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1 Introduction

The quantization of the gravitational field is one of the most prominent open problems in

modern theoretical physics. Within the Loop Quantum Gravity framework, one can study

the nonperturbative quantization of gravity, both canonically and covariantly, see [1–3] for

an overview and a comprehensive introduction. The covariant approach focuses on the

definition of the path integral for the gravitational field,

Z =

∫

Dg eiS[g] , (1.1)

by considering a triangulation of a spacetime manifold, and defining the path integral as

a discrete state sum of the gravitational field configurations living on the simplices in the

triangulation. This quantization technique is known as the spinfoam quantization method,

and roughly goes along the following lines:

1. first, one writes the classical action S[g] as a topological BF action plus a simplicity

constraint,

– 1 –
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2. then one uses the algebraic structure (a Lie group) underlying the topological sector

of the action to define a triangulation-independent state sum Z,

3. and finally, one imposes the simplicity constraints on the state sum, promoting it

into a path integral for a physical theory.

This quantization prescription has been implemented for various choices of the action, the

Lie group, and the spacetime dimension. For example, in 3 dimensions, the prototype

spinfoam model is known as the Ponzano-Regge model [4]. In 4 dimensions there are

multiple models, such as the Barrett-Crane model [5, 6], the Ooguri model [7], and the

most sophisticated EPRL/FK model [8, 9]. All these models aim to define a viable theory

of quantum gravity, with variable success. However, virtually all of them are focused on

pure gravity, without matter fields. The attempts to include matter fields have had limited

success [10], mainly because the mass terms could not be expressed in the theory due to

the absence of the tetrad fields from the BF sector of the theory.

In order to resolve this issue, a new approach has been developed, using the categorical

generalization of the BF action, within the framework of higher gauge theory (see [11] for a

review). In particular, one uses the idea of a categorical ladder to promote the BF action,

which is based on some Lie group, into a 2BF action, which is based on the so-called 2-group

structure. If chosen in a suitable way, the 2-group structure should hopefully introduce

the tetrad fields into the action. This approach has been successfully implemented [12],

rewriting the action for general relativity as a constrained 2BF action, such that the tetrad

fields are present in the topological sector. This result opened up a possibility to couple

all matter fields to gravity in a straightforward way. Nevertheless, the matter fields could

not be naturally expressed using the underlying algebraic structure of a 2-group, rendering

the spinfoam quantization method only half-implementable, since the matter sector of the

classical action could not be expressed as a topological term plus a simplicity constraint,

which means that the steps 2 and 3 above could not be performed for the matter sector of

the action.

We address this problem in this paper. As we will show, it turns out that it is necessary

to perform one more step in the categorical ladder, generalizing the underlying algebraic

structure from a 2-group to a 3-group. This generalization then naturally gives rise to the

so-called 3BF action, which proves to be suitable for a unified description of both gravity

and matter fields. The steps of the categorical ladder can be conveniently summarized in

the following table:

categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed differential Lie

2BF theory tetrad fields
module crossed module

Lie 3-group
Lie 2-crossed differential Lie

3BF theory
scalar and

module 2-crossed module fermion fields

– 2 –
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Once the suitable gauge 3-group has been specified and the corresponding 3BF action

constructed, the most important thing that remains, in order to complete the step 1 of the

spinfoam quantization programme, is to impose appropriate simplicity constraints onto

the degrees of freedom present in the 3BF action, so that we obtain the desired classical

dynamics of the gravitational and matter fields. Then one can proceed with steps 2 and 3

of the spinfoam quantization, hopefully ending up with a viable model of quantum gravity

and matter.

In this paper, we restrict our attention to the first of the above steps: we will construct a

constrained 3BF action for the cases of Klein-Gordon, Dirac, Weyl and Majorana fields, as

well as Yang-Mills and Proca vector fields, all coupled to the Einstein-Cartan gravity in the

standard way. This construction will lead us to an unexpected novel result. As we shall see,

the scalar and fermion fields will be naturally associated to a new gauge group, generalizing

the notion of a gauge group in the Yang-Mills theory, which describes vector bosons. This

new group opens up a possibility to use it as an algebraic way of classifying matter fields,

describing the structures such as quark and lepton families, and so on. The insight into

the existence of this new gauge group is the consequence of the categorical ladder and

is one of the main results of the paper. However, given the complexity of the algebraic

properties of 3-groups, we will restrict ourselves only to the reconstruction of the already

known theories, such as the Standard Model (SM), in the new framework. In this sense, any

potential explanation of the spectrum of matter fields in the SM will be left for future work.

The layout of the paper is as follows. In subsection 2.1 we will give a short overview

of the constrained BF actions, including the well-known example of the Plebanski action

for general relativity, and a completely new example of the Yang-Mills theory rewritten

as a constrained BF model. In the subsection 2.2 we also introduce the formalism of the

constrained 2BF actions, reviewing the example of general relativity as a constrained 2BF

action, first introduced in [12]. In addition, we will demonstrate how to couple gravity in

a natural way within the formalism of 2-groups. Section 3 contains the main results of

the paper and is split into 4 subsections. The subsection 3.1 introduces the formalism of

3-groups, and the definition and properties of a 3BF action, including the three types of

gauge transformations. The subsection 3.2 focuses on the construction of a constrained

3BF action which describes a single real scalar field coupled to gravity. It provides the

most elementary example of the insight that matter fields correspond to a gauge group.

Encouraged by these results, in the subsection 3.3 we construct the constrained 3BF action

for the Dirac field coupled to gravity and specify its gauge group. Finally, the subsection 3.4

deals with the construction of the constrained 3BF action for the Weyl and Majorana fields

coupled to gravity, thereby covering all types of fields potentially relevant for the Standard

Model and beyond. After the construction of all building blocks, in section 4 we apply

the results of sections 2 and 3 to construct the constrained 3BF action corresponding to

the full Standard Model coupled to Einstein-Cartan gravity. Finally, section 5 is devoted

to the discussion of the results and the possible future lines of research. The appendices

contain some mathematical reminders and technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted

by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the

– 3 –
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Minkowski metric ηab with signature (−,+,+,+). Spacetime indices are denoted by the

Greek letters µ, ν, . . . , and are raised and lowered by the spacetime metric gµν = ηabe
a
µe

b
ν ,

where eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other indices that

appear in the paper are dependent on the context, and their usage is explicitly defined in

the text where they appear. A lot of additional notation is defined in appendix A. We work

in the natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck length.

2 BF and 2BF models, ordinary gauge fields and gravity

Let us begin by giving a short review of BF and 2BF theories in general. For additional

information on these topics, see for example [11, 13–18].

2.1 BF theory

Given a Lie group G and its corresponding Lie algebra g, one can introduce the so-called

BF action as

SBF =

∫

M4

〈B ∧ F〉g . (2.1)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connection 1-form α ∈

A1(M4 , g) on some 4-dimensional spacetime manifold M4. In addition, B ∈ A2(M4 , g)

is a Lagrange multiplier 2-form, while 〈 , 〉g denotes the G-invariant bilinear symmetric

nondegenerate form.

From the structure of (2.1), one can see that the action is diffeomorphism invariant,

and it is usually understood to be gauge invariant with respect to G. In addition to these

properties, the BF action is topological, in the following sense. Varying the action (2.1)

with respect to Bβ and αβ , where the index β counts the generators of g (see appendix A

for notation and conventions), one obtains the equations of motion of the theory,

F = 0 , ∇B ≡ dB + α ∧B = 0 . (2.2)

From the first equation of motion, one immediately sees that α is a flat connection, which

then together with the second equation of motion implies that B is constant. Therefore,

there are no local propagating degrees of freedom in the theory, and one then says that the

theory is topological.

Usually, in physics one is interested in theories which are nontopological, i.e., which

have local propagating degrees of freedom. In order to transform the BF action into

such a theory, one adds an additional term to the action, commonly called the simplicity

constraint. A very nice example is the Yang-Mills theory for the SU(N) group, which can

be rewritten as a constrained BF theory in the following way:

S =

∫

BI∧F
I+λI∧

(

BI−
12

g
MabIδ

a∧δb
)

+ζabI
(

MabIεcdefδ
c∧δd∧δe∧δf−gIJF

J∧δa∧δb

)

.

(2.3)

Here F ≡ dA+A∧A is again the curvature 2-form for the connection A ∈ A1(M4 , su(N)),

and B ∈ A2(M4 , su(N)) is the Lagrange multiplier 2-form. The Killing form gIJ ≡

– 4 –
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〈τI , τJ〉su(N) ∝ fIK
LfJL

K is used to raise and lower the indices I, J, . . . which count the gen-

erators of SU(N), where f IJ
K are the structure constants for the su(N) algebra. In addition

to the topological B ∧ F term, we also have two simplicity constraint terms, featuring the

Lagrange multiplier 2-form λI and the Lagrange multiplier 0-form ζabI . The 0-form MabI

is also a Lagrange multiplier, while g is the coupling constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global coordinate frame

in which its components are equal to the Kronecker symbol δaµ (hence the notation δa).

The 1-form δa plays the role of a background field, and defines the global spacetime metric,

via the equation

ηµν = ηabδ
a
µδ

b
ν , (2.4)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the coordinate system

is global, the spacetime manifold M4 is understood to be flat. The indices a, b, . . . are

local Lorentz indices, taking values 0, . . . , 3. Note that the field δa has all the properties

of the tetrad 1-form ea in the flat Minkowski spacetime. Also note that the action (2.3) is

manifestly diffeomorphism invariant and gauge invariant with respect to SU(N), but not

background independent, due to the presence of δa.

The equations of motion are obtained by varying the action (2.3) with respect to the

variables ζabI , MabI , A
I , BI , and λ

I , respectively (note that we do not take the variation

of the action with respect to the background field δa):

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (2.5)

−
12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (2.6)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJI

KζabKδa ∧ δb ∧A
J = 0 , (2.7)

FI + λI = 0 , (2.8)

BI −
12

g
MabIδ

a ∧ δb = 0 , (2.9)

From the algebraic equations (2.5), (2.6), (2.8) and (2.9) one obtains the multipliers as

functions of the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I

cd , λIab = F Iab , BIab =
1

2g
εabcdF I

cd .

(2.10)

Here we used the notation FIab = FIµνδa
µδb

ν , where we used the fact that δaµ is invertible,

and similarly for other variables. Using these equations and the differential equation (2.7)

one obtains the equation of motion for gauge field AI ,

∇ρF
Iρµ ≡ ∂ρF

Iρµ + fJK
IAJ

ρF
Kρµ = 0 . (2.11)

This is precisely the classical equation of motion for the free Yang-Mills theory. Note that

in addition to the Yang-Mills theory, one can easily extend the action (2.3) in order to

describe the massive vector field and obtain the Proca equation of motion. This is done

by adding a mass term

−
1

4!
m2AIµA

I
νη

µνεabcdδ
a ∧ δb ∧ δc ∧ δd (2.12)
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to the action (2.3). Of course, this term explicitly breaks the SU(N) gauge symmetry of

the action.

Another example of the constrained BF theory is the Plebanski action for general

relativity [15], see also [13] for a recent review. Starting from a gauge group SO(3, 1), one

constructs a constrained BF action as

S =

∫

M4

Bab ∧R
ab + φabcdB

ab ∧Bcd . (2.13)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the usual Lagrange

multiplier 2-form, while φabcd is the Lagrange multiplier 0-form corresponding to the sim-

plicity constraint term Bab ∧ Bcd. It can be shown that the variation of this action with

respect to Bab, ω
ab and φabcd gives rise to equations of motion which are equivalent to

vacuum general relativity. However, the tetrad fields appear in the model as a solution

to the simplicity constraint equation of motion Bab ∧ Bcd = 0. Thus, being intrinsically

on-shell objects, they are not present in the action and cannot be quantized. This renders

the Plebanski model unsuitable for coupling of matter fields to gravity [10, 12, 19]. Never-

theless, as a model for pure gravity, the Plebanski model has been successfully quantized

in the context of spinfoam models, see [1, 2, 8, 9] for details and references.

2.2 2BF theory

In order to circumvent the issue of coupling of matter fields, a recent promising approach

has been developed [12, 19–23] in the context of higher category theory [11]. In particular,

one employs the higher category theory construction to generalize the BF action to the

so-called 2BF action, by passing from the notion of a gauge group to the notion of a gauge

2-group. In order to introduce it, let us first give a short review of the 2-group formalism.

In the framework of category theory, the group as an algebraic structure can be under-

stood as a specific type of category, namely a category with only one object and invertible

morphisms [11]. The notion of a category can be generalized to the so-called higher cat-

egories, which have not only objects and morphisms, but also 2-morphisms (morphisms

between morphisms), and so on. This process of generalization is called the categorical

ladder. Similarly to the notion of a group, one can introduce a 2-group as a 2-category

consisting of only one object, where all the morphisms and 2-morphisms are invertible. It

has been shown that every strict 2-group is equivalent to a crossed module (H
∂
→ G ,⊲),

see appendix A for definition. Here G and H are groups, δ is a homomorphism from H to

G, while ⊲ : G×H → H is an action of G on H.

An important example of this structure is a vector space V equipped with an isometry

group O. Namely, V can be regarded as an Abelian Lie group with addition as a group

operation, so that a representation of O on V is an action ⊲ of O on the group V , giving

rise to the crossed module (V
∂
→ O ,⊲), where the homomorphism ∂ is chosen to be trivial,

i.e., it maps every element of V into a unit of O. We will make use of this example below

to introduce the Poincaré 2-group.

Similarly to the case of an ordinary Lie group G which has a naturally associated

notion of a connection α, giving rise to a BF theory, the 2-group structure has a naturally
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associated notion of a 2-connection (α , β), described by the usual g-valued 1-form α ∈

A1(M4 , g) and an h-valued 2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie

group H. The 2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧⊲ β . (2.14)

Here α ∧⊲ β means that α and β are multiplied as forms using ∧, and simultaneously

multiplied as algebra elements using ⊲, see appendix A. The curvature pair (F ,G) is called

fake because of the presence of the ∂β term in the definition of F , see [11] for details.

Using these variables, one can introduce a new action as a generalization of the BF

action, such that it is gauge invariant with respect to both G and H groups. It is called

the 2BF action and is defined in the following way [16, 17]:

S2BF =

∫

M4

〈B ∧ F〉g + 〈C ∧ G〉h , (2.15)

where the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are Lagrange multipliers.

Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear symmetric nondegenerate forms for

the algebras g and h, respectively. As a consequence of the axiomatic structure of a crossed

module (see appendix A), the bilinear form 〈 , 〉h is H-invariant as well. See [16, 17] for

review and references.

Similarly to the BF action, the 2BF action is also topological, which can be seen from

equations of motion. Varying with respect to B and C one obtains

F = 0 , G = 0 , (2.16)

while varying with respect to α and β one obtains the equations for the multipliers,

dBα − gαβ
γBγ ∧ α

β −⊲αa
bCb ∧ β

a = 0 , (2.17)

dCa − ∂a
αBα +⊲αa

bCb ∧ α
α = 0 . (2.18)

One can either show that these equations have only trivial solutions, or one can use the

Hamiltonian analysis to show that there are no local propagating degrees of freedom (see

for example [21, 22]), demostrating the topological nature of the theory.

An example of a 2-group relevant for physics is the Poincaré 2-group, which is con-

structed using the aforementioned example of a vector space equipped with an isometry

group. One constructs a crossed module by choosing

G = SO(3, 1) , H = R
4 , (2.19)

while ⊲ is a natural action of SO(3, 1) on R
4, and the map ∂ is trivial. The 2-connection

(α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (2.20)

where ωab is the spin connection, while Mab and Pa are the generators of groups SO(3, 1)

and R
4, respectively. The corresponding 2-curvature in this case is given by

F = (dωab+ωa
c∧ω

cb)Mab ≡ RabMab , G = (dβa+ωa
b∧β

b)Pa ≡ ∇βaPa ≡ GaPa , (2.21)
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where we have evaluated ∧⊲ using the equation Mab ⊲ Pc = η[bcPa]. Note that, since ∂ is

trivial, the fake curvature is the same as ordinary curvature. Using the bilinear forms

〈Mab,Mcd〉g = ηa[cηbd] , 〈Pa, Pb〉h = ηab , (2.22)

one can show that 1-forms Ca transform in the same way as the tetrad 1-forms ea under

the Lorentz transformations and diffeomorphisms, so the fields Ca can be identified with

the tetrads. Then one can rewrite the 2BF action (2.15) for the Poincaré 2-group as

S2BF =

∫

M4

Bab ∧Rab + ea ∧∇βa . (2.23)

In order to obtain general relativity, the topological action (2.23) can be modified by

adding a convenient simplicity constraint, like it is done in the BF case:

S =

∫

M4

Bab ∧Rab + ea ∧∇βa − λab ∧

(

Bab −
1

16πl2p
εabcdec ∧ ed

)

. (2.24)

Here λab is a Lagrange multiplier 2-form associated to the simplicity constraint term, and

lp is the Planck length. Varying the action (2.24) with respect to Bab, ea, ωab, βa and λab,

one obtains the following equations of motion:

Rab − λab = 0 , (2.25)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (2.26)

∇Bab − e[a ∧ βb] = 0 , (2.27)

∇ea = 0 , (2.28)

Bab −
1

16πl2p
εabcdec ∧ ed = 0 . (2.29)

The only dynamical fields are the tetrads ea, while all other fields can be algebraically

determined, as follows. From the equations (2.28) and (2.29) we obtain that ∇Bab = 0,

from which it follows, using the equation (2.27), that e[a ∧ βb] = 0. Assuming that the

tetrads are nondegenerate, e ≡ det(eaµ) 6= 0, it can be shown that this is equivalent to

the condition βa = 0 (for the proof see appendix in [12]). Therefore, from the equa-

tions (2.25), (2.27), (2.28) and (2.29) we obtain

λabµν = Rab
µν , βaµν = 0 , Babµν =

1

8πl2p
εabcde

c
µe

d
ν , ωab

µ = △ab
µ . (2.30)

Here the Ricci rotation coefficients are defined as

△ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (2.31)

where

cabc = eµbe
ν
c (∂µe

a
ν − ∂νe

a
µ) . (2.32)
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Finally, the remaining equation (2.26) reduces to

εabcdR
bc ∧ ed = 0 , (2.33)

which is nothing but the vacuum Einstein field equation Rµν −
1
2gµνR = 0. Therefore, the

action (2.24) is classically equivalent to general relativity.

The main advantage of the action (2.24) over the Plebanski model and similar ap-

proaches lies in the fact that the tetrad fields are explicitly present in the topological

sector of the theory. This allows one to couple matter fields in a straightforward way, as

demonstrated in [12]. However, one can do even better, and couple gauge fields to gravity

within a unified framework of 2-group formalism.

Let us demonstrate this on the example of the SU(N) Yang-Mills theory. Begin by

modifying the Poincaré 2-group structure to include the SU(N) gauge group, as follows.

We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R
4 , (2.34)

and we define the action ⊲ of the group G in the following way. As in the case of the

Poincaré 2-group, it acts on itself via conjugation. Next, it acts on H such that the

SO(3, 1) subgroup acts on R
4 via the vector representation, while the action of SU(N)

subgroup is trivial. The map ∂ also remains trivial, as before. The 2-connection (α, β)

now obtains the form which reflects the structure of the group G,

α = ωabMab +AIτI , β = βaPa , (2.35)

where AI is the gauge connection 1-form, while τI are the SU(N) generators. The curvature

for α is thus

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (2.36)

The curvature for β remains the same as before, since the action ⊲ of SU(N) on R
4 is

trivial, i.e., τI ⊲ Pa = 0. Finally, the product structure of the group G implies that its

Killing form 〈 , 〉g reduces to the Killing forms for the SO(3, 1) and SU(N), along with the

identity 〈Mab, τI〉g = 0.

Given a crossed module defined in this way, its corresponding topological 2BF ac-

tion (2.15) becomes

S2BF =

∫

M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (2.37)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. In order to transform this

topological action into action with nontrivial dynamics, we again introduce the appropriate

simplicity constraints. The constraint giving rise to gravity is the same as in (2.24), while

the constraint for the gauge fields is given as in the action (2.3) with the substitution

δa → ea:

S =

∫

M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa − λab ∧

(

Bab −
1

16πl2p
εabcdec ∧ ed

)

(2.38)

+ λI ∧

(

BI −
12

g
MabIe

a ∧ eb
)

+ ζabI
(

MabIεcdefe
c ∧ ed ∧ ee ∧ ef − gIJF

J ∧ ea ∧ eb

)

.
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It is crucial to note that the action (2.38) is a combination of the pure gravity action (2.24)

and the Yang-Mills action (2.3), such that the nondynamical background field δa from (2.3)

gets promoted to a dynamical field ea. The relationship between these fields has already

been hinted at in the equation (2.4), which describes the connection between δa and the

flat spacetime metric ηµν . Once promoted to ea, this field becomes dynamical, while the

equation (2.4) becomes the usual relation between the tetrad and the metric,

gµν = ηabe
a
µe

b
ν , (2.39)

further confirming that the Lagrange multiplier Ca should be identified with the tetrad.

Moreover, the total action (2.38) now becomes background independent, as expected in

general relativity. All this is a consequence of the fact that the tetrad field is explicitly

present in the topological sector of the action (2.24), establishing an improvement over the

Plebanski model.

By varying the action (2.38) with respect to the variables Bab, ωab, βa, λab, ζ
abI , MabI ,

BI , λ
I , AI , and ea, we obtain the following equations of motion, respectively:

Rab − λab = 0 , (2.40)

∇Bab − e[a ∧ βb] = 0 , (2.41)

∇ea = 0 , (2.42)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (2.43)

MabIεcdefe
c ∧ ed ∧ ee ∧ ef − FI ∧ ea ∧ eb = 0 , (2.44)

−
12

g
λI ∧ ea ∧ eb + ζabIεcdefe

c ∧ ed ∧ ee ∧ ef = 0 , (2.45)

FI + λI = 0 , (2.46)

BI −
12

g
MabIe

a ∧ eb = 0 , (2.47)

−dBI +BK ∧ gJI
KAJ + d(ζabI ea ∧ eb)− ζabK ea ∧ eb ∧ gJI

KAJ = 0 , (2.48)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed −
24

g
MabIλ

I ∧ eb

+4ζef
I
Mef I

εabcde
b ∧ ec ∧ ed − 2ζab

IFI ∧ e
b = 0 . (2.49)

In the above system of equations, we have two dynamical equations for ea and AI , while

all other variables are algebraically determined from these. In particular, from equa-

tions (2.40)–(2.47), we have:

λabµν=Rabµν , βaµν=0, ωabµ=△abµ , λabI=FabI , BµνI=−
e

2g
εµνρσF

ρσ
I , (2.50)

Babµν=
1

8πl2p
εabcde

c
µe

d
ν , MabI=−

1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI=

1

4eg
εµνρσFµν

Ieaρe
b
σ .

Then, substituting all these into (2.48) and (2.49) we obtain the differential equation of

motion for AI ,

∇ρF
Iρµ ≡ ∂ρF

Iρµ + Γ ρ
λρF

Iλµ + fJK
IAJ

ρF
Kρµ = 0 , (2.51)
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where Γ λ
µν is the standard Levi-Civita connection, and a differential equation of motion

for ea,

Rµν −
1

2
gµνR = 8πl2p T

µν , Tµν ≡ −
1

4g

(

Fρσ
IF ρσ

Ig
µν + 4Fµρ

IFρ
νI
)

. (2.52)

The system of equations (2.50)–(2.52) is equivalent to the system (2.40)–(2.49). Note that

we have again obtained that βa = 0, as in the pure gravity case.

