
 
 
Научном већу Института за физику у Београду 
 

Предлог за Студентску награду Института за физику у Београду 
 
Поштовани, 
 
Велико ми је задовољство да предложим др Душана Вудраговића за Студентску награду 
Института за физику у Београду за докторску дисертацију под називом "Faraday waves in 
ultracold dipolar Bose gases", коју је одбранио 24. децембра 2019. године на Физичком 
факултету Универзитета у Београду. 
 
Др Душан Вудраговић се у свом научном раду бави проблемима ултрахладних бозонских 
гасова у присуству дипол-дипол интеракције, као и развојем паралелних нумеричких 
алгоритама и програма за нумеричке симулације ових физичких система. 
 
У свом истраживању, које је детаљно описано у дисертацији, кандидат је проучавао феномене 
Фарадејевих и резонантних таласа густине, који настају као резултат хармонијске модулације 
система и представљају нелинеарне ексцитације система услед присуства интеракција, 
спрезањем колективних осцилација и параметарских резонанци. Мотивацију за ово представља 
добро познати класични феномен Фарадејевих таласа, који се појављују на површини плитког 
слоја течности уколико се посуда у којој се налази хармонијски осцилује у вертикалном смеру. 
У том случају појављују се површински таласи чије је патерне први посматрао и описао Мајкл 
Фарадеј почетком XIX века. Интерес за овакву врсту ексцитација појавио се поново 
осамдесетих година XX века у контексту нелинеарних течности, а у контексту ултрахладних 
гасова, Фарадејеви таласи су прво проучавани теоријски 2002. године. Иако су код течности у 
питању површински таласи, а у ултрахладним квантним гасовима се ради о таласима густине, 
користимо исти назив за те феномене. Након првих теоријских и нумеричких резултата за 
системе са контактном интеракцијом, у експериментима са Бозе-Ајнштајн кондензатом атома 
рубидијума су 2007. године Фарадејеви таласи измерени и карактерисани помоћу просторног 
периода, као и времена модулације које је потребно да се развију. У последњих неколико 
година феномен Фарадејевих таласа је поново добио на интересу због неколико важних 
експеримената који су објављени у водећим часописима (Nature, Physical Review Letters, 
Physical Review X). 
 
С обзиром на све већи значај дугодометних интеракција и анизотропности система, што се 
посебно огледа у великом броју радова и експеримената који проучавају утицај дипол-дипол 
интеракције на особине ултрахладних бозонских система, кандидат се фокусирао на развој 
варијационог приступа за опис динамике Фарадејевих и резонантних таласа у диполним 
кондензатима, што раније није било урађено. Овај приступ је заснован на Гаусовом 
варијационом анзацу који за параметре има ширине кондензата, конјуговане фазе, а укључује и 
модулације густине како би описао динамику таласа густине. 
 
Користећи развијени варијациони приступ, као и пун нумерички приступ, детаљно је 
проучавао особине таласа густине у диполним кондензатима на нултој температури, где дипол-
дипол интеракција игра важну улогу због нарушења симетрије услед анизотропије система. 
Извео је једначине кретања које описују динамику модулисаног диполног бозонског система и 
идентификовао најнестабилније моде које одговарају Фарадејевим и резонантним таласима. 
Даље, на основу тога, извео је аналитичке изразе за просторне периоде оба типа таласа густине, 



 
 
као и њихову зависност од јачине контактне и дипол-дипол интеракције. Добијене варијационе 
резултате упоредио је са резултатима детаљних нумеричких симулација које решавају диполну 
Грос-Питаевски једначину у три просторне димензије и добио веома добро слагање. 
 
Кандидат је проучавао и утицај контактне и дипол-дипол интеракције на својства основног 
стања и колективних осцилација диполних кондензата. Док повећање јачине контактне 
интеракције увек доводи до ширења кондензата, ситуација је сложенија када се мења јачина 
дипол-дипол интеракције. За замку у облику цигаре у којој су диполи оријентисани у 
радијалном смеру, кандидат је показао да повећање јачине дипол-дипол интеракције доводи до 
ширења кондензата у лонгитудиналном правцу и у правцу поларизације, док се ширина у 
трећем правцу смањује. Поред тога, проучавао је и фреквенције колективних мода, где су 
ефекти интеракција мање изражени. Ово се посебно односи на монополну и квадруполну моду, 
чије вредности практично остају константне у целом распону експериментално релевантних 
вредности јачина интеракција. Са друге стране, фреквенција радијалне квадруполне моде је 
осетљивија на промену јачине интеракције, посебно јачине контактне интеракције, док при 
промени јачине дипол-дипол интеракције показује немонотоно понашање. 
 
Важан резултат докторске дисертације кандидата је и развој паралелних нумеричких метода за 
решавање тродимензионалне Грос-Питаевски једначине са контактним и диполним 
интеракционим чланом, помоћу које се описују проучавани ултрахладни бозонски системи. 
Временски зависна диполна Грос-Питаевски једначина је парцијална диференцијална 
једначина по просторним координатама и времену и има структуру нелинеарне Шредингерове 
једначине, тако да садржи први извод таласне функције по времену и друге изводе по 
просторним координатама. Диполни интеракциони члан је описан помоћу просторног 
интеграла, пошто је у питању дугодоментна интеракција. Развијени метод подељеног корака за 
решавање Грос-Питаевски једначине укључује дискретизацију по простору и времену, 
појединачну интеграцију по просторним координатама и временску пропагацију 
дискретизоване једначине. Уколико је познато решење у једном временском тренутку, ова 
метода омогућава налажење решења после малог временског корака пропагирањем 
дискретизованe једначинe. У дисертацији кандидата кориштена је семи-имплицитна Кренк-
Николсон дискретизациона шема која осигурава стабилност решења и чува норму таласне 
функције током пропагације у реалном времену. Нумерички алгоритми који су раније 
развијени за случај контактне интеракције су у оквиру доктората уопштени на Грос-Питаевски 
једначину са дипол-дипол интеракцијом. С обзиром на велику нумеричку захтевност 
тродимензионалних симулација за проучавање реалних физичких система, сви алгоритми су 
паралелизовани. 
 
Кандидат је ове резултате приказао детаљно у оквиру докторске дисертације под називом 
"Faraday waves in ultracold dipolar Bose gases ", која је написана на енглеском језику и има 7 
поглавља. Најзначајнији радови у којима су објављени представљени резултати су: 
 

1. D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, and S. K. Adhikari, 
C Programs for Solving the Time-dependent Gross-Pitaevskii Equation in a Fully Anisotropic Trap, 
Comput. Phys. Commun. 183, 2021 (2012). 
DOI: 10.1016/j.cpc.2012.03.022; ISSN: 0010-4655; IF(2012) = 3.078 
 

2. R. Kishor Kumar, L. Young-S., D. Vudragović, A. Balaž, P. Muruganandam, and S. K. Adhikari, 
Fortran and C Programs for the Time-dependent Dipolar Gross-Pitaevskii Equation in an Anisotropic 
Trap, Comput. Phys. Commun. 195, 117 (2015). 
DOI: 10.1016/j.cpc.2015.03.024; ISSN: 0010-4655; IF(2015) = 3.635 
 



 
 

3. L. Young-S., D. Vudragović, P. Muruganandam, S. K. Adhikari, and A. Balaž, 
OpenMP Fortran and C Programs for Solving the Time-dependent Gross-Pitaevskii Equation in an 
Anisotropic Trap, Comput. Phys. Commun. 204, 209 (2016). 
DOI: 10.1016/j.cpc.2016.03.015; ISSN: 0010-4655; IF(2016) = 3.936 
 

4. L. Young-S., P. Muruganandam, S. K. Adhikari, V. Loncar, D. Vudragović, and A. Balaž, 
OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation, 
Comput. Phys. Commun. 220, 503 (2017). 
DOI: 10.1016/j.cpc.2017.07.013, ISSN: 0010-4655; IF(2017) = 3.748 
 

5. D. Vudragović and A. Balaž, 
Faraday and Resonant Waves in Dipolar Cigar-Shaped Bose-Einstein Condensates, 
Symmetry 11, 1090 (2019). 
DOI: 10.3390/sym11091090; ISSN: 2073-8994; IF(2018)=2.143 

У прилогу је дат релевантан списак публикација кандидата. Пошто је он у периоду од 2008. до 
2012. године био члан АТЛАС колаборације, радови објављени у том контексту су наведени 
посебно, јер нису везани за докторску дисертацију која је овом приликом номинована за 
награду. 
 
Др Душан Вудраговић је до сада објавио 22 рада у међународним часописима, 3 поглавља у 
монографијама, као и више саопштења са међународних скупова штампаних у целини и у 
изводу. Када се изузму публикације из периода ангажовања у АТЛАС колаборацији и друге 
публикације који нису везане за докторат, кандидат је објавио 8 радова у међународним 
часописима, од чега 4 категорије М21а, 2 категорије М21 и по један категорија М22 и М23, 
од чега је на 3 рада водећи аутор. Укупан импакт фактор ових радова је 21,102. У ову групу 
релевантних публикација спадају и два поглавља категорије М13 и једно поглавље категорије 
М14, 2 саопштења категорије М33 и 6 саопштења категорије М34. 
 
Према бази Web of Science, радови др Душана Вудраговића су цитирани укупно 1937 пута (без 
аутоцитата), уз h=16. Када се разматрају само публикације релевантне за докторат, онда је 
према истој бази број цитата 293 (без аутоцитата), а h=6. Кандидат је био рецензент четири 
рада у часопису Data Technologies and Applications, два рада у часопису Physics Letters A и 
једног рада у часопису Simulation: Transactions of the Society for Modeling and Simulation 
International. 
 
Имајући све наведено у виду, са задовољством предлажем др Душана Вудраговића за 
Студентску награду Института за физику у Београду за најбољу докторску тезу 
одбрањену током 2019. године. 
 
 
 
У Београду, 29. 04. 2020. године 

 
 
 
 

др Антун Балаж, научни саветник 
руководилац Центра изузетних вредности 

за изучавање комплексних система 



Биографија др Душана Вудраговића 
 
 
Душан Вудраговић је рођен 3. маја 1980. године у Сремској Митровици. Основну 
школу “Доситеј Обрадовић” завршио је у Путинцима, а Гимназију “Стеван Пузић” у 
Руми. Основне студије је похађао на Физичком факултету Универзитета у Београду на 
смеру Примењена физика и информатика у периоду од 1999. до 2005. године. Током 
студија добио је стипендије Министарства науке Републике Србије и Владе Републике 
Србије, као и награду 1000 најбољих студената у Србији Норвешке амбасаде у 
Београду. Дипломирао је 2005. године са просечном оценом 9.62. Дипломски рад под 
називом “Мерење ефективне трансверзалне eмитансе јонског снопа” урадио је под 
руководством проф. др Ивана Аничина. 
 
У периоду од 2006. до 2008. године боравио је у ЦЕРН-у (Женева) као сарадник на 
ФП6 пројектима SEE-GRID-2 (SEE-GRID eInfrastructure for regional eScience) и EGEE-
II (Enabling Grids for E-sciencE). Свој истраживачки рад је започео на АТЛАС 
колаборацији 2008. године, који прекида 2012. године, након чега, под менторством др 
Антуна Балажа, прелази у Лабораторију за примену рачунара у науци Института за 
физику у Београду, у оквиру пројекта ОН171017. 
 
Докторске студије на Физичком факултету Универзитета у Београду уписао jе 2012. 
године. Докторску дисертацију под насловом “Faraday waves in ultracold dipolar Bose 
gases” (Фарадејеви таласи у ултрахладним диполним Бозе гасовима) урађену под 
менторством др Антуна Балажа, одбранио jе 24. децембра 2019. године. 
 
Душан Вудраговић је запослен у Институту за физику у Београду као истраживач 
сарадник у Лабораторији за примену рачунара у науци Националног центра изузетних 
вредности за изучавање комплексних система. У оквиру међународне сарадње, 
тренутно је ангажован на Хоризонт 2020 пројектима NI4OS-Europe (National Initiatives 
for Open Science in Europe) и SMARTCHAIN (Towards Innovation - driven and smart 
solutions in short food supply chains). 
 
Др Душан Вудраговић је до сада објавио 22 рада у међународним часописима, 3 
поглавља у монографијама, као и више саопштења са међународних скупова 
штампаних у целини и у изводу. Када се изузму публикације из периода ангажовања у 
АТЛАС колаборацији и друге публикације који нису везане за докторат, кандидат је 
објавио 8 радова у међународним часописима, од чега 4 категорије М21а, 2 категорије 
М21 и по један категорија М22 и М23. У ову групу релевантних публикација спадају и 
два поглавља категорије М13 и једно поглавље категорије М14, 2 саопштења 
категорије М33 и 6 саопштења категорије М34. 
 
Према бази Web of Science, радови др Душана Вудраговића су цитирани укупно 1937 
пута (без аутоцитата), уз h=16. Када се разматрају само публикације релевантне за 
докторат, онда је према истој бази број цитата 293 (без аутоцитата), а h=6. 



Списак релевантних публикациjа др Душана Вудраговића

M13 – Монографска студиjа/поглавље у књизи М11 или рад у тематском
зборнику водећег међународног значаjа

1. D. Vudragović, and A. Balaž, Science gateway for the Serbian condensed matter
physics community, Science gateways for distributed computing infrastructures, Ed.
Peter Kacsuk, p. 209-220, Springer (2014),
DOI: 10.1007/978-3-319-11268-8.

2. O. Prnjat, A. Balaž, D. Vudragović, I. Liabotis, C. Sener, B. Marović, M. Kozlo-
vszky, and G. Neagu, SEE-GRID eInfrastructure for regional eScience, Data driven
e-Science, Eds. S. C. Lin and E. Yen, p. 91, Springer (2011),
DOI: 10.1007/978-1-4419-8014-4_7.

M14 – Монографска студиjа/поглавље у књизи M12 или рад у тематском
зборнику водећег међународног значаjа

1. D. Stanković, P. Jovanović, A. Jović, V. Slavnić, D. Vudragović, and A. Balaž,
Implementation and Benchmarking of New FFT Libraries in Quantum ESPRESSO,
High-performance computing infrastructure for South East Europe’s research co-
mmunities, p. 155-162, Springer (2014),
DOI: 10.1007/978-3-319-01520-0_19.

