
the so-called freeze-out surface. Therefore the total number of
particles crossing the surface �, with a normal vector d3�μ

pointing outward, leads to the following invariant distribution
of particles emitted from the fluid, known as the Cooper-Frye
formula [37]:

E
d3N

d3p
=

∫
�

d3�μ(x) pμf (x,p), (5)

where pμ = (E,p) denotes the four-momentum, while f (x,p)
is the phase-space distribution function of particles on the
surface.

To apply the Cooper-Frye formula, we need an appropriate
criterion for choosing the surface �. Since scattering rates
strongly depend on temperature, the usual approach is to
assume the freeze-out to take place on a surface of constant
temperature or energy density. However, it has been argued
that it would be more physical to assume that the freeze-out
happens when the average scattering rate is roughly equal to
the expansion rate of the system [38].

This latter, so-called dynamical freeze-out, criterion can
be expressed in terms of the Knudsen number, Kn, which is
the ratio of a characteristic microscopic time or length scale,
such as λmfp, and a characteristic macroscopic scale of the
fluid, such as the inverse of the local gradients, L−1 ≈ ∂μ.
In terms of the Knudsen number the dynamical freeze-out
criterion is Kn ≈ 1, which has occasionally been used in ideal
fluid calculations [15,16,39,40], but for viscous fluids it is more
appropriate to use the relaxation times of dissipative quantities
as the microscopic scale, since they appear naturally in the
evolution equations for dissipative quantities [32].

In most of our calculations we use the conventional
constant-temperature freeze-out, but to evaluate how sensitive
our results are to the particular freeze-out criterion, and to the
freeze-out description in general, we also do the calculations
assuming freeze-out at constant Knudsen number. We take the
relaxation time of shear stress, τπ , as the microscopic scale
and the inverse of the expansion rate of the system, θ−1, as the
macroscopic scale. Thus we get a local Knudsen number of

Kn = τπθ. (6)

Since the Knudsen number can be evaluated in many different
ways [14], we do not insist on freeze-out at Kn = 1, but we
treat the freeze-out Knudsen number as a free parameter cho-
sen to reproduce rapidity and pT distributions of experimental
data. To avoid pathologies encountered in Refs. [14,15], we
also require that the dynamical freeze-out takes place below a
temperature of T = 180 MeV and above T = 80 MeV.

To evaluate the distributions on the freeze-out surface, we
assume that the distribution of particles for each species i,
i.e., fi(x,p), is given by the well-known Grad’s 14-moment
ansatz, which includes corrections δfi (shear viscosity only)

to the local equilibrium distribution function as

fi(x,p) ≡ f0i + δfi = f0i

[
1 + (1 ∓ f̃0i)

p
μ
i pν

i πμν

2T 2 (e + p)

]
,

(7)

where f0i is the local equilibrium distribution function,

f0i (x,p) = gi

(2π )3

[
exp

(
p

μ
i uμ − μi

T

)
± 1

]−1

, (8)

and f̃0i = (2π )3f0i/gi . We also include the contribution from
all strong and electromagnetic two- and three-particle decays
of the hadronic resonances up to a mass of 2 GeV to the final
particle distributions.

The flow anisotropies are defined from a Fourier decompo-
sition of the particle spectra as

E
d3N

d3p
= d2N

2πpT dpT dyp

(
1 + 2

∞∑
n=1

vn cos n(φ − �n)

)
,

(9)

where yp = 1
2 ln[(p0 + pz)/(p0 − pz)] is the rapidity of the

particle, pT =
√

p2
x + p2

y is its transverse momenta, and �n

is the event plane for coefficient vn. The Fourier coefficients
vn = vn(pT ,yp) are the differential flow components. In this
work the differential and integrated vn are calculated by using
the event-plane method.

III. PARAMETERS

We mostly implement the parametrization used in
Refs. [11,13], but we retune the parameter values and gen-
eralize it for a (3+1)-dimensional non-boost-invariant case.

A. Equation of state

For the EoS we use the s95p-PCE-v1 parametrization
of lattice QCD results at zero net-baryon density [41]. The
high-temperature part of the EoS is given by the hotQCD
Collaboration [42,43] and it is smoothly connected to the low-
temperature part described as a hadron resonance gas, where
resonances up to a mass of 2 GeV are included. The hadronic
part includes a chemical freeze-out at Tchem = 150 MeV
where all stable particle ratios are fixed [44–46]. Since the
construction of the EoS assumes that the entropy per particle is
conserved after chemical freeze-out, the small (approximately
1%) entropy increase during the viscous hydrodynamical
evolution below Tchem leads to a small increase in particle
yields too.

B. Transport coefficients

As in our earlier works [11–13], we use four different
parametrizations of the temperature-dependent shear viscosity
over entropy ratio (see Fig. 1):

(1) LH-LQ, in which (ηs/s)(T ) = 0.08 for all tempera-
tures;

(2) LH-HQ, in which (ηs/s)(T ) = 0.08 for the hadronic
phase, while above Ttr the viscosity to entropy ratio
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FIG. 1. (Color online) Different parametrizations of ηs/s as a
function of temperature. The LH-LQ line has been shifted downward
and the HH-HQ upward for better visibility.

increases according to

(ηs/s)(T )QGP = −0.289 + 0.288
T

Ttr

+ 0.0818

(
T

Ttr

)2

; (10)

(3) HH-LQ, in which, in the hadronic phase below Ttr,

(ηs/s)(T )HRG = 0.681 − 0.0594
T

Ttr

− 0.544

(
T

Ttr

)2

, (11)

while in the QGP-phase (ηs/s)(T ) = 0.08; and
(4) HH-HQ, in which we use (ηs/s)(T )HRG and

(ηs/s)(T )QGP for the hadronic and QGP phases, re-
spectively.

Unless stated otherwise, the value of ηs/s at the transition
temperature, Ttr = 180 MeV, is (ηs/s)(Ttr) = 0.08. This is
a close approximation to the lower bound conjectured in
the framework of the AdS/CFT correspondence [5]. For all
parametrizations the relaxation time for the shear-stress tensor
is

τπ = 5
ηs

e + p
. (12)

For the sake of comparison, we also do the calculations using
zero shear viscosity, i.e., for an ideal fluid.

C. The initial state

In this work we ignore the effects of event-by-event
fluctuations [47,48], and we generalize a simple optical
Glauber model [49] for a non-boost-invariant initial state.
In different variants of the Glauber model the initial energy
density in the transverse plane at midrapidity and at initial
time τ0 is given as a function of the density of binary collisions,
nBC(x,y,b), wounded nucleons, nWN(x,y,b), or both:

eT (τ0,x,y,b) = Ce(τ0) f (nBC,nWN) , (13)

where the normalization constant Ce(τ0) is selected to repro-
duce the multiplicity measured in central collisions, and b is
the impact parameter of the collision. In the following we use
our BCfit parametrization [11,13], where the energy density
depends solely on the number of binary collisions:

fBC(nBC,nWN) = nBC + c1n
2
BC + c2n

3
BC, (14)

and the coefficients c1 and c2 are chosen to reproduce the
observed centrality dependence of multiplicity.

In the optical Glauber model, the density of binary
collisions on the transverse plane is calculated from

nBC(x,y,b) = σNNTA (x + b/2,y) TB (x − b/2,y) , (15)

where σNN is the total nucleon-nucleon inelastic cross section,
and TA/B is the nuclear thickness function. As a cross section
we use σNN = 42 mb at the RHIC [49,50] and σNN = 64 mb
at the LHC [51]. As usual, we define the thickness function as

TA (x,y) =
∫ ∞

−∞
dz ρA (x,y,z) , (16)

where ρA is the Woods-Saxon nuclear density distribution,

ρA (r) = ρ0

1 + exp [(r − RA) /d]
, (17)

and ρ0 = 0.17 fm−3 is the ground-state nuclear density
and d = 0.54 fm is the surface thickness. The nuclear radii
RA are calculated from RA = 1.12A1/3 − 0.86/A1/3, which
gives RAu � 6.37 fm and RPb � 6.49 fm (AAu = 197 and
APb = 208).

Unfortunately, there are very few theoretical constraints
for the longitudinal structure of the initial state, since even
the most sophisticated approaches to calculate the initial state
from basic principles [52,53] are restricted to midrapidity. Here
we follow the simple approaches shown in Refs. [54–56],
and in a similar fashion we assume longitudinal scaling
flow, vz = z/t , i.e., vη = 0, and a constant energy density
distribution around midrapidity [57], followed by exponential
tails in both backward and forward directions. We parametrize
the longitudinal energy density distribution as

eL (η) = exp

(
−2cη

√
1 + (|η| − η0)2

2cησ 2
η

� (|η| − η0) + 2cη

)
,

(18)

where η = 1
2 ln [(t + z)/(t − z)] is the space-time rapidity, and

�(x) is the Heaviside step function. Thus the normalized
energy density distribution is

e (τ0,x,y,η,b) = eT (τ0,x,y,b) eL (η) . (19)

We are aware that there are more sophisticated approaches
in the literature [22,58–60], but since attempts to create
more plausible longitudinal structures easily lead to a rapidity
distribution of v2 which strongly deviates from the observed
one [54], we leave the detailed study of the longitudinal
structures for a later work.

Due to entropy production in dissipative fluids, the different
parametrizations of ηs/s lead to different entropy production
and therefore different final multiplicity of hadrons. Because
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most of the entropy is produced during the early stages of the
expansion when the longitudinal gradients are largest [61], it
is sufficient to adjust initial densities according to the entropy
produced in the partonic phase. Further entropy production
during the hadronic evolution turns out to represent only
a small contribution in the final multiplicities and it is not
corrected in our calculations.

At the RHIC, we used the following maximum energy
densities, e0 = e(τ0,0,0,0):

(i) for an ideal fluid, e0 = 17.0 GeV/fm3,
(ii) for LH-LQ and HH-LQ, e0 = 15.8 GeV/fm3, and
(iii) for LH-HQ and HH-HQ, e0 = 14.9 GeV/fm3,

while at the LHC

(iv) for an ideal fluid, e0 = 57.5 GeV/fm3,
(v) for LH-LQ and HH-LQ, e0 = 54.5 GeV/fm3, and
(vi) for LH-HQ and HH-HQ, e0 = 49.5 GeV/fm3.

Note that these values are smaller than the ones given in
Refs. [11,13]. The main reason for this is that we used different
data to fit the centrality dependence, and we chose to fit the
multiplicity as a function of centrality class, not as a function of
number of participants, as was done in Refs. [11,13]. This leads
to different values of c1 and c2 parameters, and, consequently,
the maximum density in a head-on collision (which practically
never happens) is different even if the energy density at
midrapidity at impact parameters b > 2 fm is almost identical.

The parameters controlling the centrality dependence,
c1 and c2 in Eq. (14), are c1 = −0.035 fm−2 and c2 =
0.00034 fm−4 at the RHIC and c1 = −0.02 fm−2 and c2 =
0.000175 fm−4 at the LHC. The parameters in Eq. (18) defining
the longitudinal structure are cη = 4 at the RHIC and cη = 2
at the LHC, while η0 = 2.0 for the constant-rapidity plateau
for both. The width of the rapidity distribution is ση = 1.0
at the RHIC and ση = 1.8 at the LHC. The average impact
parameters in each centrality class are given in Table I.

If not stated otherwise the fluid-dynamical evolution is
started at τ0 = 1 fm/c proper time. The initial values for the
transverse fluid velocity and shear-stress tensor are always set
to zero. The value of the decoupling temperature or Knudsen
number is indicated in the figures.

To obtain the final particle distributions we use the
framework described in Ref. [62]. Thus we sample particle
distributions to create “events” even if we are not doing
event-by-event calculations, but we use conventional averaged
initial states. The particle spectra and other measurables at

TABLE I. The average impact parameter b in each centrality class
at the RHIC and the LHC.

Centrality (%) RHIC b (fm) LHC b (fm)

0–5 2.24 2.32
5–10 4.09 4.24
10–20 5.78 5.99
20–30 7.49 7.76
30–40 8.87 9.19
40–50 10.06 10.43

the RHIC are obtained as an average over Nev = 100 000
events, where the sampling is done over pT = (0,5.4) GeV
and ηch = (−6.6,6.6) with NpT

= 36 and Nηch = 22 bins. At
the LHC the particle multiplicity is � 2.5 times larger than at
the RHIC; hence we average over Nev = 40 000 events.

IV. RESULTS AND COMPARISONS TO DATA

A. Au + Au at
√

sNN = 200 GeV at the RHIC

We fix the parameters characterizing the initial state,
Eqs. (13), (14), and (18), by comparison to the PHOBOS
charged particle pseudorapidity distribution, dNch/dηch, at
various centralities [63]. We present our results in Fig. 2, where
the calculations are shown for 0%–5% centrality and for the
average of 10%–20% and 20%–30% as well as 30%–40%
and 40%–50% centralities. This is in order to facilitate a
comparison to the data taken at 0%–6%, 15%–25%, and
35%–45% centralities. As required, the final multiplicity and
pseudorapidity distribution are well reproduced at all cen-
tralities for all parametrizations of the temperature-dependent
shear viscosity to entropy density ratio. Here we once again
stress the importance of fixing the initial energy density to
compensate for the entropy production for different ηs/s
parametrizations. Otherwise, for fixed initial densities, the
larger the effective viscosity, the larger the entropy production
and thus the final multiplicity.

The kinetic freeze-out temperature, Tdec, affects the charged
particle pseudorapidity distribution very weakly. We have
chosen Tdec = 100 MeV by comparison to the pion, kaon,
and proton pT spectra measured by the PHENIX Collabo-
ration [64], and we checked that, if we use Tdec = 140 MeV,
the pseudorapidity distributions are still within error bars and
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FIG. 2. (Color online) The charged particle pseudorapidity dis-
tribution dNch/dηch. Experimental data are from the PHOBOS
Collaboration [63].
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FIG. 3. (Color online) Transverse momentum spectra of positive
pions at the RHIC. Experimental data are from the PHENIX
Collaboration [64].

that the change is on the same level as the differences due to
different viscosities shown in Fig. 2. Such a weak dependence
is not surprising: It is well known that, in a chemically
frozen system, pion pT distributions are weakly sensitive to the
kinetic freeze-out temperature [65]. We now observe similar
behavior in the longitudinal direction.
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FIG. 4. (Color online) Transverse momentum spectra of positive
kaons at the RHIC. Experimental data are from the PHENIX
Collaboration [64].
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FIG. 5. (Color online) Transverse momentum spectra of protons
at the RHIC. Experimental data for protons (upper) and antiprotons
(lower) are from the PHENIX Collaboration [64].

In Figs. 3, 4, and 5 we present the pT spectra of positive pi-
ons, kaons, and protons, respectively, corresponding to central-
ity classes, 0%–5%, 10%–20%(×10−1), 20%–30%(×10−2),
30%–40%(×10−3), and 40%–50%(×10−4). Here the multi-
plicative factors are applied (to both theoretical and experi-
mental points) for better visibility. The experimental data are
from the PHENIX Collaboration [64].

As seen before in viscous calculations (e.g., in Ref. [13]),
the slopes of pion spectra are reasonably well reproduced up
to pT � 1.5 GeV for semicentral collisions, but the agreement
recedes with increasing impact parameter. The kaon yields
are overpredicted at all centralities, whereas the fit to proton
spectra is slightly better than the fit to kaons. Since we do not
include a finite baryochemical potential in our calculation, we
are consistently overestimating the yields of heavy particles,
which might imply the need for even lower chemical freeze-out
temperature.

The pion spectra become flatter with increasing freeze-out
temperature; hence, for example, for Tdec = 140 MeV the
theoretical calculations are in a better agreement at larger
momenta, but then we overestimate the spectra around pT ∼
1 GeV. The slope of the proton spectra become steeper with
increasing freeze-out temperature as well, and thus Tdec =
100 MeV provides the best compromise.

As expected, after the initial densities are fixed to reproduce
the yield, the slopes are practically unaffected by the different
ηs/s parametrizations, and the corresponding δfi in each case
represents only a small correction compared to the thermal
spectra.

In Figs. 6 and 7 the elliptic flow coefficient v2 at various
centralities is shown as a function of transverse momentum
pT and pseudorapidity ηch. In Fig. 6 the experimental data
are from the STAR Collaboration [66], whereas in Fig. 7
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FIG. 6. (Color online) Charged hadron v2(pT ) at the RHIC.
Experimental data are from the STAR Collaboration [66].

the average of 0%–5% and 10%–20% and of 10%–20%
and 20%–30% events are compared to the data from
the PHOBOS Collaboration for 3%–15% and 15%–25%
centrality classes [67] and to the STAR Collaboration data in
the 15%–25% centrality class [68].

As expected, the pT differential elliptic flow coefficient
shows the behavior reported in Refs. [11,13]: At the RHIC
the elliptic flow coefficient is very sensitive to viscosity in
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FIG. 7. (Color online) Charged hadron v2(ηch) at the RHIC.
Experimental data are from the PHOBOS [67] and STAR [68]
Collaborations.
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FIG. 8. (Color online) Charged hadron v4(pT ) at the RHIC.
Experimental data are from the STAR Collaboration [68].

the hadronic phase but independent of the high-temperature
parametrization of the viscosity. The same observation also
holds for the rapidity-dependent elliptic flow coefficient at
all centrality classes. The dissipative reduction of v2 is quite
independent of rapidity, and thus we cannot reproduce the
shape of v2(ηch) very well. On the other hand, slightly larger
hadronic viscosity would further reduce v2, and our result
would be very close to the ideal fluid + UrQMD hybrid
calculation of Ref. [69].

Similarly, the v4(pT ) and v4(ηch) of charged hadrons in
different centrality classes are compared to the experimental
data from the STAR Collaboration [68] in Figs. 8 and 9. The
v4 coefficient, both as a function of transverse momentum and
as a function of pseudorapidity, complies with the previously
made observations about the elliptic flow coefficient. As we
have reported earlier [12,13], v4 is sensitive to viscosity
at even later stages of the evolution than v2, and a large
hadronic viscosity is sufficient to turn v4(pT ) negative at quite
low pT . The comparison of Figs. 7 and 9 also shows the
well-known fact that the larger the value of n, the stronger
the viscous suppression of vn [70,71]. Viscosity has only a
weak effect on the shapes of v2(ηch) and v4(ηch), but quite
interestingly the effect on the shapes is different for different
coefficients: Increasing viscosity makes the (approximate)
plateau in v2(ηch) narrower but that in v4(ηch) wider.

From Fig. 8 it is apparent that the v4(pT ) data favor the
parametrizations with low hadronic viscosity, unlike v2(pT ).
However, we have to remember that the experimental data
were obtained by using different methods for v2 and v4,
i.e., four-particle cumulant and mixed harmonic event-plane
methods, whereas we use the event-plane method to evaluate
all the harmonics. Another uncertainty is that event-by-event
fluctuations cause a sizable fraction of v4, but they are not
included in our study. Thus we advise against drawing any
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FIG. 9. (Color online) Charged hadron v4(ηch) at the RHIC.
Experimental data are from the STAR Collaboration [68].

conclusions about the favored (ηs/s)(T ) from this particular
result.

B. Pb + Pb at
√

sNN = 2760 GeV at the LHC

As at the RHIC, we use the pseudorapidity distribu-
tion of charged particles to fix the initialization and the
pT distributions of identified particles to fix the kinetic freeze-
out temperature.
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FIG. 10. (Color online) The charged particle pseudorapidity dis-
tribution dNch/dηch at the LHC. Experimental data are from the
ALICE Collaboration [72].
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FIG. 11. (Color online) Transverse momentum spectra of pos-
itive pions at the LHC. Experimental data are from the ALICE
Collaboration [73].

In Fig. 10 the charged particle pseudorapidity distributions
dNch/dηch for different centrality bins are compared to the
experimental data from the ALICE Collaboration [72]. The
pseudorapidity distribution of charged particles reasonably
matches the data for all centrality classes given in the
figure. Similarly as for the RHIC we slightly overshoot the

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

0 0.5 1 1.5 2 2.5

dN
/d

yd
p T2  [1

/G
eV

2 ]

pT [GeV]

0-5 %

10-20 %

20-30 %

30-40 %

40-50 %

K+

Tdec = 100 MeV
LHC 2760 AGeV

ideal
LH-LQ
LH-HQ
HH-LQ
HH-HQ
ALICE

FIG. 12. (Color online) Transverse momentum spectra of posi-
tive kaons at the LHC. Experimental data are from the ALICE
Collaboration [73].
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FIG. 13. (Color online) Transverse momentum spectra of pro-
tons at ALICE. Experimental data for protons and antiprotons are
from the ALICE Collaboration [73].

experimental results at the LHC for the most central collisions
while we undershoot for the peripheral ones. Moreover, as
observed before, the pseudorapidity distributions of charged
particles are insensitive to the chosen freeze-out temperature.

In Figs. 11, 12, and 13 we show the pT spectra of
positive pions, positive kaons, and protons corresponding
to centrality classes, with multiplicative factors applied for
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FIG. 14. (Color online) Charged hadron v2(pT ) at the LHC.
Experimental data are from the ALICE Collaboration [75].

0.05

0.10

v 2
(η

ch
)

10-20 %
(a)

ideal
LH-LQ
LH-HQ
HH-LQ
HH-HQ

20-30 %
(b)

0.05

0.10

0 1 2 3 4 5

v 2
(η

ch
)

ηch

30-40 %

h±  Tdec=100 MeV

(c)

0 1 2 3 4 5
ηch

40-50 %

LHC 2760 AGeV

(d)

FIG. 15. (Color online) Charged hadron v2(ηch) at the LHC.

better visibility. The experimental data are from the ALICE
Collaboration [73]. These distributions behave in a way similar
to that of the RHIC results, and they are thus unaffected by the
different ηs/s parametrizations. We note that, as in many other
calculations [73,74], the low-pT part of the pion distribution
turned out to be very difficult to reproduce.

In Figs. 14 and 15 the elliptic flow coefficient v2 is shown
as functions of transverse momentum and pseudorapidity,
respectively. In both figures the experimental data are from the
ALICE Collaboration [75]. At the LHC viscous suppression
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FIG. 16. (Color online) Charged hadron v4(pT ) at the LHC.
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FIG. 17. (Color online) Charged hadron v4(ηch) at the LHC.

of the elliptic flow is less dominated by the hadronic viscosity
than at the RHIC. In central collisions at midrapidity, both
QGP and hadronic viscosities affect v2 equally: Large QGP
viscosity may be compensated with a low hadronic viscosity
and vice versa (compare LH-HQ with HH-LQ for 10%–20%
and 20%–30% up to pT � 2 GeV or ηch � 2). In peripheral
collisions and at large rapidities, v2 loses its sensitivity to
QGP viscosity, and the system behaves like at the RHIC. Thus
measuring v2 at large rapidities at the LHC would provide an
additional handle on the temperature dependence of the ηs/s
ratio.

Finally, in Figs. 16 and 17 we present the v4 coefficients
as functions of pT and ηch. As discussed in Refs. [12,13],
v4 is sensitive to viscosity at lower temperatures than is
v2. Therefore the behavior of v4 at the LHC is similar to
the behavior of v4 and v2 at the RHIC: The curves are
grouped according to their hadronic viscosity, and they show
no sensitivity to QGP viscosity. The suppression of v4 at both
the LHC and the RHIC is clearly sensitive to the hadronic
viscosity (compare Fig. 8 with Fig. 16 and Fig. 9 with 17) and
to the minimum value of ηs/s.

V. THE DISTINGUISHABILITY OF THE ηs/s
PARAMETRIZATIONS

In the previous section we described how the sensitivity
of v2 and v4 to QGP and hadronic shear viscosities depends
on centrality, transverse momentum pT , and pseudorapidity
ηch. Now we use this observation to distinguish between dif-
ferent parametrizations of (ηs/s)(T ). We rescale our existing
parametrizations in such a way that they all lead to almost
identical pT differential v2 in central collisions, and we check
whether the calculated v2 and v4 differ at other centralities and
rapidities. Note that this procedure also tests the sensitivity of
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FIG. 18. (Color online) Parametrizations of (ηs/s)(T ) rescaled to
lead to similar charged hadron v2(pT ) in central collisions at the RHIC
(top) and the LHC (bottom).

the flow coefficients to the minimum value of ηs/s and not
only to its values above and below the transition temperature.

The new scaled parametrizations are shown in Fig. 18. At
RHIC energies the value of the viscosity to entropy ratio for
LH-LQ and LH-HQ is increased uniformly with �ηs/s = 0.1
for all temperatures, while the other two parametrizations
remain unchanged. Since the sensitivity to the temperature
dependence of ηs/s is more complicated at the LHC, the
required changes in parametrizations are �ηs/s = 0.1 for LH-
LQ, �ηs/s = 0.06 for LH-HQ, and �ηs/s = 0.04 for HH-LQ.
The increase in ηs/s leads to larger entropy production, and
thus to larger final multiplicities, which we have counteracted
by rescaling the initial densities accordingly.

Note that since the LH-HQ and HH-LQ parametrizations
require different rescalings at the RHIC and the LHC, they
can be distinguished already by comparing v2(pT ) in central
collisions at different energies, but LH-LQ and HH-HQ cannot.
Furthermore, we want to check whether it is possible to
distinguish LH-HQ and HH-LQ in collisions at the same
energy by varying the centrality and rapidity.

In Figs. 19, 20, and 21 we present v2(pT ), v2(ηch), and
v4(pT ) at the RHIC using these new parametrizations. As
required, in central collisions all parametrizations lead to
similar v2(pT )—the differences due to different hadronic
viscosity at very late stages of the evolution are compensated
by the larger viscosity at and after the QCD transition region.
However, when one moves to larger centralities, and thus
to smaller systems, the region where v2 is most sensitive
to shear viscosity moves toward lower temperatures, and
the parametrizations with different hadronic viscosities can
be identified (see Fig. 19). The same, although weaker,
phenomenon happens when we move to larger rapidities (see
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FIG. 19. (Color online) Charged hadron v2(pT ) at the RHIC.
Experimental data are from the STAR Collaboration [66].

Fig. 20). Most of the sensitivity comes from the change
in centrality, but, as seen in the 15%–25% centrality class
[Fig. 20(b)], the difference at large rapidities increases faster
than at midrapidity. On the other hand, the v4 coefficient
shows larger sensitivity than v2: In central collisions all
parametrizations are equal, but the difference increases with
increasing fraction of cross section faster than for v2. Note that
none of the observables are sensitive to the plasma viscosity,
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FIG. 20. (Color online) Charged hadron v2(ηch) at the RHIC.
Experimental data are from the PHOBOS [67] and STAR [68]
Collaborations.
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FIG. 21. (Color online) Charged hadron v4(pT ) at the RHIC.
Experimental data are from the STAR Collaboration [68].

but we have to study the collisions at the LHC to be able to
distinguish, say, HH-LQ and HH-HQ parametrizations.

At the LHC we see slightly different behavior. In central
collisions v2(pT ) is again the same for all parametrizations by
construction, but the differences appear slowly and stay modest
when we move toward more peripheral collisions (see Fig. 22).
Again, in more peripheral collisions, the system is most sensi-
tive to viscosity in lower temperatures, and v2(pT ) curves are
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FIG. 22. (Color online) Charged hadron v2(pT ) at the LHC.
Experimental data are from the ALICE Collaboration [75].
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FIG. 23. (Color online) Charged hadron v2(ηch) at the LHC.

ordered according to hadronic viscosity—the larger viscosity
is at freeze-out, the lower is v2(pT ). In Fig. 15 the pseudorapid-
ity distribution of v2 showed clear sensitivity to shear viscosity.
In that figure different parametrizations caused different v2

already at midrapidity in central collisions. Now viscosity is
scaled to remove this difference, and the sensitivity of the shape
of v2(ηch) to the viscosity is more visible. As one can see from
Fig. 23, larger hadronic viscosity causes v2(ηch) to drop slightly
faster with increasing rapidity. The strongest difference is seen
in v4(pT ), which is able to distinguish the new parametrizations
at the LHC (see Fig. 24), but its resolving power at the LHC
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FIG. 24. (Color online) Charged hadron v4(pT ) at the LHC.

is weaker than at the RHIC (Fig. 21). Thus we conclude that
differential measurements of the flow anisotropies as function
of transverse momentum, pseudorapidity, and centrality can
provide constraints for the temperature dependence of ηs/s,
but the measurements at various energies are essential to
constrain the parametrizations properly.

VI. DYNAMICAL FREEZE-OUT

To test the sensitivity of our results to the freeze-out
criterion and the freeze-out description in general, we redo
some of the calculations using the dynamical freeze-out
criterion [38]. In these calculations we use only our HH-LQ
and HH-HQ parametrizations for the shear viscosity, since the
low value of ηs/s in a hadron gas leads to a very slowly
increasing relaxation time and thus to unrealistically low
temperatures, 〈T 〉 � 80 MeV, on the freeze-out surface when
Kndec ∼ 1. Since the Knudsen number can be based on many
quantities [14], and since we do not know when exactly the
hydrodynamical description should break down, we use the
freeze-out Knudsen number as a free parameter chosen to fit
the rapidity and pT distributions.

Figures 25 and 26 show the charged particle pseudorapidity
distributions at the RHIC and the LHC, respectively. As
expected, the pseudorapidity distributions are only weakly
dependent on the precise value of Kndec, but it turned out
that our choice of Knudsen number and relaxation time lead
to weak sensitivity of the pT distributions to the value of
Kndec too. Nevertheless, we found that decoupling at constant
Knudsen number Kndec = 0.8 leads to basically the same
rapidity and pT distributions as conventional decoupling at
Tdec = 100 MeV.
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FIG. 25. (Color online) The charged particle pseudorapidity dis-
tribution dNch/dηch at the RHIC obtained by using two different
freeze-out criteria. Experimental data are from the PHOBOS Collab-
oration [63].

044904-12



INFLUENCE OF TEMPERATURE-DEPENDENT SHEAR . . . PHYSICAL REVIEW C 90, 044904 (2014)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

dN
ch

/d
η c

h

ηch

0-5 %

10-20 %

20-30 %

30-40 %

40-50 %

Kn=0.8, T=100 MeV
LHC 2760 AGeV

Kn (LQ)
Kn (HQ)
HH-LQ
HH-HQ
ALICE

FIG. 26. (Color online) The charged particle pseudorapidity dis-
tribution dNch/dηch at the LHC obtained by using two different
freeze-out criteria. Experimental data are from the ALICE Collab-
oration [72].

The pT differential v2 of charged hadrons at the RHIC and
the LHC is shown in Figs. 27 and 28, respectively. Unlike
in Ref. [16], where both pT distributions and anisotropies de-
pended on the freeze-out criterion, we see that, once the freeze-
out parameters are fixed to produce similar pT distributions,
the anisotropies become very similar. This is especially clear
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FIG. 27. (Color online) Charged hadron v2(pT ) at the RHIC
obtained by using two different freeze-out criteria. Experimental data
are from the STAR Collaboration [66].
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FIG. 28. (Color online) Charged hadron v2(pT ) at the LHC
obtained by using two different freeze-out criteria. Experimental data
are from the ALICE Collaboration [75].

at the LHC. Below pT ∼ 2 GeV both criteria lead to identical
v2(pT ), and the difference seen in the plots is due to the shear
viscosity parametrization. At the RHIC both parametrizations
lead to identical v2(pT ), and a weak sensitivity to the freeze-
out criterion appears around pT ∼ 1 GeV. However, this
sensitivity is too weak to be significant.
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FIG. 29. (Color online) Charged hadron v2(ηch) at the RHIC
obtained by using two different freeze-out criteria. Experimental data
are from the STAR Collaboration [66].
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FIG. 30. (Color online) Charged hadron v2(ηch) at the LHC ob-
tained by using two different freeze-out criteria. Experimental data
are from the ALICE Collaboration [75].

As a function of pseudorapidity v2 shows more sensitivity
to the freeze-out criterion (see Figs. 29 and 30). At both
the RHIC and the LHC v2(ηch) drops faster with increasing
rapidity, when the dynamical freeze-out criterion is used.
Also, with both freeze-out criteria the sensitivity to plasma
viscosity disappears at large rapidities even at the LHC. This
is again a manifestation of previously seen behavior: At large
rapidities at the LHC, the system behaves like the system at the
RHIC.

The rather weak dependence of anisotropies on the de-
coupling criterion means that at midrapidity fluid dynamical
results are surprisingly robust against variations in the de-
coupling procedure. As well, this gives a reason to expect
that the hybrid model results are sensitive only to the value
of the switching criterion from fluid to cascade, not to the
criterion itself. Since the fluid-dynamical results concerning
the viscosity of the QGP are based on the analysis of
anisotropies at midrapidity, this means that those results are not
compromised by the freeze-out criterion. On the other hand,
the sensitivity to the freeze-out description at high rapidities
indicates that at lower collision energies the fluid-dynamical
results may be sensitive to the freeze-out criterion even
at midrapidity. Thus one has to pay extra attention to the
freeze-out description of the collisions at

√
sNN = 3–9 GeV

in the future Facility for Antiproton and Ion Research (FAIR)
and Nuclotron-based Ion Collider Facility (NICA).

VII. CONCLUSIONS

We have studied the effects of temperature-dependent
ηs/s on the azimuthal anisotropies of hadron transverse
momentum spectra using genuinely (3+1)-dimensional vis-
cous hydrodynamics. We have extended our previous

studies [11,13] to backward and forward rapidities and
explored the resolving power of differential measurements of
v2 and v4 to distinguish between different parametrizations
of (ηs/s)(T ).

In close to central collisions at the LHC energy,
√

sNN =
2.76 TeV, viscous suppression of elliptic flow at midrapidity
is affected by both hadronic and QGP viscosities, but when
one moves toward backward and forward rapidities, hadronic
viscosity becomes more and more dominant—the system
becomes effectively smaller and begins to behave like in
collisions at the RHIC,

√
sNN = 200 GeV. Therefore, with

large hadronic viscosity, v2 tends to drop slightly faster with
increasing rapidity, the effect being stronger in peripheral
collisions. At both energies and at all rapidities v4 is mostly
suppressed by hadronic viscosity, but if we simultaneously
change the minimum value of ηs/s, hadronic, and QGP
viscosities, it is difficult to predict which coefficient at which
collision energy is most sensitive to the changes. Nevertheless,
the differential measurements of vn as functions of transverse
momentum, rapidity, centrality, and collision energy provide
a way to distinguish different parametrizations of (ηs/s)(T )
and thus constrain the temperature dependence of the ηs/s
ratio.

We also studied how sensitive our results are to the freeze-
out criterion, and we found that, once the freeze-out parameters
are fixed to reproduce pT distributions, both decoupling at
constant temperature and at constant Knudsen number lead
to very similar anisotropies at midrapidity. Toward the large
rapidities, v2 tends to drop faster with the dynamical freeze-
out criterion. This indicates that uncertainties in the decou-
pling description do not affect the present fluid-dynamical
results regarding the anisotropies, but at lower collision
energies the results may be more sensitive to the freeze-out
criterion.
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APPENDIX A: EQUATIONS IN 3+1 DIMENSIONS

In the following, the components of four-vectors and tensors
of rank-2 in four-dimensional space-time are denoted by
Greek indices that take values from 0 to 3 while Roman
indices range from 1 to 3. If not stated otherwise the Einstein
summation convention for both Greek and Roman indices is
implied.
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First we recall the definitions of the covariant derivative of
contravariant four-vectors and tensors of rank-2:

Aμ
;α = ∂αAμ + �

μ
αβAβ, (A1)

Aμν
;α = ∂αAμν + �

μ
αβAβν + �ν

αβAμβ, (A2)

where �
μ
αβ ≡ �

μ
βα = 1

2 gμν(∂βgαν + ∂αgνβ − ∂νgαβ) denotes
the Christoffel symbol of the second kind and ∂α = ∂/∂xα

denotes the four-derivative. For scalar quantities the covari-
ant derivative reduces to the ordinary four-derivative, i.e.,
(AμAμ);α = ∂α(AμAμ).

Applying the definition of the transverse projection operator
�μν = gμν − uμuν we can decompose the covariant derivative
as the sum of the covariant time derivative D and spatial
gradient ∇α ,

DAμ1···μn = uβA
μ1···μn

;β , (A3)

∇αAμ1···μn = �β
αA

μ1···μn

;β ; (A4)

hence A
μ1···μn
;α = uαDAμ1···μn + ∇αAμ1···μn , while for later use

we also introduce the comoving or convective time derivative

dAμ1···μn = uβ∂βAμ1···μn . (A5)

In the following, we summarize the equations of relativistic
dissipative fluid dynamics in hyperbolic coordinates [i.e.,
(τ,x,y,η) coordinates] [57], where τ = (t2 − z2)−1/2 is the
longitudinal proper time and η = 1/2 ln [(t + z)/(t − z)] is
the space-time rapidity. The proper metric tensors are gμν =
diag(1,−1,−1,−τ−2) and gμν = diag(1,−1,−1,−τ 2). Thus
the only nonvanishing Christoffel symbols are �η

ητ ≡ �η
τη =

τ−1 and �τ
ηη = τ , and the gradient is ∂μ = (∂τ ,∂x,∂y,∂η)

while ∂μ ≡ gμν∂ν = (∂τ ,−∂x,−∂y,−τ−2∂η). The inverse
transformations to Minkowski coordinates with g

μν
M ≡

ημν = diag(1,−1,−1,−1) are t = τ cosh η and z = τ sinh η.
Note that the hyperbolic coordinates are similar to the
Milne coordinates that are spherically symmetric, i.e., r ≡√

x2 + y2 + z2 = τ sinh η.
The contravariant flow velocity is

uμ = γ (1,vx,vy,vη); (A6)

hence the covariant flow velocity is uμ ≡ gμνu
ν =

γ (1,−vx,−vy,−τ 2vη), where the normalization condition
uμuν = 1 leads to γ = (1 − v2

x − v2
y − τ 2v2

η)−1/2 as well as
to uμuμ;ν ≡ uμu

μ
;ν = 0.

The energy-momentum conservation equation in general
coordinates is

T μν
;μ ≡ 1√

g
∂μ(

√
g T μν) + �ν

μβT μβ = 0, (A7)

where g ≡ −det(gμν) is the negative determinant of the metric
tensor, which in hyperbolic coordinates leads to g = τ 2.

Henceforth the energy conservation equation leads to

∂τT
ττ + ∂x(vxT

ττ ) + ∂y(vyT
ττ ) + ∂η(vηT

ττ )

= −∂x(vxP − vxπ
ττ + πτx) − ∂y(vyP − vyπ

ττ + πτy)

−∂η(vηP − vηπ
ττ + πτη) − 1

τ
(T ττ + τ 2T ηη), (A8)

while the momentum-conservation equation leads to

∂τT
τx + ∂x(vxT

τx) + ∂y(vyT
τx) + ∂η(vηT

τx)

= −∂x(P − vxπ
τx + πxx) − ∂y(−vyπ

τx + πxy)

−∂y(−vηπ
τx + πxη) − 1

τ
T τx, (A9)

∂τT
τy + ∂x(vxT

τy) + ∂y(vyT
τy) + ∂η(vηT

τy)

= −∂x(−vxπ
τy + πxy) − ∂y(P − vyπ

τy + πyy)

−∂η(−vηπ
τy + πyη) − 1

τ
T τy, (A10)

∂τT
τη + ∂x(vxT

τη) + ∂y(vyT
τη) + ∂η(vηT

τη)

= −∂x(−vxπ
τη + πxη) − ∂y(−vyπ

τη + πyη)

−∂η

(
P

τ 2
− vηπ

τη + πηη

)
− 3

τ
T τη. (A11)

The corresponding tensor components are defined according
to the general definition of the energy-momentum tensor
[Eq. (2)]:

T ττ = (e + P )γ 2 − gττP + πττ , (A12)

T τi ≡ (e + P )γ 2vi − gτiP + πτi,

= viT
ττ + P (gττ vi − gτi) − viπ

ττ + πτi, (A13)

T ij ≡ (e + P )γ 2vivj − Pgij + πij ,

= viT
τj + P (gτjvi − gij ) − viπ

τj + πij . (A14)

A simplified but mathematically equivalent way of writing
the equations of motion can be obtained by introducing scaled
variables that absorb the

√
g factor [76],

T̃ μν = τT μν ; (A15)

hence we are led to the following τ -scaled equations:

∂μT̃ τμ = −τ T̃ ηη, (A16)

∂μT̃ xμ = 0, ∂μT̃ yμ = 0, ∂μT̃ ημ = − 2

τ
T̃ τη. (A17)

For example, in special test cases with no transverse pres-
sure and vanishing dissipation we can solve the energy-
conservation equation exactly. We found that by solving the
scaled equations we can achieve approximately O5 numerical
precision, which is in comparison about two orders of
magnitude more accurate than the numerical solution of the
nonscaled equations of motion using the same time step. Note
that the τ scaling from Eq. (A15) also affects the relaxation
equations for the shear-stress tensor. Therefore the scaled
quantities π̃μν = τπμν result in dπ̃μν − π̃μν/τ = τdπμν .

For a better understanding of what will follow, we introduce
the notation uμ = γ (1,v̄i) for the contravariant flow velocity
from Eq. (A6). Similarly, the covariant component is denoted
as uμ = γ (1,−vi); thus v2 ≡ v̄ivi = v2

x + v2
y + τ 2v2

η and γ =√
1 − v2.
In our case of interest, gττ = 1, and the metric of space-time

is diagonal, leading to gτi = 0; thus we can introduce a
simplified notation which mimics the ideal fluid relations, E ≡
T ττ − πττ = Tττ − πττ , M̄i ≡ T τi − πτi , and Mi ≡ Tτi −
πτi = gατgβi(T αβ − παβ). Using this notation we obtain the
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local rest frame energy density from Eqs. (A12) and (A13):

e ≡ T ττ − πττ − (T τi − πτi)vi = E − M̄ivi , (A18)

while the expression for the velocity components from
Eq. (A13) leads to

v̄i ≡ T τi − πτi

T ττ − πττ + P
= M̄i

E + P
. (A19)

Now, similarly expressing the vi components we define the
magnitude of the three-velocity as

v ≡ √
v̄ivi = M

E + P
, (A20)

where M ≡ (M̄iMi)
1/2 =

√
M̄2

x + M̄2
y + τ 2M̄2

η . Using the lat-

ter two equations together we obtain

v̄i = v
M̄i

M
. (A21)

Therefore, with the help of Eq. (A18), Eq. (A20) can be solved
by using a one-dimensional root search, whereas Eq. (A21)
yields the individual velocity components.

In general, we can reduce the number of unknowns in
the relaxation equations (4) by applying the orthogonality
and tracelessness conditions of the shear-stress tensor. For
example, by choosing πxx , πyy , πxy , πxη, and πyη as
independent components, the other four components of the
shear-stress tensor follow from the orthogonality πμνuν = 0:

πττ = πτxvx + πτyvy + τ 2πτηvη, (A22)

πτx = πxxvx + πxyvy + τ 2πxηvη, (A23)

πτy = πxyvx + πyyvy + τ 2πyηvη, (A24)

πτη = πxηvx + πyηvy + τ 2πηηvη, (A25)

whereas the last unknown component is available from the
tracelessness condition πμνgμν = 0:

πηη ≡ τ−2(πττ − πxx − πyy)

= τ−2
[
πxx

(
v2

x − 1
) + πyy

(
v2

y − 1
) + 2πxyvxvy

+ 2τ 2(πxηvxvη + πyηvyvη)
]/(

1 − τ 2v2
η

)
. (A26)

Note that solving the above algebraic equations to obtain the
remaining five components, instead of explicitly propagating
all ten components of the shear-stress tensor, we introduce
a small numerical error compared to the latter method. This
is because the velocities entering into Eqs. (A22)–(A26) are
given from the previous (half) time step, so we obtain different
values with different methods. However, this difference usually
becomes smaller as the number of time steps increases; hence
this small numerical error is acceptable especially if the
runtime is also reduced considerably.

For sake of completeness we write out all terms from
the shear-stress relaxation equations explicitly. The relaxation
equations for the chosen five independent components of the

shear-stress tensor πxx , πyy , πxy , πxη, and πyη are

τπdπxx = 2ηsσ
xx − πxx − I xx, (A27)

τπdπyy = 2ηsσ
yy − πyy − I yy, (A28)

τπdπxy = 2ηsσ
xy − πxy − I xy, (A29)

τπdπxη = 2ηsσ
xη − πxη − τπ

γ

τ
(πxη + vηπ

τx) − I xη,

(A30)

τπdπyη = 2ηsσ
yη − πyη − τπ

γ

τ
(πyη + vηπ

τy) − I yη.

(A31)

Here according to Eq. (4) we denoted

Iμν = I
μν
1 + δππI

μν
2 − τπI

μν
3 + τππI

μν
4 − ϕ7I

μν
5 , (A32)

where

I
μν
1 = (πλμuν + πλνuμ)Duλ, (A33)

I
μν
2 = θπμν, (A34)

I
μν
3 = πμλων

λ + πνλω
μ
λ, (A35)

I
μν
4 = 1

2gλκ (πμκσ νλ + πνκσμλ) − 1
3�μνπα

β σβ
α , (A36)

I
μν
5 = gλκπ

μκπνλ − 1
3�μνπα

β πβ
α . (A37)

The I1 terms are

I xx
1 = 2γ vx(πτxDuτ + πxxDux + πyxDuy + πηxDuη),

(A38)

I
yy
1 = 2γ vy(πτyDuτ + πxyDux + πyyDuy + πηyDuη),

(A39)

I
xy
1 = γ [(πτxvy + πτyvx)Duτ + (πxxvy + πxyvx)Dux

+(πyxvy + πyyvx)Duy + (πηxvy + πηyvx)Duη],

(A40)

I
xη
1 = γ [(πτxvη + πτηvx)Duτ + (πxxvη + πxηvx)Dux

+(πyxvη + πyηvx)Duy + (πηxvη + πηηvx)Duη],

(A41)

I
yη
1 = γ [(πτyvη + πτηvy)Duτ + (πxyvη + πxηvy)Dux

+(πyyvη + πyηvy)Duy + (πηyvη + πηηvy)Duη],

(A42)

where according to Eqs. (A3) and (A5) the proper time
derivatives are given by Duμ = duμ − �β

μαuαuβ and hence

Duτ ≡ Duτ = γ [∂τ γ + vx∂xγ + vy∂yγ + vη∂ηγ ] + τγ 2v2
η,

(A43)

Dux ≡ −Dux = −γ [∂τ (γ vx) + vx∂x (γ vx)

+vy∂y (γ vx) + vη∂η (γ vx)], (A44)

Duy ≡ −Duy = −γ [∂τ (γ vy) + vx∂x(γ vy)

+vy∂y(γ vy) + vη∂η(γ vy)], (A45)

Duη ≡ −τ 2Duη = −γ τ 2[∂τ (γ vη) + vx∂x(γ vη)

+vy∂y(γ vη) + vη∂η(γ vη)] − 2τγ 2vη. (A46)
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Note that Duτ ≡ duτ + τγ 2v2
η = duτ + τγ 2v2

η , Dux ≡
dux = −dux , Duy ≡ duy = −duy , and Duη ≡ duη = duη,
since Duη ≡ duη + 2τ−1γ 2vη = −τ 2duη.

The I3 terms are

I xx
3 = 2

(
πxτωx

τ + πxyωx
y + πxηωx

η

)
, (A47)

I
yy
3 = 2

(
πyτωy

τ + πyxωy
x + πyηωy

η

)
, (A48)

I
xy
3 = πxτωy

τ + πyτωx
τ + πxxωy

x

+ πyyωx
y + πxηωy

η + πyηωx
η, (A49)

I
xη
3 = πxτωη

τ + πητωx
τ + πxxωη

x

+ πxyωη
y + πηyωx

y + πηηωx
η, (A50)

I
yη
3 = πyτωη

τ + πητωy
τ + πyxωη

x

+ πηxωy
x + πyyωη

y + πηηωy
η, (A51)

where the vorticities are defined most generally as

ωμ
ν ≡ 1

2�μα�β
ν(uα;β − uβ;α)

= 1
2

[
gμα (∂νuα − uνduα) − gβ

ν (∂μuβ − uμduβ)
]

+ 1
2 (gμαuν − gα

νu
μ)uβ�λ

αβuλ. (A52)

Here we used the fact that the Christoffel symbols of the
second kind are symmetric, �

μ
αβ = �

μ
βα , with respect to the

interchange of the two lower indices.
The different components of the vorticity are given as

ωτ
x ≡ ωx

τ = 1
2 [∂τ (γ vx) + ∂xγ ]

+ 1
2 [γ vxdγ − γ d (γ vx)] + 1

2τγ 3v2
ηvx, (A53)

ωτ
y ≡ ωy

τ = 1
2 [∂τ (γ vy) + ∂yγ ]

+ 1
2 [γ vydγ − γ d(γ vy)] + 1

2τγ 3v2
ηvy, (A54)

ωτ
η ≡ τ 2ωη

τ = 1
2 [∂τ (τ 2γ vη) + ∂ηγ ]

+ 1
2 [τ 2γ vηdγ − γ d(τ 2γ vη)] + 1

2τ 3γ 3v3
η (A55)

and

ωx
y ≡ −ωy

x = 1
2 [∂y(γ vx) − ∂x(γ vy)]

+ 1
2 [γ vyd(γ vx) − γ vxd(γ vy)], (A56)

ωx
η ≡ −τ 2ωη

x = 1
2 [∂η(γ vx) − ∂x(τ 2γ vη)]

+ 1
2 [τ 2γ vηd(γ vx) − γ vxd(τ 2γ vη)], (A57)

ωy
η ≡ −τ 2ωη

y = 1
2 [∂η(γ vy) − ∂y(τ 2γ vη)]

+ 1
2 [τ 2γ vηd(γ vy) − γ vyd(τ 2γ vη)]. (A58)

Note that the general expression of the vorticity given
in Eq. (10) in Ref. [77] is missing the contribution of the
Christoffel symbols compared to Eq. (A52) in this work.
Therefore, the values for ωτ

x , ωτ
y , and ωτ

η given in Eqs. (C.22),
(C.23), and (C.24) in Ref. [77] are also incorrect compared to
these formulas.

The next term we need is given by

I xx
4 = (πxτσ xτ − πxxσ xx − πxyσ xy − τ 2πxησ xη)

+1

3

(
1 + γ 2v2

x

)
πα

β σβ
α , (A59)

I
yy
4 = πyτσ yτ − πyxσ yx − πyyσ yy − τ 2πyησ yη

+1

3

(
1 + γ 2v2

y

)
πα

β σβ
α , (A60)

I
xy
4 = 1

2
(πxτσ yτ + πyτσ xτ ) − 1

2
(πxxσ yx + πyxσ xx)

−1

2

(
πxyσ yy + πyyσ xy

) − τ 2

2
(πxησ yη + πyησ xη)

+1

3

(
γ 2vxvy

)
πα

β σβ
α , (A61)

I
xη
4 = 1

2
(πxτσ ητ + πητσ xτ ) − 1

2
(πxxσ ηx + πηxσ xx)

−1

2
(πxyσ ηy + πηyσ xy) − τ 2

2
(πxησ ηη + πηησ xη)

+1

3
(γ 2vxvη)πα

β σβ
α , (A62)

I
yη
4 = 1

2
(πyτσ ητ + πητσ yτ ) − 1

2
(πyxσ ηx + πηxσ yx)

−1

2
(πyyσ ηy + πηyσ yy) − τ 2

2
(πyησ ηη + πηησ yη)

+1

3
(γ 2vyvη)πα

β σβ
α . (A63)

The shear tensor is most generally defined as

σμν ≡ ∇〈μuν〉 = 1

2
�μα�νβ(uα;β + uβ;α) − θ

3
�μν

= 1

2
[gμα(∂νuα − uνduα) + gνβ(∂μuβ − uμduβ)]

−�μα�νβ�λ
αβuλ − θ

3
�μν, (A64)

whereas the expansion scalar is

θ ≡ ∇μuμ = ∂μuμ + �λ
λμuμ

= γ

τ
+ ∂τ γ + ∂x(γ vx) + ∂y(γ vy) + ∂η(γ vη). (A65)

The various shear tensor components that we need to use are

σ ττ = −τγ 3v2
η + [(∂τ γ − γ dγ )] + (γ 2 − 1)

θ

3
, (A66)

σ τx = −1

2

(
τγ 3v2

ηvx

) + 1

2
[∂τ (γ vx) − ∂xγ ]

−1

2
[γ vxdγ + γ d (γ vx)] + γ 2vx

θ

3
, (A67)

σ τy = −1

2

(
τγ 3v2

ηvy

) + 1

2
[∂τ (γ vy) − ∂yγ ]

−1

2
[γ vydγ + γ d(γ vy)] + γ 2vy

θ

3
, (A68)

σ τη = −γ 3vη

2τ

(
2 + τ 2v2

η

) + 1

2

[
∂τ (γ vη) − 1

τ 2
∂ηγ

]

−1

2
[γ vηdγ + γ d(γ vη)] + γ 2vη

θ

3
, (A69)
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σηη = − γ

τ 3

(
1 + 2τ 2γ 2v2

η

) − 1

τ 2
∂η(γ vη)

−(γ vη)d(γ vη) +
(

1

τ 2
+ γ 2v2

η

)
θ

3
(A70)

and

σxx = − [∂x (γ vx) + γ vxd (γ vx)] + (
1 + γ 2v2

x

)θ

3
, (A71)

σyy = −[∂y(γ vy) + γ vyd(γ vy)] + (
1 + γ 2v2

y

)θ

3
, (A72)

σxy = −1

2
[∂x(γ vy) + ∂y(γ vx)]

−1

2
[γ vyd(γ vx) + γ vxd(γ vy)] + γ 2vxvy

θ

3
, (A73)

σxη = −γ 3vxvη

τ
− 1

2

[
∂x(γ vη) + 1

τ 2
∂η (γ vx)

]

−1

2
[γ vηd (γ vx) + γ vxd(γ vη)] + γ 2vxvη

θ

3
, (A74)

σyη = −γ 3vyvη

τ
− 1

2

[
∂y(γ vη) + 1

τ 2
∂η(γ vy)

]

−1

2
[γ vηd(γ vy) + γ vyd(γ vη)] + γ 2vyvη

θ

3
. (A75)

The last contributions from Eq. (A32) are

I xx
5 = (πxτ )2 − (πxx)2 − (πxy)2 − (τπxη)2

+ 1
3

(
1 + γ 2v2

x

)
πα

β πβ
α , (A76)

I
yy
5 = (πyτ )2 − (πyx)2 − (πyy)2 − (τπyη)2

+ 1
3

(
1 + γ 2v2

y

)
πα

β πβ
α , (A77)

I
xy
5 = πxτπyτ − πxxπyx − πxyπyy − τ 2πxηπyη

+ 1
3 (γ 2vxvy)πα

β πβ
α , (A78)

I
xη
5 = πxτπητ − πxxπηx − πxyπηy − τ 2πxηπηη

+ 1
3 (γ 2vxvη)πα

β πβ
α , (A79)

I
yη
5 = πyτπητ − πyxπηx − πyyπηy − τ 2πyηπηη

+ 1
3 (γ 2vyvη)πα

β πβ
α . (A80)

Furthermore, to evaluate the Cooper-Frye formula, Eq. (5),
as well as the argument of the equilibrium distribution
function, Eq. (8), we express the four-momenta of particles
as

pμ =
(
mT cosh(yp − η),px,py,

mT

τ
sinh(yp − η)

)
,

(A81)

where m is the rest mass of the particle, mT =
√

m2 + p2
x + p2

y

denotes the transverse mass, while yp is the rapidity of

the particle. Therefore, the nonequilibrium corrections to the
spectra from Eq. (7) are given with an argument of

παβpαpβ = m2
T [cosh2(yp − η)πττ + τ 2 sinh2(yp − η)πηη]

+(
p2

xπ
xx + 2pxpyπ

xy + p2
yπ

yy
)

−2mT cosh(yp − η)(pxπ
τx + pyπ

τy)

+2τmT sinh(yp − η)(pxπ
xη + pyπ

yη)

−2τm2
T sinh(yp − η) cosh(yp − η)πτη, (A82)

while using Eq. (C4) we obtain

pμd3�μ = τ

[
mT cosh(yp − η)dxdydη − pxdτdydη

−pydτdxdη − mT

τ
sinh(yp − η)dτdxdy

]
.

(A83)

APPENDIX B: NUMERICAL METHODS

The conservation laws as well as the relaxation equations
are solved using the well-known SHASTA (SHarp and Smooth
Transport Algorithm) originally developed by Boris and
Book [78] and later refined by Zalesak [79] and others [80].
This numerical algorithm solves equations of the conservation
type with source terms:

∂tU + ∂i(viU ) = S(t,x), (B1)

where U = U (t,x) is, for example, T 00 or T 0i , while vi is the
ith component of three-velocity, and S(t,x) is a source term;
for more details see Refs. [77,81,82].

Because for smooth solutions (like in our case) the mul-
tidimensional antidiffusion limiter suffers from instabilities
around the boundary caused by small ripples propagating into
the interior [83], we further stabilized SHASTA by letting the
antidiffusion coefficient Aad, which controls the amount of
numerical diffusion, be proportional to

Aad = AS
ad

(k/e)2 + 1
, (B2)

where AS
ad = 0.125 is the default value for the antidiffusion

coefficient [78], e is the energy density in the local rest frame,
and k = 6 × 10−5 GeV/fm3 is a numerical parameter. In this
way we increase the amount of numerical diffusion in the
low-density region and Aad goes smoothly to zero near the
boundaries of the grid. In our cases of interest this neither
affects the solution nor produces more entropy inside the
decoupling surface.

It is also important to mention that in the (3+1)-dimensional
case both the conservation and the relaxation equations
are solved using SHASTA, employing the above-mentioned
modification for the antidiffusion coefficient. Earlier, for the
(2+1)-dimensional boost-invariant case, we used a simple cen-
tered second-order difference algorithm to solve the relaxation
equations [13]. However doing so in the (3+1)-dimensional
case does not always lead to stable solutions.
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To further stabilize the numerical calculations (and also
for ideal fluids) we used a smaller value for the antidiffusion
coefficient in the transverse directions,Ax,y

ad = 0.105, but kept
A

η
ad = 0.125 in the η direction. Decreasing the antidiffusion

coefficient produces smoother solutions inside the decoupling
hypersurface but also increases the numerical diffusion, which
in turn may decrease the numerical accuracy. The reason
we used a different coefficient in the longitudinal direction
is to increase the accuracy; see the next section for more
details.

The numerical calculations are done on a discretized
spatial grid (including four boundary points in each direc-
tion as required by the algorithm) of Nx × Ny × Nη cells
with Nx = Ny = 180 while Nη = 2 × 120 with �x = �y =
�η = 0.15 fm cell sizes. The time step is given from �τ =
λ�x, which for λ = 0.4 leads to �τ = 0.06 fm/c. Further-
more, the system is symmetric around the x and y directions,
with exponentially interpolated boundary conditions for the
conserved quantities (e.g., for Glauber-type initial conditions)
and linearly interpolated boundary conditions for the shear-
stress tensor (because the shear-stress tensor may change
sign).

Finally, the freeze-out hypersurface is constructed at time
intervals �τCF ≡ 5�τ = 0.3 fm/c. The space is sampled
uniformly in both the transverse and longitudinal directions,
at �xCF ≡ 2�x = 0.3 fm distances.

The freeze-out hypersurface is calculated by using the
CORNELIUS++ subroutine presented in Ref. [84] and its source
code can be obtained from the Open Standard Codes and
Routines (OSCAR) website [85].

APPENDIX C: REMARKS ON THE
NUMERICAL ACCURACY

SHASTA solves the fluid dynamical equations up to some
finite numerical accuracy. In most cases this means that
in Cartesian coordinates the particle number and energy
are conserved up to O5 accuracy. However, in (τ,x,y,η)
coordinates, the expressions for the conserved quantities as
well as the equations of motion change with additional source
terms resulting from the nonvanishing Christoffel symbols.

As an example let us evaluate a conserved quantity at a
given time or proper time; hence by comparing this initial
value with one at a later time we can follow the accuracy of
the fluid-dynamical solver during this time interval.

The total conserved charge Ntot across any given hypersur-
face is

Ntot ≡
∫

Nμd3�μ =
∫

N0d3�0 +
∫

Nid3�i. (C1)

Here the hypersurface element d3�μ can be specified in any
coordinate system according to the following general formula:

d3�μ = −εμνλκ

∂�ν

∂u

∂�λ

∂v

∂�κ

∂w
dudvdw, (C2)

where εμνλκ is the Levi-Civita symbol.
For example, in Cartesian coordinates the hypersur-

face normal vector is �(t,z)
μ (t,x,y,z), where t = t (x,y,z);

hence

d3�(t,z)
μ ≡ (dxdydz,−dtdydz,−dtdxdz,−dtdxdy)

= τ

(
∂τ

τ∂η
sinh η + cosh η,−∂τ

∂x
,−∂τ

∂y
,

− ∂τ

τ∂η
cosh η − sinh η

)
dxdydη, (C3)

while in (τ,x,y,η) coordinates for �(τ,η)
μ (τ,x,y,η) and τ =

τ (x,y,η) we obtain

d3�(τ,η)
μ = τ (dxdydη,−dτdydη,−dτdxdη,−dτdxdy).

(C4)

If we are interested in the conserved current across constant
time or proper time hypersurfaces then d3�

(t,z)
i = d3�

(τ,η)
i =

0; hence in Cartesian coordinates we get

Ntot(t) ≡
∫

Nμd3�(t,z)
μ = γ n0

∫
dxdydz, (C5)

where Nμ ≡ n0u
μ = γ n0(1,vx,vy,vz) is the conserved charge

current. Similarly, Eq. (C1) leads to the total conserved charge
at any proper-time hypersurface in hyperbolic coordinates,

Ntot(τ ) ≡
∫

Nμd3�(τ,η)
μ = γ n0

∫
τdxdydη. (C6)

To calculate how the total energy-momentum changes
between two closed hypersurfaces, first we define the energy-
momentum current across a hypersuface as

E
μ
tot ≡

∫
T μνd3�ν =

∫
T μ0d3�0 +

∫
T μid3�i. (C7)

In Cartesian coordinates E
μ
tot = (E0

tot,E
i
tot), such that E0

tot
denotes the energy current while Ei

tot denotes the momentum
current trough the hypersurface. Therefore the total energy
current across a constant-t hypersurface is

E0
tot(t) ≡

∫
T 0νd3�(t,z)

ν =
∫

T 00dxdydz. (C8)

The energy-momentum current across a constant-τ hy-
persurface in (τ,x,y,η) coordinates can also be calculated
from Eq. (C7) together with the general transformation rules
E

μ
tot = (∂xμ/∂x̂α) Êα

tot, where the position vectors are xμ ≡
(t,x,y,z) = (τ cosh η,x,y,τ sinh η) and x̂μ ≡ (τ,x,y,η). Thus
the total energy across a constant-τ hypersurface is given by

E0
tot (τ ) ≡

∫
cosh η T τνd3�(τ,η)

ν +
∫

τ sinh η T ηνd3�(τ,η)
ν

=
∫

(cosh η T ττ + τ sinh η T ητ ) τdxdydη. (C9)

Using the latter formulas we can check energy conservation
from the initial time to the end using

�E0
tot (t) = E0

tot (tend) − E0
tot (tini) . (C10)

It turns out that by solving the fluid dynamical equations
in Cartesian coordinates we can achieve �E0

tot(t) ≈ O6
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numerical accuracy, while in hyperbolic coordinates
�E0

tot(τ ) ≈ O1. This behavior is due to two different reasons.
First, the numerical algorithm is accurate only to finite

precision, meaning that T 00 or T ττ is calculated correctly
only up to the first six digits. However, due to the hyperbolic
functions in Eq. (C9) the total energy of the system is given by a
differently weighted sum over all cells (compared to Cartesian
coordinates). These hyperbolic weights increase very rapidly
as a function of η; hence even though the numerical error of
the solver is acceptably small for SHASTA, the weighted sum
over all cells in hyperbolic coordinates shows otherwise.

We have checked that for RHIC energies �E0
tot(τ ) < 2%

while at LHC energies this number can be as much as 20%.
This is because f (η) is much narrower at the RHIC than at
the LHC. Similar results were also obtained in Ref. [86] using
a different computational fluid-dynamical algorithm.

We also verified energy conservation inside the constant-
temperature freeze-out hypersurface, and we found that in
that case the energy is conserved at 1% accuracy, at both
the RHIC and the LHC. This was expected since inside the
T = 100 MeV freeze-out hypersurface the space-time rapidity
of matter is η < 10.
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Relativistic dissipative fluid dynamics is a common tool to describe the space-time evolution of the strongly
interacting matter created in ultrarelativistic heavy-ion collisions. For a proper comparison to experimental data,
fluid-dynamical calculations have to be performed on an event-by-event basis. Therefore, fluid dynamics should
be able to reproduce, not only the event-averaged momentum anisotropies, 〈vn〉, but also their distributions. In this
paper, we investigate the event-by-event distributions of the initial-state and momentum anisotropies εn and vn,
and their correlations. We demonstrate that the event-by-event distributions of relative vn fluctuations are almost
equal to the event-by-event distributions of corresponding εn fluctuations, allowing experimental determination
of the relative anisotropy fluctuations of the initial state. Furthermore, the correlation c(v2, v4) turns out to be
sensitive to the viscosity of the fluid providing an additional constraint to the properties of the strongly interacting
matter.

DOI: 10.1103/PhysRevC.87.054901 PACS number(s): 25.75.Ld, 12.38.Mh, 24.10.Nz

I. INTRODUCTION

Relativistic dissipative fluid dynamics is the most widely
employed model to describe the space-time evolution of the
quark-gluon plasma (QGP) created in ultrarelativistic heavy-
ion collisions. It was the success of fluid-dynamical models
in describing the large azimuthal momentum anisotropies
observed in heavy-ion collisions that led to our current picture
of the QGP, as a strongly interacting fluid with one of the
smallest shear viscosity to entropy density ratios, η/s, ever
observed [1].

The azimuthal momentum anisotropy is characterized in
terms of the coefficients vn of the Fourier expansion of the
single particle azimuthal distribution:

dN

dydφ
= dN

dy
[1 + 2v1 cos(φ − ψ1)

+ 2v2 cos[2(φ − ψ2)] + · · ·],
(1)

vn =
∫

dφ cos[n(φ − ψn)] dN
dydφ∫

dφ dN
dydφ

= 〈cos[n(φ − ψn)]〉,

where ψn is the event-plane angle, ψn = (1/n) arctan
(〈pT sin nφ〉/〈pT cos nφ〉), and φ is the transverse momentum
azimuthal angle. One of the main features of the fluid-
dynamical description of the expansion is that the anisotropy
originates from the azimuthal anisotropy of the initial density
profile. In the literature this initial anisotropy is quantified in
terms of coefficients εm,n:

εm,n = −
∫

dxdy rm cos[n(φ − �m,n)]ε(x, y, τ0)∫
dxdy rmε(x, y, τ0)

, (2)

where ε is the energy density, r2 = x2 + y2, φ is now the
spatial azimuthal angle, and �m,n is the participant angle,

defined as

�m,n = 1

n
arctan

∫
dxdy rm sin(nφ)ε(x, y, τ0)∫
dxdy rm cos(nφ)ε(x, y, τ0)

+ π/n. (3)

In the following we will concentrate on the anisotropies ε2,n,
and use a shorthand εn ≡ ε2,n.

In fluid-dynamical calculations, a linear relation between
v2 and ε2 was found, i.e., v2 ∝ ε2 [2]. The proportionality
coefficient was shown to depend, not only on the properties of
the fluid such as the equation of state and viscosity, but also
on the initial density, freeze-out temperature, and resonance
content of the late hadronic state [2–4].

The initial conditions in these fluid dynamical calculations
were always smooth, constructed as an average over infinitely
many individual collisions of the particular centrality. It was
thought that the use of this kind of averaged initial conditions
would lead to a good description of observables which were
averaged over many events. In other words, the anisotropy
v2 computed using the event-averaged initial condition was
expected to be equal to the 〈v2〉ev observed in the collisions,
where 〈. . .〉ev corresponds to an average over all the events of
the corresponding centrality class.

Recently, it has been realized that, in order to obtain a
proper comparison with experimental data, fluid-dynamical
calculations have to be performed on an event-by-event basis.
This was first pointed out by Kodama et al. [5] almost ten years
ago. However, this view only become widely accepted years
later, after the work of Alver and Roland [6]. They showed
that ε3 and, consequently, v3 are nonzero in a single event.
This is in contrast to the traditionally used event-averaged
initial conditions in fluid-dynamical models which had zero
ε3 and v3. Furthermore, Alver and Roland demonstrated that
such finite value of v3 can be observed in heavy-ion collisions.
This finding made 〈v3〉ev as important observable as 〈v2〉ev for
probing the properties of the dense matter formed in heavy-ion
collisions, and led to several works studying the behavior of
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observables in an event-by-event fluid-dynamical description
[7,9].

On the other hand, if fluid dynamics can be applied to de-
scribe individual ultrarelativistic heavy-ion collisions, it must
be able to describe vn in every collision, not only the average
〈vn〉ev. Therefore it must be able to reproduce the distribution
P(vn) of vn in an ensemble of events too. To confirm the
applicability of fluid dynamics to describe the expansion stage
of heavy-ion collisions, it is thus not enough to check whether
the event-averaged values of vn agree with the data, but one
must also check whether their distributions, P(vn), match
what is experimentally observed. Recently, the distributions
of v2, v3, and v4 were measured at the LHC by the ATLAS
collaboration [10]. Also, the first fluid-dynamical calculations
of these distributions were performed by Gale et al. [11].

In this paper, we study the event-by-event probability
distribution of the Fourier coefficients vn, P (vn), and how they
are correlated with the initial state anisotropies εn event by
event. The goal of this paper is not to attempt a comparison with
experimental data, but to explore how these distributions and
correlations are affected by the fluid viscosity and initialization
of the system. In this way, it will be possible to understand what
can be learned by measuring such event-by-event distributions.

In the following we explain our fluid dynamical model
in Sec. II, and show our results in Sec. III. Section III A
is dedicated to an analysis of the event-by-event correlation
between initial condition and flow anisotropy, while in
Secs. III B and III C we show our results for probability
distributions of scaled anisotropy δvn, P (δvn), and linear
correlation coefficients c(vn, vm), respectively. In Sec. IV, we
summarize our findings and make our conclusions.

II. MODEL

To generate the initial states event by event, we use a
Monte Carlo Glauber model as implemented in Ref. [9]. In
this model, nucleons are distributed into nuclei according to
Woods-Saxon distribution. NN correlations and finite size
effects are neglected since they have a negligible effect on
the anisotropy coefficients [12]. In an event with a given
impact parameter, nucleons from different nuclei are assumed
to collide when their transverse distance d is small enough,
i.e., when d2 < σNN/π .

We consider two initial conditions, in which the initial
entropy density, s, at τ0 = 1 fm, is evaluated as

s(x, y) = W

Npart,bin∑
i=1

exp{−[(x − xi)
2 + (y − yi)

2]/(2σ 2)}, (4)

where xi and yi are the spatial coordinates of either wounded
nucleons (initial condition sWN) or binary collisions (initial
condition sBC), given by the Monte Carlo Glauber model.
W is a normalization constant fixed to provide the observed
multiplicity and σ = 0.8 fm is the spatial scale of a wounded
nucleon or a binary collision. The centrality classes are
determined according to the number of binary collisions (for
initial condition sBC) or the number of participants (for initial
condition sWN). The initial fluid velocity and shear-stress
tensor are set to zero and we neglect the effects of bulk
viscosity.

For the fluid-dynamical evolution, we use the model
previously employed in Ref. [13]. We describe the time
evolution of the fluid in the central rapidity region assuming
boost invariance and a zero baryochemical potential. The
equations of motion are given by the conservation laws for
energy and momentum:

∂μT μν = 0, (5)

where T μν = (ε + p)uμuν − gμνp + πμν , with ε, p, uμ, and
πμν being the energy density, the thermodynamic pressure, the
fluid four-velocity, and the shear-stress tensor, respectively.
We use the lattice QCD and hadron resonance gas based
equation of state s95p-PCE-v1 [14] with chemical freeze-out
at temperature Tchem = 150 MeV. The evolution equation of
the shear-stress tensor is given by transient relativistic fluid
dynamics [15,16]:

�
μν
αβ τπDπαβ+πμν = 2ησμν − 4

3
τππμνθ − 10

7
τπ�

μν
αβσα

λ πβλ

+ 74

315η
τπ�

μν
αβπα

λ πβλ, (6)

where η is the shear viscosity coefficient, D = uμ∂μ is
the comoving time derivative, σμν = �

μν
αβ∂αuβ is the shear

tensor, θ = ∂μuμ is the expansion rate, and �
μν
αβ = (�μ

α�ν
β +

�ν
α�

μ
β − 2/3�μν�αβ)/2, with �μν = gμν − uμuν . The trans-

port coefficients of the nonlinear terms on the right-hand side of
the Eq. (6) were taken in the massless limit, in the 14-moment

FIG. 1. (Color online) ε2 and v2 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 2. (Color online) ε3 and v3 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.

approximation, and the relaxation time was assumed to be
τπ = 5η/(ε + P ) [16,17]. Here, we have not included the
nonlinear terms related to the vorticity tensor. Note that the
last two terms in Eq. (6) were not included in our previous
studies [13]. While such terms can have a significant effect
on many observables, they are not relevant for the results
discussed in this paper. We shall leave a detailed investigation
of the effect of such terms to a future work. The equations of
motion were solved numerically using the SHASTA algorithm,
whereas the evolution equations for shear stress [Eq. (6)]
were solved using simple finite differencing scheme. For more
details see Refs. [13,18].

The hadron spectra are calculated with the Cooper-Frye
freeze-out procedure [19] using the decoupling temperature
Tf = 100 MeV, which was shown to give reasonable agree-
ment with both the pT spectrum and 〈v2〉ev for pions at RHIC
when a temperature-dependent η/s was used, see Ref. [13].
In this work, we use constant values of viscosity, η/s = 0 and
0.16. Nevertheless, the pT spectrum and 〈v2〉ev remain close to
what is actually observed at RHIC. Since our main purpose is
not the comparison to experimental observables, we adjusted
only the initial entropy density to fit the observed multiplicity,
but kept all the other parameters unchanged. Finally, we use
Israel and Stewart’s 14-moment ansatz for the dissipative
correction to the local equilibrium distribution function,

δfi = f0i

p
μ
i pν

i πμν

2T 2(ε + p)
, (7)

where f0i = {exp[(uμp
μ
i − μi)/T ] ± 1}−1 is the local equi-

librium distribution function, with the index i indicating
different hadron species and p

μ
i the four-momentum of the

corresponding hadron. After calculating the thermal spectra,
we include the contribution from all two- and three-particle
decays of unstable resonances up to 1.1 GeV mass.

It should be noted that because we do not generate particle
ensembles at any point we always know the direction of the
event plane and the magnitude of vn exactly. Experimentally,
one measures a finite number of particles, which smears the
observed distribution of vn. However, the final experimental
result for the vn distributions undergoes an unfolding pro-
cedure that is supposed to remove such a smearing [10].
Therefore, for a comparison with data, one can use the
particle distributions computed with fluid dynamics without
generating an ensemble of particles. A more detailed way
would be to generate the particle ensembles and apply the same
complicated unfolding procedure used by the experimentalist
to obtain the vn distribution, but this procedure would be an
unnecessary complication for the purpose of this work.

III. RESULTS

In this work we consider Au + Au collisions at√
sNN = 200 GeV. All the results shown in this paper

are for positively charged pions. For each centrality class a
total of 2000 events were computed. The Fourier coefficients
and the initial-state anisotropies were calculated according to

FIG. 3. (Color online) ε4 and v4 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 4. (Color online) ε2 and v2 in the 0–5% centrality class using different initializations and viscosities. (a) sBC and η/s = 0, (b) sBC
and η/s = 0.16, and (c) sWN and η/s = 0.16.

Eqs. (1) and (2), respectively. In the following, we consider
two constant values for the shear viscosity to entropy density
ratio, η/s = 0 and 0.16.

A. Correlations

As mentioned in the Introduction, it has been known for
a long time that the event averaged v2, and the eccentricity
of the averaged initial state, ε2 are approximately linearly
related [2]. Similar relation has been found for ε3 and the
average v3 but not for ε4 and v4 [20,21]. Here we study whether
similar relations hold event-by-event by evaluating the linear
correlation between the harmonics vn and εn. We use the linear
correlation coefficient,

c(a, b) =
〈

(a − 〈a〉ev)(b − 〈b〉ev)

σaσb

〉
ev

, (8)

where σa is the standard deviation of the quantity a. This
correlation function is 1 (−1) if a and b are linearly
(antilinearly) correlated and zero in the absence of linear
correlation. A similar study was done in Ref. [8], but using
a slightly different definition of the correlator.

The two-dimensional histograms in Figs. 1–3 show the
correlations between ε2 and v2, ε3 and v3, and ε4 and v4, re-
spectively, for the 20–30% centrality class. To study the effect
of both viscosity and initialization on these correlations, we
show the correlations in three different cases: (a) sBC initial-
ization with η/s = 0, (b) sBC initialization with η/s = 0.16,
and (c) sWN initialization with η/s = 0.16.

As can be seen in these figures, the v2 and v3 coefficients
display a strong linear correlation to their corresponding
initial-state coefficients for all cases considered. This is
confirmed by the values of the linear correlation coefficient
c(v2, ε2) ∼ c(v3, ε3) ∼ 1, as shown in the figures (top left
corner). As for any two variables we can write

vn = Cnεn + δn, (9)

where Cn = 〈vn〉ev/〈εn〉ev, and consequently, 〈δn〉ev = 0. The
values of Cn are shown in Figs. 1 and 2. For n = 2 a linear
relation, v2 = C2ε2, is approximately satisfied event by event
with only ∼10% deviations from this relation at a given ε2.
On the other hand, an event-by-event linear relation between
v3 and ε3 is not satisfied well, with v3 deviating ∼50% from
v3 = C3ε3 at a given ε3.

In all the cases considered above, there is basically no linear
correlation between ε4 and v4, see Fig. 3. At least one reason
for this behavior is that there is also correlation between
ε2

2 and v4, which can be of the same order or larger than
c(ε4, v4): c(ε2

2 , v4) = 0.40 (sBC, η/s = 0), c(ε2
2 , v4) = 0.69

(sBC, η/s = 0.16), and c(ε2
2 , v4) = 0.46 (sWN, η/s = 0.16).

This is a nonlinear effect triggered by the coupling between
two different Fourier coefficients, i.e., n = 2 and n = 4, and a
linear combination of these two components was found to be
a good estimator for v4 [22].

As expected, the proportionality coefficients Cn are sensi-
tive to the value of the shear viscosity. This can be seen by
comparing Figs. 1(a) and 1(b) (n = 2), Figs. 2(a) and 2(b)

FIG. 5. (Color online) ε3 and v3 in the 0–5% centrality class using different initializations and viscosities. (a) sBC and η/s = 0, (b) sBC
and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 6. (Color online) ε4 and v4 in the 0–5% centrality class using different initializations and viscosities. (a) sBC and η/s = 0, (b) sBC
and η/s = 0.16, and (c) sWN and η/s = 0.16.

(n = 3), and Figs. 3(a) and 3(b) (n = 4). In general, the higher
Fourier coefficients are expected to be more sensitive to the
viscosity [20]. This is also the case in our calculations, and is
confirmed by comparing the relative changes in the coefficients
C2, C3 and C4.

Note that the proportionality constants Cn do not depend
only on the intrinsic properties of the fluid, but also on the
initial conditions. Again something to be expected, since in
the calculations done using averaged initial conditions, the
precise value of the proportionality depended on many details
as discussed in the Introduction.

In Figs. 4 and 5 we show the two-dimensional histograms
of ε2 and v2 and of ε3 and v3, respectively, in the 0–5%
centrality class. We plot the same cases considered above:
(a) sBC initialization with η/s = 0, (b) sBC initialization with
η/s = 0.16, and (c) sWN initialization with η/s = 0.16. For
n = 2 and n = 3 the linear correlation is still valid. Also,
the effect of shear viscosity and initialization on Cn remain
qualitatively the same. On the other hand, in Fig. 6 the
correlation between ε4 and v4 in central collisions is drastically
different from the correlation in the 20–30% centrality class.
In the 0–5% centrality class the linear correlation coefficient
c(ε4, v4) becomes much closer to 1 when compared to the
peripheral case. It can be as large as ∼0.81 obtained for the
sWN initialization with η/s = 0.16. This behavior is expected
since in Ref. [22] it was shown that ε4 becomes a better
estimator for v4 in central collisions.

We note that the definition of εn is not unique, but we
could use, e.g., entropy density instead of energy density as

a weight or use different powers of r in the definition. We
have checked that these different definitions slightly change
the numerical values of the correlators, and the proportionality
constants Cn, but qualitatively the results are independent of
the precise definition of εn.

B. Distributions of vn

So far the event-averaged values of vn have been extensively
studied. In order to observe what can be learned by looking
at vn probability distributions, it is convenient to remove
the average from the distributions, and study the relative
fluctuations using the scaled variables

δvn = vn − 〈vn〉ev

〈vn〉ev
, and δεn = εn − 〈εn〉ev

〈εn〉ev
. (10)

In this way changes in the probability distributions due to
changes in the average values are removed.

It was shown in the previous subsection that vn and εn have
a strong linear correlation for n = 2 and 3. As discussed in the
Appendix, if two variables are linearly correlated, and 〈d〉 = 0,
the variances of the relative distributions are equal. Since
viscosity has only a small effect on the correlations of vn and
εn, we expect that σ 2

δvn
≈ σ 2

δεn
, independent of viscosity. In such

a case the information about the fluid response to the initial
geometry is contained in the coefficients Cn controlling the
average 〈vn〉ev, while the relative fluctuations of vn originate

FIG. 7. (Color online) Probability distributions: (a) P (δv2) and P (δε2), (b) P (δv3) and P (δε3), and (c) P (δv4) and P (δε4), in the 20–30%
centrality class with sBC initialization and two different values of η/s, η/s = 0, and η/s = 0.16.

054901-5



NIEMI, DENICOL, HOLOPAINEN, AND HUOVINEN PHYSICAL REVIEW C 87, 054901 (2013)

FIG. 8. (Color online) Probability distributions: (a) P (δv2) and P (δε2), (b) P (δv3) and P (δε3), and (c) P (δv4) and P (δε4), in the 20–30%
centrality class with η/s = 0.16 and two different initial conditions, sBC and sWN.

from the relative fluctuations of εn and do not depend on
viscosity of the fluid.

To test this assumption, and to see whether similarity
extends beyond variances, we plot the probability distributions
P (δvn) and P (δεn) in 20–30% centrality class in Fig. 7 using
the sBC initialization and two values of viscosity, η/s = 0
and 0.16. As seen in panel (a) for n = 2 and in panel
(b) for n = 3, not only the variances are similar, but the
entire distributions are almost identical. Figure 7(c) depicts
the relative distributions for n = 4, and surprisingly they are
very similar even if v4 and ε4 are not linearly correlated. There
are deviations only at the tail of the distribution. As discussed
in the Appendix, lack of correlation leads to a large spread
of possible values of v4 at given ε4 which tends to make δv4

distribution wider, but this effect can be canceled by other
terms. How these terms arise is an interesting question beyond
the scope of this paper.

To check whether the similarity of P (δvn) and P (δεn)
is only a coincidence based on the sBC initialization, we
show in Fig. 8 the distributions using both sBC and sWN
initialization, but using only one value of viscosity, η/s =
0.16. Again, panels (a), (b), and (c) depict cases with n =
2, 3, and 4, respectively. P (δvn) and P (δεn) are almost
equal for both initializations. The distributions P (δεn) are
also similar for both initializations, but this is because
both Glauber-type initializations give rise to the same rela-
tive fluctuations of initial state anisotropies, see discussion
in Ref. [23].

These results are valid in the 0–5% centrality class as
well. We have also checked that P (δvn) is not sensitive to the
freeze-out temperature within interval 100 < Tfo < 160 MeV.
Thus the distribution of relative fluctuations of vn could be
the ideal observable to study the fluctuations of the initial
geometry. If fluid dynamics provides a correct description
of heavy-ion collisions, P (δvn) is a direct measurement of
the initial state anisotropy fluctuations and can be compared
directly to initial condition models, such as Monte Carlo
Glauber or various implementations of color-glass condensate
based initial conditions [24].

C. (vn, vm) linear correlations

We computed the linear correlation coefficients, c(v2, v3),
c(v2, v4), and c(v3, v4) as a function of the transverse mo-
mentum, pT . We found that c(v2, v3) ∼ c(v3, v4) ∼ 0 and,
therefore, are not linearly correlated. These correlations are
shown in Figs. 9(a) and 9(b). We also show the values of the
correlation coefficient between the integrated vn’s and of the
coefficients εn in Table I. It should be noted that, even though
both Glauber initializations used in this paper have the same
relative anisotropy fluctuations, their correlations differ.

Figure 9(c) shows the correlation coefficient between v2

and v4 as a function of pT . As can be read off from the
figure, c(v2, v4) depends strongly on η/s and, consequently, is
sensitive to the properties of the QGP. It is strongly sensitive to
the decoupling temperature as well, with the larger temperature

FIG. 9. (Color online) Correlations: (a) c(v2, v3), (b) c(v3, v4), and (c) c(v2, v4), as function of transverse momentum in the 20–30%
centrality class using different initializations and viscosities.
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TABLE I. Linear correlation coefficients for pT -integrated vn’s and εn’s in the 20−30% centrality class.

c(ε2, ε3) c(v2, v3) c(ε2, ε4) c(v2, v4) c(ε3, ε4) c(v3, v4)

sBC η/s = 0.0 −0.09 −0.11 0.26 0.32 −0.03 −0.11
sBC η/s = 0.16 −0.09 −0.11 0.25 0.63 −0.03 −0.09
sWN η/s = 0.16 −0.15 −0.14 −0.04 0.42 0.03 −0.11

leading to weaker correlation, but the width of the hot spots
[value of σ in Eq. (4)] affects the correlation only weakly. This
correlation function is also strongly affected by the correlation
between ε2 and ε4 in the initial state, i.e., initial conditions
with different c(ε2, ε4) lead to very different c(v2, v4), see
the dashed and dotted lines in Fig. 9(c). Overall, just like v2

probes the fluid-dynamical response to an initial geometry
(characterized by ε2), c(v2, v4) probes the fluid-dynamical
response to correlations in the initial geometry [in this case
characterized by c(ε2, ε4)].

In our investigations, c(v2, v4) is the only correlation that
was sensitive to both the fluctuations of the initial condition
and the transport properties of the fluid. This correlation can
thus be used as a further constraint to the fluid-dynamical
models applied to heavy-ion collisions.

IV. CONCLUSIONS

In this paper, we studied the relation between vn and εn

in ultrarelativistic heavy-ion collisions using event-by-event
fluid dynamics. We confirmed that the second and third Fourier
coefficients have a strong linear correlation to the initial geom-
etry of the collision. We showed that while the event-average
Fourier coefficients, 〈vn〉ev, n = 2, 3, and 4, are sensitive
to the details of the fluid-dynamical evolution, their relative
fluctuations, δvn = (vn − 〈vn〉ev)/〈vn〉ev, are determined solely
by the fluctuations of the corresponding initial state anisotropy
coefficients, with basically no sensitivity to the viscosity of
the fluid. This makes the distribution of δvn a direct probe
of the initial condition of a heavy-ion collision, providing a
direct and clean measurement of the distribution of the relative
fluctuations of the initial anisotropy, i.e.,

P (δvn) 	 P (δεn), n = 2, 3, 4. (11)

Surprisingly, this relation was shown to be true even for the
relative fluctuations of v4, even though v4 itself is not linearly
correlated to ε4.

Although the two different limits of the Glauber model
considered here give rise to very similar relative fluctua-
tions of εn [23], the different variants of the color glass
condensate models lead to different relative fluctuations, see
Refs. [10,11]. Therefore, by measuring the distributions of δvn

one can directly distinguish between these models.
Furthermore we found that the linear correlations between

the flow harmonics vn are not solely dominated by the initial
conditions. Especially the correlation function c(v2, v4) is
sensitive to the viscosity of the fluid providing an additional
constraint for the model when one tries to extract the viscosity
coefficient from the data.
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APPENDIX: RELATIVE WIDTHS OF CORRELATED
DISTRIBUTIONS

A relation between variables ε and v (we omit the indexes
n here) can be written as

v = kε + d. (A1)

If we define

k = σv

σε

c(ε, v), (A2)

where c(ε, v) is the linear correlator [Eq. (8)], ε and d are not
linearly correlated, c(ε, d) = 0. It also follows that

σ 2
d = σ 2

v (1 − c(ε, v)2), (A3)

i.e., the stronger the linear (anti)correlation between ε and d,
the narrower the distribution of d.

For the distributions of the scaled variables, δx = (x −
〈x〉)/〈x〉, it holds that σδx = σx/〈x〉, and that 〈δx〉 = 0. The
variance of δv can now be written as

σ 2
δv = 1

〈v〉2

[
k2σ 2

ε + 2kσεσdc(ε, d) + σ 2
d

]

= σ 2
ε

〈ε〉2

[ 〈ε〉2

〈v〉2
k2 + 〈ε〉2

〈v〉2

σ 2
d

σ 2
ε

]

= σ 2
δε

[
1(

1 + 〈d〉
k〈ε〉

)2 + 〈ε〉2

〈v〉2

σ 2
d

σ 2
ε

]
. (A4)

As mentioned, if c(ε, v) ≈ 1, σd ≈ 0, and the last term in
Eq. (A4) is negligible. If also 〈d〉 ≈ 0, σδv ≈ σδε . Roughly
speaking the requirement 〈d〉 ≈ 0 means that when ε → 0,
〈v〉 ≈ 0—a requirement our distributions with n = 2 and 3
fulfill as seen in Figs. 1, 2, 4, and 5. On the other hand, the
correlation is weak for n = 4 in the 20–30% centrality class.
In that case the d distribution is wide, but 〈d〉 �= 0 as well, and
the two terms in Eq. (A4) sum to approximately one, and the
distributions of δε and δv are equal even in that case.
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Abstract
We investigate the effects of a temperature-dependent shear viscosity over
entropy density ratio η/s, with a minimum near the phase transition, on the
elliptic flow of hadrons in ultrarelativistic heavy-ion collisions at the RHIC
and the LHC. We find that the suppression of the elliptic flow in Au+Au
collisions at the RHIC is dominated by the viscosity in hadronic matter and in
the phase transition region, but insensitive to the viscosity of the quark–gluon
plasma (QGP). However, at the highest LHC energy, the elliptic flow becomes
sensitive to the shear viscosity of the QGP and insensitive to the hadronic
viscosity.

(Some figures may appear in colour only in the online journal)

1. Introduction

At present, most works aiming for the determination of the shear viscosity of strongly
interacting matter assume a constant shear viscosity over entropy density ratio, η/s. However,
this ratio can be a strongly varying function of temperature both in hadronic matter and in
the quark–gluon plasma (QGP). In this work, we study the consequences of relaxing the
assumption of a constant η/s on the elliptic flow of hadrons in Au+Au collisions at the RHIC
and in Pb+Pb collisions at the LHC [1].

We model the spacetime evolution of the matter formed in heavy-ion collisions using the
relativistic dissipative hydrodynamical theory of Israel and Stewart [2]. We assume longitudinal
boost-invariance and neglect the net-baryon number. Essential inputs are the equation of state,
the initial conditions and the transport coefficients. We consider here only the shear viscosity.
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Figure 1. η/s parametrizations.

As equation of state we use the recent lattice parametrization of [3], with chemical freeze-
out at T = 150 MeV. We take the initial energy density at τ0 = 1.0 fm (RHIC) and at
τ0 = 0.6 fm (LHC) to be proportional to the density of binary nucleon–nucleon collisions in
the transverse plane. The collision density is calculated by using the optical Glauber model.
The maximum energy density is fixed to reproduce the measured multiplicity in the most
central collisions [4, 5]. For

√
sNN = 5.5 TeV Pb+Pb collisions we use the multiplicity

predicted by the minijet + saturation model [6]. In order to compensate for different entropy
production for different parametrizations of the shear viscosity, the initial energy density
profiles are normalized differently for each parametrization of η/s. Freeze-out is calculated
using the Cooper–Frye formula [7] on a constant-temperature hypersurface. The decoupling
temperature is chosen to be Tdec = 100 MeV.

For η/s, we consider the four different parametrizations shown in figure 1. Note that the
minimum value of η/s is fixed to be η/s = 0.08 at T = 180 MeV for all parametrizations.
The relaxation time in the Israel–Stewart formalism is taken to be τR = 5η/(e + p), where e
and p are the local energy density and pressure, respectively.

2. Results

Figure 2 shows pion, kaon and proton spectra in the 0–5% most central
√

sNN = 200 GeV
Au+Au collisions at the RHIC. Our results are compared to PHENIX data [4]. All four η/s
parametrizations give very similar results.

The elliptic flow coefficients, v2(pT ), for charged hadrons in four different centrality
classes at the RHIC are shown in figure 3. The results are compared to STAR data [8].
We observe that the high-temperature part of η/s has practically no effect on the results.
On the other hand, the viscous suppression of v2(pT ) is strongly enhanced if we increase
the hadronic η/s. The same qualitative pattern is observed in all centrality classes, but the
hadronic suppression is even stronger in more peripheral collisions. In these cases, the dominant
contributions to the suppression are the viscous corrections to the hadron distribution functions.

Figure 4 shows v2(pT ) in
√

sNN = 2.76 TeV Pb+Pb collisions at the LHC. The data are
from the ALICE Collaboration [9]. In these collisions both hadronic and QGP viscosity have
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Figure 3. Centrality dependence of v2(pT ) in
√

sNN = 200 GeV Au+Au collisions at the RHIC.

a similar impact. Only in the most peripheral collisions does the suppression by the hadronic
viscosity begin to dominate over that from the QGP viscosity.

The elliptic flows in the 5–10% and 20–30% centrality classes are shown in figure 5
for

√
sNN = 5.5 TeV Pb+Pb collisions. At the highest LHC energy the situation is reversed

compared to collisions at the RHIC. In both centrality classes v2(pT ) is almost independent
of the hadronic η/s, but sensitive to the high-temperature viscosity.

In summary, we have investigated the suppression of elliptic flow due to the shear viscosity.
We found that the dominant temperature range that contributes to the suppression varies with
the collision energy. At the RHIC the suppression is mostly because of hadronic η/s, while
it is almost independent of the high-temperature η/s. In the highest energy collisions at the
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Figure 4. Centrality dependence of v2(pT ) in
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sNN = 2.76 TeV Pb+Pb collisions at the LHC.
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Figure 5. Centrality dependence of v2(pT ) in
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sNN = 5.5 TeV Pb+Pb collisions at the LHC.

LHC the situation is reversed: the elliptic flow is almost independent of the hadronic η/s, but
sensitive to the high-temperature η/s. This opens the possibility of determining the temperature
dependence of the shear viscosity from experimental data.
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Abstract
We employ the lattice QCD data on Taylor expansion coefficients to extend
our previous parametrization of the equation of state to finite baryon density.
When we take into account lattice spacing and quark mass dependence of the
hadron masses, the Taylor coefficients at low temperature are equal to those
of hadron resonance gas. Thus, the equation of state is smoothly connected to
the hadron resonance gas equation of state at low temperatures. We also show
how the elliptic flow is affected by this equation of state at the maximum SPS
energy.

One of the methods to extend the lattice QCD calculations to non-zero chemical potential
is Taylor expansion. In that approach, pressure is Taylor expanded in chemical potentials,
and the Taylor coefficients are calculated on the lattice at zero chemical potential. In this
contribution, we use the results of the most comprehensive lattice QCD analysis of the Taylor
coefficients to date [1, 2] to construct a parametrization of an equation of state (EoS) for finite
baryon density. As in our earlier parametrization of the EoS at zero chemical potential [3], we
require that our parametrization matches smoothly to the hadron resonance gas (HRG) at low
temperatures.

Taylor coefficients are simply derivatives of pressure with respect to baryon and
strangeness chemical potential:

cij (T ) = 1

i!j !

T i+j

T 4

∂i

∂μi
B

∂j

∂μ
j

S

P (T , μB = 0, μS = 0). (1)

Purely baryonic and strange coefficients are related to quadratic and higher order fluctuations
of conserved charges, whereas mixed derivatives of pressure give correlations of these
charges. The second-order baryonic coefficient c20 is shown in the left panel of figure 1.
The lattice result for c20, as well as for all the other coefficients, is well below the HRG result
obtained with physical masses (solid line). This discrepancy can largely be explained by the
lattice discretization effects on hadron masses. When the hadron mass spectrum is modified
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Figure 1. Left: the second-order baryonic Taylor coefficient c20 calculated on the lattice with p4
action [2] and compared with the HRG values with free particle (solid line) and lattice masses
(dashed and dotted lines). Right: the parametrization (solid line) and HRG value (dashed) of the
c20 coefficient compared with the shifted p4 data (see the text). The recent lattice result with the
HISQ action [5] is also shown. The arrow depicts the Stefan–Boltzmann value of c20.

(This figure is in colour only in the electronic version)

accordingly (for details see [4]), the HRG model reproduces the lattice data. The dashed and
dotted curves in figure 1 refer to different treatment of baryonic resonances. We modify their
masses in the same way as the ground-state baryons up to a threshold mcut, but keep the masses
of heavier resonances in their physical values. The exact value of this threshold has only a
small effect on c20, but the difference between the HRG results and the HRG result with the
modified hadron mass spectrum is significant. Interestingly, this difference can be accounted
for by shifting the modified HRG result to lower temperature by 30 MeV. The situation is
similar for other Taylor expansion coefficients [4], although the strange coefficients might
favour slightly smaller shift. Based on this finding and because the lattice data agree so well
with the modified HRG, we suggest that cutoff effects can be accounted for by shifting the
lattice data by 30 MeV. We show the effect of such a shift in the right panel of figure 1, where
we plot the HRG curve with physical masses (dashed line) and compare it with the lattice data,
where all the points below 206 MeV temperature are shifted by 30 MeV and the 209 MeV
point by 15 MeV. Now, the data points, which agreed well with the HRG curve with lattice
masses, agree well with the HRG curve with physical masses. For further confirmation of this
procedure we also plot the recent HISQ result of c20 [5] in figure 1 (right): at low temperatures
the shifted p4 data agree with the HISQ data.

We parametrize the shifted data using an inverse polynomial of three (c20), four (c11 and
c02) or five (fourth- and sixth-order coefficients) terms:

cij (T ) = a1ij

T n1ij
+

a2ij

T n2ij
+

a3ij

T n3ij
+

a4ij

T n4ij
+

a5ij

T n5ij
+ cSB

ij , (2)

where cSB
ij is the Stefan–Boltzmann value of the particular coefficient, and the powers nkij are

required to be integers between 1 and 42. As in our parametrization of the EoS at zero net
baryon density [3], we match this parametrization to the HRG value at temperature TSW by
requiring that the Taylor coefficient and its first and second derivatives are continuous. Since
the recent lattice data obtained using HISQ action [5] show that the second-order coefficients
approach their Stefan–Boltzmann limits slowly, we require that their value is 95% of their
Stefan–Boltzmann value at 800 MeV temperature. These constraints fix three (or four) of the
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Figure 2. Left: pressure over energy density as a function of temperature on various isentropic
curves with a constant entropy per baryon. Right: pT-differential elliptic flow of pions (upper
curves) and protons (lower curves) in an ideal fluid simulation of

√
sNN = 17 GeV Pb+Pb

collisions at b = 7 fm.

parameters akij. The remaining parameters, including the switching temperatures, are fixed by
a χ2 fit to the lattice data. As an example, we show the parametrized c20 in the right panel of
figure 1.

Once the coefficients are known, pressure can be written as

P

T 4
=

∑
ij

cij (T )
(μB

T

)i (μS

T

)j

, (3)

and all the other thermodynamical quantities can be obtained from equation (3) by using the
laws of thermodynamics. As pressure at μB = 0, i.e. the coefficient c00, we use our earlier
parametrization s95p-v1 [3]. We describe the EoS in the left panel of figure 2 by showing the
pressure to energy density ratio on various isentropic curves with a constant entropy per baryon.
The curves at s/nB = 400, 65 and 40 are relevant at collision energies

√
sNN = 200, 39 and

17 GeV, respectively. At s/nB = 400 (dotted line), the EoS is basically identical to the EoS at
μB = 0 (thin solid line). This vindicates the common approximation of ignoring the finite net
baryon density in the description of collisions at the full RHIC energy (

√
sNN = 200 GeV).

At larger baryon densities, the effect of finite baryon density is no longer negligible. The
larger the density, the stiffer the EoS above, and softer below the transition temperature.
Furthermore, an additional structure begins to appear around the transition temperature with
increasing density. This structure is mostly an unphysical artefact of our fitting procedure. We
required the two first derivatives with respect to temperature to be continuous, but the speed of
sound is proportional to the second derivative of the coefficients. Thus, in our parametrization,
the derivative of the speed of sound is not continuous, and ripples may appear at a switching
temperature of any coefficient. Nevertheless, when pressure is plotted as a function of energy
density, these structures are hardly visible. Therefore, we do not expect them to affect the
buildup of flow and the evolution of the system, and consider our parametrization a reasonable
first attempt. The work to obtain a smoother and better constrained parametrization is in
progress.

We illustrate the effect of the EoS on flow by studying the elliptic flow in the Pb+Pb
collision at the full SPS collision energy (

√
sNN = 17 GeV). For simplicity, we use a boost

invariant ideal hydrodynamical model to compare our lattice-based EoS to a bag model EoS
with a first-order phase transition. We tune the calculation to reproduce the NA49 data
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for negative hadrons and net protons in the most central collisions [6], and use freeze-out
temperatures of Tdec = 130 and 120 MeV for the lattice and bag model EoSs, respectively.
Since it is very difficult to reproduce the elliptic flow data at SPS using ideal hydrodynamics,
we do not try to fit the data. Instead, we calculate the pT-differential v2 of pions and protons
at the fixed impact parameter of b = 7 fm, see the right panel of figure 2. At RHIC, the pion
v2(pT ) is insensitive to the EoS, but the proton v2(pT ) shows a clear dependence on it [7].
However, at lower collision energy the behaviour is different: proton v2(pT ) is as insensitive
to the EoS as the pion v2(pT ). This behaviour is supported by the early ideal fluid calculations
of v2: it was seen that at SPS both a bag model EoS and a purely hadronic EoS led to quite
a similar v2(pT ) [8], but at RHIC a purely hadronic and lattice EoS led to a similar proton
v2(pT ), whereas the bag model EoS lead to a smaller proton v2(pT ) [7].

To summarize, we have shown that a temperature shift of 30 MeV is a good approximation
of the discretization effects in the lattice QCD data obtained using p4 action. We have
constructed an EoS for finite baryon densities based on the HRG and lattice QCD data. At the
full SPS energy (

√
sNN = 17 GeV), the pT-differential elliptic flow is almost insensitive to the

EoS. This is bad news for the experimental search of the critical point, since a change from a
first-order phase transition to a smooth crossover does not cause an observable change in the
flow.
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Abstract
With the new viscous hydrodynamic + hadron cascade hybrid code VISHNU,
a rather precise (O(25%)) extraction of the quark gluon plasma (QGP) shear
viscosity (η/s)QGP from heavy-ion elliptic flow data is possible if the initial
eccentricity of the collision fireball is known with <5% accuracy. At this
point, eccentricities from initial state models differ by up to 20%, leading to an
O(100%) uncertainty for (η/s)QGP. It is shown that a simultaneous comparison
of elliptic and triangular flow, v2 and v3, puts strong constraints on initial state
models and can largely eliminate the present uncertainty in (η/s)QGP. The
variation of the differential elliptic flow v2(pT ) for identified hadrons between
RHIC and LHC energies provides additional tests of the evolution model.

(Some figures in this article are in colour only in the electronic version)

Prologue – how to measure (η/s)QGP. Hydrodynamics converts the initial spatial deformation
of the fireball created in relativistic heavy-ion collisions into final state momentum anisotropies.
Viscosity degrades the conversion efficiency εx=〈〈y2−x2〉〉

〈〈y2+x2〉〉 → εp=〈T xx−T yy 〉
〈T xx+T yy 〉 of the fluid; for a

given initial fireball ellipticity εx , the viscous suppression of the dynamically generated total
momentum anisotropy εp is monotonically related to the specific shear viscosity η/s. The
observable most directly related to εp is the total charged hadron elliptic flow vch

2 [1]. Its
distribution in pT depends on the chemical composition and pT-spectra of the various hadron
species; the latter evolve in the hadronic stage due to continuously increasing radial flow (and
so does v2(pT )), even if (as expected at top LHC energy [2]) εp fully saturates in the quark
gluon plasma (QGP) phase. When (as happens at RHIC energies) εp does not reach saturation
before hadronization, dissipative hadronic dynamics [3] not only affects the distribution of εp

over hadron species and pT, but even the final value of εp itself, and thus of vch
2 from which we
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Figure 1. Centrality dependence of eccentricity-scaled elliptic flow [6].

want to extract η/s. To isolate the QGP viscosity (η/s)QGP, we therefore need a hybrid code
that couples viscous hydrodynamics of the QGP to a realistic model of the late hadronic stage,
such as UrQMD [4], that describes its dynamics microscopically. VISHNU [5] is such a code.

Extraction of (η/s)QGP from 200 A GeV Au+Au collisions at RHIC. The left panel in
figure 1 shows that such an approach yields a universal dependence of the ellipticity-scaled
total charged hadron elliptic flow, vch

2 /εx , on the charged hadron multiplicity density per
overlap area, (1/S)(dNch/dy), that depends only on (η/s)QGP but not on the details of the
initial state model that provides εx and S [6]. The pre-equilibrium flow and bulk viscous
effects on these curves are small [6].

The QGP viscosity can be extracted from experimental vch
2 data by comparing them

with these universal curves. The right panels of figure 1 show this for MC-Glauber and
MC-KLN initial state models [6]. In both cases, the slope of the data [7] is correctly
reproduced (not true for ideal nor viscous hydrodynamics with constant η/s). Due to the
∼20% larger ellipticity of the MC-KLN fireballs, the magnitude of vch

2,exp/εx differs between
the two models. Consequently, the value of (η/s)QGP extracted from this comparison changes
by more than a factor of 2 between them. Relative to the initial fireball ellipticity, all other
model uncertainties are negligible. Without constraining εx more precisely, (η/s)QGP cannot
be determined to better than a factor of 2 from elliptic flow data alone, irrespective of any
other model improvements. Taking the MC-Glauber and MC-KLN models to represent a
reasonable range of initial ellipticities, figure 1 gives 1 < 4π(η/s)QGP < 2.5 for temperatures
Tc < T < 2Tc probed at RHIC.

VISHNU with (η/s)QGP= 1
4π

for MC-Glauber and 2
4π

for MC-KLN provides an excellent
description of all aspects of soft (pT < 1.5 GeV) hadron production (pT-spectra and differential
v2(pT ) for all charged hadrons together as well as for individual identified species) in
200 A GeV Au+Au collisions at all but the most peripheral collision centralities [8]. Such a
level of theoretical control is unprecedented.

Event-by-event hydrodynamics of fluctuating fireballs. Figure 1 is based on the hydrodynamic
evolution of a single smooth event-averaged initial profile (‘single-shot hydrodynamics’). This
overestimates the conversion efficiency v2/ε [9, 10]. Figure 2 shows that event-by-event ideal
fluid dynamical evolution of fluctuating fireballs reduces v2/ε by a few percent [10]. The
effect is only ∼ 5% for pions but larger for heavier hadrons. We expect it to be smaller
in viscous hydrodynamics which dynamically dampens large initial fluctuations. A reduced
conversion efficiency v2/ε from event-by-event evolution will reduce the value of (η/s)QGP

extracted from vch
2 ; based on what we see in ideal fluid dynamics, the downward shift for

(η/s)QGP will at most be of order 0.02–0.03.
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Figure 2. Eccentricity-scaled elliptic flow as a function of impact parameter for pions, kaons and
protons from event-averaged (‘single-shot’, see the text) and event-by-event ideal fluid evolution
of fluctuating initial conditions from the MC-Glauber (left) and MC-KLN (right) models.
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Figure 3. Total charged hadron elliptic flow as a function of centrality (VISHNU, left [12]) and
differential elliptic flow for identified hadrons for 20–30% centrality (VISH2+1, right [11]) for
200 A GeV Au+Au collisions at RHIC and 2.76 A TeV Pb+Pb collisions at the LHC. Experimental
data are from [13].

Predictions for spectra and flow at the LHC. The successful comprehensive fit of spectra and
elliptic flow at the RHIC [8] allows for tightly constrained LHC predictions. Figure 3 shows
such predictions for both pure viscous hydrodynamics VISH2+1 [11] and VISHNU [12]. A
straightforward extrapolation with fixed (η/s)QGP overpredicts the LHC vch

2 values by 10–
15%; a slight increase of (η/s)QGP from 0.16 to 0.20 (for MC-KLN) gives better agreement
with the ALICE data [13]. However, at LHC energies v2 becomes sensitive to details of the
initial shear stress profile [11], and no firm conclusion can be drawn yet whether the QGP
turns more viscous (i.e. less strongly coupled) at higher temperatures. The right panel shows
that, at fixed pT < 1 GeV, v2(pT ) increases from the RHIC to the LHC for pions but decreases
for all heavier hadrons. The similarity at the RHIC and the LHC of vch

2 (pT ) for the sum of all
charged hadrons thus appears accidental.

Constraining initial state models by simultaneous measurement of v2 and v3. While the
ellipticities ε2 differ by about 20% between MC-KLN and MC-Glauber models, their
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Figure 4. pT-differential elliptic and triangular flow from viscous hydrodynamics for initial
eccentricities from the MC-KLN and MC-Glauber models.

triangularities ε3 (which are entirely due to event-by-event fluctuations) are almost identical
[10]. This suggests us to use triangular flow v3 (which is almost entirely [10] driven by
ε3) to obtain a model-independent measurement of (η/s)QGP. Figure 4 shows vπ

2 (pT ) and
vπ

3 (pT ) for deformed Gaussian fireballs with average eccentricities ε2 and ε3 (with a random
relative angle) taken from the fluctuating Glauber (‘MC-Glauber-like’) and KLN (‘MC-KLN-
like’) models. It demonstrates that a given set of flow data requires shear viscosities that
differ by a factor of 2 to reproduce v2(pT ), but the same shear viscosities in both models
to reproduce v3(pT ). A good fit by both models to v2(pT ) produces dramatically different
curves for v3(pT ) and vice versa. The figure illustrates the strong discriminating power for such
simultaneous studies and gives hope for a much more precise extraction of (η/s)QGP in the near
future.
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We investigate the influence of a temperature-dependent shear viscosity over entropy density ratio �=s

on the transverse momentum spectra and elliptic flow of hadrons in ultrarelativistic heavy-ion collisions.

We find that the elliptic flow in
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Auþ Au collisions at RHIC is dominated by the

viscosity in the hadronic phase and in the phase transition region, but largely insensitive to the viscosity of

the quark-gluon plasma (QGP). At the highest LHC energy, the elliptic flow becomes sensitive to the QGP

viscosity and insensitive to the hadronic viscosity.

DOI: 10.1103/PhysRevLett.106.212302 PACS numbers: 25.75.Ld, 12.38.Mh, 24.10.Nz

Ultrarelativistic heavy-ion collisions at the Relativistic
Heavy-Ion Collider (RHIC) and the Large Hadron Collider
(LHC) produce a hot and dense system of strongly inter-
acting matter [1]. The subsequent expansion of the created
matter has been shown to exhibit a strong degree of col-
lectivity which reveals itself in the transverse momentum
(pT) spectra of finally observed hadrons. In particular, the
observed large azimuthal anisotropy of the spectra, quan-
tified by the so-called elliptic flow coefficient v2, has been
interpreted as a signal for the formation of a quark-gluon
plasma (QGP) with very small viscosity in heavy-ion
collisions at RHIC [2].

A first indication for the small viscosity of the QGP was
the agreement between RHIC data and hydrodynamical
calculations in the perfect-fluid limit, i.e., with zero vis-
cosity [3]. An analysis of the elliptic flow at RHIC in the
framework of relativistic dissipative hydrodynamics was
performed in Refs. [4–6]. These works indeed indicate that
the shear viscosity to entropy density ratio, �=s, has to be
small in order to keep the agreement between the hydro-
dynamic simulations and experimental data.

Presently, most hydrodynamical simulations assume a
constant, i.e., temperature-independent �=s. It has been
claimed [6] that, in order to describe elliptic flow data, this
value cannot be larger than 2.5 times the lower bound
�=s ¼ 1=4� conjectured in the framework of the AdS/
CFT correspondence [7]. A constant �=s is, however, in
sharp contrast to the behavior observed in common liquids
and gases, where �=s has a strong temperature dependence
and, typically, a minimum near phase transitions. A similar
behavior of �=s is expected for finite-temperature matter
described by quantum chromodynamics (QCD) near the
transition from hadronic matter to the QGP (the QCD
phase transition) [8].

A natural question then is whether the temperature
dependence of �=s has an effect on the collective flow of

hadrons in heavy-ion collisions. In this work, we inves-
tigate this question in the framework of relativistic hydro-
dynamics. We consider a temperature-dependent �=s with
a minimum near the QCD phase transition, and compare
the results with those obtained for a constant �=s in either
the hadronic phase, or the QGP phase, or both phases. Note
that we do not attempt a detailed fit to the data in order to
extract �=s. Rather, we are interested in the qualitative
effects of different parametrizations for �=s on hadron
spectra and elliptic flow.
Concerning the elliptic flow in Auþ Au collisions at

RHIC, we find little difference whether �=s is constant in
the QGP phase or strongly increasing with temperature. In
contrast, the elliptic flow values are highly sensitive to
whether we use a constant or temperature-dependent �=s
in the hadronic phase, corroborating the findings of
Refs. [9,10]. On the other hand, we find that the sensitivity
of the elliptic flow to the values of �=s in the high-
temperature QGP increases with increasing collision
energy, while the sensitivity to the hadronic viscosity
decreases. At the highest LHC energy, the above conclu-
sion for RHIC energies is reversed: the finally observable
elliptic flow is dominated by the viscosity of the QGP and
largely insensitive to that of the hadronic phase.
Fluid dynamics is determined by the conservation of

energy, momentum, and charges like baryon number.
Here, we are interested in the collective flow at midrapidity
in heavy-ion collisions at RHIC and LHC energies.
Consequently, we may neglect baryon number and assume
longitudinal boost invariance [11]. We also need the con-
stitutive relations for the dissipative currents. Here, we
only consider the shear stress tensor ���, the evolution
of which we describe in the approach of Israel and
Stewart [12], hD���i ¼ 1

��
ð2���� � ���Þ � 4

3�
��@�u

�,

where D ¼ u�@�, �
�� ¼ rh�u�i, and the angular brack-

ets h i denote the symmetrized and traceless projection,
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orthogonal to the fluid four-velocity u�. We have also
taken the coefficient of the last term in the massless limit.
For details, see Ref. [13].

We solve the conservation equations numerically by
using the SHASTA algorithm, see, e.g., Ref. [13]. The re-
laxation equations for the components of ��� are solved
by discretizing spatial gradients using centered second-
order finite differences. We found that, in contrast to
SHASTA, this method produces numerically stable solutions

also for low-density matter at the edges of the system.
With longitudinal boost invariance, we need to specify

the values of the energy-momentum tensor in the trans-
verse plane at some initial time �0. We assume that the
initial energy density profile is proportional to the density
of binary nucleon-nucleon collisions as calculated from
the optical Glauber model (model eBC in Ref. [14]). The
initial transverse velocity and ��� are set to zero. The
maximum energy densities "0 in central collisions (impact
parameter b ¼ 0) are chosen to reproduce the observed
multiplicity in the 0%–5% most central

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
Auþ Au collisions at RHIC [15] and

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV
Pbþ Pb collisions at LHC [16]. For the

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5:5 TeV
Pbþ Pb collisions at LHC we use the multiplicity pre-
dicted by the minijetþ saturation model [17]. The initial-
ization parameters are collected in Table I.

Our equation of state (EoS) is a recent parametrization
of lattice-QCD data and a hadron resonance gas (s95p-PCE
of Ref. [18]), with chemical freeze-out at a temperature
Tchem ¼ 150 MeV implemented as in Ref. [19].

Hadron spectra are calculated by using the Cooper-Frye
freeze-out description [20] with constant decoupling tem-
perature Tdec ¼ 100 MeV, which will be shown below to
give reasonable agreement with both the pT spectrum
and the elliptic flow coefficient for pions at RHIC. For
the sake of simplicity, we include viscous corrections to the
equilibrium distribution function f0 as for Boltzmann par-
ticles, even though f0 obeys the appropriate quantum
statistics [21]:

fðx; pÞ ¼ f0 þ �f ¼ f0

�
1þ p�p��

��

2T2ð"þ pÞ
�
; (1)

where p is pressure and p� is the hadron four-momentum.
Two- and three-body decays of unstable hadrons are in-
cluded as described in Ref. [22]. We include resonances up
to mass 1.7 GeV.

The shear viscosity to entropy density ratio is parame-
trized as follows. For the hadronic phase, it reproduces the
results of Ref. [23]. In the QGP phase, �=s follows the

lattice-QCD results of Ref. [24]. Then,�=s has to assume a
minimum value at a certain temperature; in our case we
take �=s ¼ 0:08 at T ¼ 180 MeV. This is the same pa-
rametrization as used in Ref. [25]. In total we have four
cases, see Fig. 1: (LH-LQ) �=s ¼ 0:08 for all tempera-
tures, (LH-HQ) �=s ¼ 0:08 in the hadron gas, and above
T ¼ 180 MeV �=s increases according to lattice-QCD
data, (HH-LQ) below T ¼ 180 MeV, �=s is that of a
hadron gas, and above we set �=s ¼ 0:08, (HH-HQ) we
use a realistic parametrization for both the hadron gas and
the QGP. For the relaxation time we use a result motivated
by kinetic theory �� ¼ 5�=ð"þ pÞ [26].
Figure 2(a) shows the pT spectrum of positive pions in

the 0%–5% most central
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Auþ Au col-

lisions at RHIC. Our calculations are compared to
PHENIX data [15]. All the different parametrizations of
�=s give similar agreement with the low-pT pion spectra.
For pT * 1:0 GeV, the parametrizations (LH-HQ) and
(HH-HQ) start to give slightly flatter spectra. While the
effect of the QGP viscosity on the pT slopes is small for our
comparatively long initialization time �0 ¼ 1:0 fm, it be-
comes more pronounced for smaller values of �0. On the
other hand, the slopes of the spectra are almost indepen-
dent of the hadronic viscosity and this conclusion remains
true at least for �0 ¼ 0:2–1:0 fm.
Figures 2(b) and 2(c) show the spectra for

ffiffiffiffiffiffiffiffi
sNN

p ¼
2:76 TeV and 5.5 TeV Pbþ Pb collisions, respectively.
Here we observe a much stronger dependence of the
pT spectra on the high-temperature values of �=s, but
the main reason for this is the earlier initialization time
�0 ¼ 0:6 fm. On the other hand, the pT spectra are inde-
pendent of the hadronic viscosity also at LHC.
In Figs. 2(d)–2(f) we show the elliptic flow coefficients

for charged hadrons in the 20%–30% centrality class
for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Auþ Au collisions and
ffiffiffiffiffiffiffiffi
sNN

p ¼
2:76 TeV and

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5:5 TeV Pbþ Pb collisions, re-

spectively. In Fig. 2(d) the results from the hydrodynamic
simulations are compared to STAR 4-particle cumulant
data [27] and in Fig. 2(e) to recent data from the ALICE
Collaboration [28].

TABLE I. Initialization parameters for different collisions.

ffiffiffiffiffiffiffiffi
sNN

p
[GeV] �0 [fm] "0 [GeV=fm3] Tmax [MeV]

200 1.0 24.0 335

2760 0.6 187.0 506

5500 0.6 240.0 594

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.10 0.20 0.30 0.40 0.50 0.60

η/
s

T [GeV]

LH-LQ
LH-HQ
HH-LQ
HH-HQ

FIG. 1 (color online). Different parametrizations of �=s as a
function of temperature. The (LH-LQ) line is shifted downwards
and the (HH-HQ) line upwards for better visibility.
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We immediately see that, for RHIC, the four parametri-
zations for �=s produce values for the elliptic flow that fall
into two classes. The curves are largely insensitive to the
values of �=s in the QGP phase and follow the value of the
viscosity in the hadron gas: the parametrizations (LH-LQ)
and (LH-HQ) with constant �=s in the hadron gas result in
larger v2ðpTÞ than the parametrizations (HH-LQ) and
(HH-HQ) with realistic �=s in the hadron gas. We have
confirmed the insensitivity to the values of �=s in the high-
temperature QGP phase by decoupling the system at
Tdec ¼ 170 MeV. In that case, v2ðpTÞ is largely indepen-
dent of the �=s parametrization. The separation of curves
occurs in the subsequent evolution in the hadronic phase.
This shows that, within this model and at RHIC, viscous
effects from the hadron gas dominate over viscous effects
from the QGP, see also Refs. [9,10]. Because of the strong
longitudinal expansion, the initial shear stress enhances the
transverse pressure and thus the buildup of the flow anisot-
ropy, but this is counteracted by the viscous suppression of
anisotropies. Our simulations suggest that at RHIC these
two effects cancel each other in the QGP phase.

The main reason for the hadronic suppression of v2ðpTÞ
are the viscous corrections �f to the particle distribution
function. Thus, the values of��� on the decoupling bound-
ary are significantly larger in the case with large hadronic
�=s. On the other hand, the azimuthal anisotropies of the
hydrodynamic flow field are quite similar in all cases. This
is demonstrated in Fig. 3, where we plot v2ðpTÞ of pions at
RHIC without �f. All curves are much closer to each
other, indicating that the space-time evolution in the had-
ron gas is similar in all four cases.

We have tested that these conclusions are unchanged
if we use different �0 ¼ 0:2–1:0 fm, different EoSs,

e.g., with or without chemical freeze-out, use nonequilib-
rium initial conditions (the same nonzero initial��� for all
four cases), or shift the �=s parametrizations up by a
constant value, such that �=s at T ¼ 180 MeV is 5 times
the AdS/CFT lower bound. Although v2ðpTÞ and the slopes
of the pT spectra change when we change the setup, the
observed sensitivity of v2ðpTÞ on the viscosity around
T � 180 MeV and below, rather than on the high-
temperature QGP viscosity is quite generic at RHIC. If
we increase �=s above T ¼ 200 MeV by a factor of 10 in
parametrization (HH-LQ), the elliptic flow is practically
the same as shown in Fig. 2(d). This confirms that the value
of �=s in the high-temperature QGP phase has no effect on
the final observable v2ðpTÞ at RHIC, even though during
the evolution the system spends approximately equal times
above T � 200 MeV and between T � 170 and 200 MeV.
Interestingly, the sensitivity of v2ðpTÞ to the QGP vis-

cosity increases with increasing collision energy, while the
sensitivity to the hadronic viscosity decreases. This can be
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FIG. 3 (color online). Same as Fig. 2(d), but for elliptic flow of
thermal (i.e., without decays) pions with �f ¼ 0.
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FIG. 2 (color online). Transverse momentum spectra of positive pions in the 0%–5% most central collisions and elliptic flow
coefficients in the 20%–30% centrality class at RHIC and LHC. Different curves correspond to the different parametrizations of the
temperature dependence of �=s. Data in panel (a) are from Ref. [15] and in panels (d) and (e) from Refs. [27,28].
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seen in Figs. 2(e) and 2(f), which show v2ðpTÞ forffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5:5 TeV Pbþ Pb colli-

sions, respectively.
At the highest LHC energy, the behavior of v2ðpTÞ is

completely opposite to that at RHIC. It is almost indepen-
dent of the hadronic viscosity, but sensitive to the QGP
viscosity. In contrast to the RHIC case, at LHC the differ-
ences in v2ðpTÞ are mostly due to the difference in the
transverse flow profiles (caused by the different QGP vis-
cosities) and not due to the viscous corrections to the
distribution function at freeze-out. The latter are much
smaller than at RHIC: the magnitude of �f is the difference
between the curves (LH-LQ) and (HH-LQ) or (LH-HQ)
and (HH-HQ) in Fig. 2(f). We have also checked that
v2ðpTÞ at low-pT remains insensitive to the hadronic
viscosity, even if we increase the hadronic �=s in
such a way that it reaches �=s ¼ 1:0 at T ¼ 100 MeV,
but keep the minimum of �=s fixed. The collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV are between these two extreme be-

haviors, as elliptic flow depends both on the hadronic and
the QGP �=s.

There are several reasons why the effect of �=s on the
elliptic flow at LHC is so different from that at RHIC: first,
the longer lifetime of the QGP phase, which results in a
stronger dependence of the transverse flow on the viscous
properties of the QGP. Second, once the system decouples,
it has much larger transverse size and velocity gradients
are smaller. Subsequently, dissipative effects from the
hadronic stage are smaller and have less effect on the
observed v2ðpTÞ.

In conclusion, we have investigated the effects of a
temperature-dependent �=s on the hadron spectra and
elliptic flow coefficients at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Auþ Au
collisions at RHIC and

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV and
ffiffiffiffiffiffiffiffi
sNN

p ¼
5:5 TeV Pbþ Pb collisions at LHC. We found that in all
cases the slopes of the pT spectra of pions depend mainly
on the high-temperature �=s, and hardly at all on the
hadronic viscosity.

The effect of �=s on the differential elliptic flow v2ðpTÞ
is more subtle. At RHIC energies, v2ðpTÞ is highly sensi-
tive to the viscosity in hadronic matter and almost inde-
pendent of the viscosity in the QGP phase. In contrast, at
the highest LHC energy the opposite holds: elliptic flow is
almost independent of the hadronic viscosity, but depends
strongly on the QGP viscosity. Thus the extraction of an
�=s value for the QGP, except for its value at the expected
minimum around Tc, is basically impossible using the
elliptic flow data at RHIC alone. On the other hand, a
determination of the temperature dependence of �=s in
the QGP phase from elliptic flow data seems to be possible
at LHC. This could allow the observation of a possible
transition from the strongly coupled plasma near Tc; see,
e.g., Ref. [29], to the weakly coupled QGP.
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Abstract

We compare 2 → 2 covariant transport theory and causal Israel–Stewart
hydrodynamics in a (2+1)-dimensional longitudinally boost-invariant geometry
with RHIC-like initial conditions and a conformal ε = 3p equation of state. The
pressure evolution in the center of the collision zone and the final differential
elliptic flow v2(pT ) from the two theories agree remarkably well for a small
shear viscosity to entropy density ratio η/s ≈ 1/(4π), and also for a large cross
section σ ≈ 50 mb. A key to this agreement is keeping all terms in the Israel–
Stewart equations of motion. Our results indicate promising prospects for the
applicability of Israel–Stewart dissipative hydrodynamics at RHIC, provided
the shear viscosity of hot and dense quark–gluon matter is indeed very small
for the relevant temperatures T ∼ 200–500 MeV.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent interest in heavy-ion physics has focused on constraining the transport properties of
hot and dense nuclear matter using experimental data from RHIC. A particular open question
is the effect of the conjectured ‘minimal’ shear viscosity η = s/(4π) [1] on the dynamics
and observables (s is the entropy density). Studies of dissipation require a suitable theory
framework, in principle a non-equilibrium one. However, close to local equilibrium, one can
also apply dissipative extensions of ideal (Euler) hydrodynamics [2–5].

The straightforward Navier–Stokes extension of relativistic ideal hydrodynamics with
corrections linear in gradients leads to acausal behavior and instabilities. An improved
formulation proposed by Mueller and later extended by Israel and Stewart [6] (IS) includes
second derivatives, which alleviates the causality problem. However, that theory originates
from an arbitrary truncation of the entropy current at quadratic order in dissipative corrections
(shear and bulk stress, and heat flow), which is not a controlled approximation. Derivations of
the IS equations from kinetic theory again rely on an arbitrary truncation of non-equilibrium
corrections to the phase-space density at quadratic order in momentum (Grad’s 14-moment
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approximation). In contrast, rigorous (Chapman–Enskog) expansion in small gradients near
local equilibrium results in Navier–Stokes theory.

Because of these uncertainties about the region of validity of Israel–Stewart theory,
detailed cross-checks against a non-equilibrium approach are paramount. Here we report
on a comparison against covariant transport theory, for conditions expected in Au + Au at√

sNN ∼ 200 GeV at RHIC, and investigate the effect of small shear viscosities on the
dynamics and differential elliptic flow v2(pT ).

2. Covariant transport and Israel–Stewart hydrodynamics

We solve the equations of motion of causal Israel–Stewart dissipative hydrodynamics

∂μT μν = 0, ∂μNμ = 0, (1)

Dπμν = − 1

τπ

(πμν − 2η∇〈μuν〉) − (uμπνα + uνπαμ)Duα

− 1

2
πμν

(
∂αuα + D ln

β2

T

)
− 2π

〈μ
λ ων〉λ, (2)

T μν ≡ (ε + p)uμuν − pgμν + πμν, Nμ ≡ nuμ (3)

in a (2 + 1)-dimensional longitudinally boost-invariant geometry. Here, ε, p, uμ and n are the
local energy density, pressure, flow velocity and particle density, respectively, D ≡ uμ∂μ and
the 〈〉 brackets denote traceless symmetrization and projection orthogonal to the flow

A〈μν〉 ≡ 1
2μανβ(Aαβ + Aβα) − 1

3μναβAαβ, μν ≡ gμν − uμuν,

and ∇μ ≡ μν∂ν . In the equation for the shear stress πμν we include the term with the
vorticity tensor ωμν ≡ (1/2)μανβ(∂βuα − ∂αuβ) that follows from kinetic theory.

The numerical IS solutions are obtained with a modified version of the code used in
[8]. Details of the algorithm will be published elsewhere. Covariant transport solutions are
calculated via the MPC algorithm [9, 10].

To aid comparison with covariant 2 → 2 transport theory, we take an ideal gas equation
of state of massless particles, ε = 3p, and keep particle number conserved. For our conformal
system bulk viscosity vanishes, while heat flow is ignored for simplicity. The shear viscosity
and shear stress relaxation time of the fluid are matched to the values from kinetic theory [6, 7]:
η ≈ 6T/(5σ) and τπ ≡ 2β2η ≈ 9λMFP/5 (because β2 = 3/4p), where an isotropic two-body
cross section is utilized for simplicity. We consider two scenarios: (i) a constant cross section
and (ii) a cross section σ ∼ τ 2/3 growing with proper time τ ≡ √

t2 − z2. During the initial
one-dimensional expansion stage η/s ∼ τ 2/3 grows in the former case, while in the latter case
η/s ≈ const.

Initial conditions expected at RHIC for Au+Au at
√

sNN ∼ 200 GeV and impact parameter
b = 8 fm are modeled through an initial density profile proportional to the (local) number of
binary collisions for diffuse gold nuclei, normalized to dN/dη(b = 0) = 1000 to account for
the observed dNch/dη ≈ 700. The system is assumed to start from local thermal equilibrium
(πμν = 0) at a thermalization time τ0 = 0.6 fm with uniform initial temperature T0 =
385 MeV.

3. Main results

Figure 1 compares the evolution of the transverse and longitudinal pressure from covariant
transport (lines with symbols) and IS hydrodynamics (lines without symbols), averaged over

2
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Figure 1. Proper time evolution of the average transverse (T xx , solid) and longitudinal pressure
(T zz, dashed) in covariant transport (symbols) and causal Israel–Stewart hydrodynamics (no
symbols) near the center of the collision zone (rT < 1 fm) for RHIC-like initial conditions
(see text) and η/s ≈ 1/(4π ). For clarity, T zz is divided by a factor of 10.

the center of the collision zone rT ≡
√

x2 + y2 < 1 fm for η/s ≈ 1/(4π). At such a low shear
viscosity, we find that IS hydrodynamics is a good approximation to covariant transport in the
densest region of the collision.

In order to calculate momentum distributions, a freezeout prescription is necessary. Here
we apply Cooper–Frye (sudden) freezeout

dN

dy d2pT

=
∫

dσμ(x)pμf (x, 
p), (4)

where f is the phase-space density corresponding to the local fluid variables and dσμ is the
local normal to the freezeout hypersurface. We choose a constant density hypersurface n =
0.365 fm−3, which is the density of an ideal gas of massless gluons in chemical equilibrium
at T = 120 MeV (three colors).

Figure 2(left) shows elliptic flow from IS hydrodynamics as a function of transverse
momentum, for the η/s ≈ 1/(4π) scenario. The dashed curve corresponds to (4) with the
local equilibrium ansatz feq(x, 
p) = n(x)/[8πT 3(x)] exp[−pμuμ/T (x)] (we use Boltzmann
statistics for consistent comparison with transport). This incorporates dissipative corrections
to the evolution of the flow field, temperature and particle number density, but ignores non-
equilibrium distortions of the local momentum distributions (i.e., assumes πμν = 0). The
solid curve is the result for

f (x, 
p) = feq(x, 
p)

[
1 +

pμpνπμν(x)

8n(x)T 3(x)

]
(5)

that properly takes the local shear stress into account. We find that relative to ideal
hydrodynamics (dotted curve) dissipation reduces elliptic flow by ∼30%, even at such a
low η/s ≈ 1/(4π). This reinforces an earlier kinetic theory estimate [11]. Unlike [5], we
find that at least one-third of the reduction comes from corrections to the ideal hydrodynamic
variables (the lower the pT , the larger the fraction), while the remaining up to two-thirds come
from shear stress altering the local momentum distributions.

Finally, we compare in figure 2(right) the differential elliptic flow v2(pT ) between
covariant transport (squares) and IS hydrodynamics (dashed and solid). The dotted line
is the ideal hydrodynamics reference. For σgg→gg ≈ 47 mb as in [10] we find excellent

3
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Figure 2. Left: elliptic flow as a function of pT for Au + Au at
√

sNN ∼ 200 GeV and b = 8 fm
from ideal hydrodynamics (dotted) and IS hydrodynamics with Cooper–Frye freezeout ignoring
(dashed) or incorporating (solid) dissipative corrections to the local momentum distributions (see
text) for η/s ≈ 1/(4π). Right: comparison of v2(pT ) from covariant transport (squares) and IS
hydrodynamics (lines) for η/s ≈ 1/(4π) (open squares versus dashed), and σgg→gg ≈ 47 mb
(filled squares versus solid). The ideal hydro reference is also shown (dotted).

agreement between transport and IS hydro (filled squares versus solid line). We also find good
agreement for η/s ≈ 1/(4π) (open squares versus dashed line), for which IS hydro somewhat
underpredicts the transport results at higher pT > 1.5 GeV. We caution that the hydro results
at high pT are also sensitive to the freezeout prescription, which deserves further investigation.

We emphasize that, just like [2, 3], we solve the full set of equations that result from
Israel–Stewart theory. For a system near global equilibrium, the first term in the second line
of (2) can be dropped [6] because gradients are small. However, we have checked that these
terms are important in our case, which has large gradients.

Acknowledgments

We thank RIKEN, Brookhaven National Laboratory and the US Department of Energy (DE-
AC02-98CH10886) for providing facilities essential for the completion of this work.

References

[1] Kovtun P, Son D T and Starinets A O 2005 Phys. Rev. Lett. 94 111601
[2] Muronga A 2002 Phys. Rev. Lett. 88 062302

Muronga A 2002 Phys. Rev. Lett. 89 159901 (erratum)
[3] Romatschke P and Romatschke U 2007 Phys. Rev. Lett. 99 172301
[4] Song H and Heinz U W 2008 Phys. Lett. B 658 279
[5] Dusling K and Teaney D 2008 Phys. Rev. C 77 034905
[6] Israel W 1976 Ann. Phys. 100 310

Israel W and Stewart J M 1979 Ann. Phys. 118 349
[7] de Groot S R, van Leeuwen W A and van Weert Ch G 1980 Relativistic Kinetic Theory—Principles and

Applications (Amsterdam: North-Holland) chapters V and VI
[8] Huovinen P 2005 Nucl. Phys. A 761 296
[9] Molnar D and Gyulassy M 2000 Phys. Rev. C 62 054907

[10] Molnar D and Huovinen P 2005 Phys. Rev. Lett. 94 012302
[11] Molnar D 2008 arXiv:0806.0026

4

http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.88.062302
http://dx.doi.org/10.1103/PhysRevLett.89.159901
http://dx.doi.org/10.1103/PhysRevLett.99.172301
http://dx.doi.org/10.1016/j.physletb.2007.11.019
http://dx.doi.org/10.1103/PhysRevC.77.034905
http://dx.doi.org/10.1016/0003-4916(76)90064-6
http://dx.doi.org/10.1016/j.nuclphysa.2005.07.016
http://dx.doi.org/10.1103/PhysRevC.62.054907
http://dx.doi.org/10.1103/PhysRevLett.94.012302


10 Sep 2006 11:4 AR ANRV290-NS56-05.tex XMLPublishSM(2004/02/24) P1: KUV

10.1146/annurev.nucl.54.070103.181236

Annu. Rev. Nucl. Part. Sci. 2006. 56:163–206
doi: 10.1146/annurev.nucl.54.070103.181236

Copyright c© 2006 by Annual Reviews. All rights reserved
First published online as a Review in Advance on June 5, 2006

HYDRODYNAMIC MODELS FOR HEAVY

ION COLLISIONS

P. Huovinen
Department of Physics, University of Virginia, Charlottesville, Virginia 22904
and Helsinki Institute of Physics, University of Helsinki, FIN-00014, Finland;
email: ph4h@virginia.edu

P.V. Ruuskanen
Department of Physics, University of Jyväskylä, FIN-40014 Finland;
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■ Abstract Application of hydrodynamics for modeling of heavy ion collisions
is reviewed. We consider several physical observables that can be calculated in this
approach and compare them to the experimental measurements.
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1. INTRODUCTION

Quantum chromodynamics (QCD), the theory on strong interactions, has been
tested extensively in hard, large-momentum transfer processes. In these processes,
a large amount of energy or three-momentum is transferred to one (e.g., deep
inelastic scattering) or few (jet production) quark and gluon constituents of initial
hadrons. Owing to the asymptotic freedom property of QCD, the coupling strength
is small. The time scale for this part is a small fraction of the time scale of the overall
process. These two properties allow the factorization and perturbative treatment
of the hard part of the process from the rest of the matrix element. This program
has been very successful, and no clear discrepancies have been found between
experimental results and theoretical calculations.

The goal of the experimental heavy ion program at ultrarelativistic energies
is to study QCD in an environment very different from that encountered in hard
processes, in a dense system of quarks and gluons. When the heavy ion program
started two decades ago, the original goals were the production and study of dense,
thermally equilibrated, strongly interacting matter, the quark-gluon plasma (QGP).
Although this is still the highest priority, phenomena other than the formation of
thermally equilibrated QGP also occur in dense partonic systems and can be studied
in heavy ion collisions, e.g., the existence of a color glass condensate, which is
related to the saturation of gluon occupation numbers in dense components of
initial wave functions, may be important for the formation of the QGP, and may
also have other observable effects (1). Also, the phenomenon of jet quenching,
the loss of energy of a high-energy parton (quark or gluon) when it traverses a
high-density parton system, should occur in the dense environment of heavy ion
collisions, even when the system is not fully equilibrated.

The earlier experiments at Brookhaven National Laboratory and CERN-SPS
provided clear evidence of collective phenomena in nuclear collisions. Recent re-
sults from experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
show that total multiplicities exceeding 1000 particles per unit rapidity,
d N/dy � 1000, are produced in central (head-on) collisions of gold nuclei at
center-of-mass energies up to

√
sNN = 200 GeV. Here,

√
sNN is the center-of-

mass energy for a nucleon pair. The measured average transverse momentum is
pT � 0.5 GeV, indicating a total energy per unit rapidity interval of d ET /dy � 500
GeV. At time τ after the nuclei have passed through one another, the volume oc-
cupied by the produced quanta in a rapidity interval �y is �V = τ�y AT , or
τ AT = τπ R2

A for unit rapidity. At τ = 1 fm/c, the above numbers imply (2) a
particle density of ∼10 fm−3 and an energy density of ∼5 GeV fm−3, well above
different estimates and the results from lattice calculations of the energy density at
which the phase transition from confined hadrons to unconfined quarks and gluons
occur.

The subject of this review is the use of hydrodynamic modeling to describe
the expansion and dilution of matter produced in nuclear collisions. One motiva-
tion for this is to formulate a framework to study different observable quantities
and correlations among them. Obviously hydrodynamics alone does not suffice

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

6.
56

:1
63

-2
06

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
W

IB
60

45
 -

 U
ni

ve
rs

ity
 o

f 
Fr

an
kf

ur
t o

n 
07

/1
1/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



10 Sep 2006 11:4 AR ANRV290-NS56-05.tex XMLPublishSM(2004/02/24) P1: KUV

HYDRODYNAMIC MODELS 165

because, first, at high energies, particle production can not be included and, sec-
ond, only the properties of produced particles, not the hydrodynamic densities
during the expansion, can be measured directly. Below we describe a possible
dynamic scenario to calculate the production of initial matter. This provides the
initial conditions for solving the hydrodynamic equations. Because the production
dynamics is still not completely under control, sometimes it may be useful to use
physically motivated parametrizations of initial conditions to study, for example,
how the details of particle spectra depend on different features of initial condi-
tions. The hydrodynamic description also needs another supplement. A link from
hydrodynamical quantities to particle spectra is necessary at the end of expansion,
when the particles become independent and fly to detectors.

The use of hydrodynamic concepts like temperature, pressure, and flow velocity
cannot be strictly justified for matter formed in a heavy ion collision. Although
the total number of particles produced is several thousand at RHIC and may be an
order of magnitude more in the future ALICE experiments at the Large Hadron
Collider (LHC) at CERN, they hardly form a macroscopic system in the proper
thermodynamic sense. However, one can argue for partial equilibration and the
formation of collective phenomena from the numbers given above. At initial par-
ticle densities of the order of 5–10 fm−3, and even with modest estimates of cross
sections of the order of 1–2 mb, mean free paths are �1 fm, much below the
nuclear size 2RA � 10 fm. Therefore, frequent collisions occur and momentum
is transferred from denser regions toward less dense regions. In describing the
main consequences of these secondary collisions, concepts like temperature and
pressure are useful.

Although the use of hydrodynamics may be justified for some features of nu-
clear collisions, that need not be the case for others. Defining energy density and
pressure in the usual way in terms of the local momentum distribution, one obtains
for pressure of massless particles P = ε/3 for any isotropic momentum distribu-
tion f (p), p = |p| = E . In this case, describing the buildup of collective motion
or flow using hydrodynamics with P = ε/3 as the equation of state (EoS) could
be a reasonable approach, even when the form of p dependence of f (p) differs
from that of the thermal equilibrium distribution, fth(p). However, if f (p) differs
significantly from fth(p), any conclusions based on the detailed momentum de-
pendence of f (p) would fail. This could well be the case at large momenta. Initial
production is expected to contain a component that has an approximate power-
law behavior at large momenta. It will take longer and require a larger volume
than available to change this power behavior to the exponential form of thermal
distribution. The observed behavior of high-pT hadron spectra shows clearly that
the high-momentum partons are not thermalized and that they suffer an energy
loss while traversing the produced dense matter. Because the high-energy partons
form only a small part of produced matter both in multiplicity and in transverse
energy, a thermal equilibrium description can still be adequate for the bulk of the
matter.

Keeping in mind all the reservations, we review the use of hydrodynamics
in describing the heavy ion collisions at collider energies, and the calculation
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of observable quantities. We compare the calculated results to the measurements
mainly at RHIC, mentioning some results from the CERN-SPS. We also present
examples of predictions for the future ALICE experiment at CERN.

2. HYDRODYNAMIC EXPANSION

Hydrodynamics is the theoretical framework describing the motion of fluid, a con-
tinuous, flowing medium. The equation of motion can be derived from kinetic equa-
tions. Hydrodynamic equations take the simplest form if local thermal equilibrium
is assumed. In this treatment, there are no dissipative effects. To take such effects
into account by approximation, small deviations from the local equilibrium are
assumed. A linear treatment of deviations leads to a system of equations that con-
tains the viscous coefficients, including heat conductivity in the case of conserved
currents. For a review, see Reference 3. In most applications of hydrodynamics to
heavy ion collisions, viscosity has been neglected. In studies with viscosity, re-
sults on global, integrated quantities do not differ qualitatively from those without
viscosity. However, for example, transverse spectra at larger transverse momenta
pT � 1.5 GeV may start to deviate clearly from ideal-fluid calculation (4–6). One
should remember, though, that the viscous properties of strongly interacting mat-
ter are not well understood, and the approximations in the numerical work also
introduce uncertainties.

Once the EoS is known and initial conditions are specified, the hydrodynamic
equations determine the expansion of the fluid. In the context of describing heavy
ion collisions, the use of these equations requires knowing the EoS of strongly inter-
acting matter and knowing the primary production of particles. Detailed knowledge
of microscopic processes is not required if a very strong assumption is taken: The
expanding system stays in local thermodynamical equilibrium. This becomes of
great practical importance if one wants to include in the hydrodynamic expansion
the transition from quarks and gluons to hadrons. The complicated deconfine-
ment or hadronization processes need not be known in microscopic detail; all
that is necessary is the thermodynamic EoS as computed, for example, in lattice
QCD.

2.1. Hydrodynamic Equations

The hydrodynamic equations

∂μT μν = 0, T μν = (ε + P)uμuν − Pgμν 1.

express, in terms of the energy-momentum tensor T μν , the conservation of energy
and momentum in continuous, flowing matter. The quantities defining T μν are ε =
the energy density, P = the pressure, and uμ = the flow four-velocity, normalized
to uμuμ = 1 as usual. The simple form of T μν above holds for an ideal fluid.

In addition, if the system contains conserved densities ni , such as those of
charge and baryon number, their evolution is expressed by continuity
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equations

∂μ jμ

i = 0. 2.

With several conserved densities or nonzero viscous terms, the definition of uμ is
not unique. One can define the velocity in terms of one of the conserved currents by
writing jμ

i = ni u
μ

i , where ni = √
( jiμ jμ

i ), or one can use the energy-momentum
tensor to define the flow velocity. In the first case, usually referred to as the Eckart
definition, there is no flow of charge Qi in the local rest frame uμ

i = (1, 0), the
Eckart frame. For a nonideal fluid, the energy flow would usually be nonzero in the
Eckart frame. A definition of the fluid velocity in terms of the energy-momentum
tensor, referred to as the Landau definition, is such that the energy flow is zero
in the local rest frame, but usually the flow of different charges does not vanish.
Here, the only charge we consider is the baryon density. We also treat the matter
in the final state as an ideal fluid, and thus the two choices for the flow velocity
coincide. For a review, see Reference 3.