In this way, we see that both gravity and gauge fields can be represented within a

unified framework of higher gauge theory based on a 2-group structure.

3 3BF models, scalar and fermion matter fields

While the structure of a 2-group can successfully accommodate both gravitational and

gauge fields, unfortunately it cannot include other matter fields, such as scalars or fermions.

In order to construct a unified description of all matter fields within the framework of higher

gauge theory, we are led to make a further generalization, passing from the notion of a 2-

group to the notion of a 3-group. As it turns out, the 3-group structure is a perfect fit

for the description of all fields that are present in the Standard Model, coupled to gravity.

Moreover, this structure gives rise to a new gauge group, which corresponds to the choice

of the scalar and fermion fields present in the theory. This is a novel and unexpected result,

which has the potential to open up a new avenue of research with the aim of explaining

the structure of the matter sector of the Standard Model and beyond.

In order to demonstrate this in more detail, we first need to introduce the notion of

a 3-group, which we will afterward use to construct constrained 3BF actions describing

scalar and fermion fields on an equal footing with gravity and gauge fields.

3.1 3-groups and topological 3BF action

Similarly to the concepts of a group and a 2-group, one can introduce the notion of a

3-group in the framework of higher category theory, as a 3-category with only one object

where all the morphisms, 2-morphisms and 3-morphisms are invertible. It has been proved

that a strict 3-group is equivalent to a 2-crossed module [24], in the same way as a 2-group

is equivalent to a crossed module.

A Lie 2-crossed module, denoted as (L
δ
→ H

∂
→ G ,⊲ , { , }), is a algebraic structure

specified by three Lie groups G, H and L, together with the homomorphisms δ and ∂, an

action ⊲ of the group G on all three groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. See appendix A for more details.

In complete analogy to the construction of BF and 2BF topological actions, one

can define a gauge invariant topological 3BF action for the manifold M4 and 2-crossed

module (L
δ
→ H

∂
→ G ,⊲ , { , }). Given g, h and l as Lie algebras corresponding to the

groups G, H and L, one can introduce a 3-connection (α, β, γ) given by the algebra-valued
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differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding

fake 3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧⊲ β − δγ , H = dγ + α ∧⊲ γ + {β ∧ β} . (3.1)

see [24, 25] for details. Then, a 3BF action is defined as

S3BF =

∫

M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (3.2)

where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange multipliers. The

forms 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric nondegenerate forms on

g, h and l, respectively. Under certain conditions, the forms 〈 , 〉h and 〈 , 〉l are also

H-invariant and L-invariant, see appendix B for details.

One can see that varying the action with respect to the variables B, C and D, one

obtains the equations of motion

F = 0 , G = 0 , H = 0 , (3.3)

while varying with respect to α, β, γ one obtains

dBα − gαβ
γBγ ∧ α

β −⊲αa
bCb ∧ β

a +⊲αB
ADA ∧ γB = 0 , (3.4)

dCa − ∂a
αBα +⊲αa

bCb ∧ α
α + 2X{ab}

ADA ∧ βb = 0 , (3.5)

dDA −⊲αA
BDB ∧ αα + δA

aCa = 0 . (3.6)

Regarding the gauge transformations, the 3BF action is invariant with respect to

three different types of transformations, generated by the groups G, H and L, respectively.

Under the G-gauge transformations, the 3-connection transforms as

α′ = g−1αg + g−1dg , β′ = g−1 ⊲ β , γ′ = g−1 ⊲ γ , (3.7)

where g : M4 → G is an element of the G-principal bundle over M4. Next, under the

H-gauge transformations, generated by η ∈ A1(M4 , h), the 3-connection transforms as

α′ = α+ ∂η , β′ = β + dη + α′ ∧⊲ η − η ∧ η , γ′ = γ − {β′ ∧ η} − {η ∧ β} . (3.8)

Finally, under the L-gauge transformations, generated by θ ∈ A2(M4 , l), the 3-connection

transforms as

α′ = α , β′ = β − δθ , γ′ = γ − dθ − α ∧ θ . (3.9)

As a consequence of the definition (3.1) and the above transformation rules, the curvatures

transform under the G-gauge transformations as

F → g−1Fg , G → g−1 ⊲ G , H → g−1 ⊲H , (3.10)

under the H-gauge transformations as

F → F , G → G + F ∧⊲ η , H → H− {G′ ∧ η}+ {η ∧ G} , (3.11)
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and under the L-gauge transformations as

F → F , G → G , H → H−F ∧⊲ θ . (3.12)

For more details, the reader is referred to [25].

In order to make the action (3.2) gauge invariant with respect to the transforma-

tions (3.7), (3.8) and (3.9), the Lagrange multipliers B, C and D must transform under

the G-gauge transformations as

B → g−1Bg , C → g−1 ⊲ C , D → g−1 ⊲D , (3.13)

under the H-gauge transformations as

B → B+C ′∧T η−η∧D η∧DD , C → C+D∧X1 η+D∧X2 η , D → D , (3.14)

while under the L-gauge transformations they transform as

B → B −D ∧S θ , C → C , D → D . (3.15)

See appendix B for details, for the definition of the maps T , D, X1, X2, S, and for the

notation of the ∧T , ∧D, ∧X1 , ∧X2 , and ∧S products.

3.2 Constrained 3BF action for a real Klein-Gordon field

Once the topological 3BF action is specified, we can proceed with the construction of the

constrained 3BF action, describing a realistic case of a scalar field coupled to gravity. In

order to perform this construction, we have to define a specific 2-crossed module which

gives rise to the topological sector of the action, and then we have to impose convenient

simplicity constraints.

We begin by defining a 2-crossed module (L
δ
→ H

∂
→ G ,⊲ , { , }), as follows. The

groups are given as

G = SO(3, 1) , H = R
4 , L = R . (3.16)

The group G acts on itself via conjugation, on H via the vector representation, and on L

via the trivial representation. This specifies the definition of the action ⊲. The map ∂ is

chosen to be trivial, as before. The map δ is also trivial, that is, every element of L is

mapped to the identity element of H. Finally, the Peiffer lifting is trivial as well, mapping

every ordered pair of elements in H to an identity element in L. This specifies one concrete

2-crossed module.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γI , (3.17)

where I is the sole generator of the Lie group R. From (3.1), the fake 3-curvature (F ,G ,H)

reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (3.18)
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where we used the fact that G acts trivially on L, that is, Mab ⊲ I = 0. The topological

3BF action (3.2) now becomes

S3BF =

∫

M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (3.19)

where the bilinear form for L is 〈I, I〉l = 1.

It is important to note that the Lagrange multiplier D in (3.2) is a 0-form and trans-

forms trivially with respect to G, H and L gauge transformations for our choice of the

2-crossed module, as can be seen from (3.13), (3.14) and (3.15). Thus, D has all the hall-

mark properties of a real scalar field, allowing us to make identification between them, and

conveniently relabel D into φ in (3.19). This is a crucial property of the 3-group structure

in a 4-dimensional spacetime and is one of the main results of the paper. It follows the

line of reasoning used in recognizing the Lagrange multiplier Ca in the 2BF action for the

Poincaré 2-group as a tetrad field ea. It is also important to stress that the choice of the

third gauge group, L, dictates the number and the structure of the matter fields present in

the action. In this case, L = R implies that we have only one real scalar field, correspond-

ing to a single generator I of R. The trivial nature of the action ⊲ of SO(3, 1) on R also

implies that φ transforms as a scalar field. Finally, the scalar field appears as a degree of

freedom in the topological sector of the action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, in order to obtain nontrivial dynamics, we need

to impose convenient simplicity constraints on the variables in the action (3.19). Since we

are interested in obtaining the scalar field φ of mass m coupled to gravity in the standard

way, we choose the action in the form:

S =

∫

M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧

(

Bab −
1

16πl2p
εabcdec ∧ ed

)

+ λ ∧

(

γ −
1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(

Habcε
cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb

)

−
1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed . (3.20)

Note that the first row is the topological sector (3.19), the second row is the familiar

simplicity constraint for gravity from the action (2.24), the third row contains the new

simplicity constraints corresponding to the Lagrange multiplier 1-forms λ and Λab and

featuring the Lagrange multiplier 0-form Habc, while the fourth row is the mass term for

the scalar field.

Varying the total action (3.20) with respect to the variables Bab, ωab, βa, λab, Λab, γ,

λ, Habc, φ and ea one obtains the equations of motion:

Rab − λab = 0 , (3.21)

∇Bab − e[a ∧ βb] = 0 , (3.22)

∇ea = 0 , (3.23)
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Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.24)

Habcε
cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb = 0 , (3.25)

dφ− λ = 0 , (3.26)

γ −
1

2
Habce

a ∧ eb ∧ ec = 0 , (3.27)

−
1

2
λ ∧ ea ∧ eb ∧ ec + εcdefΛab ∧ ed ∧ ee ∧ ef = 0 , (3.28)

dγ − d(Λab ∧ ea ∧ eb)−
1

4!
m2φεabcde

a ∧ eb ∧ ec ∧ ed = 0 , (3.29)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
3

2
Habcλ ∧ eb ∧ ec + 3HdefεabcdΛef ∧ eb ∧ ec

−2Λab ∧ dφ ∧ eb − 2
1

4!
m2φεabcde

b ∧ ec ∧ ed = 0 . (3.30)

The dynamical degrees of freedom are ea and φ, while the remaining variables are alge-

braically determined in terms of them. Specifically, the equations (3.21)–(3.28) give

λabµν = Rabµν , ωab
µ = △ab

µ , γµνρ = −
e

2
εµνρσ∂

σφ ,

Λab
µ =

1

12e
gµλε

λνρσ∂νφe
a
ρe

b
σ , βa

µν = 0 , Babµν =
1

8πl2p
εabcde

c
µe

d
ν ,

Habc =
1

6e
εµνρσ∂µφe

a
νe

b
ρe

c
σ , λµ = ∂µφ .

(3.31)

Note that from the equations (3.22), (3.23) and (3.24) it follows that βa = 0, as in the

pure gravity case. The equation of motion (3.29) reduces to the covariant Klein-Gordon

equation for the scalar field,
(

∇µ∇
µ −m2

)

φ = 0 . (3.32)

Finally, the equation of motion (3.30) for ea becomes:

Rµν −
1

2
gµνR = 8πl2p T

µν , Tµν ≡ ∂µφ∂νφ−
1

2
gµν

(

∂ρφ∂
ρφ+m2φ2

)

. (3.33)

The system of equations (3.21)–(3.30) is equivalent to the system of equations (3.31)–(3.33).

Note that in addition to the correct covariant form of the Klein-Gordon equation, we have

also obtained the correct form of the stress-energy tensor for the scalar field.

3.3 Constrained 3BF action for the Dirac field

Now we pass to the more complicated case of the Dirac field. We first define a 2-crossed

module (L
δ
→ H

∂
→ G ,⊲ , { , }) as follows. The groups are:

G = SO(3, 1) , H = R
4 , L = R

8(G) , (3.34)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ and the Peiffer

lifting are trivial. The action of the group G on itself is given via conjugation, on H

via vector representation, and on L via spinor representation, as follows. Denoting the
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8 generators of the Lie group R
8(G) as Pα and Pα, where the index α takes the values

1, . . . , 4, the action of G on L is thus given explicitly as

Mab ⊲ Pα =
1

2
(σab)

β
αPβ , Mab ⊲ Pα = −

1

2
(σab)

α
βP

β , (3.35)

where σab =
1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the anticommutation

rule {γa , γb} = −2ηab.

As in the case of the scalar field, the choice of the group L dictates the matter content

of the theory, while the action ⊲ of G on L specifies its transformation properties. To see

this explicitly, let us construct the corresponding 3BF action. The 3-connection (α , β , γ)

now takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (3.36)

while the 3-curvature (F ,G ,H), defined in (3.1), is given as

F = RabMab ,G = ∇βaPa , (3.37)

H =

(

dγα +
1

2
ωab(σab)

α
βγ

β

)

Pα +

(

dγ̄α −
1

2
ωabγ̄β(σab)

β
α

)

Pα ≡ (
→
∇γ)αPα + (γ̄

←
∇)αP

α ,

where we have used (3.35). The bilinear form 〈 , 〉l is defined as

〈Pα, Pβ〉l = 0 , 〈Pα, P β〉l = 0 , 〈Pα, P
β〉l = −δβα , 〈Pα, Pβ〉l = δαβ . (3.38)

Note that, for general A,B ∈ l, we can write

〈A,B〉l = AIBJgIJ , 〈B,A〉l = BJAIgJI . (3.39)

Since we require the bilinear form to be symmetric, the two expressions must be equal.

However, since the coefficients in l are Grassmann numbers, we have AIBJ = −BJAI , so

it follows that gIJ = −gJI . Hence the antisymmetry of (3.38).

Now we use the properties of the group L and the action ⊲ of G on L to recognize

the physical nature of the Lagrange multiplier D in (3.2). Indeed, the choice of the group

L dictates that D contains 8 independent complex Grassmannian matter fields as its com-

ponents. Moreover, due to the fact that D is a 0-form and that it transforms according

to the spinorial representation of SO(3, 1), we can identify its components with the Dirac

bispinor fields, and write

D = ψαPα + ψ̄αP
α , (3.40)

where it is assumed that ψ and ψ̄ are independent fields, as usual. This is again an

illustration of the fact that information about the structure of the matter sector in the

theory is specified by the choice of the group L in the 2-crossed module, and another main

result of the paper.

Given all of the above, now we can finally write the 3BF action (3.2) corresponding

to this choice of the 2-crossed module as

S3BF =

∫

M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (3.41)
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In order to promote this action into a full theory of gravity coupled to Dirac fermions, we

add the convenient constraint terms to the action, as follows:

S =

∫

M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧

(

Bab −
1

16πl2p
εabcdec ∧ ed

)

− λα ∧

(

γ̄α −
i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α

)

+ λ̄α ∧

(

γα +
i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

−
1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd . (3.42)

Here the first row is the topological sector, the second row is the gravitational simplicity

constraint term from (2.24), while the third row contains the new simplicity constraints for

the Dirac field corresponding to the Lagrange multiplier 1-forms λα and λ̄α. The fourth row

contains the mass term for the Dirac field, and a term which ensures the correct coupling

between the torsion and the spin of the Dirac field, as specified by the Einstein-Cartan

theory. Namely, we want to ensure that the torsion has the form

Ta ≡ ∇ea = 2πl2psa , (3.43)

where

sa = iεabcde
b ∧ ecψ̄γ5γ

dψ (3.44)

is the spin 2-form. Of course, other couplings should also be straightforward to imple-

ment, but we choose this particular coupling because we are interested in reproducing the

standard Einstein-Cartan gravity coupled to the Dirac field.

Varying the action (3.42) with respect to Bab, λ
ab, γ̄α, γ

α, λα, λ̄α, ψ̄α, ψ
α, ea, βa and

ωab one obtains the equations of motion:

Rab − λab = 0 , (3.45)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.46)

(
→
∇ψ)α − λα = 0 , (3.47)

(ψ̄
←
∇)α − λ̄α = 0 , (3.48)

γ̄α −
i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α = 0 , (3.49)

γα +
i

6
εabcde

a ∧ eb ∧ ec(γdψ)α = 0 , (3.50)

dγα + ωα
β ∧ γβ +

i

6
λβ ∧ εabcde

a ∧ eb ∧ ecγdαβ +
1

12
mεabcde

a ∧ eb ∧ ec ∧ edψα

+i2πl2pεabcde
a ∧ eb ∧ βc(γ5γ

dψ)α = 0 , (3.51)

dγ̄α − γ̄β ∧ ωβ
α +

i

6
λ̄β ∧ εabcde

a ∧ eb ∧ ecγdβα −
1

12
mεabcde

a ∧ eb ∧ ec ∧ edψ̄α

−i2πl2pεabcde
a ∧ eb ∧ βc(ψ̄γ5γ

d)α = 0 , (3.52)
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∇βa + 2εabcdλ
bc ∧ ed −

i

2
εabcdλ

α ∧ eb ∧ ec(ψ̄γd)α +
i

2
εabcdλ̄α ∧ eb ∧ ec(γdψ)α

−
1

3
εabcde

b ∧ ec ∧ edmψ̄ψ − 4πl2piεabcde
b ∧ βcψ̄γ5γ

dψ = 0 , (3.53)

∇ea − i2πl2pεabcde
b ∧ ecψ̄γ5γ

dψ = 0 , (3.54)

∇Bab − e[a ∧ βb] + γ̄
1

8
[γa, γb]ψ + ψ̄

1

8
[γa, γb]γ = 0 . (3.55)

The dynamical degrees of freedom are ea, ψα and ψ̄α, while the remaining variables are

determined in terms of the dynamical variables, and are given as:

Babµν =
1

8πl2p
εabcde

c
µe

d
ν , λαµ = (

→
∇µψ)

α , λ̄αµ = (ψ̄
←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe

b
νe

c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcde
a
µe

b
νe

c
ρ(γ

dψ)α , (3.56)

λabµν = Rabµν , ωab
µ = △ab

µ +Kab
µ .

HereKab
µ is the contorsion tensor, constructed in the standard way from the torsion tensor,

whereas from (3.54) we have

Ta ≡ ∇ea = 2πl2psa , (3.57)

which is precisely the desired equation (3.43). Further, from the equation (3.46) one obtains

∇Bab = −
1

8πl2p
εabcd (ec ∧∇ed) . (3.58)

Substituting this expression in the equation (3.55) it follows that

2εabcde
c ∧

(

−
1

16πl2p
∇ed +

1

8
sd
)

− e[a ∧ βb] = 0 . (3.59)

The expression in the parentheses is equal to zero, according to the equation (3.54). From

the remaining term e[a ∧ βb] = 0 it again follows that

β = 0 . (3.60)

Using this result, the equation of motion (3.51) for fermions becomes

i

6
εabcde

a ∧ eb ∧

(

2ec ∧ γd
→
∇+

im

2
ec ∧ ed − 3(∇ec)γd

)

ψ = 0 . (3.61)

Using equation (3.54), the last term in the parentheses vanishes, and the equation reduces

to the covariant Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (3.62)

where eµa is the inverse tetrad. Similarly, the equation (3.52) gives the conjugated Dirac

equation:

ψ̄(i
←
∇µe

µ
aγ

a +m) = 0 . (3.63)
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Finally, the equation of motion (3.53) for tetrad field reduces to

Rµν −
1

2
gµνR = 8πl2p T

µν , Tµν ≡
i

2
ψ̄γν

↔
∇aeµaψ −

1

2
gµνψ̄

(

iγa
↔
∇ρe

ρ
a − 2m

)

ψ , (3.64)

Here, we used the notation
↔
∇ =

→
∇−

←
∇. The system of equations (3.45)–(3.55) is equivalent

to the system of equations (3.56), (3.60), (3.62)–(3.64). As we expected, the equations

of motion (3.57), (3.62), (3.63) and (3.64) are precisely the equations of motion of the

Einstein-Cartan theory coupled to a Dirac field.

3.4 Constrained 3BF action for the Weyl and Majorana fields

A general solution of the Dirac equation is not an irreducible representation of the Lorentz

group, and one can rewrite Dirac fermions as left-chiral and right-chiral fermion fields that

both retain their chirality under Lorentz transformations, implying their irreducibility.

Hence, it is useful to rewrite the action for left and right Weyl spinors as a constrained

3BF action. For simplicity, we will discuss only left-chiral spinor field, while the right-

chiral field can be treated analogously. Both Weyl and Majorana fermions can be treated

in the same way, the only difference being the presence of an additional mass term in the

Majorana action.

We being by defining a 2-crossed module (L
δ
→ H

∂
→ G ,⊲ , { , }), as follows. The

groups are:

G = SO(3, 1) , H = R
4 , L = R

4(G) . (3.65)

The maps ∂, δ and the Peiffer lifting are trivial. The action ⊲ of the group G on G, H

and L is given in the same way as for the Dirac case, whereas the spinorial representation

reduces to

Mab ⊲ Pα =
1

2
(σab)

α
βP

β , Mab ⊲ Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (3.66)

where σab = −σ̄ab = 1
4(σ

aσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in which ~σ denotes

the set of three Pauli matrices. The four generators of the group L are denoted as Pα and

Pα̇, where the Weyl indices α, α̇ take values 1, 2.

The 3-connection (α , β , γ) now takes the form corresponding to this choice of Lie

groups,

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (3.67)

while the fake 3-curvature (F ,G ,H) defined in (3.1) is

F = RabMab , G = ∇βaPa , (3.68)

H =

(

dγα +
1

2
ωab(σab)βαγβ

)

Pα +

(

dγ̄α̇ +
1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇

)

P α̇ ≡ (
→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

Introducing the spinor fields ψα and ψ̄α̇ via the Lagrange multiplier D as

D = ψαP
α + ψ̄α̇Pα̇ , (3.69)

and using the bilinear form 〈 , 〉l for the group L,

〈Pα, P β〉l = εαβ , 〈Pα̇, Pβ̇〉l
= εα̇β̇ , 〈Pα, Pβ̇〉l

= 0 , 〈Pα̇, P
β〉l = 0 , (3.70)
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where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita symbols, the

topological 3BF action (3.2) for spinors coupled to gravity becomes

S3BF =

∫

M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (3.71)

In order to obtain the suitable equations of motion for the Weyl spinors, we again introduce

appropriate simplicity constraints, so that the action becomes:

S =

∫

M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧

(

Bab −
1

16πl2p
εabcdec ∧ ed

)

− λα ∧

(

γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇

)

− λ̄α̇ ∧

(

γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ

)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄

dα̇βψβ) . (3.72)

The new simplicity constraints are in the third row, featuring the Lagrange multiplier

1-forms λα and λ̄α̇. Also, using the coupling between the Dirac field and torsion from

Einstein-Cartan theory as a model, the term in the fourth row is chosen to ensure that the

coupling between the Weyl spin tensor

sa ≡ iεabcde
b ∧ ec ψασdαβ̇ψ̄

β̇ , (3.73)

and torsion is given as:

Ta = 4πl2psa . (3.74)

The case of the Majorana field is introduced in exactly the same way, albeit with an

additional mass term in the action, of the form:

−
1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (3.75)

Varying the action (3.72) with respect to the variables Bab, λ
ab, γα, γ̄

α̇, λα, λ̄
α̇, ψα,

ψ̄α̇, ea, βa and ωab one again obtains the complete set of equations of motion, displayed

in the appendix C. The only dynamical degrees of freedom are ψα, ψ̄
α̇ and ea, while the

remaining variables are algebraically determined in terms of these as:

λabµν = Rab
µν , Babµν =

1

8πl2p
εabcde

c
µe

d
ν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄

α̇ , (3.76)

γαµνρ = iεabcde
a
µe

b
νe

c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe

b
νe

c
ρσ̄

dα̇βψβ , ωabµ = △abµ +Kabµ .