М21a – Радови у међународним часописима изузетних вредности

1. Luis E. Young-S., P. Muruganandam, S. K. Adhikari, V. Lončar, D. Vudragović,
and A. Balaž, OpenMP GNU and Intel Fortran programs for solving the time-
dependent Gross-Pitaevskii equation, Comput. Phys. Commun. 220, 503 (2017),
DOI: 10.1016/j.cpc.2017.07.013; IF(2017) = 3.748.

2. Luis E. Young-S.,D. Vudragović, P. Muruganandam, S. K. Adhikari, and A. Balaž,
OpenMP Fortran and C programs for solving the time-dependent Gross-Pitaevskii
equation in an anisotropic trap, Comput. Phys. Commun. 204, 209 (2016),
DOI: 10.1016/j.cpc.2016.03.015; IF(2016) = 3.936.

3. R. K. Kumar, Luis E. Young-S., D. Vudragović, A. Balaž, P. Muruganandam,
and S. K. Adhikari, Fortran and C programs for the time-dependent dipolar Gross-
Pitaevskii equation in an anisotropic trap, Comput. Phys. Commun. 195, 117 (2015),
DOI: 10.1016/j.cpc.2015.03.024; IF(2015) = 3.635.

4. D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, and S. K. Adhikari,
C Programs for solving the time-dependent Gross-Pitaevskii equation in a fully
anisotropic trap, Comput. Phys. Commun. 183, 2021 (2012),
DOI: 10.1016/j.cpc.2009.04.015; IF(2012) = 3.078.

М21 – Радови у врхунским међународним часописима

1. A. Balaž, I. Vidanović, D. Stojiljković, D. Vudragović, A. Belić, and A. Bogojević,
SPEEDUP code for calculation of transition amplitudes via the effective action
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C. Sener, and D. Vudragović, National Grid initiatives set-up and monitoring
guidelines, The first EELA-2 conference, Bogota, Colombia, 25-27 February 2009.
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Academia Sinica, Taipei, TAIWAN Date: MAR 09-12, 2010
DATA DRIVEN E-SCIENCE, ISGC 2010: USE CASES AND SUCCESSFUL
APPLICATIONS OF DISTRIBUTED COMPUTING INFRASTRUCTURES  Pages:
91-103   Published: 2011

  View Abstract

Readiness of the ATLAS Tile Calorimeter for LHC collisions

By: Aad, G.; Abbott, B.; Abdallah, J.; et al.
Group Author(s): ATLAS Collaboration
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Performance of the ATLAS detector using first collision data Times Cited: 22 
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a b s t r a c t

We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross–
Pitaevskii (GP) equation for a Bose–Einstein condensate in one, two, and three spatial dimensions,
optimized for use with GNU and Intel compilers. We use the split-step Crank–Nicolson algorithm
for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-
stationary solutions, respectively. The present OpenMP programs are designed for computers withmulti-
core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular
free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful
comments for the users. All input parameters are listed at the beginning of each program. Different output
files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc.
We also present speedup test results for new versions of the programs.
New version program summary
Program title: BEC-GP-OMP-FOR software package, consisting of: (i) imag1d-th, (ii) imag2d-th,
(iii) imag3d-th, (iv) imagaxi-th, (v) imagcir-th, (vi) imagsph-th, (vii) real1d-th, (viii) real2d-th, (ix) real3d-
th, (x) realaxi-th, (xi) realcir-th, (xii) realsph-th.
Program files doi: http://dx.doi.org/10.17632/y8zk3jgn84.2
Licensing provisions: Apache License 2.0
Programming language: OpenMP GNU and Intel Fortran 90.
Computer: Any multi-core personal computer or workstation with the appropriate OpenMP-capable
Fortran compiler installed.
Number of processors used: All available CPU cores on the executing computer.
Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid. 204 (2016) 209.
Does the new version supersede the previous version?: Not completely. It does supersede previous Fortran
programs from both references above, but not OpenMP C programs from Comput. Phys. Commun. 204
(2016) 209.
Nature of problem: The present Open Multi-Processing (OpenMP) Fortran programs, optimized for use
with commercially-licensed Intel Fortran and free open-source GNU Fortran compilers, solve the time-
dependent nonlinear partial differential (GP) equation for a trapped Bose–Einstein condensate in one
(1d), two (2d), and three (3d) spatial dimensions for six different trap symmetries: axially and radially
symmetric traps in 3d, circularly symmetric traps in 2d, fully isotropic (spherically symmetric) and fully
anisotropic traps in 2d and 3d, as well as 1d traps, where no spatial symmetry is considered.
Solution method: We employ the split-step Crank–Nicolson algorithm to discretize the time-dependent
GP equation in space and time. The discretized equation is then solved by imaginary- or real-time
propagation, employing adequately small space and time steps, to yield the solution of stationary and
non-stationary problems, respectively.

* Corresponding author.
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Reasons for the new version: Previously published Fortran programs [1,2] have now become popular tools
[3] for solving the GP equation. These programs have been translated to the C programming language [4]
and later extended to the more complex scenario of dipolar atoms [5]. Now virtually all computers have
multi-core processors and some have motherboards with more than one physical computer processing
unit (CPU), which may increase the number of available CPU cores on a single computer to several tens.
The C programs have been adopted to be very fast on such multi-core modern computers using general-
purpose graphic processing units (GPGPU) with Nvidia CUDA and computer clusters using Message
Passing Interface (MPI) [6]. Nevertheless, previously developed Fortran programs are also commonly used
for scientific computation andmost of them use a single CPU core at a time inmodernmulti-core laptops,
desktops, and workstations. Unless the Fortran programs aremade aware and capable of making efficient
use of the available CPU cores, the solution of even a realistic dynamical 1d problem, not to mention the
more complicated 2d and 3d problems, could be time consuming using the Fortran programs. Previously,
we published auto-parallel Fortran programs [2] suitable for Intel (but not GNU) compiler for solving the
GP equation. Hence, a need for the full OpenMP version of the Fortran programs to reduce the execution
time cannot be overemphasized. To address this issue, we provide here such OpenMP Fortran programs,
optimized for both Intel and GNU Fortran compilers and capable of using all available CPU cores, which
can significantly reduce the execution time.
Summary of revisions: Previous Fortran programs [1] for solving the time-dependent GP equation in 1d, 2d,
and 3d with different trap symmetries have been parallelized using the OpenMP interface to reduce the
execution time on multi-core processors. There are six different trap symmetries considered, resulting in
six programs for imaginary-time propagation and six for real-time propagation, totaling to 12 programs
included in BEC-GP-OMP-FOR software package.

All input data (number of atoms, scattering length, harmonic oscillator trap length, trap anisotropy,
etc.) are conveniently placed at the beginning of each program, as before [2]. Present programs introduce
a new input parameter, which is designated by Number_of_Threads and defines the number of CPU
cores of the processor to be used in the calculation. If one sets the value 0 for this parameter, all available
CPU cores will be used. For the most efficient calculation it is advisable to leave one CPU core unused for
the background system’s jobs. For example, on amachinewith 20 CPU cores such that we used for testing,
it is advisable to use up to 19 CPU cores. However, the total number of used CPU cores can be divided into
more than one job. For instance, one can run three simulations simultaneously using 10, 4, and 5 CPU
cores, respectively, thus totaling to 19 used CPU cores on a 20-core computer.

The Fortran source programs are located in the directory src, and can be compiled by the make

command using the makefile in the root directory BEC-GP-OMP-FOR of the software package. The
examples of produced output files can be found in the directory output, although some large density
files are omitted, to save space. The programs calculate the values of actually used dimensionless
nonlinearities from thephysical input parameters,where the input parameters correspond to the identical
nonlinearity values as in the previously published programs [1], so that the output files of the old
and new programs can be directly compared. The output files are conveniently named such that their
contents can be easily identified, following the naming convention introduced in Ref. [2]. For example,
a file named <code>-out.txt, where <code> is a name of the individual program, represents
the general output file containing input data, time and space steps, nonlinearity, energy and chemical
potential, and was named fort.7 in the old Fortran version of programs [1]. A file named <code>-

den.txt is the output file with the condensate density, which had the names fort.3 and fort.4

in the old Fortran version [1] for imaginary- and real-time propagation programs, respectively. Other
possible density outputs, such as the initial density, are commented out in the programs to have a
simpler set of output files, but users can uncomment and re-enable them, if needed. In addition, there
are output files for reduced (integrated) 1d and 2d densities for different programs. In the real-time
programs there is also an output file reporting the dynamics of evolution of root-mean-square sizes
after a perturbation is introduced. The supplied real-time programs solve the stationary GP equation,
and then calculate the dynamics. As the imaginary-time programs are more accurate than the real-time
programs for the solution of a stationary problem, one can first solve the stationary problem using the
imaginary-time programs, adapt the real-time programs to read the pre-calculated wave function and
then study the dynamics. In that case the parameter NSTP in the real-time programs should be set to
zero and the space mesh and nonlinearity parameters should be identical in both programs. The reader
is advised to consult our previous publication where a complete description of the output files is given
[2]. A readme.txt file, included in the root directory, explains the procedure to compile and run the
programs.

We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs. The
parameters used for testing are given in sample input files, provided in the corresponding directory
together with the programs. In Table 1 we present wall-clock execution times for runs on 1, 6, and 19
CPU cores for programs compiled using Intel and GNU Fortran compilers. The corresponding columns
‘‘Intel speedup’’ and ‘‘GNU speedup’’ give the ratio of wall-clock execution times of runs on 1 and 19 CPU
cores, and denote the actual measured speedup for 19 CPU cores. In all cases and for all numbers of CPU
cores, although the GNU Fortran compiler gives excellent results, the Intel Fortran compiler turns out to
be slightly faster. Note that during these tests we always ran only a single simulation on aworkstation at a
time, to avoid any possible interference issues. Therefore, the obtained wall-clock times are more reliable
than the ones that could be measured with two or more jobs running simultaneously. We also studied
the speedup of the programs as a function of the number of CPU cores used. The performance of the
Intel and GNU Fortran compilers is illustrated in Fig. 1, where we plot the speedup and actual wall-clock
times as functions of the number of CPU cores for 2d and 3d programs. We see that the speedup increases
monotonically with the number of CPU cores in all cases and has large values (between 10 and 14 for 3d
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programs) for the maximal number of cores. This fully justifies the development of OpenMP programs,
which enable much faster and more efficient solving of the GP equation. However, a slow saturation in
the speedup with the further increase in the number of CPU cores is observed in all cases, as expected.

Fig. 1. (a) Speedup for 2d and 3d programs compiled with the Intel (I) and GNU (G) Fortran compilers as a function of the number of CPU cores, measured on a workstation
with two Intel Xeon E5-2650 v3 CPUs. (b) Wall-clock execution time (in seconds) of 2d and 3d programs compiled with the Intel (I) and GNU (G) Fortran compilers as a
function of the number of CPU cores.

Fig. 2. Speedup of real2d-th program, compiled with the Intel Fortran 90 compiler and executed on 19 CPU cores on a workstation with two Intel Xeon E5-2650 v3 CPUs, as
a function of the number of spatial discretization points NX=NY.

Table 1
Wall-clock execution times (in seconds) for runs with 1, 6, and 19 CPU cores of different pro-
grams using the Intel Fortran (ifort) and GNU Fortran (gfortran) compilers on a workstation
with two Intel Xeon E5-2650 v3 CPUs, with a total of 20 CPU cores, and the obtained speedups
for 19 CPU cores.

# of cores 1 1 6 6 19 19 19 19
Fortran Intel GNU Intel GNU Intel GNU Intel GNU

time time time time time time speedup speedup
imag1d 52 60 22 22 20 22 2.6 2.7
imagcir 22 30 14 15 14 15 1.6 2.0
imagsph 24 30 12 15 12 14 2.4 2.1
real1d 205 345 76 108 62 86 3.3 4.0
realcir 145 220 55 73 48 59 3.0 3.7
realsph 155 250 57 76 46 61 3.4 2.7
imag2d 255 415 52 84 27 40 9.4 10.4
imagaxi 260 435 62 105 30 55 8.7 7.9
real2d 325 525 74 107 32 50 10.1 10.5
realaxi 160 265 35 49 16 24 10.0 11.0
imag3d 2080 2630 370 550 200 250 10.4 10.5
real3d 19500 26000 3650 5600 1410 2250 13.8 11.6
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The speedup tends to increase for programs in higher dimensions, as they becomemore complex and
have to process more data. This is why the speedups of the supplied 2d and 3d programs are larger than
those of 1d programs. Also, for a single program the speedup increaseswith the size of the spatial grid, i.e.,
with the number of spatial discretization points, since this increases the amount of calculations performed
by the program. To demonstrate this, we tested the supplied real2d-th program and varied the number
of spatial discretization points NX=NY from 20 to 1000. The measured speedup obtained when running
this program on 19 CPU cores as a function of the number of discretization points is shown in Fig. 2. The
speedup first increases rapidly with the number of discretization points and eventually saturates.
Additional comments: Example inputs provided with the programs take less than 30 minutes to run on a
workstation with two Intel Xeon E5-2650 v3 processors (2 QPI links, 10 CPU cores, 25MB cache, 2.3 GHz).

© 2017 Elsevier B.V. All rights reserved.
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a b s t r a c t

We present new version of previously published Fortran and C programs for solving the Gross–Pitaevskii
equation for a Bose–Einstein condensatewith contact interaction in one, two and three spatial dimensions
in imaginary and real time, yielding both stationary and non-stationary solutions. To reduce the execution
time on multicore processors, new versions of parallelized programs are developed using Open Multi-
Processing (OpenMP) interface. The input in the previous versions of programs was the mathematical
quantity nonlinearity for dimensionless form of Gross–Pitaevskii equation, whereas in the present
programs the inputs are quantities of experimental interest, such as, number of atoms, scattering length,
oscillator length for the trap, etc. Newoutput files for some integrated one- and two-dimensional densities
of experimental interest are given. We also present speedup test results for the new programs.