The only properties of the dynamics contained in Equations 1 and 2 are the
conservation laws. However, the relations between the thermodynamic densities ε,
P , and ni , or alternatively their definitions in terms of temperature T and chemical
potentials μi —e.g., ε = ε(T, μi )—constituting the EoS, depend on the details
of the dynamics among the constituents of the matter. The need for an EoS is
obvious; Equations 1 and 2 contain five equations, whereas there are six quantities
to be defined in them: three components of the velocity, and the energy density,
pressure, and baryon-number density. For a nonideal flow, transport coefficients
would enter into the expressions of the energy-momentum tensor and currents,
and their derivation from theory requires the knowledge of microscopic dynamics
in the same way as the derivation of EoS.

Most of the detailed hydrodynamical discussion below is limited to the situation
of scaling longitudinal flow and invariance under longitudinal Lorentz boosts. This
means that the longitudinal flow velocity is vz = z/t , and hence, the flow rapidity
is η = log[(t + z)/(t − z)], which is also often termed the space-time rapidity. If
the initial densities are assumed to depend on t and z only through the longitudinal
proper time τ = √

t2 − z2, e.g., ε = ε(τ, r ), the expansion will evolve so that
densities remain independent of η and the vz will retain the scaling form vz = z/t .
In this situation the system is said to be boost-invariant (2).

Before discussing the EoS in more detail, we note that the most useful form
of the EoS for solving the hydrodynamical equations is provided by the relations
among the densities ε, P , and ni when the hydrodynamical equations are written
in the form of Equations 1 and 2. In this form, temperature and chemical potentials
do not appear in the equations. For the calculation of observable quantities, such as
hadron spectra or electromagnetic emission, relations among the above densities
and the temperature and chemical potentials must be specified, as we discuss below.

The other ingredient that must be provided from outside into the hydrodynamic
description are the initial conditions, e.g., in terms of initial energy distribution and
velocity. From the physics point of view this is a very profound problem because
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it involves not only the primary production dynamics, but also the question of
thermalization of produced particles. We discuss first the initial conditions, then
the EoS, and finally the calculation of physical observables.

2.2. Initial Conditions

As mentioned above, primary particle production cannot be formulated within the
hydrodynamic framework in a realistic way in high-energy nuclear collisions. The
dynamics of particle production is a separate problem and, if solved, it provides
the initial conditions for the hydrodynamic expansion. Initial conditions specify
the thermodynamic state of the matter and its velocity on an appropriate space-
time boundary, which, for example, in the boost-invariant case discussed below,
can be taken to be a constant, longitudinal proper-time surface τ = √

t2 − z2 = τ0.
From the point of view of the hydrodynamical calculation, the initial conditions
can be provided either by a dynamical calculation of primary particle production
or by a reasonable parametrization, with the parameters either given by phys-
ical arguments or fixed by comparing (some of) the results with experimental
data.

There are different approaches to primary production, such as pQCD + final-
state saturation (minijet) (7) and the color glass condensate model (8) based on the
initial-state parton saturation (9). Both describe the produced matter as a parton
system. Also, models based on string formation and decay, such as the DPMJET
model (10), are used for the calculation of final hadron spectra. In such a model,
a varying fraction of energy is in the form of color strings at an early stage of
the collision, and they are not readily connected with a hydrodynamic descrip-
tion, which assumes particle-like constituents of matter. We do not consider string
models further, but we describe briefly parton-based approaches to the primary
production.

To illustrate different key factors that enter the determination of initial condi-
tions from dynamical calculation of particle production, we consider a perturbative
QCD calculation of parton production as an example. For such a calculation to
converge, a cutoff must be provided on small momentum-transfer collisions. In
this model, the cutoff is obtained from a saturation condition expressed in terms
of the transverse nuclear geometry and the number of produced partons. At col-
lider energies, the saturation scale turns out to be typically psat ∼ 1. . . 3 GeV,
which is clearly larger than 	QCD ∼ 0.2 GeV. Because this cutoff is smaller than
what is usually used in jet calculations, produced partons are often called minijets,
as partons close to the cutoff dominate the production. In addition to the cutoff,
the ingredients of the calculation are the parton-distribution functions of colliding
nuclei and the parton-parton cross sections. These cross sections can be calcu-
lated from basic QCD theory, but parton distributions must be provided from other
measurements.

The nuclear parton distributions are usually expressed in terms of parton distri-
butions of nucleons that, however, are known to be modified in nuclei. The nuclear
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modification factor RA(x, Q2) is the nuclear parton distribution normalized to a
single nucleon and divided by the parton distribution of a free nucleon.1

The perturbative QCD calculation of minijet production is a momentum-space
calculation, as is the case in most production models. To define the initial spa-
tial densities, a connection between the momentum of a produced parton and its
space-time formation point is needed. At collider energies, the hard partons of the
colliding nuclei are Lorentz contracted to a region on the order of 2RA/γcm � 1 fm.
We consider the collision region as a point in the longitudinal direction that allows
us to assume that the rapidity of the minijet coincides with the space-time rapidity
of the formation point y = η = (1/2) ln[(t + z)/(t − z)]. We take the formation
(proper) time to be the inverse of the saturation scale, τ0 = 1/psat. Thus, the minijet
matter forms along the hyperbola t = √

(z2 + τ 2
0 ) with initial longitudinal flow

velocity vz(τ0) = z/t . To determine the transverse distribution, we must start with
a calculation of production cross section.

To obtain the initial conditions for baryon-number density and energy density,
we first need the minijet cross sections for (anti)quarks and gluons and their first
moments in transverse energy (momentum) in nucleon-nucleon collision, each
calculated in a rapidity interval �y and integrated in pT from the saturation cutoff
pT = psat to its maximum value (11, 12):

σjet(psat,
√

s, �y, A) =
∫ √

s/2

psat

dpT
dσjet(

√
s, �y, A)

dpT
,

σjet〈ET 〉(psat,
√

s, �y, A) =
∫ √

s/2

psat

dpT pT
dσjet(

√
s, �y, A)

dpT
.

The total number of minijets and the total amount of transverse energy in �y in a
nucleus-nucleus collision are obtained by multiplying the corresponding nucleon-
nucleon cross section with the nucleon-nucleon luminosity of the collision (in-
cluding an extra factor of two for the number of minijets). This is given by the
overlap function TAB(b) of transverse densities TA(B)(s) of the colliding nuclei:

TAB(b) =
∫

d2sTA(|b − s|)TB(s) = TAB(b),

TA(s) =
∫ +∞

−∞
dzρA(z, s) = TA(s),

where b is the impact parameter and s is the transverse coordinate in nucleus A.
For example, the number of partons (which can be defined only in lowest order
because it is not an infrared-safe quantity at higher orders) produced in a central
zero-impact-parameter collision of equal nuclei is

�NAA = TAA(0)σjet(psat,
√

s, �y, A) 3.

1In the actual calculation, protons and neutrons are treated separately.
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in a rapidity interval �y. A similar expression with σjet replaced by σjet〈ET 〉 gives
�ET , the transverse energy of minijets, in �y.

Before discussing how to formulate the saturation condition to fix psat, we notice
that the average densities are obtained by dividing the total quantity with the volume
that corresponds to the rapidity interval �y, �V = �z AT = τ0�y π R2

A. This
procedure, with densities averaged over the transverse plane, is easily generalized
to local densities. The nucleon-nucleon luminosity in a transverse-area element
d2s is TA(|b − s|)TB(s)d2s, and the volume element is dV = �z d2s = τ�y d2s,
leading to (13)

npQCD(τ0, s) = d N

τ0�yd2s
= 2σjet

τ0�y
TA(|b − s|)TB(s) 4.

for the parton density and

εpQCD(τ0, s) = d ET

τ0�yd2s
= σjet〈ET 〉

τ0�y
TA(|b − s|)TB(s) 5.

for the energy density. The densities depend on the cutoff scale through the cutoff
dependence of cross sections.

The minijet cross sections above can be calculated separately for gluon, quark,
and antiquark jets, allowing for the separate determination of the densities of
quarks and antiquarks. From these cross sections the initial net baryon number
density is obtained as nB = (nq − nq̄ )/3, which provides the initial condition for
the net-baryon-number current that satisfies the conservation law (Equation 2).

Up to here, we have essentially discussed how to obtain from a boost-invariant
momentum-space calculation of production cross sections, σjet and σjet〈ET 〉, the
local densities nB and ε. To close the calculation of minijet cross sections, the
saturation momentum psat must be specified, and we do this by assuming that
the parton (mainly gluon) production saturates when the wave functions of pro-
duced partons start to overlap.

In the transverse direction, the scale of the wave functions is 1/psat. The scale
in the longitudinal direction is not as obvious, but we assume it is the same at
the production time τ0 = 1/psat. At this time, the volume occupied by particles
in the rapidity interval �y equals �V = τ0�y AT . At saturation, dividing this
volume with the volume occupied by one jet, Vjet, should equal the number of
produced partons �NAA in the rapidity interval �y. This leads to the condition

�NAA(psat,
√

s, �y, A)

�y

π

(psat)2
= AT = π R2

A. 6.

To avoid introducing a rather arbitrary cutoff parametrization at the nuclear
edges in transverse plane, we do not try to define the calculation of psat locally
in the transverse plane. Instead, an effective value psat, obtained from Equation 6
above, is used. Solving psat from this equation completes the calculation of primary
production in the pQCD + saturation model. The initial energy densities at 1/psat
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Figure 1 Transverse dependence of the initial energy distribution for a gold-on-gold

collision at the Relativistic Heavy Ion Collider (RHIC) (dashed line) and lead-on-lead

collision at the Large Hadron Collider (LHC) energy (solid line). The saturation scale

is psat = 1.16 GeV at RHIC and 2.03 GeV at LHC, with formation times of 0.170 fm/c

and 0.100 fm/c, respectively. The dashed-dotted line shows the energy density at LHC

if τi = 0.170 fm/c is used, emphasizing the strong dependence of initial energy density

on the assumed initial time.

at RHIC and LHC energies,
√

sNN = 200 and 5500 GeV, respectively, are shown
in Figure 1.

The above formulation of calculating the initial densities is applied in a central
rapidity bin |y| < �y. In the pQCD calculation, particle production depends on
the rapidity through the parton distributions of colliding nuclei. However, when we
use the results as initial conditions for the hydrodynamic calculation, we assume
that boost-invariance is a good approximation at y ≈ 0 and take the densities to
give the boost-invariant initial conditions with no η dependence.

An attractive approach to particle production in heavy ion collisions at collider
energies has been based on the assumption that the initial-state parton densities
saturate and nonlinear dynamics becomes dominant (9). With increasing collision
energy, the small-x partons, in particular the gluons, become the dominant part in
the production, and their density in the initial wave function of the nucleus becomes
so high that gluons interact coherently and their density saturates. The momentum
below which gluons saturate is called the saturation scale, Qs. It depends on the
collision energy

√
s and the mass number of the nuclei. From the point of view of

the color fields, the high density or large occupation numbers of the field quanta
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with momenta �Qs can be described as the formation of a color glass condensate.
This part dominates the primary production at large

√
s and can be treated in terms

of a classical effective field theory (1, 8). Quantum corrections to the classical
treatment have also been considered (14, 15; see also Reference 16 and references
therein).

In the effective field theory approach to gluon production in AA collisions, when
boost-invariance is assumed, a gauge can be chosen such that the problem can be
formulated as a dimensionally reduced 2+1–dimensional theory. A numerical
approach (17) with lattice regularization can be applied to the reduced theory.

The numerical calculations with lattice regularization started using SU(2) sym-
metry (18, 19) and other simplifications, such as cylindrical nuclei, but were soon
formulated for SU(3) (20, 21) and realistic nuclear geometry. Also, local color neu-
trality in the transverse overlap region of the collision (21) was imposed and other
smaller inconsistencies corrected, leading to a ratio of ET /N , which is consistent
with the physical interpretation of the saturation scale (22).

The lattice approach does not, however, give a value of the saturation scale
itself; the overall normalization must be obtained from elsewhere. For RHIC phe-
nomenology, the authors of Reference 21 suggest two sets of results, which, in light
of the latest results of Reference 22, lead to the following qualitatively different
descriptions of the final state:

1. In the case of a smaller scaleμ, the total transverse energy ET ∼ g4
s R2

Aμ3 pro-
duced from the classical fields roughly equals the experimentally measured
result, whereas the number of initially produced partons (N ∼ g2

s R2
Aμ2) is

only about half of the multiplicity of hadrons measured in the experiment.
In this case, the only change in the final state is the fragmentation of partons
to ∼2 hadrons on average. However, there would be no significant hydrody-
namic evolution because this would reduce the transverse energy below the
measured value. In this picture, which corresponds to the scenario suggested
by Kharzeev & Levin (23), one would expect the photon and lepton-pair
emission after the primary interactions to be very rare.

2. For a larger saturation scale, the number of partons is close to the measured
number of hadrons, but the initially produced transverse energy is approxi-
mately 2.5 times bigger than the measured one (22). In this case, production
must be followed by strong initial collective expansion in the longitudinal
direction, allowing for a transfer of energy into the longitudinal motion.
This case corresponds to the evolution suggested by pQCD + saturation +
hydrodynamics calculation (13).

The energy dependence in the above models enters through the dependence of the
saturation scales on the center-of-mass energy, leading, e.g., to the rather similar
growth of multiplicity from RHIC to LHC in both models.

For a head-on, zero-impact-parameter collision, the produced system is cylin-
drically symmetric, all quantities depend only on τ and r , and the transverse flow is
radial with no azimuthal dependence. We show results on hadron spectra displaying

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

6.
56

:1
63

-2
06

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
W

IB
60

45
 -

 U
ni

ve
rs

ity
 o

f 
Fr

an
kf

ur
t o

n 
07

/1
1/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



10 Sep 2006 11:4 AR ANRV290-NS56-05.tex XMLPublishSM(2004/02/24) P1: KUV

HYDRODYNAMIC MODELS 173

effects from radial flow. However, a good test for the applicability of the hydrody-
namic description of heavy ion collisions is provided by nonzero-impact-parameter
collisions without cylindrical symmetry. In our example of the calculation of pri-
mary densities, the expressions (4, 5) hold also for nonzero-impact-parameter colli-
sions. However, the determination of saturation scale becomes more involved, and
a straightforward generalization of the saturation condition (Equation 6) leads the
multiplicity to have a too-flat dependence on the number of participant nucleons,
a possible measure of noncentrality of the collision (24).

Above, the transverse dependence of the initial densities is given by the number
of collisions per unit transverse area: ncoll(b, s) ∝ TA(|b − s|)TB(s). In another
popular phenomenological approach, the initial densities are assumed to be pro-
portional to the number of participants, also known as wounded nucleons, per unit
transverse area.2 In the eikonal Glauber model, this is defined as

nWN(s; b) = TA

(
s + 1

2
b

)[
1 −

(
1 − σ TB

(
s − 1

2
b
)

B

)B]

+ TB

(
s − 1

2
b

)[
1 −

(
1 − σ TA

(
s + 1

2
b
)

A

)A]
, 7.

where σ is the nucleon-nucleon cross section. For a zero-impact-parameter col-
lision, this indicates, except at the edges of the nuclei, a radial dependence ap-
proximately proportional to the sum of thickness functions TA(r ) and TB(r ). In the
central region of the overlap area, the resulting density distribution is flatter than
when the density is proportional to the number of collisions. This means smaller
pressure gradients and slower evolution of transverse flow.

In the literature, both the proportionality to the number of binary collisions and
to the number of participants has been used to fix either the initial entropy density or
energy density. The proportionality constant is chosen to reproduce the measured
final particle multiplicity in most central collisions. The centrality dependence
of the multiplicity is then predicted by the model, but at RHIC, neither binary-
collision scaling nor wounded-nucleon scaling reproduces the data. However, a
linear combination of them does and is therefore used to describe the initial density
distribution (25, 26).

We have not yet specified the initial transverse velocity vT . Usually this is
taken to be zero. This choice is supported by the argument that the final state
in each primary collision is randomly oriented in the transverse plane, and thus
one expects the transverse-momentum average in any volume element to vanish.
There is a slight flaw in this argument because the transverse density of produced
partons is not constant, and this can lead to a nonzero momentum average in a

2Strictly speaking, wounded nucleons are nucleons that scatter inelastically, whereas par-

ticipants are nucleons that scatter elastically or inelastically. In the recent literature this

difference is usually ignored and both terms are used in the sense of participants.
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(finite) volume element. However, comparison to experimental data shows that for
agreement, only small initial transverse velocities are allowed. In the calculations
shown below, vT (τ0, r) = 0 has been used.

Because the use of hydrodynamics presumes thermal equilibrium, the time scale
for thermalization after the primary production must be fixed. The dynamics of
thermalization can be even more difficult to solve than that of primary production.
Results of theoretical studies of thermalization have not yet converged. In the so-
called bottom-up thermalization scenario (27), thermalization times are predicted
to be long, of the order of 2–4 fm/c. A more recent idea of the role of instabilities
in the expansion predicts much shorter thermalization times of order below 1 fm/c
(28).

The thermalization time scale is an important issue because a hydrodynamic
description of the elliptic flow can be achieved only if the thermalization time is
short. In the numerical examples we provide below, we always use thermalization
times below 1 fm/c. When showing results based on the minijet initial state, we
use the production time scale as the thermalization time, τi = 1/psat.

2.3. The Equation of State of Strongly Interacting Matter

A major complication in the description of the evolution of the matter produced
in a high-energy collision of nuclei is the change in the degrees of freedom. The
dense initial-state parton matter expands and turns into a gas of hadrons and hadron
resonances when dilute and cool enough. According to the present understanding,
at large μB and small or moderate T, there exist different correlated phases, such
as the phase with color-flavor locking (29). Nearing smaller μB , the transition
between hadron resonance gas and QGP is believed to be of first order when μB

is not too small. For two light quarks and one heavy quark, the phase boundary
is conjectured to end at a critical point, and below that the transition is a rapid
crossover. The quantitative theoretical information from QCD lattice simulations,
which have recently been extended from the T -axis to finite chemical potential,
supports this picture. There are also arguments in favor of the existence of strong
correlations in the quark matter close to the phase boundary. These may explain the
ideal-fluid behavior of QGP indicated by successful hydrodynamical explanation
of elliptic flow. When matter is assumed to be in the state of noninteracting quarks
and gluons, the ideal QGP, a simple ideal gas EoS of massless particles (P = ε/3)
is often used to describe it. A more sophisticated but less usual way is to use
parametrized lattice QCD results.

In heavy ion collisions at collider energies, the net-baryon number is small, with
μB � 50 MeV (30), indicating a crossover transition. Somewhat unexpectedly,
from the point of view of hydrodynamic expansion, the difference between a weak
first-order transition and a rapid crossover is not very significant, as long as the
EoSs are relatively similar away from the transition region and the increase in
entropy and energy densities around the critical temperature is sufficiently large
and rapid (31). Upon a closer look this is not so surprising because the main
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qualitative feature is a jump in the thermodynamical densities ε and s. The size of
this jump depends essentially on the size of the change of the number of degrees of
freedom. From the point of view of hydrodynamics, the rapid jump in ε combined
with a slower change in pressure appears as a softening of the EoS. It is seen
as a slowdown in the acceleration of the transverse flow in the transition region.
Details differ for the two cases, but the final features of flow are quite similar and
the quantitative differences in the final hadron spectra are small.

An interacting hadron gas can be described in good approximation as a gas of
noninteracting hadrons and resonances. The inclusion of resonances mimics the
effects of both attractive and repulsive interactions between hadrons reasonably
well (32). However, the repulsive interaction between baryons at large net-baryon
densities must be included as an additional mean field (33) or as an excluded
volume correction (34) to give a reasonable phase-transition behavior between
hadronic and partonic phases. A detailed account of constructing an EoS with a
mean field can be found, for example, in Reference 35.

In calculations, we use an EoS with ideal QGP in the high-temperature phase
and a hadron resonance gas with a mean field below the transition. A first-order
transition is implemented by introducing a bag constant B into the QGP phase
and connecting the two phases with a Maxwell construction. We use N f = 3, and
the bag constant B and mean field constant K are chosen to be B1/4 = 243 MeV
and K = 450 MeV fm3, respectively, giving Tc = 167 MeV for the transition
temperature.

An additional complication in constructing an EoS of a hadron gas relevant
for heavy ion collisions is the chemical composition of the hadron gas. The usual
assumption of hydrodynamics is that of chemical equilibrium. This assumption
is supported by thermal models that can reproduce the observed hadron abun-
dances by assuming a thermal source in T ≈ 170 MeV temperature. However,
many studies have found that the pT distributions of hadrons are better described
by assuming a colder, flowing source in T = 100–140 MeV temperature. Thus,
the assumption of chemical equilibrium between these temperatures is question-
able. In many hydrodynamical calculations, this observation is simply ignored
and chemical equilibrium is assumed to hold until kinetic freeze-out at T = 100–
140 MeV. In such cases, one can reproduce the slopes of the hadron pT spectra,
but it is not possible to reproduce simultaneously both baryon and antibaryon
yields.

One solution to this problem is the so-called single freeze-out model (36), in
which a suitable choice of freeze-out surface allows one to fit the pT spectra,
even if the kinetic freeze-out temperature is taken to be the same T ≈ 165 MeV
as the chemical freeze-out temperature. As we show below, in the context of
hydrodynamical models, a similar approach with T = 150 MeV can be used to
reproduce, at least approximately, the hadron pT distributions in most central
collisions at RHIC energies (36a). Whether the anisotropies of particle distri-
butions (see Section 3.3) can also be reproduced this way has not been tested
so far.

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

6.
56

:1
63

-2
06

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
W

IB
60

45
 -

 U
ni

ve
rs

ity
 o

f 
Fr

an
kf

ur
t o

n 
07

/1
1/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



10 Sep 2006 11:4 AR ANRV290-NS56-05.tex XMLPublishSM(2004/02/24) P1: KUV

176 HUOVINEN � RUUSKANEN

Another solution to this problem is to assume two separate freeze-outs—
chemical and kinetic—and to modify the EoS between these temperatures ac-
cordingly. In such an approach, the hadron yields are assumed to be fixed at some
chemical freeze-out temperature, usually soon below or at the phase-transition
temperature. These hadron yields are subsequently described as conserved cur-
rents, and each conserved hadron species is assigned a chemical potential. This
way the yields of all hadron species can be reproduced separately, even if a low
kinetic freeze-out temperature is used (37).

Such an EoS changes the buildup of collective motion—i.e., flow—very little
because pressure as a function of energy density, P = P(ε), is very similar to the
chemical equilibrium EoS (38, 39). However, temperature as function of energy
density changes radically, and when collective and thermal motion are folded to
calculate observable particle distributions, the results differ (39, 40).

2.4. Transverse Flow

To illustrate the transverse flow, Figure 2 shows the boundaries of QGP and hadron
gas, with the mixed phase between them. Also, three contours of temperature
are depicted, as well as the flow lines with 1-fm intervals starting at τ0. The
initial conditions are those from the pQCD + saturation model at RHIC energy√

sNN = 200 GeV.
According to this calculation, the maximum lifetime of the plasma phase is

5 fm/c, and that of the mixed phase is ∼8 fm/c. The flow lines show how the fluid
elements accelerate and move. The slope of the flow line is related to the velocity
of the fluid and the curvature to the acceleration. In the mixed phase, where the
pressure is constant, flow lines are straight because there is no acceleration. At
small r , gradients are small and the flow lines bend slowly. In particular, in a
plasma, when r increases, the pressure gradient, and consequently the acceleration,
increases, indicated by the faster bending of flow lines. Along the flow line starting
at r = 8 fm/c, the densities are small even at τ0, and this region is insignificant
in calculating the spectra. For calculational reasons the initial densities are taken
to go smoothly to zero, and the hydrodynamic equations are also solved at large
values of r .

3. HADRON DISTRIBUTIONS AND CORRELATIONS

3.1. Freeze-out and the Calculation of Hadron Spectra

As matter expands, distances between particles become large, collisions cease, and
momentum distributions freeze out. The condition for the freeze-out to occur is
usually expressed locally in terms of the energy density or temperature reaching
a given value. This determines a three-dimensional freeze-out surface σμ(x) in
space-time. The prescription of Cooper & Frye (41) convolutes the flow with the
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Figure 2 Temperature contours at 300 (in quark-gluon plasma, QGP), 150, and

120 MeV (in hadron resonance gas, HRG), and the boundaries of mixed phase (MP)

with QGP and HRG at Tc = 167 MeV. Flow lines are also shown. Initial conditions

are from a pQCD + saturation calculation at
√

sNN = 200 GeV. Note that the slope of

the flow line is related to the velocity and the curvature to the acceleration.

thermal motion along the freeze-out surface:

π
d N

d3p/E
= d N

dydp2
T

= π

∫
σ

dσμ(x)pμ f (x, p; T (x)) 8.

= g

2π

∞∑
n=1

(±1)n+1

∫
σ

rτ

[
−pT I1

(
nγrvr

pT

T

)
K0

(
nγr

mT

T

)
dτ

+ mT I0

(
nγrvr

pT

T

)
K1

(
nγr

mT

T

)
dr

]
. 9.

Equation 9 is valid for cylindrically symmetric, boost-invariant flow, with vr the
radial flow velocity, γr = 1/

√
1 − v2

r , and Ki and Ii are Bessel functions of second
kind.

The unstable particles are treated as follows: First, the spectra of all hadrons
and hadron resonances are calculated using Equation 9. We then follow the chains
of all possible two- and three-body decays and collect the spectra of final stable
hadrons (42). Stable hadrons can either be interpreted as all those that do not
decay through strong interactions, or we can follow the feed-downs via weak
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Figure 3 The effect of flow on the spectrum of kaons.

Temperature is unchanged and the spectrum is shown for

radially flowing matter at velocities vr = 0, 0.6, and 0.8.

and electromagnetic decays, e.g., we can calculate the π0 spectrum including
both the π0s at freeze-out and all the decays that lead to π0s, and then study the
photon spectrum from π0 decays alone or from all decays with photons in the
final state. Phenomenologically, an important case is that of feed-down nucleons
from weak decays of strange hyperons. Here again, we can calculate, for example,
the spectrum of 	s and then see how it contributes through weak decays to the
spectrum of protons.

Before showing our results at RHIC and LHC energies, we discuss how the
radial flow affects a spectrum. In Figure 3 we show the spectrum of kaons from
matter at rest or flowing at velocities vr = 0.6 and 0.8. We assume that the matter
decouples at a fixed time so that only the second term in Equation 9 contributes. The
temperature of the matter is the same in each case and is essentially the inverse of
the logarithmic slope of the spectrum for vr = 0. From the asymptotic properties
of modified Bessel functions of second kind, it is clear that at large mT the change
in the slope, when vr changes to a nonzero value, can be expressed by replacing
the temperature T with an effective temperature Teff = T

√
(1 + vr )/(1 − vr ). For

vr = 0.6 the change is a factor of two, and for vr = 0.8 a factor of three.
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3.2. Transverse Momentum Spectra of Hadrons

Next we compare some of the hydrodynamical results (43) with the experimental
transverse momentum spectra measured by the STAR (44–47), PHENIX (48–53),
PHOBOS (54, 55), and BRAHMS (56–58) collaborations for the most central bins
in Au + Au collisions at

√
sNN = 130 and 200 GeV. The calculated spectra are

obtained by using Equation 9 with the flow illustrated in Figure 2.
Note that a hydrodynamic calculation cannot describe the hadron spectra at

large transverse momenta. At large pT , the hydrodynamical calculation shows
an approximate exponential behavior, whereas the tails of measured spectra es-
sentially obey a power law. At RHIC, the transition from steep exponential to a
shallower power behavior takes place at pT ∼ 3 GeV. The fraction of hadrons
with pT � 3 GeV from all hadrons is small, and they originate from the fragmen-
tation of high-energy partons, which suffer some energy loss in the dense medium
of low-energy partons, but are not thermalized. We return to the interplay of the
low-energy partons, which provide the main transverse energy and are assumed
to thermalize, and the high-energy partons, which lose some fraction of energy in
rescattering but require a much larger system for thermalization.

We start with the pT spectra of identified hadrons at midrapidities. Figure 4
shows the PHENIX data collected for positive pions, kaons, and protons in the
most central 5% of Au + Au collisions for y = 0 at

√
sNN = 130 GeV (50).

Similarly, in Figure 5, STAR (46), PHENIX (52), and BRAHMS (57, 58) data
are shown at

√
sNN = 200 GeV. Note the scaling factors 10 and 1000 for kaons

and protons, respectively. An important issue of uncertainty in the calculation
is the dependence of the results on the decoupling temperature. This is shown
by plotting the results for freeze-out temperature Tdec = 150 MeV (solid lines)
and 120 MeV (dotted lines). Note that the normalization of the pion spectrum
is almost independent of the decoupling temperature. Because pions provide the
main contribution to the total multiplicity, d Ntot/dy depends only weakly on Tdec.
However, the multiplicity of heavier particles is very sensitive to Tdec, as expected.
The shape of all three spectra changes clearly with the decoupling temperature.
This follows from the increase in flow velocity, characterized by the increase of the
effect with the increasing mass of the particle. The aim of this calculation has not
been to find a best fit to the data, but the results show that both the normalization
and the slope of the data at momenta pT � 3 GeV can be described quite well with
a single Tdec in the neighborhood of 150 MeV.

For the identified particles in Figures 4 and 5, the measured spectra do not extend
to large enough pT to show clearly the deviation from the hydrodynamic results,
with the exception of the proton spectra. If the decoupling temperature is 150
MeV to reproduce the normalization, the slope tends to be too steep. The proton
yield from jet fragmentation, as explained in detail in Reference 43, does not seem
to be large enough in the pT ∼ 3 . . . 5 GeV region to bring the calculation into
agreement with the data. In Figure 6, the spectra of two other heavy particles are
shown, those of antilambdas and antiprotons. These show the same trend as protons,
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Figure 4 Transverse momentum spectra of positive pions, positive kaons, and protons

at y = 0 in the most central 5% of Au + Au collisions at
√

sNN = 130 GeV. The

solid and dotted lines indicate our hydrodynamic results for freeze-out temperature

Tdec = 150 MeV and Tdec = 120 MeV, respectively. The PHENIX data (50) is plotted

with the given total error bars. Note the scaling factors 10 and 1000 for kaons and

protons, respectively. Both the hydrodynamic result and the PHENIX data contain the

feed-down contributions from hyperons. RHIC, Relativistic Heavy Ion Collider.

pointing to the need for separate chemical and kinetic decoupling when describing
simultaneously the details of all spectra. Studies with separate chemical and kinetic
decoupling, in which the stable particle numbers are fixed after chemical freeze-
out, indeed show that the spectra of pions and kaons become almost independent of
the kinetic decoupling temperature Tdec,kin, whereas the (anti)proton spectra widen
with decreasing Tdec,kin (39, 40). There are, however, claims in the literature that
separate chemical and kinetic decoupling lead to a worse overall fit to the slopes
of pT distributions than what can be achieved by requiring chemical equilibrium
until kinetic freeze-out (59, 60). Studies exploring the effects of initial time, the
shape of initial distributions, and the value of Tdec,chem while using two separate
freeze-outs are needed to settle the issue.

The range between which hydrodynamics can be used to describe the hadron
spectra is indicated clearly in Figure 7, which shows results from our hydrody-
namical calculations and from a pQCD jet calculation, followed by an energy loss
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Figure 5 Transverse momentum spectra of positive pions, positive kaons, and protons

at y = 0 in the most central 5% of Au + Au collisions at
√

sNN = 200 GeV. The

solid and dotted lines indicate our hydrodynamic results for freeze-out temperature

Tdec = 150 MeV and Tdec = 120 MeV, respectively. The PHENIX data (52) and the

BRAHMS data (57, 58) are shown with statistical errors, and the STAR data (46) with

the given total error bars. The hydrodynamic calculation and the PHENIX data are

without the hyperon feed-down contributions, whereas the STAR and BRAHMS data

contain the feed-down. RHIC, Relativistic Heavy Ion Collider.

in the medium before the jet fragments into hadrons (see below). The STAR and
PHOBOS data are plotted with the given total error bars, the PHENIX data by
adding the given statistical and systematic errors in quadrature, and the BRAHMS
data with the given statistical error bars.

The transverse spectrum up to ∼3 GeV is similar to that of the dominant pion
component shown separately in Figure 5. It has the shape typical of the spectrum
from hydrodynamic calculations, falling off roughly exponentially. In the region
pT ∼ 3 . . . 4 GeV, there is a large change in the slope, indicating a change in the
overall production mechanism. The calculation of primary production proceeds
through the hard and semihard interactions between the partons of the incoming
nuclei, both in the case of initial conditions for hydrodynamical equations and the
energy loss of the jets. In the hydrodynamic calculation, the produced partons are
assumed to thermalize quickly and then undergo hydrodynamic expansion in local
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Figure 6 Transverse momentum spectra of antiprotons and antilambdas at y = 0 in

the most central 5% of Au + Au collisions at
√

sNN = 130 GeV. Our hydrodynamic

results are for freeze-out temperature Tdec = 150 MeV (solid line) and Tdec = 120 MeV

(dotted line), with hyperon feed-down contributions included, as in the PHENIX p̄ (50)

and 	̄ (51) data and the STAR data (47). RHIC, Relativistic Heavy Ion Collider.

thermal equilibrium until the freeze-out. In the calculation of jet fragmentation
after energy loss, the produced high-energy partons are assumed to survive the
thermalization, but lose energy when traversing the thermal medium formed by
the lower-energy partons. When energy loss and fragmentation are taken into
account, the original energy of the partons that fragment to hadrons of pT � 3
GeV must be of the order of ∼6 GeV or greater. It turns out that the contribution
of partons with pT � 4 GeV to the production of (transverse) energy is less than
5%, justifying the assumption that all produced transverse energy is thermalized.
The details of the jet-energy loss and fragmentation calculation are explained in
References 43 and 61.

Although the two-component approach, hydrodynamically expanding thermal
matter as the source of low-pT hadrons and jet fragmentation after energy loss pro-
ducing the high-pT hadrons, seems reasonable and justified, adding them straight-
forwardly would be too naive. In the region of turnover from one mechanism to
the other, both contribute, but part of the hadrons cannot be assigned to either com-
ponent. Other mechanisms like recombination can also contribute in this region

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

6.
56

:1
63

-2
06

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
W

IB
60

45
 -

 U
ni

ve
rs

ity
 o

f 
Fr

an
kf

ur
t o

n 
07

/1
1/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



10 Sep 2006 11:4 AR ANRV290-NS56-05.tex XMLPublishSM(2004/02/24) P1: KUV

HYDRODYNAMIC MODELS 183

0 1 2 3 4 5 6 7 8 9 10 11 12

pT [GeV]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

103

[1
/G

eV
]

0 1 2 3 4 5 6 7 8 9 10 11 12

T [GeV]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

103

1/
2

p T
T

dN
/d

p
d

2 ]

Tdec = 150 MeV
Tdec = 120 MeV
pQCD
pQC

RHIC Au+Au
s1/2 = 200 AGeV

STAR 0–5%
PHENIX 0  5%
PHOBOS 0  6%
BRAHMS 0   10%

(h-+h+)/2

D + E-loss

Figure 7 Transverse momentum spectra of charged particles at η = 0 (averaged over

|η| ≤ 0.1) in the most central 5% of Au + Au collisions at
√

sNN = 200 GeV. Our

hydrodynamic results are shown for Tdec = 150 MeV (solid line) and Tdec = 120 MeV

(dotted line). The pQCD fragmentation results are shown with (shaded band) and

without (dashed line, see text) energy losses. The data is taken by STAR (44), PHENIX

(48), PHOBOS (54), and BRAHMS (56).

(61a). Accurate data in this area would be useful in understanding both the energy
loss and thermalization of produced partons.

As an example of the dependence on the collision energy,
√

sNN , Figure 8 shows
an extension of the calculation to the CERN LHC, with

√
sNN = 5500 GeV for the

heavy ion collisions. In the calculation of initial conditions from the primary parton
interactions, all parameters are fixed except for the collision energy. The saturation
scale changes from psat = 1.16 GeV at RHIC energy to psat = 2.03 GeV at LHC.
The total multiplicity increases from d Ntot/dy ≈ 1000 at RHIC to 4500 at LHC.
The initial thermal densities are higher and lead to longer expansion and stronger
transverse flow at the decoupling. This is seen in the change of the region where
the component of thermal particles goes over to the component of particles from
jet fragmentation with energy loss. At RHIC the transition is centered around
pT ∼ 3 GeV, whereas at LHC it is predicted to be pT ∼ 5 GeV. The larger pT

region where thermal particles dominate should also be seen in elliptic flow. At
the present RHIC energies, the hydrodynamic predictions of elliptic flow start

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

6.
56

:1
63

-2
06

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
W

IB
60

45
 -

 U
ni

ve
rs

ity
 o

f 
Fr

an
kf

ur
t o

n 
07

/1
1/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



10 Sep 2006 11:4 AR ANRV290-NS56-05.tex XMLPublishSM(2004/02/24) P1: KUV

184 HUOVINEN � RUUSKANEN

0 1 2 3 4 5 6 7 8 9 10 11 12

pT [GeV]

10-5

10-4

10-3

10-2

10-1

1

10

102

103

1/
2

p T
dN

/d
p T

d
[1

/G
eV

2 ]

(h-+h+)/2
LHC Pb+Pb
s1/2 = 5500 GeV
5% most central

Hydro

pQCD

pQCD +E-loss

Figure 8 Predictions for the transverse momentum spectra of charged hadrons at

η = 0 in the most central 5% of Pb + Pb collisions at Large Hadron Collider (LHC)

energy
√

sNN = 5500 GeV. The shaded band in the hydrodynamic results shows the

freeze-out temperature interval 120–150 MeV. The solid curve labeled pQCD corre-

sponds to the pQCD fragmentation results without energy losses. The shaded band

labeled pQCD + E-loss describes the uncertainty in the pQCD fragmentation results

with energy losses.

to overshoot the data above pt ∼ 2 GeV, but if the thermal component grows
as predicted in Figure 8, the parameter of elliptic flow, v2, should follow the
hydrodynamical calculation to larger transverse momenta.

3.3. Elliptic Flow

The particle production in primary collisions is azimuthally isotropic, whereas the
reaction zone in noncentral collisions is not, but has an elongated shape. If produced
particles rescatter, the particles moving in the direction of the longer axis of the
reaction zone are more likely to change their direction than the particles moving
in the direction of the shorter axis. Therefore, the observed emission pattern of
particles will be azimuthally anisotropic, and the more frequent the rescattering,
the more anisotropic the particle distribution.

In this way, the anisotropy of the final particle distribution is a measurement
of the frequency of rescatterings during the dense phase of the collision. This
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anisotropy can be quantified as the coefficients of the Fourier expansion of the
azimuthal particle distribution (62):

dN

dydφp
= dN

2πdy
(1 + 2v1 cos(φ − φR) + 2v2 cos 2(φ − φR) + · · ·),

dN

dydpT dφp
= dN

2πdydpT
(1 + 2v1(pT ) cos(φ − φR) 10.

+ 2v2(pT ) cos 2(φ − φR) + · · ·),
where φR is the azimuthal angle of the event plane (the plane spanned by the beam
direction and the impact parameter). Assuming that the experimental uncertainties
in event-plane reconstruction can be corrected for, each event can be rotated such
that φR = 0. The first and second coefficient of the expansion, v1 and v2, are
usually referred to as directed and elliptic flow, respectively. Because the system
is usually thinner in the direction parallel to the impact parameter, the in-plane
direction, than in the out-of-plane direction, the value of v2 is positive.

At midrapidity, all uneven coefficients are zero owing to symmetry. At SPS
and RHIC energies, the directed flow, v1, is expected to be very small and most of
the experimental and theoretical interest has been directed toward measuring and
analyzing the elliptic flow, v2. Recently, the higher harmonics, v4, v6, and v8 have
also been measured (63–65).

In a hydrodynamic picture, the buildup of momentum anisotropies is easy to
understand in terms of pressure gradients. The average pressure gradient between
the center of the system and the surrounding vacuum is larger in the direction
where the collision system is thinner. Therefore, the collective flow is stronger in
that direction and more particles are emitted there than in the orthogonal direction,
where the collision system is longer.

As mentioned above, the more the particles rescatter, the larger the observed
anisotropy. Because hydrodynamics assumes practically infinite scattering rate and
zero mean free path, it is often assumed to give an upper limit of anisotropy at
fixed impact parameter (25). However, this upper limit depends on the EoS and, in
principle, it is possible that hydrodynamical description with very soft EoS would
give a smaller anisotropy than, for example, a microscopic cascade description
(66).

If the freeze-out happens at the same temperature for all particle species, a
signature of hydrodynamic flow is that the heavier the particle, the flatter the slope
of its pT spectrum. Similarly, the pT -averaged elliptic flow v2 increases when
particle mass increases. However, the pT -differential elliptic flow v2(pT ) has the
opposite behavior: The heavier the particle, the smaller the anisotropy at fixed pT .
The apparent discrepancy has a simple explanation: v2 is not an additive quantity,
but when pT -averaged v2 is calculated from pT -differential v2(pT ), the latter is
weighted by the particle distribution. Thus, the flatter pT distribution of a heavier
particle weights more the high-pT region, where v2(pT ) is larger. Therefore, even
if v2(pT ) is smaller at all pT for a heavier particle, the pT -averaged v2 can be larger
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than v2 for a light particle. Whether this happens in practice and how large the
differences are depend on the details of the flow profile, i.e., expansion dynamics,
and the resonance decays.

The mass ordering of the low-pT anisotropy has its origin in the behavior of
boosted particle distributions. As is well-known, transverse flow shifts the pT

distributions to larger values of pT . In the extreme case in which the speed of the
collective motion is the same everywhere, as in the case of a thin shell expanding
with a velocity v, the particle distribution develops a maximum at some finite pT

[the so-called blast-wave peak (67)] and a local minimum at pT = 0. The heavier
the particle, the larger the pT at the peak. Compared with a case without transverse
flow, the particle yield is thus depleted at low pT . The heavier the particle and the
larger the flow velocity vT , the larger the depletion. Correspondingly, if the flow
velocity is larger in the in-plane than in the out-of-plane direction, the low-pT

depletion is larger for particles moving in the in-plane direction than the out-of-
plane direction and the overall anisotropy, v2, is reduced. This reduction and the
range in which it occurs increase with the particle mass and average transverse
flow velocity. In the extreme case of a thin expanding shell, this reduction can
be so strong that it reverses the sign of the anisotropy and v2 becomes negative.
When the thin shell is replaced by a more realistic velocity profile, the peak in
transverse-momentum distribution disappears. Similarly, a more realistic velocity
distribution weakens the reduction of v2 at low pT , but the mass ordering of v2 at
low pT remains. Whether some particles depict positive or negative v2 at low pT

depends on the details of the flow velocity of the source.
For relativistic pT > m, the particle mass does not play any role in the thermal

distribution and, consequently, v2(pT ) of different particles converge. In a simple
model in which the flow-velocity profile is replaced by its average value, v2(pT )
increases with pT and approaches unity asymptotically. The details of the flow-
velocity profile can change this behavior, but so far no hydrodynamical calculation
has reproduced the experimentally observed saturation of elliptic flow.

3.3.1. CENTRALITY DEPENDENCE In a hydrodynamic description, the final aniso-
tropy of particles is almost directly proportional to the geometrical anisotropy of
the initial state (68). The proportionality is, however, nontrivial and depends on
the applied decoupling criterion. When the impact parameter increases and the
collision becomes more peripheral, the collision system becomes more and more
elongated and its geometric anisotropy increases. We can thus expect the observed
momentum anisotropy to increase as well. The data in Figure 9 shows increasing
elliptic flow with decreasing centrality both at SPS and RHIC energies, but the
magnitude of the flow differs from the hydrodynamical result. At SPS energy the
data is consistently below the calculation, whereas at RHIC energy (

√
sNN = 200

GeV in Figure 9) the data is reproduced up to semicentral collisions but is below
the calculation at peripheral collisions.

The failure of hydrodynamics to describe the anisotropy in most peripheral
collisions and at SPS energy is often explained by a lack of necessary
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Figure 9 Elliptic flow v2 of charged hadrons as a function of centrality at (top panel)
Pb + Au collisions at

√
sNN = 17.3 GeV measured by CERES (69) and at (bottom

panel) Au + Au collisions at
√

sNN = 200 GeV measured by STAR (64). Hydrodynam-

ical calculations are taken from References 31 and 69. Note that the hydrodynamical

results are not directly comparable because of different pT cuts implemented.

thermalization owing to the small size and/or particle number of the collision
system (70). An alternative explanation assumes that the initial partonic state is
sufficiently thermalized, but the final hadronic state has such a large viscosity that
it cannot be modeled using ideal-fluid dynamics (71). The latter approach has been
tested using so-called hybrid models in which the plasma phase and phase transi-
tion are described using ideal hydrodynamics, but the hadron phase is described
using a cascade model (60, 71–73). The centrality dependence of pT -averaged
elliptic flow at RHIC has been reproduced nicely using such a hybrid approach
(60, 71), but the results for pT differential v2 at

√
sNN = 200 GeV collision energy

are not available at the time of this writing.
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The beginning of this section argued that hydrodynamics leads to the largest
possible anisotropy. However, at most central collisions at RHIC, the data tend
to be above the hydrodynamical calculation. Fluctuations in the shape of the ini-
tial system may explain this. Owing to these fluctuations, the initial shape of
some events in almost-central collisions can be in-plane elongated, even if the
shape in most events is out-of-plane elongated. Thus, elliptic flow is negative in
some events, but because experimental analysis measures the magnitude of the
anisotropy, not its sign, elliptic flow is measured as positive in all events, and the
measured value is larger than the average value. The initial state of a hydrody-
namical calculation, however, is an average initial state in which fluctuations of
the spatial anisotropy cancel each other and the calculated anisotropy is smaller
than measured (74). Preliminary calculations in which the initial-state fluctuations
are included favor this interpretation by leading to better reproduction of the data
(75).

The general trend is that a stiffer EoS and a lower freeze-out temperature lead
to larger pT -averaged flow if nothing else in the model is changed. This also
changes the single particle distributions. If these are still required to fit the data,
additional changes are required. For example, a stiffer EoS usually necessitates a
higher freeze-out temperature. The combined effect largely cancels and the final
pT -averaged anisotropy is almost unchanged in semiperipheral collisions in which
a hydrodynamical description works best (31).

3.3.2. MOMENTUM AND PARTICLE SPECIES DEPENDENCE Hydrodynamic calcula-
tions at SPS and RHIC energies lead to anisotropy, which increases with increas-
ing pT and approaches unity asymptotically. Simple parametrizations of flow (so-
called blast-wave models) also lead to this kind of behavior, which differs from
experimental observations in which v2 saturates at high pT . At midrapidity, the
agreement between the data and calculations depends on energy in the same way
as for the centrality dependence: At SPS energies the calculations overestimate
the data, whereas at RHIC energy a good agreement can be reached. The pT range
in which the data can be reproduced depends on the particle species. Charged
hadrons and pions can be fit up to pT ≈ 1.5 GeV/c, whereas protons follow the
calculations up to pT = 2.5–3 GeV in minimum-bias collisions. This behavior
is qualitatively similar to that seen in Figures 4 and 5 for transverse momentum
spectra, where hydrodynamically calculated spectra fit the data up to pT ∼ 3 GeV.

A hydrodynamic description predicts a characteristic mass dependence of ellip-
tic flow at low pT . The higher the mass, the lower the v2. How large this difference
is depends on the details of the flow profile and therefore on the EoS. If chemical
equilibrium in the hadronic phase is assumed, the differential anisotropy of pions
can be well reproduced when the pT spectra of pions is reproduced. In such a case,
the proton v2(pT ) depicts sensitivity to the phase transition. If the phase transition
takes place in a narrow temperature interval and has large latent heat, the proton
differential anisotropy can almost be reproduced. If there is no phase transition,
the calculated proton anisotropy is clearly above the data (31).
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Figure 10 Pion (top panel) and antiproton (bottom panel) v2(pT ) at midrapidity in

minimum-bias Au + Au collisions at
√

sNN = 200 GeV. Hydrodynamical results are

labeled CE for chemical-equilibrium result (31), PCE for chemical-nonequilibrium

result (39, 60; T. Hirano, personal communication), and H + C for hydro + cascade

hybrid model at
√

sNN = 130 GeV energy (71). The data are taken by STAR (76) and

PHENIX (77).

The status of strange particles is less satisfactory. Kaons and 	-baryons show
similar dependence on the EoS than protons, but the difference between the data
and hydrodynamic calculation is larger than in the case of protons (31).

Unfortunately, it is not yet possible to use the apparent sensitivity of proton
v2(pT ) to the EoS to quantitively constrain the EoS. If the requirement of chem-
ical equilibrium is relaxed and one uses separate chemical and kinetic freeze-out
temperatures, the fit to pion v2(pT ) is lost (see Figure 10 and Reference 39). How-
ever, if the hadronic phase is described using the RQMD transport model, as in
Reference 71, for the

√
sNN = 130 GeV collision energy, the yields are correct and

the v2(pT ) is described as well as in the case of chemical equilibrium. Thus, there
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is a considerable uncertainty in the description of the hadronic stage of the evolu-
tion, which makes it impossible to draw final conclusions about the EoS needed
to describe the differential anisotropy.

Another uncertainty here is the effect of viscosity. The ability of ideal-fluid
hydrodynamics to reproduce the v2 data at RHIC has been interpreted to mean that
the value of shear viscosity in QGP is particularly low (59, 78). However, viscosity
has been estimated to decrease elliptic flow (4), and chemical nonequilibrium
increases elliptic flow (39, 40). Hirano & Gyulassy have argued that the plasma
has sufficiently low viscosity to allow its modeling using ideal hydrodynamics,
but the dissipative effects in the hadronic phase are the reason for the failure of
chemically nonequilibrium hydrodynamics to describe the data (59). This claim
seems to be validated by the ability of hybrid models to describe the data, but
final conclusions must wait for the complete results of hybrid calculations and the
results of viscous calculations (5, 79).

3.3.3. PSEUDORAPIDITY DEPENDENCE The pT -averaged elliptic flow has quite a
strong dependence on pseudorapidity (76, 80–82). In a narrow region around
midrapidity, |η| < 1, elliptic flow remains approximately constant (76, 83) but
decreases strongly toward larger pseudorapidities. However, the charged particle
multiplicity depicts a much wider plateau around midrapidity than does elliptic flow
(84).

The purely hydrodynamic calculations have not reproduced the pseudorapidity
dependence of elliptic flow, although the same calculations reproduce the multi-
plicity as a function of pseudorapidity (85, 39). However, a hybrid model that repro-
duces the centrality dependence of elliptic flow also gives a reasonable description
of its pseudorapidity dependence (60). The failure of ideal-fluid hydrodynamics
has been interpreted in the same way as in the case of centrality dependence—
either as an incomplete thermalization of the system at large rapidities from the
beginning (70) or as an effect of viscosity and incomplete thermalization at the late
stage (60). There are also other open questions in the hydrodynamic treatment that
may affect the results: The initial shape of the system, large deviations from boost-
invariant flow, and different thermalization time and freeze-out temperature at
different rapidities could all affect the final anisotropy and are mostly unexplored.
It is therefore possible that the thermalized region where hydrodynamics works at
RHIC energy is relatively narrow in rapidity, but final conclusions cannot be drawn
yet.

3.4. Two-Particle Bose-Einstein Correlations

Information about the space-time structure of the system formed in a heavy-ion
collision can be obtained by measuring the low-momentum correlations of identical
particles. For bosons these correlations are called Bose-Einstein correlations, and
the method for their interpretation is termed HBT interferometry, according to
the originators of this method (86). Here we show only the basics of the HBT
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formalism as applied to hydrodynamic models and its most important results. A
detailed explanation about this technique can be found in Reference 87, and the
present status is discussed in recent reviews (88, 89). HBT in hydrodynamical
context is discussed more throughly in Reference 90.

Intensity interferometry is based on an analysis of the two-particle momentum
correlation function,

C(q, K ) = E1 E2
d N

d3 p1d3 p2

E1
d N
dp1

E2
d N
dp2

, 11.

that is, the ratio of a two-particle distribution and a product of two one-particle
distributions. The correlator is usually written in terms of the momentum dif-
ference between the two particles, q = p1 − p2, and their average momentum,
K = 1

2
(p1 + p2). If the particles are emitted independently (chaotic source) and

propagate freely from the source to the detector, the two-particle distribution is
not equal to the product of one-particle distributions. At small values of relative
momentum q , it is larger than the product of one-particle distributions owing to
quantum statistical (wave-function symmetrization) effects.

If there are no final-state interactions (or the spectra are corrected for them),
the two-particle correlator C(q, K ) is related to the emission function S(x, K ):

C(q, K ) ≈ 1 +
∣∣∣∣
∫

d4x S(x, K )eiq·x∫
d4x S(x, K )

∣∣∣∣
2

. 12.

The emission function S(x, K ) is the Wigner phase-space density of the emitting
source. In the derivation of Equation 12 the emission function is assumed to be suf-
ficiently smooth, i.e., S(x, K ) ≈ S(x, K + 1

2
q) (see Reference 87). Because both

p1 and p2 are on-shell, the average momentum K is, strictly speaking, off-shell.

In practice, however, on-shell approximation for K is used: K0 ≈
√

K 2 + m2.
In the hydrodynamic approach, the quantum-mechanical Wigner phase-space

density is replaced by a classical phase-space density at the time of freeze-out.
When Cooper-Frye formalism is applied, it is given by

S(x, K ) = g

(2π )3

∫
dσμ(x ′)K μδ4(x − x ′)

exp{[K · u(x ′) − μ(x ′)]/T (x ′)} ± 1
. 13.

It is not possible to define uniquely the source function S(x, K ) from the mea-
sured correlation function C(q, K ). The experimental data of two-particle correla-
tions are therefore presented using some ansatz for the the source function. Usually
this is done using a Gaussian form for the correlator. If the collision system is fur-
ther approximated to be boost-invariant, the correlator for central collisions can
be written in a particularly simple form in terms of three HBT radii:

C(q, K ) ≈ 1 + exp
[−R2

o(KT )q2
o − R2

s (KT )q2
s − R2

l (KT )q2
l

]
. 14.

In this so-called Bertsch-Pratt parametrization, the coordinate directions are de-
fined in such a way that out- (Ro) and long-direction (Rl) are parallel to K T and
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beam, respectively, whereas the side-direction (Rs) is perpendicular to both K T

and beam. In a boost-invariant approximation, the radii depend only on the magni-
tude of KT because the particle emission in central collisions does not depend on
the azimuthal angle φ and boost-invariance means that there cannot be any rapidity
dependence.

These radii do not correspond to the actual physical size of the source, but
rather characterize so-called regions of homogeneity, the regions where particles
with particular pT are most likely emitted. For a Gaussian source, the HBT radii
measure the following different combinations of space-time variances of the system
(90):

R2
s (KT ) = 〈

x̃2
s

〉
(KT ), 15.

R2
o(KT ) = 〈(x̃o − β⊥ t̃)2〉(KT ) and 16.

R2
l (KT ) = 〈

x̃2
l

〉
(KT ), 17.

where β⊥ = KT /K 0 is the transverse pair velocity and space-time coordinates x̃
are defined as distances from the effective source center x̃μ(KT ) = xμ−〈xμ〉(KT ),
where brackets denote weighted averages over the source function S(x, K ):

〈 f (x)〉(K ) =
∫

d4x f (x)S(x, K )∫
d4x S(x, K )

. 18.

The radii are thus independent of the actual coordinates of the emission, but are
sensitive to variances of the geometry.

Hydrodynamic calculations for RHIC energies predicted that a phase transition
from a plasma to a hadron gas would increase the lifetime of the system (91).
The long lifetime was predicted to increase the β⊥ t̃ term in Equation 16 and thus
increase the Ro radius and make the ratio Ro/Rs large. The experimental data,
however, shows no sign of this kind of effect and yields a ratio of Ro/Rs ≈ 1.

Figure 11 shows some of the hydrodynamic calculations for the HBT radii at
RHIC energy. Hydrodynamic calculations with assumed boost-invariance, chem-
ical equilibrium, and a first-order phase transition (CE, solid line) tend to lead to
a too small sideward radius Rs , too large outward and longitudinal radii Ro and
Rl , respectively, and especially to a too large ratio Ro/Rs (25). Both Ro and Rl

can be smaller if the system decouples sooner, i.e., in higher temperature, but such
an approach leaves Rs basically unchanged and distorts the single particle spectra
(26, 90). To a lesser extent, the same effect can be achieved by decreasing the
initial time or increasing the transverse flow by a nonzero initial-velocity field, but
neither of these approaches changes the too small Rs (25).

Another way to reduce the longitudinal radius Rl is to relax the boost-invariant
approximation (39, 95). When this approach is used with an EoS with separate
chemical and kinetic freeze-outs (PCE, dashed line), Rl is close to the data. Both
Ro and Rs move closer to the data but are still too large and small, respectively.
This approach also leads to problems with the elliptic anisotropy (see Section 3.3).
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Figure 11 Pion source radii in Au + Au collisions at
√

sNN = 200 GeV. Hydrody-

namical results are labeled CE for boost-invariant chemical-equilibrium result (25),

PCE for nonboost-invariant result with separate chemical and kinetic freeze-outs (39,

60; T. Hirano, personal communication), and H + C for hydro + cascade hybrid model

(92). The data are taken by the STAR (93) and PHENIX (94) collaborations.

An approach that brings Rs close to the data chooses a wide but flat initial
distribution (95), which leads to slower buildup of flow from an initially larger
source. In that case, the problem is again Ro, which is too large. This is expected
because Ro is sensitive to the lifetime of the system, which becomes relatively
large in this approach.

One way to reduce the lifetime of the system and thus Ro is to change the EoS.
As mentioned, one of the suggested signatures of a first-order phase transition is a
long lifetime and large Ro. If one uses an EoS with a smooth crossover instead of
a first-order phase transition, Ro decreases and Rs increases (96). Unfortunately,
even in that case, no good fit to the data is achieved. It is also questionable how
this change in EoS would affect the elliptic anisotropy (31).

Grassi et al. have suggested that the discrepancy between the data and calcu-
lations is due to too simple a treatment of freeze-out on a sharp hypersurface,
and a more realistic continuous emission of particles would lead to better re-
sults (97). However, when this is accounted for effectively in hybrid models in
which the hadronic stage is described using a cascade transport model, the results
are even worse (92). The particles are emitted from larger, longer-lasting volume
than in a simple hydrodynamic description, and correspondingly, Rs is larger and
reproduces the data (H + C, dotted line in Figure 11). Unfortunately, the longer
lifetime also leads to an even larger Ro.
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Another possible reason for the discrepancy between the data and calculations
is viscosity (4, 98). Initial calculations (5) show that it has the desired effects, but
whether they are large enough remains to be seen. Again, the effect of viscosity on
elliptic flow is large, and it is unknown if a viscous model could reproduce both
the HBT radii and elliptic anisotropy.

4. ELECTROMAGNETIC EMISSION

All the observables described in the previous section are hadronic observables. By
definition, the hadrons of the system interact with each other, and the distributions
and yields of hadrons are fixed late in the evolution of the system, when interactions
cease, the distributions and yields freeze out, and the particles decouple. Therefore,
those observables characterize the properties of the particle-emitting source at the
end of the system evolution, but not the history of the system during the evolution.
In principle, it is possible to have very different dynamics, producing similar final
states.

Possible observables that are sensitive to the entire evolution of the collision
system are photon and lepton-pair distributions. Because these particles interact
only electromagnetically, their mean free paths are much longer than those of
hadrons. They can thus escape the collision system without rescattering and carry
information about the conditions in which they were formed. However, the photon
and dilepton spectra get contributions from all stages of the evolution, which
makes it difficult to disentangle the signal coming from the hot, dense stage of the
collision. To describe the different contributions to electromagnetic spectra, we
follow the terminology of Reference 99:

1. Prompt photons and leptons are produced in the primary collisions of in-
coming partons;

2. thermal photons and leptons are emitted in the collisions of quarks and
gluons during the plasma phase and in the collisions of hadrons in the
hadronic phase;

3. decay photons and leptons are decay products of hadrons; and

4. direct photons and leptons are the sum of prompt and thermal photons.

The thermal photon production depends strongly on temperature via the fac-
tor exp(−pT /T ). Therefore, the early stage, when the matter is hottest, should
dominate the photon emission, and the measurement of photon spectra should be
an effective thermometer for the temperature achieved in the collision. However,
prompt photons follow a power-law distribution p−n

T and dominate at high pT .
The hydrodynamic model can be used to calculate the thermal and decay contri-

butions, but the prompt photons and leptons require a separate pQCD calculation.
The calculation of decay photons is relatively straightforward, and it proceeds in
the same way as the calculation of hadron spectra from resonance decays described
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in Section 3.1. One calculates the distribution of hadrons at freeze-out and applies
the relevant decay kinematics and branching ratios to get the spectra of decay
photons and leptons. To calculate the thermal yield, the production rate of photons
or leptons in a thermal system, dR/d3 p(E, T, μ), has to be integrated over the
space-time volume of the system:

E
d N

d3 p
=

∫
d4x

{
w(ε, ρB)E

d RQGP

d3 p
(p · u, T, μB)

+ [1 − w(ε, ρB)]E
d RHG

d3 p
(p · u, T, μB)

}
, 19.

where the production in a plasma and in a hadron gas (HG) is written separately.
The factor w(ε, ρB), which expresses the volume fraction of plasma, is unity in
the plasma phase, zero in HG, and between unity and zero in a mixed phase.
Hydrodynamics provides the space-time evolution of the system, whereas the
production rates in thermal matter are an input independent of hydrodynamics.

In the plasma phase, the photon production is dominated by the QCD Comp-
ton and annihilation reactions, qg → qγ , q̄g → q̄γ , and qq̄ → gγ . In lowest
order, the production rate due to these processes was calculated in References 100
and 101. However, some formally higher-order processes are strongly enhanced
by collinear singularities and also contribute to order αs (102, 103). The resum-
mation of these contributions was shown to be possible and was carried out by
Arnold et al. (104), completing the order αs analysis of the photon-emission rate.
A parametrization of the rate was also given in Reference 105.

The calculation of the photon-production rate in a hot hadron gas is less com-
plete than the rate in a plasma owing to the multitude of different hadron species
and photon-producing interactions and owing to the model dependence of the cal-
culations (see References 99 and 106). The standard rate in the literature is the
one calculated in Reference 100, where photon production in scattering and decay
processes ππ → ργ , πρ → πγ , ω → πγ , and ω → ππγ was calculated using
pseudoscalar-vector Lagrangian, with coupling constants determined from free ρ

and ω decays. These rates are often supplemented with a production rate via a1

mesons from Reference 107.
The role of different channels in photon production was further studied using

chiral Lagrangians (108). Unfortunately, it was not possible to fix the model pa-
rameters unambiguously in this work, which led to a factor of three uncertainty in
the final rates. In the context of dilepton production, it was later possible to fix the
model parameters much better (109), and this approach was used in a recent calcu-
lation by Turbide et al. (110). In that work, the study was extended to cover photon
emission from heavier meson resonances, strange particles, and baryons. Another
recent analysis of photon production from a hadron gas was done by Haglin (111),
who studied the effect of strange particles and higher-order processes achieving
a rate larger than the standard rate (100) by a factor of two at large qT and by an
order of magnitude at low qT .
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There are still uncertainties in the calculation of the photon-production rate in
a hot hadron gas. Surprisingly, even after all the improvements in the calculations,
the statement made in Reference 100 is still valid. At the same temperature, the
production rate per unit volume in a plasma and a hot hadron gas is approximately
equal, and they both “shine as brightly.” However, the emission rate per unit entropy
is larger in hadron gas.

The main contribution to dilepton production in plasma comes from the an-
nihilation process qq̄ → ll̄. The rate calculated in lowest order in a baryon-free
plasma can be found in textbooks (112) and was calculated for finite baryon chem-
ical potentials in Reference 113. At small values of invariant lepton-pair mass,
corrections on the order of ααs to this rate become important (114), but in a heavy
ion collisions, lepton pairs from Dalitz decays of final mesons produce a larger
background (115). Multiloop calculations similar to those done to calculate the
photon rate have also been carried out for high-pT pairs with small invariant mass
(116). These calculations have resulted in rates somewhat larger than the first-order
calculations. First attempts to calculate lepton production using a lattice-QCD for-
malism have also been done (117). The preliminary results are quite close to the
perturbative rate, at least in some parts of the phase space.

The observation of large excess dileptons in the mass region below the ρ-meson
mass in Pb + Au collisions at

√
sNN = 17.3 GeV energy at the CERN-SPS (118)

has fueled considerable theoretical interest in studying the lepton-pair emission in
a hot hadronic gas (106, 119). The main problem of these studies has been whether
and how the properties of mesons change in medium and how these changes are
reflected in the rates. A rate calculated by Gale & Lichard (120) using free-particle
properties is often used as a benchmark in comparisons with more sophisticated
approaches. In the calculations of Rapp et al. (121) and Eletsky et al. (122), the
basic assumption is that the spectral density of ρ meson changes in medium. These
calculations are technically very different, but produce qualitatively similar rates
(123). An alternative approach pursued by Brown & Rho (124) assumes that the
ρ-meson mass decreases in the medium.

4.1. Photons at SPS

Direct photon production in
√

sNN = 17.3 GeV Pb + Pb collisions at the CERN-
SPS was measured by the WA98 collaboration (125). Several authors have com-
pared this data with hydrodynamical calculations (126–130). All authors agreed
that the photon spectrum could be explained if one assumes sufficiently hot
(T > 200 MeV) initial state, but the required initial temperature varied largely
from T ∼ 200 MeV (127) to T = 335 MeV (126). The large difference is owing
mainly to different assumptions in the calculations.

One factor that explains the largely varying initial temperature is the use of
different rates in a hadron gas. Alam et al. (127) assumed in-medium modifications
to hadron properties both in the EoS and in production rates that enhance the photon
emission at lower temperatures, allowing cooler initial state. The full order αS rate
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for photon production in plasma was used only in the most recent paper (130), but
at SPS energy the different rates in plasma cause significant differences in the final
yield only at relatively large values of pT .

The initial state of the system was also chosen in different ways in different
calculations. Especially, the assumption of finite transverse flow velocity at the
beginning of the hydrodynamic evolution leads to lower temperatures. Because
the rates are proportional to exp(−p · u/T ), where p is the four momentum of
the photon and u is the flow four-velocity, stronger transverse flow allows lower
temperatures to produce equal yield at high pT . Peressounko & Pokrovsky (128)
argued the necessity of such an initial flow, and Alam et al. (127) and Chaudhuri
(129) later studied its effects. It can be argued that gradients in initial particle
production would lead to buildup of flow during thermalization, but it is very
difficult to quantify how large flow velocities could build up this way. Peressounko
& Pokrovsky also argued that the pion spectra especially necessitate the initial flow,
but the authors of this review have not been able to fit the hadron spectra if initial
transverse flow is assumed.

The hadron spectra were reproduced in References 128 and 130, and, when no
initial transverse flow is assumed, also in Reference 127. In the other two calcula-
tions (126, 129), the initial state was only required to have the same entropy as the
final-state particles. It is thus unknown whether these calculations are consistent
with the hadron data.

With the exception of Reference 130, boost-invariant hydrodynamics was used
in these calculations. If high initial temperature is required, this assumption leads
to short initial, i.e., thermalization time, τ ∼ 0.2 fm/c (126). At SPS energy it
can be argued that such a short initial time is ambiguous because the longitudinal
extension of the colliding nuclei is larger than cτ0. This makes the application of
boost-invariant expansion uncertain for times τ < 1 fm/c. In Reference 130, this
problem was solved by using nonboost-invariant hydrodynamics, where longitu-
dinal geometry is explicit and the initial time does not appear. Also, the ambiguity
in choosing the initial state was studied and it was shown that several EoSs and
initial states reproduced both the hadron and photon data (130, 131).

To characterize the results, Figure 12 shows the photon spectrum calculated
in Reference 130 and compares it with WA98 data. The calculation was done
using two different EoSs (A and H) and two different initial states (IS 1 and IS
2). EoS A contains a phase transition from hadron gas to QGP at Tc = 165 MeV,
whereas EoS H is a purely hadronic EoS. IS 1 has a very peaked initial density
distribution in the longitudinal direction, whereas IS 2 has a flatter distribution (see
Reference 131) and smaller maximum temperature, which is more consistent with
the assumption of hadronic EoS. In both cases, the hadron spectra are reproduced
and, as shown in the figure, the calculated photon spectrum is within the exper-
imental error bars. Thus, the conclusion of the hydrodynamic studies of photon
emission at the SPS is that a high-temperature initial state is needed to reproduce
the measured photon spectra, but a phase transition to plasma is not necessarily
required.
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Figure 12 The sum of thermal photon emission at the SPS

from hydrodynamic calculation (130) and prompt photon emis-

sion (132) compared with WA98 data (125).

4.2. Photons at RHIC

At the time of this writing, the situation of the photon data at RHIC is becoming
very interesting: Preliminary data presented (133) at the latest Quark Matter 2005
meeting indicate a clear excess of photons over decay and prompt photons in
the transverse-momentum range up to ∼3 GeV. Earlier measurements have been
inconclusive owing to the large error bars, but the new method to extract the photon
yield from the measurements of low-mass e+e− pairs appears more promising, and
if the preliminary results are confirmed by the full analysis, these data offer a long-
sought direct probe into the earliest moments of the collision.

Many authors have predicted the photon emission at RHIC and LHC (99,
103, 127, 134–139). Owing to uncertainties in the initial state, these predictions
serve mostly as order-of-magnitude estimates, but they also address the ques-
tion of whether the thermal photon yield would be larger than the prompt pho-
ton yield at any value of pT . The initial conditions of more recent studies have
been constrained to produce the total hadron multiplicity, and in Reference 99,
the thermal photons are compared with the calculated yields of decay photons
both from thermal pions and prompt pions from jet fragmentation. The mea-
sured spectrum of π0’s is compared with the calculations and the data are well
described. The hydrodynamic calculations with the same initial conditions are
also compared with other hadron data and the overall agreement is very good
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(43). The perturbative QCD calculation to NLO in all quantities entering the cal-
culation is supplemented with the energy loss of produced jets in the thermal
matter.

The main conclusions from the studies in Reference 99, supported for the
hadron observables by Reference 43, are as follows: The understanding of the
hadron spectra in terms of hydrodynamic and pQCD calculations is quite good.
This means that the photons from hadron decays are well under control when
comparing different sources in the calculations. The other main sources of photons
are prompt photons from primary interactions, including the photons from jet
fragmentation, and the photons from secondary interactions in produced matter, the
thermal photons.3 These photon sources have quite distinct transverse-momentum
dependence with the crossover from thermal photons to prompt photons taking
place at around pT ∼ 3 GeV, the region where the behavior of the preliminary
data also changes.

The simplest hydrodynamic calculations assume a scaling expansion in the
longitudinal direction and ignore the transverse expansion. The first assumption
can be argued to be reasonable in the central rapidity region because at RHIC
energy, the Lorentz gamma factor is ∼100, indicating a time interval on the order
of 0.1 fm/c for the nuclei to pass through one another. This is shorter than the
shortest initial times used in the calculations. In the central rapidity region, the
longitudinal components are not large and the acceleration of the longitudinal
expansion is small, having little effect on the multiplicity density or the freeze-out
time at y ≈ 0 (141). Ignoring the transverse expansion cannot be justified, except
for the photons emitted at the earliest times from the QGP. High-pT photons from
QGP are almost insensitive to flow because they are emitted when the system is
hottest (139), but the strong flow at the late hadronic stages enhances the emission
of high-pT photons from hadron gas (127).

Predictions of the relative size of photon contributions at different values of pT

vary somewhat. For example, Srivastava (138) predicts that at RHIC energy, the
photons from the QGP dominate at small values of pT , i.e., pT < 1 GeV, and the
thermal photons at high pT come mainly from the hadronic phase. More recent
calculations lead to a conclusion that at RHIC multiplicity the plasma contribution
dominates for pT > 3, and at smaller transverse momenta the contribution from
plasma and hadron gas are the same size, with the latter slightly larger at smallest
momenta (134, 136). The rates used in the calculations are one reason for the
difference: In Reference 138 older rates that do not include all order of αS terms
are utilitzed, whereas the newer calculations are based on such all-order-αS (105)
results. Also, note that the dependence of the plasma contribution depends strongly
on the assumed thermalization time, τ0. When comparing different predictions, the
first detail to be checked is τ0 (see Reference 99).

3More generally, the photons from secondary interactions among the produced particles can

originate also from nonthermal processes, such as a high-energy quark producing photons

when Compton scattering from a lower-energy thermal gluon (140).
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Although the pQCD calculation of prompt photons is not entirely under control
at small transverse momenta owing to the uncertainty in the photon fragmentation
functions (see discussion in References 99 and 142), the photon yield from sec-
ondary collisions, i.e., the yield of the thermal photons, decreases more steeply
and becomes negligible for pT � 4 GeV. In the calculations, thermal and prompt
photons become comparable at around pT ∼ 3 GeV, and because of the difference
in the slopes, the uncertainty in where the contributions cross is not large. At small
momenta below 3 GeV, thermal photons dominate (134, 136), but it is not clear
whether this contribution is so large that it can be isolated from the pion decay
background.

Different contributions are compared with the preliminary photon data in
Figure 13 (133). Here, initial times τ0 = 0.2 and 0.6 fm/c are used in the hydro-
dynamic calculation, which correspond to average initial temperatures 〈T 〉 = 340
and 250 MeV, respectively. In the prompt photon calculation, no intrinsic kT is
included because the same calculation for photon production in p + p collisions
at RHIC describes the data well. As indicated in Figure 13, the uncertainty in initial
time causes more than an order of magnitude change in the thermal photon yield
at high pT .

In most calculations for thermal photons at RHIC and LHC, chemically equi-
librated matter is assumed. However, it can be expected that the initial state is
gluon dominated and quarks are suppressed compared to their equilibrium yields
(143). This would lead to smaller emission rates at a given temperature, but the
suppression of quarks means effectively smaller number of degrees of freedom
and a larger temperature for a given entropy. Detailed calculations (99, 144) have
indicated that these two effects largely cancel each other and that the final thermal
spectra are quite similar in both equilibrium and nonequilibrium scenarios.

4.3. Dilepton Calculations

Like the photon measurements, the dilepton mass spectrum at the SPS collisions
measured by the CERES (118, 145) and NA50 (146) collaborations has been
compared to hydrodynamical calculations several times (35, 123, 127, 131, 147–
150). The low-mass dilepton (Mll < mφ) yield measured by CERES is dominated
by emission from the late hadronic phase (see, e.g., Reference 149) and constrains
only the properties of the hadronic stage of the evolution. All these calculations
agree that if meson properties in vacuum are used (120), the thermal yield is not
quite sufficient to explain the observed excess. Thus, the experimental data seem
to require modifications in meson properties, but so far the mass resolution has
not been good enough to differentiate between a change in mass and changes in
spectral density. Recently, there have been new preliminary data with better mass
resolution (151, 152), but the conclusions are still being debated (153).

Kvasnikova et al. (150) addressed the intermediate-mass (mφ < Mll < m J/�)
dilepton yield measured by NA50. In their calculation they found that the excess in
lepton pairs in this mass region could be explained by thermal emission in the same
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Figure 13 Thermal photon emission at the Relativistic Heavy Ion Collider from

hydrodynamic calculation using two different initial times. Solid lines labeled TOT

indicate the total yield of thermal photons, whereas dashed lines labeled QGP indicate

emission from plasma. The pQCD calculation for prompt photons (99) and preliminary

PHENIX data (133) are also shown.

way as in the low-mass region. Even if the intermediate-mass region is expected
to provide a window for observing the emission from plasma (154), they found
that a modest plasma contribution, ∼20%, was enough to fit the SPS data.

So far the genuinely hydrodynamic calculations of dilepton emission at RHIC
have been rare, and different parametrizations for the space-time evolution of the
system have been used instead (121). Medium modifications to meson properties
depend on total baryon density, ρtot = ρB + ρB̄ . Because ρtot at RHIC is essen-
tially the same as at the SPS, the low-mass dilepton spectrum at RHIC should show
similar excess, as seen at the SPS (121).

At intermediate masses, the thermal yield is expected to be dominated by emis-
sion from plasma (155). However, owing to a larger cc̄ production than at the SPS,
the intermediate-mass dilepton yield can be dominated by correlated charm de-
cays, unless the c quarks rescatter significantly in the medium or can be identified
and subtracted. Isotropization of c-quark momentum distributions would soften
the dilepton mass spectrum, leaving a mass range in which thermal emission dom-
inates (155, 156). An additional source of lepton pairs at RHIC is the interaction
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of jets with the surrounding dense plasma. According to recent calculations (157),
the jet-plasma interactions may dominate over thermal dilepton emission at inter-
mediate masses.

At the time of this writing there are no calculations in which all these contri-
butions are taken into account and are folded with a realistic time evolution of the
collision system. It will be interesting to see how the future data will look and if a
plasma contribution is needed to explain the data. The PHENIX collaboration has
recently shown the first preliminary data of low-mass dileptons at RHIC (158), but
the present experimental uncertainties are too large to draw any conclusions. These
experimental shortcomings are currently being addressed by a detector upgrade
(159).

5. CONCLUDING REMARKS

Hydrodynamics provides a well-defined framework to study many experimentally
accessible features of a heavy ion collision. Some parts of the collision, such as
the primary particle production of final-state matter, lie outside hydrodynamics,
and some features of hydrodynamics, such as the freeze-out of final hadrons, have
grave uncertainties. Nevertheless, a hydrodynamic description has robust features
such as the conservation laws, which are strictly enforced. The main assumption
of hydrodynamics, the occurrence of frequent collisions in the final state, can
also convincingly be argued for from the large observed multiplicity. Hydrody-
namics describes the effects of collisions among the constituents, in particular
the momentum transfer between adjacent regions, in terms of pressure that arises
microscopically from momentum transfer in the collisions. This should be a good
approximation as soon as the momentum distribution of constituents is approxi-
mately isotropic.

Hydrodynamics describes well the broadening and its mass dependence of
hadron spectra resulting from the increase of transverse collective motion (flow).
The collective motion can also be seen in the elliptic flow. At low transverse
momenta, the observed elliptic flow can be described using hydrodynamics. Es-
pecially, the observed mass ordering is typical for a hydrodynamic description.
These are partly genuine predictions of hydrodynamics because the amount of ini-
tial production is fixed from the total multiplicity. Once the hadronic observables
are under control, the largest remaining uncertainty concerns the time scales of
primary production and of (approximate) thermalization. Electromagnetic emis-
sion is very sensitive on these time scales, and the preliminary results on photon
emission at RHIC may be the first indication that emission from the early moments
of the collision can be resolved. The emission of lepton pairs around and below the
φ-meson mass offers both a stringent test of the hydrodynamic description of the
hadron phase and a tool to study the effects of medium on the properties of vector
mesons. The amount of information that can finally be obtained on the properties
of the expanding matter produced in the heavy ion collisions depends a good deal
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on the progress in experimental measurements, but it is likely that hydrodynamics
will remain an important tool for phenomenological studies for a long time.
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We investigate the temperature dependence of the shear viscosity to entropy density ratio η/s
using a piecewise linear parametrization. To determine the optimal values of the parameters and
the associated uncertainties, we perform a global Bayesian model-to-data comparison on Au+Au
collisions at

√
sNN = 200 GeV and Pb+Pb collisions at 2.76 TeV and 5.02 TeV, using a 2+1D

hydrodynamical model with the EKRT initial state. We provide three new parametrizations of the
equation of state (EoS) based on contemporary lattice results and hadron resonance gas, and use
them and the widely used s95p parametrization to explore the uncertainty in the analysis due to
the choice of the equation of state. We found that η/s is most constrained in the temperature
range T ≈ 150–220 MeV, where, for all EoSs, 0.08 < η/s < 0.23 when taking into account the
90% credible intervals. In this temperature range the EoS parametrization has only a small ∼ 10%
effect on the favored η/s value, which is less than the ∼ 30% uncertainty of the analysis using a
single EoS parametrization. Our parametrization of (η/s)(T ) leads to a slightly larger minimum
value of η/s than the previously used parametrizations. When we constrain our parametrization
to mimic the previously used parametrizations, our favored value is reduced, and the difference
becomes statistically insignificant.

I. INTRODUCTION

The main goal of the ultrarelativistic heavy-ion colli-
sions at the Large Hadron Collider (LHC) and the Rela-
tivistic Heavy-Ion Collider (RHIC) is to understand the
properties of the strongly interacting matter produced
in these collisions. In recent years the main interest has
been in extracting the dissipative properties of this QCD
matter from the experimental data (e.g. [1–5]), in partic-
ular its specific shear viscosity: the ratio of shear viscos-
ity to entropy density η/s (for a review, see Refs. [6–9]).
The field has matured to a level where a global Bayesian
analysis of the parameters can provide statistically mean-
ingful credibility ranges to the temperature dependence
of η/s [10–12]. These credibility ranges agree with earlier
results like those obtained using the EKRT model [13].

However, with the exception of papers like Refs. [14–
16], the equation of state (EoS) is taken as given in the
models used to extract the η/s ratio from the data. In
particular, the EoS parametrization s95p [17] was used
in many studies in the literature. This parametrization
is based on by now outdated lattice data [18], and recent
studies have reported an approximate 60% [16] or 30% in-
creases [19] in the extracted value of η/s when switching
from s95p to a contemporary lattice-based EoS. Further-

∗ auvinen@ipb.ac.rs

more, even if the errors of the contemporary lattice QCD
calculations overlap, there is still a small tension between
the trace anomalies obtained using the HISQ [20, 21] and
stout [22, 23] discretization schemes. Consequently the
EoSs differ, and if the procedure to extract η/s from
the data is as sensitive to the details of the EoS as
Refs. [16, 19] claim, this tension may lead to additional
uncertainties in the η/s values extracted from the heavy-
ion collision data.

In the Bayesian analysis mentioned previously [10, 11],
the temperature dependence of η/s was assumed to be
monotonously increasing above the QCD transition tem-
perature Tc. In a Bayesian analysis the slope parame-
ter of such parametrization is always constrained to be
non-negative, and limiting the final slope parameter to
zero would require extremely strong constraints from the
experimental data. Therefore, by construction, the anal-
ysis leads to an η/s increasing with temperature above
Tc, even if there is no physical reason to exclude a sce-
nario where η/s is constant in a broad temperature range
above Tc. A more flexible parametrization, which does
not impose such constraints, is thus needed to determine
the temperature dependence of η/s.

In this work we address both the sensitivity of the ex-
tracted η/s to the EoS used in the model calculation,
and the temperature dependence of η/s in the vicinity of
the QCD transition temperature. We perform a Bayesian
analysis of the results of EKRT + hydrodynamics calcu-
lations [13, 24], and the data obtained in

√
sNN = 200
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GeV Au+Au collisions [25–27], and Pb+Pb collisions at
2.76 TeV [28–30] and 5.02 TeV [30, 31]. To study the
temperature dependence of η/s we use a piecewise lin-
ear parametrization in three parts: linearly decreasing
and increasing regions at low and high temperatures are
connected by a constant-value plateau of variable range.
With this parametrization, data favoring a strong tem-
perature dependence will lead to large slopes and a nar-
row plateau; conversely, an approximately constant η/s
can be obtained with small slope parameter values and a
wide plateau. To explore the sensitivity to the EoS, we
use four different parametrizations: the well-known s95p
parametrization, and three new parametrizations based
on contemporary lattice QCD results. A comparison of
the final probability distributions of the parameters will
tell whether the most probable parameter values depend
on the EoS used, and whether that difference is signifi-
cant when the overall uncertainty in the fitting procedure
is taken into account.

II. EQUATION OF STATE

In lattice QCD the calculation of the equation of state
(EoS) usually proceeds through the calculation of the
trace anomaly, Θ(T ) = ε(T ) − 3p(T ), where ε and p are
energy density and pressure, respectively. Thermody-
namical variables are subsequently derived from it using
so-called integral method [32]. Therefore we base our
EoS parametrizations on the trace anomaly and obtain
pressure from the integral

p(T )

T 4
− p(Tlow)

T 4
low

=

∫ T

Tlow

dT ′

T ′5
Θ(T ′). (1)

Once the pressure is known, the energy and entropy
densities can be calculated, ε(T ) = Θ(T ) + 3p(T ), and
s(T ) = [ε(T ) + p(T )]/T , respectively. To make a con-
struction of chemical freeze-out at T ≈ 150 MeV temper-
ature possible, we use the hadron resonance gas (HRG)
trace anomaly at low temperatures instead of the lattice
QCD result. Equally important is that this choice al-
lows for energy and momentum conserving switch from
fluid degrees of freedom to particle degrees of freedom
without any non-physical discontinuities in temperature
and/or flow velocity1. Furthermore, it gives us a con-
sistent value for the pressure at Tlow required for the
evaluation of pressure (see Eq. (1)).

1 Energy and momentum conservation require that the fluid EoS
is that of free particles, and that the degrees of freedom are the
same in the fluid and particles [33]. If the dissipative correc-
tions are small, switch from fluid consistent with the contempo-
rary lattice QCD results [34] to particles in the UrQMD [35] or
SMASH [36] hadron cascades at T = 150 MeV temperature leads
to roughly 9–10% or 6–7% loss in both total energy and entropy,
respectively.

As a baseline, we use the s95p parametrization [17],
where HRG containing hadrons and resonances below
M < 2 GeV mass from the 2004 PDG summary ta-
bles [37] is connected to the parametrized hotQCD data
from Ref. [18]. To explore the effects of various develop-
ments during the last decade, we first connect the HRG
based on the PDG 2004 particle list [37] to parametrized
contemporary lattice data obtained using the HISQ dis-
cretization scheme [20, 21]. The lattice spacing, a, is
related to the temperature and temporal lattice extent,
Nt, as a = 1/(NtT ). Since the lattice spacing (Nt) de-
pendence is small for this action, we use these results
at fixed lattice spacing Nt = 8, 10 and 12. We name
our parametrizations according to the convention used to
name s95p, and label this parametrization s87h04. ’s87’
signifies entropy density reaching 87% of its ideal gas
value at T = 800 MeV, the letter ’h’ refers to the HISQ
action, and the subscript ’04’ to the vintage of the PDG
particle list (2004). Note that even if our parametriza-
tion differs from the lattice trace anomaly in the hadronic
phase, it agrees with the contemporary lattice calcula-
tions which show that at T = 800 MeV the entropy den-
sity reaches 87–88% of the ideal gas value (c.f. Fig. 8 of
Ref. [21]).

The number of well-established resonances has in-
creased since 2004, so we base our parametrization s88h18
on HRG containing all2 strange and non-strange hadrons
and resonances in the PDG 2018 summary tables3[40],
and on the same HISQ lattice data [20, 21] we used for
s87h04. Furthermore, there is a slight tension in the
trace anomaly between the HISQ and stout discretiza-
tion schemes. To explore whether this difference has
any effect on hydrodynamical modeling, we construct the
parametrization s83s18 using PDG 2018 resonances, and
the continuum extrapolated lattice data obtained using
the stout discretization [22, 23]. The second letter ’s’ in
the label refers now to the stout action, and the subscript
’18’ to the vintage of the particle list. The details of these
parametrizations are shown in Appendix A.

In the top and middle panels of Fig. 1, we show the
parametrized trace anomalies, and the lattice data as
used to make them: continuum extrapolated for the stout
action, and at fixed lattice spacing for the HISQ action,
since its lattice spacing (Nt) dependence is small. As
seen in the topmost panel, the most noticable change in
the lattice results during the last decade is the reduction
of the peak of the trace anomaly (cf. s95p to others).
Also, as mentioned, the lattice results obtained using the

2 With the exception of f0(500). See Refs. [38, 39].
3 Note that PDG Meson Summary Table and Baryon Summary

Table contain (almost) all states listed by the PDG, and are dif-
ferent from the PDG Meson Summary Tables and Baryon Sum-
mary Tables we use [41]. The PDG Baryon Summary Tables
contain the three and four star resonance states. The PDG does
not assign stars to meson states, but the Meson Summary Tables
contain the states not labeled “Omitted from summary table” in
the individual listings.
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FIG. 1. The trace anomaly (top and middle) and the speed
of sound squared (bottom) as functions of temperature in the
four parametrizations of the EoS compared to the lattice data
obtained using the HISQ [20, 21] and stout [22, 23] discretiza-
tion schemes.

HISQ and stout actions slightly differ around the peak,
and consequently s83s18 differs from s87h04 and s88h18.
The higher peak does not, however, mean a lower speed
of sound. As shown in the lowest panel of Fig. 1, the
speed of sound in the s95p parametrization is not signifi-
cantly lower than in the other parametrizations, but the
temperature region where it is low is broader than in the
other parametrizations. Thus we expect s95p to be ef-
fectively softer than the other EoSs. On the other hand,
the speed of sound in s88h18 depicts a characteristic dip
below the speed of sound in the other parametrizations.
This is a consequence of the parametrization of the trace
anomaly in that temperature region.

As known, the HRG trace anomaly is below the lattice
results [20, 22, 23] at low temperatures. This difference
has been interpreted to indicate the existence of yet un-
observed resonance states [34, 42]. The need for further
states has also been seen in the study of the strangeness
baryon correlations on the lattice [43], and confirmed by
the S-matrix based virial expansion [44]. However, we
do not include predicted states from any model4 in this
work, since we do not know how they would decay, but
use the states from the PDG summary tables only. Con-
sequently the parametrized trace anomaly is slightly be-
low even the most generous error bars of the lattice re-
sults around T ≈ 150–160 MeV temperature, as shown
in the middle panel of Fig. 1.

On the other hand, whether we use the PDG 2004 or
2018 particle list causes only a tiny difference in the trace
anomaly. The main difference between the s87h04 and
s88h18 parametrizations arises from the connection of the
HRG to the lattice parametrization. When parametriz-
ing s88h18 we wanted the trace anomaly to reach its lat-
tice values soon above Tc = 155 MeV, whereas we allowed
s87h04 to agree with lattice at larger temperature where
the lattice trace anomaly drops below the HRG trace
anomaly—for details, see Appendix A. Consequently the
s88h18 parametrization rises above the HRG values lead-
ing to the characteristic dip in the speed of sound (lowest
panel in Fig. 1). Note that the s83s18 parametrization
does not depict a similar dip in the speed of sound, since
the lower peak and larger errors of the continuum extrap-
olated stout action result allow the parametrized trace
anomaly to drop below the HRG values immediately.

III. HYDRODYNAMICAL MODEL

We employ a fluid dynamical model used previously in
Refs. [13, 24, 46–48]. The spacetime evolution is com-
puted numerically in (2+1) dimensions [49], and the lon-
gitudinal expansion is accounted for by assuming longi-
tudinal boost invariance. We also neglect here the bulk
viscosity and the small net-baryon number. The evo-
lution of the shear-stress tensor πµν is described by the
second-order Israel-Stewart formalism [50], with the coef-
ficients of the non-linear second-order terms obtained by
using the 14-moment approximation in the ultrarelativis-
tic limit [51, 52]. The shear relaxation time is related to
the shear viscosity by τπ = 5η/(ε+ p), where ε is energy
density in the local rest frame, and p is thermodynamic
pressure.

Transverse momentum spectra of hadrons are com-
puted by using the Cooper-Frye freeze-out formalism at
a constant-temperature surface, followed by all 2- and
3-body decays of unstable hadrons. The chemical freeze-
out is encoded into the EoS as described in Ref. [53],

4 As done in e.g. Refs. [34, 45].
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and the fluid evolves from chemical to kinetic freeze-out
in partial chemical equilibrium (PCE)[54]. The kinetic
and chemical freeze-out temperatures Tdec and Tchem are
left as free parameters to be determined from the exper-
imental data through the Bayesian analysis. The dissi-
pative corrections δf to the momentum distribution at
the freeze-out are computed according to the usual 14-
moment approximation δfk ∝ f0kk

µkνπµν , where f0k is
the equilibrium distribution function, and kµ is the four-
momentum of the hadron.

The remaining input to fluid dynamics are the EoS,
initial conditions, and the shear viscosity. The different
options for EoS were discussed in the previous section,
and the initial conditions will be detailed in the next sec-
tion. The temperature dependence of the shear viscosity
η/s is parametrized in three parts, controlled by TH, the
lower bound of the temperature range where η/s has its
minimum value, (η/s)min, and the width of this temper-
ature range, Wmin:

(η/s)(T ) =





SHG(TH − T ) + (η/s)min, T < TH
(η/s)min, TH ≤ T ≤ TQ
SQGP(T − TQ) + (η/s)min, T > TQ,

(2)

where the additional parameters are the linear slopes be-
low TH and above TQ = TH +Wmin, denoted by SHG and
SQGP, respectively.

We note that bulk viscosity and chemical non-
equilibrium are related [55, 56]. Even if we ignore the
bulk viscosity, some of its effects are accounted for by the
fugacities in a chemically frozen fluid: At temperatures
below Tchem the isotropic pressure is reduced compared
to the equilibrium pressure due to the different chemical
composition. Thus introducing the chemical freeze-out
changes not only the particle yields w.r.t. evolution in
equilibrium, but similarly to the bulk viscosity, reduces
the average transverse momentum of hadrons too. How-
ever, this affects the evolution only when temperature is
below Tchem, and in contrast to the bulk viscosity, there is
e.g. no entropy production associated with the chemical
freeze-out and subsequent chemical non-equilibrium [58].

Finally, we emphasize that we solve the spacetime evo-
lution from the hot QGP all the way to the kinetic freeze-
out as a single continuous fluid dynamical evolution. This
is different from the hybrid models used e.g. in Refs. [10–
12] where the evolution below some switching temper-
ature is solved with a microscopic hadron cascade. The
advantage of the fluid dynamical evolution without a cas-
cade stage is that the transport properties are continuous
in the whole temperature range. Note that in the hybrid
models the switching from fluid dynamics to hadron cas-
cade introduces an unphysical discontinuity in e.g. η/s
that is O(1) in the cascade [57], but O(0.1) in fluid dy-
namical simulations at switching. Another advantage of
our approach is that we can freely parametrize the vis-
cosity in the hadronic matter too, and constrain it using
the experimental data.

IV. INITIAL CONDITIONS

The initial energy density profiles are determined us-
ing the EKRT model [59–61] based on the NLO pertur-
bative QCD computation of the transverse energy, and
a gluon saturation conjecture. The latter controls the
transverse energy production through a local semi-hard
scale psat(TATA,

√
sNN, A,Ksat), where TA(x, y) is a nu-

clear thickness function at transverse location (x, y). The
essential free parameters in the EKRT model are the pro-
portionality constant Ksat in the saturation condition,
and the constant β controlling the exact definition of the
minijet transverse energy at NLO [60]. The setup used
here is identical to the one used in Refs. [13, 24, 48],
where β = 0.8, and Ksat is left as a free parameter to
be determined from the data. We note that Ksat is inde-
pendent of the collision energy

√
sNN and nuclear mass

number A, so that once Ksat is fixed the
√
sNN and A de-

pendence of the initial conditions is entirely determined
from the QCD dynamics of the EKRT model. With a
given psat the local energy density at the formation time
τp = 1/psat can be written as

ε(x, y, τp) =
Ksat

π
[psat(x, y)]

4
. (3)

This we further evolve to the same proper time τ0 =
1/pmin, where pmin = 1 GeV, at every point in the trans-
verse plane where psat > pmin by using 0+1 dimensional
Bjorken hydrodynamics with the assumption ε = 3p.

In the EKRT model, fluctuations in the product of the
nuclear thickness functions, TATA, give rise to the event-
by-event fluctuations in the energy density through psat
in Eq. (3). Moreover, the centrality dependence of the
initial conditions arises from the centrality dependence
of TATA. A full treatment of the dynamics in heavy-ion
collisions would take the event-by-event fluctuations into
account by evolving each event separately. However, to
make the present study computationally feasible, we omit
the evolution of such fluctuations here; instead, for each
centrality class, we average a large number of these fluc-
tuating initial states, and compute the fluid dynamical
evolution only for the averaged initial distributions.

The computed energy densities are not linear in Ksat

nor in TATA, and different averaging procedures can lead
to significantly different event-averaged initial conditions.
In the previous event-by-event EKRT studies [13, 24, 48]
a fair agreement was obtained between the data and the
computed

√
sNN, A, and centrality dependencies of the

charged hadron multiplicity. To preserve as much as pos-
sible of this agreement, we average the initial conditions
by averaging the initial entropy distributions: We com-
pute first a large set of initial energy density profiles using
the procedure detailed in Ref. [13]. Each of the gener-
ated energy density profiles is converted to an entropy
density profile by using the EoS which will be used later
during the evolution. The entropy density profiles are
then averaged, and the average entropy density profile is
converted to an average energy density profile using the
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same EoS.
In the event-by-event framework the centrality classes

were determined from the final multiplicity distribution.
However, this way of classifying events is not available
here, as it would require fluid dynamical evolution of
each of the fluctuating initial conditions. Instead, we pre-
determine the centrality classes according to the number
of wounded nucleons in the sampled Monte-Carlo nuclear
configurations, which were used to construct the event-
by-event initial conditions. The number of wounded nu-
cleons are computed using the nucleon-nucleon cross sec-
tion σNN = 42, 64, and 70 mb for 200 GeV, 2.76 TeV,
and 5.02 TeV collisions, respectively. We note that the
nucleon-nucleon cross section does not enter in the com-
putation of the initial conditions, but they are used here
only in the centrality classification. In the context of the
full event-by-event modeling we have tested that the final
results are only weakly sensitive to the precise way of the
centrality classification.

V. STATISTICAL ANALYSIS

The eight free parameters of our model, {Ksat,
(η/s)min, TH,Wmin, SHG, SQGP, Tdec, Tchem}, were intro-
duced in Secs. III and IV. We want to tune them to
achieve the best possible fit to an experimental data set of
90 data points. This set consists of the following observ-
ables at (10–20)%, (20–30)%, (30–40)%, (40–50)% and
(50–60)% centrality classes5:

• The charged particle multiplicity at midrapidity,
dNch/dη, and 4-particle cumulant pT -averaged el-
liptic flow, v2{4}, in Au+Au collisions at

√
sNN =

200 GeV (RHIC) [25, 27] and Pb+Pb collisions at√
sNN = 2.76 [28, 30] and

√
sNN = 5.02 TeV [30, 31]

(LHC).

• The multiplicities at midrapidity, dNi/dy, and av-
erage transverse momenta 〈pT 〉i, of pions (π+),
kaons (K+) and protons6 (p) in Au+Au collisions
at RHIC [26] and in Pb+Pb collisions at the lower
LHC energy [29].

Let us consider each combination of the free parame-
ters as a point ~x in the 8-dimensional input (parameter)
space, the model output ~y(~x) as a corresponding point in
the 90-dimensional output space (space of observables),
and the experimental data ~y exp as the target point in the

5 Charged particle multiplicities at RHIC are averages over two
adjacent PHENIX centrality classes; for example, at (10–20)%
centrality Nch is an average over (10–15)% and (15–20)% classes,
(20–30)% is an average over (20–25)% and (25–30)% classes, and
so on. This applies also for RHIC identified particle data at (10–
20)% centrality.

6 We consider an average of measured protons and antiprotons as
the target value for the proton multiplicity at RHIC.

space of observables. With these definitions we can for-
mulate the posterior probability distribution P (~x|~y exp)
of the best-fit parameter values by utilizing Bayes’ theo-
rem:

P (~x|~y exp) ∝ P (~y exp|~x)P (~x), (4)

where P (~x) is the prior probability distribution of input
parameters and P (~y exp|~x) is the likelihood function

P (~y exp|~x) (5)

=
1√
|2πΣ|

exp

(
−1

2
(~y(~x)− ~y exp)TΣ−1(~y(~x)− ~y exp)

)
.

Here Σ is the covariance matrix representing the uncer-
tainties related to the model-to-data comparison.

As a function with an eight-dimensional domain, the
posterior probability distribution P (~x|~y exp) is too com-
plicated to evaluate and analyze fully. Instead, we pro-
duce samples of it with a parallel tempered Markov chain
Monte Carlo [62] based on the emcee sampler [63]. An
ensemble of random walkers is initialized in the input pa-
rameter space based on the prior probability7 and each
proposed step in parameter space is accepted or rejected
based on the change in the value of the likelihood func-
tion. At a large number of steps, the distribution of the
taken steps is expected to converge to the posterior dis-
tribution.

Evaluating the output ~y(~x) of the fluid dynamical
model at every point ~x where the random walker might
enter is a computationally impossible task. Therefore
we approximate the output using Gaussian process (GP)
emulators [64] (see Appendix B). Each GP is able to pro-
vide estimates for only one observable, so to keep the
number of required emulators manageable, we perform
a principal component analysis (PCA) to reduce the di-
mension of the output space from 90 observables into
k = 6 most important principal components. Further
details about the PCA are described in Appendix C. We
utilize the scikit-learn Python module [65] and in par-
ticular the submodules sklearn.gaussian process and
sklearn.decomposition.PCA in the model emulation.

Thus, in our likelihood function (5), we replace ~y(~x)
with the GP estimate in the principal component space
~zGP(~x) (likewise ~y exp is transformed to ~z exp), and in-
clude the emulator estimation error into the covariance
matrix:

Σz = Σexp
z + ΣGP

z , (6)

where Σexp
z is the (originally diagonal) experimental error

matrix transformed to principal component space, and

ΣGP
z = diag(σGP

z,1 (~x)2, σGP
z,2 (~x)2, ..., σGP

z,k (~x)2) (7)

7 In the present case, the shape of the prior is a uniform hypercube
with an additional restriction Tdec < Tchem. The prior ranges
are shown in Figs. 3 and 4.
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FIG. 2. Illustration of the quality of the Gaussian process
emulation for 30 test points for simulations with the s95p
EoS. Left panel: Charged particle multiplicity in (20-30)%
most central Pb+Pb collisions at

√
sNN = 2.76 TeV. Right

panel: Elliptic flow v2{RP} in (20-30)% most central Pb+Pb
collisions at

√
sNN = 2.76 TeV.

is the GP emulator covariance matrix obtained from the
emulator (see Appendix B).

To work, the GP emulators must be conditioned with
a set of training points, {~z(~xi)}, created by running the
fluid dynamical model with several different parameter
combinations {~xi}. For the present investigation, we
have produced 170 training points for each EoS, dis-
tributed evenly in the input parameter space8 using min-
max Latin hypercube sampling [66]. The emulation qual-
ity was then checked by using the trained emulator to pre-
dict the results at 30 additional test points, which were
not part of the training data. An example of the results
of this confirmation process is shown in Fig. 2 for 2.76
TeV Pb+Pb collisions using the s95p parametrization.

VI. RESULTS

The marginal posterior probability distributions for
each parameter are obtained from the full 8-dimensional
probability distribution (see Section V) by integrating
over the other seven parameters. The resulting distribu-
tions when using the four investigated EoSs are shown
in Figs. 3 and 4. In these figures the range of the x-axis
illustrates the prior range of values, with the exception of
Tchem which range depends on the EoS9. The median val-
ues of these distributions provide a good approximation
for the most probable values, and are listed both in the
legends of the figures, and in Table I. The 90% credible
intervals—i.e. the range which covers 90% of the distribu-
tion around the median—are shown as errors in Table I.
Two dimensional projections of the probability distribu-
tion depicting correlations between parameter pairs are
shown in Appendix D.

8 The restriction Tdec < Tchem does not apply to the training
points.

9 For s83s18, s87h04, and s88h18, the prior range is 120 MeV <
Tchem < T0, where T0 is the temperature where the parametriza-
tion deviates from the HRG (see Appendix A). For s95p the range
is 120 < Tchem/MeV < 180.
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FIG. 3. Comparison of Ksat, (η/s)min, Tdec, and Tchem

marginal posterior probability distributions for the four in-
vestigated EoSs. Vertical lines (bracketed numbers in legend)
indicate median values for the distributions. With the ex-
ception of Tchem, the range of the x-axis in the plots is the
original prior range.

A. Nuisance parameters

The analysis involves three parameters which are not
directly related to the transport properties of produced
matter: Ksat, Tdec, and Tchem. The probability distri-
butions for these three ”nuisance” parameters, shown in
Fig. 3, are nicely peaked, and the parameters have well
defined constraints. For the chemical freeze-out temper-
ature, the median is Tchem = 153–155 MeV, which is
compatible with the values obtained using the statistical
hadronization model [67]. Note that the difference in the
median is not due to the resonance content of the EoS,
but due to a complicated interplay of the softness of the
EoS, shear, and build-up of the flow. Nevertheless, the
particle ratios are the dominant factor in constraining
Tchem.

For Ksat and Tdec, we see a common trend where s95p
gives a distribution which peaks at the lowest value of the
four EoSs, followed by s87h04, and the highest peak val-
ues are shared by s83s18 and s88h18 with almost identical
distributions. The obtained values for the EKRT nor-
malization parameter, Ksat ≈ 0.5, are compatible with
the values found previously [13], and the small differ-
ences between different EoS parametrizations result from
slightly different entropy production during the evolu-
tion. Differences seen in the kinetic freeze-out temper-
ature Tdec = 126–132 MeV are also small, and seem
to follow the conventional rule of thumb: a softer EoS
requires a lower freeze-out temperature to create hard
enough proton pT distributions. On the other hand, dif-
ferences in the median values of all these three parame-
ters are smaller than the credibility limits, and thus not
statistically meaningful.
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TABLE I. Estimated parameter values (medians) and uncer-
tainties (90% credible intervals) from the posterior distribu-
tions.

Parameter s83s18 s87h04 s88h18 s95p

Ksat 0.52+0.15
−0.12 0.46+0.12

−0.09 0.53+0.11
−0.10 0.43+0.10

−0.09

(η/s)min 0.18+0.04
−0.06 0.17+0.03

−0.07 0.17+0.04
−0.06 0.15+0.03

−0.07

TH [GeV] 0.13+0.05
−0.03 0.13+0.06

−0.03 0.13+0.06
−0.03 0.15+0.06

−0.04

Wmin [GeV] 0.19+0.10
−0.17 0.12+0.15

−0.11 0.14+0.13
−0.12 0.12+0.10

−0.10

SHG [GeV−1] 2.9+4.0
−2.7 3.0+4.5

−2.8 3.4+4.2
−3.2 3.9+3.7

−3.6

SQGP [GeV−1] 2.4+4.9
−2.1 3.1+4.2

−2.5 3.2+4.1
−2.7 5.2+2.5

−3.5

Tdec [MeV] 132+14
−11 130+16

−12 132+15
−10 126+15

−12

Tchem [MeV] 155+4
−4 154+4

−3 153+2
−3 154+4

−4
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FIG. 4. As Fig. 3, but showing the marginal posterior prob-
ability distributions of TH, Wmin, SHG, and SQGP.

At first sight (η/s)min depicts the behavior described in
Refs. [16, 19]: the favored value is lower for s95p than for
the newer parametrizations (see Fig. 3 and Table I). How-
ever, the effect is noticeably smaller than seen in those
studies—only ∼ 10–20%—and well within the 90% credi-
ble intervals (± ∼ 30%) of the analysis. The comparison
of η/s for different EoSs is further complicated by the
large number of parameters controlling the temperature
dependence of η/s. The probability distributions of pa-
rameters TH,Wmin, SHG, and SQGP, shown in Fig. 4, are
very broad extending to the whole prior range in most
cases, and thus do not possess any clearly favored values.
However, the wide posterior distributions of the (η/s)(T )
parameters are partly caused by the inherent ambiguity
in the chosen parametrization: for a given temperature
T , multiple parameter combinations can generate similar
values of η/s. For example, at low temperatures (η/s)(T )
is mostly determined by SHG and TH, but it is better
constrained than either of these parameters. The rea-

son is that SHG and TH are not independent, but slightly
anti-correlated—the correlations between the pairs of pa-
rameters are shown in Appendix D. Thus it is more illus-
trative to construct the probability distribution for η/s
values w.r.t. temperature, and plot the median and cred-
ibility intervals of this distribution as shown in Figs. 5
and 6.
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FIG. 5. Temperature dependence of η/s. Upper figure: Me-
dian of η/s w.r.t. T for each EoS with the union and in-
tersection of the 90% credible intervals of the distributions.
Lower figure: Median of η/s w.r.t. T for the s83s18 and
s88h18 parametrizations with corresponding credibility inter-
vals compared with two results from Ref. [13] (η/s = 0.2
and param1) and a recent quasiparticle model prediction by
Mykhaylova et al. [68].

In the upper panel of Fig. 5 we show the median of
(η/s)(T ) for each EoS parametrization, and the union
and intersection of the 90% credible intervals of all four
distributions. The union of the credibility intervals pro-
vides insight on the total uncertainty in the analysis in-
cluding the uncertainty from the EoS parametrization,
whereas the difference between the union and intersec-
tion illustrates how much of the uncertainty comes from
the EoS parametrizations. To emphasize the result using
state-of-the-art EoSs, the lower panel of Fig. 5 depicts
the median and credibility intervals for the parametriza-
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FIG. 6. Median values (filled markers) and 90% cred-
ible intervals (error bars) for η/s at temperatures T =
130, 150, 200, 250, 300, 350, 400, and 450 MeV.

tions s83s18 and s88h18 only. In the same panel two older
results from Ref. [13], and a recent theoretical prediction
from Ref. [68] are shown as well. To make it possible
to distinguish the credibility intervals for each EoS sep-
arately, η/s for each EoS at various temperatures with
associated uncertainties is shown in Fig. 6.

We obtain well constrained η/s in a temperature range
150 <∼ T/MeV <∼ 220, where the median values of η/s
are practically constant for all contemporary EoSs, and
s95p leads to modest temperature dependence well within
the credibility intervals. Within this temperature range
η/s is constrained between 0.08 and 0.23 by the 90%
credible intervals. In particular, for the state-of-the-art
EoSs (s83s18 and s88h18), we obtain even tighter limits
0.12 < η/s < 0.23 within this range, and the well con-
strained region extends to slightly higher temperature.
For further details see Fig. 5 and Table II. Interestingly
η/s at 130 MeV (or at 150 MeV in case of s95p) tem-
perature differs from the favored value (median) of the
(η/s)min parameter (compare Tables I and II), even if the
favored value of the TH parameter is 130 MeV (or 150

TABLE II. Median values of η/s at various temperatures with
associated uncertainties (90% credible intervals) from the pos-
terior distributions. Values rounded to two significant figures.

T [MeV] s83s18 s87h04 s88h18 s95p

130 0.19+0.09
−0.04 0.19+0.10

−0.05 0.19+0.07
−0.06 0.21+0.13

−0.07

150 0.18+0.05
−0.04 0.17+0.05

−0.04 0.17+0.05
−0.05 0.17+0.06

−0.04

200 0.18+0.04
−0.05 0.17+0.03

−0.05 0.17+0.04
−0.05 0.15+0.04

−0.07

250 0.19+0.07
−0.05 0.19+0.12

−0.04 0.18+0.08
−0.04 0.16+0.10

−0.03

300 0.20+0.19
−0.05 0.27+0.27

−0.11 0.23+0.21
−0.07 0.28+0.25

−0.13

350 0.23+0.33
−0.08 0.40+0.42

−0.24 0.35+0.36
−0.18 0.51+0.34

−0.34

MeV) (see Fig. 4 and Table I). This seemingly counterin-
tuitive behavior is due to the fat tails of TH distributions
extending to larger temperatures, and thus broadening
the region where SHG affects the η/s values. Conse-
quently we see the lowest η/s values at T ≈ 200 MeV
temperature (Fig. 5 and Table II), where the effect of
the lower (η/s)min value of the s95p parametrization is
also visible.

It is not surprising that we get the best constraints on
η/s in the temperature range 150 <∼ T/MeV <∼ 220. As
was shown in Ref. [46], the temperature range where v2
is most sensitive to the shear viscosity is only slightly
broader than this, and higher order anisotropies are sen-
sitive to shear at even narrower temperature ranges10.

Even if the uncertainties remain large, we can see qual-
itative differences in the high temperature behavior of
η/s, where s95p seems to favor earlier and more rapid
rise of η/s with increasing temperature (Figs. 5 and 6), a
difference which is visible in the SQGP parameter as well
(Fig. 4).

Considering earlier results in the literature this is in-
triguing. Alba et al. [16] used an EoS based on con-
temporary stout action data called PDG16+/WB2+1,
and observed that the reproduction of the LHC data
(
√
sNN = 5.02 TeV) required larger constant η/s for this

EoS than for s95p. On the other hand, they were able
to use the same value of constant η/s for both EoSs to
reproduce the RHIC data. They interpreted this to mean
that at large temperatures s95p would necessitate lower
values of η/s, but we see an opposite behavior. In a
similar fashion we see a difference between the high tem-
perature behavior obtained using the HISQ (s88h18 and
s87h04) and stout action based EoSs (s83s18), but the
differences are way smaller than the credibility intervals,
and thus cannot be considered meaningful.

At temperatures below 150 MeV we again see expand-
ing credibility intervals, and a tendency of η/s to in-
crease with decreasing temperature, but hardly any sen-
sitivity to the EoS. Anisotropies measured at RHIC en-

10 Note that the studies in Ref. [46] were carried out using the s95p
EoS. We haven’t checked how sensitive those results are to the
EoS parametrization.
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ergy are sensitive to the shear viscosity in the hadronic
phase [46, 47], and since Schenke et al. in Ref. [19] saw
sensitivity to the EoS using RHIC data only, we would
have expected some sensitivity to the EoS at low tem-
peratures. The difference may arise from the bulk vis-
cosity which depended on the EoS as well in Ref. [19],
or from a different EoS in the hadronic phase. As men-
tioned, our EoSs are based on known resonance states,
whereas the EoSs in Refs. [16, 19] follow the lattice re-
sults closely. Better fit to lattice results can be obtained
by including predicted but unobserved resonance states
in the HRG. We plan to study how the inclusion of these
states might affect the results, once we have concocted a
plausible scheme for their decays, so that we can evaluate
their contribution to the EoS after chemical freeze-out in
a consistent manner.

Furthermore, unlike in Ref. [19] where a hadron cas-
cade was used to describe the evolution in the hadronic
phase, in our approach the change in the EoS can also be
partly compensated by a change in the freeze-out tem-
perature instead of shear viscosity. As shown in Ap-
pendix D, there is indeed an anti-correlation between
Tdec and (η/s)min. Therefore forcing the system to freeze
out at the same temperature, independent of the EoS,
would increase the difference in (η/s)min. However, the
anti-correlation is rather weak ∼ −0.4(−0.2) for s88h18
(s95p), and thus requiring EoS independent Tdec would
not change (η/s)min a lot.

Our result of a very slowly rising η/s with decreasing
temperature in the hadronic phase (i.e., below T ≈ 150
MeV) may look inconsistent with microscopic calcula-
tions predicting relatively large η/s ∼ 1 in the hadronic
phase [57, 69, 70]. However, our result is for a chemically
frozen HRG, while the microscopic calculations usually
give η/s in chemical equilibrium. At a given temperature
the entropy density sPCE in a chemically frozen HRG can
be significantly larger than the entropy density in chem-
ical equilibrium sCE, and as a consequence η/sPCE can
be way smaller than η/sCE. We may obtain an approxi-
mation for the η/s in a chemically equilibrated system as
η/sCE = (η/sPCE)(sPCE/sCE) [13], since, as a first order
approximation, η depends only weakly on the chemical
non-equilibrium [71]. In our case, where Tchem = 154
MeV, the ratio of entropies in a chemically frozen to a
chemically equilibrated system is ∼ 3.5 at T = 100 MeV
(∼ 1.8 at T = 130 MeV) which is sufficient to bring our
results to the level described in Ref. [70].

In Fig. 5 we also made a comparison to the earlier re-
sults of Ref. [13] and the recent quasiparticle model pre-
diction from Ref. [68]. As expected, the earlier results
from Ref. [13, 24] are not far from the present analysis,
and param1 is practically within the 90% credible inter-
val in the whole temperature range. On the other hand,
constant η/s = 0.2 is below the s95p limits at high tem-
peratures, but as discussed, the overall sensitivity to η/s
at high temperatures is low. Interestingly the prediction
of the quasiparticle model of Ref. [68] comes very close to
our values for η/s around Tc, although the region where

η/s is low is narrower than what we found here. This is
intriguing, since the quasiparticle model was tuned to re-
produce the stout action EoS, i.e., our EoS s83s18, which
in our analysis leads to the broadest region where η/s is
almost constant.

The small value of η/s and its weak temperature de-
pendence in the temperature range 150 <∼ T/MeV <∼ 220
may indicate that the QGP is strongly coupled not only
in the immediate vicinity of Tc, but in a broader tem-
perature region. This was first proposed in Ref. [72],
and agrees with the lattice QCD calculations that indi-
cate the presence of hadronlike resonances in QGP in a
similar or slightly broader temperature interval [73–76].
The strongly coupled nature of QGP can also be seen in
the large value of the coupling constant defined in terms
of the free energy of static quark anti-quark pairs [77].
In any case, our result for (η/s)(T ) is compatible with
the lattice QCD calculations, which indicate that weakly
coupled QGP picture may be applicable only for T > 350
MeV [77–80].

C. The effect of the parametric form

When we use the state-of-the-art EoSs (s88h18 and
s83s18), our result for the minimum value of η/s is higher
than the result obtained in an earlier Bayesian analysis
of Ref. [10]: 0.12 < η/s < 0.23 vs. η/s = 0.07+0.05

−0.04. An
important difference in these analyses is that Ref. [10]
assumed the minimum of η/s to occur at fixed T = 154
MeV temperature, and η/s to rise linearly above that
temperature. Moreover, below T = 154 MeV they used a
hadron cascade to model the evolution, and the transport
properties of the hadronic phase were thus fixed.

To explore how much the results depend on the form of
the (η/s)(T ) parametrization, we mimic the parametriza-
tion used in Ref. [10] by constraining the plateau in our
parametrization to be very small (0 < Wmin/MeV <
2), and the minimum to appear close to Tc (150 <
TH/MeV < 160). The resulting temperature dependence
of η/s for the s88h18 and s95p parametrizations is shown
in Fig. 7, and compared to our full result (the behavior
of the s87h04 and s83s18 parametrizations is similar to
s88h18).

The change in parametrization reduces the minimum
value of η/s to 0.12+0.03

−0.03 for s88h18 and 0.06+0.04
−0.04 for

s95p, which are consistent with the value obtained in
Ref. [10]. Another interesting change is seen in the
high-temperature behavior. In the full analysis the s95p
parametrization leads to the largest η/s at large temper-
atures, but the restricted parametrization causes s95p to
favor the lowest η/s at large temperatures. As seen previ-
ously, s95p favors the lowest η/s at 200 < T/MeV < 250
temperatures (see Fig. 6 and Table II), which in the re-
stricted parametrization dictates the behavior at much
higher temperatures as well.

Nevertheless, even if the results depend on the form
of the parametrization, the credibility intervals overlap



10

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

T [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(η
/s

)(
T

)

s88h18 fixed min point 90% credible interval

s88h18 90% credible interval

s88h18 fixed min point median

s88h18 median

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

T [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(η
/s

)(
T

)

s95p fixed min point 90% credible interval

s95p 90% credible interval

s95p fixed min point median

s95p median

FIG. 7. Temperature dependence of η/s for the s88h18 (top)
and s95p (bottom) EoSs using the full parametrization and
a parametrization constrained to have a minimum at a fixed
point in temperature (“fixed min point”).

and the results are consistent. The only deviation from
this rule is for the s95p parametrization around T = 160
MeV temperature where the difference is statistically sig-
nificant (see Fig. 7). We have also checked that when we
use the favored parameter values, the typical differences
in the fit to the data due to different parametric forms
are only ∼ (1− 3)%.

Similarly, we can mimic temperature independent η/s
by constraining the priors of the SHG and SQGP pa-
rameters close to zero. We have checked that such a
choice does not increase the sensitivity of η/s to the
EoS parametrization, and that the median values of the
constant η/s = (η/s)min were only ≈ 10% larger than
the median values for η/s at T = 200 MeV for the full
parametrization. Again, a sign of v2 being most sensitive
to shear viscosity in the 150 <∼ T/MeV <∼ 220 tempera-
ture range [46].

Thus, in the Bayesian analysis the parametric form of
η/s does affect the results, and is therefore a kind of prior
whose effects are difficult to quantify. On the other hand,
the credibility intervals overlap in all the cases, which
emphasizes their importance: The “true” value could be

anywhere within the credibility interval, and there is still
a 10% chance it is outside of it.

D. Comparison with the data
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FIG. 8. Charged particle multiplicity at various centralities
using 1000 samples from the posterior distribution of each
EoS. Marker centers indicate median values, and error bars
90% credible intervals. Top panel: Au+Au at

√
sNN = 200

GeV compared to PHENIX data [25]. Middle panel: Pb+Pb
at
√
sNN = 2.76 TeV compared to ALICE data [28]. Bottom

panel: Pb+Pb at
√
sNN = 5.02 TeV compared to ALICE data

[31].

Finally, as an overall quality check, we show how well
the favored parameter combinations reproduce the exper-
imental data. This is done by drawing 1000 samples from
each posterior distribution and using the Gaussian pro-
cess emulator to predict the simulation output for these
values. The results for charged and identified particle
multiplicities, identified particle 〈pT 〉, and the elliptic
flow v2{4} are shown in Figs. 8, 9, 10, and 11, respec-
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FIG. 9. Pion (upper panels), kaon (middle panels), and pro-
ton (lower panels) multiplicities at various centralities using
1000 samples from the posterior distribution of each EoS.
Marker centers indicate median values, and error bars 90%
credible intervals. Left panels: Au+Au at

√
sNN = 200 GeV

compared to PHENIX data [26]. Right panels: Pb+Pb at√
sNN = 2.76 TeV compared to ALICE data [29]

.

tively.
The overall agreement with the data is quite good for

all observables, and the analysis is able to find equally
good data fits for all four EoSs. As normal for ther-
mal models, the charged particle multiplicities tend to
be underestimated due to the tension between pion mul-
tiplicity on one hand, and kaon and proton multiplicities
on the other hand. As the analysis makes a compromise
between too few pions and too many kaons and protons,
the overall charged particle multiplicity (which is dom-
inated by pions) will remain below the data. Also the
mean transverse momentum of pions is slightly too large,
which may prove difficult to alleviate without the intro-
duction of bulk viscosity [4] and/or improved treatment
of resonances during the hadronic phase [81].

VII. SUMMARY

In this work, we have introduced three new parametri-
zations of the equation of state based on the contempo-
rary lattice data:

• s87h04 connects the HRG based on the PDG 2004
particle list to parametrized lattice data obtained
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FIG. 10. As Fig. 9 but for the mean transverse momentum.

using the HISQ discretization scheme.

• s88h18 is based on the HRG containing all strange
and non-strange hadrons and resonances in the
PDG 2018 summary tables, and the same HISQ
lattice data as s87h04.

• s83s18 is constructed using the PDG 2018 res-
onances, and the continuum extrapolated lattice
data obtained using the stout discretization.

We used these new parametrizations and the older s95p
parametrization to examine how sensitive the shear vis-
cosity over entropy density ratio η/s is to the equation
of state. We assumed a piecewise linear parametrization
for (η/s)(T ), and determined the probability distribu-
tions of the best-fit parameter values within the EKRT
framework using a Bayesian statistics approach.

Using charged and identified particle multiplicities,
identified particle mean transverse momenta, and ellip-
tic flow at three different collision energies as calibra-
tion data, we were able to constrain the value of η/s
to be between 0.08 and 0.23 with 90% credibility in the
temperature range 150 <∼ T/MeV <∼ 220 when all EoS
parametrizations are taken into account. When we con-
strain the EoSs to the most contemporary parametriza-
tions s83s18 and s88h18, we obtain 0.12 < η/s < 0.23
in the above mentioned temperature range. As the dif-
ferences between the EoSs are well covered by the 90%
credible intervals, the earlier results obtained using the
s95p parametrization remain valid. The weak sensitivity
to the EoS is consistent with the old ideal fluid results
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FIG. 11. Charged particle elliptic flow v2{4} at various centralities using 1000 samples from the posterior distribution of each
EoS. Marker centers indicate median values, and error bars 90% credible intervals. Left panel: Au+Au at

√
sNN = 200 GeV

compared to STAR data [27]. Middle panel: Pb+Pb at
√
sNN = 2.76 TeV compared to ALICE data [30]. Right panel: Pb+Pb

at
√
sNN = 5.02 TeV compared to ALICE data [30].

for flow and EoS: Based on flow alone, it is difficult to
distinguish an EoS with a smooth crossover from an EoS
without phase transition [82]. Thus when the differences
between EoSs are just details in the crossover, the differ-
ences in flow, which should be compensated by different
shear viscosity, are small, and consequently differences in
the extracted η/s are small.

The overall agreement with the data is quite good,
and similar to Refs. [13, 24], where event-by-event fluc-
tuations were included to the framework of EKRT ini-
tial conditions and fluid dynamics, albeit without the
Bayesian analysis. The good agreement achieved here
is partly due to the EKRT initial conditions. In par-
ticular the centrality and

√
sNN dependence of hadron

multiplicities follow mainly from the QCD dynamics of
the EKRT model. A noticeable difference to the ear-
lier event-by-event analysis is that here we used identi-
fied hadron multiplicities as constraint, which led to the
chemical freeze-out temperature Tchem ∼ 154 MeV, and
a slight overshoot of the pion average pT compared to the
data. In the earlier analysis Tchem ∼ 175 MeV was used
to reproduce the average pT data, which in turn led to
too large proton multiplicity. It is possible to solve this
tension by introducing bulk viscosity [4], but that is left
for a future work. We emphasize that compared to the
(in principle) more detailed hydro + cascade models our
hydro + partial chemical equilibrium approach has two
major advantages: It allows us to parametrize η/s(T ) so
that it is continuous in the whole temperature range, and
at the same time it gives us a possibility to constrain the
viscosity also in the hadronic phase.

Inclusion of event-by-event fluctuations to the analy-
sis would provide access to several new flow observables
such as higher flow harmonics vn, and flow correlations,
which may give tighter constraints in broader temper-
ature interval on η/s(T ). However, within the current
uncertainties of the fitting procedure, we cannot exclude
the possibility that the effect of the EoS remains negli-
gible even when η/s at T > 220 MeV becomes better
under control.

Since the sensitivity of flow to shear viscosity at high

temperatures is low, observables based on high pT par-
ticles may be useful to constrain, not only the pre-
equilibrium dynamics [83–85], but also the properties of
the fluid when it is hottest.
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Appendix A: EoS parametrization

At high temperature the trace anomaly can be well
parametrized by the inverse polynomial form. Therefore
we will use the following Ansatz for the high temperature
region:

ε− 3p

T 4
= d0 +

d1
T 2

+
d2
T 4

+
d3
Tn3

+
d4
Tn4

+
d5
Tn5

. (A1)

This form does not have the right asymptotic behav-
ior in the high temperature region, where we expect
(ε − 3p)/T 4 ∼ g4(T ) ∼ 1/ ln2(T/ΛQCD), but it works
well in the temperature range of interest. Furthermore,
it is flexible enough to match to the HRG result in the
low temperature region. We match this Ansatz to the
HRG model at temperature T0 by requiring that the trace
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TABLE III. The values of parameters for different fits of the trace anomaly.

d0 d1(GeV2) d2(GeV4) d3(GeVn3) d4(GeVn4) d5(GeVn5) n3 n4 n5 T0(MeV)
s83s18 5.688·10−3 0.3104 -6.217·10−3 -6.680·10−32 1.071·10−32 – 41 42 – 166
s87h04 5.669·10−2 0.2974 -4.184·10−3 -5.146·10−8 1.420·10−33 – 10 42 – 172
s88h18 4.509·10−2 0.3082 -5.136·10−3 -1.150·10−10 2.076·10−32 -3.021·10−33 13 41 42 155
s95p – 0.2660 2.403·10−3 -2.809·10−7 6.073·10−23 – 10 30 – 183.8

TABLE IV. The values of parameters for different fits of the HRG trace anomaly.

a1(GeV−m1) a2(GeV−m2) a3(GeV−m3) a4(GeV−m4) m1 m2 m3 m4 Thigh(MeV)
s83s18 0.1850 1.985·104 1.278·105 -1.669·107 0 5 7 10 170
s87h04 4.654 -879 8081 -7.039·106 1 3 4 10 190
s88h18 0.1844 2.043·104 8.550·105 -2.434·107 0 5 8 10 169
s95p 4.654 -879 8081 -7.039·106 1 3 4 10 190

anomaly, and its first and second derivatives are continu-
ous. This requirement provides constraints for three pa-
rameters, d0, d1, and d2, and leaves the remaining seven,
d3, d4, d5, n3, n4, n5, and T0 to be fixed by minimizing a
χ2 fit to the data. Fitting the powers n3–n5 would be
a highly non-linear problem, but we simplify the prob-
lem by requiring that the powers are integers, and using
brute force: We make a fit with all the integer values
5 ≤ n3 ≤ 40, n3 < n4 ≤ 41, and n4 < n5 ≤ 42, and
choose the values n3, n4, and n5 which lead to the small-
est χ2. When the powers and T0 are kept fixed, minimiz-
ing χ2 requires only a simple matrix inversion. Thus to
fix T0 we are able to cast χ2 as a function of only a single
parameter, T0. We require that 155 ≤ T0/MeV ≤ 190,
and search for the value of T0 which minimizes χ2.

To obtain the continuum limit in the lattice calcula-
tions of the trace anomaly, one has to perform interpola-
tion in the temperature, and then perform continuum ex-
trapolations (see e.g. [23]). This procedure can introduce
additional uncertainties when providing parametrization
of the lattice results. As mentioned in the main text,
the lattice spacing (Nt) dependence of the lattice results
on the trace anomaly is small in the case of the HISQ
discretization scheme for Nt ≥ 8. In fact, for T > 230
MeV and T < 170 MeV there is no statistically signifi-
cant Nt dependence, so in these temperature ranges we
can use the HISQ lattice results with Nt = 8, 10 and 12.
In the peak region, 170 < T/MeV < 230, the Nt = 8
HISQ results are slightly higher than the Nt = 10 and
Nt = 12 results, and therefore have been omitted from
the fits. At temperatures above 800 MeV only lattice re-
sults with Nt = 6 and 4 are available [20, 21]. To take the
larger discretization errors of the Nt = 6 and 4 results
into account, we follow Ref. [21], scale them by factors
1.4 and 1.2, and include systematic errors of 40% and
20%, respectively. Contrary to the HISQ action results,
we employ the continuum extrapolated stout action re-
sults [22, 23] for simplicity. The resulting parameters are
shown in Table III. We find that only the parametriza-
tion s88h18 requires the use of all six terms in Eq. A1.
In the cases of s83s18 and s87h04 we are able to obtain

equally good fits with only five terms, and thus set d5 to
zero by hand.

For the sake of completeness, we also parametrize the
HRG part of the trace anomaly as

ε− 3p

T 4
= a1T

m1 + a2T
m2 + a3T

m3 + a4T
m4 . (A2)

To carry out the fit we evaluate HRG trace anomaly in
temperature interval 70 < T/MeV < Thigh, where Thigh
depends on the parametrization, with 1 MeV steps as-
suming that each point has equal “error”. The limits
have entirely utilitarian origin: in hydrodynamical ap-
plications the system decouples well above 70 MeV tem-
perature and only a rough approximation of the EoS,
p = p(ε), is needed at lower temperatures. On the other
hand we expect to switch to the lattice parametrization
below Thigh, and the HRG EoS above that temperature
is not needed either. We fix the powers in Eq. (A2)
again using brute force. We require them to be inte-
gers, go through all the combinations 0 ≤ l1 < l2 <
l3 < l4 ≤ 10, fit the parameters a1, a2, a3, a4 to the
HRG trace anomaly evaluated with 1 MeV intervals, and
choose the values l1, l2, l3 and l4 which minimize the
χ2. We end up with parameters shown in Table IV. To
obtain the EoS, one also needs the pressure at the lower
limit of the integration (see Eq.(1)) Tlow = 0.07 GeV:
p(Tlow)/T 4

low = 0.1661. Our EoSs are available in a tab-
ulated form at arXiv as ancillary files for this paper, and
at Ref. [86]. These tables also include the option of a
chemically frozen hadronic stage, and a list of resonances
included in the hadronic stage with their properties and
decay channels.

Appendix B: Predicting model output with
Gaussian processes

Let us assume that we do not know exactly what the
model’s output y for a particular input parameter ~x is,
but we know its most probable value µ(~x). We postu-
late that the probability distribution for the output value
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P (y) is a normal distribution with mean µ(~x) and so far
unknown width σ. Thus the probability distribution for
a set Ya of N model outputs for observable a, correspond-
ing to a set X of N points in the parameter space, is a
multivariate normal distribution:

G : X → Ya ∼ N (µ,C) (B1)

where µ = µ(X) = {µ(~x1), . . . , µ(~xN )} is the mean of
the distribution, and C is the covariance matrix defined
by the covariance function c(~x, ~x′):

C = CX,X =



c(~x1, ~x1) . . . c(~x1, ~xN )

...
. . .

...
c(~xN , ~x1) . . . c(~xN , ~xN )


 . (B2)

As we are only interested in interpolating within the
training data, we may set µ(X) ≡ 0, and construct the
covariance function c(~x, ~x′) in such a way that the prob-
ability distribution is narrow at the training points nev-
ertheless. This way we minimize our a priori assump-
tions about the model behavior in regions of parameter
space not covered by the training data11. Our chosen
covariance function is a radial-basis function (RBF) with
a noise term

c(~x, ~x′) = θ0 exp

(
−

n∑

i=1

(xi − x′i)2
2θ2i

)
+ θnoiseδ~x~x′ (B3)

The hyperparameters ~θ = (θ0, θ1, . . . , θn, θnoise), where n
is the dimension of the input parameter space, are not
known a priori and must be estimated from training data,
consisting of simulation output U computed at training
points T , by maximizing the log-likelihood (see Chapter
5 of [64])

logP (U |T, ~θ) =− 1

2
UTC−1(T, ~θ)U

− 1

2
log |C(T, ~θ)|

− N

2
log(2π).

(B4)

Emulator prediction for the model output y0 at a point
~x0 can then be determined by writing a joint probability
distribution for the output at various points in parameter
space:

(
y0
U

)
∼ N

((
0
~0

)
,

(
C0,0 C0,T
CT,0 CT,T

))
(B5)

from which we can derive the conditional predictive mean
yGP( ~x0) and associated variance σGP( ~x0)2 as (see e.g.

11 Note that we use Gaussian process to estimate the model out-
put of the principal components, not the actual observables, see
Appendix C.

Appendix A.2 of [64])

yGP( ~x0) = C0,TC−1T,TU,
σGP( ~x0)2 = C0,0 − C0,TC−1T,TCT,0.

(B6)

Note that we use the training data U twice: First in

Eq. (B4) to determine the hyperparameters ~θ of the co-
variance function c(~x, ~x′) and then in Eq. (B6) as a con-
dition for the GP prediction.

Appendix C: Principal component analysis

We reduce the number of Gaussian processes needed
for model emulation with principal component analysis
(PCA), which transforms the data in the directions of
maximal variance.

We represent the model output with a N x m matrix
Y , where N is the number of simulation points and m
the number of observables. In preparation for the PCA,
the data columns are normalized with the corresponding
experimental values to obtain dimensionless quantities,
and centered by subtracting the mean of each observable
from the elements of each column; we denote this scaled
and shifted data matrix by Ŷ .

We then want to find an eigenvalue decomposition of
the covariance matrix Ŷ T Ŷ :

Ŷ T Ŷ = V ΛV T , (C1)

where Λ is the diagonal matrix containing the eigenvalues
λ1, ..., λm and V is an orthogonal matrix containing the
eigenvectors of the covariance matrix.

The eigenvalue decomposition is found by factorizing
Ŷ via the singular value decomposition:

Ŷ = USV T , (C2)

where S is a diagonal matrix containing the singular
values (square roots of the eigenvalues of Ŷ T Ŷ ) and V

contains the right-singular vectors of Ŷ (eigenvectors of

Ŷ T Ŷ ); these are the principal components (PCs). Ma-

trix U contains the left-singular vectors of Ŷ , which are
eigenvectors of Ŷ Ŷ T .

The eigenvalues are proportional to the total variance
of the data. Since λ1 ≥ λ2 ≥ ... ≥ λm, the fraction of the
total variance explained by the kth principal component,

λk/(
m∑
j=1

λj), becomes negligible starting from some index

k < m. This allows us to define a lower-rank approxima-
tion of the original transformed data matrix Z = Ŷ V as
Zk = Ŷ Vk, where Vk contains the first k columns of V .

The transformation of a vector ~y from the space of ob-
servables to a vector ~z in the reduced-dimension principal
component space is thus defined as

~z = ~y Vk, (C3)
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while for matrices (such as the covariance matrix in the
likelihood function (5)) the transformation is

Σz = V Tk Σy Vk. (C4)

To compare an emulator prediction ~zGP against phys-
ical observables, we use the inverse transformation

~yGP = ~zGP V Tk . (C5)

Appendix D: Correlations between the model
parameters

Figure 12 provides a more detailed view of the 8-
dimensional posterior probability distribution, using the
analysis results for the s88h18 and s95p EoSs as an ex-

ample. The diagonal panels show the marginalized one-
dimensional distributions for each parameter, which were
summarized in Figs. 3–4 in Section VI. The off-diagonal
panels illustrate the correlations between each parameter
pair (X,Y ). The correlation strength is quantified with
the Spearman rank correlation coefficient [87], which is
the Pearson correlation coefficient between the rank val-
ues rX and rY :

ρ =
C(rX , rY )

σ(rX)σ(rY )
, (D1)

where C refers to covariance and σ to standard devia-
tion. This relaxes the assumption of a linear relationship,
present in the Pearson correlation coefficient, and is in-
stead a measure of the monotonic relationship between
the two parameters.
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We show, through analytic arguments, numerical calculations, and comparison with experimental data, that the
ratio of the high-p⊥ observables v2/(1 − RAA) reaches a well-defined saturation value at high p⊥, and that this
ratio depends only on the spatial anisotropy of the quark gluon plasma (QGP) formed in ultrarelativistic heavy-
ion collisions. With expected future reduction of experimental errors, the anisotropy extracted from experimental
data will further constrain the calculations of initial particle production in heavy-ion collisions and thus test our
understanding of QGP physics.
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Introduction. The major goal of relativistic heavy-ion
physics [1–4] is understanding the properties of the new form
of matter called quark gluon plasma (QGP) [5,6], which, in
turn, allows the understanding of properties of QCD matter at
its most basic level. Energy loss of rare high-momentum par-
tons traversing this matter is known to be an excellent probe
of its properties. Different observables such as the nuclear
modification factor RAA and the elliptic flow parameter v2 of
high-p⊥ particles, probe the medium in different manners, but
they all depend not only on the properties of the medium, but
also on the density, size, and shape of the QGP droplet created
in a heavy-ion collision. Thus drawing firm conclusions of
the material properties of QGP is very time consuming and
requires simultaneous description of several observables. It
would therefore be very useful if there were an observable, or
combination of observables, which would be sensitive to only
one or just a few of all the parameters describing the system.

For high-p⊥ particles, spatial asymmetry leads to different
paths, and consequently to different energy losses. Conse-
quently, v2 (angular differential suppression) carries informa-
tion on both the spatial anisotropy and material properties
that affect energy loss along a given path. On the other hand,
RAA (angular average suppression) carries information only
on material properties affecting the energy loss [7–10], so one
might expect to extract information on the system anisotropy
by taking a ratio of expressions which depend on v2 and
RAA. Of course, it is far from trivial whether such intuitive
expectations hold, and what combination of v2 and RAA one
should take to extract the spatial anisotropy. To address this,
we here use both analytical and numerical analysis to show
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that the ratio of v2 and 1 − RAA at high p⊥ depends only on
the spatial anisotropy of the system. This approach provides
a complementary method for evaluating the anisotropy of the
QGP fireball, and advances the applicability of high-p⊥ data
to a new level as, up to now, these data were mainly used to
study the jet-medium interactions, rather than inferring bulk
QGP parameters.

Anisotropy and high-p⊥ observables. In [10,11], we
showed that at very large values of transverse momentum
p⊥, the fractional energy loss �E/E (which is very complex,
both analytically and numerically, due to inclusion of multiple
effects, see Numerical results for more details) shows asymp-
totic scaling behavior

�E/E ≈ χ (p⊥)〈T 〉a〈L〉b, (1)

where 〈L〉 is the average path length traversed by the jet, 〈T 〉
is the average temperature along the path of the jet, χ is a
proportionality factor (which depends on initial jet p⊥), and a
and b are proportionality factors which determine the temper-
ature and path-length dependence of the energy loss. Based on
Refs. [12–15], we might expect values like a = 3 and b = 1 or
2, but a fit to a full-fledged calculation yields values a ≈ 1.2
and b ≈ 1.4 [11,16]. Thus the temperature dependence of the
energy loss is close to linear, while the length dependence is
between linear and quadratic. To evaluate the path length we
follow Ref. [17]:

L(x, y, φ) =
∫ ∞

0 dλ λ ρ(x + λ cos(φ), y + λ sin(φ))∫ ∞
0 dλ ρ(x + λ cos(φ), y + λ sin(φ))

, (2)

which gives the path length of a jet produced at point (x, y)
heading to direction φ, and where ρ(x, y) is the initial density
distribution of the QGP droplet. To evaluate the average path
length we take average over all directions and production
points.

If �E/E is small (i.e., for high p⊥ and in peripheral
collisions), we obtain [7,10,11]

RAA ≈ 1 − ξ 〈T 〉a〈L〉b, (3)
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where ξ = (n − 2)χ/2, and n is the steepness of a power-
law fit to the transverse momentum distribution, dN/d p⊥ ∝
1/p⊥n. Thus 1 − RAA is proportional to the average size and
temperature of the medium. To evaluate the anisotropy we
define the average path lengths in the in-plane and out-of-
plane directions,

〈Lin〉 = 1

�φ

∫ �φ/2

−�φ/2
dφ 〈L(φ)〉,

〈Lout〉 = 1

�φ

∫ π/2+�φ/2

π/2−�φ/2
dφ 〈L(φ)〉, (4)

where �φ = π/6 [18] is the acceptance angle with respect to
the event plane (in-plane) or orthogonal to it (out-of-plane),
and 〈L(φ)〉 the average path length in the φ direction. Note
that the obtained calculations are robust with respect to the
precise value of the small angle ±�φ/2, but we still keep a
small cone (±π/12) for Rin

AA and Rout
AA calculations, to have

the same numerical setup as in our Ref. [10]. Now we can
write 〈L〉 = (〈Lout〉 + 〈Lin〉)/2 and �L = (〈Lout〉 − 〈Lin〉)/2.
Similarly, the average temperature along the path length can
be split to average temperatures along paths in in- and out-of-
plane directions, 〈Tin〉 = 〈T 〉 + �T and 〈Tout〉 = 〈T 〉 − �T .
When applied to an approximate way to calculate v2 of high-
p⊥ particles [19], we obtain1

v2 ≈ 1

2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

≈ ξ 〈Tout〉a〈Lout〉b − ξ 〈Tin〉a〈Lin〉b

4

≈ ξ 〈T 〉a〈L〉b

(
b

2

�L

〈L〉 − a

2

�T

〈T 〉
)

, (5)

where we have assumed that ξ 〈T 〉a〈L〉b � 1, and that �L/〈L〉
and �T/〈T 〉 are small as well.

By combining Eqs. (3) and (5), we obtain

v2

1 − RAA
≈

(
b

2

�L

〈L〉 − a

2

�T

〈T 〉
)

. (6)

This ratio carries information on the anisotropy of the system,
but through both spatial (�L/〈L〉) and temperature (�T/〈T 〉)
variables. From Eq. (6), we see the usefulness of the (approx-
imate) analytical derivations, since the term (1 − RAA) in the
denominator could hardly have been deduced intuitively or
pinpointed by numerical trial and error. Figure 1 shows a lin-
ear dependence �L/〈L〉 ≈ c�T/〈T 〉, where c ≈ 4.3, with the
temperature evolution given by one-dimensional (1D) Bjorken
expansion, as sufficient to describe the early evolution of the
system. Equation (6) can thus be simplified to

v2

1 − RAA
≈ 1

2

(
b − a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 ≈ 0.57ς,

where ς = 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 and

1

2

(
b − a

c

)
≈ 0.57, (7)

1Note that the first approximate equality in Eq. (5) can be shown to
be exact if the higher harmonics v4, v6, etc., are zero, and the opening
angle where Rin

AA and Rout
AA are evaluated is zero [cf. definitions of

〈Lout〉 and 〈Lin〉, Eq. (4)].

FIG. 1. �T/〈T 〉 vs �L/〈L〉 in Pb+Pb collisions at
√

sNN =
5.02 TeV collision energy at various centralities [7,10]. The more
peripheral the collision, the larger the values. The red solid line
depicts linear fit to the values.

when a ≈ 1.2 and b ≈ 1.4. Consequently, the asymptotic
behavior of observables RAA and v2 is such that at high p⊥,
their ratio is dictated solely by the geometry of the fireball.
Therefore, the anisotropy parameter ς can be extracted from
the high-p⊥ experimental data.

Regarding the parametrization used to derive Eq. (7) (con-
stants a, b, and c), we note that a and b are well established
within our dynamical energy-loss formalism and follow from
RAA predictions that are extensively tested on experimental
data [11,16] and do not depend on the details of the medium
evolution. Regarding c, it may (to some extent) depend on
the type of implemented medium evolution, but this will not
affect the obtained scaling, only (to some extent) the overall
prefactor in Eq. (7).

Numerical results. To assess the applicability of the analyt-
ically derived scaling in Eq. (7), we calculate v2/(1 − RAA)
using our full-fledged numerical procedure for calculating the
fractional energy loss. This procedure is based on our state-of-
the-art dynamical energy-loss formalism [20,21], which has
several unique features in the description of high-p⊥ parton
medium interactions: (i) The formalism takes into account
a finite-size, finite-temperature QCD medium consisting of
dynamical (that is, moving) partons, contrary to the widely
used static scattering approximation and/or medium models
with vacuum-like propagators (e.g., [12–15]). (ii) The calcu-
lations are based on the finite-temperature generalized hard-
thermal-loop approach [22], in which the infrared divergences
are naturally regulated [20,21,23]. (iii) Both radiative [20]
and collisional [21] energy losses are calculated under the
same theoretical framework, applicable to both light and
heavy flavor. (iv) The formalism is generalized to the case
of finite magnetic [24] mass and running coupling [25] and
towards removing the widely used soft-gluon approximation
[26]. The formalism was further embedded into our recently
developed DREENA-B framework [10], which integrates ini-
tial momentum distribution of leading partons [27], energy

031901-2
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loss with path-length [17] and multigluon [28] fluctuations
and fragmentation functions [29], in order to generate the
final medium modified distribution of high-p⊥ hadrons. The
framework was recently used to obtain joint RAA and v2

predictions for 5.02 TeV Pb+Pb collisions at the LHC [10],
showing a good agreement with the experimental data.