In addition, one also maintains the result β = 0 as before. Finally, the equations of motion

for the dynamical fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄

β̇ = 0 , (3.77)

and

Rµν −
1

2
gµνR = 8πl2p T

µν , (3.78)
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where

Tµν ≡
i

2
ψ̄σ̄beνb∇

µψ +
i

2
ψσbeνb∇

µψ̄ − gµν
1

2

(

iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄
)

. (3.79)

Here we have suppressed the spinor indices. In the case of the Majorana field, the equations

of motion (3.76) remain the same, while the equations of motion for ψα and ψ̄α̇ take the

form

iσaαβ̇e
µ
a∇µψ̄

β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (3.80)

whereas the stress-energy tensor takes the form

Tµν ≡
i

2
ψ̄σ̄beνb∇

µψ +
i

2
ψσbeνb∇

µψ̄

− gµν
1

2

[

iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −
1

2
m
(

ψψ + ψ̄ψ̄
)

]

.

(3.81)

4 The Standard Model

The Standard Model 3-group can be defined as:

G = SO(3, 1)×SU(3)×SU(2)×U(1) , H = R
4 , L = R

4(C)×R
64(G)×R

64(G)×R
64(G) ,

(4.1)

where C denotes the field of complex numbers. The motivation for this choice of the group

L is given in the table below.

1. lepton generation

red color

1. quark generation

green color

1. quark generation

blue color

1. quark generation
(

νe

e−

)

L

(

ur

dr

)

L

(

ug

dg

)

L

(

ub

db

)

L

(νe)R (ur)R (ug)R (ub)R

(e−)R (dr)R (dg)R (db)R

We see that in order to introduce one generation of matter one needs to provide 16

spinors, or equivalently the group L has to be chosen as L = R
64(G). As there are three

generations of matter, the part of the group L that corresponds to the fermion fields in

the theory is chosen to be L = R
64(G)×R

64(G)×R
64(G). To define the Higgs sector one

needs two complex scalar fields

(

φ+

φ0

)

, or equivalently the scalar sector of the group L is

given as L = R
4(C).

The maps ∂, δ and the Peiffer lifting are trivial. The action of the group G on itself

is given via conjugation. The action of the SO(3, 1) subgroup of G on H is via vector

representation and the action of SU(3)× SU(2)×U(1) subgroup on H is via trivial repre-

sentation. The action of the SO(3, 1) on L is via trivial representation for the generators

corresponding to the scalar fields, i.e. the R
4(C) subgroup of L, and via spinor represen-

tation for the every quadruple of generators corresponding to the fermion fields, given as
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in the section 3. The information how spinors transform under the SU(3) × SU(2)× U(1)

group is encoded in the action of that subgroup of G on L, as specified in the table above.

For simplicity, in the following, only one family of the lepton sector and only electroweak

part of the gauge sector of the Standard model is considered.

The groups are chosen as:

G = SO(3, 1)× SU(2)×U(1) , H = R
4 , Lleptons = R

16(G)× R
4(C) . (4.2)

The 3-connection then takes the form

α = ωabMab +W ITI +AY , β = βaPa ,

γ = γα
L̃Pα

L̃ + γα̇L̃Pα̇
L̃ + γα

R̃Pα
R̃ + γα̇R̃Pα̇

R̃ + γãPã .
(4.3)

Here the indices I, J, . . . take the values 1, 2, 3 and counts the Pauli matrices, generators

of the group SU(2), the indices L̃, L̃′, . . . take the values 1, 2 and count the components of

left doublet, R̃ denotes the right singlet (e−)R and right singlet (νe)R, and indices ã, b̃, . . .

take values 1, 2 and count the components of the scalar doublet. It is also useful to define

ĩ = (L̃, R̃) which takes values 1, . . . , 4.

The action of the group G on L is defined as:

Mab ⊲ Pα
i =

1

2
(σab)

α
βP

β
i , Mab ⊲ Pα̇i =

1

2
(σ̄ab)

β̇
α̇Pβ̇i , Mab ⊲ Pã = 0 ,

TI ⊲ Pα
L̃ =

1

2
(σI)

L̃′

L̃P
α
L̃′ , TI ⊲ Pα̇L̃ =

1

2
(σI)

L̃′

L̃Pα̇L̃′ ,

TI ⊲ Pα
R̃ = 0 , TI ⊲ Pα̇R̃ = 0 , TI ⊲ Pã =

1

2
(σI)

b̃
ãPb̃ ,

Y ⊲ Pα
L̃ = −Pα

L̃ , Y ⊲ Pα
eR = −2Pα

eR , Y ⊲ Pα
νR = −2Pα

νR , Y ⊲ Pã = Pã ,

Y ⊲ Pα̇L̃ = −Pα̇L̃ , Y ⊲ Pα̇eR = −2Pα̇eR , Y ⊲ Pα̇νR = −2Pα̇νR . (4.4)

The 3-curvatures are given as:

F = RabMab + F ITI + FY , G = ∇βaPa ,

H = (
→
∇γL̃)αP

α
L̃ + (γ̄L̃

←
∇)α̇P α̇

L̃ + (
→
∇γR̃)αP

α
R̃ + (γ̄R̃

←
∇)α̇P α̇

R̃ + dγãPã .
(4.5)

The topological 3BF action is defined as:

S =

∫

BabR
ab +BIF

I +BF + ea∇β
a + ψα

ĩ(
→
∇γ ĩ)α + ψ̄α̇

ĩ(γ̄ ĩ
←
∇)α̇ + φãdγã . (4.6)

At this point, it is useful to simplify the notation and denote all indices of the group G by

α̂, of the group H by â and L by Â. In order to promote this action to a full theory of

first lepton family coupled to electroweak gauge fields, Higgs field, and gravity, we again
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introduce the appropriate simplicity constraint, as follows

S =

∫

Bα̂ ∧ F α̂ + eâ ∧ Gâ +D
Â
∧HÂ

+
(

Bα̂ − Cα̂
β̂M

cdβ̂
ec ∧ ed

)

∧ λα̂ −
(

γ
Â
− ea ∧ eb ∧ ecC

Â
B̂M

abcB̂

)

∧ λÂ

+ ζabα̂ ∧
(

Mab
α̂εcdefec ∧ ed ∧ ee ∧ ef − F α̂ ∧ ec ∧ ed

)

+ ζab
Â
∧
(

Mabc
Âεcdefed ∧ ee ∧ ef − F Â ∧ ea ∧ eb

)

− εabcde
a ∧ eb ∧ ec ∧ ed

(

Y
ÂB̂Ĉ

DÂDB̂DĈ +M
ÂB̂
DÂDB̂ + L

ÂB̂ĈD̂
DÂDB̂DĈDD̂

)

− 4πi l2p εabcde
a ∧ eb ∧ βcD

Â
T dÂ

B̂
DB̂ , (4.7)

where:

Bα̂=
[

Bab BI B

]

, F α̂=
[

Rab FI F

]

T , D
Â
=
[

ψα
L̃ ψ̄α̇L̃ ψα

R ψ̄α̇R φã

]

,

HÂ=
[

(
→
∇γL̃)α (γ̄L̃

←
∇)α̇ (

→
∇γR̃)α (γ̄R̃

←
∇)α̇ dγã

]

T , γ
Â
=
[

γαL̃ γ̄α̇L̃ γαR̃ γ̄α̇R̃ γã

]

,

λα̂=
[

−λab λI λ
]

T , ζcdα̂=
[

0 ζcdI ζ
cd
]

, ζab
Â
=
[

ζab 0 0
]

,

λÂ=
[

λαL λ̄α̇L λαR λ̄α̇R λã
]

T , Mcdα̂=
[

εabcd McdI Mcd

]

,

MabcÂ
=
[

εabcdσ
d
αβ̇ψ̄

β̇
L εabcdσ̄

dα̇βψβL εabcdσ
d
αβ̇ψ̄

β̇
R εabcdσ̄

dα̇βψβR Mabcã

]

.

The matrices Cα̂
β̂
, CÂ

B̂
, M

ÂB̂
, Y

ÂB̂Ĉ
, L

ÂB̂ĈD̂
and T dÂ

B̂
are constant matrices, and

carry the information about gauge coupling constants, mass of the Higgs field, Yukawa

couplings and mixing angles, Higgs self-coupling constant and torsion coupling, respectively.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short reminder

of the BF theory and described how one can use it to construct the action for general

relativity (the well known Plebanski model), and the action for the Yang-Mills theory

in flat spacetime, in a novel way. Passing on to higher gauge theory, we have reviewed

the formalism of 2-groups and the corresponding 2BF theory, using it again to construct

the action for general relativity (a model first described in [12]), and the unified action

of general relativity and Yang-Mills theory, both naturally described using the 2-group

formalism. With this background material in hand, in section 3 we have used the idea

of a categorical ladder yet again, generalizing the 2BF theory to 3BF theory, with the

underlying structure of a 3-group instead of a 2-group. This has led us to the main insight

that the scalar and fermion fields can be specified using a gauge group, namely the third

gauge group, denoted L, present in the 2-crossed module corresponding to a given 3-group.

This has allowed us to single out specific gauge groups corresponding to the Klein-Gordon,

Dirac, Weyl and Majorana fields, and to construct the relevant constrained 3BF actions

that describe all these fields coupled to gravity in the standard way.
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The obtained results represent the fundamental building blocks for the construction of

the complete Standard Model of elementary particles coupled to Einstein-Cartan gravity

as a 3BF action with suitable simplicity constraints, as demonstrated in section 4. In

this way, we can complete the first step of the spinfoam quantization programme for the

complete theory of gravity and all matter fields, as specified in the Introduction. This is

a clear improvement over the ordinary spinfoam models based on an ordinary constrained

BF theory.

In addition to this, the gauge group which determines the matter spectrum of the

theory is a completely novel structure, not present in the Standard Model. This new

gauge group stems from the 3-group structure of the theory, so it is not surprising that

it is invisible in the ordinary formulation of the Standard Model, since the latter does

not use any 3-group structure in an explicit way. In this paper, we have discussed the

choices of this group which give rise to all relevant matter fields, and these can simply be

directly multiplied to give the group corresponding to the full Standard Model, encoding

the quark and lepton families and all other structure of the matter spectrum. However,

the true potential of the matter gauge group lies in a possibility of nontrivial unification

of matter fields, by choosing it to be something other than the ordinary product of its

component groups. For example, instead of choosing R
8(G) for the Dirac field, one can try a

noncommutative SU(3) group, which also contains 8 generators, but its noncommutativity

requires that the maps δ and { , } be nontrivial, in order to satisfy the axioms of a

2-crossed module. This, in turn, leads to a distinction between 3-curvature and fake 3-

curvature, which can have consequences for the dynamics of the theory. In this way, by

studying nontrivial choices of a 3-group, one can construct various different 3-group-unified

models of gravity and matter fields, within the context of higher gauge theory. This idea

resembles the ordinary grand unification programme within the framework of the standard

gauge theory, where one constructs various different models of vector fields by making

various choices for the Yang-Mills gauge group. The detailed discussion of these 3-group

unified models is left for future work.

As far as the spinfoam quantization programme is concerned, having completed the

step 1 (as outlined in the Introduction), there is a clear possibility to complete the steps 2

and 3 as well. First, the fact that the full action is written completely in terms of differential

forms of various degrees, allows us to adapt it to a triangulated spacetime manifold, in the

sense of Regge calculus. In particular, all fields and their field strengths present in the

3BF action can be naturally associated to the appropriate d-dimensional simplices of a

4-dimensional triangulation, by matching 0-forms to vertices, 1-forms to edges, etc. This

leads us to the following table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄
α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄
α̃ Ga

4 4-simplex vertex 4-form H, Hα̃, H̄
α̃
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Once the classical Regge-discretized topological 3BF action is constructed, one can

attempt to construct a state sum Z which defines the path integral for the theory. The

topological nature of the pure 3BF action, together with the underlying structure of the 3-

group, should ensure that such a state sum Z is a topological invariant, in the sense that it is

triangulation independent. Unfortunately, in order to perform this step precisely, one needs

a generalization of the Peter-Weyl and Plancharel theorems to 2-groups and 3-groups, a

mathematical result that is presently still missing. The purpose of the Peter-Weyl theorem

is to provide a decomposition of a function on a group into a sum over the corresponding

irreducible representations, which ultimately specifies the appropriate spectrum of labels

for the d-simplices in the triangulation, fixing the domain of values for the fields living on

those d-simplices. In the case of 2-groups and especially 3-groups, the representation theory

has not been developed well enough to allow for such a construction, with a consequence of

the missing Peter-Weyl theorem for 2-groups and 3-groups. However, until the theorem is

proved, we can still try to guess the appropriate structure of the irreducible representations

of the 2- and 3-groups, as was done for example in [12], leading to the so-called spincube

model of quantum gravity.

Finally, if we remember that for the purpose of physics we are not really interested in a

topological theory, but instead in one which contains local propagating degrees of freedom,

we are therefore not really engaged in constructing a topological invariant Z, but rather

a state sum which describes nontrivial dynamics. In particular, we need to impose the

simplicity constraints onto the state sum Z, which is the step 3 of the spinfoam quantization

programme. In light of that, one of the main motivations and also main results of our paper

was to rewrite the action for gravity and matter in a way that explicitly distinguishes the

topological sector from the simplicity constraints. Imposing the constraints is therefore

straightforward in the context of a 3-group gauge theory, and completing this step would

ultimately lead us to a state sum corresponding to a tentative theory of quantum gravity

with matter. This is also a topic for future work.

In the end, let us also mention that aside from the unification and quantization pro-

grammes, there is also a plethora of additional studies one can perform with the constrained

3BF action, such as the analysis of the Hamiltonian structure of the theory (suitable for

a potential canonical quantization programme), the idea of imposing the simplicity con-

straints using a spontaneous symmetry breaking mechanism, and finally a detailed study

of the mathematical structure and properties of the simplicity constraints. This list is of

course not conclusive, and there may be many more interesting related topics to study in

both physics and mathematics.
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A Category theory, 2-groups and 3-groups

Definition 1 (Pre-crossed module and crossed module) A pre-crossed module

(H
∂
→ G ,⊲) of groups G and H, is given by a group map ∂ : H → G, together with a

left action ⊲ of G on H, by automorphisms, such that for each h1 , h2 ∈ H and g ∈ G the

following identity hold:

g∂hg−1 = ∂(g ⊲ h) .

In a pre-crossed module the Peiffer commutator is defined as:

〈h1 , h2〉p = h1h2h
−1
1 ∂(h1)⊲ h−12 .

A pre-crossed module is said to be a crossed module if all of its Peiffer commutators are

trivial, which is to say that

(∂h)⊲ h′ = hh′h−1 ,

i.e. the Peiffer identity is satisfied.

Definition 2 (2-crossed module) A 2-crossed module (L
δ
→ H

∂
→ G, ⊲, {−, −}) is

given by three groups G, H and L, together with maps ∂ and δ such that:

L
δ
→ H

∂
→ G ,

where ∂δ = 1, an action ⊲ of the group G on all three groups, and an G-equivariant map

called the Peiffer lifting:

{− ,−} : H ×H → L .

The following identities are satisfied:

1. The maps ∂ and δ are G-equivariant, i.e. for each g ∈ G and h ∈ H:

g ⊲ ∂(h) = ∂(g ⊲ h) , g ⊲ δ(l) = δ(g ⊲ l) ,

the action of the group G on the groups H and L is a smooth left action by automor-

phisms, i.e. for each g, g1, g2 ∈ G, h1, h2 ∈ H, l1, l2 ∈ L and e ∈ H,L:

g1⊲(g2⊲e) = (g1g2)⊲e , g⊲(h1h2) = (g⊲h1)(g⊲h2) , g⊲(l1l2) = (g⊲l1)(g⊲l2) ,

and the Peiffer lifting is G-equivariant, i.e. for each h1, h2 ∈ H and g ∈ G:

g ⊲ {h1 , h2} = {g ⊲ h1, g ⊲ h2} ;

2. the action of the group G on itself is via conjugation, i.e. for each g , g0 ∈ G:

g ⊲ g0 = g g0 g
−1 ;
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3. In a 2-crossed module the structure (L
δ
→ H, ⊲′) is a crossed module, with action of

the group H on the group L is defined for each h ∈ H and l ∈ L as:

h⊲
′ l = l {δ(l)−1, h} ,

but (H
∂
→ G ,⊲) may not be one, and the Peiffer identity does not necessary hold.

However, when ∂ is chosen to be trivial and group H Abelian, the Peiffer identity is

satisfied, i.e. for each h, h′ ∈ H:

δ(h)⊲ h′ = hh′ h−1 ;

4. δ({h1, h2}) = 〈h1 , h2〉p, ∀h1, h2 ∈ H,

5. [l1, l2] = {δ(l1) , δ(l2)}, ∀l1 , l2 ∈ L. Here, the notation [l, k] = lkl−1k−1 is used;

6. {h1h2, h3} = {h1, h2h3h
−1
2 }∂(h1)⊲ {h2, h3}, ∀h1, h2, h3 ∈ H;

7. {h1, h2h3} = {h1, h2}{h1, h3}{〈h1, h3〉
−1
p , ∂(h1)⊲ h2}, ∀h1, h2, h3 ∈ H;

8. {δ(l), h}{h, δ(l)} = l(∂(h)⊲ l−1), ∀h ∈ H , ∀l ∈ L.

Definition 3 (Differential pre-crossed module, differential crossed module)

A differential pre-crossed module (h
∂
→ g ,⊲) of algebras g and h is given by a Lie algebra

map ∂ : h → g together with an action ⊲ of g on h such that for each h ∈ h and g ∈ g:

∂(g ⊲ h) = [g, ∂(h)] .

The action ⊲ of g on h is on left by derivations, i.e. for each h1, h2 ∈ h and each g ∈ g:

g ⊲ [h1, h2] = [g ⊲ h1, h2] + [h1, g ⊲ h2] .

In a differential pre-crossed module, the Peiffer commutators are defined for each h1, h2 ∈ h

as:

〈h1, h2〉p = [h1, h2]− ∂(h1)⊲ h2 .

The map (h1, h2) ∈ h× h → 〈h1, h2〉p ∈ h is bilinear g-equivariant map called the Peiffer

paring, i.e. all h1 , h2 ∈ h and g ∈ g satisfy the following identity:

g ⊲ 〈h1 , h2〉p = 〈g ⊲ h1 , h2〉+ 〈h1 , g ⊲ h2〉p .

A differential pre-crossed module is said to be a differential crossed module if all of its

Peiffer commutators vanish, which is to say that for each h1, h2 ∈ h:

∂(h1)⊲ h2 = [h1, h2] .

Definition 4 (Differential 2-crossed module) A differential 2-crossed module is given

by a complex of Lie algebras:

l
δ
→ h

∂
→ g ,
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together with left action ⊲ of g on h, l, by derivations, and on itself via adjoint represen-

tation, and a g-equivariant bilinear map called the Peiffer lifting:

{− , −} : h× h → l

Fixing the basis in algebra TA ∈ l, ta ∈ h and τα ∈ g:

[TA, TB] = fAB
C TC , [ta, tb] = fab

c tc , [τα, τβ ] = fαβ
γ τγ ,

one defines the maps ∂ and δ as:

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta ,

and action of g on the generators of l, h and g is, respectively:

τα ⊲ TA = ⊲αA
B TB , τα ⊲ ta = ⊲αa

b tb , τα ⊲ τβ = ⊲αβ
γ τγ .

Note that when η is g-valued differential form and ω is l, h or g valued differential form

the previous action is defined as:

η ⊲ ω = ηα ∧ ωA
⊲αA

B TB , η ⊲ ω = ηα ∧ ωa
⊲αa

b tb , η ⊲ ω = ηα ∧ ωβfαβ
γ τγ .

The coefficients Xab
A are introduced as:

{ta, tb} = Xab
ATA .

The following identities are satisfied:

1. In the differential crossed module (L
δ
→ H ,⊲′) the action ⊲

′ of h on l is defined for

each h ∈ h and l ∈ l as:

h⊲
′ l = −{δ(l), h} ,

or written in the basis where ta ⊲
′ TA = ⊲

′
aA

BTB the previous identity becomes:

⊲
′
aA

B
= −δA

bXba
B ;

2. The action of g on itself is via adjoint representation:

⊲αβ
γ = fαβ

γ ;

3. The action of g on h and l is equivariant, i.e. the following identities are satisfied:

∂a
βfαβ

γ = ⊲αa
b∂b

γ , δA
a
⊲αa

b = ⊲αA
BδB

b ;

4. The Peiffer lifting is g-equivariant, i.e. for each h1, h2 ∈ h and g ∈ g:

g ⊲ {h1, h2} = {g ⊲ h1, h2}+ {h1, g ⊲ h2} ,

or written in the basis:

Xab
B
⊲αB

A = ⊲αa
cXcb

A +⊲αb
cXac

A ;
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5. δ({h1, h2}) = 〈h1, h2〉 p , ∀h1, h2 ∈ h, i.e.

Xab
AδA

c = fab
c − ∂a

α
⊲αb

c ;

6. [l1, l2] = {δ(l1), δ(l2)} , ∀l1, l2 ∈ l, i.e.

fAB
C = δA

aδB
bXab

C ;

7. {[h1, h2], h3} = ∂(h1)⊲ {h2, h3}+ {h1, [h2, h3]}−∂(h2)⊲ {h1, h3}−{h2, [h1, h3]} ,

∀h1, h2, h3 ∈ h, i.e.

{[h1, h2], h3} = {∂(h1)⊲h2, h3}−{∂(h2)⊲h1, h3}−{h1, δ{h2, h3}}+{h2, δ{h1, q, h3}},

fab
dXdc

B = ∂a
αXbc

A
⊲αA

B +Xad
Bfbc

d − ∂b
α
⊲αA

BXac
A −Xbd

Bfac
d ;

8. {h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} , ∀h1, h2, h3 ∈ h, i.e.

Xad
Afbc

d = Xab
BδB

dXdc
A −Xac

BδB
dXdb

A ;

9. {δ(l), h}+ {h, δ(l)} = −∂(h)⊲ l , ∀l ∈ l , ∀h ∈ h, i.e.

δA
aXab

B + δA
aXba

B = −∂b
α
⊲αA

B .

Note that the property 6. implies that either trivial map δ or the trivial Peiffer lifting imply

that L is an Abelian group. Conversely, if L is Abelian, property 6. implies that either the

map δ or the Peiffer lifting is trivial, or both.

In the case of an Abelian group H and trivial map ∂, among the aforementioned

properties the only non-trivial remaining are:

1. δ{h1, h2} = 0 , ∀h1 , h2 ∈ h ;

2. [l1, l2] = {δ(l1), δ(l2)} , ∀l1 , l2 ∈ l ;

3. {δ(l), h} = −{h, δ(l)} , ∀h ∈ h , ∀l ∈ l .

A reader intrested in more details about 3-groups is referred to [25].

B The construction of gauge-invariant actions for 3BF theory

Symmetric bilinear invariant nondegenerate forms are defined as:

〈TA , TB〉l = gAB , 〈ta , tb〉h = gab , 〈τα , τβ〉g = gαβ .