New version program summary

Program title: BEC-GP-OMP package, consisting of: (i) imag1d, (ii) imag2d, (iii) imag3d, (iv) imagaxi,
(v) imagcir, (vi) imagsph, (vii) real1d, (viii) real2d, (ix) real3d, (x) realaxi, (xi) realcir, (xii) realsph.
Catalogue identifier: AEDU_v4_0.
Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDU_v4_0.html
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.
Licensing provisions: Apache License 2.0
No. of lines in distributed program, including test data, etc.: 130308.
No. of bytes in distributed program, including test data, etc.: 929062.
Distribution format: tar.gz.
Programming language: OpenMP C; OpenMP Fortran.
Computer: Any multi-core personal computer or workstation.
Operating system: Linux and Windows.
RAM: 1 GB.
Number of processors used: All available CPU cores on the executing computer.
Classification: 2.9, 4.3, 4.12.
Catalogue identifier of previous version: AEDU_v1_0, AEDU_v2_0.
Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid. 183 (2012) 2021.
Does the new version supersede the previous version?: No. It does supersedes versions AEDU_v1_0 and
AEDU_v2_0, but not AEDU_v3_0, which is MPI-parallelized version.

⇤ Corresponding author.
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Nature of problem: The present OpenMP Fortran and C programs solve the time-dependent nonlinear
partial differential Gross–Pitaevskii (GP) equation for a Bose–Einstein condensate in one (1D), two (2D),
and three (3D) spatial dimensions in a harmonic trap with six different symmetries: axial- and radial-
symmetry in 3D, circular-symmetry in 2D, and fully anisotropic in 2D and 3D.

Solution method: The time-dependent GP equation is solved by the split-step Crank–Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The method yields the solution of stationary and/or non-stationary
problems.

Reasons for the new version: Previously published Fortran and C programs [1,2] for solving the GP equation
are recently enjoying frequent usage [3] and application to a more complex scenario of dipolar atoms [4].
They are also further extended to make use of general purpose graphics processing units (GPGPU) with
Nvidia CUDA [5], as well as computer clusters using Message Passing Interface (MPI) [6]. However, a
vast majority of users use single-computer programs, with which the solution of a realistic dynamical
1D problem, not to mention the more complicated 2D and 3D problems, could be time consuming.
Now practically all computers have multicore processors, ranging from 2 up to 18 and more CPU cores.
Some computers include motherboards with more than one physical CPU, further increasing the possible
number of available CPU cores on a single computer to several tens. The present programs are parallelized
using OpenMP over all the CPU cores and can significantly reduce the execution time. Furthermore, in the
old version of the programs [1,2] the inputs were based on themathematical quantity nonlinearity for the
dimensionless form of the GP equation. The inputs for the present versions of programs are given in terms
of phenomenological variables of experimental interest, as in Refs. [4,5], i.e., number of atoms, scattering
length, harmonic oscillator length of the confining trap, etc. Also, the output files are given names which
make identification of their contents easier, as in Refs. [4,5]. In addition, new output files for integrated
densities of experimental interest are provided, and all programs were thoroughly revised to eliminate
redundancies.

Summary of revisions: Previous Fortran [1] and C [2] programs for the solution of time-dependent GP
equation in 1D, 2D, and 3D with different trap symmetries have been modified to achieve two goals.
First, they are parallelized using OpenMP interface to reduce the execution time in multicore processors.
Previous C programs [2] had OpenMP-parallelized versions of 2D and 3D programs, together with the
serial versions, while here all programs are OpenMP-parallelized. Secondly, the programs now have input
and output files with quantities of phenomenological interest. There are six trap symmetries and both in
C and in Fortran there are twelve programs, six for imaginary-time propagation and six for real-time
propagation, totaling to 24 programs. In 3D, we consider full radial symmetry, axial symmetry and full
anisotropy. In 2D, we consider circular symmetry and full anisotropy. The structure of all programs is
similar.

For the Fortran programs the input data (number of atoms, scattering length, harmonic oscillator trap
length, trap anisotropy, etc.) are conveniently placed at the beginning of each program. For the C programs
the input data are placed in separate input files, examples of which can be found in a directory named
input. The examples of output files for both Fortran and C programs are placed in the corresponding
directories called output. The programs then calculate the dimensionless nonlinearities actually used in
the calculation. The provided programs use physical input parameters that give identical nonlinearity
values as the previously published programs [1,2], so that the output files of the old and new programs
can be directly compared. The output files are conveniently named so that their contents can be easily
identified, following Refs. [4,5]. For example, file named<code>-out.txt, where<code> is a name of the
individual program, is the general output file containing input data, time and space steps, nonlinearity,
energy and chemical potential, and was named fort.7 in the old Fortran version. The file <code>-den.txt
is the output file with the condensate density, which had the names fort.3 and fort.4 in the old Fortran
version for imaginary- and real-time propagation, respectively. Other density outputs, such as the initial
density, are commented out to have a simpler set of output files. The users can re-introduce those by
taking out the comment symbols, if needed.

Table 1
Wall-clock execution times (in seconds) for runs with 1, 6 and 20 CPU cores with different programs using the Intel
Fortran ifort (F-1, F-6 and F-20, respectively) and Intel C icc (C-1, C-6 and C-20, respectively) compilers using a
workstation with two Intel Xeon E5-2650 v3 CPUs, with a total of 20 CPU cores, and obtained speedups (speedup-
F = F-1/F-20, -speedupC = C-1/C-20) for 20 CPU cores.

F-1 F-6 F-20 speedup-F C-1 C-6 C-20 speedup-C

imag1d 32 26 26 1.2 45 28 27 1.7
imagcir 15 15 15 1.0 21 15 15 1.4
imagsph 12 12 12 1.0 19 12 10 1.9
real1d 194 84 72 2.7 304 110 98 3.1
realcir 132 62 57 2.3 182 78 64 2.8
realsph 119 68 67 1.8 191 76 61 3.1
imag2d 190 66 52 3.7 394 77 33 11.9
imagaxi 240 74 56 4.3 499 113 55 9.1
real2d 269 70 47 5.7 483 96 35 13.8
realaxi 132 37 25 5.3 237 51 22 10.8
imag3d 1682 472 366 4.6 2490 545 202 12.3
real3d 15,479 3494 2082 7.4 22,228 4558 1438 15.5
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Fig. 1. (a) Speedup of the C and Fortran (F) imag3d programs as a function of the number of CPU cores, measured in a workstation with two Intel Xeon E5-2650 v3 CPUs.
The speedup for the run with N CPU cores was calculated as the ratio between wall-clock execution times with one and N CPU cores. (b) Wall-clock time of the same runs
as a function of the number of CPU cores.

Also, some new output files are introduced in this version of programs. The files <code>-rms.txt are
the output files with values of root-mean-square (rms) sizes in the multi-variable cases. There are new
files with integrated densities, such as imag2d-den1d_x.txt, where the first part (imag2d) denotes that
the density was calculated with the 2D program imag2d, and the second part (den1d_x) stands for the 1D
density in the x-direction, obtained after integrating out the 2D density |�(x, y)|2 in the x–y plane over
y-coordinate,

n1D(x) =
Z 1

�1
dy|�(x, y)|2. (1)

Similarly, imag3d-den1d_x.txt and real3d-den1d_x.txt represent 1D densities from a 3D calculation ob-
tained after integrating out the 3D density |�(x, y, z)|2 over y- and z-coordinate. The files imag3d-
den2d_xy.txt and real3d-den2d_xy.txt are the integrated 2D densities in the x–y plane from a 3D calcu-
lation obtained after integrating out the 3D density over the z-coordinate, and similarly for other output
files. Again, calculation and saving of these integrated densities is commented out in the programs, and
can be activated by the user, if needed.

In real-time propagation programs there are additional results for the dynamics saved in files, such
as real2d-dyna.txt, where the first column denotes time, the second, third and fourth columns display
rms sizes for the x-, y-, and r-coordinate, respectively. The dynamics is generated by multiplying the
nonlinearity with a pre-defined factor during the NRUN iterations, and starting with the wave function
calculated during theNPAS iterations. Such fileswere named fort.8 in the old Fortran versions of programs.
There are similar files in the 3D real-time programs as well.

Often it is needed to get a precise stationary state solution by imaginary-time propagation and then
use it in the study of dynamics using real-time propagation. For that purpose, if the integer number NSTP
is set to zero in real-time propagation, the density obtained in the imaginary-time simulation is used as
initial wave function for real-time propagation, as in Refs. [4,5]. In addition, at the end of output files
<code>-out.txt, we have introduced two new outputs, wall-clock execution time and CPU time for each
run.

We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs, and present
results for all programs compiled with the Intel compiler. In Table 1 we show different wall-clock execu-
tion times for runs on 1, 6 and 20 CPU cores for Fortran and C. The corresponding columns ‘‘speedup-F’’
and ‘‘speedup-C’’ give the ratio of wall-clock execution times of runs on 1 and 20 CPU cores, and denote
the actual measured speedup for 20 CPU cores. For the programs with effectively one spatial variable, the
Fortran programs turn out to be quicker for small number of cores,whereas for larger number of CPU cores
and for the programs with three spatial variables the C programs are faster. We also studied the speedup
of the programs as a function of the number of available CPU cores. The performance for the imag3d For-
tran and C programs is illustrated in Fig. 1(a) and (b), where we plot the speedup and actual wall-clock
time of the imag3d C and Fortran programs as a function of number of CPU cores in aworkstationwith two
Intel Xeon E5-2650 v3 CPUs, with a total of 20 CPU cores. The plot in Fig. 1(a) shows that the C program
parallelizes more efficiently than the Fortran program. However, as the wall-clock time in Fortran for a
single CPU core is less than that in C, the wall-clock times in both cases are comparable, viz. Fig. 1(b). A
saturation of the speedup with the increase of the number of CPU cores is expected in all cases. However,
the saturation is attained quicker in Fortran than in C programs, and therefore the use of C programs could
be recommended for larger number of CPU cores. For a small number of CPU cores the Fortran programs
should be preferable. For example, fromTable 1we see that for 6 CPU cores the Fortran programs are faster
than the C programs. In Fig. 1(a) the saturation of the speedup of the Fortran program is achieved for ap-
proximately 10 CPU cores, when thewall-clock time of the C program crosses that of the Fortran program.
Additional comments:

This package consists of 24 programs, see Program title above. For the particular purpose of each program,
please see descriptions below.
Running time:

Example inputs provided with the programs take less than 30 min in a workstation with two Intel Xeon
Processors E5-2650 v3, 2 QPI links, 10 CPU cores (25 MB cache, 2.3 GHz).
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Program summary (i), (v), (vi), (vii), (xi), (xii)
Program title: imag1d, imagcir, imagsph, real1d, realcir, realsph.
Title of electronic files in C: (imag1d.c and imag1d.h), (imagcir.c and imagcir.h), (imagsph.c and imagsph.h),
(real1d.c and real1d.h), (realcir.c and realcir.h), (realsph.c and realsph.h).
Title of electronic files in Fortran 90: imag1d.f90, imagcir.f90, imagsph.f90, real1d.f90, realcir.f90,
realsph.f90.
Maximum RAM memory: 1 GB for the supplied programs.
Programming language used: OpenMP C and Fortran 90.
Typical running time: Minutes on a modern four-core PC.
Nature of physical problem: These programs are designed to solve the time-dependent nonlinear partial
differential GP equation in one spatial variable.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.
Program summary (ii), (iv), (viii), (x)
Program title: imag2d, imagaxi, real2d, realaxi.
Title of electronic files in C: (imag2d.c and imag2d.h), (imagaxi.c and imagaxi.h), (real2d.c and real2d.h),
(realaxi.c and realaxi.h).
Title of electronic files in Fortran 90: imag2d.f90, imagaxi.f90, real2d.f90, realaxi.f90.
Maximum RAM memory: 1 GB for the supplied programs.
Programming language used: OpenMP C and Fortran 90.
Typical running time: Hour on a modern four-core PC.
Nature of physical problem: These programs are designed to solve the time-dependent nonlinear partial
differential GP equation in two spatial variables.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.
Program summary (iii), (ix)
Program title: imag3d, real3d.
Title of electronic files in C: (imag3d.c and imag3d.h), (real3d.c and real3d.h).
Title of electronic files in Fortran 90: imag3d.f90, real3d.f90.
Maximum RAM memory: 1 GB for the supplied programs.
Programming language used: OpenMP C and Fortran 90.
Typical running time: Few hours on a modern four-core PC.
Nature of physical problem: These programs are designed to solve the time-dependent nonlinear partial
differential GP equation in three spatial variables.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

© 2016 Elsevier B.V. All rights reserved.
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a b s t r a c t

Many of the static and dynamic properties of an atomic Bose–Einstein condensate (BEC) are usually
studied by solving the mean-field Gross–Pitaevskii (GP) equation, which is a nonlinear partial differential
equation for short-range atomic interaction. More recently, BEC of atoms with long-range dipolar atomic
interaction are used in theoretical and experimental studies. For dipolar atomic interaction, the GP
equation is a partial integro-differential equation, requiring complex algorithm for its numerical solution.
Here we present numerical algorithms for both stationary and non-stationary solutions of the full three-
dimensional (3D) GP equation for a dipolar BEC, including the contact interaction. We also consider the
simplified one- (1D) and two-dimensional (2D) GP equations satisfied by cigar- and disk-shaped dipolar
BECs. We employ the split-step Crank–Nicolson method with real- and imaginary-time propagations,
respectively, for the numerical solution of the GP equation for dynamic and static properties of a dipolar
BEC. The atoms are considered to be polarized along the z axis and we consider ten different cases,
e.g., stationary and non-stationary solutions of the GP equation for a dipolar BEC in 1D (along x and z

axes), 2D (in x–y and x–z planes), and 3D, and we provide working codes in Fortran 90/95 and C for these
ten cases (twenty programs in all). We present numerical results for energy, chemical potential, root-
mean-square sizes and density of the dipolar BECs and, where available, compare them with results of
other authors and of variational and Thomas–Fermi approximations.