We have previously shown [30] that all the model ingredi-
ents noted above have an effect on the high-p⊥ data, and thus
should be included to accurately explain it. In that respect,
our model is different from many other approaches, which
use a sophisticated medium evolution, but an (over)simplified
energy-loss model. Our previous work, however, shows that
for explaining the high-p⊥ data, an accurate description of
high-p⊥ parton-medium interactions is at least as important
as an advanced medium evolution model. For example, the
dynamical energy-loss formalism, embedded in 1D Bjorken
expansion, explains well the v2 puzzle [10], i.e., the inability
of other models to jointly explain RAA and v2 measure-
ments. To what extent the dynamical energy-loss predic-
tions will change when embedded in full three-dimensional
evolution is at the time of this writing still unknown, but
our previous results nevertheless make it plausible that cal-
culations employing simple one-dimensional expansion can
provide valuable insight into the behavior of jets in the
medium.

Our results for the longitudinally expanding system (1D
Bjorken) and the corresponding data are shown in Fig. 2. The
gray band shows our full DREENA-B result (see above) with
the band resulting from the uncertainty in the magnetic to
electric mass ratio μM/μE [31,32]. The red line corresponds
to the 0.57ς limit from Eq. (7), where ς is the anisotropy of
the path lengths used in the DREENA-B calculations [7,10].
Importantly, for each centrality, the asymptotic regime—
where the v2/(1 − RAA) ratio does not depend on p⊥, but is
determined by the geometry of the system—is already reached
from p⊥ ≈ 20–30 GeV; the asymptote corresponds to the
analytically derived Eq. (7), within ±5% accuracy. It is also
worth noticing that our prediction of asymptotic behavior was
based on approximations which are not necessarily valid in
these calculations, but the asymptotic regime is nevertheless
reached, telling us that those assumptions were sufficient to
capture the dominant features. If, as we suspect, the high-
p⊥ parton-medium interactions are more important than the
medium evolution model in explaining the high-p⊥ data, this
behavior reflects this importance and the analytical derivations
based on a static medium may capture the dominant features
seen in Fig. 2.

Furthermore, to check if the experimental data support
the derived scaling relation, we compare our results to the
ALICE [33,34], CMS [35,36], and ATLAS [37,38] data for√

sNN = 5.02 TeV Pb+Pb collisions. The experimental data,
for all three experiments, show the same tendency, i.e., the in-
dependence on the p⊥ and a consistency with our predictions,
though the error bars are still large. Therefore, from Fig. 2, we
see that at each centrality both the numerically predicted and
experimentally observed v2/(1 − RAA) approach the same
high-p⊥ limit. This robust, straight line, asymptotic value
carries information about the system’s anisotropy, which is,
in principle, simple to infer from the experimental data.

FIG. 2. Theoretical predictions for v2/(1 − RAA) ratio of charged
hadrons as a function of transverse momentum p⊥ compared with
5.02 TeV Pb+Pb ALICE [33,34] (red triangles), CMS [35,36] (blue
squares), and ATLAS [37,38] (green circles) data. Panels correspond
to 10–20%, 20–30%, 30–40%, and 40–50% centrality bins. The gray
band corresponds to the uncertainty in the magnetic to electric mass
ratio μM/μE . The upper (lower) boundary of the band corresponds to
μM/μE = 0.4 (0.6) [31,32]. In each panel, the red line corresponds
to the limit 0.57ς from Eq. (7).
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Ideally, the experimental data (here from ALICE, CMS,
and ATLAS) would overlap with each other, and would more-
over have small error bars. In such a case, the data could
be used to directly extract the anisotropy parameter ς by
fitting a straight line to the high-p⊥ part of the v2/(1 − RAA)
ratio. While such direct anisotropy extraction would be highly
desirable, the available experimental data are unfortunately
still not near the precision level needed to implement this.
However, we expect this to change in the upcoming high-
luminosity third run at the LHC, where the error bars are
expected to be significantly reduced, so that this procedure
can be directly applied to experimental data.

It is worth remembering that the anisotropy parameter ς ,
which can be extracted from the high-p⊥ data, is not the
commonly used anisotropy parameter ε2,

ε2 = 〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)∫
dx dy (y2 + x2) ρ(x, y)

, (8)

where ρ(x, y) is the initial density distribution of the QGP
droplet. We may also expect, that once the transverse ex-
pansion is included in the description of the evolution, the
path-length anisotropy ς reflects the time-averaged anisotropy
of the system, and therefore is not directly related to the
initial-state anisotropy ε2. Nevertheless, it is instructive to
check how the path-length anisotropy in our simple model
relates to conventional ε2 values in the literature. For this
purpose we construct a variable

ε2L = 〈Lout〉2 − 〈Lin〉2

〈Lout〉2 + 〈Lin〉2
= 2ς

1 + ς2
. (9)

We have checked that for different density distributions ε2 and
ε2L agree within ≈10% accuracy.

We have extracted the parameters ς from the DREENA-B
results shown in Fig. 2; the corresponding ε2L results are
shown as a function of centrality in Fig. 3 and compared to
ε2 evaluated using various initial-state models in the literature
[39–42]. Note that conventional (EKRT [40], IP-Glasma [41])
ε2 values trivially agree with our initial ε2 (not shown in the
figure), i.e., the initial ε2 characterize the anisotropy of the
path lengths used as an input to DREENA-B, which we had
chosen to agree with the conventional models.2 It is, however,
much less trivial that through this procedure, in which we
calculate the ratio of v2 and 1 − RAA through full DREENA
framework, our extracted ε2L almost exactly recovers our
initial ε2. Note that ε2 is indirectly introduced in RAA and
v2 calculations through path-length distributions, while our
calculations are performed using full-fledged numerical pro-
cedure, not just Eq. (1). Consequently, such direct extraction
of ε2L and its agreement with our initial (and consequently
also conventional) ε2 is highly nontrivial and gives us a
good deal of confidence that v2/(1 − RAA) is related to the
anisotropy of the system only, and not its material properties.

2Binary collision scaling calculated using optical Glauber model
with additional cutoff in the tails of Woods-Saxon potentials, to be
exact.

FIG. 3. Comparison of ε2L (red band) obtained from our method,
with ε2 calculated using Monte Carlo (MC)-Glauber [39] (gray
band), EKRT [40] (purple band), IP-Glasma [41] (green dot-dashed
curve), and MC-KLN [42] (blue dotted curve) approaches. MC-
Glauber and EKRT results correspond to 5.02 TeV, while IP-Glasma
and MC-KLN correspond to 2.76 TeV Pb+Pb collisions at the LHC.

Summary. High-p⊥ theory and data are traditionally used to
explore interactions of traversing high-p⊥ probes with QGP,
while bulk properties of QGP are obtained through low-p⊥
data and the corresponding models. On the other hand, it
is clear that high-p⊥ probes are also powerful tomography
tools since they are sensitive to global QGP properties. We
here demonstrated this in the case of spatial anisotropy of the
QCD matter formed in ultrarelativistic heavy-ion collisions.
We used our dynamical energy-loss formalism to show that a
(modified) ratio of two main high-p⊥ observables, RAA and v2,
approaches an asymptotic limit at experimentally accessible
transverse momenta, and that this asymptotic value depends
only on the shape of the system, not on its material properties.
However, how exactly this asymptotic value reflects the shape
and anisotropy of the system requires further study employing
full three-dimensional expansion, which is our current work
in progress. The experimental accuracy does not yet allow the
extraction of the anisotropy from the data using our scheme,
but once the accuracy improves in the upcoming LHC runs,
we expect that the anisotropy of the QGP formed in heavy-ion
collisions can be inferred directly from the data. Such an
experimentally obtained anisotropy parameter would provide
an important constraint to models describing the early stages
of heavy-ion collision and QGP evolution, and demonstrate
synergy of high-p⊥ theory and data with more common
approaches for inferring QGP properties.
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We discuss the role of repulsive baryon–baryon interactions in a hadron gas using relativistic virial 
expansion and repulsive mean field approaches. The fluctuations of the baryon number as well as 
strangeness-baryon correlations are calculated in the hadron resonance gas with repulsive interactions 
and compared with the recent lattice QCD results. In particular, we calculate the difference between the 
second and fourth order fluctuations and correlations of baryon number and strangeness, that have been 
proposed as probes of deconfinement. We show that for not too high temperatures these differences 
could be understood in terms of repulsive interactions.
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1. Introduction

Fluctuations and correlations of conserved charges, e.g. baryon 
number (B), electric charge (Q ) and strangeness (S) have been 
studied in lattice QCD for some time now. The reason is that they 
are sensitive probes of deconfinement and can also be used to cal-
culate thermodynamic quantities at non-zero baryon density via 
Taylor expansion (see Refs. [1,2] for recent reviews and references 
therein). At sufficiently low temperatures QCD thermodynamics is 
expected to be fairly well described by a gas of non-interacting 
hadrons and hadron resonances, by so-called hadron resonance gas 
(HRG) model [3]. This picture naturally emerges from the S-matrix 
based relativistic virial expansion, where the interactions are mani-
fested as the phase shifts of two particle scattering [4–7]. In pion–
pion and pion–nucleon interactions the repulsive part associated 
with the negative phase shifts, is largely cancelled by parts of the 
positive phase shifts associated with attractive interactions. The 
effect of the remaining attractive interactions on thermodynam-
ics, can be well approximated as a contribution of free resonances 
with zero widths [5], although some differential observables may 
require explicit treatment of the interactions [8].

As the temperature increases, particle densities increase, and 
the virial expansion only up to second virial coefficient becomes 
less and less reliable. To establish the validity of the HRG model 
at temperatures close to the QCD transition temperature requires a 

E-mail address: petreczk@bnl.gov (P. Petreczky).

detailed comparison with the results from lattice QCD. Early com-
parisons have been discussed in Refs. [9–13], where, however, large 
cutoff effects and/or unphysical quark masses made a detailed 
comparison difficult (see e.g. Ref. [13]). In the past several years 
the fluctuations and correlations of conserved charges have been 
studied on the lattice using stout and highly improved staggered 
quark (HISQ) actions, and physical quark masses [14–27]. These 
lattice formulations significantly reduce the cutoff effects. As the 
result the comparison between the lattice results and HRG have 
become straightforward. Second order fluctuations and correlations 
seem to agree reasonably well with the HRG model. However, 
higher order fluctuations show deviations from the HRG model 
close to the transition temperature. In Ref. [18] it was argued that 
the apparent breakdown of HRG when describing certain differ-
ences of fourth and second order fluctuations and correlations is a 
signal of deconfinement. On the other hand, it has been recently 
shown that the repulsive interactions modelled by excluded vol-
ume can have significant effect on thermodynamic observables, in 
particular on higher order fluctuations [28–30]. The role of repul-
sive interaction in the context of statistical hadronization has also 
been discussed, see e.g. Ref. [31].

The aim of this paper is to study the effect of repulsive baryon–
baryon interactions using the S-matrix based virial expansion and 
the repulsive mean field approach. In this paper we will calculate 
the fluctuations and correlations of conserved charges defined as

χ X
n = T n ∂n(p(T ,μX )/T 4)

∂μn
X

∣∣∣∣
μX =0

, (1.1)
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χ XY
nm = T n+m ∂n+m(p(T ,μX ,μY )/T 4)

∂μn
X∂μm

Y

∣∣∣∣
μX =0,μY =0

. (1.2)

Here X = B, Q , S , i.e. we consider fluctuations and correlations 
of conserved charges corresponding to baryon number, electric 
charge and strangeness. It may not be easy to disentangle the 
effects of repulsive interactions from other medium effects such 
as in-medium mass shift and broadening of width. Therefore it 
is useful to study the differences of fluctuations and correlations, 
which are not affected by the latter effects. In particular we eval-
uate χ B

2 − χ B
4 , and χ B

2 − χ B
6 , and show that the inclusion of the 

repulsive baryon baryon interaction can naturally explain the tem-
perature dependence of these differences.

2. Repulsive interaction in nucleon gas

First we would like to study the role of repulsive interactions 
in the gas of nucleons at temperature T = 1/β . The most natural 
way to do this is to consider the virial expansion. In this case the 
nucleon pressure can be written as

p(T ,μ) = p0(T ) cosh(βμ) + 2b2(T )T cosh(2βμ). (2.1)

Here

p0(T ) = 4M2T 2

π2
K2(βM) (2.2)

is the pressure of free nucleon gas at zero chemical potential and 
the second virial coefficient can be written as

b2(T ) = 2T

π3

∞∫
0

dE(
M E

2
+ M2)K2

(
2β

√
M E

2
+ M2

)

× 1

4i
Tr

[
S† dS

dE
− dS†

dE
S

]
, (2.3)

with S being the scattering S-matrix and E is the kinetic energy 
in the lab frame. Furthermore, M is the nucleon mass and K2(x) is 
the Bessel function of second kind. The nucleon–nucleon (N N) in-
teractions break the simple factorisation of the pressure into tem-
perature dependent and μ-dependent parts. As the result χ B

2 −χ B
4

is not zero as in the case of non-interacting HRG. Even if the effect 
of N N interactions is small for the pressure when μ = 0, it could 
be significant for higher order fluctuations as each derivative in μ
will multiply b2 by factor two. Because of the exponential suppres-
sion of K2(x) at large values of the argument, the virial coefficient 
b2 is very small for the nucleon gas. Therefore, it makes sense to 
introduce the reduced virial coefficient

b̄2(T ) = 2T b2(T )

p0(T )K2(βM)
. (2.4)

The pressure can now be written as

p(T ,μ) = p0(T )(cosh(βμ) + b̄2(T )K2(βM) cosh(2βμ)). (2.5)

To evaluate b2(T ) we need to know the S-matrix for the N N
scattering. Through the partial wave analysis we have a good 
parametrisation of the elastic part of the S-matrix, however, the 
inelastic part of the S-matrix is not known. The inelastic channels 
open up for E > 280 MeV and become significant for E > 400 MeV, 
and their importance increases with the energy. We estimate b2(T )

using the elastic part of the S-matrix and try to include the effects 
of the inelastic channel as a systematic uncertainty.

The elastic S-matrix is block diagonal with matrix elements S J , 
that are 2 × 2 matrices for each value of angular momentum J . 

In the so-called BASQUE parametrisation [32] S J has diagonal ele-
ments

S± = cos2 ρ
J
± cos 2ε J exp(2iδ J

±) (2.6)

corresponding to orbital angular momenta L = J ± 1, and off-
diagonal elements

S0 = i cosρ
J
+ cosρ

J
− sin 2ε J exp(i(δ J

+ + δ
J
− + φ J )). (2.7)

Here δ
J
± are the phase shifts corresponding to angular momen-

tum J . The parameters ρ J
± describe the in-elasticity of the colli-

sions, while ε J and φ J are the elastic and inelastic mixing param-
eters of L = J ± 1 states. For E < 280 MeV the parameters ρ J

± and 
φ J are zero. In this case

1

4i
Tr

[
S† dS

dE
− dS†

dE
S

]
=

∑
s=±

∑
J

(2 J +1)

(
dδ

J ,I=0
s

dE
+3

dδ
J ,I=1

s

dE

)
,

(2.8)

where we distinguish the isospin zero (I = 0) and isospin one 
(I = 1) channels in the nucleon–nucleon system. If the parameters 
ρ

J
± and φ J are different from zero, the above equation will be-

come complex, leading to complex value of b2(T ), which is clearly 
unphysical. The reason for this problem is that S J is not unitary. 
If the inelastic channels were included the unitarity would be re-
stored, the imaginary terms in the above equation would drop out 
and the derivative of inelastic phase shift would appear. This is 
easy to see for the simple case when the S-matrix has one elas-
tic and one inelastic channel [7]. In the following we will set the 
parameters ρ J

± and φ to zero and use Eq. (2.8) for all energies to 
evaluate b2.

In our numerical analysis we use the elastic phase shifts from 
the SM16 partial wave analysis [33]. We also use SP07 partial wave 
analysis [34] as well as an old analysis from Ref. [35]. The dif-
ferences arising from the use of different partial wave analyses 
are small compared to other uncertainties of our calculations. For 
E > 10 MeV the effects of Coulomb interactions are small, so the 
I = 1 phase shifts are taken from pp scattering data, while the 
I = 0 phase shifts are taken from the np scattering data. At lower 
energies the electromagnetic effects are important and there is a 
difference between pp phase shifts and I = 1 np phase shifts. Since 
in our study we do not include electromagnetic interactions for 
E < 10 MeV we use the phase shifts from np scattering data for 
both I = 0 and I = 1 channels. Here it is sufficient to consider the 
lowest partial waves (1 S0 for I = 1 and 3 S1 for I = 0). Finally to 
obtain the correct threshold behaviour we use effective range ex-
pansion for the S-wave np phase shifts: cot δ I = −1/(aIk) + r0

I k/2, 
with aI=1 = −23.7 fm and r0

I=1 = 2.76 fm for I = 1 [36], and 
aI=0 = 5.4194 fm and r0

I=0 = 1.7536 fm [37]. We checked that 
the effective range expansion with the above parameters matches 
smoothly to SM16 analysis for E of about few MeV. We note that 
there is a large cancellation between the contributions of I = 0
and I = 1 channels to b2 at low energies. This is due to different 
sign of the scattering length aI in these two channels and unnatu-
rally large value of aI=0. At high energies the derivative of the sum 
of all the phase shifts is negative, which is reflective the repulsive 
hard core N N interactions.

Finally we need to estimate the uncertainty in b2 due to the in-
elastic channels. For this we consider the ratio of the inelastic to 
total pp cross-section from SM16 partial wave analysis. The inelas-
tic cross-section is very small for E < 400 MeV. For 400 MeV < E <

500 MeV the inelastic cross-section is about 10% of the total cross-
section. For 500 MeV < E < 600 MeV, 600 MeV < E < 800 MeV
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Fig. 1. The reduced virial coefficient as function of the temperature (solid line) 
together with its uncertainty show as the red band (see text). The dashed line cor-
responds to K M2/π2 with K = 450 MeV fm3. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.)

and E > 800 MeV the inelastic cross-section is about 25%, 40%
and 50% of the total cross-section, respectively. Therefore, we esti-
mate that the uncertainty in b2 that comes from the energy range 
400–500 MeV, 500–600, 600–800 MeV and > 800 MeV is 20%, 
50%, 80% and 100%, respectively. Here we tried to be conserva-
tive and assumed that the contribution of the (unknown) inelastic 
phase shifts to b2 is by a factor two larger than to the total cross-
section. Our numerical result for the reduced virial coefficient and 
its uncertainty is shown in Fig. 1.

So far we only considered nucleon–nucleon interactions. Nucle-
ons can also interact with anti-nucleons. Much less is known about 
the interactions between the nucleons and anti-nucleons, but one 
may expect that these interactions are significant as well. Fortu-
nately, the nucleon anti-nucleon interactions give a contribution 
to the pressure, which is independent of the chemical potential. 
Therefore, these interactions will not affect the fluctuations and 
correlations that is the main focus of this paper.

Another way to include the repulsive interaction is via a re-
pulsive mean field. In this approach it is assumed that the re-
pulsive interactions lead to shifts in the single particle energies 
by U = Knb and Ū = Kn̄b for nucleons and anti-nucleons, respec-
tively [38,39]. Here nb and n̄b are the densities of nucleons and 
anti-nucleons defined as

nb = 4
∫

d3 p

(2π)3
e−β(E p−μ+U ), n̄b = 4

∫
d3 p

(2π)3
e−β(E p+μ+Ū ),

E2
p = p2 + M2, (2.9)

with μ being the chemical potential corresponding to the net nu-
cleon density. We use Boltzmann approximation because the nu-
cleon mass is much larger than the temperature. The phenomeno-
logical parameter K characterises the strength of the repulsive in-
teractions and can be related to the integral of the N N potential 
over the spatial volume [38,39]. The presence of the short distance 
repulsive core in the N N potential implies that K > 0. Requiring, 
that ∂ p/∂μ should give the net nucleon density, i.e. nb − n̄b one 
obtains the following expression for the pressure [38,39]

p(T ,μ) = T (nb + n̄b) + K

2
(n2

b + n̄2
b). (2.10)

In principle Eq. (2.9) should be solved self-consistently to obtain 
nb (n̄b). However, for temperatures below the QCD transition tem-
perature nb (n̄b) is small, and for typical phenomenological values 
of K , e.g. K = 450 MeV fm3 [40], βU is small too. For example 

even for T = 175 MeV we get βU = 0.077. Therefore we can ex-
pand the exponential in the equations for nb and n̄b , and the factor 
(1 + nb)

−1 and (1 + n̄b)
−1 when solving nb and n̄b , and write

nb = n0
b(1 − βKn0

b), n̄b = n̄0
b(1 − βKn̄0

b), (2.11)

with n0
b and n̄0

b being the free nucleon and anti-nucleon densities. 
With this the pressure can be written in terms of n0

b and n̄0
b as 

follows:

p(T ,μ) = T (n0
b + n̄0

b) − K

2

((
n0

b

)2 +
(

n̄0
b

)2
)

. (2.12)

Taking into account that n0
b = 2T M2/π2 K2(βM)eβμ and n̄0

b =
2T M2/π2 K2(βM)e−βμ we finally get

p(T ,μ) = 4T 2M2

π2
K2(βM) cosh(βμ)

− 4K
T 2M4

π4
K 2

2 (βM) cosh(2βμ) (2.13)

The structure of the above equation is very similar to the one ob-
tained in the virial expansion. The correction to the free gas result 
is negative and the factorisation of the pressure in T -dependent 
part and μ dependent part does not hold. Comparing the above 
result with the virial expansion result one can determine the value 
of K at some temperature. To estimate the relative size of the sec-
ond term in the above equation we write

p(T ,μ) = p0(T )(cosh(βμ) − K M2

π2
K2(βM) cosh(2βμ)). (2.14)

Comparing this equation with Eq. (2.5) we see that −K M2/π2 cor-
responds to the reduced virial coefficient b̄2(T ). Therefore, in Fig. 1
we show this combination for the previously used phenomeno-
logical value K = 450 MeV fm3. At low temperatures −b̄2(T ) is 
significantly smaller than K M2/π2. However, at the highest tem-
peratures the two agree. We stress again that the smallness of 
−b̄2 comes from the cancellation of positive and negative contri-
butions in the I = 0 and I = 1 channels. Such cancellation is a 
somewhat accidental feature of the N N interactions and may not 
be present for other baryons. For these reasons we will use the 
value K = 450 MeV fm3 in what follows.

Finally, we note that the first quantum correction to the pres-
sure of the nucleon gas is −M2T 2/π2 K2(2βM) cosh(2βμ). It has 
the same dependence on μ as the contribution of repulsive in-
teractions but is about 20 times smaller. Therefore, it will be ne-
glected in the following analysis.

3. Repulsive mean field in multi-component hadron gas and 
fluctuations of conserved charges

It is straightforward to generalise the above repulsive mean 
field approach to multi-component hadron gas. The baryon den-
sity is written as

nB(T ,μB ,μS ,μQ ) = T

2π2

∑
i

gi M
2
i K2(βMi)eβμi,ef f , (3.1)

where Mi is the mass of the ith baryon and gi is the corresponding 
degeneracy factor. Furthermore, the effective chemical potential of 
the ith baryon is given by

μi,ef f =
∑

j

q j
i μ j − KnB , (3.2)
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with (q1
i , q

2
i , q

3
i ) = (Bi, Si, Q i) being the baryon number, strange-

ness and electric charge of the ith baryon. Here we assumed that 
the repulsive interaction is the same for all baryons. This is clearly 
an oversimplification. While lattice calculations indicate that repul-
sive core in the central potential is similar for many baryon com-
binations (e.g. N N , 
N , 

, etc.), there are some differences [41]. 
The hyperon nucleon and hyperon–hyperon interactions have been 
studied also in chiral effective theory [42,43]. It has been found 
that these interactions are dominantly repulsive but different from 
nucleon–nucleon interactions. However, we do not have sufficient 
information about baryon–baryon interactions to come up with a 
more sophisticated mean field model. Replacing μi,ef f in Eq. (3.1)

by μ̄i,ef f = ∑
j q̄ j

i μ j − Kn̄B , we obtain the density of anti-baryons, 
n̄B . Note that q̄ j

i = −q j
i . Expanding the exponential to leading or-

der in K as in the previous section for the baryon and antibaryon 
densities, and again requiring that ∂ p/∂μB = nB − n̄B , we obtain

pB(T ,μB ,μS ,μQ ) = T (n0
B + n̄0

B) − K

2

((
n0

B

)2 +
(

n̄0
B

)2
)

, (3.3)

where n0
B and n̄0

B are the free baryon and anti-baryon densities. 
The pressure of the free baryon gas can be decomposed into par-
tial baryonic pressure of strangeness one, strangeness two, and 
strangeness three baryons, and the same is true for anti-baryons. 
Therefore, we write

pB(T ,μB ,μS ,μQ ) = p̃B(μS ,μQ )eβμB + p̃B(−μS ,−μQ )e−βμB

− β2 K

2

(
p̃2

B

(
μS ,μQ

)
e2βμB + p̃2

B

(−μS ,−μQ
)

e−2βμB
)

,

(3.4)

with

p̃B(μS ,μQ ) = pS0
B + pS1

B e−βμS + pS2
B e−2βμS + pS3

B e−3βμS ,

(3.5)

and pSk
B denotes the contribution of S = −k baryons to the free 

pressure at zero chemical potentials. With this it is straightforward 
to get the baryon number fluctuations and baryon-strangeness cor-
relations

χ B
n = χ

B(0)
n − 2nβ4 K

(
N0

B

)2
, (n even) (3.6)

χ B S
n1 = χ

B S(0)
n + 2n+1β5 K N0

B(pS1
B + 2pS2

B + 3pS3
B ). (n odd) (3.7)

Here

N0
B(T ) = T

2π2

∑
i

gi M
2
i K2(βMi) (3.8)

and the subscript “0” in the above equation refers to the non-
interacting HRG.

In Ref. [17] it was suggested that certain combinations of fluc-
tuations and correlation of conserved charges can be used as indi-
cators of deconfinement. In particular, the following two combina-
tions

χ B S
31 − χ B S

11 , and χ B
2 − χ B

4 (3.9)

have been suggested as measures of deconfinement in the light 
and strange hadron sectors, respectively. In non-interacting HRG 
these quantities are identically zero, while they have non-zero val-
ues for the ideal quark gas. The lattice results show that these 
quantities quickly rise above zero around the transition temper-
ature and start approaching the ideal gas limit for T > 200 MeV. 

Fig. 2. The differences χ B S
31 − χ B S

11 , χ B
2 − χ B

4 and χ B
2 − χ B

6 calculated in the HRG 
model with repulsive mean field (dotted, solid and dashed lines) and in lattice QCD. 
The filled symbols correspond to lattice calculations of χ B

2 −χ B
4 and χ B

2 −χ B
6 with 

HISQ action on 323 × 8 lattices [27]. The open symbols correspond to lattice re-
sults on χ B

2 − χ B
4 [22] as well as to lattice results on χ B

2 − χ B
6 [26]. For χ B S

31 − χ B S
11

the lattice results from Ref. [17] are used. The dashed lines correspond to the un-
expanded mean field result (see text).

This was interpreted as a transition from non-interacting hadron 
gas to quark gas [17]. Therefore, it is interesting to see to what ex-
tent the increase in χ B S

31 −χ B S
11 , and χ B

2 −χ B
4 around the transition 

temperature can be explained with the repulsive baryon interac-
tions.

We calculated χ B
2 − χ B

4 , χ B
2 − χ B

6 and χ B S
31 − χ B S

11 in the HRG 
model with repulsive mean field using Eqs. (3.6) and (3.7). We con-
sidered only the contribution of ground state octet and decuplet 
baryons. The excited baryon states should appear as attractive (res-
onant) interactions in the hadron gas and thus, they are included 
in the non-interacting part of HRG. On the other hand, when reso-
nances are interpreted as arising from attractive interactions, they 
lead to an increase in the density of ground state baryons [6]. We 
leave creating a proper treatment of heavy resonances for a fur-
ther study [44], and, as mentioned, concentrate here on the effects 
of ground state baryons and the lowest resonances.

As discussed before we use the value K = 450 MeV fm3 in our 
numerical study. Our results are shown in Fig. 2 and compared 
with the lattice results obtained with HISQ action [17,27] depicted 
with filled symbols. We also use the lattice results for χ B

2 − χ B
6

obtained with stout action [26] as well as continuum extrapolated 
results for χ B

2 − χ B
4 from Ref. [22], depicted with open symbols. 

As expected the effect of the repulsive interactions is bigger for 
χ B

6 than for χ B
4 . In our analysis so far we assumed that the den-

sity of baryons (anti-baryons) is small and therefore we kept the 
leading order term of the expansion in baryon density, i.e. the term 
proportional to K (cf. Eqs. (3.6) and (3.7)). As the temperature is 
increasing the number density of baryons and anti-baryons also in-
creases and this expansion become less reliable. Therefore, we also 
calculated χ B

2 −χ B
4 and χ B

2 −χ B
6 using the unexpanded mean-field 

expressions and the results are shown in Fig. 2 as dashed lines. The 
difference between the expanded and un-expanded mean field re-
sults is significant at and above the crossover temperature. The full 
mean field result is below the lattice data. This problem could be 
cured by taking into account the effect of repulsive interactions 
for higher baryon resonances, although it is not clear to what ex-
tent the HRG model is reliable in this temperature region. Note, 
that using the full mean field result is more important for the 
higher order fluctuations and correlations than for the pressure 
since the effect of the repulsive interactions is enhanced by factor 
2n for the former (cf. Eqs. (3.6) and (3.7)). In Ref. [29] the de-
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crease of χ B
4 /χ B

2 from one was described in terms of HRG, where 
the repulsive interactions are modelled by excluded volume and 
good agreement with the lattice data was found. The increase in 
χ B

2 − χ B
4 is equivalent to decrease of χ B

4 /χ B
2 from unity, and thus 

our analysis confirms this result.
In Ref. [17] another combination of strangeness fluctuations and 

baryon-strangeness correlation has been considered, which is iden-
tically zero in the ideal HRG and approaches the free quark gas 
value at very high temperature, namely

v2 = 1

3
(χ S

2 − χ S
4 ) − 2χ B S

13 − 4χ B S
22 − 2χ B S

31 . (3.10)

We calculated v2 in our HRG model with repulsive mean field. We 
find that it has different sign depending on the value of K and 
the temperature, while lattice calculation shows that v2 is positive 
and monotonically increases with the temperature. So the simplest 
mean field approach with the same mean-field for all baryons can-
not describe this quantity, and the differences in the repulsive 
baryon interactions in strange and non-strange baryons are im-
portant here. This is contrary to the difference χ B S

31 − χ B S
11 where 

the repulsive interactions in the different strangeness sectors con-
tribute with the same sign. To understand v2 in the framework 
of the hadron gas with repulsive interactions more information on 
baryon–baryon interactions in different strangeness sectors will be 
needed.

We also calculated the baryon electric charge correlations χ B Q
31

and χ B Q
11 in the repulsive mean field approach. The results are 

similar to the case of χ B S
31 and χ B S

11 . In particular, χ B Q
31 − χ B Q

11 in-
creases with increasing temperature and the repulsive interactions 
between different baryons contribute with the same sign. Our re-
sults agree with the preliminary lattice results.

4. Conclusions

In this paper we discussed the role of repulsive baryon in-
teractions on the thermodynamics and fluctuations of conserved 
charges of hadronic matter using relativistic virial expansion and 
repulsive mean field approach. We showed that the two ap-
proaches lead to almost identical results. In particular the reduced 
virial coefficient b̄2(T ) shows only a mild temperature dependence 
and corresponds to the combination K M2/π2 appearing in the re-
pulsive mean field approach. The deviations from ideal HRG for 
higher order fluctuations and correlations of conserved charges can 
be naturally explained by the repulsive interactions. We pointed 
out that it is useful to study the effect of repulsive interactions 
in terms of the following differences: χ B S

31 − χ B S
11 , χ B

2 − χ B
4 and 

χ B
2 − χ B

6 since the ideal hadron resonance gas part drops out and 
thus the results are not sensitive to the hadron spectrum. This 
makes it easy to disentangle the effects of repulsive interactions 
from other effects such as missing states [19] and in-medium mod-
ifications of hadron properties. The size of the deviations from the 
ideal gas limit for these differences obtained in the simple mean 
field model is similar to that observed on the lattice, though the 
former has large uncertainties at and above the QCD crossover 
temperature. However, not all strangeness baryon correlations can 
be understood within our simple mean field approach due to 
the fact that baryon–baryon interactions are different in different 
strangeness sectors. Therefore, in the future it will be important 
to refine the treatment of the repulsive interactions of strange 
baryons using information from lattice QCD and chiral effective 
theory [42,43] to obtain a better description of the fluctuations 
and correlation of conserved charges. Nevertheless, it is clear that 
HRG with repulsive interactions is a useful approach for studying 
the contribution of baryons to the thermodynamics of hadronic 

matter at zero and not too high baryon density. It was shown in 
Ref. [29] that including repulsive interactions by excluded volume 
affects the equation of state and fluctuations of conserved charges 
improve the agreement with the lattice data. Along similar lines 
we plan to study the QCD equation of state and fluctuations of 
conserved charges at zero and non-zero baryon density using HRG 
model with repulsive mean field [44] and perform detailed com-
parisons to the available lattice results. We hope that this study 
will also clarify the range of applicability of the mean field model.
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for their production dynamics encoded in data for partial wave scattering amplitudes can substantially 
modify spectra of daughter particles originating in their two body decays. In particular, it results in 
an enhancement of the low-pT pions from the decays of ρ mesons which improves the quantitative 
description of the pion spectra in heavy ion collisions obtained by the ALICE collaboration at the LHC 
energy.
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Recent measurements of the transverse momentum, pT -dis-
tributions of identified particles produced in 

√
sN N = 2.76 TeV

Pb + Pb collisions at CERN Large Hadron Collider (LHC) [1] re-
vealed an excess of low-momentum (pT � 0.3 GeV) pions over the 
conventional fluid-dynamical calculations [1–3].

It is well known that pions originating from decays of reso-
nances have a steeper pT -distribution than the thermal pions [4], 
and that they provide a dominant contribution to the spectrum 
at low transverse momentum. Thus, resonance decays require a 
particular attention when modeling spectra of particles originat-
ing from an expanding thermal fireball.

In fluid-dynamical calculations, the interacting hadrons are usu-
ally described by the hadron resonance gas (HRG), where the 
system is modeled as a gas of free hadrons with resonances 
considered as particles with vanishing widths. This approxima-
tion yields reasonable description of the bulk properties of the 
hadronic medium [5–8]. The HRG model also provides a very sat-
isfactory description of particle yields measured in heavy ion col-
lisions [9–17], as well as the hadronic equation of state and some 
fluctuation observables obtained in lattice QCD (LQCD) [18–22]. 
However, as we show in this letter, when pT -differential observ-
ables are involved, a more refined approach may be necessary.

To properly address the dynamics of hadrons, the effect of res-
onance width must be included. A conventional way is to impose 

* Corresponding author.
E-mail address: pmlo@gsi.de (P.M. Lo).

a Breit–Wigner distribution on the resonance mass. Unfortunately, 
this approach proves to be too crude in many circumstances. For 
example, for a broad resonance like the σ meson [23], or the (yet-
to-be-confirmed) κ meson [24], the Breit–Wigner approach can 
give misleading results on the resonance contribution to the ther-
modynamics.

We thus take a more fundamental approach to evaluate the 
properties of interacting hadrons based on the S-matrix formu-
lation of Dashen, Ma and Bernstein [25]. For elastic scatterings, 
the interaction part of the partition function reduces to the Beth–
Uhlenbeck form for the second virial coefficient, expressed in 
terms of the scattering phase shifts [26]. In the context of heavy-
ion physics, this approach has been applied to evaluate the con-
tribution of π N [5,27,7], ππ [5,23], and π K interactions [5,24] to 
the thermodynamics of hadronic matter, and to analyse the reso-
nance production [28].

In this letter, to make the effects of resonance width on parti-
cle pT -spectra more tractable, we concentrate on the ππ system. 
As shown in Refs. [5,23], the effects of the scalar–isoscalar and 
the scalar–isotensor channels largely cancel each other. This can-
cellation remains when the single particle distribution of pions is 
evaluated. Thus for our purposes it is sufficient to consider only 
the vector–isovector channel, i.e. the channel of the ρ meson.

In the S-matrix formalism, the density of states per unit vol-
ume and unit invariant mass M , assuming thermal equilibrium at 
temperature T , is given by [26,5,7,28]

http://dx.doi.org/10.1016/j.physletb.2017.03.060
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Fig. 1. (Colour online.) Left: pT spectra of π+ originating from decays of ρ , the π K (S- and P-wave) system, and the �(1232)-channel of π N using both the S-matrix 
treatment and the zero width approximation at T = 155 MeV temperature. The contribution from ρ decays is calculated also using the relativistic Breit–Wigner description 
of ρ ’s. Right: Contributions to pion density from various sources as function of freeze-out temperature. In this calculation, the η and ω resonances have zero widths, and the 
S-matrix treatment has been applied to the system of ρ , and to the processes indicated as “other”: the system of ππ (S-wave), π K (S- and P-wave) and the �(1232)-channel 
of π N (see text). In both figures, solid and dashed lines correspond to results of the S-matrix approach and the conventional zero-width approximation, respectively.

dnI J

dM
=

∫
d3 p

(2π)3

1

2π
B(M) f (E(M, p), T ), (1)

where f is the Bose–Einstein or Fermi–Dirac distribution, and 
B(M) is an effective spectral weight,

B(M) = 2
dδI J

dM
, (2)

derived from the scattering phase shift δI J , of the isospin I and 
spin J channel.

In the elastic region (M � 1 GeV), the empirical phase shift 
[29–31] of the (I = 1, J = 1) channel can be effectively described 
by a phenomenological formula, inspired by a one-loop perturba-
tive calculation of the ρ self-energy [32,33],

δ11(M) = tan−1

(
− 2

3M

α0

1 + c p2
CM

p3
CM

M2 − m2
0

)
, (3)

where pCM(M) = 1
2

√
M2 − 4m2

π is the center-of-mass momentum 
of the scattering pions, and α0 = 3.08, m0 = 0.77 GeV, and c =
0.59 GeV−2 are the model parameters chosen to reproduce not 
only the phase-shift data, but also the known value of the P-wave 
scattering length. The phase shift and the scattering length are re-
lated as

a1
1 = δ11

p3
CM

∣∣∣∣
pCM→0

. (4)

We constrain the scattering length to a1
1 = 0.038 m−3

π , matching 
the experimental value and chiral perturbation theory prediction 
a1

1 = 0.038(2) m−3
π [34] and 0.037(10) m−3

π [35,36], respectively. 
This requirement is essential for the correct description of the 
near-threshold behaviour of the density function, introduced in 
Eq. (2).

An important feature of the current approach is the use of the 
effective spectral weight B(M) instead of the standard spectral 
function. This effective weight includes contributions from both a 
pure ρ state and the correlated ππ pair. The latter tends to shift 
the strength of the weight function towards the low invariant-mass 
region [7]. Such a shift can potentially translate into an enhance-
ment of the low-pT daughter pions from the decays of ρ mesons.

To quantify this expectation, we evaluate the distribution of ρ ’s 
using the Cooper–Frye description [37], with the thermal distribu-
tion augmented by the effective spectral weight B in Eq. (2), as

dNρ

dy pT dpT dφ
=

∫
dMρ

∫
dσμpμ

ρ
1

2π
B(Mρ)

× dρ

(2π)3
fρ(p · u, T ),

(5)

where fρ, dρ are respectively the Bose–Einstein distribution and 
the spin degeneracy for ρ , and u is the flow velocity. In the case 
of a static source, the integration over the surface, 

∫
dσμpμ , be-

comes a simple multiplication by the volume of the system, V , 
and by the energy of the particle, E . The momentum spectrum of 
the decay pions can be evaluated by applying the conventional de-
cay kinematics [4,38,39] to the distribution of ρ ’s from Eq. (5). For 
a static source, one gets

dNde
π

dy pT dpT dφ
= V

∫
dMρ

1

2π
B(Mρ)

× Mρ

2 pπ pCM

E+
ρ∫

E−
ρ

dEρ Eρ
dρ

(2π)3
fρ(E(Mρ), T ),

(6)

where

E±
ρ = Mρ

2 m2
π

(Eπ Mρ ± 2pπ pCM). (7)

We evaluate the pT distributions at T = 155 MeV, in the vicinity of 
the pseudocritical temperature obtained in the lattice formulation 
of QCD [40,41].

In Fig. 1-left we show the rapidity and azimuthal angle inte-
grated transverse momentum spectra of π+ originating from ρ
decays. The ρ ’s are treated as zero-width particles, particles with 
the standard Breit–Wigner width, or according to the S-matrix 
approach introduced in Eq. (6). The latter description leads to a 
substantial enhancement of the pion decay spectra. The effect is 
most prominent in the low-pT region of the decay pions, where 
at pT ≈ 0 one observes a factor of two increase of the differential 
pion yield. Note that at larger values of the transverse momentum 
the spectrum of decay pions is practically unaffected by the width 
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Fig. 2. (Colour online.) Left: The pT distribution of positive pions in 0–10% most central √sN N = 2.76 TeV Pb + Pb collisions as measured by the ALICE collaboration [1,45], 
and fitted using a blast-wave model. Right: The mT distribution of positive pions, protons and � baryons in 0–10% most central √sN N = 2.76 TeV Pb + Pb collisions as 
measured by the ALICE collaboration [1,45], and fitted using a blast-wave model. In both panels the solid lines correspond to the S-matrix approach result and the dashed 
lines to the conventional zero-width approximation.

of ρ . For future reference, we also present results on decay π+
spectra from the system of π K interaction (sum of S- and P-wave) 
and from π N interaction in the �-channel. In all the channels 
studied we find overall enhancement of low-pT pions in the S-
matrix approach compared to the zero-width results. Nevertheless, 
the difference is most noticeable in the ρ sector.

To illustrate the effect of leading resonances on the pion yield 
in the HRG, we show in Fig. 1-right the temperature dependence 
of the contributions from various sources to pion density after res-
onance decays. For this analysis, we have included the three-body 
decays of zero-width η and ω (with branching ratios of 0.228 and 
0.893, respectively). Furthermore, we have applied the S-matrix 
treatment to the ππ (S-wave) and π K (S- and P-wave) systems 
and the �(1232)-channel of π N . At T = 155 MeV, when no heav-
ier resonances are included, the relative abundance of π+ from 
ρ decay is 25.1%, while the thermal pion yield remains dominant 
at 49.4%. Three-body decays considered constitute 12.2%, and the 
sum of the rest of two-body channels we treated give 13.3% of the 
total yield. The S-matrix treatment significantly affects the yield 
of pions from ρ decays, resulting in its increase by approximately 
15%, whereas the effect is smaller for other channels considered. 
However, because of the contribution from all the other sources, 
the overall change in the final pion yield due to the S-matrix ap-
proach is only a few per cent.

In general, on the level of particle yields, and at higher temper-
atures T > 100 MeV, the zero-width treatment of resonances gives 
comparable results to the S-matrix approach [5] despite the fact 
that the phase shifts in most cases do not resemble a step function 
and the assumption of a zero (and at times even a narrow) width 
is strictly speaking not justified. However, as already seen in Fig. 1, 
essential differences can appear when pT -differential observables 
of individual resonance channels are studied. Evidently, the more 
physical treatment by the S-matrix formulation is needed for pre-
cision calculations of particle spectra, as e.g. in modeling data in 
heavy-ion collisions.

In a realistic heavy-ion collision, however, the situation is fur-
ther complicated by the expansion of the system, and the presence 
of all the other resonances. To gauge whether the S-matrix descrip-
tion of ρ mesons would affect the pion distributions observed in 
heavy-ion collisions, we describe the system using a blast-wave 
model [42]. There, the thermal source is assumed to be a boost-
invariant [43] cylindrically symmetric transversely expanding tube 

of radius R , from which particles are emitted at constant longitu-
dinal proper time τ with the radial flow velocity v(r) = vmax(r/R).

We calculate the distributions of all the resonances in the Par-
ticle Data Book up to the 2 GeV mass, apply the two- and three-
body decay kinematics, and sum the contributions to the spec-
trum of thermal pions. We take advantage of the recent finding 
in the dynamical model calculations in heavy-ion collisions that 
the pion pT -distribution changes only very little during the sub-
sequent evolution in the hadronic phase [44]. Thus, we fix the 
freeze-out temperature at T = 155 MeV, which coincides with the 
chiral crossover in LQCD. The further parameters of the blast-wave 
model, τ = 13.7 fm, R = 10 fm, and vmax = 0.8 were chosen to get 
the best description of spectra for positive pions in 0–10% most 
central 

√
sN N = 2.76 TeV Pb + Pb collisions as measured by the 

ALICE collaboration. The above freeze-out temperature and the re-
sulting volume of the fireball, V � 4300 fm3, are consistent with 
that obtained previously in the HRG model description of hadron 
production yields and some fluctuation observables in heavy-ion 
collisions at the LHC [10,22].

The resulting pion distribution is shown in the left panel of 
Fig. 2. In this calculation the conventional zero-width treatment 
of ρ ’s leads to a distribution which underestimates the data in 
the low-pT region (pT � 200 MeV). When ρ mesons are treated 
according to the S-matrix description, there is a clear, up to 7%, 
increase of the low-pT pions, which is sufficient to reach the data.

To check further the quality of the model parametrisation, we 
also show in the right panel of Fig. 2 the pion, proton and �

baryon distributions in a broader mT -range. As seen in this fig-
ure, the pion data are well described up to mT � 2 GeV, and the 
model predictions are also consistent with the data for the � dis-
tribution. These results verify the chosen values for temperature 
and volume, and they are also consistent with the idea that �

baryons hardly rescatter in the hadronic phase [47,46], and thus 
their spectra are fixed at the phase boundary [47]. On the other 
hand, the proton distribution is steeper than the data, and the 
overall yield of protons is larger than the experimental value. The 
observed deviation on the level of proton yield is already discussed 
in the literature [10]. The deviations in the proton spectrum could 
be possibly due to their further rescattering during evolution in 
the hadronic phase [46,48].

In conclusion, we have investigated how the explicit treatment 
of the ρ-meson width affects the pion yield and pT distribution 
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in 
√

sN N = 2.76 TeV Pb + Pb collisions at LHC. We have used the 
S-matrix approach to describe ρ mesons, and found that compared 
to the conventional zero-width treatment the pion yield increases, 
particularly at low values of transverse momentum. This indicates 
that the observed enhancement of low-pT pions may be possibly 
explained in fluid-dynamical calculations by a proper implemen-
tation of the width of resonances within the S-matrix approach. 
However, the S-matrix treatment of ρ ’s alone may not be fully suf-
ficient.

A natural extension of this work is to apply a more complete 
model for the fluid dynamical calculations [49–53], as well as, to 
account for a possible medium modification on the phase shifts. 
Essential in-medium effects for ρ mesons are suggested by studies 
based on many-body Green’s function [33,54–58]. This, together 
with the S-matrix treatment of three-body decays, can presum-
ably further increase the pion yields in the low-pT region. We 
leave this as a matter of future investigation. Nevertheless, even 
in their present level, our results demonstrate the importance of 
the proper treatment of resonances in modeling heavy-ion colli-
sions, and the need to improve on the customary hadron resonance 
gas models for precision calculations of particle spectra at low val-
ues of transverse momentum. These studies are also important in 
hydrodynamics-cascade hybrid models [51,59] for particle produc-
tion in heavy ion collisions when describing particalization of the 
fluid as an input to hadronic transport.
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In hydrodynamical modeling of ultrarelativistic heavy-ion collisions, the freeze-out is typically assumed to
take place at a surface of constant temperature or energy density. A more physical approach is to assume that
freeze-out takes place at a surface of constant Knudsen number. We evaluate the Knudsen number as a ratio of
the expansion rate of the system to the pion-scattering rate and apply the constant Knudsen number freeze-out
criterion to the ideal hydrodynamical description of heavy-ion collisions at the Relativistic Heavy Ion Collider
at BNL (

√
sNN = 200 GeV) and the Large Hadron Collider (

√
sNN = 2760 GeV) energies. We see that once the

numerical values of freeze-out temperature and freeze-out Knudsen number are chosen to produce similar pT

distributions, the elliptic and triangular anisotropies are similar too, in both event-by-event and averaged initial
state calculations.
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I. INTRODUCTION

The fluid-dynamical description of heavy-ion collisions
at the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) has been very successful
in reproducing the observed particle distributions and their
anisotropies at low values of transverse momentum [1–3].
However, since what is experimentally observed is not a
particle fluid, but individual particles, the fluid-dynamical
description must break down at some point during the evo-
lution, the interactions must cease, and the particles must start
behaving instead like free-streaming particles. The particles
decouple from the fluid, and their momentum distributions
freeze-out—a process appropriately known as decoupling or
freeze-out.

When the freeze-out happens is not described by fluid
dynamics but has to be decided by using some other model or
theory. Fluid dynamics is considered to be valid when the ratio
of the microscopic to macroscopic scales of the system—its
Knudsen number—is much smaller than one. In the context
of heavy-ion collisions, fluid dynamics has traditionally been
considered to be valid until either the mean free path of
particles exceeds the size of the system, or the expansion rate
exceeds the collision rate of the particles [4,5]. The Knudsen
number can be defined in several ways [6], and thus both of
these dynamical criteria are equivalent to the requirement that
the Knudsen number is less than one. The idea of using the
scattering and expansion rates as the limit for the validity of
fluid dynamics, and thus as a decoupling criterion, is an old
one [7], but it has been used in fluid-dynamical calculations
only a couple of times [8–12]. Instead, the freeze-out is
assumed to take place on a surface of constant temperature
(or density). It has been argued that, since the scattering
rate depends strongly on temperature (∝T 3 for a constant
cross section), the freeze-out is a very fast process, and thus
a constant-temperature surface is a good approximation to
the constant-Knudsen-number surface [5,13,14]. It is worth

noticing that the well-known Gamow criterion in cosmology—
that the time when interaction ceases to be effective is
determined by the condition tint � texpan, where tint and texpan

are the relevant interaction and expansion timescales [15]—is
equivalent to freeze-out at constant Knudsen number and
leads to decoupling at a certain temperature only because the
expansion of the universe is taken to be uniform.

It was seen in earlier studies with optical Glauber initial
profiles that, while the constant-Knudsen-number surface
differs significantly from the constant-temperature surface, the
effect on observable particle pT distributions is small [11]
and that elliptic flow of charged hadrons shows sensitivity
to the freeze-out criterion only at large values of transverse
momentum or rapidity, or in peripheral collisions [12].
However, in contemporary event-by-event hydrodynamical
calculations, the flow develops more violently and more
unevenly than when an averaged initial state is used [16].
Thus it is not obvious whether the two freeze-out conditions
lead to similar particle distributions when the initial density
fluctuates event by event. Furthermore, the evaluation of
the Knudsen number in Refs. [11,12] was based either on
pion-pion scattering ignoring all other scattering processes and
the chemical nonequilibrium during the hadronic stage [11],
or on assumed temperature dependence of the shear viscosity
coefficient [12]. Thus it is unknown how more sophisticated
calculations of the microscopic scale would affect the results.

In this work we further study whether the freeze-out
criterion has any observable effects. We evaluate the pT

differential elliptic flow v2(pT ) of identified particles (pions
and protons) in

√
sNN = 200 GeV Au + Au (RHIC) and√

sNN = 2760 GeV Pb + Pb collisions (LHC) by using both
constant-temperature and constant-Knudsen-number freeze-
out criteria. To test our assumption that the large gradients
in event-by-event calculations would make the system more
sensitive to the freeze-out criterion, we model the collisions
at RHIC both event by event and by using the averaged initial
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state. We use the pion-scattering rate as the microscopic scale
and calculate the rate in a chemically frozen hadron gas from
scattering cross sections, including scatterings with all hadron
species. Since our aim is not a faithful reproduction of the data,
we simplify the description by using a simple boost-invariant
ideal fluid model.

Note that, in this work, we use the conventional Cooper–
Frye description (see Sec. III B) to evaluate the particle
distributions at freeze-out. We do not address the negative
contributions,1 but our approach differs from the conventional
freeze-out procedure only by the choice of the decoupling
surface.

To some extent the freeze-out problem has been solved in
so-called hybrid models, where the late stage of the evolution
is described by using a Boltzmann transport model [19,20].
Nevertheless, the results in these models depend on when the
switch from fluid to cascade is made [19,21], and therefore it
is interesting to study how different criteria for particlization
surface affect the particle distributions even in the context of
hybrid models.

II. DYNAMICAL FREEZE-OUT CRITERION
AND SCATTERING RATE

To maintain kinetic equilibrium in an expanding system the
scattering rate must be much larger than the expansion rate.
We express this condition as

Kn = θ

�
� 1, (1)

where � is the scattering rate and θ is the hydrodynamical
expansion rate. When Kn approaches one, there are not enough
collisions to maintain the kinetic equilibrium, and the system
freezes out. Since Kn is a ratio between (an inverse of) a
macroscopic length scale and (an inverse of) a microscopic
length, it can be identified as a Knudsen number, which
should be much smaller than one for fluid dynamics to be
valid. Based on these considerations we define a dynamical
freeze-out criterion as a surface of constant Knudsen number
Kn = Knf , where Knf ∼ 1.

Before one can apply this criterion, the scattering rate must
be known. We evaluate the pion-scattering rate in hadron
resonance gas and use it in our freeze-out criterion for all par-
ticles. One could argue that we should calculate the scattering
rate individually for each particle species and decouple them
separately at the corresponding Knudsen number. However, in
order to be consistent, one should also remove the decoupled
particles from the fluid and model the interaction between the
fluid and the decoupled particles,2 which are not in equilibrium
anymore. This cannot be consistently implemented (at least not
easily) in the hydrodynamical framework and thus we make
the simplifying assumption that the whole system decouples
when the most abundant particles (i.e., pions) do.

1For a recent discussion, see Refs. [17,18].
2See the discussion about “pion wind” in Ref. [9].

Scattering rate of pions

Here we calculate the average scattering rate of pions
in hadron resonance gas in kinetic equilibrium. The rate is
obtained from [22–25]

� = 1

nπ (T ,μπ )

∑
i

∫
d3pπd3pifπ (T ,μπ )fi(T ,μi)

×
√

(s − sa)(s − sb)

2EπEi

σπi(s), (2)

where nπ is the density of pions, fπ (T ,μπ ) [fi(T ,μi)] is the
thermal distribution function of pions (particle i), with T being
the temperature and μπ (μi) being the chemical potential of
pions (particle i).

√
(s − sa)(s − sb)/(2EπEi) is the relative

velocity when s is the square of the center-of-mass energy,
sa = (mπ + mi)2, sb = (mπ − mi)2, and Eπ (Ei ) and mπ (mπ )
are the energy and mass of pions (particle i). The pion-particle
i scattering cross section is labeled σπi and the sum runs over
all particle species included in the equation of state (EoS) [26].

One can perform most of the integrals analytically and, after
some algebra (see Appendix A), one arrives at

� = T

nπ (T ,μπ )

∑
i

gi

32π4

∞∑
k=1

ekμπ/T

∞∑
n=1

(∓1)n+1

n
enμi/T

×
∫ ∞

sa

ds
σπi(s)(s − sa)(s − sb)√
rs − (r − 1)

(
m2

i − rm2
π

)
×K1

(
n

T

√
rs − (r − 1)

(
m2

i − rm2
π

))
, (3)

where gi is the degeneracy of particle i and r = k/n.
Cross sections are evaluated as in the UrQMD model [27,28].

Thus the largest contribution comes from resonance formation,
which is evaluated by using the Breit–Wigner formula,

σπi→R(s) = 2gR + 1

(2gπ + 1)(2gi + 1)

π

[pcms(
√

s)]2

× �R→πi(
√

s)�tot(
√

s)

(mR − √
s)2 + �2

tot(
√

s)/4
, (4)

where gR , gπ , and gi are the degeneracies of the resonance,
pion, and particle i, and pcms is the center-of-mass momentum
of the scattering partners (see Appendix B). �tot(M) is the full
decay width obtained as a sum of all mass-dependent partial
decay widths �i,j (M) (see Appendix C) given by

�R→πi(M) = �πi
R

mR

M

(
pcms(M)

pcms(mR)

)2l+1 1.2

1 + 0.2
(

pcms(M)
pcms(mR )

)2l
,

(5)

where �πi
R is the partial decay width of the resonance into the

πi channel at the pole, l is the decay angular momentum of
the exit channel, and mR is the pole mass of the resonance.
The pole masses and the decay widths are taken from the
Particle Data Book [29] as implemented in the calculation of
the EoS [26].

In addition we assume elastic meson-meson scatterings
with cross section σmm = 5 mb and elastic ππ scatterings with
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FIG. 1. The scattering rate of pions in both chemically equili-
brated (CE, red solid line) and chemically frozen (PCE, blue dashed
line) hadron resonance gas compared with the parametrization [30]
of the rate evaluated in Ref. [24] (PPVW, black dotted line).

σππ = σ0 exp[−(
√

s − m0)2/w] where σ0 = 15 mb, m0 =
0.65 GeV, and w = 0.1 GeV2. With these choices we are
able to reproduce the measured pion-pion, pion-kaon, and
pion-nucleon scattering cross sections reasonably well.

In Fig. 1 we compare the evaluated scattering rates with the
rates calculated in Ref. [24]. At low temperatures our simple
approach agrees with the more sophisticated calculation of
Ref. [24], but above the temperature T ≈ 120 MeV our rate is
larger simply because we include more states in the calculation,
and thus the density of scattering partners is larger at large
temperatures. Moreover, the scattering rate in a chemically
frozen hadron gas is larger than the rate in a chemically
equilibrated hadron gas due to larger particle densities.

III. HYDRODYNAMICAL FRAMEWORK

We use an updated version of the event-by-event ideal
hydrodynamical framework developed in Ref. [16].

A. Ideal hydrodynamics

We solve the ideal hydrodynamical equations

∂μT μν = 0,

∂μjμ = 0,
(6)

where T μν = (ε + P )uμuν − Pgμν is the ideal energy-
momentum tensor, jμ = nBuμ the net-baryon current, ε is the
energy density, P is the pressure, uμ is the fluid four-velocity,
and nB is the net-baryon density. We use two different
equations of state (EoS): (i) s95p-v1, which is always in
chemical equilibrium, and (ii) s95p-PCE-v1, which has a
chemical freeze-out at temperature Tchem = 150 MeV [26].
Both of these EoSs assume zero net-baryon density.

We concentrate on the midrapidity region, where boost-
invariance is a reasonable assumption at the LHC and full
RHIC energies. This assumption reduces the number of
dimensions in evolution equations to 2 + 1. We use the sharp
and smooth transport algorithm (SHASTA) [31] to solve the
equations in hyperbolic coordinates, where one uses τ =√

t2 − z2 and ηs = 1
2 log t+z

t−z
instead of time t and longitudinal

coordinate z. At the antidiffusion stage of SHASTA we use
DeVore limiter [32], which is a modified version of the Zalesak
multidimensional limiter [33].

B. Freeze-out

We employ two different freeze-out criteria. One is the
conventional constant-temperature criterion, and the other
is the dynamical criterion, where we assume freeze-out at
constant Knudsen number Kn. The hydrodynamical expansion
rate is needed to obtain the Knudsen number, and in the
boost-invariant case it is calculated as [34]

θ = ∂μuμ = ∂τu
τ + ∂xu

x + ∂yu
y + uτ/τ. (7)

In both cases the freeze-out surface elements d�μ are obtained
using CORNELIUS++ subroutine [21]. After the surface ele-
ments are found, we calculate the thermal spectrum of hadron
species i by using Cooper–Frye prescription:

E
d3Ni

d3p
=

∫
�

d�μpμfi(x,p), (8)

where fi(x,p) is the thermal distribution function of hadron
i and pμ is the four-momentum of the hadron. At this
stage we use the hadron gas EoS at nonzero net-baryon
densities to convert the energy and net-baryon density to
temperature and chemical potentials. Since the EoS during
the fluid-dynamical evolution does not allow finite net-baryon
density, this procedure is not fully consistent, but the violation
of conservation laws is very small at RHIC and even smaller
at the LHC.

After the thermal distributions of all hadron species have
been evaluated, we sample individual hadrons as described
in Ref. [16]. All strong and electromagnetic two- and three-
particle decays are then calculated, and the daughter particles
added to the respective thermal ensembles. Note that, unlike
in Ref. [16], we no longer use PYTHIA to handle the decays,
but evaluate the decays of all the resonances included in the
EoS. When evaluating the charged-particle multiplicities we
sample hadrons within an interval |y| < 3 to make sure that, at
midrapidity, the system looks boost invariant after the decays
as well. However, when we consider the identified particle pT

spectra and flow coefficients, we take all particles into account
regardless of their rapidity to achieve better statistics.

C. Initial-state and centrality class definitions

The initial state and centrality classes are defined by using
the Monte Carlo (MC) Glauber model described in Ref. [16].
Nucleons are randomly distributed to nucleus by using a
standard two-parameter Woods–Saxon potential. Two nucle-
ons from different nuclei collide if their transverse distance
rd <

√
σNN/π , where σNN is the inelastic nucleon-nucleon

cross section. We take σNN = 42 mb at
√

sNN = 200 GeV
and σNN = 64 mb at

√
sNN = 2760 GeV. Here we neglect

nucleon-nucleon correlations and finite-size effects since their
effects on anisotropies at midcentral collisions were found to
be very small [35,36].

Multiplicity is taken to be proportional to the number of
ancestors, Nanc, which is a weighted sum of the number of
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participants, Npart, and the number of binary collisions, Nbin,
and is defined as

Nanc = (1 − f )Npart + f Nbin, (9)

where f is the fraction of the binary collision contribution.
This fraction f is chosen to reproduce the centrality depen-
dence of multiplicity.

In principle, when a fit to the multiplicity data is made, one
should first generate events with a certain f , sort the events
according to their centrality, and then calculate the average
number of ancestors in each centrality bin. Unfortunately, this
is a very time-consuming procedure because a large number
of events must be made for the centrality class definitions.
Thus our approach here is to fix the centrality classes by using
fixed impact parameter intervals. Because the average number
of participants and binary collisions is now known at each
centrality bin, a χ -squared fit can be easily made to fit the
ratio f . This approximation is well justified, because average
Npart and Nbin values are not sensitive to the centrality class
definition.

After the fraction of binary collisions, f , is determined,
we convert the centrality classes to the number of ancestors
intervals. To fix f , we used the STAR Collaboration data
[37] from RHIC, and the ALICE Collaboration data [38]
from the LHC. We neglected the most-peripheral centrality
classes starting from 60% centrality since we do not expect
hydrodynamics to be applicable for peripheral collisions. Our
result for RHIC is f = 0.088 and at the LHC we obtain
f = 0.17.

The initial entropy density distribution s(x,y) for a single
event is taken to be

s(x,y) = Ksd√
2πσ 2

∑
wi exp

(
− (x − xi)2 + (y − yi)2

2σ 2

)
,

(10)

where the sum runs over all participants and binary collisions,
wi is the weight [(1 − f ) for participant and f for binary
collision], xi and yi are the transverse coordinates of a
participant or a binary collision, and σ is a Gaussian smearing
parameter controlling the shape of the distribution. The overall
normalization constant Ksd is fixed to reproduce the observed
multiplicity in the 0%–5% most-central collisions. In this work
we use σ = 0.8 fm. We do not study the dependence of the
results on σ because smaller width of the Gaussians leads
to a formation of very-small-scale structures on the constant
Knudsen number surface; see Ref. [39]. The scale of these
structures is smaller than the mean free path of pions, and thus
we do not consider them physical. At this stage we do not
consider it worth the effort to improve the freeze-out criterion
to remove these structures since further studies should be
carried out by using viscous hydrodynamics, and dissipation
is known to smear small-scale structures, anyway.

To calculate the average initial state, we average 1000 MC
Glauber initial states. In this procedure impact parameters in
each event are aligned. We first obtain an averaged entropy
density profile and then use the EoS to convert it to energy
density profile, which is the actual initial condition for
hydrodynamics.

IV. RESULTS

We concentrate on the effects of the freeze-out criterion on
particle distributions and their anisotropies and do not aim to
faithfully reproduce the data. We compare the calculated pT

distributions to the data to show that our parameter choices
are reasonable, but do not compare elliptic flow nor triangular
flow with the data to avoid the need to evaluate the anisotropy
the same way the particular data set was analyzed. It was
seen in Ref. [12] that the favored freeze-out temperature and
Knudsen number do not depend on centrality in the 0%–50%
centrality range where fluid dynamics works best. We do not
expect event-by-event fluctuations to change this behavior and
therefore do not study the centrality dependence of the pT

spectra or anisotropies in detail. Instead, we mostly concentrate
on the 20%–30% centrality bin, and leave the study of p + A
and peripheral A + A collisions for a later work.

A. Averaged initial state in
√

sNN = 200 GeV Au + Au
collisions at the RHIC

To visualize how the freeze-out surface depends on the
freeze-out criterion, we show the constant-temperature and
constant-Knudsen-number freeze-out surfaces in Fig. 2. The
surfaces are calculated by using an average initial state for a√

sNN = 200 GeV 20%–30% central Au + Au collision and
chemically frozen s95p-PCE-v1 EoS. The constant-Knudsen-
number surface is closer to the center of the system, and thus
the edges of the system are hotter and the maximum flow ve-
locity is lower than on the constant-temperature surface. On the
other hand, the system lives longer, and the center decouples
at lower temperature. Similar behavior can be seen at the LHC
energy as well, and when chemical equilibrium is assumed.

In Fig. 3 we show the transverse momentum spectra of
positive pions and protons in 20%–30% centrality class. The
calculations were performed either by using the EoS s95p-v1,
which assumes chemical equilibrium (Fig. 3, top panel), or
the s95p-PCE-v1 EoS (Fig. 3, bottom panel), which assumes
chemical freeze-out at Tchem = 150 MeV. With the s95p-v1
EoS the initial time is the conventional τ0 = 0.6 fm, and the
freeze-out temperature Tf = 140 MeV and Knudsen number
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FIG. 2. Constant-temperature (solid red curve) and constant-
Knudsen-number (dashed blue curve) freeze-out surfaces in

√
sNN =

200 GeV 20%–30% central Au + Au collisions. Surfaces are shown
along the x and y axes.
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FIG. 3. Transverse momentum spectra of positive pions and
protons in

√
sNN = 200 GeV 20%–30% central Au + Au collisions

assuming (a) chemically equilibrated or (b) chemically frozen EoS.
The solid red line corresponds to the results obtained by using
freeze-out at constant temperature and the dashed blue line by
using freeze-out at constant Knudsen number. The data are from
the PHENIX Collaboration [40].

Knf = 1 lead to almost identical pion and proton distributions
which reproduce the data reasonably well.

The assumption of separate chemical freeze-out (Fig. 3,
bottom) necessitates the use of an earlier initial time τ0 = 0.2
fm to make the proton spectrum hard enough.3 When chemical
equilibrium has been lost, the temperature decreases faster
with decreasing energy density than in chemical equilibrium.
This necessitates the use of lower freeze-out temperature Tf =
120 MeV, and larger freeze-out Knudsen number Knf = 1.3 to
get sufficient transverse flow to reproduce the data. Since Knf

is a free parameter of the order of one, and the assumption of

3Later freeze-out, i.e., lower freeze-out temperature or larger freeze-
out Knudsen number, would make the pion spectrum too soft; see
discussions in Refs. [41,42].
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FIG. 4. Elliptic flow of positively charged pions and protons in√
sNN = 200 GeV 20%–30% central Au + Au collisions assuming (a)

chemical or (b) partial chemical equilibrium in the EoS. The solid red
line corresponds to the results obtained by using freeze-out at constant
temperature and the dashed blue line by using freeze-out at constant
Knudsen number. Error bars depict estimated statistical errors.

chemical equilibrium until the end of the evolution somewhat
unphysical, it is acceptable that Knf is different for CE and
PCE EoSs.

As shown it is possible to find constant-temperature and
constant-Knudsen-number values for freeze-out, which give
similar pion and proton spectra. This is a nontrivial result,
since the corresponding freeze-out surfaces are different. On
a constant-Knudsen-number surface the average flow velocity
is lower, and the center decouples at lower temperature. These
differences would make the spectra steeper, but their effect is
canceled by the edges of the system freezing out at a higher
temperature.

Next, in Fig. 4 we plot the pT -differential elliptic flow
v2(pT ) of pions and protons at

√
sNN = 200 GeV 20%–30%

central Au + Au collisions by using both EoSs and freeze-out
criteria. Since we use an averaged initial state, we have evalu-
ated the elliptic flow with respect to the reaction plane, v2{RP}.

054911-5



SAEED AHMAD, HANNU HOLOPAINEN, AND PASI HUOVINEN PHYSICAL REVIEW C 95, 054911 (2017)

In our earlier proceedings contribution [43], we saw that
elliptic flow was sensitive to the freeze-out criterion when
s95p-PCE-v1 EoS was used. However, in that calculation we
had fixed Knf = 1.0, and the pT distributions were different
as well. Now, after choosing the freeze-out Knudsen number
to reproduce the data and the spectra calculated by using
the constant-temperature freeze-out criterion, both freeze-out
criteria lead to similar elliptic flow. The same happens also
when we keep Knf = 1.0 fixed, and adjust the freeze-out tem-
perature instead to Tf = 140 MeV to achieve similar spectra.

To study whether the sensitivity to the freeze-out criterion
might depend on the initial state, we performed the calculations
by using a pure binary-collision profile as well. We used
an initial time τ0 = 0.6 fm, freeze-out temperature Tf =
120 MeV, and Knudsen number Knf = 1.3 with s95p-PCE-v1
and found that the spectra and elliptic flow were again
independent of the freeze-out criterion. Thus we suspect that
this similarity with both criteria is not due to some property of
the initial state but could be a more general phenomenon. Also
note that the same pair of constant temperature and constant
Knudsen number worked with both initial states.

B. Event-by-event fluctuating initial states in
√

sNN = 200 GeV
Au + Au collisions at the RHIC

As argued in the introduction, in event-by-event calcu-
lations the two freeze-out criteria might lead to different
results, even if the results were similar when averaged initial
state was used. To study this assumption, we modeled the
collisions at RHIC event by event by using the chemically
frozen s95p-PCE-v1 EoS. We followed the same procedure
than in our calculations using an averaged initial state and
treated both the freeze-out temperature and Knudsen number
as free parameters to be adjusted to reproduce the observed pT

spectra. It turned out that the same combination of parameters,
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FIG. 5. Transverse momentum spectra of positively charged
pions and protons in

√
sNN = 200 GeV 20%–30% central Au + Au

collisions from event-by-event hydrodynamical simulations. The
solid red line corresponds to the results obtained by using freeze-out
at constant temperature and the dashed blue line by using freeze-out
at constant Knudsen number. The data are from the PHENIX
Collaboration [40].
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FIG. 6. (a) Elliptic and (b) triangular flow of positive pions and
protons in

√
sNN = 200 GeV 20%–30% central Au + Au collisions

from event-by-event hydrodynamical simulations. The solid red line
corresponds to the results obtained by using freeze-out at constant
temperature and the dashed blue line by using freeze-out at constant
Knudsen number. Error bars depict estimated statistical errors.

Tf = 140 MeV and Knf = 1.3, lead to a reasonable repro-
duction of the data in both event-by-event and averaged initial
state calculations; see Figs. 5 and 3, respectively. However, as
observed before, e.g., in Ref. [16], the spectra are a little bit
flatter in the event-by-event case.

The pT -differential elliptic and triangular flows are shown
in Fig. 6. In event-by-event calculations it makes more sense
to calculate the flow coefficients with respect to their event
planes, and therefore vn{EP } values are shown in the figures.
Consequently, comparison with the averaged initial state case
cannot be made, because the definitions of flow are different.

Unlike what we expected, there is no significant difference
between the freeze-out criteria. We also checked with a smaller
number of events that in the most-central collisions, where both
v2 and v3 are generated mostly by fluctuations, the situation is
the same. Thus both anisotropies seem to be insensitive to the
freeze-out criterion in event-by-event calculations, too.
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We have also checked that, in individual events, the spectra,
elliptic flow, and triangular flow are not necessarily the same
with the parameters used, but the difference can be of the order
of 10% in each studied variable. This opens up the question
of whether the event-by-event distribution of anisotropies
[44] might be sensitive to the freeze-out criterion, and how
the freeze-out criterion would affect the correlation between
the initial-state anisotropy and final momentum anisotropy
[44,45]. We have not checked either what would happen if we
adjusted the freeze-out criteria event-by-event so that the pT

distributions were similar in each single event.

C. Averaged initial state in
√

sNN = 2760 GeV Pb + Pb
collisions at the LHC

At a single collision energy one can always fix the
freeze-out temperature to reproduce the pT spectra, but there
is no physical reason why the same freeze-out temperature
should work at another collision energy. On the other hand,
the dynamical criterion with freeze-out at constant Knudsen
number is based on local expansion dynamics and general
considerations about the validity of hydrodynamics, and
therefore we can expect the freeze-out to take place at the same
value of Knudsen number independent of the collision energy.
Thus it is worthwhile to check what happens in collisions at
the LHC energy.

In Fig. 7 we show the transverse momentum spectra of pions
and protons in

√
sNN = 2760 GeV 0%–5% central Pb + Pb

collisions using averaged initial state and s95p-PCE-v1 EoS.
Both in the shown 0%–5% centrality class, and in the
semicentral 20%–30% centrality class, the favored freeze-out
temperature was the same Tf = 120 MeV both at the RHIC
and at the LHC, but the data favored lower freeze-out Knudsen
number Knf = 1.0 at the LHC. Thus, as expected, the freeze-
out Knudsen number does not depend on the centrality of
the collision, but contrary to expectations, it depends on the
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FIG. 7. Transverse momentum spectra of positive pions and
protons in

√
sNN = 2760 GeV 0-5% central Pb + Pb collisions.

The solid red line corresponds to the results obtained by using
freeze-out at constant temperature and the dashed blue line by using
freeze-out at constant Knudsen number. The data are from the ALICE
Collaboration [50].

0.0

0.05

0.1

0.15

0.2

0.25

v 2
{R

P
}

0.0 0.5 1.0 1.5 2.0

pT (GeV)

Tf = 120 MeV
Knf = 1.0

Pb+Pb
20-30%
τ0 = 0.2 fm

PCE
Averaged

π+

p+

FIG. 8. Elliptic flow of positive pions and protons in
√

sNN =
2760 GeV 20%–30% central Pb + Pb collisions. The solid red line
corresponds to the results obtained by using freeze-out at constant
temperature and the dashed blue line by using freeze-out at constant
Knudsen number. Error bars depict estimated statistical errors.

collision energy. The dependence on collision energy may be
an effect of neglecting dissipation: When the dynamical crite-
rion of freeze-out at constant Knudsen number was used in the
context of dissipative hydro [12], the same freeze-out Knudsen
number worked both at the RHIC and the LHC. On the other
hand, since the slopes of the final pT distributions depend on
the initial pressure gradients, the collision energy dependence
of the freeze-out Knudsen number may also indicate that our
Glauber-based initial-state model does not properly reproduce
the initial gradients. Thus it would be interesting to apply the
dynamical freeze-out criterion to more sophisticated EKRT
[45–47] and IP-Glasma [48,49] initial states.

The pT -differential elliptic flow of pions and protons shown
in Fig. 8 depicts the same pattern at the LHC as at the RHIC:
Once the pT spectra are reproduced, both freeze-out criteria
lead to similar elliptic flow.

To be sure, we carried out the event-by-event calculations
at the LHC energy too, but saw the very same behavior
as at the RHIC and when using the averaged initial state:
Once the freeze-out parameters were chosen to reproduce the
observed spectra (Tf = 120 MeV and Knf = 1.0), the elliptic
and triangular flows were similar, too.

V. CONCLUSIONS

As argued in the introduction, freeze-out criterion based on
freeze-out at a constant temperature is an oversimplification,
and a dynamical criterion where freeze-out takes place at
constant Knudsen number would be more physical. However,
we saw that, in semicentral and central collisions, identified
particle spectra and elliptic and triangular flows are not
sensitive to the freeze-out criterion.

We evaluated the Knudsen number as the ratio of the
expansion rate of the system, and the scattering rate of
pions. We applied the freeze-outs at constant temperature
and constant Knudsen number to ideal fluid calculations of
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Au + Au collisions at the RHIC and Pb + Pb collisions at
the LHC at 20%–30% centrality, and fixed the values of
freeze-out parameters by fitting the observed pion and proton
pT distributions. The two criteria lead to different freeze-out
surfaces: with dynamical freeze-out the edges decouple earlier
(i.e., at higher temperature) and the center of the system
lives longer, letting the matter cool more compared with the
constant-temperature case. However, after the pT spectra were
constrained to be similar, no sign of the different temperatures
and flow velocities on the freeze-out surface could be seen in
the anisotropies.

We did check that the same insensitivity persists in
most-central collisions, but we did not check what might
happen when the collision system is much smaller, such as in
peripheral A + A or in p + A collisions. The earlier results of
Ref. [12] indicate that the sensitivity to the freeze-out criterion
increases when the system size or collision energy decreases,
and thus the p + A collision system could be very sensitive
to the freeze-out criterion. Maybe even to such an extent that
the Knudsen number at the very beginning of the evolution is
larger than one [6].

Our event-by-event calculations revealed that even if the
spectra and anisotropies after averaging over many events
were not sensitive to the freeze-out criterion, spectra and
anisotropies in individual events were. This leaves open the
question of whether event-by-event distributions of aver-
age pT or anisotropy coefficients vn might be sensitive to
the freeze-out criterion. One could also expect that HBT
radii would be an observable which is more sensitive than
the anisotropies to the exact properties of the freeze-out
surface.

Unfortunately, we were unable to study how the value of
the smearing parameter σ of the Monte Carlo Glauber model
affects the sensitivity to freeze-out, and thus whether small-
scale density fluctuations in the initial state might affect the
freeze-out. This remains to be explored in a further study,

although one may expect that dissipation has largely smeared
away small-scale structures by the time of freeze-out.
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APPENDIX A: INTEGRALS IN CALCULATION OF
SCATTERING RATE

The reduction of the number of integrals over momentum
in the scattering-rate calculations has been shown in Ref. [25]
for equal-mass particles obeying Boltzmann statistics, and
generalized for nonidentical particles when the scattering
partner has a fixed momentum in Ref. [22]. For the sake of
completeness, we repeat the process here and generalize it for
quantum statistics.

The total number of times pions scatter with particles i per
unit volume per unit time is given by

Ri = 2
∫ ∞

sa

ds
√

(s − sa)(s − sb)σπi(s)
∫

d3pπ

2Eπ

d3pi

2Ei

fπ (T ,μπ )fi(T ,μi)δ(s − (pi + pπ )2), (A1)

where, compared with Eq. (2), we have added the integration over center-of-mass energy s and the corresponding δ function. To
proceed we express the distribution functions fπ and fi as a series:

fi(T ,μi) = gi

(2π )3

1

e
E−μi

T ± 1
= gi

(2π )3

∞∑
n=1

(∓1)n+1enμi/T e−nE/T , (A2)

where −1 in the series is for fermions and +1 for bosons, change the momentum coordinates to spherical coordinates, change
the integral over the magnitude of momentum to integral over energy, and rewrite the δ function as

δ(s − (pi + pπ )2) = 1

2|pπ ||pi |δ
(

cos θi + s − (
m2

π + m2
i

) − 2EπEi

2|pπ ||pi |
)

. (A3)

The angular integrals can now be carried out, and we get

Ri = gi

25π4

∞∑
k=1

ekμπ/T

∞∑
n=1

(∓1)n+1enμi/T

∫ ∞

sa

ds
√

(s − sa)(s − sb)σπi(s)

×
∫ ∞

mπ

dEπ

∫ ∞

mi

dEie
− k

T (Eπ+ n
k
Ei)�

(
1 −

∣∣∣∣∣ s − (
m2

π + m2
i

) − 2EπEi

2|pπ ||pi |

∣∣∣∣∣
)

. (A4)
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We change the integration variables from Eπ and Ei to y = Eπ + 1
r
Ei and x = Eπ − 1

r
Ei , where r = k/n. The � function

constraint can now be written as b < x < c, where

b =
(
r2m2

π − m2
i

)
y − d

rs − (r − 1)
(
m2

i − rm2
π

) , c =
(
r2m2

π − m2
i

)
y + d

rs − (r − 1)
(
m2

i − rm2
π

) ,

d =
√

r2y2 − [
rs − (r − 1)

(
m2

i − rm2
π

)]√
(s − sa)(s − sb).

(A5)

It turns out that the integration over x is constrained more by the � function than by the integration limits, and we get

Ri = gi

26π4

∞∑
k=1

ekμπ/T

∞∑
n=1

(∓1)n+1enμi/T r

∫ ∞

sa

ds
√

(s − sa)(s − sb)σπi(s)
∫ ∞

α

dye− ky
T (c − b), (A6)

where

α =
√

s

r
− r − 1

r2

(
m2

i − rm2
π

)
. (A7)

The y integral can now be reordered and carried out to be∫ ∞

α

dye−k y
T

√
y2 − α2 = T α

k
K1

(
kα

T

)
, (A8)

where K1 is the modified Bessel function. Inserting this into Eq. (A6) and keeping the y-independent terms omitted from Eq. (A8),
we finally get

Ri = giT

25π4

∞∑
k=1

ekμπ/T

∞∑
n=1

(∓1)n+1

n
enμi/T

∫ ∞

sa

ds
(s − sa)(s − sb)σπi(s)√
rs − (r − 1)

(
m2

i − rm2
π

)K1

(
n

T

√
rs − (r − 1)

(
m2

i − rm2
π

))
. (A9)

After summing over all particles i and dividing by the pion
density, we get Eq. (3).

APPENDIX B: CENTER-OF-MASS MOMENTUM IN
PARTICLE-RESONANCE SCATTERING

If one of the scattering partners is a resonance, the
conventional expression for the center-of-mass momentum of
the scattering,

pcms(
√

s,m1,m2) =
√

[s − (m1 + m2)2][s − (m1 − m2)2]

2
√

s
,

(B1)

must be amended to take into account the finite width
of the resonance. To do this, we again mostly follow the
UrQMD description [27] and include an integral over the mass
distribution of the resonance:

pcms(
√

s) =
∫ √

s−mπ

0
dm pCMS(

√
s,mπ,m)

× 1

2π

�R

(mR − m)2 + �2
R/4

, (B2)

where we assume the mass distribution to be the Breit–Wigner
distribution with mass-independent width �R , and mR is the
pole mass of the resonance.

Note that, in the integrals of Appendix A and in the
evaluation of the EoS, the resonances have been assumed to
have zero width, and their pole masses have been used as their
masses.

APPENDIX C: FULL DECAY WIDTH

The evaluation of the full decay width �tot(M) in Eq. (4)
requires knowledge of partial decay widths of three- and four-
body decay channels as well. Unfortunately, Eq. (5) cannot
be easily generalized to many-body decays. To treat all decay
channels in a similar fashion, we combine the particles in
three- and four-body decays into a particle and a particle pair,
or two particle pairs, respectively, use the invariant mass(es)
of particle pair(s) to evaluate the center-of-mass momentum
[Eq. (B1)], and use the available phase space to give the mass
distribution of the invariant mass of the pair(s). In particular,
for three-body decays we obtain

pcms(M) = 8M

N

∫ M−m3

m1+m2

dmpair
[
pcms

(
M,mpair,m3

)]2

×pcms
(
mpair,m1,m2

)
, (C1)

where the normalization factor N is given by

N = 8M

∫ M−m3

m1+m2

dmpairpcms
(
M,mpair,m3

)
×pcms

(
mpair,m1,m2

)
. (C2)

If any of the daughter particles in a multiparticle decay is a
resonance, we use its pole mass only and neglect its width.

054911-9



SAEED AHMAD, HANNU HOLOPAINEN, AND PASI HUOVINEN PHYSICAL REVIEW C 95, 054911 (2017)

[1] U. W. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63,
123 (2013).

[2] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[3] H. Niemi, Nucl. Phys. A 931, 227 (2014).
[4] U. W. Heinz, K. S. Lee, and E. Schnedermann, in Quark-Gluon

Plasma, edited by R. C. Hwa (World Scientific, Singapore,
1990), p. 471.

[5] P. F. Kolb and U. W. Heinz, in Quark-Gluon Plasma 3, edited by
R. C. Hwa and X.-N. Wang (World Scientific, Singapore, 2004),
p. 634.

[6] H. Niemi and G. S. Denicol, arXiv:1404.7327.
[7] J. P. Bondorf, S. I. A. Garpman, and J. Zimanyi, Nucl. Phys. A

296, 320 (1978).
[8] I. N. Mishustin and L. M. Satarov, Yad. Fiz. 37, 894 (1983)

[Sov. J. Nucl. Phys. 37, 532 (1983)].
[9] C. M. Hung and E. V. Shuryak, Phys. Rev. C 57, 1891 (1998).

[10] U. Heinz and G. Kestin, PoS (CPOD2006) 038.
[11] K. J. Eskola, H. Niemi, and P. V. Ruuskanen, Phys. Rev. C 77,

044907 (2008).
[12] E. Molnar, H. Holopainen, P. Huovinen, and H. Niemi, Phys.

Rev. C 90, 044904 (2014).
[13] D. H. Rischke, Lect. Notes Phys. 516, 21 (1999).
[14] E. Schnedermann and U. W. Heinz, Phys. Rev. C 50, 1675

(1994).
[15] D. J. Raine and E. G. Thomas, An Introduction to the Science of

Cosmology (IoP Publishing, Bristol, 2001).
[16] H. Holopainen, H. Niemi, and K. J. Eskola, Phys. Rev. C 83,

034901 (2011).
[17] D. Oliinychenko, P. Huovinen, and H. Petersen, Phys. Rev. C

91, 024906 (2015).
[18] D. Oliinychenko, P. Huovinen, and H. Petersen, J. Phys.: Conf.

Ser. 599, 012017 (2015).
[19] T. Hirano, P. Huovinen, K. Murase, and Y. Nara, Prog. Part.

Nucl. Phys. 70, 108 (2013).
[20] H. Petersen, J. Phys. G 41, 124005 (2014).
[21] P. Huovinen and H. Petersen, Eur. Phys. J. A 48, 171 (2012).
[22] B. Tomasik and U. A. Wiedemann, Phys. Rev. C 68, 034905

(2003).
[23] J. Ftacnik, P. Lichard, N. Pisutova, and J. Pisut, Z. Phys. C: Part.

Fields 42, 139 (1989).
[24] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, Phys.

Rep. 227, 321 (1993).

[25] B. Zhang, M. Gyulassy, and Y. Pang, Phys. Rev. C 58, 1175
(1998).

[26] P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010).
[27] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
[28] M. Bleicher et al., J. Phys. G 25, 1859 (1999).
[29] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1

(2004).
[30] R. G. Daghigh and J. I. Kapusta, Phys. Rev. D 65, 064028

(2002).
[31] J. P. Boris and D. L. Book, J. Comput. Phys. 11, 38 (1973).
[32] C. R. DeVore, J. Comput. Phys. 92, 142 (1991).
[33] S. T. Zalesak, J. Comput. Phys. 31, 335 (1979).
[34] A. Dumitru, Phys. Lett. B 463, 138 (1999).
[35] M. Alvioli, H. Holopainen, K. J. Eskola, and M. Strikman, Phys.

Rev. C 85, 034902 (2012).
[36] G. S. Denicol, C. Gale, S. Jeon, J.-F. Paquet, and B. Schenke,

arXiv:1406.7792.
[37] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79,

034909 (2009).
[38] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 106,

032301 (2011).
[39] H. Holopainen and P. Huovinen, J. Phys.: Conf. Ser. 389, 012018

(2012).
[40] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. C 69,

034909 (2004).
[41] T. Hirano and M. Gyulassy, Nucl. Phys. A 769, 71 (2006).
[42] P. Huovinen, Eur. Phys. J. A 37, 121 (2008).
[43] H. Holopainen and P. Huovinen, J. Phys.: Conf. Ser. 509, 012114

(2014).
[44] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Phys.

Rev. C 87, 054901 (2013).
[45] H. Niemi, K. J. Eskola, and R. Paatelainen, Phys. Rev. C 93,

024907 (2016).
[46] K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and K. Tuominen,

Nucl. Phys. B 570, 379 (2000).
[47] R. Paatelainen, K. J. Eskola, H. Holopainen, and K. Tuominen,

Phys. Rev. C 87, 044904 (2013).
[48] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett.

108, 252301 (2012).
[49] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. C 86,

034908 (2012).
[50] B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 109,

252301 (2012).

054911-10

https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1016/j.nuclphysa.2014.09.100
https://doi.org/10.1016/j.nuclphysa.2014.09.100
https://doi.org/10.1016/j.nuclphysa.2014.09.100
https://doi.org/10.1016/j.nuclphysa.2014.09.100
http://arxiv.org/abs/arXiv:1404.7327
https://doi.org/10.1016/0375-9474(78)90076-3
https://doi.org/10.1016/0375-9474(78)90076-3
https://doi.org/10.1016/0375-9474(78)90076-3
https://doi.org/10.1016/0375-9474(78)90076-3
https://doi.org/10.1103/PhysRevC.57.1891
https://doi.org/10.1103/PhysRevC.57.1891
https://doi.org/10.1103/PhysRevC.57.1891
https://doi.org/10.1103/PhysRevC.57.1891
https://doi.org/10.1103/PhysRevC.77.044907
https://doi.org/10.1103/PhysRevC.77.044907
https://doi.org/10.1103/PhysRevC.77.044907
https://doi.org/10.1103/PhysRevC.77.044907
https://doi.org/10.1103/PhysRevC.90.044904
https://doi.org/10.1103/PhysRevC.90.044904
https://doi.org/10.1103/PhysRevC.90.044904
https://doi.org/10.1103/PhysRevC.90.044904
https://doi.org/10.1007/BFb0107310
https://doi.org/10.1007/BFb0107310
https://doi.org/10.1007/BFb0107310
https://doi.org/10.1007/BFb0107310
https://doi.org/10.1103/PhysRevC.50.1675
https://doi.org/10.1103/PhysRevC.50.1675
https://doi.org/10.1103/PhysRevC.50.1675
https://doi.org/10.1103/PhysRevC.50.1675
https://doi.org/10.1103/PhysRevC.83.034901
https://doi.org/10.1103/PhysRevC.83.034901
https://doi.org/10.1103/PhysRevC.83.034901
https://doi.org/10.1103/PhysRevC.83.034901
https://doi.org/10.1103/PhysRevC.91.024906
https://doi.org/10.1103/PhysRevC.91.024906
https://doi.org/10.1103/PhysRevC.91.024906
https://doi.org/10.1103/PhysRevC.91.024906
https://doi.org/10.1088/1742-6596/599/1/012017
https://doi.org/10.1088/1742-6596/599/1/012017
https://doi.org/10.1088/1742-6596/599/1/012017
https://doi.org/10.1088/1742-6596/599/1/012017
https://doi.org/10.1016/j.ppnp.2013.02.002
https://doi.org/10.1016/j.ppnp.2013.02.002
https://doi.org/10.1016/j.ppnp.2013.02.002
https://doi.org/10.1016/j.ppnp.2013.02.002
https://doi.org/10.1088/0954-3899/41/12/124005
https://doi.org/10.1088/0954-3899/41/12/124005
https://doi.org/10.1088/0954-3899/41/12/124005
https://doi.org/10.1088/0954-3899/41/12/124005
https://doi.org/10.1140/epja/i2012-12171-9
https://doi.org/10.1140/epja/i2012-12171-9
https://doi.org/10.1140/epja/i2012-12171-9
https://doi.org/10.1140/epja/i2012-12171-9
https://doi.org/10.1103/PhysRevC.68.034905
https://doi.org/10.1103/PhysRevC.68.034905
https://doi.org/10.1103/PhysRevC.68.034905
https://doi.org/10.1103/PhysRevC.68.034905
https://doi.org/10.1007/BF01565136
https://doi.org/10.1007/BF01565136
https://doi.org/10.1007/BF01565136
https://doi.org/10.1007/BF01565136
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1103/PhysRevC.58.1175
https://doi.org/10.1103/PhysRevC.58.1175
https://doi.org/10.1103/PhysRevC.58.1175
https://doi.org/10.1103/PhysRevC.58.1175
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1016/j.physletb.2004.06.001
https://doi.org/10.1016/j.physletb.2004.06.001
https://doi.org/10.1016/j.physletb.2004.06.001
https://doi.org/10.1016/j.physletb.2004.06.001
https://doi.org/10.1103/PhysRevD.65.064028
https://doi.org/10.1103/PhysRevD.65.064028
https://doi.org/10.1103/PhysRevD.65.064028
https://doi.org/10.1103/PhysRevD.65.064028
https://doi.org/10.1016/0021-9991(73)90147-2
https://doi.org/10.1016/0021-9991(73)90147-2
https://doi.org/10.1016/0021-9991(73)90147-2
https://doi.org/10.1016/0021-9991(73)90147-2
https://doi.org/10.1016/0021-9991(91)90295-V
https://doi.org/10.1016/0021-9991(91)90295-V
https://doi.org/10.1016/0021-9991(91)90295-V
https://doi.org/10.1016/0021-9991(91)90295-V
https://doi.org/10.1016/0021-9991(79)90051-2
https://doi.org/10.1016/0021-9991(79)90051-2
https://doi.org/10.1016/0021-9991(79)90051-2
https://doi.org/10.1016/0021-9991(79)90051-2
https://doi.org/10.1016/S0370-2693(99)01018-7
https://doi.org/10.1016/S0370-2693(99)01018-7
https://doi.org/10.1016/S0370-2693(99)01018-7
https://doi.org/10.1016/S0370-2693(99)01018-7
https://doi.org/10.1103/PhysRevC.85.034902
https://doi.org/10.1103/PhysRevC.85.034902
https://doi.org/10.1103/PhysRevC.85.034902
https://doi.org/10.1103/PhysRevC.85.034902
http://arxiv.org/abs/arXiv:1406.7792
https://doi.org/10.1103/PhysRevC.79.034909
https://doi.org/10.1103/PhysRevC.79.034909
https://doi.org/10.1103/PhysRevC.79.034909
https://doi.org/10.1103/PhysRevC.79.034909
https://doi.org/10.1103/PhysRevLett.106.032301
https://doi.org/10.1103/PhysRevLett.106.032301
https://doi.org/10.1103/PhysRevLett.106.032301
https://doi.org/10.1103/PhysRevLett.106.032301
https://doi.org/10.1088/1742-6596/389/1/012018
https://doi.org/10.1088/1742-6596/389/1/012018
https://doi.org/10.1088/1742-6596/389/1/012018
https://doi.org/10.1088/1742-6596/389/1/012018
https://doi.org/10.1103/PhysRevC.69.034909
https://doi.org/10.1103/PhysRevC.69.034909
https://doi.org/10.1103/PhysRevC.69.034909
https://doi.org/10.1103/PhysRevC.69.034909
https://doi.org/10.1016/j.nuclphysa.2006.02.005
https://doi.org/10.1016/j.nuclphysa.2006.02.005
https://doi.org/10.1016/j.nuclphysa.2006.02.005
https://doi.org/10.1016/j.nuclphysa.2006.02.005
https://doi.org/10.1140/epja/i2007-10611-3
https://doi.org/10.1140/epja/i2007-10611-3
https://doi.org/10.1140/epja/i2007-10611-3
https://doi.org/10.1140/epja/i2007-10611-3
https://doi.org/10.1088/1742-6596/509/1/012114
https://doi.org/10.1088/1742-6596/509/1/012114
https://doi.org/10.1088/1742-6596/509/1/012114
https://doi.org/10.1088/1742-6596/509/1/012114
https://doi.org/10.1103/PhysRevC.87.054901
https://doi.org/10.1103/PhysRevC.87.054901
https://doi.org/10.1103/PhysRevC.87.054901
https://doi.org/10.1103/PhysRevC.87.054901
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1016/S0550-3213(99)00720-8
https://doi.org/10.1016/S0550-3213(99)00720-8
https://doi.org/10.1016/S0550-3213(99)00720-8
https://doi.org/10.1016/S0550-3213(99)00720-8
https://doi.org/10.1103/PhysRevC.87.044904
https://doi.org/10.1103/PhysRevC.87.044904
https://doi.org/10.1103/PhysRevC.87.044904
https://doi.org/10.1103/PhysRevC.87.044904
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevLett.109.252301
https://doi.org/10.1103/PhysRevLett.109.252301
https://doi.org/10.1103/PhysRevLett.109.252301
https://doi.org/10.1103/PhysRevLett.109.252301


Computer Physics Communications 185 (2014) 3016–3027

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A 3 + 1 dimensional viscous hydrodynamic code for relativistic heavy
ion collisions✩

Iu. Karpenko a,b,∗, P. Huovinen a,c, M. Bleicher a,c
a Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
b Bogolyubov Institute for Theoretical Physics, 14-b, Metrolohichna str., 03680 Kiev, Ukraine
c Institute for Theoretical Physics, Johann Wolfgang Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany

a r t i c l e i n f o

Article history:
Received 10 February 2014
Received in revised form
18 June 2014
Accepted 12 July 2014
Available online 23 July 2014

Keywords:
Quark–gluon plasma
Hydrodynamics
Relativity

a b s t r a c t

We describe the details of 3 + 1 dimensional relativistic hydrodynamic code for the simulations of
quark–gluon/hadron matter expansion in ultra-relativistic heavy ion collisions. The code solves the
equations of relativistic viscous hydrodynamics in the Israel–Stewart framework. With the help of
ideal–viscous splitting, we keep the ability to solve the equations of ideal hydrodynamics in the limit
of zero viscosities using a Godunov-type algorithm. Milne coordinates are used to treat the predominant
expansion in longitudinal (beam) direction effectively. The results are successfully tested against known
analytical relativistic inviscid and viscous solutions, as well as against existing 2 + 1D relativistic viscous
code.
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Running time:
scales with the number of hydrodynamic cells; typical running times on Intel(R) Core(TM) i7-3770 CPU
@ 3.40 GHz, single thread mode, 160 × 160 × 100 grid and p = ε/3 EoS (setup discussed in Sec. 4.4):
7.6 sec/timestep for ideal hydro evolution;
15.7 sec/timestep for viscous hydro evolution;
37 sec/timestep for tabulated EoS and ideal hydro evolution.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Relativistic fluid dynamics has been applied to various high
energy phenomena in astrophysics, nuclear and hadron physics,
fromcollision of galaxies down to the evolution of femtometer-size
droplets of dense matter created in ultra-relativistic heavy ion col-
lisions. In astrophysics typical applications of relativistic fluid dy-
namics are collapse of massive stars, formation of and flow around
black holes, collisions of neutron stars and passage of relativistic
jets through intergalactic matter [1,2]. On earth relativistic flows
appear in ultrarelativistic heavy-ion collisions, where the formed
matter depicts collective behavior. Especially the anisotropies of
the final particle distribution were described so well using ideal
fluid dynamics, that thematterwas called almost perfect fluidwith
the lowest possible viscosity. The determination of the dissipative
properties of this matter has became one of the major goals of
heavy-ion physics, and requires sophisticated fluid dynamical cal-
culations.

The equations of motion of relativistic fluid dynamics are no-
toriously difficult to solve. Except in very idealized situations, no
analytic solutions exist, and the equations must be solved numeri-
cally. Several groups havedeveloped several codes for fluid dynam-
ical modeling of heavy-ion collisions [3–21],1 but many of these
codes assume boost-invariant longitudinal expansion [22] and/or
zero net baryon density in the entire system. Neither of these
assumptions is a good approximation in collisions at the Beam
Energy Scan energies (

√
sNN = 6.3–39GeV) at BNL RHIC (Relativis-

tic Heavy-Ion Collider) nor in collisions in the forthcoming exper-
iments at FAIR or NICA. We have therefore developed a new code
where both of these assumptions have been relaxed. In this paper,
we present the results of test simulations of this code.

High-Resolution Shock-Capturing (HRSC) algorithms are par-
ticularly suitable for solving the equations of relativistic fluid dy-
namics, and are applied for a wide variety of problems [2]. HRSC
algorithms are designed to treat discontinuous shock configura-
tions in hydrodynamic solution, or shockwaves. Themethods usu-
ally incorporate higher-order schemes which minimize numerical
errors. Most of HRSC algorithms are formulated in conservative
form, where the time evolution of cell averaged quantities is gov-
erned bynumerical fluxes evaluated at cell boundaries. The conser-
vative form ensures that the total energy and momentum in the
system are conserved during the time evolution. A sub-family of
HRSC algorithms areGodunov-type algorithms,which are based on
exact or approximate solutions of the Riemann problem at the cell
boundaries in order to compute time-averaged fluxes through it.

Our code is based on theGodunov-type relativistic Harten–Lax–
van Leer–Einfeldt (HLLE) approximate Riemann solver [23,24]. This
particular choice of the approximate Riemann solver is motivated
by its simplicity, reliability, and stability for the simulations re-
lated to the physics of ultra-relativistic heavy ion collisions. The

1 We apologize to our colleagues whose work we forgot to mention.

Riemann problem is formulated for an inviscid fluid, where shock
wave solutions are allowed. Basing on the algorithms established
for inviscid fluid, we aim to study the evolution of nearly ideal
fluid (fluids with close-to-minimal viscosity) like the one presum-
ably created in ultrarelativistic heavy ion collisions. To do this, we
employ additional methods to solve the equations of relativistic
viscous hydrodynamics in the Israel–Stewart framework [25],
keeping the ability to solve the equations of ideal hydrodynamics
in the limit of zero shear andbulk viscosities. The use of an (approx-
imate) Riemann solver makes it possible to treat the highly inho-
mogeneous matter configurations emerging from event-by-event
initial conditions as employed in the most recent studies of heavy
ion collisions.

The present hydrodynamic code is already being used as a part
of EPOS3 event generator for ultra-relativistic heavy ion collisions
[26] and as a part of hydrodynamic+ cascademodel [27] in studies
focused on Beam Energy Scan (BES) project at the BNL Relativistic
Heavy Ion Collider (RHIC).

The article is organized as follows: in Section 2 the formalism is
presented, Section 3 provides the details of the numerical imple-
mentation. Section 4 is devoted to the description and results of
test simulations, including a comparison for the physical setup for
the matter expansion in relativistic A + A collisions, and we sum-
marize in Section 5.

2. Equations

Throughout this work natural units are employed, i.e. the speed
of light in vacuum c = 1, the Boltzmann constant kB = 1 and the
Planck constant h̄ = 1.

The equations of relativistic (viscous) hydrodynamics follow
from the laws of energy–momentum and charge conservation:
∂νTµν

= 0,
∂νNν

c = 0, (1)
with Tµν being the energy–momentum tensor and Nν

c the charge
current, index c enumerates the conserved charges if there are
multiple conserved charges in the system.

The Landau definition of flow velocity uµ (Landau frame) as a
flow of energy [28] is adopted, i.e. ϵuµ

= Tµ
ν uν . In this frame, the

energy–momentum tensor for a viscous fluid can be decomposed
as:
Tµν

= ϵuµuν
− (p + Π)∆µν

+ πµν,

Nµ
c = ncuµ

+ Vµ
c ,

where
• ϵ and p are energy density in fluid rest frame and equilibrium

pressure, respectively;
• ∆µν

= gµν
− uµuν is the projector orthogonal to uµ;

• πµν and Π are the shear stress tensor and bulk pressure;
• Vµ

c are charge diffusion currents.

The hydrodynamic equations are closed with the equation of
state (EoS) p = p(ϵ, nc), which has to be supplied from some
external model.
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In the Israel–Stewart framework of relativistic viscous hydrody-
namics [25] the shear stress tensor and bulk pressure are indepen-
dent dynamical variables. Recent studies [29] show that there can
be infinitely many choices for the explicit form and coefficients in
equations ofmotion forπµν andΠ . In the presentwork the follow-
ing choice for the equations of motion for the shear stress tensor
and bulk pressure is used, where we neglect vorticity terms:

⟨uγ ∂;γ πµν
⟩ = −

πµν
− π

µν

NS

τπ

−
4
3
πµν∂;γ uγ , (2a)

uγ ∂;γ Π = −
Π − ΠNS

τΠ

−
4
3
Π∂;γ uγ , (2b)

and where ∂;µ denotes a covariant derivative. This choice has
already beenwidely used in recent simulations of nucleus–nucleus
collisions at relativistic energies. For the purpose of the tests and
our current applications we do not include the baryon/electric
charge diffusion, i.e. Vµ

c = 0. Angle brackets in (2a) are defined as:

⟨Aµν
⟩ =


1
2
∆µ

α∆ν
β +

1
2
∆ν

α∆
µ
β −

1
3
∆µν∆αβ


Aαβ ,

and denote the symmetric, traceless and orthogonal to uµ part of
Aµν .

π
µν

NS = η(∆µλ∂;λuν
+ ∆νλ∂;λuµ) −

2
3
η∆µν∂;λuλ,

ΠNS = −ζ∂;λuλ, (3)

are the values of shear stress tensor and bulk pressure in limiting
Navier–Stokes case.

For hydrodynamic simulations related to the physics of ultrarel-
ativistic heavy ion collisions Milne coordinates for the t–z plane in
spacetime (z being the collision axis) are chosen. The new coordi-
nates are expressed in terms of Minkowski coordinates {t, x, y, z}
as τ =

√
t2 − z2, η =

1
2 ln((t + z)/(t − z)), while the definitions

of x and y coordinates are unchanged.
The form of hydrodynamic equations in arbitrary coordinate

systems is:

∂;νTµν
= ∂νTµν

+ Γ
µ
νλT

νλ
+ Γ ν

νλT
µλ

= 0, (4)

∂;νNν
c = ∂νNν

c + Γ ν
νλN

λ
c = 0,

where Γ
µ
νλ are affine connections or Christoffel symbols.

We chooseWest coast convention (+, −, −, −) for metric ten-
sor in Minkowski spacetime, so in Milne coordinates the invariant
interval is: ds2 = dt2 −dx2 −dy2 − τ 2dη2, and the metric tensor is

gµν
= diag(1, −1, −1, −1/τ 2)

Although spacetime is still flat, there are nontrivial Christoffel
symbols, the nonzero components being:

Γ η
τη = Γ η

ητ = 1/τ , Γ τ
ηη = τ ,

which leads to the following explicit form of hydrodynamic equa-
tions:

∂νT τν
+ τT ηη

+
1
τ
T ττ

= 0,

∂νT xν
+

1
τ
T xτ

= 0,

∂νT yν
+

1
τ
T yτ

= 0,

∂νT ην
+

3
τ
T ητ

= 0,

∂νNν
c +

1
τ
Nτ

c = 0.

(5)

In Milne coordinates, Tµν and Nν keep the same structure,
however the velocities are expressed through the longitudinal/

transverse rapidities in the Cartesian frame as:

uµ
=


uτ , ux, uy, uη


=


cosh(ηf − η) cosh ηT ,

sinh ηT {cosφ, sinφ},
1
τ
sinh(ηf − η) cosh ηT


(6)

where ηf = 0.5 ln(1 + vz)/(1 − vz) is longitudinal flow rapidity
and ηT = arctanh(vT/


1 − v2

z ) is transverse flow rapidity. From
the equation above one can see that uη

= 0 when ηf = η, which
means that uη

= 0 corresponds to scaling Bjorken flow in Cartesian
coordinates, vz = z/t . Thus, Milne coordinates naturally describe
the expansion along z axis from a point-like source.

As one can see, almost all source terms in (5) are proportional
to 1/τ , which makes them dominant for the hydrodynamic
evolution at small τ . This is natural when one remembers that the
gradient of the longitudinal scaling flow is inversely proportional
to t in the Cartesian frame. The accurate numerical solution
would eventually require to apply a higher order numerical time
integration scheme.We circumvent this by redefining the variables
in Milne coordinates as:

Tµν
= T̃µν, µ, ν ≠ η (7)

Tµη
= T̃µη/τ , µ ≠ η (8)

T ηη
= T̃ ηη/τ 2 (9)

Nη
c = Ñc

η
/τ . (10)

Rewriting the equations for τTµν :

∂̃ν(τ T̃ τν) +
1
τ

(τ T̃ ηη) = 0,

∂̃ν(τ T̃ xν) = 0,

∂̃ν(τ T̃ yν) = 0,

∂̃ν(τ T̃ ην) +
1
τ

(τ T̃ ητ ) = 0,

∂̃ν(τ Ñν
c ) = 0,

(11)

with

∂̃µ ≡ {∂/∂τ , ∂/∂x, ∂/∂y, (1/τ)∂/∂η},

all the components of T̃µν have the same units as well as ∂̃µ

[1/length]. The actual conserved variables used in the code are then
Q = {τ T̃µτ , τ Ñτ

}, fluxes are {τ T̃ ij, τ Ñ i
}, so that T̃ ηη

= (ϵ +

p)ũηũη
+p and ũη does not include the factor 1/τ (cf. Eq. (6)). Then

Eq. (11) provides the explicit form of the energy–momentum and
charge conservation equations which are solved numerically.

In the same way as it was done for energy–momentum conser-
vation equations, we separate the factors 1/τ from πµν as follows:
πµη

= π̃µη/τ , πηη
= π̃ηη/τ 2, as well as uη

= ũη/τ and ∂η →

(1/τ)∂η . Thenwe rewrite (2a) and (2b) in terms of tilded variables:

γ̃

∂τ + ṽi∂̃i


π̃µν

= −
π̃µν

− π̃
µν

NS

τπ

+ Iµν
π (12)

γ̃

∂τ + ṽi∂̃i


Π = −

Π − ΠNS

τΠ

+ IΠ (13)

and solve the above equations numerically. Here γ̃ = u0 and ṽi
=

ũi/u0 (i = x, y, η) are the components of 3-velocity. The additional
source terms are:

Iµν
π = −

4
3
π̃µν ∂̃;γ ũγ

− [ũν π̃µβ
+ ũµπ̃ νβ

]ũλ∂̃;λũβ − Iµν

π,G, (14)

IΠ = −
4
3
Π ∂̃;γ ũγ , (15)
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where in a given coordinate system all covariant derivatives of the
four-velocity are equal to ordinary derivatives, except for:

∂̃;ηuτ
= ∂̃ηuτ

+ ũη/τ , ∂̃;ηũη
= ∂̃ηũη

+ uτ/τ , (16)

so that ∂̃;γ ũγ
= ∂̃γ ũγ

+ uτ/τ . Also, Iµν

π,G denote geometrical source
terms (coming from Christoffel symbols):

Iττ
π,G = 2ũηπ̃ τη/τ Iτxπ,G = ũηπ̃ηx/τ

Iτyπ,G = ũηπ̃ηy/τ Iτη

π,G = ũη(π̃ ττ
+ π̃ηη)/τ

Iηxπ,G = ũηπ̃ τx/τ Iηyπ,G = ũηπ̃ τy/τ

Iηη

π,G = 2ũηπ̃ τη/τ Ixxπ,G = Ixyπ,G = Iyyπ,G = 0.

(17)

Most of the tests presented below, as well as heavy-ion related
simulations, are performed in Milne coordinates. However, to per-
form shock tube test we use a version of the code which works in
Cartesian coordinates. In the latter case we solve the original hy-
drodynamic equations (1), as well as Iµν

π,G = 0 in (14). As a result,
transformations (10) and (11) and tilde notation in general are not
used, and z coordinate stands for the third direction in space.

3. Numerical implementation

Let us rewrite Eq. (1) in a form of evolution equations in
Minkowski spacetime for simplicity:

∂Qµ

∂t
+

∂Fµi

∂xi
= 0, (18)

∂N0

∂t
+

∂N i

∂xi
= 0, (19)

where index i denotes spatial dimensions. T 0µ
≡ Qµ and N0 are

conventionally called conserved quantities, if the fluxes at the spa-
tial boundaries of the system vanish or compensate each other,
then


Qµ(t, x)d3x is conserved. Also, Tµi

≡ Fµi and N i are flux
terms.

We use a finite volume method to solve hydrodynamic equa-
tions (18), (19). In this method, one works in terms of the averaged
values of T τµ in mesh i, which in one dimension reads:

Q⃗ n
i =

1
∆x

 xi+∆x/2

xi−∆x/2
{T 0µ(ti, x),N0

c (ti, x)}dx,

and time-averaged fluxes through left and right facets of themesh:

F n
i±1/2 =

1
∆t

 tn+∆t

tn


T xµ


t, xi ±

∆x
2


,Nx


t, xi ±

∆x
2


dt.

Then, integrating the conservation laws (18) within [tn, tn + ∆t]
and [xi − ∆x/2, xi + ∆x/2], one gets the exact relation between
the conserved quantities and the fluxes:

1
∆t

(Q n+1
i − Q n

i ) +
1

∆xi
(F n

i+1/2 − F n
i−1/2) = 0, (20)

which can be used to propagate Q n to the next timestep. The idea
of the Godunov method [30] is to take a piecewise uniform distri-
bution of T 0µ,N0

c on a mesh and to provide an estimate for F n
i±1/2

based on exact or approximate solution of the Riemann problem
at x = xi ± 1/2 with initial left and right state parameters Q n

i and
Q n
i+1, respectively. In the next timestep, the wave structure from a

Riemann problem at the previous timestep is completely discarded
and piecewise uniform distributions for Q n+1 are used again. One
can estimate the criterion of stability for such schemes from the
Courant–Friedrichs–Lewy condition [31],which is a necessary con-
dition for numerical scheme to be stable. For the Godunov scheme,
the criterion is 2bmax∆t < ∆x, where bmax is a maximal value of
the signal velocity. To be on the safe side, we assume bmax = c = 1
and use 2∆t ≤ ∆x.

In Milne coordinates the definition of conserved quantities
and fluxes are modified as deduced from the transformed en-
ergy–momentum conservation equations (11):

Q⃗ n
i =

1
∆x

 xi+∆x/2

xi−∆x/2
{τiT τµ(τi, x), τiNτ

c (τi, x)}dx,

F n
i±1/2 =

1
∆τ

 τn+∆τ

τn

{τT xµ(τ , xi ± ∆x/2), τNx(τ , xi ± ∆x/2)}dτ ,

as well as now there are nonzero source terms in (20). For the case
of a viscous fluid one can decompose the conserved quantities and
fluxes into their ideal and viscous parts:

1
∆t

(Q n+1
id,i + δQ n+1

i − Q n
id,i − δQ n

i )

+
1

∆xi
(∆Fid + ∆δF) + Sid,i + δSi = 0 (21)

where ∆F = Fi+1/2 − Fi−1/2, and δQ , δF , δS denote viscous correc-
tions to conserved quantities, fluxes and source terms respectively.

Then, the effects of ideal and viscous fluxes/sources in Eq. (21)
can be accounted for separately, in the same way as it is done
in [32]:

1
∆t

(Q ∗n+1
id,i − Q n

id,i) +
1

∆xi
∆Fid + Sid,i = 0 (22)

1
∆t

(Q n+1
id,i + δQ n+1

i − Q ∗n+1
id,i − δQ n

i ) +
1

∆xi
∆δF + δSi = 0. (23)

Note that there are only ideal quantities in (22), whereas (23) de-
scribes viscous corrections to the evolution.

The full solution (21) for one timestep then proceeds in the
substeps:

Substep (1) Q ∗n+1
id is obtained by evolving only the ideal part of

the energy–momentum tensor, Eq. (22) over the full timestep ∆t
using Godunov-type method.

Substep (2) The Israel–Stewart equations (12) and (13) are
solved to propagate πµν and Π for the next timestep. Here one
has to know the values of shear/bulk terms in the Navier–Stokes
limit, πµν

NS , ΠNS, which depend on velocity gradients. We calculate
π

µν

NS , ΠNS at n + 1/2 (half-step) using s = s∗(n+1/2) and

∂τuµ
= ((uµ)∗n+1

i − uµ,n
i )/∆τ

∂xiu
µ

= ((uµ)
∗(n+1/2)
i+1 − (uµ)

∗(n+1/2)
i−1 )/(2∆xi)

where central differences are used for second order of accuracy.
The asterisk (*) denotes the values obtained from substep 1 (up-
dated with only ideal fluxes/sources).

Substep (3) Q n+1
id,i + δQ n+1

i = Q n+1
full is obtained by evolving Eq.

(23) over the full timestep∆t with viscous fluxes/sources only. The
initial condition for this substep is Qini = Q ∗n+1

id + δQ n, the first
term obtained from the solution of substep 1.

To update Qfull according to Eq. (23), we use edge/half-step val-
ues of flux/source terms δF n+1/2

i±1/2 , δSn+1/2, saved at substep 2.
Note that for the splitting itself, Eqs. (22) and (23), no assump-

tion of the smallness of the viscous corrections is needed. However,
the assumption becomes necessary when we calculate the fluxes
in the evolution equations. For example, when one calculates Fid
for the ideal substep one assumes that the Godunovmethodworks
well, which is proven to be the case for hydrodynamics of inviscid
fluid. Thus,we can apply the scheme for nearly perfect fluids, keep-
ing inmind that viscosity should only introduce (small) corrections
to the evolution.

In what follows we describe substeps 1 and 2 in detail, whereas
the application of Eq. (23) for substep 3 is straightforward.
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Fig. 1. Evolution of Riemann problem in HLLE approximation. Red line represents
the initial discontinuity, gray line represents the intermediate state in HLLE
approximation. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

3.1. Ideal substep

For the Godunov-type method employed in substep 1, we use
an approximate solution to the Riemann problem constructedwith
the relativistic extension of the HLLE solver. Below we provide the
main points of the method, whereas for a detailed description the
reader is referred to [24].

In the HLLE method, the evolution of initial discontinuity
(Riemannproblem) between leftQl = Qi and rightQr = Qi+1 states
is approximated by a single uniform intermediate state boundedby
two shock waves propagating to the left and to the right from the
initial discontinuity, as seen in Fig. 1. Within this approximation,
by integrating the hydrodynamic equations over [bl∆t, br∆t] and
[tn, tn+∆t] one can derive the properties of the intermediate state
with the algebraic relations:

Q κ
lr (Ql,Qr) =

brQ κ
r − blQ κ

l − F κ(Qr) + F κ(Ql)

br − bl
(24)

and the corresponding flux:

F κ
lr (Ql,Qr) =

brF κ(Ql) − blF κ(Qr) + blbr(Q κ
r − Q κ

l )

br − bl
, (25)

where κ enumerates the Lorentz index and charge index. For the
completeness of the scheme one has to specify the signal velocities
bl, br .We take an advanced estimate for signal velocities from [33]:

br = max

0,

v̄ + c̄s
1 + v̄c̄s

,
vr + cs,r
1 + vrcs,r


, (26)

bl = min

0,

v̄ − c̄s
1 − v̄c̄s

,
vl − cs,l
1 − vlcs,l


, (27)

where cs,r = cs(ϵr), cs,l = cs(ϵl), and

v̄ =

√
Elvl +

√
Ervr

√
El +

√
Er

, (28)

c̄2s =

√
Elc2s,l +

√
Erc2s,r

√
El +

√
Er

+ η

√
ElEr

(
√
El +

√
Er)2

(vr − vl)
2, (29)

together with the suggested value of η = 0.5.
For cells facing with vacuum, i.e. when ϵl = 0 or ϵr = 0, we put

bl = −1 or br = 1 respectively.
For the second order accuracy of the scheme in space, a piece-

wise linear distributions in the cells (MUSCL scheme) are intro-
duced. We reconstruct the values at right and left cell boundaries

(i ± 1
2 ) as follows:

Qi± = Qi ±
1
2
∆Q . (30)

Here we use the so-called minmod slope limiter:

∆Q =


∆l, if |∆l| < |∆r | and ∆l · ∆r > 0
∆r , if |∆l| > |∆r | and ∆l · ∆r > 0
0 if ∆l · ∆r < 0

where ∆l = Qi − Qi−1, ∆r = Qi+1 − Qi are used. The slope limiter
chooses the smallest possible slope, and does not introduce new
extrema. Therefore, it avoids possible oscillations in the numerical
solution.

To employ the piecewise linear distributions we substitute
Qr → Q(i+1)−, Ql → Qi+ (and correspondingly vr → v(Q(i+1)−),
vl → v(Qi+) etc.) in Eqs. (24) and (25).

For the second order accuracy in time we use the half-step (or
predictor–corrector) method. First, we propagate the evolution for
half of timestep:

Q
∗n+ 1

2
i = Q n

i +
∆t
2∆x

(F n
i− 1

2
− F n

i+ 1
2
) +

∆t
2

Sni ,

then the propagation is performed for a full timestep, based on
fluxes and source terms calculated from Q ∗n+ 1

2 :

Q ∗n+1
i = Q n

i +
∆t
∆x

(F
n+ 1

2
i− 1

2
− F

n+ 1
2

i+ 1
2

) +
∆t
2

S
n+ 1

2
i ,

where F n+ 1
2 = F(Q ∗n+ 1

2 ), Sn+
1
2 = S(Q ∗n+ 1

2 ) and the propagated Q
is marked by an asterisk to keep the notation consistent with (22)
and (23).

This completes the description of the scheme in one spatial
dimension. To perform the evolution in three dimensionswe apply
the HLLE solver to calculate the fluxes through the cell boundaries
independently for the x, y and η directions. The predictor step
reads:

Q
∗n+ 1

2
ijk = Q n

ijk +
∆t
2∆x

(F n
i− 1

2 ,jk
− F n

i+ 1
2 ,jk

)

+
∆t
2∆y

(F n
i,j− 1

2 ,k
− F n

i,j+ 1
2 ,k

) +
∆t
2∆η

(F n
ij,k− 1

2
− F n

ij,k+ 1
2
)

+
∆t
2

Snijk (31)

and the corrector step reads:

Q ∗n+1
ijk = Q n

ijk +
∆t
∆x

(F
n+ 1

2
i− 1

2 ,jk
− F

n+ 1
2

i+ 1
2 ,jk

)

+
∆t
∆y

(F
n+ 1

2
i,j− 1

2 ,k
− F

n+ 1
2

i,j+ 1
2 ,k

) +
∆t
∆η

(F
n+ 1

2
ij,k− 1

2
− F

n+ 1
2

ij,k+ 1
2
)

+
∆t
2

S
n+ 1

2
ijk (32)

where the half-step updated variables are calculated from the full
three dimensional predictor step.

It might happen that in a small amount of cells eitherQ ∗n+1/2
ijk or

Q ∗n+1
ijk donot satisfy the requirementQ τ >


(Q x)2 + (Q y)2 + (Q η)2,

which must hold since physical energy density is positive and
the velocity |v⃗| < 1. For these cases we proportionally rescale
{Q x,Q y,Q η

} wherever needed for the condition to be satisfied.
This results in negligible deviations in a total energy–momentum
balance in the system.

3.2. Viscous substep

In parallel to energy–momentum conservation equations, we
integrate the equations of motion for the viscous terms, Eqs. (12)
and (13). In the following we denote by π either a component of
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πµν or Π , since the structure of their evolution equations is the
same, except for different geometrical source terms. We split this
substep into:

(A) Integration of source terms, which is performed using the
predictor–corrector method:

πĎn+1/2
= πn

+ Ifull(πn) (33)

πĎn+1
= πn

+ Ifull(πn+1/2) (34)
where Ifull(π) = −(π − πNS)/τπ + Iπ (π) as defined by (14).
Optionally, if τπ is small enough, following the idea in [32] we use
a formal solution to the equation with relaxation part only:

πĎn+1
= (πn

− πNS) exp


−
∆t
γ τπ


+ πNS,

and integrate Iπ separately. This is important since in heavy ion
collision scenarios, depending on the ansatz and thermodynamical
parameters taken, τπ may be comparable to the timestep.

(B) Advection using first order upwind method:

πn+1
ijk =


∆i


∆j


∆k

w∆iw∆jw∆kπ
Ďn+1
i+∆i,j+∆j,k+∆k

where ∆i, ∆j, ∆k = −1, 0, +1, and
w∆i = {−a−

x , 1 − |ax|, a+

x }

a−

x = min(vx∆t/∆x, 0), a+

x = max(vx∆t/∆x, 0)
with similar expressions for a±

y and a±
η

The variables propagated for a half step are kept in memory
and are used later for the calculation of the viscous fluxes and
the source terms in the energy–momentum equations for the full
timestep.

We evolve 10 independent components of πµν , thus taking
into account only that it is a symmetric tensor. This allows to
check the consistency of the numerical solution by verification
of the achieved accuracy for the resulting orthogonality relations
πµνuν = 0 and the tracelessness relation πµ

µ = 0. An additional
advantage is the simplicity of the velocity finding procedure, com-
ing from the fact that one does not need to know the velocity to
recover all components of πµν .

It has been checked that employing the Lax–Wendroff method
for advection substep and Strang splitting between advec-
tion/source substeps in heavy ion collision scenarios does not alter
the evolution significantly. However, the upwind method is more
stable for inhomogeneous distributions ofπµν emerging from fluc-
tuating initial conditions in event-by-event hydrodynamic simula-
tions for heavy ion collisions.

The Israel–Stewart framework by itself does not restrict the val-
ues of the shear stress tensor or the bulk pressure. However, it is
required that the viscous corrections are sufficiently small com-
pared to the ideal quantities for the framework to be applicable.
Nevertheless, in the practical applications it sometimes happens
that π

µν

NS or ΠNS are not small due to large gradients of uµ when
the Lorentz-gamma factor is large. As a result, instabilities may de-
velop in the hydrodynamical solution. To prevent this we monitor
the conditions:
max
µ,ν

|πµν
| < C · max

µ,ν
|Tµν

id | and |Π | < C · p, (35)

where C is some constant of the order one, but smaller than one.
We rescale πµν and Π where needed, to keep condition (35) sat-
isfied on all hydro grid points. We found that condition (35) may
only be violated in the regions with very small density during the
matter expansion into the vacuum, as long as the initial conditions
for dissipative quantities and values of relaxation times are within
reasonable limits. In principle this indicates that in those regions
the viscous hydrodynamic approximation becomes inapplicable.
However, in heavy ion collision scenarios this does not affect the
hydrodynamic evolution of the dense core region.

3.3. Boundary conditions

The cell average Q n
ijk is updated assuming that the values in

neighboring cells Q n
i±2,j±2,k±2 are known. This is not the case for

the cells on the boundary of hydrodynamic grid. Instead of intro-
ducing some special algorithm for themwhichdepends on a type of
boundary condition, we do somewhat easier procedure and extend
the computational grid to include two additional cells on either end
(in x, y, η directions), called ghost cells. In applications to heavy ion
collisions we study the matter expansion with vacuum. The com-
putational boundary is therefore artificial and there should be no
incoming signal, which means outflow (non-reflecting) boundary
conditions. To realize it, at the beginning of each timestep the val-
ues of conservative variables in ghost cells are reset by the values
from the nearest ‘‘physical’’ cell at either end of the grid, e.g. for x
direction:

Q n
N+2,jk = Q n

N+1,jk = Q n
N,jk, Q n

0,jk = Q n
1,jk = Q n

2,jk,

where physical cells are in the range [2,N]. Then the fluxes are
calculated between all cells which have both neighbors in a given
direction.

3.4. Final remarks

As was mentioned above, the conserved quantities Q α
=

{T τµ,Nτ
c }, are used. For the completeness of the algorithm, one

has to restore the so-called primitive variables – energy/charge
densities and fluid velocity – several times during each timestep
for each hydro cell: the fluxes/source terms have no explicit
expressions in terms of Q α . Also the primitive variables are
relevant for the output and further physical analysis. Obviously the
recovery procedure should be fast. We employ a procedure, based
on the one dimensional numerical root search as described in the
Appendix.

4. Test results

4.1. Ideal hydrodynamics: analytical solutions vs. numerical solutions

Shock tube: let us start with a one dimensional shock tube
problem.We initialize the systemwith two uniform (left and right)
states {ϵl = 10GeV/fm3, vl = 0} and {ϵr = 1GeV/fm3, vr = 0},
separated at t < 0 by an imaginary membrane. The EoS for a rel-
ativistic massless gas p = ϵ/3 is used. To extract the temperature
or entropy density (for viscous hydro evolution) in this EoS we as-
sume 2.5massless quark degrees of freedom and gq = 2 ·2 ·3 = 12
degeneracy factor and gg = 16 for massless gluons. At t = 0
themembrane is removed and the initial discontinuity decays into
compression shock wave propagating into the region of smaller
density and a rarefaction wave propagating in the opposite direc-
tion. For such a case an analytical solution exists. The comparison
between the analytical and numerical solution is shown in Fig. 2,
upper panel. No scale parameters are present in such setup and
the solution is expressed in terms of the dimensionless variable
ξ = x/t . As it was pointed out in [33], it is essential to explore how
many timesteps it takes for the numerical solution to approach the
analytical one. The situation does not depend on the cell size pro-
vided that the Courant number λ = ∆t/∆x is kept the same. Since
Eulerian grid is used, thewave profile is being resolved by the num-
ber of grid points/cells which increases with time (about 130 hy-
dro cells at Nt = 200). From the comparison one can see at the
Nt = 25th timestep there is substantial smearing of the profile,
while at the Nt = 999th timestep the profile is practically undis-
tinguishable from the analytical result.

Next, to check the dependence of the simulations on the grid
direction (rotational invariance) we rotate the initial discontinuity
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Fig. 2. (Color online) Analytical (solid line) and numerical (dashed lines) solutions to relativistic shock tube problem. Upper panels: comparison of numerical solution at
different timesteps. Middle panels: comparison of the 1D numerical solution (denoted as prin, for principal direction in hydrodynamic grid) and 2D solution for 45°-rotated
initial discontinuity (denoted as diag, for diagonal direction in hydrodynamic grid). Lower panels: ideal and viscous numerical solutions of shock tube problem. Nt denotes
the number of timesteps Nt .

by 45° in the x–y plane and consider the same rarefaction/shock
wave profile propagating in diagonal direction. The results are
presented in the middle panel of Fig. 2. One can see that the
propagation in the diagonal direction is consistent with principal
direction at Nt = 200, while there are some differences at Nt =

50 when the numerical solution still does not approximate the
analytical solution well.

Finally, the bottom panels of Fig. 2 compare the simulations
with shear viscosity to the solution of Riemannproblem in the ideal
case.

In Figs. 3 and 4 we consider a special case of the Riemann
problem with {ϵl = 10GeV/fm3, vl = 0} and {ϵr = 0, vr = 0}.
This corresponds to a matter expansion to vacuum. In this case the
analytical solution further depends on the dimensionless variable
ξ , however at t > 0 left and right (vacuum) states are connected

with a rarefaction wave only, while the velocity of matter reaching
the speed of light, v = 1 at the boundarywith vacuum. Fig. 3 shows
the results for the energy density profile (top) and the velocity
profile (bottom). After Nt = 200 timesteps the numerical solution
approaches the analytical solution. For this simulation we choose
λCFL = 0.5, thus the rarefaction wave at Nt = 200 is spread over
100 hydrodynamic cells.

Since we take λCFL < 1, one has to treat the rate of matter
expansion to vacuum carefully. In the numerical solution, at each
timestep matter from the boundary cells propagates to the next
vacuum cells. This makes the effective velocity of the matter front
to be vfront = 1/λCFL, i.e. dependent on λCFL. We prevent this arti-
fact by keeping the relative position of the matter front inside the
cell, and allow to propagate to the next vacuum cell only after it
crossed the current cell completely.
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Fig. 3. (Color online) Energy density profile for analytical (solid line) and numerical
(dashed lines) solutions to Riemann problem corresponding tomatter expansion to
vacuum.

Fig. 4. (Color online) Same as Fig. 3, velocity profile.

Gubser flow. Recently, a family of analytical relativistic hydro-
dynamic solutions was found for three-dimensional expansion of
a conformal fluid, p = ϵ/3. The solution assumes azimuthal sym-
metry in xy plane and longitudinal scaling flow [34]:

ϵ =
ϵ0(2q)8/3

τ 4/3


1 + 2q2(τ 2

+ r2T ) + q4(τ 2
− r2T )

24/3 , (36)

uτ
= cosh[k(τ , rT )], uη

= 0 (37)

ux
=

x
rT

sinh[k(τ , rT )], uy
=

y
rT

sinh[k(τ , rT )] (38)

k(τ , rT ) = arctanh
2q2τ rT

1 + q2τ 2 + q2x2T
(39)

where k(τ , rT ) function has a meaning of transverse flow rapidity
in Milne coordinates.

We set the parameters as follows: τ0 = 1 fm/c. ϵ0 = 1 (arbi-
trary units), q = 1 (arbitrary units). Figs. 5 and6depict the compar-
ison of the numerical solution to the analytical Gubser solution. The
parameters correspond to an effective system size in transverse di-
rection on the order of 1 fm,which ismuch smaller than the typical
size of a heavynucleus. Due to the strong initial transverse flowand
persistent longitudinal flow the system expands and cools down
very quickly. The evolution of this challenging initial state is re-
produced by the numerical solution accurately, even after 10 fm/c
time the very rarefied final state is reproduced well.

Fig. 5. (Color online) Energy density profile as a function of transverse coordinate
at different times in analytical hydrodynamic solution by Gubser [34].

Fig. 6. (Color online) Same as Fig. 5, transverse velocity profile.

4.2. Viscous hydrodynamics: analytical solution vs. numerical solu-
tion

It is also important to check the accuracy of the scheme in
the viscous case. Viscosity complicates the equations of relativis-
tic hydrodynamics drastically. Thus analytical solutions exist only
for very simple scenarios. First, we consider the (0 + 1) dimen-
sional Bjorken case. The system is homogeneous in all space di-
rections with vx = vy = vη = 0 (which equals to scaling flow
vz = z/t) in the Navier–Stokes limit. Then πηη

= −(4/3)η/τ 3
=

−(4/3)(η/s)s/τ 3, and we obtain a modified Bjorken equation for
the energy density evolution:

∂ϵ

∂τ
+

ϵ + p + τ 2πηη

τ
= 0.

Assuming an ideal massless gas EoS, p = ϵ/3 and ϵ = cT 4, one
obtains the analytical solution for T (τ ) in the viscous case as

T (τ ) =

τ0

τ

1/3

T (τ0) +

2η
3sτ0


1 −

τ0

τ

2/3


. (40)

For the ideal fluid case η/s = 0, the well known cooling law
T ∝ τ−1/3 for the scaling flow is restored. To compare to the nu-
merical solution, the system is initialized with an energy density
of ϵ0 = 30 GeV/fm3 at τ0 =

√
t2 − z2 = 0.6 fm/c. Using the

EoS for massless particles as described above, the initial tempera-
ture is T0 = 359 MeV. We set η/s = 0.2 and τπ = 0.0001 fm (so
that Navier–Stokes limit iswell approximated) for the viscous case.
Fig. 7 shows the comparison of the numerical solution for temper-
ature to the analytical solution for the inviscid and viscous cases.
One observes an agreement between the numerical and the ana-
lytical solutions.
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Fig. 7. (Color online) Analytical solutions for the evolution of temperature in 1D
Bjorken expansion with and without shear viscosity (solid lines), compared to
numerical solution (dashed lines).

Fig. 8. (Color online) Evolution of bulk pressure Π in analytical 0+1D solution to
Israel–Stewart equations (solid lines) with the (4Π)/(3τ) term (indicated as ‘‘full
IS’’) and without it (indicated as ‘‘cut IS’’). Dashed line is numerical solution.

To check how well the integration scheme for viscous fluxes
works at finite τπ , we consider the evolution of the bulk pressure2
in the same (0 + 1) dimensional case, but at finite τΠ . In this case,
knowing that ΠNS = ζ/τ one has:

∂Π

∂τ
= −

1
τΠ


Π −

ζ

τ


−

4Π
3τ

. (41)

Eq. (41), without the term 4Π
3τ has an analytical solution expressed

in terms of exponential integral function Ei(x):

Π(τ ) = Π(τ0)e−(τ−τ0)/τΠ

+
ζ

τΠ

e−τ/τΠ [Ei(τ0/τΠ ) − Ei(τ/τΠ )] . (42)

The inclusion of the 4Π
3τ term leads to amore complicated analytical

solution. In Fig. 8 a comparison between both (with and without
the 4Π

3τ term) analytical and numerical solutions is given. The
specific set of parameters is ζ = 1, τπ = 0.1 fm, τ0 = 0.6 fm and
Π(τ0) = 0. One observes an excellent reproduction of both, the full
and the ‘‘cut’’ (with and without 4Π

3τ term, respectively) analytical
viscous solutions.

2 The evolution equations for the non-trivial components of the shear stress
tensor, π xx , π yy or πηη are all very similar, therefore we only discuss the evolution
of the bulk pressure.

Fig. 9. Averaged radial flow as a function of proper time for our hydro code (vHLLE)
compared to VISH2+1 [7].

4.3. Matter expansion in heavy ion collisions

Let us now turn to a more realistic scenario. We compare the
present hydrodynamic simulations for a physical scenario related
to heavy ion collisions with the open TECHQM results [35]. The
initial state has full homogeneity in η direction (vη = 0, which
corresponds to longitudinal scaling flow vz = z/t) and the initial
conditions in the transverse (x−y) plane are taken from the optical
Glauber model for symmetric nucleus–nucleus collision:

ϵ(τ0, rx, ry) = C · nWN(rx, ry)

= C · TA


rx +

b
2
, ry

 
1 −


1 − TA


rx −

b
2
, ry


σNN

A

A


+ C · TA


rx −

b
2
, ry



×


1 −


1 − TA


rx +

b
2
, ry


σNN

A

A


, (43)

where thenuclear thickness function TA(x, y) =

drzρ(rx, ry, rz) is

normalized so that

TA(x, y)dxdy = A, andρ(rx, ry) = c/(exp[(r−

RA)/δ] + 1) is the density distribution for nucleons in the nucleus.
For Au–Au collision the parameters are A = 197, RA = 6.37 fm,
δ = 0.54 fm, σNN = 40 mb is the inelastic nucleon–nucleon cross
section and C is chosen so that ϵ0(0, 0; b = 0) = 30 GeV/fm3.

Again we use the EoS for a relativistic massless gas, p = ϵ/3,
assuming 2.5 massless quark degrees of freedom. The degeneracy
factors are gq = 2 · 2 · 3 = 12 for quarks and gg = 16 for gluons.

For viscous hydrodynamic simulations the bulk viscosity is set
to zero, πµν at τ0 is initialized with the Navier–Stokes values,
yielding π xx

= π yy
= −τ 2πηη/2 = 2η/(3τ0). The relaxation time

for the shear is taken as τπ = 3η/(sT ).
Fig. 9 shows the comparison between the present simulations

and the (2+1) dimensional result by Song and Heinz for the aver-
age transverse velocity as a function of evolution time τ for initial
conditions with impact parameter b = 0. The average is defined as

≪ vT ≫=


vT · ϵ
1 − v2

T

d2rT

where vT =


v2
x + v2

y and the integration is made for a slice of the
system (cells) with rapidity y = 0. Shear viscosity works to equal-
ize the expansion in different directions, thus decreasing work in
longitudinal direction and accelerating the transverse expansion.
This results in an additional acceleration of the transverse radial
flow. Our results on the radial expansion for the ideal and viscous
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Fig. 10. Flow anisotropies ϵp and ϵ′
p (see text for explanation) as a function of

proper time for our hydro code (vHLLE) compared to VISH2+1 [7].

Fig. 11. Iso-thermal surface corresponding to Tf = 130 MeV obtained with our
hydro code (vHLLE) compared to the results from VISH2+1 [7].

case are consistent with the benchmark results from the VISH2+1
code.

In the same way shear viscosity suppresses the development of
flow anisotropies in the transverse plane, the latter being gener-
ated by anisotropic pressure gradients in hydrodynamics. To ex-
plore this effect, we set the initial conditions to b = 7 fm. Fig. 10
shows the corresponding time evolution of the flowanisotropy, de-
fined as

ϵp =
⟨T xx

id − T yy
id ⟩

⟨T xx
id + T yy

id ⟩

ϵ′

p =
⟨T xx

− T yy
⟩

⟨T xx + T yy⟩

where ⟨· · · ⟩ =


. . . d2rT . The quantities ϵp and ϵ′
p are calculated

using the ideal part of the energy–momentum tensor and the full
energy–momentum tensor, respectively. The observed suppres-
sion of ϵp in the viscous case relative to the ideal case comes solely
from the rearrangement of collective flow, while ϵ′

p is suppressed
stronger due to contributions from πµν . The results are consistent
with the benchmark results from the VISH2+1 code [7].

Finally, in Fig. 11 we show the iso-thermal surfaces for the case
b = 0 corresponding to temperature Tf = 130 MeV (or ϵf =

0.516 GeV/fm3). The small differences (less than ∆x/2 = 0.1 fm)
are related to the details (interpolation scheme) of the freeze-out
surface resolution.

4.4. Energy conservation

The present scheme is conservative when Minkowski coordi-
nates are used. However it loses the conservation property inMilne

Table 1
Total energy and entropy calculated in the beginning (τ = 1 fm/c) and in the end
(τ = 10 fm/c) of 3D hydrodynamic evolution with initial energy density profile
(44) for different viscosity/EoS combinations. Small numbers in parentheses denote
percentage of increase compared to the value at τ = 1 fm/c.

η/s 0 0 0.1

EoS p =
ϵ
3 Laine [36] p =

ϵ
3

Etot(τ = 1) (GeV) 68230 68230 68230
Etot(τ = 10) (GeV) 69 699 69629 70126

(+2.2%) (+2.1%) (+2.8%)
Stot(τ = 1) 49055 45469 49994
Stot(τ = 10) 49206 45601 54537

(+0.3%) (+0.29%) (+9.1%)

coordinates because the source terms are non-zero, and the accu-
racy of total energy conservation is determined by the source term
integration part. To quantify the numerical accuracy of the energy
conservation in a physical scenario, we run the code with initial
conditions from the Glauber model (Eq. (43)) with a limited rapid-
ity profile, so that there is no energy/momentum leak through the
grid edges in rapidity:

ϵ(τ0, rx, ry, ηs) = CNWNθ(Yb − ηs)

· exp


−θ(|ηs| − ∆η)

(|ηs| − ∆η)2

σ 2
η


(44)

where Yb = 5.3 corresponds to the beam rapidity, ση = 2.1,
and ∆η = 1.3 is the size of plateau around midrapidity. The hy-
drodynamic grid consists of nx · ny · nz = 150 · 150 · 100 cells
with ∆x = ∆y = 0.2 fm/c, ∆η = 0.2 units, and corresponding
∆τ = 0.05. The total energy on the hypersurface of constant τ is
defined as Etot(τ ) =


T 0idσi, which can be expanded as:

Etot = τ


dηd2rT [(ϵ + p)ũτ (ũτ cosh η + ũη sinh η)

− p cosh η + π̃ ττ cosh η + π̃ τη sinh η] (45)

Stot = τ


dηd2rT · sũτ . (46)

Numerically

dηd2rT (...) → ∆x∆y∆η


cells(...).

It is important to note that in Israel–Stewart framework the
entropy current sµ includes non-equilibrium corrections:

sµ = seq −


β0

2T
Π2

+
3

2(ϵ + p)T
πµνπµν


uµ

where the coefficient in front of πµνπµν is taken consistently with
the evolution equation (14), and Π = 0 since we consider shear
viscosity only.

The resulting values of total energy and entropy in the be-
ginning and in the end of hydrodynamic evolution are shown in
Table 1. We conclude that energy is conserved on a level better
than 3%.

4.5. Numerical viscosity

Since we study the effects of physical viscosity with the code,
the important question which has to be answered is: what amount
of numerical viscosity the code has, and how does it depend on the
parameters?

To study this, we follow the method used in [19] and exam-
ine the sound wave attenuation in numerical hydrodynamic so-
lution. The initial conditions for 1D hydrodynamic simulation in
Minkowski coordinates are taken as

ϵ(x) = ϵ0 + δϵ sin(2πx/λ), (47)

vx(x) =
csδϵ

ϵ0 + p0
sin(2πx/λ), (48)
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Fig. 12. Numerical viscosity ηnum and corresponding ηnum/s values (the latter using
upper estimate for the temperature T = 0.5 GeV) observed from sound wave
attenuation for different grid sizes.

supplemented by an EoS for an ultrarelativistic gas, p = ϵ/3. Given
that δϵ ≪ ϵ0, this represents a sound wave with length λ propa-
gating on the static uniform background with energy density ϵ0.
We link the last cell in x direction to the first one to set up peri-
odic boundary conditions on the hydro mesh, so that ϵ(−λ/2) =

ϵ(λ/2), vx(−λ/2) = vx(λ/2). This setupmimics the propagation of
a plain soundwave over an infinitemedium. In hydrodynamics the
attenuation (or damping) of the soundwave amplitude is only pos-
sible due to viscosity. Provided that the damping is not fast (i.e. that
the amplitude does not change significantly during one cycle) there
is an analytical expression for the amplitude of sound wave after
one cycle t = λ/cs:

δϵ(λ/cs; η) = δϵ(0; η) exp


−
8π2η

3λcs(ϵ0 + p0)


, (49)

here and further cs = cs(ϵ0). However, due to the presence of nu-
merical dissipation, the attenuation of the sound wave is also pos-
sible even with zero physical viscosity. To quantify the differences
between the solutionswe calculate the L1 norm for the energy den-
sity function on one-wavelength segment, defined as:

L(Ncell) =
λ

Ncell

Ncell
i=1

|ϵnum(xi, λ/cs) − ϵanal(xi, λ/cs)|

which is compared to the same quantity based on the difference
between inviscid and viscous solutions:

Lphys(η) =
λ

Ncell

Ncell
i=1

ϵanal xi,
λ

cs
; η


− ϵanal


xi,

λ

cs
; 0

 .
For the latter quantity, in the limit of an infinitely small cell size
one gets an analytical result:

Lphys(η) =
2λ
π

δϵ(0)

1 − exp


−

8π2η

3λcs(ϵ0 + p0)


which is also quite accurate for finite cell size. Comparing the two
quantities, Lphys(ηnum) = L(Ncell) one gets:

ηnum = −
3λ
8π2

cs(ϵ0 + p0) ln

1 −

π

2λδϵ(0)
L(Ncell)


. (50)

We initialize the system with the following parameter values:
λ = 10 fm, ϵ0 = 3 GeV/fm3 and δϵ(0) = 0.003 GeV/fm3. The
values of the resulting numerical viscosity for different grid sizes
are shown in Fig. 12. Since the shear viscosity coefficient is pro-
portional to density, the relevant (and dimensionless) quantity for
relativistic case is the ratio of shear viscosity to entropy density,
η/s. Assuming zero chemical potential, one gets:

ηnum

s
= −

3λT
8π2

cs ln

1 −

π

2λδϵ(0)
L(Ncell)


. (51)

Note that since L(Ncell) ∝ ϵ0, the above expression depends only
on λ and T . Assuming T = 0.5 GeV as an upper estimate for the
initial phase of the hydrodynamic expansion in A + A collisions
and λ = 10 fm, one gets ηnum/s = 0.015 for Ncell = 25. For
Ncell = 100, which is a typical grid size for the physical simula-
tions, ηnum/s = 0.0016. I.e., the value of the numerical viscosity to
entropy density is about 50 times smaller than the lower bound for
the physical viscosity (η/s)min = 1/4π .