They satisfy the following properties:

• 〈 , 〉g is G-invariant:

〈gταg
−1 , gτβg

−1〉g = 〈τα , τβ〉g , ∀g ∈ G ;
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• 〈 , 〉h is G-invariant:

〈g ⊲ ta , g ⊲ tb〉h = 〈ta , tb〉h , ∀g ∈ G ,

and, when (H
∂
→ G ,⊲) is a crossed module, consequently H-invariant:

〈htah
−1 , htbh

−1〉h = 〈∂(h)⊲ ta , ∂(h)⊲ tb〉h = 〈ta , tb〉h , ∀h ∈ H ;

• 〈 , 〉l is G-invariant:

〈g ⊲ TA , g ⊲ TB〉l = 〈TA , TB〉l , ∀g ∈ G ,

and in the case when the Peiffer lifting or the map δ is trivial consequently H-

invariant:

〈h⊲
′ TA , h⊲

′ TB〉l = 〈TA − {δ(TA), h} , TB − {δ(TB), h}〉l = 〈TA , TB〉l , ∀h ∈ H .

From the H-invariance of 〈 , 〉l and properties of a crossed module (L
δ
→ H ,⊲′)

follows L-invariance:

〈lTAl
−1 , lTBl

−1〉l = 〈δ(l)⊲′ TA , δ(l)⊲
′ TB〉l = 〈TA , TB〉l , ∀l ∈ L .

From the invariance of the bilinear forms follows the existence of gauge-invariant topological

3BF action of the form:

S3BF =

∫

M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧ H〉l , (B.1)

where B ∈ A2(M4 , g), C ∈ A1(M4 , h) and D ∈ A0(M4 , l) are Lagrange multipliers, and

F ∈ A2(M4 , g), G ∈ A3(M4 , h) and H ∈ A4(M4 , l) are curvatures defined as in (3.1).

Written in the basis:

F =
1

2
Fα

µνταdx
µ ∧ dxν , G =

1

3!
Ga

µνρtadx
µ ∧ dxν ∧ dxρ ,

H =
1

4!
HA

µνρσTAdx
µ ∧ dxν ∧ dxρ ∧ dxσ ,

the coefficients are:

Fα
µν = ∂µα

α
ν − ∂να

α
µ + fβγ

ααβ
µα

γ
ν − βaµν∂a

α ,

Ga
µνρ = ∂µβ

a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν

+ αα
µβ

b
νρ⊲αb

a + αα
νβ

b
ρµ⊲αb

a + αα
ρβ

b
µν⊲αb

a − γAµνρδA
a ,

HA
µνρσ = ∂µγ

A
νρσ − ∂νγ

A
ρσµ + ∂ργ

A
σµν − ∂σγ

A
µνρ

+ 2βaµνβ
b
ρσX{ab}

A − 2βaµρβ
b
νσX{ab}

A + 2βaµσβ
b
νρX{ab}

A

+ αα
µγ

B
νρσ⊲αB

A − αα
νγ

B
ρσµ⊲αB

A + αα
ργ

B
σµν⊲αB

A − αα
σγ

B
µνρ⊲αB

A .

Note that the wedge product A ∧ B when A is a 0-form and B is a p-form is defined

as A ∧B = 1
p!ABµ1...µp

dxµ1 ∧ · · · ∧ xµp .
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Given G-invariant symmetric non-degenerate bilinear forms in g and h, one can define

a bilinear antisymmetric map T : h× h → g by the rule:

〈T (h1, h2) , g〉g = −〈h1, g ⊲ h2〉h, ∀h1, h2 ∈ h , ∀g ∈ g .

See [17] for more properties and the construction of 2BF invariant topological action using

this map. To define 3BF invariant topological action one has to first define a bilinear

antisymmetric map S : l× l → g by the rule:

〈S(l1, l2), g〉g = −〈l1, g ⊲ l2〉l , ∀l1, ∀l2 ∈ l , ∀g ∈ g .

Note that 〈 , 〉g is non-degenerate and

〈l1, g ⊲ l2〉l = −〈g ⊲ l1, l2〉l = −〈l2, g ⊲ l1〉l , ∀g ∈ g, ∀l1, l2 ∈ l .

Morever, given g ∈ G and l1, l2 ∈ l one has:

S(g ⊲ l1, g ⊲ l2) = g S(l1, l2) g
−1 ,

since for each g ∈ g and l1, l2 ∈ l:

〈g, g−1S(g ⊲ l1 , g ⊲ l2)g〉g = 〈ggg−1, S(g ⊲ l1, g ⊲ l2)〉g

= −〈(g g g−1)⊲ g ⊲ l1, g ⊲ l2〉l

= −〈g ⊲ l1 , l2〉l = 〈g ,S(l1, l2)〉g ,

where the following mixed relation has been used:

g ⊲ (g ⊲ l) = (g g g−1)⊲ g ⊲ l . (B.2)

We thus have the following identity:

S(g ⊲ l1, l2) + S(l1, g ⊲ l2) = [g, S(l1, l2)] .

As far as the bilinear antisymmetric map S : l × l → g, one can write it in the basis:

S(TA, TB) = SAB
ατα ,

so that the defining relation for S becomes the relation:

SAB
αgαβ = −⊲α[B

CgA]C .

Given two l-valued forms η and ω, one can define a g-valued form:

ω ∧S η = ωA ∧ ηBSAB
ατα .

Now one can define the transformations of the Lagrange multipliers under L-gauge trans-

formations (3.15).
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Further, to define the transformations of the Lagrange multipliers under H-gauge

transformations one needs to define the bilinear map X1 : l× h → h by the rule:

〈X1(l, h1), h2〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l ,

and bilinear map X2 : l× h → h by the rule:

〈X2(l, h2), h1〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l .

As far as the bilinear maps X1 and X2 one can define the coefficients in the basis as:

X1(TA, ta) = X1Aa
b tb , X2(TA, ta) = X2Aa

b tb .

When written in the basis the defining relations for the maps X1 and X2 become:

X1Ab
cgac = −Xba

BgAB , X2Ab
cgac = −Xab

BgAB .

Given l-valued differential form ω and h-valued differential form η, one defines a h-valued

form as:

ω ∧X1 η = ωA ∧ ηaX1Aa
btb , ω ∧X2 η = ωA ∧ ηaX2Aa

btb .

Given any g ∈ G, l ∈ l and h ∈ h one has:

X1(g ⊲ l, g−1 ⊲ h) = g ⊲ X1(l, h) , X2(g ⊲ l, g ⊲ h) = g−1 ⊲ X2(l, h) ,

since for each h1, h2 ∈ h and l ∈ l:

〈h2, g
−1

⊲ X1(g ⊲ l, g ⊲ h1)〉h = 〈g ⊲ h2, X1(g ⊲ l, g ⊲ h1)〉h = 〈g ⊲ l, {g ⊲ h1, g ⊲ h2}〉l

〈g ⊲ l, g ⊲ {h1, h2}〉l = 〈l, {h1, h2}〉l = 〈h2, X1(l, h1)〉h ,

and similarly for X 2. Finaly, one needs to define a trilinear map D : h× h× l → g by the

rule:

〈D(h1, h2, l), g〉g = −〈l, {g ⊲ h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g ,

One can define the coefficients of the trilinear map as:

D(ta, tb, TA) = DabA
ατα ,

and the defining relation for the map D expressed in terms of coefficients becomes:

DabA
βgαβ = −⊲αa

cXcb
BgAB .

Given two h-valued forms ω and η, and l-valued form ξ, the g-valued form is given by the

formula:

ω ∧D η ∧D ξ = ωa ∧ ηb ∧ ξADabA
βτβ .

The following compatibility relation between the maps X1 and D hold:

〈D(h1, h2, l), g〉g = 〈X1(l, g ⊲ h1), h2〉h , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g , (B.3)
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which one can prove valid from the defining relations in terms of the coefficients. One can

demonstrate that for each h1, h2 ∈ h, l ∈ l and g ∈ G:

D(g ⊲ h1, g ⊲ h2, g ⊲ l) = gD(h1, h2, l) g
−1 ,

since for each h1, h2 ∈ h, l ∈ l, g ∈ g and g ∈ G:

〈g−1D(g ⊲ h1, g ⊲ h2, g ⊲ l)g, g〉g = 〈D(g ⊲ h1, g ⊲ h2, g ⊲ l), ggg−1〉g

= 〈X1(g ⊲ l, ggg−1 ⊲ g ⊲ h1), g ⊲ h2〉h

= 〈X1(g ⊲ l, g ⊲ g ⊲ h1), g ⊲ h2〉h

= 〈g ⊲ X1(l, g ⊲ h1), g ⊲ h2〉h

= 〈X1(l, g ⊲ h1), h2〉h

= 〈D(h1, h2, l) , g〉g ,

where the relation (B.2) and the compatibility relation (B.3) were used. We thus have for

each h1, h2 ∈ h, l ∈ l and g ∈ g the following identity:

D(g ⊲ h1, h2, l) +D(h1, g ⊲ h2, l) +D(h1, h2, g ⊲ l) = [g, D(h1, h2, l)] .

Now one can define the transformations of the Lagrange multipliers under H-gauge trans-

formations as in (3.14).

C The equations of motion for the Weyl and Majorana fields

The action for the Weyl spinor field coupled to gravity is given by (3.72). The variation of

this action with respect to the variables Bab, λ
ab, γα, γ̄

α̇, λα, λ̄
α̇, ψα, ψ̄

α̇, ea, βa and ωab

one obtains the complete set of equations of motion, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

∇ψα + λα = 0 ,

∇ψ̄α̇ + λ̄α̇ = 0 ,

−γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇ = 0 ,

−γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ = 0 ,

∇γα −
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇λ̄
β̇ = 0 ,

∇γ̄α̇ −
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βλβ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcde

b ∧ ec ∧ (λ̄α̇σ̄
dα̇βψβ + λασdαβ̇ψ̄

β̇)

−8πil2pεabcde
bβc
(

ψα(σd)αβ̇ψ̄
β̇
)

= 0 ,
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∇ea − 4πl2pεabcde
b ∧ ec ∧ (ψ̄α̇σ̄

dα̇βψβ) = 0 ,

∇Bab − e[a ∧ βb] −
1

2
γσabα

βψβ −
1

2
γ̄α̇σ̄

abα̇
β̇ψ̄

β̇ = 0 .

In the case of the Majorana field, one adds the mass term (3.75) to the action (3.72). Then,

the variation of the action with respect to Bab, ψ
ab, γα, γ̄α̇, λα, λ̄

α̇, ψα, ψ̄
α̇
I , e

a, βa and ωab

gives the equations of motion for the Majorana case, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

−∇ψα + λα = 0 ,

−∇ψ̄α̇ + λα̇ = 0 ,

γα −
i

6
εabcde

a ∧ eb ∧ ecψ̄β̇(σ̄
d)β̇α = 0 ,

γ̄α̇ −
i

6
εabcde

a ∧ eb ∧ ecψβ(σd)βα̇ = 0 ,

∇γα +
i

6
εabcdλ

β̇ ∧ ea ∧ eb ∧ ec(σd)αβ̇ −
1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα

−4iπl2pεabcde
a ∧ eb ∧ βcψ̄β̇(σ̄

d)β̇α = 0 ,

∇γ̄α̇ +
i

6
εabcdλβ ∧ ea ∧ eb ∧ ec(σ̄d)α̇

β −
1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα̇

−4iπl2pεabcde
a ∧ eb ∧ βcψβ(σd)βα̇ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcdλα ∧ eb ∧ ecψ̄β̇(σ̄

d)β̇α +
i

2
εabcdλ

α̇ ∧ eb ∧ ecψβ(σd)βα̇

−
1

3
mεabcde

b ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇)− 8πil2pεabcde

bβc
(

ψα(σd)αβ̇ψ̄
β̇
)

= 0 ,

∇ea − 4iπl2pεabcde
b ∧ ec

(

ψα(σd)αβ̇ψ̄
β̇
)

= 0 ,

∇Bab − e[a ∧ βb] −
1

2
ψα(σab)α

βγβ −
1

2
ψ̄α̇(σ̄

ab)α̇β̇ γ̄
β̇ = 0 .
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[22] A. Miković, M.A. Oliveira and M. Vojinovic, Hamiltonian analysis of the BFCG theory for a

generic Lie 2-group, arXiv:1610.09621 [INSPIRE].
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Abstract: The higher category theory can be employed to generalize the BF action to the so-called

3BF action, by passing from the notion of a gauge group to the notion of a gauge 3-group. The theory

of scalar electrodynamics coupled to Einstein–Cartan gravity can be formulated as a constrained 3BF

theory for a specific choice of the gauge 3-group. The complete Hamiltonian analysis of the 3BF action

for the choice of a Lie 3-group corresponding to scalar electrodynamics is performed. This analysis is

the first step towards a canonical quantization of a 3BF theory, an important stepping stone for the

quantization of the complete scalar electrodynamics coupled to Einstein–Cartan gravity formulated

as a 3BF action with suitable simplicity constraints. It is shown that the resulting dynamic constraints

eliminate all propagating degrees of freedom, i.e., the 3BF theory for this choice of a 3-group is

a topological field theory, as expected.

Keywords: Hamiltonian analysis; higher gauge theory; BF theory; topological theory; scalar

electrodynamics

1. Introduction

The vast majority of physics community agrees that the quantum theory of gravity is necessary,

even if they disagree on the quantization approach. The theory of loop quantum gravity is one of

the well-formulated possible candidates for the desired theory of quantum gravity [1–3]. There are

two approaches within the theory—the canonical and the covariant quantization method. The covariant

quantization method is focused on obtaining a generating functional, by considering a triangulated

spacetime manifold and defining the functional as a state sum over all configurations of a field living

on simplices of the triangulation [2].

One of the key tools in the covariant quantization approach is the so-called BF theory. Given a Lie

group G and its corresponding Lie algebra g, one considers a g-valued connection 1-form A, and its

corresponding field strength 2-form F ≡ dA + A ∧ A. Multiplying F with a g-valued Lagrange

multiplier 2-form B and integrating over a four-dimensional spacetime manifold M, one obtains the

action of the BF theory,

SBF[A, B] =
∫

M
〈B ∧ F〉g ,

where 〈_ , _〉g is a G-invariant non-degenerate symmetric bilinear form. The BF theory derives its

name from the symbols B and F for the Lagrange multiplier and the field strength present in the action.

As it is defined, the BF theory is topological, containing no local propagating degrees of freedom.

Therefore, for the purpose of building physically relevant actions, attention usually focuses not on

the pure BF theory, but rather on the theory with constraints. The constrained BF models are based

on deformations of the BF theory [4], by adding constraints to the topological BF action that promote

some of the gauge degrees of freedom into physical ones. The well known example is the Plebanski

Symmetry 2020, 12, 620; doi:10.3390/sym12040620 www.mdpi.com/journal/symmetry
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model for general relativity [5]. Constrained BF models represent a starting point in the spinfoam

approach to the construction of quantum gravity models [2].

The main shortcoming of building a quantum gravity model using a BF theory is the fact that it is

very hard, if not impossible, to write the action for matter fields (specifically scalar and fermion fields)

in the form of a constrained BF theory. Thus, the spinfoam quantization method is limited to pure

gravity, and the problem of consistently coupling matter fields to gravity in this framework becomes

highly nontrivial. One of the proposed ways to circumvent this issue is to generalize the notion of a BF

theory using the mathematical apparatus of higher category theory.

The higher category theory [6] can be employed to generalize the BF action to the so-called

nBF action, by passing from the notion of a gauge group to the notion of a gauge n-group

(for a comprehensive review of n-groups see for example [7], and also Appendix C). Specifically,

the notion of a 3-group in the framework of higher category theory is introduced as a 3-category with

only one object where all the morphisms, 2-morphisms and 3-morphisms are invertible. Based on

this generalization, recently a constrained 3BF action has been introduced, which describes the full

Standard Model coupled to Einstein–Cartan gravity [8].

As a first step to the study of the Hamiltonian structure of such theories, in this work, we discuss

the simplest nontrivial toy example, namely the theory of scalar electrodynamics coupled to gravity.

The standard way to define scalar electrodynamics coupled to gravity is by the action:

S =
∫

d4x
√

−g

[

−
1

16πl2
p

R −
1

4
gµρgνσFµνFρσ + gµν∇µφ∗∇νφ − m2φ∗φ

]

. (1)

Here, gµν is the spacetime metric, g ≡ det(gµν) is its determinant, R is the corresponding

curvature scalar, and lp is the Planck length, its square being equal to the Newton’s gravitational

constant, l2
p = G, in the natural system of units h̄ = c = 1. The total covariant derivative ∇µ of the

complex scalar field φ is defined as ∇µφ = (∂µ + iqAµ)φ, and thus coupled to the electromagnetic

potential Aµ via the coupling constant q (the electric charge of the field φ). See Appendix A for more

detailed notation. In the next section, we will reformulate this model as a classically equivalent

constrained 3BF theory for a specific choice of the gauge 3-group. Moreover, for reasons of simplicity,

in the Hamiltonian analysis, we will focus only on the topological sector, disregarding the simplicity

constraints. The Hamiltonian structure of the theory is important for various reasons, primarily for the

canonical quantization program.

The layout of the paper is as follows. In Section 2, we introduce the 3-group structure

corresponding to the theory of scalar electrodynamics coupled to Einstein–Cartan gravity and the

corresponding constrained 3BF action. Section 3 contains the Hamiltonian analysis for the topological,

3BF sector of the action, with the resulting first-class and second-class constraints present in the theory,

and their mutual Poisson brackets. In Section 4, we analyze the Bianchi identities that the first-class

constraints satisfy, which enforce restrictions in the sense of Hamiltonian analysis, and reduce the

number of independent first-class constraints present in the theory. Section 5 focuses on the counting

of the dynamical degrees of freedom present in the theory, based on the results from Sections 3 and 4.

Encouraged by these results, in Section 6, we construct the generator of the gauge symmetries for

the topological theory and we find the form variations of all variables and their canonical momenta.

Finally, Section 7 is devoted to the discussion of the results and the possible future lines of research.

The Appendices contain various technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted by the Latin

letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the Minkowski metric ηab

with signature (−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . , and are

raised and lowered by the spacetime metric gµν = ηabea
µeb

ν, where ea
µ are the tetrad fields.

The inverse tetrad is denoted as eµ
a, so that the standard orthogonality conditions hold: ea

µeµ
b = δa

b

and ea
µeν

a = δν
µ. When needed, spacetime indices will be split into time and space indices,
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denoted with a 0 and lowcase Latin indices i, j, . . . , respectively. All other indices that appear in

the paper are dependent on the context, and their usage is explicitly defined in the text where they

appear. The antisymmetrization over two indices is introduced with the factor one half that is

A[a1|a2 ...an−1|an ] =
1
2

(

Aa1a2 ...an−1an − Aana2 ...an−1a1

)

, and the total antisymmetrization is introduced as

A[a1 ...an ] =
1
n! ∑σ∈Sn

(−1)sign(σ)Aaσ(1) ...aσ(n)
.

2. Scalar Electrodynamics as a Constrained 3BF Action

Let us begin by providing a short introduction into the construction and structure of a 3BF theory,

after which we will impose appropriate simplicity constraints, in order to obtain the equations of

motion for scalar electrodynamics coupled to gravity.

As was discussed in detail in [8], one formulates a topological 3BF action by specifying a particular

gauge Lie 3-group. It has been proved that any strict 3-group is equivalent to a 2-crossed module [9,10].

A gauge theory for the manifold M4 and 2-crossed module (L
δ
→ H

∂
→ G ,✄ , {_ , _}) can be

constructed for the following choice of the three Lie groups as:

G = SO(3, 1)× U(1) , H = R
4 , L = R

2 .

The maps ∂ and δ are chosen to be trivial. The action of the algebra g on h and l is chosen as:

Mab ✄ Pc = ✄ab,c
d Pd = δ[a|

dη|b]c Pd = η[b|c P|a] , T ✄ Pa = 0 ,

Mab ✄ PA = 0 , T ✄ PA = ✄A
B PB

(2)

where Mab denote the six generators of so(3, 1), T is the sole generator of u(1), Pa are the four generators

of R4 and PA are the two generators of R2. In the previous expression, the action of the algebra u(1) on

the algebra R
2 is defined via

✄A
B = iq

[

1 0

0 −1

]

.

The action of the algebra g on itself is by definition given via the adjoint representation and, for

the choice g = so(3, 1)× u(1), one obtains

Mab ✄ Mcd = ✄ab ,cd
e f Me f = fab ,cd

e f Me f = ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac ,

Mab ✄ T = 0 , T ✄ Mab = 0 , T ✄ T = 0 ,
(3)

as the consequence of the direct product structure and the Abelian nature of the subgroup U(1).

The Peiffer lifting

{_ , _} : H × H → L

is also trivial, i.e., all the coefficients Xab
A are equal to zero:

{Pa , Pb} ≡ Xab
ATA = 0 . (4)

Given Lie algebras g, h, and l, one can introduce a 3-connection (α, β, γ) given by the

algebra-valued differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l).

The corresponding fake 3-curvature (F ,G ,H) is then defined as:

F = dα + α ∧ α − ∂β , G = dβ + α ∧✄ β − δγ , H = dγ + α ∧✄ γ + {β ∧ β} , (5)
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see [9,10] for details. For this specific choice of a 3-group, where α = ω+ A, given by the algebra-valued

differential forms ω ∈ A1(M4 , so(3, 1)), A ∈ A1(M4 , u(1)), β ∈ A2(M4 ,R4) and γ ∈ A3(M4 ,R2),

the corresponding 3-curvature (F ,G ,H) is defined as

F = Rab Mab + FT =
(

dωab + ωa
c ∧ ωcb

)

Mab + dA T ,

G = GaPa =
(

dβa + ωa
b ∧ βb

)

Pa ,

H = HAPA =
(

dγA +✄B
A A ∧ γB

)

PA .

(6)

Note that the connection ωab is not present in the last expression, as follows from the definition of

the action ✄ and the Peiffer lifting {_ , _}, see Equations (2) and (4):

H = dγ + α ∧✄ γ + {β ∧ β}

= dγAPA + (ωab Mab + AT) ∧✄ (γAPA)

= dγAPA + ωab ∧ γA Mab ✄ PA + A ∧ γAT ✄ PA

= dγAPA + A ∧ γA
✄A

BPB

= (dγA +✄B
A A ∧ γB)PA .

(7)

The coefficients of the differential 2-forms F and Rab, 3-form G, and 4-form H are:

Fµν = ∂µ Aν − ∂ν Aµ ,

Rab
µν = ∂µωab

ν − ∂νωab
µ + ωa

cµωcb
ν − ωa

cνωcb
µ ,

Ga
µνρ = ∂µβa

νρ + ∂νβa
ρµ + ∂ρβa

µν + ωa
bµ βb

νρ + ωa
bν βb

ρµ + ωa
bρ βb

µν ,

HA
µνρσ = ∂µγA

νρσ − ∂νγA
ρσµ + ∂ργA

σµν − ∂σγA
µνρ

+✄B
A AµγB

νρσ −✄B
A AνγB

ρσµ +✄B
A AργB

σµν −✄B
A AσγB

µνρ .

(8)

Now, one can define a gauge invariant 3BF action as:

S3BF =
∫

M4

(

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l

)

, (9)

where B ∈ A2(M4 , so(3, 1)), C ∈ A1(M4 ,R4) and D ∈ A0(M4 ,R2) are Lagrange multipliers.