Program summary

Program title: (i) imag1dZ, (ii) imag1dX, (iii) imag2dXY, (iv) imag2dXZ, (v) imag3d, (vi) real1dZ, (vii)
real1dX, (viii) real2dXY, (ix) real2dXZ, (x) real3d
Catalogue identifier: AEWL_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWL_v1_0.html
Program obtainable from: CPC Program Library, Queens University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 111384
No. of bytes in distributed program, including test data, etc.: 604013
Distribution format: tar.gz
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1. Introduction

After the experimental realization of atomic Bose–Einstein con-
densate (BEC) of alkali-metal and some other atoms, there has
been a great deal of theoretical activity in studying the stat-
ics and dynamics of the condensate using the mean-field time-
dependent Gross–Pitaevskii (GP) equation under different trap
symmetries [1]. The GP equation in three dimensions (3D) is a

http://dx.doi.org/10.1016/j.cpc.2015.03.024
0010-4655/© 2015 Elsevier B.V. All rights reserved.
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nonlinear partial differential equation in three space variables and
a time variable and its numerical solution is indeed a difficult task
specially for large nonlinearities encountered in realistic experi-
mental situations [2]. Very special numerical algorithms are nec-
essary for its precise numerical solution. In the case of alkali-metal
atoms the atomic interaction in dilute BEC is essentially of short-
range in nature and is approximated by a contact interaction and
at zero temperature is parametrized by a single parameter in a
dilute BEC — the s-wave atomic scattering length. Under this ap-
proximation the atomic interaction is represented by a cubic non-
linearity in the GP equation. Recently, we published the Fortran [3]
and C [4] versions of useful programs for the numerical solution
of the time-dependent GP equation with cubic nonlinearity under
different trap symmetries using split-step Crank–Nicolson scheme
and real- and imaginary-time propagations. Since then, these pro-
grams enjoyed widespread use [5].

More recently, there has been experimental observation of BEC
of 52Cr [6], 164Dy [7] and 168Er [8] atomswith largemagnetic dipole
moments. In this paper, for all trap symmetries the dipolar atoms
are considered to be polarized along the z axis. In these cases the
atomic interaction has a long-range dipolar counterpart in addition
to the usual contact interaction. The s-wave contact interaction is
local and spherically symmetric, whereas the dipolar interaction
acting in all partial waves is nonlocal and asymmetric. The
resulting GP equation in this case is a partial integro-differential
equation and special algorithms are required for its numerical
solution. Different approaches to the numerical solution of the
dipolar GP equation have been suggested [9–14]. Yi and You [10]
solve the dipolarGP equation for axially-symmetric trapwhile they
perform the angular integral of the dipolar term, thus reducing it
to one in axial (z, z 0) and radial (⇢, ⇢ 0) variables involving standard
Elliptical integrals. The dipolar term is regularized by a cut-off
at small distances and then evaluated numerically. The dipolar
GP equation is then solved by imaginary-time propagation. Gòral
and Santos [11] treat the dipolar term by a convolution theorem
without approximation, thus transforming it to an inverse Fourier
transformation (FT) of a product of the FT of the dipolar potential
and the condensate density. The FT and inverse FT are then
numerically evaluated by standard fast Fourier transformation
(FFT) routines in Cartesian coordinates. The ground state of
the system is obtained by employing a standard split-operator
technique in imaginary time. This approach is used by some
others [15]. Ronen et al. perform the angular integral in the dipolar
term using axial symmetry. To evaluate it, in stead of FT in x, y, and
z [11], they use Hankel transformation in the radial ⇢ variable and
FT in the axial z variable. The ground state wave function is then
obtained by imaginary-time propagation and dynamics by real-
time propagation. This approach is also used by some others [16].
Bao et al. use Euler sine pseudospectral method for computing the
ground states and a time-splitting sine pseudospectral method for
computing the dynamics of dipolar BECs [9]. Blakie et al. solve the
projected dipolar GP equation using a Hermite polynomial-based
spectral representation [13]. Lahaye et al. use FT in x, y, and z to
evaluate the dipolar term and employ imaginary- and real-time
propagation after Crank–Nicolson discretization for stationary and
nonstationary solution of the dipolar GP equation [14].

Here we provide Fortran and C versions of programs for the
solution of the dipolar GP equation in a fully anisotropic 3D
trap by real- and imaginary-time propagation. We use split-step
Crank–Nicolson scheme for the nondipolar part as in Refs. [3,4] and
the dipolar term is treated by FT in x, y, z variables.We also present
the Fortran and C programs for reduced dipolar GP equation in one
(1D) and two dimensions (2D) appropriate for a cigar- and disk-
shaped BEC under tight radial (⇢) and axial (z) trapping, respec-
tively [17]. In the 1D case,we consider twopossibilities: the 1DBEC
could be aligned along the polarization direction z or be aligned

perpendicular to the polarization direction along x axis. Similarly,
in the 2D case, two possibilities are considered taking the 2D plane
as x–y, perpendicular to polarization direction z or as x–z contain-
ing the polarization direction. This amounts to five different trap-
ping possibilities – two in 1D and 2D each and one in 3D – and two
solution schemes involving real- and imaginary-time propagation
resulting in ten programs each in Fortran and C.

In Section 2 we present the 3D dipolar GP equation in an
anisotropic trap. In addition to presenting the mean-field model
and a general scheme for its numerical solution in Sections 2.1
and 2.2, we also present two approximate solution schemes in
Sections 2.3 and 2.4 – Gaussian variational approximation and
Thomas–Fermi (TF) approximation – in this case. The reduced 1D
and 2D GP equations appropriate for a cigar- and a disk-shaped
dipolar BEC are next presented in Sections 2.5 and 2.6, respectively.
The details about the computer programs, and their input/output
files, etc. are given in Section 3. The numerical method and results
are given in Section 4. Finally, a brief summary is given in Section 5.

2. Gross–Pitaevskii (GP) equation for dipolar condensates in
three dimensions

2.1. The mean-field Gross–Pitaevskii equation

At ultra-low temperatures the properties of a dipolar conden-
sate of Nat atoms, each of mass m, can be described by the mean-
field GP equation with nonlocal nonlinearity of the form: [10,18]
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where!x, !y and!z are the trap frequencies, a the atomic scatter-
ing length. The dipolar interaction, for magnetic dipoles, is given
by [11,16]
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where R = r � r
0 determines the relative position of dipoles

and ✓ is the angle between R and the direction of polarization z,
µ0 is the permeability of free space and µ̄ is the dipole moment
of the condensate atom. To compare the contact and dipolar in-
teractions, often it is useful to introduce the length scale add ⌘
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2
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Convenient dimensionless parameters can be defined in terms

of a reference frequency !̄ and the corresponding oscillator length
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where � = !x/!̄, ⌫ = !y/!̄, � = !z/!̄. The reference frequency
!̄ can be taken as one of the frequencies !x, !y or !z or their
geometric mean (!x!y!z)

1/3. In the following we shall use Eq. (3)
where we have removed the ‘bar’ from all variables.

Although we are mostly interested in the numerical solution of
Eq. (3), in the following we describe two analytical approximation
methods for its solution in the axially-symmetric case. These ap-
proximation methods – the Gaussian variational and TF approxi-
mations – provide reasonably accurate results under some limiting
conditions and will be used for comparison with the numerical re-
sults. Also, we present reduced 1D and 2Dmean-field GP equations
appropriate for the description of a cigar and disk-shaped dipolar
BEC under appropriate trapping condition. The numerical solution
and variational approximation of these reduced equations will be
discussed in this paper. A brief algebraic description of these topics
are presented for the sake of completeness as appropriate for this
study. For a full description of the same the reader is referred to
the original publications.

2.2. Methodology

We perform numerical simulation of the 3D GP equation (3)
using the split-step Crank–Nicolson method described in detail
in Ref. [3]. Here we present the procedure to include the dipolar
term in that algorithm. The inclusion of the dipolar integral term
in theGP equation in coordinate space is not straightforward due to
the singular behavior of the dipolar potential at short distances. It
is interesting to note that this integral is well defined and finite.
This problem has been tackled by evaluating the dipolar term
in the momentum (k) space, where we do not face a singular
behavior. The integral can be simplified in Fourier space by means
of convolution as
Z

dr0V 3D
dd (r � r0)n(r0, t) =

Z
dk

(2⇡)3
e
�ik·reV 3D

dd (k)en(k, t), (5)

where n(r, t) = |�(r, t)|2. The Fourier transformation (FT) and
inverse FT, respectively, are defined by

eA(k) =

Z
drA(r)eik·r, A(r) =

1
(2⇡)3

Z
dkeA(k)e�ik·r. (6)

The FT of the dipole potential can be obtained analytically [19]

eV 3D
dd (k) ⌘

4⇡
3

h3D(k) =
4⇡
3

✓
3k2

z

k2 � 1
◆

, (7)

so that
Z

dr0V 3D
dd (r � r0)n(r0, t) =

4⇡
3

Z
dk

(2⇡)3
e
�ik·r

h3D(k)en(k, t). (8)

To obtain Eq. (7), first the angular integration is performed. Then
a cut-off at small r is introduced to perform the radial integration
and eventually the zero cut-off limit is taken in the final result as
shown inAppendix A of Ref. [19]. The FT of density n(r) is evaluated
numerically by means of a standard FFT algorithm. The dipolar
integral in Eq. (3) involving the FT of density multiplied by FT of
dipolar interaction is evaluated by the convolution theorem (5).
The inverse FT is taken by means of the standard FFT algorithm.
The FFT algorithm is carried out in Cartesian coordinates and the
GP equation is solved in 3D irrespective of the symmetry of the
trapping potential. The dipolar interaction integrals in 1D and 2D
GP equations are also evaluated inmomentum spaces. The solution
algorithm of the GP equation by the split-step Crank–Nicolson
method is adopted from Refs. [3,4].

The 3DGP equation (3) is numerically themost difficult to solve
involving large RAM and CPU time. A requirement for the success

of the split-step Crank–Nicolson method using a FT continuous at
the origin is that on the boundary of the space discretization region
the wave function and the interaction term should vanish. For the
long-range dipolar potential this is not true and the FT (7) is discon-
tinuous at the origin. The space domain (from �1 to +1) cannot
be restricted to a small region in space just covering the spatial ex-
tension of the BEC as the same domain is also used to calculate the
FT and inverse FT used in treating the long-range dipolar potential.
The use and success of FFT implies a set of noninteracting 3D peri-
odic lattice of BECs in different unit cells. This is not true for long-
range dipolar interactionwhichwill lead to an interaction between
BECs in different cells. Thus, boundary effects can play a role when
finding the FT. Hence a sufficiently large space domain is to be used
to have accurate values of the FT involving the long-range dipolar
potential. It was suggested [12] that this could be avoided by trun-
cating the dipolar interaction conveniently at large distances r = R

so that it does not affect the boundary, provided R is taken to be
larger than the size of the condensate. Then the truncated dipolar
potential will cover the whole condensate wave function and will
have a continuous FT at the origin. This will improve the accuracy
of a calculation using a small space domain. The FT of the dipolar
potential truncated at r = R, as suggested in Ref. [12], is used in
the numerical routines

eV 3D
dd (k) =

4⇡
3

✓
3k2

z

k2 � 1
◆

1 + 3
cos(kR)
k2R2 � 3

sin(kR)

k3R3

�
,

k = |k|. (9)

Needless to say, the difficulty in using a large space domain is the
most severe in 3D. In 3D programs the cut-off R of Eq. (9) improves
the accuracy of calculation and a smaller space region can be used
in numerical treatment. In 1D and 2D, a larger space domain can be
used relatively easily and no cut-off has been used. Also, no conve-
nient and efficient analytic cut-off is known in 1D and 2D [12]. The
truncated dipolar potential (9) has only been used in the numeri-
cal programs in 3D, e.g., imag3d* and real3d*. In all other numerical
programs in 1D and 2D, and in all analytic results reported in the
following the untruncated potential (7) has been used.

2.3. Gaussian variational approximation

In the axially-symmetric case (� = ⌫), convenient analytic La-
grangian variational approximation of Eq. (3) can be obtained with
the following Gaussian ansatz for the wave function [20]

�(r, t) =
⇡�3/4

w⇢(t)
p

wz(t)

⇥ exp

"

�
⇢2

2w2
⇢(t)

�
z
2

2w2
z
(t)

+ i↵(t)⇢2
+ i�(t)z2

#

(10)

where r = {⇢, z}, ⇢ = {x, y}, w⇢(t) and wz(t) are widths and ↵(t)
and�(t) are chirps. The time dependence of the variational param-
etersw⇢(t),wz(t),↵(t) and�(t)will not be explicitly shown in the
following.

The Lagrangian density corresponding to Eq. (3) is given by

L(r) =
i

2


�(r)

�⇤(r)
@t

� �⇤(r)
@�(r)

@t

�
+

|r�(r)|2

2

+
1
2
(� 2⇢2

+ �2
z
2)|�(r)|2 + 2⇡aNat|�(r)|4

+
3addNat

2
|�(r)|2

Z
Vdd(R)|�(r0)|2dr0. (11)
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Consequently, the effective Lagrangian L ⌘
R

L(r)dr (per particle)
becomes [6,21]

L = !2
⇢↵̇ +

!2
z
�̇

2
+

� 2!2
⇢

2
+

�2!2
z

4
+

1
2!2

⇢

+
1

4!2
z

+ 2!2
⇢↵2

+ !2
z
�2

+
Nat[a � addf ()]

p
2⇡!2

⇢!z

. (12)

The Euler–Lagrangian equations with this Lagrangian leads to the
following set of coupled ordinary differential equations (ODE) for
the widths w⇢ and wz [22]:

ẅ⇢ + � 2w⇢ =
1

w3
⇢

+
Nat

p
2⇡

[2a � addg()]
w3

⇢wz

, (13)

ẅz + �2wz =
1

w3
z

+
2Nat
p
2⇡

[a � addc()]
w2

⇢w2
z

, (14)

with  = w⇢/wz and

g() =
2 � 72 � 44 + 94

d()

(1 � 2)2
, (15)

c() =
1 + 102 � 24 � 92

d()

(1 � 2)2
, (16)

f () =
1 + 22 � 32

d()

1 � 2 , d() =
atanh

p
1 � 2

p
1 � 2

. (17)

The widths of a (time-independent) stationary state are obtained
from Eqs. (13) and (14) by setting ẅ⇢ = ẅz = 0. The energy
(per particle) of the stationary state is the Lagrangian (12) with
↵ = � = 0, e.g.,

E

Nat
=

1
2w2

⇢

+
1

4w2
z

+
Nat[a � addf ()]
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2
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4
. (18)

The chemical potentialµ = @E/@Nat of the stationary state is given
by [22]

µ =
1

2w2
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+
1

4w2
z

+
2Nat[a � addf ()]

p
2⇡wzw2
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+
� 2w2
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2
+

�2w2
z

4
. (19)

2.4. Thomas–Fermi (TF) approximation

In the time-dependent axially-symmetric GP equation (3),
when the atomic interaction term is large compared to the kinetic
energy gradient term, the kinetic energy can be neglected and
the useful TF approximation emerges. We assume the normalized
density of the dipolar BEC of the form [1,23–25]

n(r, t) ⌘ |�(r, t)|2 =
15

8⇡R2
⇢(t)Rz(t)

"
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⇢(t)
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2

R2
z
(t)

#

, (20)

where R⇢(t) and Rz(t) are the radial and axial sizes. The time
dependence of these sizes will not be explicitly shown in the
following. Using the parabolic density (20), the energy functional
ETF may be written as [24]

ETF ⌘ Etrap + Eint =


N(2� 2

R
2
⇢ + �2
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2
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14
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
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28⇡
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f (̄)

o�
, (21)

where ̄ = R⇢/Rz is the ratio of the condensate sizes and f (̄) is
given by Eq. (17). In Eq. (21), Etrap is the energy in the trap and Eint is
the interaction or release energy in the TF approximation. In the TF

regime one has the following set of coupled ODEs for the evolution
of the condensate sizes [23]:
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15aNat

R⇢Rz

"
1
R2

⇢

�
add

a

 
1
R2

⇢

+
3
2

f (̄)

R2
⇢ � R2

z

!#

, (22)

R̈z = ��2
Rz +
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⇢
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1
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z

+
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z

+
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f (̄)
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. (23)

The sizes of a stationary state can be calculated from Eqs. (22) and
(23) by setting the time derivatives R̈⇢ and R̈z to zero leading to the
transcendental equation for ̄ [23]:
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and
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� 2

⇢
1 +

add

a

✓
3
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̄2
f (̄)
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, (25)

with Rz = R⇢/̄ . The chemical potential is given by [24]

µTF ⌘ Etrap + 2Eint =
15
8⇡

4⇡aNat
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⇢Rz

h
1 �

add

a
f (̄)

i
. (26)

We have the identities ETF/Nat = 5µTF/7, Eint/Nat = 2µTF/7,
Etrap/Nat = 3µTF/7.