We should finally note that the estimate does not guarantee
that a similar amount of numerical viscosity is present in full-
fledged (3+ 1) dimensional simulations of matter expansion with
the given code. To estimate the numerical viscosity in arbitrary ge-
ometry is a rather complicated topic beyond this paper.

5. Conclusions

We have presented a detailed description and test results of a
(3 + 1) dimensional relativistic viscous hydrodynamic code based
on the Godunov method and the relativistic HLLE approximation
for the solution of the Riemann problem for its inviscid part. This
choice ensures that the code is capable of treating shockwave con-
figurations accurately. It has been shown that the code is capable of
solving the equations of relativistic viscous hydrodynamics in the
Israel–Stewart framework with the help of the ideal–viscous split-
ting method. We have presented the results of several test prob-
lems: the 1 dimensional (2 dimensional) shock tube, Gubser flow
and two analytical viscous hydrodynamic solutions. The numerical
viscosity of the code in the inviscid case has been estimated and
found to be sufficiently small.

The primary application of the code is the simulations of the
hydrodynamic expansion of QCD matter created in relativistic
heavy ion collisions. For this aim we have also checked the code
against the test cases by the TECHQM group.
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Appendix. Velocity finding

An important part of hydrodynamic algorithm is the procedure
to find the flow velocity vi, energy density ϵ and densities of
conserved charges nk in the fluid rest frame from the conserved
variables T τµ,Nµ.

The procedure is essentially the same for inviscid and viscous
cases. In the latter case to account for shear viscosity, one has to
subtract the π τµ (which are evolved independently with IS equa-
tions) from the total energy–momentum tensor: T τµ

id = T τµ
−π τµ.

The definition of the energy–momentum tensor of the fluid
gives the following system of equations:

T ττ
id = E = (ϵ + p)/(1 − v2) − p,

T τx
id = Mx = (ϵ + p)vx/(1 − v2),

T τy
id = My = (ϵ + p)vy/(1 − v2),

T τη

id = Mη = (ϵ + p)vη/(1 − v2),

Nc = nc/

1 − v2

(A.1)

in terms of ϵ, vx, vy, vη and nc (c is numbering the conserved
charges), which is closed with an equation of state:
p = p(ϵ, ni).
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Due to the symmetry of the equations, vi(E + p) = Mi. This al-
lows one to reduce the problem to a one-dimensional equation for
the absolute value of the velocity, which has to be solved numeri-
cally [33]:

v =
|M⃗|

E + p(E − M⃗ · v⃗,Ni
√
1 − v2)

(A.2)

then the rest of unknowns are recovered as

vx = Mx/|M⃗| ϵ = E − M⃗ · v⃗

vy = My/|M⃗| ni = Ni


1 − v2

vη = Mη/|M⃗|.

For non-exotic equation of state Eq. (A.2) has exactly one root in
the interval v = [0 . . . 1) and is solved with Newton’s method.

In the presence of bulk pressure one has to add it to the
equilibriumpressure, p(ϵ, ni) → p(ϵ, ni)+Π and proceed to solve
(A.2) in the same way.
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Abstract. In hybrid models, which combine hydrodynamical and transport approaches to describe different
stages of heavy-ion collisions, conversion of fluid to individual particles, particlization, is a non-trivial
technical problem. We describe in detail how to find the particlization hypersurface in a 3+1 dimensional
model, and how to sample the particle distributions evaluated using the Cooper-Frye procedure to create
an ensemble of particles as an initial state for the transport stage. We also discuss the role and magnitude
of the negative contributions in the Cooper-Frye procedure.

1 Introduction

In recent years the so-called hybrid models [1–9] have be-
come very popular in describing the expansion and evo-
lution of the hot dense matter created in ultrarelativistic
heavy-ion collisions. In these models the different stages
of the expansion are described using different models: The
early stages of the expansion, when the matter is presum-
ably partonic, are described using ideal or dissipative fluid
dynamics, whereas the late dilute stage after hadroniza-
tion is described using a hadronic transport model like
RQMD [10], UrQMD [11,12] or JAM [13,14].

Hybrid models are conceptually attractive since they
attempt to combine the best features of fluid dynamics
and transport: The complicated microscopic dynamics of
hadronization can be sidestepped by assuming it to hap-
pen adiabatically, in which case it can be described using
fluid dynamics. On the other hand, the dilute hadronic
matter is assumed to be highly dissipative and deviate
gradually from local equilibrium. Description of such a
matter using fluid dynamics is demanding, but is trivial
using microscopic transport, which by construction can
handle matter arbitrarily far from equilibrium. Also, the
transport models describe the last rescattering of parti-
cles, so-called freeze-out, based on individual scattering
cross-sections. Thus freeze-out is not controlled by a pa-
rameter which value is known only after comparison with
data.

Furthermore, it has been realised that a consistent
comparison with the data is easier if one generates an
ensemble of particles event by event, and analyses these
ensembles in a similar way than the actual data has been

a e-mail: huovinen@th.physik.uni-frankfurt.de

analysed [9,15,16]. In hybrid models this requires no fur-
ther effort since the transport models are based on propa-
gation of individual particles along their semiclassical tra-
jectories, and thus require the generation of such ensem-
bles to begin with.

However, connecting two approaches with very differ-
ent degrees of freedom —densities, velocity, and possible
dissipative currents in the fluid, and individual particles
in the cascade— is highly non-trivial. Instead of running
hydro and cascade side by side and using the cascade cal-
culation to provide the boundary conditions for fluid dy-
namics, all the present hybrid models solve fluid dynamics
independently of the cascade taking the boundary con-
dition as vacuum at infinity (see discussion in ref. [17]).
The boundary where one switches from fluid dynamical
to transport description is then determined a posteriori,
once the evolution of the fluid is known. This bound-
ary, or switching surface, is usually chosen to be a sur-
face of constant temperature, energy density, or time. The
particle distributions on this surface are evaluated using
the Cooper-Frye procedure [18]. These distributions are
sampled to generate an ensemble of particles with well-
defined positions and momenta, and these ensembles are
used as an initial state for the transport stage. Note that
even if the transport stage describes the final freeze-out of
the particles without additional parameters, the choice of
the criterion where to switch from fluid to cascade is an
equally free parameter than the freeze-out temperature in
a conventional hydrodynamical model. Unfortunately the
final results are also somewhat sensitive to this switching
criterion as discussed in ref. [9], and as we will discuss
later.

We want to emphasise that this switching from fluid
dynamics to transport is not freeze-out. By definition,
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there are no rescatterings, only resonance decays after
freeze-out. Thus, if one switches from fluid to transport
at freeze-out, the transport stage is unnecessary. It does
nothing else but lets the resonances decay. On the other
hand, the switching is not necessarily hadronization either.
Since the deconfinement transition is a smooth crossover,
there is no clear point where hadronization should take
place, and it is easier to choose to switch at a stage where
the system has already hadronized. In the following we
assume that there is no change in the physics nor in the
properties of the system on the switching surface. It is
only a change in the description of the system. Thus we
call the process of changing from fluid dynamics to trans-
port particlization, conversion of fluid to particles.

In this paper we describe some technical aspects of
particlization in hybrid models, and how different choices
of the switching criterion and constraints imposed to
the sampling of the distributions affect the final parti-
cle distributions in Elab = 160A GeV Pb+Pb (SPS) and√

sNN = 200GeV Au+Au (RHIC) collisions. In partic-
ular we discuss finding the particlization surface and its
properties in sect. 2, the negative contributions of Cooper-
Frye procedure and how to take them into account when
sampling the distributions in sect. 3, the actual sampling
procedure in sect. 4, and calculations within one specific
hybrid approach in sect. 5.

2 Surface finding

The Cooper-Frye procedure [18] for calculating particle
distributions on a surface is based on evaluating a parti-
cle four-current through a surface, and a kinetic theory
decomposition of a four-current jμ in terms of particle
distribution f(p, x),

N =
∫

σ

dσμjμ(x) =
∫

σ

dσμ

∫
d3p

E
pμf(x, p)

=⇒ E
dN

dp3
=

∫
σ

dσμpμf(x, p) ≈
∑

σ

Δσμpμf(x, p). (1)

Thus one needs to find not only the location of the
surface σ where one applies the Cooper-Frye formula, but
also its normal. If we knew the analytic expression for the
surface, its normal would be simply given by [19,20]

dσμ = εμαβγ
∂xα

∂a

∂xβ

∂b

∂xγ

∂c
dadbdc , (2)

where a, b, c are the coordinates on the surface and εμαβγ

is the totally antisymmetric Levi-Cività tensor. However,
we do not have an analytic expression since we solve the
evolution of the system numerically. Finding the location
of an isosurface on a discrete grid is easy, but evaluating
the size1 and normal of each discrete surface element is
not, since one has to make sure that the surface elements

1 The size enters as the length of the discrete normal vector
Δσμ.

cover the entire surface without leaving holes or double
counting any part of the surface.

In computer graphics and image processing the prob-
lem of finding an isosurface of a discrete scalar field is
well known, and many algorithms have been proposed for
the task, see, e.g., ref. [21] and references therein. One
of the best known of these algorithms is the so-called
Marching Cubes algorithm [22], a simplified version of
which was implemented in a hydrodynamical model by
Kataja and Venugopalan [23,24], and subsequently used
in AZHYDRO [25–27]. The original Marching Cubes algo-
rithm was extended for hypersurfaces in four dimensional
space in ref. [21], and a simplified version implemented in a
3+1 dimensional hydrodynamical model by Schenke [28].
However, it is known that the original Marching Cubes al-
gorithm cannot resolve all possible surface configurations,
and may leave holes in the final surface [29,30]. This prob-
lem is not serious: As quoted in ref. [28], only 1% of the
surface elements in a typical heavy-ion collision calcula-
tion are not fully resolved. But, if one is doing event-by-
event hydrodynamical calculations with irregular initial
conditions, one may expect much more complicated struc-
tures to appear, and the Marching Cubes algorithm may
leave more holes in the surface. To avoid this problem alto-
gether, we have slightly modified the algorithm proposed
in ref. [31], and generalised it for finding a three dimen-
sional hypersurface in four dimensional space2. For the
lack of a better name, we call it here “disordered lines” al-
gorithm. This algorithm may also have been implemented
in ref. [19], but the description there is too vague to tell.

In algorithms solving the equations of motion of fluid
dynamics like SHASTA [32–34], a grid point is considered
to be in the middle of a corresponding volume element.
For purposes of surface finding it is useful to consider the
dual of the grid, where the grid points are thought to be
at the corners of a volume element, and the values within
a volume element can be obtained by interpolation. To
find the location of the surface it is practical to “march”
through the entire grid and check every volume element
whether the values at the corners are all above or all below
the isovalue. If not, i.e. if some of the corners are above,
and some below the isovalue, the surface passes through
this volume element.

An alternative to this exhaustive search method is the
continuation method [35], which after finding a surface
element, checks only the neighbouring volume elements
which one of them contains the surface, moves to that
element, and continues until it either finds the edge of the
grid or returns to the volume element it found first. The
continuation method is faster than the exhaustive search,
but if the surface is disjoint, it will not necessarily find all
parts of the surface, whereas the exhaustive search method
by construction finds all parts of the surface.

In the following we call volume elements (hyper)cubes,
and explain the algorithm in a 3D case first. Once a cube
containing the isosurface is found, the positions of the

2 Fortran and C++ subroutines, cornelius, implementing
this algorithm in 3D and 4D, are available at https://karman.
physics.purdue.edu/OSCAR/.
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Fig. 1. A 3D volume element, a cube, with four corners above
(solid dots) and four below (open dots) the isovalue. In the left
panel the points where the interpolated value is the isovalue
are marked with crosses. In the right panel these intersection
points have been connected to form a polygon. This polygon
is a surface element of the isosurface.

Fig. 2. Reduction of a three-dimensional problem into a series
of two-dimensional problems: We find the surface element by
looking for its edges on the faces of the cube.

isosurface on the edges of the cube can be found by linear
interpolation, see illustration in fig. 1. How to sort these
intersection points to form a polygon (or a polyhedron
in 4D) which does not cross itself is the crucial part of
any algorithm. It can be done in three different ways [36]:
By using protomeshes [37], by using a lookup table like
in the original Marching Cubes algorithm [21,22,30], or
algorithmically [35,38–40] like we do here.

In three or more dimensions the ordering of the inter-
section points is difficult because of the many possibilities
involved, but in two dimensions it is almost trivial. There-
fore we reduce the problem of finding the surface into a
series of two dimensional problems of finding a line within
a square, a line which is an edge of the polygon we want
to find, see figs. 1 and 2. If all of the corners of a square
are above or below the isovalue, there is of course no edge
of the polygon there. If only one of the corners is above or
below, we have the configuration shown in fig. 3 a), and
if two neighbouring corners are above the isovalue, the
configuration is shown in fig. 3 b). The case where two
corners above the isovalue are located diagonally is am-
biguous. How to choose between configurations shown in
figs. 3 c) and d)? We follow the original idea of ref. [31]: If

a) b) c) d)

Fig. 3. The non-trivial cases of connecting intersection points
at the edges of the face.

the value interpolated at the center of the square is above
or equal to the isovalue, the center must be inside of the
surface, and if it is below, the center must be outside of
the surface. A more sophisticated rule has been suggested
in refs. [30,38]: The values on the face are interpolated
bilinearly. The isocontours in a bilinear interpolation are
hyperbolas, and thus one should interpolate the value at
the center of this hyperbola to decide whether the cor-
ners above or below the isovalue are linked. A special case
occurs when the value in any of the cube corners is the iso-
value. In that case we consider such a corner to be within
the surface, and place intersection points 10−9 times the
edgelength away from the corner, on those edges of the
cube where the neighbouring corner has a value smaller
than the isovalue.

After the intersection points at each face have been
found, each edge of the polygon is characterised by two
points: its ends. An important difference between our al-
gorithm and that of refs. [31,38] is that in most common
cases we do not need to order the edges of the polygon so
that the next edge in the list begins where the previous
one ends. We may check the faces of the cube in arbitrary
order, and keep the edges of the polygon stored in the
same arbitrary order. Important exceptions to this rule
are the cases where the face by face search returns six or
more edges: The surface may consist of two or more dis-
connected parts, see fig. 4, and we have to sort the edges
in sequence to find out whether the surface is disjoint,
and which edges belong to which polygon. We group the
edges accordingly, and treat the separate polygons inde-
pendently of each other.

Note that allowing the surface to consist of several
parts is necessary for the consistency of the surface. Fig-
ure 4 depicts a case when a badly resolved ambiguity on a
face may lead to a hole on the surface, or counting parts
of the surface twice. Since we solve the ambiguities by us-
ing only the information available at the face of a cube,
the face is always resolved in the same way, no matter in
which cube it is taken to belong to. Thus the surface ele-
ments form a consistent surface without holes nor double-
counted elements. Furthermore, the rules we described are
sufficient to resolve any configuration of values at the cube
corners.

After the possible ordering of the edges and dividing
them in separate groups if they form two or more discon-
nected surface elements, we evaluate the area and normal
of the polygon(s). The use of Cooper-Frye procedure re-
quires not only the surface area and normal, but also the
values of the hydrodynamical fields on the surface. They
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double counting

hole

consistent

Fig. 4. An example of a configuration where badly resolved
ambiguity may lead to double counting or a hole on the sur-
face. The cubes left and right represent neighbouring cubes
separated for the sake of clarity.

are best evaluated as interpolated values at the centroid
of the surface. Since we have to evaluate the centroid for
this purpose anyway, we triangularise the polygon using
the centroid: By connecting the ends of each edge of the
polygon to the centroid, we obtain a set of triangles which
cover the entire polygon. As depicted in fig. 5, the polygon
is not necessarily planar. A sum of the areas and normal
vectors of the triangles approximates the area and normal
of the polygon as

Δσ =
∑

i

1
2
fiai × bi, (3)

where ai and bi are vectors from the centroid to the ends
of the i-th edge of the polygon, and fi = ±1 is chosen
so that each of the normal vectors 1

2fiai × bi is directed
towards lower values, i.e. outside.

Fig. 5. Examples of triangularisation of the polygon in a sim-
ple and a complicated case.

t=0

t=1

Fig. 6. A 2D projection of a 4D hypercube. In the figure,
the cube in the middle is the hyperface of the hypercube at
coordinate t = 1, the large cube around it is the hyperface
at t = 0, and the grey lines connecting them are edges with
constant values of coordinates x, y, z.

To make the illustrations of the hypersurfaces in a hy-
percube more understandable, we first show a simple 2D
projection of a 4D hypercube in fig. 6, and how an evolv-
ing 2D surface in 3D space spans a 3D hypersurface in
4D spacetime in fig. 7. This hypersurface element forms a
polyhedron within a hypercube (fig. 8), and like a polygon
can be divided into a group of triangles, a polyhedron can
be divided into tetrahedra.

We proceed analogously to the 3D case. We first divide
the problem into eight three-dimensional problems: As a
cube consists of six squares, a hypercube consists of eight
cubes, see fig. 9. The surface in each of these is found in
the same way than described above. The centroid of these
2D surfaces, which form the faces of the tetrahedra, is
calculated, and the corners of the triangles forming these
faces are recorded. This is illustrated in fig. 8, where the
triangularisation of the face within the t = 0 hyperface is
shown.

As in 3D the ordering of the edges is not important
unless the surface consists of several disconnected parts. If
the number of edges and the number of hypercube corners
above and below isovalue indicate that this is possible, we
order the edges to group them according to the polyhedron
they belong to, and treat the groups as separate surfaces.
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t=0

t=0.2

t=0.4

t=0.6

t=0.8

t=1

Fig. 7. Time evolution of a surface element in the (left) four-
and (right) three-dimensional representation of a volume ele-
ment. A 2D polygon moving in time spans a 3D polyhedron in
a hypercube.

We evaluate an approximative centroid for the polyhe-
dron. Analogously to the 2D surface in a 3D space, con-
necting the centroid to the corners of the triangles form-
ing the faces of the polyhedron, creates a set of tetrahedra
which fills the volume of the polyhedron, see fig. 10. The
hyperarea, i.e. the volume, of the polyhedron and its nor-
mal can be calculated as a sum of the volumes and normals
of its constituent tetrahedra [28],

Δσμ =
∑

i

εμαβγ
1
6
fia

α
i bβ

i cγ
i , (4)

Fig. 8. A hypersurface element, a polyhedron, within a hyper-
cube. A triangularisation of the polyhedron’s face with t = 0 is
shown. We do not show the triangularisation of the other faces
for the sake of clarity.

Fig. 9. Reduction of a four-dimensional problem into a series
of three-dimensional problems.

where ai, bi and ci are vectors from the centroid to the
corners of the ith triangle, and fi = ±1 chosen so that
each of the normal vectors of the tetrahedra is directed
towards lower values, i.e. outside.

We want to emphasise that this algorithm is by no
means the only approach for creating consistent surfaces
with no holes nor double counting [30,38,39]. Especially
Bernd Schlei’s VESTA and STEVE algorithms [37], used
in ref. [41], are faster than ours and produce even higher-
quality surfaces.
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Fig. 10. A part of the tetrahedronisation of the polyhedron
based on triangularisation of the faces of the polyhedron. Full
tetrahedronisation is not shown for the sake of clarity.

In the recent heavy-ion physics literature two other al-
gorithms for finding a surface in four dimensions have been
described. In ref. [9] the surface elements are taken to be
the common faces of neighbouring volume elements when
the isovalue is reached between them. This algorithm is
simple and robust, but it requires very small grid spacing
to avoid numerical artefacts (see discussion in refs. [28,
40]). “Very small” in this context means that the volume
element for the surface extraction should be the same than
the volume element for the fluid evolution, whereas the
more sophisticated algorithms discussed here allow signif-
icantly larger volume elements for surface evaluation than
for fluid evolution. For example, in refs. [42,43] the re-
sults were calculated using timestep Δτ = 0.04 fm and
grid spacing Δx = Δy = 0.1 fm, whereas the surface ele-
ments were evaluated in cubes 10 times larger in time, and
2 to 4 times larger in both spatial directions (depending
on the impact parameter). In the following, however, we
play it safe and use the same grid spacing and timestep for
both the hydrodynamical evolution and surface extraction
to calculate the results shown in sect. 5.

Another algorithm was described in ref. [40] and called
a projection method. To our understanding this method
insists that there is only one surface element within each
volume element. As discussed above this may lead to dou-
ble counting some parts of the surface.

3 Negative contributions of Cooper-Frye

One of the conceptual problems in using the Cooper-Frye
procedure (eq. (1)) to describe freeze-out in hydrodynam-
ical models is that if the surface element of the freeze-out
surface is spacelike3, particles with certain momenta count

3 We use the convention to describe a surface as time- or
spacelike according to its normal vector. dσμdσμ > 0 is time-
like, and dσμdσμ < 0 is spacelike.

as a negative contribution to the distribution: These par-
ticles move inwards, they are not emitted at the surface
but absorbed4. However, in a hybrid model, these nega-
tive contributions are only a technical, not a conceptual
problem. In an ideal case, the switch from fluid to cascade
is done in a spacetime region where both descriptions give
(approximately) equal solutions [1]. Thus, in the vicinity
of the switching surface the particle distributions are close
to thermal, and correspond to the hydrodynamical solu-
tion on both sides of the surface. Assuming that the sys-
tem is dilute enough for the kinetic theory decomposition
of the fluid variables in terms of particle distributions to be
valid, the particle distributions f(p, x) are known on the
surface, and there are particles moving inwards through
the surface as described by Cooper-Frye. If this is not the
case, the particlization takes place in a region where trans-
port and hydro do not give equal solutions, and the switch
from hydro to cascade should take place elsewhere.

Thus as an initial state for the cascade, we have to
count the particles passing through the switching sur-
face from hydro to cascade. Their distribution is easily
obtained by augmenting the distribution in eq. (1) by a
Θ-function counting particles going outward,

E
dN(x)
dp3

= dσμpμf(x, p)Θ(dσμpμ). (5)

We have to calculate the number of particles coming from
hydro to cascade using this distribution, but we must also
have a drain term in the cascade: All the particles cross-
ing the particlization surface from cascade to hydro must
be removed from the cascade. Otherwise the conservation
laws are not obeyed. It is not possible to remove particles
from cascade at the rate described by Cooper-Frye pro-
cedure, but we can calculate the distribution of particles
which were removed from cascade when they entered the
fluid dynamical region. This provides a consistency check:
At the end of the evolution we can compare whether the
phase-space distribution of particles removed from cas-
cade is (approximately) equal to the negative contribu-
tions given by Cooper-Frye. If they are, the calculation
was consistent, if not, then the switch from hydro to cas-
cade took place in a wrong place, we have to change the
switching criterion, and redo the calculation. Of course
this argument assumes that such a spacetime region ex-
ists where transport and (dissipative) fluid dynamics give
equal spacetime evolution. If this is not the case the whole
raison d’être of hybrid models is questionable, since the
switching becomes as arbitrary as the freeze-out in hydro-
dynamical models.

Unfortunately the treatment described above is tech-
nically challenging. First, it is numerically expensive to
evaluate the number of particles emitted when the distri-
bution is modified by the Θ-function (eq. (5)). Second,
we are using UrQMD to describe the hadronic transport,
and the present version of UrQMD does not allow tracing

4 In the context of hydrodynamical models, these negative
contributions have been discussed, and possible cures pro-
posed, in refs. [17,41,44–51].
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the propagation of individual particles in such a way that
whenever a particle crosses the boundary between cascade
and fluid dynamics, it would be removed from cascade.
Such a feature would require extensive rewriting of the
code, and is therefore postponed to later. Furthermore,
we are using ideal hydro to describe the fluid dynamical
part, and we do not expect that there exists a region where
UrQMD would lead to ideal fluid dynamical behaviour5.

Since the correct treatment is at the time of this writ-
ing beyond our reach, we have to settle with an approx-
imative solution like in ref. [9]: First, we ignore all the
surface elements where the flow is directed inwards, i.e.
where dσμuμ < 0, since the net number of particles pass-
ing through such a surface element is negative. There are
more particles moving inwards than outwards. Second, on
the surface elements where the flow is directed outwards,
dσμuμ > 0, we use the net number of particles passing the
surface, dσμjμ, as the number of particles emitted, but we
use the thermal distribution with Θ-function, eq. (5) as
their momentum distribution. This leads to a small vio-
lation of conservation laws. The emitted particles either
have too large energy, or we generate too few of them,
depending on the constraints we impose on the sampling
procedure.

There are approaches in the literature where the prob-
lem of negative contributions is solved differently. Instead
of sampling the phase-space distributions like we do here,
in VISHNU [7,53] and in ref. [15], the momentum distri-
bution of each particle species is calculated by integrating
over the particlization surface, eq. (1), like in the con-
ventional calculation of particle spectra in hydrodynam-
ical models [54,55]. The number of particles of species i
per unit rapidity, dNi/dy, in these boost-invariant distri-
butions is calculated, and the sampling is constrained to
produce either 10dNi/dy particles in a wide rapidity inter-
val of −5 < y < 5 [54], or dNi/dy particles in an interval
−0.5 < y < 0.5 [15]. These yields are not integers, how-
ever. In VISHNU the yield, 10dNi/dy, is rounded down
to the nearest integer [54], whereas in ref. [15] the decimal
part is taken as a probability whether to create one addi-
tional particle over the rounded down yield [55]. At this
stage the sampled particles carry no information of their
position. In ref. [15] there are no rescatterings after par-
ticlization, and this lack of information is not a problem,
whereas in VISHNU each particle is given a position ac-
cording to the probability given by the Cooper-Frye distri-
bution, neglecting the part where the distribution would
be negative, eq. (5). Thus this approach reproduces the
Cooper-Frye momentum distribution, but it skews the po-
sition distribution of the particles reducing the fraction of
particles emitted from timelike surface elements. How this
affects the final distribution of particles after rescatterings
is unknown. Another disadvantage of this approach is that
since it requires evaluating the momentum distributions of
all particle species by integrating over the particlization
surface, it is slow.

5 For the difficulties in approaching the ideal fluid limit using
transport, see, e.g., ref. [52].

As mentioned in the beginning of this section we want
to switch from fluid to cascade in a region where both ap-
proaches give similar results, and that there is no physical
change in the region where the switch takes place. This
means that the solutions to the negative contributions at
freeze-out proposed in refs. [41,44–50] are not applicable
in our case. In those approaches a non-thermal freeze-out
distribution which contains no particles moving inwards
is postulated. But since we assume that the distributions
are the same on both sides of the switching surface, such
a distribution on the particle side would be a contradic-
tion. Furthermore it is perfectly possible that the hadrons
in the cascade scatter back to the spacetime region de-
scribed by fluid dynamics, and assuming that there are no
particles entering that region is an oversimplification.

4 Sampling the distributions

Any hadron cascade requires an particle ensemble with
well defined particle species, momenta, and positions as
an initial state. To generate such ensembles we Monte
Carlo sample the particle distributions on the particliza-
tion surface. For this purpose we employ two different
sampling algorithms. The first one that we call “allcells”
sampling, contains a loop over all hypersurface elements
and in each of the elements, i.e. cells, the particles are
sampled according to the steps explained below. In this
case the quantum numbers like energy, net baryon num-
ber, net strangeness and electric charge are only conserved
on the average over many sampled events. The other algo-
rithm that is dubbed “mode” sampling introduces a way
to conserve all these quantities event by event, as we will
demonstrate in sect. 5.4. The whole sampling algorithm is
based on previous work published in [5], but now applied
without the assumption of an isochronous transition and
with slight improvements.

In general fluctuations in conserved quantum num-
bers occur in event-by-event studies when only part of
the system is described. For example, the spectators are
usually not included in the hydrodynamical description of
the system. As well fluctuations occur in a rapidity in-
terval which does not contain all the emitted particles.
But, once an initial state of the system is defined, and the
whole subsequent evolution is considered, the conserved
quantum numbers must be conserved. The straightfor-
ward “allcells” sampling does not do it, and therefore we
have developed the more complicated “mode” sampling
approach.

The first step in sampling hadrons on the hypersurface
is to decide in which cells a particle has been produced.
For example, in a central Au+Au collision at the highest
RHIC energy there are roughly 107 hypersurface elements,
but only ∼ 10000 particles produced. Evaluating first, if
there is a particle produced in a cell, before doing any of
the other steps, results in a speed-up of the calculation,
which is essential for the application to event-by-event cal-
culations.
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The number of particles of each hadron species pro-
duced in one cell is calculated according to the following
formula (only the surface elements with uμdσμ > 0 are
considered):

Ni = jμdσμ = niu
μdσμ , (6)

where ni is the particle density in the local rest frame and
i is the index of the particle species. It is important to take
into account all 150 particle species and their antiparticles
implemented in UrQMD to match the equation of state on
the particlization surface. Assuming a Boltzmann distri-
bution the integral over momentum space for the particle
number density in the local rest frame can be evaluated
analytically and the result is

ni =
4πgim

2
i T

(2π)3
e

μ
T K2

(mi

T

)
, (7)

where gi is the degeneracy factor for the respective par-
ticle species. All the information about the particle prop-
erties is read in directly from the UrQMD tables to avoid
any mismatch. The chemical potential includes the baryo-
chemical potential and the strangeness chemical potential
in the following way:

μ = B · μB + S · μS , (8)

where S is the quantum number for strangeness and B is
the baryon number. For pions the Bose distribution has to
be taken into account because their mass is on the order of
the temperature of the system. Expanding the distribution
in series and integrating leads to

nπ =
gπm2

πT

(2π)2

∞∑
k=1

1
k

K2

(
kmπ

T

)
, (9)

where we stop the summation after 10 summands, when
it has sufficiently converged.

By summing up all the contributions from different
species the total number of particles in this cell N =

∑
Ni

is known. As long as N < 0.01 one can interpret this
number directly as a sampling probability and randomly
decide, if a particle is produced or not. If N is larger,
one needs to sample a Poisson distribution with N as the
mean value to decide the actual number of particles pro-
duced in this surface element. It turns out that the cases
where 2 or more particles per cell are produced are rare. If
there is a particle produced the species can be decided by
sampling according to their probabilities Ni/N . Isospin is
assigned randomly consistent with the isospin symmetry
of a system in chemical equilibrium.

The four momenta of the particles are sampled accord-
ing to the local Cooper-Frye distribution (only the parts
where f(x, p)pμdσμ > 0 are considered)

dN(x)
d3p

=
1
E

f(x, p)pμdσμ , (10)

where f(x, p) are the boosted Fermi or Bose distributions
corresponding to the respective particle species includ-
ing again the chemical potentials for baryon number and
strangeness. Finding the maximum of the distribution and
then applying the rejection method is crucial since the dis-
tribution functions in momentum space are highly peaked
and dependent on the masses and thermodynamic param-
eters. Currently, an approximative maximum of

1
E

pμdσμf(x, p) (11)

is determined by a coarse loop over the three-dimensional
momentum space. This approximate maximum is multi-
plied by 1.2 to make sure it is definitely larger than the
function to be sampled.

Then, a momentum vector p is chosen randomly, and
an additional random number between zero and the above
mentioned maximum of the distribution is generated. If
this random number is smaller than the value of the dis-
tribution at this momentum, the momentum is accepted.
If not, another momentum and another random number
are generated, and the process is repeated until an accept-
able momentum is found.

As described in sect. 3 we neglect negative parts of
the distribution functions which slightly alters the result-
ing rapidity and transverse momentum spectra. It is im-
portant to sample the momenta according to the boosted
distribution function instead of sampling the equilibrium
distribution in the local rest frame and then boost the
momentum four-vector back to the computational frame.
The second procedure leads to a violation of energy con-
servation since one does not reproduce the whole tensor
Tμν in the computational frame correctly [18].

Imposing strict conservation laws on grand canonical
distributions on an event-by-event basis is not wholly con-
sistent, and we minimise any bias it creates by the follow-
ing procedure: To conserve energy, net baryon number, net
strangeness and electric charge in all events we do seven
subsequent random loops called modes over the hyper-
surface. During the first mode, cells are randomly chosen
and particles are sampled until the total energy is con-
served. From this set of particles only the ones containing
a s̄ quark are kept, and the rest are discarded. In the sec-
ond mode we produce particles in a similar way, until we
have produced as much anti-strangeness as the first mode
produced strangeness. We keep the anti-strange particles,
and discard the rest. In modes three and four we repeat
the same procedure keeping the non-strange baryons and
non-strange antibaryons, respectively, but requiring that
the net baryon number of these particles is the net baryon
number of the system. Modes five and six take care of
the conservation of electric charge by keeping the neg-
ative and positive non-strange mesons, respectively, and
finally mode seven takes care of the energy conservation
by sampling neutral non-strange mesons until the energy
of the particles corresponds to the energy of the fluid.



Eur. Phys. J. A (2012) 48: 171 Page 9 of 19

5 Results

5.1 Description of the hybrid model

The hypersurface finding and sampling algorithms de-
scribed in sects. 2 and 4 have been implemented in the
hybrid model of ref. [5]. We show here some preliminary
results to demonstrate some general trends and overall be-
havior of the improved model. Note that we have not tried
to fine tune any parameters to describe experimental data
at this point.

Smooth initial conditions for the hydrodynamic evolu-
tion have been generated by averaging over 100 UrQMD
events that are run up to the starting time of tstart =
2.83 fm for Pb+Pb collisions at Elab = 160AGeV
(SPS) [56] and tstart = 0.5 fm for Au+Au collisions at
Ecm = 200AGeV [57] (RHIC).

On the constant time surface t = tstart the energy,
momentum and net baryon number densities are de-
termined by representing each particle in the UrQMD
event with a three-dimensional, longitudinally Lorentz-
contracted, Gaussian density distribution of thermalised
matter, which has the same energy, momentum and
baryon number than the particle it represents. Summing
up the distributions representing the particles, we obtain
a distribution of matter in thermal equilibrium, which has
the same energy, momentum and baryon number than the
UrQMD event in question. For the RHIC initial state
we consider only particles within the rapidity interval
−2 < y < 2, whereas we include all particles that have
interacted at least once when evaluating the initial state
for SPS. The mean value of these distributions from 100
events leads to a smooth profile but still includes finite
initial velocities in all three directions [58].

The (3+1)D ideal hydrodynamic evolution is solved in
Cartesian coordinates using the SHASTA algorithm [59,
60]. The equation of state is calculated within a chiral
model coupled to the Polyakov loop to include the decon-
finement transition that reproduces nuclear ground state
properties and lattice QCD data at zero net baryon chemi-
cal potential [61]. This equation of state is also applicable
at finite net baryon densities, which allows us to calcu-
late heavy ion collisions at SPS energies to explore the
beam energy dependence of our findings. In the hadronic
phase this equation of state is equivalent to the effective
equation of state of UrQMD, and has the same degrees
of freedom than UrQMD. The conservation laws are thus
automatically fulfilled on particlization surface when we
use Cooper-Frye prescription to calculate the particle dis-
tributions.

The hypersurface finder “cornelius” has been imple-
mented in the hydrodynamic code in such a way that the
hypersurface for any transition criterion is evaluated while
the hydrodynamic evolution is calculated. Then we apply
the two sampling algorithms and further calculate reso-
nance decays using UrQMD. To obtain final results that
can be compared to experimental data the hadronic trans-
port approach is used in addition to calculate the rescat-
terings.

Table 1. The conservation of energy (E) and net baryon num-
ber (B) in Au+Au collisions at Ecm = 200A GeV. The values
in the final state are split into two parts: pos. is flow through
elements where the energy or baryon flow is directed outwards,
dσμT μ0 > 0 or dσμnBuμ > 0, respectively, whereas neg. is flow
through elements where energy or baryon flow is directed in-
wards, dσμT μ0 < 0 or dσμnBuμ < 0, respectively, and thus
counts as negative. Note that these are not the negative con-
tributions of Cooper-Frye, see the text. The upper two rows are
for central (b < 3.4 fm) and the lower two rows for mid-central
(b = 7 fm) collisions.

E [GeV] B

Total pos. neg. Total pos. neg.

Initial 5431 93.23

Final 5430 5861 −431 92.74 97.74 −5.00

Initial 2327 35.84

Final 2336 2455 −119 35.80 37.10 −1.30

Table 2. The conservation of energy (E) and net baryon num-
ber (B) in Pb+Pb collisions at Elab = 160A GeV. The layout
is the same as in table 1.

E [GeV] B

Total pos. neg. Total pos. neg.

Initial 3117 347.6

Final 3120 3208 −88.5 345.9 355.8 −9.9

Initial 1528 170.23

Final 1528 1570 −41.5 169.22 174.26 −5.04

5.2 Structure of the hypersurface

The equations of motion of relativistic hydrodynamics are
nothing more than an application of conservation laws for
energy, momentum and charge(s). Thus one of the first
checks on the accuracy of the numerical solutions of hy-
drodynamics is to confirm the validity of the conservation
laws.

We show the total energy (E) and net baryon number
(B) in collisions at two different centralities at RHIC and
SPS in tables 1 and 2, respectively. The initial value is
evaluated in the beginning of the hydrodynamical evolu-
tion by summing over all fluid cells within the particliza-
tion surface. With the switching criterion we use here,
ε = 2ε0, where ε0 refers to the nuclear ground state en-
ergy density of 146MeV/fm3, this means summing over
the cells with ε > 2ε0. Since the final state we are inter-
ested in is the isosurface with ε = 2ε0, we evaluate the
final state energy and net baryon number as energy and
baryon number flows through this surface,

E =
∫

σ

T 0μdσμ and B =
∫

σ

nBuμdσμ, (12)

where the energy momentum tensor has been evaluated
as Tμν = (ε + P )uμuν − gμνP . As seen in the tables both
the energy and baryon number are nicely conserved with
better than 0.6% accuracy in all cases.
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Fig. 11. The position of the ε = 2ε0 isosurface in zt-plane at
x = y = 0. The left side of the plot (SPS) depicts the surface
in central Pb+Pb collisions at Elab = 160A GeV and the right
side (RHIC) in central Au+Au collisions at Ecm = 200A GeV.
The dashed lines depict regions where the flow may be directed
inwards on some surface elements.

However, a closer look at the properties of the parti-
clization surface reveals that there are surface elements
where the flow is directed inwards, dσμuμ < 0. As de-
scribed in sect. 4, such elements cannot be used as a
source for sampled particles, and thus we check how large
uncertainty these elements cause to the total energy and
baryon number. In tables 1 and 2, the flows through the
surface are also separated in two parts: pos. depicts the
energy and baryon flows through surface elements where
dσμTμ0 > 0 for energy and dσμnBuμ > 0 for baryon
flow, whereas neg. is the flow through elements where
dσμTμ0 < 0 for energy and dσμnBuμ < 0 for baryons. As
seen the surface elements where flow is directed inwards
cause a 3–8% uncertainty in the total energy, and a 3–
5% uncertainty in the total baryon number of the system.
Note that because of the pressure term in T 00 it is possi-
ble that we have an element where energy flow is directed
inwards but baryon flow outwards, or vice versa.

To understand this phenomenon we located the surface
elements with dσμuμ < 0 and found out that they are al-
most entirely located at the edges of the system where the
fireball expands longitudinally, see fig. 11, and there are
none at midrapidity. Furthermore, the regions depicted
by dashed lines in fig. 11 are not regions where the flow is
directed inwards, but they are regions where surface ele-
ments with inwards directed flow randomly appear among
elements where the flow is directed outwards. These are
the regions where the longitudinal pressure gradient is still
large, the fluid flow is very large, vz ∼ 0.9–0.95, and the
isosurface moves outwards with a comparable speed as
well. It is known that this is a difficult terrain for SHASTA
and for any algorithm to solve accurately [59]. Since the
flow velocity is almost aligned with the surface, it does not
require a large numerical error to flip an outwards flow to
inwards. Thus it is possible that these elements with flow
directed inwards are just numerical artefacts. However, it

  

 20

 40

 60

 80

 100

 120

 140

|Δ
σ μ

uμ
|

SPS

dσμdσμ > 0, dσμuμ > 0
dσμdσμ < 0, dσμuμ > 0

dσμuμ < 0

 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Δ
σ μ

uμ
|

|vz|

RHIC
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velocities in central Pb+Pb collisions at Elab = 160A GeV
(SPS) and in central Au+Au collisions at Ecm = 200A GeV
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is worth remembering that in event-by-event calculations
the initial states are highly irregular, and occasionally flow
can be directed inwards for physical reasons.

Since the common feature of the elements with inwards
directed flow is the large longitudinal flow velocity, we
further characterise the surface by it. We bin the surface
elements according to the magnitude of the longitudinal
flow velocity |vz|, and integrate over the elements in each
bin to obtain the magnitude of fluid flow through sur-
face, |dσμuμ|, at different velocities |vz|. The results are
shown in fig. 12. The contribution from elements with flow
directed inwards is depicted by the thick curve, and as
claimed it is concentrated at large velocities. Furthermore
it can be seen that the fluid flow inwards is small com-
pared to the fluid flow outwards, which is depicted by the
thin solid and dashed histograms in fig. 12. The 5–8% un-
certainties in energy and baryon number listed in tables 1
and 2 are thus concentrated at large longitudinal flow ve-
locities, and can be expected to have only a tiny contribu-
tion to observables at midrapidity. The reason why there
is a difference between fluid flow dσμuμ and energy and
baryon number flows, dσμTμ0 and dσμjμ, respectively, is
that the former has an additional gamma factor and a
pressure term, whereas the latter is also sensitive to the
baryon chemical potential μB which is not uniform on the
surface.
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5.3 Negative contributions

It is worth remembering that the negative contributions
to energy and baryon number discussed above in sect. 5.2
are not the same thing than the negative contributions of
Cooper-Frye discussed in the literature (see sect. 3). The
former are caused by the collective flow being directed in-
wards, whereas the negative contributions of Cooper-Frye
are caused by individual particles moving inwards through
the particlization surface. As discussed in sect. 4, the sam-
pling routine cannot take into account particles moving
inwards nor anything emitted on surfaces where flow is
directed inwards. Therefore we evaluated these negative
contributions to see how much omitting them distorts the
spectra.

We evaluated the spectra of thermal pions, kaons and
protons on the particlization surface using the conven-
tional Cooper-Frye procedure, eq. (1), i.e. we integrated
over the surface to obtain distributions, but we divided
the contribution into four parts according to whether the
flow was directed in- or outwards (dσμuμ < 0 or > 0)
and whether the particles with the momentum in ques-
tion were heading in- or outwards (dσμpμ < 0 or > 0). It
turned out that in general the negative contributions to
pion distribution are largest, so we concentrate on them.
Some of the actual spectra are shown in sect. 5.5 where
we compare the sampled distributions to the integrated
ones. Here we emphasise the size of the negative contri-
butions by showing their relative contribution to the total
spectrum.

In fig. 13 different negative contributions to the ther-
mal pion rapidity spectrum are shown for collisions at
RHIC and SPS. To check how much uncertainty the con-
tribution from elements with flow directed inwards cause,
we have calculated the contribution from them (dashed
line, dσμuμ > 0) even if contribution from them is not
negative in the Cooper-Frye sense. It is seen that at midra-
pidity contribution from them is 2–5%. A modest contri-
bution at midrapidity could be expected, since as shown
in fig. 12, the longitudinal flow velocity on these elements
is large. Interestingly the contribution from these elements
at large rapidities is very different at RHIC and SPS: The
magnitude of the relative contribution decreases with in-
creasing rapidity at SPS, but increases at RHIC. Again
a result of different flow and emission patterns shown in
fig. 12.

We may take the surface and flow pattern as granted,
and simply evaluate the fraction of inward moving par-
ticles. This is depicted by the solid line, dσμpμ < 0, in
fig. 13. At midrapidity the contribution of such a particles
is surprisingly large, 10–15% with a larger contribution
at SPS than at RHIC. That the negative contribution is
larger at SPS was already implied in fig. 12 where the fluid
flow through the particlization surface was divided into a
flow through time- and spacelike surfaces. At SPS the rel-
ative fraction of the fluid flow passing through spacelike
surfaces is larger than at RHIC. Since negative contribu-
tions appear only on spacelike surfaces, the flow pattern
at SPS provides a possibility for larger negative contribu-
tions than at RHIC. Furthermore, if surfaces are similar,
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Fig. 13. The ratio of the negative contribution to the total
thermal pion rapidity distribution in central Pb+Pb collisions
at Elab = 160A GeV (SPS) and in central Au+Au collisions at
Ecm = 200A GeV (RHIC). The curves correspond to different
kinds of contributions, see the text.

the lower the flow velocity, the larger the negative contri-
butions. At SPS the flow velocity is lower than at RHIC,
and thus it is rather surprising that the difference in neg-
ative contributions is not larger than what is shown in
fig. 13.

Finally, we want to check how large a contribution our
sampling routine misses. Since it cannot sample the par-
ticles going inwards nor particles emitted when the flow
is directed inwards, sampling misses both contributions.
This is shown as the dotted line in fig. 13. At midrapidity
the missed part is totally dominated by the conventional
negative Cooper-Frye contribution. Thus it is safe to say
that what comes to sampling particles at midrapidity, the
inwards directed flow is not a problem, but the conven-
tional negative contributions of Cooper-Frye can be.

To further study the effect of negative contributions,
we show the contributions to pT distribution of thermal
pions at midrapidity, −1 < y < 1, in fig. 14. Again we
see that the contribution from the inwards directed flow
is smaller than from inwards moving particles. The lat-
ter can even reach 40% at low values of transverse mo-
mentum! Fortunately the size of the negative contribu-
tion decreases rapidly with increasing transverse momen-
tum, and already around 500MeV it is much more accept-
able 8–10%. That the negative contributions are largest at
small pT is understandable since the high pT particles are
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Fig. 14. The ratio of the negative contribution to the total
thermal pion pT -distribution at midrapidity −1 < y < 1 in
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text.

mostly emitted in regions where the flow velocity is large
and parallel to momentum, whereas the negative contri-
butions arise when the momentum is antiparallel to flow
velocity.

We also evaluated the pT averaged v2 of thermal pi-
ons at particlization in mid-central (b = 7 fm) collisions at
RHIC and SPS. When v2 was evaluated in a conventional
fashion, we got v2 = 0.064 and 0.066 at RHIC and SPS,
respectively. When we removed the negative contributions
from the distribution, v2 at RHIC and SPS decreased to
0.058 and 0.06, respectively. If we also removed the re-
maining positive contribution from elements with flow di-
rected inwards, further change on v2 was on the level of
10−4. This additional uncertainty of 10% should be kept
in mind when discussing the elusiveness of the QGP shear
viscosity [62].

5.4 Conservation of quantum numbers

In figs. 15 and 16 we show the probability distributions
of relevant quantum numbers using the two sampling al-
gorithms described in sect. 4. As explained, the “mode”
sampling is constructed to obey conservation laws event
by event, whereas in the simpler sampling of all hypersur-
face elements the conserved quantities fluctuate around
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the values given by the positive contributions to the spec-
tra. Note that these values are not those given in tables 1
and 2 as energy and baryon number flow through the parts
of surface where flow is directed outwards, but by the dis-
tributions of particles coming out through these parts of
the surface, eq. (5), after these distributions have been
scaled to yield the same number of particles than the local
net flow of particles through the surface element, dσμnuμ.
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Therefore, we expect to see a higher mean value in the
energy and net baryon number in the allcells sampling
compared to the mode setup. One of the reasons to im-
plement the mode sampling was to take into account the
distortions caused by different kinds of negative contribu-
tions by enforcing the conservation laws6.

The probability distributions for the different quanti-
ties are rather wide in the allcells sampling, so individual
events in the more often applied algorithm can have quan-
tum numbers that are far away from their actual values
in that event. In a sense this is reasonable since the equa-
tion of state used during the hydrodynamical stage, and
the particle distributions sampled at particlization assume
a grand-canonical ensemble where conservation laws are
obeyed only in average. But if we aim at a description of
the collisions on an event-by-event basis, we have a contra-
diction: In nature conservation laws are obeyed in every
single event. Thus it makes sense to require that the con-
servation laws are strictly obeyed during all stages of the
model, and check how much the fluctuations created by
the sampling procedure affect the observables.

5.5 Tests of sampling algorithm

First of all, we need to check, whether the sampling algo-
rithm reproduces the numbers of particles for each species.
In figs. 17 and 18 the multiplicities of selected particle
species are compared to the integrated results. Integra-
tion means here summing up Ni as defined in eq. (6) for
all hypersurface elements where dσμuμ > 0. All the re-
sults in this section are comparisons of thermal yields for
individual species only, the resonance contribution has not
been included.

6 Remember that in event-by-event simulations inwards flow
can be physical.
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Fig. 18. Relative difference of sampled and integrated particle
multiplicities in central Pb+Pb collisions at Elab = 160A GeV.

We have plotted in figs. 17 and 18 the relative de-
viations from the integrated result, (# sampled-# inte-
grated)/# integrated, for the two sampling algorithms.
The deviations from zero are within the expected statis-
tical fluctuations for 500 events taking into account their
individual abundances for the allcells sampling. Overall, in
the allcells sampling the particle multiplicities are nicely
reproduced at RHIC and SPS energies, whereas the mode
sampling leads to slightly less particles at RHIC. This re-
sult is expected, since we enforce a lower value for the to-
tal energy of the system. The fluctuations of the particle
yields around that lower value are again purely statisti-
cal. Since at SPS the inwards directed flow is smaller this
difference is also smaller and therefore the difference be-
tween allcells and mode sampled yields is smaller. As one
can see in the rapidity spectra (figs. 19 and 21), at SPS
energies mode sampling produces more particles than all-
cells sampling.

The next step is to compare the distribution of the par-
ticles in momentum space in terms of rapidity and trans-
verse momentum. The different lines in fig. 19 correspond
to the integrated result, which is split up into the differ-
ent contributions depending on the direction of flow and
momentum with respect to the particlization surface as
described in the legend, see sect. 5.3.

For clarity all the contributions are displayed only for
pions while for kaons and protons only the full result and
the result from hypersurface elements with flow directed
outwards are shown. The full line corresponds to the full
result from the complete hypersurface integration that one
ideally wants to reproduce. The dashed line shows the re-
sult for the contribution from the cells where the flow is
directed outward; these are the cells we take into account
when sampling the particle number densities. The momen-
tum sampling on the other hand disregards all the negative
parts of the distribution function. This treatment slightly
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skews the spectrum such that we end up with a result
that is in between the dashed and the dot-dashed line for
the sampled spectra. It may look surprising that the sam-
pling does not reproduce the yield from outward flowing
elements at midrapidity. After all, the sampling procedure
has been normalised to reproduce the yield from those el-
ements. The reason for this deviation is that the system in
our calculations is not boost invariant. If it were, the edges
of the system in longitudinal direction would be infinitely
far away, and they would not contribute to midrapidity.
But in our non-boost invariant system they are close, and
we see the same to happen in longitudinal direction than
what is depicted in fig. 14 for transverse direction: The
low momentum, i.e. small rapidity, region is depleted be-
cause of the negative contributions. The distributions we
sample do not contain this depletion, and thus we end up

having too many particles at midrapidity. On the other
hand, since the sampling procedure reproduces the total
yield of particles as shown in figs. 17 and 18, we must have
fewer particles somewhere. A closer look at the spectra re-
veals that the sampled yield is below the dσμuμ > 0 curve
at rapidities 1 < |y| < 2.5, and this deficit is sufficient to
cover the excess at midrapidity.

The transverse momentum spectrum is shown in
fig. 20. Due to the logarithmic scale in this case, the dif-
ferences shown in fig. 14 disappear, and only a small dif-
ference between the elements with flow directed outwards
and the full result is visible at low transverse momentum.
The sampled results are in very good agreement with the
integrated results. All possible deviations (apart from sta-
tistical noise) are smaller than the size of the symbols.

The comparison of rapidity spectra and transverse mo-
mentum spectra at SPS, as shown in figs. 21 and 22, leads
to very similar results. The only difference is that in the
mode sampling there are more pions produced than in the
allcells sampling as mentioned above. The reason for this
has to be investigated further in the future.

Overall, the sampling algorithms reproduce the parti-
cle yields and spectra very well within the expected devia-
tions from the assumptions that are made in the different
algorithms. The negative contributions are also smaller
than 5% in the regions where most of the particles are
emitted and affect heavier particles less than lighter ones.

5.6 Effects of rescattering

In this section we present selected results for multiplicities,
spectra and elliptic flow to demonstrate the effect of the
hadronic rescattering and the switching criterion. All the
results are calculated using the hybrid approach described
in sect. 5.1 with mode sampling enforcing exact conserva-
tion laws. To obtain the results directly at the switching
hypersurface we run UrQMD for 0.1 fm and use it only
to calculate the resonance decays (“Hydro”). The second
option is to run UrQMD for 200 fm and include all the
rescattering dynamics in the hadron transport approach
(“After”).

In fig. 23 the yields of pions, kaons, protons and Lamb-
das are shown in central heavy ion collisions at the highest
RHIC energy. The final results using allcells sampling are
within 3% to the ones shown here (see fig. 17). Therefore,
we decided to restrict the number of shown results to mode
sampling only. The switching criteria that we have chosen
correspond to the following temperatures: 3ε0 ≈ 163MeV,
2ε0 ≈ 154MeV and 1.5ε0 ≈ 149MeV and are in the ball-
park of switching criteria that are commonly used in other
hybrid approaches [1–9]. The energy density ε0 refers to
the nuclear ground state energy density 146MeV/fm3.
The switching criterion needs to be adjusted together with
equation of state and parameters defining the initial con-
ditions to achieve a good agreement with experimental
data. In this analysis we concentrate on presenting gen-
eral features of the results and have not searched for the
best agreement with the measurements yet.
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sions at Elab = 160A GeV.
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Fig. 22. Comparison of the integrated and sampled trans-
verse momentum spectra for pions, kaons and protons in cen-
tral Pb+Pb collisions at Elab = 160A GeV.

The yields are slightly higher for higher switching en-
ergy densities, because in equilibrium at this temperature
range, higher temperatures lead to higher yields. The devi-
ations from equilibrium caused by the sampling procedure
are not large enough to break this rule. The rescattering
leads to a reduction of the kaon and proton yield, whereas
pions and Lambdas are not so much affected. The kaon
and proton yields are also higher in the iso-energy density
transition scenario than in the previously employed grad-
ual transition, where full transverse slices are sampled on
an isochronous surface, when the whole slice has diluted
below 5ε0. Apart from the fact that the kaon yield is higher
than the experimental data our results are in reasonable
agreement with the data.
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lisions at

√
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with resonance decays (“Hydro”) and the lines show the result
after rescattering (“After”). The black stars show the result
from the previously used “gradual” transition. The bands on
the left indicate data by the STAR and BRAHMS Collabora-
tions [63–66].
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Fig. 25. Transverse mass spectra at midrapidity (|y| < 0.5)
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√
sNN = 200 GeV. The dashed lines indicate the

result with resonance decays (“Hydro”) and the full lines show
the result after rescattering (“After”). The black dotted line
represents the result from the previously used “gradual” tran-
sition. The symbols indicate experimental data by the STAR,
PHENIX and BRAHMS Collaborations [65,67–69]. The pro-
ton data by STAR has been multiplied by 0.6 to correct for
the feed-down from Lambdas.

The mean transverse momentum as a measure of the
radial flow development is shown in fig. 24. In this case the
dependence on the switching criterion is opposite to the
one of the yields. There are two reasons for this behaviour:
The first is that for lower switching energy densities the
system stays longer in the hydrodynamic evolution and
the particles gain more transverse flow. The second argu-
ment is that the total energy needs to be conserved and
if there are more particles produced, there is less energy
remaining to give them kinetic energy in terms of trans-
verse flow at the switching transition. Depending on their
hadronic cross-sections and their mass the particles get
pushed a lot (e.g., protons) or almost not at all (pions)
during the hadronic rescattering stage.

The transverse mass spectra at RHIC and SPS (shown
in figs. 25 and 26, respectively) confirm this behavior.
The pion spectra are almost identical before and after
the hadronic cascade, but the kaon and proton spectra
begin to resemble the experimental data only after the
rescattering. The comparison to the previously imposed
gradual transition shows that a true iso-energy density
switching criterion improves the slope of the spectra at
high transverse masses drastically. This can be easily un-
derstood, since in the gradual transition scenario the full
slice needs to reach the energy density criterion which de-
lays the switching to hadron cascade for the edges in the
transverse direction. The edges gain very large transverse
flow velocity, which makes the distributions flatter, and
even if the edges get very cold, the yield of heavy particles
does not drop so much that the effect of large flow velocity
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Fig. 26. Transverse mass spectra at midrapidity (|y| < 0.5)
for pions, kaons and protons in central (b < 3.4 fm) Pb+Pb
collisions at Elab = 160A GeV. The dashed lines indicate the
result with resonance decays (“Hydro”) and the full lines show
the result after rescattering (“After”). The black dotted line
represents the result from the previously used “gradual” tran-
sition. The symbols indicate experimental data by the NA49
Collaboration [70,71].

would be negated. What comes to the pT -distributions,
the hybrid model based on ideal hydrodynamics works
better at high RHIC energies than at high SPS energies.
This indicates that the non-equilibrium dynamics gains
importance at lower beam energies

In figs. 27 and 28 elliptic flow as a function of trans-
verse momentum is shown for pions and protons at high
SPS energy. Quite surprisingly the pT -differential ellip-
tic flow is quite insensitive to the switching criterion. It
is known that in ideal fluid hydrodynamics pion v2(pT )
is quite insensitive to the freeze-out temperature [42,43].
We presume that the same holds also when one uses the
gradual criterion instead of constant temperature/density
for particlization, and thus the elliptic flow of pions at
particlization is very similar in both cases, and evolves
similarly during the cascade. Thus the final v2(pT ) is sim-
ilar as well. The proton v2(pT ) shows more sensitivity
than pion v2(pT ), but the difference is at low pT , not at
high pT which is influenced by the different evolution of
the edges as explained when discussing the pT spectra.
On the other hand, the lower proton v2 at low pT is in
line with the ideal fluid expectations where lower freeze-
out temperature leads to lower proton v2(pT ) at low pT .
Thus the low pT range of protons is mostly influenced by
the center of the system which evolves hydrodynamically
much longer when one uses isodensity switching than when
one uses gradual switching. When the hadronic cascade
rescattering is taken into account, the proton flow at low
transverse momenta seems to even turn negative as re-
cently observed by the CERES Collaboration [73].
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dicate the result with resonance decays (“Hydro”) and the
full lines show the result after rescattering (“After”). The
black dotted line represents the result from the previously used
“gradual” transition. The symbols indicate experimental data
by the NA49 Collaboration [72].
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Fig. 28. Elliptic flow of protons as a function of transverse mo-
mentum at midrapidity (|y| < 0.5) in mid-central (b = 7 fm)
Pb+Pb collisions at Elab = 160A GeV. The dashed lines in-
dicate the result with resonance decays (“Hydro”) and the
full lines show the result after rescattering (“After”). The
black dotted line represents the result from the previously used
“gradual” transition. The symbols indicate experimental data
by the NA49 Collaboration [72].

6 Conclusions

In this paper we have discussed a crucial part of hybrid
models in detail: How to switch from hydrodynamical
description to cascade. We have described an algorithm
to find an isovalue surface where the transition takes

place, the unavoidable negative contributions of Cooper-
Frye procedure on such a surface, and how to make the
sampling algorithm, which creates the initial state for
the cascade, to work on an arbitrary surface and deal
with the negative contributions. We have seen that in
realistic calculations the negative contributions are not a
large problem, but they create an uncertainty of their own
which should be kept in mind when one draws conclusions
from the results of the present hybrid or hydrodynamical
models. In the long run we hope to develop a model where
these negative contributions are properly treated, and not
just ignored.

We think that the machinery we have described is par-
ticularly suitable for a proper event-by-event analysis of
heavy-ion collisions. In event-by-event calculations the ini-
tial state of hydrodynamics varies wildly from event to
event, and thus one may expect the particlization surface
to have a very complicated structure. This poses no prob-
lem for the algorithm described here since it can create
consistent surfaces without holes nor double counting for
any configuration. One of the reasons for studying heavy-
ion collisions event by event are fluctuations. In those
studies it is important to distinguish at which stage of
the evolution fluctuations are created and how. The sam-
pling algorithm we described provides an important check
by allowing strict conservation of energy and charges thus
guaranteeing that their fluctuations are not caused by the
sampling procedure.

All this machinery is not limited to switching from
ideal fluid to cascade, but it can be applied at the inter-
face of viscous hydrodynamics and cascade as well. All
one needs to do is to modify the particle distributions at
particlization accordingly.

However, we presented here preliminary results only
without attempting to describe the data well. The next
step is to identify the main parameters of the hybrid calcu-
lation and perform a multi-parameter analysis compared
to bulk observables at RHIC using a sophisticated statis-
tical emulator to limit CPU time. Once a good switching
criterion has been identified, the beam energy dependence
can be explored. In this context, the framework presented
here can easily be even more generalised to other switch-
ing criteria based on net baryon density, temperature or
combinations of thermodynamic quantities.

We are greatly indebted to Bernd Schlei for many informative
discussions about surface finding and related algorithms. We
thank Tetsufumi Hirano, Huichao Song and Hannu Holopainen
for describing their sampling routines in detail. The work of PH
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work of HP by U.S. Department of Energy grant DE-FG02-
05ER41367. We are grateful to the Open Science Grid for pro-
viding computing resources. HP thanks the J.W. Goethe Uni-
versität and HICforFAIR for hospitality during several stages
of this work.
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We study the influence of a temperature-dependent shear viscosity over entropy density ratio η/s, different
shear relaxation times τπ , as well as different initial conditions on the transverse momentum spectra of charged
hadrons and identified particles. We investigate the azimuthal flow asymmetries as a function of both collision
energy and centrality. The elliptic flow coefficient turns out to be dominated by the hadronic viscosity at RHIC
energies. Only at higher collision energies the impact of the viscosity in the QGP phase is visible in the flow
asymmetries. Nevertheless, the shear viscosity near the QCD transition region has the largest impact on the
collective flow of the system. We also find that the centrality dependence of the elliptic flow is sensitive to the
temperature dependence of η/s.
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I. INTRODUCTION

Determining the properties of the quark-gluon plasma
(QGP) is nowadays one of the most important goals in high-
energy nuclear physics. For a system of weakly interacting
particles reliable results can be obtained from first-principle
quantum field-theoretical calculations. Unfortunately, for
strongly interacting matter these tools provide only a limited
amount of information. It is, however, possible to calculate the
thermodynamical properties of such matter numerically from
the theory of strong interactions, quantum chromodynamics
(QCD). These lattice QCD calculations show that if the
temperature is sufficiently high, the matter undergoes a
transition from a confined phase where the relevant degrees
of freedom are hadrons, to a deconfined phase where the
degrees of freedom are quarks and gluons, the so-called QCD
transition [1].

In recent years, experiments at the Relativistic Heavy-Ion
Collider (RHIC) at Brookhaven National Laboratory [2] and
the Large Hadron Collider (LHC) at CERN have provided
a wealth of data from which one could in principle obtain
information about the QGP. However, to compare these
data with lattice QCD results is not straightforward. So far,
lattice calculations have provided reliable results for static
thermodynamical properties of QCD matter, e.g., the equation
of state (EoS). The system created in heavy-ion collisions is,
however, not static but dynamical, because it expands and cools
in a very short time span of order 10−23 seconds. Obviously, in
order to be able to properly interpret the experimental results
and infer the properties of QCD matter, we also need a good
understanding of the dynamics of heavy-ion collisions.

Fluid dynamics is one of the most commonly used frame-
works to describe the space-time evolution of the created
fireball, because the complicated microscopic dynamics of the
matter is encoded in only a few macroscopic parameters like
the EoS and the transport coefficients.

Currently, fluid-dynamical models give a reasonably good
quantitative description of transverse momentum spectra of

hadrons and their centrality dependence [3–7]. So far, most
calculations assume that the shear viscosity to entropy density
ratio η/s is constant, and they show that, in order to describe
the azimuthal asymmetries of the spectra, e.g., the elliptic flow
coefficient v2, this constant must be very small, of order 0.1.
However, for real physical systems, η/s depends (at least)
on the temperature [8]. A constant value of η/s can only
be justified as an average over the space-time evolution of
the system. It is not clear how this average is related to the
temperature dependence of η/s.

In previous work [9,10], we have studied the consequences
of relaxing the assumption of a constant η/s. We found that the
relevant temperature region where the shear viscosity affects
the elliptic flow most varies with the collision energy. At
RHIC, the most relevant region is around and below the QCD
transition temperature, while for higher collision energies the
temperature region above the transition becomes more and
more important. In this work we shall extend our previous
study and provide a more detailed picture of the temperature
regions that affect elliptic flow as well as higher harmonics at
a given collision energy.

This paper is organized in the following way. In Sec. II,
we describe our fluid-dynamical framework and its numerical
implementation. In Sec. III, we specify the EoS, the transport
coefficients, and the initialization. Sections IV and V contain
a detailed compilation of our results, some of which were
already shown in Refs. [9,10]. We present the transverse
momentum spectra and the elliptic flow of hadrons at various
centralities with different parametrizations of η/s as function
of temperature. We also study the impact of different initial
conditions and of the choice of the relaxation time for the
shear-stress tensor. In Sec. VI, we investigate evolution of the
elliptic flow in more detail and, in Sec. VII, find the temperature
regions where v2 and v4 are most sensitive to the value of
η/s. Finally, we summarize our results and give some con-
clusions. We use natural units h̄ = c = k = 1 throughout the
paper.
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II. FLUID DYNAMICS

A. Formalism

In order to describe the evolution of a system on length
scales much larger than a typical microscopic scale, for
instance the mean-free path, it is sufficient to characterize the
state of matter by a few macroscopic fields, namely the energy-
momentum tensor T μν and, possibly, some charge currents
N

μ
a . Fluid dynamics is equivalent to the local conservation

laws for these fields:

∂μT μν = 0, ∂μNμ
a = 0. (1)

In the absence of conserved charges and bulk viscosity, the
energy-momentum tensor T μν can be decomposed as

T μν = euμuν − P�μν + πμν, (2)

where uμ = T μνuν/e is the fluid four-velocity, e is the energy
density in the local rest frame of the fluid, i.e., in the frame
where uμ = (1, 0, 0, 0), and P is the thermodynamic pressure.
The shear-stress tensor is defined as πμν = T 〈μν〉, where
the angular brackets 〈〉 denote the symmetric and traceless
part of the tensor orthogonal to the fluid velocity. With
the (+,−,−,−) convention for the metric tensor gμν , the
projector �μν = gμν − uμuν .

If the system is sufficiently close to local thermodynamical
equilibrium, the energy-momentum conservation equations
can be closed by providing the EoS, P (T ), the equations
determining πμν , and the transport coefficients entering these
equations, e.g., the shear viscosity η(T ). The EoS P (T ) and
the shear viscosity η(T ) can in principle be computed by
integrating out the dynamics on microscopic length scales.

While the conservation laws are exact for any system,
the equations determining the shear-stress tensor require
certain approximations, so that the only variables entering
the equations of motion are those that appear in the energy-
momentum tensor, namely e, uμ, and πμν . In the so-called
relativistic Navier-Stokes approximation, the shear-stress ten-
sor is directly proportional to the gradients of the four-velocity:

πμν = 2ησμν ≡ 2η∂ 〈μuν〉. (3)

We note that in this approximation the shear-stress tensor is
not an independent dynamical variable.

Unfortunately, this approximation results in parabolic
equations of motion, and subsequently the signal speed is
not limited in this theory. In relativistic fluid dynamics this
violation of causality leads to the existence of linearly unstable
modes, which make relativistic Navier-Stokes (NS) theory
useless for practical applications [11,12].

A commonly used approach that cures these instability
and acausality problems is Israel-Stewart (IS) theory [13].
In this approach, the shear-stress tensor, the heat flow, and
the bulk viscous pressure are introduced as independent
dynamical variables and fulfill coupled, so-called relaxation-
type differential equations of motion. Assuming vanishing
heat-flow and bulk viscosity, the relaxation equation for the

shear-stress tensor can be written as [15]

τπ π̇ 〈μν〉 + πμν = 2ησμν + λ1π
μνθ + λ2σ

〈μ
απν〉α

+ λ3π
〈μ
απν〉α + λ4ω

〈μ
απν〉α, (4)

where Ȧ = uμ∂μA denotes the comoving derivative of A and
θ = ∂μuμ is the expansion scalar. The shear-relaxation time τπ

is the slowest time scale of the underlying microscopic theory
[14]. Formally, IS theory can be derived by neglecting all faster
microscopic time scales [15]. Like τπ , the coefficients λi can
in principle be calculated from the underlying microscopic
theory, i.e., in our case QCD. Unfortunately, for QCD the
transport coefficients appearing in Eq. (4) are still largely
unknown. For the sake of simplicity, in this work we use λ1 =
−4/3, obtained from the Boltzmann equation for a massless
gas [13], and λ2 = λ3 = λ4 = 0. The shear-relaxation time
and the shear viscosity are left as free parameters.

Instead of the full (3 + 1)–dimensional treatment, we
consider a simplified evolution where the expansion in the
z direction is described by boost-invariant scaling flow [16],
i.e., the longitudinal velocity is given by vz = z/t , and the
scalar densities are independent of the space-time rapidity
ηs = 1

2 log( t+z
t−z

). Here, t is the time measured in laboratory
coordinates. In this approximation, the full evolution depends
only on the coordinates (τ, x, y), where x and y are the
transverse coordinates and τ = √

t2 − z2 is the longitudinal
proper time.

B. Numerical implementation

Once the initial values of the components of the energy-
momentum tensor are specified at a given initial time τ0, the
space-time evolution of the system is obtained by solving the
conservation laws [Eq. (1)] together with the IS equations
[Eq. (4)].

The conservation laws are solved using the algorithm
developed in Refs. [17] and generalized to more than one
dimension in Ref. [18]. This method, known as SHASTA for
“sharp and smooth transport algorithm,” solves equations of
the type

∂tU + ∂i(viU ) = S(t, x), (5)

where U = U (t, x) is, for example, T 00, T 0i , . . ., vi is the ith
component of three-velocity, and S(t, x) is a source term; for
more details see Ref. [19].

We can further stabilize SHASTA by letting the antidiffu-
sion coefficient Aad, which controls the amount of numerical
diffusion to be proportional to

1

(k/e)2 + 1
, (6)

where e is the energy density in the local rest frame, and k

is some constant of order 10−5 GeV/fm3. In this way, Aad

goes smoothly to zero near the boundaries of the grid, i.e., we
increase the amount of numerical diffusion in that region. We
have checked that this neither affects the solution nor produces
more entropy inside the decoupling surface.

The relaxation Eq. (4) could also be solved using SHASTA.
However, we noticed that solving it by replacing the spatial
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gradient at grid point i on the left-hand side of Eq. (4) by a
centered second-order difference,

∂xUi = Ui+1 − Ui−1

2�x
, (7)

where U = πμν , yields a more stable algorithm. Time deriva-
tives in the source terms are simply taken as first-order
backward differences. Like in SHASTA, all spatial gradients
in the source terms are discretized according to Eq. (7).

C. Freeze-out

We assume that freeze-out, i.e., the transition from the
fluid-dynamical system to free-streaming particles happens
on a hypersurface of constant temperature. Unless otherwise
stated, we assume that the freeze-out temperature is Tdec =
100 MeV. We include all two- and three-particle decays of
hadronic resonances according to Ref. [20].

The transverse momentum distribution of hadrons is cal-
culated using the Cooper-Frye description [21]. For the final
spectra we need to know the local single-particle momentum
distribution functions of hadrons on the freeze-out surface.
Here, we employ the widely used 14-moment ansatz where
the correction to the local-equilibrium distribution f0i =
{exp[(uμp

μ

i − μi)/T ] ± 1}−1 of a hadron of species i with
four-momentum p

μ

i is given by [22]

δfi = f0i

p
μ

i pν
i πμν

T 2 (e + P )
, (8)

where πμν is the solution of Eq. (4). We note that this functional
form for δf is merely an ansatz but consistent with Eq. (4).
Other forms of δf are also possible, see, e.g., Ref. [23],
and a full treatment of the multicomponent system further
modifies δf ; see Refs. [24,25]. Furthermore, if dissipative fluid
dynamics is derived from the Boltzmann equation without
assuming the 14-moment approximation, the full expansion
of δf contains an infinite number of terms; for details see
Ref. [15]. The effect of this will be studied in a future work.

III. PARAMETERS

A. Equation of state

As EoS we use the recent s95p-PCE-v1 parametrization
of lattice QCD results [26]. In this parameterization, the
high-temperature part is matched to recent results of the
hotQCD collaboration [27,28] and smoothly connected to
the low-temperature part described as a hadron resonance
gas. All hadrons listed in Ref. [29] up to a mass of 2 GeV
are included in the hadronic part of the EoS. The system
is assumed to chemically freeze-out at Tchem = 150 MeV.
Below this temperature the EoS is constructed according to
Refs. [30–32]. This construction assumes that the evolution
below Tchem is isentropic. Strictly speaking this is not the
case in viscous hydrodynamics since dissipation causes an
increase in entropy. However, we have checked that in our
calculations the viscous entropy production from all fluid cells
with temperatures below Tchem = 150 MeV is less than 1%
of the initial entropy, whereas the entropy production during

the entire evolution ranges from 3 to 14%, depending on the
collision energy and the η/s parametrization.

B. Transport coefficients

The temperature-dependent shear viscosity is parametrized
as follows. In all cases, we take the minimum of η/s to be at
Ttr = 180 MeV. Unless otherwise stated, the value of η/s at
the minimum is assumed to equal the lower bound η/s = 0.08
conjectured in the framework of the AdS/CFT correspondence
[34].

The parametrization of the hadronic viscosity is based on
Ref. [35], where the authors consider a hadron resonance
gas with additional Hagedorn states. In practice, we use a
temperature dependence of η/s of the following functional
form [9,36]:

η

s

∣∣∣
HRG

= 0.681 − 0.0594
T

Ttr
− 0.544

(
T

Ttr

)2

. (9)

At T = 100 MeV this coincides with the η/s value given in
Ref. [35] and decreases smoothly to the minimum value η/s =
0.08 at Ttr. We note that many authors obtain considerably
larger values for the shear viscosity of hadronic matter; see,
e.g., Refs. [37]. Our motivation here is to illustrate the effects
of hadronic viscosity rather than to use a parametrization that
is as realistic as possible. We shall see that even this low
η/s leads to considerable effects for hadronic observables in
Au + Au collisions at RHIC. We further note that, since we are
considering a chemically frozen hadron resonance gas below
Tchem, while in Ref. [35] chemical equilibrium is assumed at all
temperatures, the entropy densities, and therefore the values
of η, differ between the two calculations at a given value of
T < Tchem.

The high-temperature QGP viscosity is parametrized ac-
cording to lattice QCD results [38] in such a way that it
connects to the minimum of η/s at Ttr. The functional form
used is

η

s

∣∣∣
QGP

= −0.289 + 0.288
T

Ttr
+ 0.0818

(
T

Ttr

)2

. (10)

We take the following four parametrizations of the shear
viscosity:

(1) (LH-LQ) η/s = 0.08 for all temperatures;
(2) (LH-HQ) η/s = 0.08 in the hadron gas, and above T =

180 MeV η/s increases according to Eq. (10);
(3) (HH-LQ) below T = 180 MeV, η/s is given by Eq. (9),

and above we set η/s = 0.08;
(4) (HH-HQ) we use Eqs. (9) and (10) for the hadron gas and

the QGP, respectively.

These parametrizations are shown in Fig. 1. Besides these
four cases we also study the effect of varying the value of the
minimum of η/s; see Secs. V and VII.

In order to complete the description, we also need to specify
the relaxation time. In this work we use a functional form
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FIG. 1. (Color online) Different parametrizations of η/s as a
function of temperature. The LH-LQ line is shifted downwards and
the HH-HQ line upwards for better visibility.

suggested by kinetic theory,

τπ = cτ

η

e + p
, (11)

where cτ is a constant. Causality requires that cτ � 2 [12].
Unless otherwise stated, we shall use the value cτ = 5, which
coincides with the value obtained from the Boltzmann equation
in the 14-moment approximation for a massless gas of classical
particles [39]. The relaxation times corresponding to the
parametrizations above are shown in Fig. 2. The effect of
varying the relaxation time separately from η is also studied
in Sec. V.

C. Initial state

We still need to specify the initial state at some proper time
τ0. For a boost-invariant system it is sufficient to provide the
components of the energy-momentum tensor in the transverse

0.0
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τ π
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m
]

T [GeV]
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FIG. 2. (Color online) Relaxation times corresponding to the
different parametrizations of η/s, for cτ = 5. The (LH-LQ) line is
shifted downward and the (HH-HQ) line is shifted upward for better
visibility.

plane at z = 0, i.e., ηs = 0. Within our approximations these
are the local energy density, the initial transverse velocity, and
the three independent components of the shear-stress tensor.
Here, we will assume that the initial transverse velocity is zero
and, unless otherwise stated, the initial shear-stress tensor is
also assumed to be zero.

For the initial time we choose τ0 = 1 fm. The energy density
e(τ0, x, y) is based on the optical Glauber model by assuming
that the energy density is a function of the density of binary
nucleon-nucleon collisions nBC, or the density of wounded
nucleons nWN, or both,

e(τ0, x, y) = Cef (nBC, nWN). (12)

The overall normalization, Ce, is fixed in order to reproduce the
observed multiplicities in the most central

√
sNN = 200 GeV

Au + Au collisions at RHIC, and in
√

sNN = 2.76 GeV
Pb + Pb collisions at LHC.

The centrality dependence of the multiplicity is reproduced
in this work in two different ways:

(1) BCfit: choosing f to be a polynomial in nBC,

f (nBC) = nBC + c1n
2
BC + c2n

3
BC. (13)

(2) GLmix: using a superposition of nBC and nWN,

f (nBC, nWN) = d1nBC + (1 − d1)nWN. (14)

Here, the coefficient c2 is introduced in order to guarantee
that the parameterizations are monotonically increasing with
increasing binary-collision or wounded-nucleon density. This
ensures that the highest energy density is in the center of the
system, i.e., at x = y = 0.

For a given impact parameter, the optical Glauber model
yields a different number of participants and different central-
ity classes than the Monte Carlo Glauber models commonly
used by the experimental collaborations. Using the optical
Glauber model, we can either choose to reproduce the
multiplicity as a function of the number of participants or as a
function of centrality classes. In general, this leads to different
coefficients ci and d1. Here, we choose to determine the initial
conditions by requiring that the centrality dependence of the
charged particle multiplicity as a function of the number of
participants [40,41] is reproduced. We have checked that,
if we determine the centrality dependence by matching to
the centrality classes given by the optical Glauber model,
the elliptic flow is more suppressed in central and enhanced
in peripheral collisions at RHIC energies, while at LHC
energies it remains practically unchanged. In order to be
fully consistent with the experimental determination of the
centrality classes, one would need to generate fluctuating
initial conditions via a Monte Carlo Glauber model; see, e.g.,
Refs. [42–44].

For
√

sNN = 5.5 TeV Pb + Pb collisions we use the
multiplicity in the most central collisions as predicted by the
EKRT model [45]. In this case the centrality dependence is
assumed to follow binary scaling, i.e., c1 = c2 = 0 in Eq. (13).
All initialization parameters are shown in Table I.

Different parametrizations of η/s lead to different entropy
production and therefore different final multiplicity, even if
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TABLE I. Initialization parameters for different collision en-
ergies. The maximum temperature Tmax is given for the BCfit
initialization with the (LH-LQ) parameterization of η/s. For the other
initializations Tmax differs less than 5%.

√
sNN [GeV] c1 [fm−2] c2 [fm−4] d1 Tmax [MeV]

200 − 0.032 0.00035 0.1 313
2760 − 0.01 0.0001 0.7 430
5500 0 0 1.0 504

the initial state is kept the same. This is especially true
for different parametrizations of the high-temperature shear
viscosity, since most of the entropy is produced during the
early stages of the collision [46]. We compensate this using
different overall normalizations, e.g., between the (HH-LQ)
and (HH-HQ) parametrizations. Entropy production during
the hadronic evolution is small and not compensated. The
centrality dependence of the entropy production is also
different for different η/s parametrizations. Since it leads to at
most a 5% difference in the final multiplicities and is hardly
visible in the results, it is not corrected here.

IV. RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

In this section we use the initializations and parametriza-
tions of η/s given above and compare the results with
experimental data from RHIC and LHC.

A. Transverse momentum spectra and elliptic flow at RHIC

In Fig. 3 we show the pT -spectra of pions for different
centrality classes for RHIC

√
sNN = 200 GeV Au + Au

collisions and compare them with PHENIX data [40]. We only
show results using the BCfit initialization; those for the GLmix
initialization are very similar. The freeze-out temperature is
chosen as Tdec = 100 MeV. This choice reproduces the slopes
of the pT -spectra quite well.

Once we correct the normalization of the initial energy
density profile for different entropy production (see discussion
at the end of Sec. III C), the slopes of the pT spectra are
practically unaffected by the η/s parametrizations. We note
that in our earlier work [9] this correction was not made, and
the different η/s parametrizations lead not only to different
multiplicities but also to different slopes for the pT spectra.
This effect was even more pronounced at LHC than at RHIC,
due to an increase in entropy production caused by larger
gradients appearing with an earlier initialization time τ0 =
0.6 fm.

The kaon spectra are shown in Fig. 4 and the proton spectra
in Fig. 5 with the BCfit initialization. Both are compared with
PHENIX data [40]. Because we do not consider net-baryon
number in our calculations, the proton and antiproton spectra
are identical. For this reason we show both the proton and the
antiproton data in Fig. 5.

For both kaons and protons, the calculated spectra are
slightly more curved than the data and they also lie above the
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FIG. 3. (Color online) Pion spectra at RHIC, with BCfit initial-
ization.

data. As for the pions, the slopes of the spectra are practically
independent of the η/s parametrization.

Figure 6 shows the pT -differential elliptic flow v2(pT ) of
charged hadrons for different centrality classes using the BCfit
initialization. Similarly, Fig. 7 shows the elliptic flow for the
GLmix initialization. The calculations are compared with the
four-particle cumulant data from the STAR collaboration [47].
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FIG. 4. (Color online) Kaon spectra at RHIC, with BCfit initial-
ization.
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FIG. 5. (Color online) Proton spectra at RHIC, with BCfit
initialization.

As was observed in Ref. [9], the differential elliptic flow is
largely independent of the high-temperature η/s parameteri-
zation, but highly sensitive on the hadronic η/s at RHIC. This
holds for all centrality classes. The suppression of the elliptic
flow due to the hadronic viscosity is even more enhanced
in more peripheral collisions. Note that with the BCfit
initialization, the elliptic flow in the most central collision class
is reproduced by the parametrizations with a large hadronic
viscosity, while with the GLmix initialization the elliptic flow
in the same centrality class is better described by taking
a constant η/s = 0.08. However, with the latter choice the
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FIG. 6. (Color online) Charged hadron v2(pT ) at RHIC, with
BCfit initialization.
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FIG. 7. (Color online) Charged hadron v2(pT ) at RHIC, with
GLmix initialization.

elliptic flow tends to be overestimated in more peripheral
collisions. On the other hand, the temperature-dependent
hadronic η/s gives the centrality dependence correctly down to
the 30–40% centrality class. In even more peripheral collisions
a large hadronic viscosity tends to suppress the elliptic flow
too much.

Figure 8 shows v2(pT ) for protons with the BCfit initial-
ization compared to the two-particle cumulant data from the
STAR collaboration [48]. The protons show qualitatively the
same response to the different η/s parametrizations as all
charged hadrons, i.e., v2(pT ) depends strongly on the hadronic
viscosity, but is almost independent of the high-temperature
η/s. Since we use a smooth initialization, with no initial-state
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FIG. 8. (Color online) Proton v2(pT ) at RHIC, with BCfit
initialization.
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FIG. 9. (Color online) Charged hadron spectra at LHC, with BCfit
initialization.

fluctuations included, quantitative comparisons with two- or
four-particle cumulant data are not straightforward.

B. Transverse momentum spectra and elliptic flow at LHC

Transverse momentum spectra of charged hadrons in most
central Pb + Pb collisions with

√
sNN = 2.76 TeV at LHC

are shown in Fig. 9. At LHC, both initializations BCfit and
GLmix give very similar results for both elliptic flow and
the spectra, because the contribution from binary collisions is
large, of order ∼70%; see Table I. Therefore, we show only
results with the BCfit initialization; these are compared to data
from the ALICE collaboration [49]. The calculated spectra are
somewhat flatter than the data. Here, we have used the same
decoupling temperature as at RHIC, i.e., Tdec = 100 MeV. We
could improve the agreement with the data by decoupling
at even lower temperature than at RHIC. Another way to
improve the agreement is choosing a larger chemical freeze-out
temperature. This would give steeper spectra, but the proton
multiplicity at RHIC would then be overestimated. However,
we have tested that the dependence of the spectra and the
elliptic flow on η/s is unchanged by these details.

As was the case at RHIC, at LHC the slopes of the spectra
are practically independent of the η/s parametrization. We
note that here we have used the initialization time τ0 = 1.0 fm,
i.e., the same as at RHIC. In Ref. [9] we observed a quite visible
correlation between the shear viscosity and the spectral slopes.
Here, the later initialization time and the fact that we now
compensate for the entropy production between different η/s

parametrizations almost completely removes this correlation.
However, the earlier the evolution starts, the more the viscosity
will affect the slopes.

The pT -differential elliptic flow for all charged hadrons
is shown in Fig. 10 and for protons in Fig. 11. The charged
hadron elliptic flow is compared with ALICE four-particle

0.00

0.05

0.10

0.15

0.20

0.25

v 2
(p

T
)

protons
LHC 2760 AGeV

10-20 %

(a)

LH-LQ
LH-HQ
HH-LQ
HH-HQ 20-30 %

(b)

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3

v 2
(p

T
)

pT [GeV]

30-40 %

(c)

0 1 2 3
pT [GeV]

40-50 %

(d)

FIG. 10. (Color online) Charged hadron v2(pT ) at LHC, with
BCfit initialization.

cumulant data [50]. We can see that in the 10–20% centrality
class, changing the hadronic η/s or changing the high-
temperature η/s has quite a similar impact on the elliptic
flow; e.g., the difference between the LH-LQ and LH-HQ and
between the LH-LQ and HH-LQ curves is nearly the same.
However, the more peripheral the collision is, the more the
viscous suppression is dominated by the hadronic η/s. This is
confirmed by comparing the grouping of the flow curves in the
40–50% centrality class at LHC with that at RHIC; cf. Figs. 6
and 10. As was the case in Au + Au collisions at RHIC, also
here the grouping of the curves for the protons is similar to
that of all charged hadrons; cf. Fig. 11.

Note that, within our set-up, the best agreement with the
ALICE data is obtained with the HH-HQ parametrization,
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FIG. 11. (Color online) Proton v2(pT ) at LHC, with BCfit
initialization.
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FIG. 12. (Color online) Charged hadron v2(pT ) at LHC 5.5 A
TeV, with BC initialization.

i.e., with a temperature-dependent η/s in both hadronic and
high-temperature phases. However, in the low-pT region our
calculations systematically underestimate the elliptic flow
in all centrality classes. As was the case with the pT

spectrum, decoupling at a lower temperature and choosing
a higher chemical freeze-out temperature would improve the
agreement, without changing the grouping of the elliptic flow
curves with the η/s parametrizations.

In Fig. 12 we show the pT -differential elliptic flow for√
sNN = 5.5 TeV Pb + Pb collisions. In this case the viscous

suppression of v2(pT ) is dominated by the high-temperature
η/s in central collisions, while peripheral collisions resemble
more the lower-energy central collisions at LHC; i.e., both
hadronic and high-temperature viscosity contribute similarly
to the suppression. Furthermore, the higher the pT , the more
the hadronic viscosity contributes to the suppression. This
happens mainly because δf increases with both viscosity and
pT .

V. EFFECTS OF SHEAR INITIALIZATION, MINIMUM OF
η/s AND RELAXATION TIME

One of the main results of Ref. [9] is that, at RHIC, the
high-temperature shear viscosity has very little effect on the
elliptic flow. In this section we elaborate more on this analysis
and explicitly show that this statement holds for an out-of-
equilibrium initialization of the shear-stress tensor as well. We
also study the effect of varying the relaxation time.

Figure 13 shows the elliptic flow of charged hadrons
in the 20–30% centrality class at RHIC. Instead of setting
πμν to zero initially, here the so-called Navier-Stokes (NS)
initialization where the initial values of the shear-stress tensor
are given by the first-order, asymptotic solution of IS theory,
Eq. (3). For all η/s parametrizations, the NS initialization
increases the entropy production (up to 30%), especially for
the parametrizations with a large high-temperature viscosity.
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STAR v2{4}

FIG. 13. (Color online) Charged hadron v2(pT ) at RHIC, with
BCfit and NS initialization.

This is corrected by adjusting the initial energy density to
produce approximately the same final multiplicity. Although
for the parametrizations with a large hadronic η/s the different
shear initializations give slightly different v2(pT ) curves, the
grouping of these curves remains intact. We emphasize that
the NS initialization gives very different initial conditions
for each viscosity parametrization. If we use the same
nonzero initial shear stress, e.g., πμν = const. × σμν , for each
parametrization, the resulting v2(pT ) curves in each group in
Fig. 13 would be even closer to each other.

The NS initialization with a constant η/s = 0.08 has a
relatively short relaxation time; see Fig. 2. Hence, for τπ � τ0

the NS initialization is not a completely unrealistic assumption
for the initial values of πμν . However, for larger values of η/s

the relaxation times are considerably larger, τπ � τ0, and there
is no reason to assume that the asymptotic solution could have
been reached already at very early times.

So far we have changed the shear-viscosity parametrization
by keeping the minimum fixed. In Fig. 14 we show the
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HH-HQ, η/smin = 0.16

FIG. 14. (Color online) Parameterizations of η/s as a function of
temperature. The (HH-HQ) line is the same as in Fig. 1.

014909-8



INFLUENCE OF A TEMPERATURE-DEPENDENT SHEAR . . . PHYSICAL REVIEW C 86, 014909 (2012)

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3

v 2
(p

T
)

pT [GeV]

charged hadrons

20-30 %

RHIC 200 AGeV

HH-HQ
η/smin = 0.16, cτ=5
η/smin = 0.16, cτ=10
STAR v2{4}

FIG. 15. (Color online) Charged hadron v2(pT ) at RHIC, with
BCfit initialization and for different minima of η/s and relaxation
times.

original HH-HQ parameterization and one where η/s around
the minimum is twice as large. Figure 15 shows three v2(pT )
curves for Au + Au collisions at RHIC: one with the original
HH-HQ parametrization, one with the larger minimum value
of η/s, and the last one with the same large minimum value of
η/s, but with a larger relaxation time; i.e., the constant in the
relaxation time Eq. (11) is cτ = 10 instead of cτ = 5. We note
that even a relatively small change in the η/s parameterization
near the minimum produces quite a visible change in v2(pT ).
At RHIC, this change can be almost completely compensated
by adjusting the relaxation time. This shows that in small,
rapidly expanding systems like the one formed in heavy-ion
collisions, transient effects have considerable influence on the
evolution. In other words, the relaxation time cannot be merely
considered as a way to regularize the unstable Navier-Stokes
theory: it has real physical effects that cannot be completely
distinguished from the effects of η/s. In

√
sNN = 2.76 TeV

Pb + Pb collisions at LHC, the effect of changing the minimum
or the relaxation time is practically the same.

VI. TIME EVOLUTION OF THE ELLIPTIC FLOW

One way to probe the effects of shear viscosity on the
elliptic flow is to calculate the time evolution of the latter.
Typically this is done by calculating the so-called momentum-
space anisotropy from the energy-momentum tensor,

εp = 〈T xx − T yy〉
〈T xx + T yy〉 , (15)

where the 〈· · ·〉 denotes the average over the transverse plane.
The problem is, however, that one cannot make a direct
connection of εp to the actual value of v2 obtained from the
decoupling procedure. Also, this way of studying the time
evolution does not take into account that, at fixed time, part
of the matter is already decoupled; i.e., the average over
the transverse plane includes also matter that is outside the
decoupling surface.
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FIG. 16. (Color online) Constant-temperature hypersurfaces
at decoupling (Tdec = 100 MeV), chemical freeze-out (Tchem =
150 MeV), and at the minimum of η/s (Ttr = 180 MeV) at different
collision energies. Also, examples of surfaces that are used in the
calculation of the time evolution of v2 are shown (dotted lines).

To overcome these two shortcomings of εp, we instead
calculate the v2 of pions from a constant-time hypersurface that
is connected smoothly to a constant-temperature hypersurface
at the edge of the fireball; see Fig. 16 for examples of
such hypersurfaces. Although the pions do not exist as real
particles before hadronization, the advantage is that the final
v2 we obtain matches the one of thermal pions from the full
decoupling calculation.
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FIG. 17. (Color online) Time evolution of v2 at different collision
energies.

Figure 17 shows the time evolution of v2 in Au + Au
collisions at RHIC, in

√
sNN = 2.76 TeV Pb + Pb collisions at

LHC, and in
√

sNN = 5.5 TeV Pb + Pb collisions at LHC. In
all cases, the evolution is calculated in the 20–30% centrality
class. These results confirm our earlier conjecture: at RHIC, the
different η/s parametrizations create very little difference in
the elliptic flow in the early stages of the collision, while at later
stages the suppression due to the hadronic viscosity takes over
and groups the v2 curves according to the hadronic viscosity. At
the intermediate LHC energy the impact of the QGP viscosity
is larger, and the final v2 still has a memory of this difference.
The hadronic viscosity has a similar impact on v2 as the QGP

0.0

0.1

0.2

0.3

0.10 0.20 0.30

η/
s

T [GeV]

x
Ti = 170 MeV

η/s = 0.08
η/s + mod.

FIG. 18. (Color online) Shear viscosity with a modified temper-
ature dependence.

viscosity. At the highest LHC energy the hadronic suppression
is small and the effect of the QGP viscosity clearly dominates
the grouping of the v2 curves. Interestingly, both LHC
evolutions show an increase of v2 around τ = 10 fm/c. This
is when the system is going through the chemical decoupling
stage. In the chemically frozen system, v2 tends to increase
more rapidly than in chemical equilibrium [32,33]. At RHIC,
the chemical decoupling happens earlier, and also the hadronic
suppression is stronger, and the increase in v2 is washed out.

VII. PROBING THE EFFECTS OF A
TEMPERATURE-DEPENDENT η/s ON THE vn’s

In this section, we try to probe the effects of a temperature-
dependent η/s on the azimuthal asymmetries in a more detailed
way. To this end, we introduce a modified η/s. Our baseline
is a constant η/s|c = 0.08 that we then modify near some
temperature Ti according to

η

s
(T ) = η

s

∣∣∣
c

{
1 + 2

[
exp

( |T − Ti | − δT

�

)
+ 1

]−1
}

, (16)

where the parameters are taken to be δT = 10 MeV and � =
1.5 MeV. One example of this η/s parametrization is shown in
Fig. 18. We note that, although we use smooth initial conditions
from the optical Glauber model, we still get nonzero vn for all
even n. Although these are much smaller than the ones obtained
with the fluctuations included, we can still probe the effects
of viscosity on these coefficients. In general, one expects that
the viscosity affects higher harmonics more than the elliptic
flow [43,51]. By changing the temperature Ti and comparing
the simulations with a constant η/s we can find the temperature
regions where v2 or v4 are most sensitive to changes of η/s at
different collision energies.

Figure 19 shows the results for v2 and v4 in the 20–
30% centrality class for RHIC and for both LHC energies
considered earlier. We plot the relative difference δvn/vn,
where δvn = vn[η/s(T )] − vn(η/s|c). Each point in the figure
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FIG. 19. (Color online) Effects of modified η/s on v2 and v4.

corresponds to a different calculation, with a different value
of Ti in Eq. (16). Similarly, Fig. 20 shows the same result but
without the δf contribution to the freeze-out.

The viscosity can affect vn in two ways: by changing
the space-time evolution of the integrated quantities like the
energy density or by changing the local particle-distribution
function at freeze-out. With our small baseline viscosity, the
effect on the local distribution function is quickly washed out
during the evolution below the temperature Ti . Therefore, in
these simulations, in most of the temperature points, the change
in η/s affects vn through the space-time evolution, except at
the lowest-temperature point Ti = 110 MeV, where the peak
in η/s is close to the freeze-out temperature Tdec = 100 MeV.
If we exclude the lowest temperature point in v4 at RHIC, we
can read off from the figures that the temperature region where
viscosity affects both v2 and v4 most is around the transition
region T ∼ 150 . . . 200 MeV. For v2 this temperature region
shifts slightly toward higher temperatures with increasing col-
lision energy, while for v4 the temperature where the effect is
maximal is practically unchanged. Other than this, the overall
behavior of v2 and v4 is quite similar. At high temperatures,
the effect of η/s increases with increasing collision energy,
while at low temperatures the viscous suppression decreases
with increasing collision energy, which is most notable for
the Ti = 110 MeV point where the viscosity effects on the
freeze-out distribution are strongest.

For v2 we observed earlier that the suppression due to the
hadronic viscosity practically vanishes at the highest-energy
LHC collisions. This is again confirmed in Fig. 19. This is,
however, not true for higher harmonics. For v4 there is still
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FIG. 20. (Color online) Same as Fig. 19 but without the δf

contribution.

a significant contribution from hadronic viscosity at the full
LHC energy. In this sense, higher harmonics do not give direct
access to the high-temperature viscosity but can rather help
in constraining the hadronic dynamics and viscosity as well
as the correct form of δf . This is also important since the
hadronic evolution always tends to shadow the effects of the
properties of the high-temperature matter.

VIII. CONCLUSIONS

We have studied the effects of a temperature-dependent η/s

on the azimuthal asymmetries of hadron transverse momentum
spectra. We found earlier [9] that the viscous suppression
of the elliptic flow is dominated by the hadronic viscosity
in

√
sNN = 200 GeV Au + Au collisions at RHIC, while in

Pb + Pb collisions at the full LHC energy
√

sNN = 5.5 TeV
the suppression is mostly due to the high-temperature shear
viscosity. In this work we have supplemented these earlier
studies with more details.

First, we found that the suppression of the elliptic flow
due to the shear viscosity becomes more important in more
peripheral collisions. At least in our set-up, for RHIC energies a
temperature-dependent shear viscosity improves the centrality
dependence of the elliptic flow compared to the data, similarly
to what was found in the hybrid approach of Ref. [5]. With
a constant η/s = 0.08 and with the GLmix initialization,
the measured v2(pT ) is reproduced in the most central
collisions, but the calculations give a too large elliptic flow for
peripheral collisions. However, with the BCfit initialization
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the elliptic flow in the most central collisions is reproduced
with a temperature-dependent viscosity and also the centrality
dependence is reproduced down to the 30–40% centrality class.
Similarly, in Pb + Pb collisions at LHC both a temperature-
dependent hadronic η/s as well as an increasing η/s in the
high-temperature phase help in reproducing the centrality
dependence. Although there are lots of uncertainties associated
with the decoupling and the initial state, at RHIC the centrality
dependence of v2(pT ) may give access to the temperature
dependence of η/s in hadronic matter.

Furthermore, we have studied the effects of a temperature-
dependent η/s in a more detailed way. We found that for a
given collision energy both v2 and v4 are most sensitive to
the shear viscosity near the transition temperature, i.e., T ∼
150–200 MeV. For v2, this region moves slightly to higher
temperature and widens with increasing collision energy, while
for v4 it remains practically unchanged. Other than that, the
dependence of v2 and v4 on η/s is similar with increasing
collision energy: the effect of the hadronic viscosity decreases
and the effect of the high-temperature viscosity increases.

For v2 the effect of δf almost vanishes at the highest
collision energies, but for v4 it always remains significant.

At RHIC the δf corrections clearly dominate v4, and even
at the highest collision energies this effect is comparable to
the effects due to the modified space-time evolution. In this
sense, higher harmonics give access to the δf corrections
and the hadronic viscosity rather than the high-temperature
viscosity.
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Jyväskylä University where part of this work was done. The
work of H.N. was supported by the ExtreMe Matter Institute
(EMMI) and the Academy of Finland, Project No. 133005,
that of P.H. by BMBF under Contract No. 06FY9092, and
that of E.M. by the Hungarian National Development Agency
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Quarks produced in the early stage of noncentral heavy-ion collisions could develop a global spin polarization
along the opposite direction of the reaction plane due to the spin-orbital coupling via parton interaction in a
medium that has finite longitudinal flow shear along the direction of the impact parameter. We study how such
polarization evolves via multiple scattering in a viscous quark-gluon plasma with an initial laminar flow. The
final polarization is found to be sensitive to the viscosity and the initial shear of local longitudinal flow.
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I. INTRODUCTION

The observed jet quenching and collective phenomena in
high-energy heavy-ion collisions at the Relativistic Heavy Ion
Collider (RHIC) provide strong evidence of the formation of
strongly coupled quark-gluon plasma (QGP) [1,2]: The strong
quenching of high transverse momentum jets is understood
to be caused by parton energy loss induced by multiple
collisions of the leading parton with color charges in the
thermal medium [3–8]; the observed collective flow in the
final bulk hadron spectra indicates a hydrodynamic behavior
of the initial dense matter as an almost perfect fluid with a
very small shear viscosity [9,10], η/s � 0.5. The large jet
transport parameter from the observed strong jet quenching
and small shear viscosity inferred from the collective flow
can be connected to each other through a transport process
in a strongly coupled system [11]. They both describe the
ability of the medium partons to transfer momentum via strong
interaction in QCD and maintain local equilibrium. Globally,
such transport processes help to dissipate variations of flow
velocities and thus will reduce the anisotropic flow, which is
driven by the initial geometric anisotropy [9,10]. In this paper,
we discuss the possibility of global quark spin polarization
caused by such transport processes in noncentral high-energy
heavy-ion collisions.

It was first proposed by Liang and Wang [12] that global
quark polarization could occur in the QGP formed in a
noncentral heavy-ion collision. They argued that at a finite
impact parameter, the initial partons produced in the collision
can develop a longitudinal fluid shear distribution representing
local relative orbital angular momentum (OAM) in the same
direction as the global OAM of the noncentral nucleus-nucleus
collisions. Since interaction via one-gluon exchange in QCD
contains a spin-orbital coupling, the OAM could cause a global
spin polarization of quarks and antiquarks in the direction
parallel to the OAM. Such a global (anti)quark polarization
should have many observable consequences such as global
hyperon polarization [12,13], vector meson spin alignment
[12,14], and the emission of circularly polarized photons [15].
Predictions have been made [12,14–17] for these measurable
quantities as functions of the global quark polarization Pq .

Experimental measurements of the � hyperon polarization
with respect to the reaction plane at RHIC [18–25] place a
limit |P�,�̄| � 0.02 [19,24]. Such a limit puts a stringent test
on both the initial shear of longitudinal flow in noncentral
heavy-ion collisions [17] as well as the time evolution of the
polarization through transport processes.

The estimates of the global quark polarization in Ref. [12]
and in subsequent studies [16,17,26,27] were all obtained by
considering the polarization process for a single scattering
between quarks and thermal partons. However, one should
consider the effect of the multiple scattering and expect that
the quarks will be progressively polarized through multiple
scattering. Furthermore, with the minimum values of shear
viscosity η/s � 1/4π in QGP imposed by the quantum limit,
the local momentum shear, dpz/dx, of the fluid, that is,
the local OAM of interacting parton pairs, will decay with
time. This will lead to a nontrivial time evolution of quark
polarization P depending on the shear viscosity of the QGP
matter and the final state observed global polarization could
serve as a viscometer of QGP. In this paper, we focus on these
two issues with a simple and yet interesting hydrodynamic
evolution of a relativistic laminar flow between two frictionless
impenetrable walls.

The rest of the paper is organized as follows. In Sec. II,
we extend the calculation in Ref. [12] to the case of scattering
of an initially polarized quark in a static potential model. In
Sec. III, we study the relativistic laminar flow and compute
the decay of the longitudinal momentum gradient. The results
of Secs. II and III are applied to Sec. IV to study the time
evolution of the quark polarization.

II. POLARIZATION OF INITIALLY POLARIZED QUARKS

We consider two colliding nuclei with the beam projectile
moving in the direction of ẑ and the impact parameter b
defined as the transverse distance of the projectile from the
target nucleus along the x̂ direction as illustrated in the
upper panel of Fig. 1. The direction ŷ defines the reaction
plane, ŷ ∝ ẑ × x̂. The initial OAM of these two colliding
nuclei is along the direction opposite to the reaction plane
and could be very large. Given 1 fm < b < 10 fm, the initial
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OAM L0 � Ab
√

s/2 is roughly 105 � L0 � 106 for Au-Au
collisions at RHIC energy

√
s = 200 GeV and 3 × 106 �

L0 � 3 × 107 for Pb-Pb collision at Large Hadron Collider
energy

√
s = 5.5 TeV. Because of the unequal local number

density of the participant projectile and target nucleons at
various transverse positions, some fraction of this large OAM
could be transferred into the produced QGP matter in the
overlapping region. Such global angular momentum, however,
would never lead to a collective rotation of the system
since there is no strong binding or attractive interaction in
the partonic interaction at high energy. Instead, it could be
manifested in the finite transverse (along x̂) gradient of the
average longitudinal momentum pz per produced parton due
to the partonic interaction at high energy (see the lower
panel of Fig. 1). Given the range of interaction �x, two
colliding partons will have relative longitudinal momentum
�pz = �xdpz/dx with relative OAM Ly ∼ −�x�pz. This
relative OAM will lead to global quark polarization along −ŷ
through the spin-orbital coupling in QCD. This is essentially
the argument that was first proposed in Ref. [12]. It was found
that the quark polarization via a single scattering with given
relative momentum p reads

P ≡ �σ

σ
≡ σ↑ − σ↓

σ↑ + σ↓
= − πμp

2E(E + m)
, (2.1)

where σs, s =↑,↓ is the cross section of final quark with
spin s along ŷ, m is the mass of interacting quark, and μ

is the Debye screening mass of longitudinal gluon, μ2 =
g2(Nc + Nf /2)T 2/3. The initial relative momentum p can
be estimated as p � �xdpz/dx with �x ∼ μ−1 being the
characteristic range of interaction. Then p/μ is nothing but
the relative orbital angular momentum between the scattering
quarks, Ly ∼ −p/μ. In the nonrelativistic limit for mas-
sive quarks, P is proportional to the spin-orbital coupling
energy P ∝ ELS/μ, where ELS = ( 	L · 	S)(dV0/dr)/rm2 and
(dV0/dr)/r ∼ μ3 with typical interaction range r ∼ 1/μ.

The estimates in Refs. [12,16] and [17] were based on the
assumption that the initial quarks are not polarized. In order
to discuss the time evolution of the quark polarization via
multiple scattering, one must calculate the quark-quark cross
section of initially polarized quarks. Let the fraction of initial
quarks of spin λi/2 along ŷ be Rλi

= (1 + λiPi)/2 with Pi

being the initial polarization. The identity R+ + R− = 1 must
hold. Consider a quark with initial relative four-momentum
pμ = (E, p) and spin λi/2 scattering with a virtual gluon and
resulting in final spin λf /2; the cross section with fixed impact
parameter xT is

dσλf

d2xT

= CT

∑
λi

∫
d 2qT

(2π )2

∫
d 2kT

(2π )2
ei(kT −qT )·xT

×Rλi
Iλf λi

(kT , qT , E),

Iλf λi
≡ Mλf λi

(qT , E)M∗
λf λi

(kT , E), (2.2)

Mλf λi
(qT , E) = g

2E
ūλf

(pq)A/(qT )uλi
(p),

where CT = 2/9 is the color factor associated with the target,
qT (kT ) is the transverse momentum transfer from the virtual
gluon to quark, and p

μ

q(k) is the final four-momentum of

FIG. 1. (Color online) Illustration of noncentral collisions with
impact parameter b of two heavy nuclei with radii RA. The global
angular momentum of the produced matter is along −ŷ, opposite to
the reaction plane.

quark, p
μ

q(k) = pμ + [0, qT (kT )]. We use the screened static
potential model to calculate Mλf λi

in which Aμ = (A0, 0)
with A0(qT ) = g/(q2

T + μ2) [3].
For small angle scattering (which is justified when the

relative longitudinal momentum p is large), qT , kT ∼ μ � E,
one finds

Iλf λi
≈ g2

2
A0(qT )A0(kT )

{
1 + λiλf

+ 1

2E(E + m)
[(1 + λiλf )p · (qT + kT )

+ i(λi + λf )p · ŷ × (kT − qT )]

}
. (2.3)

From Eqs. (2.2) and (2.3), it is evident that the polarization
will not change if one averages the cross section over all
the possible directions of the parton impact parameter xT .
However, in noncentral heavy-ion collisions, the local relative
OAM Ly provides a preferred average reaction plane for parton
collisions. This will lead to a global quark polarization opposite
to the reaction plane of nucleus-nucleus collisions. This
conclusion should not depend on our perturbative treatment of
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parton scattering as far as the effective interaction is mediated
by the vector coupling in QCD. Therefore, we average over
the upper half-xy-plane with x > 0, that is, average over
the relative angle between parton xT and the nuclear impact
parameter b from −π/2 to π/2 and over xT . To do this, we
use the identity∫

x>0
d2xT ei(kT −qT )·xT = 2πiδ(ky − qy)

kx − qx + i0+ . (2.4)

Then the total unpolarized cross section reads

σ ≡
∫

x>0
d2xT

dσ

d2xT

≡
∫

x>0
d2xT

(
dσ+
d2xT

+ dσ−
d2xT

)

=
∫ ∞

0
dqT qT

CT g4

4π
(
q2

T + μ2
)2

×
⎡
⎣1 − Pi

p

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m)

⎤
⎦

= CT g4

8πμ2

[
1 − Pi

πμp

2E(E + m)

]
, (2.5)

and the polarized cross section reads

�σ ≡
∫

x>0
d2xT

d�σ

d2xT

≡
∫

x>0
d2xT

(
dσ+
d2xT

− dσ−
d2xT

)

=
∫ ∞

0
dqT qT

CT g4

4π
(
q2

T + μ2
)2

×
⎡
⎣Pi −

p

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m)

⎤
⎦

= CT g4

8πμ2

[
Pi − πμp

2E(E + m)

]
, (2.6)

where K(x) is the complete elliptic integral of the first kind.
The final global quark polarization is then

Pf = Pi −
(
1 − P 2

i

)
πμp

2E(E + m) − Piπμp
. (2.7)

It is also useful to get the transverse momentum dependence
of the quark polarization. From Eqs. (2.5) and (2.6), we read
out the differential cross sections,

d�σ

dqT

= qT

CT g4

4π
(
q2

T + μ2
)2

×
⎡
⎣Pi −

p

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m)

⎤
⎦ , (2.8)

dσ

dqT

= qT

CT g4

4π
(
q2

T + μ2
)2

×
⎡
⎣1 −

Pip

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m)

⎤
⎦ .

(2.9)

FIG. 2. The TMDP as a function of transverse momentum in unit
of μ. The initial relative longitudinal momentum is chosen to be
p = 10μ.

The transverse-momentum-dependent polarization (TMDP)
defined as Pf (qT ) ≡ (d�σ/dqT )/(dσ/dqT ) now reads

Pf (qT ) =
πE(E + m)Pi − p

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m) − Pip

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
) .

(2.10)

Some discussions are in order. (i) If the initial quark
is unpolarized, Pi = 0, we recover the result of Ref. [12].
(ii) Because the denominator is always positive in the right-
hand side (RHS) of Eq. (2.7) for high relative longitudinal mo-
mentum (i.e., when small angle approximation is applicable),
we always have Pf � Pi . Therefore, scattered quarks always
prefer to be polarized along −ŷ direction. (iii) The scattering
matrix elements Iλf λi

with spin flipping (λf = −λi) are zero
according to Eq. (2.3), so there is no flipping of quark’s spin
via the scattering under this small angle approximation. The
polarization in the final state is caused by the larger cross
section of quarks with spin up relative to quarks with spin
down. This will lead to the conclusion that if the initial quark
is completely polarized, Pi = ±1, we must have Pf = Pi .
This is indeed the case expressed in Eq. (2.7) when Pi = ±1.
(iv) The quark polarization has a remarkable transverse mo-
mentum dependence, as shown in Eq. (2.10). Figure 2 shows
the typical behavior of TMDP as a function of the transverse
momentum with given p = 10μ. The polarization grows with
the transverse momentum due to quark-quark scattering. In
principle, the �-hyperon polarization should have similar
transverse momentum dependence, although as we mentioned
in Sec. I it is not trivial to construct a correspondence between
quark polarization and hadron polarization.
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FIG. 3. (Color online) Illustration of the velocity profiles of the
relativistic laminar flow.

III. RELATIVISTIC LAMINAR FLOW

Before discussing how the quark polarization evolves in
a viscous QGP due to multiple scattering, we have to know
how the QGP itself evolves through either transport model or
viscous hydrodynamical model [9,10,28–32], Moreover, we
also have to know the initial profile of the longitudinal flow
field. In the discussion in Sec. II, we simply followed Ref. [12]
and assumed that nothing depends on the longitudinal position
in the system. In such a case, the finite angular momentum
must lead to a velocity profile depicted in Fig. 3 (see Ref. [33]
for a discussion of possible consequences of such a profile). On
the other hand, another extreme is to assume that dvz/dx ≡
0 everywhere, but the angular momentum is carried by the
matter distribution in the reaction plane; see Ref. [34] for
illustration.

To study the effect of viscosity on the decay of the
local angular momentum, we consider a simple laminar flow
without driving force between two frictionless (free-slip flow)
impenetrable walls. We assume the walls are infinitely large
and separated by a distance 2h. To make dimensions relevant
for a heavy-ion collision, we set h = 5 fm. Such a scenario
might be far from the real longitudinal flow profile in high-
energy heavy-ion collisions, but it will be very illustrative
for our study here. We further assume that the flow profile
has no longitudinal variation and the system has a reflection
symmetry respect to the yz plane. We study two cases: One
with no expansion, and another with boost-invariant expansion
in y direction, that is, with flow profile vy = y/t . In both cases,
the flow four-velocity in the reaction plane has the general
form uμ = (γ, γ vx, 0, γ vz) with γ ≡ 1/

√
1 − v2

x − v2
z and

vx,z(t, x) being the x and z components of the three-velocity.
As is well known, the relativistic Navier-Stokes hydrody-

namics is unstable and provides a possibility for acausal signal
velocities [35]. Therefore, we use the second-order theory by
Israel and Stewart [36] instead. Although hydrodynamics has
been widely used to model the heavy-ion collisions, as far
as we know, there is no literature discussing the relativistic
laminar flow.

If there are no conserved charges, the hydrodynamical
equations of motion are given by the conservation of energy
and momentum

∂μT μν = 0, (3.1)

where T μν ≡ (ε + )uμuν − gμν + πμν is the energy-
momentum tensor, ε is the energy density,  is the pressure,1

and πμν is the shear stress tensor. To close the set of differential
equations, one also needs to specify an equation of state (EOS)
ε = ε(). For simplicity, we use the ideal gas EOS ε = 3.

In its simplest form, Israel-Stewart hydrodynamics means
that instead of being directly proportional to the velocity
gradients, the shear stress tensor is a dynamical variable, which
relaxes toward the Navier-Stokes value on its relaxation time
τπ :

Dπμν = − 1

τπ

(πμν − 2η∇〈μuν〉) − 2πκ(μuν)Duκ, (3.2)

where D ≡ uλ∂λ, A(μν) ≡ (Aμν + Aνμ)/2, A〈μν〉 ≡
[�(μ

α �
ν)
β − 1

3�μν�αβ]Aαβ , ∇μ ≡ ∂μ − uμuν∂ν , �μν ≡
gμν − uμuν , and η is the shear viscosity coefficient. The last
term is required to keep the shear stress tensor orthogonal to
the flow velocity in all circumstances. This is the so-called
truncated Israel-Stewart equation. Although there are more
terms in a complete Israel-Stewart equation, for our purpose
here, the truncated one is sufficient.

The relaxation time is given by [36]

τπ = 2ηβ2, (3.3)

which is dependent on the shear viscosity and another
coefficient β2. For massless Boltzmann particles, the kinetic
theory gives [36]

β2 = 3

4
. (3.4)

If there is no phase transition, it is expected that β2 for
Fermion and Boson gases have only minor modification from
β2 for Boltzmann gas at high temperature [37–42]. Taking
temperature T ∼ 350 MeV, the relaxation time is around
τπ ∼ 0.27–1.35 fm if using η/s = 1/(4π ) − 5/(4π ), where
s is the entropy density, and for free gluon gas it is

s = νg

2π2T 3

45
, (3.5)

with the degeneracy factor νg = 2(N2
c − 1).

Since the system has reflection symmetry with respect to
the yz plane, and there are no particle, momentum, or heat
flow through the hard walls, the system obeys the following
boundary conditions:

vz(t, 0) = vx(t, 0) = vx(t,±h) = 0,
(3.6)

∂vz(t,±h)/∂x = 0.

As the initial state we choose uniform initial temperature of
355 MeV (corresponding to RHIC initial temperature), no flow
in x direction, and a simple sine-type longitudinal flow velocity
profile

vx(t0, x) = 0,
(3.7)

vz(t0, x) = v0 sin (πx/2h),

1Note that since we used P to denote polarization, to avoid
confusion we do not use it to denote pressure.
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where v0 is the magnitude of the initial velocity at the
two boundaries. In the following numerical calculation, we
consider two cases: v0 = 0.7 and 0.9. In the expanding case,
we use the initial time τ0 = 1 fm. Since the shear stress tensor
is a dynamical variable in Israel-Stewart hydrodynamics, we
need its initial value too. A natural choice is the Navier-Stokes
value, but its exact evaluation is difficult. It contains the time
derivative of the flow velocity, which is unknown before the
hydrodynamic equation is solved. To avoid this problem, we
initialize the shear stress, not to its exact Navier-Stokes, but to
a “static Navier-Stokes” value; that is, we ignore all the time
derivatives in the Navier-Stokes definition of the shear stress
tensor and calculate the value based on spatial derivatives only.
In practice this means that some components of the tensor
are slightly larger and some slightly smaller than their exact
Navier-Stokes values.

In Fig. 4, we depict the time evolution of the gradient of the
longitudinal momentum per particle averaged over x ∈ [0, h],

〈
dpz

dx

〉
≡

∫ h

0
dxJ 0(x)

d

dx

T 0z(x)

J 0(x)

/ ∫ h

0
dxJ 0(x), (3.8)

where J 0 = γρ is the proper particle number density. As
expected, the shear viscosity dissipates the average gradient
of the longitudinal momentum, especially for larger values
of shear viscosity. The transverse expansion accelerate this
degradation, since strong transverse expansion means larger
shear (shear tensor).

In the case of transverse expansion and large viscosity,
there appear to be a “shoulder” in the time evolution of the
longitudinal momentum gradient 〈dpz/dx〉 as shown in the
lower panel of Fig. 4, where the gradient drops very fast
initially and then slows down for a while before it decreases
again. The temporary slowdown is caused by the oscillatory
behaviors of the induced transverse flow in the x direction, and
the particle number density J 0, which is used as a weight in
the calculation of the average longitudinal momentum gradient
in Eq. (3.8). The oscillations are an artifact of the fixed-wall
boundary conditions in our simple scenario. When there is no
transverse expansion, the degradation is slower and there is no
shoulder because of the smaller shear (in shear tensor).

In Fig. 5, we show the profiles of velocity vz at different
times with viscosity η/s = 5/4π with (lower panel) and with-
out (upper panel) transverse expansion. One of the functions of
the shear viscosity is to transform the kinetic energy of the fluid
to internal energy, hence damping the fluid shear (as shown in
Fig. 5) and heating up the fluid. This can be explicitly seen in
the upper panel of Fig. 6, where the temperature evolution is
shown for the nonexpanding system. The transverse Bjorken
expansion in our problem, however, will dilute the system and
cool the system down, overcoming the slight heating up by
the shear viscosity, as shown in the lower panel of Fig. 6. The
transverse expansion will also accelerate the degradation of
the longitudinal velocity as shown in the lower panel of Fig. 5
as compared to the upper panel for the case of no transverse
expansion.

FIG. 4. (Color online) Evolution of the average gradient of the
longitudinal momentum per particle, dpz/dx, at different shear
viscosities. Upper panel: the system has no transverse expansion.
Lower panel: the system has Bjorken expansion in the ŷ direction.

IV. EVOLUTION OF THE GLOBAL QUARK
POLARIZATION

With the model of time evolution of the longitudinal
momentum gradient of the medium partons, we can now
study the time evolution of the quark polarization when it
is progressively polarized due to multiple scattering.

According to Eq. (2.7), the change of polarization caused
by one scattering is

�P ≡ Pf − Pi = −
(
1 − P 2

i

)
πμp

2E(E + m) − Piπμp
. (4.1)

For convenience, we denote P = Pi . Then we get the following
evolution equation for the polarization:

dP

dt
≡ �P

τq

= − 1

τq

(1 − P 2)πμp

2E(E + m) − Pπμp
, (4.2)
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FIG. 5. (Color online) The profile of longitudinal velocity vz at
different times with η/s = 5/4π .

where τq is the mean free path of quark, which is related
to the transport cross section σtr of the interacting partons
though τq � 1/(ρσtr), where ρ = νgζ (3)T 3/π2 is the density
of medium gluons, assuming gluons are the dominant degrees
of freedom in the medium. The shear viscosity for a thermal
ensemble of gluons is roughly [43]

η � 1
3ρ〈ptr〉 4

9τq ≈ T 4
9ρτq. (4.3)

We have then the final rate equation for the time evolution of
the quark polarization,

dP

dt
= −4Tρ

9s

s

η

(1 − P 2)πμp

2E(E + m) − Pπμp
. (4.4)

From Eq. (4.4), the rate dP/dt is inversely proportional to
the viscosity. This is evidently shown in the upper panel of
Fig. 7, in which the evolutions of the quark polarizations are
shown for the initial polarizations P (0) = 0 and for a system
without transverse expansion. With transverse expansion, the
mean free path increases more rapidly with time and therefore
slows down the polarization rate. The transverse expansion

FIG. 6. (Color online) Evolution of the average temperature 〈T 〉
with different shear viscosities and different initial velocities. Upper
panel: the system has no transverse expansion. Lower panel: the
system is Bjorken expanding in the ŷ direction.

also accelerates the degradation of the longitudinal momentum
gradient, reducing the polarization in each scattering. Both
effects slow down the time evolution of the polarization in an
expanding system as shown by comparison between the upper
and lower panels of Fig. 7.

Because of the reheating by viscous interaction, the
initial cooling of the system due to transverse expansion is
significantly slower for a larger value of shear viscosity, as
shown in Fig. 6. This speeds up the polarization according
to Eq. (4.4). However, a larger shear viscosity also slows
down the polarization because the polarization rate is inversely
proportional to the shear viscosity. During the early stage of
evolution, the second effect dominates, leading to a slower
polarization process with a larger value of shear viscosity. At
a later time, effect of reheating becomes more dominant and a
larger shear viscosity leads to a faster polarization process.

The polarization is also sensitive to the initial condition of
the longitudinal flow shear. In our simple laminar flow model,
the initial longitudinal flow shear is proportional to the value
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FIG. 7. (Color online) Evolution of the average polarization P =
�σ/σ with initial polarization P (t0) = 0 with different values of
viscosities without (upper panel) and with (lower panel) transverse
expansion.

of v0. The nonlinear dependence of the polarization rate on the
relative momentum p in Eq. (4.4) determines the nontrivial
dependence of the polarization on the values of v0 as shown
in Fig. 7.

Note that the polarization rate we used are derived with
the approximation of small angle scattering, which is only
valid when the longitudinal momentum gradient is large. For
large shear viscosity η/s and at late time, the longitudinal
momentum gradient can become too small. One can no longer
use the rate equation derived here. However, one can assume
that the polarization process will stop at this point when there
is not significant local orbital angular momentum.

V. SUMMARY

In conclusion, we have calculated the polarization cross
section for quarks with initial polarization within the frame of
perturbative QCD, which we use to study the time evolution of
the quark polarization via multiple scattering in a medium with
nonvanishing local orbital angular momentum. We considered
the simple case of laminar flow as governed by viscous
hydrodynamics with given shear viscosity η/s and a simple
illustrative initial condition. Such a simple hydrodynamic
model provides the dynamic evolution of the longitudinal
flow shear as the polarization mechanism for quarks via
parton scattering. Because the values of the shear viscosity
influence the degradation of the longitudinal flow shear with
time and the cooling of the system, it also determines the time
evolution of the quark polarization. Since the polarization rate
is inversely proportional to the shear viscosity and depends
nonlinearly on the average longitudinal momentum shear, the
final quark polarization is found to be sensitive to the shear
viscosity but has a nontrivial dependence. In this sense, one
can use the final-state polarization as a possible viscometer of
the QGP.

For more realistic studies, one should employ a full scale
3 + 1D viscous hydrodynamics [32] with initial conditions
from Monte Carlo models such as HIJING [44]. The initial
parton production from this kind of model has approximate
Bjorken scaling, which will give rise to very small initial
local longitudinal flow shear [17] except at very large rapidity
regions. Such small initial local longitudinal flow shear comes
from the violation of the Bjorken scaling, which one can use
as the initial condition. Furthermore, one should also extend
the current calculation of the quark polarization beyond the
small angle approximation.
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A comprehensive viscous hydrodynamic fit of spectra and elliptic flow for charged hadrons and identified
pions and protons from Au + Au collisions of all centralities measured at the Relativistic Heavy Ion Collider
(RHIC) is performed and used as the basis for predicting the analogous observables for Pb + Pb collisions at the
Large Hadron Collider (LHC) at

√
s = 2.76 and 5.5A TeV. Comparison with recent measurements of the elliptic

flow of charged hadrons by the ALICE experiment shows that the model slightly overpredicts the data if the
same (constant) specific shear viscosity η/s is assumed at both collision energies. In spite of differences in our
assumptions for the equation of state, the freeze-out temperature, the chemical composition at freeze-out, and the
starting time for the hydrodynamic evolution, our results agree remarkably well with those of Luzum [Phys. Rev.C
83, 044911 (2011)], indicating robustness of the hydrodynamic model extrapolations. Future measurements of
the centrality and transverse momentum dependence of spectra and elliptic flow for identified hadrons predicted
here will further test the model and shed light on possible variations of the quark-gluon transport coefficients
between RHIC and LHC energies.

DOI: 10.1103/PhysRevC.84.044903 PACS number(s): 25.75.Ld, 12.38.Mh, 24.10.Nz

I. INTRODUCTION

The first measurement of elliptic flow in Pb + Pb collisions
at the Large Hadron Collider (LHC) has just been reported [1].
The elliptic flow coefficient v2 characterizes the momentum
anisotropy of final particle emission in noncentral heavy-ion
collisions relative to the event plane, defined by the beam
direction and the minor axis of the nuclear overlap region in the
collision. It describes the efficiency of the medium generated
in the collision to generate from an initial spatial deformation
of its density distribution an asymmetry in the final momentum
distribution, through interactions of the medium constituents.
This efficiency increases with the coupling strength between
those constituents and becomes maximal for an infinitely
strongly coupled medium. In this limit the mean free path
of the constituents becomes as small as allowed by the
uncertainty relation [2], and the medium very quickly reaches a
state of approximate local thermal equilibrium, which allows
us to describe its evolution with fluid dynamics. For given
initial spatial deformation of the collision fireball, ideal fluid
dynamics (in which zero mean free path is assumed) is
expected to generate the largest possible elliptic flow [3].
Shear viscosity, a consequence of nonzero mean free paths
and limited from below by quantum mechanics [2,4], will lead
to a suppression of v2 [5,6].

Compelling evidence for fluid dynamical behavior of
the collision fireballs created in ultrarelativistic heavy-ion

*shen@mps.ohio-state.edu
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collisions, with a very small ratio of shear viscosity to entropy
density, η/s, has been found in heavy-ion collisions at the
Relativistic Heavy Ion Collider (RHIC) [7–10]. The new data
from the LHC confirm this picture [1,11,12] and agree, at least
qualitatively, with hydrodynamic predictions of elliptic flow
for Pb + Pb collisions at the LHC [13–19].

The purpose of the present paper is to explore how good
this agreement is quantitatively and to gauge to what extent the
present and future LHC elliptic flow data can tell us novel facts
about the transport behavior of hot QCD matter at temperatures
that exceed those accessible at the RHIC but are within reach at
the LHC. Similar to the analyses in [11,14,16,19], but different
from recent hybrid model studies in [18,20], we base our analy-
sis on a purely hydrodynamic approach. While this ignores the
fact that the late dilute hadronic stage of the expansion is very
dissipative and not well described by fluid dynamics (neither
ideal [21] nor viscous [22]), the importance of the hadronic
phase for the development of elliptic flow is expected to be
much reduced at the LHC relative to the RHIC [18,23]. As in
Refs. [11,16,19,20], but different from Refs. [14,18], we use
viscous hydrodynamics with a nonzero (but constant, i.e., tem-
perature independent) specific shear viscosity η/s, adjusted to
spectra and elliptic flow measurements at the RHIC. Our fitted
value η/s = 0.20 (for Color Glass Condensate (CGC) initial
conditions, see below) is 25% larger than that used by Luzum
and Romatschke [11,16] but agrees well with the value for
the quark-gluon plasma (QGP) viscosity (η/s)QGP recently
extracted from RHIC data by using a hybrid viscous hydrody-
namic + Boltzmann approach (VISHNU [10,22]). Calculations
with such a hybrid approach are numerically much more de-
manding than purely hydrodynamic simulations; a generaliza-
tion of the present analysis using VISHNU will follow soon and
should further improve the reliability of the LHC predictions.
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II. HYDRODYNAMIC FIT OF RHIC Au + Au DATA

In this work, we employ (2 + 1)-dimensional viscous
hydrodynamics [24] with the lattice QCD-based equation
of state s95p-PCE [25,26], which accounts for chemical
freeze-out before thermal decoupling at Tchem = 165 MeV,
to simulate the expansion of the collision fireball. From the
analysis [10] of charged hadron spectra and elliptic flow in
200A GeV Au + Au collisions at the RHIC we take over
a value of η/s = 0.20 (corresponding to initial conditions
from a Monte Carlo version of the Kharzeev-Levin-Nardi
model; see below) for the effective specific shear viscosity
of the strongly interacting fluid. Using the insights obtained
from the systematic parameter study presented in [26], we
initialize the hydrodynamic expansion at time τ0 = 0.6 fm/c

and decouple at Tdec = 120 MeV at both RHIC and LHC
energies. For Au + Au collisions at RHIC energies these
parameters allow for a good global description of the hadron
pT spectra and differential elliptic flow (see below). Lacking
strong theoretical or phenomenological guidance on how to
adjust their values for Pb + Pb collisions at the LHC, we here
decided to keep them unchanged.

At thermalization time τ0, we assume that the shear stress
tensor is given by its Navier-Stokes value πμν = 2ησμν (where
σμν = ∇〈μuν〉 is the symmetric and traceless velocity shear ten-
sor) and that the initial expansion flow is entirely longitudinal
with Bjorken profile vz = z/t and zero transverse flow velocity.
In Milne coordinates (τ, x, y, η) this corresponds to an
initial flow four-velocity (uτ , ux, uy, uη) = (1, 0, 0, 0). Kinetic
freeze-out is implemented by converting the hydrodynamic
output to particle spectra with the Cooper-Frye prescription
[27] on a decoupling surface of constant temperature Tdec.
We use a quadratic ansatz δf (x, p) ∼ pμpνπμν(x) [6] for the
viscous deviation from local thermal equilibrium of the local
phase-space distribution function on the freeze-out surface.
Our final hadron spectra include decay products from strong
decays of all particles and resonances up to 2 GeV mass
[28], using the resonance decay program from the AZHYDRO

package.1

For the initial density profile we here use a Monte Carlo
version [29,30] of the Kharzeev-Levin-Nardi [31] model
(MC-KLN).2 The specific implementation used in this work
is described in [18,32]. The model gives for each event the
gluon density distribution in the transverse plane. We assume
it to thermalize by time τ0 and convert the gluon density into
entropy density [21]. Over one million Monte Carlo events are
recentered to the beam axis and rotated in the transverse plane
such that their minor axis aligns with the impact parameter (i.e.,
their “participant plane” coincides with the reaction plane).
After sorting them into collision centrality bins according
to their number Npart of participating (“wounded”) nucleons,
we average them to obtain a smooth average initial entropy
density, which is then converted to energy density using the
equation of state. Using this smooth energy density as a weight,
we compute the initial eccentricity ε̄ = 〈y2−x2〉

〈y2+x2〉 and overlap

1AZHYDRO is available at http://www.physics.ohio-state.edu/
∼froderma/.

2The Monte Carlo code is available at http://www.aiu.ac.jp/
∼ynara/mckln/.

area S = π
√

〈x2〉〈y2〉 of the reaction zone; these represent the
corresponding mean values of events in this centrality class.3

The KLN model involves a couple of parameters that need
to be adjusted to obtain the correct final charged hadron
multiplicity dNch/dη in central Au + Au collisions at the
RHIC. In [32] this adjustment was performed for ideal fluid
dynamics (which conserves entropy) coupled to a hadron
cascade. The model then correctly predicts the charged hadron
multiplicities at all other collision centralities. In our viscous
hydrodynamic model, viscous heating produces additional
entropy, leading to somewhat larger final multiplicities. We
thus perform an iterative renormalization of the initial entropy
density profile until the measured charged hadron multiplicity
in the 0%–5% most central 200A GeV Au + Au collisions
at the RHIC is once again reproduced. The lower panel of
Fig. 1 shows that, after this renormalization, the model again
correctly describes the measured [34] centrality dependence
of charged hadron production. The centrality dependence
of viscous entropy production (which is relatively larger in
peripheral than in central collisions [24]) is (at least at RHIC
energies) sufficiently weak to not destroy the agreement of the
model with experimental observations.

The ability of the MC-KLN model to describe the centrality
dependence of charged hadron production without additional
parameters is the main reason for choosing it over the MC-
Glauber model as our basis for extrapolation from RHIC to
LHC energies. It was recently shown [35] that this centrality
dependence is robust against running coupling corrections
[36–38] in the Balitsky-Kovchegov evolution (on which the
KLN model is based) which were found to hardly affect
its shape. They do, however, modify the collision energy
dependence of particle production, with the LHC Pb + Pb
data being better described if running coupling corrections are
included [39]. Our version of the MC-KLN model does not
include running coupling corrections,4 and we must normalize
the initial entropy density profile for Pb + Pb collisions at
the LHC separately from Au + Au collisions at the RHIC.
Without such an independent renormalization, we overpredict
the measured charged multiplicity from central 2.76 A TeV
Pb + Pb collisions [39,40] by about 10%.

After renormalization we obtain the solid lines bounding
the shaded region in the upper panel of Fig. 1, with the
lower (upper) bound corresponding to Pb + Pb collisions at
2.76 (5.5)A TeV, respectively. The data in that panel are
from the ALICE Collaboration for Pb + Pb at 2.76A TeV
[39,40]. [For 5.5A TeV Pb + Pb collisions we assumed
dNch/dy = 2280 (corresponding to dNch/dη = 1972), based
on an extrapolation of Fig. 3 in Ref. [40].] One sees that,
even without running coupling corrections, but including
viscous entropy production, the MC-KLN model does a
good job in describing the measured centrality dependence

3Note that about 10% larger overlap areas are obtained when using
the entropy density as a weight [10,18], whereas for all but the most
central collisions the eccentricities of the energy and entropy densities
are nearly identical [33].

4The rcBK code in [35] includes running coupling corrections but
it has not been renormalized to take into account viscous entropy
production at RHIC energies.
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FIG. 1. Centrality dependence of the charged hadron multiplicity
per unit pseudorapidity, dNch/dη/(Npart/2), as a function of Npart,
in 200A GeV Au + Au collisions at the RHIC (bottom panel) and
in (2.76–5.5) A TeV Pb + Pb collisions at the LHC (top panel).
Experimental data are from the PHOBOS Collaboration [34] for Au +
Au collisions at

√
s = 200A GeV and from the ALICE Collaboration

[39] for Pb + Pb collisions at
√

s = 2.76 A TeV. The lines are from the
MC-KLN model (see text). For Au + Au at the RHIC the MC-KLN
model was normalized to the measured multiplicity in the 0%–5%
centrality bin; at the LHC, the lines bounding the shaded region were
normalized to dNch/dη = 1548 and 1972 (or dNch/dy = 1800 and
2280) at 0%–5% centrality, respectively.

of charged hadron production in Pb + Pb collisions at the
LHC. This gives us hope that the successful description of
the centrality dependence of hadron spectra and elliptic flow
at RHIC energies (see below and [10]) translates into a reliable
prediction of the corresponding centrality dependencies in
Pb + Pb collisions at the LHC.

Figures 2 and 3 establish our baseline for the extrapolation
to LHC energies. In Fig. 2 we show our purely hydrodynamic
fit (obtained with parameters τ0, η/s, Tchem, and Tdec set
as described above5) of the hadron spectra measured in

5Note that our value τ0 = 0.6 fm/c is 45% smaller than the
value of 1.05 fm/c used for η/s = 0.2 in the VISHNU simulations
in [10]. The earlier evolution of hydrodynamic transverse flow arising
from this smaller τ0 value compensates for the lack of a highly
dissipative hadronic phase in the purely hydrodynamic approach.
Hadronic dissipation leads to a significant broadening in particular

FIG. 2. pT spectra of all charged hadrons (a), positive pions
(b), and protons (c) for 200A GeV Au + Au collisions of different
centralities as indicated. The symbols show data from the STAR
( [41,43,44], ×) and PHENIX ( [42,45], +) experiments. The lines are
results from the viscous hydrodynamic model for constant η/s = 0.20
and MC-KLN initial conditions. See text for other model parameters.

of the proton pT spectra during the hadronic stage which (given the
constraints from the elliptic flow data which prohibit us from simply
lowering Tdec) viscous hydrodynamics with temperature-independent
η/s = 0.2 cannot replicate.
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FIG. 3. (Color online) Differential elliptic flow v2(pT ) for
charged hadrons from 200A GeV Au + Au collisions of different
centralities as indicated. Open symbols are experimental data from
the STAR experiment for v2{4}(pT ) [46,47]; lines with filled symbols
of the same shape are the corresponding hydrodynamic fits with the
same model as in Fig. 1. For the 40%–50% centrality bin, data and
theory are vertically offset by 0.1 for better visibility.

200A GeV Au + Au collisions at the RHIC. Figure 2(a)
shows the mid-rapidity transverse momentum spectra per
unit pseudorapidity for unidentified charged hadrons from the
STAR [41] and PHENIX [42] experiments compared with the
hydrodynamical model. Figures 2(b) and 2(c) show a similar
comparison for the pT spectra per unit rapidity of identified
pions and protons from STAR [43,44] and PHENIX [45].
In the experimental spectra, protons from weak decays were
removed; STAR quotes a large systematic error associated with
this feed-down correction, and within that large error band the
two data sets agree with each other, even if the central values
of the STAR proton data appear to be up to 50% higher than
PHENIX data. Our results agree well with the STAR protons
for pT > 0.6GeV/c but overpredict the PHENIX protons by
up to a factor of 2.

Figure 3 shows the hydrodynamically calculated differen-
tial elliptic flow for unidentified charged hadrons in compar-
ison with STAR v2{4}(pT ) data [46,47], for four centrality
classes ranging from semi-central to mid-peripheral collisions
(10%–50% centrality). With η/s = 0.20, viscous hydrody-
namics gives an excellent description of the STAR v2{4} data,
even up to 3 GeV/c in transverse momentum (i.e., beyond the
pT range where the hydrodynamic description is expected
to begin to break down, due to the increasing influence
of hard production processes and large uncertainties in the
viscous correction δf to the local phase-space distribution
at kinetic freeze-out [48]). Looking more carefully one sees
that our model slightly overestimates the elliptic flow at low
pT < 1 GeV while underestimating it in the high-pT region,
pT > 2 GeV.

In [26] we noted a tension in trying to simultaneously
fit within a purely viscous hydrodynamic approach the pro-
ton pT spectra and the charged hadron differential elliptic

vch
2 {2}(pT ) when using the equation of state s95p-PCE. Even a

temperature-dependent η/s(T ) that has a larger shear viscosity
in the hadronic phase could not resolve this tension: In [48]
two of us found that the RHIC Au + Au hadron spectra
are insensitive to a temperature-dependent increase of the
shear viscosity in the hadron gas phase, as was previously
seen in [49]. Figures 2 and 3 demonstrate that this problem
is largely resolved when using the v2{4}(pT ) data (Fig. 3)
instead of v2{2} (see Fig. 8 further below): We obtain an
excellent description of the differential elliptic flow, together
with an acceptable description (within large experimental
uncertainties) of the pT spectra.

Overall, the viscous fluid dynamic description of the hadron
spectra and charged hadron elliptic flow v2(pT ) shown here is
of similar quality to the hybrid model description with VISHNU

presented in [10]. Since purely hydrodynamic simulations are
numerically much less costly than calculations with VISHNU,
we will now use them to generate a broad range of predictions
for soft hadron production in Pb + Pb collisions at the LHC.

III. PREDICTIONS FOR Pb + Pb COLLISIONS
AT THE LHC

As discussed above, the extrapolation from RHIC to LHC
is done by keeping τ0, Tchem, Tdec, and η/s fixed. When
comparing the resulting viscous hydrodynamic predictions
with experimental data from the recently started LHC heavy-
ion collision program, we will search for indications from
experiment that would motivate changing these parameters.
The first results for pT spectra [50] as well as both the
pT -differential and pT -integrated elliptic flow of unidenti-
fied charged hadrons [1] have already been published and
will be compared with the theoretical predictions below.
Additional experimental information on spectra and ellip-
tic flow of identified hadrons will become available soon;
the relevant hydrodynamic predictions are presented in this
section.

In Fig. 4 we show the transverse momentum spectra for all
charged hadrons, as well as for identified pions and protons, for
minimum-bias collisions of Au + Au at the RHIC and Pb + Pb
at the LHC.6 For the RHIC we compare with data from the
PHENIX Collaboration [45]. The upper and lower bounds
of the shaded areas are predictions for minimum-bias Pb + Pb
collisions at collision energies of 5.5 and 2.76 TeV per nucleon
pair, respectively. The LHC spectra are visibly flatter than
at RHIC energies, reflecting stronger radial flow. For central
collisions (0%–5% centrality), the fireball lifetime increases
from Au + Au at the RHIC to Pb + Pb at the LHC by about
19% and 24%, respectively, for 2.76 and 5.5 A TeV collision
energy; for peripheral collisions at 70%–80% centrality, the
corresponding lifetime increases are even larger (34% and
41%, respectively). The average radial flow velocity increases

6To simulate minimum-bias collisions, we compute the spectra for
the centrality classes shown in Figs. 2(b) and 6 and average them.
Any additional observables, such as the minimum-bias elliptic flow
in Fig. 8 below, are calculated from these minimum-bias spectra.
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FIG. 4. (Color online) pT spectra of all charged hadrons, positive
pions, and protons for minimum bias 200A GeV Au + Au (thin
red lines and data points) and (2.76–5.5) A TeV Pb + Pb collisions
(black lines with shaded area). The RHIC data are from the PHENIX
experiment [45]. The shaded bands for the LHC predictions are
limited at the bottom (top) by lines for

√
s = 2.76 (5.5) A TeV,

corresponding to dNch/dy = 1800 (2280) [dNch/dη = 1548 (1972)].
In the calculations the same constant η/s = 0.2 is assumed at all
shown collision energies.

in central collisions (0%–5% centrality) by 5% and 7%,
respectively, and in peripheral collisions (70%–80% centrality)
by 9% and 11%.

Figure 5 shows the integrated charged hadron elliptic flow
v2 as a function of collision centrality for Au + Au collisions at
the RHIC and Pb + Pb collisions at the LHC. At RHIC energy,
our results (lower red line) overestimate the STAR v2{4} data
by about 11% in mid-central collisions but agree nicely with
v2{EP} except for the most peripheral collisions.7

At first sight the overprediction of the pT -integrated v2{4}
at the RHIC is surprising, given the excellent description
of the differential elliptic flow v2{4}(pT ) shown in Fig. 3.
The apparent paradox is resolved by observing that the
hydrodnamically computed charged hadron pT spectra shown
in Fig. 2 are somewhat harder than measured, thereby giving

7In very peripheral collisions, the fireball lifetime decreases dramat-
ically, cutting short the buildup of anisotropic hydrodynamic flow and
thereby prohibiting v2 from saturating. In addition, viscous effects are
stronger in the small fireballs created in peripheral collisions than in
the larger central collision fireballs. Both effects together cause the
theoretical v2 values to decrease sharply at large collision centralities,
in apparent conflict with the experimental data. The experimental
v2{2} and v2{EP} measurements are, however, contaminated by
nonflow effects, in particular in very peripheral collisions. Once
nonflow effects are corrected for [51], the experimental v2 values
decrease at large collision centralities much in the same way as
predicted by hydrodynamics.

FIG. 5. (Color online) pT -integrated elliptic flow of charged
hadrons for 200A GeV Au + Au collisions at the RHIC (open
symbols: STAR data [46,47]; lower red line: the result from viscous
hydrodynamics) and for 2.76 A TeV Pb + Pb collisions at the
LHC (filled symbols: ALICE data [1]; upper magenta line: the
viscous hydrodynamic prediction). In both experiment and theory
the differential elliptic flow v2(pT ) (see Figs. 3 and 7) was integrated
over the range 0.15 < pT < 2 GeV/c for Au + Au at the RHIC and
over pT > 0.2 GeV/c for Pb + Pb at the LHC.

too much weight in the pT integral to the range 0.75 < pT <

2 GeV/c where v2{4}(pT ) is large.8

At LHC energy (
√

s = 2.76 A TeV) our integrated v2 lies
between v2{2} and v2{4} values measured by the ALICE
Collaboration [1]. Again, we overpredict the pT -integrated
v2{4} by about 10%–15%. We note that from RHIC to LHC
the hydrodynamically computed integrated v2 in mid-central
to mid-peripheral collisions increases by about 30%, in
agreement with the experimental observations. This is due
to reduced viscous suppression effects in the larger and denser
fireballs created at the LHC and a longer fireball lifetime which
allows the momentum flow anisotropy to approach saturation
more closely than at lower energies [23,53]. In very peripheral
collisions, even at LHC energies such a saturation of v2 does
not happen; this is the reason why in Fig. 5 the integrated v2

is seen to decrease at large collision centralities, at both the
RHIC and the LHC.