The forms 〈_ , _〉g, 〈_ , _〉h and 〈_ , _〉l are G-invariant bilinear symmetric nondegenerate forms on g, h

and l, respectively, defined as

〈Mab , Mcd〉g = gab, cd , 〈T , T〉g = 1 , 〈Mab , T〉g = 0 , 〈Pa , Pb〉h = gab , 〈PA , PB〉l = gAB ,

where

gab, cd = ηa[c|ηb|d] , gab =

[

1 0

0 1

]

, gAB =

[

0 1

1 0

]

.

Identifying the Lagrange multiplier Ca as the tetrad field ea, and the Lagrange multiplier DA as the

doublet of scalar fields φA,

φ = φAPA = φP1 + φ∗P2 ,
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based on their transformation properties as discussed in [8,11], the Lagrangian of the action (9) obtains

the form:

S3BF =
∫

M4

d4x ǫµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1

4
BµνFρσ +

1

3!
ea

µ G
b

νρσ gab +
1

4!
φAHB

µνρσ gAB

)

. (10)

Varying the action with respect to all the variables, one obtains the equations of motion:

varied variable equation of motion

δBab Rab = 0

δωab ∇Bab − e[a| ∧ β|b] = 0

δea Ga = 0

δφA ∇γA = 0

varied variable equation of motion

δB F = 0

δA dB + φA ✄B
A γB = 0

δβa ∇ea = 0

δγA ∇φA = 0

(11)

Since one is interested in the doublet of scalar fields φA of mass m and charge q minimally

coupled to gravity and electromagnetic field, we impose additional simplicity constraint terms to

the topological action (9), in order to obtain the appropriate equations of motion equivalent to the

equations of motion for the action (1):

S =
∫

M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA ∇γA

− λab ∧
(

Bab −
1

16πl2
p

εabcdec ∧ ed

)

+ λA ∧
(

γA −
1

2
HabcAea ∧ eb ∧ ec

)

+ ΛabA ∧
(

HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)

+ λ ∧
(

B −
12

q
Mabea ∧ eb

)

+ ζab
(

Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)

−
1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(12)

For the notation used here and the equations of motion obtained by varying the action (12),

see Appendix A.

The dynamical degrees of freedom are the tetrad fields ea, the scalar doublet φA, and the

electromagnetic potential A, while the remaining variables are algebraically determined in terms

of them, as shown in Appendix A. The equation of motion for the field φA reduces to the covariant

Klein-Gordon equation for the scalar field,

(

∇µ∇
µ − m2

)

φA = 0 . (13)

The differential equation of motion for the field A is:

∇µFµν = jν , jµ ≡
1

2

(

∇νφA
✄

B
AφB − φA ✄B

A∇νφB
)

= iq
(

∇φ∗ φ − φ∗∇φ
)

. (14)

Finally, the equation of motion for ea becomes:

Rµν −
1

2
gµνR = 8πl2

p Tµν ,

Tµν ≡ ∇µφA ∇νφA −
1

2
gµν

(

∇ρφA ∇ρφA + m2φA φA
)

−
1

4q

(

FρσFρσgµν + 4FµρFρ
ν
)

.
(15)
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3. The Hamiltonian Analysis

The Hamiltonian analysis of the constrained 3BF action (12) for scalar electrodynamics is

exceedingly complicated to study. A testament to this is the level of complexity of the constrained

2BF formulation of general relativity [12], which is merely one sector in the action (12). Therefore,

in this paper, we will limit ourselves to the topological sector of the theory, namely the unconstrained

3BF theory (9), which consists of the terms in the first row of Equation (12), and is written in full

detail in Equation (10). One should be aware that this restriction changes various properties of the

theory. Namely, the simplicity constraints (everything but the first row in Equation (12)) substantially

modify the dynamics of the theory—they increase the number of local propagating degrees of freedom

of the theory, a property that was known since the original Plebanski model [5]. On the other hand,

the unconstrained 3BF theory (9) is important even in its own right, and the Hamiltonian analysis may

give important insight into the structure of both the unconstrained and the constrained theory.

In what follows, the complete Hamiltonian analysis for the action (9) is presented, see [13] for

an overview and a comprehensive introduction of the Hamiltonian analysis. The Hamiltonian analysis

for a 2BF action is performed in [12,14–16].

Under the standard assumption that the spacetime manifold is globally hyperbolic, M4 = R× Σ3,

the Lagrangian of the action (9) has the form:

L3BF =
∫

Σ3

d3
~x ǫµνρσ

(1

4
Bab

µν Rcd
ρσ gab, cd +

1

4
BµνFρσ +

1

3!
ea

µ G
b

νρσ gab +
1

4!
φAHB

µνρσ gAB

)

. (16)

The canonical momentum π(q) corresponding for the canonical coordinate q from the set of all

variables in the theory, q ∈ {Bab
µν, ωab

µ, Bµν, Aµ, ea
µ, βa

µν, φA, γA
µνρ}, is obtained as a derivative of

the Lagrangian with respect to the appropriate velocity,

π(q) ≡
δL

δ∂0q
,

giving:

π(B)ab
µν = 0 , π(ω)ab

µ = ǫ0µνρBabνρ ,

π(B)µν = 0 , π(A)µ =
1

2
ǫ0µνρBνρ ,

π(e)a
µ = 0 , π(β)a

µν = −ǫ0µνρeaρ ,

π(φ)A = 0 , π(γ)A
µνρ = ǫ0µνρφA .

(17)

Since these momenta cannot be inverted for the time derivatives of the variables, they all give rise

to primary constraints:

P(B)ab
µν ≡ π(B)ab

µν ≈ 0 , P(ω)ab
µ ≡ π(ω)ab

µ − ǫ0µνρBabνρ ≈ 0 ,

P(B)µν ≡ π(B)µν ≈ 0 , P(A)µ ≡ π(A)µ − 1
2 ǫ0µνρBνρ ≈ 0 ,

P(e)a
µ ≡ π(e)a

µ ≈ 0 , P(β)a
µν ≡ π(β)a

µν + ǫ0µνρeaρ ≈ 0 ,

P(φ)A ≡ π(φ)A ≈ 0 , P(γ)A
µνρ ≡ π(γ)A

µνρ − ǫ0µνρφA ≈ 0 .

(18)

Here, the symbol “≈” denotes the so-called “weak” equality, i.e., the equality that holds on

a subspace of the phase space determined by the constraints, while the equality that holds for any

point of the phase space is referred to as the “strong” equality and it is denoted by the symbol “=”.

The expressions “on-shell” and “off-shell” are used for weak and strong equalities, respectively,

and henceforth will be used in this paper.
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The fundamental Poisson brackets are defined as:

{ Bab
µν(x) , π(B)cd

ρσ(y) } = 4δa
[cδb

d]δ
ρ
[µδσ

ν] δ(3)(~x −~y) ,

{ωab
µ(x) , π(ω)cd

ν(y) } = 2δa
[cδb

d]δ
ν

µ δ(3)(~x −~y) ,

{ Bµν(x) , π(B)ρσ(y) } = 2δρ
[µδσ

ν] δ(3)(~x −~y) ,

{ Aµ(x) , π(A)ν(y) } = δν
µ δ(3)(~x −~y) ,

{ ea
µ(x) , π(e)b

ν(y) } = δa
bδν

µ δ(3)(~x −~y) ,

{ βa
µν(x) , π(β)b

ρσ(y) } = 2δa
b δρ

[µδσ
ν] δ(3)(~x −~y) ,

{ φA(x) , π(φ)B(y) } = δA
B δ(3)(~x −~y) ,

{ γA
µνρ(x) , π(γ)B

αβγ(y) } = 3!δA
B δα

[µδβ
νδγ

ρ] δ(3)(~x −~y) .

(19)

Using these relations, one can calculate the algebra between the primary constraints,

{ P(B)ab jk(x) , P(ω)cd
i(y) } = 4ǫ0ijk δa

[cδb
d] δ(3)(~x −~y) ,

{ P(B)jk(x) , P(A)i(y) } = ǫ0ijk δ(3)(~x −~y) ,

{ P(e)ak , P(β)b
ij(y) } = −ǫ0ijk δa

b(x) δ(3)(~x −~y) ,

{ P(φ)A(x) , P(γ)B
ijk(y) } = ǫ0ijk δA

B δ(3)(~x −~y) ,

(20)

while all other Poisson brackets vanish. The canonical on-shell Hamiltonian is defined by

Hc =
∫

Σ3

d3
~x

[

1

4
π(B)ab

µν ∂0Bab
µν +

1

2
π(ω)ab

µ ∂0ωab
µ +

1

2
π(B)µν ∂0Bµν + π(A)µ ∂0 Aµ

+ π(e)a
µ ∂0ea

µ +
1

2
π(β)a

µν ∂0βa
µν + π(φ)A ∂0DA +

1

3!
π(γ)A

µνρ ∂0γA
µνρ

]

− L .

(21)

Rewriting the Hamiltonian (21) such that all the velocities are multiplied by the first class

constraints and therefore in an on-shell quantity they drop out, one obtains:

Hc =−
∫

Σ3

d3
~x ǫ0ijk

[

1

2
Bab0i Rab

jk +
1

2
B0iFjk +

1

6
ea0 G

a
ijk + βa

0i∇jeak

+
1

2
ωab

0

(

∇iBab jk − e[a|i β|b]jk

)

+
1

2
A0

(

∂iBjk +
1

3
φA ✄B

A γB
ijk

)

+
1

2
γA

0ij∇kφA

]

.

(22)

This expression does not depend on any of the canonical momenta and it contains only the fields

and their spatial derivatives. By adding a Lagrange multiplier λ for each of the primary constraints we

can build the off-shell Hamiltonian, which is given by:

HT = Hc+
∫

Σ3

d3
~x

[

1

4
λ(B)ab

µνP(B)ab
µν +

1

2
λ(ω)ab

µP(ω)ab
µ +

1

2
λ(B)µνP(B)µν + λ(A)µP(A)µ

+λ(e)a
µP(e)a

µ +
1

2
λ(β)a

µνP(β)a
µν + λ(φ)AP(φ)A +

1

3!
λ(γ)A

µνρP(γ)A
µνρ

]

.
(23)

Since the primary constraints must be preserved in time, one must impose the

following requirement:

Ṗ ≡ { P , HT } ≈ 0 , (24)
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for each primary constraint P. By using the consistency condition (24) for the primary constraints

P(B)ab
0i, P(ω)ab

0, P(B)0i, P(A)0, P(e)a
0, P(β)a

0i, and P(γ)A
0ij,

Ṗ(B)ab
0i ≈ 0 , Ṗ(ω)ab

0 ≈ 0 , Ṗ(B)0i ≈ 0 , Ṗ(A)0 ≈ 0 ,

Ṗ(e)a
0 ≈ 0 , Ṗ(β)a

0i ≈ 0 , Ṗ(γ)A
0ij ≈ 0 ,

(25)

one obtains the secondary constraints S ,

S(R)ab
i ≡ ǫ0ijkRab jk ≈ 0 , S(∇B)ab ≡ ǫ0ijk

(

∇iBab jk − e[a|i β|b] jk

)

≈ 0 ,

S(F)i ≡ 1
2 ǫ0ijkFjk ≈ 0 , S(∇B) ≡ 1

2 ǫ0ijk
(

∂iBjk +
1
3 φA ✄B

A γB
ijk

)

≈ 0 ,

S(G)a ≡ 1
6 ǫ0ijkGaijk ≈ 0 , S(∇e)a

i ≡ ǫ0ijk∇jeak ≈ 0 ,

S(∇φ)A
ij ≡ ǫ0ijk∇kφA ≈ 0 ,

(26)

while in the case of P(B)ab
jk, P(ω)ab

k, P(B)jk, P(A)k, P(e)a
k, P(β)a

jk, P(φ)A and P(γ)A
ijk the

consistency conditions

Ṗ(B)ab
jk ≈ 0 , Ṗ(ω)ab

k ≈ 0 , Ṗ(B)jk ≈ 0 , Ṗ(A)k ≈ 0 ,

Ṗ(e)a
k ≈ 0 , Ṗ(β)a

jk ≈ 0 , Ṗ(φ)A ≈ 0 , Ṗ(γ)A
ijk ≈ 0 ,

(27)

determine the following Lagrange multipliers:

λ(ω)ab
i ≈ ∇i ωab 0 , λ(B)ij ≈ 2∂[i| B0|j] + γA

0ij
✄B

A φB ,

λ(A)i ≈ ∂i A0 , λ(β)a
ij ≈ 2∇[i| βa

0|j] − ωab
0 βb ij ,

λ(φ)A ≈ A0
✄

A
B φB , λ(e)a

i ≈ ∇i ea
0 − ωa

b 0 eb
i ,

λ(B)ab
ij ≈ 2∇[i|Bab

0|j] + e[a| 0β|b]
ij − 2e[a|

[i|β|b]
0|j] + 2ω[a|

cB|b]
c ij ,

λ(γ)A
ijk ≈ −A0

✄ A
B γB

ijk +∇iγA
0jk −∇jγA

0ik +∇kγA
0ij .

(28)

Note that the consistency conditions leave the Lagrange multipliers

λ(B)ab
0i , λ(ω)ab

0 , λ(B)0i , λ(A)0 , λ(e)a
0 , λ(β)a

0i , λ(γ)A
0ij (29)

undetermined. The consistency conditions of the secondary constraints do not produce new constraints,

since one can show that

Ṡ(R)abi = {S(R)abi , HT} = ω[a|
c0 S(R)c|b]i ,

Ṡ(∇B) = {S(∇B), HT} = −✄B
A γB

0ij S(∇φ)A
ij ,

Ṡ(G)a = {S(G)a , HT} = βb0k S(R)abk − ωab
0 S(G)b ,

Ṡ(∇e)a
i = {S(∇e)a

i , HT} = eb
0 S(R)ab

i − ωa
b

0 S(∇e)b
i ,

Ṡ(∇φ)A
ij = {S(∇φ)A

ij , HT} = A0 ✄ A
BS(∇φ)B

ij ,

Ṡ(F)i = {S(F)i , HT} = 0 ,

Ṡ(∇B)ab = {S(∇B)ab , HT} = S(R)[a|c
k Bc

|b]0k + ω[a|
c
0S(∇B)|b]c

−β[a|0k S(∇e)|b]
k + e[a|0 S(G)|b] .

(30)
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Then, the total Hamiltonian can be written as

HT =
∫

Σ3

d3
~x

[

1

2
λ(B)ab

0i Φ(B)ab
i +

1

2
λ(ω)ab

0 Φ(ω)ab + λ(B)0i Φ(B)i + λ(A)0 Φ(A)

+ λ(e)a
0 Φ(e)a + λ(β)a

0i Φ(β)a
i +

1

2
λ(γ)A

0ijΦ(γ)A
ij

−
1

2
Bab0i Φ(R)abi −

1

2
ωab0 Φ(∇B)ab − B0i Φ(F)i − A0 Φ(∇B)

− ea0 Φ(G)a − βa0i Φ(∇e)ai −
1

2
γA0ij Φ(∇φ)Aij

]

,

(31)

where

Φ(B)ab
i = P(B)ab

0i , Φ(γ)A
ij = P(γ)A

0ij ,

Φ(ω)ab = P(ω)ab
0 , Φ(F)i = S(F)i − ∂jP(B)ij ,

Φ(B)i = P(B)0i , Φ(R)abi = S(R)abi −∇jP(B)ab ij ,

Φ(A) = P(A)0 , Φ(G)a = S(G)a +∇iP(e)
a i − 1

4 βb ij P(B)ab ij ,

Φ(e)a = P(e)a
0 , Φ(∇e)a i = S(∇e)a i −∇jP(β)a ij + 1

2 eb j P(B)ab ij ,

Φ(β)a
i = P(β)a

0i , Φ(∇φ)A ij = S(∇φ)A ij +∇kP(γ)A ijk −✄B
A φB P(B)ij ,

Φ(∇B) = S(∇B) + ∂iP(A)i +
1

3!
γA

ijk ✄A
B P(γ)B

ijk − φA ✄B
A P(φ)B ,

Φ(∇B)ab = S(∇B)ab +∇iP(ω)abi + B[a|
c ij P(B)c|b] ij − 2e[a| i P(e)|b] i − β[a|

ij P(β)|b] ij ,

(32)

are the first-class constraints, while

χ(B)ab
jk = P(B)ab

jk , χ(B)jk = P(B)jk , χ(e)a
i = P(e)a

i , χ(φ)A = P(φ)A ,

χ(ω)ab
i = P(ω)ab

i , χ(A)i = P(A)i , χ(β)a
ij = P(β)a

ij , χ(γ)A
ijk = P(γ)A

ijk ,
(33)

are the second-class constraints.

The PB algebra of the first-class constraints is given by:

{Φ(G)a(x) , Φ(∇e)b
i(y) } = −Φ(R)a

b
i(x) δ(3)(~x −~y) ,

{Φ(G)a(x) , Φ(∇B)bc(y) } = 2δa
[b| Φ(G)|c](x) δ(3)(~x −~y) ,

{Φ(∇e)a
i(x) , Φ(∇B)bc(y) } = 2δa

[b|Φ(∇e)|c]i(x) δ(3)(~x −~y) ,

{Φ(R)abi(x) , Φ(∇B)cd(y) } = −4δ[a| [c Φ(R)|b]d]
i(x) δ(3)(~x −~y) ,

{Φ(∇B)ab(x) , Φ(∇B)cd(y) } = −4δ[a| [c| Φ(∇B)|b] |d](x) δ(3)(~x −~y) ,

{Φ(∇B)(x) , Φ(∇φ)A
ij(y) } = −2 ✄

B
A Φ(∇φ)B

ij(x)δ(3)(~x −~y) .

(34)
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The PB algebra between the first and the second-class constraints is given by:

{Φ(R)abi(x) , χ(ω)cd
j(y) } = 4 δ[a| [c| χ(B)|b] |d]

ij(x)δ(3)(~x −~y) ,

{Φ(G)a(x) , χ(ω)cd
i(y) } = 2 δa

[c| χ(e)|d]
i(x)δ(3)(~x −~y) ,

{Φ(G)a(x) , χ(β)c
jk(y) } = −

1

2
χ(B)a

c
jk(x) δ(3)(~x −~y) ,

{Φ(∇e)ai(x) , χ(ω)cd
j(y) } = −2 δa

[c| χ(β)|d]
ij(x) δ(3)(~x −~y) ,

{Φ(∇e)ai(x) , χ(e)b
j(y) } =

1

2
χ(B)a

b
ij δ(3)(~x −~y) ,

{Φ(∇B)ab(x) , χ(ω)cd
i(y) } = 4 δ[a| [c| χ(ω)|d]

|b] i δ(3)(~x −~y) ,

{Φ(∇B)(x) , χ(A)i(y) } = 2 χ(A)i δ(3)(~x −~y) ,

{Φ(∇B)ab(x) , χ(β)c
jk(y) } = −2δ[a|c χ(β)|b]jk δ(3)(x − y) ,

{Φ(∇B)(x) , χ(γ)A
ijk(y) } = ✄A

B χ(γ)B
ijk(x) δ(3)(~x −~y) ,

{Φ(∇B)ab(x) , χ(B)cd
jk(y) } = 4 δ[a| [c χ(B)d]

|b]jk δ(3)(~x −~y) ,

{Φ(∇B)ab(x) , χ(e)a
i(y) } = −2δ[a|c χ(e)|b]i δ(3)(~x −~y) ,

{Φ(∇B)(x) , χ(φ)A(y) } = −✄
B

A χ(φ)B(x) δ(3)(~x −~y) ,

{Φ(∇φ)Aij(x) , χ(A)k(y) } = −✄B
A χ(γ)Bijk(x) δ(3)(~x −~y) ,

{Φ(∇φ)Aij(x) , χ(φ)B(y) } = −✄B
A χ(B)ij(x) δ(3)(~x −~y) .

(35)

The PB algebra between the second-class constraints has already been calculated, and is given

in Equations (20).

4. The Bianchi Identities

In order to calculate the number of degrees of freedom in the theory, one needs to make use of the

Bianchi identities (BI), as well as additional, generalized Bianchi identities (GBI) that are an analogue of

the ordinary BI for the additional fields present in the theory.

One uses BI associated with the 1-form fields ωab and ea, as well as the GBI for the 1-form A.

Namely, the corresponding 2-form curvatures

Rab = dωab + ωa
c ∧ ωcb , Ta = dea + ωa

b ∧ eb , F = dA , (36)

satisfy the following identities:

ǫλµνρ ∇µRab
νρ = 0 , (37)

ǫλµνρ
(

∇µTa
νρ − Rab

µν ebρ

)

= 0 , (38)

ǫλµνρ ∇µFνρ = 0 . (39)

Choosing the free index to be time coordinate λ = 0, these indentities, as the time-independent

parts of the Bianchi identities, become the off-shell restrictions in the sense of the Hamiltonian analysis.

On the other hand, choosing the free index to be a spatial coordinate, one obtains time-dependent

pieces of the Bianchi identities, which do not enforce any restrictions, but can instead be derived as

a consequence of the Hamiltonian equations of motion.
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There are also GBI associated with the 2-form fields Bab, B and βa. The corresponding 3-form

curvatures are given by

Sab = dBab + 2ω[a|
c ∧ Bc |b] , P = dB , Ga = dβa + ωa

b ∧ βb . (40)

Differentiating these expressions, one obtains the following GBI:

ǫλµνρ

(

1

3
∇λ Sab

µνρ − R[a| c
λµ Bc

|b]
νρ

)

= 0 , (41)

ǫλµνρ∂λ Pµνρ = 0 , (42)

ǫλµνρ

(

2

3
∇λ Ga

µνρ − Rab
λµ βb νρ

)

= 0 . (43)

However, in four-dimensional spacetime, these identities will be single-component equations,

with no free spacetime indices, and therefore necessarily feature time derivatives of the fields.

Thus, they do not impose any off-shell restictions on the canonical variables.

Finally, there is also GBI associated with the 0-form φ. The corresponding 1-form curvature is:

QA = dφA +✄B
A A ∧ φB , (44)

so that the GBI associated with this curvature is:

ǫλµνρ

(

∇νQA
ρ −

1

2
✄B

A FνρφB

)

= 0. (45)

This GBI consists of 12 component equations, corresponding to six possible choices of the

free antisymmetrized spacetime indices λµ, and the 2 possible choices of the free group index A.

However, not all of these 12 identities are independent. This can be seen by taking the derivative of the

Equation (45) and obtaining eight identities of the form

✄B
A ǫλµνρ ∂µ Fνρ φB = 0 , (46)

which are automatically satisfied because of the GBI (39). One concludes there are only four

independent identities (45). Now, fixing the value λ = 0, one obtains the time-independent components

of both Equations (45) and (46),

ǫ0ijk

(

∇jQ
A

k −
1

2
✄B

A FjkφB

)

= 0 , (47)

and

✄B
A ǫ0ijk ∂i Fjk φB = 0 . (48)

Of these, there are six components in Equation (47), but, because of the two components of

Equation (48), there are overall only four independent GBI relevant for the Hamiltonian analysis.