2.5. One-dimensional GP equation for a cigar-shaped dipolar BEC

2.5.1. z direction

For a cigar-shaped dipolar BEC with a strong axially-symmetric
(⌫ = � ) radial trap (� < ⌫, � ), we assume that the dynamics of
the BEC in the radial direction is confined in the radial ground state
[22,26,27]

�(⇢) = exp(�⇢2/2d2⇢)/(d⇢

p
⇡), � d

2
⇢ = 1, ⇢ ⌘ (x, y), (27)

of the transverse trap and the wave function �(r) can be written
as

�(r, t) ⌘ �1D(z, t) ⇥ �(⇢)

=
1

q
⇡d2⇢

exp

"

�
⇢2

2d2⇢

#

�1D(z, t), (28)

where �1D(z, t) is the effective 1D wave function for the axial
dynamics and d⇢ is the radial harmonic oscillator length.

To derive the effective 1D equation for the cigar-shaped dipolar
BEC, we substitute the ansatz (28) in Eq. (3), multiply by the
ground-state wave function �(⇢) and integrate over ⇢ to get the
1D equation [22,26]
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⇡(1 + 2w)ew
{1 � erf(

p
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�
, (30)

where w = [Z/(
p
2d⇢)]2, Z = |z � z

0|. Here and in all reductions
in Sections 2.5 and 2.6 we use the untruncated dipolar potential
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(7) and not the truncated potential (9). The integral term in the 1D
GP equation (29) is conveniently evaluated in momentum space
using the following convolution identity [22]
Z
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where
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dz, (32)
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The 1D GP equation (29) can be solved analytically using the
Lagrangian variational formalism with the following Gaussian
ansatz for the wave function [22]:
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⇡�1/4
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(t)

+ i�(t)z2
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where wz(t) is the width and �(t) is the chirp. The Lagrangian
variational formalism leads to the following equation for thewidth
wz(t) [22]:

ẅz(t) + �2wz(t) =
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The time-independent width of a stationary state can be obtained
from Eq. (36) by setting ẅz(t) = 0. The variational chemical
potential for the stationary state is given by [22]
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The energy per particle is given by
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2.5.2. x direction

For a cigar-shaped dipolar BEC with a strong axially-symmetric
(⌫ = �) radial trap (� < ⌫, �), we assume that the dynamics of the
BEC in the radial direction is confined in the radial ground state
[22,26,27]

�(⇢) = exp(�⇢2/2d2⇢)/(d⇢

p
⇡), ⌫d2⇢ = 1, ⇢ ⌘ (y, z), (39)

of the transverse trap and thewave function �(r) can bewritten as
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�1D(x, t), (40)

where �1D(x, t) is the effective 1D wave function for the dynamics
along x axis and d⇢ is the radial harmonic oscillator length.

To derive the effective 1D equation for the cigar-shaped dipolar
BEC, we substitute the ansatz (40) in Eq. (3), multiply by the

ground-state wave function �(⇢) and integrate over ⇢ to get the
1D equation
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h2D(⌧ ) =
1

p
2⇡d⇢

[2 � 3
p

⇡e
⌧2

⌧ {1 � erf(⌧ )}]. (43)

To derive Eq. (41), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integrations over ky and
kz are performed in the dipolar term.

2.6. Two-dimensional GP equation for a disk-shaped dipolar BEC

2.6.1. x–y plane

For an axially-symmetric (⌫ = � ) disk-shaped dipolar BECwith
a strong axial trap (� > ⌫, � ), we assume that the dynamics of the
BEC in the axial direction is confined in the axial ground state

�(z) = exp(�z
2/2d2
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)/(⇡d

2
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)1/4, dz =
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and we have for the wave function
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where⇢ ⌘ (x, y),�2D(⇢, t) is the effective 2Dwave function for the
radial dynamics and dz is the axial harmonic oscillator length. To
derive the effective 2D equation for the disk-shaped dipolar BEC,
we use ansatz (45) in Eq. (3), multiply by the ground-state wave
function �(z) and integrate over z to get the 2D equation [22,28]
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where k⇢ =

q
k2
x
+ k2

y
, and

en(k⇢, t) =

Z
d⇢eik⇢ .⇢

|�2D(⇢, t)|2,

en(kz) =

Z
dze

ikz z |�(z)|2 = e
�k

2
z d

2
z /4,

(47)

h2D(⇠) ⌘
1
2⇡

Z
1

�1

dkz


3k2

z

k2 � 1
�

|en(kz)|2

=
1

p
2⇡dz

[2 � 3
p

⇡⇠ exp(⇠ 2){1 � erf(⇠)}], ⇠ =
k⇢dz
p
2

. (48)

To derive Eq. (46), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integration over kz is
performed in the dipolar term.
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The 2D GP equation (46) can be solved analytically using the
Lagrangian variational formalism with the following Gaussian
ansatz for the wave function [22]:
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where w⇢(t) is the width and ↵(t) is the chirp. The Lagrangian
variational formalism leads to the following equation for thewidth
w⇢ [22]:
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The time-independent width of a stationary state can be obtained
from Eq. (50) by setting ẅ⇢(t) = 0. The variational chemical
potential for the stationary state is given by [22]
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The energy per particle is given by
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2.6.2. x–z plane

For a disk-shaped dipolar BEC with a strong axial trap along y

direction (⌫ > �, � ), we assume that the dynamics of the BEC in
the y direction is confined in the ground state

�(y) = exp(�y
2/2d2

y
)/(⇡d

2
y
)1/4, dy =

p
1/(⌫), (53)

and we have for the wave function
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where now ⇢ ⌘ (x, z), and �2D(⇢, t) is the circularly-asymmetric
effective 2D wave function for the 2D dynamics and dy is the
harmonic oscillator length along y direction. To derive the effective
2D equation for the disk-shaped dipolar BEC, we use ansatz (54)
in Eq. (3), multiply by the ground-state wave function �(y) and
integrate over y to get the 2D equation
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To derive Eq. (55), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integration over ky is
performed in the dipolar term.

3. Details about the programs

3.1. Description of the programs

In this subsection we describe the numerical codes for solving
the dipolar GP equations (29) and (41) in 1D, Eqs. (46) and (55) in
2D, and Eq. (3) in 3D using real- and imaginary-time propagations.
The real-time propagation yields the time-dependent dynamical
results and the imaginary-time propagation yields the time-
independent stationary solution for the lowest-energy state for a
specific symmetry. We use the split-step Crank–Nicolson method
for the solution of the equations described in Ref. [3]. The present
programs have the same structure as in Ref. [3] with added
subroutines to calculate the dipolar integrals. In the absence of
dipolar interaction the present programs will be identical with the
previously published ones [3]. A general instruction to use these
programs in the nondipolar case can be found in Ref. [3] and we
refer the interested reader to this article for the same.

The present Fortran programs named (‘imag1dX.f90’,
‘imag1dZ.f90’), (‘imag2dXY.f90’, ‘imag2dXZ.f90’), ‘imag3d.f90’,
(‘real1dX.f90’, ‘real1dZ.f90’), (‘real2dXY.f90’, ‘real2dXZ.f90’),
‘real3d.f90’, deal with imaginary- and real-time propagations
in 1D, 2D, and 3D and are to be contrasted with previously
published programs [3] ‘imagtime1d.F’, ‘imagtime2d.f90’, ‘imag-
time3d.f90’, ‘realtime1d.F’, ‘realtime2d.f90’, and ‘realtime3d.f90’,
for the nondipolar case. The input parameters in Fortran pro-
grams are introduced in the beginning of each program. The cor-
responding C codes are called (imag1dX.c, imag1dX.h, imag1dZ.c,
imag1dZ.h,), (imag2dXY.c, imag2dXY.h, imag2dXZ.c, imag2dXZ.h,),
(imag3d.c, imag3d.h), (real1dX.c, real1dX.h, real1dZ.c, real1dZ.h,),
(real2dXY.c, real2dXY.h, real2dXZ.c, real2dXZ.h,), (real3d.c,
real3d.h), with respective input files (‘imag1dX-input’, ‘imag1dZ-
input’), (‘imag2dXY-input’, ‘imag2dXZ-input’), ‘imag3d-input’,
(‘real1dX-input’, ‘real1dZ-input’), (‘real2dXY-input’, ‘real1dXZ
-input’), ‘real3d-input’, which perform identical executions as in
the Fortran programs.

We present in the following a description of input parameters.
The parameters NX, NY, and NZ in 3D (NX and NY in 2DXY, NX
and NZ in 2DXZ), and N in 1D stand for total number of space
points in x, y and z directions, where the respective space steps
DX, DY, and DZ can be made equal or different; DT is the time
step. The parameters NSTP, NPAS, and NRUN denote number of
time iterations. The parameters GAMMA (� ), NU (⌫), and LAMBDA
(�) denote the anisotropy of the trap. The number of atoms is
denoted NATOMS (Nat), the scattering length is denoted AS (a) and
dipolar length ADD (add). The parameters G0 (4⇡Nata) and GDD0
(3addNat) are the contact and dipolar nonlinearities. The parameter
OPTION = 2 (default) defines the equations of the present paper
with a factor of half before the kinetic energy and trap;OPTION = 1
defines a different set of GP equations without these factors, viz
Ref. [3]. The parameter AHO is the unit of length and Bohr_a0 is
the Bohr radius. In 1D the parameter DRHO is the radial harmonic
oscillator d⇢ and in 2D the parameter D_Z or D_Y is the axial
harmonic oscillator length dz or dy. The parameter CUTOFF is the
cut-off R of Eq. (9) in the 3D programs. The parameters GPAR and
GDPAR are constants which multiply the nonlinearities G0 and
GDD0 in realtime routines before NRUN time iterations to study
the dynamics.

The programs, as supplied, solve the GP equations for specific
values of dipolar and contact nonlinearities and write the wave
function, chemical potential, energy, and root-mean-square (rms)
size(s), etc. For solving a stationary problem, the imaginary-time
programs are far more accurate and should be used. The real-time
programs should be used for studying non-equilibrium problems
reading an initial wave function calculated by the imaginary-time
program with identical set of parameters (set NSTP = 0, for this
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purpose, in the real-time programs). The real-time programs can
also calculate stationary solutions in NSTP time steps (set NSTP 6=

0 in real-time programs), however, with less accuracy compared to
the imaginary-time programs. The larger the value of NSTP in real-
time programs, more accurate will be the result [3]. The nonzero
integer parameter NSTP refers to the number of time iterations
during which the nonlinear terms are slowly introduced during
the time propagation for calculating the wave function. After
introducing the nonlinearities in NSTP iterations the imaginary-
time programs calculate the final result in NPAS plus NRUN time
steps and write some of the results after NPAS steps to check
convergence. The real-time programs run the dynamics during
NPAS steps with unchanged initial parameters so as to check the
stability and accuracy of the results. Some of the nonlinearities
are then slightly modified after NPAS iterations and the small
oscillation of the system is studied during NRUN iterations.

Each program is preset at fixed values of contact and dipolar
nonlinearities as calculated from input scattering length(s), dipolar
strength(s), and number of atom(s), correlated DX–DT values and
NSTP, NPAS, and NRUN, etc. A study of the correlated DX and DT
values in the nondipolar case can be found in Ref. [3]. Smaller the
steps DX, DY, DZ and DT, more accurate will be the result, provided
we integrate over a reasonably large space region by increasingNX,
NY, and NZ, etc. Each supplied program produces result up to a
desired precision consistent with the parameters employed — G0,
GDD0, DX, DY, DZ, DT, NX, NY, NZ, NSTP, NPAS, and NRUN, etc.

3.2. Description of Output files

Programs ‘imagnd*’ (n = 1, 2, 3, C and Fortran): They write fi-
nal density in files ‘imagnd-den.txt’ after NRUN iterations. In addi-
tion, in 2D and 3D, integrated 1D densities ‘imagnd*-den1d_x.txt’,
‘imagnd*-den1d_y.txt’, ‘imagnd*-den1d_z.txt’, along x, y, and z,
etc., are given. These densities are obtained by integrating the
densities over eliminated space variables. In addition, in 3D inte-
grated 2Ddensities ‘imag3d-den2d_xy.txt’, ‘imag3d-den2d_yz.txt’,
‘imag3d-den2d_zx.txt’, in xy, yz, and zxplanes can bewritten (com-
mented out by default). The files ‘imagnd*-out.txt’ provide differ-
ent initial input data, aswell as chemical potential, energy, size, etc.
at different stages (initial, after NSTP, NPAS, and after NRUN itera-
tions), from which a convergence of the result can be inferred. The
files ‘imagnd*-rms.txt’ provide the different rms sizes at different
stages (initial, after NSTP, NPAS, and after NRUN iterations).