In Fig. 6 we present hadron transverse momentum spectra
for Pb + Pb collisions at LHC energies, for a range of collision
centralities. In panel (a) we compare the hydrodynamic
predictions with initial data from the ALICE experiment [50].
Overall, the theoretical description of these experimental data
is of similar quality to that for Au + Au collisions at the RHIC
(see Fig. 2). In the most central collisions, the hydrodynamical
model describes the charged hadron spectrum somewhat better

8The agreement with the v2{EP} data is fortuitous and should, in fact,
not happen since the measured v2{EP} includes a positive contribution
from event-by-event v2 fluctuations [52] while our hydrodynamic
calculation yields the average elliptic flow 〈v2〉, which is smaller.
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FIG. 6. pT spectra per unit pseudorapidity
for charged hadrons (a) and per unit rapidity for
pions (b) and protons (c) for Pb + Pb collisions
at the LHC. The lower and upper ends of the
shaded bands represent viscous hydrodynamic
predictions for

√
s = 2.76 and 5.5 A TeV (cor-

responding to dNch/dη = 1548 and 1972, or
dNch/dy = 1800 and 2280), respectively. Exper-
imental data in panel (a) are from the ALICE
experiment [50].

than at the RHIC, whereas in the very peripheral collisions the
hydrodynamic spectra are too flat, presumably due to large vis-
cous shear pressure effects. Future comparison with the mea-
sured spectra at other collision centralities and for identified
hadrons, shown here in panels (b) and (c) as predictions, should
shed further light on the origin of the discrepancy in peripheral
collisions.

Figure 7(a) shows a comparison of the hydrodynamically
generated differential vch

2 (pT ) for charged hadrons with the
ALICE v2{4} data [1], for four different collision centralities.
For the most peripheral of these, we also show the measured
v2{2} for comparison. The hydrodynamic predictions agree
nicely with the data at low pT < 1 GeV/c, but they overshoot
the experimental values by 10%–20% at larger pT , especially
in the more peripheral bins. In the 40%–50% centrality
bin, the theoretical prediction happens to agree nicely with
v2{2}(pT ) even though the latter should be shifted upward
by flow fluctuations that are not included in the theoretical
calculation. We note that the theoretical overshoot is less
severe in the VISHNU hybrid model (see Fig. 3 in [20])
than in the purely hydrodynamic simulations shown here.
This suggests that the excess of v2(pT ) over the measured
values at pT > 1 GeV/c in Fig. 7(a) may be caused by
an inadequate description of the late hadronic stage and its
freeze-out.

We can summarize Figs. 2(a), 3, 5, 6, and 7(a) by observing
that the hydrodynamic model overpredicts the pT -integrated
charged hadron v2 by 10%–15% at both the RHIC and the
LHC, but for different reasons: At the RHIC the differential
elliptic flow v2,ch(pT ) is correctly reproduced while the inverse
slope of the theoretical pT spectra is slightly too large,
while the LHC pT spectra are described a bit better (at
least in the most central collisions where published data are
available) but the slope of v2,ch(pT ) at the LHC is slightly
overpredicted.

Panels (b) and (c) of Fig. 7 give predictions for the
differential v2(pT ) of identified pions and protons. Note the
different shape of the proton v2(pT ) from that of the pions
at low pT : Radial flow pushes the proton elliptic flow to
larger values of pT . Comparing the curves for

√
s = 2.76

and 5.5 A TeV, we see that this “radial push” of the
proton v2 increases with collision energy, so for higher

√
s

the rise of v2(pT ) is shifted to larger transverse momenta,
while at fixed pT < 1.5 GeV/c the proton elliptic flow
decreases with increasing collision energy. This happens
only for heavy hadrons but not for the much lighter pions
[see panel (b)].

In Figs. 8 and 9 we pursue this theme further, by
directly comparing the differential elliptic flows at RHIC
and LHC energies. In Fig. 8 we show results for minimum-
bias collisions; the RHIC predictions are compared with
available data from STAR [54]. We see that at low pT ,
the elliptic flow for unidentified charged hadrons (which are
strongly pion dominated) and for identified pions increases
from the RHIC to the LHC whereas the opposite is true
for protons. At higher pT (pT > 1.5 GeV/c), on the other
hand, v2(pT ) increases for both pions and protons as we
increase the collision energy. Figure 9 shows this for a
few more hadron species, for the 10%–20% and 40%–50%
centrality bins: the heavier the hadron, the stronger a push
of v2 toward higher pT is observed. At sufficiently large
pT , v2(pT ) is larger at the LHC than at the RHIC for all
particle species, but at low pT this holds only for pions
whereas all heavier hadrons show a decrease of v2(pT )
from the RHIC to the LHC at fixed pT . As the hadron
rest mass grows, the crossing point where the decrease of
v2 at fixed pT with rising collision energy turns into an
increase shifts to larger pT values. In view of Fig. 9, the
experimental observation [1] that for unidentified charged
hadrons vch

2 (pT ) hardly changes at all from the RHIC to
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FIG. 7. (Color online) Differential elliptic flow v2(pT ) for unidentified charged hadrons (a) and identified pions (b) and protons (c), for
Pb + Pb collisions of different centralities at the LHC. Experimental data for charged hadron v2(pT ), denoted by solid symbols, are from the
ALICE experiment [1]; they should be compared with theoretical lines carrying open symbols of the same shape and color. The shaded bands
show the variation of the hydrodynamic predictions with collision energy between

√
s = 2.76 and 5.5 A TeV (corresponding to dNch/dy = 1800

and 2280, respectively). The lines corresponding to the lower collision energy (
√

s = 2.76 A TeV) define the lower end of the shaded regions
at pT = 3 GeV/c.

the LHC appears accidental:9 The increase of v2(pT ) at
fixed pT for pions is balanced by a corresponding de-
crease for all heavier hadrons leaving, as it happens, no
visible net effect once all charged hadrons are lumped
together.

In Refs. [10] it was argued that a robust method for
extracting the QGP shear viscosity is to fit the collision cen-
trality dependence of the eccentricity-scaled charged hadron
elliptic flow vch

2 /ε̄ with a viscous hydrodynamic + hadron
cascade hybrid code. In that study it was found that, at fixed
collision energy,10 plotting vch

2 /ε̄ against the charged hadron
multiplicity density per unit overlap area, (1/S)(dNch/dy),

9Contrary to the claim made in [12], the observation that the
ratio between vch

2 (pT ) measured at the LHC and at the RHIC is
approximately independent of pT cannot be directly used to conclude
that (η/s)QGP does not change from RHIC to LHC. If that argument
were correct, this ratio should be independent of pT , not only for the
sum of all charged hadrons, but also for each identified hadron species
separately. Our hydrodynamic calculations show that the latter does
not hold even if η/s remains unchanged from RHIC to LHC.
10We recently checked that this multiplicity scaling carries over

to other collision systems such as Cu + Cu at the same collision
energy [55].

yields “universal” curves that depend only on the QGP shear
viscosity but not on the model for the initial energy density dis-
tribution (in particular its eccentricity). In Fig. 10 we show such
a plot for 200A GeV Au + Au collisions at the RHIC together
with Pb + Pb collisions at two LHC energies. The four panels
show this scaling in terms of distributions in pseudorapidity
(η, left column) or rapidity (y, right column) and also compare
it for our default choice of using the initial energy density as
weight for the calculation of the average eccentricity ε̄ and
overlap area S (top row) with what one obtains by evaluating
these quantities with the initial entropy density instead (as is
done in Refs. [10,18]) (bottom row). We see that, independent
of these choices of representation, the universality of vch

2 /ε̄

versus (1/S)(dNch/dy) or (1/S)(dNch/dη) does not carry
over to different collision energies (at least not for the purely
hydrodynamic simulations studied in the present work): At the
same multiplicity density (1/S)(dNch/dy) or (1/S)(dNch/dη),
more peripheral higher energy collisions produce less elliptic
flow per initial eccentricity than more central lower energy col-
lisions. At fixed η/s = 0.2, the difference between 200A GeV
Au + Au and 2.76 A TeV Pb + Pb collisions (red circles
versus green upward triangles in Fig. 10) is as large as the
difference between η/s = 0.16 and η/s = 0.20 for Au + Au
collisions at fixed

√
s = 200A GeV (red circles versus black

squares).
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FIG. 8. (Color online) Differential elliptic flow v2(pT ) for all
charged hadrons (a) and identified pions and protons (b), for minimum
bias 200A GeV Au + Au collisions at the RHIC and (2.76–5.5) A

TeV Pb + Pb collisions at the LHC. Experimental data for v2{2} from
Au + Au collisions at the RHIC are from the STAR experiment [54].
Solid lines are viscous hydrodynamic results for 200A GeV Au + Au
collisions with the same hydrodynamic parameters as in Figs. 1–4;
note their disagreement with the v2{2} data shown here (in contrast to
their excellent agreement with v2{4} data shown in Fig. 3). The shaded
bands are LHC predictions and show the variation of the theoretical
expectations for Pb + Pb collisions at collision energies ranging from√

s = 2.76 to 5.5 A TeV (corresponding to dNch/dy = 1800 and 2280,
respectively). As in Fig. 7, the lines defining the lower end of the
shaded region at pT = 3 GeV/c correspond to the lower LHC energy√

s = 2.76 A TeV.

We note that the tendency in Fig. 10 of higher energy
collisions producing less vch

2 /ε̄ at fixed (1/S)(dNch/dy) than
lower energy ones contradicts the opposite tendency observed
by Hirano et al. in Fig. 3 of Ref. [18] where an ideal hydro
+ hadron cascade hybrid code was employed.11 The authors
of [18] presented strong arguments that their observation

11The careful reader will notice that for 200A GeV Au + Au
collisions, our maximal values for (1/S)(dNch/dη) in Fig. 10(b) are
significantly larger than those shown in Fig. 3 of Ref. [18]. This is
due to a lower normalization of the initial entropy density in [18],
corresponding to dNch/dη ∼ 600 instead of our dNch/dη ∼ 700 in
central Au + Au collisions (T. Hirano, private communication).

of larger vch
2 /ε̄ at fixed (1/S)(dNch/dη) in higher energy

collisions is not related to their use of a hadron cascade for
describing the late hadronic stage. Our opposite finding, on the
other hand, is supported by the earlier purely hydrodynamic
scaling studies presented in the last two works of [24] whose
authors came to the same conclusion as we do here. At
present this discrepancy remains unresolved; we suspect,
however, that the origin of the difference between our work
and that of Hirano et al. could be in their use of a more
realistic (3 + 1)-dimensional hydrodynamic evolution [56],
although in the earlier ideal fluid hydrodynamical studies at
the full RHIC energy, the differences between boost-invariant
and non-boost-invariant results were small [3,57]. Possible
consequences of the violation of boost invariance in RHIC and
LHC heavy-ion collisions are presently being studied [55].

Before moving on, let us comment on the different shape
at the high-multiplicity end of the curves shown in Fig. 10
when using entropy instead of energy density as the weight
for calculating the initial eccentricity ε̄ overlap area S: It is
caused by the different centrality dependence of the energy-
and entropy-density-weighted eccentricities in near-central
collisions observed in Ref. [33], whose authors showed that
in the most central collisions (where ε̄ is dominated by event-
by-event shape fluctuations) the entropy-weighted participant
eccentricity decreases faster with decreasing impact parameter
than the energy-weighted one.

IV. TEMPERATURE-DEPENDENT (η/s)(T )

Shear viscosity is known to suppress the buildup of elliptic
flow. Naively, the systematic overprediction of v2{4}(pT ) in
Pb + Pb collisions at the LHC seen in Fig. 7(a), together with
the excellent description of the same quantity in Au + Au
collisions at the RHIC seen in Fig. 3, thus suggests that the
fireball liquid formed in LHC collisions might be slightly
more viscous (i.e., possess larger average η/s) than at RHIC
energies [20,49]. In this section we present some results using
a temperature-dependent specific shear viscosity, ( η

s
)(T ), that

were motivated by such considerations.
Figure 11 illustrates the following three trial functions

explored in this section:(
η

s

)
1

= 0.2 + 0.3
T −Tchem

Tchem
, (1)

(
η

s

)
2

= 0.2 + 0.4
(T −Tchem)2

T 2
chem

, (2)

(
η

s

)
3

= 0.2 + 0.3

√
T −Tchem

Tchem
. (3)

Here Tchem = 165 MeV is the chemical decoupling temperature
and stands for the “transition temperature” at which the
hadronization of quarks and gluons is complete.

In principle, the value of η/s should exhibit a minimum
near Tchem and increase again in the hadronic phase below
Tchem [58–60]. The authors of [49] pointed out, however, that
at the full LHC collision energy of 5.5 A TeV the behavior of
η/s at temperatures below Tchem has very little effect on the
final hadron spectra and their elliptic flow. At 2.76 A TeV the
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FIG. 9. (Color online) Comparison of the
differential elliptic flow v2(pT ) for 200A GeV
Au + Au collisions at the RHIC (dashed lines)
and 2.76 A TeV Pb + Pb collisions at the LHC
(solid lines), at 10%–20% (a and b) and 40%–
50% (c and d) centrality, for a variety of different
hadron species. Note the slightly negative elliptic
flow for the heavy 	 hyperons at low pT .

effect on elliptic flow was moderate, and it was negligible on
the spectra. Here we will concentrate on qualitative aspects of
effects arising from a temperature-dependent growths of η/s

in the high-temperature region that can be explored at LHC
energies but is beyond the reach of the RHIC, and we continue
to set η/s = 0.2 at T < Tchem for simplicity.

As pointed out in [49], the spectra and elliptic flow in
Au + Au collisions at RHIC energies are most sensitive to
the average value of η/s in the temperature region below
220–230 MeV. We have checked that altering η/s at higher
temperatures as shown in Fig. 11 has little influence on the
results at RHIC energies shown in Sec. II.

Figure 12 illustrates the influence of a linear temperature
dependence of η/s as in Eq. (1) on the centrality dependence
of charged hadron production. The solid black line is the
same as shown in the upper part of Fig. 1, where it forms
the lower bound of the shaded region; it corresponds to
constant η/s = 0.2 and Navier-Stokes initial conditions for
the shear stress tensor, πμν = 2ησμν at τ0 = 0.6 fm/c. The
dashed and dash-dotted lines in Fig. 12 use (η/s)1(T ) with
either Navier-Stokes (dashed) or zero (dash-dotted) initial
conditions for πμν . These last two lines were normalized
to the ALICE point for the 0%–5% most central Pb + Pb
collisions (dNch/dη = 1584 ± 80 [40]), whereas the black
line was normalized to our best guess before the AL-
ICE data became available (dNch/dy = 1800, correspond-
ing to dNch/dη = 1548). The centrality dependence is then
controlled by the predictions from the MC-KLN model, mod-
ified by viscous entropy production during the hydrodynamic
evolution.

We see that even a relatively modest temperature-dependent
increase of η/s in the QGP phase leads to a significantly
stronger nonlinearity in the dependence of charged particle
production on the number of wounded nucleons. The reason
for this nonlinearity is that an increase of η/s with temperature
leads to more viscous heating in central collisions (which

probe higher initial temperatures and larger effective shear
viscosities) than in peripheral ones (whose initial temperatures
are lower). Since the entropy production rate is given by

∂μSμ = πμνπμν

2ηT
, (4)

this effect is stronger for Navier-Stokes initial conditions
(where πμν is proportional to the velocity shear tensor σμν ,
which at early times diverges like 1/τ ) than for zero initial
shear stress (where πμν starts from zero and approaches its
Navier-Stokes value 2ησμν only after several relaxation times
τπ when, due to its 1/τ decay, it has already decreased to much
smaller values).12

If one were to postulate the validity of the MC-KLN model
as the correct description of the initial particle production,
the ALICE data shown in Fig. 12 would exclude a temperature
dependence of η/s as given in Eqs. (1) and (2) for Naver-Stokes
initial conditions. While we are not prepared to make such
a statement on the basis of Fig. 12 alone, we believe that
it is important to point out this relatively strong sensitivity
of the centrality dependence of dNch/dη to the transport
properties of the expanding fireball medium and to emphasize
the constraints it thus places on possible models for the QGP
shear viscosity.

We now turn to the discussion of the influence of a possible
temperature dependence of η/s on the charged hadron pT

spectra and elliptic flow. Figure 13 shows LHC predictions

12For reference we list the fractions of the finally measured entropy
in the most central and most peripheral centrality bins shown in
Fig. 12 that are generated by viscous heating during the hydrodynamic
expansion: constant η/s = 0.2: �S/Sfinal = 26% (0%–5%) and 33%
(70%–80%); (η/s)1(T ) with π

μν

0 = 0: �S/Sfinal = 25% (0%–5%) and
15% (70%–80%); (η/s)1(T ) with π

μν

0 = 2ησμν : �S/Sfinal = 60%
(0%–5%) and 49% (70%–80%).
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FIG. 10. (Color online) Eccentricity-scaled elliptic flow v2/ε̄ as a function of the charged hadron multiplicity density per unit overlap area
S from viscous hydrodynamic calculations at

√
s = 0.2, 2.76, and 5.5 A TeV (corresponding to dNch/dy = 814 (Au + Au) and 1800 and 2280

(Pb + Pb), respectively). Each line corresponds to one collision system at fixed collision energy but different collision centralities. (From right
to left, the symbols correspond to 0%–5%, 5%–10%, 10%–15%, 15%–20%, 20%–30%, 30%–40%, 40%–50%, 50%–60%, 60%–70%, and
70%–80% centrality.) The four panels show v2(η)/ε̄ vs (1/S)(dNch/dη) (where η is pseudorapidity) (a and c) and v2(y)/ε̄ vs (1/S)(dNch/dy)
(where y is rapidity) (b and d), with ε̄ and S evaluated with the participant-plane averaged energy density ē(r⊥, τ0) as a weight function (a
and b) (default option; see Sec. II) or (for comparison with other work) with the corresponding entropy density s̄(r⊥, τ0) as a weight (c and
d). The RHIC curves for η/s = 0.16 (black squares) illustrate the effect of changing the value of the specific shear viscosity by 0.04. The LHC
calculations are done for η/s = 0.20 as obtained from the hydrodynamic fit to RHIC data.

for 2.76 A TeV Pb + Pb collisions of 20%–30% centrality. To
ensure comparability of the different cases studied in this figure
we simply normalized the initial entropy density profile such
that we always obtain dNch/dy = 770, i.e., the same value that
we had obtained before for constant η/s = 0.2 at this centrality.
We first note that for constant η/s = 0.2, we do not observe
any significant difference in the charged hadron spectra and
elliptic flow between zero and Navier-Stokes initialization for
πμν . Turning to the temperature-dependent parametrizations
(η/s)i(T ), we note that for zero initialization of πμν (solid
lines) our results agree with those reported in [49]: An
increase of η/s at higher QGP temperatures leads to somewhat
harder charged hadron pT spectra (i.e., somewhat stronger
radial flow, caused by the larger tranverse effective pressure
gradients at early times) and a suppression of the differential
elliptic flow (due to an increase of the time-averaged effective
shear viscosity of the fluid). It is interesting to observe
the hierarchy of the curves in Fig. 13 corresponding to the
three parametrizations (1)–(3): For the pT spectra, all three
T -dependent viscosities lead to almost identical hardening
effects on the spectral slope, while for the differential elliptic

flow vch
2 (pT ) the curves are ordered not according to the η/s

values at the initial central fireball temperature (see Table I)
but according to their hierarchy in the 165 < T < 280 MeV

TABLE I. Initial central entropy densities s0 and temperatures T0

for the viscous hydrodynamic simulations of 20%–30% centrality
Pb + Pb collisions at the LHC (

√
s = 2.76 A TeV) shown in Fig. 13.

The different models for the T dependence of η/s are defined in
Eqs. (1)–(3). “0” stands for π

μν

0 = 0 at τ0; “NS” stands for Navier-
Stokes initialization of the shear stress tensor, π

μν

0 = 2ησμν , at τ0.

η/s model π
μν

0 s0 (fm−3) T0 (MeV)

η/s = 0.2 0 191.6 427.9
NS 172.4 413.9

(η/s)1(T ) 0 179.6 419.2
NS 119.3 368.7

(η/s)2(T ) 0 179.6 419.2
NS 115.6 365.1

(η/s)3(T ) 0 175.2 416.0
NS 116.6 366.1
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FIG. 11. (Color online) Three temperature-dependent
parametrizations (η/s)(T ) studied in this section. In all cases,
η/s = 0.2 for T < Tchem = 165 MeV.

range. In fact, the observed magnitudes of the viscous v2

suppression for the three (η/s)(T ) functions suggest that,
at this beam energy and collision centrality, the buildup of
elliptic flow is dominated by the QGP transport properties
at 200 � T � 250 MeV. (At RHIC energies, the transport
properties for T � 200−220 MeV dominate the generation
of v2 [49].)

For Navier-Stokes initial conditions (dashed lines in
Fig. 13), the increase in radial flow caused by an increase
of η/s at high temperature is stronger and the viscous v2

suppression is weaker than for zero initial πμν . This is caused
by the much larger initial shear stress tensor components
in the Navier-Stokes case, compared to the case of π

μν

0 = 0
where πμν approaches its (by that time already much smaller)

FIG. 12. (Color online) Final charged multiplicity per wounded
nucleon pair as a function of number of participant nucleons in Pb +
Pb collisions at

√
s = 2.76 A TeV, for different functional forms

of (η/s)(T ) and initial conditions for the shear stress tensor πμν

(see text).

FIG. 13. (Color online) Charged hadron transverse momentum
spectra (top) and differential elliptic flow (bottom) for 2.76 A TeV
Pb + Pb collisions at 20%–30% centrality, for different models for
the temperature dependence of η/s and different initial conditions for
πμν [Navier-Stokes (“NS”) or 0 (“Zero”)]. The ALICE data in the
bottom panel are from Ref. [1].

Navier-Stokes limit only after several relaxation times τπ [24].
The increase of η/s with temperature generates a steeper
initial transverse effective pressure gradient (since πμν grows
faster than the entropy density s when η/s increases with
temperature), and this generates stronger radial flow. It also
causes a larger spatial eccentricity of the initial effective
pressure profile, which (when compared to the case of π

μν

0 = 0)
generates stronger elliptic flow. In fact, we found that for
earlier starting times τ0 (where the Navier-Stokes values for
πμν are even larger), the quadratic parametrization (η/s)2(T )
with Navier-Stokes initial conditions can lead to more elliptic
flow than a constant η/s = 0.2, in spite of the larger mean
viscosity of the fluid.

We conclude from this exercise that a firm determination
of whether or not the ALICE data point toward a temperature-
dependent growth of η/s with increasing T , as expected from
perturbative QCD [61] and (perhaps) from lattice QCD [62],
is not possible without a better understanding of the initial
conditions for the energy momentum tensor (in particular
the shear stress components) at the beginning of the hy-
drodynamic evolution. Whereas generically larger viscosities
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cause a suppression of the elliptic flow, temperature-dependent
viscosities can influence the initial effective pressure profile
and its eccentricity in a way that counteracts this tendency and,
for some models such as Navier-Stokes initial conditions, can
even overcompensate it.

V. CONCLUSIONS

Based on an successful global fit of soft hadron production
data in 200A GeV Au + Au collisions at the RHIC with a pure
viscous hydrodynamic model with Cooper-Frye freeze-out,
presented in Sec. II, we generated hydrodynamic predictions
for the pT spectra and differential elliptic flow of unidentified
charged hadrons and identified pions and protons for Pb + Pb
collisions at the LHC. Where available, these predictions
were compared with available experimental data from the
ALICE Collaboration. Our extrapolation from RHIC to LHC
energies was based on the assumption that the QGP shear
viscosity η/s does not change with increasing fireball tem-
perature and stays fixed at the value η/s = 0.2 extracted
from the RHIC data, assuming MC-KLN initial conditions.
The start time τ0 for the hydrodynamic evolution and the
freeze-out temperature Tdec were held fixed, too. We found
that, using the beam energy scaling implicit in the MC-KLN
model, such an extrapolation gives a good description of the
centrality dependence of charged hadron production and the
charged hadron pT spectra in central Pb + Pb collisions,
but it overpredicts the slope of the pT -differential elliptic

flow and the value of its pT -integrated value by about
10%–15% in mid-central to mid-peripheral collisions. In the
most peripheral collisions, the predicted charged hadron pT

spectra are too flat, and the integrated elliptic flow is too
small compared to the experimental data. A preliminary study
of possible temperature-dependent variations of η/s in the
high-temperature region explored for the first time at the
LHC remained inconclusive but pointed to a clear need for
better theoretical control over the initial conditions for the
hydrodynamic energy-momentum tensor, in particular its shear
stress components. The development of detailed dynamical
models for the pre-thermal evolution of the collision fireball
and their matching to the viscous hydrodynamic stage is a
matter of priority for continued progress toward quantifying
the transport properties of the quark-gluon plasma at different
temperatures and densities.
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We analyze the elliptic flow parameter v2 in Pb+Pb collisions at
√

sNN = 2.76 TeV and in Au+Au collisions
at

√
sNN = 200 GeV using a hybrid model in which the evolution of the quark gluon plasma is described by

ideal hydrodynamics with a state-of-the-art lattice QCD equation of state, and the subsequent hadronic stage
by a hadron cascade model. For initial conditions, we employ Monte Carlo versions of the Glauber and the
Kharzeev-Levin-Nardi models and compare results with each other. We demonstrate that the differential elliptic
flow v2(pT ) hardly changes when the collision energy increases, whereas the integrated v2 increases due to
the enhancement of mean transverse momentum. The amount of increase of both v2 and mean pT depends
significantly on the model of initialization.

DOI: 10.1103/PhysRevC.84.011901 PACS number(s): 25.75.Nq, 12.38.Mh, 12.38.Qk

The recently started heavy-ion program at Large Hadron
Collider (LHC) in CERN opens up opportunities to explore the
deconfined matter, the quark gluon plasma (QGP), in a wider
temperature region. Elliptic flow [1], which played an essential
role to establish the new paradigm of the strongly coupled QGP
[2,3] at Relativistic Heavy-Ion Collider (RHIC) in Brookhaven
National Laboratory (BNL) [4], is one of the key observables
at LHC to investigate the bulk and transport properties of the
QGP. First elliptic flow data in Pb+Pb collisions at

√
sNN =

2.76 TeV were recently published by the ALICE Collaboration
[5]. The first goal of flow measurements is to see whether
hydrodynamic models reproduce the flow as well at LHC as
at RHIC, and thus whether the QGP depicts similar strong
coupling nature at LHC.

This Rapid Communication is a sequel to our previous
work [6] where we predicted the elliptic flow parameter v2

before any LHC data was available. In this publication we
take the advantage of the first LHC data [5,7] to fix the
final particle multiplicity, which removes the main uncertainty
in our prediction, and allows us to use a Glauber type
initialization too. We calculate the elliptic flow parameter
v2 and its transverse momentum (pT ) dependence in Pb+Pb
collisions at LHC and compare them with the data. Our model
for the space-time evolution of the matter is the same we used
in Ref. [6]: A hybrid model where the expansion of the QGP
is described by ideal hydrodynamics [8], and the subsequent
evolution of hadronic matter below switching temperature
Tsw = 155 MeV, is described using a hadronic cascade model
JAM [9]. During the fluid dynamical stage, we employ EoS
s95p-v1.1, which interpolates between hadron resonance gas
at low temperatures and recent lattice QCD results by the
hotQCD collaboration [10,11] at high temperatures in the
same way as s95p-v1 [12], but the hadron resonance gas

*hirano@phys.s.u-tokyo.ac.jp
†huovinen@th.physik.uni-frankfurt.de
‡nara@aiu.ac.jp

part contains the same hadrons and resonances as the JAM
hadron cascade [9]. The details of the interpolating procedure
are explained in Ref. [12] and the parametrization and EoS
tables are available at Ref. [13].

Initial time of hydrodynamic simulations is fixed to be τ0 =
0.6 fm/c throughout this work. For initial conditions in
the longitudinal direction, we assume the Bjorken scaling
solution [14]. To initialize the density distributions in the
transverse plane, we utilize two Monte Carlo approaches:
Monte Carlo–Glauber (MC-Glauber) model [15] and Monte
Carlo–Kharzeev-Levin-Nardi (MC-KLN) model [16]. Using
these Monte Carlo models, we calculated initial conditions
for hydrodynamic simulations in the transverse plane with
respect to the participant plane in our previous work [6].
These initial density profiles contain effects of eccentricity
fluctuation on average. However, the ALICE Collaboration
mainly obtained v2 using the four-particle cumulant method
v2{4} [17]. If the event-by-event distribution of eccentricity
in the reaction plane is a two-dimensional Gaussian, and if
v2 is proportional to the participant eccentricity, then v2{4}
yields the value of v2 in the reaction plane [18,19]. Therefore
we calculate in this Rapid Communication initial profiles with
respect to the reaction plane: We average over many events
using Monte Carlo calculations instead of shifting and rotating
a distribution event by event to match the main and subaxes
of the ellipsoids as was done in the previous work [6,20]. It
should be noted that the distributions obtained in this way are
not identical to the ones from the optical Glauber model or the
factorized KLN (fKLN) model [21] because of finite nucleon
size effects [16,22]: The collision points in the transverse plane
are smeared using an inelastic cross section of p + p collisions
in the “mean-field” option in the Monte Carlo approach
[16] to obtain smooth initial conditions for hydrodynamic
simulations.

In the MC-KLN model, we calculate distribution of gluons
at each transverse grid using the kt -factorized formula [23].
Using the thickness function TA, we parametrize the saturation
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scale for a nucleus A as

Q2
s,A(x; x⊥) = 2 GeV2 TA(x⊥)

1.53 fm−2

(
0.01

x

)λ

, (1)

and similarly for a nucleus B. We choose λ = 0.28 and a
proportionality constant in the unintegrated gluon distribution
in the kt -factorized formula to reproduce centrality dependence
of pT spectra obtained by the PHENIX Collaboration [24]. As
a default parameter set at LHC, we use the same parameters
except for colliding energy and mass number of incident
nuclei. This predicted dNch/dη ∼ 1600 at 5% most central
collisions [6], which turns out to be consistent with the recent
ALICE measurement [7,25].

In the MC-Glauber model, one calculates the number
distributions of participants ρpart and of binary collisions ρcoll

for a given nuclear density distribution. We model the initial
entropy distribution in hydrodynamic simulations as a linear
combination of ρpart and ρcoll in the transverse plane:

dS

τ0dηsd2x⊥
= C

τ0

(
1 − α

2
ρpart(x⊥) + αρcoll(x⊥)

)
. (2)

At the RHIC energy, the mixing parameter α = 0.18 and the
proportionality constant C = 15.0 in Eq. (2) are chosen to
reproduce the centrality dependence of pT spectra at RHIC
[24]. We tune these two parameters in Pb+Pb collisions at
LHC to reproduce the centrality dependence of charged hadron
multiplicity [25]. For both initializations we do the centrality
cuts according to the Npart distribution from the MC-Glauber
model [6].

In Fig. 1, we calculate dNch/dη/(Npart/2) as a function of
Npart for initial conditions from the MC-Glauber and the MC-
KLN models and compare them with data. The experimental
data point in inelastic p + p collisions at

√
sNN = 2.36 TeV

[26] is plotted at Npart = 2. The MC-KLN initialization leads to
remarkable agreement with the ALICE data. On the other hand,
it is difficult to fit the data within the current two-component
picture in the MC-Glauber model: The results from the
MC-Glauber initialization with α = 0.08 and C = 41.4 almost

partN
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FIG. 1. (Color online) Centrality dependence of charged hadron
multiplicity in the MC-Glauber and the MC-KLN initialization is
compared with ALICE data [25,26]. A data point from inelastic events
at

√
sNN = 2.36 TeV in p + p collisions [26] is shown at Npart =

2. Each point in theoretical results from right to left corresponds
to 0%–5%, 5%–10%, 10%–20%, 20%–30%, 30%–40%, 40%–50%,
50%–60%, 60%–70%, and 70% –80% centrality, respectively.
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FIG. 2. (Color online) Eccentricity with respect to the reaction
plane as a function of Npart in Pb + Pb collisions at

√
sNN = 2.76

TeV and in Au+Au collisions at
√

sNN = 200 GeV. Each point from
right to left corresponds to 0%–5%, 5%–10%, 10%–20%, 20%–
30%, 30%–40%, 40%–50%, 50%–60%, 60%–70%, and 70%–80%
centrality, respectively.

trace the ones from the MC-KLN initialization and the ALICE
data except for 0%–5% and 70%–80% centrality.

Shown in Fig. 2 is the initial eccentricity with respect to
reaction plane as a function of Npart in Pb+Pb collisions
at

√
sNN = 2.76 TeV and in Au+Au collisions at

√
sNN =

200 GeV. As previously known, the kt -factorized formula of
KLN model generates larger eccentricity than the Glauber
model does [21,27]. In the MC-KLN model, eccentricity in
Pb+Pb collisions at

√
sNN = 2.76 TeV is slightly larger than

that in Au+Au collisions at
√

sNN = 200 GeV when the
centrality is fixed [6]. On the other hand, in the MC-Glauber
model, eccentricity in Pb+Pb collisions at

√
sNN = 2.76 TeV

is slightly smaller than that in Au+Au collisions at
√

sNN =
200 GeV for a fixed centrality.

This is because of the smearing process we use to
obtain a smooth initial profile for hydrodynamic evolution.
As mentioned, we use the inelastic cross section in p + p

collisions, σin, to smear the distribution of collision points.
This cross section is ∼1.5 times larger at LHC than at RHIC,
and thus the smearing area, S = σin [16], is also larger at LHC,
and the eccentricity is reduced. Our smearing procedure also
leads to a smaller eccentricity than the conventional value of
the MC-Glauber model.1 The effect of smearing is smaller
in the MC-KLN initialization, and we have checked that the
eccentricity at LHC turns out to be essentially the same as
at RHIC when the smearing area is the same. Systematic
studies of initialization and its effects will be shown in a later
publication [28].

Figure 3 shows comparison of transverse momentum
distributions of charged hadrons between RHIC and LHC
energies at 10%–20% and 40%–50% centralities. As clearly
seen from figures, the slope of pT spectra becomes flatter
as collision energy and, consequently, pressure of produced
matter increases. To quantify this, we calculate mean pT of

1In the MC-Glauber model in the literature [15], one assumes δ

function profile for each collision point in ρpart distribution rather
than a boxlike profile in the present work

011901-2
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FIG. 3. (Color online) Transverse momentum distribution of charged hadrons at 10%–20% (circles) and 40%–50% (squares) centralities
in Pb+Pb collisions at

√
sNN = 2.76 TeV (solid symbols) and in Au + Au collisions at

√
sNN = 200 GeV (open symbols). Results from

(a) the MC-Glauber initialization and (b) the MC-KLN initialization. For the sake of comparison and visibility, the spectra are scaled by 2,
1/10, and 1/5 for 10%–20% at RHIC, 40%–50% at LHC, and 40%–50% at RHIC, respectively.

charged hadrons. In the MC-Glauber initialization, mean pT

increases from RHIC to LHC by 21% and 19% in 10%–20%
and 40%–50% centrality, respectively. On the other hand, the
corresponding fractions are 25% and 24% in the MC-KLN
initialization. Because our calculations at RHIC were tuned to
reproduce the pT spectra, this means that at LHC the spectra
calculated using the MC-KLN initialization are slightly flatter
than those calculated using the MC-Glauber initialization.

We compare integrated v2 for charged hadrons with respect
to the reaction plane with the ALICE [5] and STAR [29] v2{4}
data in Fig. 4. When evaluating the integrated v2, we take
account of both transverse momentum and pseudorapidity
acceptance as done in the experiments (i.e., 0.2 < pT <

5.0 GeV/c and | η |< 0.8 for ALICE, and 0.15 < pT <

2.0 GeV/c and | η |< 1.0 for STAR). We want to emphasize
that not only the pT cut [30], but also the pseudorapidity
cut plays an important role in a consistent comparison with
the data. Because of the Jacobian for the change of variables
from rapidity y to pseudorapidity η, v2(y = 0) < v2(η = 0)
for positive elliptic flow [31].2 In the case of the MC-Glauber
(MC-KLN) initialization in 40%–50% centrality, v2 integrated
over the whole pT region is ∼14% (∼10%) larger at η = 0
than at y = 0.

When the MC-Glauber model is employed for initial
profiles, centrality dependence of integrated v2 from the
hybrid approach almost agrees with both ALICE and STAR
data. Because eccentricity fluctuation contributes little and
negatively to v2{4} in non-Gaussian distribution of eccentricity
fluctuation [18,19], this indicates there is only little room for
the QGP viscosity in the model calculation. On the other hand,
apparent discrepancy between the results from the MC-KLN
initialization and the ALICE and STAR data means that
viscous corrections during the hydrodynamic evolution are
required.

From RHIC to LHC, the pT -integrated v2(| η |< 0.8)
increases by 24% and 25% in 10%–20% and 40%–50%

2Notice that even if one assumes the Bjorken scaling solution, one
has to consider the pseudorapidity acceptance because v2(η) is not
constant even if v2(y) is [31]

centrality, respectively, in the MC-Glauber initialization. On
the other hand, in the MC-KLN initialization, the increase
reaches 42% and 44% in 10%–20% and 40%–50% centrality,
respectively. Because eccentricity does not change signifi-
cantly (at most ±6% in 40%–50% centrality) from RHIC to
LHC as shown in Fig. 2, the significant increase of integrated
v2 must be attributed to a change in transverse dynamics.

Finally, we compare v2(pT ) of charged hadrons with
ALICE [5] and STAR [29] data in 10%–20% [Fig. 5(a)]
and 40%–50% [Fig. 5(b)] centrality. Interestingly, the data
at LHC agree with the data at RHIC within errors. The
calculated v2(pT ) shows similar independence of collision
energy when MC-Glauber initialization is used, whereas MC-
KLN initialization leads to a slightly larger v2(pT ) at the larger
energy. For MC-Glauber results, the fit to data is fair below
pT ∼ 1.5 GeV/c and pT ∼ 0.8 GeV/c momenta in the 10%–
20% and 40%–50% centralities, respectively. Results from the
MC-KLN initialization at both energies are significantly larger
than experimental data in the whole pT region, which again
indicates necessity of viscous corrections in hydrodynamic
evolution. For both initializations the difference between the
data and the calculated v2(pT ) is larger in more peripheral
collisions. This, too, can be understood as an indication of
viscosity, because the more peripheral the collision, the smaller
the system and the more anisotropic its shape, and both of these
qualities enhance the dissipative effects.

Because of the relationships among the pT spectrum, pT

averaged v2, and pT differential v2(pT ), the flatter the pT

spectrum, the larger the v2 even if v2(pT ) stays the same. It
is also worth noticing that the steeper the slope of v2(pT ), the
larger the increase in v2 for the same increase in mean pT . This
is the main reason why quite a similar increase of mean pT

for both MC-Glauber and MC-KLN initializations leads to a
much larger increase of v2 for MC-KLN than for MC-Glauber
initialization.

At the time of this writing, the initial state of the fluid
dynamical expansion of heavy-ion collisions at ultrarelativistic
energies is quite uncertain. This has been a longstanding issue
in the physics of heavy-ion collisions which must be by all
means resolved. If color glass condensate (CGC) [32] initial
conditions, like the ones obtained using the MC-KLN model
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FIG. 4. (Color online) Centrality dependencies of v2 for charged hadrons with respect to reaction plane (a) in Pb+Pb collisions at
√

sNN =
2.76 TeV (| η |< 0.8, 0.2 < pT < 5 GeV/c) and (b) in Au+Au collisions at

√
sNN = 200 GeV (| η |< 1.0, 0.15 < pT < 2 GeV/c) are

compared with ALICE [5] and STAR [29] v2 data, respectively. ALICE data points are shifted horizontally for visibility.

in the present work, are realized in nature at both RHIC and
LHC energies, the larger deviation of v2 from the data at LHC
than at RHIC in Figs. 4 and 5 could mean that viscous effects
are larger at LHC than at RHIC. This can indicate a larger
specific shear viscosity, η/s, at larger temperatures. For a better
interpretation of current experimental data, the issue should be
clarified in the near future by determining the initial conditions
better and by a more detailed analysis using a hybrid model of
viscous hydrodynamics and hadron cascade [33].

In summary, we calculated transverse momentum distri-
bution of charged hadrons, centrality dependence of inte-
grated elliptic flow parameter v2, and differential elliptic
flow v2(pT ) in Pb+Pb collisions at

√
sNN = 2.76 TeV and

in Au+Au collisions at
√

sNN = 200 GeV. We compared
v2 and v2(pT ) with respect to the reaction plane from the
hybrid model with v2 data mainly obtained from the four-
particle cumulant method. Transverse momentum distribu-
tions become harder, whereas the shape of v2(pT ) does not
change so much as the collision energy increases. Thus the
increase in pT -integrated v2 is from the increase in mean
pT . However, the intrinsic slope of v2(pT ) depends on the
initialization: The slope from the MC-KLN initialization is
steeper than that from the MC-Glauber initialization, and thus
essentially the same change of mean pT leads to a larger

increase of pT -integrated v2 for MC-KLN initialization than
for MC-Glauber initialization. The larger difference between
the data and our MC-KLN result at LHC than at RHIC may
indicate larger dissipative effects at LHC than at RHIC. All this
emphasizes the importance of understanding initial conditions
in relativistic heavy-ion collisions toward extracting the bulk
and transport properties of the QGP. In the future, it would
be interesting to compare our results with data obtained
using a more sophisticated elliptic flow analysis [19], in
which both nonflow and eccentricity fluctuation effects are
removed.
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centrality. We take account of pseudorapidity cut, | η |< 0.8 (1.0), in the ALICE (STAR) data.
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We predict the elliptic flow parameter v2 in U+U collisions at
√

sNN = 200 GeV and in Pb+Pb collisions
at

√
sNN = 2.76 TeV using a hybrid model in which the evolution of the quark gluon plasma is described by

ideal hydrodynamics with a state-of-the-art lattice QCD equation of state and the subsequent hadronic stage is
described by a hadron cascade model.
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One of the major discoveries at the Relativistic Heavy Ion
Collider (RHIC) in Brookhaven National Laboratory (BNL)
was that for the first time in relativistic heavy-ion collisions, the
elliptic flow appeared to be as large as an ideal hydrodynamic
prediction [1]. Since viscosity and any other dissipative effects
vanish in ideal hydrodynamics, and tiny viscosity requires
a strong coupling of constituents (quarks and gluons in our
case), this discovery established the new paradigm of strongly
coupled quark gluon plasma (QGP) [2,3].

In noncentral collisions, rescatterings of the created parti-
cles convert the initial spatial anisotropy of the reaction zone
to anisotropic particle distribution [4]. Ideal hydrodynamics
predicts that the ratio of these anisotropies is v2/ε ∼ 0.2,
almost independent of centrality at the RHIC energies [5].
Here, v2 is the second Fourier coefficient of the azimuthal
distribution of final particles, and ε is the initial eccentricity of
the produced matter. On the other hand, in the dilute regime,
kinetic theory predicts v2 to be proportional to the particle
multiplicity per unit rapidity, dN/dy [6,7]. Thus, the response
of the system, v2/ε, provides information about the transport
properties of the QGP. Experimentally v2/ε is seen to increase
with increasing transverse density (1/S)dN/dy [8,9], where S

is the transverse area of the collision zone, until it reaches the
so-called hydrodynamic limit, v2/ε ∼ 0.2, in central Au+Au
collisions at RHIC. With the agreement of the hydrodynamical
prediction of the particle mass dependence of v2(pT ) [10]
with the data [11,12], this is considered as evidence for the
discovery of the perfect-fluid nature of the QGP [1].

After observing the increase of v2/ε with increasing
transverse density, it is natural to ask what happens if the
transverse density increases beyond that achieved at RHIC
[13]. Will it saturate to the value observed at RHIC, as
expected if the system behaves like a perfect fluid, or will it
keep increasing? One suggested way to extend the transverse
density is to perform uranium-uranium collisions [13]. Since
uranium nuclei are deformed and larger than gold nuclei, one

*hirano@phys.s.u-tokyo.ac.jp
†huovinen@th.physik.uni-frankfurt.de
‡nara@aiu.ac.jp

can expect large transverse density with finite eccentricity
in the body-body collisions at vanishing impact parameter.1

Some Monte Carlo studies show that even though one cannot
control the orientation of colliding nuclei, events with high
multiplicity though finite eccentricity can be selected in the
usual triggering process [13,15–18]. Another way to extend the
transverse energy is to increase the collision energy to generate
more particles in collisions. This is going to happen very soon
in the Large Hadron Collider (LHC) heavy-ion program. In
this Rapid Communication, we predict elliptic flow parameters
both in U+U collisions at RHIC and Pb+Pb collisions at
LHC using a hybrid model based on ideal hydrodynamics and
hadron cascade.

We describe space-time evolution of the QGP by ideal
hydrodynamics [19] with the recent lattice QCD equation
of state [20]. After expansion and cooling, the system turns
into hadronic matter. We switch from hydrodynamics to a
kinetic approach at a switching temperature Tsw and employ a
hadronic cascade model, JAM [21], to describe the subsequent
space-time evolution of hadronic matter.

Our equation of state (EoS), s95p-v1.1, is a slightly
modified version of the s95p-v1 EoS presented in Ref. [20]. It
interpolates between hadron resonance gas at low temperatures
and recent lattice QCD results by the hotQCD Collaboration
[22,23] at high temperatures in the same way as s95p-v1, but
the hadron resonance gas part contains the same hadrons and
resonances as the JAM hadron cascade [21]. The details of
the interpolating procedure are explained in Ref. [20], and the
parametrization and EoS tables are available in Ref. [24].

For initial conditions, we employ two Monte Carlo ap-
proaches to simulate collisions of two energetic nuclei: Monte
Carlo Glauber (MC-Glauber) model [25] and Monte Carlo
Kharzeev-Levin-Nardi (MC-KLN) model [26]. In the MC-
Glauber model, one calculates the number of participants Npart

and the number of binary collisions Ncoll for a given nuclear
density distribution. We model the initial entropy distribution
in hydrodynamic simulations as a linear combination of the

1The idea of collisions of deformed nuclei is not new, and one can
find literature on this subject. See, e.g., Refs. [5,14].
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number distribution of participants ρpart = dNpart

d2 x⊥
and that of

binary collisions ρcoll = dNcoll
d2 x⊥

in the transverse plane:

dS

d2x⊥
∝ 1 − α

2
ρpart(x⊥) + αρcoll(x⊥). (1)

We generate the number distributions on an event-by-event
basis, align them to match the main axes and subaxes of the
ellipsoids, and average over many events for a given centrality
bin to obtain a smooth distribution [27]. The eccentricity of
the initial profile is then evaluated with respect to participant
plane, εpart [28]. We do the centrality cuts according to the
Npart distribution from the MC Glauber model instead of using
the optical Glauber limit as was done in Ref. [27]. The free
parameters of the model, the mixing parameter α = 0.18 and
the proportionality constant in Eq. (1), are chosen to reproduce
transverse momentum spectra for pions, kaons, and protons
from central (0–5%) to peripheral (70–80%) events in Au+Au
collisions at

√
sNN = 200 GeV obtained by the PHENIX

Collaboration [29]. We also choose the switching temperature
as Tsw = 155 MeV to describe the relative yields for pions,
kaons, and protons in these data.

The MC-KLN model is a Monte Carlo version of the
factorized Kharzeev-Levin-Nardi (fKLN) model [30]. In the
MC-KLN model, gluon production is obtained by numerical
integration of the kt -factorized formula [31] at each transverse
grid. The fluctuation of gluon distribution due to the position
of hard sources (nucleons) in the transverse plane is taken into
account in MC-KLN. Using the thickness function TA, we
parametrize the saturation scale for a nucleus A as

Q2
s,A(x; x⊥) = 2 GeV2 TA(x⊥)

1.53 fm−2

(
0.01

x

)λ

(2)

and similarly for a nucleus B. We choose λ = 0.28 and a
proportionality constant in the unintegrated gluon distribution
in the kt -factorized formula to reproduce centrality dependence
of pT spectra for pions, kaons, and protons as before.

Using this parameter set, we calculate initial entropy distri-
bution in U+U collisions by changing the nuclear density from
gold to uranium. To take account of the prolate deformation
of uranium nuclei, we parametrize the radius parameter in the

Woods-Saxon distribution as

R(θ, φ) = R0[1 + β2Y20(θ, φ) + β4Y40(θ, φ)], (3)

where Ylm is the spherical harmonic function, R0 = 6.86 fm,
β2 = 0.28, and β4 = 0.093 [32]. Note that to account for the
finite size of nucleons in the Monte Carlo approach, we have
adjusted R0 and the diffuseness parameter δr = 0.44 to retain
the nuclear density as in the original Woods-Saxon distribution
[27]. We also take into account that colliding uranium nuclei
are randomly oriented in each event.

Figure 1(a) shows initial eccentricity with respect to par-
ticipant plane in Au+Au and U+U collisions at

√
sNN = 200

GeV as a function of the number of participants. At each of
the ten centrality bins, the average eccentricity and the average
number of participants 〈Npart〉 were calculated using both the
MC-Glauber and the MC-KLN models. Since the eccentricity
is measured in the participant plane, it is finite even in the very
central (0–5%) Au+Au collisions. As previously known, the
MC-KLN model leads to ∼20–30% larger eccentricity than the
MC-Glauber model except in the most central events [30,33].
In the most central 5% of U+U collisions, eccentricity reaches
0.146 in the MC-Glauber model and 0.148 in the MC-KLN
model. The eccentricity is larger in U+U than in Au+Au
collisions. Because of the deformed shape of uranium nucleus,
this holds not only at fixed number of participants but also
at fixed centrality. However, the difference decreases with
decreasing centrality, and there is almost no difference in the
very peripheral events (70–80%).

In Fig. 1(b), v2 in Au+Au collisions is compared with the
v2 in U+U collisions. Since the rule of thumb is that larger
eccentricity leads to larger momentum anisotropy and v2, the
systematics of v2(Npart) is similar to that of εpart(Npart): v2

is larger in U+U collisions than in Au+Au collisions, and
MC-KLN initialization leads to larger v2 than MC-Glauber
initialization. As well, v2 first increases with decreasing Npart,
which reflects increasing initial eccentricity, but once Npart

falls to less than ∼50, v2 begins to decrease. This is due to
the short lifetime of the system, which does not allow the flow
to fully build up, and to the large fraction of the lifetime
spent in the hadronic phase where dissipative effects are
large.

partN
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FIG. 1. (Color online) (a) Initial-state eccentricity εpart and (b) v2 as a function of Npart in Au+Au and U+U collisions at
√

sNN = 200
GeV. Experimental data of v2 in Au+Au collisions were obtained by the PHOBOS Collaboration [34].
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FIG. 2. (Color online) (a) εpart as a function of Npart in Au+Au collisions at
√

sNN = 200 GeV (dashed line) and in Pb+Pb collisions at√
sNN = 2.76 TeV (solid line); (b) v2 as function of number of participants Npart in Pb+Pb collisions at

√
sNN = 2.76 TeV for three different

multiplicities in 0–5% centrality: dNch/dη ∼ 1600 (solid), 1400 (dotted), and 1200 (dashed). Each point from right to left corresponds to
0–5%, 5–10%, 10–15%, 15–20%, 20–30%, 30–40%, 40–50%, 50–60%, 60–70%, and 70–80% centrality, respectively.

Results from the MC-Glauber initialization almost repro-
duce the PHOBOS data [34] in Au+Au collisions. This
indicates that there is little room for QGP viscosity in the model
calculations. On the other hand, the apparent discrepancy
between the results from the MC-KLN initialization and the
PHOBOS data means that viscous corrections during the
plasma phase are required.

Within the color glass condensate picture, the collision
energy dependence is taken into account through the sat-
uration scale, Qs . This allows us to simulate the Pb+Pb
collisions at

√
sNN = 2.76 TeV by using the MC-KLN model,

adjusting the collision energy parameter and the nuclear
density parametrization, and keeping all the other parameters
unchanged. This is a consistent way to study the differences
between collisions at

√
sNN = 62.4 GeV and 2.76 TeV

energies, but it may be too naive, because the MC-KLN model
does not take into account running coupling corrections to
the evolution equation [35]. At RHIC energies, these effects
are known to be small, but at LHC they lead to a clearly
lower multiplicity [35,36]. On the other hand, these effects
hardly affect the eccentricity [36], which allows us to study
the effects of the uncertainty in the final particle multiplicity
simply by adjusting the overall factor in the unintegrated
gluon distribution function. Our default approach is to use
the MC-KLN model with the same factor as in the RHIC
calculations. In the most central 5% of Pb+Pb collisions,
this leads to multiplicity dNch/dη ∼ 1600 at midrapidity
(| η |< 1). We also reduce the factor to obtain multiplicities
dNch/dη ∼ 1400 (set 1), as predicted in Ref. [35], and ∼1200
(set 2).2

Our result for the initial-state eccentricity as function of the
number of participants in Au+Au collisions at

√
sNN = 200

GeV and in Pb+Pb collisions at
√

sNN = 2.76 TeV is shown in
Fig. 2(a). As mentioned, the uncertainty in the multiplicity in
collisions at

√
sNN = 2.76 TeV does not affect the eccentricity,

and we show the result obtained using our default setting. For a
fixed Npart, eccentricity at LHC is apparently larger than that at

2η is not the shear viscous coefficient but the pseudorapidity.

RHIC. However, this is due solely to the larger size of colliding
nuclei. If one compares the eccentricity at a fixed centrality
(see each point in the figure), eccentricities are essentially the
same.

In Fig. 2(b), v2 in Pb+Pb collisions at
√

sNN = 2.76 TeV
is shown as a function of the number of participants for three
different multiplicities in central collisions. The larger the
multiplicity, the larger the v2, but even at the lowest setting of
multiplicity, v2 is clearly larger than in the Au+Au collisions
at

√
sNN = 200 GeV.

This behavior is clearly visible in Fig. 3, where we plot
v2/εpart as a function of the transverse charged-particle density
(1/S)dNch/dη at midrapidity (| η |< 1) for various collision
systems and energies. First, as expected, the system in U+U

)-2 (fmη/d
ch

(1/S)dN
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FIG. 3. (Color online) The v2/εpart as a function of transverse
density in Au+Au collisions at

√
sNN = 62.4 (dash-dotted line) and

200 GeV (dashed line), in U+U collisions at
√

sNN = 200 GeV
(dotted line), and in Pb+Pb collisions at

√
sNN = 2.76 TeV (band).

The band depicting the Pb+Pb collisions spans the results obtained
using the multiplicities 1200 < dNch/dη < 1600 in the most central
5% of collisions.
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FIG. 4. (Color online) Ratio of v2 generated during the hydrody-
namical evolution to the final v2, v2,fluid/v2, in Au+Au and Pb+Pb
collisions at

√
sNN = 200 GeV and 2.76 TeV, respectively.

collisions at
√

sNN = 200 GeV is denser than in Au+Au
collisions at the same energy. At initial time τ0 = 0.6 fm/c, the
maximum temperature (energy density) in the most central 5%
of U+U collisions is T0 = 367 MeV (e0 = 33.4 GeV/fm3) and
T0 = 361 MeV (e0 = 31.4 GeV/fm3) in the Au+Au collisions
of the same centrality. This corresponds to charged-particle
transverse densities of 25.4 and 24.1, respectively, which
means that the transverse density in U+U collisions is indeed
larger, but only by ∼6%.3 In spite of the differences in the
colliding systems, results for various centralities in U+U
collisions almost trace the ones in Au+Au collisions, which
would suggest existence of scaling behavior in v2/εpart versus
(1/S)dNch/dη.

However, the behavior of v2/εpart in Pb+Pb collisions at√
sNN = 2.76 TeV is very different. In these collisions, the

system is much denser than in the collisions at RHIC energies.
The maximum temperatures at the initial time τ0 = 0.6 fm/c

are T0 = 475, 457, 436 MeV (e0 = 97.0, 82.4, 68.4 GeV/fm3)
for dNch/dη ∼ 1600, 1400, 1200 in the most central 5% of
collisions, respectively, which corresponds to roughly 2–2.5
times larger transverse density than in most central Au+Au
collisions at

√
sNN = 200 GeV. As can be seen, v2/εpart

no longer follows the scaling curve seen at the top RHIC
energy, but it reaches ∼0.26–0.3 in central collisions. This
value is ∼20–35% larger than the value at RHIC, which
is often considered a hydrodynamical upper limit in the
literature [37].

The reason for this breaking of the scaling is not in
the cascade treatment of the hadronic phase. If anything,
dissipation should reduce v2, so hadron cascade cannot be
responsible for the large value of v2/εpart seen here. We have
also checked that at LHC, the major part of v2 is generated
during the hydrodynamical stage, and the effects of hadronic

3With sufficient statistics, one may make a more severe centrality cut
(e.g., 0–3%) to obtain larger transverse particle density. Multiplicity
fluctuation in the centrality cut, which we do not take into account,
could also enhance the transverse particle density.

cascade are less important than at RHIC. The ratio of v2

generated during the hydrodynamical evolution to the final
v2, v2,fluid/v2, in collisions at RHIC and LHC is shown in
Fig. 4. As can be seen, the contribution of hadronic cascade
to the total v2 with default setting at LHC is less than 5%
at most centralities. However, the effect on the pT spectra of
heavy particles is significant, and one should not ignore the late
hadronic effects. On the other hand, the contribution reaches
10–20% of the total v2 in Au+Au collisions at the top RHIC
energy.

To further study the collision energy dependence of v2/εpart,
we do the calculation using the lower RHIC energy

√
sNN =

62.4 GeV. As seen in Fig. 3, the ratio in central collisions
(0–30%) deviates from the scaling curve seen at

√
sNN = 200

GeV, but the amount of the deviation might be too small to be
experimentally observable. The collision energy independence
of v2/εpart is seen in (1/S)dNch/dη <∼ 10 (fm−2), which
corresponds to dNch/dη <∼ 50 where hadronic cascading plays
a major role in the whole evolution. Note that the collision
energy dependence of v2/εpart is consistent with the early
calculations where v2 continuously increases with total pion
multiplicity dNπ/dy at midrapidity up to 3000 at a fixed
impact parameter (b = 7 fm) [5]. See also Ref. [38] for a
previous calculation in which the bag model equation of state
and a higher switching temperature Tsw = 169 MeV were
used. The agreement with previous hydrodynamical results
means that our result does not break any hydrodynamical
upper limit for v2/ε. It corroborates the old results and shows
that the hydrodynamical limit for v2/ε depends on collision
energy.

Recently, a prediction of elliptic flow as a function of
transverse charged-particle density up to the LHC energies
was made using viscous hydrodynamics in Ref. [39]. To avoid
the uncertainties associated with the freeze-out process, v2

was evaluated in that paper by calculating the momentum
anisotropy

ep =
∫

dxdy(T xx − T yy)∫
dxdy(T xx + T yy)

(4)

and relying on an empirical formula v2 ≈ ep/2 [40]. We have
checked the validity of this formula in our calculations and
found that in the collisions at the LHC energy, the ratio is
v2/ep ≈ 2/3, not 1/2. This discrepancy is not surprising. First,
it is known that the ratio strongly depends on the freeze-out
temperature [41]. The momentum anisotropy depicts the
anisotropy of the collective motion, whereas v2 reflects the
anisotropy of the momenta of individual particles, which
includes thermal motion and the effects due to resonance
decays [42] and the shape of the source [43]. Second,
the formula was found to hold in ideal fluid calculations.
There is no reason why it should be the same for viscous
hydrodynamics.

To summarize, we predicted elliptic flow parameter v2 in
U+U collisions at

√
sNN = 200 GeV and in Pb+Pb collisions

at
√

sNN = 2.76 TeV using a hybrid approach that combines
ideal hydrodynamic description of the QGP fluid and kinetic
description of the hadronic gas. Because of deformation
of uranium, eccentricity is larger in U+U collisions than
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in Au+Au collisions. We found the maximum transverse
particle density is ∼6% larger in the 0–5% most central U+U
collisions. The v2/εpart in U+U collisions follows the results in
Au+Au collisions, which suggests a scaling behavior between
v2/εpart and (1/S)dNch/dη. However, at the LHC energy,
v2/εpart does not follow the same scaling curve and reaches the
maximum value of ∼0.26–0.30 depending on the final particle
multiplicity. This is clearly larger than the corresponding
maximum value at the top RHIC energy, v2/εpart ∼ 0.22, and
the so-called hydrodynamic limit for v2/ε is not the same at
RHIC and LHC energies.
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Using the (2 + 1)-dimensional viscous hydrodynamic code VISH2 + 1 [H. Song and U. Heinz, Phys. Lett. B
658, 279 (2008); H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State
University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum
spectra and their elliptic flow in 200A GeV Au + Au collisions on the parameters of the hydrodynamic model
(thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific
shear viscosity η/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic
simulations that assume a constant shear viscosity to entropy density ratio) prefer larger η/s values, and the slope
of the pT dependence of charged hadron elliptic flow, which prefers smaller values of η/s. Changing other model
parameters does not appear to permit dissolution of this tension.
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I. INTRODUCTION

After experiments at the Relativistic Heavy Ion Collider
(RHIC) [1–4] and their theoretical analysis [5–7] established
that the quark-gluon plasma (QGP) created in ultrarelativistic
heavy-ion collisions is strongly coupled and behaves like an
almost ideal fluid (“perfect liquid”) with very small viscosity,
interest in the theoretical and phenomenological determination
of the QGP transport parameters, in particular its specific shear
viscosity η/s (i.e., the ratio between its shear viscosity η and
entropy density s), soared (see Refs. [8,9] for recent reviews).
In principle, it should be possible to extract this quantity from
heavy-ion collision experiments by comparing the measured
hadron spectra and their azimuthal anisotropies (in particular
their elliptic flow) with theoretical simulations of the collision
dynamics which treat the QGP shear viscosity as an adjustable
parameter [10,11]. In practice, this is a complex and difficult
task that requires careful and highly constrained simulations of
all dynamical stages of the collision that sandwich the viscous
hydrodynamic expansion of the QGP between nonequilibrium
phases describing (i) the initial geometry and early evolution
of the fireball before its thermalization and (ii) the final kinetic
hadron rescattering stage after its hadronization [12,13].

The present work is a contribution to help prepare the
path for such a phenomenological extraction of (η/s)QGP.
It employs viscous hydrodynamics to describe the fireball

*Corresponding author: shen@mps.ohio-state.edu
†heinz@mps.ohio-state.edu
‡huovinen@th.physik.uni-frankfurt.de
§HSong@LBL.gov

evolution, side-stepping the issues related to early and late
nonequilibrium evolution by replacing the output from the
(hypothetical) early nonequilibrium evolution model by initial
conditions for the hydrodynamic stage (to be adjusted post
facto to final hadron spectra and multiplicities in central
collisions [6]), and the late-stage hadronic rescattering and
kinetic freeze-out by a sudden transition from viscous fluid
to free-streaming particles, using the Cooper-Frye algorithm
[14] along a hypersurface of constant temperature Tdec. This
generalizes analogous attempts to describe experimental data
from 200A GeV Au + Au collisions at RHIC with ideal fluid
dynamics [6,15–21] to the case of viscous fluid dynamics.
Related work has already been reported in Refs. [10,22]; what
distinguishes the present study from these earlier articles is
that we use a state-of-the-art equation of state that matches
the latest lattice QCD data [23,24] at high temperatures to
a realistic, chemically nonequilibrated hadron resonance gas
at low temperatures. The construction of this equation of state
(EOS) is described in Ref. [25], except that we here implement
chemical freeze-out of the stable hadron yield ratios at Tchem =
165 MeV by imposing appropriate temperature dependent
nonequilibrium chemical potentials for each hadron species
below Tchem [15,16,19,26,27]. This ensures that the final
hadron yield ratios from our simulations are consistent with
their measured values which indicate chemical equilibrium at
temperature Tchem≈160–170 MeV [3,28,29].

The purpose of this study is not a detailed viscous
hydrodynamic fit to the RHIC data; its goal is rather to build
intuition for systematic trends and parameter dependences that
will be useful in forthcoming more ambitious fit attempts. One
feature that disqualifies the present model study from being
taken too seriously in comparison with the experimental data
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is our assumption of a constant (i.e., temperature independent)
specific entropy η/s. While η/s is probably small in the QGP
phase [10,11,30], possibly close to the Kovtun-Starinets-Son
(KSS) bound ( η

s
)KSS = 1

4π
[31,32], it is expected to increase

dramatically in the late dilute hadronic phase [33,34]. This
can have important consequences for the evolution of flow in
relativistic heavy-ion collisions [35] which will be studied in
a separate article [36].

II. HYDRODYNAMIC EQUATIONS, INITIAL
AND FINAL CONDITIONS

In this work, we use viscous hydrodynamics to simulate the
collision system by solving the second-order Israel-Stewart
equations as described in Ref. [37]. The energy-momentum
tensor of the fluid is decomposed as

T µν = euµuν − (p + �)�µν + πµν, (1)

where e is the local energy density, p is the thermal equilibrium
pressure [given by the equation of state p(e), see below], uµ

is the local flow four-velocity, �µν = gµν−uµuν is the spatial
projector in the local fluid rest frame, � is the bulk viscous
pressure (which we set to zero in this article, assuming that
effects from bulk viscosity can be ignored relative to those
caused by shear viscosity [38]), and πµν is the traceless and
symmetric shear pressure tensor satisfying uµπµν = 0. The
equations of motion are the hydrodynamic equations

dµT µν = 0, (2)

where dµ denotes the covariant derivative in curvilinear
(τ, x, y, η) coordinates (see Refs. [37,39] for details), coupled
to the Israel-Stewart [37,40–42] evolution equations for the
viscous pressure components:

�µα�νβπ̇αβ = −πµν−2ησµν

τπ

− πµν

2

ηT

τπ

dλ

(
τπ

ηT
uλ

)
. (3)

The dot on the left-hand side stands for the local comoving time
derivative D = uµdµ, η is the shear viscosity, σµν = ∇〈µ uν〉
is the velocity shear tensor (see Refs. [37,39] for notation),
and τπ is the microscopic relaxation time that controls the
evolution of πµν (we take τπ = 3 η

sT
[37]).

The equations are solved numerically in the two transverse
spatial directions and time, using the (2 + 1)-dimensional
hydrodynamic code VISH2+1 [13,43,44], assuming boost-
invariant longitudinal expansion along the beam direction. The
net baryon density and heat conductivity are set to zero.

To initialize the hydrodynamic evolution we must specify
the starting time τ0 at which the system is sufficiently close
to local thermal equilibrium for viscous hydrodynamics to be
applicable, initial energy density and velocity profiles, and the
initial viscous pressure tensor πµν . We here consider τ0 as a
tunable parameter and vary it between 0.2 and 0.8 fm/c in order
to study how it affects the final hadron spectra and elliptic flow.

For the initial energy density profile we study both Glauber
[44–47] and color glass condensate (CGC-fKLN) initializa-
tions [48–51] in the optical limit (i.e., without accounting
for event-by-event fluctuations [52–57]). Figure 1 shows a
comparison of typical initial energy density profiles generated

FIG. 1. (Color online) A comparison of initial energy density
profiles at τ0 = 0.4 fm/c for “central” (b = 2.33 fm, bottom) and
“peripheral” (b = 7.5 fm, top) Au + Au collisions from the Glauber
and CGC-fKLN models. Shown are cuts along the x axis (right panels)
and y axis (left panels). The two profiles are normalized to the same
total entropy at b = 2.33 fm, using the EOS s95p-PCE to convert
energy to entropy density.

from Glauber and CGC initializations. In the Glauber model
we assume a mixture of 85% wounded nucleon and 15% binary
collision contributions to the entropy production [58]. For the
CGC model we assume that the energy density is proportional
to the produced gluon energy density distribution, computed
with the publicly available fKLN code [59]. In central Au + Au
collisions, both profiles are normalized to the same total
entropy (adjusted to reproduce the total final charged hadron
multiplicity dNch/dy in these collisions) and converted to
energy density using the equation of state s95p-PCE (see next
section). With this normalization, both initializations correctly
describe the centrality dependence of dNch/dy for ideal fluid
dynamics (i.e., for isentropic expansion).

In the viscous case, viscous heating produces additional
entropy, resulting in larger final multiplicities which we must
correct for by renormalizing the initial entropy density profile
in such a way that the final multiplicity is held fixed. We
perform this renormalization for the 5% most central Au + Au
collisions (i.e., at b = 2.33 fm) and then keep the resulting
normalization constant fixed for noncentral collisions, i.e., we
again assume that the models produce the correct dependence
of initial entropy production on collision geometry. It is known,
however, that the fractional increase of the final entropy over
its initial value due to viscous heating depends on the size of
the collision fireball [37] and is therefore expected to be larger
in peripheral than central Au + Au collisions. For the results
presented in this article, we have checked that the centrality
dependence of viscous entropy production is sufficiently weak
so that it does not strongly modify the centrality dependence
of dNch/dy.

Figure 1 shows that the energy density profile from the CGC
initialization has a steeper surface gradient than the Glauber
profile. This leads to larger radial acceleration (i.e., radial
flow develops more quickly) and is also in part responsible
for the larger spatial eccentricity of the CGC profiles at
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nonzero impact parameters when compared to the Glauber
eccentricities [58,60].

The shear viscous pressure tensor πµν is initialized with its
Navier-Stokes value πµν = 2ησ

µν

0 , where σ
µν

0 is the velocity
shear tensor at time τ0, calculated from the initial Bjorken
velocity profile, uµ = (uτ , ux, uy, uη) = (1, 0, 0, 0).

For the medium’s viscous properties the shear viscosity
η/s is the key parameter. According to perturbative and lattice
QCD, the temperature dependence of η/s is weak over the
range explored in heavy-ion collisions at RHIC energies. This
suggests use of a constant ratio η/s. In this work, the value
of η/s is tuned from 0.08 to 0.24 in order to study the effects
of shear viscosity on the hadron spectra and elliptic flow. The
influence of a temperature-dependent η/s will be explored in
a forthcoming article [36].

Final-state hadron spectra are calculated from the hydrody-
namics output via the Cooper-Frye procedure [14]

E
d3Ni

d3p
= gi

(2π )3

∫
�

p · d3σ (x)fi(x, p), (4)

where � is the freeze-out surface with normal vector d3σµ(x).
We take for � an isothermal surface; calculations for different
freeze-out temperatures are presented in Sec. IV B. After
computing the spectra of all hadronic resonances included in
EOS s95p-PCE from Eq. (4), we use the resonance decay
program [61,62] from the AZHYDRO package1 to let the
unstable resonances decay. The pion and proton spectra shown
in this work include all decay products from strong decays.

The distribution function on the freeze-out surface can be
decomposed as f = feq + δf into a local equilibrium part

feq(p, x) = 1

ep·u(x)/T (x) ± 1
(5)

and a (small) deviation δf from local equilibrium due to shear
viscous effects for which we make the quadratic ansatz [63,64]
(for other possibilities see Ref. [65]) using

δf (x, p) = feq(p, x)[1∓feq(p, x)]
pµpνπµν(x)

2T 2(x)[e(x)+p(x)]
(6)

[the upper (lower) sign is for fermions (bosons)] for all particle
species. δf is proportional to the shear viscous pressure tensor
πµν(x) on the freeze-out surface and increases (in our case)
quadratically with the particle momentum.

III. EQUATION OF STATE

To solve Eqs. (2) and (3) one has to know the equation of
state p(e) (EOS) of the medium. In this work we compare three
different equations of state to study how the EOS affects the
hadron spectra and elliptic flow. Two of them, SM-EOS Q [44]
and EOS L [37], are well known in the literature; the former
implements a (slightly smoothed) first-order phase transition
between an ideal massless parton gas and a hadron resonance

1AZHYDRO is available at the URL [http://www.physics.ohio-
state.edu/˜froderma/].

gas (HRG), and the second is a rough attempt to match lattice
QCD (LQCD) data [66] above Tc to the HRG in a smooth
crossover transition, as seen in LQCD (see also Ref. [67]). In
both cases, the system is assumed to be in chemical equilibrium
all the way down to kinetic freeze-out at temperature Tdec.

Our third equation of state, s95p-PCE, also interpolates
between the HRG at low temperature and the lattice EOS
at high temperatures, but the matching procedure is more
sophisticated than the one used to construct EOS L, and the
lattice EOS is based on the recent results by the hotQCD
collaboration [23,24]. Furthermore, below Tchem = 165 MeV,
the EOS is that of a chemically frozen HRG. The matching
procedure using a chemically equilibrated HRG is explained
in detail in Ref. [25]. The procedure for the chemically frozen
HRG is identical since the chemical freeze-out temperature is
below the temperature where the interpolated EOS deviates
from the HRG EOS.

However, the version of s95p-PCE used here deviates
slightly from the s95p-PCE-v1 EOS shown in Appendix C
of Ref. [25]. First, we have chosen Tchem = 165 MeV for
the chemical freeze-out temperature, as fitted to experimental
data using thermal models [3,28,29], and we have considered
as stable particles those with a half-life larger than 40 fm/c

instead of 10 fm/c. Second, our s95p-PCE corresponds to a
historically slightly earlier stage of the parametrization of the
EOS than the final version published in Ref. [25]: The fit to the
lattice data was done without the T = 630 MeV data point.
This causes at most 0.4% difference between this version and
the final version of the EOS. We have checked that such a
small difference does not cause observable consequences in
the fluid-dynamical evolution.2

We have built the EOS of the chemically frozen hadron
gas using the standard procedure in the literature: Below Tchem

the ratios of stable hadron yields are fixed to their chemical
equilibrium values at Tchem by finite nonequilibrium chemical
potentials µi(T ) [15,16,19,26,27]. It is worth noting that the
ratios of individual particle densities are not conserved. What
is conserved are the ratios of the total densities of stable
particles, n̄i , where total density means the sum of the actual
density of species i and the additional density of the same
species that would arise if all unstable resonances in the system
were allowed to immediately and irreversibly decay. The rapid
processes that form and decay resonances through strong
interactions are still in equilibrium, and thus the resonance
populations are in equilibrium with the populations of their
daughter particles (see Refs. [15,26] for a detailed discussion).
Thus the chemically frozen system is in a state of partial
chemical equilibrium (PCE).

In practice the chemically frozen EOS is evaluated
assuming that the evolution is isentropic and the ratios
n̄i/s stay constant. Strictly speaking this is not the case in
viscous hydrodynamics since dissipation causes an increase in
entropy. However, we have checked that in our calculations the
viscous entropy production from fluid cells with temperatures
below Tchem = 165 MeV is small (see also the right panel of

2For a discussion of the uncertainties in parametrizing the lattice
data and its effect on fluid dynamics see Ref. [25].
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FIG. 2. (Color online) The three equations of state, s95p-PCE,
SM-EOS Q, and EOS L, used in this article. The lower panel shows
the squared speed of sound c2

s = ∂p

∂e
as a function of energy density

e, whereas p(e) is shown in the upper panel.

Fig. 8 in Ref. [37]) and our EOS is a good approximation of
the physical EOS.

An analytic parametrization of s95p-PCE is given in
Appendix; the EOS can be obtained in a tabulated form at
Ref. [68], where the particles included in the hadron resonance
gas are also listed. (We included all resonances listed in
the summary of the 2004 edition of the Review of Particle
Physics [69] up to 2 GeV mass. Note that our s95p-PCE is
called s95p-PCE165-v0 at Ref. [68] to differentiate it from
other versions of the parametrization.)

The three equations of state are compared in Fig. 2. The
upper panel shows the pressure and the lower panel the
squared speed of sound as a function of e. The spike in
c2
s (e) at e ∼ 0.5 GeV/fm3 results from the sudden breaking

of chemical equilibrium at Tchem = 165 MeV. It has negligible
consequences for the expansion dynamics. Figure 2 shows
that s95p-PCE is a much softer EOS than SM-EOS Q in the
QGP phase above Tc but much harder in the phase transition
region around Tc. Contrary to SM-EOS Q and EOS L, the
rapid crossover transition between quarks and hadrons that
is realized by nature does not have a well-defined “softest
point” [70] which would cause the fireball to spend an extended
time period in the critical region. Instead, the speed of sound
never drops much below its value in the HRG, causing the
fireball to cool rapidly through the phase transition [71].

IV. SPECTRA AND ELLIPTIC FLOW

In this section, we discuss the dependence of the transverse-
momentum spectra in central 200A GeV Au + Au collisions

(0–5% centrality, b = 2.33 fm) and the elliptic flow v2(pT ) in
semiperipheral collisions (20–30% centrality, b = 7.5 fm) for
pions, protons, and (for v2) all charged hadrons on the EOS and
various input parameters discussed in Secs. II and III. We have
also checked that everything we say below about the central
collision spectra also applies, at the same level of precision, to
the φ-averaged spectra in semiperipheral collisions.

Since the amount of viscous heating depends on the input
parameters, for each case we retune the normalization of the
initial energy density profile in central collisions so the same
final π+ multiplicity density dNπ+/dy is obtained. Its value is
adjusted by eye such that an optimal fit to the measured pion
spectrum is obtained in the low-pT region, pT < 1.5 GeV/c.
As there are slight discrepancies between the published
data from the STAR and PHENIX Collaborations, and these
experiments give their results in different centrality bins, we
have decided to concentrate on PHENIX results [72–74] when
comparing the theoretical curves with experimental data. Since
we do not attempt to fit these data but use the comparison
only to illustrate trends, this procedure is acceptable. A future
serious dynamical model fit to the data will require proper
accounting for systematic uncertainties and discrepancies
among the different experiments.

Since viscous heating effects are relatively more important
in peripheral than in central collisions, our renormalization to
constant multiplicities at b = 2.33 fm leads to slightly different
pion multiplicities at larger impact parameters. For a given
EOS, ensuring the same final pion multiplicity is equivalent
to ensuring the same final total multiplicity. For different
equations of state (see Sec. IV D) identical pion multiplicities
correspond to slightly different total multiplicities.

In the following we show hadron spectra and elliptic flow
up to transverse momenta of 3 GeV/c. We emphasize that
this is for illustrative purposes only and does not imply that
we believe hydrodynamics to provide a valid description up
to such large pT . When comparing model results with exper-
imental data, we judge the quality of agreement by focusing
on the region pT < 1.5 GeV/c for pions and pT < 2.5 GeV/c

for protons (which is where we believe hydrodynamics is a
reliable approach [75]). Specifically for pions, if the calculated
spectra drop off more steeply than the measured ones above
pT = 1.5 GeV/c, we discount this discrepancy, noting that this
is the region where the experimental spectra begin to change
from an exponential to a power-law shape due to the onset of
hard physics.

A. η/s dependence at fixed τ0 = 0.4 fm/c and T dec = 140 MeV

Transverse-momentum spectra of pions and protons in the
most central Au + Au collision are shown in Fig. 3 and in
the upper left panel of Fig. 4. The spectra include all strong
resonance decays. Here we hold initial and final conditions
fixed (except for a renormalization of the initial peak energy
density to ensure the same final multiplicity in all calculations)
and vary the specific shear viscosity η/s (see figure captions for
details). One sees that under these conditions larger η/s values
result in flatter spectra; the effect is particularly strong for
protons at low pT . The main reason is that larger shear viscosity
leads to larger radial flow, due to a positive contribution from
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FIG. 3. (Color online) Pion spectra for 200A GeV Au + Au
collisions at 0–5% centrality from VISH2+1 compared with PHENIX
data [72]. Results for two different constant values of η/s (0.08 and
0.24) are shown; strong resonance decays are included. Solid and
dashed lines show the spectra calculated from the full distribution
function f = feq + δf (“with δf ”) and from the equilibrium part
only (“without δf ”). The hydrodynamic evolution starts at τ0 =
0.4 fm/c with an initial CGC energy density profile and ends at
Tdec = 140 MeV. The EOS is s95p-PCE.

πµν to the effective transverse pressure gradients at early times
[39,76,77].

Figure 3 identifies, however, a second contribution to the
viscous hardening of the spectra: For η/s = 0.16 and 0.24 and
evolution with s95p-PCE, we find that the viscous correction
due to the nonequilibrium deviation δf of the distribution
function on the freeze-out surface, Eq. (6), is positive for
pT >∼ 0.5–1 GeV/c,3 thus adding to the hardening of the
spectra from radial flow.4 This is the same sign for δf as
found in Ref. [78] (for a different EOS) but opposite to what
had been found earlier with VISH2+1 for smaller values of η/s

using SM-EOS Q (i.e., a first order phase transition) [44]. (For
η/s = 0.08 Fig. 3 shows a negative δf correction for pions at
large pT of the same sign but much smaller magnitude than
found earlier [44] with Glauber initial conditions and SM-EOS
Q). Our finding confirms the fragility of the sign of δf that
was already discussed in Ref. [44].5

3The Landau matching conditions require the δf correction to
integrate to zero when summing over all momenta, so a positive
δf contribution at high pT implies a negative δf contribution at low
and/or intermediate pT . In Ref. [44] we found that it typically changes
sign twice.

4We checked that for all equations of state studied here that the sign
of δf at high pT does not depend on whether we use CGC or Glauber
initial conditions.

5For EOS L and SM-EOS Q and η/s > 0.08, we find a negative sign
of the δf contribution to both pion and proton spectra at high pT , while
the corresponding contribution is positive in the case of s95p-PCE.
The negative sign appears to be correlated with the use of an EOS
with a “softest point.” From ideal fluid dynamic simulations with such
first-order or almost-first-order phase transitions we know that the
rapid change of c2

s in the transition region generates strong structures

We note in passing that the positive δf at large pT found
here with s95p-PCE is found to be largest in near-central
collisions (b ≈ 0) where it can even lead to a positive δf

correction to the differential elliptic flow v2(pT ). At larger b,
the δf contribution to v2(pT ) remains negative here (see right
panels of Fig. 4), as has been consistently observed in other
work [10,43,44,78,79].

The time-integrated effect of the shear viscous pressure on
the radial flow and the “instantaneous” effect of the viscous
correction δf to the distribution function on the freeze-out
surface together give the total shear viscous correction to the
hadron spectra. For η/s = 0.08 we see in Fig. 3 that with
s95p-PCE the δf correction to the pion spectrum is almost
negligible, but the upper left panel in Fig. 4 shows that the
pion and proton spectra are still flatter than for the ideal fluid,
reflecting the larger radial flow caused by the shear viscous
increase of the transverse pressure gradients [44]. Thus both
the effect of viscosity on radial flow and δf contribute to the
flattening of the hadron spectra.

Comparing with the experimental data we find that both
pion and proton spectra favor a relatively large shear viscosity,
η/s = 0.16 ∼ 0.24. We caution that this conclusion is based
on calculations done with constant (i.e., temperature indepen-
dent) η/s and may be subject to revision once one properly
accounts for the increase of η/s in the dilute late hadronic
stage.

Proceeding to the elliptic flow, we start with a discussion of
the charged hadron v2 in the lower left panel of Fig. 4. Here,
larger shear viscosity values are seen to lead to a stronger
suppression of elliptic flow. The right panels in Fig. 4 show
that this suppression is again the consequence of two additive
effects: shear viscosity reduces the buildup of anisotropic
collective flow, reflected in the equilibrium part feq of the
distribution function on the freeze-out surface (dotted lines
in Fig. 4), but the viscous correction δf causes an additional
suppression of v2. For T -independent η/s, both suppression
effects increase monotonically with shear viscosity; however,
the increase of the δf correction with rising η/s is weaker
than that of the viscous suppression of the collective flow
anisotropy. The stronger suppression of v2 for larger η/s is
thus mostly due to the viscous suppression of anisotropic flow.

Since elliptic flow data for identified pions and protons
in the particular centrality bin shown in Fig. 4 are not yet
available, we compare in the lower left panel with experimental
data for unidentified charged hadrons. This plot suggests that,
even for CGC initial conditions which produce more eccentric
fireballs than the Glauber model [10,58], the v2 data suggest
a smaller value for η/s, η/s = 0.08–0.16, than obtained from
the pT spectra for central collisions.

This tension between the slope of the pT spectra (which
tends to favor larger η/s values) and the pT dependence of v2

in the radial velocity profile in fireball regions that are close to the
critical temperature [46] and that these structures partially survive
until the matter has reached decoupling. We suspect that velocity
gradients associated with these structures play an important role in
generating for EOS L and SM-EOS Q a negative δf contribution to
the spectra at high pT .
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FIG. 4. (Color online) (Upper left panel) Transverse-momentum spectra dN/(dyd2pT ) for pions and protons from VISH2+1 for the 5%
most central Au + Au collisions (b = 2.33 fm) compared with experimental data from the PHENIX Collaboration [72]. (Lower left panel)
Differential elliptic flow v2(pT ) for charged hadrons from Au + Au collisions at 20–30% centrality (b = 7.5 fm) compared with PHENIX
data [73]. (Right panels) v2(pT ) for pions (top) and protons (bottom). In these panels we compare the elliptic flow computed from the full
distribution function f = feq + δf (dashed, dot-dashed, and double-dot-dashed lines) with the contribution from the equilibrium part only
(dotted lines, “without δf ”). Lines with different symbols show calculations for different constant values of the specific shear viscosity η/s,
ranging from 0 (ideal hydro, solid lines) to 0.24 as indicated. All strong resonance decays are included; charged hadrons comprise π±, K±, p,
p, �±, �

∓
, �−, �

+
, �−, and �

+
. The EOS and initial and final conditions are the same as in Fig. 3.

(which favors smaller values) is generic and, as far as we were
able to ascertain, cannot be resolved with purely hydrodynamic
calculations that assume constant η/s. A possible solution of
this problem will likely involve accounting for temperature
dependence of η/s and/or the transition to a microscopic
kinetic description for the late hadronic stage.

B. T dec dependence at fixed τ0 = 0.4 fm/c and η/s = 0.16

In Fig. 5 we explore the sensitivity of spectra and elliptic
flow on the value of the decoupling temperature, holding
all other parameters fixed. For the constant η/s we select
η/s = 0.16 as a compromise between the values preferred
by the proton spectra and charged hadron v2, respectively, in
Fig. 4.

The left upper panel shows that lower freeze-out temper-
atures lead to flatter proton spectra. This is a consequence
of additional radial flow built up during the extra time
the fireball needs to cool down to lower Tdec. As is well
known [80,81], the heavier protons receive a larger push to
higher pT from radial flow than the lighter pions. Indeed,
Fig. 4 shows that the pion spectra become steeper as Tdec

is lowered [82]. Since pions are almost massless on the
scale of measured transverse momenta, the inverse slope of
their pT spectrum can be approximated by the relativistic

blueshift formula [80,81] Tslope = Tdec

√
1+〈v⊥〉
1−〈v⊥〉 , where 〈v⊥〉

is the average radial flow at Tdec. For pions, the steepening
effects on their spectrum from decreasing Tdec overwhelm the
flattening effects resulting from the associated increase of 〈v⊥〉,
causing a net softening of the pion spectra for lower freeze-out
temperatures.

From the lower left panel of Fig. 5 one sees that lower
decoupling temperatures lead to larger elliptic flow v2(pT )
for charged hadrons. To fully understand this systematics it is
worth comparing charged hadrons to the pT spectra and v2(pT )
of pions (upper left and right panels, respectively) which
dominate the charged hadron yield. The observed tendency
reflects a combination of three effects:

(i) Since the pT spectrum of pions (which dominate the
charged hadrons) gets steeper, even the same hydro-
dynamic momentum anisotropy would lead to a larger
slope of v2(pT ), to compensate for the lower yield at
high pT .

(ii) Since the fireball has not lost all of its eccentricity by
the time the QGP converts to hadrons [44], additional
momentum anisotropy is generated during the hadronic
stage. Lower decoupling temperatures give the system
time to develop more momentum anisotropy, leading to
a larger v2. If the pT spectrum stays unchanged or gets
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FIG. 5. (Color online) Similar to Fig. 4 but for fixed η/s = 0.16 and varying decoupling temperature Tdec ranging from 100 to 160 MeV as
indicated.

steeper (as is the case for pions in Fig. 5), a larger v2

must lead to a larger v2(pT ). The combination of effects
(i) and (ii) is seen in the dotted lines in the upper right
panel, which reflect the hydrodynamic flow anisotropy
at decoupling, undistorted by viscous corrections δf

to the local equilibrium distributions at freeze-out. The
effect (ii) decreases with increasing η/s in the hadronic
phase (not shown here), so the combined effect may be
weaker than seen in Fig. 5 if viscous hydrodynamics
is replaced by a microscopic hadron cascade such as
UrQMD in the hadronic phase.

(iii) The (negative) viscous corrections from δf to v2 are
smaller at lower temperatures, due to the general
decrease of the viscous pressure components [44].
This contributes the largest fraction of the observed
increase of v2(pT ) with decreasing Tdec, especially at
large pT .

Combining the information from the two left panels in
Fig. 5 we conclude that both the proton spectra in central
collisions and charged hadron v2(pT ) in peripheral collisions
favor decoupling temperatures near the lower end of the
window studied here (i.e., Tdec = 100 MeV works better than
Tdec = 140 MeV). The pion spectra are affected by variations
of Tdec mostly at pT >∼1–1.5 GeV/c where they fall increasingly
below the experimental data as we lower Tdec. However, this is
also the region where the hydrodynamic description of the pion
spectra is known to begin to break down [75], due to the gradual
transition from soft to hard physics which causes the pion
spectrum to change from an exponential to a power-law shape.

Focusing therefore on the region pT <1.5(2.5) GeV/c for pions
(protons), we conclude that a purely hydrodynamic description
of the experimental data favors freeze-out temperatures near
100 MeV.

The right panels of Fig. 5 show how Tdec affects the elliptic
flow of different identified hadrons. Charged hadrons mostly
reflect the behavior of the dominating pions whose v2(pT )
increases with decreasing freeze-out temperature. But protons
behave differently: At low pT <1 GeV, their elliptic flow
decreases with decreasing decoupling temperature, while at
high pT it increases with decreasing Tdec. The latter feature
reflects the increasing hydrodynamic momentum anisotropy
and decreasing magnitude of the δf correction, just like it
is reflected in the pion and charged hadron v2. The decrease
of proton v2 at low pT , on the other hand, is a consequence
of having larger radial flow at lower Tdec which pushes the
protons to larger pT . So rather than thinking of this effect as
a decrease of proton v2 at fixed pT , we should think of it as
shifting the elliptic flow to larger pT .

C. τ0 dependence at fixed η/s = 0.16 and T dec = 140 MeV

The upper left panel of Fig. 6 shows that the pion and
proton spectra react similarly to a change of the starting time
τ0 of the hydrodynamic evolution: Smaller τ0 values lead to
more high-pT particles, reflecting more radial flow. Starting
hydrodynamics earlier allows it to generate radial flow earlier,
and even though this also causes the fireball to cool down to
Tdec sooner and freeze out earlier, the net effect is still a slight
increase of the average radial flow at freeze-out.
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FIG. 6. (Color online) Similar to Fig. 4 but for fixed η/s = 0.16 and varying starting time τ0 for the hydrodynamic evolution, ranging from
0.2 to 0.8 fm/c as indicated.

For soft momenta pT <1.5 GeV/c, the effect of τ0 on v2(pT )
is negligible. This is true even for protons, showing that the
increase of radial flow with decreasing τ0 is a small effect and
not enough to visibly push the proton v2 to larger pT . At higher
pT , the dependence of the charged hadron, pion and proton v2

on τ0 is nonmonotonic. The right panels of Fig. 6 show that
this nonmonotonic behavior is the result of two counteracting
tendencies which both depend on τ0 monotonically: (i) The
elliptic flow computed from the local equilibrium part feq of
the distribution function at freeze-out increases monotonically
with increasing τ0, reflecting the longer total fireball lifetime
(and thus the longer time available to build up momentum
anisotropy) when the hydrodynamic evolution starts later.
(ii) The v2 suppression resulting from the viscous correction
δf at freeze-out also increases monotonically with increasing
τ0. We don’t have a complete understanding of why starting
(and thus also ending) the hydrodynamics later leads to a
larger δf on the decoupling surface; we suspect that since
the hydrodynamical flow would eventually settle into a three-
dimensional spherically symmetric Hubble flow with no shear
stress, starting earlier leads to a stronger transverse flow, and
thus to a flow profile which is closer to a spherically symmetric
flow at the time of decoupling.

D. EOS dependence at fixed τ0 = 0.4 fm/c, η/s = 0.16, and
T dec = 140 MeV

In Fig. 7 we study the sensitivity of hadron spectra and
elliptic flow on the equation of state, holding all other hydro-
dynamic parameters fixed (except for the normalization of the

initial energy density profile which is again adjusted to ensure
constant final multiplicity in central Au + Au collisions). We
first note that, due to the different chemical composition at
hadron freeze-out, the proton yields for EOS L and SM-EOS
Q are below those of s95p-PCE if we hold the pion mulitiplicity
fixed: In s95p-PCE we prohibit protons from annihilating on
antibaryons while such annihilation processes are allowed
in the other two equations of state which assume hadrons
in chemical equilibrium. To explore flow effects we should
concentrate on the shape (i.e., inverse slopes) of the pion
and proton spectra. We see that EOS L produces the flattest
spectra, followed by SM-EOS Q, whereas the spectra from
s95p-PCE are steepest. Since all three curves correspond to the
same (constant) freeze-out temperature Tdec = 140 MeV, these
differences can only arise from different amounts of radial
flow or different δf corrections (i.e., different viscous pressure
components πµν) along the freeze-out surface. To separate
these two effects we plotted the spectra calculated without
the δf correction and found the same hierarchy. We conclude
that, for fixed freeze-out temperature, s95p-PCE produces the
weakest radial flow averaged over the freeze-out surface and
EOS L generates the strongest flow, with SM-EOS Q falling
in between.

The reasons for s95p-PCE generating less radial flow than
the other two equations of state are complex and subtle. The
differences in speed of sound during the evolution largely
cancel out (see Ref. [25]). The key difference is that, at a fixed
freeze-out temperature, the chemically frozen HRG embodied
in s95p-PCE has a considerably larger energy density (edec =
0.301 GeV/fm3 at Tdec = 140 MeV) than the chemically
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FIG. 7. (Color online) Similar to Fig. 4 but for fixed η/s = 0.16 and different equations of state (SM-EOS Q, EOS L, and s95p-PCE) as
indicated. Since SM-EOS Q and EOS L have different chemical composition than s95p-PCE at Tdec = 140 MeV, they yield fewer protons than
s95p-PCE when normalized to the same pion yield.

equilibrated HRG used in EOS L and SM-EOS Q (which has
edec = 0.143 GeV/fm3 at the same temperature) [15], due to
the larger-than-equilibrium abundances of baryon-antibaryon
pairs and mesons that are prohibited from annihilating as the
system cools below Tchem. So with s95p-PCE the fireball
reaches the freeze-out point earlier, and it has a smaller
freeze-out radius. It is this latter feature which causes the
average radial flow along the freeze-out surface to be smaller
for s95p-PCE than for the other two EOS: when plotting the
radial velocity profiles along the decoupling surface, we found
that all profiles are approximately linear functions of the radial
distance r from the center (qualitatively similar to the profiles
shown in Fig. 4 of Ref. [83]) and that the profile for s95p-PCE
has the largest slope. However, the average radial flow is
smallest because for s95p-PCE the average over the freeze-out
surface is truncated at a smaller maximal r value.

The charged hadron, pion and proton elliptic flows v2(pT )
show quite large sensitivity to the EOS, especially at high pT .
(We repeat that the hydrodynamic spectra should probably not
be trusted beyond pT ∼ 2–2.5 GeV/c, but plotting them out
to 3 GeV/c makes it easier to see what is going on in the
calculation.) But we see that most of this sensitivity comes in
through the δf correction at freeze-out which is particularly
large for SM-EOS Q. The reason for this is that the first-order
phase transition leads to large velocity gradients at the QGP-to-
mixed-phase and mixed-phase-to-HRG interfaces [46] which
are largely but not completely washed out by viscous effects
[44] and leave traces on the decoupling surface. δf effects
are weaker with the smoother EOS L than with SM-EOS

Q even though EOS L generates on average more radial
flow.

To discuss the contribution from collective flow
anisotropies to pion and proton v2(pT ) we focus on the dotted
lines in the right panels of Fig. 7. We see that, while s95p-PCE
creates less radial flow, it generates a larger flow anisotropy (we
checked this by direct computation), resulting in larger v2(pT )
for both pions and protons than with the other two equations
of state. For EOS Q it was found in Refs. [15,16,19] that if the
kinetic freeze-out temperature Tdec is adjusted to reproduce the
pT spectra, the correct implementation of chemical freeze-out
at Tchem in the HRG phase increases the mass splitting between
v2(pT ) of pions and protons at low pT . On the other hand, if
the freeze-out temperature is kept constant, the mass splitting
at low pT decreases [15]. Since we have kept the freeze-
out temperature fixed in our calculations, we see a similar
phenomenon here: The elliptic flow mass splitting between
pions and protons is weaker for the chemically frozen s95p-
PCE than for the chemically equilibrated EOS L and SM-EOS
Q. This is a consequence of the weaker radial flow generated by
s95p-PCE.

E. Dependence on the shape of the initial energy
density profile (CGC vs. Glauber)

We close with a discussion of the influence of the shape
of the initial energy density profile on the hadron spectra
and elliptic flow, using the Glauber and CGC-fKLN models

054904-9



SHEN, HEINZ, HUOVINEN, AND SONG PHYSICAL REVIEW C 82, 054904 (2010)

FIG. 8. (Color online) Similar to Fig. 4 but for fixed η/s = 0.16 and different initial energy density profiles (Glauber vs. CGC) as indicated.
The elliptic flow from an initial CGC density profile is larger than for the Glauber initialization, due its larger initial eccentricity.

as examples. For an illustration of these profiles see
Fig. 1.

The CGC profile is characterized by slightly steeper
normalized energy density gradients than the Glauber profile.
According to the Euler equation for ideal fluids

u̇ν = c2
s

1 + c2
s

∇νe

e
(7)

this leads to larger radial acceleration. Indeed, the upper
left panel of Fig. 8 exhibits slightly flatter pion and proton
spectra for CGC-initialized simulations than for Glauber initial
conditions.

The elliptic flow coefficients for charged hadrons, pions,
and protons are all significantly larger for the CGC-initialized
runs than for Glauber initial conditions. This is a direct
consequence of the well-known larger eccentricity of the
CGC density profiles [10,50,58,60] which drives a larger
momentum anisotropy. The effect is qualitatively similar for
all hadron species. The small amount of added radial flow
from the CGC initialization that we see in the spectra has
very little influence on the pT dependence of the proton
v2 when compared to the much larger effects coming from
the larger source eccentricity. The suppression of v2 by
viscous δf corrections at freeze-out is similar for CGC and
Glauber initial conditions, being slightly larger in the CGC
case. This is presumably caused by the slightly larger flow
velocities (and flow velicity gradients) generated by the CGC
profile.

V. CONCLUSIONS

We have performed a systematic study of the dependence
of the pion and proton transverse momentum spectra and
their pT -dependent elliptic flow on the thermalization time
τ0, initial energy density profile, equation of state, freeze-
out temperature, and specific shear viscosity in (2 + 1)-
dimensional viscous hydrodynamic simulations. Assuming a
temperature-independent shear viscosity to entropy ratio and
CGC initial conditions for the energy density profile, we find
that the proton pT spectra measured in 200A GeV central
Au + Au collisions at RHIC favor η/s values between 2 and
3 times the KSS bound ( η

s
)KSS = 1

4π
while the pT slope

of the charged hadron elliptic flow prefers smaller values
between 1 and 2 times the KSS bound. This tension cannot be
resolved by different choices for the other paramaters whose
variation we studied. Of course, the η/s values extracted from a
comparison with simulations using the less eccentric Glauber
model for the initial energy density profile are smaller, but
the comparison with the experimental data gets worse (the
proton spectra come out steeper) and tension between the
η/s values preferred by spectra and v2 gets stronger. Lower
freeze-out temperatures improve the agreement with the data,
in particular with the heavy-particle (proton) spectra. We
saw very little sensitivity to the choice of the termalization
time τ0, but for larger values of τ0 we did not allow for the
evolution of pre-equilibrium radial and elliptic flow, contrary
to what is expected to happen in reality. The main reason for
not doing so was that, at this point, we have no theoretical
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control over this pre-equilibrium flow, and we did not want
to clutter our study by introducing still further parameters.
If there is a tendency worth mentioning in the context of
varying τ0 it is that smaller τ0 values lead to somewhat larger
radial flow which helps with the description of heavy hadron
spectra. This may, however, also be achievable by starting
hydrodynamics later, but with nonzero initial transverse flow
[21,84,85].

The main objective of this study was to gain an intuitive un-
derstanding what reasonable changes in the key parameters of
a viscous hydrodynamic simulation will do to the final hadron
spectra and elliptic flow. By also keeping an eye on the avail-
able experimental data we come to the conclusion that a purely
hydrodynamic description of the experimental spectra will
probably not work, at least not with temperature-independent
η/s. Realistic variations of η/s with temperature are the sub-
ject of a separate study [36]. Based on that study combined with
the one presented here we believe that giving up on a (viscous)
hydrodynamic description of the hadron resonance gas stage
and replacing it with a more reliable microscopic approach is

unavoidable for a quantitative description of the experimental
data.
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APPENDIX: ANALYTIC PARAMETRIZATION OF EOS
s95p-PCE [68]

We used the following analytic parametrization for the
equation of state s95p-PCE (energy density e and pressure
p in GeV/fm3, entropy density s in fm−3, temperature T

in GeV):

1. Pressure

p(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.3299[exp(0.4346e) − 1] : e < e1

1.024 × 10−7 exp(6.041e) + 0.007273 + 0.14578e : e1 < e < e2

0.30195 exp(0.31308e) − 0.256232 : e2 < e < e3

0.332e − 0.3223e0.4585 − 0.003906e exp(−0.05697e) + 0.1167e−1.233 + 0.1436e exp(−0.9131e) : e3 < e < e4

0.3327e − 0.3223e0.4585 − 0.003906e exp(−0.05697e) : e > e4

(A1)

where e1 = 0.5028563305441270 GeV/fm3, e2 = 1.62 GeV/fm3, e3 = 1.86 GeV/fm3, and e4 =
9.9878355786273545 GeV/fm3.

2. Entropy density

s
4
3 (e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12.2304e1.16849 : e < e1

11.9279e1.15635 : e1 < e < e2

0.0580578 + 11.833e1.16187 : e2 < e < e3

18.202e − 62.021814 − 4.85479 exp(−2.72407 × 10−11e4.54886)

+65.1272e−0.128012 exp(−0.00369624e1.18735) − 4.75253e−1.18423

}
: e3 < e < e4

18.202e − 63.0218 − 4.85479 exp(−2.72407 × 10−11e4.54886)

+65.1272e−0.128012 exp(−0.00369624e1.18735)

}
: e > e4

(A2)

where e1 = 0.1270769021427449 GeV/fm3, e2 = 0.4467079524674040 GeV/fm3, e3 = 1.9402832534193788 GeV/fm3, and
e4 = 3.7292474570977285 GeV/fm3.

3. Temperature

T (e) =
{

0.203054e0.30679 : e < 0.5143939846236409 GeV/fm3

(e + p)/s : e > 0.5143939846236409 GeV/fm3
(A3)
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We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart
(IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications.
A massless ideal gas with 2 → 2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D)
appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant
shear viscosity to entropy density ratio η/s ≈ const, we find that IS theory is accurate within 10% in calculating
dissipative effects if initially the expansion time scale exceeds half the transport mean free path τ0/λtr,0 >∼ 2.
The same accuracy with NS requires three times larger τ0/λtr,0 >∼ 6. For dynamics driven by a constant cross
section, on the other hand, about 50% larger τ0/λtr,0 >∼ 3 (IS) and 9 (NS) are needed. For typical applications
at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e.,

√
sNN ∼ 100–200 GeV,

these limits imply that even the IS approach becomes marginal when η/s >∼ 0.15. In addition, we find that the
“naive” approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even
smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and
present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on
generalized conservation laws.

DOI: 10.1103/PhysRevC.79.014906 PACS number(s): 25.75.−q, 24.10.Nz, 24.10.Lx

I. INTRODUCTION

The realization that shear viscosity is likely nonzero in
general [1–3], and therefore the perfect (Euler) fluid paradigm
[4–7] of nuclear collisions at the BNL Relativistic Heavy Ion
Collider (RHIC) could have significant viscous corrections [8],
has fueled great interest in studying dissipative hydrodynamics
[9–18]. Causality and stability problems [19] exhibited
by standard first-order relativistic Navier-Stokes (NS)
hydrodynamics [20,21] steered most effort toward application
of the second-order Israel-Stewart (IS) approach [22,23].

However, unlike the NS approach, which comes from a
rigorous expansion [24] in small gradients near equilibrium,
the IS formulation is not a controlled expansion in some small
parameter (see Sec. II). Moreover, though causality is restored
in a region of hydrodynamic parameters, the stability of IS
solutions is not necessarily guaranteed [25]. Therefore it is
imperative to test the applicability of the IS approach against
a stable, nonequilibrium theory.

In this work we perform such a test utilizing the fully stable
and causal covariant transport approach [26–29]. We focus on
the special case of 2 → 2 transport and a longitudinally boost-
invariant system [30] with transverse translational symmetry,
i.e., 0 + 1 dimension (D). Follow-up studies in higher
dimensions, such as our earlier comparison between transport
and ideal hydrodynamics in 2 + 1D [8], will be pursued in the
future.

A similar study by Gyulassy, Pang, and Zhang [27]
compared kinetic theory and Navier-Stokes results. Here we
compare kinetic theory to the causal IS solutions. In addition,
we provide a series of tests and semianalytic approximations

that demonstrate the general behavior of IS solutions, which
can be utilized to verify the accuracy of numerical IS solutions.

The paper is structured as follows. We start with review-
ing the relationship between hydrodynamics and covariant
transport (Sec. II), then proceed to discuss the Israel-Stewart
equations (Sec. III). The basic observables studied here are
introduced in Sec. IV, while the main results from the
hydro-transport comparison are presented in Sec. V, together
with implications for heavy ion collisions. Many details
are deferred to Appendixes A–D. We highlight here the
generalized conservation laws derived in Appendix B and the
detailed study of IS and NS solutions in Appendix C utilizing
numerical and analytic methods.

II. HYDRODYNAMICS AND COVARIANT TRANSPORT

Hydrodynamics describes a system in terms of a few
local, macroscopic variables [20], such as energy density ε(x),
pressure p(x), charge density n(x), and flow velocity uµ(x).
The equations of motion are energy-momentum and charge
conservation

∂µT µν(x) = 0, ∂µNµ(x) = 0, (1)

and the equation of state p(ε, n). Ideal (Euler) hydrodynamics
assumes local equilibrium, in which case,

T
µν

LR,id = diag(ε, p, p, p),
(2)

N
µ

LR,id = (n, 0)
[
u

µ

LR = (1, 0)
]
,

in the fluid rest frame LR. Extension of the theory with additive
corrections linear in flow and temperature gradients [20]

δT
µν

NS = ηs

(∇µuν + ∇νuµ − 2
3�µν∂αuα

) + ζ�µν∂αuα, (3)
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δN
µ

NS = κq

(
nT

ε + p

)2

∇µ
(µ

T

)
(4)

(�µν ≡ gµν − uµuν,�µ ≡ �µν∂ν),

leads via Eq. (1) to the relativistic NS equations. (We use
the Landau frame convention uµδT µν ≡ 0 throughout this
paper, i.e., the flow velocity is chosen such that momentum
flow vanishes in the LR frame.) Here ηs(ε, n) and ζ (ε, n)
are the shear and bulk viscosities, while κq(ε, n) is the heat
conductivity of the matter. The most notable feature of NS
theory relative to the ideal case is dissipation, i.e., entropy
production. For consistency, the dissipative corrections (3)–(4)
must be small, otherwise nonlinear terms and higher gradients
should also be considered.

It is crucial that the above hydrodynamic equations can
indeed be obtained from a general nonequilibrium theory,
namely, on-shell covariant transport [21,27–29]. For a one-
component system, the covariant transport equation reads

pµ∂µf (x, p) = S(x, p) + C[f, f ](x, p), (5)

where the source term S specifies the initial conditions, and C

is the collision term. Throughout this paper, we consider the
Boltzmann limit1 with binary 2 → 2 rates

C[f, g](x, p1)

≡
∫

2

∫
3

∫
4
(f3g4 − f1g2)W12→34δ

4(p1+p2−p3−p4), (6)

where fi ≡ f (x, pi) and
∫
i
≡ ∫

d3pi/(2Ei). For dilute sys-
tems, f is the phase-space distribution of quasiparticles,
while the transition probability W = (1/π )s(s − 4m2)dσ/dt

is given by the scattering matrix element [21]. Our interest
here, on the other hand, is the theory near its hydrodynamic
limit, W → ∞. In this case, “particles” and “interactions”
do not necessarily have to be physical but could simply be
mathematical constructs adjusted to reproduce the transport
properties of the system near equilibrium [31]. The main
advantage of transport theory is its ability to dynamically
interpolate between the dilute and opaque limits.

The Euler and Navier-Stokes hydrodynamic equations
follow from a rigorous expansion of Eq. (5) in small gradients
near local equilibrium

f (x, p) = feq(x, p)[1 + φ(x, p)],
(7)

|φ| � 1, |pµ∂µφ| � |pµ∂µfeq|/feq,

and substitution of moments of the solutions

Nµ(x) ≡
∫

d3p

p0
pµ f (x, p),

1Bose (+) or Fermi (−) statistics can be included in a straight-
forward manner by substituting f1g2 → f1g2(1 ± f̃3)(1 ± g̃4) and
f3g4 → f3g4(1 ± f̃1)(1 ± g̃2) in the collision term of Eq. (6) where
f̃ ≡ (1/γ )(2π )3f and g̃ ≡ (1/γ )(2π )3g for particles of degeneracy
γ . The various hydrodynamic limits can then be derived analogously
to the Boltzmann case, if one makes the convenient replacement
φ → (1 ± f̃eq)φ in Eq. (7).

T µν(x) ≡
∫

d3p

p0
pµpν f (x, p), (8)

into Eq. (1). The zeroth order φ = 0 reproduces ideal hydro-
dynamics. The first-order result is the solution to the linear
integral equation

pµ∂µfeq(x, p) = C[feq, feqφNS](x, p)

+C[feqφNS, feq](x, p) (9)

and leads to the NS equations.
Unfortunately, the relativistic Navier-Stokes equations are

parabolic and therefore acausal. A solution proposed by
Mueller [32] and later extended by Israel and Stewart [22,23]
converts the NS equations into relaxation equations for the
shear stress πµν , bulk pressure �, and heat flow qµ. The
dissipative corrections

δT µν ≡ πµν − ��µν, δNµ ≡ − n

ε + p
qµ

(10)(
uµqµ = 0, uµπµν = uµπνµ = 0, πµ

µ = 0
)
,

dynamically relax on microscopic time scales τπ (ε, n),
τ�(ε, n), τq (ε, n) toward values dictated by gradients in flow
and temperature. Causality is satisfied in a region of parameter
space; however, stability is not guaranteed [25].

More importantly, unlike the Euler and NS equations, the
Israel-Stewart approach is not a controlled approximation to
the transport theory of Eq. (5). Instead of an expansion in some
small parameter, it corresponds to a quadratic ansatz [23,33]
for the deviation from local equilibrium

φG(x, p) = Dµ(x)
pµ

T
+ Cµν(x)

pµpν

T 2
, (11)

where Dµ and Cµν are determined by the local dissipative
corrections πµν,�, and qµ.2 In contrast, the Chapman-Enskog
solution (9) contains all orders in momentum. An evident
pathology of the quadratic form (11) is that, in general, φG

is not bounded from below, and thus the phase-space density
becomes negative at large momenta [cf. Eqs. (7) and (62)].
Furthermore, the two approaches give different results not only
for the relaxation times [21,23], e.g.,

τNS
π = 0, τ IS

π = 3ηs

2p
, (12)

but also for the transport coefficients themselves. For an
energy-independent isotropic cross section and ultrarelativistic
particles (T 	 m), the difference is small [21], e.g.,

ηNS
s ≈ 0.8436

T

σtr
, ηIS

s = 4T

5σtr
, (13)

but can be large for more complicated interactions. Here σtr ≡∫
d�c.m. sin2 θc.m.dσ/d�c.m. is the transport cross section (for

isotropic, σtr = 2σTOT/3).
In the following sections, we analyze IS hydrodynamic

solutions analytically and numerically and test the accuracy of
the IS approximation via comparison with solutions from full
2 → 2 transport theory.

2The alternative formulation based on transient thermodynamics
[22,23] also lacks a small expansion parameter.
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III. ISRAEL-STEWART HYDRODYNAMICS AND
BOOST INVARIANCE

A. Israel-Stewart equations

There seems to be some confusion regarding IS theory [22,
23] in the recent literature; therefore, we start with reviewing
the key ingredients. The starting point of IS theory is an entropy
current that includes terms up to quadratic order in dissipative
quantities3

Sµ = uµ

[
seq − 1

2T
(β0�

2 − β1qνq
ν + β2π

λνπλν)

]

+ qµ

T

(
µn

ε + p
+ α0�

)
− α1qνπ

νµ

T
(14)

(we follow the Landau frame convention). Here µ is the
chemical potential, and seq is the entropy density in local
equilibrium. The coefficients {αi(ε, n)} and {βi(ε, n)} encode
additional matter properties that complement the equation
of state the transport coefficients. Most importantly, the
parameters {βi} control the relaxation times for dissipative
quantities:

τ� = ζβ0, τq = κqTβ1, τπ = 2ηsβ2. (15)

The entropy current and relaxation times in NS theory are
recovered when all the coefficients are set to zero β0 = β1 =
β2 = 0 = α0 = α1 (but as discussed previously, the IS and NS
transport coefficients differ in general).

The requirement of entropy nondecrease (∂µSµ � 0), which
IS satisfies via a positive semidefinite4 quadratic ansatz

T ∂µSµ = �2

ζ
− qµqµ

κqT
+ πµνπ

µν

2ηs

� 0, (16)

leads to the identification of the dissipative currents:

� = ζ

[
−∇µuµ − 1

2
�T ∂µ

(
β0u

µ

T

)

−β0D� + α0∂µqµ − a′
0q

µDuµ

]
, (17)

qµ = −κqT �µν

[
T n

ε + p
∇ν

(µ

T

)
+ 1

2
qνT ∂λ

(
β1u

λ

T

)
+β1Dqν + α0∇ν� − α1∂

λπλν

− a0�Duν + a1πλνDuλ

]
, (18)

πµν = 2ηs

[
∇〈µuν〉 − 1

2
πµνT ∂λ

(
β2u

λ

T

)

−β2〈Dπµν〉 − α1∇〈µqν〉 + a′
1q

〈µDuν〉
]
, (19)

a′
i ≡ ∂(αi/T )

∂(1/T )

∣∣∣∣
µ/T =const

− ai. (20)

3Unlike us here, Israel and Stewart choose gµν =
diag(−1, 1, 1, 1),�µν = gµν + uµuν .

4Positive semidefiniteness follows from the general properties
qµqµ � 0 and πµνπµν � 0.

Here D ≡ uµ∂µ, and the 〈〉 brackets denote traceless sym-
metrization and projection orthogonal to the flow

A〈µν〉 ≡ 1
2�µα�νβ(Aαβ + Aβα) − 1

3�µν�αβAαβ. (21)

The new matter coefficients {ai(ε, n)} are needed to describe
how contributions from the qµ� and qνπ

µν terms in Eq. (14)
are split between the bulk pressure and heat flow, and the
heat flow and shear stress evolution equations, respectively (in
other words, a whole class of equations of motion generates
the same amount of entropy; see Appendix A).

Notice that the time derivatives of heat flow qµ and
shear stress tensor πµν are not expressed explicitly in
Eqs. (18)–(19); instead, orthogonal projections to the flow
velocity vector appear [cf. Eqs. (8a)–(8c) in Ref. [22]]. Re-
ordering the equations explicitly for the time derivatives gives
rise to the terms −uµqνDuν and −(πλµuν + πλνuµ)Duλ.
There is therefore no need for a kinetic theory treatment [34] to
derive these terms. They were missed in Ref. [12], but they are
already present in standard IS theory as a trivial consequence
of the product rule of differentiation and the orthogonality of
the flow velocity and shear stress/heat flow.

As we saw above, the Israel-Stewart procedure only
determines the equations of motion up to nonequilibrium terms
that do not contribute to entropy production. In kinetic theory,
more such terms arise [23] when the vorticity

ωµν ≡ 1
2�µα�νβ(∂βuα − ∂αuβ) (22)

is nonzero. Including the vorticity terms, the complete set of
evolution equations for the dissipative currents are

D� = − 1

τ�

(
� + ζ∇µuµ

) − 1

2
�

(
∇µuµ + D ln

β0

T

)

+ α0

β0
∂µqµ − a′

0

β0
qµDuµ, (23)

Dqµ = − 1

τq

[
qµ + κq

T 2n

ε + p
∇µ

(µ

T

)]
− uµqνDuν

− 1

2
qµ

(
∇λu

λ + D ln
β1

T

)
− ωµλqλ − α0

β1
∇µ�

+ α1

β1
(∂λπ

λµ + uµπλν∂λuν) + a0

β1
�Duµ

− a1

β1
πλµDuλ, (24)

Dπµν = − 1

τπ

(
πµν − 2η∇〈µuν〉) − (πλµuν + πλνuµ)Duλ

− 1

2
πµν

(
∇λu

λ + D ln
β2

T

)
− 2π

〈µ
λ ων〉λ

− α1

β2
∇〈µqν〉 + a′

1

β2
q〈µDuν〉. (25)

We will refer to these equations as “complete IS.” If we ignore
their tensorial structure, the equations have the general form

Ẋ = − 1

τX

(X − XNS) + X YX + ZX (26)

for each dissipative quantity X, where XNS is the value of X

in NS theory and YX,ZX are given by the ideal hydrodynamic
fields and dissipative quantities other than X. Therefore,
IS theory describes relaxation toward Navier-Stokes on a
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characteristic time τX, provided |YX|τX � 1 and |ZX|τX �
|XNS|. If YX and/or ZX are not small, the effective relaxation
times in IS theory differ from τX; moreover, the relaxation of
dissipative quantities is no longer toward their NS values. This
has been discussed in Ref. [12], which, however, argued for
dropping all XYX + ZX terms for the very same reason.

In the last step of their derivation, Israel and Stewart
neglect the terms with the factor 1/2 (this gives the equivalent
to [23]), because they expect to study astrophysical systems
with small gradients |∂µuν + ∂νuµ|/T � 1, |∂µε|/(T ε) �
1, |∂µn|/(T n) � 1, near a global (possibly rotating) equilib-
rium state. The neglected terms are then products of small
gradients and the dissipative quantities. We will refer to this
approximation as “naive IS.”5

In heavy ion physics applications, on the other hand,
gradients ∂µuν/T , |∂µε|/(T ε), and |∂µn|/(T n) at early times
τ ∼ 1 fm are large ∼O(1), and therefore cannot be ignored.
Nevertheless, hydrodynamics may still be applicable, provided
the viscosities are unusually small, i.e., ηs/seq ∼ 0.1, ζ/seq ∼
0.1, where seq is the entropy density in local equilibrium. In
this case, dissipative effects are still moderate, for example,
the pressure corrections from NS theory [Eq. (3)] are

δT
µν

NS

p
≈

(
2

ηs

seq

∇〈µuν〉

T
+ ζ

seq

∇αuα

T

)
ε +p

p
∼ O

(
8ηs

seq
,

4ζ

seq

)
(27)

Heat flow effects can also be estimated based on Eq. (4):

δN
µ

NS

n
≈ κqT

seq

n

seq

∇µ(µ/T )

T
. (28)

For RHIC energies and above, at midrapidity, the correction
is rather small even for large κq because the baryon density
and therefore µB/T is very low. For example, in a recent
ideal fluid calculation at RHIC energy [36], these ratios were
nB/s ≈ 2.2 × 10−3 and µB/T ≈ 0.2 in order to reproduce the
observed net baryon spectra. These choices are also supported
by thermal model analyses of particle ratios which lead to
µB/T ≈ 0.17 [37].

B. Viscous equations of motion for longitudinally
boost-invariant 0 + 1D dynamics

At this point, we specialize the equations of motion to a
viscous, longitudinally boost-invariant6 system with transverse
translation invariance and vanishing bulk viscosity:

ṅ + n

τ
= 0 ⇔ n(τ ) = τ0n(τ0)

τ
, (29)

ε̇ + ε + p

τ
= −πL

τ
, (30)

5Note that in Ref. [35], the equivalent sets of equations are called
“full IS” and “simplified IS.”

6By a boost-invariant system we mean a system that obeys
the scaling flow, v = (0, 0, z/t), where all scalar quantities are
independent of coordinate rapidity η ≡ (1/2) ln[(t + z)/(t − z)], and
where all vector and tensor quantities can be obtained from their
values at η = 0 by an appropriate Lorentz boost.

τπ π̇L + πL

[
1 + τπ

2τ
+ ηsT

2

˙(
τπ

ηsT

)]
= −4ηs

3τ
, (31)

πT = −πL

2
. (32)

This special case is well known in the literature [9,34,38] as
a useful approximation to the early longitudinal expansion
stage of a heavy ion collision for observables near midrapidity
η ≈ 0. Here τ ≡ √

t2 − z2 is the Bjorken proper time, and the
‘dot’ denotes d/dτ . πL and πT are the viscous corrections
to the longitudinal and transverse pressure, i.e., the πzz and
πxx = πyy components of the shear stress tensor evaluated in
the local rest frame,7 respectively. All the other components
of the stress tensor are zero due to symmetry. There is no
equation for heat flow, because the symmetries of the system—
longitudinal boost-invariance, axial symmetry in the transverse
plane, and η → −η reflection symmetry—force the heat flow
to be zero everywhere. We have chosen to ignore bulk viscosity,
since shear viscosity is expected to dominate at RHIC. In
the following, we also concentrate on a system of massless
particles, where bulk viscosity is zero in general. It is worth
noticing that these equations are identical in both Eckart and
Landau frames; but in less restricted systems where heat flow
is nonzero, Eckart and Landau frames differ.

To simplify the discussion and facilitate comparison with
transport results, from here on we concentrate on a system
of massless particles with only elastic 2 → 2 interactions.
Particle number is then conserved, and the equation of state is

ε = 3p, T = p

n
. (33)

Now the density equation decouples entirely, and we end up
with two coupled equations for the equilibrium pressure and
the viscous correction πL. The shear stress relaxation time of
Eq. (12) and the shear viscosity of Eq. (13) can be recast with
the transport mean free path λtr ≡ 1/(nσtr) as

ηs = CnT λtr, τπ = 3C

2
λtr, C ≈ 4

5
, (34)

and Eqs. (30) and (31) can then be written as

ṗ + 4p

3τ
= −πL

3τ
, (35)

π̇L + πL

τ

(
2κ(τ )

3
+ 4

3
+ πL

3p

)
= −8p

9τ
, (36)

where

κ(τ ) ≡ K(τ )

C
= nT τ

ηs

, K(τ ) ≡ τ

λtr(τ )
. (37)

The ratio of expansion and scattering time scales K controls
how well ideal and/or dissipative hydrodynamics applies. This
is essentially the inverse of the ratio of shear stress relaxation
time to hydrodynamic time scales τπ/τ = 3/(2κ). K is also
a generalization of the inverse Knudsen number L/λ, since
the shortest spatial length scale is given by gradients in the
longitudinal direction L ∼ 1/(∂zuz) ∼ τ . It is also a measure

7That is, in the often employed curvilinear τ -η-x-y coordinates, we
have πηη = τ 2πL.
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of the shear viscosity to entropy density ratio, because for a
system in chemical equilibrium, seq = 4n and thus

ηs

seq
= T τ

4κ
. (38)

(See Sec. V E for the general case.)
Similar treatment to relativistic NS theory leads to

πL = −4ηs

3τ
= −4p

3κ
(39)

and the equation of motion

ṗ + 4p

3τ
= 4

9κ(τ )

p

τ
. (40)

As discussed in the previous section, the viscosities in NS and
IS theories differ; therefore, κ in Eq. (40) is not identical to
the one in Eq. (36). We will ignore the difference, because in
our case it is only ≈5%.

Finally, we note that in the “naive” Israel-Stewart approxi-
mation, Eq. (36) changes to

π̇L + 2κ(τ )πL

3τ
= −8p

9τ
. (41)

IV. BASIC OBSERVABLES

Here we introduce the basic observables investigated in
this study and discuss their evolution based on the analytic IS
and NS solutions of Appendix C. It is important to emphasize
that our observations will hold only during the longitudinal
expansion stage of heavy ion collisions. After some time
τ ∼ R/cs , transverse expansion sets in, and hydrodynamics,
whether IS or NS, eventually breaks down, because for ex-
pansion in three dimensions, λtr ∼ τ 3/σ , i.e., κ ∼ σ/τ 2 → 0
in the hadronic world where cross sections are bounded. It
is interesting to note that ηs/seq ≈ const would not decouple
even for a three-dimensional expansion (because in that case
T ∝ 1/τ , and thus λtr ∝ η/p ∝ τ , while τexp ≡ 1/(∂µuµ) ∝
τ , i.e., κ ∼ const).

Throughout this section and the rest of the paper,
the subscript 0 refers to the value of quantities at the initial
time τ0 [e.g., A0 ≡ A(τ0)]. The most important parameters in
the problem are the initial inverse Knudsen number K0, or the
corresponding κ0, and the initial shear stress to pressure ratio
ξ0 ≡ πL,0/p0.

A. Pressure anisotropy

The magnitude of dissipative corrections can be quantified
through the ratio of viscous longitudinal shear and equilibrium
pressure

ξ ≡ πL

p
. (42)

A suitable equivalent measure is the pressure anisotropy
coefficient

Rp ≡ pL

pT

= 1 + ξ

1 − ξ/2
, (43)

which is the ratio of the transverse and longitudinal pressures
pT ≡ p − πL/2 and pL ≡ p + πL. In the ideal hydrodynamic
limit, the anisotropy is unity, Rp → 1.

The time evolution of the anisotropy coefficient is given by
the equations of motion (35) and (36):

Ṙp = − 4

3τ

4 + 3 κξ

(2 − ξ )2
. (44)

Thus, in IS theory the pressure anisotropy is a constant of
motion when the viscous stress is equal to its NS value
[Eq. (39)], or at asymptotically late times τ → ∞. In contrast,
from NS theory,

RNS
p = 3κ − 4

3κ + 2
, (45)

which is only constant for κ(τ ) = const (constant cross
section), or in the ideal hydrodynamic limit κ → ∞ (in which
case, Rp → 1). From the above, it also follows that in the
special case of our boost-invariant scenario, if the cross section
is constant and the shear stress starts from its NS value, then
NS and IS theory coincide.

B. Longitudinal work

Dissipation also affects the evolution of the equilibrium
(or average) pressure. From Eq. (35), for ideal hydrodynamic
evolution, the pressure drops as p(τ ) ∝ τ−4/3 because of
longitudinal work. In the viscous case, the work done by
the system is smaller, because the viscous correction to the
longitudinal pressure is usually negative πL < 0. Therefore,
pressure decreases slower than in ideal hydrodynamics, and
deviations from the ideal evolution, such as the ratio

p(τ )

pideal(τ )
≡ T (τ )

Tideal
(for conserved particle number), (46)

can be used to quantify dissipative effects.
Studies in the past [27,28] have analyzed a closely related

quantity, the transverse energy per unit rapidity, dET /dη.
This is simply a combination of the pressure anisotropy and
deviation from ideal pressure

dET

dη
= 3πT

4

dN

dη

(
1 − 5

16
ξ

)

= 3πT0

4

dN

dη

(τ0

τ

)−1/3 p(τ )

pideal(τ )

3[7 + Rp(τ )]

8[2 + Rp(τ )]
(47)

provided the quadratic ansatz (11) is applicable (see
Appendix D1).

We can make a few generic observations based on the
analytic IS and NS results of Eqs. (C4), (C8), (C21), (C22),
and (C29) from Appendix C. For a constant cross section,
p/pideal grows without bound, dissipative corrections keep
accumulating forever. The influence of the initial shear stress,
or equivalently shear stress to pressure ratio ξ0 ≡ ξ (τ0), is of
O(ξ0/κ0) and thus vanishes in the large κ0 limit. At late times
τ 	 τ0, for K0 >∼ 2 and not too large initial shear stress to
pressure ratio |ξ0| � 2κ0,(

p

pideal

)
σ= const

≈ N

(
τ

τ0

)β

, β ≈ 4

9κ0

(
1 − 2

3κ2
0

)
,

(48)

N ≈ 1 − 2

3κ2
0

+ 4

3κ4
0

− ξ0

2κ0
,
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i.e., for τ ≈ 10τ0 and K0 = 2 the accumulated pressure
increase is p/pideal ≈ 1.3, while p/pideal ≈ 1.15 if K0 = 5.
For a scale-invariant system with ηs/seq ≈ const, on the other
hand, dissipative effects are more moderate for the same K0

and at late times approach a finite upper bound(
p

pideal

)
η/s≈const

≈
[

1 − 2

3κ0

(τ0

τ

)2/3
] (

1 + 2

3κ0
− ξ0

2κ0

)

→ 1 + 2

3κ0
− ξ0

2κ0
. (49)

This is because scale-invariant systems turn more and more
ideal hydrodynamically as they evolve (as long as their
expansion is only longitudinal). For the same K0 = 2 and 5
with ξ0 ≈ 0, the bounds are modest: p/pideal <∼ 1.25 and <∼ 1.1,
respectively.

C. Entropy

Another quantitative measure of the importance of dissi-
pative effects is entropy production. Here we consider an
ultrarelativistic system [thus � = 0 and β2 = 3/(4p)], with
2 → 2 interactions, 1D Bjorken boost invariance, and trans-
verse translational, axial, and η → −η reflectional symmetries
(imply qµ = 0). Therefore, the entropy current of Eq. (14)
simplifies to

Sµ = s̄uµ, s̄ = seq − 9π2
L

16pT
, (50)

where

seq = n(4 − χ ), χ ≡ ln
n

neq(T )
= µ

T
, (51)

and

neq(T ) = g

π2
T 3 (52)

is the particle density in chemical equilibrium at temperature
T for massless particles of degeneracy g in the Boltzmann
limit. Dissipative contributions in the entropy density s̄ are
negative, in accordance with the fundamental principle of
maximal entropy in equilibrium.

The equations of motion (35) and (36) imply an entropy
production rate of

∂µSµ = 1

τ
∂τ (τ s̄) = 3κn

4τ
ξ 2 � 0. (53)

Equivalently, the entropy per unit rapidity

dS

dη
≡ τAT s̄ (54)

never decreases, that is,

∂τ

(
dS

dη

)
= 3κ

4τ

dN

dη
ξ 2 � 0. (55)

Here AT is the transverse area of the system, and in the
last step we substituted the rapidity density dN/dη = τAT n.
Equation (54) is a special case of a generalized conservation

law [Eq. (B7)] applied to the entropy current Sµ, that is,

τ

∫
dx2

T ∂µSµ = ∂τ

(
τ

∫
dx2

T SLR
0

)
− ∂η

∫
dx2

T SLR
3 . (56)

Analogous relations can be obtained for the energy, momen-
tum, and charge density. In 0 + 1D these are quite trivial;
they, respectively, reproduce Eq. (35), give identically zero,
and yield dN/dη = const. In higher dimensions, however, the
generalized conservation laws present important constraints
that any solution must satisfy at all times; therefore, they are
ideal for testing the accuracy of numerical solutions at each
time step (see Appendix B).

Only the complete set of IS equations gives the correct
rate of entropy production. The naive approximation does not
guarantee a monotonically increasing entropy

(∂µSµ)naive IS = 3κn

4τ
ξ 2

(
1 − ξ + 4

2κ

)
(57)

unless κ is sufficiently large; and, away from equilibrium,
it underpredicts for a given ξ the entropy production rate8

(since ξ < −1 is unphysical). In contrast, the second law of
thermodynamics does hold for Navier-Stokes:

(∂µSµ)NS = 3κn

4τ
ξ 2

NS � 0. (58)

The NS result is the same as Eq. (53) but with the shear stress
restricted to its NS value. We note that in IS theory, the naive
entropy per unit rapidity, defined using the equilibrium entropy
density

dS ′

dη
= seqτAT (59)

does not increase monotonically. Rather, it increases (de-
creases) for negative (positive) πL.

Based on the analytic IS and NS results in Appendix C,
we can outline general expectations for the entropy evolution.
For a constant cross section by late times τ 	 τ0, the entropy
increase relative to the initial entropy is logarithmic with time,
i.e., [

(dS/dη)

(dS/dη)0

]
σ=const

− 1

≈ 1

4 − χ0

(
3 ln

p

pideal
− 9ξ 2

16

)

≈ 1

4 − χ0

(
3β ln

τ

τ0
− 3

κ2
0

+ 16

3κ4
0

− 3ξ0

2κ0

)
, (60)

where we considered initial conditions not too far from local
equilibrium. For example, by τ ≈ 10τ0 with K0 = 2 and chem-
ical equilibrium initial conditions, ≈20% entropy is produced,
while ≈10% with K0 = 5. For a scale-invariant system with

8This, however, does not imply that the naive IS equations always
underpredict the total integrated entropy change over a finite time
interval. The time evolution of ξ (τ ) in the naive approach differs in
general from that in the complete theory.
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ηs/seq = const, on the other hand, entropy production is slower
for the same K0 and saturates at late times, i.e.,[

(dS/dη)

(dS/dη)0

]
η/s≈const

− 1

≈ 1

4 − χ0

2

κ0

[
1 −

(τ0

τ

)2/3
− 3ξ0

4

]

→ 1

4 − χ0

2

κ0

(
1 − 3ξ0

4

)
= 2

T0τ0

ηs

seq

(
1 − 3ξ0

4

)
. (61)

For the same K0 = 2 and 5 (and ξ0 ≈ 0), the entropy increase
by τ = 10τ0 is smaller, ≈15% and ≈6%, respectively. Based
on this simple analytic formula for entropy production, we also
confirm the results of Ref. [38], which considered IS hydro-
dynamics with a unique initial condition ξ0 ≈ −16/(9T0τ0) ×
ηs/seq, where T0 ≈ 0.39 GeV × (0.14 fm/τ0)1/3 and τ0 was
varied between 0.5 and 1.5 fm.

V. REGION OF VALIDITY FOR DISSIPATIVE
HYDRODYNAMICS

Here we determine the region of validity of dissipative
hydrodynamics by comparing it with full nonequilibrium
two-body transport theory [26–29]. We consider two scenarios:
scenario I with a constant cross section, which is least
favorable for hydrodynamics; and scenario II with a growing
σ ∝ τ 2/3, which is the most optimistic for applicability of
hydrodynamics and is very close to ηs/seq = const, as we show
in Appendix C. In the same appendix, we also study a scenario
with σ ∝ 1/T 2, which turns out to be close to scenario II but
with stronger dissipative effects, and we discuss analytic NS
and (approximate) IS solutions.

Because of scalings of the equations of motion, the results
presented here are rather general. Equations (35) and (36) are
invariant under rescaling of time, and/or joint rescaling of the
pressures p and πL, provided the dimensionless κ depends only
on p, πL, τ/τ0, and no additional scales (all solutions studied
here satisfy this condition). The same scalings are exhibited
by the transport theory [28]. For a physically reasonable
p0 > 0, it is therefore convenient to consider dimensionless
pressure variables p̃(τ ) ≡ p(τ )/p0 and πL(τ )/p0, for which

the solutions only depend on τ̃ ≡ τ/τ0, κ0 ≡ K0/C, and the
initial condition ξ0 ≡ πL,0/p0.

Unless stated otherwise, we initialize the transport based on
the quadratic form in Eq. (11). In our case of an ultrarelativistic
system (ε = 3p) in the Boltzmann limit with vanishing bulk
pressure and heat flow

Dµ = 0, Cµν = πµν

8p
⇒ φG(η = 0, p) = ξ

16

2p2
z − p2

⊥
T 2

,

(62)

where p⊥ ≡
√

p2
x + p2

y is the transverse momentum. We
ensure non-negativity of the phase-space distribution via the
� function

f (η = 0, p, τ = τ0) = F (ξ )

AT τ0

dN

dη

e−p/T

8πT 3
[1 + φG(η, p)]

×�(1 + φG(η, p)), (63)

where AT is the transverse area of the system (with the elimi-
nation of negative phase-space contributions, a normalization
factor F (ξ ) � 1 is needed to set a given dN/dη). The cutoff
does not affect the general scalings of transport solutions but
does influence the initial pressure anisotropy [for example,
values Rp = 0.3 and 1.75 set based on Eq. (62) change to
Rp ≈ 0.476 and 1.693 when the cutoff is applied]. Therefore,
we initialize hydrodynamics with a shear stress πL that gives
the same initial pressure anisotropy as the transport.

The transport solutions were obtained using the MPC

algorithm [39], which employs the particle subdivision tech-
nique to maintain covariance [26,28]. Transverse translational
invariance was maintained in the calculation through periodic
boundary conditions in the two transverse directions. A
longitudinally boost-invariant system was initialized in a
coordinate rapidity interval −5 < η < 5, and observables were
calculated by averaging over −2 < η < 2 with proper Lorentz
boosts of local quantities to η = 0.

A. Pressure anisotropy

Figure 1 shows the pressure anisotropy pL/pT evolution
as a function of the rescaled proper time τ̃ = τ/τ0 from the
transport and Israel-Stewart hydrodynamics with the local
equilibrium initial condition. The left panel shows calculations

free streaming
Navier-Stokes
transport
IS hydro

σ = const

ideal hydro

K0 = 1

K0 = 2

K0 = 3

K0 = 6.67

K0 = 20

τ/τ0

p L
/p

T

1 2 3 4 5 6 7 8 9 10

1.2

1

0.8

0.6

0.4

0.2

0

Navier-Stokes
transport
IS hydro

η/s ≈ const

ideal hydro

K0 = 1

K0 = 2K0 = 3

K0 = 6.67

τ/τ0

p L
/p

T

1 2 3 4 5 6 7 8 9 10

1.2

1

0.8

0.6

0.4

0.2

0

FIG. 1. Time evolution of pressure anisotropy Rp ≡
pL/pT from covariant transport and Israel-Stewart dis-
sipative hydrodynamics as a function of K ≡ τ/λtr(τ ),
from local equilibrium initial conditions πL(τ0) = 0.
Results for Navier-Stokes and free streaming are also
shown. Left: σ = const scenario, for which the curves
are labeled by K(τ ) = const = K0 = 1, 2, 3, 6.67, and
20. For K = 1, the Navier-Stokes result is negative
and therefore not visible. Right: σ ∝ τ 2/3 scenario, for
which ηs/seq ≈ const and the curves are labeled by the
initial K0 = K(τ0) = 1, 2, 3, and 6.67.
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FIG. 2. Same as Fig. 1, but for an initial pressure
anisotropy Rp(τ0) = 0.476 (ξ0 = −0.423). In the σ =
const scenario, the NS curve for K0 = 1 is negative
and therefore not visible.

for the σ = const scenario. For K0 = 1, the anisotropy from IS
hydro starts to fall rapidly below the transport above τ >∼ 2τ0,
and it is a factor of ∼5 smaller by late τ ∼ 10τ0. Clearly,
the system cannot stay near equilibrium when the rate of
scatterings equals the expansion rate. With increasing K0,
the undershoot becomes smaller and gradually vanishes as
K0 → ∞. The difference is only ∼10% already at K0 = 3
and is rather small by K0 ≈ 7.

The right panel shows the same but for the growing cross
section scenario with ηs/seq ≈ const. The situation of course
improves because in this case K increases with time. For
K0 = 1, IS hydro undershoots the pressure anisotropy from
the transport only by ∼20%, and the differences vanish at late
times (since in this case both theories converge to Rp = 1 as
τ → ∞). About 10% accuracy is achieved already for K0 = 2,
while for K0 = 3, IS hydro is accurate to a few percent.

Moreover, the above findings hold for a wide range of
initial conditions, including large initial pressure anisotropies,
as shown in Figs. 2 and 3. These figures are for the same
calculation but with Rp(τ0) = 0.476 and 1.693, respectively
(which correspond to ξ0 = −0.423 and 0.375). We emphasize
that the results hold only if nonequilibrium corrections are
close to the form (11) suggested by Grad. For such a class
of initial conditions, however, we find that IS hydrodynamics

can well approximate the transport (∼10% accuracy) provided
K0 >∼ 3, even for the most pessimistic constant cross section
scenario. If ηs/seq = const, only K0 >∼ 2 is needed. We stress
that in either case, there is no need for the initial conditions to
be near the NS limit.

This is quite remarkable, because from Figs. 1–3 it is
clear that already the early evolution differs between IS
hydrodynamics and transport. For example, for an equilibrium
initial condition (ξ (τ0) = 0), IS hydrodynamics of Eq. (44)
gives

RIS
p (τ ) = 1 − 4(τ − τ0)

3τ0
+ O((τ − τ0)2) (64)

for any initial value and evolution scenario for κ . From
covariant transport, on the other hand (see Appendix D2),

Rtransp
p (τ ) = 1 − 8(τ − τ0)

5τ0
+ O((τ − τ0)2). (65)

That is, pressure anisotropy develops, universally, 20% faster
from the transport than from IS hydrodynamics (if the
evolution starts from equilibrium).

This illustrates a limitation of the hydrodynamic description
of transport solutions. Similar discrepancies were observed
in Ref. [8] in the early evolution of differential elliptic flow

Navier-Stokes
transport
IS hydro

η/s ≈ const

ideal hydro

K0 = 1

K0 = 2
K0 = 3

K0 = 6.67
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FIG. 3. Same as Fig. 1, but for an initial pressure
anisotropy Rp(τ0) = 1.693 (ξ0 = 0.375). In the σ =
const scenario, the Navier-Stokes curve for K0 = 1 is
negative and therefore not visible.
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FIG. 4. Same as Fig. 1, except for the time
evolution of the (average) pressure. The pressure
is plotted normalized to the pressure pideal(τ ) =
p0(τ0/τ )4/3 in ideal hydrodynamics.

v2(pT ). Remarkably, in our case, though the transport develops
deviations from equilibrium faster, its rate of departure slows
down quicker, which at intermediate times results in smaller
accumulated dissipative corrections to the pressure anisotropy
than from IS hydrodynamics. Eventually, the hydrodynamic
evolution “catches up” to the transport, except for low K <∼ 3
in the σ = const scenario.

Figures 1–3 also show the Navier-Stokes approximation
for each of the Israel-Stewart results. By late times, the NS
and IS solutions converge for both cross section scenarios,
independently of the initial pressure anisotropy (for σ = const
and K0 = 1, the NS anisotropy is negative and therefore
not visible in the plots). However, the applicability of NS
theory at early times depends, besides on the value of K0,
strongly on how far the initial shear stress is from its NS
value [Eq. (39)]. Navier-Stokes assumes that shear stress
and, therefore, the pressure anisotropy relax immediately,
but relaxation happens over a finite time. The approach
toward the Navier-Stokes limit is governed by τπ = 3τ/(2κ),
therefore Navier-Stokes becomes applicable only after some
time �τ ∼ |R0 − RNS|τ0/κ . Note that the initial slope of the
R(τ ) curves does not always reflect τπ directly, because it is
given by the initial derivative of ξ

Ṙ(τ ) ∼ 3

2
ξ̇ (τ ) = − 3

2τπ

(ξ − ξNS) + O(1)
ξ

τ
, (66)

where we combined Eqs. (26) and (35), incorporated the
observations that Yπ ∼ O(1)/τ and Zπ = 0, and assumed ξ

is small. For local equilibrium initial conditions, the slope of
R(τ ) is therefore ∼O(1)ξNS/τπ ∼ O(1)/τ , independently of
K0 [cf. Fig. 1 and Eq. (64)]. For initial shear stresses far from
the NS limit, on the other hand, the slope ∼O(1)ξ/τπ ∝ κ

steepens with increasing K as seen in Figs. 2 and 3.
The inaccurate description of early shear stress evolution

in Navier-Stokes has a cumulative effect on the evolution
of thermodynamic quantities, such as the pressure and the
entropy, as we show in the next two sections. Of course, the
errors are proportional to the ratio of the time the system spends
away from the NS limit and the hydrodynamic time scale, i.e.,
�τ/τ0 ∼ 1/κ .

B. Pressure evolution

Now we turn to the evolution of the (average) pressure. In
ideal hydrodynamics (K0 → ∞), the pressure drops rapidly
with time pid ∝ τ−4/3. Therefore it is more convenient to study

dissipative effects relative to ideal hydrodynamics through the
ratio p(τ )/pid(τ ).

Figure 4 shows the pressure relative to that in ideal
hydrodynamics as a function of the rescaled proper time
τ̃ = τ/τ0 from the transport and IS hydrodynamics with the
local equilibrium initial condition. For the σ = const scenario,
for all K0 values, the evolution starts out the same between
IS hydrodynamics and transport but then the IS starts to
accumulate deviations, because it follows the shear stress
evolution only approximately. For K0 = 1, IS hydrodynamics
maintains 10% accuracy in the magnitude of dissipative
corrections (i.e., p/pid − 1) only up to τ ≈ 4τ0. As K0

increases, the situation improves gradually: for K0 = 3, 10%
accuracy holds up to τ ≈ 10τ0, and by K0 ≈ 7 the IS stays
within a few percent of the transport even until τ = 20τ0.

For the growing cross section scenario with ηs/seq ≈ const,
we see in Fig. 4 that hydrodynamic has a wider range of
applicability. This is because K ∼ τ 2/3 grows with time. For
K0 = 1, the error in the dissipative correction (p/pid − 1)
is less than 10% up to τ ≈ 5τ0, and already for K0 = 2,
IS hydrodynamics is accurate to within better than 10%
throughout the whole range τ � 20τ0 studied. The pressure
evolution results therefore reinforce the regions of validity
found in the previous section (K0 >∼ 3 for σ = const, and
K0 >∼ 2 for ηs/seq ≈ const).

Clearly, the region of applicability for Navier-Stokes is
more limited (Fig. 4). For low K0, it overestimates the pressure
corrections not only at late times but also at early τ ∼ few × τ0.
K0 ≈ 7 is barely sufficient for 10% accuracy in viscous
corrections for ηs/seq ≈ const, but it is not enough in the
case of σ = const. Based on the trends with increasing K0,
we estimate that K0 >∼ 9–10 is needed for Navier-Stokes with
σ = const to deviate less than 10% from the viscous effects
calculated with the transport. Therefore, for local equilibrium
initial conditions, Navier-Stokes theory becomes applicable at
about three times shorter mean free paths, or equivalently three
times larger longitudinal proper time τ (i.e., three times slower
longitudinal expansion), than Israel-Stewart theory.

C. Entropy

Now we proceed with results on entropy production. In
transport theory, the entropy current is defined as

Sµ(x) = −
∫

d3p

p0
pµf (x, p)

[
ln

(
(2π )3

g
f (x, p)

)
− 1

]
,

(67)
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FIG. 5. Same as Fig. 1 except for the time
evolution of the entropy per unit rapidity, normalized
by its initial value (note the linear time axis used this
time). For the transport solutions, entropy was calcu-
lated approximately using the IS entropy expression
(50). Chemically equilibrated initial conditions (i.e.,
χ0 = 0) were assumed.

where g is the number of internal degrees of freedom. This
nonlinear function of the phase-space density f is cumbersome
to evaluate with the MPC code, and therefore we here opt for
an approximate result based on the truncated IS expression
(50), evaluated using the pressure and shear stress from the
transport. This includes dissipative corrections to the entropy
up to quadratic order in φ.