5. Number of Degrees of Freedom

Let us now show that the structure of the constraints implies that there are no local degrees of

freedom (DoF) in a 3BF theory. In the general case, if there are N initial fields in the theory and there

are F independent first-class constraints per space point and S independent second-class constraints

per space point, then the number of local DoF, i.e., the number of independent field components,

is given by

n = N − F −
S

2
. (49)
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Equation (49) is a consequence of the fact that S second-class constraints are equivalent to

vanishing of S/2 canonical coordinates and S/2 of their momenta. The F first-class constraints are

equivalent to vanishing of F canonical coordinates, and since the first-class constraints generate

the gauge symmetries, we can impose F gauge-fixing conditions for the corresponding F canonical

momenta. Consequently, there are 2N − 2F − S independent canonical coordinates and momenta and

therefore 2n = 2N − 2F − S, giving rise to Equation (49).

In our case, N can be determined from the Table 1, giving rise to a total of N = 120 canonical

coordinates. Similarly, the number of independent components for the second class constraints is

determined by the Table 2, so that S = 70.

Table 1. The number of components for all fields present in the theory.

ωab
µ Aµ βa

µν γA
µνρ Bab

µν Bµν ea
µ φA

24 4 24 8 36 6 16 2

Table 2. The number of components for the second class constraints present in the theory.

χ(B)ab
jk χ(B)jk χ(e)a

i χ(φ)A χ(ω)ab
i χ(A)i χ(β)a

ij χ(γ)A
ijk

18 3 12 2 18 3 12 2

The first-class constraints are not all independent because of BI and GBI. To see that, take the

derivative of Φ(R)abi to obtain

∇iΦ(R)abi = ε0ijk∇iR
ab

jk +
1

2
Rc[a|

ijP(B)c
|b]ij . (50)

The first term on the right-hand side is zero off-shell because ǫijk ∇iR
ab

jk = 0, which is a λ = 0

component of the BI (37). The second term on the right-hand side is also zero off-shell, since it is

a product of two constraints,

Rc[a|
ij P(B)c

|b]ij ≡
1

2
ǫ0ijkS(R)c[a|k P(B)c

|b]ij = 0 . (51)

Therefore, we have the off-shell identity

∇iΦ(R)abi = 0 , (52)

which means that six components of Φ(R)abi are not independent of the others. In an analogous

fashion, taking the derivative of Φ(F)i, one obtains

∂iΦ(F)i = ε0ijk ∂iFjk +
1

2
Fij P(B)ij . (53)

The first term on the right-hand side is zero off-shell because ǫijk ∂iFjk = 0, which is a λ = 0

component of the GBI (37). The second term on the right-hand side is also zero off-shell, since it is a

product of two constraints,

Fij P(B)ij ≡
1

2
ǫ0ijk S(F)k P(B)ij = 0 . (54)

Therefore, we have the off-shell identity

∂iΦ(F)i = 0 , (55)
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which means that one component of Φ(F)i is not independent of the others. Similarly, one can

demonstrate that

∇iΦ(∇e)a
i −

1

2
Φ(R)ab

i eb
i +

1

4
ǫ0ijkS(R)abk P(β)b

ij =
1

2
ǫ0ijk

(

∇iTajk − Rab ij eb
k

)

. (56)

The right-hand side of the Equation (56) is the λ = 0 component of the BI (38), so that Equation (56)

gives the relation:

∇iΦ(∇e)a
i −

1

2
Φ(R)ab

i eb
i = 0 , (57)

where we have omitted the term that is the product of two constraints. This relation means that four

components of the constraints Φ(∇e)a
i and Φ(R)ab

i can be expressed in terms of the rest. Finally,

one can also demonstrate that

∇iΦ(∇φ)A
ij −

1

2
ǫ0ikl ✄A S(F)l χ(γ)B

ijk +✄
B

A φB Φ(F)j

+
1

2
ǫ0ilm ✄

B
A P(B)ij S(∇φ)B

lm = ǫ0ijk

(

∇iQAk +
1

2
✄

B
A Fik φB

)

,
(58)

which gives

∇iΦ(∇φ)A
ij +

1

2
✄

B
A φB Φ(F)j = 0 , (59)

for λ = 0 component of the GBI (45), where we have again used that the product of two contraints

is zero off-shell. This relation suggests that six components of two first-class constraints, Φ(∇φ)A
ij

and Φ(F)j, are not independent of the others. However, in the previous section, we have discussed

that only four of these six identities are mutually independent, which means that we have only

four independent identities (59). A rigorous proof of this statement entails the evaluation of the

corresponding Wronskian, and is left for future work.

Taking into account all of the above indentites (52), (55), (57), and (59), we can finally evaluate

the total number of independent first-class constraints. From the Table 3, one can see that the total

number of components of the first-class constraints is given by F∗ = 100. However, the number

of independent components of the first-class constraints is F = 85, obtained by subtracting the six

relations (52), one relation (55), four relations (57) and four relations (59).

Table 3. The number of components for the first class constraints present in the theory. The identities (52),

(55), (57), and (59) reduce the number of components which are independent. This reduction is explicitly

denoted in the table.

Φ(B)ab
i

Φ(B)i
Φ(e)a Φ(ω)ab Φ(A) Φ(β)a

i
Φ(γ)A

ij
Φ(R)ab

i
Φ(F)i

Φ(G)a Φ(∇e)a
i

Φ(∇B)ab Φ(∇B) Φ(∇φ)A
ij

18 3 4 6 1 12 6 18 − 6 3 − 1 4 12 − 4 6 1 6 − 4

Therefore, substituting all the obtained results into Equation (49), one gets

n = 120 − 85 −
70

2
= 0, (60)

which means that there are no propagating DoF in a 3BF theory described by the action (10).

6. Generator of the Gauge Symmetry

Based on the results of the Hamiltonian analysis of the action (10), it can also be interesting to

calculate the generator of the complete gauge symmetry of the action. The gauge generator of the theory

is obtained by using the Castellani’s procedure (see Chapter V in [13] for details of the procedure),

and one gets the following result (see Appendix B for details of the calculation):
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G =
∫

Σ3

d3
~x

(

1

2
(∇0ǫab

i)Φ(B)ab
i −

1

2
ǫab

iΦ(R)ab
i +

1

2
(∇0ǫab)Φ(ω)ab −

1

2
ǫabΦ(∇B)ab

+ (∂0ǫi)Φ(B)i − ǫiΦ(F)i + (∂0ǫ)Φ(A)− ǫΦ(∇B)

+ (∇0ǫa)Φ(e)a − ǫaΦ(G)a + (∇0ǫa
i)Φ(β)a

i − ǫa
iΦ(∇e)a

i

+
1

2
(∇0ǫA

ij)Φ(γ)A
ij −

1

2
ǫA

ijΦ(∇φ)A
ij

+ ǫab
(

β[a|0iP(β)|b]
i + e[a|0P(e)|b] + B[a|c0iP(B)c

|b]
i
)

− ǫ γA0ij ✄B
A P(γ)Bij

+ ǫaβb0iP(B)abi + ǫa
i eb0P(B)a

bi

)

.

(61)

Here, ǫab
i, ǫab, ǫi, ǫ, ǫa, ǫa

i and ǫA
ij are the independent parameters of the gauge transformations.

Furthermore, one can employ the gauge generator to calculate the form-variations for all canonical

coordinates and their corresponding momenta, by computing the Poisson bracket of the chosen variable

A(t,~x) and the generator (61):

δ0 A(t,~x) = {A(t,~x) , G} . (62)

The results are given as follows:

δ0ωab
0 = ∇0ǫab , δ0π(ω)ab

0 = −2ǫ[a|
c
iπ(B)c|b]

0i − 2ǫ[a|
cπ(ω)c|b]

0 ,

+2ǫ[a|π(e)|b]
0 + 2ǫ[a|iπ(β)|b]

0i ,

δ0ωab
i = ∇iǫ

ab , δ0π(ω)ab
i = −2ǫ[a|

c
j π(B)c|b]

ij − 2ǫ[a|
c
i π(ω)|b]c

i

+2ǫ[a| π(e)|b]i + 2ǫ[a| jπ(β)|b]
ij

+2ǫ0ijk ∇[j|ǫab |k] + ǫ0ijkǫ[a|β|b] jk ,

δ0Bab
0i = ∇0ǫab

i + ǫ[a| ie
|b]

0 δ0π(B)ab
0i = 2ǫ[a|c π(B)|b]

ci ,

+2ǫ[a|cB|b]
c0i + ǫ[a|β|b]

0i ,

δ0Bab
ij = 2∇[i|ǫ

ab
|j] + 2ǫ[a|cB|b]

cij δ0π(B)ab
ij = 2ǫ[a|c π(B)|b]

cij ,

+2ǫ[a| [ie
|b]

j] + ǫ[a|β|b]
ij ,

δ0 A0 = ∂0ǫ , δ0π(A)0 = − 1
2 ǫA

ij ✄
B

A π(γ)B
0ij ,

δ0 Ai = ∂iǫ , δ0π(A)i = ǫ0ijk∂jǫk −
1
2 ǫA

jk ✄
B

A π(γ)B
ijk ,

δ0B0i = ∂0ǫi , δ0π(B)0i = 0 ,

δ0Bij = 2 ∂[i|ǫ|j] + ǫA
ij ✄

B
A φB , δ0π(B)ij = −ǫ0ijk∂kǫ ,

δ0βa
0i = ∇0ǫa

i − ǫabβb0i , δ0π(β)a
0i = −ǫabπ(β)b0i + 1

2 ǫbπ(B)ab
0i ,

δ0βa
ij = 2∇[i|ǫ

a
|j] − ǫab βbij , δ0π(β)a

ij = −ǫab π(β)bij + 1
2 ǫb π(B)ab

ij

−ǫ0ijk ∇kǫa ,

δ0ea
0 = ∇0ǫa − ǫab eb0 , δ0π(e)a

0 = −ǫab π(e)b0 + 1
2 ǫb

i π(B)ab
0i ,

δ0ea
i = ∇iǫ

a − ǫab ebi , δ0π(e)a
i = −ǫab π(e)bi + ǫ0ijk

(

∇[j|ǫa |k] + ǫabβbjk
)

+ 1
2 ǫb

j π(B)ab
ij ,
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δ0γA
0ij = ∇0ǫA

ij − ǫ γB
0ij ✄

A
B , δ0π(γ)A

0ij = ǫ ✄
B

A π(γ)B
0ij ,

δ0γA
ijk = − ǫ γB

ijk ✄B
A +∇iǫ

A
jk δ0π(γ)A

ijk = ǫ ✄A
B
(

π(γ)B
ijk + ǫ0ijk φB

)

,

−∇jǫ
A

ik +∇kǫA
ij ,

δ0φA = ǫ φB
✄

A
B , δ0π(φ)A = −ǫ ✄

B
A π(φ)B +

1

3!
ǫ ǫ0ijk

✄
B

A γBijk

−
1

2
✄A B ǫB

ij π(B)ij −
1

2
ǫ0ijk ∇iǫ

A
jk ,

(63)

These transformations are an extension of the form-variations in the case of the Poincaré 2-group

obtained in [17].

7. Conclusions

Let us summarize the results of the paper. In Section 2, we have demonstated in detail how to use

the idea of a categorical ladder to introduce the 3-group structure corresponding to the theory of scalar

electrodynamics coupled to Einstein–Cartan gravity. We have introduced the topological 3BF action

corresponding to this choice of a 3-group, as well as the constrained 3BF action which gives rise to

the standard equations of motion for the scalar electrodynamics. In order to perform the canonical

quantization of this theory, the complete Hamiltonian analysis of the full theory with constraints has to

be performed, but the important step towards this goal is the Hamiltonian analysis of the topological

3BF action. This has been done in Section 3. Here, the first-class and second-class constraints of

the theory, as well as their Poisson brackets, have been obtained. In Section 4, we have discussed the

Bianchi identities and also the generalized Bianchi identities, since they enforce restrictions in the

sense of Hamiltonian analysis, and reduce the number of independent first-class constraints present

in the theory. With this background material in hand, in Section 5, the counting of the dynamical

degrees of freedom present in the theory has been performed and it was established that the considered

3BF action is a topological theory, i.e., the diffeomorphism invariant theory without any propagating

degrees of freedom. In Section 6, we have constructed the generator of the gauge symmetries for

the theory, and we found the form-variations for all the variables and their canonical momenta.

The results obtained in this paper represent the straightforward generalization of Hamiltonian

analysis done in [15] for the Poincaré 2-group, and a first example of the Hamiltonian analysis of

a 3BF action. The fact that the theory was found to be topological is nontrivial, since it relies on the

existence of the generalized Bianchi identities, which have been identified for the first time. In addition

to that, it was demonstrated that the algebra of constraint closes, which is an important consistency

check for the theory. There is another very interesting aspect of the constraint algebra. Namely,

one can recognize, looking at the structure of Equations (34) that the subalgebra generated by the

first-class constraint Φ(∇φ)A
ij is in fact an ideal of the constraint algebra because the Poisson bracket

between this constraint and all other constraints is again proportional to that constraint. It is curious

that precisely the constraint Φ(∇φ)A
ij is the only one related to the Lie group L from the 3-group,

according to its index structure, and also that the structure constant of the ideal is determined by

the action ✄ of the group G on L. Let us also note that the action ✄ appears as well in the structure

constants of the algebra between the first-class and second-class constraints.

The results of this work open several avenues for future research. From the point of view of

mathematics, the relationship between the algebraic structures mentioned above should be understood

in more detail. More generally, one should understand the correspondence between the gauge

group generated by the generator (61) and the 3-group structure used to define the theory. This is

not viable in the special case of the 3-group discussed in this work, but instead needs to be done

in the case of a generic 3-group, where homomorphisms δ and ∂ and the Peiffer lifting {_ , _} are

nontrivial. From the point of view of physics, the obtained results represent the fundamental building

blocks for the construction of the quantum theory of scalar electrodynamics coupled to gravity, as

well as a convenient model to discuss before proceeding to the Hamiltonian analysis and canonical

quantization of the full Standard Model coupled to gravity, formulated as a 3BF action with suitable
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constraints [8]. Both the Hamiltonian analysis of constrained 3BF models and the corresponding

canonical quantization programme need to be further developed in order to achieve these goals.

Our work is a first step in this direction.

Finally, let us note in the end that the above list of topics for future research is by no means

complete, and there are potentially many other interesting topics that can be studied in this context.
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Appendix A. The Equations of Motion for the Scalar Electrodynamics

The action of scalar electrodynamics coupled to Einstein–Cartan gravity is given in the form (12):

S =
∫

M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA ∇γA

− λab ∧
(

Bab −
1

16πl2
p

εabcdec ∧ ed

)

+ λA ∧
(

γA −
1

2
HabcAea ∧ eb ∧ ec

)

+ ΛabA ∧
(

HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)

+ λ ∧
(

B −
12

q
Mabea ∧ eb

)

+ ζab
(

Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)

−
1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(A1)

Varying the total action (12) with respect to the variables Bab, B, ωab, βa, λab, ΛabA, γA, λA, HabcA,

ζab, Mab, λ, A, φA and ea, one obtains the equations of motion:

Rab − λab = 0 , (A2)

F + λ = 0 , (A3)

∇Bab − e[a| ∧ β|b] = 0 , (A4)

∇ea = 0 , (A5)

Bab −
1

16πl2
p

εabcdec ∧ ed = 0 , (A6)
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HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb = 0 , (A7)

∇φA − λA = 0 , (A8)

γA −
1

2
HabcAea ∧ eb ∧ ec = 0 , (A9)

−
1

2
λA ∧ ea ∧ eb ∧ ec + εcde f ΛabA ∧ ed ∧ ee ∧ e f = 0 , (A10)

Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb = 0 , (A11)

−
12

q
λ ∧ ea ∧ eb + ζabεcde f ec ∧ ed ∧ ee ∧ e f = 0 , (A12)

B −
12

g
Mabea ∧ eb = 0 , (A13)

− dB + d(ζabea ∧ eb)− φA ✄B
AγB − ΛabA

✄
B

A φB ∧ ea ∧ eb = 0 , (A14)

∇γA −∇(Λab
A ∧ ea ∧ eb)−

1

4!
m2 φAεabcdea ∧ eb ∧ ec ∧ ed = 0 , (A15)

∇βa +
1

8πl2
p

εabcdλbc ∧ ed +
3

2
HabcAλA ∧ eb ∧ ec + 3Hde f AεabcdΛe f A ∧ eb ∧ ec

− 2ΛabA ∧∇φA ∧ eb − 2
1

4!
m2φA φAεabcdeb ∧ ec ∧ ed

−
24

q
Mabλ ∧ eb + 4ζe f Me f εabcdeb ∧ ec ∧ ed − 2ζabF ∧ eb = 0 .

(A16)

The dynamical degrees of freedom are the tetrad fields ea, the scalar field φA, and the

electromagnetic potential A, while the remaining variables are algebraically determined in terms

of them. Specifically, Equations (A2)–(A13) give

λabµν = Rabµν , ωab
µ = △ab

µ , γA
µνρ = −

1

2e
εµνρσ ∇

σφA ,

ΛabA
µ =

1

12e
gµλελνρσ∇νφA ea

ρeb
σ , βa

µν = 0 , Babµν =
1

8πl2
p

εabcdec
µed

ν ,

HabcA =
1

6e
εµνρσ ∇µφA ea

νeb
ρec

σ , λA
µ = ∇µφA ,

λµν = Fµν , Bµν = −
1

2eq
εµνρσFρσ ,

Mab = −
1

4e
εµνρσFµν ea

ρeb
σ , ζab =

1

4eq
εµνρσFµν ea

ρeb
σ .

(A17)

Note that from the Equations (A4)–(A6) it follows that βa = 0, as in the pure gravity case. The

equation of motion (A15) reduces to the covariant Klein–Gordon equation for the scalar field coupled

to the electromagnetic potential A,

(

∇µ∇
µ − m2

)

φA = 0 . (A18)

From Equation (A14), we obtain the differential equation of motion for the field A:

∇µFµν = jν , jµ ≡
1

2

(

∇νφA
✄

B
AφB − φA ✄B

A∇νφB
)

= iq
(

∇φ∗ φ − φ∗∇φ
)

. (A19)
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Finally, the equation of motion (A16) for ea becomes:

Rµν −
1

2
gµνR = 8πl2

p Tµν ,

Tµν ≡ ∇µφA ∇νφA −
1

2
gµν

(

∇ρφA ∇ρφA + m2φA φA
)

−
1

4q

(

FρσFρσgµν + 4FµρFρ
ν
)

.
(A20)

The system of Equations (A2)–(A16) is equivalent to the system of Equations (A17)–(A20).

Appendix B. The Calculation of the Gauge Generator

The gauge generator of the theory is obtained by the standard Castellani procedure (see [13] for

an introduction). One starts from the generic form for the generator,

G =
∫

Σ3

∂3
~x
(1

2
(∂0ǫab

i)G1ab
i +

1

2
ǫab

iG0ab
i +

1

2
(∂0ǫab)G1ab +

1

2
ǫabG0ab

+ (∂0ǫi)G1
i + ǫiG0

i + (∂0ǫ)G1 + ǫG0

+ (∂0ǫa)G1a + ǫaG0a + (∂0ǫa
i)G1a

i + ǫa
iG0a

i

+
1

2
(∂0ǫA

ij)G1 A
ij +

1

2
ǫA

ijG0 A
ij
)

,

(A21)

where the generators G0 and G1 are obtained by the standard prescription [13]:

G1 = CPFC ,

G0 + { G1 , HT } = CPFC ,

{ G0 , HT } = CPFC ,

(A22)

where CPFC is a primary first-class constraint. For example, one choses G1ab
i = Φ(B)ab

i. From

the conditions

G0ab
i + {Φ(B)ab

i , HT } = G0ab
i + Φ(R)ab

i = CPFC ,

{ G0ab
i , HT } = CPFC

∗ = {CPFC − Φ(R)ab
i , HT } ,

(A23)

we solve for G0ab
i by determining CPFC from the second equation. Evaluating one PB, one can reexpress

the second equation in the form:

{CPFC , HT } = CPFC
∗ + 2ω[a|

d
0Φ(R)|b]d

i = { 2ω[a|
d

0P(B)|b]d
i , HT } . (A24)

From the second equality, we recognize that

CPFC = 2ω[a|
d

0P(B)|b]d
i , (A25)

which can then be substituted into the first condition above, giving

G0ab
i = 2ω[a|

d
0Φ(B)|b]d

i − Φ(R)ab
i . (A26)

One thus obtains

1

2
(∂0ǫab

i)(G1)ab
i +

1

2
ǫab

iG0ab
i =

1

2
∇0ǫab

iΦ(B)ab
i −

1

2
ǫab

iΦ(R)ab
i .

The other G0 and G1 terms are obtained in a similar way, and the generator (61) is derived.
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Appendix C. Introduction to 3-Groups

The notion of a 3-group is usually introduced in the framework of higher category theory [6].

In category theory, every group can be understood as a category which has only one element,

and morphisms which are all invertible. The group elements are then individual morphisms that

map the category element to itself, while the group operation is the categorical composition of the

morphisms. In such a case, the axioms of the category guarantee the validity of all axioms of a group.

This kind of construction can be generalized to 2-groups, 3-groups and, in general, n-groups. Namely,

a 2-group is by definition a 2-category which has only one element, and whose morphisms and

2-morhisms (i.e., morphisms between morphisms) are invertible. Similarly, a 3-group is by definition

a 3-category which has only one element, while its morphisms, 2-morphisms, and 3-morphisms

are invertible.

The above definition of a 3-group is very abstract, and while theoretically very important, in itself

not very useful for practical calculations and applications in physics. Fortunately, there is a theorem

of equivalence between 3-groups and the so-called 2-crossed modules, which are algebraic structures

with more familiar properties [9,10]. For the applications in physics, attention focuses on the so-called

strict Lie 3-groups, and their corresponding differential (Lie algebra) structure, which corresponds to

the differential Lie 2-crossed module. Let us therefore give a brief overview of the latter.

A differential Lie 2-crossed module (l
δ
→ h

∂
→ g, ✄, {_ , _}) is given by three Lie algebras g, h and l,

maps δ : l → h and ∂: h → g, together with a map called the Peiffer lifting,

{_ , _} : h× h → l , (A27)

and an action ✄ of the algebra g on all three algebras.

Let us introduce the bases in the three algebras, τα ∈ g, ta ∈ h and TA ∈ l, and structure constants

in those bases, as follows:

[τα , τβ] = fαβ
γτγ , [ta , tb] = fab

ctc , [TA TB] = fAB
CTC . (A28)

Now, the maps ∂ and δ can be written as

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta , (A29)

and the action of the algebra g on g, h and l as:

τα ✄ τβ = ✄αβ
γ τγ , τα ✄ ta = ✄αa

b tb , τα ✄ TA = ✄αA
B TB . (A30)

Finally, the Peiffer lifting can be encoded into coefficients Xab
A as:

{ta, tb} = Xab
A TA . (A31)

A differential Lie 2-crossed module has the following properties (we write all equations in the

abstract and their corresponding component forms, side by side):

1. The action of the algebra g on itself is via the adjoint representation, i.e., ∀g, g1 ∈ g:

g ✄ g1 = [g, g1] , ✄αβ
γ = fαβ

γ . (A32)

2. The action of the algebra g on algebras h and l is g-equivariant, i.e., ∀g ∈ g, h ∈ h, l ∈ l:

∂(g ✄ h) = g ✄ ∂(h) , ∂a
β fαβ

γ = ✄αa
b ∂b

γ , (A33)

δ(g ✄ l) = g ✄ δ(l) , δA
a
✄αa

b = ✄αA
B δB

b . (A34)
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3. The Peiffer lifting is a g-equivariant map, i.e., for every g ∈ g and h1, h2 ∈ h:

g ✄ {h1, h2} = {g ✄ h1, h2}+ {h1, g ✄ h2} , Xab
B
✄αB

A = ✄αa
c Xcb

A +✄αb
c Xac

A . (A35)

4. For every h1, h2 ∈ h, the following identity holds:

δ({h1, h2}) = [h1 , h2]− ∂(h1)✄ h2 , Xab
A δA

c = fab
c − ∂a

α
✄αb

c . (A36)

5. For all l1, l2 ∈ l, the following identity holds:

[l1, l2] = {δ(l1), δ(l2)} , fAB
C = δA

a δB
b Xab

C . (A37)

6. For all h1, h2, h3 ∈ h:

{[h1, h2], h3} = ∂(h1)✄ {h2, h3}+ {h1, [h2, h3]} − ∂(h2)✄ {h1, h3} − {h2, [h1, h3]} ,

fab
d Xdc

B = ∂a
α Xbc

A
✄αA

B + Xad
B fbc

d − ∂b
α
✄αA

B Xac
A − Xbd

B fac
d .