Programs ‘realnd*’ (n = 1, 2, 3, C and Fortran): The sameoutput
files as in the imaginary-time programs are available in the real-
time programs. The real-time densities are reported after NPAS
iterations. In addition in the ‘realnd*-dyna.txt’ file the temporal
evolution of the widths are given during NPAS and NRUN itera-
tions. Before NRUN iterations the nonlinearities G0 and GDD0 are
multiplied by parameters GPAR and GDPAR to start an oscillation
dynamics.

3.3. Running the programs

In addition to installing the respective Fortran and C compil-
ers one needs also to install the FFT routine FFTW in the com-
puter. To run the Fortran programs the supplied routine fftw3.f03
should be included in compilation. The commands for running
the Fortran programs using INTEL, GFortran, and Oracle Sun com-
pilers are given inside the Fortran programs. The programs are
submitted in directories with option to compile using the com-
mand ‘make’. There are two files with general information about
the programs and FT for user named ‘readme.txt’ and ‘readme-
fftw.txt’. The Fortran and C programs are in directories./f_program
and./c_program. Inside these directories there are subdirectories
such as./input,./output,./src. The subdirectory ./output contains

output files the programs generate, ./input contains input files for C
programs, and ./src contains the different programs. The command
‘make’ in the directory ./f_program or ./c_program compiles all the
programs and generates the corresponding executable files to run.
The command ‘make’ for INTEL, GFortran and OracleSun Fortran
are given.

4. Numerical results

In this section we present results for energy, chemical potential
and root-mean-square (rms) sizes for different stationary BECs
in 1D, 2D, and 3D, and compare with those obtained by using
Gaussian variational and TF approximations, wherever possible.
Wealso comparewith available results by other authors. For a fixed
space and time step, sufficient number of space discretizing points
and time iterations are to be allowed to get convergence.

First we present in Table 1 numerical results for the energy
E, chemical potential µ, and rms size hzi calculated using the
imaginary-time program for the 1D dipolar GP Eq. (29) for 52Cr
atoms with a = 6 nm (⇡113a0 with a0 the Bohr radius), and
add = 16a0 for � = 1, d⇢ = 1, l = 1 µm and for different num-
ber of atoms Nat and different space and time steps dz and dt . The
Gaussian variational approximations obtained from Eqs. (36)–(38)
are also given for comparison. The variational results provide bet-
ter approximation to the numerical solution for a smaller number
of atoms.

In Table 2 we present results for the energy E, chemical
potential µ, and rms size h⇢i of the 2D GP Eq. (46) for � =

⌫ = 1, dz = 1, l = 1 µm. The numerical results are calculated
using different space and time steps dx, dy and dt and different
number Nat of 52Cr atoms with add = 16a0 and a = 6 nm.
Axially-symmetric Gaussian variational approximations obtained
from Eqs. (50)–(52) are also presented for comparison.

Nowwe present results of the solution of the 3D GP Eq. (3) with
some axially-symmetric traps. In this case we take advantage of
the cut-off introduced in Eq. (9) to improve the accuracy of the nu-
merical calculation. The cut-off parameter Rwas taken larger than
the condensate size and smaller than the discretization box. First
we consider the model 3D GP equation with a = 0 and different
gdd = 3addNat = 1, 2, 3, 4 in an axially-symmetric trap with � =

1/2 and ⌫ = � = 1. The numerical results for different number of
space and time steps togetherwith Gaussian variational results ob-
tained from Eqs. (18) and (19) are shown in Table 3. These results
for energy E and chemical potentialµ are comparedwith those cal-
culated by Asad-uz-Zaman et al. [16,29]. The present calculation is
performed in the Cartesian x, y, z coordinates and the dipolar term
is evaluated by FT to momentum space. Asad-uz-Zaman et al. take
advantage of the axial symmetry and perform the calculation in the
axial ⇢, z (⇢ ⌘ x, y) variables and evaluate the dipolar term by a
combined Hankel–Fourier transformation to momentum space for
⇢ and z, respectively. The calculations of Asad-uz-Zaman et al. for
stationary states involving two variables (⇢ and z) thus could be
more economic and accurate than the present calculation involv-
ing three Cartesian variables for the axially-symmetric configura-
tion considered in Table 3. However, the present method, unlike
that of Ref. [16], is readily applicable to the fully asymmetric con-
figurations. Moreover, the present calculation for dynamics (non-
stationary states) in 3D are more realistic than the calculations of
Asad-uz-Zaman et al., where one degree of freedom is frozen. For
example, a vortex could be unstable [30] in a full 3D calculation,
whereas a 2D calculation could make the same vortex stable.

Next we consider the solution of the 3D GP Eq. (3) for a model
condensate of 52Cr atoms in a cigar-shaped axially-symmetric trap
with � = ⌫ = 1, � = 1/2, first considered by Bao et al. [9].
The nonlinearities considered there (4⇡a = 0.20716, 4⇡add =

0.033146) correspond to the following approximate values of
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Table 1
The energy per particle E/Nat, chemical potential µ, and rms size hzi of the 1D GP Eq. (29) for � = 1, d⇢ = 1 µm for the 52Cr BEC with a = 6 nm, add = 16a0
and different number of atoms Nat. In Eqs. (3) and (29) the lengths are expressed in oscillator unit: l = 1 µm. Numerical results are calculated for parameters (A)
dz = 0.05, dt = 0.0005,N = 2048 (B) dz = 0.1, dt = 0.001,N = 1024 and compared with variational results obtained from Eqs. (36)–(38).

Nat hzi hzi hzi E/Nat E/Nat E/Nat µ µ µ
var (B) (A) var (B) (A) var (B) (A)

100 0.7939 0.7937 0.7937 0.7239 0.7222 0.7222 0.9344 0.9297 0.9297
500 1.0425 1.0381 1.0381 1.4371 1.4166 1.4166 2.2157 2.1691 2.1691

1000 1.2477 1.2375 1.2375 2.1376 2.0920 2.0920 3.4165 3.3234 3.3234
5000 2.0249 1.9939 1.9939 5.8739 5.6910 5.6910 9.6671 9.3488 9.3488

10,000 2.5233 2.4815 2.4815 9.2129 8.913 8.913 15.223 14.715 14.715
50,000 4.2451 4.1719 4.1719 26.505 25.622 25.622 43.993 42.527 42.527

Table 2
The energy per particle E/Nat, chemical potential µ, and rms size h⇢i of the 2D GP Eq. (46) for � = ⌫ = 1, dz = 1 µm for the 52Cr BEC with a = 6 nm, add = 16a0 and
different number of atoms Nat. In Eqs. (3) and (46) the lengths are expressed in oscillator unit: l = 1 µm. Numerical results are calculated for space and time steps (A)
dx = dy = 0.1, dt = 0.0005,NX = NY ⌘ N = 768, (B) dx = dy = 0.2, dt = 0.002, N = 384, and compared with variational results obtained from Eqs. (50), (51) and
(52).

Nat h⇢i h⇢i h⇢i E/Nat E/Nat E/Nat µ µ µ
var (B) (A) var (B) (A) var (B) (A)

100 1.0985 1.097 1.097 1.2182 1.2156 1.2157 1.4187 1.4120 1.4119
500 1.3514 1.342 1.342 1.8653 1.8383 1.8383 2.5437 2.4840 2.4840

1000 1.5482 1.530 1.531 2.4571 2.3988 2.3988 3.5070 3.3901 3.3901
5000 2.2549 2.208 2.208 5.2206 4.9989 4.9989 7.8005 7.4249 7.4249

10,000 2.6824 2.619 2.619 7.3787 7.029 7.029 11.090 10.522 10.522
50,000 4.0420 3.934 3.934 16.680 15.793 15.793 25.161 23.789 23.789

Table 3
Energy per particle E/Nat and chemical potentialµ from a solution of Eq. (3) for � = ⌫ = 1, �2 = 0.25, a = 0 and different nonlinearity gdd ⌘ 3addNat. The present numerical
results are compared with Gaussian variational results obtained from Eqs. (18) and (19) as well as numerical results of Asad-uz-Zaman et al. [16,29]. Numerical results are
calculated for the following space and time steps and the following space discretizing points in the Crank–Nicolson discretization: (A) dx = dy = dz = 0.05, dt = 0.0004,
(NX = NY = NZ ⌘ N = 384); (B) 0.1, dt = 0.002, (N = 128, R = 6); and (C) 0.2, dt = 0.007, (N = 64, R = 6).

gdd E/Nat E/Nat E/Nat E/Nat E/Nat µ µ µ µ µ
var (C) (B) (A) [29] var (C) (B) (A) [29]

0 1.2500 1.2498 1.2500 1.2500 1.2500 1.2500 1.2498 1.2500 1.2500 1.2500
1 1.2230 1.2220 1.2222 1.2222 1.2222 1.1934 1.1910 1.1912 1.1911 1.1911
2 1.1907 1.1872 1.1875 1.1874 1.1874 1.1203 1.1100 1.1100 1.1100 1.1100
3 1.1521 1.143 1.1439 1.1438 1.1437 1.0253 0.995 0.996 0.996 0.9955
4 1.1051 1.085 1.0857 1.0857 1.0856 0.8950 0.805 0.803 0.806 0.8062

Table 4
Energy per particle E/Nat, and chemical potential µ from a solution of Eq. (3) for � = ⌫ = 1, �2 = 0.25, 4⇡a = 0.20716, 4⇡add = 0.033146 and different number
Nat of atoms. These nonlinearity parameters taken from Ref. [9] correspond to a 52Cr dipolar BEC with a ⇡ 100a0 and add ⇡ 16a0 and oscillator length l ⇡ 0.321 µm.
Variational and TF results as well as numerical results of Bao et al. [9] are also shown. Numerical results are calculated using the following space and time steps and the
following space discretizing points in the Crank–Nicolson discretization: (A) dx = dy = dz = 0.15, dt = 0.002; (B) dx = dy = dz = 0.3, dt = 0.005. In (A) we
take NX = NY = NZ ⌘ N = 128, R = 9 for Nat = 100, 500, 1000 and N = 192, R = 14, for Nat = 5000, 10,000, 50,000; and in (B) we take N = 64, R = 9, for
Nat = 100, 500, 1000 and N = 96, R = 14, for Nat = 5000, 10,000, 50,000.

Nat E/Nat E/Nat E/Nat E/Nat E/Nat µ µ µ µ µ
var TF (B) (A) [9] var TF (B) (A) [9]

100 1.579 0.945 1.567 1.567 1.567 1.840 1.322 1.813 1.813 1.813
500 2.287 1.798 2.224 2.224 2.225 2.951 2.518 2.835 2.835 2.837

1000 2.836 2.373 2.728 2.728 2.728 3.767 3.322 3.583 3.582 3.583
5000 5.036 4.517 4.744 4.744 4.745 6.935 6.324 6.485 6.486 6.488

10,000 6.563 5.960 6.146 6.146 6.147 9.100 8.344 8.475 8.475 8.479
50,000 12.34 11.35 11.46 11.46 11.47 17.23 15.89 15.96 15.97 15.98

Table 5
The rms sizes hxi and hzi for the same systems illustrated in Table 4 using the same cut-off parameter R.

N hzi hzi hzi hzi hzi hxi hxi hxi hxi hxi

TF var (B) (A) [9] TF var (B) (A) [9]

100 1.285 1.316 1.305 1.303 1.299 0.600 0.799 0.794 0.795 0.796
500 1.773 1.797 1.752 1.752 1.745 0.828 0.952 0.938 0.939 0.940

1000 2.037 2.079 2.014 2.014 2.009 0.951 1.054 1.035 1.035 1.035
5000 2.810 2.904 2.795 2.795 2.790 1.313 1.392 1.353 1.353 1.354

10,000 3.228 3.345 3.217 3.216 3.212 1.508 1.586 1.537 1.537 1.538
50,000 4.454 4.629 4.450 4.450 4.441 2.080 2.171 2.093 2.093 2.095

a, add and l: a ⇡ 100a0, add ⇡ 16a0, and l = 0.321 µm.
We present results for energy E and chemical potential µ in
Table 4 and rms sizes hzi and hxi in Table 5. We also present

variational and Thomas–Fermi (TF) results in this case together
with results of numerical calculation of Bao et al. [9]. The TF energy
and chemical potential in Table 4 are calculated using Eqs. (21)
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Table 6
Energy per particle E/Nat, chemical potentialµ, and rms sizes froma solution of Eq. (3) for 52Cr atomswith � = 1, ⌫2 = 1/2, �2 = 1/4, a = 110a0, add = 16a0, and harmonic
oscillator length l = 1 µm for different Nat. Numerical results are calculated using the following space and time steps and the following space discretizing points in the
Crank–Nicolson discretization: (A) dx = dy = dz = 0.1, dt = 0.001; and (B) 0.2, dt = 0.003. In (A) we take NX = NY = NZ ⌘ N = 128, R = 6 for Nat = 100, 500, 1000
andN = 256, R = 10.5, forNat = 5000, 10,000, 50,000; and in (B)we takeN = 64, R = 6, forNat = 100, 500, 1000 andN = 128, R = 12, forNat = 5000, 10,000, 50,000.