In the most dissipative σ = const scenario with K0 = 1,
there is about 30% additional entropy produced by late times
τ/τ0 ∼ 10–20, as can be seen in Fig. 5. For ηs/seq ≈ const,
the same K0 = 1 yields only about 20% extra entropy. With
increasing K0, entropy generation gradually weakens, and by
K0 ∼ 7 it is only 10% and 5%, respectively.

The Israel-Stewart results are within 15% of the approx-
imate transport results already for K0 = 1, and about 10%
accuracy in the calculated dissipative effect is achieved for
K0 >∼ 3 (for σ = const) and K0 >∼ 2 (for ηs/seq ≈ const). In
contrast, the Navier-Stokes strongly overpredicts the entropy,
unless K0 exceeds about 6 for σ = const or ≈ 3 for ηs/seq ≈
const. The bounds for 10% accuracy are in agreement with
those found previously in Sec. V B.

D. Limitations of the naive Israel-Stewart approximation

Now we discuss the applicability of the “naive” Israel-
Stewart equations. Figure 6 compares the pressure evolution
in complete Israel-Stewart theory to that in the naive approx-
imation, for local equilibrium initial conditions (ξ0 = 0), as a
function of the rescaled proper time τ/τ0. Clearly, the naive
result overshoots the pressure both for the constant cross
section scenario and for ηs/seq ≈ const, unless K0 is large.
This confirms expectations based on the analytic solutions in
Appendix C. Though the naive theory converges to the correct
result at large enough K0 ∼ 7–20, comparison with Fig. 4 tells
us that it is even less accurate than Navier-Stokes theory.

Similar behavior has also been observed in a 2 + 1D
calculation [35] that found that the naive approximation leads

to larger dissipative effects on the transverse momentum
anisotropy than the complete Israel-Stewart theory.

The reason for the large errors is that away from local
equilibrium the naive approach drives the shear stress more
negative [compare Eqs. (36) and (41), and note that typically
πL < 0]. For the 0 + 1D expansion studied here (Yπ < 0
and Zπ = 0), at early times, complete IS theory drives shear
stress toward a value that is less negative than shear stress
in Navier-Stokes; whereas at late times, the complete theory
can keep the system closer to local equilibrium, because its
effective shear stress relaxation time is shorter [see discussion
in Ref. [12], or cf. Eq. (26)]. This is demonstrated in Fig. 7
where we plot the pressure anisotropy Rp, which is a
monotonic function of ξ = πL/p. For σ = const, we find that
the naive approach saturates the anisotropy at a lower value
than the complete theory, confirming the analytic expectations
in Appendix C1. For ηs/seq ≈ const, the system does approach
ideal hydrodynamic behavior eventually; however, that occurs
on a much longer time scale than from complete IS theory.
This is in agreement with the expectation based on the analytic
solutions (C35)–(C38).

The pressure anisotropy results further reinforce our con-
clusion that the naive Israel-Stewart approximation is poorer
than Navier-Stokes (cf. Fig. 1). In heavy ion collisions,
gradients are large, at least initially, and therefore cannot be
ignored even if dissipative corrections (e.g., πL/p) are small.

E. Implications for heavy ion physics

Having determined the region of validity (defined as 10%
accuracy in dissipative effects) for IS and NS hydrodynamics
in terms of the initial ratio of the expansion and scattering time
scales K0 = τ0/λtr,0

K IS
0 >∼ 3, KNS

0 >∼ 9 (σ = const), (68)

K IS
0 >∼ 2, KNS

0 >∼ 6 (ηs/seq ≈ const), (69)

naive IS
complete IS 1

η/s ≈ const

ideal hydro

1

2

3

K0 = 6.67

τ/τ0

p
/
p i

d
ea
l

1 2 3 4 5 6 7 8 910 20

1.6

1.4

1.2

1

naive IS
complete IS 32
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ideal hydro

2

3

6.67

K0 = 20

τ/τ0

p
/
p i

d
ea
l

1 2 3 4 5 6 7 8 910 20

1.6

1.4

1.2

1

FIG. 6. Time evolution of the (average) pres-
sure from complete IS theory and the naive IS
approximation as a function of K ≡ τ/λtr(τ ), for
local equilibrium initial conditions πL(τ0) = 0.
The pressure is plotted normalized to the pres-
sure pid(τ ) = p0(τ0/τ )4/3 in ideal hydrodynamics.
In the σ = const scenario, K(τ ) = const = K0 =
2, 3, 6.67, and 20. In the σ ∝ τ 2/3 scenario, ηs/seq ≈
const and the curves are labeled by the initial
K0 = K(τ0) = 1, 2, 3, and 6.67.
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FIG. 7. Same as Fig. 6, but for the time evolution
of the pressure anisotropy.

we now turn to implications for heavy ion collisions. From
Eqs. (37), (51), and (52),

κ0 = T0τ0

4 − χ0

s0

ηs,0

≈ 15.9 × 1

1 − χ0/4

(
T0

1 GeV

) ( τ0

1 fm

) (
1/(4π )

ηs0/s0

)
,

K0 ≈ 0.8κ0. (70)

Therefore, we can place an upper limit on the (initial) shear
viscosity for which IS or NS reproduces with better than 10%
accuracy the viscous corrections to basic observables such as
pressure and entropy: for σ = const,

4πηs,0

seq,0

∣∣∣∣
IS

<∼ 0.8T0τ0,
4πηs,0

seq,0

∣∣∣∣
NS

<∼ 0.25T0τ0, (71)

while for ηs/seq ≈ const,

4πηs

seq

∣∣∣∣
IS

<∼ 1.2T0τ0,
4πηs

seq

∣∣∣∣
NS

<∼ 0.4T0τ0, (72)

where we assumed chemical equilibrium initial conditions
(χ0 = 0). If the shear viscosity of dense quark-gluon matter is
bounded from below by 4πηs/seq >∼ 1, as has been conjectured
recently, then the situation for Israel-Stewart theory is close to
marginal. For ηs/seq = 1/(4π ), typical parton transport initial
conditions (T0 = 0.7 GeV, τ0 = 0.1 fm) translate into K0 <∼ 1,
for which IS is not applicable for either scenario I or II; whereas
for typical hydrodynamic initial conditions (T0 ∼ 0.38 GeV,
τ0 = 0.6 fm), we have K0 <∼ 3, sufficient for both scenarios
(barely for σ = const).

On the other hand, Navier-Stokes may be marginally
applicable only if ηs/seq <∼ 0.5/(4π ) throughout the whole
evolution, at least based on this 0 + 1D study, where acausal
artifacts and instabilities do not arise. We emphasize that
the bound quoted here is for initial conditions close to local
equilibrium. The accuracy of the NS approximation strongly
depends on how far the initial shear stress is from the NS
value. If the evolution starts out near the NS limit, we expect
Navier-Stokes to be accurate up to higher viscosities.

Within the region of applicability of the Israel-Stewart
theory, dissipative corrections to the average pressure and the
entropy are modest and stay below ∼20% even up to late
times τ � 10τ0. This may serve as a useful “rule of thumb”
applicability condition for hydrodynamics: if dissipative cor-
rections to average pressure and the entropy calculated from
hydrodynamics are significantly larger than 20%, the validity
of hydrodynamics is questionable.

The above findings reinforce a recent calculation [18] in
2 + 1D that found good agreement between IS hydrodynamics
and 2 → 2 transport, for conditions expected in Au + Au at√

sNN ∼ 200 GeV/nucleon at RHIC, in the case of a small
shear viscosity to entropy density ratio ηs/seq ≈ 1/(4π ) (on
average). The same study also found good agreement between
the two theories for a large constant transport cross section
σtr ≈ 13 mb. That is also in line with our results here, because
it corresponds to 4πηs/seq(τ0) ≈ 0.25 in the center of the
collision zone, i.e., initially ηs/seq <∼ 1/(4π ) in most of the
system.

Finally we note that the applicability of the hydrodynamic
approach on very short time and length scales is another
important question. In typical real-life problems, T0τ0 	 1
because the hydrodynamic expansion time scale τ is by orders
of magnitude larger than the quantum (energy) time scale
1/T . This also leaves ample room to make hydrodynamics
applicable (κ0 	 1) even for appreciable viscosities. In the
heavy ion case, however, the two time scales are comparable
T0τ0 ∼ O(1), and therefore a macroscopic treatment may be
marginal.

VI. CONCLUSIONS

Based on comparison to covariant transport theory, we ex-
plore the region of validity of Israel-Stewart and Navier-Stokes
hydrodynamics in heavy-ion physics applications. We follow
the evolution of the average pressure, pressure anisotropy, and
entropy for a massless ideal gas in 0 + 1D longitudinally
expanding Bjorken geometry. Binary 2 → 2 interactions are
considered for two main scenarios, a fixed cross section
σ = const (scenario I, pessimistic for hydrodynamics) and
a scale-invariant system with ηs/seq ≈ const (scenario II,
optimistic for hydrodynamics).

We find (Sec. V) that dissipative effects calculated from IS
hydrodynamics reproduce those from the transport solutions
to within 10%, provided initially the expansion time scale is
three (for scenario I) or two (for scenario II) times larger than
the transport mean free path, i.e., the initial inverse Knudsen
number K0 = τ0/λtr,0 >∼ 3 or 2. When this criterion is fulfilled,
Israel-Stewart is accurate even if initial pressure anisotropies
are large pL/pT ∼ 0.4–1.7, there is no need to start near the
Navier-Stokes limit. On the other hand, the same accuracy
from Navier-Stokes requires three times larger K0, if the
expansion starts from the local thermal equilibrium (unlike
for Israel-Stewart, the applicability of Navier-Stokes depends
strongly on how far the initial shear stress is from its NS
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value). We emphasize that these findings apply only when
initial viscous corrections are of the quadratic form suggested
by Grad [Eq. (11)].

These results imply that (Sec. V E) for typical heavy
ion initial conditions at RHIC energies, Israel-Stewart hy-
drodynamics is accurate up to ηs/seq <∼ 1.5/(4π ), while for
Navier-Stokes, ηs/seq <∼ 0.5/(4π ) is needed. This is supported
by a recent 2 + 1D calculation [18] that finds good agreement
between IS and transport for ηs/seq ≈ 1/(4π ), and also for a
large σtr ≈ 13 mb.

In addition, we test the accuracy of the naive IS approx-
imation (Sec. V D) that neglects products of gradients and
dissipative quantities in the equations of motion and find that
it has an even more limited applicability than Navier-Stokes.

We also compare in detail (Appendix C) the IS and NS
solutions in 0 + 1D for four scenarios, σ = const, σ ∝
1/T 2, σ ∝ τ 2/3, and ηs/seq = const, and find that results
for the latter two are almost identical, even at low initial
Knudsen numbers ∼1. Moreover, we obtain analytic IS and
NS solutions in 0 + 1D, which are useful for quick estimates
(Secs. IV B and IV C) and to test numerical solution tech-
niques. We also derive additional tests (Appendix B) based on
generalized conservation laws for conserved currents, energy-
momentum, and entropy, which can be utilized to verify the
accuracy of numerical IS solvers in 1 + 1, 2 + 1, and 3 + 1
dimensions.

Finally we emphasize that the current study is limited
to a massless ideal gas with particle number conserving
interactions in 0 + 1D Bjorken geometry. The influence of
the transverse expansion will be quantified in a future paper
(requires at minimum a 1 + 1D approach). It will also be im-
portant to check how the results depend on the equation of state
and the presence of particle nonconserving processes, such as
radiative 2 ↔ 3. For a nonconformal equation of state, bulk
viscosity may become important [40,41]. Ideally, one should
also test the accuracy of the hydrodynamic approximation for
nonequilibrium theories other than covariant transport.
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APPENDIX A: ORIGIN OF a0, a1, a′
0, a′

1 IN THE IS
EQUATIONS OF MOTION

The equations of motion (23)–(25) reproduce the entropy
production rate of Eq. (16) only approximately, up to typically
small quartic and higher-order corrections in dissipative
quantities. With ai ≡ 0 ≡ a′

i , a contribution

�qµT ∇µ(α0/T ) − qνπ
νµT ∇µ(α1/T ) (A1)

would be missing from T ∂µSµ in Eq. (16). These terms are
bilinear in the dissipative quantities and, therefore, can be split
arbitrarily between the bulk pressure and heat, and heat and
shear equations of motion. That is, with

T ∇µ(αi/T ) ≡ a
µ

i + a′
i

µ (A2)

Eq. (16) is identically satisfied but contributions to the
equations of motion depend on ai

β0D� = (· · ·) + a′
0
µ
qµ, (A3)

β1Dqµ = (· · ·) + �µ
ν a0

ν� − aν
1πµ

ν , (A4)

β2Dπµν = (· · ·) − a′
1
〈ν

qµ〉. (A5)

Only components orthogonal to uµ contribute, but apart
from that constraint, a

µ

0 and a
µ

1 are arbitrary functions of
the hydrodynamic fields and their derivatives and potentially
new scalar functions {a(k)

i (ε, n)} characterizing an isotropic
matter. However, ignoring the dependence on the dissipative
quantities is consistent with the truncation of the entropy
current [Eq. (14)] at quadratic order in those. Moreover, for
small deviations from equilibrium, one may seek to include
only the leading contributions coming from first derivatives of
the ideal hydrodynamic fields, i.e.,

aν
i = a

(1)
i Duν + a

(2)
i T ∇ν 1

T
+ a

(3)
i ∇ν µ

T
, (A6)

where we chose 1/T and µ/T as the two independent
variables instead of ε and n. But the three terms are not
independent: energy-momentum conservation [Eq. (1)] and
the Gibbs-Duhem relation s dT = dP − n dµ provide one
constraint

1

T
�ναDuα + ∇ν 1

T
= n

ε + p
∇ν µ

T
, (A7)

and ∇ν(µ/T ) may be ignored, at least parametrically, because
it is proportional to the heat flow [Eq. (4)] in the first-order
(Navier-Stokes) theory. Therefore, to leading accuracy only
one scalar function enters, and we can write

a
µ

i = −ai(ε, n)Duµ. (A8)

Analogous arguments give

T ∇ν(αi/T ) ≈ T
∂(αi/T )

∂(1/T )
∇ν 1

T
≈ −∂(αi/T )

∂(1/T )
∇ναDuα,

(A9)

from which Eq. (20) follows.
We plan to revisit the above approximations in a future

study. In any case, they do not influence our 0 + 1D
calculations here, because the ai terms do not play a role
(heat flow vanishes by symmetry).

APPENDIX B: GENERALIZED CONSERVATION LAWS

Here we present general relations of the form

dA(τ )

dτ
= B(τ ), (B1)

which can be used to test the accuracy of numerical dissipative
hydrodynamics solutions in any dimensions. A and B only
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depend on the hydrodynamic fields at the given τ . Evaluating
them at each time step, one can either numerically differentiate
A(τ ) or integrate B(τ ) and check how accurately the solutions
satisfy Eq. (B1).

Consider a four-divergence ∂µAµ(x) (in regular Minkowski
coordinates). Integration over a four-volume V4 gives∫

V4

d4x∂µAµ(x) =
∫

σ (V4)
dσµ(x)Aµ(x), (B2)

where σ (V4) is the three-dimensional boundary (“surface”)
of V4. Now take the special case of a Bjorken “box” V4 =
�τ × �η × AT with an infinite transverse area AT → ∞
but infinitesimal proper time and finite coordinate rapidity
extensions �τ → 0,�η = η2 − η1. Assuming Aµ(x) drops
faster than 1/x2

T at large |xT |, we can neglect surface terms
at |xT | → ∞ and keep only contributions on τ = const and
η = const hypersurfaces:∫

dτ τdη dx2
T ∂µAµ(x)

=
[∫

σ (τ+dτ )
dσ (τ )

µ −
∫

σ (τ )
dσ (τ )

µ

+
∫

σ (η2)
dσ (η)

µ −
∫

σ (η1)
dσ (η)

µ

]
Aµ(x) (B3)

where the surface normals are

dσ
µ

(τ ) = τ dx2
T dηu

µ

B, dσ
µ

(η) = −dτ dx2
T u

µ

3 ,
(B4)

with u
µ

B ≡ (ch η, 0, sh η), u
µ

3 ≡ (sh η, 0, ch η),

and we used d4x = dτ τ dη dx2
T . Here, uB is the longitudinal

Bjorken flow velocity, while u3 is its orthonormal counterpart
in the t-z plane. Note that the actual flow velocity does not
need to be uB . Dividing by �τ and taking the limit, we arrive
at

τ

∫
dη dx2

T ∂µAµ = ∂τ

(
τ

∫
dη dx2

T u
µ

BAµ

)

−
∫

dx2
T u

µ

3 (Aµ(η1) − Aµ(η2)), (B5)

which is a generalized conservation law for the quantity

A ≡ τ

∫
dηdx2

T u
µ

BAµ. (B6)

If ∂µAµ ≡ 0, and the surface term u
µ

3 (Aµ(η1) − Aµ(η2))
vanishes, we have A(τ ) = const.

In a boost-invariant calculation, the longitudinal extension
of the system is formally infinite, and thus a generalized
conservation law for a quantity per unit rapidity is more
practical. It can be obtained in a similar fashion if one divides
by �η and takes the limit �η → 0. The result is

τ

∫
dx2

T ∂µAµ = ∂τ

dA
dη

− ∂η

∫
dx2

T u
µ

3 Aµ, (B7)

where
dA
dη

= τ

∫
dx2

T u
µ

BAµ. (B8)

Again, if ∂µAµ ≡ 0 and the η-derivative term vanishes, we
have dA/dη = const.

1. Charge/particle number

We first apply Eq. (B5) to a conserved current in the
Eckart frame: Nµ = nequ

µ, where uµ = γ (ch θ, veR, sh θ )
is the flow four-velocity and θ is the flow rapidity. Now
u

µ

Buµ = γ ch(η − θ ) and u
µ

3 uµ = γ sh(η − θ ). If the rapidity
interval is so large that Nµ(η1) = Nµ(η2) = 0, or the system
is boost invariant, η ≡ θ , the surface terms are zero, and we
get a simple conservation law

N = τ

∫
dη dx2

T γ n ch(η − θ ) = const. (B9)

In a boost-invariant case, the coordinate rapidity integral is
trivial, and we obtain

dN

dη
= τ

∫
dx2

T γ n = const. (B10)

2. Entropy

Second, we apply Eq. (B5) to the entropy current of
Eq. (14) and its divergence in Eq. (16). If Sµ(η1) = Sµ(η2) =
0, we get

∂τS = τ

∫
dη dx2

T

(
�2

ζT
− qµqµ

κqT 2
+ πµνπ

µν

2ηsT

)
� 0, (B11)

where the entropy of the system is

S = τ

∫
dη dx2

T u
µ

BSµ, (B12)

and the last inequality follows from the general properties
qµqµ � 0 and πµνπµν � 0.

For longitudinally boost-invariant dynamics, it is more
natural to follow entropy per unit rapidity:

dS

dη
= τ

∫
dx2

T u
µ

BSµ,

(B13)

∂τ

(
dS

dη

)
= τ

∫
dx2

T

(
�2

ζT
− qµqµ

κqT 2
+ πµνπ

µν

2ηsT

)
� 0.

3. Energy-momentum

Finally we derive the conservation equation corresponding
to energy-momentum conservation ∂µT µν = 0. Contraction of
the energy-momentum tensor with u

µ

B gives the conservation of
energy. When the entire system is within the interval [η1, η2],
then

∂τE ≡ ∂τ

(
τ

∫
dη dx2

T u
µ

BTµν uν
B

)
= 0. (B14)

Contraction with u
µ

R ≡ (0, eR, 0) gives the change in trans-
verse radial momentum. Substituting

∂µ(T µνuR,ν) = 0 + T µν∂µuR,ν (B15)

into Eq. (B5) results in

∂τMr ≡ ∂τ

(
τ

∫
dη dx2

T u
µ

BTµνu
ν
R

)

= τ

∫
dη dx2

T T µ
ν∂µuν

R. (B16)
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To be more specific, we also show as an example a boost-
invariant, cylindrically symmetric case. In the Landau frame,

T µν = (ε + p + �)uµuν − (p + �)gµν + (−π̃2 − π̃3)uµ

1 uν
1

+ π̃2u
µ

2 uν
2 + π̃3u

µ

3 uν
3, (B17)

where u1 is the orthonormal counterpart of the flow velocity
in the time-radial plane, while u2 and u3 are orthonormal
counterparts of these in the axial and beam (rapidity) direction:

uµ = γ (ch η, v eR, sh η), u
µ

1 = γ (v ch η, eR, v sh η),
(B18)

u
µ

2 = (0, eφ, 0), u
µ

3 = (sh η, 0, ch η).

These vectors are normalized to u2 = 1, u2
1 = u2

2 = u2
3 = −1.

The viscous pressure tensor components in the fluid rest frame
are π

µν

LR = diag(0,−π̃2 − π̃3, π̃2, π̃3). It is important to notice
that the surface terms in Eq. (B5) or the η-derivative term in
Eq. (B7) are now nonzero. Contraction by u

µ

B as above and
substitution into Eq. (B7) gives the evolution of the energy per
unit rapidity:

∂τ

(
dE

dη

)
≡ ∂τ

(
τ

∫
dx2

T T 00(η=0)

)

= −
∫

dx2
T (p + � + π̃3). (B19)

Contraction by u
µ

R gives the evolution of transverse radial
momentum per unit rapidity:

∂τ

(
dMr

dη

)
≡ ∂τ

(
τ

∫
dx2

T T 01(η=0, φ=0)

)

= τ

∫
dx2

T

p + � + π̃2

R
, (B20)

where we have used the relations

u
µ

BTµνu
ν
R = −T 01(η=0, φ=0), ∂µuν

R = − 1

R
u2,µuν

2.

(B21)

The above results reflect general expectations. Particle
number per unit rapidity dN/dη is strictly conserved in both
the ideal and the dissipative case. Entropy per unit rapidity
dS/dη is conserved for an ideal fluid but increases if there is
dissipation. In both cases, the energy per unit rapidity dE/dη

decreases because of longitudinal work, while the radial
momentum per unit rapidity dMr/dη increases as a result of
the buildup of radial flow, as long as the system stays near equi-
librium (i.e., the total pressure is dominated by the ideal part).

APPENDIX C: VISCOUS SOLUTIONS FOR VARIOUS
CROSS-SECTION SCENARIOS

Next we analyze viscous Israel-Stewart and Navier-Stokes
solutions for four different types of cross section: constant,
σ ∝ 1/T 2, σ ∝ τ 2/3, and ηs/seq = const. For convenience, we
will often use normalized quantities

Ã(τ/τ0) ≡ A(τ )

A(τ0)
. (C1)

We will show that for typical observables of interest (average
pressure, pressure anisotropy, entropy, and shear viscosity to

entropy ratio), ηs/seq = const dynamics is well approximated
by σ ∝ τ 2/3 already for K0 = 1.

In analytic considerations, it will be often convenient to
drop the π2

L term in the equations of motion (35) and (36),
which is a good approximation for |πL| � p, i.e., the general
region of validity of viscous hydrodynamics. This should
not be confused with the naive Israel-Stewart approximation,
which also ignores the 4/3 factor in Eq. (36). For the σ ∝ τ 2/3

and σ = const scenarios, we obtain in this way accurate
approximate analytic IS solutions. We also derive analytic NS
solutions for σ = const, σ ∝ τ 2/3, and σ ∝ 1/T 2.

1. Solutions for ultrarelativistic gas with constant
2 → 2 cross section

For a constant cross section,

λtr(τ ) ∝ τ ⇒ K(τ ) = τ0

λtr(τ0)
≡ K0 = const. (C2)

If we ignore the π2
L term, the linear equations of motion (35)

and (36) can be solved in a straightforward manner:

πL(τ̃ ) = τ̃− 4
3 − κ0

3

[πL,0

2
T+(τ̃ )

− 1

2D

(
κ0πL,0 + 8p0

3

)
T−(τ̃ )

]
, (C3)

p(τ̃ ) = τ̃− 4
3 − κ0

3

[
p0

2
T+(τ̃ ) + 1

2D
(κ0p0 − πL,0) T−(τ̃ )

]
,

(C4)

where

κ0 ≡ K0

C
, D ≡

√
8

3
+ κ2

0 , T±(x) ≡ xD/3 ± x−D/3,

(C5)
p(τ0) ≡ p0, πL(τ0) ≡ πL,0.

For a practical approximate formula for the pressure evolution,
see Eq. (48).

In the ideal hydrodynamic (ηs → 0, or equivalently κ0 →
∞) limit, we recover

πL(τ > τ0) = 0, p(τ ) = p0

(τ0

τ

)4/3
. (C6)

At late times, the pressure anisotropy, regardless of its initial
value Rp,0, approaches a constant determined solely by the
parameter κ0, i.e.,

R∞ ≡ Rp(τ → ∞) = 12κ0 − 10

9D + 3κ0 + 14
< 1. (C7)

For a finite κ0, the final anisotropy is below unity.
Therefore, with a constant cross section, at late times the

system does not behave like an ideal fluid, but instead the
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Navier-Stokes limit applies [cf. Eqs. (44) and (45)]. Indeed,
for large κ0, Eqs. (C3)–(C4) reproduce the NS solution

pNS(τ ) = p0

(τ0

τ

)4/3−4/(9κ0)
, πNS

L (τ ) = −4pNS(τ )

3κ0
, (C8)

and the final IS and NS anisotropies of Eqs. (C7) and (45)
agree, that is, R∞ = 1 − 2/κ0 + 4/(3κ2

0 ) + O(1/κ3
0 ).

Because R∞ is a monotonically increasing function of κ0,
the final pressure anisotropy is a measure of the viscosity.
Inverting Eq. (C7),

κ0 = 5 + 14R∞ − R2
∞

6 − 3R∞ − 3R2∞
, (C9)

i.e., near equilibrium (κ0 	 1),

ηs(τ )

n(τ )
= T τ

κ
≈ 1 − R∞

2
T0τ0

(
τ

τ0

)γ

,

(C10)

γ = 2

3
+ 4

9

ηs(τ0)

n0

1

T0τ0
,

where in the last step we approximated the temperature
evolution using the leading NS term (C8). It is natural to
measure viscosity relative to the density, which up to a factor
(4 − χ ) is the same as ηs/seq.

The exact analytic solutions to the naive IS equations are
analogous to Eqs. (C4) and (C3) but involve different powers
of τ̃

τ̃ δ± , δnaive
± = −2

3
− κ0

3
±

√
κ2

0 − 4κ0 + 20
3

3
. (C11)

The late time behavior is governed by the exponent

δnaive
+ = −4

3
+ 4

9κ0
+ 8

9κ2
0

+ O
(

1

κ3
0

)
, (C12)

which does incorporate correctly the ideal hydrodynamic
limit (−4/3) and the NS correction 4/(9κ0) but is in general
higher, the smaller the κ0, than the complete IS result
δ+ = −4/3 + 4/(9κ0) − 8/(27κ3

0 ) + O(1/κ5
0 ). Therefore, the

naive approach overestimates the pressure. In addition, it
underestimates the asymptotic pressure anisotropy Rnaive

∞ =
1 − 2/κ0 − 8/(3κ2

0 ) + O(1/κ3
0 ), and therefore, overpredicts

the magnitude of the shear stress to pressure ratio |ξ |.

2. Solutions for ultrarelativistic gas with σ2→2 ∝ 1/T 2

A constant cross section implies the existence of some
external scale in the problem. For a scale-invariant system,
however, the only scale available (in thermal and chemical
equilibrium) is the temperature, and therefore the cross section
behaves as σ ∝ 1/T 2. Equations (37), (33), and (29) then give

K(τ ) = K0
T 2

0

T 2
= K0

p̃ 2τ̃ 2
, (C13)

i.e., even without the π2
L term, the equations of motion become

nonlinear (but are easy to solve numerically).

For ideal hydrodynamic evolution, p ∝ τ−4/3 and thus,
unlike for the case of a constant cross section,

K(τ ) = K0τ̃
2/3 (C14)

increases with increasing τ . K(τ ) must grow in general in
the viscous hydrodynamic case as well, because dissipative
corrections, namely, the πL/τ term in Eq. (35), are assumed
to be small (or else hydrodynamics is no longer applicable).
Consequently, the system gets closer and closer to ideal
hydrodynamic behavior as time evolves (as long as the
expansion is only one dimensional). For example, the pressure
anisotropy approaches unity at late times, for any κ0 > 0 and
initial πL,0/p0,

Rp(τ → ∞) → 1. (C15)

The exact Navier-Stokes solution

pNS(τ ) =
(τ0

τ

)4/3 p0√
1 + 4

3κ0

[(
τ0
τ

)2/3 − 1
] (C16)

behaves similarly. At late times, p ∝ τ−4/3 as in the ideal case,
therefore, κ(τ → ∞) = κ0/(p̃ 2τ̃ 2) → ∞, i.e., R∞ = 1. The
rate of approach to unity is controlled by the viscosity

RNS
p (τ ) = 1 − 2

κ0

(τ0

τ

)2/3 [
1 + O

(
1
/
κ2

0

) + O((τ0/τ )2/3)
]

≈ 1 − 2

T0τ0

ηs

n

(τ0

τ

)2/3
. (C17)

Viscosity also increases the pressure relative to the ideal case

pNS

pid
(τ 	 τ0) → 1√

1 − 4
3κ0

≈ 1 + 2

3T0τ0

ηs

n
. (C18)

3. Solutions for ultrarelativistic gas with σ2→2 ∝ τ 2/3

Near the ideal hydrodynamic limit (i.e., for small viscosities
and πL,0/p0), one may directly substitute the approximate
result (C14) in the equations of motion (35) and (36). Provided
we drop the π2

L term, these can be converted to a second-order
linear differential equation, e.g., for p(τ ),

τ p̈ + 11

3
ṗ + 40

27

p

τ
+ 2K(τ )

3C

(
ṗ + 4

3

p

τ

)
= 0, (C19)

with initial conditions

p(τ0) = p0, ṗ(τ0) = −4p0 + πL,0

3τ0
. (C20)

The general solution with K(τ ) from Eq. (C14) is9

p(τ̃ ) = τ̃−4/3[C−τ̃− 2
√

6
9 F−(κ0τ̃

2/3) + C+τ̃
2
√

6
9 F+(κ0τ̃

2/3)
]
,

(C21)

πL(τ̃ ) = −3 τ̃−1/3 d[τ̃ 4/3p(τ̃ )]

dτ̃
, (C22)

9First substitute p(τ̃ ) ≡ p̄(τ̃ )τ̃−4/3, then switch to a new variable
x ≡ −κ0τ̃

2/3, finally look for the solution in the form p̄(x) ≡ xaq(x),
and choose a suitable a.
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where

F±(x) ≡ 1F1(±a, 1 ± 2a; −x), a =
√

2

3
(C23)

are short-hand for confluent hypergeometric functions of the
first kind, while C± are matched10 to the initial conditions in
Eq. (C20):

C± = ±eκ0

4a
[p0G∓(κ0) − πL,0F∓(κ0)], (C24)

G±(x) ≡ ±2a

[
x

1 ± 2a
1F1(1 ± a, 2 ± 2a,−x)

− 1F1(±a, 1 ± 2a,−x)

]
. (C25)

A very practical approximate formula for the pressure evolu-
tion is given by Eq. (49), which comes from the asymptotic
forms [cf. Eq. (13.5.1) in Ref. [42]]

1F1(a, b; −x) = �(b)

�(b − a)
x−aS(a, 1 + a − b, x)

+ �(b)

�(a)
e−x(−x)a−bS(b − a, 1 − a,−x),

(C26)

where

S(c, d, x) ≡ 1 + c d

1!x
+ c(c + 1)d(d + 1)

2! x2

+ c(c + 1)(c + 2)d(d + 1)(d + 2)

3! x3
+ · · ·

(C27)

Note that the e−x term in Eq. (C26) is crucial. For large κ0, C±
are exponentially large; however, the eκ0 factors drop out11 in
linear combinations relevant for the pressure and shear stress.

10Note that

d

dx
1F1(a, b, x) ≡ a

b
1F1(a + 1, b + 1, x),

and from the Wronskian,

G−(x)F+(x) − G+(x)F−(x) = 4a e−x

[cf. W {1, 2} in Eq. (13.1.20) in Ref. [42]].
11For example,

�(1 + 2a)

�(1 + a)
F−(κ0)κ−a

0 − �(1 − 2a)

�(1 − a)
F+(κ0)κa

0

= 2a
e−κ0

κ0

[
1 − 1

3κ0
+ O

(
1

κ2
0

)]

and

�(1 + 2a)

�(1 + a)
G−(κ0)κ−a

0 − �(1 − 2a)

�(1 − a)
G+(κ0)κa

0

= 4ae−κ0

[
1 + 2

3κ0
− 1

9κ2
0

+ O
(

1

κ3
0

)]

(a = √
2/3).

At late times τ 	 τ0/κ
3/2
0 , the IS solutions recover ideal

hydrodynamics for any initial condition,

p(τ ) ∝
(τ0

τ

)4/3
, πL(τ ) ∝

(τ0

τ

)2

⇒ πL

p
(τ ) ∝

(τ0

τ

)2/3
→ 0, for τ 	 τ0

κ
3/2
0

, (C28)

as can be inferred from Eq. (C26). The NS solution

pNS(τ ) = p0

(τ0

τ

)4/3
exp

{
2

3κ0

[
1 −

(τ0

τ

)2/3
]}

(C29)

exhibits the same features (as the reader can easily verify).
For the late-time evolution, this scenario gives smaller viscous
corrections to the pressure and the pressure anisotropy than
σ ∝ 1/T 2. However, in the large κ0 limit, we recover the same
results in Eqs. (C17) and (C18).

Analogous derivation gives the exact solutions in the naive
IS case:

p(τ̃ ) = C ′
−τ̃−2(1+a′)/3F ′

−(κ0τ̃
2/3) + C ′

+τ̃−2(1−a′)/3F ′
+(κ0τ̃

2/3),

(C30)

a′ =
√

5

3
,

πL(τ̃ ) = −3τ̃−1/3 d[τ̃ 4/3p(τ̃ )]

dτ̃
, (C31)

where

C ′
± = ±e−κ0

4a′ [p0G
′
∓(κ0) − ξ0F

′
∓(κ0)], (C32)

F ′
±(x) ≡ 1F1(1 ± a′, 1 ± 2a′,−x), (C33)

G′
±(x) ≡ 2x

1 ± a′

1 ± 2a′ F
′
±(x) − 2(1 ± a′)F ′

±(x). (C34)

With the help of Eq. (C26), it is straightforward (but somewhat
lengthy) to determine the late-time behavior

p

pid
= T (τ̃ )[P (κ0) + ξ0X(κ0)], (C35)

where in the naive case,

T naive(τ̃ ) = 1 − 2

3κ0τ̃ 2/3
− 7

9κ2
0 τ̃ 4/3

+ O
(

1

κ3
0 τ̃ 2

)
, (C36)

P naive(κ0) = 1 + 2

3κ0
+ 5

9κ2
0

+ O
(

1

κ3
0

)
, (C37)

Xnaive(κ0) = − 1

2κ0
− 5

6κ2
0

+ O
(

1

κ3
0

)
. (C38)

Comparing to the complete Israel-Stewart result of Eq. (C21)
(obtained in the small ξ limit),

T IS(τ̃ ) ≈ 1 − 2

3κ0τ̃ 2/3
− 1

9κ2
0 τ̃ 4/3

+ O
(

1

κ3
0 τ̃ 2

)
, (C39)

P IS(κ0) ≈ 1 + 2

3κ0
− 1

9κ2
0

+ O
(

1

κ3
0

)
, (C40)

XIS(κ0) ≈ − 1

2κ0
+ 1

6κ2
0

+ O
(

1

κ3
0

)
, (C41)

we see that for the naive approximation, the evolution
approaches ideal hydrodynamic p/pid ∼ const behavior later
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(deviation of T from unity is larger), and for near-equilibrium
initial conditions (ξ0 ≈ 0), the pressure saturates at a higher
value (P is larger).

4. Solutions for ultrarelativistic gas with 2 → 2 cross section and
ηs/seq = const

The last scenario we consider is when the cross section is
dynamically adjusted to maintain a constant shear viscosity
to equilibrium entropy density ratio ηs/seq, such as the
conjectured lower bound of 1/(4π ). From Eqs. (29), (33),
(51), and (52),

s̃eq = 1

τ̃

(
1 + ln[τ̃ 4p̃3(τ̃ )]

4 − χ0

)
, (C42)

and thus

ηs

seq
= ηs,0

seq,0

p̃(τ̃ )τ̃ 2

K̃(τ̃ )

4 − χ0

4 − χ0 + ln[τ̃ 4p̃3(τ̃ )]
, (C43)

where

ηs,0

seq,0
= T0τ0

κ0(4 − χ0)
. (C44)

Therefore, ηs/seq = const requires

K(τ̃ ) = K0p̃(τ̃ )τ̃ 2 4 − χ0

4 − χ0 + ln[τ̃ 4p̃3(τ̃ )]
. (C45)

Within the generic region of validity for viscous hydro-
dynamics, |πL| � p, this scenario also implies a growing
K(τ ) ∼ τ≈2/3 and therefore convergence to the ideal limit at
late times. Note that the double ratio (ηs/seq)/(ηs,0/seq,0) as
a function of τ/τ0 depends only on πL,0/p0, κ0, the type of
cross section (encoded in K̃), and χ0.

We now analyze the time evolution of ηs/seq in the three
earlier scenarios. Compared to the entropy density, ηs/seq

contains an additional multiplicative term that comes from
the time evolution of the shear viscosity. Assume first, for
simplicity, that we are very close to the ideal hydrodynamic
limit, in which case, ηs/seq ∝ τ 2/3/K(τ ). For a constant
cross section, this results in a growing ηs/seq ∝ τ 2/3; while
for the other two cases, σ ∝ τ 2/3 or σ ∝ 1/T 2, we obtain
ηs/seq ≈ const.

In reality, there are of course viscous effects. Because

p̃(τ̃ )τ̃ 2

K̃(τ̃ )
=




p̃(τ̃ )τ̃ 4/3 × τ̃ 2/3 for σ = const,
[p̃(τ̃ )τ̃ 4/3]3 for σ ∝ 1/T 2,

p̃(τ̃ )τ̃ 4/3 for σ ∝ τ 2/3,

(C46)

the relevant quantity that determines the evolution of ηs/seq

is p̃τ̃ 4/3. The last term in Eq. (C43) is only a logarithm.
Therefore, the first term, Eq. (C46), dominates the behavior.
Typically, πL < 0 and thus dissipation generates an increasing
p̃τ̃ 4/3. The increase in ηs/seq is then fastest for the constant
cross section case. The other two cases, σ ∝ 1/T 2 and σ ∝
τ 2/3, are not equivalent when there is dissipation, because for
the latter the prefactor in Eq. (C46) is only linear in p̃(τ̃ )τ̃ 4/3

and, therefore, ηs/seq grows much slower.

5. Comparison of the various cross section scenarios

After exploring the general behavior, we compare numeri-
cal solutions for the four scenarios. Unless stated otherwise, for
the ηs/seq = const case, we start the evolution from chemical
equilibrium, i.e., take χ0 = 0. For the other three scenarios,
the pressure and shear stress evolution does not depend on
χ0. For simplicity, we start the evolution from πL(τ0) = 0,
and consider two extremes K0 = 1, i.e., equal expansion and
scattering time scales, and K0 = 6.67, i.e., 6.67 times slower
expansion than the time scale for scattering. On all figures, the
dotted curves correspond to the approximation when the π2

L

term in Eq. (36) is ignored.
Figure 8 shows the evolution of the pressure relative to the

ideal hydrodynamic p ∼ τ−4/3 result (for a comparison of the
same observable between hydrodynamics and transport, see
Fig. 4). Dissipation increases the pressure because it reduces
the pdV work. The effect is largest for the σ = const scenario,
while it is smallest for ηs/seq = const and σ ∝ τ 2/3, which two
scenarios give basically the same result. For K0 = 1, the fourth
scenario σ ∝ 1/T 2 is in between these limits; but by K0 =
6.67, it becomes equivalent to σ ∝ τ 2/3. Dropping the π2

L terms
in Eq. (36) (thin dotted lines) is a fair 10–15% approximation
for σ = const and σ ∝ 1/T 2 at K0 = 1, which improves to
an essentially exact one by K0 = 6.67. For the other two
scenarios, ηs/seq = const and σ ∝ τ 2/3, the nonlinear term can
be safely ignored already for K0 = 1. Note that for K0 = 6.67,
dissipative corrections to the pressure are still very modest
10–15% at late τ/τ0 ∼ 10–20 in all four cases studied.

Now we turn to the evolution of the viscous stress πL shown
in Fig. 9. All four scenarios give very similar results for the
early τ/τ0 <∼ 1.5–2 growth in magnitude, but they differ in
late-time relaxation. As inferred from the pressure evolution
already, ηs/seq = const and σ ∝ τ 2/3 are largely identical and
relax quickly toward the ideal limit. σ = const is the one that
stays farthest from equilibrium. For low K0 = 1, the σ ∝ 1/T 2

case lies in between; but by K0 = 6.67, it becomes identical
to ηs/seq = const and σ ∝ τ 2/3. The π2

L term in the equation

η/s = const
σ ∝ τ 2/3
σ ∝ 1/T 2
σ = const

K0 = 1

τ/τ0

p/
p i

d
ea
l

1 5 10 15 20

2

1.8

1.6

1.4

1.2

1

η/s = const
σ ∝ τ 2/3
σ ∝ 1/T 2
σ = const

K0 = 6.67

τ/τ0

p/
p i

d
ea
l

1 5 10 15 20

2

1.8

1.6

1.4

1.2

1

FIG. 8. Pressure evolution from viscous hydro-
dynamics relative to the ideal hydrodynamic p =
p0(τ0/τ )−4/3 result in 0 + 1D Bjorken geometry for
an ultrarelativistic gas with 2 → 2 interactions. Four
scenarios are compared for K0 = 1 and 6.67: σ =
const, σ ∝ 1/T 2, σ ∝ τ 2/3, and ηs/seq = const. Ap-
proximate results with dropping π 2

L terms in the
equation of motion are also shown (thin dotted lines).
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FIG. 9. Same as Fig. 8, but for the longitudinal
viscous shear πL normalized by the initial pressure.

of motion affects the pressure and the viscous stress similarly
and can be ignored for K0 = 6.67 in all cases and for σ ∝ τ 2/3

and ηs/seq = const even at K0 = 1.
The same observations carry over to the pressure anisotropy

Rp = pL/pT shown in Fig. 10. We plot this quantity because
it is the same one shown in Fig. 1 for the hydrodynamics vs.
transport theory comparison in Sec. V (but note the logarithmic
time axis there). These results further confirm that σ ∝ τ 2/3

is a very good approximation to ηs/seq = const already for
K0 = 1.

Figure 11 shows entropy production dS/dη as a function of
proper time for the four scenarios, with local thermal (ξ0 = 0)
and chemical (χ0 = 0) equilibrium initial conditions. Due to
scalings, only entropy relative to the initial one plays a role, i.e.,

(dS/dη)

(dS0/dη)
= τ̃ ˜̄s = 1 + 1

4 − χ0

[
ln(τ̃ 4p̃3) − 9ξ 2(τ )

16

]
. (C47)

For K0 = 1, a constant cross section generates about 35% extra
entropy by late τ ∼ (15–20)τ0. With σ ∝ 1/T 2, the increase
is only ∼30%; whereas σ ∝ τ 2/3 and ηs/seq = const give the
smallest increase of about 25%. For a larger K0 ∼ 7, the system
is much closer to ideal hydrodynamics and therefore entropy
generation is slower, about 10% for σ = const, while only 5%
for the other three cases. Note that these results also depend on
χ0 but almost entirely through the explicit 1/(4 − χ0) factor
in Eq. (C47). Therefore, results for arbitrary χ0 �= 0 can be
obtained via straightforward rescaling. In the ηs/seq = const
case, the shear stress and pressure evolution also depend on
χ0 but only very weakly, as we show later below (cf. Fig. 13).

Figure 12 shows the evolution of the shear viscosity to
equilibrium entropy density ratio ηs/seq, normalized by the
initial value of the ratio. The entropy is calculated for a system
starting from chemical equilibrium (χ0 = 0). The rough
expectations that ηs/seq ∼ τ 2/3 for a constant cross section,
while ηs/seq ∼ const for both σ ∝ 1/T 2 and σ ∝ τ 2/3, hold
within a factor of 3 already for K0 = 1 and up to τ = 20τ0

(note that the τ 2/3 growth in the σ = const case has been

scaled out in the plots). Relative to this zeroth-order behavior,
for all three scenarios, ηs/seq grows with time, reinforcing the
general results in Sec. C4. The relative growth decreases with
increasing K0. The K0 dependence is strongest for the constant
cross section scenario: the factor of 3 gain by τ = 20τ0 for
K0 = 1 is tamed to about a 25% increase for K0 ∼ 7. For the
other two scenarios, σ ∝ 1/T 2 and σ ∝ τ 2/3, the ratio stays
nearly constant much more robustly. As expected (cf. end of
Appendix C 4), of all cases studied, σ ∝ τ 2/3 approximates
ηs/seq = const the best, with only ∼10% deviation accumu-
lated by late τ = 20τ0 even for a small K0 = 1.

Finally, in Fig. 13, we show that the results for ηs/seq =
const depend only weakly on the initial density, i.e., χ0.
Density dependence in shear stress and pressure evolution
arises in this case because the cross section is a function of the
initial density [see Eq. (C45)]. The dependence is weaker the
closer the system is to ideal hydrodynamics, because in that
case p ∝ τ−4/3 and χ0 drops out from K(τ ). But even for a pes-
simistic K0 = 1, the pressure anisotropy Rp = pL/pT , varies
less than 10% as we change the density by a factor of 4 around
chemical equilibrium density (χ0 = ± ln 4). In fact, a decrease
in the density has a much weaker effect than an increase. The
right plot shows the effect of the same initial density variation
on entropy dS/dη production normalized to the initial entropy.
Most of the density dependence in the entropy change comes
from the trivial 1/(4 − χ0) prefactor in Eq. (C47), which is
there in any cross section scenario even if the shear stress
and pressure evolution are independent of the density. To
highlight dynamical density effects, we therefore plot, again
for a pessimistic K0 = 1, the normalized change in entropy

4 − χ0

4

�(dS/dη)

(dS0/dη)
≡ 4 − χ0

4

(
(dS/dη)

(dS0/dη)
− 1

)
. (C48)

(The scaling factor is chosen such that it has no effect
for chemical equilibrium initial conditions χ0 = 0.) The
results show practically no density dependence, apart from
few-percent changes, even for such a low K0.
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σ ∝ τ 2/3
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FIG. 10. Same as Fig. 8, but for the pressure
anisotropy evolution.
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FIG. 11. Same as Fig. 8, but for the normalized
entropy per unit rapidity (dS/dη)/(dS0/dη).

APPENDIX D: USEFUL RELATIONS FROM COVARIANT
TRANSPORT

1. Particle number and transverse energy

The particle number and transverse energy distributions for
particles crossing a three-dimensional hypersurface σ (x) =
const are given by

dN = dy dp2
T

∫
pµdσµ(x)f (x, p), (D1)

dET = dy dp2
T

∫
pµdσµ(x)mT f (x, p), (D2)

where mT ≡
√

p2
T + m2, pT ≡

√
p2

x + p2
y is the transverse

momentum, and dσµ(x) is the normal to the hypersurface at
space-time coordinate x. For our boost-invariant scenario, it
is natural to follow quantities per unit coordinate rapidity as
a function of the proper time τ . For τ = const, hypersurfaces
pµdσµ = mT τ ch ω d2xT dη, and in our 0 + 1D case, f only
depends on sh ω,p⊥, and τ , where ω ≡ y − η. Thus,

dN(τ )

dη
= τAT

∫
d2pT dω mT ch ω f (τ, sh ω,pT ), (D3)

dET (τ )

dη
= τAT

∫
d2pT dω m2

T ch ω f (τ, sh ω,pT ), (D4)

AT is the transverse area of the system. With the local thermal
equilibrium distribution for ultrarelativistic particles

f (sh ω,p⊥) = N e−p⊥ch ω/T , N = n

8πT 3
, (D5)

and the quadratic form (62), straightforward integration gives

dN

dη
= n τAT = const, (D6)

dET (τ )

dη
= 3πT

4

dN

dη

(
1 − 5ξ

16

)
. (D7)

Clearly, dissipation slows the decrease of transverse energy
(for typical πL < 0), and 2 → 2 interactions, of course,
conserve the particle number.

Note that dET /dη/(τAT ) is almost identical to the trans-
verse pressure of Eq. (D10) but has an extra ch ω factor in the
integrand.

2. Early pressure evolution

Here we evaluate the early transverse and longitudinal
pressure evolution from the transport for a local equilibrium
initial condition. The results hold for any interaction, not only
2 → 2.

In local equilibrium, the collision term vanishes; thus in
the vicinity of τ = τ0, the evolution is governed by free
streaming.12 In our 0 + 1D case, free streaming[

ch ω ∂τ − sh ω

τ
∂ω

]
f (sh ω,p⊥, τ ) = 0 (ω ≡ y − η) (D8)

implies

f (sh ω,p⊥, τ ) = f (τ sh ω/τ0, p⊥, τ0). (D9)

12The approach followed here is equivalent to a direct computation of
the coefficient Ṙ0 in the Taylor expansion R(τ ) = 1 + Ṙ0(τ − τ0) +
R̈0(τ − τ0)2/2 + · · ·. In the direct approach, one would differentiate
Eq. (43) to obtain

Ṙ0 = Ṫzz(τ0) − Ṫxx(τ0)

p0
,

then substitute Tzz and Txx from Eq. (D10), and replace
ḟ (ch ω,p⊥, τ0) with ∂ωf (ch ω,p⊥, τ0) using the Boltzmann equa-
tion. For locally equilibrated initial conditions of Eq. (D5), the colli-
sion term vanishes, and the problem is then reduced to straightforward
integration, which yields Ṙ0 = −8/(5τ0).
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FIG. 12. Same as Fig. 8, but for the shear
viscosity to equilibrium entropy density ratio ηs/seq.
The results for σ = const are divided by (τ/τ0)2/3,
otherwise they would quickly grow off the plot.
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FIG. 13. Initial density dependence of Israel-Stewart viscous hydrodynamic solutions for an ultrarelativistic gas expanding longitudinally
in 0 + 1D Bjorken geometry with 2 → 2 interactions that maintain ηs/seq = const. To amplify density effects, the initial expansion time scale to
mean free path ratio is chosen to be low, K0 = 1. Three different initial densities are considered: chemical equilibrium n = neq, oversaturation
at n = 4neq, and undersaturation at n = neq/4. Left: time evolution of the pressure anisotropy Rp = pL/pT . Right: time evolution of the
produced entropy per unit rapidity, normalized to the initial entropy per unit rapidity. The produced entropy is scaled by (4 − χ0)/4 to eliminate
trivial density effects that do not come from the shear stress and pressure evolution (see text). Approximate results with dropping π2

L terms in
the equation of motion are also shown (thin dotted lines).

Substituting a local thermal initial distribution for ultrarel-
ativistic particles [Eq. (D5)], the definition of the energy-
momentum tensor

T µν(η = 0, τ ) =
∫

d3p

p0
pµpνf

=
∫

d2p⊥dypµpνf (shy, p⊥, τ ) (D10)

gives the transverse pressure

pT (τ ) ≡ T xx(η = 0, τ ) = N
∫

dp⊥p⊥dφdy(p⊥ cos φ)2

× exp

[
−p⊥

T0

√
1 + a2sh2y

]

= 3T0n

2

∫ ∞

0

dy

(1 + a2sh2y)2
. (D11)

Here a ≡ τ/τ0. Change of variables to q = a sh y leads to

pT (τ ) = 3T0n

2

∫ ∞

0

dq

(1 + q2)2
√

q2 + a2

= T0n
3
[√

a2 − 1 + (a2 − 2)acos 1
a

]
4(a2 − 1)3/2

. (D12)

Analogous calculation gives for the longitudinal pressure,

pL(τ ) ≡ T zz(η = 0, τ ) = 3T0n

∫
dy sh2y

(1 + a2sh2y)2

= T0n
3

2(a2 − 1)

[
acos 1

a√
a2 − 1

− 1

a2

]
. (D13)

Expanding near a = 1,

pT (τ ) = T0n

[
1 − 4(τ − τ0)

5τ0
+ O((τ − τ0)2)

]
, (D14)

pL(τ ) = T0n

[
1 − 12(τ − τ0)

5τ0
+ O((τ − τ0)2)

]
, (D15)

and thus Eq. (65) follows.
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Abstract
High p⊥ theory and data are commonly used to study high p⊥ parton interactions with QGP, while low p⊥ data and
corresponding models are employed to infer QGP bulk properties. On the other hand, with a proper description of
high p⊥ parton-medium interactions, high p⊥ probes become also powerful tomography tools, since they are sensitive
to global QGP features, such as different temperature profiles or initial conditions. This new role of high p⊥ probes
is used here to assess the spatial anisotropy of the QCD matter. With our dynamical energy loss formalism, we show
that a (modified) ratio of RAA and v2, presents a reliable and robust observable for straightforward extraction of initial
state anisotropy. We analytically estimated the proportionality between the v2/(1 − RAA) and anisotropy coefficient
ε2L, and found surprisingly good agreement with full-fledged numerical calculations. Within the current error-bars, the
extraction of the anisotropy from the existing data using this approach is still inaccessible. However, with the expected
accuracy improvement in the upcoming LHC runs, the anisotropy of the QGP formed in heavy ion collisions can be
straightforwardly derived from the data. Such a data-based anisotropy parameter would present an important test to
models describing the initial stages of heavy-ion collision and formation of QGP, and demonstrate the usefulness of
high p⊥ theory and data in obtaining QGP properties.

Keywords: Quark-gluon plasma, High p⊥ probes, Initial anisotropy

1. Introduction

Understanding the properties of the new form of matter named Quark-Gluon Plasma (QGP) is the major
goal of relativistic heavy ion physics [1, 2]. However, to explore the properties of QGP, one needs good
probes. With regards to that, it is commonly assumed that high p⊥ theory and data are good probes for
exploring the high p⊥ parton interactions with QGP, while low p⊥ theory and data are considered as good
probes for bulk QGP properties. Contrary to this common assumption, the goal of this contribution is to
demonstrate that high p⊥ particles can also be useful independent probes of bulk QGP properties.

To put it simply, the main idea is that when high p⊥ particles transverse QGP, they lose energy, where
this energy loss is sensitive to bulk QGP properties, such as its temperature profiles or initial conditions.

To appear in Nuclear Physics A, acceptance letter after this article
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Consequently, with realistic and sophisticated high p⊥ parton energy loss model, high p⊥ probes can indeed
become powerful tomographic tools. So, in this contribution, we will present if and how we can use these
probes to infer some of the bulk QGP properties, i.e., for precision QGP tomography. Note that only the
main results are presented here; for a more detailed version, see [3], and references therein.

2. DREENA framework

To achieve the goal of utilizing high p⊥ theory and data for inferring the bulk QGP properties, as pre-
viously implied, a reliable high p⊥ parton energy loss model is necessary. With this goal in mind, we de-
veloped a dynamical energy loss formalism [4, 5], which takes into account some more realistic and unique
features, such as: i) The calculations are performed within finite temperature field theory and generalized
Hard-Thermal-Loop [6] approach, in which the infrared divergences are naturally regulated, excluding the
need for artificial cutoffs. ii) The formalism assumes QCD medium of a finite size and a finite temperature,
consisting of dynamical partons (i.e., energy exchange with medium constituents is included), in distinction
to commonly considered static scatterers approximation and/or models with vacuum-like propagators. iii)
Both radiative [4] and collisional [5] energy losses are calculated within the same theoretical framework,
and are equally applicable to light and heavy flavors. iv) The formalism is generalized to include a finite
chromomagnetic mass [7], running coupling, and extend beyond widely used soft-gluon approximation [8].
Finally, the formalism is integrated in a numerical framework DREENA (Dynamical Radiative and Elastic
ENergy loss Approach) [9, 10], to provide predictions for high p⊥ observables.

Within this framework, we generated a wide set of high p⊥ predictions using 1D Bjorken expansion [11]
(i.e., DREENA-B framework [10]). Thus we obtained a good joint agreement with a wide range of high p⊥
RAA and v2 data, by applying the same numerical procedure, the same parameter set, and no fitting parame-
ters in model testing. That is, there is no v2 puzzle [12] within our model, which then strongly suggests that
the model provides a realistic description of high p⊥ parton-medium interactions. Moreover, our preliminary
findings suggest that, within our formalism, moving from 1D Bjorken to full 3D hydrodynamical expansion
does not significantly affect agreement of our predictions with high p⊥ RAA and v2 data [13]. Consequently,
in order to adequately address the high p⊥ measurements, a proper description of high p⊥ parton interac-
tions with the medium appears to be much more important than an advanced medium evolution description.
Furthermore, we have also analyzed the sensitivity of high p⊥ RAA and v2 to different initial stages, giving
an additional insigth in the usefullness of both high p⊥ observables in the precision QGP tomography [14].

3. Inferring QGP anisotropy through high p⊥ theory and data

As one example of QGP tomography, in this contribution, we will address how to infer the QGP
anisotropy from high p⊥ RAA and v2 data. The initial state anisotropy is one of the main properties of QGP
and a major limiting factor for precision QGP tomography. However, despite its essential importance, it is
still not possible to directly infer the initial anisotropy from experimental measurements. Several theoretical
studies [15, 16, 17, 18] have provided different methods for calculating the initial anisotropy, leading to
notably different predictions, with a notable effect in the resulting predictions for both low and high p⊥ data.
Therefore, approaches for inferring anisotropy from the data are necessary. Optimally, these approaches
should be complementary to existing predictions, i.e., based on a method that is fundamentally different to
models of early stages of QCD matter.

To this end, we here propose a novel approach to extract the initial state anisotropy. Our method is based
on inference from high p⊥ data, by using already available RAA and v2 measurements, which will moreover
be measured with much higher precision in the future. Such approach is substantially different from the
existing approaches, as it is based on the inference from experimental data (rather than on calculations of
early stages of QCD matter) exploiting the information from interactions of rare high p⊥ partons with the
QCD medium. This also presents an improvement/optimization in utilizing high p⊥ data as, to date, these
data were mostly constrained on studying the parton-medium interactions, rather than assessing bulk QGP
parameters, such as spatial asymmetry.
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In the literature, the initial state anisotropy is quantified in terms of eccentricity parameter ε2

ε2 =
〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)

∫
dx dy (y2 + x2) ρ(x, y)

, (1)

where ρ(x, y) denotes the initial density distribution of the formed QGP. Regarding high p⊥ observables, we
note that v2 is sensitive to both the anisotropy of the system and its size, while RAA is sensitive only to the
size of the system. Therefore, it is plausible that the adequate observable for extracting eccentricity from
high p⊥ data depends on both v2 and RAA, and the question is how.

To address this question, we will use the dynamical energy loss formalism, and DREENA-B framework
outlined above. For high p⊥, the fractional energy loss scales as [3] ∆E/E ∼ χ〈T 〉a〈L〉b, where 〈T 〉 stands
for the average temperature along the path of high p⊥ parton, 〈L〉 is the average path-length traversed by
the parton, χ is a proportionality factor that depends on the initial parton transverse momentum, and a
and b are exponents which govern the temperature and path-length dependence of the energy loss. Within
our model, a ≈ 1.2 and b ≈ 1.4, which is contrary to simpler models, and consistent with a wide range
of experimental data [19, 20]. From this simple scaling arguments, we can straightforwardly obtain the
following expressions for RAA and v2 (for more details we refer the reader to [3]):

RAA ≈ 1 − ξ(χ)〈T 〉a〈L〉b, v2 ≈ 1
2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

≈ ξ(χ)〈T 〉a〈L〉b
(

b
2

∆L
〈L〉 −

a
2

∆T
〈T 〉

)
, (2)

where we see that ξ(χ)〈T 〉a〈L〉b corresponds to 1− RAA. Therefore, if we divide v2 by (1− RAA), we see that
this ratio is given by the following simple expression:

v2

1 − RAA
≈

(
b
2

∆L
〈L〉 −

a
2

∆T
〈T 〉

)
. (3)

Note that, while this ratio exposes the dependence on the asymmetry of the system (through spatial (∆L/〈L〉)
and temperature (∆T/〈T 〉) parts), the dependence only on spatial anisotropy is still not isolated. However,
by plotting together spatial and temperature anisotropy, we obtain a linear dependence [3], with a propor-
tionality factor given by c ≈ 4.3. Therefore, v2/(1 − RAA) reduces to the following expression:

v2

1 − RAA
≈ 1

2

(
b − a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 ≈ 0.57ς, where ς =

〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 and

1
2

(b − a
c

) ≈ 0.57. (4)

Consequently, the asymptotic scaling behavior of observables v2 and RAA, at high p⊥, reveals that their
(moderated) ratio is determined only by the geometry of the initial QGP droplet. Therefore, the anisotropy
parameter ς could, in principle, be directly obtained from the high p⊥ experimental data.

Fig. 1. A) Comparison of theoretical predictions for charged hadron v2/(1 − RAA) as a function of p⊥ with 5.02 TeV Pb + Pb
CMS [21, 22] (blue squares), ALICE [23, 24] (red triangles) and ATLAS [25, 26] (green circles) data. Each panel corresponds to
different centrality range, as indicated in the upper right corners, while red lines denote the limit 0.57ς from Eq. (4). B) Comparison
of ε2L (red band) extracted from our full-fledged calculations, with ε2 obtained from MC-Glauber [15] (gray full curve), EKRT [16]
(cyan dashed curve), IP-Glasma [17] (green dot-dashed curve) and MC-KLN [18] (blue dotted curve) models. MC-Glauber and EKRT
curves correspond to 5.02 TeV, whereas IP-Glasma and MC-KLN curves correspond to 2.76 TeV Pb + Pb collisions at the LHC.

To test the adequacy of the analytical estimate given by Eqs. (2)-(4), Fig. 1A is displayed, which
comprises our v2/(1 − RAA) predictions (gray bands), stemming from our full-fledged recently developed
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DREENA-B framework (outlined in the previous section), the ALICE, CMS and ATLAS data, and analyt-
ically derived asymptote 0.57ς (red lines). Importantly, for each centrality range and for p⊥ & 20 GeV,
v2/(1 − RAA) is independent on p⊥, and approaches the asymptote, i.e., is determined by the geometry of
the system - depicted by the solid red line, up to 5% accuracy. Moreover, the experimental data for all three
experiments also display the independence on the p⊥ and agree with our predictions, although the error bars
are rather large. Therefore, we conclude that our scaling estimates are valid and that v2/(1 − RAA) indeed
carries the information about the anisotropy of the fireball, which can be simply (from the straight line fit to
data at high p⊥ limit) and robustly (in the same way for each centrality) inferred from the experimental data.

However, note that the anisotropy parameter ς is not the widely-considered anisotropy parameter ε2

(given by Eq. (1)). To facilitate comparison with ε2 values in the literature, we define ε2L =
〈Lout〉2−〈Lin〉2
〈Lout〉2+〈Lin〉2 =

2ς
1+ς2 , and in Fig. 1B compare it with the results from different initial-state models [15, 16, 17, 18]. First,
we should note that as a starting point, our initial ε2, through which we generate our path-length distri-
butions, agrees with EKRT and IP-Glasma. However, what is highly non-trivial is that, as an outcome of
this procedure, in which v2/(1 − RAA) is calculated (based on the full-fledged DREENA-B framework), we
obtain ε2L which practically coincide with our initial ε2 and also with some of the conventional initial-state
models. As an overall conclusion, the straightforward extraction of ε2L and its agreement with values of the
prevailing initial-state models’ eccentricity (and our initial ε2) is highly non-trivial and supports v2/(1−RAA)
as a reliable and robust observable for anisotropy. Additionally, the width of our ε2L band is smaller than
the difference in the ε2 values obtained by using different models (e.g., MC-Glauber vs. MC-KLN). There-
fore, our approach provides genuine resolving power to distinguish between different initial-state models,
although it may not be possible to separate the finer details of more sophisticated models. This resolving
power, moreover, comes from entirely different perspective, i.e., from high p⊥ theory and data, supporting
the usefulness of utilizing high p⊥ theory and data for inferring the bulk QGP properties.
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Abstract

We study effects of the hadronic rescattering on final observables especially for multi-strange hadrons such as φ, Ξ and
Ω in high-energy heavy-ion collisions within an integrated dynamical approach. In this approach, (3+1)-dimensional
ideal hydrodynamics is combined with a microscopic transport model, JAM. We simulate the collisions with or without
hadronic rescatterings and compare observables between these two options so that we quantify the effects of the hadronic
rescattering. We find that the mean transverse momentum and the elliptic flow parameter of multi-strange hadrons are
less affected by hadronic rescattering and, as a result, the mass ordering of the pT -differential elliptic flow parameter
v2(pT ) is violated: At the RHIC and the LHC energies the v2(pT ) for φ-mesons is larger than that for protons in the
low-pT regions.

Keywords: high-energy heavy-ion collisions, multi-strange hadrons, elliptic flow

1. Introduction

The main purpose in the physics of high-energy heavy-ion collisions at the Relativistic Heavy Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC) is to extract properties of the quark gluon plasma (QGP),
the deconfined nuclear matter consisting of strongly interacting quarks and gluons. In particular, transport
properties of nearly perfect QGP fluids attract a great deal of attention.

The QGP created in the collisions expands, cools down and finally turns into a hadron gas. Hadrons
rescatter with each other in this late stage of the collision, thus information about the QGP is usually con-
taminated by the hadronic rescatterings. This fact makes it difficult to observe the QGP directly. For this
reason it is suggested that multi-strange hadrons can be utilised as direct probes of the QGP. Since the
multi-strange hadrons have small cross sections with pions, the dominant constituents of a hadron gas, their
distributions reflect the state of the system just after hadronization [1, 2, 3, 4, 5, 6, 7, 8]. Unlike conven-
tional penetrating probes such as photons and dileptons which are emitted during the entire evolution of the
system, the multi-strange hadrons provide information about this specific stage of the collisions.
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Hydro + cascade calculations predicted several years ago that the elliptic flow coefficient v2(pT ) for
protons and φ-mesons violates the mass ordering of this coefficient. This phenomenon reflects the small
scattering cross section of φ-meson, and was recently observed by the STAR collaboration [7].

In this contribution, we study the violation of mass ordering more systematically and quantitatively by
focusing on pT distributions and elliptic flow of hadrons, in particular for Ξ- and Ω-baryons and φ-mesons.
An integrated dynamical model, a more sophisticated version of the hydro + cascade approach, is employed
here to make the investigation more realistic.

2. Model

We simulate Au + Au collisions at
√

sNN = 200 GeV and Pb + Pb collisions at
√

sNN = 2.76 TeV on
an event by event basis by employing an integrated dynamical approach [9]. This approach consists of three
stages. In the initial stage, entropy-density distribution after the collision is calculated by using a Monte
Carlo Glauber model. The subsequent QGP fluid expansion is described by fully (3+1) dimensional ideal
hydrodynamics. After we switch the description from fluids to particles, we utilise a hadron cascade model,
JAM [10], to describe the evolution of hadron gas. As for an equation of state (EOS), we employ s95p-
v1.1 [11], in which the lattice EOS at high temperature is connected to the hadron resonance gas EOS at
low temperature. Note that this particular version of the model EOS is designed to include all the hadrons in
JAM. Switching from hydrodynamics to JAM is done by using the Cooper-Frye formula on the isothermal
hypersurface at the temperature of 155 MeV. This temperature is chosen to reproduce the experimentally
observed pion-to-kaon and pion-to-proton ratios in low pT regions at the RHIC energy.

Hadronic reactions in JAM are described as two-particle scatterings with experimental hadronic cross
section if available. When there are no experimental data, we employ the additive quark model for the
corresponding scatterings. In this model, reactions involving (hidden-)strange hadrons have smaller cross
sections than non-strange hadrons due to a phenomenological strangeness suppression factor. Furthermore,
the experimentally known scattering cross sections of multi-strange hadrons are small, since they form very
few (or not at all) resonances. Thus multi-strange hadrons have smaller cross sections than non-strange
hadrons. Note here that, in order to study the effects of hadronic rescattering on φ-meson efficiently, we
switch off the decay channel φ → K+K−. This does not affect the kinetic evolution of the system because
the lifetime of φ-mesons (∼ 47 fm/c) [12] is larger than typical lifetime of the system (∼ 10 fm/c). For
further details, see Ref. [9].

3. Results

To investigate the effects of hadronic rescattering on final observables, we simulate the collisions with
two options in JAM. One of them is the default setting, in which the rescatterings occur until all hadrons
have decoupled, and resonances decay according to their lifetimes and decay channels. By using this option,
we are able to reasonably reproduce final experimental observables such as the pT -spectra and differential
v2 at both the RHIC [14] and the LHC energies. In the other option, the hadronic rescatterings are deacti-
vated but resonances decay. These calculations serve the information just after the fluid-dynamical stage.
Comparisons of observables calculated using these two options show how much the hadronic rescattering
affects final observables.

The phenomenon of violation of mass ordering in v2(pT ) can be interpreted as a result of interplay
between hadronic rescattering effects on mean transverse momentum, 〈pT 〉, and those on pT -averaged v2
because the slope of v2(pT ) is roughly approximated by the relation [13], dv2(pT )/dpT ≈ v2/〈pT 〉. Therefore
we quantify the effects on 〈pT 〉 and v2 for each hadron by taking ratio of the observables just after the fluid
stage to the final observables. As shown in Fig. 8 (a) in Ref. [14], the ratio of 〈pT 〉 for pions, kaons and
protons follow the tendency obtained from mT scaling ansatz, in which it is assumed that all the hadrons
flow with common velocity. However multi-strange hadrons obviously deviate from this pattern. From
this observation, multi-strange hadrons do not fully participate in the radial flow during the hadronic stage
and therefore freeze out earlier than non-strange hadrons. As for v2 shown in Fig. 8 (b) in Ref. [14],
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Fig. 1. Transverse momentum dependencies of elliptic flow parameter v2 for pions (open square), protons (open circle) and φ-mesons
(filled circle) near midrapidity |η| < 2.0 obtained from the integrated dynamical approach (a) without hadronic rescattering and (b) with
hadronic rescattering in minimum bias Pb+Pb collisions at

√
sNN = 2.76 TeV. The lower panels of the plots show the ratio of vφ2 to vp

2 .

pion v2 increases by about 20% during the hadronic stage, whereas the v2 of all the other hadrons shows
much smaller increase of 0-5% . By combining the results of these two observables, we see that both 〈pT 〉
and v2 for multi-strange hadrons are hardly affected by hadronic rescatterings, but either one of these two
observables is affected for all the other particles. This fact is reflected in v2(pT ) for each hadron. In Fig. 6
in Ref. [14], we showed v2(pT ) with or without hadronic rescatterings to see how rescatterings affect it.
φ-meson v2(pT ) is almost identical in both cases since the hadronic rescatterings do not change its slope.
However the situation is different in the case for non-strange hadrons. Pion v2(pT ) goes up because pT -
averaged v2 increases but 〈pT 〉 remains almost unchanged in the hadronic stage. On the other hand, for
protons, pT -averaged v2 does not change a lot, but 〈pT 〉 increases. Consequently, proton v2(pT ) shifts to
higher pT region and crosses φ-meson v2(pT ) at ∼ 1.5 GeV violating the conventional mass ordering.

At the LHC energy, this phenomenon appears in the same way. Figure 1 shows v2(pT ) for pions, protons
and φ-mesons in minimum bias Pb+Pb collisions at

√
sNN = 2.76 TeV from the integrated dynamical

approach. To see this behaviour clearly, we also plot the ratio vφ2/v
p
2 in lower panels of the figures. In the case

without hadronic rescatterings shown in Fig. 1 (a), the mass ordering behaviour, vπ2(pT ) > vp
2 (pT ) > vφ2(pT )

for mπ < mp < mφ, appears due to the collective flow in the fluid stage. However, in Fig. 1 (b), this pattern is
reversed below about 2 GeV between protons and φ-mesons: vp

2 (pT ) < vφ2(pT ) even though mp < mφ. These
are qualitatively the same results to those at the RHIC energy but quantitatively the crossing point between
these two shown in Fig. 1 (b) shifts to higher pT region compared to that at the RHIC energy as shown in
Fig. 6 (b) in Ref. [14].

In addition to these results, we also show the normalised freeze-out time distributions for identified
hadrons. In Figs. 2 (a) and (b), we show the results for mesons and for baryons in separate panels for clarity.
Also switching time distributions from fluids to particles are shown with shaded areas. Prominent peaks
around 10 fm/c for φ-mesons and Ω-baryons can be seen and look quite similar to the ones of the switching
time distributions. The distribution for Ξ-baryons has also a peak in the early time but its height is lower than
for φ-mesons and Ω-baryons. This is because the decay contribution from long-lived resonance Ξ(1530) to
Ξ forms a long tail in the late time. Therefore primordial Ξ-baryons freeze out as early as φ-mesons and
Ω-baryons. These results prove that the multi-strange hadrons freeze out soon after the fluid stage since they
rarely rescatter in the hadronic stage.

S. Takeuchi et al. / Nuclear Physics A 956 (2016) 457–460 459



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  10  20  30  40  50  60

(1
/N

)d
N

/d
τ(

c/
fm

)

τ(fm/c)

(a)

switching time
π
K
φ

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  10  20  30  40  50  60

(1
/N

)d
N

/d
τ(

c/
fm

)

τ(fm/c)

(b)

switching time
p
Λ
Ξ
Ω
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the time switching from fluids to particles.

4. Summary

We have studied the effects of the hadronic rescattering on observables especially for multi-strange
hadrons. We have used an integrated dynamical approach, a model combining the ideal hydrodynamics
with a hadronic cascade model, JAM. In order to investigate the hadronic rescattering effects within this ap-
proach, we have compared pT -distributions and elliptic flow with hadronic rescatterings to the ones without
rescatterings. By studying the effects on mean transverse momentum and integrated elliptic flow parame-
ters, we have found that these observables for the multi-strange hadrons are less affected by the rescatterings.
Furthermore theoretically and experimentally suggested phenomenon indicating the less rescatterings of φ-
mesons, violation of mass ordering in v2(pT ), has been interpreted as a results of the effects on mean pT

and v2. These results at the RHIC energy had been discussed in Ref. [14]. Now we have shown that this
behaviour also appears at the LHC energy. By considering these results, we claim that the multi-strange
hadrons can be utilised as “penetrating” probes of the QGP in high-energy heavy-ion collisions.
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Abstract

A state-of-the-art 3+1 dimensional cascade + viscous hydro + cascade model vHLLE+UrQMD has been applied to
heavy ion collisions in RHIC Beam Energy Scan range

√
sNN = 7.7, . . . , 200 GeV. Based on comparison to available

experimental data it was estimated that an effective value of shear viscosity over entropy density ratio η/s in hydrody-
namic stage has to decrease from η/s = 0.2 to 0.08 as collision energy increases from

√
sNN = 7.7 to 39 GeV, and to

stay at η/s = 0.08 for 39 ≤ √s ≤ 200 GeV.
In this work we show how an equation of state with first order phase transition affects the hydrodynamic evolution

at those collision energies and changes the results of the model as compared to “default scenario” with a crossover type
EoS from chiral model.

Keywords: quark-gluon plasma, relativistic hydrodynamics, hadron cascade

1. Introduction

The goal of ongoing Beam Energy Scan (BES) program at RHIC facility and future experimental pro-
grams at GSI FAIR and JINR NICA is to explore the high-μB region of phase diagram of QCD matter and
the phase transition from hadron gas to quark-gluon plasma by colliding heavy nuclei at different energies.

Following the success of hydrodynamic description of heavy ion reactions at full RHIC and LHC en-
ergies, we have reported on creation of a state-of-the-art viscous hydro+cascade model and its application
to heavy ion collisions in the BES collision energy range [1]. In the context of this model, reproduction of
available experimental data requires a finite collision energy dependent shear viscosity over entropy density
ratio η/s in the hydrodynamic stage. This ratio was found to decrease from η/s = 0.2 to 0.08 as collision
energy increases from

√
sNN = 7.7 to 39 GeV, and to stay at η/s = 0.08 for 39 ≤ √s ≤ 200 GeV. The

found collision energy dependence of the effective η/s indicates that the physical η/s-ratio may depend on
baryochemical potential, and that η/s increases with increasing μB.

However, only one version of the equation of state (EoS) was used throughout the analysis in [1], namely
the chiral model EoS [2]. The question remains: how sensitive the obtained results are to the hydrodynamic
EoS and whether it is possible to discriminate between EoSs using experimental data. In this work we show
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Fig. 1. Pressure as a function of energy density at zero baryon density, for the two EoSs used in the simulations: chiral model EoS
(solid curve) and EoS Q (dashed curve).

sensitivity of hadronic observables in RHIC BES collision energy range to the choice of the equation of
state (EoS) in the fluid stage.

2. The equations of state in the viscous hydro+cascade model

Since the model has been described in detail in Ref. [1], we summarise here its main features only. The
initial stage of evolution is described with UrQMD cascade [3, 4]. At a hypersurface of constant Bjorken
proper time τ =

√
t2 − z2 = τ0 the system is fluidized, i.e. the energy and momentum of individual hadrons

are converted into energy and momentum of fluid. The τ0 is a parameter of the model. At lower RHIC
BES energies its value is set to the time when all initial nucleon-nucleon scatterings have happened. The
hydrodynamic stage which follows is modelled with a 3+1 dimensional numerical solution of relativistic
viscous hydrodynamics in Israel-Stewart framework using recently developed vHLLE code [5]. Particlization
is set to happen when energy density ε = εsw is reached. The following hadronic stage is described again
with UrQMD cascade.

It is worth to note that at BES collision energies local baryon or charge densities can be large. Therefore
a consistent hydrodynamic description requires an EoS which is defined at all physical energy/baryon den-
sities. Presently we have only two such EoSs at hand. One is the chiral model EoS (CM EoS), used in our
previous analysis, whereas another is so called “EoS Q” [6].

The chiral model (CM) EoS has correct asymptotic degrees of freedom at the high and low temperature
limits – quarks and hadrons – and is in qualitative agreement with lattice QCD results at μB = 0. However,
deconfinement transition appears in it as a (wide) crossover where medium modified hadrons coexist with
free quarks. The crossover happens at all values of baryon chemical potential.

The EoS Q comprises hadron resonance gas (HG) and quark-gluon plasma (QGP) phases. HG phase
is constructed from contributions of hadron resonances with masses up to 2 GeV and includes repulsive
interactions via a mean-field potential. QGP phase is described as an ideal gas of massless quarks and
gluons inside a large bag with bag constant B. The value of the latter is taken to be B1/4 = 230 MeV. The
two phases are matched via Maxwell construction, which results in first order phase transition between the
phases also at all values of baryon chemical potential. With the given value of the bag constant the transition
temperature is Tc(nB = 0) = 164 MeV at zero baryon density.

The particlization (transition from fluid to individual hadrons) is set to happen at fixed energy density
εsw = 0.5 GeV/fm3 for both EoS scenarios. At this energy density the system is firmly on the hadronic side
for both EoS. We apply conventional Cooper-Frye prescription for hadron distributions on the particlization
hypersurface:

p0 d3Ni(x)
d3 p

= dσμpμ f (p · u(x), T (x), μi(x)), (1)
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where the phase space distribution function f is taken to correspond to free hadron resonance gas close to
local equilibrium with non-equilibrium corrections proportional to the shear stress tensor:

f = feq(pνuν; T, μi)
[
1 + (1 ∓ feq)

pμpνπμν

2T 2(ε + p)

]
. (2)

Such distribution function is inconsistent with mean fields included in hadron phase of both EoS used in fluid
phase. Therefore we recalculate the energy density, pressure, flow velocity uμ, temperature, and chemical
potentials from the ideal parts of the energy-momentum tensor and charge currents using a free hadron
resonance gas EoS and use these values to evaluate the particle distributions on the switching surface.

3. Results and conclusions

To set up the calculations for the Beam Energy Scan range we take collision energy dependent values of
the parameters of the model, used to approach the experimental data with CM EoS. Then we perform two
sets of simulations: with CM EoS and EoS Q respectively. First of all we like to see how the hydrodynamic
evolution itself is affected by the choice of the EoS. It is difficult to compare individual hydro evolutions
with irregular initial conditions and different EoSs. Therefore we visualise the effects of the change of the
EoS by using the event-averaged proper time distributions of the hadrons sampled at particlization surfaces,
see Fig. 2, right. From the plot one can find that EoS Q results in longer average duration of the particle
emission. This implies that the average duration of the fluid stage (which is defined as a space-time region
where τ > τ0 and ε > εsw = 0.5 GeV/fm3) is longer. Also, the relative change in the average duration of the
fluid stage increases with decreasing collision energy and is maximal for lowest collision energy simulated,√

sNN = 7.7 GeV. We assume that the prolongation is the effect of the mixed phase in EoS Q, since at higher
energy densities it is even harder than CM EoS, see Fig. 1.

However, after being sampled at the particlization surface, hadrons decay and rescatter in the cascade.
From Fig. 2, left, one can see that the resulting proper time distributions of the last interaction points of
hadrons are much wider than the distributions of points of their creation, and differences between the two
EoSs in fluid stage are largely smeared. This brings one to the question how much the EoS in the fluid phase
affects the final observables.

We found that change in EoS has no impact on the shapes of rapidity distributions of produced particles.
There is, however, some impact on the transverse dynamics of the system, which influence transverse mo-
mentum distributions of hadrons. From Fig. 3, left, one can conclude that EoS Q results in some suppression
of the average radial flow, which decreases mean pT of hadrons (larger effect for heavier protons and smaller
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effect for lighter pions). The largest effect is seen in the pT integrated elliptic flow, which turns out to be
suppressed in EoS Q case by the same amount for all collision energies.

In the previous analysis we have shown that elliptic flow, as well as other observables, can be varied by
varying free model parameters. Therefore it remains an open question whether it is possible to readjust the
parameters of the model in order to compensate such changes in excitation functions of the elliptic flow and
mean transverse momentum while keeping same rapidity distributions.
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Abstract

We employ the lattice QCD data on Taylor expansion coefficients up to sixth order to construct an equa-
tion of state at finite net-baryon density. When we take into account how hadron masses depend on lattice 
spacing and quark mass, the coefficients evaluated using the p4 action are equal to those of hadron reso-
nance gas at low temperature. Thus the parametrised equation of state can be smoothly connected to the 
hadron resonance gas equation of state. We see that the equation of state using Taylor coefficients up to sec-
ond order is realistic only at low densities, and that at densities corresponding to s/nB � 40, the expansion 
converges by the sixth order term.
© 2014 Elsevier B.V. All rights reserved.
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One of the methods to extend the lattice QCD calculations to non-zero chemical potential is 
Taylor expansion of pressure in chemical potentials:

P

T 4
=

∑
ij

cij (T )

(
μB

T

)i(
μS

T

)j

. (1)
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Fig. 1. The parametrised (solid line) second order Fourier coefficients compared to HRG values (dashed) and the contin-
uum extrapolated HISQ [2] and stout [1] data.

Fig. 2. Pressure at constant temperature T = 150 MeV in hadron resonance gas (HRG) and using Taylor coefficients of 
HRG up to second, fourth and sixth order in Eq. (1).

The coefficients of this expansion are derivatives of pressure, P , with respect to baryon and 
strangeness chemical potentials, μB and μS , respectively:

cij (T ) = 1

i!j !
T i+j

T 4

∂i

∂μi
B

∂j

∂μ
j
S

P (T ,μB = 0,μS = 0), (2)

where T is temperature.1 The lattice QCD calculations of these coefficients have matured to a 
level where both Budapest–Wuppertal [1] and hotQCD [2] Collaborations have published the 
final continuum extrapolated results for the second order Taylor coefficients, see Fig. 1.

As seen in Fig. 1, at low temperatures the coefficients evaluated using the hadron resonance 
gas (HRG) model agree with the lattice QCD results. Thus we may expect that HRG is an ac-
ceptable approximation of the physical equation of state also at finite net-baryon densities. To 
check how soon one may truncate the expansion in Eq. (1), we calculate the Taylor coefficients 
in HRG up to sixth order, evaluate the pressure using up to second, fourth or sixth order Taylor 
coefficients, and compare to the actual HRG pressure. The result is shown in Fig. 2, where the 
pressure at constant T = 150 MeV temperature is shown as a function of inverse of entropy per 
baryon, nB/s. We use nB/s as variable to facilitate easy comparison to heavy-ion collisions at 

1 We use natural units where c = h̄ = kB = 1 throughout the text.
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Fig. 3. The fitted trace anomaly (solid curve) compared to the HRG trace anomaly (dotted) and the continuum extrapo-
lated lattice QCD result using stout action [11].

various energies since, unlike net-baryon density nB , or baryon chemical potential μB , s/nB is 
(approximately) constant during the entire expansion stage of the collision. We remind that at 
midrapidity the relevant entropy per baryon is s/nB = 400, 100, 65, and 40 at collision energies √

sNN ≈ 200, 64, 39, and 17 GeV/fm3, respectively. Thus an equation of state based on second 
order Taylor coefficients only [3] can be expected to be realistic only at relatively low net-baryon 
densities, s/nB � 100, i.e., at collisions with collision energy 

√
sNN � 64 GeV.

The Taylor coefficients have been evaluated on lattice up to sixth order [4,5], but unfortunately 
the fourth and sixth order coefficients suffer from large discretisation errors. As we have argued 
previously [6–9], these errors are mostly due to the lattice discretisation effects on hadron masses: 
When the hadron mass spectrum is modified accordingly (for details see [10]), the HRG model 
reproduces the lattice data, see Fig. 1 of Ref. [8]. Interestingly this change can be accounted for 
by shifting the modified HRG result of purely baryonic coefficients towards lower temperature 
by 30 MeV [8,9]. Based on this finding, and because the lattice data agree so well with the 
modified HRG, we suggest that cutoff effects can be accounted for by shifting the p4 lattice data 
by 30 MeV. The fourth and sixth order coefficients are shown in Fig. 4, where the data below 206 
MeV has been shifted by 30 MeV, the data point at 209 MeV by 15 MeV (open symbol), and the 
points above 209 MeV have not been shifted. At low temperatures the shifted data now agrees 
with the unmodified HRG.

We parametrise the shifted p4 data, and the unshifted, continuum extrapolated stout and HISQ 
data, using an inverse polynomial of five (second order) or six (fourth and sixth order coefficients) 
terms:

cij (T ) =
m∑

k=1

akij

T̂ nkij
+ cSB

ij , (3)

where cSB
ij is the Stefan–Boltzmann value of the particular coefficient, akij are the parameters, 

and the powers nkij are required to be integers between 1 and 23. T̂ = (T − Ts)/R with scaling 
factors Ts = 0 and R = 0.15 GeV for the second order coefficients and Ts = 0.1 GeV and R =
0.05 GeV for all other coefficients. We match the parametrisation of second order coefficients 
to the HRG value at temperature TSW = 160 MeV, and the fourth and sixth order coefficients at 
TSW = 155 MeV by requiring that the Taylor coefficient and its first, second, and third derivatives 
are continuous. The switching temperatures have been chosen to optimise the fit and lead to 
smooth behaviour of the speed of sound (see Fig. 5). These constraints fix four (or five) of the 
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Fig. 4. The parametrised (solid line) fourth and sixth order Fourier coefficients compared to HRG values (dashed line) 
and the shifted p4 data [4,5] (see the text).

Fig. 5. The square of the speed of sound, c2
s , as a function of temperature on various isentropic curves with constant 

entropy per baryon (a), and on s/nB = 40 curve evaluated using Fourier coefficients up to second, fourth or sixth 
order (b).

parameters akij . The remaining parameters are fixed by a χ2 fit to the lattice data. The resulting 
parameterisations are shown as solid curves in Figs. 1 and 4.

We obtain the pressure at μB = 0, i.e. the coefficient c00, from the continuum extrapolated 
stout data for the trace anomaly (ε − 3P)/T 4 [11], which agree with the very recent HISQ 
data [12] within errors. As in our earlier parametrisation of trace anomaly [7], we fit the lattice 
result using an inverse polynomial with four terms, and connect it to the HRG trace anomaly at 
TSW = 167 MeV temperature, see Fig. 3.

We characterise the equation of state in Fig. 5a by showing the square of the speed of sound, 
c2
s = ∂P/∂ε|s/nB

, on various isentropic curves with constant entropy per baryon. The curves at 
s/nB = 400, 65, and 40 are relevant at collision energies 

√
sNN = 200, 39 and 17 GeV, respec-

tively. At s/nB = 400 (dotted line), the equation of state is basically identical to the equation of 
state at μB = 0 (thin solid line). At larger baryon densities the effect of finite baryon density is no 
longer negligible. The larger the density, the stiffer the equation of state above, and softer below 
the transition temperature. We see some ripples forming in the transition region with decreasing 
s/nB . These ripples grow fast with increasing density when one goes beyond s/nB = 40, and 
therefore we consider s/nB = 40 to give a practical maximum density for our parametrisation.
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In Fig. 5b we have evaluated the square of the speed of sound along the isentropic s/nB = 40
curve using Taylor coefficients up to second, fourth and sixth order. At temperatures above the 
transition region they all lead to very similar speed of sound, but below T ≈ 150 MeV, the 
second order result deviates strongly from the fourth and sixth order results. This shows that at 
low temperatures equation of state based on the second order coefficients only is not sufficient. 
Furthermore, the small difference between the fourth and sixth order equation of state indicates 
that if s/nB � 40, the expansion has basically converged by the sixth order term.

To summarise we have argued that an equation of state based on the Taylor expansion up to 
second order, is realistic only in collisions with larger collision energy than at the RHIC beam 
energy scan. We argue that the temperature shift of 30 MeV is a good approximation of the 
discretisation effects in the lattice QCD data obtained using p4 action. We have constructed an 
equation of state for finite baryon densities based on hadron resonance gas and lattice QCD data. 
In such an equation of state, the Taylor expansion essentially converges by the sixth order term 
if s/nB � 40.
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Abstract

We investigate a fluid dynamical response to the fluctuations and geometry of the initial state density
profiles in ultrarelativistic heavy ion collisions.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Initial state fluctuations; Relativistic fluid dynamics

1. Introduction

The aim of the experiments in ultrarelativistic heavy ion collisions is to understand the prop-
erties of nearly thermalized strongly interacting matter. In extracting these properties a good
understanding of the dynamics of the formed system is essential, as almost none of the charac-
teristics of the matter can be understood directly from the data, but some degree of theoretical
interpretation is necessary. Relativistic fluid dynamics has become a standard tool in describ-
ing the spacetime evolution of the formed matter. For example finding constraints for the shear
viscosity of the matter is largely based on the systematics of the azimuthal asymmetries of the
hadron transverse momentum spectra, generated by the secondary interactions in the created sys-
tem [1]. A magnitude of the asymmetries depend on the transport properties of the matter, and
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the evolution of the matter with non-zero viscosity is relatively straightforward to describe with
fluid dynamics.

In the fluid dynamical picture the azimuthal asymmetries of the spectra are generated by ini-
tially asymmetric density or pressure gradients. The asymmetries of the final spectra then depend
not only on the properties of the matter like equation of state and transport coefficients, but also
on the asymmetries in the initial state. The initial state remains one of the largest uncertainties in
extracting e.g. the shear viscosity of the strongly interacting matter.

In the recent years it has become evident that the initial density profiles fluctuate from collision
to collision, even with a fixed impact parameter. Understanding these fluctuations does not only
provide more information on the collisions, but it has become clear that even in describing the
average properties of the system it is necessary to take into account the event-by-event nature of
the collisions. Therefore it is essential to understand how the fluctuations in the initial state are
reflected into the final observable hadron spectra.

2. Fluid dynamics and hadron spectra

A basic quantity in fluid dynamics is the energy–momentum tensor T μν that can be decom-
posed as

T μν = euμuν − (p + Π)�μν + πμν. (1)

In the fluid dynamical limit the evolution of the system can be described in terms of T μν alone,
and a starting point for describing the evolution are the conservation laws

∂μT μν = 0. (2)

The conservation laws are completely general, but not sufficient to close the system. The fluid dy-
namical approximation comes into play when one writes the evolution equations for the viscous
parts of the energy–momentum tensor. For example in the Israel–Stewart type of theories [2] the
shear-stress tensor satisfies the equations of motion of the form

τπ

d

dτ
π 〈μν〉 + πμν = 2η∇〈μuν〉 + (non-linear terms), (3)

where η is the shear viscosity coefficient and τπ is the corresponding relaxation time, for further
details see Ref. [3]. If one further specifies an equation of state, the spacetime evolution of T μν

can be solved from the above equations provided that the initial values of T μν are given.
Once the full spacetime evolution is known, it can be converted to the hadron spectra e.g.

via the Cooper–Frye procedure [4]. The resulting transverse momentum (pT ) spectra are then
usually characterized in terms of its Fourier components vn with respect to the azimuthal angle φ,

dN

dy dp2
T dφ

= dN

dy dp2
T

[
1 + 2v1(pT ) cos(φ − ψ1) + 2v2(pT ) cos

[
2(φ − ψ2)

] + · · ·], (4)

where the event-plane angle ψn can be defined as

ψn = (1/n) arctan
(〈pT sinnφ〉/〈pT cosnφ〉). (5)

A characterization of an ensemble of collisions requires also probabilities for observing dN/dy,
vn, ψn, . . . , not only their averages. In addition, the full characterization requires in principle all
the possible correlations as well. Here we consider the probability distributions of the Fourier
coefficients P(vn) and correlations between them c(vi, vj ).
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Fig. 1. Eccentricity and elliptic flow correlation [6].

3. Initial state and its fluctuations

An essential input to the fluid dynamical models is the initial density of the matter. A con-
venient way to characterize the initial density profile ρ(x, y, τ0) is to decompose each initial
entropy or energy density profile into its eccentricities

εm,n = −
∫

dx dy rm cos[n(φ − Ψm,n)]ρ(x, y, τ0)∫
dx dy rmρ(x, y, τ0)

(6)

where r is the distance to the system’s center of mass, ρ(x, y, τ0) is the entropy or energy density
at initial time τ0, and the angle Ψm,n is defined as

Ψm,n = 1

n
arctan

∫
dx dy rm sin(nφ)ρ(x, y, τ0)∫
dx dy rm cos(nφ)ρ(x, y, τ0)

+ π/n. (7)

Similarly to the particle spectra, a full description of the possible initial densities needs also the
probability distributions and correlations among the eccentricities.

Although the eccentricities provide a relatively simple way of decomposing the initial density,
an accurate representation of a density profile requires quite many terms in the expansion. An
expansion based on the Bessel–Fourier decomposition was suggested in Ref. [5], where the au-
thors show that with this expansion relatively few terms can reproduce even quite complex initial
density profiles.

4. Fluid dynamical response to the initial geometry

If we start from a given initial condition, characterized by the eccentricities εm,n, the fluid
dynamical evolution tends to convert them to the momentum space asymmetries, which then
result in azimuthally asymmetric hadron spectra, i.e. non-zero vn’s. The conversion efficiency
depends on the properties of the matter and also on the lifetime of the fluid dynamical system.

In principle, there are no apparent reasons to expect a simple relation between εm,n’s and vn’s
as the fluid dynamical equations of motion are non-linear even in the ideal fluid limit. However,
it turns out that there is a strong linear correlation between ε2,2 and pT integrated v2 so that
v2 � C2ε2,2, where the proportionality constant depends on the properties of the matter, but not
on the initial state itself. This is demonstrated in Fig. 1 which shows the full correlation between
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Fig. 2. εm,n and vn(pT ) correlations.

ε2,2 and v2 from the fluid dynamical calculation with two different shear viscosity to entropy
density ratio η/s = 0 and η/s = 0.16 [6]. At a fixed eccentricity there is only a small variation
of v2 and the non-zero viscosity even enhances the correlation. In these examples, as well as in
all the examples below, the initial state is from the Monte-Carlo Glauber model, with the entropy
density proportional to the density of binary collisions (sBC).

For the higher harmonics the situation is not as simple. There is still a linear correlation
between v3 and the corresponding eccentricity εm,3, although not nearly as strong as for v2. For
even higher harmonics the simple correlation ceases to exist [7–9], but the cross-correlations
between different vn’s start to play a significant role [10].

A degree of linear correlation between the quantities a and b can be quantified by using a
linear correlation coefficient defined as

c(a, b) =
〈
(a − 〈a〉ev)(b − 〈b〉ev)

σaσb

〉
ev

, (8)

where the angular brackets 〈 〉ev denote an average over an ensemble of events, and σi is a
standard deviation. For a perfect linear (anti-)correlation c(a, b) = 1(−1).

Fig. 2 shows the correlation coefficients between εm,n and vn(pT ) for n = 2,3 as function
of pT from the same calculation as above. In principle one could hope to get an access to the
r dependence of the initial density (different m’s in the definition of εm,n) by studying vn’s at
different pT ranges. However, as seen from the figure, v2(pT ) has the strongest correlation with
ε2,2 in whole pT range. The correlation between v3 and εm,3 shows some degree of separation
into different pT ranges as a function of the power m, but even in this case the separation is not
particularly strong.

5. Distributions

A detailed description of the evolution should not only reproduce the event averaged vn, but
also their event-by-event probability distributions. Fig. 3(a) shows examples of such distribu-
tions from Ref. [6] with two different η/s values. Although, the different cases give different
distributions, the strong linear correlation v2 � C2ε2,2 means that ε2,2 is in practice the only
characteristics of the initial condition that determines v2. It then follows that if one considers
a distribution of relative fluctuations δv2 = (v2 − 〈v2〉)/〈v2〉 the proportionality constant drops
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Fig. 3. v2 (a) and δv2 (b) distributions [6].

Fig. 4. v2 and v4 correlations as a function of transverse momentum [6].

out and the distribution of δv2 is determined by the initial condition alone, i.e. it is independent
of the fluid dynamical evolution. This is demonstrated in Fig. 3(b) which shows that the two
cases above collapse into a one distribution that follows the underlying distribution of the scaled
eccentricity.

Thus, the scaled v2 distributions follow directly from the scaled ε2,2 distributions, and the
recently measured v2 distributions [11,12] give direct constraints to the possible initial state
models. These constraints can be used to rule out several simple Glauber model based initial
conditions [13]. On the other hand the IP-Sat based initial conditions reproduce the distributions
quite well [14].

6. Correlations

Even more details about the evolution is provided by the correlations between vn’s.
Figs. 4(left) and 4(right) show the correlation coefficient between v2 and v4 as a function of
pT in 0–5% and 20–30% centrality class, respectively.

As seen from the figure, a non-zero shear viscosity strongly affects the correlation in pe-
ripheral collisions, as does the decoupling temperature. This shows that there is at least a large
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contribution to the correlation form the (non-linear) fluid dynamical evolution, i.e. it is not only
a result of correlation between the eccentricities in the initial conditions. In the central collisions
the (v2, v4) correlation almost vanishes. The other correlations, i.e. (v2, v3) and (v3, v4) are also
almost zero in the both centrality classes [6].
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1. Introduction

Heavy ion programs at Large Hadron Collider (LHC) in European Organisation for Nuclear Research (CERN) and at
Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory (BNL) have focused on the physics of strongly
interacting matter of quarks and gluons under extreme conditions, namely, on the physics of the quark–gluon plasma
(QGP) [1]. By colliding two heavy nuclei at relativistic energies, the matter formed in the collision is expected to be in
the state of QGP in temperatures up to 400 MeV ∼ 4 × 1012 K. Such a high temperature was reached in the early universe
about ten microseconds after the Big Bang. One of the main goals of the heavy ion programs is to extract bulk and transport
properties of the QGP from analyses of experimental data.

So far, a vast body of experimental data have beenobtained at RHIC and LHC. Among them, the azimuthal anisotropy of the
emitted particles, so-called elliptic flow [2–13] is one of the main observables to provide information of the bulk properties
of the QGP. In particular, the large observed value of elliptic flow at RHIC was one of the main reasons to conclude that the
matter produced in the collisions at RHIC does indeed thermalise and form QGP [14,15].

In a non-central collision of two spherical nuclei, the reaction zone has an almond-like shape in the plane perpendicular
to the collision axis, so called transverse plane. Because of this geometry, pressure gradient within the reaction zone is
not azimuthally isotropic, but it is larger along the impact parameter than to the direction orthogonal to it. This leads to
anisotropic expansion of the system with more particles being emitted along the impact parameter than orthogonal to it.
It is customary to call the plane spanned by the beam and the impact parameter a reaction plane, and thus we say that
larger emission along the impact parameter means larger emission ‘‘in-plane’’ than ‘‘out-of-plane’’. This anisotropic particle
emission can be quantified by Fourier expanding the azimuthal distribution of observed particles. In particular, this kind
of anisotropy is quantified by the second Fourier coefficient of the expansion, v2. Since a finite v2 in a Fourier expansion
corresponds to an elliptic shape, this anisotropy is commonly called elliptic flow [16]. Quite surprisingly ideal hydrodynamics,
which neglects all the dissipative effects, gave a good description of the elliptic flow observed at RHIC [17–22]. Given a
fact that the expansion rate of the system formed in a heavy ion collision is tremendously large (∼1024/s), it is far from
obvious that dissipative effects can be neglected. Since in ideal hydrodynamics perfect local equilibrium is assumed to
hold at any instant, couplings among constituents of the fluid must be so strong that relaxation of the system against any
thermodynamic forces happens extremely quickly. Thus, from the agreement of hydrodynamic prediction with the elliptic
flowdata, an announcement of the ‘‘discovery of perfect fluidity’’ wasmade [23], and a newparadigmof the strongly coupled
QGP (sQGP) was established [14,15,24–27].

However, the described shape of the reaction zone is realistic only as an average overmany collisions. Since the nuclei are
not uniform but consist of separate nucleons, we may expect the reaction zone in a single event to depict similar granular
structure to the nuclei. For example, according to the Monte-Carlo Glauber model [28–30] the reaction zone consists of
several peaks (a.k.a.hot spots) and valleys originating from the configuration of nucleons in the colliding nuclei. This irregular
structure means that even if the underlying shape of the reaction zone in a non-central collision is almond-like, it has been
distorted and tilted. Thus, if one fits an ellipse to the reaction zone, itsminor axis no longer alignswith the impact parameter.
As described, elliptic flow is generated by the anisotropy of pressure gradient. Now, if the thermodynamic language of
pressure gradients is applicable in an individual event, the largest gradient and thus the largest emission of particles is not
along the reaction plane. It is along the participant plane,1 which is spanned by the beam and the minor axis of the reaction
zone. Thus, the particle distribution should not be Fourier expandedwith respect to the reaction plane, but to the participant
plane.

The importance of these event-by-event fluctuations of the shape and orientation of reaction zone was discovered when
trying to understand the behaviour of v2 in Cu+Cu collisions. It had been found that when experimentally measured v2 was
dividedby themodelled eccentricity of the reaction zone,2 ε, the ratio v2/ε scaleswith transverse density (1/S)dN/dy, where
S is the modelled transverse area of the overlap region and dN/dy is the measured final particle multiplicity at midrapidity
[3,31]. However, the measured v2 in Cu+Cu collisions did not obey such a scaling, but when the eccentricity εwas replaced
by the participant eccentricity εpart, the scaling was restored [32]. The main difference is that ε is always evaluated with
respect to the reaction plane, whereas the participant eccentricity εpart is evaluated with respect to the participant plane in
each individual event, and thus takes into account the fluctuations in the orientation of the reaction zone [33].

1 Also called event plane is some of the literature.
2 Sometimes called standard eccentricity εstd . For definitions, see Section 2.6.
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Since the reaction zone has a complicated azimuthal structure, and the elliptic flow was explained as a result of
the azimuthal variation of the pressure gradient, it is natural to expect that the Fourier coefficients beyond v2 would
be non-zero as well. The third coefficient in the Fourier expansion, v3, is called triangular flow [34]. It is generated by
the triangular component of the shape of the fluctuating reaction zone, and some puzzling phenomena in intermediate
transversemomentum regions can be interpreted asmanifestation of triangular flow. For example,Mach-cone like structure
was discovered in the away-side region in di-hadron correlation functions at RHIC [35–37] when one subtracts background
elliptic flow component from it. Recently, it was found that these di-hadron correlation functions can be reproduced by a
sum of independently analysed higher harmonic components [38,39], which indicates that Mach-cone like structure would
be caused simply by collective triangular flow.

If one Fourier-decomposes the azimuthal particle distribution, one can obtain information how the system responds to
the initial fluctuating profile and from this response one may deduce what the properties of the system itself are [40–44].
This reminds an analysis in observational cosmology: Through decomposition of power spectrum of cosmic microwave
background radiation into spherical harmonics, one can constrain important cosmological constants and even mass/energy
budget of the universe [45].

In the observational cosmology, analysis tools [46] played important roles in extracting cosmological parameters. The
situation in the physics of relativistic heavy ion collisions is quite similar to this [47]: One has to develop analysis tools to
extract the properties of the QGP from experimental data. From this point of view, let us overview the dynamics of heavy
ion collisions. High energy heavy ion collisions contain rich physics and exhibit many aspects of dynamics according to
relevant energy and time scales. Two energetic, Lorentz-contracted, heavy nuclei collide with each other. These nuclei can
bedescribedby the colour glass condensate (CGC), a universal formof hadrons andnuclei at extremely high energies [48–50].
These collisions can be viewed as collisions of two bunches of highly coherent and dense gluons. Just after the collisions,
longitudinal colour electric and magnetic fields, which are also known as the colour flux tubes [51] are formed between
two passing nuclei. Subsequent non-equilibrium evolution of these colour fields towards locally thermalised QGP is called
‘‘glasma’’ [52]. Once local thermalisation is achieved, a QGP fluid expands hydrodynamically, cools down and turns into a
hadronic gas. Hadrons continue to rescatter until the system is so dilute that interactions become very rare, and hadrons
stream freely towards the detectors.

Since the final observables are the result of all these various stages of the collision, it is important to describe the heavy ion
collision as a whole. So far, we have developed the following integrated dynamical model [53,54] to describe the dynamics
of relativistic heavy ion collisions. For the initial stage, initial conditions are calculated using the CGC picture [55–57]. Using
these initial conditions, we describe fully three dimensional ideal hydrodynamic expansion of the QGP fluid [21,22] using
a realistic equation of state from lattice QCD simulations [58–60]. The late stage evolution of the hadron gas is described
using microscopic kinetic theory [61]. Technical details about numerical simulations of ideal hydrodynamics and hadronic
cascades can be found in Ref. [62].

In this paper, we discuss experimental observables, in particular anisotropic flow, at RHIC and LHC energies using
an integrated dynamical model. A special emphasis will be put on discussion about initial conditions and final flow
analysis methods from an event-by-event analysis point of view. In theoretical calculations both the reaction plane and the
participant plane are trivially known, but in experiments it is impossible tomeasure the reaction plane, and it is quite hard to
precisely determine the participant plane from the finite number of observed particles. Thus, several flow analysis methods
have been proposed [63–65] to experimentally measure anisotropic flow. Hence, a consistent comparison of hydrodynamic
results with experimental observables is non-trivial. In this paper we demonstrate the differences of several experimental
methods of flow analysis by using them to analyse the output of the integrated dynamical model.

The paper is organised as follows. In Section 2 we describe and review the hybrid models, in which hydrodynamics
is combined with hadronic cascade, and hydrodynamic simulations on an event-by-event basis. In particular we describe
each module and the interfaces between them of our integrated dynamical model. In Section 3, we first summarise the
results obtained using smooth initial profiles, which are the conventional initial conditions employed in hydrodynamic
simulations.Wenext show results fromevent-by-event hydrodynamic simulations in Section 4 emphasising the importance
of employing the same flow analysis method as in experiment. Section 5 is devoted to the conclusion and outlook.

2. Model

Integrated dynamicalmodels, in general, consist of three separate stages: Initial conditions, hydrodynamics and hadronic
cascade. In our version, the initial particle production in the collision of the nuclei is either described by theMC-KLN version
of the colour glass condensate, or parametrised using the MC-Glauber model. These models provide the initial state for the
subsequent expansion of the matter, which we describe by relativistic ideal hydrodynamics. As for the equation of state, we
employ results from the state-of-the-art lattice QCD simulations [58,59]. Once the matter is dilute enough to form hadrons,
we switch the description of the system from fluid dynamics to microscopic hadron cascade. In this section we describe all
these stages of the integrated model, and how we connect hydrodynamics to cascade. We also review current status of the
equation of state and its application, hybrid models, and event-by-event hydrodynamic simulations.
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2.1. Hydrodynamic equations

To describe a system in length scales much larger than a typical microscopic length scale, like the mean free path, it is
sufficient to characterise it in terms of a few macroscopic fields: the energy–momentum tensor Tµν , and conserved charge
currents jµi (if any). In relativistic fluid dynamics, the equations of motion are given by the conservation laws for these fields

∂µTµν = 0 and ∂µj
µ

i = 0. (1)

Without any additional constraints these 4+n (n is the number of conserved currents) equations contain 10+4n unknown
variables. To close the system of equations, one either has to provide further equations in the form of constituent equations
for dissipative currents (shear stress tensor πµν , bulk pressure Π and energy flow/particle number diffusion qµi ), or to
eliminate some of the variables by further approximations. In the following we apply the latter approach and reduce the
number of unknowns by assuming that the fluid is in exact local thermodynamical equilibrium.

In a local thermodynamical equilibrium, the single particle phase-space distribution for non-interacting fermions or
bosons is

f0(p, x) =
g

(2π)3
1

exp(p · u(x)− µ(x))/T (x)± 1
. (2)

When one applies this to the kinetic theory definitions of the energy–momentum tensor and charged currents, one obtains

Tµν(x) = [ϵ(x)+ P(x)] uµ(x)uν(x)− P(x)gµν, and jµi (x) = ni(x)uµ(x), (3)

respectively, where ϵ is the energy, and ni are the charge densities in the local rest frame of the fluid, P is the thermodynamic
pressure and uµ is the fluid flow four-velocity. The Eqs. (3) imply that for a fluid in local thermodynamical equilibrium the
dissipative currents are zero. This consideration of a non-interacting gas in local equilibrium is the starting point of the ideal
fluid approximation: One postulates that the energy–momentum tensor and charge currents are of the form of Eqs. (3), and
thus the dissipative currents are zero by definition.

Such an approximation reduces the number of unknown variables in Eqs. (1) to 5 + n: the above mentioned densities,
pressure and three components of the flow four-velocity (note that the usual normalisation uµuµ = 1 reduces the number
of unknowns by one). To finally close the system of equations, an additional equation is usually provided in the form of the
equilibrium equation of state (EoS) of the matter, which expresses the pressure and densities in terms of thermodynamical
parameters temperature T and chemical potentials {µi}, P = P(T , {µi}). However, to solve the Eqs. (1), it is often practical to
provide the EoS in the form P = P(ϵ, {ni}) connecting the pressure directly to the densities. The knowledge of temperature
and chemical potentials is not necessarily required to calculate the evolution of the fluid itself.

Note that once the EoS, and boundary conditions (usually referred to as initial conditions) for the set of differential
equations in Eqs. (1) are fixed, the evolution is determined by Eqs. (1). In the ideal fluid approximation, the only place
where information about the nature of the constituents of the fluid and their microscopic interactions enters, is the EoS.

In the implementation of our model, we solve Eqs. (1) numerically in all three spatial dimensions. We employ the Milne
coordinates (τ , x, y, ηs), where τ =

√
t2 − z2 is proper time and ηs =

1
2 log t+z

t−z is space–time rapidity.
Since we are mostly interested in the observables at midrapidity in the collider energies,3 we can ignore the baryon

current [66–69]. 4 As usual in hydrodynamical models, we take the spatial boundary condition to be vacuum at infinity [70],
i.e. the hydrodynamical evolution proceeds independently without any feedback from the cascade. The temporal boundary,
i.e. the initial value(s) for the differential equations are described in Section 2.6. We employ the Piecewise Parabolic Method
(PPM) [71] as an algorithm to solve the equations of ideal hydrodynamics (Eqs. (1)). PPM is known to be robust against
strong shocks, therefore it is suitable to apply for bumpy initial conditions in event-by-event hydrodynamic simulations.
For details on PPM, see Ref. [62].

2.2. Equation of state

The equation of state (EoS) of strongly interactingmatter can be obtained either by using variousmodels or by lattice QCD
calculations [72]. Even if the recent lattice QCD calculations of the EoS have provided continuum extrapolated results [73],
there is a practical reason to use the hadron resonance gas (HRG) model for the EoS at low temperatures. When converting
fluid to particles using the Cooper–Frye procedure as described in Section 2.3, the conservation laws are obeyed without
any further considerations if the degrees of freedom are the same before and after particlisation. In other words, if the
emitted particles are the same particles the fluid consists of. If the fluid is described as hadron resonance gas, the degrees
of freedom and their properties are well known, and these degrees of freedom are the experimentally observable hadrons
which distributions we eventually want to calculate. HRG has also been shown to provide a reasonably good approximation
of the EoS of interacting hadron gas in temperatures slightly below the pion mass [74], and its use is therefore justified.

3 √
sNN = 200 GeV at RHIC and

√
sNN = 2.76 TeV at LHC.

4 The other conserved currents relevant for heavy ion collisions; electric charge, isospin and strangeness are in general either tiny or zero.
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Fig. 1. The parametrised trace anomaly compared with lattice results calculated with p4 [76], asqtad and HISQ/tree [77] actions as well as the continuum
extrapolated result obtained using stout action [73].

To showhowan EoS combining a hadron resonance gas at low temperatures, and lattice QCD results at high temperatures
can be made, we briefly review the construction of the s95p-v1.1 parametrisation [53,60]. The high temperature part of this
EoS is based on the lattice QCD results of the hotQCD collaboration [58,59], and its low temperature part contains the same
hadrons and resonances as the JAM hadron cascade [61]. We have also used this EoS to calculate the results discussed in
Sections 3 and 4.

The starting point of the construction of the s95p EoS is the trace anomaly Θ(T ) = ϵ(T ) − 3P(T ) evaluated on lattice,
see Fig. 1. The lattice results are parametrised and connected to the trace anomaly of HRG preserving the smooth crossover
nature of the transition. The trace anomaly is then converted to pressure via

P(T )
T 4

−
P(Tlow)
Tlow

=

 T

Tlow

dT ′

T ′5
Θ(T ), (4)

where pressure at the lower integration limit, Tlow, is given by HRG. Energy and entropy densities are subsequently obtained
via laws of thermodynamics. By construction such an EoS is limited to zero net baryon density and zero net strangeness, but
as mentioned zero charge is a good approximation when describing the system at midrapidity in collisions at RHIC and LHC.

The trace anomaly of the s95p-v1.1 EoS is shown in Fig. 1, and compared to recent lattice QCD results. It differs
considerably from the continuum extrapolated result by the Budapest–Wuppertal collaboration [73]. However, the
Budapest–Wuppertal EoS deviates from HRG already at T ≈ 130–140 MeV, which necessitates switching from fluid to
cascade below this temperature leading to much worse reproduction of data in our calculations. The s95p parametrisation
follows HRG up to T = 183 MeV temperature providing much more freedom in choosing the switching temperature,
and therefore we prefer to use it. To estimate the uncertainty our choice of EoS produces in the particle anisotropies, we
have calculated the elliptic flow anisotropy v2 in impact parameter b = 7 fm Au + Au collisions at the full RHIC energy
(
√
sNN = 200 GeV), see Fig. 2. In this calculation we follow the procedure used in Ref. [60] to test various parametrisations

of the EoS.We use ideal fluid hydrodynamicalmodel and assume chemical equilibrium until kinetic freeze-out. Themodel is
initialised using an optical Glaubermodel with components proportional to the number of participants and binary collisions
(see Section 2.6 and Refs. [14,75]). The parameters are chosen to reproduce the centrality dependence of charged particle
multiplicity. The usual procedure requires choosing the freeze-out temperature to reproduce the particle spectra in most
central collisions, but that would require the use of temperature Tfo ≈ 140 MeV. As mentioned, the Budapest–Wuppertal
EoS deviates from HRG below that temperature, and thus converting fluid to free particles in such a temperature violates
conservation of energy. Therefore we used freeze-out temperature Tfo = 125 MeV for both EoSs even if it leads to slightly
flatter pT distributions of pions and protons than experimentally observed. Both EoSs, Budapest–Wuppertal and s95p lead to
very similar pT distributions at that temperature. As can be seen in Fig. 2, the difference in pT -differential elliptic flow is tiny
as well, and smaller than the experimental errors. Thus we consider the use of s95p-v1.1 EoS a reasonable approximation.

Similar insensitivity to the details of the EoS was seen in Ref. [60] where different parametrisations of lattice EoS were
tested. Even if the EoS governs the expansion of the fluid and buildup of collective motion, the details of the EoS have tiny
observable consequences. The rule of thumb is that the stiffer the EoS, i.e., the larger the speed of sound in the fluid, the
larger the flow velocity generated during the expansion. But, even if larger flow velocity mean flatter pT spectrum (see
f.ex. Ref. [78]), this effect can be negated by choosing the fluid to freeze-out earlier at larger temperature, by assuming
later thermalisation time and thus later start of the hydrodynamical evolution, by changing the initial shape of the density
distribution (if the model allows) or by any combination of these three. The integrated dynamical models discussed in this
paper have no freeze-out temperature, but the final particle distributions are sensitive to the switching temperature from
hydro to cascade, and all these problems hamper these models as well.
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Fig. 2. The pT -differential elliptic flow of pions and protons in b = 7 fm Au+Au collisions at
√
sNN = 200 GeV evaluated using ideal fluid hydrodynamical

model using EoS s95p-v1 [60] and the parametrised Budapest–Wuppertal EoS [73].

Fig. 3. Elliptic flow of pions and antiprotons vs. transverse momentum in minimum bias Au + Au collisions at
√
sNN = 200 GeV calculated using four

different EoSs [79] and compared with the data by the STAR [80] and PHENIX [6] collaborations. The labels stand for a lattice QCD inspired quasiparticle
model (qp), EoS with a first order phase transition (Q), a parametrised smooth but rapid crossover (T) and pure hadron resonance gas with no phase
transition (H).

Based on the pT distributions on particles alone, we can basically only say that the EoS must contain a large number of
degrees of freedom. Otherwise the pT distributions come too flat, see discussion and Fig. 5 in Ref. [81], nor does the EoS
contain all the observed particles and resonances. To say anything beyond the large number of degrees of freedom requires
the use of more sophisticated observables like the azimuthal anisotropy v2 or the HBT-radii, a.k.a. femtoscopy. In general
the changes in v2 due to different EoSs can be compensated by changing the freeze-out temperature. There is, however, an
exception. The pT differential anisotropy of protons, v2(pT ), is to some extent sensitive to the order of phase transition [79].
This is demonstrated in Fig. 3 where pion and proton v2(pT ) in minimum bias Au + Au collisions at

√
sNN = 200 GeV are

calculated using ideal fluid hydrodynamical model, and four different EoSs. The EoSs are the bag model based EoS with a
first order phase transition between HRG and ideal parton gas (EoS Q), pure hadron resonance gas with no phase transition
(EoS H), a lattice inspired quasiparticle model EoS (EoS qp, which is quite close to the present lattice QCD EoSs) by Schneider
andWeise [82], and an EoSwith a parametrised smooth crossover fromHRG to ideal parton gas (EoS T). As seen in the figure,
the sensitivity of pion v2(pT ) on the EoS is tiny, but proton v2(pT ) shows clear sensitivity to EoS. Surprisingly it is the EoS
Q with the first order phase transition which provides the best fit to the data—a construction ruled out by the lattice QCD
calculations. The lattice inspired EoS qp leads to proton v2(pT ) which is clearly above the data, and almost as large as the
v2(pT ) obtained using the purely hadronic EoS H. The EoS T, which has a very rapid crossover leads to proton v2(pT )which
is almost as close to the data than the one obtained using EoS Q. This means that the order of the phase transition does not
affect the build up of anisotropy, but how rapid the transition is does have an effect. Nevertheless, EoS T is ruled out by the
present lattice data.

On the other hand, it can be argued that a soft EoS leads to a long lifetime of the system, which is excluded by the
HBT measurements [83]. It has also been shown that if one assumes a relatively hard, lattice inspired EoS, it is possible
to reproduce the measured HBT radii [84], although in that case the proton v2(pT ) is not reproduced. This apparent
contradiction appears when using ideal fluid dynamics. When dissipative corrections are applied, the proton v2(pT ) can be
reproduced also when a lattice based hard EoS is used, see Fig. 36 in Section 3.1, or Ref. [85]. Thus there is no contradiction
between lattice QCD EoS and the observed particle anisotropies.
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The previous discussion about the sensitivity of the particle distributions to EoS is based on ideal fluid dynamics, since
so far there has been no systematic study addressing what we can learn about the EoS of strongly interacting matter using
either dissipative hydrodynamics or integratedmodels. But since dissipative corrections are supposed to be small in the fluid
dynamical stage, it is highly unlikely that adding dissipation would make the fluid evolution more sensitive to the details of
the EoS. Thus we may expect that what we have learned about the effects of EoS on flow using ideal fluid dynamics, holds
for dissipative fluids as well.

2.3. Fluid to particles

The QGP produced in relativistic heavy ion collisions expands, cools down and goes through a transition to a hadronic
gas.5 At this late stage, the hadronic system is so diluted that it would be hard to maintain equilibrium during the evolution.
Thus, we switch from a macroscopic fluid dynamical picture to a microscopic kinetic picture at a switching temperature
Tsw. In this subsection, we discuss how to change from hydrodynamic description to kinetic description. We will discuss
dynamics of hadron cascade in the next subsection.

We employ the Cooper–Frye formula [86] to calculate the single particle phase-space distribution for all hadrons in the
hadronic equation of state. For a hadron of species i, the contribution to the distribution from a single fluid element located
at x is

fi(p, x)d3x =
d∆Ni

d3p
(x)

=
gi

(2π)3E
p ·∆σ(x)

exp[(p · u(x)− µi(x))/T (x)] ± 1
. (5)

Here∆σ is a normal vector of a surface element of a constant temperature hypersurface T (x) = Tsw.6

In the actual calculations, we Monte-Carlo sample the distributions of hadrons emitted from individual surface
elements [22]. Regarding this, some comments on the conservation laws are in order here:

1. The Cooper–Frye formula counts the net number of emitted particles [86]. Here the net number means the number of
particlesmoving outwards through the surfaceminus the number of particlesmoving inwards. Thus the number obtained
from Eq. (5) could be negative in a case of a fluid element with either a space-like normal vector (∆σ)2 < 0 or a time-like
normal vector having a negative time component. This so-called negative contribution problem of Cooper–Frye, is a long-
standing problem in hydrodynamicalmodelling of relativistic heavy ion collisions. Note that the total number of particles
obtained by summing the contribution given by Eq. (5) over all surface elements is positive for all initial states relevant
for heavy ion collisions. Although the in-coming particles are necessary to ensure the energy–momentum conservation,
it is conceptually difficult to treat the negative number in the subsequent kinetic approach.7 However, at the time of
particlisation at T = Tsw the collective flow is large, and thus the particle distributions are boosted to the direction of the
flow, i.e. outwards. Therefore the yield of the in-coming particles is much smaller than the yield of out-going particles,
and they form only a small correction of the order of 5% to the total multiplicity and the energy of the system.8 As a first
order approximation,wemay thus ignore these in-coming particleswithout violating the conservation laws significantly.

2. By sampling we create an integer number of particles from a tiny fluid element whose three dimensional volume is
typically ∼0.1 fm3. An expectation value of the number of particles from this fluid element in the grand canonical
ensemble is, of course, not an integer and in our calculations less than unity. Therefore energy, momentum and charges
are not conserved in each individual sampling, but only in average—as is customary for a grand canonical ensemble. This
issue could be resolved by an oversamplingmethod: At each fluid element,N times larger number of particles is sampled
with N being large and, the subsequent dynamics of hadrons is simulated with the cross section divided by N to ensure
the original Boltzmann equation [88,89]. This procedure can maintain energy–momentum conservation of the order of
O(1/N) at the particlisation. However, thiswould be numerically expensive and neglect the effect of fluctuations because
different events are averaged over in the oversamplingmethod. A fastermethodwhich is called ‘‘local-ensemble’’method
has been proposed in Refs. [90–92]. An alternative approach is to impose the requirement of the conservation of energy
and charges on the sampling procedure as done in Refs. [87,93]. This approach maintains the effect of fluctuations, but
requires generating several ensembles of particles, where only parts are kept to avoid bias.

5 It is not necessarily a phase transition. As mentioned in the previous section, the recent lattice QCD simulations predict a crossover rather than a phase
transition between the QGP phase and the hadron phase.
6 Note that this is not a freezeout hypersurface since in the subsequent stage hadrons still interact with each other.
7 One possible solution would be to provide the cascade with the information of the location of the particlisation hypersurface, and remove from the

cascade the hadrons which enter the space–time region within the hypersurface.
8 Somewhat larger corrections of the order of 10% were reported in Ref. [87]. We believe that the reason is the different longitudinal structure of the

system in these approaches.
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3. In principle one should switch from amacroscopic fluid picture to a microscopic particle picture in a temperature region
where both descriptions give similar results. However, the single particle distribution under local equilibrium never
becomes a solution of the Boltzmann equation: One needs viscous corrections to the local equilibrium distribution to
match the two solutions. Sinceweuse ideal fluid hydrodynamicswithout anydissipative corrections, the hydrodynamical
evolution always differs from the cascade. Thus we cannot expect to find a region where the solutions of both models
would agree, and simply regard the single particle phase-space distribution obtained using hydrodynamics as an initial
condition for the hadron cascade.

Keeping these issues and assumptions in mind, we calculate a discrete single particle phase-space distribution on an event-
by-event basis. First, we need the information of the particlisation hypersurface to apply the Cooper–Frye formula (Eq. (5)).
We approximate the surface normal∆σµ in the following way:
Bulk emission: At each time step τi in a hydrodynamic simulation, we scan all the fluid elements to check whether
particlisation condition for bulk emission (a) T (τi−1) > Tsw > T (τi) or (b) T (τi−1) < Tsw < T (τi) is satisfied. When this
condition is satisfied, information about a surface element vector (a) ∆σ τ = τsw∆x∆y∆ηs or (b) ∆σ τ = −τsw∆x∆y∆ηs
together with flow velocity uµsw at this point are stored. Here particlisation time τ , flow velocities vx and vy and flow rapidity
Yf = tanh−1 vz are linearly interpolated between τi and τi−1 such that

w0
i =

 T (τi)− Tsw
T (τi)− T (τi−1)

 , w0
i−1 =

 Tsw − T (τi−1)

T (τi)− T (τi−1)

 , (6)

τsw = τi−1w
0
i + τiw

0
i−1, (7)

vxsw = vx(τi−1)w
0
i + vx(τi)w

0
i−1, (8)

vysw = vy(τi−1)w
0
i + vy(τi)w

0
i−1, (9)

Yf ,sw = Yf (τi−1)w
0
i + Yf (τi)w

0
i−1. (10)

Surface emission: At each time step τi, we scan all the fluid elements in each direction to check whether particlisation
condition for surface emission (a) T (xi−1) > Tsw > T (xi) or (b) T (xi−1) < Tsw < T (xi) is satisfied for an adjacent pair of
surface elements. Here, for simplicity, we denote only one dimensional dependence, say x coordinate.When this condition is
satisfied, information about surface vector (a)∆σ x

= τi∆τ∆y∆ηs or (b)∆σ x
= −τi∆τ∆y∆ηs together with flow velocity

uµsw at this point are stored. Here flow velocities vx and vy and flow rapidity Yf are linearly interpolated between xi and xi−1
at τi such that

wx
i =

 T (xi)− Tsw
T (xi)− T (xi−1)

 , wx
i−1 =

 Tsw − T (xi−1)

T (xi)− T (xi−1)

 , (11)

vxsw = vx(xi−1)w
x
i + vx(xi)wx

i−1, (12)

vysw = vy(xi−1)w
x
i + vy(xi)wx

i−1, (13)

Yf ,sw = Yf (xi−1)w
x
i + Yf (xi)wx

i−1. (14)

Unlikemore sophisticated algorithms (see Ref. [87]), which give relatively smooth surfaces, this simple algorithm constructs
a granular surface consisting of ‘‘cubes’’. At the limit of infinitely small elements, however, the surfaces are equal. As well,
for Cooper–Frye procedure the components of the normal vectors of the surface elements are needed, and those come
out similarly in this approach and in the more sophisticated approaches. The main difference is in the positions where the
velocity and densities are interpolated on the surface. This causes differences proportional to the grid spacing, which defines
the accuracy of the numerics in general as well.

Using this information, we generate a hadron from the surface element. We first calculate an expectation value of the
number of hadrons of species i out-going or in-coming through a hypersurface element

∆N i
±

= g i


d3p
(2π)3E

Θ(±p ·∆σ)|p ·∆σ |

exp[(p · u − µi)/Tsw] − ϵ
, (15)

where ϵ = 1 for bosons and −1 for fermions. ∆N± are always positive by construction. In the following, we neglect ∆N−

for simplicity as we mentioned before. We next create a hadron of species i only when a randomly generated number r1
(0 < r1 < 1) is less than ∆N i

+
. Note that ∆N i

+
is always less than unity in the usual setting of simulations and its typical

values are ∼0.01. Such a low value allows us to interpret ∆N i
+
as a probability to create a particle, instead of sampling a

Poisson distribution to decide whether and how many particles are created.
If we create a hadron, we choose a momentum for it by sampling the Lorentz invariant distribution

d3p′

E ′

1
exp[(E ′ − µi)/Tsw] − ϵ

. (16)
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This is a momentum in the local rest frame of the fluid. We next Lorentz-boost it by flow velocity uµ to obtain momentum
in the centre-of-mass frame of the system. By construction the boosted momentum p obeys the distribution

d3p
E

1
exp[(p · u − µi)/Tsw] − ϵ

. (17)

We repeat this procedure until the obtained momentum satisfies p ·∆σ > 0. Next we consider an weight p ·∆σ in Eq. (15).
Suppose rmax is the maximum value of p · ∆σ , which varies from hypersurface element to element. We generate another
random number r2, 0 < r2 < rmax, and require that the momentum of the hadron fulfils r2 < p ·∆σ . If that is not the case,
we discard themomentum, and start the process again by sampling the thermalmomentum distribution. Finally, we choose
a position for this particle from a uniform distribution inside the surface element. The emission time is either τsw for bulk
emission or τi for surface emission.

We go through all the elements of the particlisation surface, and generate in this way an ensemble of hadrons and
resonances with well defined positions xiµ and momenta piµ.

9 We use this ensemble as the initial condition for the hadron
cascade JAM, which we use to model the rest of the hadronic rescattering stage. This will be discussed in the next section.

The switching procedure, namely calculating the contribution to the particle distributions of all hadrons in the EoS
from all hypersurface elements of the particlisation surface is numerically expensive. Among all the constituents of hybrid
calculations – initial conditions, hydrodynamic simulation, switching process and hadronic cascade – it has been the
bottleneck. In event-by-event hybrid simulations, this rather practical issue must be resolved to gain high statistics. In
Appendix, we show in detail how to integrate the Cooper–Frye formula at less numerical costs [94].

2.4. Hadronic cascade

Hadronic transport models can be used to describe the system in the low density hadronic phase of the evolution. In
this work we use the microscopic transport model JAM [61,95] for that purpose. In JAM, the trajectories of all hadrons
and resonances, including those produced in resonance or string decays, are propagated along their classical trajectories
like in other microscopic hadronic transport models such as RQMD [96–99], and UrQMD [100–102]. To achieve a more
sophisticatedhadronic EoS, amean field can be includedwithin a framework of either Boltzmann–Uehling–Uhlenbeck (BUU)
model [103], or QuantumMolecular Dynamics (QMD) [104] approach. However, all results in thiswork are obtainedwithout
any mean field.

In the hadronic transport models, time evolution of system is described by a sum of incoherent binary hadron–hadron
(hh) collisions. Two body collisions are realised by the closest distance approach: Two particles collide if their minimum
distance b in the centre-of-mass (c.m.) flame of two colliding particles is smaller than the distance given by the geometrical
interpretation of cross section:

b ≤


σtot

π
, (18)

whereσtot denotes the total cross section at the energy
√
s. For twoparticleswith their positions x1 and x2, and fourmomenta

p1 and p2, the Lorentz invariant expression for impact parameter b is given by

b2 = −(x1 − x2)2 +
[P · (x1 − x2)]2

P2
+

[q · (x1 − x2)]2

q2
, (19)

where P = p1 + p2, and q = (p1 − p2)−
[P·(p1−p2)]2

P2
P .

Inelastic hh collisions are modelled by resonance formation at low energies and by formation of colour strings at
high energies. Threshold between resonance and string formation is set to about 4 GeV for baryon–baryon (BB), 3 GeV
for meson–baryon (MB) and 2 GeV for meson–meson (MM) collisions. In the string formation process, we use the same
distribution for the light-cone momentum transfer as in the HIJING model [105–108]. Quark content of a string is assumed
to be the same as the quark content of a corresponding hadron before excitation, as in the Fritiof model [109,110].

The string decays are performed by the Lund string model [111–113]. Formation points and times for newly produced
particles are determined from string decay by yo-yo formation point [114]. Formation time is about 1 fm/c with the string
tension κ = 1 GeV/fm. In a baryon-like string, hadrons are produced by the quark–antiquark pair creation in the colour flux-
tube between the quark and diquark. The antiquark from the pair creation is combined with the constituent quark in the
string to form a first rank hadron. This hadron has an original constituent quark. We assign a formation time for the quarks
from the quark–antiquark pair creation, but not for the original constituent quark. Thus, for example, the original constituent
quark inside a newly formedmeson can scatter, but with a reduced cross section 1/2σMM . In general, leading hadrons which
contain original constituent quarks can scatter during their formation time with cross sections reduced according to the

9 Note that JAM allows different initial times ti for each hadron. Thus hadrons enter the cascade and begin interacting at the time when they are emitted
from the fluid.
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additive quark model. The importance of this quark(diquark)-hadron interaction for the description of baryon stopping at
CERN/SPS energies has been reported by Frankfurt group [97–101].

Experimentally well-known total and elastic cross sections, such as pp, pn, π+p, K−p and p̄p, are parametrised in JAM.
Cross sections involving the resonances are assumed to be the same as the corresponding stable hadron cross sections with
the same quark content. For example, ρp cross section is the same as πp cross section.

In nucleon–nucleon scattering, non-strange baryonic resonance excitation channels

NN → NR, NN → RR, (20)

where R means a nucleon resonance (N(1440)–N(1990)) or a ∆ resonance (∆(1232)–∆(1950)) up to 2 GeV, are
implemented. These resonance formation cross sections are fixed by pion production cross sections. Inverse processes
such as NR → NN are computed employing the detailed balance formula where the finite width of the resonance is
taken into account [91,115,116]. The lifetime of resonance, t , is randomly chosen according to an exponential decay law
exp(−tγΓ (M)), where Γ (M) is the energy-dependent width of the resonance and γ = E/M is the Lorentz factor.

As an example of a meson–baryon scattering, the total cross section for the πN incoming channel is decomposed to

σtot(s) = σel + σch(s)+ σBW(s)+ σs−S(s)+ σt−S(s), (21)

where σel, σch(s), σBW(s), σs−S(s), and σt−S(s) denote the elastic, charge exchange, s-channel resonance formation, s-
channel string formation and t-channel string formation cross section, respectively. Resonance formation cross section
σBW (s) is computed using the Breit–Wigner formula [98] by summing up cross sections to form resonances R =

N(1440)–N(1990),∆(1232)–∆(1950),Λ(1405)–Λ(2110),Σ(1385)–Σ(2030) andΞ(1535)–Ξ(2030).
In the case of K̄N incoming channel, we add t-channel hyperon production cross sections such as K−p → π0Λ.

The cross section of the inverse process πY → K̄N, Y = Λ,Σ is calculated using the detailed balance formula. The
kaon–nucleon (KN) incoming channel does not have s-channel resonance formation, but t-channel resonance production
processes KN ↔ K∆, KN ↔ K(892)N , KN ↔ K(892)∆ are included. The Breit–Wigner formula is used to evaluate the
cross section for resonance production in meson–meson scatterings as well. Meson resonance states are included up to
about 1800 MeV.

Additive quarkmodel [97,98,101,102] is used for the experimentally unknowncross sections such as an incoming channel
involving multi-strange hadrons, e.g. φ meson–pion scattering. Strangeness suppression factor is correctly included in the
additive quark model: we have σπN ≈ 26 mb and σKN ≈ 21 mb consistent with the experimental data above resonance
region.

2.5. Brief overview of hydro + hadronic cascade models

In this subsection, we briefly overview the current status of hydro + hadronic cascade model (sometimes called the
‘‘hybrid’’ model).

The very first work of hydro + cascade approaches was done by Dumitru et al. [119]. Motivation in this first study was
to describe particle species dependence of freezeout process in a consistent manner. They solved hydrodynamic equations
by assuming boost invariant longitudinal flow and cylindrical symmetry. As for the equation of state, a bag model which
exhibits the first order phase transition was employed with Tc = 160 MeV. They switched description of dynamics from
hydrodynamics to hadronic cascade at hadronisation. ThemT inverse slope parameters for various hadrons includingmulti-
strange ones were calculated both in pure hydrodynamics (with Tfo = 130 MeV) and in the hydro + cascade approach
as shown in Fig. 4. In pure hydrodynamics, it is known that the inverse slope parameter increases monotonically with the
hadronmass. On the other hand, the slope parameter ofmulti-strange hadrons from the hadron cascade approach are almost
identical regardless of themass difference [119], which is clearly different from a tendency of the pure hydrodynamic result
mentioned above. They made a further analysis of kinetic freezeout in the subsequent papers [123,124] within this hybrid
approach.

A systematic analysis of SPS and RHIC data was done by Teaney et al. within a (2 + 1) dimensional hydro + cascade
model [19,20], where an event generator, RQMD,was employed for the hadronic cascademodel. The importance of hadronic
dissipation in interpreting the elliptic flow data was first demonstrated in this study. In the SPS and RHIC energy regions,
pure ideal hydrodynamics predicts v2/ε ∼ 0.2–0.25 depending on the equation of state employed in the simulations.
This is sometimes called ‘‘hydrodynamic limit’’. Experimental data of v2/ε increase with the transverse particle density
(1/S)dNch/dη [31], where S is the transverse area, and reach the ‘‘hydrodynamic limit’’ of ∼0.2 in central collisions at the
top RHIC energy. As mentioned, ideal hydrodynamics predicts roughly constant v2/ϵ, and does not reproduce this data.
On the other hand, as shown in Fig. 5, this monotonic increase is described by the hydro + RQMD model [19,20] in which
finite cross sections of hadronic interactions lead to dissipation and, consequently, integrated v2 is considerably reduced in
comparison with pure ideal hydrodynamic calculations.

Fig. 6 shows a compilation of hydrodynamic results made by the PHENIX Collaboration [122] as of year 2004. Among
several hydrodynamic approaches, it was only the hydro + RQMD model that reproduced particle identified spectra and
v2(pT )data at the same time. pT spectra for pions and v2(pT ) for pions andprotons are reproducedusing ideal hydrodynamics
where the fluid is in chemical equilibrium. However, such a model fails to reproduce the yield of protons since the freeze-
out temperature required to fit the slopes of the pT distributions is well below the temperature required to fit the observed
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Fig. 4. Inverse slopes of the mT spectra for various strange and non-strange hadrons at midrapidity from the (1 + 1)-D hybrid model are compared with
SPS data (star symbols) [117,118]. lines are results from pure hydrodynamic simulations with freezeout temperature Tfo = 130 MeV. Open squares and
closed circles are results from the hybrid model at RHIC and SPS, respectively. Figure is taken from Ref. [119].
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Fig. 5. Elliptic flow parameters v2 from four different equations of state as functions of the charged particle multiplicity from the (2+ 1)-D hybrid model
is compared with SPS [120] and RHIC [121] data (triangle symbols). Impact parameter in the simulations is taken to be b = 6 fm. Star symbols are results
from pure hydrodynamic simulations with freezeout temperature Tf = 120 MeV. Figure is taken from Ref. [19].
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Fig. 6. A compilation of hydrodynamic results as of year 2004. v2/ε as a function of transverse momentum for pions (left) and for protons (right) from
hydrodynamic models are compared with STAR and PHENIX minimum bias data. For details, see text and Ref. [122].
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Fig. 7. Pseudorapidity dependence of v2 in 3–15%, 15–25% and 25–50% centralities fromGlauber-BGK (left) and KLN (right) initial conditions are compared
with the PHOBOS data [10]. Plots are results from the full 3D hybrid model. Solid and dashed curves are results from pure hydrodynamic simulations with
freezeout (decoupling) temperature Tdec = 100 MeV and 169 MeV, respectively. Since the temperature of the boundary between the QGP and hadron
phases in these calculations is T = 170MeV, results with Tdec = 169MeV correspond to the ones just after complete hadronisation. Figures are taken from
Ref. [125].

particle ratios. To solve this issue, a partial chemical equilibrium (PCE) model [22] is employed. In this case, chemical
freezeout is incorporated in the equation of state and the system is in kinetic but not in chemical equilibrium below a
chemical freeze-out temperature. Such amodel leads to successful reproduction of yields and spectra for pions and protons,
but a slope of pion v2(pT ) is steeper than that of the data [22] as shown in Fig. 6(left). The importance of the hadronic
dissipative effects in simultaneous reproduction of yields, spectra and differential v2 was discussed in detail later in Ref. [27].

Hirano et al. [125,126] combined a fully (3 + 1) dimensional ideal hydrodynamics with a hadronic cascade model, JAM.
Our integrated dynamical approach presented in this paper is based on this model. One of the advantages of the fully
three dimensional simulations without assuming Bjorken scaling solution is to be able to obtain elliptic flow parameter
as a function of pseudorapidity, v2(η). The charged hadron v2(η) has been measured by the PHOBOS Collaboration and
it has a maximum at midrapidity and decreases as moving away from midrapidity [8,9]. In a full three dimensional ideal
hydrodynamic simulation with Tfo = 100 MeV [22], v2 does not depend strongly on rapidity. Thus the main dependence on
pseudorapidity comes from the Jacobian between rapidity and pseudorapidity [127], and the calculated v2(η) is flatter than
the measured, whereas the three dimensional hybrid approach reproduces the observed v2(η) in the whole rapidity region
in non-central collisions when the Glauber initial conditions are used [125], see Fig. 7. The space–time rapidity dependence
of life time of the QGP fluid plays an important role in understanding the (pseudo-)rapidity dependence of v2 since it takes
time for the system to fully develop elliptic flow. Since dNch/dη decreases with increasing η, initial entropy and, in turn,
initial temperature decreases with increasing ηs. Consequently, the lifetime of the QGP also decreases with increasing ηs,
and we may expect lower values of v2 at large ηs if we evaluate v2 immediately after hadronisation. In these calculations
phase transition took place at Tc = 170 MeV, and the evaluation of v2(η) on a T = 169 MeV surface leads to a shape
peaking at midrapidity as expected, see Fig. 7, although the overall magnitude is less than the PHOBOS data [8,9]. Additional
generation of elliptic flow during the hadronic cascading stage fills this gap to reproduce the PHOBOS data. Compared with
a purely ideal hydrodynamic treatment of the hadronic gas, the hadron cascade contains dissipative effects through finite
mean free path. This indicates the importance of hadronic dissipative effects in particular in forward/backward regions.

It is interesting to note the deviations of the 3D hybrid model results from the PHOBOS data as well [125]. First, v2(η)
from the full 3D hybrid model is smaller than the data at 3%–15% centrality when the Glauber type initial conditions are
employed (see top panel of Fig. 7(left)), which implies the necessity of eccentricity fluctuations in the initial conditions.
Second, the hybrid model with the KLN initialisation leads to larger v2 than the data in semi-central to peripheral collisions
(see Fig. 7(right)), which leaves room for finite although very small QGP viscosity.

Another important finding from this full 3D hybrid model is a violation of mass ordering in differential elliptic flow
parameter v2(pT ) [126]. Because of the interplay of thermal and collectivemotion, we expect thatm1 < m2 ⇒ v2(pT ,m1) >
v2(pT ,m2) [18]. This mass ordering, however, holds only for particles frozen out in the same temperature having the same
collective flow velocity. We expect that particles like φ mesons, which have very small cross sections and thus hardly
rescatter, freeze-out earlier. Such a particle’s v2(pT ) would be typical for larger temperature and smaller flow velocity. For
particles withmass around 1 GeVmass, like φmesons, freezing out earlier wouldmean larger v2(pT ) at small pT . The hybrid
model calculations predicted this kind of behaviour for the φ meson [126], and this violation of mass ordering was recently
confirmed by the STAR collaboration [128] (See also Fig. 8).
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Fig. 8. Transverse momentum dependence of particle identified elliptic flow parameters in 0%–80%, 0%–30% and 30%–80% centrality from STAR
Collaboration. Violation of mass ordering is clearly seen below ∼0.8 GeV/c in 0%–30% centrality. Figures are taken from Ref. [128].

Fig. 9. Freezeout-time distribution for pions (circles) and kaons (triangles) at an impact parameter b = 2.4 fm at the RHIC energy. Open (closed) symbols
correspond to results without (with) hadronic rescatterings. Figure is taken from Ref. [129].

The ideas of the Frankfurt group’s firstworkwere taken over byNonaka andBass [129]whoused a fully three dimensional
ideal hydrodynamic model coupled to UrQMD. Similar reduction of v2 in forward/backward rapidity regions as shown in
Fig. 7 was found in their results as well. Hadronic rescattering effects are seen in Fig. 9 as shifts of the peaks of freeze-out
time distributions from ∼10 fm/c to ∼18 fm/c. The effect is similar for pions and kaons.

Petersen et al. combined full three dimensional ideal hydrodynamics in the Cartesian coordinate with UrQMD
[93,130–135]. This is the first hybrid simulation on an event-by-event basis, whichwill be discussed later. One of the distinct
features of this model is to employ isochronous particlisation when energy density of all fluid elements drops below 5 times
ground state energy density (∼730 MeV/fm3). They also discussed all fluid elements in one transverse slice rather than the
whole region dropping below this value as an alternative criterion [130]. By using this (called gradual freezeout), one can
take account of time dilatation in the forward rapidity region where the fluid moves faster in the Cartesian coordinate. An
advantage of this method is to be able to avoid negative contribution in the Cooper–Frye formula since the hypersurface
element is always time-like vector dσµ = (d3x, 0) and pµdσµ term in this formula is positive definite. On the other hand, it
may happen that freezeout occurs in some fluid elements only when the temperature becomes very small (T < 100 MeV)
and the system is alreadydiluted sufficiently. In the context of hadronic rescattering effects, theymainly focusedon collisions
at SPS energies and lower and found that their hybrid model can nicely describe elliptic flow at those energies [93,130,131],
see Fig. 10. Recently this model has been extended to allow isothermal or iso density particlisation as well [87].