(A38)

7. For all h1, h2, h3 ∈ h:

{h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} ,

Xad
A fbc

d = Xab
B δB

d Xdc
A − Xac

B δB
dXdb

A .
(A39)

8. For all l ∈ l and ∀h ∈ h:

{δ(l), h}+ {h, δ(l)} = −∂(h)✄ l , 2 δA
a X{ab}

B = −∂b
α
✄αA

B . (A40)

Finally, when dealing with various algebra valued differential forms, one multiplies them as

differential forms using the ordinary wedge product ∧, and simultaneously as algebra elements using

one of maps defined above. For example, the product with an action ∧✄ of the g-valued n-form ρ on

the h-valued m-form η is defined as:

ρ ∧✄ η =
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn τα ✄ ta dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn

=
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn ✄αa

btb dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn .

(A41)
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15. Miković, A.; Oliveira, M.A.; Vojinović, M. Hamiltonian analysis of the BFCG theory for the Poincaré 2-group.

Class. Quantum Gravity 2016, 33, 065007.
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Abstract

We provide several examples of higher gauge theories, constructed as gener-
alizations of a BF model to 2BF and 3BF models with constraints. Using the
framework of higher category theory, we introduce appropriate 2-groups and 3-
groups, and construct the actions for the corresponding constrained 2BF and
3BF theories. In this way, we can construct actions which describe the correct
dynamics of Yang-Mills, Klein-Gordon, Dirac, Weyl, and Majorana fields coupled
to Einstein-Cartan gravity. Each action is naturally split into a topological sector
and a sector with simplicity constraints. The properties of the higher gauge group
structure opens up a possibility of a nontrivial unification of all fields.

1. Introduction

The quantization of the gravitational field is one of the fundamental open
problems in modern physics. There are various approaches to this prob-
lem, some of which have developed into vast research frameworks. One of
such frameworks is the Loop Quantum Gravity approach, which aims to
establish a nonperturbative quantization of gravity, both canonically and
covariantly [1, 2, 3]. The covariant approach is slightly more general, and
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focuses on providing a possible rigorous definition of the path integral for
the gravitational field,

Z =

∫

Dg eiS[g] . (1)

This is done by considering a triangulation of a spacetime manifold, and
defining the path integral as a discrete state sum of the gravitational field
configurations living on the simplices in the triangulation. This quanti-
zation technique is known as the spinfoam quantization method, and is
performed via the following three steps:

(1) one writes the classical action S[g] as a constrained BF action;

(2) one uses the Lie group structure, underlying the topological sector of
the action, to define a triangulation-independent state sum Z;

(3) one imposes the simplicity constraints on the state sum, promoting it
into a triangulation-dependent state sum, which serves as a definition
for the path integral (1).

So far, this quantization prescription has been implemented for various
choices of the gravitational action, of the Lie group, and of the spacetime
dimension. For example, in 3 dimensions, historically the first spinfoam
model is known as the Ponzano-Regge model [4]. In 4 dimensions there are
multiple models, depending on the choice of the Lie group and the way one
imposes the simplicity constraints [5, 6, 7, 8, 9]. While these models do
give a definition for the gravitational path integral, none of them are able
to consistently include matter fields. Including the matter fields has so far
had limited success [10], mainly due to the absence of the tetrad fields from
the topological sector of the theory.

In order to resolve this issue, a new approach has been developed, using
the framework of higher gauge theory (see [11] for a review). In particu-
lar, one uses the idea of a categorical ladder to generalize the BF action
(based on a Lie group) into a 2BF action (based on the so-called 2-group
structure). A suitable choice of the Poincaré 2-group introduces the needed
tetrad fields into the topological sector of the action [12]. While this result
opened up a possibility to couple matter fields to gravity, the matter fields
could not be naturally expressed using the underlying algebraic structure
of a 2-group, rendering the spinfoam quantization method inapplicable.
Namely, the matter sector could indeed be added to the classical action,
but could not be expressed itself as a constrained 2BF theory, which means
that the steps 1–3 above could not be performed for the matter sector of
the action, but only for gravity.

This final issue has recently been resolved in [13], by passing from the
2-group structure to the 3-group structure, generalizing the action one step
further in the categorical ladder. This generalization naturally gives rise
to the so-called 3BF action, which turns out to be suitable for a unified
description of both gravity and matter fields. The steps of the categorical
ladder and their corresponding structures are summarized as follows:
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categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed
module

differential Lie
crossed module

2BF theory tetrad fields

Lie 3-group
Lie 2-crossed

module
differential Lie

2-crossed module
3BF theory

scalar and
fermion fields

The purpose of this paper is to give a systematic overview of the con-
structions of classical BF , 2BF and 3BF actions, both pure and con-
strained, in order to demonstrate the categorical ladder procedure and the
construction of higher gauge theories. In other words, we focus on the step
1 of the spinfoam quantization programme.

The layout of the paper is as follows. Section 2 deals with models based
on a BF theory. First we discuss the pure, topological BF theory, and
then pass on to the the physically more interesting Yang-Mills theory in
Minkowski spacetime and the Plebanski formulation of general relativity.
In Section 3 we study the first step in the categorical ladder, namely models
based on the 2BF theory. After introducing the pure 2BF theory, we study
the relevant formulation of general relativity [12], and then the coupled
Einstein-Yang-Mills theory. Then, in Section 4 we perform the second step
in the categorical ladder, passing on to models based on the 3BF theory.
After the introduction of the pure 3BF model, we construct constrained
3BF actions for the cases of Klein-Gordon, Dirac, Weyl and Majorana
fields, all coupled to the Einstein-Cartan gravity in the standard way. As
we shall see, the scalar and fermion fields will be naturally associated to a
new gauge group, generalizing the purpose of a gauge group in the Yang-
Mills theory, which opens up a possibility of an algebraic classification of
matter fields. Finally, Section 5 contains a discussion and conclusions.

The notation and conventions are as follows. The local Lorentz in-
dices are denoted by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and
are raised and lowered using the Minkowski metric ηab with signature
(−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . ,
and are raised and lowered by the spacetime metric gµν = ηabe

a
µe

b
ν , where

eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other
indices that appear in the paper are dependent on the context, and their
usage is explicitly defined in the text where they appear. We work in the
natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck
length.

2. BF theory

We begin with a short review of BF theories. See [14, 15, 16] for additional
information.
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2.1. Pure BF theory

Given a Lie group G, and denoting its corresponding Lie algebra as g,
one introduces the pure BF action as follows (we limit ourselves to the
physically relevant case of 4-dimensional spacetime manifolds M4):

SBF =

∫

M4

〈B ∧ F〉g . (2)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connec-
tion 1-form α ∈ A1(M4 , g), and B ∈ A2(M4 , g) is a Lagrange multiplier
2-form, while 〈 , 〉g denotes a G-invariant bilinear symmetric nondegener-
ate form.

One can see from (2) that the action is diffeomorphism invariant, and
it is also gauge invariant with respect to G, provided that B transforms as
a scalar with respect to G.

Varying the action (2) with respect to Bβ and αβ , where the index β
is the group G index (which counts the generators of g), one obtains the
following equations of motion,

Fβ = 0 , ∇Bβ ≡ dBβ + fγδ
βαγ ∧Bδ = 0 , (3)

where fγδ
β are the structure constants of the Lie group G. From the first

equation of motion, one immediately sees that α is a flat connection, mean-
ing that α = 0 up to gauge transformations. Given this, the second equa-
tion of motion implies that B is constant. Therefore, there are no local
propagating degrees of freedom, and the theory is called topological.

2.2. Yang-Mills theory

In physics one is usually interested in theories which are not topological, i.e.,
which have local propagating degrees of freedom. As a rule of thumb, one
recognizes that the theory does have local propagating degrees of freedom if
one of the equations of motion is a second-order partial differential equation,
usually featuring a D’Alambertian operator � in some form. In order to
transform the pure BF action into such a theory, one adds an additional
term to the action, commonly called the simplicity constraint. The resulting
action is called a constrained BF theory. A nice example is the Yang-
Mills theory for the SU(N) group in Minkowski spacetime, which can be
rewritten as a constrained BF theory in the following way:

S =

∫

BI ∧ F
I + λI ∧

(

BI −
12

g
MabIδ

a ∧ δb
)

+ ζabI
(

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − gIJF

J ∧ δa ∧ δb

)

.
(4)

Here F ≡ dA + A ∧ A is again the curvature 2-form for the connection
A ∈ A1(M4 , su(N)), and B ∈ A2(M4 , su(N)) is the Lagrange multiplier
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2-form. The Killing form gIJ ≡ 〈τI , τJ〉su(N) ∝ fIK
LfJL

K is used to raise

and lower the indices I, J, . . . which count the generators of SU(N), while
f IJ

K are the structure constants for the su(N) algebra. In addition to
the topological B ∧ F term, there are also two simplicity constraint terms
present, featuring two Lagrange multipliers, a 2-form λI and a 0-form ζabI .
The 0-form MabI is also a Lagrange multiplier, while g is the coupling
constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global co-
ordinate frame in which its components are equal to the Kronecker symbol
δaµ (hence the notation δa). The 1-form δa plays the role of a background
field, and defines the global spacetime metric, via the equation

ηµν = ηabδ
a
µδ

b
ν , (5)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the co-
ordinate system is global, the spacetime manifold M4 is understood to be
flat. The indices a, b, . . . are local Lorentz indices, taking values 0, . . . , 3.
Note that the field δa has all the properties of the tetrad 1-form ea in the
flat Minkowski spacetime. Also note that the action (4) is manifestly dif-
feomorphism invariant and gauge invariant with respect to SU(N), but not
background independent, due to the presence of δa.

Varying the action (4) with respect to the variables ζabI , MabI , A
I , BI ,

and λI , respectively (but not with respect to the background field δa), we
obtain the equations of motion:

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (6)

−
12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (7)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJI

KζabKδa ∧ δb ∧A
J = 0 , (8)

FI + λI = 0 , (9)

BI −
12

g
MabIδ

a ∧ δb = 0 , (10)

From the equations (6), (7), (9) and (10) one obtains the multipliers as
algebraic functions of the field strength F I

µν for the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I

cd ,

λIab = F Iab , BIab =
1

2g
εabcdF I

cd .

(11)
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Here we used the notation FIab = FIµνδa
µδb

ν , and similarly for other vari-
ables, where we exploited the fact that δaµ is invertible. Using these equa-
tions and the differential equation (8) one obtains the equation of motion
for gauge field AI

µ,

∇ρF
Iρµ ≡ ∂ρF

Iρµ + fJK
IAJ

ρF
Kρµ = 0 . (12)

This is precisely the classical equation of motion for the free Yang-Mills
theory. Note that this is a second-order partial differential equation for the
field AI

µ, and moreover contains the � operator in the first term.
In addition to the Yang-Mills theory, one can easily extend the action (4)

in order to describe the massive vector field and obtain the Proca equation
of motion. This is done by adding a mass term

−
1

4!
m2AIµA

I
νη

µνεabcdδ
a ∧ δb ∧ δc ∧ δd (13)

to the action (4). Of course, this term explicitly breaks the SU(N) gauge
symmetry of the action.

2.3. Plebanski general relativity

The second example of the constrained BF theory is the Plebanski action
for general relativity [16, 14]. Using the Lorentz group SO(3, 1) as a gauge
group, one constructs a constrained BF action as

S =

∫

M4

Bab ∧R
ab + φabcdB

ab ∧Bcd . (14)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the
usual Lagrange multiplier 2-form, while φabcd is the additional Lagrange
multiplier 0-form multiplying the term Bab ∧Bcd to form a simplicity con-
straint. It can be shown that the variation of this action with respect to
Bab, ω

ab and φabcd gives rise to the equations of motion of vacuum general
relativity. However, in this model the tetrad fields appear only as a solution
of the simplicity constraint equation of motion Bab ∧ Bcd = 0. Therefore,
being intrinsically on-shell objects, the tetrad fields are not present in the
action itself and cannot be quantized. This renders the Plebanski model
unsuitable for coupling of matter fields to gravity [10, 12, 20]. Neverthe-
less, regarded as a model for pure gravity, the Plebanski model has been
successfully quantized in the context of spinfoam models [8, 9, 1, 2].

3. 2BF theory

In this section we perform the first step of the categorical ladder, general-
izing the algebraic notion of a group to the notion of a 2-group. This leads
to the generalization of the BF theory to the 2BF theory, also sometimes
called BFCG theory [11, 17, 18, 19].
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3.1. Pure 2BF theory

In order to circumvent the issue of tetrad fields not being present in the
Plebanski action, in the context of higher category theory [11] a recent
promising approach has been developed [12, 21, 22, 23, 20, 24]. As an
essential ingredient, let us first give a short review of the 2-group formalism.

Within the framework of category theory, the group as an algebraic
structure can be understood as a category with only one object and in-
vertible morphisms [11]. Additionally, the notion of a category can be
generalized to the so-called higher categories, which have not only objects
and morphisms, but also 2-morphisms (morphisms between morphisms),
and so on. This process of generalization is called the categorical ladder.
Using this process, one can introduce the notion of a 2-group as a 2-category
consisting of only one object, where all the morphisms and all 2-morphisms
are invertible. It has been shown that every strict 2-group is equivalent to

a crossed module (H
∂
→ G ,⊲), see [13] for detailed definitions. Here G and

H are groups, ∂ is a homomorphism from H to G, while ⊲ : G ×H → H
is an action of G on H.

Similarly to the case of an ordinary Lie group G which has a naturally
associated notion of a connection α, giving rise to a BF theory, the 2-
group structure has a naturally associated notion of a 2-connection (α , β),
described by the usual g-valued 1-form α ∈ A1(M4 , g) and an h-valued
2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie group H. The
2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧⊲ β . (15)

Here α∧⊲β means that α and β are multiplied as forms using ∧, and simul-
taneously multiplied as algebra elements using ⊲, see [13]. The curvature
pair (F ,G) is called “fake” because of the presence of the additional term
∂β in the definition of F [11].

Using the structure of a 2-group, or equivalently the crossed module,
one can generalize the BF action to the so-called 2BF action, defined as
follows [17, 18]:

S2BF =

∫

M4

〈B ∧ F〉g + 〈C ∧ G〉h . (16)

Here the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are La-
grange multipliers. Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear
symmetric nondegenerate forms for the algebras g and h, respectively. As
a consequence of the axiomatic structure of a crossed module (see [13]),
the bilinear form 〈 , 〉h is H-invariant as well. See [17, 18] for review and
references.

Similarly to the BF action, the 2BF action is also topological, which
can be seen from equations of motion. Varying with respect to Bα and Ca

one obtains
Fα = 0 , Ga = 0 , (17)
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where indices a count the generators of the group H. Varying with respect
to αα and βa one obtains the equations for the multipliers,

dBα − gαβ
γBγ ∧ α

β −⊲αa
bCb ∧ β

a = 0 , (18)

dCa − ∂a
αBα +⊲αa

bCb ∧ α
α = 0 . (19)

We can again see that the equations of motion are only first-order and
have only very simple solutions (note that this is not a sufficient argument
for the absence of local propagating degrees of freedom — a counterexam-
ple is the Dirac equation, being a first-order partial differential equation
which does have propagating degrees of freedom). One can additionally
use the Hamiltonian analysis to rigorously demonstrate that there are no
local propagating degrees of freedom [22, 23]. Thus the 2BF theory is also
topological.

3.2. General relativity

An important example of a crossed module structure is a vector space V
equipped with an isometry group O. Namely, V can be regarded as an
Abelian Lie group with addition as a group operation, so that a represen-
tation of O on V is an action ⊲ of O on the group V , giving rise to the

crossed module (V
∂
→ O ,⊲), where the homomorphism ∂ is chosen to be

trivial (it maps every element of V into a unit of O).
We can employ this construction to introduce the Poincaré 2-group.

One constructs a crossed module by choosing

G = SO(3, 1) , H = R
4 . (20)

The map ∂ is trivial, while ⊲ is a natural action of SO(3, 1) on R
4, defined

by the equation
Mab ⊲ Pc = η[bcPa] , (21)

where Mab and Pa are the generators of groups SO(3, 1) and R
4, respec-

tively. The action ⊲ of SO(3, 1) on itself is given via conjugation. At
the level of the algebra, conjugation reduces to the action via the adjoint
representation, so that

Mab ⊲Mcd = [Mab , Mcd ] ≡ ηadMbc − ηacMbd + ηbcMad − ηbdMac . (22)

The 2-connection (α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (23)

where ωab is called the spin connection. The corresponding 2-curvature in
this case is given by

F = (dωab + ωa
c ∧ ω

cb)Mab ≡ RabMab ,

G = (dβa + ωa
b ∧ β

b)Pa ≡ ∇βaPa ≡ GaPa ,
(24)
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Note that, since ∂ is trivial, the fake curvature is the same as ordinary
curvature. Introducing the bilinear forms

〈Mab ,Mcd〉g = ηa[cηbd] , 〈Pa , Pb〉h = ηab , (25)

one can show that 1-forms Ca transform in the same way as the tetrad
1-forms ea under the Lorentz transformations and diffeomorphisms, so the
fields Ca can be identified with the tetrads. Then one can rewrite the pure
2BF action (16) for the Poincaré 2-group as

S2BF =

∫

M4

Bab ∧Rab + ea ∧∇βa . (26)

Note that the above step of recognizing that Ca ≡ ea was crucial, since we
now see that the tetrad fields are explicitly present in the 2BF action for
the Poincaré 2-group.

In order to promote (26) to an action for general relativity, we add a
convenient simplicity constraint term:

S =

∫

M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(

Bab −
1

16πl2p
εabcdec ∧ ed

)

. (27)

Here λab is a Lagrange multiplier 2-form associated to the simplicity con-
straint term, and lp is the Planck length. Note that the term “simplicity
constraint” derives its name from the fact that the constraint imposes the
property of simplicity on Bab — a 2-form is said to be simple if it can be
written as an exterior product of two 1-forms.

Varying the action (27) with respect to Bab, ea, ωab, βa and λab, we
obtain the following equations of motion:

Rab − λab = 0 , (28)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (29)

∇Bab − e[a ∧ βb] = 0 , (30)

∇ea = 0 , (31)

Bab −
1

16πl2p
εabcdec ∧ ed = 0 . (32)

Given this system of equations, all fields can be algebraically determined in
terms of the tetrads eaµ, as follows. From the equations (31) and (32) we

obtain that ∇Bab = 0, from which it follows, using the equation (30), that
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e[a∧βb] = 0. Assuming that the tetrads are nondegenerate, e ≡ det(eaµ) 6=
0, it can be shown that this is equivalent to βa = 0 [12]. Therefore, from
the equations (28), (30), (31) and (32) we obtain

λabµν = Rab
µν , βaµν = 0 , Babµν =

1

8πl2p
εabcde

c
µe

d
ν , ωab

µ = △ab
µ .

(33)
Here the Ricci rotation coefficients are defined as

△ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (34)

where
cabc = eµbe

ν
c (∂µe

a
ν − ∂νe

a
µ) . (35)

The last equation establishes that the spin connection 1-form ωab is ex-
pressed as a function of the tetrads, which then implies the same for the
curvature 2-form Rab. Finally, the remaining equation (29) then reduces to

εabcdR
bc ∧ ed = 0 , (36)

which is nothing but the vacuum Einstein field equation,

Rµν −
1

2
gµνR = 0 .

Therefore, the action (27) is classically equivalent to general relativity.

3.3. Einstein-Yang-Mills theory

As we have already mentioned above, the main advantage of the action (27)
over the Plebanski model lies in the fact that the tetrad fields are explicitly
present in the topological sector of the action. This allows one to couple
matter fields in a straightforward way [12]. However, one can do even more
[13], and couple the SU(N) Yang-Mills fields to gravity within a unified
framework of 2-group formalism.

Namely, we can modify the Poincaré 2-group structure to include the
SU(N) gauge group, as follows. We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R
4 , (37)

and we define the action ⊲ of the group G in the following fashion. As in
the case of the Poincaré 2-group, it acts on itself via conjugation. Next,
it acts on H such that the SO(3, 1) subgroup acts on R

4 via the vector
representation (21), while the action of the SU(N) subgroup is trivial,

τI ⊲ Pa = 0 , (38)
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where τI are the SU(N) generators. The map ∂ also remains trivial, as
before. The form of the 2-connection (α, β) now reflects the structure of
the group G,

α = ωabMab +AIτI , β = βaPa , (39)

where AI is the gauge connection 1-form. Next, the curvature for α then
becomes

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (40)

The curvature for β remains the same as before, because of (38). Finally,
the product structure of the group G implies that its Killing form 〈 , 〉g
reduces to the Killing forms for the SO(3, 1) and SU(N), along with the
identity 〈Mab , τI〉g = 0.

Given a crossed module defined in this way, its corresponding pure 2BF
action (16) becomes

S2BF =

∫

M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (41)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. The action
(41) is topological, and again we add appropriate simplicity constraint
terms, in order to transform it into action with nontrivial dynamics. The
constraint giving rise to gravity is the same as in (27), while the con-
straint for the gauge fields is given as in the action (4) with the substitution
δa → ea. Putting everything together, we obtain:

S =

∫

M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa

− λab ∧
(

Bab −
1

16πl2p
εabcdec ∧ ed

)

+ λI ∧
(

BI −
12

g
MabIe

a ∧ eb
)

+ ζabI
(

MabIεcdefe
c ∧ ed ∧ ee ∧ ef − gIJF

J ∧ ea ∧ eb

)

.

(42)
It is crucial to note that the Yang-Mills simplicity constraints in (42) are
obtained from the Yang-Mills action (4) by substituting the nondynamical
background field δa from (4) with a dynamical field ea. The relationship
between these fields has already been hinted at in the equation (5), which
describes the connection between δa and the flat spacetime metric ηµν .
Once promoted to ea, this field becomes dynamical due to the presence
of gravitational terms, while the equation (5) becomes the usual relation
between the tetrad and the metric,

gµν = ηabe
a
µe

b
ν , (43)
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further confirming the identification Ca = ea. Moreover, the total action
(42) now becomes background independent, as expected in general relativ-
ity. All this is a consequence of the fact that the tetrad field is explicitly
present in the topological sector of the action (27), and represents a clear
improvement over the Plebanski model.