N E/Nat E/Nat µ µ hxi hyi hzi hxi hyi hzi

(B) (A) (B) (A) (B) (B) (B) (A) (A) (A)

100 1.219 1.219 1.321 1.321 0.742 0.901 1.120 0.742 0.901 1.119
500 1.525 1.525 1.830 1.830 0.818 1.032 1.379 0.818 1.032 1.379

1000 1.784 1.784 2.232 2.232 0.874 1.128 1.559 0.874 1.129 1.558
5000 2.885 2.885 3.857 3.858 1.079 1.463 2.132 1.079 1.463 2.132

10,000 3.673 3.673 4.992 4.992 1.206 1.660 2.450 1.206 1.660 2.449
50,000 6.713 6.713 9.306 9.306 1.609 2.260 3.383 1.609 2.260 3.383

Fig. 1. (a) Numerical (num) and variational (var) results for the one-dimensional axial density n1D(z) = |�1D(z)|
2 along z axis for ⌫ = � = 1, � = 0.25 of a cigar-

shaped BEC of Nat = 1000 atoms obtained using the 1D Eq. (29) and that obtained after integrating the 3D density from Eq. (3) over x and y: n1D(z) =
R

|�(r)|2dxdy. (b)
Numerical (num) and variational (var) results for the 1D radial density n1D(x) =

R
|�(r)|2dydz along x axis for ⌫ = � = 1, � = 4 of a disk-shaped BEC of Nat = 1000

atoms obtained after integrating the 3D density from Eq. (3) over y and z and after integrating the 2D density from Eq. (46) over y as follows: n1D(x) =
R
dy|�2D(x, y)|

2 and
n1D(x) =

R
dydz|�3D(x, y, z)|

2. In all cases a = 6 nm and add = 16a0.

and (26), respectively. The TF sizes hxi and hzi in Table 5 are
obtained fromEqs. (24) and (25) using the TF density (20). For small
nonlinearities or small number of atoms, the Gaussian variational
results obtained from Eqs. (13), (14), (18), and (19) are in good
agreement with the numerical calculations as the wave function
for small nonlinearities has a quasi-Gaussian shape. However, for
large nonlinearities or large number of atoms, the wave function
has an approximate TF shape (20), and the TF results provide
better approximation to the numerical results, as can be seen from
Tables 4 and 5.

After the consideration of 3D axially-symmetric trap now we
consider a fully anisotropic trap in 3D. In Table 6 we present
the results for energy E/Nat, chemical potential µ and rms sizes
hxi, hyi, hzi of a 52Cr BEC in a fully anisotropic trapwith � = 1, ⌫ =

1/
p
2, � = 1/2 for different number of atoms. In this case we take

a = 110a0, add = 16a0 and l = 1 µm. The convergence of the cal-
culation is studied by taking reduced space and time steps dx and
dt and different number of space discretization points. Sufficient
number of time iterations are to be allowed in each case to obtain
convergence. In 3D the estimated numerical error in the calcula-
tion is less than 0.05%. The error is associated with the intrinsic
accuracy of the FFT routine for long-range dipolar interaction.

The 1D and 2D GP Eqs. (29) and (46) are valid for cigar- and
disk-shaped BECs, respectively. In case of cigar shape the 1D GP
equation yields results for axial density and in this case it is
appropriate to compare this density with the reduced axial density
obtained by integrating the 3D density over radial coordinates:
n(z) ⌘ |'(z)|2 =

R
|�(x, y, z)|2 dx dy. In Fig. 1(a) we compare

two axial densities obtained from the 1D and 3D GP equations. We
also show the densities calculated from the Gaussian variational
approximation in both cases. In the cigar case the trap parameters
are ⌫ = � = 1, � = 1/4. Similarly, for the disk shape it is
interesting to compare the density along the radial direction in the
plane of the disk as obtained from the 3DEq. (3) and the 2DEq. (46).
In this case it is appropriate to calculate the 1D radial density along,
say, x direction by integrating 2D and 3D densities as follows:
n1D(x) =

R
dy|�2D(x, y)|

2 and n1D(x) =
R
dydz|�3D(x, y, z)|

2.

In Fig. 1(b) we compare two radial densities obtained from the
2D and 3D GP equations. We also show the densities calculated
from the Gaussian variational approximation in both cases. For this
illustration, we consider the trap parameters ⌫ = � = 1, � = 4.
In both Figs. 1(a) and (b), the densities obtained from the solution
of the 3D GP equation are in satisfactory agreement with those
obtained from a solution of the reduced 1D and 2D equations. In
Fig. 1, the numerical and variational densities are pretty close to
each other, so are the results obtained from the 3D Eq. (3), on the
one hand, and the ones obtained from the 1D and 2D Eqs. (29) and
(46), on the other.

A dipolar BEC is stable for the number of atoms Nat below a
critical value [31]. Independent of trap parameters, such a BEC
collapses as Nat crosses the critical value. This can be studied
by solving the 3D GP equation using imaginary-time propagation
with a nonzero value of NSTP while the nonlinearities are slowly
increased. In Fig. 2(a) we present the Nat � a stability phase plot
for a 164Dy BEC with add = 130a0 in the disk-shaped trap with
⌫ = � = 1, � = 5 and 7. The oscillator length is taken to be
l = 1µm.The shaded area in these plots shows ametastable region
where biconcave structure in 3D density appears. The metastable
region corresponds to a local minimum in energy in contrast to a
global minimum for a stable state. It has been established that this
metastability is amanifestation of roton instability encountered by
the system in the shaded region [31]. The biconcave structure in
3D density in a disk-shaped dipolar BEC is a direct consequence
of dipolar interaction: the dipolar repulsion in the plane of the
disk removes the atoms from the center to the peripheral region
thus creating a biconcave shape in density. In Fig. 2(b) and (c) we
plot the 3D isodensity contour of the condensate for � = 5 with
parameters in the shaded region corresponding tometastability. In
Fig. 2(b) the density on the contour is 0.001whereas in Fig. 2(c), it is
0.027. Only for a larger density on the contour the biconcave shape
is visible. The biconcave shape predominates near the central
region of the metastable dipolar BEC.

In Fig. 1 we critically tested the reduced 1D and 2D Eqs. (29)
and (46) along the z axis and in the x–y plane, respectively, by
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Fig. 2. (a) The Nat � a stability phase plot for a 164Dy BEC with add = 130a0 in a disk-shaped trap with ⌫ = � = 1, � = 5 and 7 and harmonic oscillator length l = 1 µm.
The 3D isodensity contour plot of density of a disk-shaped 164Dy BEC with add = 130a0 for ⌫ = � = 1, � = 5, l = 1 µm, Nat = 3000 and a = 40a0 for densities |�(x, y, z)|2

= (b) 0.001 and (c) 0.027 on the contour.

Fig. 3. (a) Numerical results for the 1D radial density n1D(x) =
R

|�(r)|2dydz along x axis and n1D(z) =
R

|�(r)|2dxdy along z axis for � = � = 1, ⌫ = 4 of a disk-shaped
BEC of Nat = 2000 164Dy atoms obtained after integrating the 3D density from Eq. (3) and the 2D density from Eq. (55) over the eliminated variables. (b) Numerical results
for the 1D axial density n1D(x) = along x axis for ⌫ = � = 16, � = 1 of a cigar-shaped BEC of Nat = 2000 52Cr atoms obtained using the 1D Eq. (41) and that obtained after
integrating the 3D density from Eq. (3) over z and y: n1D(x) =

R
|�(r)|2dzdy. In all cases a = 120a0 and (a) add = 132.7a0 (b) add = 16a0.

comparing the different 1D densities from these equations with
those obtained from a solution of the 3D Eq. (3) as well as with
the variational densities. Now we perform a similar test with the
reduced 1D and 2D Eqs. (41) and (55) along the x axis and in the
x–z plane, respectively. We consider a BEC of 2000 atoms in a disk-
shaped trap in the x–z plane with � = � = 1 and ⌫ = 4. Because
of the strong trap in the y direction, the resultant BEC is of quasi-
2D shape in the x–z plane without circular symmetry in that plane
because of the anisotropic dipolar interaction. The integrated linear
density along the x and z axes as calculated from the 2D GP Eq. (55)
and the 3D GP Eq. (3) are illustrated in Fig. 3(a). Next we consider
the BEC of 2000 atoms in a cigar-shaped trap along the x axis with
⌫ = � = 16 and � = 1. The integrated linear density along the
x axis in this case calculated from the 3D Eq. (3) is compared with
the same as calculate using the reduced 1D Eq. (41) in Fig. 3(b). In
both cases the densities calculated from the 3D GP equation are
in reasonable agreement with those calculated using the reduced
Eqs. (55) and (41). Another interesting feature emerges from Figs. 1
and 3: the reduced 2D GP Eqs. (46) and (55) with appropriate disk-
shaped traps yield results for densities in better agreement with
the 3D GP Eq. (3) as compared to the 1D GP Eqs. (29) and (41)
with appropriate cigar-shaped traps. This feature, also observed in
non-dipolar BECs [17], is expected as the derivation of the reduced
1D equations involving two spatial integrations represent more
drastic approximation compared to the same of the reduced 2D
equations involving one spatial integration.

Now we report the dynamics of the dipolar BEC by real-time
propagation using the stationary state calculated by imaginary-
time propagation. In Fig. 4(a) we show the oscillation of the rms
sizes hzi and h⇢i from the reduced 1D and 2DGP Eqs. (29) and (46),
respectively. In Fig. 4(a) we consider Nat = 10,000, add = 16a0
(appropriate for 52Cr), a = 6 nm (⇡113a0) and oscillator length
l = 1µm. In 1D, we take dx = 0.025, dt = 0.0001, � = 1, d⇢ = 1,

number of space points N = 2048, and in 2D, we take dx = dy =

0.2, dt = 0.001, � = ⌫ = 1, dz = 1,NX = NY = 512. in
real-time simulation the oscillation is started by multiplying the
nonlinearities with the factor 1.05. To implement this, in real-time
routine we take GPAR = GDPAR = 1.1 and also take NSTP = 0 to
read the initial wave function. In 1D and 2D we also present re-
sults of the Gaussian variational approximations after a numeri-
cal solution of Eqs. (36) and (50), respectively. The frequency of
the resultant oscillations agree well with the numerical 1D and 2D
calculations. However, slight adjustment of the initial conditions,
or initial values of width and its derivative, were necessary to get
an agreement of the amplitude of oscillation obtained from varia-
tional approximation and numerical simulation. The initial values
of width and its derivative are necessary to solve the variational
equations (36) and (50). In Fig. 4(b) we illustrate the oscillation of
the rms sizes hxi, hyi, and hzi in 3D using Eq. (3), wherewe perform
real-time simulation using the bound state obtained by imaginary-
time simulation as the initial state. The parameters used are Nat =

1000, a = 110a0, add = 16a0, � = 1, ⌫ = 1/
p
2, � = 1/2, l =

1 µm, NX = NY = NZ = 128, dx = dy = dz = 0.2, dt = 0.002
in both real- and imaginary-time simulations. In addition, in real-
time simulation the oscillation is started bymultiplying the nonlin-
earities with the factor 1.1. To implement this, in real-time routine
we take GPAR = GDPAR = 1.1 and also take NSTP = 0 to read the
initial wave function.

5. Summary

We have presented useful numerical programs in Fortran
and C for solving the dipolar GP equation including the contact
interaction in 1D, 2D, 3D. Two sets of programs are provided.
The imaginary-time programs are appropriate for solving the
stationary problems, while the real-time codes can be used for
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Fig. 4. (a) Numerical (n) and variational (v) results for oscillation of rms sizes hzi and h⇢i from the real-time simulation using Eq. (29) in 1D and Eq. (46) in 2D, respectively,
for Nat = 10,000, a = 6 nm, add = 16a0, l = 1 µm, while a and add were both multiplied by 1.05 after NPAS iterations at t = 10. The wave function was first calculated
by imaginary-time routine with parameters dx = 0.025, dt = 0.0001, � = 1, d⇢ = 1, NPAS = 105, N = 2048 in 1D, and dx = dy = 0.2, dt = 0.001, � = 1, dz =

1NPAS = 104, NX = NY = 512 in 2D. The results of the variational approximations in 1D and 2D as obtained from a numerical solution of Eqs. (36) and (50) are also
shown. (b) Numerical results for oscillation of rms sizes hxi, hyi and hzi from the real-time simulation in 3D using Eq. (3), for Nat = 1000, a = 110a0, add = 16a0, l = 1 µm,
� = 1, ⌫ = 1/

p
2, � = 1/2, NX = NY = NZ = 128, dx = dy = dz = 0.2, and dt = 0.002 while a and add were both multiplied by 1.1 after NPAS iterations. In all cases the

real-time calculation was performed with NSTP = 0 reading the 3D density from the numerical solution of the imaginary-time program using the same parameters.

studying non-stationary dynamics. The programs are developed
in Cartesian coordinates. We have compared the results of
numerical calculations for statics and dynamics of dipolar BECs
with those of Gaussian variational approximation, Thomas–Fermi
approximation, and numerical calculations of other authors, where
possible.
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a b s t r a c t

Wepresent C programming language versions of earlier published Fortran programs (Muruganandamand
Adhikari (2009) [1]) for calculating both stationary and non-stationary solutions of the time-dependent
Gross–Pitaevskii (GP) equation. The GP equation describes the properties of dilute Bose–Einstein
condensates at ultra-cold temperatures. C versions of programs use the same algorithms as the Fortran
ones, involving real- and imaginary-time propagation based on a split-step Crank–Nicolson method.
In a one-space-variable form of the GP equation, we consider the one-dimensional, two-dimensional,
circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In
the two-space-variable form, we consider the GP equation in two-dimensional anisotropic and three-
dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also
considered. In addition to these twelve programs, for six algorithms that involve two and three space
variables, we have also developed threaded (OpenMP parallelized) programs, which allow numerical
simulations to use all available CPU cores on a computer. All 18 programs are optimized and accompanied
by makefiles for several popular C compilers. We present typical results for scalability of threaded
codes and demonstrate almost linear speedup obtained with the new programs, allowing a decrease in
execution times by an order of magnitude on modern multi-core computers.
New version program summary
Program title: GP-SCL package, consisting of: (i) imagtime1d, (ii) imagtime2d, (iii) imagtime2d-th,
(iv) imagtimecir, (v) imagtime3d, (vi) imagtime3d-th, (vii) imagtimeaxial, (viii) imagtimeaxial-th,
(ix) imagtimesph, (x) realtime1d, (xi) realtime2d, (xii) realtime2d-th, (xiii) realtimecir, (xiv) realtime3d,
(xv) realtime3d-th, (xvi) realtimeaxial, (xvii) realtimeaxial-th, (xviii) realtimesph.
Catalogue identifier: AEDU_v2_0.
Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDU_v2_0.html.
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html.
No. of lines in distributed program, including test data, etc.: 180583.
No. of bytes in distributed program, including test data, etc.: 1 188688.
Distribution format: tar.gz.
Programming language: C and C/OpenMP.
Computer: Any modern computer with C language compiler installed.
Operating system: Linux, Unix, Mac OS, Windows.
RAM: Memory used with the supplied input files: 2–4 MB (i, iv, ix, x, xiii, xvi, xvii, xviii), 8 MB
(xi, xii), 32 MB (vii, viii), 80 MB (ii, iii), 700 MB (xiv, xv), 1.2 GB (v, vi).
Number of processors used: For threaded (OpenMP parallelized) programs, all available CPU cores on the
computer.
Classification: 2.9, 4.3, 4.12.