Pratt and Vredevoogd [136] were the first to develop a hybrid model based on viscous hydrodynamics. Their goal
was to understand femtoscopic observables at RHIC, and they assumed radial symmetry and boost invariance both in
hydrodynamical calculation and hadron cascade. In their model particlisation happens at a switching energy density esw =

400 MeV/fm3 instead of a constant temperature. They kept information about particlisation hypersurface and a hadron
which returns to the interior of the surface (e > esw) during the cascade description is deleted from simulations. This would
correspond to negative contribution to the Cooper–Frye formula. According to their estimation, a percentage of the absorbed
particles is only about one percent. Fig. 11 shows positions of last interaction points for pions with px = 300, py = 0MeV/c.
Modestly positive correlation between the outward position and the emission time is seen, which would result in Rout/Rside
to be close to unity.

Werner et al. combined an event generator, EPOS, full (3+1) dimensional ideal hydrodynamics and an hadronic cascade,
UrQMD [138–141]. In addition to nuclear collisions, they also applied their hybrid model to proton–proton collisions at the
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Fig. 10. v2/ε as a function of transverse density (1/S)dNch/dy from a full 3D hybrid model is compared with experimental data at AGS, SPS and RHIC
energies. Results with isochronous freezeout and gradual freezeout are shown as open circles and triangles, respectively. Results with gradual freezeout
using event-by-event ε averaged over many events is shown as open squares. Figure is taken from Ref. [130].
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Fig. 11. Positions of last interaction points for pions with px = 300, py = 0 MeV/c . Figure is taken from Ref. [136].

LHC energies. They concluded there exists collective flow even in pp collisions. Their results on ridge phenomenon will be
discussed later in Section 2.7.

Detailed analyses of elliptic flow parameters based on a (2 + 1) dimensional hybrid model combining viscous
hydrodynamicswith UrQMDhave beenmade by Song et al. [85,137,142,143]. Theymainly focused on extraction of η/s from
a comparison of v2/ε results with data and found η/s is not larger than twice the conjectured minimum bound, 1/4π [144]
(See Fig. 12). From a hybrid model viewpoint, a systematic analysis of switching temperature dependence was made. They
concluded that there exists no safe window of temperature below Tch = 165MeV to switch from viscous hydrodynamics to
UrQMD [85]. This means that below 165 MeV UrQMD describes expanding matter far from equilibrium. On the other hand
they did not test switching temperatures larger than 165 MeV, and thus it is not possible to say whether a temperature
range exists in their model where the exact value of the switching temperature does not affect the results.

The χ2-fitting to spectra, v2 and HBT radii in 0%–10% central collisions at the RHIC energy was done by Soltz et al. using
(2+1) dimensional viscous hydrodynamic simulations combinedwith the UrQMD cascade code [145]. Although the fit was
done to a relatively small number of data sets, they were able to exclude two sets of initial conditions, namely Npart density
without pre-equilibrium flow and Ncoll density with pre-equilibrium flow, and to constrain initial temperature and the ratio
of shear viscosity to entropy density for the other two sets of initial conditions, Npart density with pre-equilibrium flow and
Ncoll density without pre-equilibrium flow.

The simultaneous implementation of full three dimensionality, viscosity, hadronic cascade and event-by-event
initialisation was first made by Ryu et al. [146]. Their results are preliminary at the moment, since they do not take into
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Table 1
Current status of the hydro + cascade models.

Authors and references Hadronic cascade Hydrodynamics Tsw
[MeV]

Bass et al. [119,123,124] UrQMD (1 + 1)-D ideal 160
Teaney et al. [19,20] RQMD (2 + 1)-D ideal 160
Hirano et al. [125,126] JAM (3 + 1)-D ideal 169, 155
Nonaka and Bass [129] UrQMD (3 + 1)-D ideal 150
Petersen et al. [93,130–135] UrQMD (3 + 1)-D ideal a

Pratt and Vredevoogd [136] b (1 + 1)-D viscous c

Werner et al. [138–141] UrQMD (3 + 1)-D ideal 166
Song et al. [85,137,142,143] UrQMD (2 + 1)-D viscous 165d

Soltz et al. [145] UrQMD (2 + 1)-D viscous 165
Ryu et al. [146] UrQMD (3 + 1)-D viscous 170
a Switching energy density is taken to be ∼730 MeV/fm3 .
b A rather simple hadronic cascade model is employed here [136].
c Switching energy density is taken to be 400 MeV/fm3 .
d Sensitivity of the results to the value of Tsw is also investigated.
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Fig. 12. Comparison of v2/ε vs. (1/S)(dNch/dy) curveswith experimental data from the STAR Collaboration. (a) theMC-KLNmodel and (b) theMC-Glauber
model. Figures are taken from Ref. [137].

account the dissipative corrections to particle distributions at particlisation, and the statistics in their calculations is so
far limited leading to large statistical error bars. Nevertheless, this is one of the promising approaches to investigate the
transport properties of the QGP.

Table 1 summarises the current hydro+cascademodels by focusing on the cascademodel and the switching temperature.

2.6. Initial conditions

The results of hydrodynamic calculations depend strongly on initial conditions since hydrodynamics requires solving
initial value problems of partial differential equations. In principle one should obtain the initial conditions for hydrodynamic
evolution by solving the non-equilibriumevolution of thematter created in the primary collision of nuclei, but unfortunately
this is one of the outstanding problems in heavy-ion physics. Therefore we skip the description of how the matter
equilibrates, and rely on models assuming that the matter has equilibrated, and that the densities are given by the density
of produced gluons immediately after the primary collision (MC-KLN) or by the density of participating nucleons or binary
collisions (MC-Glauber). Due to the lack of models, it is very difficult to quantify how pre-equilibrium dynamics would
affect the interpretation of data and our understanding of the initial state of hydrodynamical evolution. It has been argued
that flow built up during thermalisation would strongly affect the femtoscopic data [136], but so far we do not know the
mechanism creating pre-equilibrium flow, and thus do not know how large it could be. As well, it has been argued that
the pre-equilibrium processes affect the granularity of the initial state in event-by-event calculations [85], but we cannot
calculate how large this smearing effect should be.

The Glauber model [28–30] has been widely used to fix the initial conditions of hydrodynamic simulations. In the
various implementations of Glauber model, one either initialises the energy or entropy density, and assumes it to be
proportional to the number density of participants, binary collisions, or some combination of those two [14,75]. On the
other hand, one expects highly coherent dense gluon system, called colour glass condensate (CGC) [48–50], to appear in
high energy hadronic and nuclear collisions. One may describe the dynamics of gluon fields before local equilibration by
solving classical Yang–Mills equation [147–154]. The kT -factorisation formulation is widely used to compute the inclusive
cross section for produced gluons [155–170] in hadronic collisions. Here we shall employ theMonte-Carlo implementations
of kT -factorisation formulation (MC-KLN) [171–173] and Glauber model (MC-Glauber) [28–30] to obtain initial conditions
of hydrodynamical simulations. These Monte-Carlo approaches include fluctuations of the positions of nucleons inside
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Fig. 13. Nuclear density as a function of nuclear radius. Solid lines show nuclear density distribution for gold and copper nuclei in which a finite nucleon
profile is implemented and positions of nucleons are sampled according to the Woods–Saxon distribution with default parameter sets. Dashed lines show
the Woods–Saxon distribution with default parameter sets.

colliding nuclei, which allows us to generate a set of initial conditions which fluctuate event-by-event. We do not include
fluctuations of energy deposition/entropy generation per collisions [174], which results in negative binomial distribution of
multiplicity [133,166,167,175], since rapidity dependence of this kind of fluctuation is not known well.

In MC-Glauber model, for each event the positions of nucleons inside the two colliding nuclei are randomly sampled
according to a nuclear density distribution (e.g., Woods–Saxon function). One of the nuclei, and nucleons within, is shifted
by a randomly-chosen impact parameter b with probability b db. A nucleon–nucleon collision is assumed to take place if
their distance d in the transverse plane orthogonal to the beam axis fulfils the condition

d ≤


σin(

√
s)

π
, (22)

where σin(
√
s) denotes the inelastic nucleon–nucleon cross section at the c.m. energy

√
s. Incident energy dependent total

pp cross section is parametrised based on Regge theory, which parameters have been determined by the Particle Data
Group [176]:

σtot(
√
s) = Xsϵ + Ys−η (23)

with X = 22, Y = 56.1, ϵ = 0.079 and η = 0.46 for pp collision. Elastic cross section is computed using PYTHIA
parametrisation [113,177,178]:

σel =
σ 2
tot

16πBel(s)
, Bel(s) = 4bp + 4s0.0808 − 4.2 (GeV−2), (24)

where bp = 2.3. This parametrisation leads to the following values for the inelastic cross section: σin = σtot − σel =

39.53, 41.94 and 61.36 mb at
√
s = 130, 200 and 2760 GeV, respectively.

It should be noted that the standard Woods–Saxon parameters shown in, e.g., Ref. [179] cannot be directly used to
distribute nucleons inside a nucleus because of the finite interaction range in our approach. We need to modify nuclear
density parameters so that a convolution of nucleon profiles leads to the measured Woods–Saxon profile [57]:

ρ(x⃗) =


∆(x⃗ − x⃗0)ρWS(x⃗0)d3x0, (25)

∆(x⃗ − x⃗0) =
θ(rN− | x⃗ − x⃗0 |)

VN
, (26)

VN =
4πr3N
3

, rN =


σ in
NN

π
, ρWS =

ρ0

exp
 r−r0
δr


+ 1

. (27)

Fig. 13 shows the standard Woods–Saxon profile (dashed) and the nuclear density profile taking into account finite
interaction ranges above but keeping the standard Woods–Saxon parameters (solid). In both gold and copper nuclei, the
finite nucleon profile in Eq. (26) makes the nuclear surfacemore diffused if one uses the standardWoods–Saxon parameters
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to distribute nucleons in a nucleus. Without adjustment of the Woods–Saxon parameters for the finite nucleon profile,
eccentricity becomes smaller by ∼10% [55]. So we re-parametrise the distribution of nucleon position to reproduce the
Woods–Saxon distribution with default parameters in Eq. (27) [29]. The adjustment of the Woods–Saxon parameters
has not been considered in most of Monte Carlo approaches of the collisions including event generators If one wants to
discuss eccentricity and elliptic flow coefficient v2 within ∼10% accuracy, this adjustment should be taken into account.
If the Gaussian form is used as a nucleon profile, one obtains better agreement with the measured nucleus charged
distribution [180]. However, hard sphere form for the nucleon profile is sufficient for the discussion of v2 in this work.
In our MC-Glauber model, we find the default Woods–Saxon distribution is reproduced by larger radius parameter and
smaller diffuseness parameter (i.e., sharper boundary of a nucleus) than the default parameters: ρ0 = 0.1695(0.1686) fm−3,
r0 = 6.42 (4.28) fm and δr = 0.44(0.50) fm for a gold (copper) nucleus at

√
sNN = 200 GeV and ρ0 = 0.161 fm−3,

r0 = 6.68 fm and δr = 0.38 for a lead nucleus at
√
sNN = 2.76 TeV. In Ref. [180], one finds the parametrisation in the case of

Gaussian shape for nucleons. This kind of effect exists in almost all Monte Carlo approaches to the collisions, including event
generators. If one wants to discuss eccentricity and elliptic flow coefficient v2 within ∼10% accuracy, this effect should be
taken into account. We also calculate initial entropy distribution in U + U collisions at

√
sNN = 200 GeV by changing the

nuclear density from gold to uranium. To take account of the prolate deformation of uranium nuclei, we parametrise the
radius parameter in the Woods–Saxon distribution as

R(θ, φ) = r0 (1 + β2Y20(θ, φ)+ β4Y40(θ, φ)) , (28)

where Ylm is the spherical harmonic function, r0 = 6.86 fm, β2 = 0.28 and β4 = 0.093 [181]. Note that to account of the
finite interaction range of nucleons in the Monte Carlo approach, we have again adjusted R0 above and the diffuseness
parameter δr = 0.44 fm and the saturation density ρ0 = 0.166 fm−3 to retain the nuclear density as in the original
Woods–Saxon distribution [57]. We also take into account that colliding uranium nuclei are randomly oriented in each
event.

Next, we compute particle production at each grid point in the transverse plane. In theMC-Glauber approach, we assume
that the initial entropy profile in the transverse plane is proportional to a linear combination of the number density of
participants and that of binary collisions:

s0(r⊥) ≡
dS

τ0d2r⊥dηs


ηs=0

=
C
τ0


1 − α

2
ρpart(r⊥)+ α ρcoll(r⊥)


, (29)

where τ0 = 0.6 fm/c is a typical initial time for the hydrodynamical simulation. Parameters C = 15.0 and α = 0.18 have
been fixed through comparison with the centrality dependence of pT spectra in Au + Au collisions at RHIC [67]. At the LHC
energy, C = 41.4 andα = 0.08 are chosen [54] so thatwe reproduce the ALICE data on centrality dependence ofmultiplicity
in Pb + Pb collisions at

√
sNN = 2.76 TeV [182–184].

The participant density, ρpart(r⊥), and the number density of binary collisions, ρcoll(r⊥), in Eq. (29) are obtained from the
previously described positions of nucleons, and the criterion for their interaction, Eq. (22). At each grid point, the participant
density is the sum of the number of those nucleons in both nuclei, which scatter within the radius r0 =

√
σin/π around the

grid point, divided by the area σin:

ρpart(r⊥) = ρA(r⊥)+ ρB(r⊥) =
NA,w(r⊥)+ NA,w(r⊥)

σin
. (30)

Similarly, the density of the number of binary collisions at each grid point is obtained by counting the number of binary
collisions Ncoll within the area σin, where the position of a binary collision is assumed to be the average position of the two
colliding nucleons:

ρcoll(r⊥) =
Ncoll(r⊥)

σin
. (31)

which may be also obtained by the expression ρA(r⊥)ρB(r⊥)σin.
Note that we calculate the eccentricity of the initial state based on the densities defined above, whereas in the PHOBOS

MC-Glauber model [28–30], eccentricity is computed based on the actual positions of point-like particles. The conversion
of positions to densities causes an additional smearing over the region σin [44,185]. Therefore the eccentricities in our
calculations are smaller than eccentricities in the PHOBOS MC-Glauber model. In the literature the conversion of positions
to densities is often done by replacing each position by a Gaussian density profile [93,186,187]. Such a procedure again leads
to slightly different eccentricities.

In theMonte-Carlo KLN (MC-KLN)model [171–173], the number distribution of gluon production at each transverse grid
is given by the kT -factorisation formula [156–158]

dNg

d2r⊥dy
= κ

4Nc

N2
c − 1


d2p⊥

p2
⊥


d2k⊥

4
αs(Q 2)φA(x1, (p⊥ + k⊥)

2/4) φB(x2, (p⊥ − k⊥)
2/4), (32)

withNc = 3 thenumber of colours. Here, p⊥ and ydenote the transversemomentumand the rapidity of the produced gluons,
respectively. The light-cone momentum fractions of the colliding gluon ladders are then given by x1,2 = p⊥ exp(±y)/

√
sNN ,
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where
√
sNN denotes the centre of mass energy. Running coupling αs(Q 2) is evaluated at the scale Q 2

= max((p⊥ −

k⊥)
2/4, (p⊥ + k⊥)

2/4). An overall normalisation factor κ is chosen to fit the multiplicity data in most central Au + Au
collisions at RHIC. In theMC-KLNmodel, saturationmomentum is parametrised by assuming that the saturationmomentum
squared is 2 GeV2 at x = 0.01 in Au + Au collisions at b = 0 fm at RHIC where ρpart = 3.06 fm−2 [156–158,188]:

Q 2
s,A(x; r⊥) = 2 GeV2 ρA(r⊥)

1.53 fm−2


0.01
x

λ
. (33)

λ is a free parameter which is expected to be in the range of 0.2 < λ < 0.3 from Hadron Electron Ring Accelerator (HERA)
global analysis for x < 0.01 [189,190]. In MC-KLN, we assume the gluon distribution function as

φA(x, k2⊥; r⊥) ∼
1

αs(Q 2
s,A)

Q 2
s,A

max(Q 2
s,A, k

2
⊥
)
. (34)

We assume that initial conditions of hydrodynamical simulations are obtained by identifying the gluons’ momentum
rapidity y with space–time rapidity ηs

s0(r⊥) ∝
dN

τ0d2r⊥dηs
. (35)

We note that gluon production itself also fluctuates [133,166,167,175], but we do not take those fluctuations into account
in our model.

To quantify the anisotropy of the initial distributions, we define the anisotropies εn, and the corresponding orientation
anglesΦn [34,44]:

εn{PP} =
|⟨r2

⊥
einϕ⟩x|

⟨r2
⊥
⟩x

(36)

nΦn = arg⟨r2
⊥
einϕ⟩x (37)

where ⟨· · ·⟩x represents a weighted average over the transverse plane at a fixed space–time rapidity, with the initial density
distribution as a weight. Although one may take other definitions [132,191–195], we restrict our discussion to Eqs. (36)
and (37) throughout this paper. As for the initial density, we use the entropy density throughout this work. Here r⊥ is the
transverse two dimensional vector measured from the centre of mass defined by ⟨r⊥⟩x = 0 and ϕ is its coordinate angle.
For example, the anisotropy ε2 becomes

ε2{PP} =


⟨x2

⊥
− y2

⊥
⟩2x + 4⟨x⊥y⊥⟩2x

⟨x2
⊥

+ y2
⊥
⟩x

, (38)

x⊥ = x − ⟨x⟩x, (39)
y⊥ = y − ⟨y⟩x, (40)

which is also known as the participant eccentricity εpart or eccentricity with respect to the participant plane. To keep our
terminology consistent with the terminology in literature, we define participant plane as the plane spanned by a unit vector
pointing to direction Φ2 − π/2, and the beam axis. Taking a real part of Eq. (36) instead of its absolute value, one obtains
the anisotropy with respect to the reaction plane, also known as the standard eccentricity εstd (although with an opposite
sign),

ε2{RP} = −εstd =
ℜ⟨r2

⊥
ei2ϕ⟩x

⟨r2
⊥
⟩x

=
⟨x2

⊥
− y2

⊥
⟩x

⟨x2
⊥

+ y2
⊥
⟩x
. (41)

MC-KLN and MC-Glauber models create an ensemble of initial distributions for event-by-event calculations, but it is
also possible to construct an averaged density profile which includes some effects of fluctuations. This is done by rotating
each distribution by its orientation angle Φn around its centre of mass, shifting the distributions so that the origin of the
coordinates is at its centre of mass, (⟨x⟩x, ⟨y⟩x), and averaging over these shifted and rotated distributions. In the literature
the required angle is often defined as in Ref. [196]:

tan 2ψ2 =
2σxy

σ 2
y − σ 2

x
, (42)

σ 2
x = ⟨x2⟩x − ⟨x⟩2x , (43)

σ 2
y = ⟨y2⟩x − ⟨y⟩2x , (44)

σxy = ⟨xy⟩x − ⟨x⟩x⟨y⟩x, (45)
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Table 2
Centrality definition using Npart in Au + Au, U + U and Cu + Cu collisions at

√
sNN = 200 GeV and in Pb + Pb collisions

√
sNN = 2.76 TeV.

Centrality (%) 0–5 5–10 10–15 15–20 20–30 30–40 40–50 50–60 60–70 70–80

Au + Au Npart,max 394 327 279 237 202 144 99 65 39 21
Au + Au Npart,min 327 279 237 202 144 99 65 39 21 10
U + U Npart,max 476 389 330 281 239 170 117 77 46 25
U + U Npart,min 389 330 281 239 170 117 77 46 25 12
Cu + Cu Npart,max 126 102 88 75 65 47 33 22 14 9
Cu + Cu Npart,min 102 88 75 65 47 33 22 14 9 5
Pb + Pb Npart,max 416 356 305 261 223 161 112 74 46 25
Pb + Pb Npart,min 356 305 261 223 161 112 74 46 25 12

Fig. 14. The second order anisotropy with respect to participant plane (model ‘‘B’’) in Au + Au and U + U collisions at
√
sNN = 200 GeV (left) and with

respect to reaction plane (model ‘‘A’’) in Au + Au collisions at
√
sNN = 200 GeV and in Pb + Pb collisions at

√
sNN = 2.76 TeV (right). Results from the

MC-KLN and MC-Glauber models are compared with each other. Figures are taken from Refs. [53,54].

where the angle ψ2 is related to the orientation angle Φ2 defined in Eq. (37) as Φ2 = −ψ2. As was described in the
introduction, elliptic flow arises when the system expands preferentially along its participant plane. In this procedure the
participant planes of various events are aligned and set equal to the reaction plane. That such an initial state contains
some effects of eccentricity fluctuation even though the profile is smooth is manifested in the finite eccentricity even in
most central collisions where the impact parameter is zero. We call this initialisation model ‘‘B’’. Compared with this, the
procedure averaging over many initial distributions without shift or rotation corresponds to a conventional initialisation
without the effect of eccentricity fluctuation and is calledmodel ‘‘A’’. Whenwe use the averaged initial conditions of models
‘‘A’’ and ‘‘B’’, called later the smooth initial profiles, we assume longitudinal boost invariance and calculate observables only
at midrapidity. In particular, in the case of the MC-KLN model, we evaluate gluon production at midrapidity using Eq. (32),
and assume it to be the same at all rapidities. In actual hydrodynamic simulations, we prepare the lattice in the longitudinal
direction up to ηs = 6 and solve hydrodynamic equations with boost invariant initial conditions. We have checked that the
boundary of the lattice does not affect the boost invariant solutions.

In models A and B centrality is defined using the number of events as a function of Npart. One can categorise the whole
events into subevents from top 5%, 5%–10% and so on according to Npart. In Table 2, we show the maximum and minimum
numbers of participants for each centrality bin in Au + Au, U + U, Cu + Cu collisions at the RHIC energy and in Pb + Pb
collisions at the LHC energy.

Fig. 14(left) shows the initial eccentricity with respect to participant plane (model ‘‘B’’) in Au+Au and U+U collisions at
√
sNN = 200 GeV as a function of the number of participants. At each of the ten centrality bins the average eccentricity and

the average number of participants ⟨Npart⟩ were calculated using both the MC-Glauber and the MC-KLN models. Since the
eccentricity ismeasured in the participant plane, it is finite even in the very central (0%–5%) Au+Au collisions. As previously
known, the MC-KLN model leads to ∼20%–30% larger eccentricity than the MC-Glauber model except in the most central
events [125,159]. In most central 5% of U + U collisions eccentricity reaches 0.146 in the MC-Glauber model and 0.148 in
the MC-KLN model. The eccentricity is larger in U + U than in Au + Au collisions. Due to the deformed shape of uranium
nucleus, this holds not only at fixed number of participants, but also at fixed centrality. The difference, however, decreases
with decreasing centrality, and there is almost no difference in the very peripheral events (70%–80%).

Shown in Fig. 14(right) is the initial eccentricitywith respect to reaction plane (model ‘‘A’’) as a function ofNpart in Pb+Pb
collisions at

√
sNN = 2.76 TeV and in Au + Au collisions at

√
sNN = 200 GeV. Again, the kt-factorised formula of KLN model

generates larger eccentricity than the Glaubermodel does [125,159]. In theMC-KLNmodel, eccentricity in Pb+Pb collisions
at

√
sNN = 2.76 TeV is apparently larger than that in Au+Au collisions at

√
sNN = 200 GeV when Npart is fixed. However, at

a fixed centrality, the difference between them is very small [53]. On the other hand, in the MC-Glauber model, eccentricity
in Pb + Pb collisions at

√
sNN = 2.76 TeV is slightly smaller than that in Au + Au collisions at

√
sNN = 200 GeV for a fixed

centrality.
This is due to the smearing process we use to obtain a smooth initial profile for hydrodynamic evolution [85]. As

mentioned, we use the inelastic cross section in p + p collisions, σin, when converting the positions of collision points to
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densities, and this effectively smears the distributions. This cross section is ∼1.5 times larger at LHC than at RHIC, and thus
the smearing area, S = σin [55,56], is also larger at LHC, and the eccentricity is reduced. Our smearing procedure also leads to
a smaller eccentricity than the PHOBOS MC-Glauber model.10 The effect of smearing is smaller in the MC-KLN initialisation,
and we have checked that the eccentricity at LHC turns out to be essentially the same as at RHIC when the smearing area is
the same.

Instead of shifting, rotating or averaging transverse profiles, we directly use each individual initial density given by
theseMonte-Carlo approaches to perform event-by-event hydrodynamic simulations. In these event-by-event calculations,
we perform full three dimensional hydrodynamic simulations without assuming boost invariance. In the case of MC-KLN
Eq. (32) provides the rapidity distribution of density as well. On the other hand, the Glauber model does not tell the
longitudinal structure of the density distribution. Motivated by analyses in Refs. [197,198], we parametrise initial entropy
density distribution as [125]

s0(τ0, ηs, r⊥) =
dS

τ0dηsd2r⊥

=
C
τ0
θ

Yb − |ηs|


f pp(ηs)


1 − α

2


Yb − ηs

Yb
ρA(r⊥)+

Yb + ηs

Yb
ρB(r⊥)


+ α ρcoll(r⊥)


, (46)

where Yb is the beam rapidity and f pp is a parametrisation of the shape of rapidity distribution in pp collisions,
dSpp

dηs
=


d2r⊥

dSpp

dηsd2r⊥
= Cθ(Yb − |ηs|)f pp(ηs)

= Cθ(Yb − |ηs|) exp


−θ(|ηs| −∆η)

(|ηs| −∆η)2

σ 2
η


, (47)

where∆η andση are adjustable parameters. Eq. (46) is designed so that the density is independent of the space–time rapidity
ηs only around midrapidity when the densities of participating nucleons are the same in both nuclei, ρA(r⊥) = ρB(r⊥).
Eq. (46) reduces to Eq. (29) when one plugs in ηs = 0. We call this parametrisation as the modified BGK model [125]. As
mentioned, we do not consider fluctuation of particle production processes and, consequently, longitudinal profile becomes
a smooth function. Therefore, there exists some correlation of particle production in the rapidity direction.

Initial parameters in themodified BGKmodel in Au+Au collisions at
√
sNN = 200 GeV are chosen to reproduce dNch/dηs

measured by PHOBOS Collaboration [199]. The resultant parameters are∆η = 1.3 and ση = 2.1. At the time of this writing,
the measured pseudorapidity dependence of multiplicity in Pb + Pb collisions at

√
sNN = 2.76 TeV is still preliminary. The

parameters ∆η = 1.9 and ση = 3.2 are chosen to give in central 0 < b < 5 fm events an average dNch/dη similar to
the value obtained using the MC-KLN initialisation. Once the experimental data is finalised, we can adjust these parameters
again.

Throughout this work, initial flow velocity is chosen as the Bjorken flow uτ = 1 and ux
= uy

= uηs = 0 [200]. In actual
simulations, initial energy density is also needed. One calculates it from the initial entropy density utilising numerical table
of EoS, ϵ = ϵ(s). Note that we have neglected baryon density in our calculations.

Figs. 15 and 16 show a sample of the initial profile in Pb + Pb collisions at
√
sNN = 2.76 TeV from the MC-KLN model

and the MC-Glauber model, respectively. Longitudinal streak-like structures are seen in y = ⟨y⟩x fm (top-left panel in both
figures), where ⟨y⟩x has been averaged over space–time rapidity. This structure comes simply from smooth longitudinal
profiles at the collision point in the transverse plane described in Eq. (32) or (46). Due to this, similar transverse profiles are
seen at all space–time rapidities: Hot spots are always located in the same position in the transverse plane.

Fig. 17(left) shows the centrality dependence of the average orientation angle cos(nΦn). Harmonics with even n do not
vanish, which is expected from an almond-like geometry of non-central collisions. The second and the sixth orientation
angles negatively correlate with the reaction plane, whereas the fourth orientation angle shows positive correlation. On the
other hand, ⟨cos nΦn⟩ for the odd n vanishes, which results from a fact that there is no correlation between Φn(n = 3, 5)
and the reaction plane shown in Fig. 17(right). In Fig. 17(right) the number of events as a function of the absolute value of
the orientation angle |nΦn| is shown for a sample of 105 minimum bias events. These events are binned according to the
orientation angle of the initial state measured from the reaction plane. As clearly seen, |2Φ2| has a prominent peak at π ,
which comes from a fact that initial profile looks like an almond shape elongated in the y-direction on average. Note that
the angleΦ2 thus gives the angle between the major axis of the almond and the reaction plane. Other even harmonics, 4Φ4
and 6Φ6, have broad peaks at 0 and π , respectively. Orientation angles with odd n are randomly distributed due to absence
of any correlation with respect to the reaction plane. The width of event distribution might be important in understanding
the fluctuation of the anisotropies of the particle distribution, δvn, although we postpone this study to a future work.

Figs. 18 and 19 show space–time rapidity dependences of εn{PP} and εn{RP}, respectively, using the MC-KLNmodel, and
Figs. 20 and 21 using the MC-Glauber model (extended in the longitudinal direction using the BGKmodel). The anisotropies

10 In theMC-Glauber model in the literature [28], one assumes δ function profile for each collision point in ρpart distribution rather than a box-like profile
in the present work.
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Fig. 15. An example of initial condition in Pb + Pb collisions at
√
sNN = 2.76 TeV from the MC-KLN model. Initial entropy distribution (scaled down by

8.5) is shown in a plane at y = ⟨y⟩x (top-left), ηs = 0 (top-right), ηs = 3 (bottom-left) and ηs = 6 (bottom-right). Both circles with a radius r0 = 6.68 fm
represent a colliding nucleus.

εn are evaluated in 0%–10% (left), 30%–40% (middle) and 60%–70% (right) centrality classes in Pb + Pb collisions at
√
sNN =

2.76 TeV. Since the density profiles are smooth and have a streak-like structure in the longitudinal direction as shown in
Figs. 15 and 16, εn{PP} are almost independent of ηs. For MC-KLN initialisation εn{PP} for n = 3, 5, and 6 are close to each
other at all centralities, whereas the values differ for MC-Glauber initialisation. This indicates different origin of fluctuations
in these two models. If vn was roughly proportional to εn{PP}, vn would be independent of rapidity. However, it is not the
case at least for v2(η) at RHIC. Even though ε2 is almost independent of space–time rapidity [21], final v2 has a broad peak at
midrapidity due to relatively larger hadronic dissipative effects in forward/backward rapidity regions [125]. This can be also
interpreted as follows. v2 increases during the QGP evolution and does not so much in the hadronic evolution. So rapidity
dependence of v2 is a key to understand longitudinal structure of the QGP. Since εn{PP} does not depend on space–time
rapidity as shown in Fig. 18, vn(η) should contain the direct information about the longitudinal structure of the QGP. We
will discuss (pseudo-)rapidity dependence of vn later. The negative ε2{RP} in Figs. 19 and 21 is due to our definition of ε2{RP},
Eq. (41), which has a different sign than the usual definition of eccentricity. Compared with finite εn{PP}, εn{RP} vanishes
for odd n since odd harmonics result solely from initial fluctuations and do not correlate with reaction plane. Although
longitudinal profiles, Eqs. (46) and (47), in the MC-Glauber model gives similar rapidity and centrality dependence to the
MC-KLN model, absolute values of εn{PP} and εn{RP} are different except for n = 3 as shown in Fig. 22.

2.7. Brief overview of event-by-event initial conditions

In this subsection, we review hydrodynamic modelling of relativistic heavy ion collisions by focusing particularly on
initial conditions on an event-by-event basis.

One of the first works along these lines were the boost-invariant calculations by Gyulassy et al. [201] where HIJING
[105–108] event generator was used to evaluate the initial conditions. At collider energies, mini-jets were expected to
become one of the dominant sources of fluctuations. In HIJING, particle production is modelled by string excitation and
its decay into hadrons by using Lund jet fragmentation scheme for soft processes, and hard pQCD processes are generated
based on an eikonal multiple collision formalism and PYTHIA event generator [113].

Another pioneering work was done by the Rio and Sao Paolo groups, who used NeXus event generator [203] to calculate
initial condition of fully (3+1) dimensional ideal hydrodynamic simulations [202,204–209]. Theywere the first to point out
the importance of initial state fluctuations when interpreting the elliptic flow data. Namely, the calculated v2 is different
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Fig. 16. An example of initial condition in Pb+Pb collisions at
√
sNN = 2.76 TeV from theMC-Glaubermodelwith an extension using the BGKmodel. Initial

entropy distribution (scaled down by 25) is shown in a plane at y = ⟨y⟩x (top-left), ηs = 0 (top-right), ηs = 3 (bottom-left) and ηs = 6 (bottom-right).
Both circles with a radius r0 = 6.68 fm represent a colliding nucleus.

Fig. 17. Centrality dependence of average orientation angle (left) and event distribution of orientation angle (right). The total number of events is 105 and
the number of bins is 20.

Fig. 18. Space–time rapidity dependences of εn{PP} in 0%–10% (left), 30%–40% (middle) and 60%–70% (right) centrality at LHC energy using the MC-KLN
initialisation.
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Fig. 19. The same as Fig. 18 but for εn{RP}.

Fig. 20. The same as Fig. 18 but using the MC-Glauber initialisation.

Fig. 21. The same as Fig. 19 but using the MC-Glauber initialisation.

Fig. 22. Centrality dependence of ε2 and ε3 (left) and ε4 and ε5 (left) for charged hadrons at midrapidity (0 < ηs < 1) in Pb + Pb collisions at
√
sNN = 2.76 TeV. Results from the MC-KLN model are compared with the ones from the MC-Glauber model.

depending on whether one first evaluates an average initial state, evolves it hydrodynamically, and calculates the v2, or
whether one evolves the initial states event-by-event, calculates v2 in every event, and averages these calculated values
[206,207]. NeXus is a Monte-Carlo event generator based on the Gribov–Regge theory and the pQCD parton model. To
convert the output of NeXus to the initial state of hydrodynamic evolution, they calculate the energy–momentum tensor
and conserved currents using the kinetic theory definitions. Obviously, energy–momentum tensor obtained in this way is
far from the one in equilibrium. Nevertheless, the energy–momentum tensor can be decomposed and energy density and
velocity obtained a. la. Landau

Tµνuν = ϵuµ. (48)
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Fig. 23. Examples of initial conditions in central Au+Au collisions given by NeXus at midrapidity. The energy density is plotted in units of GeV/fm3 . (Left)
Example of an event. (Right) Average over 30 events. Figure taken from Ref. [202].
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Fig. 24. (Left) Elliptic flow parameter v2 with σ = 0.4 fm in Au + Au collisions at
√
sNN = 200 GeV are compared with the PHOBOS data. (Right)

Distribution of difference of angles between event and reaction planes and event and participant planes in central (0%–5%) and semi-central (30%–40%)
collisions. Figures are taken from Ref. [186].

Using uµ, one can also obtain baryon density from baryon current nB = uµN
µ

B . Once ϵ and nB are obtained, pressure is
calculated by using the equation of state P = P(ϵ, nB). Energy–momentum tensor for perfect fluids is then based on this
energy density, pressure and flow velocity, and the non-ideal terms in the original energy–momentum tensor are ignored. A
drawback of this procedure is that energy and momentum are not strictly conserved [210] because the non-ideal terms are
ignored and the EoS of the fluidmay be different from the EoS of NeXus. Fig. 23 shows initial energy density in a single event
(left) and that averaged over 30 events (right). The bumpy structure in a single event is smeared by taking event averages
in the initial condition.

The NeXus event generator and hydrodynamic approach was further utilised to evaluate two-pion correlation functions
on event-by-event basis by Ren et al. [211]. The main motivation to consider initial fluctuations was to understand RHIC
HBT data Rout/Rside ∼ 1 [212,213].

Later, the Jyväskylä group performed boost-invariant event-by-event ideal hydrodynamic simulations [186] using
Monte-Carlo Glauber initialisation [28], and applied their results to analyse thermal photon spectra [214] and jet
quenching [215]. With an option of eWN (energy density using wounded nucleons), initial energy density is calculated
as

ϵ(x, y) =
K

2πσ 2

Npart
i=1

exp

−
(x − xi)2 + (y − yi)2

2σ 2


. (49)

Here (xi, yi) is the transverse position of a participant from Monte-Carlo Glauber simulations. σ is a smearing parameter of
the collision point being either 0.4 fm or 0.8 fm in this model. A parameter K controls the absolute value of particle yields.
In most hydrodynamical calculations the elliptic flow parameter v2 has been evaluated with respect to either reaction plane
or participant plane. The Jyväskylä group were the first to use the event plane method to evaluate the hydrodynamically
calculated v2, and thus to follow the experimental procedure as closely as possible. See, e.g., Fig. 24(left). They also analyse
distribution of difference of angle at the second order (elliptic flow) between event and reaction/participant planes as shown
in Fig. 24(right).

The Monte-Carlo Glauber and KLN models were employed to initialise ideal [216] and viscous [217] fluid evolution
also by the Ohio State group. In their MC-Glauber initialisation they assumed that initial entropy density profile, rather
than energy density profile like in Eq. (49), is proportional to linear combination of soft wounded nucleon distribution and
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Fig. 25. Centrality dependences of correlation between different order of event plane angles are compared with the ATLAS data [218]. The MC-Glauber
(solid) and MC-KLN (dashed) initial profiles are propagated using viscous hydrodynamics with η/s = 0.08 and 0.2, respectively. Figure is taken from
Ref. [217].

hard binary collision distribution. Correlations between the participant and the event plane angles [216], between the two
participant plane angles and between the two event plane angles [217] were extensively studied by using event-by-event
hydrodynamic simulations in (2+1) dimension assuming boost invariance in the longitudinal direction. Relations between
different orders of harmonics were first discussed in Ref. [217] and will be discussed in detail in Section 4. Fig. 25 shows
centrality dependences of correlation between different order of event plane angles at the LHC energy using event-by-
event viscous hydrodynamic simulations. Although there are small deviations from the ATLAS data [218], overall tendency
is reproduced in this approach.

As mentioned in Section 2.5, the Frankfurt group has developed an integrated hybrid model based on fully (3 + 1)
dimensional ideal hydrodynamics and UrQMD. In their model UrQMD is utilised both for generating the initial conditions
and for describing the evolution in the hadronic phase [93,130–135]. Hydrodynamic simulations as well as UrQMD are
performed in the three-dimensional Cartesian coordinate. At initial time tstart at which two colliding nuclei are maximally
overlapped, tstart = 2R/γ v, whereR (v) is a radius (velocity) of a colliding nucleus, initial energy density in the computational
frame is calculated as

ϵ(x, y, z) =


p

γz

(2π)3/2σ 2
Ep exp


−
(x − xp)2 + (y − yp)2 + γ 2

z (z − zp)2

2σ 2


, (50)

where Ep is the total energy of a particle (also in the computational frame) from string fragmentations and γz Lorentz gamma
factor in the beam direction. The width of the Gaussian is chosen to be σ = 1 fm as a default value, which is a little larger
compared with other approaches. Consequently the resultant initial energy density distribution is smoother than in other
Monte-Carlo approaches requiring smearing. See, e.g., Fig. 26.

Werner et al. [138–141] utilised the EPOS event generator [219] to generate the initial conditions for (3+1) dimensional
ideal fluid evolution. EPOS is the successor of NeXus and is based on Pomerons and partons. Nuclear effects such as
Cronin effect, parton saturation, and screening are introduced into EPOS. Energy–momentum tensor is calculated from four-
momenta of string segments δpµ

Tµν(x) =


i

δpµi δp
ν
i

δp0i
g(x − xi), (51)

where the summation is taken over for each i-th segment and g is a Gaussian type smearing function with a width 0.25 fm.
The energy–momentum tensor is then converted to energy density and velocity using a similar procedure than what the
Rio and Sao Paolo groups use. Since these string segments decayed from flux tubes correlate in the longitudinal direction,
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Fig. 26. (Left) Initial energy density distribution in the reaction plane of single central event in Pb + Pb collisions at Elab = 40A GeV from UrQMD. Figure
taken from Ref. [93].
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Fig. 27. (Right) Dihadron correlation in∆η–∆φ plane in central Au+ Au collisions at
√
sNN = 200 GeV from event-by-event EPOS+ ideal hydrodynamic

simulations. Figure taken from Ref. [138].

transverse profiles look quite similar at each space–time rapidity. Consequently, this leads to the so-called ridge structure
in the di-hadron correlation function as shown in Fig. 27.

Parametrised initial conditions including higher order deformation were used in viscous hydrodynamic simulations to
discuss triangular flow by Alver et al. [192]. This is not actually an event-by-event hydrodynamic simulation. Nevertheless,
it captures some features of higher order deformation in the initial profiles. An idea behind this is quite similar to the model
‘‘B’’ explained in the previous subsection in our study. Initial energy density in the transverse plane is parametrised as

ϵ(x, y) = ϵ0 exp

−

r2[1 + εn cos n(φ − ψn)]

2ρ2


, (52)

where r =

x2 + y2 is radial and φ is azimuthal angle in the polar coordinate. εn is the magnitude of the deformation and

ψn is a reference angle. ρ is roughly root-mean-square radius of the producedmatter and taken to be 3 fm. The deformation
εn is estimated by either the MC-Glauber or the MC-KLNmodel. They tuned η/s to reproduce centrality dependence of v2 at
the RHIC energy. Resultant values are η/s = 0.08 and 0.16 for the MC-Glauber and the MC-KLN model, respectively. Using
this parameter, they could reproduce v3 as a function of Npart in theMC-Glauber model. Whereas, their v3 using theMC-KLN
model with η/s = 0.16 are significantly smaller than the v3 data. Thus they concluded v3 data set a severe constraint to the
initialisation model in viscous hydrodynamic simulations.

Fully (3 + 1) dimensional viscous hydrodynamic simulations on an event-by-event basis were performed by Schenke
et al. [187,220]. They have also recently evaluated fluctuating Glasma initial conditions by solving classical Yang–Mills
equations, and used them as the initial state for hydrodynamical calculations [221,222]. In their first papers they utilise
the MC-Glauber model and initialise the energy density distribution in the transverse plane as in Eq. (49) [187]. In the
longitudinal direction, they assume the energy density follows Bjorken scaling solution near midrapidity and falls like
a half Gaussian near beam rapidity [187]. Recently, the IP-Glasma model [221–223] was employed to initialise energy
density in hydrodynamic simulations. The IP-Glasma model solves the classical Yang–Mills equations in which initial
charge distributions of two colliding nuclei are sampled from a Gaussian distribution with impact parameter and Bjorken x
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Fig. 28. Examples of initial energy density distribution from the IP-Glasma model at τ = 0 fm (left), the MC-KLN model (middle) and the MC-Glauber
model (right). Figures are taken from Ref. [221].

dependent colour charge distributions. Parametrisation of x and impact parameter dependence of saturation scale is taken
from the IP-Sat (Impact Parameter Saturation) model [224,225]. In this model event-by-event energy distribution exhibits
the expected negative binomial distribution and it described the observed multiplicity distribution up to a constant scaling
factor [223]. Quite remarkably it correctly predicts the event-by-event distribution of v2, v3 and v4 [222], which should be
important in understanding initial fluctuations. Fluctuations in the IP-Glasma model have a length scale of the order of the
inverse of the saturation scale Q−1

s (x⊥) ∼ 0.1–0.2 fm which is smaller than typical length scales 0.4 . σ . 1 fm in other
calculations. Fig. 28 shows comparison of initial energy density distribution among the IP-Glasma, MC-KLN andMC-Glauber
models. Finer structure is seen in the result from the IP-Glasma model.

A simple parametrisation for initial energy density was employed by Chaudhuri in his (2 + 1)-dimensional viscous
hydrodynamic simulations [226,227]

ϵ(x, y) = ϵ0

Npart
i=1

exp

−
(r − ri)2

2σ 2


. (53)

Thewidth is set to σ = 1 fm and ϵ0 is chosen to reproducemultiplicity in the experimental data.Npart is calculated using the
optical Glauber model, and the positions of the hotspots, ri, are assumed to be Gaussian distributed. It is noted that, since
the hot-spot would originate from a pair of participating nucleons, a scheme to randomly sample independent position of
hot-spots using averaged distribution of Npart in the transverse plane does not capture the actual distribution of correlated
hot-spots from the MC-Glauber model. Later, the effect of choice of smearing profile on final v2 and v3 in the context of the
MC-Glauber model was examined by choosing theWoods–Saxon profile instead of the Gaussian one [228]. They found that
the anisotropy coefficients v2 and v3 were not affected by the form of the smearing profile nor by the value of the smearing
parameter, whereas coefficients v4 and v5 showed some sensitivity to the smearing.

Bozek et al. employedMonte-Carlo Glauber model GLISSANDO [29] for initialisation in their event-by-event full (3+1)-
dimensional viscous hydrodynamic simulations [229]. Initialisation of the entropy profile in the transverse plane is quite
similar to others:

s(x, y) = κ


i

gi(x, y)[(1 − α)+ Ncoll
i α], (54)

gi(x, y) =
1

2πw2
exp


−
(x − xi)2 + (y − yi)2

2w2


. (55)

Here the summation is taken over participants and Ncoll
i is the number of collisions of the i-th participant. Similar to other

groups, the transverse position of nucleons is smeared from a point-like source to a Gaussian profile with a widthw = 0.4
fm. Soft–hard mixture α = 0.125 leads to reproduction of centrality dependence of dNch/dη at the top RHIC energy within
the full (3+1)-dimensional viscous hydrodynamic simulations. Note that, since theGlauber approach tells us only profiles in
the transverse plane, longitudinal profiles of the producedmatter have to be alsomodelled by taking account of momentum
conservation among colliding nucleons at certain transverse position [229].

f±(ηs) =


1 ±

ηs

ybeam


f (ηs), (56)

f (ηs) = exp


−
(ηs − η0)

2

2σ 2
η

θ(|ηs| − η0)


, (57)

where ybeam is the beam rapidity. Using this model, they calculated transverse momentum fluctuations at the RHIC energy
and found the experimental data can be explained by the event-by-event fluctuations of initial profiles.

Recently, Pang et al. employed the AMPT event generator for initialisation in event-by-event (3 + 1)-dimensional ideal
hydrodynamic simulations [230]. Information about phase-space density from the AMPT simulation at some initial time τ0
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Table 3
Event-by-event hydrodynamic simulations.

Authors and references Initialisation model Dimension Ideal/Viscous

Gyulassy et al. [201] HIJING (2 + 1)-D Ideal
Aguiar et al. [202,205–209] NeXus (3 + 1)-D Ideal
Ren et al. [211] NeXus (3 + 1)-D Ideal
Holopainen et al. [186,214,215] MC-Glauber (2 + 1)-D Ideal
Qiu and Heinz [216] MC-Glauber, MC-KLN (2 + 1)-D Ideal
Petersen et al. [93,130–135] UrQMD (3 + 1)-D Ideal
Werner et al. [138–141] EPOS (3 + 1)-D Ideal
Alver et al. [192] Parametrisation (2 + 1)-D Viscous
Schenke et al. [187,220,221] MC-Glauber, IP-Glasma (3 + 1)-D Viscous
Chaudhuri et al. [226,228] Parametrisation (2 + 1)-D Viscous
Bozek and Broniowski [229] MC-Glauber (3 + 1)-D Viscous
Pang et al. [230] AMPT (3 + 1)-D Ideal
Zhang et al. [231] MC-Glauber (2 + 1)-D Ideal
This study MC-Glauber, MC-KLN (3 + 1)-D Ideal

is used to calculate local energy–momentum tensor

Tµν(τ0, x, y, ηs) = K


i

pµi p
ν
i

pτi

1
2πσ 2

r
exp


−
(x − xi)2 + (y − yi)2

2σr


1

τ0


2πση2s

exp


−
(ηs − ηs,i)

2

2σ 2
ηs


, (58)

where pτ = mT cosh(Y − ηs) for the i-th parton. The widths in transverse and longitudinal directions are chosen as being
σr = 0.6 fm and σηs = 0.6, respectively. They allowed one parameter K to reproduce experimentally-measuredmultiplicity
at midrapidity. In actual calculations at the LHC energy, K = 1.6 and τ0 = 0.2 fm. Through this approach, one can include
fluctuations of the density profile in the longitudinal direction as well as in the transverse plane and of flow velocities in the
initial conditions. They found that initial fluctuations in rapidity distributions lead to expanding hot spots in the longitudinal
direction and that fluctuations in the initial flow velocities lead to harder transverse momentum spectra of final hadrons
due to non-vanishing initial radial flow velocities.

Zhang et al. investigated the effect of initial fluctuation on jet energy loss using (2+ 1) dimensional ideal hydrodynamic
model [231]. They found that, compared with smooth initial conditions, a jet loses slightly more energy in the expanding
QGP with fluctuating initial conditions.

Table 3 summarises current status of event-by-event hydrodynamic simulations by focusing on initialisation models
and dimension of hydrodynamic simulations. Note that there are many more models for initialising the event-by-event
calculations than there are hadronic cascade models used in the hydro + cascade models (Table 1).

3. Results from the smooth initial profile

In this section, we show results from the integrated dynamical model starting from conventional smooth initial entropy
density distributions to describe a high-energy heavy ion reaction as awhole at LHC and RHIC.We show pT spectra for pions,
kaons and protons, v2 for charged hadrons as functions of centrality and pT and v2(pT ) for identified hadrons. For themodels
of initialisations, MC-KLN and MC-Glauber models are employed and the results obtained using them are compared with
each other. We will compare some of these results with those from event-by-event hydrodynamic simulations later.

3.1. Results at RHIC

In Figs. 29 and 30 we show transverse momentum distributions of positive pions and kaons, and the average of protons
and antiprotons around midrapidity (| η |< 0.35) in

√
sNN = 200 GeV Au + Au collisions. The results calculated using the

KLN model and Glauber model initial conditions (Figs. 29 and 30, respectively) are compared with the PHENIX data [67].
Although initial conditions are taken from ‘‘Model B’’ in both cases, results from ‘‘Model A’’ (simple average over many
samples) are almost identical to these. In central collisions, we reproduce the PHENIX data [67] well up to pT ∼ 3 GeV/c. The
pT regionwhere themodelworkswell becomes smaller as going to peripheral collisions: for example, in 70%–80% centrality,
we reproduce pT spectrum for pions up to pT ∼ 1 GeV/c and, beyond this, other components such as recombination and/or
jet fragmentation, which are missing in the current integrated model, may be dominant. pT slopes from the KLN model
are a little harder than those from the Glauber model. It should be noted here that we chose the switching temperature
Tsw = 155 MeV to obtain the observed particle ratios of these identified hadrons, not to reproduce pT slope. Final particle
spectra are expected to be independent of a choice of the switching temperature. However, this is not the case in the current
calculations: the particle yields dependon the switching temperature and thus it can be fixedusing the particle ratios. Similar
sensitivity to the value of Tsw was seen also in Ref. [85], where a systematic analysis of switching temperature dependence
was made.
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Fig. 29. Transverse momentum distributions of π+ (left), K+ (middle) and (p + p̄)/2 (right) in
√
sNN = 200 GeV Au + Au collisions at 0%–5%, 5%–10%,

10%–15%, 15%–20%, 20%–30%, 30%–40%, 40%–50%, 50%–60%, 60%–70% and 70%–80% centralities from top to bottom. Both the PHENIX data [67] (filled
circle) and results calculated using the KLN initial conditions (open square) are shown. To show all these results, each spectrum is multiplied by 10n with
n = 4, 3, 2, . . . ,−5 from top to bottom for kaons and protons. For pions, n = 4, 3, 2, . . . ,−3, −5 and −7.
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Fig. 30. The same as Fig. 29 but using the Glauber model initial conditions.
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Fig. 31. Npart dependence of v2 evaluated using model ‘‘B’’ (see the text) in Au+ Au (left) and Cu+ Cu (right) collisions at
√
sNN = 200 GeV are compared

with the PHOBOS data [9,32]. Predictions in U + U collisions at
√
sNN = 200 GeV are also shown in the left figure (taken from Ref. [53]).

In Fig. 31(left), v2 in Au+Au collisions is comparedwith v2 in U+U collisions at
√
sNN = 200 GeV. Here initial conditions

are taken from ‘‘Model B’’ and the momentum distribution is integrated over | η |< 1 and the whole pT region. Since larger
eccentricity leads to larger momentum anisotropy and v2, the systematics of v2(Npart) is similar to that of εpart(Npart) as
shown in Fig. 14(left). v2 is larger in U+U collisions than in Au+Au collisions, and KLN initialisation leads to larger v2 than
Glauber initialisation. v2 first increases with decreasing Npart, which reflects increasing initial eccentricity. When Npart falls
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Fig. 32. Centrality dependence of v2 with respect to participant plane (model ‘‘B’’) in Au + Au (left) and Cu + Cu (right) collisions at
√
sNN = 200 GeV are

compared with the STAR data [80,232] (0.15 < pT < 2 GeV/c and | η |< 1). Experimental data in Au + Au collisions are as corrected in Ref. [233].

below ∼50, v2, however, begins to decrease. This is due to the short lifetime of the systemwhich does not allow the flow to
fully build up, and to the large fraction of the lifetime spent in the hadronic phase where dissipative effects are large.

In Au + Au collisions, results from the Glauber initialisation almost reproduce the PHOBOS data [9]. This indicates that
there is little room for QGP viscosity in themodel calculations. On the other hand, apparent discrepancy between the results
from the KLN initialisation and the PHOBOS data means that viscous corrections during the fluid evolution are required.
Fig. 31(right) shows a comparison of results with the PHOBOS data in Cu + Cu collisions [32]. Again, the Glauber model
initialisation almost reproduces PHOBOS data, while the KLN initialisation leads to larger v2 than the PHOBOS data.

As expected, the system in U + U collisions at
√
sNN = 200 GeV is denser than in Au + Au collisions at the same energy.

At initial time τ0 = 0.6 fm/c , the maximum temperature (energy density) in the most central 5% of U + U collisions is
T0 = 367 MeV (e0 = 33.4 GeV/fm3) and T0 = 361 MeV (e0 = 31.4 GeV/fm3) in the Au + Au collisions of the same
centrality. This corresponds to charged particle transverse densities of 25.4 and 24.1, respectively, which means that the
transverse density in U + U collisions is indeed larger, but only by ∼ 6%.11

Fig. 32 shows again the centrality dependences of v2 in Au + Au (left) and Cu + Cu (right) collisions at
√
sNN = 200

GeV. Here initial conditions are taken from Model ‘‘B’’ and the momentum distribution is integrated over | η |< 1 and
0.15 < pT < 2 GeV/c according to experimental setup in STAR [80,232]. Experimental data in Au + Au collisions [80] have
been corrected to subtract non-flow effects [233] and, thus, all data sets from various flow analysis methods coincide with
each other. Notice that the data have not been corrected yet in Cu + Cu collisions [232]. Similar to the results in Fig. 31,
the Glauber initialisation little overshoots the STAR data, while the KLN initialisation leads to larger v2 than the Glauber
initialisation clearly overshooting the STAR data.

In Fig. 33 the calculated v2(pT ) for charged hadrons in
√
sNN = 200 GeV Au + Au collisions is compared with the

PHENIX [234] and STAR [80] data in 0%–10% (top left), 10%–20% (top middle), 20%–30% (top right), 30%–40% (bottom left),
40%–50% (bottommiddle) and 50%–60% (bottom right) centralities. The calculationwas done using the Glaubermodel initial
state in themodel ‘‘B’’ setting. In 0%–10% central collisions, results from themodel is almost identical to the PHENIX v2{BBC}
data. However, the data deviate from theoretical results as going to peripheral collisions, which suggests the importance of
viscous effects in peripheral collisions where the transverse flow is more anisotropic and the size of the system is smaller
than in central collisions.

As shown in Fig. 34, v2(pT ) pattern in Au + Au collisions is quite similar to that in Cu + Cu collisions even though the
size of the system in the latter case is smaller than in the former case. Experimental data are taken from PHENIX [235] and
STAR [232].

As already seen in the integrated v2 in Figs. 31 and 32, the KLNmodel gives a larger v2 than the Glauber model does. This
is again seen in v2(pT ) in Figs. 33 and 35: The slope of v2(pT ) from the KLN initialisation is slightly steeper than that from
the Glauber initialisation.

In Fig. 36, v2(pT ) for identified hadrons using theGlauber initialisation are comparedwith the PHENIX data.Mass splitting
pattern, which is known to come mainly from hadronic rescattering effects [126], is seen in both theoretical results and
experimental data. In low pT region up to∼1 GeV/c , we reasonably reproduce the PHENIX data. However, the data gradually
deviate from the theoretical results above pT ∼ 1GeV/c , which suggests again the necessity of viscous corrections. As already
seen in the v2(pT ) for charged hadrons, v2 for pions overshoots the data in semi-central collisions.

It might be also interesting to analyse v2 for φ mesons in low pT region: Since φ mesons hardly rescatter with pions in
the late hadronic stages, these particles do not participate in mass splitting pattern [126]. A hint of this behaviour has been
already seen in recent STAR data [236].

11 With sufficient statistics, one may make more severe centrality cut (e.g., 0%–3%) to obtain larger transverse particle density. Multiplicity fluctuation in
the centrality cut, which we do not take into account, could also enhance the transverse particle density.
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Fig. 33. Transverse momentum dependence of v2 of charged hadrons in
√
sNN = 200 GeV Au + Au collisions in 0%–10% (top left), 10%–20% (top middle),

20%–30% (top right), 30%–40% (bottom left), 40%–50% (bottom middle) and 50%–60% (bottom right) centralities. Results calculated with respect to the
participant plane (model ‘‘B’’) using the Glauber model initial conditions are compared with the PHENIX [234] and STAR data.
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Fig. 34. The same as Fig. 33 but in Cu + Cu collisions. Data are from PHENIX [235] and STAR [232].

3.2. Results at LHC

Fig. 37 shows a comparison of transverse momentum distributions of charged hadrons between RHIC and LHC energies
at 10%–20% and 40%–50% centralities. As clearly seen from figures, the slope of the pT spectra becomes flatter as collision
energy and, consequently, pressure of producedmatter increases. To quantify this, we calculatemean pT of charged hadrons.
In the MC-Glauber initialisation, mean pT increases from RHIC to LHC by 21% and 19% in 10%–20% and 40%–50% centrality,
respectively. On the other hand, the corresponding relative increases are 25% and 24% in the MC-KLN initialisation. Since



T. Hirano et al. / Progress in Particle and Nuclear Physics 70 (2013) 108–158 139

hybrid

Au+Au 200 GeV
charged, 0-10%

Au+Au 200 GeV
charged, 10-20%

Au+Au 200 GeV
charged, 20-30%

Au+Au 200 GeV
charged, 30-40%

Au+Au 200 GeV
charged, 40-50%

Au+Au 200 GeV
charged, 50-60%

0

0.05

0.1

0.15

0.2

0.25

0.3

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

-0.05

0.35

v 2
v 2

v 2
v 2

v 2
v 2

0 3

p
T
 (GeV/c)

0 3

p
T
 (GeV/c)

0 3

p
T
 (GeV/c)

p
T
 (GeV/c) p

T
 (GeV/c) p

T
 (GeV/c)

PHENIX, v2{BBC}

hybrid

PHENIX, v2{BBC}

hybrid

PHENIX, v2{BBC}

hybrid

PHENIX, v2{BBC}

STAR, v2
PHENIX, v2{BBC}

hybrid

STAR, v2
PHENIX, v2{BBC}

hybrid

Fig. 35. The same as Fig. 33 but using the KLN model initial conditions.
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Fig. 36. Transverse momentum dependence of v2 of identified hadrons with respect to participant plane using the Glauber model initial conditions are
compared with the PHENIX data [6] in minimum bias (left), and in 0%–20% (middle) and 20%–40% (right) centralities.

Fig. 37. Transverse momentum distribution of charged hadrons at 10%–20% (circles) and 40%–50% (squares) centralities in Pb + Pb collisions at
√
sNN =

2.76 TeV (filled symbols) and in Au+Au collisions at
√
sNN = 200 GeV (open symbols). Results were calculated using (a) the MC-Glauber initialisation and

(b) the MC-KLN initialisation. For the sake of comparison and visibility, the spectra are scaled by 2, 1/10, and 1/5 for 10%–20% at RHIC, 40%–50% at LHC
and 40%–50% at RHIC, respectively. Figures are from Ref. [54].

our calculations at RHIC were tuned to reproduce the pT -spectra, this means that at LHC the spectra calculated using the
MC-KLN initialisation are slightly flatter than those calculated using the MC-Glauber initialisation.

We compare the integrated v2 for charged hadrons with respect to reaction plane with the ALICE [11] and STAR [80]
v2{4} data in Fig. 38.When evaluating the integrated v2, we take account of both transversemomentum and pseudorapidity
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Fig. 38. Centrality dependence of v2 for charged hadrons with respect to reaction plane (model ‘‘A’’) in Pb + Pb collisions at
√
sNN = 2.76 TeV (left)

and in Au + Au collisions at
√
sNN = 200 GeV (right) is compared with the ALICE [11] (0.2 < pT < 5 GeV/c and | η |< 0.8) and STAR v2{4} data

(0.15 < pT < 2 GeV/c and | η |< 1), respectively. Figures are from Ref. [54].

Fig. 39. Transverse momentum dependence of v2 of charged hadrons with respect to reaction plane in
√
sNN = 2.76 TeV Pb + Pb collisions in 10%–20%

(left) and 40%–50% (right) centralities. Figures are from Ref. [54].

acceptance as done in the experiments, i.e. 0.2 < pT < 5.0 GeV/c and | η |< 0.8 for ALICE, and 0.15 < pT < 2.0 GeV/c
and | η |< 1.0 for STAR. We want to emphasise that, not only the pT cut [237], but also the pseudorapidity cut plays an
important role in a consistent comparison with the data. Due to the Jacobian for the change of variables from rapidity y
to pseudorapidity η, v2(y = 0) < v2(η = 0) for positive elliptic flow [127].12 In the case of the MC-Glauber (MC-KLN)
initialisation in 40%–50% centrality, v2 integrated over the whole pT region is ∼14% (∼10%) larger at η = 0 than at y = 0.

When the MC-Glauber model is employed for initial profiles, centrality dependence of integrated v2 from the hybrid
approach almost agrees with both ALICE and STAR data. Since eccentricity fluctuation contributes little and negatively to
v2{4} in a non-Gaussian distribution of eccentricity fluctuation [233,238], this indicates there is only little room for the
QGP viscosity in the model calculation. On the other hand, apparent discrepancy between the results from the MC-KLN
initialisation and the ALICE and STAR data means that viscous corrections during the hydrodynamic evolution are required.

From RHIC to LHC, the pT -integrated v2(| η |< 0.8) increases by 24% and 25% in 10%–20% and 40%–50% centrality,
respectively, in the MC-Glauber initialisation. On the other hand, in the MC-KLN initialisation, the increase reaches 42%
and 44% in 10%–20% and 40%–50% centrality, respectively. Since eccentricity does not change significantly (at most ±6% in
40%–50% centrality) from RHIC to LHC as shown in Fig. 14(right), the significant increase of integrated v2 must be attributed
to a change in transverse dynamics.

Finally, we compare v2(pT ) of charged hadronswith ALICE [11] and STAR [80] data in 10%–20% (Fig. 39(left)) and 40%–50%
(Fig. 39(right)) centrality. Interestingly, the data at LHC agrees with the data at RHIC within errors. The calculated v2(pT )
shows similar independence of collision energywhenMC-Glauber initialisation is used, whereasMC-KLN initialisation leads
to a slightly larger v2(pT ) at the larger energy. ForMC-Glauber results, the fit to the data is fair below pT ∼ 1.5GeV/c and pT ∼

0.8 GeV/c momenta in the 10%–20% and 40%–50% centralities, respectively. Results from the MC-KLN initialisation at both
energies are significantly larger than experimental data in thewhole pT region,which again indicates the necessity of viscous
corrections in hydrodynamic evolution. For both initialisations the difference between the data and the calculated v2(pT )
is larger in more peripheral collisions. This too can be understood as an indication of viscosity, since the more peripheral
the collision, the smaller the system and the more anisotropic its shape, and both of these qualities enhance the dissipative
effects.

Due to the relationships among the pT spectrum, pT averaged v2, and pT differential v2(pT ), the flatter the pT spectrum,
the larger the v2 even if v2(pT ) stays the same. It is also worth noticing that the steeper the slope of v2(pT ), the larger the

12 Notice that even if one assumes the Bjorken scaling solution, one has to consider the pseudorapidity acceptance since v2(η) is not constant even if
v2(y) is [127].



T. Hirano et al. / Progress in Particle and Nuclear Physics 70 (2013) 108–158 141

increase in v2 for the same increase in mean pT . This is the main reason why quite a similar increase of mean pT for both
MC-Glauber and MC-KLN initialisations leads to much larger increase of v2 for MC-KLN than for MC-Glauber initialisation.

Song et al. calculated v2 as a function of centrality and pT using viscous hydrodynamics by employing almost the same
initial conditions as we did [85,137,142,143] (see also Section 2.7). So it is interesting to see howmuch viscosity is required
to reproduce these data in their analyses. As shown in Fig. 12, η/s ∼ 0.08, which is almost identical to the conjectured
minimum value [144], leads to reproduction of the v2/ε data at RHIC in the MC-Glauber initialisation, whereas η/s ∼ 0.16
in theMC-KLN initialisation [137].Within theMC-KLN initialisation, they also calculated v2 at the LHC energy and found that
η/s ∼ 0.20–0.24 is required to describe the data. This increase tendency of the specific shear viscosity with temperature
is qualitatively consistent with expectation from results based on finite temperature QCD [239]. Temperature dependent
shear viscosity was also discussed in [137,240,241]. It turned out that extracting the temperature dependence of η/s from
the data is demanding, since at RHIC the value of η/s in the plasma phase does not affect the observed anisotropies. Only
the minimum value reached in the transition region and viscosity in the hadronic phase do. At LHC the situation is better,
but even there the hadronic viscosity affects the results as much as the plasma viscosity does [240,241].

4. Results from event-by-event hybrid simulations

We perform hydrodynamic simulations on an event-by-event basis and calculate observables using ∼105 ‘‘minimum
bias’’ events (events with Npart ≥ 2 in our theoretical definition) for each initial parameter set. In this section, we especially
focus onhigher order harmonics using several flowanalysismethods.We first overview the flowanalysismethods employed
in this study. Using these methods, we analyse final particle distributions to obtain azimuthal anisotropy coefficients. Most
of the results are obtained using the MC-KLN initialisation at the LHC energy. We also compare these results with the ones
obtained using the MC-Glauber initialisation.

4.1. Event plane method

In the event plane method [63], the event plane is first determined using the anisotropy of the emitted particles. The
event plane is in general defined by

nΨ EP
n = arg


j≠i

ωjeinφj , (59)

where ωi is an weight and φi is an azimuthal angle for each particle. The sum is taken over an ensemble of particles which
do not coincide with particles which vn one wants to obtain.

In fact, there have been various event plane methods for the different detector setups. For example, one can randomly
divide measured particles in a pseudorapidity region into two subgroups. Then when one wants to obtain flow parameters
for particles in one subgroup, particles in the other subgroup are used to determine the event plane. One can also choose two
groups of particles separated in pseudorapidity to determine the event plane, which can eliminate short range correlations.

Inwhat follows,wedemonstrate the flowanalysis according to the event planemethodby theATLASCollaboration [12].13
In this analysis method, the event planes are determined using particles in the two regions, A: 3.2 < η < 4.8 and B:
−4.8 < η < −3.2. ωi is taken as transverse mass mi

T for each particle. When the harmonics vn is calculated in positive
(negative) rapidity region, particles in the region B (the region A) are used to determine the event plane Ψ B

n (Ψ A
n ) to avoid

the non-flow effect from the autocorrelation. Centrality is defined using the total transverse energy of charged particles
deposited in these rapidity regions, as prescribed by the ATLAS Collaboration [12].

In the ‘‘η-subevent’’ method, non-flow effects can be eliminated at midrapidity when event plane angle is determined
away frommidrapidity. On the other hand, onenaively anticipates the correlation between the event plane angle determined
in the large rapidity region and the one in thewhole rapidity region getsweaker [134]. Aswill be shown, this can be corrected
by taking account of event plane resolution in the ‘‘η-subevent’’ method.

Event plane angles for the n-th harmonics is thus calculated using the particles in the regions A and B as

nΨ A
n = arg


A

mi
T e

inφi , (60)

nΨ B
n = arg


B

mi
T e

inφi . (61)

Using these angles, one obtains n-th harmonics

vobsn =
1

⟨NP + NN⟩


P

cos n(φi − Ψ B
n )+


N

cos n(φi − Ψ A
n )


(62)

13 The method employed here is categorised in the event plane method in a broad sense. However, this is sometimes called the ‘‘η-subevent’’ method.
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Fig. 40. (Left) Resolution parameter defined in Eq. (67) for n = 2, 3, 4 and 5 as a function of centrality. (Right) Correlation ⟨cos n(Ψ true
n − Φn)⟩ between

the true event plane and the participant plane as a function of centrality in Pb + Pb collisions at
√
sNN = 2.76 TeV.

where ⟨· · ·⟩ denotes the event average. NP (NN) is the number of particles in the positive (negative) rapidity region. Since
the finite number of measured particles limits resolution in estimating the event plane angle Ψn, one has to consider the
so-called resolution parameter Rn

Rn = ⟨cos n(Ψn − Ψ true
n )⟩, (63)

where Ψn is the event angle estimated using the measured particle and Ψ true
n is an ideal event plane angle corresponding to

the infinite number of measured particles. In this event plane method, the resolution factor can be estimated as

⟨cos n(Ψ A
n − Ψ B

n )⟩ = ⟨cos n(Ψ A
n − Ψ B

n )⟩

= ⟨cos n(Ψ A
n − Ψ true

n + Ψ true
n − Ψ B

n )⟩

= ⟨cos n(Ψ A
n − Ψ true

n ) cos n(Ψ B
n − Ψ true

n )⟩ − ⟨sin n(Ψ A
n − Ψ true

n ) sin n(Ψ B
n − Ψ true

n )⟩

= ⟨cos n(Ψ A
n − Ψ true

n )⟩⟨cos n(Ψ B
n − Ψ true

n )⟩

= R2
n. (64)

Here we have assumed that the two groups are symmetrically located with respect to midrapidity like the pseudorapidity
regions A and B so that multiplicities in the two groups are almost equal and independent in a sense that two-particle
correlation function between a particle from region A and the one from region B can be factorised into two one-particle
distribution functions. Thus,

⟨cos n(Ψ A
n − Ψ true

n )⟩ = ⟨cos n(Ψ B
n − Ψ true

n )⟩ ≡ Rn. (65)

Thus the anisotropic parameters using the event plane method become

vn{EP} =
vobsn

Rn
, (66)

Rn =


⟨cos n


Ψ A

n − Ψ B
n


⟩. (67)

Fig. 40(left) shows the resolution parameter Rn (n = 2, 3, 4 and 5) as a function of centrality. Event plane resolution
for the second harmonics reaches almost unity in mid-central collisions (20–30%) and is relatively better than the others
as expected from the almond-like geometry on average. The other event plane resolutions become worse as decreasing
multiplicity and increasing the order n. To understand the origin of the event plane, we also calculate correlation of angles
between the orientation angleΦn (see Eg. (37)) and the true event plane

Cn(Ψ
true
n ,Φn) = ⟨cos n(Ψ true

n − Φn)⟩

=
⟨cos n(Ψ A/B

n − Φn)⟩

Rn
. (68)

Since the number of produced particles is finite, the resolution parameter to correct Ψ A/B
n plays again an essential role

in evaluating Cn. When the anisotropic flow is generated by anisotropic pressure gradient in the transverse plane, the
correlation becomes ∼ −1: In the case of positive elliptic flow generated from a conventional smooth almond-like profile
elongated in y direction, Ψ true

2 ∼ 0 and Φ2 ∼ π/2 and, consequently, C2 ∼ −1. Fig. 40(right) shows Cn (n = 2, 3, 4 and
5) as a function of centrality. Cn for n = 2 and 3 are close to −1. So one can interpret anisotropic flow vn (n = 2 or 3)
as generated by the corresponding anisotropy εn of the pressure gradient. While C4 and C5 start from −1 in very central
collisions, increase with centrality percentile and even become positive above 30% centrality. This indicates the possibility
of having finite vn owing to εm(m ≠ n).
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Fig. 41. Mixed correlation between the true event plane Ψ true
n and the orientation angle Φm as a function of centrality in Pb + Pb collisions at

√
sNN = 2.76 TeV.

To further investigate the origin of the event plane, we also calculate mixed correlations

Cnm(Ψ
true
n ,Φm) = ⟨cos n(Ψ true

n − Φm)⟩,

Cnn = Cn. (69)

Fig. 41 shows C42 together with C2 and C4 in Pb + Pb collisions at
√
sNN = 2.76 TeV. If v4 is generated solely by

ε2, |Ψ4 − Φ2| is expected to be either 0 or π/4 due to symmetry in the transverse plane and, consequently, C42 = 1 or
−1. In central collisions where the reaction zone is almost cylindrical on average, there is almost no correlation between
Ψ4 and Φ2. However, the correlation between them increases towards unity as increasing centrality percentage, which
indicates Ψ4 ≈ Φ2 ± nπ/2 (n: integer) and v4 is partly generated by ε2 like positive elliptic flow in non-central collisions
[133,216,242].

Relations between initial geometry fluctuation and final anisotropic flowwere discussed in Ref. [133]. They found that v4
decreases with increasing ε2 and changes its sign from positive to negative (see Fig. 17 in Ref. [133]). The behaviour is quite
similar to our finding that the centrality dependence of C42 changes also its sign. Distributions of Ψn − Φn for n = 4 and 5
at the RHIC energy were investigated in Fig. 8 in Ref. [216]. Contrary to the cases for n = 2 and 3, the distributions for n = 4
and 5 have a peak at Ψn − Φn = 0 only in central collisions. Peak structure gradually disappears as moving to peripheral
collisions and eventually another peak appears at Ψn − Φn = π/n in the peripheral collisions (50–60% centrality). These
results also suggest that vns at least n = 4 and 5 are generated by other order of initial geometry εm (m ≠ n).

Before showing detailed results from event-by-event hydrodynamic simulations, we make two remarks here: Since the
event plane is often determined using particles in forward and backward rapidity regions (also known as ‘‘η-subevent
method’’), full three dimensional dynamical simulations are essential if one wants to do the flow analysis in the same way
than in experiments. For example, the PHENIX Collaboration at RHIC utilises the Beam Beam Counter (BBC) or the reaction
plane detector (RxNP) in forward and backward rapidity regions to determine event planes. If one assumes boost invariance
in dynamical calculations, one cannot perform this kind of flow analysis exactly.

Second, the effect of experimental event plane resolution cannot be properly evaluated unless one samples a finite
number of particles at particlisation. The Cooper–Frye formula [86] has been conventionally used to calculate particle spectra
in hydrodynamic calculations, but it gives smooth and continuous function of momentum distributions. This corresponds
to the N times over-sampling of particles from a fluid element with N → ∞ limit, which is, however, not adequate if
event-by-event hydrodynamic simulations are supposed to describe actual events.

4.2. Multi-particle cumulants

In the previous subsection, we described themethod to calculate anisotropic parameters with respect to the event plane.
In this subsection, we discuss how to calculate anisotropic parameter using the particle ensemble itself, namely, the multi-
particle cumulant method [64,65].

We first define a 2p-particle correlation to calculate the n-th order of higher harmonics as

cn{2p} = ⟨exp[in(φ1 + φ2 + · · ·φp − φp+1 − · · · − φ2p)]⟩ (70)

where φi is azimuthal angle of the i-th particle under consideration. In this subsection, ⟨· · ·⟩ means an average taken in two
steps: First, one averages over all possible permutations of p particles in the same event, then one averages over all events.
For example, two-particle correlations can be written as cn{2} = ⟨ein(φ1−φ2)⟩.

We next define the corresponding cumulant. Correlations among 2p particles can be in general decomposed into a sum
of correlations among smaller number of particles and cumulants. The simplest example is two-particle cumulant

cn{2} = dn{2} + ⟨einφ1⟩⟨e−inφ2⟩

= ⟨ein(φ1−φ2)⟩. (71)
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Due to symmetry, a term ⟨einφ1⟩ should vanish. Aswe see, a two-particle cumulant reduces to the corresponding two-particle
correlation. This quantity contains correlation from collective flow aswell as the so-called non-flow effects such as two-body
decays of resonance particles. The next non-trivial and important example is four-particle cumulant:

cn{4} = ⟨exp[in(φ1 + φ2 − φ3 − φ4)]⟩

= ⟨ein(φ1−φ3)⟩⟨ein(φ2−φ4)⟩ + ⟨ein(φ1−φ4)⟩⟨ein(φ2−φ3)⟩ + dn{4}

= 2cn{2}2 + dn{4}. (72)

Although dn{4} still contains non-flow effects of correlations among four particles, this does not contain non-flow effects
from two-particle correlations and, consequently, is expected to contain much information about the anisotropic flow. In
fact, it was shown in Ref. [65] that these cumulants are related with higher order anisotropic flow. So one can define higher
order anisotropic parameter using 2p-particle cumulants as

vn{2}2 = dn{2}, (73)

vn{4}4 = −dn{4}. (74)

Since this method requires many particles to take correlations/cumulates, the statistical errors tend to be large. Even 105

events are not enough: It happens that error bars are too large to show the results in our statistics, which indicates the
necessity of massive numerical simulations.

In the actual calculations, we evaluate the above correlations as follows: We first calculate the following two quantities:

qn =
1

√
M

M
i=1

einφi , (75)

un =
1
M

M
i=1

einφi . (76)

qn is a flow vector and un is the one with different normalisation. When the non-flow effects can be neglected, vn ≈
√
u∗
nun.

In the case of 2p-particle correlations, one needs to average over all possible permutations excluding self-correlation terms
and take a sum such as


(i,j)

=

M
i=1

M
j=1

(1 − δij)

=

M
i=1

M
j=1

−

M
i=j=1

, (77)


(i,j,k)

=


(i,j)

M
k=1

(1 − δki − δkj)

=

M
i

M
j

M
k

−

M
i=j=1

M
k=1

−

M
j=k=1

M
i=1

−

M
k=i=1

M
j=1

+2
M

i=j=k=1

, (78)


(i,j,k,l)

=


(i,j,k)

M
l=1

(1 − δli − δlj − δlk). (79)

In this way, correlation functions reduce to [94]

cn{2} =


M
i=1

einφi
M
j=1

einφj −
M

i=j=1
ein(φi−φj)


⟨M(M − 1)⟩

=
⟨|un|

2M2
− M⟩

⟨M2 − M⟩
, (80)

cn{4} =
⟨U4M4

− 6U3M3
+ 11U2M2

− 6M⟩

⟨M(M − 1)(M − 2)(M − 3)⟩
,

=
⟨U4M4

− 6U3M3
+ 11U2M2

− 6M⟩

⟨M4 − 6M3 + 11M2 − 6M⟩
, (81)
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Fig. 42. (dNch/dη)/(Npart/2) in |η| < 0.8 as a function of Npart in Pb + Pb collisions at
√
sNN = 2.76 TeV for each event and for events averaged over

every 5% centrality. Here we use impact parameter to categorise the centrality for simplicity and plot results at ⟨Npart⟩ for each centrality. To exhibit how
this quantity distributes event-by-event, results from 3000minimum bias events are shown. Result from the smooth initial condition with the same initial
parameter set is also shown in thin solid line. Experimental data are from ALICE Collaboration [183].

Fig. 43. pT distribution of identified hadrons at midrapidity in Pb + Pb collisions at
√
sNN = 2.76 TeV at 0–5% (left), 30–40% (middle) and 60–70% (right)

centralities.

where

U4 = |un|
4, (82)

6U3 = 4|un|
2
+ u∗

2nu
2
n + u2nu∗2

n , (83)

11U2 = 8|un|
2
+ |u2n|

2
+ 2. (84)

4.3. Results

First, in Fig. 42, we show (dNch/dη)/(Npart/2) as a function of Npart from event-by-event hydrodynamic simulations
employing MC-KLN initialisation and compare them with ALICE data [183]. For comparison, we average over these events
at every 5% centrality. Although we used the same, adjusted parameter set as in the smooth initial conditions using the
MC-KLN initialisation which reproduces the ALICE data reasonably well, results are systematically smaller than the data, in
particular, in central events. In this paper, we do not try to fine-tune initial parameters. It would be interesting to see how
the effects of the fluctuations of the gluon production itself would change this behaviour. In principle these fluctuations can
be included using the negative binomial distribution (N.B.D.) [133,166,167,175], but since the rapidity dependence of the
required N.B.D. is not known, it is not clear how to implement these fluctuations in a fully three dimensional calculations.

In Fig. 43, pT distributions of π−, K− and p̄ using the MC-KLN initialisation in Pb + Pb collisions at the LHC energy
are shown at 0–5%, 30–40% and 60–70% centralities. Antiproton yield becomes comparable with negative pion yields at
pT ∼ 3 GeV/c in all these results, which is consistent with the preliminary ALICE data [69]. Thus the switching temperature
Tsw = 155 MeV, which affects both particles yields and the slopes of the pT spectra, and was adjusted to reproduce particle
ratios of identified hadrons at RHIC, works reasonably well at the LHC energy too. Detailed comparison of these results with
the data would give more precise information about the switching temperature.

We compare the results of v2 from event-by-event hydrodynamic simulations with those from hydrodynamic
simulations with conventional, smooth initial conditions. Fig. 44(left) shows centrality dependence of pT -integrated v2
(0 < η < 1) of charged hadrons in Pb + Pb collisions at

√
sNN = 2.76 TeV using MC-KLN initialisation. Although the

difference between v2{EP} and v2 from event-averaged initial conditions with shift of the centre of mass and rotation of
participant plane discussed in the previous section is hardly seen in central to semi-central collisions (0%–40%), the two
results deviate from each other above ∼40%: v2{RP}, which is v2 with respect to the reaction plane in event-by-event
simulations (reaction plane method), is slightly smaller than v2 from event averaged initial conditions and the difference
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Fig. 44. Centrality (left) and transverse momentum (right) dependences of v2 of charged hadrons in Pb + Pb collisions at
√
sNN = 2.76 TeV using smooth

initial conditions with (inverse triangle) or without (triangle) shifting the centre ofmass and rotation tomatch participant plane angle. These are compared
with v2{EP} (square) and v2{RP} (circle) (see the text). Transverse momentum dependence is shown at 40%–50% centrality.

Fig. 45. vn using the event plane method (upper left), vn using the reaction plane method (upper right) vn using the two particle cumulant method (lower
right) and vn using the four particle cumulant method (lower right). v4{4} and v5{5} are omitted due to less statistics.

increases with increasing centrality percentile. This is also the case for the difference between v2{RP} and v2 from event-
averaged initial conditions without shift of the centre of mass or rotation of participant plane. Fig. 44(right) shows pT
dependence of v2 for charged hadrons in the same collision system at 40%–50% centrality. In both cases, there is almost
no difference between event-by-event simulations and simulations with event-averaged initial conditions in the low pT
region. However, results deviate from each other gradually with increasing pT above ∼1 GeV/c [207]. From a point of view
of conventional hydrodynamic simulations with smooth initial conditions, event-by-event simulations mimic shear viscous
effects since shear viscosity reduces pT -integrated v2 and v2 at high pT [243].

Fig. 45 shows event anisotropies vn (n = 2, 3, 4 and 5) by various flow analysis methods employed in this study.
Centrality dependences of vn{EP} are almost identical to those of vn{2}. v3{RP} and v5{RP} vanish as they should. v4{RP}
is non-zero only in mid-central collisions (20–70% centrality). Since vn using the four particle cumulant method demands
higher statistics, we only show v2{4} and v3{4}. Although v3{4} has large error bars, it seems to increase with increasing
centrality percentage. This is contrary to v3{EP} and v3{2} which first increase up to 50–60% centrality, but begin to decrease
in more peripheral collisions. This emphasises the importance of employing the same flow analysis method both in the
theory calculations and in the experimental data analysis.

Fig. 46(left) shows the centrality dependence of v2 compared with the ALICE data [11]. It has been known that ideal
hydrodynamics with the CGC based initial state overshoots the data by 50–60%. The deviation could have been understood
as viscous effects, which we do not discuss in this paper. It should be noted that the data do not contain charged hadrons
below pT = 0.15 GeV/c but that the hydrodynamic results do. If we took account of momentum cut of the ALICE setup,
the calculated results would have become larger. Ratios of v2 to v2{EP} are shown to see the difference among the various
flow analysis methods in Fig. 46(right). v2{2} is almost identical to v2{EP}. On the other hand, v2{RP} almost traces v2{4}. In
central (0%–10%) and peripheral (60%–80%) collisions, v2{RP} and v2{4} are 10%–20% smaller than v2{EP} and v2{2}, which
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Fig. 46. (Left) Centrality dependence of v2 using the event plane method, the reaction plane method, the two particle cumulant and the four particle
cumulant in MC-KLN initialisation compared with the ALICE data [11]. (Right) Ratio of v2 to v2{EP} as a function of centrality.

Fig. 47. (Left) Centrality dependence of v3 using the event plane method, the reaction plane method, the two particle cumulant and the four particle
cumulant. (Right) Ratio of v3 to v3{EP} as a function of centrality.

Fig. 48. (Left) Ratio of v4 to v4{EP} as a function of centrality. (Right) Ratio of v5 to v5{EP} as a function of centrality.

can be understood as a consequence of eccentricity fluctuations shown in Fig. 14. On the other hand, the difference between
v2{EP} and v2{RP} is ∼5% in semi-central collisions. Correspondences of between v2{2} and v2{EP} and between v2{4} and
v2{RP} are also discussed using UrQMD in Ref. [244].

Fig. 47 shows centrality dependence of v3 (left) and its ratio to v3{EP} (right). If odd harmonics are generated solely by
fluctuation in initial transverse profiles, v3{RP} should vanish since the initial fluctuation does not correlatewith the reaction
plane. This is, in fact, seen in Fig. 47. As seen in v2, v3{EP} is almost identical to v3{2}. Due to poor statistics, v3{4} has large
errors. Nevertheless, it seems to be finite and smaller than v3{EP} and v3{2} up to ∼60% centrality: v3{4} is roughly half of
v3{2} and v3{EP} [193,194]. Ratios of v3 to v3{EP} as functions of centrality are shown in Fig. 47 to see the dependence of v3
on flow analysis methods more clearly. It would be interesting to gain more statistics to confirm whether v3{4} differs from
the other v3.

Fig. 48 shows centrality dependence of ratios of fourth (left) and fifth (right) harmonics. Due to poor statistics, harmonics
using the four particle cumulant method are omitted. Although v4{2} and v5{2} have large error bars, they seem to agree
with the harmonics evaluated using the event plane method, in the same way v2{2} and v3{2} do. v4{RP} is finite, while
v5{RP} vanishes as already seen in Fig. 45.

Figs. 49–51 show pseudorapidity dependence of higher order harmonics in 0%–10%, 40%–50% and 70%–80% centrality,
respectively. The second harmonics v2, which are shown in the left panels, always have a maximum at midrapidity and
decrease as moving away frommidrapidity although ε2 is almost constant as a function of ηs. This triangular shape was also
measured at the RHIC energy. Aswe discussed in Section 2.5 the rapidity dependence is easy to understand as a consequence
of the space–time rapidity dependence of the initial energy density even if the initial eccentricity hardly depends on ηs
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Fig. 49. Pseudorapidity dependence of v2 and v4 (left) and v3 and v5 (right) at 0%–10% centrality. Harmonics evaluated using the event plane method are
compared with those evaluated with respect to the reaction plane.

Fig. 50. The same as Fig. 49 but at 40%–50% centrality.

Fig. 51. The same as Fig. 49 but at 70%–80% centrality.

(Fig. 18). The larger the initial density, the longer the lifetime of the low viscosity QGP phase where v2 is built upmuchmore
efficiently than in the highly dissipative hadronic phase, see Fig. 7 and related discussion on page 15.

Difference between v2{EP} and v2{RP} is relatively large in central (0%–10%) and peripheral (70%–80%) collisions,whereas
the difference is very small in semi-central collisions (30%–40%). This difference atmidrapidity was already shown in Fig. 46,
but it persists up to | η |∼ 5. v4{EP} also depends on η even if ε4{PP} is almost independent of ηs as shown in Fig. 18.

Odd harmonics (n = 3 and 5) shown in the right panel are finite near midrapidity when event plane method is used
to evaluate them, whereas they vanish when the reaction plane method is used. The v3{EP} and v5{EP} have a broad peak
at midrapidity, decrease as moving away from midrapidity and eventually vanish near the beam rapidity. Note that v5 has
large error bars in the 70–80% centrality due to small multiplicity. It should be noted that all vn{EP}(η) have almost no boost
invariant regionwhich is in good contrast to εn(ηs) shown in Fig. 18. Asmentioned, this can be understood as the space–time
rapidity dependence of the lifetime of the QGP fluid.

Transverse momentum dependences of v2 evaluated using the four methods described in this study are compared with
the ALICE v2{4} data [11] at 40%–50% centrality in Pb + Pb collisions at

√
sNN = 2.76 TeV in Fig. 52. Up to pT ∼ 1.5 GeV/c

where, in the M-particle cumulant methods, at least M particles are binned in all events in this centrality, the difference
among the four methods is very small. Above this, the difference between v2{EP} and v2{RP} is visible but still not so
significant.

Transverse momentum dependence of v2 using the event plane method is compared with the ATLAS v2 data [12] in
Pb + Pb central (0%–10%), semi-central (40%–50%) and peripheral (70%–80%) collisions in 0 <| η |< 1 (top), 1 <| η |< 2
(middle) and 2 <| η |< 2.5 (bottom) at

√
sNN = 2.76 TeV in Fig. 53. We emphasise here that we employ the same flow

analysis method as the ATLAS Collaboration [12]. v2 from event-by-event ideal hydrodynamic simulations overshoots the
ATLAS data at all centralities regardless of the pseudorapidity regions.
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Fig. 52. Transversemomentumdependence of v2 using the event planemethod, the reaction planemethod, the two particle cumulant and the four particle
cumulant calculated using MC-KLN initialisation compared with the ALICE v2{4} data at 40%–50% centrality [11]. Due to the lack of statistics, results are
shown up to 1.625 GeV/c for the two particle cumulant and the four particle cumulant methods.

Fig. 53. Transverse momentum dependence of v2 of charged hadrons in 0 <| η |< 1 (top), 1 <| η |< 2 (middle) and 2 <| η |< 2.5 (bottom) using the
event plane method, and compared with the ATLAS data [12] at 0%–10% (left), 40%–50% (middle) and 70%–80% (right) centralities.

Transverse momentum dependences of vn (n = 2, 3, 4 and 5) of charged hadrons at midrapidity are shown at 0%–10%
(Fig. 54), 40%–50% (Fig. 55) and 70%–80% (Fig. 56) centralities in Pb + Pb collisions at

√
sNN = 2.76 TeV. In each figure,

results using the event planemethod, the reaction planemethod and the two-particle cumulant method are compared with
each other. Due to the poor statistics, we omit the results from the four-particle cumulant method. In central collisions
(0%–10% centrality), all vn{EP} are close to each other. The magnitude and the order of vn{2} are almost identical to those of
vn{EP}. However, in the case of the reaction plane method, only v2 is finite and the other harmonics vanish in 0 < pT < 3
GeV/c. In semi-central collisions (40%–50% centrality), v2 deviates from other harmonics, which reflects the almond like
average geometry in non-central collisions. Again, the pattern of vn{2} is quite similar to that of vn{EP}. v2 using these three
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Fig. 54. Transverse momentum dependence of harmonics, vn (n = 2, 3, 4 and 5), using the event planemethod (left), the reaction planemethod (middle),
and the two particle cumulant method (right) at 0%–10% centrality.

Fig. 55. The same as Fig. 54 but at 40%–50% centrality.

Fig. 56. The same as Fig. 54 but at 70%–80% centrality. v4 and v5 are omitted in the event planemethod since the errors are too large due to poor resolution
of the event plane angle.

methods is almost the same, v3 and v5 vanish when the reaction plane method is used as expected from an argument of
fluctuating initial conditions,14 whereas v4{RP} becomes finite although its magnitude is rather smaller than v4{EP} and
v4{2}. The sensitivity of v4 on the analysis methods indicates that measured v4 contains both fluctuation and geometry
effects. In peripheral collisions, it is quite hard to obtain higher order harmonics with small errors for the given number of
events since not only the number of events but also the number of measured particles domatter. In the event planemethod,
resolution parameter becomes worse with decreasing centrality, which, in turn, increases the errors of vobsn .

We also show v2{EP} and v3{EP} of identified hadrons (π−, K− and p̄) in Figs. 57 and 58, respectively, at midrapidity
(|η| < 0.8) at three centralities (0–5%, 30–40% and 60–70%) in Pb + Pb collisions at the LHC energy. Mass splitting pattern,
namely vπn > vKn > v

p
n for n = 2 and 3, is clearly seen in all results except in v3 at 60–70% centrality where, due to smaller

multiplicity, resolution is poor and, consequently, errors are very large. Similar mass splitting pattern was also found in
Ref. [135], where it was pointed out that the mass splitting pattern is not necessarily a consequence of the existence of the
QGP.

When radial flow is sufficiently large, v2 of protons could be negative in the low pT region [18]. However, this cannot
be clearly seen even though radial flow at the LHC energy is expected to be larger than that at the RHIC energy. vn(pT ) for
identified hadrons would give further constraints for the dynamical modelling at the LHC energy as well as at the RHIC
energy.

So far we have shown the results obtained using the MC-KLN initialisation. We next compare these results with the
ones obtained using the MC-Glauber initialisation. As already seen in the previous section, the MC-KLNmodel gives a larger

14 Regarding v5 , a more precise reason is still not clear since the correlation between Ψ5 andΦ5 is non-trivial as shown in Fig. 40.
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Fig. 57. v2{EP} of identified hadrons in |η| < 0.8 in Pb + Pb collisions at
√
sNN = 2.76 TeV. Results at 0–5% (left), 30–40% (middle) and 60–70% (right)

centralities are shown.

Fig. 58. The same as Fig. 57 but for v3{EP}.

Fig. 59. Centrality dependence of v2 and v3 (left) and v4 and v5 (left) of charged hadrons at midrapidity (0 < η < 1) in Pb+ Pb collisions at
√
sNN = 2.76

TeV. Results obtained using the MC-KLN model are compared with the ones obtained using the MC-Glauber model.

eccentricity ε2 than theMC-Glaubermodel and, consequently, leads to larger v2. This is again seen in Fig. 59(left). Regardless
of different models, v3 using the MC-KLN model is almost identical to v3 using the Glauber model. This is due to the fact
that, in bothmodels, v3 is generated by triangular anisotropic shape of the reaction zone, ε3 and that ε3 is determined by the
granular structure of the colliding nuclei as shown in Fig. 22. On the other hand, one cannot see the similarity of vn (n = 4, 5)
between the MC-KLN model and the MC-Glauber model in Fig. 59(right). In semi-central collisions (10–60% centrality) vn
(n = 4, 5) using the MC-KLN model are systematically larger than the ones using the MC-Glauber model. In spite of a fact
that higher order flow coefficients such as v4 and v5 are correlated with lower order flow coefficients as demonstrated in
Fig. 41, simultaneous analyses of vn (n . 5) can be used to discriminate between the CGC and Glauber pictures for the
initial conditions and would thus help to provide useful information about the transport properties of the QGP. Although
the simultaneous analysis of v2 and v3 revealed the MC-KLN model apparently contradicts to the PHENIX data [245], these
calculations lack multiplicity fluctuations which would affect εn [175] and thus improve the fit to the data.

5. Conclusion

In this paper, we have performed simulations of relativistic heavy ion collisions at RHIC and LHC energies using an
integrated approach of dynamical modelling, in which Monte-Carlo calculations of initial collisions based on the colour
glass condensate or the Glauber pictures, a fully (3 + 1)-dimensional ideal hydrodynamic model with the state-of-the-art
lattice QCD equation of state, and a hadronic cascade are combined.
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We employed the Monte-Carlo versions of the Kharzeev–Levin–Nardi model and the Glauber model and, using them,
generated many events to obtain initial conditions for the subsequent hydrodynamic evolution. We had two options for
initial conditions: One is the single smooth initial condition for a given centrality as we take an average of the entropy
profiles in each centrality class. By rotating each initial profile to match its participant plane with the reaction plane, we
obtained initial conditions containing some fluctuation effects. It turned out that these initial conditions are necessary to
obtain large elliptic flow parameter in small systems, such as the matter created in Cu+Cu collisions, and in systems which
are almost cylindrical on average, such as central events in Au + Au collisions. However, these initial conditions did not
contain higher odd harmonic components and, therefore, could not lead to reproduction of anisotropic flowparameterswith
odd harmonics. We neglected the longitudinal structure of the created matter in this option and assumed boost invariance.
Therefore, we could not discuss (pseudo-) rapidity dependence of observables.

The other option is to utilise each initial profile from the Monte-Carlo calculations on event-by-event basis. Since the
entropy production in the primary nucleon–nucleon collision happens when the two nucleons in the colliding nuclei are
sufficiently close in the transverse plane, the entropy density profile contains fluctuations from configuration of nucleons
in the colliding nuclei. The resultant example of initial conditions exhibits a bumpy structure and contains also odd spatial
anisotropies unlike in the first option. In this option,we also considered space–time rapidity dependence of initial conditions.
The KLNmodel gives rapidity distribution of produced gluons through the kT factorisation formulation.We simply identified
the momentum rapidity distribution with the space–time rapidity distribution in the transverse plane to obtain initial
conditions in thewhole configuration space. The Glaubermodel does not tell us anything about the longitudinal structure of
entropy production. Wemodelled initial longitudinal structure of entropy profile based on a string picture, which we called
a modified BGK (Brodsky–Gunion–Kühn) model. In this model, the space–time rapidity dependence of entropy density was
calculated using the numbers of participants and that of binary collisions as given by the Glauber model.

Using these initial conditions, we performed ideal hydrodynamic simulations solving the expansion numerically in all
three dimensions using the Milne coordinates (τ , x, y, ηs). For the equation of state, we used a model in which the lattice
QCD results in high temperature regions are smoothly connected with a resonance gas equation of state with the same
hadrons than the event generator JAM. The resultant equation of states exhibits a crossover behaviour rather than a phase
transition.Weemployed the Piecewise ParabolicMethod to solve thehydrodynamic equations. Thismethodhas been known
as a robust algorithm against strong shock waves, and is thus ideal for simulating fluid evolution starting from bumpy
initial conditions on an event-by-event basis. We described the space–time evolution of the QGP fluids all the way down
to the switching temperature. The switching temperature was chosen to reproduce the final particle ratios of pions, kaons
and protons at the full RHIC energy. With the subsequent hadronic evolution, we found Tsw = 155 MeV leads to a good
description of yields and slopes in transverse momentum distribution for identified hadrons at RHIC. From a macroscopic
hydrodynamic picture to a microscopic particle picture at Tsw, we employed the Cooper–Frye formula rejecting in-coming
particles which contribute as a negative number in the phase-space. By sampling hadrons on the particlisation hypersurface
according to this prescription, we obtained ‘‘initial’’ phase-space distribution for the subsequent hadronic cascading on an
event-by-event basis. We simulated the space–time evolution of hadron gas utilising a hadronic cascade, JAM. Transport
models can naturally treat the late low density phase of the system in the heavy ion collision where the system is not
expected to be in a local equilibrium any more, and provide a realistic freeze-out which depends on the particle species.

We simulated ∼105 ‘‘minimum bias’’ events with Npart ≥ 2 in the event-by-event option for each parameter set. We
confirmed the averagemultiplicity in event-by-event simulations is smaller than themultiplicity using the smooth averaged
initial conditions. We also obtained pT spectra for identified hadrons and found antiproton yields become comparable with
negative pion yield at pT ∼ 3 GeV/c. So far comparisons of theoretical results using a flow analysis method have been made
with experimental data obtained using the different flow analysis method. We analysed the final particle distribution in a
spirit of performing (almost) the sameprocedure as the experimentalists have done.Weused particlemultiplicity in forward
rapidity to perform centrality cuts. When we calculated the anisotropic flow parameters, we employed several typical flow
analysis methods such as reaction plane method, event plane method and two- and four-particle cumulant methods.

We found that someof the different flowanalysismethods lead to almost the same results. For instance, vn using the event
planemethod is almost the same as vn using the two-particle cumulantmethodwithin errors. Notice that contributions from
jet fragmentation were missing in our dynamical simulations, which omits one of the major non-flow effects in the two-
particle cumulant method. On the other hand, the four-particle cumulant method gives different results. v2 using the four-
particle cumulant method is more like theoretically calculated v2 with respect to the reaction plane. Although we did not
have enough statistics to draw firm conclusions, in our calculations, v3 using the four particle cumulantmethodwas roughly
half of v3 obtained using the other two methods. v2 using the event plane method contains effects of participant plane
fluctuation: In the limit of vanishing centrality percentage, v2 using the event plane method stays finite. v2n+1 are expected
to vanish if measured with respect to the reaction plane. However, v2n+1 are finite due to fluctuating initial transverse
profiles in the event plane method and the two-particle cumulant method.

We evaluated the correlations between the event plane and the orientation angles to see a possible mechanism of
generating higher order anisotropic flow. For v2 and v3, these two angles are strongly correlated: Anisotropic flow is
generated mainly by pressure gradient in the direction of short axis in each participant anisotropy. On the other hand,
non-trivial correlations are seen in v4 and v5.v4 is first driven by the fourth spatial anisotropy in central collisions, but could
be driven by elliptic flow with respect to reaction plane in mid-central to peripheral collisions. This could be seen in the
mixed correlation betweenΦ2 and Ψ4.
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We used two models of initial conditions, namely MC-KLN model and MC-Glauber model, and made a systematic
comparison between them. Although entropy density profile is different in these two models, both models can lead to
almost identical particle yields and pT spectra. On the other hand, the spatial anisotropy ε2 from theMC-KLNmodel is larger
than the one from theMC-Glaubermodel, which leads to discrepancy of v2 between theMC-KLNmodel and theMC-Glauber
model. Within ideal hydrodynamic simulations, the difference can be seen in all v2 results. However, ε3 from the MC-KLN
model is almost the same as the one from the MC-Glauber model because it originates from initial fluctuation of transverse
profiles, which is treated in a similar fashion in both models. Consequently, there is almost no difference of v3 between
these two models. As claimed by the PHENIX Collaboration [245], one can use this fact to discriminate the MC-KLN model
from the MC-Glauber model. Simultaneous analyses of higher order anisotropies such as v4 and v5, in addition to v2 and v3,
would also provide more information about the initial conditions.

In this paper, we restricted our discussion to ideal hydrodynamic description of the QGP fluids. However, to understand
the transport properties of the QGP, viscous corrections to both dynamics and particle spectra are mandatory. So far, there
have been several viscous hydrodynamic simulations to analyse anisotropic parameters at RHIC and LHC energies. Some
of the simulations have been performed in (2 + 1) dimensional space with an assumption of boost invariance. However,
given a fact that event planes are determined in forward rapidity regions in some flow analyses experimentally, fully three
dimensional simulations are necessary to describe the actual dynamics.

Final higher harmonics were turned out to be sensitive to the flow analysis method. A good example was the triangular
flow v3: although v3 with respect to the event plane is almost similar to v3 from the two-particle cumulant method, v3 from
the four-particle cumulant method is roughly a half of them. This has already been confirmed in the experimental data [38].
In the hydrodynamic simulations, one usually obtains smooth distributions using the Cooper–Frye formula. However,
Monte-Carlo sampling from these smoothmomentumdistributions is necessary to perform particle-based analysismethod,
i.e., event-plane method or multi-particle cumulants methods. Of course, the subsequent hadronic cascading is also
important and required to describe the gradual freezeout in the hadronic rescattering stage.

We also showed that, for higher order harmonics (n ≥ 4), the participant plane defined using initial profiles does not
correlate with the event plane defined using final particle samples. Thismeans that calculations using event-averaged initial
conditions where the orientation angles of the anisotropy εn are matched, are questionable.

The PHENIX Collaboration found [245] that the Glauber initialisation followed by viscous hydrodynamic simulationswith
η/s = 0.08 simultaneously reproduced v2 and v3 as functions of centrality, while the KLN initialisation with η/s = 0.16
leads to a reasonable reproduction only of v2. After that, it was found that fluctuation of particle production obeying KNO
scaling at midrapidity enhances initial spatial anisotropy ε2n+1 (n ≥ 1) at all centralities [175]. The initial conditions
including this feature could lead to enhancement of v2n+1 with keeping v2. This would change our understanding of v2
and v3 as functions of centrality above. Although it would be interesting to consider this KNO scaling idea in the integrated
dynamical model, how to formulate it in rapidity direction is an open question.

We assumed that initial entropy production can directly be used as initial conditions in hydrodynamic simulations
and neglected the description of any thermalisation processes. As known, thermalisation is one of the outstanding open
questions in the physics of relativistic heavy ion collisions.

In the event-by-event hydrodynamic simulations, thermal fluctuations during evolutions might have been impor-
tant [246]. In this case, hydrodynamic equations (more specifically, constitutive equations) are no longer the deterministic
equations, but become the stochastic equations. Since the fluctuation–dissipation relation tells us thermal fluctuation of the
energy–momentum tensor is intimately related with viscosity, one should include fluctuation in the dynamical evolution,
in particular, in the event-by-event simulations.

Switching from a hydrodynamic picture to a particle picture has several open issues. Some procedures adopted in the
present study do not respect energy–momentum conservation. We neglected in-coming particles which contribute as
negative number in the phase-space distribution. This could have been resolved partly by simulating hydrodynamics and
hadron cascade simultaneously and by explicitly treating absorption of particles coming inside fluid regions. The negative
contributions are an issue for the space-like hypersurface elements, but even for the time-like elements, the sampling of the
finite number of particles violates the energy–momentum conservation in an individual event. The conservation recovers
only when over-sampling of particles is made.

Regarding a switch from a fluid to a gas, one natural question would be when and how hydrodynamic picture breaks
down. In the present study, the switching temperature is just an adjustable parameter to reproduce particle ratios among
hadrons. It is interesting to note that the switching temperature Tsw = 155 MeV obtained in this study is very close to the
pseudocritical temperature of the chiral phase transition. In fact, it has been claimed [247,248] that bulk viscosity enhanced
in the vicinity of cross-over region would trigger this transition from thermalised fluid to individual particles.
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Appendix

In this appendix, we show some technical details about momentum integration of the Cooper–Frye formula [86] for the
purpose of less numerical costs [94].

Since the number is Lorentz invariant, Eq. (15) can be Lorentz-transformed to the local rest frame using four flow velocity
uµ and written as

∆N± =


d3p
E

[p ·∆σ ]±

exp[(p · u − µ)/T ] − ϵ

=


d3p̄
Ē

[p̄ ·∆σ̄ ]±

exp[(Ē − µ)/T ] − ϵ
(85)

where [· · ·]± = Θ(± · · ·)| · · · |. Hereafter integral variables p̄ = (Ē, p̄) can be renamed as p. In the following, we discuss
only about out-going particles [· · ·]+. Results for in-coming particles [· · ·]− can be easily obtained by replacing ∆σ̄ with
−∆σ̄ . Taking the z axis being parallel to∆σ̄,

[p ·∆σ̄ ]+ = [E∆σ̄ 0
− pz | ∆σ̄ |]+

= [E∆σ̄ 0
− p cos θ | ∆σ̄ |]+. (86)

Thus, the above integration becomes

∆N+ =


dp

exp[(E − µ)/T ] − ϵ

2πp2d cos θ
E

[E∆σ̄ 0
− p cos θ | ∆σ̄ |]+. (87)

When | ∆σ̄ |= 0, we easily integrate the above equation and the results becomes

∆N+ = 4π


p2dp
exp[(E − µ)/T ] − ϵ

[∆σ̄ 0
]+. (88)

When | ∆σ̄ |> 0, a short calculation leads to

[E∆σ̄ 0
− p cos θ |∆σ̄|]+ = p|∆σ̄|


E∆σ̄ 0

p|∆σ̄|
− cos θ


+

= p|∆σ̄|[A − cos θ ]+ (89)

A =
E
|p|

∆σ̄ 0

|∆σ̄|
. (90)

First, we integrate the above equation with respect to cos θ 1

−1
d cos θ [A − cos θ ]+ =

 1

−1
d cos θ(A − cos θ)Θ(A − cos θ)

= 2AΘ(A − 1)+
(A + 1)2

2
Θ(1 − |A|), (91)

where Θ is the Heaviside function. Let us define ‘‘velocity’’ and ‘‘momentum’’ of surface vector as vσ̄ = ∆σ̄ 0/|∆σ̄| and

pσ̄ = m|vσ̄ |/


1 − v2σ̄ , respectively.

Finally we obtain

∆N+ = 4π


∞

0

p2dp
exp[(E − µ)/T ] − ϵ

[∆σ̄ 0
]+

+Θ(1 − |vσ̄ |)


π |∆σ̄|


∞

pσ̄

p(E2v2σ̄ + p2)dp
exp[(E − µ)/T ] − ϵ

− 2π |∆σ̄ 0
|


∞

pσ̄

p2dp
exp[(E − µ)/T ] − ϵ


. (92)

Remembering that the hypersurface elements have been Lorentz-transformed, we have to Lorentz-transform back to the
laboratory frame:

∆σ̄ 0
= u ·∆σ (93)

| ∆σ̄ |
2

= (∆σ̄ 0)2 −∆σ̄ ·∆σ̄
= −(gµν − uµuν)∆σµ∆σ ν . (94)

Now the three-dimensional integral with a complicated integrand such as [· · ·]± reduces to the one-dimensional one
and it is easily done numerically.
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Abstract: We employ the lattice QCD data on Taylor expansion coefficients to extend our previous parametrization
of the equation of state to finite baryon density. When we take into account lattice spacing and quark
mass dependence of the hadron masses, the Taylor coefficients at low temperature are equal to those
of hadron resonance gas. Parametrized lattice equation of state can thus be smoothly connected to the
hadron resonance gas equation of state at low temperatures.
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One of the methods to extend the lattice QCD calcula-tions to non-zero chemical potential is Taylor expansion.In that approach pressure is Taylor expanded in chemicalpotentials, and the Taylor coefficients are calculated onthe lattice at zero chemical potential. In this contribu-tion we use the results of the most comprehensive latticeQCD analysis of the Taylor coefficients to date [1, 2] toconstruct a parametrisation of an equation of state (EoS)for finite baryon density. As in our earlier parametrisa-tion of the EoS at zero chemical potential [3], we requirethat our parametrisation matches smoothly to the hadron
∗E-mail: huovinen@th.physik.uni-frankfurt.de

resonance gas (HRG) at low temperatures.Taylor coefficients are derivatives of pressure, P , with re-spect to baryon and strangeness chemical potentials, µBand µS , respectively:
cij (T ) = 1

i!j! T i+j
T 4 ∂i

∂µiB
∂j

∂µjS
P(T , µB = 0, µS = 0), (1)

where T is temperature1. As we discussed in [4], all thecoefficients evaluated in Refs. [1, 2] are well below the
1 We use natural units where c = h̄ = kB = 1 throughout
the text.
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Figure 1. The parametrisation (solid line) and HRG value (dashed) of the c20 (left) and c40 (right) coefficients compared with the shifted p4 data
(see the text). The recent lattice result for c20 with the HISQ action [6] is also shown. The arrows depict the Stefan-Boltzmann values.

HRG results. This discrepancy can largely be explainedby the lattice discretisation effects on hadron masses:When the hadron mass spectrum is modified accordingly(for details see [5]), the HRG model reproduces the lat-tice data, see Fig. 1 of Ref. [4]. Interestingly this changecan be accounted for by shifting the modified HRG resultof purely baryonic coefficients towards lower temperatureby 30 MeV. The situation is similar for other Taylor ex-pansion coefficients [5], although the strange coefficientsmight favour slightly smaller shift. Based on this findingand because the lattice data agree so well with the mod-ified HRG we suggest that cutoff effects can be accountedfor by shifting the lattice data by 30 MeV. We show theeffect of such a shift in the left panel of Fig. 1, where weplot the HRG curve with physical masses (dashed line)and compare it with the lattice data, where all the pointsbelow 206 MeV temperature are shifted by 30 MeV, andthe 209 MeV point by 15 MeV. For further confirmationof this procedure we also plot the recent HISQ result of
c20 [6] in Fig. 1 (right): At low temperatures the shiftedp4 data agree with the HISQ data.We parametrise the shifted data as a function of temper-ature T using an inverse polynomial of four (c20), five (c11and c02), or six (fourth and sixth order coefficients) terms:

cij (T ) = m∑
k=1

akij
T̂ nkij

+ cSB
ij , (2)

where cSB
ij is the Stefan-Boltzmann value of the partic-ular coefficient, akij are the parameters, and the pow-ers nkij are required to be integers between 1 and 42.

T̂ = (T −Ts)/R with scaling factors Ts = 0 and R = 0.15

GeV for the second order coefficients and Ts = 0.1 GeVand R = 0.05 GeV for all the other coefficients. Wematch this parametrisation to the HRG value at temper-ature TSW = 155 MeV by requiring that the Taylor co-efficient and its first, second, and third derivatives arecontinuous. Since the recent lattice data obtained usingHISQ action [6] shows that the second order coefficientsapproach their Stefan-Boltzmann limits slowly, we requirethat their value is 95% of their Stefan-Boltzmann value at800 MeV temperature. These constraints fix four (or five)of the parameters akij . The remaining parameters, arefixed by a χ2 fit to the lattice data. As an example weshow the parametrised c20, c40, and c60 in Figs. 1 and 2.Once the coefficients are known, pressure can be writtenas
P
T 4 =∑

ij
cij (T )(µBT )i (µST )j , (3)

and all the other thermodynamical quantities can be ob-tained from Eq. (3) by using the laws of thermodynamics.This kind of an expansion breaks down at large chemi-cal potentials. However, at baryon densities of interesthere, the contribution from coefficients of particular or-der is clearly below (< 20%) the lower order contribution.Thus the approximation of the EoS in terms of fourth-and sixth order expansion looks reasonable. As pres-sure at µB = 0, i.e. the coefficient c00, we use our earlierparametrisation s95p-v1 [3]. We describe the EoS in theright panel of Fig. 2 by showing the square of the speedof sound c2
s = ∂P/∂ε|s/nB [7] on various isentropic curveswith constant entropy per baryon s/nB [8]. The curves at

s/nB = 400, 65, and 40 are relevant at collision energies√sNN = 200, 39 and 17 GeV, respectively. At s/nB = 400
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Figure 2. (Left) The parametrisation (solid line) and HRG value (dashed) of the c60 coefficient compared with the shifted p4 data (see the text).
(Right) The square of the speed of sound c2

s as a function of temperature on various isentropic curves with constant entropy per baryon
s/nB (see the text).

(dotted line), the EoS is basically identical to the EoS at
µB = 0 (thin solid line). At larger baryon densities theeffect of finite baryon density is no longer negligible. Thelarger the density, the stiffer the EoS above, and softerbelow the transition temperature.Furthermore, additional structure begins to appear aroundthe transition temperature with increasing density. We ex-pect this structure to be an artifact of our fitting procedure:Our fit is too good and elevates errors to features lead-ing to additional ripples in the speed of sound. Anotherinteresting feature in the equation of state is the rapidchange of the speed of sound around Tsw = 155 MeV andanother change around T ≈ 185 MeV. The latter has itsorigin in our baseline µB = 0 EoS. It follows hadron res-onance gas up to T = 184 MeV temperature causing achange in the speed of sound at that temperature. Never-theless, when pressure is plotted as a function of energydensity, these structures are hardly visible. Therefore wedo not expect them to affect the buildup of flow and theevolution of the system, and consider our parametrisationa reasonable first attempt.We have studied the effect of the EoS on flow by cal-culating elliptic flow in Pb+Pb collision at the full SPScollision energy (√sNN = 17 GeV). Our results are simi-lar to those we have shown earlier [4]: Even if in an idealfluid calculation at RHIC energy proton v2(pT ) is sensitiveto the order of phase transition [9], at SPS energy bothproton and pion v2(pT ) are insensitive to it.To summarise, we have shown that a temperature shiftof 30 MeV is a good approximation of the discretisationeffects in the lattice QCD data obtained using p4 action.We have constructed an equation of state for finite baryon

densities based on hadron resonance gas and lattice QCDdata. At the full SPS energy (√sNN = 17 GeV) the pT -differential elliptic flow is almost insensitive to the equa-tion of state. This is bad news for the experimental searchof the critical point, since a change from a first order phasetransition to a smooth crossover does not cause an observ-able change in the flow.
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Abstract

We compare the trace anomaly, strangeness and baryon number fluctuations calculated in lattice QCD
with expectations based on hadron resonance gas model. We find that there is a significant discrepancy
between the hadron resonance gas and the lattice data. This discrepancy is largely reduced if the hadron
spectrum is modified to take into account the larger values of the quark mass used in lattice calculations
as well as the finite lattice spacing errors. We also give a simple parametrization of QCD equation of state,
which combines hadron resonance gas at low temperatures with lattice QCD at high temperatures. We
compare this parametrization with other parametrizations of the equation of state used in hydrodynamical
models and discuss differences in hydrodynamic flow for different equations of state.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Equation of state of hot strongly interacting matter play important role in cosmology [1,2] and
hydrodynamic description of heavy ion collisions [3]. In many cases hydrodynamical models
which try to describe the collective flow in heavy ion collisions used equation of state (EoS)
with first order phase transition, although lattice QCD shows that the transition to the deconfined
phase is only a crossover [4]. It is not obvious to what extent the collective flow is sensitive
to details of the equation of state (EoS). It turns out, however, that in ideal fluid dynamics the
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anisotropy of the proton flow is particularly sensitive to the QCD equation of state [5] and using
lattice inspired EoS with crossover transition overpredicts proton elliptic flow.

Attempts to calculate EoS on the lattice have been made over the last 20 years (see Refs.
[6,7] for reviews). One of the difficulties in calculating EoS on the lattice is its sensitivity to high
momentum modes and thus to the effects of finite lattice spacing. This problem is particularly
severe in the high temperature limit. Therefore in recent years calculations have been done using
improved staggered fermions with higher order discretization of the lattice Dirac operators [8,9]
which largely reduce the cutoff dependence in the high temperature region. However, there is
another source of discretization effects if staggered quarks are used. The staggered fermion for-
mulation does not preserve the flavor symmetry of continuum QCD. Because of this the spectrum
of low lying hadronic states is distorted and this may effect thermodynamic quantities in the low
temperature region.

Hadron resonance gas (HRG) turned out to be very successful in describing particle abun-
dances produced in heavy ion collisions [10]. It was also used to estimate QCD transport
coefficients [11] as well as chemical equilibration rates [12] close to the transition tempera-
ture. Thermodynamic quantities calculated in lattice QCD with rather large quark mass agree
well with the HRG model if the masses of the hadrons in the model are tuned appropriately to
match the large quark mass used in lattice calculations [13]. Furthermore, the ratio of certain
charge susceptibilities are not very sensitive to the details of the hadron spectrum and the lat-
tice calculations of these ratios show a reasonably good agreement with HRG model predictions
at low temperatures [14–16]. The purpose of this paper is to confront the results of recent lat-
tice calculations performed with light quark masses with the prediction of the HRG model and
clarify its range of applicability. As we will see the HRG model describes thermodynamic quan-
tities quite well up to unexpectedly high temperatures. Therefore lattice EoS can be combined
with HRG EoS at low temperatures to get rid of large discretization effects. Such an EoS is also
useful for hydrodynamic modeling, and we construct a parametrization for an EoS interpolating
between HRG at low temperatures and lattice QCD at high temperatures. The rest of the paper
is organized as follows. In Section 2 we discuss the hadron resonance gas model and the effects
of finite lattice spacing on hadron masses. Section 3 deals with the comparison of fluctuations
of baryon number and strangeness with the prediction of HRG model. In Section 4 we compare
the HRG with the lattice results on trace anomaly and construct a parametrization of equation of
state which is easy to use in hydrodynamic simulations. In this section we also give a detailed
comparison with other parametrizations of EoS in the literature. In Section 5 we discuss hydro-
dynamic flow for different EoSs discussed in the previous section, and highlight the differences.
Finally Section 6 contains our conclusions. In appendices we discuss some technical aspects of
the calculations, in particular the fits of the lattice data as well as the hydrodynamic flow for
partial chemical equilibrium.

2. Hadron resonance gas and lattice QCD

At sufficiently low temperature thermodynamics of strongly interacting matter at zero baryon
number density is dominated by pions. The interaction between pions is suppressed and chiral
perturbation theory can be used to estimate the pion contribution to thermodynamic poten-
tial [17]. In fact, for temperatures T � 150 MeV, the energy density of pions calculated in
3-loop chiral perturbation theory differs only by less than 15% from the ideal gas value [17].
As temperature increases heavier hadrons start to contribute to thermodynamics. For tempera-
tures T � 150 MeV heavy states dominate the energy density. However, the densities of heavy
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particles are still small, ni ∼ exp(−Mi/T ), and their mutual interactions, being proportional to
nink ∼ exp(−(Mi +Mk)/T ), are suppressed. Therefore one can use the virial expansion to eval-
uate the effect of interactions [18]. In the low temperature limit the virial expansion reduces to
chiral perturbation theory [17]. The virial expansion together with experimental information on
the scattering phase shifts was used by Prakash and Venugopalan to study thermodynamics of
low temperature hadronic matter [19]. Their analysis showed that there is an interplay between
attractive interactions (characterized by positive phase shifts) and repulsive interactions (charac-
terized by negative phase shifts) such that their net effect can be well approximated by inclusion
of free resonances: ρ, K∗, �(1234), etc. Thus the interacting gas of hadrons can be fairly well
approximated by a non-interacting gas of resonances corroborating earlier ideas of the statistical
bootstrap model [20]. To summarize, the partition function of strongly interacting matter at low
temperature can be well approximated by the partition function of non-interacting hadrons and
resonances

pHRG/T 4 = 1

V T 3

∑
i∈mesons

ln Z M
mi

(T ,V,μXa ) + 1

V T 3

∑
i∈baryons

ln Z B
mi

(T ,V,μXa ), (2.1)

where

ln Z M/B
mi

= ∓V di

2π2

∞∫
0

dk k2 ln
(
1 ∓ zie

−εi/T
)
, (2.2)

with energies εi =
√

k2 + m2
i , degeneracy factors di and fugacities

zi = exp

((∑
a

Xa
i μXa

)
/T

)
. (2.3)

Here we consider all possible conserved charges Xa , including the baryon number B , electric
charge Q, strangeness S etc. We do not include any repulsive interactions in the form of excluded
volume corrections or repulsive mean field [21].

The assumption that thermodynamics in the low temperature region is well described by a
gas of non-interacting hadrons and resonances is important for practical applications of hydro-
dynamic models. At the end of the hydrodynamical evolution, the fluid is usually converted into
particles using the Cooper–Frye procedure [22]. This procedure conserves energy, momentum
and charge without any specific considerations if, and only if, the equation of state of the fluid
is the same than the equation of state of free particles [23]. Therefore it is important to confront
the predictions of the hadron resonance gas for different thermodynamical quantities with the
available lattice data.

The most extensive lattice calculations of the equation of state have been performed using two
versions of improved staggered fermions: the so-called asqtad and p4 formulations [8,9,24]. Cal-
culations have been performed using lattices with temporal extent Nτ = 4 and 6 [8,9] and more
recently with temporal extent Nτ = 8 [24]. These correspond to lattice spacings a = 1/(4T ),
1/(6T ) and 1/(8T ) respectively. The strange quark mass ms was close to its physical value,
while the light (u and d) quark masses were one tenth of the strange quark mass, mq = 0.1ms ,
corresponding to the pion mass in the range 220–260 MeV. The lattice calculations of the equa-
tion of state have been compared to the prediction of the hadron resonance gas [9,24]. It turned
out that the lattice results fall considerably below the HRG prediction. One obvious reason for
this discrepancy is the fact that the quark mass used in lattice calculations is about a factor two
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larger then the physical one. However, this fact alone is unlikely to explain the whole discrep-
ancy as the contribution of the pseudo-scalar mesons to the energy density is small and quark
mass dependence of other hadron masses in this small quark mass region is relatively weak. On
the other hand, the lattice spacing dependence of the hadron masses may play an important role.
Since the lattice calculations of the EoS are performed at fixed temporal extent Nτ , the tempera-
ture is varied by changing the lattice spacing T = 1/(Nτa). As the temperature is decreased the
lattice spacing gets larger and the cutoff effects on the hadron masses increase, i.e. the size of
cutoff effects on the hadron masses is a function of the temperature.

The hadron masses for asqtad improved staggered fermions have been studied in Refs. [25–
28] for several lattice spacings a � 0.06, 0.09, 0.125, 0.18 and 0.25 fm. For all of these lattice
spacings there are significant deviations in the hadron masses from the experimental values. Of
course, after the proper continuum extrapolations all the hadron masses agree with the experi-
ment [25]. The large cutoff dependence of the hadron masses in the staggered formulation is due
to large O(αsa

2) discretization errors which also break the flavor symmetry. This is not the case
for the improved Wilson fermion formulation [29,30], where cutoff dependence of the hadron
masses is below 5% already at lattice spacing < 0.2 fm. In the following subsections we discuss
the cutoff dependence of the pseudo-scalar meson, vector meson and baryon masses separately.

2.1. Pseudo-scalar mesons in staggered formulation

The staggered formulation of lattice QCD describes four degenerate quark flavors in the con-
tinuum limit. To obtain the physical number of flavors, i.e. one relatively heavy strange quark
and two light quarks, the so-called rooting procedure is used. The rooting procedure amounts to
replacing the fermion determinant in the path integral expression of the partition function with
its fourth root. In the continuum limit this procedure is justified [31].1 At finite lattice spacing,
however, the four flavors are not degenerate, but there are flavor changing discretization effects
of order O(αsa

2). As the result of this the sixteen pseudo-scalar mesons of the 4 flavor theory
have unequal masses, and only one of them has a vanishing mass in the limit of the zero quark
mass, mq → 0. The sixteen pseudo-scalar mesons can be grouped into eight multiplets [34]. The
multiplets are characterized by the different masses mpsi and degeneracies di

ps, i = 0,1, . . . ,7.

The first multiplet contains one Goldstone pseudo-scalar meson, i.e. m2
ps0

∼ mq and d0
ps = 1. The

flavor generators Γ F of the 4 flavor theory can be chosen to be the product of the Dirac matrices
[34,35]. The masses of other pseudo-scalar mesons are given by

m2
psi

= m2
ps0

+ δm2
psi

. (2.4)

The quadratic splittings δm2
psi

are independent of the input quark mass mq to a very good ap-

proximation and are proportional to (αsa
2) for small lattice spacings, and in general, increase

with increasing index i. The correspondence between the index i and the flavor matrix as well as
the degeneracies di

ps for non-Goldstone pseudo-scalar mesons are given in Table 1.

1 The justification of the rooting procedure at finite lattice spacing is still subject of debate see e.g. Refs. [32,33].
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Table 1
The parameters of Eq. (2.5) describing the quadratic pseudo-scalar meson splittings. Also shown are the flavor matri-
ces Γ F and the degeneracy factors di

ps.

i Γ F di
ps ai

ps bi
ps ci

ps βi
ps

1 γ0γ5 1 7.96583 45.6265 −0.983624 1.80
2 γiγ5 3 25.9514 129.049 −4.673780 1.45
3 γiγj 3 19.3047 163.787 −5.675470 1.55
4 γiγ0 3 4.26042 45.0193 −0.489748 2.00
5 γi 3 5.43308 79.455 −1.71669 2.00
6 γ0 1 7.52963 95.2536 −2.24599 1.80
7 1 1 3.76433 70.8311 −0.373003 2.20

Fig. 1. The quadratic splittings of non-Goldstone pseudo-scalar mesons in the seven different multiplets calculated with
asqtad action [25] at different lattice spacings. The lines show the parametrization given by Eq. (2.5). The open symbols
refer to the lattice data obtained with the stout action [36].

The quadratic splittings have been calculated in numerical simulations with asqtad action in
Refs. [25,27]. For lattice spacings 0.09 fm < a < 0.25 fm the data can be well parametrized by
the form

r2
1 · δm2

psi
= ai

psx + bi
psx

2

(1 + ci
psx)

βi
, x = (a/r1)

2. (2.5)

Here and in what follows we use the scale parameter r1 extracted from the static quark potential
V (r) to convert from lattice units to physical units. The scale parameter r1 is defined as

r2 dV (r)

dr

∣∣∣∣
r=r1

= 1.0. (2.6)

We use the value r1 = 0.318 fm determined from bottomonium splitting [27]. The values of the
parameters ai

ps, bi
ps, ci

ps, βi
ps are given in Table 1. In Fig. 1 we show the quadratic pseudo-scalar

meson splittings calculated by the MILC Collaboration [25,27] as function of the lattice spacing
and compared with the parametrization given by Eq. (2.5). As one can see from the Fig. 1, this
parametrization gives good description of the data. In Fig. 1 we also show the pseudo-scalar
meson splitting for stout action used by the Budapest–Wuppertal group [36]. The splittings are
significantly reduced compared to the calculations with asqtad action. To take into account the
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flavor symmetry breaking in the pseudo-scalar meson sector, i.e. the fact that pion masses are
non-degenerate the contributions of pions and kaons to the pressure is calculated as

pπ,K/T 4 = 1

16

1

V T 3

7∑
i=0

di
ps ln Z M(mpsi

), (2.7)

where mpsi , i = 1–7, is calculated according to Eq. (2.4) and mps0
is equal to the pion or kaon

mass used in the actual lattice calculations. Fig. 1 shows that the splitting between different
pseudo-scalar mesons is quite large for lattice spacings used in calculations of the equation of
state (a = 0.12–0.18) fm. Even in the calculations with the stout action the mass of the heaviest
pion that enters Eq. (2.7) is about 500 MeV if Nτ = 8 lattices are used. As the result the contribu-
tion of the pseudo-scalar mesons to thermodynamic quantities at finite lattice spacings is smaller
than in the continuum.

2.2. Vector meson masses

In lattice calculations hadron masses are functions of the input quark mass and the lattice
spacing. The quark mass dependence of the hadron masses is usually studied in terms of the
lightest (Goldstone) pion mass. Since in lattice calculations quark masses are larger than the
physical ones, and there is no full flavored chiral symmetry at finite lattice spacing a combined
extrapolation in the pion mass and lattice spacing is needed for all hadron masses. We fitted the
lattice spacing and pion mass dependence of the vector meson masses with the following simple
formula

r1 · m(a,mπ) = r1m
phys + a1(r1mπ)2 − a1(r1m

phys
π )2

1 + a2x
+ b1x

1 + b2x
, x = (a/r1)

2, (2.8)

where mphys is the physical value of the meson mass from the particle data book. It turns out that
this formula describes the lattice spacing dependence of the vector meson masses in the interval
0.06 fm < a < 0.18 fm for (r1mπ)2 < 0.8. For strange vector mesons we set a2 = 0 as there is no
apparent lattice spacing dependence of the slope in their quark mass dependence. The numerical
values of a1, a2, b1 and b2 are given in Appendix A, where also the lattice data on the vector
meson masses are shown.

2.3. Baryon masses

The nucleon and the Ω baryon masses have been calculated by the MILC Collaboration with
asqtad action at five different lattice spacings, a = 0.06,0.09,0.12 and 0.18 fm [25,27,28,37]
and several quark masses. We performed a simultaneous fit of their quark mass (pion mass)
and the lattice spacing dependence using the Ansatz given by Eq. (2.8), which works well for
(r1mπ)2 < 0.8. The parameters of this fit together with the lattice data on the nucleon and Ω

baryon masses are presented in Appendix A. In calculations with asqtad action the value of the
strange quark mass was slightly larger than its physical value for each lattice spacing considered.
This is due to the fact that the strange quark mass was fixed considering the ratio of the φ

meson mass to the mass of the unmixed ηss pseudo-scalar meson instead fixing the kaon mass.
This gives difference O(a2) in the value of the strange quark mass. To take this into account
the lattice spacing dependence of the strange quark mass was parametrized as ms/m

phys
s (a) =

1 + 1.02(a/r1)
2. Then to estimate the Ω baryon mass we used the following formula
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r1mΩ(a,mπ) = r1m
phys
Ω + a1(r1mπ)2 − a1

(
r1m

phys
π

)2 + b1x

+ (
m

phys
Ω − m

phys
�

) · 1.02x, x = (a/r1)
2. (2.9)

Here the last term accounts for the small deviation of the strange quark mass from its physical
value. For other baryons (�, Λ, Σ , and Ξ ) no such detailed lattice calculations are available.
Therefore to estimate the cutoff dependence of the � mass we use the same formula as for
nucleon. While to estimate the cutoff dependence of the masses of the strange baryons we used
the following formulas

r1 · mΛ(a,mπ) = m
phys
Λ + 2

3

a1(r1mπ)2

1 + a2x
+ b1x

1 + b2x
+ r1 · (mphys

Λ − m
phys
p )

1 + a2x

(
ms

m
phys
s

)
,

(2.10)

r1 · mΣ(a,mπ) = m
phys
Σ + 1

3

a1(r1mπ)2

1 + a2x
+ b1x

1 + b2x
+ r1 · (mphys

Σ − m
phys
p )

1 + a2x

(
ms

m
phys
s

)
,

(2.11)

r1 · mΞ(a,mπ) = m
phys
Ξ + 1

3

a1(r1mπ)2

1 + a2x
+ b1x

1 + b2x
+ r1 · (mphys

Ξ − m
phys
p )

1 + a2x

(
ms

m
phys
s

)
,

x = (a/r1)
2. (2.12)

Here again we have taken into account that the strange quark mass in simulations with asqtad
was slightly larger than the physical value. In Appendix A we give the comparison of the baryon
masses calculated using the above formulas with available lattice results. It turns out that our
parametrization of the baryon masses works reasonably well. We will use these parametrizations
when calculating different quantities in the HRG model in the following sections.

3. Fluctuations of conserved charges

Derivatives of the pressure with respect to chemical potential of conserved charges, e.g.
baryon number (B), electric charge Q and strangeness S can be easily calculated in lattice QCD

χX
n = T n ∂np(T ,μB,μQ,μS)

∂μn
X

∣∣∣∣
μX=0

, X = B,Q,S. (3.1)

These are related to quadratic and higher order fluctuations of conserved charges χX
2 =

〈X2〉/(V T 3), χX
4 = (〈N4

X〉 − 3〈N2
X〉2)/(V T 3), etc.2 Contrary to the pressure itself the evalu-

ation of these derivatives does not involve zero temperature subtraction and integration in the
temperature variable starting from some low temperature value. Therefore it is easy to com-
pare them to the prediction of the HRG model. Different fluctuations up to the sixth order have
been calculated for p4 and asqtad action [16,38,39] on Nτ = 4 and Nτ = 6 lattices. Quadratic
strangeness fluctuations have been also calculated on Nτ = 8 lattices for the p4 and asqtad ac-
tions by the HotQCD Collaboration [24]. While there are extensive calculations with p4 action
at finite temperature, the zero temperature hadron spectrum was not studied in detail for p4 ac-
tion. Therefore our analysis of fluctuations and comparison with HRG model will mostly rely on
results obtained with asqtad action.

2 Here we consider the case of zero chemical potential, so 〈NX〉 = 0.
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Fig. 2. Baryon number fluctuations calculated with asqtad action on the Nτ = 6 lattices compared with HRG model with
physical value of the baryon masses (solid line) and with HRG model with baryon masses calculated according to Eqs.
(2.8)–(2.12), mB

cut = 1.8 GeV and mB
cut = 2.5 GeV (dashed lines). Also shown are the lattice results for the p4 action.

Let us start our discussion with baryon number fluctuations. Baryon number fluctuations for
asqtad action have been calculated in Ref. [38] for mq = 0.2ms on Nτ = 6 lattices. Eqs. (2.8)–
(2.12) describe the quark mass and lattice spacing dependence of ground state baryon masses
calculated on lattice with asqtad action. Nothing is known about the lattice spacing dependence
of the excited baryon masses which play very important role in baryon number fluctuations in the
temperature range of interest. We assume that all the excited baryons up to certain mass threshold
mB

cut have the same quark mass and lattice spacing dependence, while the baryon masses above
that threshold are not modified by finite lattice spacing. The mass threshold mB

cut is an additional
parameter of our model. In Fig. 2 we show the lattice data for baryon number fluctuations for
asqtad action compared with hadron resonance gas model with physical value of the baryon
masses including all the states up to 2.5 GeV. The lattice data fall considerably below the HRG
prediction. The baryon number fluctuations have also been calculated in a HRG model, where all
the baryon masses up to the mB

cut = 1.8 GeV and mB
cut = 2.5 GeV have been modified according

to Eqs. (2.8)–(2.12). The corresponding results are shown as dashed lines. As one can see, the
HRG overshoots the lattice data with mB

cut = 1.8 GeV, while with mB
cut = 2.5 GeV it undershoots

the lattice data. However, the agreement between lattice data and HRG is greatly improved. For
completeness we also show the lattice data for p4 action calculated for mq = 0.1ms [16].

Strangeness fluctuations have also been calculated on the lattice using asqtad and p4 action
[16,24,38,39] on Nτ = 6 and Nτ = 8 lattices. We have calculated strangeness fluctuations in
HRG model, where ground vector state meson masses have been calculated using Eq. (2.8), while
baryon masses have been calculated using Eqs. (2.8)–(2.12). The contribution of kaons has been
treated in the way discussed in Section 2.1, i.e. for each physical kaon averaging over sixteen
staggered flavors have been performed and the mass splitting has been calculated using Eq. (2.5).
This turns out to be important for the description of strangeness fluctuation for temperatures T <

165 MeV, where the contribution of kaons is quite significant. In Fig. 3 we show the prediction
of the HRG model with modified hadron masses compared to the lattice data for asqtad action
for Nτ = 8. In the figure we show the prediction of the HRG model with cutoffs mB

cut = 1.8 GeV
and mB

cut = 2.5 GeV for the baryon masses. Here the effect of using different cutoffs for the
modification of the baryon masses is significantly smaller as meson contribution to strangeness
fluctuations is large. In the figure we also show the prediction of the HRG model with physical
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Fig. 3. The strangeness fluctuations calculated on Nτ = 8 lattices for asqtad and p4 actions and compared with the
prediction of the HRG model with physical (solid line) and modified (dashed lines) hadron masses. The upper (lower)
dashed line corresponds to mB

cut = 1.8(2.5) GeV. The doted lines show the prediction of the HRG with modified hadron
masses for Nτ = 12.

hadron masses as well as the lattice results for the p4 action. As one can see the lattice data
fall significantly below the predictions of HRG model with physical quark masses, while the
HRG model with modified hadron masses gives quite a good description of the lattice data. For
completeness we also show the result for HRG model with modified hadron masses for Nτ = 12.
As one can see from Figs. 2 and 3, HRG model can describe baryon number and strangeness
fluctuations reasonably well up to temperatures as high as Tc.

4. QCD equation of state

4.1. The trace anomaly and parametrization of the equation of state

Available lattice data provide an EoS which is not easy to use in hydrodynamic models be-
cause different thermodynamic quantities are suppressed in the low temperature region due to
discretization errors. In the previous section we have seen this for baryon number and strangeness
fluctuations.

In lattice QCD the calculation of the pressure, energy density and entropy density usually
proceeds through the calculation of the trace anomaly Θ(T ) = ε(T ) − 3p(T ). Using the ther-
modynamic identity the pressure difference at temperatures T and Tlow can be expressed as the
integral of the trace anomaly

p(T )

T 4
− p(Tlow)

Tlow
=

T∫
Tlow

dT ′

T ′5 Θ(T ). (4.1)

By choosing the lower integration limit sufficiently small, p(Tlow) can be neglected due to the
exponential suppression. Then the energy density ε(T ) = Θ(T )+3p(T ) and the entropy density
s(T ) = (ε +p)/T can be calculated. This procedure is known as the integral method [40]. Since
the trace anomaly plays a central role in lattice determination of the equation of state, we will
discuss it in the HRG model and its comparison with the lattice data in the following. As we will
see this helps constructing realistic equation of state that can be used in hydrodynamic models.
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Fig. 4. The trace anomaly calculated in lattice QCD compared with the HRG model with physical hadron masses (solid
line) and modified hadron masses (dashed lines). The upper (lower) dashed line corresponds to mB

cut = 1.8(2.5) GeV.

As mentioned before, finite temperature lattice calculations are usually performed at fixed
temporal extent Nτ and the temperature is varied by varying the lattice spacing a, T = 1/(Nτa).
Thus, calculations at low temperatures are performed on coarse lattices, while the lattice spacing
gets smaller as the temperature is increased. Consequently the trace anomaly can be accurately
calculated in the high temperature region, while in the low temperature region it is affected by
possibly large discretization effects. Therefore to construct realistic equation of state we could
use the lattice data for the trace anomaly in the high temperature region, T > 250 MeV, and use
HRG model in the low temperature region, T � 180 MeV. In Fig. 4 we compare the lattice results
on trace anomaly obtained on Nτ = 8 lattices with asqtad and p4 action with the HRG model.
The HRG model with modified masses appears to describe the lattice data quite well up to tem-
peratures of about 180 MeV. In the intermediate temperature region 180 MeV � T < 250 MeV
the HRG model is no longer reliable, whereas discretization effects in lattice calculations could
be large. The later can be seen by comparing the lattice data obtained on Nτ = 6 and Nτ = 8
lattices with p4 and asqtad action. Therefore we constrain the trace anomaly in the intermediate
region only by the value of the entropy density at high temperatures.

In pure gauge theory, where continuum extrapolation has been performed, the entropy density
falls below the ideal gas limit only by 15% at temperatures of about 4Tc [40] (Tc is the transition
temperature). In QCD the entropy density calculated on Nτ = 6 and 8 lattices is (5–10)% below
the ideal gas limit [41] at the highest available temperature. Furthermore, resummed perturbative
calculations describe quite well the entropy density in the high temperature region both in pure
gauge theory [42] and in QCD [41]. These calculations indicate that deviation from the ideal gas
limit is about (5–10)%. The fluctuations of quark number are also close to ideal gas limit and
well described by resummed perturbative calculations [41]. Here the deviation from the ideal gas
limit is less than 5%. Therefore we will use the guidance from existing lattice QCD calculations
and require that the entropy density is below the ideal gas limit by either 5% or 10%, when
parametrizing the trace anomaly.

At high temperature the trace anomaly can be well parametrized by the inverse polynomial
form (see e.g. Ref. [24]). Therefore we will use the following Ansatz for the high temperature
region

(e − 3P)/T 4 = d2/T 2 + d4/T 4 + c1/T n1 + c2/T n2 . (4.2)
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Table 2
The values of the parameters for different fits of the trace anomaly.

d2 (GeV2) d4 (GeV4) c1 (GeVn1 ) c2 (GeVn2 ) n1 n2 T0 (MeV)

s95p 0.2660 2.403 × 10−3 −2.809 × 10−7 6.073 × 10−23 10 30 183.8
s95n 0.2654 6.563 × 10−3 −4.370 × 10−5 5.774 × 10−6 8 9 171.8
s90f 0.2495 1.355 × 10−2 −3.237 × 10−3 1.439 × 10−14 5 18 170.0

This form does not have the right asymptotic behavior in the high temperature region, where we
expect (e − 3P)/T 4 ∼ g4(T ) ∼ 1/ ln2(T /ΛQCD), but works well in the temperature range of in-
terest. Furthermore, it is flexible enough to do the matching to the HRG result in low temperature
region. We match to the HRG model at temperature T0 by requiring that the trace anomaly as well
as its first and second derivatives are continuous. The parametrization of the trace anomaly and
thus QCD equation of state obtained using these requirements are labeled by s95p-v1, s95n-v1
and s90f -v1. The labels “s95” and “s90” refer to the fraction of the ideal entropy density reached
at T = 800 MeV (95% and 90% respectively), whereas the labels p, n and f refer to a specific
treatment of the peak of the trace anomaly or its matching to the HRG. The detailed procedure of
performing the fit to the lattice data and matching to the HRG model is described in Appendix B,
where also the labeling scheme is explained in more detail. The values of the parameters T0, d2,
d4, c1, c2, n1 and n2 in each parametrization are given in Table 2. The HRG result for the trace
anomaly can also be parametrized by the simple form

ε − 3P

T 4
= a1T + a2T

3 + a3T
4 + a4T

10, (4.3)

with a1 = 4.654 GeV−1, a2 = −879 GeV−3, a3 = 8081 GeV−4, a4 = −7039000 GeV−10 (see
Appendix B for details).

The lattice data for trace anomaly compared to the parametrization given by Eqs. (4.2)
and (4.3) is shown in Fig. 5. We show three parametrizations in the figure corresponding to a en-
tropy density at T = 800 MeV which is below the ideal gas limit by 5% (s95p-v1 and s95n-v1,
the solid and dotted lines, respectively) and 10% (s90f -v1, dashed line). All the parametrizations
describe the lattice data for T > 250 MeV, while in the low temperature region, T < 170 MeV,
they are significantly above the lattice results. On the other hand, our parametrizations of the
trace anomaly are below the lattice data in the peak region. This comes from the imposed con-
straint on the entropy density at T = 800 MeV. If we would use a parametrization which goes
through the Nτ = 8, p4 lattice data and matches the resonance gas model at some temperature
near 190 MeV, the entropy density would overshoot the ideal gas limit already at temperatures of
about 600–700 MeV. Such a behavior would contradict the available lattice and weak coupling
results.

The difference in the s95n-v1 and s95p-v1 parametrizations is in the treatment of the peak
region. When we do the fit only on the lattice data above T = 250 MeV (s95n-v1, dotted line),
the peak value is clearly below the present data. To explore the sensitivity of the EoS to the height
of the peak, we also did the fit using one additional point at T = 205 MeV close to the present
data, and the same entropy constrain (s95p-v1, solid line). This forces the trace anomaly almost
to reach the data at the peak maintaining a reasonable fit to the data at high temperatures.

The EoSs, obtained by integrating the parametrizations given in Eqs. (4.2) and (4.3) over tem-
perature as shown in Eq. (4.1), are shown in Fig. 6. The clearest difference between our different
parametrizations is trivial: The different behavior at high temperatures is due to the different en-
tropy constraint at T = 800 MeV, which is of course manifested in energy density and pressure
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Fig. 5. The trace anomaly calculated in lattice QCD with p4 and asqtad actions on Nτ = 6 and 8 lattices compared
with the parametrization given by Eqs. (4.2) and (4.3). The solid, dotted and dashed lines correspond to parametrizations
s95p-v1, s95n-v1 and s90f -v1 respectively, as discussed in the text.