Taking the variations of the action (42) with respect to the variables
Bab, ωab, βa, λab, ζ

abI , MabI , BI , λ
I , AI , and ea, we obtain equations of

motion. Similarly as before, all variables can be algebraically expressed as
functions of AI and ea and their derivatives:

λabµν = Rabµν , βaµν = 0 , ωabµ = △abµ , λabI = FabI ,

BµνI = −
e

2g
εµνρσF

ρσ
I , Babµν =

1

8πl2p
εabcde

c
µe

d
ν ,

MabI = −
1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

(44)
In addition, we obtain two differential equations — An equation for AI ,

∇ρF
Iρµ ≡ ∂ρF

Iρµ + Γ ρ
λρF

Iλµ + fJK
IAJ

ρF
Kρµ = 0 , (45)

where Γ λ
µν is the standard Levi-Civita connection, and an equation for ea,

Rµν −
1

2
gµνR = 8πl2p T

µν , (46)

where

Tµν ≡ −
1

4g

(

Fρσ
IF ρσ

Ig
µν + 4Fµρ

IFρ
νI
)

. (47)

In this way, we see that both gravity and gauge fields can be successfully
represented within a unified framework of higher gauge theory, based on a
2-group structure. A generalization from SU(N) Yang-Mills case to more
complicated cases such as SU(3)×SU(2)×U(1) is completely straightfor-
ward.

4. 3BF theory

While the structure of a 2-group can successfully describe both gravitational
and gauge fields, unfortunately it cannot accommodate other matter fields,
such as scalars or fermions. In order to remedy this drawback, we make
one further step in the categorical ladder, passing from the notion of a 2-
group to the notion of a 3-group. As it turns out, the 3-group structure is
excellent for the description of all fields that are present in the Standard
Model, coupled to gravity. Moreover, a 3-group contains one more gauge
group, which is novel and corresponds to the choice of the scalar and fermion



Construction and examples of higher gauge theories 263

fields present in the theory. This is an unexpected and beautiful result, not
present in ordinary gauge theory.

As before, we will begin by introducing the notion of a 3-group, and
constructing the corresponding 3BF action. Afterwards, we will modify
this action by adding appropriate simplicity constraints, giving rise to the-
ories with expected nontrivial dynamics. Along the way, we shall see that
scalar and fermion fields are being treated pretty much on an equal footing
with gravity and gauge fields.

4.1. Pure 3BF theory

Similarly to the concepts of a group and a 2-group, one can introduce the
notion of a 3-group in the framework of higher category theory, as a 3-
category with only one object where all the morphisms, 2-morphisms and
3-morphisms are invertible. Also, in the same way as a 2-group is equivalent
to a crossed module, it was proved that a strict 3-group is equivalent to a
2-crossed module [25].

A Lie 2-crossed module, denoted as (L
δ
→ H

∂
→ G ,⊲ , { , }), is an

algebraic structure specified by three Lie groups G, H and L, together
with the homomorphisms δ and ∂, an action ⊲ of the group G on all three
groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. The maps ∂, δ, ⊲ and the Peiffer lifting satisfy
certain axioms, so that the resulting structure is equivalent to a 3-group
[13].

Like in the cases of BF and 2BF actions, we can introduce a gauge
invariant topological 3BF action over the manifoldM4 for a given 2-crossed

module (L
δ
→ H

∂
→ G ,⊲ , { , }). Denoting g, h and l as Lie algebras

corresponding to the groups G, H and L, respectively, one can introduce
a 3-connection (α, β, γ) given by the algebra-valued differential forms α ∈
A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding fake
3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧⊲ β − δγ ,

H = dγ + α ∧⊲ γ + {β ∧ β} ,
(48)

see [25, 26] for details. Note that γ is a 3-form, while its corresponding
field strength H is a 4-form, necessitating that the spacetime manifold be
at least 4-dimensional. Then, a 3BF action is defined as

S3BF =

∫

M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (49)
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where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange
multipliers. Note that in precisely 4 spacetime dimensions the Lagrange
multiplier D corresponding to H is a 0-form, i.e. a scalar function. The
functionals 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric non-
degenerate forms on g, h and l, respectively. Under certain conditions, the
forms 〈 , 〉h and 〈 , 〉l are also H-invariant and L-invariant.

One can see that varying the action with respect to the variables Bα,
Ca and DA (where indices A count the generators of the group L), one
obtains the equations of motion

Fα = 0 , Ga = 0 , HA = 0 , (50)

while varying with respect to αα, βa, γA one obtains

dBα − gαβ
γBγ ∧ α

β −⊲αa
bCb ∧ β

a +⊲αB
ADA ∧ γB = 0 , (51)

dCa − ∂a
αBα +⊲αa

bCb ∧ α
α + 2X{ab}

ADA ∧ βb = 0 , (52)

dDA −⊲αA
BDB ∧ αα + δA

aCa = 0 . (53)

4.2. Klein-Gordon theory

Now we proceed to demonstrate that one can use the 3-group structure and
the corresponding 3BF theory to describe the Klein-Gordon field coupled to
general relativity. We begin by specifying a 2-crossed module, which is used
to construct the topological 3BF theory, and then we impose appropriate
simplicity constraints to obtain the desired equations of motion.

We specify a 2-crossed module (L
δ
→ H

∂
→ G ,⊲ , { , }), as follows.

The groups are given as

G = SO(3, 1) , H = R
4 , L = R . (54)

The group G acts on itself via conjugation, on H via the vector represen-
tation, and on L via the trivial representation. This specifies the definition
of the action ⊲. The map ∂ is chosen to be trivial, as before. The map δ is
also trivial, that is, every element of L is mapped to the identity element of
H. Finally, the Peiffer lifting is trivial as well, mapping every ordered pair
of elements in H to an identity element in L. This specifies one concrete
2-crossed module which, as we shall see below, corresponds to gravity and
one real scalar field.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes
the form

α = ωabMab , β = βaPa , γ = γI , (55)

where I is the sole generator of the Lie group R. Since the homomorphisms
∂ and δ are trivial, as well as the Peiffer lifting, the fake 3-curvature (48)
reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (56)
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where we used the fact that G acts trivially on L, that is, Mab ⊲ I = 0.
This means that the 3-form γ transforms as a scalar with respect to Lorentz
symmetry. Consequently, its Lagrange multiplier D also transforms as a
scalar, since it also belongs to the algebra l. Since D is also a 0-form, it
transforms as a scalar with respect to diffeomorphisms as well. In other
words, D completely behaves as a real scalar field, so we relabel it into
more traditional notation, D ≡ φ, and write the pure 3BF action (49) as:

S3BF =

∫

M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (57)

where the bilinear form for L is 〈I , I〉l = 1.
The existence of a scalar field in the 3BF action is a crucial property of

a 3-group in a 4-dimensional spacetime, just like identifying the Lagrange
multiplier Ca with a tetrad field ea was a crucial property of the 2BF
action and the Poincaré 2-group. We can also see that the choice of the
third gauge group, L, dictates the number and the structure of the matter
fields present in the action. In this case, L = R implies that we have only
one real scalar field, corresponding to a single generator I of R. The trivial
nature of the action ⊲ of SO(3, 1) on R implies that φ transforms as a
scalar field. Finally, the scalar field appears in the topological sector of the
action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, we need to add appropriate
simplicity constraints to the action (57). In order to obtain the Klein-
Gordon field φ of mass m coupled to gravity in the standard way, the
action takes the form:

S =

∫

M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(

Bab −
1

16πl2p
εabcdec ∧ ed

)

+ λ ∧
(

γ −
1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(

Habcε
cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb

)

−
1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed .

(58)

The first row is the topological sector (57), the second row is the familiar
simplicity constraint for gravity from the action (27), the third and fourth
rows contain the new simplicity constraints featuring the Lagrange multi-
plier 1-forms λ and Λab and the 0-form Habc, while the fifth row is the mass
term for the scalar field.

The variation of (58) with respect to the variables Bab, ωab, βa, λab,
Λab, γ, λ, Habc, φ and ea gives us the equations of motion. As before, all
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variables can be algebraically expressed in terms of the tetrads ea and the
scalar field φ:

λabµν = Rabµν , ωab
µ = △ab

µ , γµνρ = −
e

2
εµνρσ∂

σφ ,

βaµν = 0 , Λab
µ =

1

12e
gµλε

λνρσ∂νφe
a
ρe

b
σ , λµ = ∂µφ ,

Habc =
1

6e
εµνρσ∂µφe

a
νe

b
ρe

c
σ , Babµν =

1

8πl2p
εabcde

c
µe

d
ν .

(59)

The equations of motion for ea and φ, however, are differential equations.
The equation for the scalar field becomes the covariant Klein-Gordon equa-
tion,

(

∇µ∇
µ −m2

)

φ = 0 , (60)

while the equation for the tetrads is

Rµν −
1

2
gµνR = 8πl2p T

µν , (61)

where

Tµν ≡ ∂µφ∂νφ−
1

2
gµν

(

∂ρφ∂
ρφ+m2φ2

)

(62)

is the stress-energy tensor for a single real scalar field.

4.3. Einstein-Cartan-Dirac theory

In order to describe the Dirac field coupled to Einstein-Cartan gravity, we
follow the same procedure as for the case of the scalar field, but now we

choose the 2-crossed module (L
δ
→ H

∂
→ G ,⊲ , { , }) in a different way, as

follows. The groups are:

G = SO(3, 1) , H = R
4 , L = R

8(G) , (63)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ
and the Peiffer lifting are trivial, as before. The action of the group G on
itself is given via conjugation, on H via vector representation, and on L
via spinor representation, in the following way. Denoting the 8 generators
of the Lie group R

8(G) as Pα and Pα, where the index α takes the values
1, . . . , 4, the action ⊲ of G on L is thus given explicitly as

Mab ⊲ Pα =
1

2
(σab)

β
αPβ , Mab ⊲ Pα = −

1

2
(σab)

α
βP

β , (64)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the

anticommutation rule {γa , γb} = −2ηab.
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As in the case of the scalar field, the choice of the group L dictates the
matter content of the theory, while the action ⊲ of G on L specifies its
transformation properties.

Let us now proceed to construct the 3BF action. The 3-connection
(α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (65)

while the 3-curvature (F ,G ,H) is given as

F = RabMab , G = ∇βaPa ,

H =
(

dγα +
1

2
ωab(σab)

α
βγ

β
)

Pα+
(

dγ̄α −
1

2
ωabγ̄β(σab)

β
α

)

Pα

≡ (
→
∇γ)αPα + (γ̄

←
∇)αP

α ,

(66)

where we have used (64). The bilinear form 〈 , 〉l is defined via its action
on the generators:

〈Pα , Pβ〉l = 0 , 〈Pα , P β〉l = 0 ,

〈Pα , P
β〉l = −δβα , 〈Pα , Pβ〉l = δαβ .

(67)

Note that the bilinear form defined in this way is antisymmetric, rather
than symmetric, when it acts on the generators. The reason for this is the
following. For general A,B ∈ l, we want the bilinear form to be symmetric.
Expanding A and B into components, we can write

〈A ,B〉l = AIBJgIJ , 〈B ,A〉l = BJAIgJI . (68)

Since we require the bilinear form to be symmetric, the two expressions
must be equal. However, since the coefficients in l are Grassmann num-
bers, we have AIBJ = −BJAI , so it follows that gIJ = −gJI . Hence the
antisymmetry of (67) — it compensates for the anticommutativity prop-
erty of the Grassman coefficients, making the bilinear form symmetric for
general algebra elements A,B ∈ l.

Now we employ the action ⊲ of G on L to determine the transformation
properties of the Lagrange multiplier D in (49). Indeed, the choice of the
group L dictates that D contains 8 independent complex Grassmannian
matter fields as its components. Moreover, due to the fact that D is a
0-form and that it transforms according to the spinorial representation of
SO(3, 1), we can identify its components with the Dirac bispinor fields, and
write

D = ψαPα + ψ̄αP
α . (69)

This is again an illustration of the fact that information about the structure
of the matter sector in the theory is specified by the choice of the group L
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in the 2-crossed module, and its transformation properties with respect to
the Lorentz group are fixed by the action ⊲.

Given all of the above, we write the corresponding pure 3BF action as:

S3BF =

∫

M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (70)

In order to obtain the action that gives us the dynamics of Einstein-Cartan
theory of gravity coupled to a Dirac field, we add the following simplicity
constraints:

S =

∫

M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(

Bab −
1

16πl2p
εabcdec ∧ ed

)

− λα ∧
(

γ̄α −
i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α

)

+ λ̄α ∧
(

γα +
i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

−
1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd.

(71)
Similarly to the previous case of the scalar field, we recognize the topological
sector in the first row, the gravitational simplicity constraint in the second
row, while the third and fourth rows contain the new simplicity constraints
for the Dirac field, featuring the Lagrange multiplier 1-forms λα and λ̄α.
The fifth row contains the mass term for the Dirac field, and a term which
ensures the correct coupling between the torsion and the spin of the Dirac
field. In particular, we want to obtain

Ta ≡ ∇ea = 2πl2psa , (72)

as one of the equations of motion, where

sa = iεabcde
b ∧ ecψ̄γ5γ

dψ (73)

is the Dirac spin 2-form. Of course, other alternative coupling choices are
possible, but we choose this one since this is the traditional coupling most
often discussed in textbooks.

The variation of the action (71) with respect to Bab, λ
ab, γ̄α, γ

α, λα,
λ̄α, ψ̄α, ψ

α, ea, βa and ωab, again gives us equations of motion, which can
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be algebraically solved for all fields as functions of ea, ψ and ψ̄:

Babµν =
1

8πl2p
εabcde

c
µe

d
ν , λαµ = (

→
∇µψ)

α , λ̄αµ = (ψ̄
←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe

b
νe

c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcde
a
µe

b
νe

c
ρ(γ

dψ)α ,

βaµν = 0 , λabµν = Rabµν , ωab
µ = △ab

µ +Kab
µ .

(74)
Here Kab

µ is the contorsion tensor, constructed in the standard way from
the torsion tensor. In addition, we also obtain

Ta ≡ ∇ea = 2πl2psa , (75)

which is precisely the desired equation (72) for the torsion. Finally, the
differential equations of motion for ψ and ψ̄ are the standard covariant
Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (76)

and its conjugate,

ψ̄(i
←
∇µe

µ
aγ

a +m) = 0 , (77)

where eµa is the inverse tetrad. The differential equation of motion for ea

is

Rµν −
1

2
gµνR = 8πl2p T

µν , (78)

where

Tµν ≡
i

2
ψ̄γa

↔
∇νeµaψ −

1

2
gµνψ̄

(

iγa
↔
∇ρe

ρ
a − 2m

)

ψ , (79)

Here, we used the notation
↔
∇ =

→
∇ −

←
∇. As expected, the equations of

motion (75), (76), (77) and (78) are precisely the equations of motion of
the Einstein-Cartan-Dirac theory.

4.4. Weyl and Majorana fields coupled to Einstein-Cartan grav-
ity

As is well known, the Dirac fermions are not an irreducible representation
of the Lorentz group, and one can rewrite them as left-chiral and right-
chiral irreducible Weyl fermion fields. Hence, it is useful to construct the
2-crossed module and a constrained 3BF action for left and right Weyl
spinors. For simplicity, we will discuss only the left-chiral spinor field (the
right-chiral can be studied analogously). Additionally, we can also describe
Majorana fermions using the same formalism, the only difference being the
presence of an additional mass term in the Majorana action.
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We soecify a 2-crossed module (L
δ
→ H

∂
→ G ,⊲ , { , }), in a way similar

to the Dirac case, as follows. The groups are:

G = SO(3, 1) , H = R
4 , L = R

4(G) . (80)

The maps ∂, δ and the Peiffer lifting are trivial. The action ⊲ of the group
G on G, H and L is given in the same way as for the Dirac case, whereas
the spinorial representation reduces to

Mab ⊲ Pα =
1

2
(σab)

α
βP

β , Mab ⊲ Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (81)

where σab = −σ̄ab = 1
4(σ

aσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in
which ~σ denotes the set of three Pauli matrices. The four generators of the
group L are denoted as Pα and Pα̇, where the Weyl indices α, α̇ take values
1, 2.

The 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (82)

while the 3-curvature (F ,G ,H) is

F = RabMab , G = ∇βaPa ,

H =
(

dγα +
1

2
ωab(σab)βαγβ

)

Pα +
(

dγ̄α̇ +
1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇
)

P α̇

≡ (
→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

(83)

The Lagrange multiplier D now contains as coefficients the spinor fields ψα

and ψ̄α̇,

D = ψαP
α + ψ̄α̇Pα̇ , (84)

and the bilinear form 〈 , 〉l for the group L is

〈Pα , P β〉l = εαβ , 〈Pα̇ , Pβ̇〉l
= εα̇β̇ ,

〈Pα , Pβ̇〉l
= 0 , 〈Pα̇ , P

β〉l = 0 ,
(85)

where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita

symbols.
The pure 3BF action (49) now becomes

S3BF =

∫

M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (86)
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In order to obtain the suitable equations of motion for the Weyl spinors,
we again introduce appropriate simplicity constraints, to obtain:

S =

∫

M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧ (Bab −
1

16πl2p
εabcdec ∧ ed)

− λα ∧ (γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇)

− λ̄α̇ ∧ (γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄

dα̇βψβ) .

(87)

The new simplicity constraints, in the third and fourth rows, feature the
Lagrange multiplier 1-forms λα and λ̄α̇. Also, in analogy to the coupling
between the spin and the torsion in Einstein-Cartan-Dirac theory, the term
in the fifth row is chosen to ensure that the coupling between the Weyl spin
tensor

sa ≡ iεabcde
b ∧ ec ψασdαβ̇ψ̄

β̇ (88)

and torsion is given as:
Ta = 4πl2psa . (89)

The action for the Majorana field is precisely the same, but for an additional
mass term in the action:

−
1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (90)

The variation of the action (87) with respect to the variables Bab, λ
ab,

γα, γ̄
α̇, λα, λ̄

α̇, ψα, ψ̄
α̇, ea, βa and ωab gives us the equations of motion,

which can be algebraically solved for all variables as functions of ψα, ψ̄
α̇

and ea:

βaµν = 0 , λabµν = Rab
µν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄

α̇ ,

Babµν =
1

8πl2p
εabcde

c
µe

d
ν , ωabµ = △abµ +Kabµ ,

γαµνρ = iεabcde
a
µe

b
νe

c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe

b
νe

c
ρσ̄

dα̇βψβ .

(91)

In addition, one also obtains (89). Finally, the differential equations of
motion for the spinor and tetrad fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄

β̇ = 0 , (92)
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and

Rµν −
1

2
gµνR = 8πl2p T

µν , (93)

where

Tµν ≡
i

2
ψ̄σ̄beνb∇

µψ +
i

2
ψσbeνb∇

µψ̄

−
1

2
gµν

(

iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄
)

.
(94)

Here we have suppressed the spinor indices, for simplicity. In the case of
the Majorana field, the equations of motion (91) remain the same. The
equations of motion for ψα and ψ̄α̇ obtain the additional mass term,

iσaαβ̇e
µ
a∇µψ̄

β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (95)

while the stress-energy tensor becomes

Tµν ≡
i

2
ψ̄σ̄beνb∇

µψ +
i

2
ψσbeνb∇

µψ̄

−gµν
1

2

[

iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −
1

2
m

(

ψψ + ψ̄ψ̄
)

]

.

(96)

5. Conclusions

Let us summarize the results of the paper. In Section 2 we have introduced
the BF theory and discussed models based on constrained BF action, in
particular the Yang-Mills theory in Minkowski spacetime and the Plebanski
formulation of general relativity. Section 3 was devoted to the first step in
the categorical ladder and the 2BF theory. After introducing the notions
of a 2-group, a crossed module, and the corresponding 2BF theory, we
have studied the 2BF formulation of general relativity and the Einstein-
Yang-Mills theory. Then, in Section 4 we have performed one more step in
the categorical ladder, and introduced the notions of a 3-group, 2-crossed
module, and the 3BF theory. This structure was employed to construct
the constrained 3BF actions for the cases of Klein-Gordon, Dirac, Weyl
and Majorana fields, each coupled to the Einstein-Cartan gravity in the
standard way. In those descriptions, it turned out that the scalar and
fermion fields are associated to a new gauge group, similar to the gauge fields
being associated to a gauge group in the Yang-Mills theory. This opens up a
possibility of a classification of matter fields based on an algebraic structure
of a 3-group.

All the obtained results serve to complete the first step of the spinfoam
quantization programme, as outlined in the Introduction. This paves the
way to the study of steps 2 and 3 of the programme. Namely, the full action
for gravity, gauge fields and matter is written completely in the langulage of
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differential forms, which can be easily adapted to a triangulated spacetime
manifold, in the sense of Regge calculus. This can be seen in the following
table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄
α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄
α̃

G
a

4 4-simplex vertex 4-form H, Hα̃, H̄
α̃

This data can be utilized to construct a Regge-discretized topological
3BF action, and from that a state sum Z, giving rise to a rigorous definition
of the path integral

Z =

∫

Dg

∫

Dφ eiS[g,φ] , (97)

which is a generalization of (1) in the sense that it adds matter fields
(including the gauge boson sector) to gravity at the quantum level. Being
a topological theory, and given the underlying structure of the 3-group, a
pure 3BF action ought to ensure the topological invariance of the state sum
Z, i.e., Z should be triangulation independent. This step, however, requires
the generalizations of the Peter-Weyl and Plancharel theorems to 2-groups
and 3-groups, which are unfortunately still missing (though there are some
attempts to circumvent them at least in the 2-group case [27, 28]). Namely,
the purpose of the Peter-Weyl and Plancharel theorems is to provide a
decomposition of a function on a group into a sum over the corresponding
irreducible representations, which then specifies the spectrum of labels for
the simplices in the triangulation, and fixes the domain of values for the
fields living on those simplices. In the absence of the two theorems, one
can still try to guess the irreducible representations of the 2- and 3-groups,
as was done for example in the spincube model of quantum gravity [12],
or to try to construct the state sum using other techniques, as was done
in [27, 28]).

Of course, when building a realistic theory, we are not interested in a
topological theory, but instead in one which contains local propagating de-
grees of freedom. Thus the state sum Z need not be a topological invariant.
This is obtained via the step 3 of the spinfoam quantization programme, by
imposing the simplicity constraints on Z. The classical actions discussed in
this paper manifestly distinguish the topological sector from the simplicity
constraints, which have been explicitly determined. Imposing them should
thus be a straightforward procedure for a given Z. Completing this pro-
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gramme would ultimately lead us to a tentative state sum describing both
gravity and matter at a quantum level, which is a topic for future research.

In addition to the construction of a full quantum theory of gravity,
there are also many additional possible studies of the classical constrained
3BF action. For example, a Hamiltonian analysis of the theory could be
interesting for the canonical quantization programme, and some work has
begun in this area [29]. Also, it is worth looking into the idea of imposing
the simplicity constraints using a spontaneous symmetry breaking mecha-
nism. Finally, one can also study in more depth the mathematical structure
and properties of the simplicity constraints. The list is not conclusive, and
there may be many other interesting topics to study.
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