Fig. 6. The pressure, energy density (left panel) and speed of sound (right panel) in the equations of state obtained from
Eqs. (4.2) and (4.3). The vertical lines indicate the transition region (see text). In the right panel we also show the speed
of sound for the HRG EoS and EoS with first order phase transition (thin dotted) line, the EoS Q.

too. On the other hand, the different height of the peak of the trace anomaly causes only a tiny
difference in pressure and energy density around T = 200 MeV. This difference is manifested
much clearer in the speed of sound: The large peak and larger switching temperature from HRG
to lattice causes much more rapid change in the speed of sound in s95p-v1 parametrization than
in the two others. One could claim that the differences in the speed of sound are due to the dif-
ferent matching temperatures T0, but we want to remind the reader that we treated T0 as a fitting
parameter in our model, and any changes in T0 would make the fit to the lattice data worse (see
details in Appendix B). In Fig. 6 we show the speed of sound for EoS Q from Refs. [43,44]:
An equation of state with a first order phase transition at Tc = 170 MeV. Below Tc EoS Q coin-
cides with HRG EoS, while above this temperature it is given by bag equation of state with three
massless flavors and bag constant B = (0.2447 GeV)4. Nevertheless, the most striking feature
of the speed of sound in the proposed parametrization of the EoS is that there is no softening
below the hadron gas. There is no region where speed of sound would be smaller than in hadron
gas, and its minimum value is that of HRG speed of sound.3 It is quite simple to understand
why this happens: To achieve smaller speed of sound than the speed of sound in hadron gas, the

3 Similar EoS was presented already in Refs. [45,46].



38 P. Huovinen, P. Petreczky / Nuclear Physics A 837 (2010) 26–53

trace anomaly should be larger than in HRG. As one can see in Fig. 4, the present lattice data
clearly disfavors such a scenario. In Fig. 6 we indicate the transition region from hadronic matter
to deconfined state by vertical lines. We define the transition region as the temperature interval
170 MeV < T < 220 MeV. In view of the crossover nature of the finite temperature QCD transi-
tion such definition is ambiguous. The lower temperature limit in our definition comes form the
fact that for T < 170 MeV all our EoS agree with HRG EoS. The rapid rise in the energy density
and entropy density stops roughly at 220 MeV and starting from this temperature the variation of
thermodynamic quantities is quite smooth [24]. Also the Kurtosis of the baryon number becomes
compatible with quark gas at temperatures of about 220 MeV [16]. For these reasons we have
chosen it as the upper limit for the transition region.

4.2. Comparison with other works

The idea of using HRG in low temperatures and parametrized lattice EoS in high temperatures
is by no means new. Laine and Schröder constructed QCD equation of state based on the effective
theory approach in the high temperature region, while using the resonance gas equation of state in
the low temperature region [47]. In the effective theory approach the contribution of hard modes
is treated perturbatively, while the contribution of soft modes is calculated using 3-dimensional
lattice simulations of the effective theory called EQCD [48]. This parametrization has been used
in recent viscous hydrodynamic calculations [49]. The smooth matching to the resonance gas
was done in the temperature interval T = 170–180 MeV.

Two other parametrizations of the EoS [45,46,50] used lattice data of Budapest–Wuppertal
(BW) group obtained using so-called stout staggered fermion action [51] and temporal extent
Nτ = 4 and 6. Since the stout action does not use higher order difference scheme in the lattice
Dirac operator, discretization effects at high temperatures are very large. In the ideal gas limit the
pressure calculated on Nτ = 4 and 6 lattices is about twice the continuum value. As the conse-
quence the lattice results of the BW group have large cut-off effects and overshoot the continuum
ideal gas at high temperatures, see discussion in Ref. [52]. In an attempt to correct this problem
the authors of Ref. [51] divided all their thermodynamic observables by the corresponding ideal
gas value calculated on Nτ = 4 and 6. Since cutoff effects are strongly temperature dependent
this procedure overestimates cutoff effects in the interesting temperature region and underesti-
mates the pressure and other thermodynamic observables.

The Krakow group used the stout lattice results parametrized in Ref. [53] with Tc = 167 MeV
and matched the speed of sound to the HRG result at that temperature [45,46]. The procedure of
the Krakow group involves extracting all the other thermodynamical quantities from the speed of
sound using the relation

s(T ) = s(T0) exp

[ T∫
T0

dT ′

T ′c2
s

]
. (4.4)

Connecting the speeds of sound in HRG and lattice leads in this procedure to a larger entropy
density at high temperatures than given by the lattice parametrization of Ref. [53]. To make their
EoS to fit the lattice data at T ≈ 1 GeV, the Krakow group made the speed of sound smaller in the
temperature region 28 MeV < T < 118 MeV by hand [54]. This change is below the expected
freeze-out temperature, and thus the speed of sound which affects the actual hydrodynamical
evolution is unchanged. However, since entropy density is calculated by integrating over the
entire temperature range, entropy density is smaller than the original HRG value everywhere in
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the range 28 MeV < T < Tc. More specifically, in the range 120 MeV < T < 160 MeV, both
energy and entropy densities and pressure are ∼ 5% below the HRG value, and energy is not
automatically conserved at freeze-out, see the discussion in Section 5.

Heinz and Song also used the BW lattice results, but they parametrized pressure and temper-
ature as function of energy density and matched them to HRG result; they used Tc = 172 MeV
[50]. As the authors themselves note, their EoS is not exactly thermodynamically consistent,
which leads to a violation of entropy conservation in an ideal fluid calculation. However, to our
understanding this does not affect the qualitative studies the EoS has been used so far and the
conclusions of those papers should be valid.

Here a note concerning Tc in these parametrizations is in order: In Ref. [51] thermodynamic
quantities are given as function of T/Tc but the value of Tc is not specified. At lattice spacings
corresponding to temporal extent Nτ = 4 and Nτ = 6, used in BW EoS calculations, Tc has large
cutoff effects and may deviate considerably from the continuum value Tc = 170(3)(4) MeV de-
termined in Ref. [36] (e.g. calculations of Tc reported at Quark Matter 2005 on Nτ = 4 and 6
lattices gave Tc = 189(8) MeV [55]). The best way to eliminate part of the cutoff effects in the
BW EoS is to use the continuum value of the transition temperature Tc, which is interestingly
enough appears to agree within errors with the values used in the phenomenological parametriza-
tions discussed above.

The parametrization of the EoS by the HotQCD Collaboration [24] is based on a simple fit of
the lattice results on the trace anomaly. For temperatures below 130 MeV, where no lattice data is
available, HRG values for the trace anomaly have been used and assigned an artificial error. The
resulting parametrization is well below the HRG at temperatures T > 50 MeV, see discussion in
Ref. [24]. For example, at T ≈ 130 MeV and T ≈ 170 MeV temperatures, pressure, energy and
entropy densities are roughly 20% and 10% smaller than in HRG, respectively. Therefore, when
one uses this parametrization, energy conservation at freeze-out requires additional considera-
tion, see the discussion in Section 5.

In Fig. 7 we show the comparison of our parametrization for EoS with the ones discussed
above including the trace anomaly, speed of sound, pressure and energy density as function of
the temperature as well as the pressure as function of the energy density. From the figure we
see that there are significant differences between different parametrizations. The parametrization
based on BW lattice results seem to have different high temperature asymptotic. In the low tem-
perature region the EoS L parametrization by Heinz and Song and the HotQCD parametrization
differ significantly from others. It is worth noting that EoS L does not even try to reproduce
the HRG below 130 MeV temperature. The authors assumed that the details of the EoS below
freeze-out temperature have only a negligible effect on the evolution within the freeze-out sur-
face and a faithful reproduction of the HRG is thus not needed. Finally, for the trace anomaly, the
difference between our parametrization and HotQCD parametrization is limited to temperatures
T < 250 MeV by construction. However, since the pressure, energy density and entropy density
is obtained using the integral method the differences in trace anomaly at low temperatures result
in differences at all temperatures for these quantities.

5. Effect on hydrodynamical flow

Now we are in a position to use the lattice results on EoS in a hydrodynamical model and
compare the results with previous approaches using first order phase transition or the other lat-
tice parametrizations in the literature. We also quantify how present uncertainties in the EoS
parametrization affect the hydrodynamical flow. For simplicity we perform our analysis using
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Fig. 7. The trace anomaly, the speed of sound, the pressure and the energy density as function of the temperature for
different parametrizations used in hydrodynamic models. Also shown is the pressure as function of the energy density.
The solid black line corresponds to s95p-v1 parametrization.

ideal hydrodynamics. This is also motivated by the fact that the overall value and tempera-
ture dependence of the QCD and HRG transport coefficients is not known and any attempts
to parametrize them would introduce additional uncertainties in the analysis.

As the first step we study the sensitivity of the momentum anisotropy εp on the EoS. This
is the cleanest way to address the sensitivity of hydrodynamic flow to the EoS as additional
complications due to freezeout do not enter here. The momentum anisotropy is defined as [43]

εp = 〈Txx − Tyy〉
〈Txx + Tyy〉 , (5.1)

where Txx and Tyy are the diagonal transverse components of the energy–momentum tensor and
brackets denote averaging over the entire transverse plane. In Fig. 8 we show the time evolution
of momentum anisotropy in Au + Au collisions at

√
sNN = 200 GeV with b = 7 fm impact

parameter for different EoSs. The left panel shows the anisotropy calculated using our different
parametrizations, and EoS Q from Refs. [43,44]. As studied in detail in Ref. [43] the first order
phase transition causes the build up of the flow anisotropy to stall when most of the system is
in the mixed phase. There is no such a structure when the transition to the hadronic matter is
a smooth cross over, but the anisotropy increases monotonously. The hardness of the EoS in
plasma phase is also manifested in the early behavior of the anisotropy. EoS Q is much harder in
that region than any of the lattice EoSs studied here, and thus the build up of the flow anisotropy
is faster. On the other hand, the mixed phase makes the EoS Q much softer in average during the
evolution, and the final anisotropy is the smallest of all EoSs studied here. The speed of sound
is quite similar in EoSs s95p-v1, s95n-v1 and s90f -v1, and consequently the development of
the flow anisotropy is similar. When the system cools, the speed of sound stays large longest for
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Fig. 8. The time evolution of the momentum anisotropy in b = 7 fm Au + Au collisions using the EoSs developed in this
paper and the old EoS with a first order phase transition (EoS Q) from Refs. [43,44] (left panel) and the EoS s95p-v1
compared to the various lattice EoSs in the literature [24,45–47,50] (right panel). In the right panel the solid black line
refers to the result obtained with s95p-v1 parametrization. The inset in the right panel shows the temperature evolution
in the middle of the system for different EoSs. The horizontal lines indicate the transition region.

s95p-v1, but it also drops fastest and stays small longest for s95p-v1. These effects cancel, and
the evolution of the anisotropy is almost identical to s95n-v1. After that argument, the largest
anisotropy obtained using s90f -v1 may look surprising, but closer inspection of Fig. 6 reveals
that s90f -v1 has always either larger or equal speed of sound than s95p-v1. Thus s90f -v1 is
harder, and it should lead to a larger anisotropy than s95p-v1.

The old wisdom has been that elliptic flow builds up quickly during the early stages of the
evolution and is mostly build up during the plasma phase. For example, for EoS Q, three quarters
of the final anisotropy has been built up when the center of the system reaches mixed phase. For
lattice based EoSs this is no longer as clear: Roughly half of the anisotropy is built up during
the transition region, after the first three fm of the evolution, but the hadronic contribution from
below T = 170 MeV temperatures to εp is essentially negligible unlike in EoS Q. This difference
in the evolution is partly explained by the softer EoS in the plasma phase—anisotropy is built up
slower. Another reason is that the transition region in our EoSs reaches up to ε ≈ 3.5 GeV/fm3

energy density, whereas EoS Q reaches plasma phase already at ε ≈ 2.15 GeV/fm3 density.
In the right panel of Fig. 8 s95p-v1 is compared to other lattice EoSs in the literature. The

differences in flow are difficult to sort out based on the speed of sound as function of temperature
alone, but they are easy to understand when one looks at the pressure as function of energy
density (Fig. 7). It can be seen that the gradient ∂P/∂ε, i.e. speed of sound squared, is largest for
the Krakow EoS, and EoS L is approximately as stiff as the Krakow EoS above ε ≈ 1 GeV/fm3

density. Thus it is not surprising that the Krakow EoS leads to the largest anisotropy, and that
the initial build up of the anisotropy is similar for the Krakow EoS and EoS L. The build up of
flow deviates when EoS L reaches its softest region which is much softer than in any other EoS,
and leads to behavior reminiscent of EoS Q: A sudden stall in the increase of the anisotropy.
Unlike in EoS Q, however, there is no subsequent increase in anisotropy after the soft region has
been passed. Likewise, even if the speed of sound in the HotQCD EoS at high temperatures is
equal or even larger than in s95p-v1 or in the EoS by Laine and Schroder, the speed of sound
in the transition region is so much smaller than in the other EoSs, that the final anisotropy is the
smallest of all. As well, even if the speed of sound as function of temperature look different for
s95p-v1 and Laine and Schroder’s EoS, as a function of energy density they are almost equal,
and thus these EoSs lead to basically identical build up of the flow anisotropy.
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Fig. 9. The proton and pion spectra (left) and differential elliptic flow v2(pT ) of protons and pions (middle and right) in
b = 7 fm Au + Au collisions for different EoSs. The results in the left and middle panels are calculated using the same
freeze-out temperature Tfo = 125 MeV for all the EoSs, whereas in the right panel it has been adjusted to produce similar
pT -distributions. Tfo = 125 MeV for EoS Q, and Tfo = 140 MeV for EoSs s95p-v1, s95n-v1 and s90f -v1.

As the next step we study the sensitivity of the spectra and elliptic flow on the EoS. We include
freeze out into the calculation described above, and use first the same freeze out temperature,
Tfo = 125 MeV, for all EoSs.4 The pion and proton spectra after resonance decays is shown in
the left panel of Fig. 9 for EoSs s95p-v1, s95n-v1, s90f -v1 and EoS Q. As expected the new
parametrization lead to flatter spectra than EoS Q, but the differences between the parametriza-
tions themselves are too small to result in significant differences in spectra. The pT -differential
v2 of pions and protons shown in the middle panel are surprisingly insensitive to the EoS. The
larger flow anisotropy shown in Fig. 8 leads to larger pT averaged v2, but that is mostly due to
flatter spectra weighting v2(pT ) at higher pT where it is larger, than due to v2(pT ) being larger.
One must also remember that this result is obtained using the same freeze-out temperature for all
the EoSs. Before discussing how the EoS affects elliptic flow, one has to readjust the freeze-out
temperature to produce similar spectra. This we have done in the right panel of Fig. 9: When one
uses Tfo = 140 MeV for EoSs s95p-v1, s95n-v1 and s90f -v1, the spectra are similar to those
calculated using EoS Q. The pion v2(pT ) is virtually insensitive to the change in freeze-out tem-
perature, but the higher temperature leads to much larger pT -differential v2 for protons. This
behavior has already been explained in Ref. [56], where it was argued that the lower the temper-
ature and larger the flow velocity, the smaller the v2(pT ) at low values of pT , and that the heavier
the particle, the stronger this effect. Note that the three different lattice based parametrizations of
EoS give almost identical results for v2 and spectra. This means that existing uncertainties in the
EoS parametrization have negligible effect on the flow.

Unfortunately it is not straightforward to calculate the spectra and v2 using the various EoSs
in the literature discussed earlier. One of the advantages of the Cooper–Frye procedure for
freeze-out is that energy, momentum, particle number and entropy are conserved. But, they are
conserved only if the equation of state is the same before and after the freeze-out [23], i.e. that
the fluid EoS is that of free particles and that the number of degrees of freedom in the fluid is
the same than the number of hadrons and resonances which spectrum is calculated. This is not
the case with the EoSs discussed here. When calculating the spectra we use the same set of reso-
nances up to 2 GeV mass than what is included in our HRG. Laine and Schroder used resonances
up to 2.5 GeV mass, but at, say, Tfo = 125 MeV freeze-out temperature the difference in energy
and entropy is minuscule, about 0.05%. The situation with the other EoSs is more difficult. At the
mentioned temperature, the Krakow EoS has 4.5% smaller, EoS L 7% larger, and the HotQCD

4 This temperature was found to reproduce the spectra when EoS Q is used [5].
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Table 3
The freeze-out energy densities (in GeV/fm3) and corresponding temperatures (in MeV) for fluid and particles for each
EoS used in the calculations shown in Fig. 10.

εfo Tfluid Tparticles εfo Tfluid Tparticles

s95p-v1 0.065 125 125 0.14 140 140
HotQCD 0.065 129 125 0.11 139 135
Laine 0.065 125 125 0.14 140 140
EoS L 0.065 124 126 0.11 134 136
Krakow 0.065 126 125 0.185 146 145

Fig. 10. The proton and pion spectra (left) and differential elliptic flow v2(pT ) of protons and pions (middle and right)
in b = 7 fm Au + Au collisions for s95p-v1 (solid black line) and different EoSs in the literature [24,45–47,50]. The
results in the left and middle panels are calculated using the same freeze-out energy density εfo = 0.065 GeV/fm3 for
all the EoSs, whereas in the right panel it has been adjusted to produce similar pT -distributions, see text and Table 3.

EoS 22% smaller energy and entropy than hadrons and resonances up to 2 GeV mass. One way
to correct this discrepancy is of course to change the number of hadrons and resonances included
in the spectra calculation. But, this approach would be tedious since the number of resonances
needed to fit the densities in the EoS may depend on temperature. Also there is no telling whether
there exists a set of resonances reproducing both densities and pressure at a given temperature,
and the number of resonances could be surprisingly small. For example a hadron resonance gas
consisting of only pseudo-scalar and vector meson nonets, and baryon octet and decuplet, still
has 10% larger energy density at T = 125 MeV than HotQCD EoS. Therefore we follow the
approach espoused by Csernai [23] and Bugaev [57]: We require that energy and momentum are
conserved locally on the freeze-out surface, i.e.

dσμT
μν
fluid = dσμT

μν
particles, (5.2)

where T
μν
fluid is the energy–momentum tensor of the fluid on the surface, and T

μν
particles is the

energy–momentum tensor of the emitted particles. To conserve energy and momentum, we allow
the temperature and flow velocity of fluid and particles differ, i.e. there is a discontinuity on the
surface, and freeze-out is a shock-like phenomenon [57]. We have to admit the corrections due to
this procedure are small and mostly affect the multiplicity, but consider obeying the conservation
laws worth the extra effort.

At first we use the same freeze-out energy density we used when comparing our parametriza-
tion to EoS Q, ε = 0.065 GeV/fm3, for all EoSs. The corresponding temperatures for each EoS
are listed in Table 3. In the left panel of Fig. 10 we show the pT distributions of pions and pro-
tons in b = 7 fm Au + Au collision. The differences in distributions are small, and the general
behavior is what can be expected based on the stiffness of the EoSs and the flow anisotropy: The
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Krakow EoS is the stiffest, and leads thus to the flattest spectra. The EoS by Laine and Schröder
leads to behavior almost identical to s95p-v1, and the HotQCD EoS and EoS L are the softest
and have slightly steeper spectra than the other EoSs. For the pT -differential anisotropy of pions
and protons the systematics is the same than seen for our parametrizations: when the freeze-out
criterion is the same for all the EoSs, v2(pT ) is basically independent of the EoS, as shown in the
middle panel of Fig. 10. After the freeze-out criterion is adjusted to reproduce spectra obtained
using EoS Q, the pion v2(pT ) is independent of the EoS, but the proton anisotropy shows some
sensitivity, see the right panel of Fig. 10. The differences between the EoSs are small and thus the
differences in v2(pT ) are small, but an ordering according to the stiffness of the EoS is visible:
The Krakow EoS is hardest, and its proton v2(pT ) is largest at small pT , whereas the HotQCD
EoS and EoS L are softest and lead to lowest v2(pT ) of protons at low pT . After all the main re-
sults of this comparison are that the differences in the lattice EoS parametrization in the literature
are small and not observable in the pT -differential elliptic flow, and that energy conservation at
freeze-out is not trivial if the EoS at freeze out is not that of free hadron resonance gas.

Finally we want to compare the results of our calculations with data. Since all of our
parametrizations lead to practically identical spectra and v2, we use only s95p-v1 for sim-
plicity, and compare the results to those obtained using EoS Q in Ref. [5]. First we fix all the
parameters by requiring the reproduction of pion and net-proton (p − p̄) spectra in the 0–5%
most central Au + Au collisions at

√
sNN = 200 GeV energy. The resulting spectra are shown

in the left panel of Fig. 11, and the freeze-out temperatures are the same than mentioned before,
Tfo = 125 MeV for EoS Q, and Tfo = 140 MeV for EoSs s95p-v1. Since we assume chemical
equilibrium we cannot reproduce both proton and anti-proton yields at such a low temperature.
Our parametrization is for zero baryochemical potential, so we cannot calculate net-protons ei-
ther, but we approximate them by having a finite baryon density in the calculation, and converting
this density into a finite chemical potential at freeze-out by using a HRG EoS which allows a fi-
nite net baryon density. The right panel of Fig. 11 shows the pT -differential elliptic flow of pions
and anti-protons in minimum bias Au + Au collisions at the same energy. As earlier, the pion
v2(pT ) is very similar for both EoSs, but the anti-proton v2(pT ) is quite different. In fact for the
realistic EoS the anti-proton v2 is largely overpredicted, while we have a reasonable agreement
with the data when the bag model EoS Q is used. This is very similar to the finding of Ref. [5].
Also the Krakow group seem to overpredict the proton v2 [46] indicating that this could be a
general feature of ideal hydrodynamic models using more realistic EoS. The first results indicate
that dissipative effects can at least reduce this problem [60].

This analysis has been repeated assuming partial chemical equilibrium in the hadronic phase.
The details of this analysis are given in Appendix C. Our main finding did not change. Using
different EoS for the same initial conditions and kinetic freeze-out temperature has little effect
on v2 but leads to significant differences in the spectra. If the spectra are fitted to reproduce
the experimental data by adjusting the initial conditions, the pT -differential elliptic flow of anti-
protons becomes too large for lattice based EoS, but agrees reasonably well with EoS Q. On the
other hand, the pT -differential elliptic flow of pions is clearly too large for both EoSs requiring
substantial dissipation to reduce it to fit the data.

6. Conclusion

In this paper we addressed the question to what extent the Hadron Resonance Gas (HRG)
model can describe the thermodynamic quantities calculated on the lattice. As discussed above
this question is very important for implementing a consistent freeze-out prescription or a con-
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Fig. 11. Pion (π+) and net-proton (p − p̄) spectra in 0–5% most central (left), and pion and anti-proton pT -differential
elliptic flow v2(pT ) in minimum bias (right) Au + Au collisions at

√
sNN = 200 GeV compared with hydrodynamic

calculations using two different EoSs and assuming chemical equilibrium. The data was taken by the PHENIX [58] and
the STAR [59] Collaborations.

sistent switch to transport in hydrodynamic or hybrid models, respectively. We have found that
lattice data strongly disagree with the HRG model in the low temperature regime. The reason
for this disagreement has been identified with large cutoff effects in the lattice calculations. We
also showed that taking into account the discretization effects in the hadron spectrum in the HRG
model leads to a good agreement with the lattice data. In fact, we find that for some quantities
the HRG model works well to unexpectedly high temperatures. Based on this observation we
constructed several parametrizations of the equation of state which interpolate between the lat-
tice data at high temperature and the resonance gas in the low temperature region. The central
quantity in this analysis was the trace anomaly since it is directly calculated on the lattice and the
differences in the proposed parametrizations are found in the temperature region where the trace
anomaly reaches its maximal value.

We studied the hydrodynamic evolution using three parametrizations of the EoS that interpo-
late between HRG EoS and the lattice data and compared the results with the corresponding ones
obtained using an EoS with a first order phase transition, the so-called EoS Q, as well as several
other parametrizations of the EoS used in the literature. We have analyzed the flow in terms of
momentum space anisotropy εp , pT -differential elliptic flow v2(pT ) and proton and pion spec-
tra. The three parametrizations of the EoS proposed in this paper as well the parametrization
by Laine and Schröder [47] gave very similar results for all of the above quantities. The effect
of using different EoS parametrizations is the most visible in εp . The difference in the results
obtained with EoS Q and other parametrizations is especially large. Quite surprisingly v2(pT )

is not sensitive to the choice of the EoS if the same freeze-out temperature is used. The particle
spectra on the other hand are sensitive to the EoS. However, the change in the EoS can be com-
pensated by change of the freeze-out temperature. If the freeze-out temperature is adjusted to
reproduce the particle spectra we see large differences in the proton v2(pT ) for EoS Q and other
EoS parametrizations. However, for all the other parametrizations considered here, the proton
v2(pT ) is quite similar.

The work presented in this paper should be extended in number of different ways. First we
should extend the comparison of lattice QCD results with modified HRG to other fluctuations,
including electric charge fluctuations as well as fourth and higher order fluctuations of baryon
number, strangeness and electric charge. However, since these quantities were studied in detail
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only for the p4 action, in the analysis additional assumptions about the cutoff effects in the hadron
spectrum have to be made. Furthermore, it would be interesting to study the quark mass effects in
the HRG model, especially since recent lattice calculations of the EoS extend to physical values
of the light quark masses [61]. We also should consider the effect of finite baryon potential on the
EoS. This will become important for application of hydrodynamic models to heavy ion collisions
at lower energies, especially to the proposed RHIC energy scan. Finally, it will be interesting to
study the effect of the EoS in the framework of viscous hydrodynamics. We plan to address these
issues in forthcoming publications.
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Appendix A. Hadron masses on the lattice

In this appendix we are going to discuss the cutoff and quark mass dependence of hadron
masses calculated on the lattice and give the parameters entering Eqs. (2.8)–(2.12). We have
fitted the quark (pion) mass and lattice spacing dependence of the ρ, K∗, φ, N and Ω masses
obtained in Refs. [25–28] by a simple Ansatz

r1m = r1m0 + a1(r1mπ)2

1 + a2x
+ b1x

1 + b2x
, x = (a/r1)

2. (A.1)

The values of the fit parameters m0, a1, a2, b1 and b2 are given in Table 4. In Figs. 12, 13
and 14 we show the above parametrization against the available lattice data. Here we note that
the lattice data for the Ω mass have been corrected to take into account that the physical strange
quark mass is slightly smaller that the one used in lattice simulations. It turns out that Eq. (A.1)
reproduces the experimental values of the hadron masses in continuum limit at the physical point
r1mπ = 0.226. This justifies the use of Eqs. (2.8)–(2.12) for the evaluation of the hadron masses
in the HRG model.

As discussed in the main text due to lack of detailed lattice studies we used Eq. (2.8) and
Eqs. (2.10)–(2.12) to evaluate the mass of the � resonance as well as single and double strange
baryons with values of the parameters in Table 4 corresponding to the nucleon. In Fig. 15 we
compare our estimates of the �, Λ and Ξ baryon masses shown as lines with available lattice
data from the MILC Collaboration [27,28].
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Fig. 12. The ρ-meson (right) masses calculated on the lattice using asqtad action [27,28,37] and compared with Eq. (A.1)
(lines).

Fig. 13. The K∗ (left) and φ-meson (right) masses calculated on the lattice using asqtad action [27,28] and compared
with Eq. (A.1) (lines).

Fig. 14. The nucleon mass [27,28,37] (left) and the Ω baryon mass [25] (right) calculated with asqtad action and com-
pared with our parametrization.
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Table 4
The values of the parameters appearing in Eq. (2.8) for different hadrons.

r1m0 a1 b1 a2 b2

ρ 1.17856 0.496745 2.03538 0.958366 6.39177
K∗ 1.41505 0.228217 2.07898 0 0
φ 1.60476 0.056901 2.74519 0 0
N 1.51418 0.933405 1.65138 1.27391 1.65138
Ω 2.66589 0.056779 1.74275 0 0

Fig. 15. The baryon masses calculated for asqtad action [27,28,37] and compared with our parametrization.

Appendix B. Fitting procedure

Here we describe in detail how we fit the trace anomaly of lattice and hadron resonance gas.
The two first terms of the inverse polynomial Ansatz (Eq. 4.2)

(e − 3P)/T 4 = d2/T 2 + d4/T 4 + c1/T n1 + c2/T n2 (B.1)

appear to provide good fit of the lattice data at high temperatures, T > 250 MeV [24]. We want to
join this parametrization to the trace anomaly of hadron resonance gas and require that the trace
anomaly and its first and second derivative with respect to temperature are continuous where
joined. Thus, we need one additional term with negative coefficient c1 and exponent n1 > 4 to
produce a peak around T ≈ 200 MeV, and another with positive coefficient c2 and exponent n2 >

n1 to make the second derivative continuous. We calculate the trace anomaly of hadron resonance
gas using all the resonances up to 2 GeV mass5 in the summary of the 2004 edition of the Review
of Particle Physics [63]. We note that including all the resonances up to 2.5 GeV instead of 2 GeV
mass gives result for the trace anomaly, which is only 2% larger at T = 170 MeV and 3% larger
at T = 180 MeV. This change is definitely smaller than the expected discrepancies between HRG
and lattice at these temperatures.

In the ansatz we have seven unknown parameters: the coefficients d2, d4, c1 and c2, exponents
n1 and n2, and the switching temperature T0. We have four constraints, the continuity of the
trace anomaly and its derivatives at T0, and the requirement s(T = 800 MeV) = 0.95 · sSB or
s(T = 800 MeV) = 0.90 · sSB. The requirement of the continuity of the derivatives gives two
equations to fix the parameters c1 and c2:

c2 = 2(n1 − 2)

n2(n2 − n1)
T n2−2d2 + 4(n1 − 4)

n2(n2 − n1)
T n2−4d4

5 The list of included resonances and their properties can be found at [62].
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+ n1 + 1

n2(n2 − n1)
T n2+1G1(T0) + 1

n2(n2 − n1)
T n2+2G2(T0),

c1 = 2(n2 − 2)

n1(n1 − n2)
T n1−2d2 + 4(n2 − 4)

n1(n1 − n2)
T n1−4d4

+ n2 + 1

n1(n1 − n2)
T n1+1G1(T0) + 1

n1(n1 − n2)
T n1+2G2(T0),

where

d

dT

ε − 3P

T 4

∣∣∣∣
HG

≡ G1(T ) and
d2

dT 2

ε − 3P

T 4

∣∣∣∣
HG

≡ G2(T ).

From Eq. (4.1) and T s = ε + P we obtain

s

T 3
= d2

(
2

T 2
0

− 1

T 2

)
+ d4

T 4
0

+ c1

n1

(
4

T
n1
0

+ n1 − 4

T n1

)
+ c2

n2

(
4

T
n2
0

+ n2 − 4

T n2

)
+ 4P(T0)

T 4
0

.

(B.2)

Since entropy at T = 800 MeV is fixed, we can use the above equation to constrain d4,

d4 = d4(d2, n1, n2, T0). (B.3)

We can thus express the parameters c1, c2 and d4 in terms of d2, n1, n2 and T0, and use the
continuity of the trace anomaly to fix T0. We get an equation

ε − 3P

T 4

∣∣∣∣
HG

(T0) = d2

T 2
0

+ d4(d2, n1, n2, T0)

T 4
0

+ c1(d2, n1, n2, T0)

T
n1
0

+ c2(d2, n1, n2, T0)

T
n2
0

,

(B.4)

which can be evaluated numerically to obtain T0. This procedure leaves us with three unknowns
d2, n1 and n2, which are chosen to fit the lattice data. However, such a fitting procedure would
be highly nonlinear. We simplify the problem by requiring that the exponents are integers, and
use brute force: We make a single parameter (d2) fit with all the integer values 4 < n1 < 31, and
n1 < n2 < 43, and choose the values n1 and n2 which lead to the smallest χ2. Alternatively we
can fix T0 to a prescribed value, use Eq. (B.4) to fix the value of d2, and use only n1 and n2 to
perform the fit.

In our fit we use the lattice data for T > 250 MeV obtained with p4 action on Nτ = 8 lat-
tices as they extend to sufficiently high temperature [24]. In addition, we include Nτ = 6 p4
data for T > 500 MeV [9]. The fits in general do not reproduce the lattice data in peak region
(190 MeV < T < 250 MeV). On the other hand the height of the peak in the trace anomaly may
be affected by discretization effects. This can be seen as a difference between the Nτ = 6 and
Nτ = 8 results. Assuming that discretization effects in the peak height go like 1/N2

τ we can esti-
mate the trace anomaly at T = 206 MeV to be 5.7 ± 0.15. We can use this value as an additional
data point in our fits. We label different parametrizations of the trace anomaly obtained using
different constraints on the entropy density at T = 800 MeV and its height in the temperature
region 190 MeV < T < 250 MeV as s95p-v1, s95n-v1, s90f -v1 etc. The first three characters
stand for the constrain on the entropy density (90% or 95% of the ideal gas value). The fourth
character stands for additional constraints on the trace anomaly in the peak region. Namely, “n”
stands for a fit with no constraints: using data for T > 250 MeV, and T0 as a free parameter in
the fit. “p” means having an additional data point of 5.7 ± 0.15 at T = 206 MeV to constrain the
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Fig. 16. The pT -differential elliptic flow v2(pT ) of protons and pions (left) and proton and pion spectra (right) for
different EoSs in b = 7 fm Au + Au collision when chemical freeze-out takes place at Tchem = 150 MeV and kinetic at
Tkin = 120 MeV.

peak, and “f ” stands for a fixed value T0 = 170 MeV in the fit. Finally “v1” is the version num-
ber of the current parametrization. The value of the parameters d2, d4, c1, c2, n1, n2 and T0 for
different fits are given in Table 2. This procedure was designed for numerical applications when
the trace anomaly is numerically evaluated using Eq. (2.1) and laws of thermodynamics. For
practical purposes we also provide a parametrized version of the trace anomaly of the hadronic
part of our EoS. We choose a polynomial

ε − 3P

T 4
= a1T

l1 + a2T
l2 + a3T

l3 + a4T
l4 (B.5)

and fit it to the trace anomaly of the hadron resonance gas evaluated in the temperature interval
70 < T/MeV < 190 with 1 MeV steps assuming that each point has equal “error”. The lim-
its have entirely utilitarian origin: in hydrodynamical applications the system decouples well
above 70 MeV temperature and only a rough approximation of the EoS, P = P(ε), is needed
at lower temperatures. On the other hand we expect to switch to the lattice parametrization
below 190 MeV, and the HRG EoS above that is not needed either. We fix the exponents in
Eq. (B.5) again using brute force. We require them to be integers, go through all the combina-
tions 0 � l1 < l2 < l3 < l4 � 10, fit the parameters a1, a2, a3, a4 to the HRG trace anomaly
evaluated with 1 MeV intervals, and choose the values l1, l2, l3 and l4 which minimize the χ2.
We end up with l1 = 1, l2 = 3, l3 = 4, l4 = 10, and a1 = 4.654 GeV−1, a2 = −879 GeV−3,
a3 = 8081 GeV−4, a4 = −7039000 GeV−10. To obtain the EoS, one also needs the pressure at
the lower limit of the integration (see Eq. (4.1)) Tlow = 0.07 GeV: P(Tlow)/T 4

low = 0.1661. Our
EoSs are also available in a tabulated form at [62].

Appendix C. Spectra and elliptic flow for partial chemical equilibrium

In this appendix we discuss the elliptic flow and the spectra of protons and pions and their
sensitivity on EoS when partial chemical equilibrium [44,64,65] is assumed to reproduce the
observed particle yields. The EoS for the system in partial chemical equilibrium is available in
tabulated form [62]. We again calculate the flow in Au + Au collision at

√
sNN = 200 GeV with

impact parameter b = 7 fm. First we used the same initial condition and the same freeze-out
temperature for all EoSs, namely Tchem = 150 MeV for the chemical freeze-out temperature and
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Fig. 17. Pion (π+) and net-proton (p − p̄) spectra in 0–5% most central (left), and pion and anti-proton pT -differential
elliptic flow v2(pT ) in minimum bias (right) Au + Au collisions at

√
sNN = 200 GeV compared with hydrodynamic

calculations using two different EoSs and assuming chemical freeze-out at Tchem = 150 MeV. The calculation using
EoS s95p-v1 was done using two different initial states, see the text. The data was taken by the PHENIX [58] and the
STAR [59] Collaborations.

Tkin = 120 MeV for the kinetic freeze-out temperature. The initial time for the hydrodynamic
evolution was chosen to be τ = 0.6 fm and the initial entropy density was chosen as for the
case of chemical equilibrium. The results are shown in Fig. 16. As one can see the elliptic flow
is not very sensitive to the choice of EoS if everything else is kept unchanged, and all three
parametrizations used in the analysis give almost the same result. The spectra are much more
sensitive to the EoS but again there is no difference for the different lattice parametrizations.

For a proper discussion on the sensitivity of elliptic flow on the EoS, one has to again re-
tune the calculation to reproduce the experimental results on the pT -spectra. We obtained the
best results by keeping the chemical and kinetic freeze-out temperatures, Tchem = 150 MeV and
Tkin = 120 MeV unchanged, and tuned the initial conditions. For EoS Q we used τ0 = 0.2 fm
and initial entropy density which scales with the number of binary collisions (see Ref. [44]).
For the s95p-v1 parametrization of the EoS we used two different initial conditions. One with
τ0 = 0.8 fm and initial entropy density proportional to the number of binary collisions, and a
second one with τ0 = 0.2 fm and initial entropy density scaling with a combination of binary
collisions and number of participants. The corresponding results are shown in Fig. 17. We see
again that the lattice based EoS give larger pT -differential elliptic flow for the protons than EoS Q
for both initial conditions. In this case, however, the EoS Q does not do a good job of describing
the data either, in agreement with previous findings [44,65]. Especially the pion pT -differential
v2 is too large for all EoSs, and there is clearly room for significant dissipation to reduce the
anisotropy. It is also worth to notice that the uncertainty related to the initial state is at least as
large as the effect of the EoS on the proton v2(pT ) and better theoretical constraints to the initial
state are needed.
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Abstract

In an earlier work[1] we established that causal Israel-Stewart viscous hydrodynamics is only
accurate in RHIC applications at very low shear viscosities 4πηs/s <

∼
1.5− 2. We show here that

the region of applicability is significantly reduced if bulk viscosity plays a role in the dynamics.

1. Introduction

There has been a lot of recent interest in quantifying the effect of viscosity on observables
in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. Calcula-
tions are most commonly performed using causal dissipative hydrodynamics[2, 3, 4, 5], though
covariant transport theory can also be utilized[5, 6, 7].

Hydrodynamics assumes that the system is near local thermal equilibrium. Its region of
applicability can only be reliably determined with the help of a fully nonequilibrium theory. In
a recent work[1] we used covariant transport to establish the region of validity for the causal
Israel-Stewart (IS) formulation of viscous hydrodynamics, in a longitudinally boost invariant
setting with a massless e = 3p equation of state (EOS) and only shear viscosity. We found
that for typical conditions expected in nuclear collisions at RHIC, IS hydrodynamics is a very
good approximation (more precisely, 10% accurate in computing dissipative effects) when the
shear viscosity (ηs) to entropy density (s) ratio is not too large, 4πηs/s <

∼
1.5−2. A useful rule of

thumb we obtained is that, in order to reach such accuracy, dissipative corrections to pressure and
entropy must not exceed about 20%. This is only a necessary condition but its main advantage is
that it can be tested directly from the hydrodynamic calculation.

Here we study the region of validity of IS hydrodynamics for systems with shear and bulk
viscosity. Quantifying bulk effects in covariant transport near the hydrodynamic limit is unfor-
tunately unfeasible, at least for a one-component system with 2 → 2 scattering, because bulk
viscosity is at least two orders of magnitude smaller than shear viscosity. In order to proceed, we
assume that the 20% rule of thumb above applies in the more general “shear+bulk” case as well.

Because for a massless equation of state bulk viscosity identically vanishes, we here use a
more realistic result from lattice QCD[8] (we smoothly merge the EOS onto that of a hadron
gas at low T <

∼
160 MeV). Reliable calculations of viscosity in QCD are unfortunately not

available for temperatures relevant for RHIC. We therefore focus on the “minimal viscosity”[9]
paradigm, i.e., set ηs = s/(4π). For the bulk viscosity, we consider a Lorentzian in temperature
ζ = ζm s/[1 + (T − Tc)2/ΔT 2], where the peak height and width are adjustable parameters.
Matching to the bulk viscosity estimate from Meyer[10] gives our default parameterization ζm =
0.2, ΔT = 0.03 GeV and Tc = 0.192 GeV. Though our approach is similar to an earlier study by
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Fries et al[11], the main difference is that we also ensure thermodynamic consistency because we
use the complete set of Israel-Stewart equations of motion. We also map out a much wider range
of initial conditions.

Figure 1: Entropy produced by the time the system cools down to T = 180 MeV (τ ≈ 8 fm) relative to the initial entropy,
plotted as a function of thermalization time and initial shear stress, for ηs/s = 1/(4π) (left) and 0.5/(4π) (right).

2. Main results

We solve the complete set of Israel-Stewart equations (cf. [1]) for a boost-invariant Bjorken
scenario with axial and transverse translational symmetry. We only highlight here the equation
for bulk pressure

τΠ
dΠ
dτ
= −

(
Π +
ζ

τ

)
−

Π τΠ

2

(
1
τ
+

d
dτ

ln
ζ

τΠ T

)
. (1)

Here τΠ is bulk pressure relaxation time. If the last ΠτΠ... term is ignored, the entropy generation
rate per unit rapidity d(dS/dη)/dτ = τAT [Π2/(ζT )+ 3π2

L/(4ηsT )] becomes inconsistent with the
Israel-Stewart expression for entropy dS/dη = τAT [seq − Π

2τΠ/(2Tζ) − 3π2
Lτπ/(4Tηs)] (πL is

the shear correction to the longitudinal pressure, τπ is the shear stress relaxation time, AT is the
transverse area of the system, and seq is the entropy density in local equilibrium). Therefore,
entropy production was overestimated in [11].

Motivated by kinetic theory we set τπ = 6ηs/(sT ), but for simplicity take τΠ = τπ (in kinetic
theory τΠ ≈ 5τπ/3 near the massless limit). Our default initial condition for Au+Au at RHIC
is e0 = 15 GeV/fm3 (T0 ≈ 0.297 GeV) at a thermalization time τ0 = 0.6 fm. For τ0 = 0.3 and
1 fm, we scale on an isentropic curve τ0 s0 = const. For initial shear stress and bulk pressure we
map out wide ranges −p0 < π0 < p0, −p0/2 < Π0 < p0/2 where p0 is the initial pressure. Three
choices are of special interest: i) local equilibrium (LTE) π0 = Π0 = 0; ii) Navier-Stokes (NS)
π0 = −(4/3)ηs(T0)/τ0, Π0 = −ζ(T0)/τ0; and iii) gluon saturation[12] (CGC) π0 ≈ −p0, Π0 ≈ 0.

The main quantity we analyze is the entropy produced relative to the initial entropy ΔS/S 0.
We shall impose ΔS/S 0 <

∼
0.2 as the condition for region of validity. Because we only consider

longitudinal expansion, we focus on entropy production until the beginning of the hadronic phase
T f = 180 MeV (this is almost identical to entropy production until τ f = 8 fm). Figure 1(left)
shows our results for “minimal” shear and vanishing bulk viscosity. For LTE initial conditions,
IS hydrodynamics is applicable when τ0 >

∼
0.3 fm. Good accuracy for NS initial conditions
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requires τ0 >
∼

0.6 fm (πNS
0 /p0 ≈ −0.846, −0.585, and −0.488 for τ0 = 0.3, 0.6, and 1 fm), while

for CGC initial conditions even later τ0 >
∼

1 fm.
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Figure 2: Relative entropy production until T f = 180 MeV as a function of initial shear stress and bulk pressure,
for thermalization times τ0 = 0.3 (top), 0.6 (middle), and 1 fm (bottom). Left column is for ζ(T ) based on Meyer’s
calculation[10], right column is for half that large ζ(T ). Crosses indicate local equilibrium initial conditions, while
pluses are for Navier-Stokes. In all cases ηs/s = 1/(4π).

Let us now turn on bulk viscosity. The left column of Figure 2 shows ΔS/S 0 for our default
ζ(T ) parameterization. Due to the additional entropy produced, LTE initial conditions now re-
quire τ0 >

∼
1 fm, while simulations from NS and CGC ones necessitate even later thermalization.

The situation improves somewhat if bulk viscosity is half as large as our default (ζm = 0.1). As
seen in the right column, LTE initial conditions are then suitable when τ0 >

∼
0.6 fm, while NS

can be accommodated if τ0 >
∼

1 fm. Results are quite similar if instead the width of the ζ(T ) peak
is halved, i.e., ζm = 0.2, ΔT = 0.015 GeV. We checked that shorter relaxation times help only a
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little, as illustrated in Figure 3(left) for τ0 = 0.6 fm. On the other hand, the region of applicability
widens substantially if the shear viscosity is a factor of two smaller (cf. Fig. 3(right)).
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Figure 3: Same as Fig. 2 with our default parameters but halved relaxation times (left), or ηs/s = 0.5/(4π) (right).

3. Conclusions

We study the region of validity of Israel-Stewart viscous hydrodynamics for conditions ex-
pected at RHIC, based on the entropy produced during the evolution when both shear and bulk
viscosity are present. Our results indicate that, unlike it was previously hoped, viscous hy-
drodynamics does not extend the range of dynamical description to proper times earlier than
τ ≈ 0.6 fm, even for local thermal equilibrium initial conditions - unless the influence of bulk
viscosity is basically negligible, or the shear viscosity of hot and dense quark-gluon matter is
significantly below the conjectured “minimal” value of ηs = s/(4π).
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Abstract. We study the effect of separate chemical and kinetic freeze-outs to the ideal hydrodynamical
flow in Au + Au collisions at RHIC (

√
sNN = 200 GeV energy). Unlike earlier studies we explore how these

effects can be counteracted by changes in the initial state of the hydrodynamical evolution. We conclude
that the reproduction of pion, proton and antiproton yields necessitates a chemical freeze-out temperature
of T ≈ 150 MeV instead of T = 160–170 MeV motivated by thermal models. Contrary to previous reports,
this lower temperature makes it possible to reproduce the pT spectra of hadrons if one assumes very small
initial time, τ0 = 0.2 fm/c. However, the pT differential elliptic flow, v2(pT ) remains badly reproduced.
This points to the need to include dissipative effects (viscosity) or some other refinement to the model.

PACS. 25.75.Dw Particle and resonance production – 25.75.Ld Collective flow

1 Introduction

Ideal fluid hydrodynamical models have been very success-
ful in describing the bulk behaviour of particles formed in
heavy-ion collisions at RHIC. The low-pT single-particle
spectra as well as the transverse momentum dependence
of elliptic anisotropy (v2(pT )) are reproduced nicely [1,2].
This success has been one of the reasons to conclude that
partonic state of matter with exceptionally low shear vis-
cosity has been formed at RHIC [3].

However, these results have been achieved using ideal
fluid hydrodynamical models, which assumed chemical
equilibrium until the very end of the evolution of the
system. This assumption is questionable, since the cross-
sections of inelastic, particle number changing processes,
are smaller than the cross-sections of elastic and quasi-
elastic processes. Thus it is natural to assume that the
system would still maintain local kinetic equilibrium when
it begins to deviate from local chemical equilibrium.

This kind of approach is also supported by experimen-
tal data. The final hadron abundances in Au + Au colli-
sions at RHIC can be well described by a hadron gas in ap-
proximate chemical equilibrium at Tch ≈ 160–175MeV [4,
5]. The reproduction of the slopes of particle distributions
using a blast-wave model requires much lower tempera-
tures around Tkin ≈ 90–130MeV (depending on central-
ity) [6]. The hydrodynamical models assuming chemical

a Present address: Department of Physics, Purdue
University, West Lafayette, IN 47907, USA; e-mail:
phuovine@purdue.edu

equilibrium usually require freeze-out temperatures close
to the blast-wave fits1 and cannot reproduce all observed
particle yields simultaneously. It is thus reasonable to pos-
tulate two separate freeze-outs: first a chemical freeze-
out where the yields of various particle species are fixed
(frozen out) and somewhat later a kinetic freeze-out where
the particles scatter for the last time and the momentum
distributions cease to evolve.

The formalism to describe such a chemically frozen
hadron gas has been known for quite a long time [9]. There
have been several applications of this formalism to the hy-
drodynamical description of heavy-ion collisions at SPS
(
√

sAA = 17GeV) and RHIC (
√

sAA = 130 and 200GeV)
energies [10–13], but the results have been unsatisfactory.
The conclusion of these studies has been that if the chemi-
cal composition of the hadron gas freezes out at hadroniza-
tion, an ideal fluid hydrodynamical model can reproduce
neither the single-particle spectra nor the pT differential
anisotropy [14,15]. However, these studies are lacking in
such a sense that they used the same initial state for both
the chemically equilibrated and chemically frozen descrip-
tion. It is known that pT distributions are sensitive not
only to the equation of state and kinetic freeze-out tem-
perature, but also to the initial pressure gradients, i.e.

to the initial density distribution [16]. Here we redo the
hydrodynamic calculations once more to explore whether
there is such an initial state which leads to an acceptable
reproduction of the pT spectra and elliptic flow of pions
and antiprotons.

1 With the notable exception of refs. [7,8].
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2 Equation of state

As a baseline, we use an equation of state (EoS) in chem-
ical equilibrium. We construct it in the usual way: the
hadronic phase is described by ideal resonance gas con-
sisting of all hadrons and resonances listed in the Parti-
cle Data Book [17] with mass below 2GeV. The plasma
phase is described by an ideal massless parton gas con-
sisting of gluons and three-quark flavours. There is a
first-order phase transition between these two phases at
Tc = 170MeV. Note that this EoS is slightly different from
the EoS with a first-order phase transition used in ref. [18]
and EoS Q used in ref. [19]. The phase transition temper-
ature in this work is Tc = 170MeV instead of 165MeV
and the number of quark flavours in the plasma phase is
3 instead of 2.5. The latter results in slightly larger latent
heat. As can be seen by comparing the results here and in
ref. [18], these differences have only a small effect on the
particle spectra and anisotropies. In the following we refer
to this EoS and the corresponding initial state as CE.

We construct an EoS out of chemical equilibrium in the
way outlined in ref. [9] and later applied in refs. [11–13].
Below the chemical freeze-out temperature all inelastic,
particle number changing processes have ceased, but elas-
tic and quasielastic scatterings are still frequent enough to
keep the system in kinetic equilibrium. The quasielastic
scatterings lead to frequent formation and decay of res-
onances, which means that the yields of resonances and
their daughter particles, say ρ-mesons and pions, still are
in relative chemical equilibrium. This approach is there-
fore called partial chemical equilibrium (PCE). The pres-
ence of resonances means that the actual particle num-
ber of any particle species is not conserved after chemical
freeze-out, but the effective particle number is. The effec-

tive particle number is defined as N̄i = Ni +
∑

j n
(i)
j Nj ,

where Ni is the actual number of particle species i, n
(i)
j is

the number of particles i formed in the decay of resonance
j including the branching ratios, and Nj is the number of
resonances j. The sum is over all the resonances with life-
times smaller than the characteristic lifetime of the sys-
tem. We take the characteristic lifetime to be 10 fm/c ir-
respective of the actual lifetime of the system. The fol-
lowing particles and resonances have lifetimes longer than
10 fm/c and are thus considered stable:

π, K, η, ω, p, n, η′, φ, Λ, Σ, Ξ, Λ(1520), Ξ(1530), Ω,

and the corresponding antiparticles. The corresponding
effective potential of resonances is obtained in a similar

fashion: μj =
∑

i n
(i)
j μi, where the sum is over all decay

products of the resonance j.
We treat each isospin state of each particle species in-

dependently. This results in 35 conserved quantities and
chemical potentials in the chemically frozen stage. Tabu-
lating the EoS as a function of 36 quantities (35 chemical
potentials and temperature) is unpractical, but avoidable
by taking the advantage of the isentropic nature of ideal
fluid hydrodynamics. Since entropy is conserved, the ra-
tio of the effective particle number density (n̄i = N̄i/V )
and entropy density, n̄i/s, stays constant on streamlines

Fig. 1. Isentropic thermodynamic trajectories below 200 MeV
at RHIC. PCE corresponds to chemically frozen calculation
and CE corresponds to the center of the system in chemically
equilibrated calculation. Above the phase transition temper-
ature nucleon chemical potential μN = 3μq. The curves ter-
minate at the kinetic freeze-out temperature (〈Tkin〉 = 120
and 125 MeV). Note that the difference above the chemical
freeze-out temperature Tch = 150 MeV is due to different ini-
tial states, see sect. 3. For PCE and CE, s/nB = 453.5 and
395, respectively, where nB is net baryon density.

of the flow. The expansion thus traces a trajectory of con-
stant n̄i/s in the (T, {μi})-space and we need to evaluate
the EoS only on this trajectory. The trajectories in the
(T, μN )-plane of the chemically frozen (PCE) and equili-
brated systems (CE) at RHIC are shown in fig. 1.

Qualitatively our EoS is similar to the EoSs in
refs. [11–13]. The relation between pressure and energy
density is almost identical in chemically equilibrated and
frozen cases whereas at fixed energy density the chemically
frozen system is much colder than a system in chemical
equilibrium.

3 Initial conditions

We use the same boost-invariant hydrodynamic code as
in ref. [18]. In the case of chemical equilibrium (CE) we
use the same initial conditions as in ref. [18] for the equa-
tion of state with a first-order phase transition: The ini-
tial entropy density distribution is a linear combination

Table 1. Initial time, phase transition temperature, chemical
freeze-out temperature, kinetic freeze-out energy density and
the corresponding average temperature on the kinetic freeze-
out surface used in chemical equilibrium (CE) and partial
chemical equilibrium (PCE) calculations.

CE PCE

τ0 (fm/c) 0.6 0.2

Tc (MeV) 170 170

Tch (MeV) – 150

εkin (GeV/fm3) 0.065 0.117

〈Tkin〉 (MeV) 125 120
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Table 2. Measured and calculated particle yields at midrapidity in most central (0–5%) Au + Au collisions at
√

sNN = 200 GeV.
CE stands for chemical equilibrium, Tch = 170 and 150 MeV denote cases where chemical freeze-out takes places at 170 and
150 MeV temperatures, respectively, but the initial state of the system is similar to the case CE. PCE is the final partial chemical
equilibrium result where chemical freeze-out takes place at Tch = 150 MeV and the initial conditions are adjusted to reproduce
the observed pT distributions.

dN/dy π+ π− K+ K− p p̄

PHENIX [31] 286.4 ± 24.2 281.8 ± 22.8 48.9 ± 5.2 45.7 ± 5.2 18.4 ± 2.6 13.5 ± 1.8

CE 273 273 44 42 10 5

Tch = 170 MeV 268 268 52 50 25 20

Tch = 150 MeV 265 265 51 49 18 13

PCE 278 278 53 51 18 14

of the density of participants and binary collisions in the
transverse plane whereas the initial baryon density is pro-
portional to the number of participants. The parameter
values are fixed to reproduce the pT spectra of pions and
net protons (p− p̄) in the most central collisions and the
centrality dependence of charged hadron multiplicity at
midrapidity. The initial time, phase transition tempera-
ture and freeze-out criteria for cases CE and PCE are
shown in table 1. Note that the freeze-out energy density
is slightly lower than in the corresponding calculation of
ref. [18] because the EoS is slightly different (see sect. 2).

We find that the same initialization will not work in
the chemically frozen case. To reproduce the slopes of the
pT distributions we increase the transverse flow by making
the initial pressure gradients steeper and by starting the
hydrodynamical evolution earlier. An acceptable result is
achieved when the initial entropy density distribution is
assumed to be proportional to the number of binary colli-
sions in the transverse plane and the initial time is taken
to be τ0 = 0.2 fm/c.

This choice of initial time is bold since it requires hy-
drodynamics to be applicable almost immediately after
the formation time of the partons of the system, but is nev-
ertheless plausible [1,8]. First, in the pQCD + saturation
method for calculating the particle production of ref. [8],
the average energy and particle number densities are al-
most equal to those of a system of fixed temperature. Thus
there is no need for particle number changing processes to
achieve thermalization. Second, for massless particles, the
relation between pressure and energy density is ε = 3P
for any isotropic momentum distribution. Thus the use of
hydrodynamics to describe the build-up of collective flow
could be a reasonable assumption even if the momentum
distribution differs from thermal equilibrium distribution.
Third, this ideal gas EoS may be applicable very rapidly,
since isotropization of the momentum distribution occurs
much faster than thermal equilibration [20,21]. Finally,
the studies of plasma instabilities support the notion of
fast thermalization of the system [22].

If the proportionality between the initial entropy den-
sity and the number of binary collisions is independent of
the centrality of the collision, the centrality dependence
of the final particle multiplicity is not reproduced [23].
To correct this, we modify the parametrization given in
ref. [23] by assuming an impact parameter-dependent pro-

portionality constant:

Ks(τ0 = 0.2 fm; b) = 0.26942 fm−6 b3 + 10.9 fm−4 b

+453.5 fm−3,

and parametrize the initial entropy density in the trans-
verse plane as

s(s; τ0;b) = Ks(τ0; b)TA

(
s+1

2b
)
TB

(
s−1

2b
)
,

where TA is the customary nuclear thickness function [23].
The initial baryon number distribution is obtained in the
same way, i.e. it is taken to be proportional to the initial
entropy density.

4 Particle yields and chemical freeze-out

temperature

When separate chemical and kinetic freeze-outs are dis-
cussed in recent literature, chemical freeze-out is assumed
to take place immediately after hadronization at Tch =
160–170MeV [10–13]. Either the ratios of all particle spe-
cies are taken to be fixed at this temperature [11–13] or
only strange particle yields are supposed to freeze-out [10].
The idea of chemical freeze-out at hadronization is con-
ceptually attractive [24,25] and to some extent supported
by thermal models which lead to temperatures [4,5] quite
similar to the predicted phase transition temperature [26].
However, in the context of the hydrodynamical model,
we have found that assuming chemical freeze-out of all
particle species at T ≈ 170MeV, leads to proton and
antiproton yields that are too large when the model is
tuned to reproduce the observed pion multiplicity. In most
central collisions we obtain dNp/dy = 25 protons and
dNp̄/dy = 20 antiprotons at midrapidity instead of the
experimentally observed yields of dNp/dy = 18.4±2.6 and
dNp̄/dy = 13.5 ± 1.8 (see table 2 and fig. 2, case Tch =
170MeV). This discrepancy is not surprising. Some ther-
mal model fits to RHIC data have actually led to tempera-
tures near or below 160MeV rather than 170MeV [27,28].
Thermal models also tend to lead to p/π ratios which are
slightly larger than the experimental ratio, although still
within experimental errors [27–30]. If the model is required
to fit only K/π and p/π ratios, the temperature is lower,
T ≈ 152MeV [30].
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As was argued in [15], the evolution of the average
transverse momentum per particle, and thus the observed
pT spectra, is sensitive to pion number changing processes.
In a hydrodynamical model it is thus important to de-
scribe the pion chemistry correctly and get the pion chemi-
cal freeze-out temperature right even if that means a worse
reproduction of strange baryon yields. Inspired by the re-
sults of ref. [27], we take T = 150MeV as the tempera-
ture where the pion number changing processes become
negligible and the effective pion number freezes out. We
expect that the better reproduction of the pion to proton
and the pion to antiproton ratios gives a more realistic
description of the temperature evolution and therefore of
the evolution of particle distributions. As can be seen in
the case Tch = 150MeV of table 2, this approach gives the
expected results: pion, kaon, proton and antiproton yields
are almost exactly reproduced. The strange baryon yields,
on the other hand, become too small at Tch = 150MeV.

The possible contribution from weak decays of strange
particles causes a significant uncertainty in determining
the chemical freeze-out temperature [4]. According to the
PHENIX Collaboration [31,32], the data has been cor-
rected for the feed-down from weak decays of Λ’s and
Σ0’s, but whether the pion spectrum contains a contri-
bution from K0

S decays, is not clearly explained. In these
calculations we have assumed that there is no contribu-
tion from any weak decays in the PHENIX data. The de-
cay of thermally produced K0

S ’s and Σ±’s would increase
the pion yield at midrapidity by ∼ 40 pions and one pro-
ton/antiproton. For the cases Tch = 170 and 150MeV, the
pion yield is thus at the experimental upper limit. The re-
duction of initial entropy by 5–10% would bring the pion
yield closer to the experimental value and reduce the pro-
ton/antiproton yield by the same 5–10%. The proton and
antiproton yields at Tch = 170MeV temperature would
be too large in this case too. At Tch = 150MeV, the pro-
ton and antiproton yields would be within experimental
errors, but one can argue that a slightly larger freeze-out
temperature Tch ≈ 155MeV is favoured by the data.

In the case PCE the same procedure leads to a pion
yield larger than the data, which necessitates a larger ad-
justment in the initial entropy. However, after the adjust-
ment, the conclusion is the same than for the cases Tch =
170 and 150MeV: even if the pion yield contains a contri-
bution from K0

S decays, Tch = 170MeV chemical freeze-
out temperature leads to too large proton and antiproton
yields and a temperature around Tch = 150–155MeV is
favoured.

On the other hand, if the experimental correction for
weak decays is not perfect and the spectra contains a feed-
down from strange baryons, the relative increase in the
proton/antiproton yields would be larger than in the pion
yield. In such a case the favoured freeze-out temperature
would be even smaller than what is suggested here.

5 Transverse momentum spectra

The transverse momentum distributions for protons, an-
tiprotons, pions and kaons in the most central collisions

Fig. 2. (a) Proton and antiproton and (b) pion (π+) and kaon
(K+) pT spectra in most central (0–5%) Au + Au collisions
at

√
sNN = 200 GeV compared with hydrodynamical calcula-

tions using different chemical freeze-out descriptions (see the
text). The data was taken by the PHENIX Collaboration [31].
For clarity the antiproton and kaon spectra are scaled by a
factor 10−1.

are shown in fig. 2. As before [18], the calculation with
chemical equilibrium (CE) reproduces the pion and kaon
data well, but it reproduces only the slopes of proton and
antiproton distributions. If we proceed as in refs. [12,13]
and replace the EoS by an EoS with partial chemical
equilibrium below Tch = 170MeV, adjust only the ki-
netic freeze-out density2, and keep everything else un-
changed, the result is a disaster (Tch = 170 in the figure).
Even at 〈Tkin〉 = 100MeV average freeze-out tempera-
ture, the slopes of proton and antiproton spectra are far
too steep. Decreasing the freeze-out temperature/density
does not help the overall fit, since the pion spectrum
becomes steeper with decreasing freeze-out temperature.
This slightly counterintuitive behaviour was explained in
ref. [15]. In the boost-invariant expansion, the transverse
energy per unit rapidity, dET /dy, decreases with increas-
ing time. In partial chemical equilibrium the particle num-
ber is conserved and the transverse energy has to be
distributed among the same number of particles. Conse-
quently, 〈pT 〉 decreases and the slope of the pT distribution
steepens.

2 Note that in the actual calculation we use the constant
energy density as freeze-out criterion for numerical simplicity.
In the following we talk about freeze-out temperature instead.
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Fig. 3. Transverse momentum spectra of charged pions,
charged kaons and protons + antiprotons in 15% most cen-
tral Au + Au collisions at

√
sNN = 200 GeV in the ultralow-

pT region measured by PHOBOS [33] compared with hydro-
dynamical calculations. The systematic and statistical errors
of the PHOBOS data have been added in quadrature. The
PHENIX data [31] are an average of the data in 0–5%, 5–10%
and 10–15% centrality bins and have only statistical errors.

Another problem with Tch = 170MeV temperature
can also be seen in fig. 2: there are too many protons and
antiprotons as discussed in the previous section. This can
be cured by decreasing the chemical freeze-out tempera-
ture to Tch = 150MeV. The calculation labelled Tch = 150
in fig. 2 is performed in the same way as Tch = 170. Only
the EoS is changed, but the initial state is kept the same.
When the kinetic freeze-out temperature is kept the same,
〈Tkin〉 = 100MeV, as for Tch = 170, the particle distribu-
tions are closer to the data, but the slopes are still too
steep. The flattening of the spectra is easy to understand.
Between T = 170 and 150MeV the particle number is
not conserved but the energy stored in masses of heavy
particles is converted to kinetic energy of light particles
(mostly pions) when the system cools. Thus 〈pT 〉 may in-
crease even if dET /dy decreases, and 〈pT 〉 is larger at the
time of chemical freeze-out when the particle number is
fixed and pion 〈pT 〉 begins its slow decrease.

Neither the steeper initial profile given by the pure
binary collision profile nor the small initial time τ0 =
0.2 fm/c is sufficient alone to create a large enough flow
before chemical freeze-out to fit the data. When these two
are used together (PCE), the fit to the data is good. The
fit to pion data is even better than in the chemical equilib-
rium case (CE) at low pT , where PCE depicts a concave
curvature typical for a finite pion chemical potential [34].
At low pT the calculation still suffers from excess of pro-
tons and especially antiprotons as if even a larger flow ve-
locity and a smaller chemical freeze-out temperature were
necessary. We have checked that the combination of the
binary collision profile, the short initial time and an EoS
with Tch = 170MeV does not lead to a satisfactory repro-
duction of the slopes either, but the extra push created
in the hadronic equilibrium stage between T = 170 and
150MeV temperatures is necessary to fit the data.

Figure 3 shows the results for the very low transverse
momentum measured by the PHOBOS Collaboration [33]

Fig. 4. Pion (π+) and antiproton (p̄) pT spectra in semi-central
to peripheral Au + Au collisions at

√
sAA = 200 GeV com-

pared with hydrodynamical calculations (see text). The data
was taken by the PHENIX Collaboration [31]. For clarity the
spectra at centralities 20–30%, 40–60% and 60–80% are scaled
by factors 10−1, 10−2 and 10−3, respectively.

as well as the spectra measured by the PHENIX Collabo-
ration [31] at larger pT . The model PCE works well also at
this pT region reproducing the flat behaviour of the data.
The spectrum of pions is slightly below the data. This was
seen already in table 2 where pion multiplicity was shown
to be slightly below the data but still within the exper-
imental error. The increase in the initial entropy of the
system to increase pion multiplicity would, however, ne-
cessitate even lower chemical freeze-out temperature not
to exceed the observed kaon multiplicity.

Pion and antiproton pT spectra at various centrali-
ties are shown in fig. 4. The pattern is familiar from ear-
lier hydrodynamical studies: the more peripheral the col-
lisions, the narrower the pT range where hydrodynamics
can reproduce the spectra. An interesting detail is that
antiproton spectra in semi-central collisions (20–30% and
40–50% of total cross-section) are slightly too flat. As men-
tioned in the introduction, blast-wave fits give higher ki-
netic freeze-out temperatures in peripheral than in central
collisions. Hydrodynamical models have traditionally used
fixed freeze-out temperature/density for simplicity, but
the overshooting of antiproton spectra here suggests that
a slightly larger kinetic freeze-out density in semi-central
than in central collisions might lead to better results.
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Fig. 5. Elliptic anisotropy of pions and antiprotons vs. trans-
verse momentum in minimum bias Au + Au collisions at√

sNN = 200 GeV calculated using different chemical freeze-
out descriptions (see text) and compared with the data by the
STAR [35] and PHENIX [36] Collaborations.

6 Elliptic anisotropy

Unfortunately, the success in the previous section cannot
be repeated for elliptic anisotropy. Figure 5 shows the pT

differential elliptic anisotropy of pions and antiprotons in
minimum bias Au + Au collisions. The trend is similar
to that in ref. [12]. The chemical equilibrium result (CE)
reproduces the pion data excellently and is slightly above
the proton data. Partial chemical equilibrium (PCE) leads
to a slope of the pion anisotropy that is too large and the
calculated result is clearly above the data. The proton
anisotropy is reproduced at pT < 600MeV, but increases
too fast at larger momenta.

It is worth noticing that the different pT differential v2

is mostly due to the different description of the hadron gas.
As shown in ref. [12], the same initial state leads to differ-
ent v2 in chemically equilibrated and frozen cases. The ba-
sic reason for this is in the different temperature evolution
in the hadron gas. When both systems have reached the
same density, the collective flow field and its anisotropies
are almost identical in both cases. However, the chemi-
cally equilibrated system is hotter and thus the random
thermal motion is stronger. Thermal motion smears away
the underlying anisotropy of the collective flow field, and,
therefore, the final v2 of particles of the chemically equi-
librated system is smaller than the v2 of particles of the
corresponding chemically frozen system3.

Comparison of these results with the recent results
obtained using viscous hydrodynamics [37–39] is partic-

3 For a more detailed discussion see ref. [15].

ularly interesting. Dissipation reduces elliptic flow and it
was claimed in ref. [39] that even the postulated minimal
shear viscosity η

s
= 1

4π
causes very large suppression. As

shown here, the suppression of the elliptic flow is required
to fit the data when chemical equilibrium is lost in the
hadron gas. However, the actual size of the allowed viscous
correction is unknown since the EoS affects especially the
proton anisotropy. At least in the chemically equilibrated
case, the lattice QCD-based EoS leads to an even larger
proton v2(pT ) than the EoS used here [18]. Whether finite
shear viscosity leads to a correct reproduction of the data
remains to be seen as well as how large of a viscosity is
allowed in plasma and hadronic phases [40].

7 Summary and discussion

Contrary to previous reports [12–15], we have shown that
it is possible to reproduce both (nonstrange) hadron yields
and their transverse momentum spectra using ideal fluid
hydrodynamics with separate chemical and kinetic freeze-
outs. The difference between our approach and the previ-
ous studies is that we used a different initial state for the
chemically frozen system than for the system in chemical
equilibrium, adjusted the initial time to be as small as
τ0 = 0.2 fm/c and changed the chemical freeze-out tem-
perature to be below the phase transition temperature to
Tch = 150MeV. However, our success is incomplete. Even
after these adjustments of the model, we were not able
to reproduce the pT differential elliptic flow of pions and
protons. To describe particle yields, their pT distributions
and anisotropies, the description of expansion has to be
amended, most probably by including dissipative effects:
viscosity and diffusion.

Nevertheless, our results demonstrate how sensitive
the expansion dynamics during the hadronic phase is to
hadron chemistry. A good knowledge of hadron chemistry
is therefore essential if we wish to extract the viscosity of
the QGP from the experimental data using viscous hy-
drodynamics. The recent method of choice for this pur-
pose has been the so-called hybrid hydro + cascade model
where the expansion is described using hydrodynamics
until the system is hadronized and the hadronic phase
is described using hadronic cascade [40–43]. These mod-
els have the advantage that the dissipative effects and
hadronic chemistry are included in the model and the
kinetic freeze-out is a result of hadronic cross-sections
without any free parameters. So far cascade models used
in these hybrid models have been limited to two-particle
scatterings, but it has been argued that multiparticle pro-
cesses are essential for reproducing the proton and an-
tiproton yields [44,45]. It is therefore not surprising that
hydro + cascade models may have difficulties in reproduc-
ing the antiproton spectrum at the lowest values of trans-
verse momentum [43]. On the other hand, multiparticle
processes are included in hydrodynamical models and as
argued in sect. 5, processes where heavy particles annihi-
late and form lighter particles, and vice versa, are impor-
tant for the build-up of flow. For this reason we consider
that a hydrodynamical description of the hadronic phase
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is still worth pursuing as a complementary tool to hybrid
models, even if there are transport models where the mul-
tiparticle processes are included [45].

Another conclusion of these results is that the final
spectra are sensitive to the details of the initial state. As
already stated in ref. [40], theoretical constraints to the
initial state and especially to its shape are of utmost im-
portance if we wish to extract the properties of the QGP
from experimental data.

Some arguments favouring the use of hydrodynamics
already at initial time τ0 = 0.2 fm/c were given in sect. 3.
We admit that in a certain sense our result is similar to
ref. [13], where Kolb and Rapp claimed that it is not possi-
ble to fit the pT spectra without pre-hydrodynamic trans-
verse flow. Some of our arguments favouring the use of
hydrodynamics at τ = 0.2 fm/c centered on the fact that
for the relation ε = 3P to hold, it is sufficient that the
momentum distribution is isotropic. It does not need to
be thermal. Thus one may say that we are using hydrody-
namics to calculate the pre-hydrodynamic transverse flow,
although the flow field in our case is different from the one
used in ref. [13].

The low chemical freeze-out temperature Tch =
150MeV clearly below the phase transition temperature
Tc = 170MeV leads to another problem. The chemical
freeze-out temperature is almost independent of central-
ity [30]. It was argued in ref. [25] that such an indepen-
dence requires either chemical freeze-out at phase tran-
sition or extremely steep temperature dependence of the
inelastic scattering rate. One way to solve this apparent
discrepancy is to assume that the chemical equilibration
in the hadron gas close to Tc is very fast indeed due to
massive Hagedorn resonances [46]. These resonances cou-
ple to multi-pion states and baryon-antibaryon pairs and
thus lead to fast chemical equilibration, but they appear
only close to the critical temperature.

The treatment of hadronic chemistry and choice of
chemical freeze-out used in this paper is by no means
the final one. Since the data seem to favour the notion
that strange baryon yields are fixed at higher temperature
than the yields of pions, kaons and nucleons/antinucleons,
it would be relatively easy to use two separate chemical
freeze-out temperatures: one for strange baryons and an-
other for everything else. Another relatively straightfor-
ward improvement is to redo the calculation of the chemi-
cal relaxation rate of pions [47] for the RHIC environment
and to use it to dynamically find the local chemical freeze-
out temperature by comparing this rate to the expansion
rate. This approach is particularly appealing if the kinetic
freeze-out surface is also found by comparing the scatter-
ing and expansion rates. Finally, it would be useful to cal-
culate the particle yields dynamically during the evolution
using actual rate equations for particle number changing
processes. For baryons, a preliminary study was already
done in ref. [48], but in that work mesons were supposed to
be in chemical equilibrium and the EoS was independent
of baryon and antibaryon densities. A proper calculation
would require the dynamical treatment of mesons and cal-
culating the EoS using actual particle densities.
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Abstract

Using a hydrodynamical model we study how the order of phase transition in the equation of state
of strongly interacting matter affects single particle spectra, elliptic flow and higher order anisotropies
in Au + Au collisions at RHIC (

√
sNN = 200 GeV energy). We find that the single particle spectra

are independent of the order of phase transition and that the fourth harmonicv4(pT ) shows only
a weak dependence in thepT region where hydrodynamics is expected to work. The differential
elliptic flow, v2(pT ), of baryons shows the strongest dependence on equation of state. Surprisingly
the closest fit to data was obtained when the equation of state had a strong first order phase transition
and a lattice inspired equation of state fits the data as badly as a purely hadronic equation of state.
 2005 Elsevier B.V. All rights reserved.

PACS: 25.75.-q; 25.75.Ld; 25.75.Nq
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1. Introduction

In non-central heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) of
BNL the particle distributions exhibit quite large anisotropies [1–3]. The second Fourier
coefficient of the azimuthal distribution of particles, so-called elliptic flow, has been exten-
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sively studied [4] since it is sensitive to the early dense stage of the evolution [5]. Recently
also higher harmonics have been measured [3,6]. It has been claimed that they should be
even more sensitive to the initial configuration of the system [7].

Ideal fluid hydrodynamics has been particularly successful in describing the observed
anisotropy of particles at lowpT in minimum bias collisions [8,9]. This success has been
interpreted as a sign of formation of thermalized matter rapidly after the primary colli-
sion [10]. Studies of both single particle spectra and anisotropies have also shown that a
reasonable reproduction of data favours an Equation of State (EoS) of strongly interacting
matter with a phase transition [11,12].

The lattice QCD calculations of the EoS of strongly interacting matter support such
a scenario by predicting a phase transition atTc ≈ 170 MeV temperature. For a physical
scenario of two light and one heavier quark, the phase transition is predicted to be a smooth
crossover at small values of baryochemical potential. Contrary to naive expectations, lattice
QCD predicts that pressure and energy density do not reach their ideal Stefan–Boltzmann
values immediately above the critical temperature, but approach them slowly [13].

At mid-rapidity at collisions at RHIC, the net baryon density is small and the relevant
EoS should exhibit a crossover transition. However, so far all hydrodynamical calculations
of elliptic flow [10–12,14–19] have used an EoS with a strong first order phase transition
and ideal parton gas to describe the plasma phase. The usual point of view has been that it is
unlikely that the details of phase transition would lead to significant dynamical effects [9].
This standpoint has been supported by the early calculations [20,21], where it was found
that the width of the phase transition region,�T , had only little effect on the final flow
pattern in one-dimensional flow. Thus it was considered safe to claim that the final particle
distributions would not be sensitive to�T either.

However, full three-dimensional expansion is more complicated than one-dimensional.
It is known that in three-dimensional expansion the differential elliptic anisotropy,v2(pT ),
of (anti)protons is sensitive to the existence of phase transition and its latent heat
[11,12,15]. The anisotropy of flow might thus be sensitive to other details of phase tran-
sition as well. In this paper we address this possible sensitivity. We use a hydrodynamical
model to calculate single particle spectra, elliptic flow and higher order anisotropies in√

sNN = 200 GeV Au+ Au collisions using four different EoSs with different phase tran-
sitions and plasma properties. As a representative of lattice QCD results, we use an EoS
based on the thermal quasiparticle model of Schneider and Weise [22] (EoS qp). This
model is tuned to reproduce the lattice QCD EoS and provides a method to extrapolate the
results to physical quark masses. To facilitate comparison with earlier calculations we use
as reference points the EoSs Q and H used in Refs. [10,12,14–16]. EoS Q has a first order
phase transition between hadron gas and an ideal parton gas whereas EoS H is a hadron gas
EoS without any phase transition. To study the effects of the order of phase transition and
slow approach to the Stefan–Boltzmann limits separately we also use a simple parametri-
sation for an EoS (EoS T) where the hadron gas and ideal parton gas phases are connected
using a hyperbolic tangent function. Such an EoS has a smooth crossover transition but the
plasma properties approach their ideal values much faster than in EoS qp.

We find that the main sensitivity to the details of an EoS lies in the differential ellip-
tic flow of heavy particles (m � 1 GeV) where EoS Q with a first order phase transition
leads to an anisotropy closest to the data. Surprisingly, the lattice inspired EoS qp re-
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produces the data as badly as purely hadronic EoS. EoS T with a crossover transition
leads to almost as good results as EoS Q. Thus hydrodynamical description of elliptic
flow does not require a strong first order phase transition, but it does require sufficiently
large increase in entropy and energy densities within sufficiently small temperature inter-
val.

2. Equation of state

Until recently the lattice QCD calculations were restricted to vanishing net baryon
densities,µB = 0. Even if there are some recent results forµB �= 0 [13], we limit our
discussion to zero net baryon density for the sake of simplicity. Since we are interested in
the behaviour of the collision system at midrapidity at RHIC where net baryon density is
small, this approximation is unlikely to cause a large effect. Thermal models suggest that
around phase transition temperature, the baryon chemical potential is below 50 MeV [23]
corresponding to a quark chemical potential of about 15 MeV. At these small values ofµ

the critical temperature is expected to change by less than a percent from that atµ = 0 [13].
One of our EoSs (EoS Q, see below) also includes extension to non-zero baryon densities.
We have checked that for this EoS, the results obtained when the finite baryon density is
included in the EoS or approximated by zero, differ by less than two percents. Even if we
do not include finite baryon density to the EoS, we still have finite baryon current in our
hydrodynamical calculation. This allows us to have different baryon and antibaryon yields
at freeze-out and thus finite net proton yields.

So far the lattice QCD calculations with quarks must be done using unphysically
large quark masses. The calculated equation of state must therefore be extrapolated to
physical quark mass values. For this purpose we use the thermal quasiparticle model of
Schneider and Weise [22]. In this model the lattice QCD results are described in terms
of quasiparticles with temperature dependent effective masses and effective number of
degrees of freedom. In this approach the EoSs obtained in lattice calculations for pure
glue [24] and different number of quark flavours [25] are well reproduced. Since the mass
of quarks is an explicit parameter in this model, it is easy to extrapolate the results to
physical quark masses. Here we use the quasiparticle EoS for two light quark flavours
(mu,d = 0) and a heavier strange quark (ms � 170 MeV) to describe the plasma phase of
an EoS qp.

The quasiparticle model is compared to the lattice results in Fig. 1, where pressure
and energy density are shown as a function of temperature. The lattice result for pres-
sure [25] is extrapolated to the continuum limit by assuming a 10% correction, i.e.,
pcont≈ 1.1plat [22], whereas the result for energy density is shown without such an extrap-
olation. When the quark masses in the quasiparticle model are set temperature dependent
as in the lattice calculations,mq = 0.4T (light quarks) andms = 1.0T (heavy quark), the
lattice pressure is nicely reproduced (PQP, dashed line). When physical quark masses are
chosen (EoS qp, thin solid line), the pressure is larger than with temperature dependent
masses.

There is no quasiparticle result with temperature dependent masses available for energy
density, but comparison of quasiparticle model with physical quark masses (EoS qp) to the
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Fig. 1. The lattice results for pressure (left panel) and energy density (right panel) [25] compared to the qua-
siparticle model with quark masses as used in the lattice calculation (PQP), quasiparticle model with physical
quark masses (EoS qp) and a parametrized EoS T (introduced later in the text). The lattice result for pressure is
extrapolated to continuum limit bypcont≈ 1.1plat [22].

lattice shows nice reproduction of the lattice energy density just aboveTc but much larger
density above 1.5Tc. This can be partly explained by the missing extrapolation to contin-
uum limit of the lattice result. If one assumes similar 10% correction than for pressure, the
difference between lattice and EoS qp is quite similar for both pressure and energy density
at high temperature. The parametrized EoS T (see later in the text) is included for com-
parison’s sake and is shown to lead to much larger pressure and energy density than lattice
calculations.

The large difference between EoS qp and lattice belowTc is intentional and not related
to the quasiparticle model. In the present lattice simulations pions turn out too heavy and
therefore their contribution to pressure and entropy is strongly suppressed. Thus one may
expect the lattice calculations to give too small pressure and entropy density in the hadronic
phase belowTc. The quasiparticle model reproduces also this feature of the lattice EoS and
one has to describe the hadronic phase using another model.

We adopt the usual approach of using an EoS of noninteracting hadron resonance gas
to describe the hadronic phase. It has been shown that such an EoS describes interacting
hadron gas reasonably well at temperatures around pion mass [26] and that the hadron res-
onance gas approach reproduces the lattice results belowTc if the same approximations are
used in both [27]. The properties of hadron resonance gas depend on the number of parti-
cles included in the model. Here we include all the strange and non-strange particles and
resonances listed in the Particle data Book up to 2 GeV mass. The details of constructing
this EoS can be found in Ref. [28].

To circumvent our ignorance of the behaviour of the EoS aroundTc, we use the approach
outlined in Ref. [29]: we use the hadron resonance gas EoS up to a temperatureTc − �T ,
the quasiparticle EoS aboveTc and interpolate smoothly between these two regimes. In
practice we choose the valuesTc = 170 MeV and�T = 5 MeV and connect the entropy
densities of both models using a polynomial function. We require that the first, second and
third temperature derivatives of entropy density are continuous to approximate a smooth
crossover from hadronic to plasma phase. BelowTc − �T we use the hadron resonance
gas values for pressure and energy density. Above this limit we obtainP(T ) andε(T ) by
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Fig. 2. (a) The entropy density divided byT 3 and (b) the energy density divided byT 4 as functions of tem-
perature, (c) the pressure and (d) velocity of sound squared as functions of energy density in the EoSs qp
(quasiparticle EoS), Q (ideal parton gas with first order phase transition), H (hadron resonance gas) and T (ansatz
with crossover).

using the thermodynamical relations dP = s dT andε = T s − P . This EoS is called EoS
qp in the following.

For comparison’s sake we also carry out the calculations using the EoS Q and H used
in Refs. [10,12,14–16]. EoS H is a purely hadronic EoS without any phase transition. It is
constructed by extending the previously described hadron resonance gas EoS to arbitrarily
high temperatures. EoS Q, on the other hand, is inspired by a bag model and contains a
first order phase transition from hadron gas to ideal parton gas. The hadron phase is again
described by an hadron resonance gas and the plasma phase by a gas of ideal massless
quarks and gluons with a bag constant. To approximate the effect of the finite strange quark
mass we use the number of quark flavoursNf = 2.5. The phase boundary is determined
using the Gibbs criterionpHG(Tc) = pQGP(Tc) and the two phases are connected using
the Maxwell construction atTc = 165 MeV. Details of constructing these two EoSs can be
found in Ref. [28].

As can be seen in Fig. 2 the quasiparticle and bag model inspired EoSs (qp and Q,
respectively) lead to quite different behaviour around critical temperature. Since we want
to study the effects of the order of phase transition and slow approach to ideal Stefan–
Boltzmann values separately, we construct yet another EoS. We follow the idea presented
in Ref. [20] and connect the hadron and parton phases of the EoS by a hyperbolic tangent
function. We refine this approach by using hadron resonance gas EoS instead of ideal pion
gas to describe the hadron phase. In Ref. [20] the entropy densities of hadron and parton
phases are connected in this way. This leads to similar behaviour of energy density than
the Maxwell construction of EoS Q—aboveTc energy density rises above the ideal Stefan–
Boltzmann limit and approaches the ideal values from above. There is no sign of this kind
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of behaviour in the lattice results. Therefore, we use hyperbolic tangent to connect the
energy density of the different phases instead of entropy density. Energy density is given
by

ε(T ) = 1

2

[
εHRG(T )

(
1− tanh

T − Tc

�T

)
+ 169

120
π2T 4

(
1+ tanh

T − Tc

�T

)]
, (1)

where the latter term is the energy density of ideal parton gas with 3 colours and 2.5
quark flavours. We use againTc = 170 MeV and make the crossover rapid by choosing
�T = 5 MeV. After obtainingε(T ) we again use standard thermodynamical relations,
(∂S/∂E)N,V = 1/T andP = T s − ε, to obtain entropy density and pressure as a function
of temperature. This EoS is called EoS T in the following.

All four EoSs are compared in Fig. 2 where entropy and energy density are shown as
functions of temperature and pressure and the square of the speed of sound are shown
as functions of energy density for each EoS. As can be seen the behaviour of the lattice
inspired EoS qp is quite different from the previously used EoS Q with a first order phase
transition. The latter has a relatively large latent heat of 1.15 GeV/fm3 whereas in the
former the region where the speed of sound is small and the EoS soft is much smaller. The
parametrised EoS T is a compromise between these two. It can also be seen that above the
phase transition region the EoS Q has the largest speed of sound and is therefore hardest
whereas the EoS H without phase transition is softest.

It is worth noticing that EoS qp depicts a smaller rise in both energy and entropy densi-
ties aroundTc than what could be expected from lattice calculations. This is not a property
of the quasiparticle model used here, but due to the use of hadron resonance gas EoS below
Tc. As mentioned before, lattice calculations lead to too high pion mass and correspond-
ingly too small densities belowTc. If realistic pion masses are used in hadron resonance
gas, its pressure and densities are well above lattice results belowTc.

3. Initialization

We use the same boost-invariant hydrodynamic code than in Refs. [14–16] and de-
scribed in detail in Ref. [30]. To fix the parameters of the model, we require that the model
reproduces thepT spectra of pions and net protons (p − p̄) in most central collisions and
the centrality dependence of pion multiplicity at midrapidity. We use net protons instead of
protons and/or antiprotons because our model assumes chemical equilibrium to hold down
to kinetic freeze-out temperature and is unable to reproduce proton and antiproton yields
simultaneously.

Some parametrisations to fix the initial density distributions were explored in Ref. [16].
None of them reproduces the observed centrality dependence of multiplicity, but a lin-
ear combination of them does. Here we use the same combination than in Refs. [10,12].
The local entropy density is taken to scale with a linear combination of the density of
participants and binary collisions in the transverse plane with weights of 0.75 and 0.25,
respectively. This kind of scaling can be interpreted as particle production from “soft” and
“hard” processes. For the sake of simplicity, the initial baryon number density is taken to
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scale with the number of participants. The initial time of the calculation,τ0 = 0.6 fm/c, is
taken from earlier calculations for

√
sNN = 130 GeV energy [14,15].

The freeze-out energy density is chosen to reproduce the slopes of pion and net proton
spectra in most central collisions (see upper left panel of Fig. 3). The stiffer the EoS, the
sooner, i.e., at higher density, the necessary flow velocity to fit the spectra has been built
up. We find that effectively the EoS qp is stiffest since it requires the highest decoupling
energy densityεfo = 0.14 GeV/fm3 (〈Tfo〉 = 141 MeV) to fit the data. Even if the ideal
parton gas EoS is stiff, the mixed phase of the EoS Q makes it effectively the softest EoS
here. The stiffening of the phase transition region and softening of the plasma phase in the
EoS T cancel each other. It is almost as soft as EoS Q and can use the same freeze-out
energy densityεfo = 0.08 GeV/fm3 (〈Tfo〉 = 130 MeV). The purely hadronic EoS H is
in between these extremes and requiresεfo = 0.10 GeV/fm3 (〈Tfo〉 = 135 MeV) to fit the
data. As can be seen in the upper left panel of Fig. 3, these choices ofεfo allow all EoSs to
fit the data equally well.

Fig. 3. Pion (π+), kaon (K+) and net proton (p–p̄) pT -spectra in most central (top left) and semi-central to
peripheral Au+ Au collisions at

√
sAA = 200 GeV compared with hydrodynamical calculations using four dif-

ferent EoSs. The data was taken by the PHENIX Collaboration [31]. For clarity the spectra at centralities 20–30%,
40–60% and 60–80% are scaled by factors 10−1, 10−2 and 10−3, respectively.
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4. Results

4.1. pT -spectra

The transverse momentum spectra for pions, kaons and net protons for various centrali-
ties are shown in Fig. 3. Pion and net proton spectra in most central collisions were used to
fix the parameters of the model, but the data are well reproduced at other centralities too.
Only at the most peripheral collisions the data tend to favour flatter spectra than calculated.

The kaon spectra was not taken into account when choosing the parameters and the
calculated spectra is a prediction in most central collisions too. The fit to data is surprisingly
good when one takes into account that the freeze-out temperature is well below theTchem≈
174 MeV chemical freeze-out temperature where particle yields are fixed [23].

The net proton spectra is well reproduced up topT = 2.5–3.0 GeV except in the most
peripheral collisions, where the data begins to deviate form the calculation at lowerpT . It
is worth noticing that we are able to fit thepT spectra of net protons without any initial
transverse velocity field whereas the fit of protons in Ref. [19] required a non-zero initial
transverse velocity. One reason for this is that due to larger errors, it is easier to fit the net-
proton than proton spectra. The main cause is, however, the different EoS in the hadronic
phase. In [19], the authors assumed a separate thermal and kinetic freeze-outs and only
a partial chemical equilibrium in the hadronic phase whereas in this work a full chem-
ical equilibrium is assumed. Although the relation between pressure and energy density
is almost independent of these assumptions, the relation between temperature and energy
density depends strongly on them [18,32]. Thus the relation between collective and thermal
motion in a hydrodynamical model depends on the assumption of chemical equilibrium or
non-equilibrium and very different initial states can be required to fit the data.

4.2. Elliptic anisotropy

The second Fourier coefficient,v2, of the azimuthal distribution of charged particles
as function of centrality is shown as a histogram in Fig. 4. Note that the data measured
by the STAR [6] and PHENIX [1] Collaborations have different pseudorapidity andpT

cuts. After these cuts have been applied to the calculations, the results differ slightly.
Therefore, the comparison with the data is done in two separate panels. The agreement
with data is similar to that seen in

√
sNN = 130 GeV collisions [11,14,33]: at most central

collisions (< 10% of cross section,b � 4.6 fm) the observed anisotropy is above the hydro-
dynamical result. At semicentral collisions the calculations fit the data (10–30% of cross
section, 4.6 � b � 8 fm, depending on the EoS) and at peripheral collisions the calculated
anisotropy is well above the observed. One possible explanation for larger observed than
calculated anisotropy in most central collisions is fluctuations in the initial state geome-
try [34]. The present experimental procedure cannot distinguish between the enhancing
and suppressing effects of fluctuations on anisotropy in most central collisions and conse-
quently leads to too large value ofv2.

The sensitivity of the anisotropy to the EoS depends on centrality. In the most central
and semi-peripheral collisions EoS Q leads to the lowest anisotropy and EoS H to the
largest, but in most peripheral collisions the lowest anisotropy is achieved using EoS qp.
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Fig. 4. Centrality dependence of elliptic flow of charged hadrons calculated using three different equations of state
and compared with data by the STAR [6] and the PHENIX [1] Collaborations. The STAR data is for|η| < 1.2
andpT > 0.15 GeV and the PHENIX data is for|η| < 0.35 and 0.2 < pT < 10 GeV. The same cuts have been
applied to the hydrodynamic calculations.

Fig. 5. Elliptic flow of pions and antiprotons vs. transverse momentum in minimum bias Au+ Au collisions
at

√
sNN = 200 GeV calculated using four different EoSs and compared with the data by the STAR [3] and

PHENIX [1] Collaborations. Feed-down from weak decays of strange baryons is included in the calculations.

The stiffest EoS does not always lead to the largest anisotropy and the softest to small-
est because of the interplay of collective and thermal motion. Stiff EoS may necessitate
decoupling at higher temperature when larger thermal motion dilutes the flow anisotropy.

The momentum dependence of elliptic flow,v2(pT ), in minimum bias collisions is
shown in Fig. 5 for positive pions and antiprotons and in Fig. 6 for neutral kaons and
a sum of lambdas and antilambdas. For pions the behaviour is similar to the charged
particle v2(pT ) at

√
sNN = 130 GeV collisions [12,14]. Regardless of the EoS the cal-

culated anisotropy reproduces the data up topT ≈ 1.5 GeV where the data begins to
saturate but the hydrodynamical curve keeps increasing. Major differences between dif-
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Fig. 6. Elliptic flow of kaons and lambdas vs. transverse momentum in minimum bias Au+ Au collisions
at

√
sNN = 200 GeV calculated using four different EoSs and compared with the data by the STAR [3] and

PHENIX [1] Collaborations.

ferent EoSs are at the highpT region where no EoS fits the data. Closer look at lowpT

region (pT < 1 GeV) reveals that EoS H leads to slightly largerv2 than the other EoSs, but
the difference is equal to the difference between the STAR and PHENIX data.

The antiprotons show much stronger sensitivity to the EoS than pions. BelowpT =
2 GeV the results form two groups. EoSs qp and H lead to almost identicalv2(pT ) which
is clearly above the data whereas EoSs Q and T lead to anisotropy very close to the data.
The phase transition crossover in EoS T is very rapid with�T = 5 MeV. We have tested
that increase in�T leads to larger antiprotonv2(pT ) at lowpT and worse fit with the data.
For example,�T = 17 MeV moves thev2(pT ) curve roughly halfway between results for
EoS Q and qp. At high values ofpT the order of results is changed with EoS Q leading to
highest and EoS H to the lowest anisotropy. The antiproton data follows the hydrodynami-
cal calculation to much higher values ofpT than the pion data. Even the highest data point
atpT = 3.2 GeV is fitted while using EoS qp or H.

Even when EoS Q is used, we cannot reproduce the antiprotonv2(pT ) as well as in
earlier studies [15]. The main reason is that in Ref. [15] freeze-out temperature was lower
Tf ≈ 120 MeV, but after constraining the freeze-out to fit thepT spectra we are forced to
use higher freeze-out temperature which does not allow as good description of thev2 data.

The general behaviour of antiprotonv2(pT ) suggests that the larger the latent heat, the
smaller thev2(pT ) at low pT . However, this is not the case. To test this hypothesis we
used also an EoS with a first order phase transition and larger latent heat than EoS Q
(2 GeV/fm3 instead of 1.15 GeV/fm3). The fit to antiproton anisotropy was no better than
for EoS Q (similar behaviour was already seen in Ref. [11] for EoSs with latent heats 0.8
and 1.6 GeV/fm3).

Comparison with the strange particle data (K0
s , Λ + Λ̄) in Fig. 6 shows similar trends.

The larger the particle mass the larger the differences between EoSs at lowpT . The data
deviates from the overall behaviour of hydrodynamical calculation at lowerpT for mesons
than for baryons—the kaon data deviates already aroundpT ≈ 1.2 GeV whereas hydro-
dynamical calculation is close to lambda data up topT ≈ 3.5 GeV. On the other hand,
the overall fit to data is worse for strange than non-strange particles. Even EoS Q leads to
calculated anisotropy which is above the data also at lowpT . Smallerv2 at lowpT cannot
be interpreted as a sign of strange particles freezing out earlier at higher temperature. For
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Fig. 7. The fourth and sixth harmonics,v4(pT ) andv6(pT ), in minimum bias collisions (left) andpT -averaged
fourth harmonic,v4, of the azimuthal distribution of charged hadrons as function of centrality (right) calculated
using four different EoSs and compared with the STAR data [6].

kaons and lambdas that would meanlarger v2 at smallpT . The good fit to kaonpT spectra
is also against a higher kinetic freeze-out temperature for strange particles.

As shown in Ref. [16], the different parametrisations of the initial state can lead to sim-
ilar pionv2(pT ) but different protonv2(pT ) in minimum bias collisions. We have checked
if it would be possible to bring the antiprotonv2(pT ) down to fit the data using EoS H but
different initial state as speculated in Ref. [8]. To do this we assumed that at each value of
impact parameterb, the initial energy density was proportional to the density of binary col-
lisions in the transverse plane (parametrisation eBC of Ref. [16]), but the proportionality
constant depended on impact parameter to reproduce the observed centrality dependence
of multiplicity. Because this parametrisation led to steeper initial gradients than our usual
parametrisation, we had to use freeze-out energy densityεf = 0.12 GeV/fm3 instead of
εf = 0.1 GeV/fm3 (〈Tf 〉 = 138 MeV and〈Tf 〉 = 135 MeV, respectively) to reproduce the
pT distributions of pions and net-protons. As a result, the earlier decoupling negated the
change due to the different initial shape and the final protonv2(pT ) was almost similar
to that shown in Fig. 5 and well above the data. We conclude that the anisotropies shown
in Figs. 5 and 6 are typical for each EoS and robust against small variations in the initial
parametrisation of the system.

4.3. Higher harmonics

Recently there has been interest in measuring the higher harmonics of the azimuthal
distribution of particles [3,6]. It has been proposed that these higher coefficients should be
even more sensitive to the initial configuration of the system than the elliptic flow coeffi-
cient v2 [7]. A detailed study of these coefficients would require checking how different
initial configurations would affect these coefficients. Instead we calculate the fourth and
sixth harmonics of distribution,v4 andv6, using the initial state defined above as a first
attempt to see how an EoS affects higher harmonics.

The fourth and sixth harmonics of the charged particle distribution in minimum bias
collisions,v4(pT ) and v6(pT ) as function of transverse momenta are shown in the left
panel of Fig. 7. The EoS has significant effect only abovepT ≈ 2 GeV, i.e., in the re-
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Fig. 8. The fourth harmonic,v4(pT ), of the azimuthal particle distribution of pions, antiprotons,K0
S

andΛ + Λ̄

for minimum bias Au+ Au collisions calculated using four different EoSs and compared with the preliminary
STAR data [3].

gion wherev2(pT ) is no longer reproduced by hydrodynamics. EoS Q leads tov4 peaking
aroundpT ≈ 3 GeV whereas all the other EoSs lead to monotonous increase ofv4(pT )

with increasingpT . The data, on the other hand, increases up topT ≈ 3 GeV and sat-
urates. Except for the highpT region all the EoSs lead tov4 which is smaller than the
experimentally measured values. The measured values of the sixth harmonics of the distri-
bution,v6, are consistent with zero, although the errors are large enough not to exclude any
of the calculations here. The calculated values ofv6 are also small but show a qualitative
dependence on the EoS: EoS Q leads to negativev6 whereas all the other EoSs lead to
positive values ofv6.

The centrality dependence of thepT averaged fourth harmonicv4 is shown in the right
panel of Fig. 7. It shows qualitatively similar behaviour tov4(pT ). The EoS has only a
weak effect onv4 except in peripheral collisions. In central and semicentral collisions the
calculated values are below the observed ones.

In Fig. 8 thepT dependence of fourth harmonicv4 in minimum bias collisions is shown
for identified pions, kaons (K0

s ), antiprotons and lambdas. As was the case for charged
hadrons, the EoS has only a weak effect on results belowpT ≈ 2 GeV. The pion data
is above the hydrodynamical calculations. The errors for other particles are large and the
calculations fit the data except at the highestpT where kaon data seems to favour EoS Q
and lambda data all the other EoSs.

5. Flow on decoupling surface

To understand how different EoSs lead to different anisotropies, we study the properties
of the freeze-out surface in Au+ Au collision with impact parameterb = 6 fm. We try
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Table 1
Freeze-out temperature, average transverse flow velocity, spatial eccentricity and flow anisotropy on the decou-
pling surface in Au+ Au collision with impact parameterb = 6 fm using four different EoSs

EoS qp EoS Q EoS H EoS T

〈Tfo〉 (MeV) 141 130 134 130
〈vr 〉 0.47 0.47 0.49 0.49
εx 0.058 0.033 0.056 0.034
a2 0.027 0.027 0.025 0.026

to find a set of parameters to describe the surface similar to those presented in Ref. [35]
for a blast wave model. Freeze-out temperature, average transverse flow velocity and two
anisotropy coefficients are shown in Table 1. To characterise the spatial anisotropy of the
surface we generalise the usual spatial anisotropyεx [30] for hypersurfaces:

εx =
∫

dσµ sµ(y2 − x2)∫
dσµ sµ(y2 + x2)

, (2)

where the usual integral over dx dy is replaced by an integral over space–time hypersurface
and instead of energy density, entropy density is used as a weight. To characterise the
azimuthal modulation of the flow field, we first calculate average flow velocity as function
of flow angle,〈vr(φv)〉, whereφv = arctan(vy/vx). We use the second Fourier coefficient
of this distribution as a measure of anisotropy of the flow field:

a2 =
∫

dφ 〈vr(φ)〉cos(2φ)∫
dφ 〈vr(φ)〉 . (3)

This allows us to separate the spatial anisotropy from the flow anisotropy.
The average flow velocity and anisotropy of the velocity field are surprisingly simi-

lar in all four cases. The main differences at freeze-out are freeze-out temperature and
the shape of the surface. As seen in Ref. [36] where the anisotropies are studied using
a parametrisation of the freeze-out surface, at this temperature and velocity range the
lower temperature should lead to larger anisotropies for both pions and protons. As can
be expected, in parametrisation smaller spatial anisotropy is seen to lead to smallerv2 of
particles. This behaviour is different from what we see here where EoS Q leads to low-
estv2(pT ) at low pT . Smaller spatial anisotropy cannot explain this alone, since its effect
should be cancelled by lower temperature. Also the differences between EoS Q and T are
such that one would expect EoS T to lead to lowerv2 for both pions and protons, but that
is not the case.

Clearly the average values do not characterise the flow well enough. The reason for
different anisotropies must lie in the details of the flow profiles. To have a closer look
at the properties of flow on the decoupling surface, we have plotted the flow velocity on
decoupling surface as a function of radial coordinate in Fig. 9. In the left panel the flow
velocity is shown as function ofy whenx = 0 and in the right panel as function ofx when
y = 0.

As expected from very similar spectra and differential anisotropies, the velocity distri-
bution for EoSs qp and H is also close to each other. EoS Q, on the other hand, leads to
different flow profile with slower increase of velocity with increasing radius, a distinctive
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Fig. 9. The transverse flow velocity on decoupling surface of a Au+Au collision with impact parameterb = 6 fm
using four different EoSs. The left panel shows the velocity as function ofy-coordinate whenx = 0 and the right
panel as function ofx wheny = 0. The curves are divided into segments of thin and thick lines where each
segment corresponds to 20% of total entropy flowing through freeze-out surface.

Fig. 10. Entropy flow through fluid elements on decoupling surface as function of the transverse flow velocity of
each fluid element.

“shoulder” atr ≈ 5 fm where the velocity can even slightly decrease with increasingr (in
x-direction) and very rapid rise of flow velocity close to maximum radius of the system.
EoS T on the other hand is somewhere in between these two with the slow rise at lowr

and very rapid rise at larger but with much weaker structure aroundr ≈ 5 fm.
Even if the flow velocity distributions shown in Fig. 9 do not look too different from

each other, the amount of particles emitted from fluid elements at different velocities is very
different. To characterise this, the velocity curves in Fig. 9 are divided into segments so that
each segment corresponds to 20% of entropy flowing through surface and thus∼ 20% of
particles emitted. Also the entropy flow as function of flow velocity on the decoupling
surface is shown in Fig. 10. As can be seen EoS Q leads to very different distribution with
much more particles being emitted at small flow velocities. Especially the “shoulder” in
flow profile aroundr = 5 fm leads to a peak in entropy distribution atvr ≈ 0.38 whereas
EoSs qp and H lead to distributions peaking atvr ≈ 0.6, close to maximum values of flow
velocity. EoS T is again a compromise between these two extremes. The entropy flow has
a peak both at the “shoulder” atvr ≈ 0.42 and close to maximum velocity atvr ≈ 0.68.
The largest flow velocity is also larger than for EoSs qp and H and close to the maximum
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for EoS Q. The flow on decoupling surface is thus weighted very differently for each EoS
and the average values of flow velocity and anisotropy do not completely describepT

differential anisotropies of particles.
In Ref. [11] similar velocity profiles were considered linear and corroborating the gen-

eral use of linear velocity profiles in hydrodynamically inspired fits to particle spectra. As
seen here the deviations from linear behaviour are important at least in non-central colli-
sions. Thus the parameter values from fits can deviate from values obtained in full-fledged
hydrodynamical calculations.

6. Conclusions

In this paper we have examined how the order of deconfinement phase transition af-
fects the anisotropy in a hydrodynamical description of relativistic nuclear collision. We
used four different equations of state—one lattice inspired EoS with a crossover transition
from hadronic to partonic phase (EoS qp), one where a simple Maxwell construction be-
tween different phases creates a first order phase transition (EoS Q), a purely hadronic EoS
with no phase transition at all (EoS H) and an EoS where different phases were smoothly
connected with a hyperbolic tangent function (EoS T).

ThepT distributions of various particles could be reproduced equally well using each
of these EoSs when the freeze-out density was chosen accordingly. Our result is thus dif-
ferent from Ref. [11] wherepT distributions were sensitive to the amount of latent heat
of the EoS. This difference is due to different treatment of freeze-out. In Ref. [11], the
hadronic stage was described using RQMD cascade model which does not have freeze-out
temperature or density as a free parameter.

The main sensitivity to the EoS was seen in the differential anisotropy of heavy particles
at lowpT , i.e., antiprotons and lambdas. None of the EoSs was able to reproduce the data,
but the EoS with the first order phase transition, EoS Q was closest. Surprisingly the lattice
based EoS qp was as far from the protonv2 data as the EoS H without any phase transition.
The basic rule was that the sharper the rapid rise in entropy and energy density at phase
transition and the larger the latent heat, the lower the differential anisotropy of antiprotons
at lowpT was. This, however, is valid only among the EoSs discussed here.

The results here favour EoS Q and first order phase transition over lattice inspired EoS
qp. One should not interpret this to mean that hydrodynamical description of elliptic flow
requires a first order phase transition since EoS T with a crossover transition lead to only
marginally worse results than EoS Q. The main difference between EoSs qp and T is in
the size of the increase in energy and entropy densities around the critical temperature and
consequently how wide is the region where the speed of sound is small. Thus the acceptable
description of elliptic flow seems to require very fast and sufficiently large increase in
entropy and energy densities aroundTc.

However, these results must be taken as only preliminary. For simplicity hadron gas was
assumed to maintain chemical equilibrium until kinetic freeze-out in these calculations. As
mentioned in Section 3, this assumption does not allow the reproduction of observed par-
ticle yields but only the slopes of their spectra and approximatively their anisotropies [10,
14]. The recent calculations where this assumption is relaxed and a separate chemical and
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kinetic freeze-outs included in the model [18,19], have lead to much worse description of
the data [37]. It looks like it is very difficult to describe the data using ideal fluid hydrody-
namics while the hadron gas is not in chemical equilibrium [38]. On the other hand, if the
hadronic phase is described using RQMD cascade which allows chemical non-equilibrium,
the data is again reproduced [11]. Thus the correct treatment of the hadronic phase in a hy-
drodynamical model is an open question and it is not yet possible to draw final conclusions
about the details of the EoS based on the observed anisotropies.

Nevertheless, our results point to that a large and rapid increase in densities around
critical temperature is necessary in hydrodynamical description to describe the observed
anisotropies. The failure of lattice inspired EoS to do this raises the questions whether the
lattice result used here is sufficiently accurate aroundTc, whether the hadron resonance gas
description of the EoS belowTc is inaccurate or whether some finite size effects make the
EoS relevant for heavy ion collisions differ from lattice QCD results.
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Fluid dynamical description of elementary particle collisions has a long history dating
back to the works of Landau and Fermi. Nevertheless, it is during the last 10–15 years
when fluid dynamics has become the standard tool to describe the evolution of matter

created in ultrarelativistic heavy-ion collisions. In this paper, I briefly describe the hy-
drodynamical models, what we have learned when analyzing the RHIC and LHC data
using these models, and what the latest developments and challenges are.
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1. Introduction

The goal of the heavy-ion programs at BNL RHICa and CERN LHCb is to observe

strongly interacting matter. “Strongly interacting” in a sense that the interactions

in the system are not mediated by the electromagnetic, but by the strong inter-

action, and “matter” in the sense that to describe the system, we do not need

to describe every (quasi-)particle individually, but thermodynamic concepts like

temperature and pressure are applicable. Thus, it is natural to try to describe the

expansion stage of the collision by a macroscopic approach like fluid dynamics. We

expect that the system formed in the collision is initially so hot and dense that rel-

evant degrees of freedom are partons, not hadrons. The system expands and cools,

undergoes a phase transition to hadrons, and when the system is dilute enough,

interactions cease and the particles stream freely to detectors.

aRelativistic Heavy-Ion Collider, full collision energy
√
sNN = 200 GeV.

bLarge Hadron Collider,
√
sNN = 2.76 TeV at the time of this writing, designed

√
sNN = 5.5 TeV.
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2. Fluid Dynamics

2.1. Ideal fluid dynamics

Relativistic fluid dynamics is basically an application of conservation laws for

energy, momentum and conserved charges (if any). When written in differential

form,

∂µT
µν = 0 and ∂µj

µ
x = 0 , (1)

where T µν is the energy-momentum tensor, and jµx the charge 4-current of charge x

(baryon or electric charge, strangeness, isospin, etc.), the conservation laws provide

evolution equations for the system. If there are n conserved charges, there are 4+n

equations, which contain 10+4n unknowns. To make this set of equations solvable,

further constraints for the unknowns must be provided. The simplest approach is

to assume that the system is in exact local equilibrium. In that case the energy-

momentum tensor and charge currents can be expressed as

T µν = (ǫ+ P )uµuν − Pgµν and jµx = nxu
µ , (2)

respectively, where ǫ and P are energy density and pressure in the local rest frame,

uµ flow velocity, gµν is the metric tensor and nx the charge density of charge x in the

local rest frame. Now the number of unknowns is reduced to 5+ n, and the system

of equations can be closed by providing the equation of state (EoS) of the fluid in a

form P = P (ǫ, {ni}). To model the collisions at RHIC and LHC, the description is

usually further simplified by assuming that net baryon density and other conserved

charges are zero. After specifying the boundary conditions for this set of partial

differential equations the evolution is determined, and all the microscopic physics

is contained within the EoS.c

However, the simple phrase “after specifying the boundary conditions” contains

a lot of physics. Hydrodynamics provides neither the initial distribution of mat-

ter nor the criterion for the end of the evolution, but they must be supplied by

other models. At ultrarelativistic energies the initial state of the hydrodynamical

evolution cannot be two colliding nuclei: The initial collision processes are far from

equilibrium and produce large amount of entropy.3 Thus, the initial state is assumed

to be a distribution of thermalized matter soon after the initial collision. The most

common approach is so-called Glauber model,4,5 which is basically a geometrical

constraint on the distributions. The Woods–Saxon distributions of nuclear mat-

ter in colliding nuclei are projected on a plane orthogonal to the beam (so-called

transverse plane), and the resulting densities on this plane, and nucleon–nucleon

cross-section at the collision energy, are used to calculate the number density of

binary collisions and participants on this plane — participant meaning a nucleon

which has interacted at least once (for details, see Ref. 4). The initial energy or

entropy density profile is taken to be proportional to the profile of collisions or

cFor further discussion of fluid dynamics see Refs. 1 and 2.
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participants, or to a linear combination of them.6,7 The proportionality constant is

a free parameter chosen to reproduce the observed final particle multiplicity.

Another popular approach is the Kharzeev–Levin–Nardi (KLN) model8–13

where the initial entropy density distribution is proportional to the distribution

of gluons produced in primary collisions. The gluon production is calculated using

the Color Glass Condensate (CGC) framework,14–17 where one applies the feature

of QCD that at small-x gluon densities are large. These large densities correspond to

classical fields permitting calculations using classical techniques. Another approach

to calculate the initial particle production from first principles is so-called EKRT

saturation model18–20 based on perturbative QCD+ saturation framework. Besides

Glauber and CGC based approaches, one can use event generators like UrQMD,21–23

AMPT,24,25 or EPOS26 to generate the initial state for hydrodynamic expansion.

Nevertheless, no model so far describes a dynamical process leading to thermalized

matter, but thermalization has to be postulated and imposed by hand.

When the system expands and cools, the mean free paths increase. Ultimately

mean free paths become so long that rescatterings cease, and particle distributions

no longer evolve. Particle distributions are “frozen” at that stage, and we say that

the particles freeze out, or alternatively, that the particles decouple from each other.

In practice this freeze-out should be a gradual process, but since implementing a

gradual freeze-out is difficult,d it is approximated to take place suddenly on a surface

of zero thickness. In such a case one can use so-called Cooper–Frye prescription to

evaluate particle distributions on this surface29:

E
dN

dp3
=

∫
σ

dσµp
µf(T (x), µ(x), p · u(x)) , (3)

where σ is the surface where the distribution is to be evaluated, dσµ its normal

4-vector, f distribution of particles, and u 4-flow velocity of the fluid. Hydrody-

namics does not tell when decoupling should take place, but the criterion is a free

parameter, and its value is chosen to reproduce the observed pT -spectra. Usually

a constant temperature or energy density is used as the criterion, although a more

realistic criterion would be the ratio of the scattering rate of particles to the

expansion rate of the system, i.e. the inverse Knudsen number.30,31

2.2. Dissipative fluid dynamics

The ideal fluid assumption is extremely strong, and in nature gradients in the

system always indicate deviations from equilibrium and thus dissipation. In non-

relativistic fluid dynamics Navier–Stokes equations are known to describe viscous

fluid well, but unfortunately the relativistic generalization of Navier–Stokes equa-

tions is unstable and allows acausal solutions with superluminal signal propagation

speeds.32–34 This undesired behavior can be avoided if one assumes that the dissi-

pative currents (shear stress πµν , heat flow qµ and bulk pressure Π) are not directly

dFor attempts see Refs. 27 and 28.
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proportional to gradients in the system, but are dynamical variables which relax to

their Navier–Stokes values on time scales given by corresponding relaxation times

τπ, τq and τΠ. The evolution equations for the dissipative currents can be derived

phenomenologically from entropy current,35,36 from kinetic theory using the Grad

14-moment ansatz,37–39 or via gradient expansion.40,41

The derivation from kinetic theory leads to the commonly used Israel–Stewart

equations, but so far it has had a problem: Unlike Chapman–Enskog expansion,42

which leads to relativistic Navier–Stokes equations, it is not a controlled expansion

in some small parameter, in which one could do power counting and improve the

approximation if necessary. This problem has recently been solved by rederiving

viscous hydrodynamics using the method of moments, and ordering the terms in

the expansion according to their (generalized) Reynolds and Knudsen numbers.43

In lowest order in Knudsen and Reynolds numbers this approach leads to equa-

tions identical to the original Israel–Stewart approach, but it has been shown that

an adequate description of heat flow would require inclusion of some higher-order

terms.44

Strictly speaking all these derivations are for a single component system, and the

derivation for a multi-component system has not been completed yet.45–47 For the

behavior of the fluid this does not matter — the different components are assumed

to behave as a single fluid — but when the fluid is converted to various types

of hadrons, this causes an additional uncertainty. The Cooper–Frye prescription

(Eq. (3)) is equally valid in dissipative as in ideal system, but dissipation causes the

distribution function f to deviate slightly from the thermal equilibrium distribution.

If there is only shear, no bulk pressure nor heat flow, in a single component system

the Grad 14-moment ansatz leads in Boltzmann approximation to

f = f0 + δf, where δf = f0
pµpνπµν

2T 2(ǫ + P )
, (4)

and f0 is the equilibrium distribution function. In a multicomponent system the

effect of shear stress on particle distributions should depend on particle properties,

but how exactly, is still a work in progress.48 In practical calculations one has

therefore assumed that the dissipative correction to the thermal distribution is

given by Eq. (4) for all hadron species. Note that the form of δf in Eq. (4) is only

an ansatz. Other forms have been argued for Ref. 49, but if the thermal distribution

is expanded differently than in the 14-moment ansatz, the evolution equations and

definitions of the dissipative coefficients may change as well.

So far the viscous hydrodynamical calculations have concentrated on studying

the effects of shear viscosity, characterized by the shear viscosity coefficient η. In no

calculation has heat conductivity been included, and the bulk pressure has usually

been omitted as well.e When the only dissipative current is shear stress, the energy-

eThere are some calculations with bulk, like Refs. 50–54.
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momentum tensor becomes

T µν = (ǫ+ P )uµuν − Pgµν + πµν , (5)

where πµν is the shear stress tensor. Its evolution is usually given by

〈Dπµν〉 = 1

τπ
(2ησµν − πµν)− 4

3
πµν∂λu

λ , (6)

where D = uµ∂µ, σ
µν = ∇〈µuν〉, and the angular brackets 〈 〉 denote the sym-

metrized and traceless projection, orthogonal to the fluid four-velocity uµ. Both

Israel–Stewart39,43 and gradient expansion40,41 approaches lead to some additional

terms in the evolution equation, but these terms are usually considered numerically

insignificant, although a full analysis of the effect of all terms has not yet been

done. It is worth noting that the factor 4/3 in the last term of Eq. (6) is strictly

valid for massless particles. Whether modifying this term according to the mass

of particles would change any results has not been studied yet. As well, in the

original Israel–Stewart papers36,38 this term was estimated small and omitted in

the final equations. In the context of heavy-ion collisions, however, it improves the

applicability of viscous hydrodynamics significantly.55

2.3. Hybrid models

The sudden change from interacting fluid to free streaming particles in the Cooper–

Frye description is clearly an oversimplification. We also expect hadron gas to be so

dissipative45,56 that the applicability of dissipative fluid dynamics is questionable.57

In so-called hybrid models these problems are avoided by using fluid dynamics to

describe only the early dense stage of the evolution. The fluid is converted to par-

ticles using the Cooper–Frye description, not at freeze-out, but when rescatterings

are still abundant, and the individual particles are fed to a hadron cascade model

like UrQMD22,23 or JAM58,59 to describe the dilute hadronic stage. These models

have the advantage that hadron cascades describe freeze-out dynamically without

free parameters, all dissipative processes are included, and they can describe a

system arbitrarily far from equilibrium. Unfortunately they do not remove all the

arbitrariness from the end of the evolution: Like the results of pure hydrodynamical

models depend on the freeze-out criterion, the results of hybrid models depend on

when the switch from fluid to cascade is done.57,60 For a detailed discussion of these

models see Ref. 60.

3. What We Know

3.1. There are rescatterings

The particle production in the primary collisions is azimuthally isotropic, but the

distribution of observed particles in A+A collisions is not. The anisotropy can be

easily explained in terms of rescatterings of the produced particles: In a noncentral

collision of identical nuclei the collision zone has an elongated shape, see Fig. 1. If a
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Fig. 1. A schematic representation of the geometry of a noncentral heavy-ion collision. (Left)
Two Lorentz-contracted nuclei approaching each other. (Right) A projection of the collision zone
onto a plane orthogonal to the beam (so-called transverse plane). The dotted circles depict the
target and projectile nuclei.

particle is moving along the long axis of the collision zone, it has a larger probability

to scatter and change its direction than a particle moving along the short axis. Thus

more particles end up in the direction of the short axis. Or, in the hydrodynamical

language, the pressure gradient between the center of the system and the vacuum

is larger in the direction of the short axis, the flow velocity is thus larger in that

direction, and more particles are emitted along the short than along the long axis.

This anisotropy is quantified in terms of Fourier expansion of the azimuthal

distribution. The coefficients of this expansion vn, and the associated participant

angles ψn, are defined asf

vn = 〈cos[n(φ− ψn)]〉 and ψn =
1

n
arctan

〈pT sin(nφ)〉
〈pT cos(nφ)〉 . (7)

Of these coefficients v1 is called directed, and v2 elliptic flow. Elliptic flow of charged

hadrons as a function of centrality was one of the first measurements at RHIC.62

The result is shown in Fig. 2, and compared to early fluid dynamical calculations.63

As seen, the elliptic flow is quite large and increases with decreasing centrality, as

expected if it has the described geometric origin. Thus there must be rescatterings

among the particles formed in the collision, and an A+A collision is not just a sum

of independent pp collisions.

The observed elliptic flow is also very close to the hydrodynamically calculated

one, which is a strong indication of hydrodynamical behavior of the matter. Another

signature of hydrodynamical behavior is shown in Fig. 3: It was observed that the

heavier the particle, the smaller its pT -differential v2 at low pT . As explained in

Refs. 2 and 68, such a behavior arises if all the particles are emitted from the same

expanding thermal source. Thus, if the produced matter is not close to kinetic

equilibrium, at least it behaves as if it was!

fFor a detailed discussion of the anisotropy measurements see Ref. 61.
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Fig. 2. The elliptic flow parameter v2 of charged hadrons as function of centrality (Nch/Nmax = 1
is the most central collision) in Au + Au collisions at

√
sNN = 130 GeV. The data are from Ref. 62

and the calculation using different EoSs (labels A and H), and freeze-out temperatures (120 MeV
or 140 MeV) from Ref. 63. The figure is from Ref. 64.

2v

 (GeV/c)tp
0 2 4 6

0

0.1

0.2

0.3

-π++π -+h+h
0
SK-+K+K

pp+ Λ+Λ

STAR DataPHENIX Data

Hydro model
π
K
p
Λ

Fig. 3. v2 versus pT for identified particles in minimum bias Au + Au collisions at
√
sNN =

200 GeV. The figure is from Ref. 65 and reprinted with permission. The data are from Refs. 65–67.

It has often been argued that the large observed v2 and its hydrodynamical re-

production requires that the system reaches thermal equilibrium very fast,69 within

1 fm/c after the initial collision. The hydrodynamical models fitting the data do

indeed use short initial times, τ0 = 0.15− 1 fm/c, but in Ref. 70 it was shown that
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τ0 = 2 fm/c works as well. The crucial distinction is what the shape of the ini-

tial state is: the larger the deformation, the larger the final momentum anisotropy.

During thermalization the matter will not stay put, but begins to expand. This

expansion reduces the spatial anisotropy, and unless momentum anisotropy is built

up during thermalization, the final anisotropy is smaller.71 If thermalization is fast,

we may assume that changes in matter distribution and flow field during thermal-

ization are tiny, and geometry (Glauber) and/or initial gluon production (color

glass, EKRT) give reasonable constraints to the initial state of hydrodynamical

evolution. In Ref. 70, the shape of the initial state was assumed to be independent

of the thermalization time, but if thermalization time is long, this is no longer a

good approximation. Thus, if thermalization is fast, we know that we can reproduce

the data using hydrodynamical models, but if thermalization takes long, we do not

know, since we do not know a plausible initial state for hydrodynamical evolution.

3.2. EoS has many degrees of freedom

The EoS of strongly interacting matter is an explicit input to hydrodynamical

models. Thus one might expect hydrodynamical modeling of heavy-ion collisions to

tell us a lot about the EoS, but unfortunately that is not the case. The collective

motion of the system is directly affected by the pressure gradients in the system, and

thus by the EoS, but the effects of the EoS on the final particle pT distributions can

to very large extent be compensated by changes in the initial state of the evolution,

and the final decoupling temperature. This makes constraining the properties of

the EoS very difficult. However, what we do know is that the number of degrees of

freedom has to be large.
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Fig. 4. (Color online) Rapidity distribution of negative hadrons (left) and transverse momentum
distribution of neutral pions (right) in S+Au collision at Elab = 200A GeV using four different
EoSs. The red long dashed curve corresponds to ideal pion gas EoS, whereas the other curves
correspond to hadron resonance gas (HRG) with or without phase transition to ideal parton gas.
The figures are from Ref. 72, and the data from Refs. 73 and 74.
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Fig. 5. Elliptic flow of pions and antiprotons versus transverse momentum in minimum bias
Au + Au collisions at

√
sNN = 200 GeV calculated using three different EoSs75 and compared

with the data by the STAR and PHENIX collaborations.65,66 The labels stand for a lattice QCD
inspired quasiparticle model (qp), EoS with a first-order phase transition (Q) and pure HRG with
no phase transition (H). Figure is from Ref. 64.

It was already seen when modeling S+Au collisions at the CERN SPS at

Elab = 200A GeV energy, that if we use ideal pion gas EoS, it is not possible

to fit the pion rapidity and pT -distributions simultaneously. Once the initial state

and decoupling temperature are fixed to reproduce the rapidity distribution, the

transverse momentum distribution of pions becomes too flat,72 see Fig. 4. Or if

one chooses parameters to fit the pT -spectrum, the rapidity distribution is not

reproduced. On the other hand, if we use an EoS containing several hadrons and

resonances, the distributions can be fitted.

One might want to use the elliptic flow to constrain the EoS after the initial

state and freeze-out temperature are fixed to reproduce the pT distributions. Unfor-

tunately elliptic flow is only very weakly sensitive to the details of the EoS75: The

only flow observable affected by the EoS seems to be the pT -differential anisotropy

of heavy particles, e.g., protons. As shown in Fig. 5, the v2(pt) of pions is unchanged

within the experimental errors no matter whether one uses an EoS with (EoS A)

or without phase transition (EoS H), or an EoS with a first-order phase transition

(EoS A) or with a smooth crossover (EoS qp). On the other hand, the proton v2(pt)

is sensitive to the EoS, but surprisingly the EoS with the first-order phase transition

is closest to the data. Consequently distinguishing between different lattice QCD

EoS parametrizations is very difficult, see Ref. 76.

3.3. Softest point of the EoS is quite hard

The two-particle correlations at low relative momentum provide information about

the space-time structure of the source, and thus constraints to dynamical models

generating the source. For bosons these correlations are called Bose–Einstein corre-

lations, and for identical particles the method for their interpretation is called Han-

bury Brown–Twiss (HBT) interferometry, or, as in general case, femtoscopy.77–79 To

make the measured/calculated three-dimensional correlator easier to understand, it
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is often expressed in terms of multi-dimensional Gaussian parametrization, widths

of which are called HBT radii. Reproduction of the HBT radii measured at RHIC

was surprisingly difficult, and for many years it was not possible to describe simul-

taneously the particle spectra, their anisotropies and HBT radii. An inconsistency

referred to as “HBT puzzle”.80,81 It turned out that this inconsistency was due to

several small effects. Successful reproduction of the data required that, (1) the trans-

verse collective expansion begins very early, (2) the EoS is quite hard, (3) dissipative

effects are included, and (4) contribution from resonance decays is included.80–83

When these requirements are taken into account, the present calculations provide

an acceptable fit to the data.26,52,84

The early build up of collective expansion supports the notion of early ther-

malization discussed in Sec. 3.1, but the HBT radii provide as ambiguous support

as elliptic flow. If sufficient collective motion is build up during thermalization,

HBT radii can be fitted also if thermalization takes long (so-called pre-equilibrium

flow).80,81,83 The sufficient hardness of the EoS is fortunately more solid require-

ment. In practice it means that a bag model EoS with a mixed phase, where the

speed of sound is negligible, is disfavored, and thus the softest point of the EoS can

hardly be any softer than that of HRG.85 A notion in line with the lattice QCD

EoS calculations.86

Nevertheless, since it is so difficult to constrain the EoS, in the present cal-

culations the lattice QCD EoS86–89 is taken as given, and the main interest is in

studying the dissipative properties of the system. At low temperatures the lattice

EoS is equivalent to the EoS of noninteracting HRG with all the hadrons and reso-

nances in the Particle Data Book up to ∼ 2–2.5 GeV mass. In calculations one often

uses an EoS which is a HRG EoS at low temperature, and connected smoothly to

a parametrized lattice EoS at high temperature.76,90

In the long run a systematic study of collisions at different energies may reveal

some sensitivity to EoS and thus allow to test experimentally the lattice QCD pre-

diction. However, since the parameter space and the amount of data to be fitted are

vast, such a study requires the use of model emulators to map the parameter space

instead of using actual hydrodynamical model to calculate results at all parameter

combinations.91,92

3.4. Shear viscosity over entropy density ratio has very low

minimum

Once it became clear that ideal fluid dynamics can describe the particle spectra and

their anisotropies quite well, it was reasonable to assume that the shear viscosity

coefficient over entropy density ratio η/s of the matter produced in the collision was

very low. But how low in particular? To answer that required the development and

use of relativistic dissipative hydrodynamics. Of the other dissipative quantities

heat conductivity can be ignored since at midrapidity the matter formed in the

collisions at RHIC and LHC is almost baryon free. Thus there is no gradient of
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chemical potential and no force causing heat flow. The bulk viscosity, on the other

hand, is expected to peak around the phase transition, but be small above it. If it is

small at lower temperatures too, the effect of bulk viscosity has been evaluated to

be smaller than the effect of shear viscosity.51 Large viscosity in hadronic phase can

have a sizable effect50,53,54 but since bulk viscosity in hadron gas is not well known,

and there is no reliable method to distinguish the effects of bulk from the effects of

shear, the former is largely ignored, and the calculations concentrate on studying

the effects of shear viscosity and on extracting the η/s ratio from the experimental

data.93

It has been shown that the shear viscosity strongly reduces v2.
94 Thus in prin-

ciple extracting the η/s ratio from the data is easy: One needs to calculate the

pT -averaged v2 of charged hadrons using various values of η/s and choose the value

of η/s which reproduces the data. Unfortunately this approach is hampered by our

ignorance of the initial state of the evolution. Figure 6 shows a viscous fluid cal-

culation of v2 of charged hadrons from the first attempt to extract η/s from the

data. As seen, a curve corresponding to a finite value of η/s fits the data best, but

the preferred value depends on how the initial state of hydrodynamic evolution is

chosen: Whether one uses Glauber4 or KLN approach10,12 (see Sec. 2.1) causes a

factor two difference in the preferred value (η/s = 0.08–0.16). Furthermore, the

approximations in the description of the late hadron gas stage in these calculations

caused additional uncertainties, so it was estimated96 that based on these results

η/s < 5/(4π).

The description of hadronic stage in Ref. 70 was problematic for two reasons.

It assumed chemical equilibrium until the very end of the evolution, but at RHIC,

the final particle yields correspond to a chemically equilibrated source in T =

160–165 MeV temperature.97,100 The decoupling temperature required to fit the

Fig. 6. Charged hadron v2 as function of centrality in Au + Au collisions at
√
sNN = 200 GeV

using different values of η/s and KLN (labeled CGC, left) or Glauber (right) initial conditions.
The larger the number of participants, Npart, the more central the collision. The data are from
Ref. 95, the figures from Ref. 70 and reprinted with permission.
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Fig. 7. v2 scaled by the initial state anisotropy ǫ, v2/ǫ, as function of centrality, characterized by
the final multiplicity per area of the initial state, (1/S) dN/dy, in Au + Au collisions at

√
sNN =

200 GeV. The experimental data are from Refs. 102, 65 and 103 for 〈v2〉, v2{2} and dNch/dy,
respectively. The experimental data used in (a) and (b) are identical, but the normalization factors
〈εpart〉, 〈ε2part〉1/2 and S are taken from the MC-KLN model in (a) and from the MC-Glauber
model in (b). The viscous hydro+UrQMD hadron cascade hybrid model calculations from Ref. 101
are done using the MC-KLN initial conditions in (a) and MC-Glauber in (b). The figure is from
Ref. 101 and reprinted with permission.

pT -distributions is usually around Tdec = 100–140 MeV.g Thus there must be a

stage where the fluid is in local kinetic, but not in chemical equilibrium. Such

a “chemically frozen” stage turned out to have surprisingly large effect on the

collective flow in general and elliptic flow in particular.98,99 The second problem was

that η/s was constant during the entire evolution, but the theoretical expectation is

that hadron gas has much larger viscosity than what the obtained value η/s = 0.08–

0.16 indicates.45,56

In subsequent calculations these uncertainties have been addressed. A state-of-

the-art calculation of Ref. 101 employs a hybrid viscous hydro + UrQMD hadron

cascade model. Such a model reduces the uncertainty related to the description of

hadron gas since it provides a dynamical description of chemistry and dissipative

properties — including bulk viscosity — based on the scattering cross-sections of

various hadron species. Unfortunately some uncertainties still remain: It is uncertain

whether hadron cascade is applicable in the vicinity of phase transition where the

switch from hydro to cascade is done, the dissipative properties of the system (i.e., η,

ζ, τπ and τΠ) change abruptly at the switch, and the results also depend on when the

switch from hydro to cascade is done.57 The elliptic flow coefficient v2 as function of

centrality as calculated in Ref. 101 is shown in Fig. 7. In this figure the coefficients

v2 have been scaled by the anisotropy of the initial shape, ǫ, and consequently the

resulting v2/ǫ is almost independent of the initialization. Unfortunately ǫ is not a

measurable, but a model dependent quantity. Thus the data has to be scaled by the

same ǫ which was used in the calculation, and the data points in Fig. 7 depend on

gTdec = 140 MeV in Ref. 70.
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the model used to initialize the calculation. The result is almost identical to the one

shown in Fig. 6 — Glauber initialization favors lower value of viscosity, η/s ≈ 0.08,

than KLN initialization, η/s ≈ 0.16. Since the uncertainties are smaller, this result

was estimated to provide a limit 1/(4π) < η/s < 2.5/(4π) for the effective QGP

viscosity.96,101 For further discussion of evaluating η/s, see Ref. 96.

4. What We are Working With

4.1. η/s(T )

Calculations discussed in Sec. 3.4 assumed that the η/s-ratio is constant. We know

no fluid where η/s would be temperature independent, and there are theoretical

reasons to expect it to depend on temperature with a minimum around the phase
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Fig. 8. (top left) Different parametrizations of η/s as a function of temperature. The (LH-LQ)
line is shifted downwards and the (HH-HQ) line upwards for clarity. Labels refer to low (L) or high
(H) viscosity in the hadronic (H) or partonic (Q) phases. (top right) v2(pT ) of charged hadrons
in the 20–30% Au + Au collisions at

√
sNN = 200 GeV (RHIC). Data are from Refs. 106 and 107.

(bottom left) v2(pT ) of charged hadrons in the 20–30% Pb+Pb collisions at
√
sNN = 2.76 TeV

(LHC). Data are from Ref. 108. (bottom right) v2(pT ) of charged hadrons in the 20–30% Pb+Pb
collisions at

√
sNN = 5.5 TeV (LHC). All the figures are from Ref. 109.
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transition.104 Thus the temperature independent η/s is an effective viscosity, and

its connection to the physical, temperature dependent, shear viscosity coefficient

is unclear. What complicates the determination of the physical shear viscosity co-

efficient, is that the sensitivity of the anisotropies to dissipation varies during the

evolution of the system. As studied in Ref. 105, and illustrated in Fig. 8, at RHIC

(
√
sNN = 200 GeV) v2(pT ) is insensitive to the value of η/s above phase transition,

but very sensitive to its value in the hadronic phase. At the present LHC energy

(
√
sNN = 2.76 TeV) the shear viscosity in the plasma phase does affect the final

v2(pT ), but not more than the shear viscosity in the hadronic phase. It is only at

the full LHC energy,
√
sNN = 5.5 TeV where the viscosity in the plasma phase

dominates, and dissipation in the hadronic phase has only a minor effect. Note that

a change of the minimum value of η/s would clearly change v2(pT ) at all energies.

Additional factor complicating the determination of the temperature depen-

dence of η/s is that the effect of viscosity on the anisotropies does not depend only

on the ratio η/s, but also on the relaxation time τπ of the shear stress tensor. This

is demonstrated in Fig. 9. If the minimum value of η/s is increased by a factor

two, v2 is reduced as expected, but if the relaxation time is also increased by a

factor two, the effect of the increase in η/s is almost completely compensated.105

The interplay of relaxation time and shear viscosity was discussed also in Refs. 57

and 110 where it was found that to reproduce hybrid model results using viscous

hydrodynamics only, it is not sufficient to increase η/s in the hadronic phase, but

one should also change the relaxation time.

So far we have seen that calculations with constant η/s require slightly larger

value of η/s at LHC than at RHIC.111,112 This is in line with the increase of (η/s)(T )

in high temperatures, but as shown in Ref. 112 one cannot uniquely constrain

(η/s)(T ) by fitting the spectra and v2 alone.
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Fig. 9. (left) Parametrizations of η/s as a function of temperature with different minima. The
(HH-HQ) line is the same than in Fig. 8. (right) v2(pt) of charged hadrons at RHIC using η/s(T )
with different minima and different relaxation times. Figures are from Ref. 105.
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4.2. Fluctuations

In the average the matter formed in heavy-ion collisions has a smooth shape as

indicated in Fig. 1, but in each event that is not true. Nuclei are not smooth

distributions of nuclear matter, but consist of individual nucleons, and thus the

collision zone can be expected to have a highly irregular shape which fluctuates

event-by-event, see Fig. 10. The initial state models (see Sec. 2.1) can be generalized

to so-called Monte Carlo (MC) models to take this into account. In those models

the initial Woods–Saxon distributions of nuclear matter are sampled to generate

configurations of nucleons in nuclei, and the number of participants/collisions4 or

gluon production12,13 in an event is calculated based on the positions of individual

nuclei.

It was shown already a while ago that the final observables differ whether one

first averages the initial state, and evolves it hydrodynamically, or one evolves the

event-by-event fluctuating initial states individually, and averages the results.114,115

This became widely recognized only years later when it was realized that because

of the irregular shape of each event, not only even, but also odd anisotropy coeffi-

cients vn are finite and measurable.116 The higher coefficients are very helpful for

extracting the transport coefficients from the data, since the larger the n, the more

sensitive the coefficient vn is to viscosity,117 see Fig. 11. Thus the study of fluctua-

tions provides a way to distinguish different initializations, and first results for the

pT -dependence of v2 and v3 (called triangular flow) seem to favor the MC-Glauber

initialization.118
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Fig. 10. An example of the positions of interacting nuclei in MC-Glauber model. Figure is from
Ref. 113.
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It has been suggested that initial fluctuations provide also a way to circumvent

our ignorance of the initial shape.119 In most central collisions the anisotropies

are entirely driven by fluctuations, which are better understood than the average

shape in semi-central collisions. Thus evaluating η/s using vn in the most central

collisions should be less sensitive to the model used to calculate the initial state.

The preliminary result of such an analysis was that 0.07 < η/s < 0.43.119 This

value is again for effective viscosity which does not exclude the possibility that η/s

could be even smaller or larger in some temperature region. For a further discussion

of flow and viscosity, see Ref. 93.

In event-by-event studies it is not sufficient to reproduce only the average values

of vn, but the fluctuations of the flow coefficients should be reproduced as well.
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Fig. 11. Ratio of the anisotropy coefficients of charged hadrons in viscous calculation to the
coefficients in ideal fluid calculation.117 Figure shown in Ref. 64 by courtesy of Björn Schenke.
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Fig. 12. Probability distributions: (a) P (δv2) and P (δǫ2) and (b) P (δv3) and P (δǫ3) in the 20–

30% centrality class with sBC Glauber model initialization and two different values of η/s, η/s = 0
and η/s = 0.16. δvn = (vn − 〈vn〉)/〈vn〉 and ǫn = (ǫn − 〈ǫn〉)/〈ǫn〉. Figures are from Ref. 120.
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The distributions of these fluctuations provide a way to constrain the fluctuation

spectrum of initial state models independently of the dissipative properties of the

fluid. As shown in Fig. 12, once the average vn has been scaled out, the distributions

of these fluctuations, i.e., (vn − 〈vn〉)/〈vn〉 or vn/〈vn〉, are almost independent of

viscosity. The independence extends to other details of the evolution to such an

extent, that the distributions of the fluctuations of initial anisotropies are good

approximations of the measured distributions of vn,
120 and thus it is sufficient to

compare the fluctuations of initial shape, ǫn, to the observed fluctuations of vn.

Unlike the recently developed IP-Glasma model,121,122 neither MC-Glauber nor

MC-KLN model seems to be able to reproduce the measured fluctuations.123

4.3. Initialization

During last two years there have been major advances in modeling the initial state

of hydrodynamical evolution. So called IP-Glasma model121,122 is based on CGC

and employs the IP-Sat (Impact Parameter dependent Saturation) model124,125 of

nucleon wave functions to generate fluctuating gluon fields in the initial collision,

and the classical Yang–Mills dynamics to evolve these fields.126–131 Unlike most

of the initial state models, the IP-Glasma model includes the fluctuations of color

charge in colliding nucleons too, not only the fluctuations of nucleon positions.

Another advantage is that the model includes some of the pre-equilibrium dynamics

of the gluon fields making the model less sensitive on the time when one switches

to hydrodynamics.111 Unfortunately the description is still incomplete: the present

IP-Glasma model does not lead to a thermal system, but final thermalization still

has to be assumed. Nevertheless, calculations using the IP-Glasma initialization

reproduce both the fluctuations and the average values of v2, v3 and v4,
111,132

which makes this approach very promising. For a general overview of IP-Glasma,

fluctuations and hydrodynamics, see Ref. 133.

5. What Worries Us

As described in the previous sections, fluid dynamics has been very successful in

describing heavy-ion collisions. However, at the time of this writing there are some

data which may cause difficulties for the conventional fluid dynamical picture.

5.1. Photons

Unlike hadrons and partons, photons and leptons interact only electromagnetically,

and hardly scatter at all after being produced. Thus the observed photon and lepton

spectra contain contributions from all stages of a heavy-ion collision, and can be

used to probe the early hot and dense stage.134 The yield and pT -spectrum of pho-

tons in heavy-ion collisions is fairly well understood135–139 — see also Ref. 140 and

references therein — but the recent measurements of direct photon v2 at RHIC141

and LHC142 have presented a puzzle: If photons are emitted during all stages of
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Fig. 13. Thermal photon v2 versus pT for 0–40% central collisions at LHC. The figure is from
Ref. 144 and reprinted with permission. The preliminary direct photon data are from Ref. 142.

the evolution, and momentum anisotropy increases during the evolution, photon v2
should be smaller than the hadron v2. Such a behavior is seen in the theoretical

calculations,143 but not in the data where the photon v2(pT ) is roughly equal to

the observed pion v2(pT ).
141,142 The further refinements of the calculations, where

event-by-event fluctuations144 and viscosity have been taken into account,145,146

have not been able to increase the v2 to the observed level, see Fig. 13. So far the

only approach to get close to the data has used parametrized expansion with very

strong initial expansion and large photon production rates in the hadronic phase.147

Thus the reproduction of the data remains a challenge to our understanding of mi-

croscopic production rates and/or expansion dynamics.

5.2. p + Pb collisions

In p+Pb collisions at
√
sNN = 5.02 TeV, the measured dihadron correlations,148–151

multiplicity and species dependence of average pT ,
152,153 and elliptic and triangular

flows149–151 all depict features easily explained by using hydrodynamics154–159 (for

a short summary see Ref. 160). Especially striking is the mass ordering of the pT -

differential elliptic flow,151 see Fig. 14. As discussed in Sec. 3.1, this was taken as a

strong indicator of the formation of a thermal system. However, it is questionable

whether hydrodynamics is applicable to such a small system. Gradients are so large,

that dissipative corrections should be of the same order than equilibrium pressure.

As discussed in Ref. 161, large dissipative corrections are a problem even in Pb+Pb

collisions, but in Pb + Pb collisions corrections are large only for a small fraction

of the lifetime of the system, whereas corrections are large for a significant fraction

of the lifetime in p+ Pb collision.

1330029-18

In
t. 

J.
 M

od
. P

hy
s.

 E
 2

01
3.

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

O
E

T
H

E
 U

N
IV

E
R

SI
T

Y
 F

R
A

N
K

FU
R

T
 (

U
N

IV
E

R
SI

T
Y

 O
F 

FR
A

N
K

FU
R

T
) 

on
 0

7/
11

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 8, 2014 13:45 WSPC/143-IJMPE S0218301313300294

Hydrodynamics at RHIC and LHC: What Have We Learned?

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 p-Pb    0-20%

π
K
p

Hydro ALICE Data

2v

 [GeV/c]
T

p

Fig. 14. v2 versus pT for identified particles in 0–20% most central p + Pb collisions. Data are
from Ref. 151 and the hydrodynamical calculation from Ref. 159. Figure courtesy by Piotr Bozek.

In the CGC framework similar correlations162–164 and the mass hierarchy of

average pT
165 arise as a result of gluon saturation in the proton and nuclear wave

functions. How much of the observed behavior can be explained as such an initial

state effect,h and how to differentiate initial state effects from hydrodynamical final

state effects161,166 is at the time of this writing under intense study. If it turns out

that the apparently hydrodynamical behavior in p+Pb collisions can be explained

as an initial state effect, then we may wonder whether the hydrodynamical behavior

in Pb + Pb collisions could be explained as an initial state effect as well. On the

other hand, if this is not possible, and fluid dynamics is the most viable description

of p + Pb collisions, then the properties of QCD matter are even more surprising

than thought so far.

6. Summary

Fluid dynamics has been very successful in explaining the features of bulk, i.e., low

pT , particle production in ultrarelativistic heavy-ion collisions. We have seen that in

particular anisotropies of particle production can be explained if the rescatterings

among particles are so frequent that the system is approximately thermal, that the

EoS of such a matter has many degrees of freedom and relatively hard, and that

the shear viscosity coefficient over entropy ratio of the produced matter has very

low value at some temperature. Providing further experimental constraints on the

hHere initial state refers to the initial state of primary collisions, not to the initial state of hydro-
dynamical evolution.
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EoS as well as figuring out the temperature dependence and the precise value of

the minimum of η/s will require a lot of work. The present studies in event-by-

event fluctuations and recent advances in modeling the pre-equilibrium processes

in heavy-ion collisions are very helpful for this goal, but it is not yet clear how the

elliptic flow of photons in A + A collisions and the p + Pb collisions at LHC fit in

the overall picture. After a few years’ work we will know.
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