I D.V., I.V., and A.B. acknowledge support by the Ministry of Education and Science of the Republic of Serbia under projects No. ON171017 and NAD-BEC, by DAAD -
German Academic and Exchange Service under project NAD-BEC, and by the European Commission under EU FP7 projects PRACE-1IP, PRACE-2IP, HP-SEE, and EGI-InSPIRE.
P.M. acknowledges support by DST and CSIR of India. S.K.A. acknowledges support by FAPESP and CNPq of Brazil.⇤ Corresponding author.
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Catalogue identifier of previous version: AEDU_v1_0.
Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888.
Does the new version supersede the previous version?: No.
Nature of problem: These programs are designed to solve the time-dependent Gross–Pitaevskii (GP)
nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic,
circularly-symmetric, spherically-symmetric, axially-symmetric or fully anisotropic trap. TheGP equation
describes the properties of a dilute trapped Bose–Einstein condensate.
Solution method: The time-dependent GP equation is solved by the split-step Crank–Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The method yields solutions of stationary and/or non-stationary
problems.
Reasons for the new version: Previous Fortran programs [1] are used within the ultra-cold atoms
[2–11] and nonlinear optics [12,13] communities, as well as in various other fields [14–16]. This new
version represents translation of all programs to the C programming language, which will make it
accessible to the wider parts of the corresponding communities. It is well known that numerical
simulations of the GP equation in highly experimentally relevant geometries with two or three space
variables are computationally very demanding, which presents an obstacle in detailed numerical studies
of such systems. For this reason, we have developed threaded (OpenMP parallelized) versions of
programs imagtime2d, imagtime3d, imagtimeaxial, realtime2d, realtime3d, realtimeaxial, which are
named imagtime2d-th, imagtime3d-th, imagtimeaxial-th, realtime2d-th, realtime3d-th, realtimeaxial-
th, respectively. Fig. 1 shows the scalability results obtained for OpenMP versions of programs realtime2d
and realtime3d. As we can see, the speedup is almost linear, and on a computer with the total of 8 CPU
cores we observe in Fig. 1(a) a maximal speedup of around 7, or roughly 90% of the ideal speedup, while
on a computer with 12 CPU cores we find in Fig. 1(b) that the maximal speedup is around 9.6, or 80% of
the ideal speedup. Such a speedup represents significant improvement in the performance.
Summary of revisions: All Fortran programs from the previous version [1] are translated to C and named
in the sameway. The structure of all programs is identical. We have introduced the use of comprehensive
input files, where all parameters are explained in detail and can be set by a user. We have also
included makefiles with tested and verified settings for GNU’s gcc compiler, Intel’s icc compiler, IBM’s
xlc compiler, PGI’s pgcc compiler, and Oracle’s suncc (former Sun’s) compiler. In addition to this, 6 new
threaded (OpenMP parallelized) programs are supplied (imagtime2d-th, imagtime3d-th, imagtimeaxial-
th, realtime2d-th, realtime3d-th, realtimeaxial-th) for algorithms involving two or three space variables.
They are written by OpenMP-parallelizing the most computationally demanding loops in functions
performing time evolution (calcnu, calclux, calcluy, calcluz), normalization (calcnorm), and calculation
of physical quantities (calcmuen, calcrms). Since some of the dynamically allocated array variables are
used within such loops, they had to bemade private for each thread. This was done by allocatingmatrices
instead of arrays, with the first index in all such matrices corresponding to a thread number.
Additional comments: This package consists of 18 programs, see Program title above, out of which 12
programs (i, ii, iv, v, vii, ix, x, xi, xiii, xiv, xvi, xviii) are serial, while 6 programs (iii, vi, viii, xii, xv, xvii)
are threaded (OpenMP parallelized). For the particular purpose of each program, please see descriptions
below.
Running time: All running times given in descriptions below refer to programs compiledwith gcc on quad-
core Intel Xeon X5460 at 3.16 GHz (CPU1), and programs compiled with icc on quad-core Intel Nehalem
E5540 at 2.53 GHz (CPU2). With the supplied input files, running times on CPU1 are: 5 min (i, iv, ix, xii,
xiii, xvii, xviii), 10 min (viii, xvi), 15 min (iii, x, xi), 30 min (ii, vi, vii), 2 h (v), 4 h (xv), 15 h (xiv). On CPU2,
running times are: 5 min (i, iii, iv, viii, ix, xii, xiii, xvi, xvii, xviii), 10 min (vi, x, xi), 20 min (ii, vii), 1 h
(v), 2 h (xv), 12 h (xiv).

© 2012 Elsevier B.V. All rights reserved.

New version program summary (i)
Program title: imagtime1d.
Title of electronic files: imagtime1d.c, imagtime1d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 4 MB.
Programming language used: C.
Typical running time: 2 min (CPU1), 1 min (CPU2).
Nature of physical problem: This program is designed to solve the
time-dependent GP nonlinear partial differential equation in one
space dimension with a harmonic trap. The GP equation describes
the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (ii)
Program title: imagtime2d.
Title of electronic files: imagtime2d.c, imagtime2d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 80 MB.
Programming language used: C.
Typical running time: 30 min (CPU1), 20 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
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New version program summary (iii)
Program title: imagtime2d-th.
Title of electronic files: imagtime2d-th.c, imagtime2d-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 80 MB.
Programming language used: C/OpenMP.
Typical running time: 15 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
New version program summary (iv)
Program title: imagtimecir.
Title of electronic files: imagtimecir.c, imagtimecir.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 2 MB.
Programming language used: C.
Typical running time: 2 min (CPU1), 1 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
two space dimensions with a circularly-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
New version program summary (v)
Program title: imagtime3d.
Title of electronic files: imagtime3d.c, imagtime3d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 1.2 GB.
Programming language used: C.
Typical running time: 1.5 h (CPU1), 1 h (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
New version program summary (vi)
Program title: imagtime3d-th.
Title of electronic files: imagtime3d-th.c, imagtime3d-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 1.2 GB.
Programming language used: C/OpenMP.
Typical running time: 25 min (CPU1), 10 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation

in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (vii)
Program title: imagtimeaxial.
Title of electronic files: imagtimeaxial.c, imagtimeaxial.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 32 MB.
Programming language used: C.
Typical running time: 30 min (CPU1), 20 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (viii)
Program title: imagtimeaxial-th.
Title of electronic files: imagtimeaxial-th.c, imagtimeaxial-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 32 MB.
Programming language used: C/OpenMP.
Typical running time: 10 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (ix)
Program title: imagtimesph.
Title of electronic files: imagtimesph.c, imagtimesph.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 2.5 MB.
Programming language used: C.
Typical running time: 2 min (CPU1), 1 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with a spherically-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.



2024 D. Vudragovi¢ et al. / Computer Physics Communications 183 (2012) 2021–2025

Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
New version program summary (x)
Program title: realtime1d.
Title of electronic files: realtime1d.c, realtime1d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 4 MB.
Programming language used: C.
Typical running time: 15 min (CPU1), 10 min (CPU2).
Nature of physical problem: This program is designed to solve the
time-dependent GP nonlinear partial differential equation in one
space dimension with a harmonic trap. The GP equation describes
the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xi)
Program title: realtime2d.
Title of electronic files: realtime2d.c, realtime2d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 8 MB.
Programming language used: C.
Typical running time: 15 min (CPU1), 10 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xii)
Program title: realtime2d-th.
Title of electronic files: realtime2d-th.c, realtime2d-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 8 MB.
Programming language used: C/OpenMP.
Typical running time: 5 min (CPU1), 2 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xiii)
Program title: realtimecir.
Title of electronic files: realtimecir.c, realtimecir.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 3 MB.
Programming language used: C.

Typical running time: 5 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
two space dimensions with a circularly-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xiv)
Program title: realtime3d.
Title of electronic files: realtime3d.c, realtime3d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 700 MB.
Programming language used: C.
Typical running time: 15 h (CPU1), 12 h (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xv)
Program title: realtime3d-th.
Title of electronic files: realtime3d-th.c, realtime3d-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 700 MB.
Programming language used: C/OpenMP.
Typical running time: 4 h (CPU1), 1.8 h (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xvi)
Program title: realtimeaxial.
Title of electronic files: realtimeaxial.c, realtimeaxial.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 4 MB.
Programming language used: C.
Typical running time: 10 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
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a b

Fig. 1. (Colour online) Speedup in the execution time of realtime2d-th and realtime3d-th threaded (OpenMP parallelized) programs as a function of the number of CPU
cores used. The results are obtained: (a) on an 8-core machine with 2⇥ quad-core Intel Nehalem E5540 CPU at 2.53 GHz, using the icc compiler, (b) on a 12-core machine
with 2 ⇥ six-core Intel Nehalem X5650 CPU at 2.66 GHz, using the pgcc compiler. The spatial grid sizes used are 2000 ⇥ 2000 (realtime2d-th) and 1000 ⇥ 1000 ⇥ 300
(realtime3d-th).

New version program summary (xvii)
Program title: realtimeaxial-th.
Title of electronic files: realtimeaxial-th.c, realtimeaxial-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 4 MB.
Programming language used: C/OpenMP.
Typical running time: 5 min (CPU1), 1 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xviii)
Program title: realtimesph.
Title of electronic files: realtimesph.c, realtimesph.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 2.5 MB.
Programming language used: C.
Typical running time: 5 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with a spherically-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
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Scientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.

Received 13 December 2010; Accepted 18 April 2011

Communicated by Leonardo Golubovic

Available online 28 October 2011

Abstract. We present Path Integral Monte Carlo C code for calculation of quantum
mechanical transition amplitudes for 1D models. The SPEEDUP C code is based on the
use of higher-order short-time effective actions and implemented to the maximal order
p=18 in the time of propagation (Monte Carlo time step), which substantially improves
the convergence of discretized amplitudes to their exact continuum values. Symbolic
derivation of higher-order effective actions is implemented in SPEEDUP Mathematica
codes, using the recursive Schrödinger equation approach. In addition to the general
1D quantum theory, developed Mathematica codes are capable of calculating effective
actions for specific models, for general 2D and 3D potentials, as well as for a general
many-body theory in arbitrary number of spatial dimensions.
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1 Introduction

Exact solution of a given many-body model in quantum mechanics is usually expressed
in terms of eigenvalues and eigenfunction of its Hamiltonian

Ĥ=
M

Â
i=1

p̂2
i

2mi
+V̂(q̂1,··· ,q̂M), (1.1)

but it can be also expressed through analytic solution for general transition amplitude

A(a,b;T)= hb|e�iTĤ/h̄|ai from the initial state |ai to the final state |bi during the time of

⇤Corresponding author. Email addresses: antun@ipb.ac.rs (A. Balaž), ivanavi@ipb.ac.rs (I. Vidanović),
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propagation T. Calculation of transition amplitudes is more suitable if one uses path inte-
gral formalism [1–3], but in principle, if eigenproblem of the Hamiltonian can be solved,
one should be able to calculate general transition amplitudes, and vice versa. However,
mathematical difficulties may prevent this, and even more importantly, exact solutions
can be found only in a very limited number of cases. Therefore, use of various analytic
approximation techniques or numerical treatment is necessary for detailed understand-
ing of the behavior of almost all models of interest.

In numerical approaches it could be demanding and involved to translate numerical
knowledge of transition amplitudes to (or from) eigenstates, but practically can be always
achieved. It has been implemented in various setups, e.g. through extraction of the
energy spectra from the partition function [2–5], and using the diagonalization of space-
discretized matrix of the evolution operator, i.e. matrix of transition amplitudes [6–10].
All these applications use the imaginary-time formalism [11, 12], typical for numerical
simulations of such systems.

Recently introduced effective action approach [13–17] provides an ideal framework
for exact numerical calculation of quantum mechanical amplitudes. It gives systematic
short-time expansion of amplitudes for a general potential, thus allowing accurate cal-
culation of short-time properties of quantum systems directly, as has been demonstrated
in [8–10]. For numerical calculations that require long times of propagation to be con-
sidered using e.g. Monte Carlo method, effective action approach provides improved
discretized actions leading to the speedup in the convergence of numerically calculated
discretized quantities to their exact continuum values. This has been also demonstrated
in Monte Carlo calculations of energy expectation values using the improved energy es-
timators [5, 18].

In this paper we present SPEEDUP codes [19] which implement the effective action
approach, and which were used for numerical simulations in [4, 5, 8–10, 13–17]. The pa-
per is organized as follows. In Section 2 we briefly review the recursive approach for
analytic derivation of higher-order effective actions. SPEEDUP Mathematica codes capa-
ble of symbolic derivation of effective actions for a general one- and many-body theory
as well as for specific models is described in detail in Section 3, while in Section 4 we
describe SPEEDUP Path Integral Monte Carlo C code, developed for numerical calcula-
tion of transition amplitudes for 1D models. Section 5 summarizes presented results and
gives outlook for further development of the code.

2 Theoretical background

From inception of the path integral formalism, expansion of short-time amplitudes in
the time of propagation was used for the definition of path integrals through the time-
discretization procedure [2, 3]. This is also straightforwardly implemented in the Path
Integral Monte Carlo approaches [20], where one usually relies on the naive discretization
of the action. Several improved discretized actions, mainly based on the Trotter formula



A. Balaž et al. / Commun. Comput. Phys., 11 (2012), pp. 739-755 741

and its generalizations, were developed and used in the past [21–23]. A recent analysis of
this method can be found in Jang et al [24]. Several related investigations dealing with the
speed of convergence have focused on improvements in short-time propagation [25, 26]
or the action [27]. More recently, split-operator method has also been developed [28–32],
later extended to include higher-order terms [33–36], and systematically improved using
the multi-product expansion [37–39].

The effective action approach is based on the ideal discretization concept [16]. It was
introduced first for single-particle 1D models [13–15] and later extended to general many-
body systems in arbitrary number of spatial dimensions [5, 17]. This approach allows
systematic derivation of higher-order terms to a chosen order p in the short time of prop-
agation.

Recursive method for deriving discretized effective actions, established in [17], is
based on solving the underlying Schrödinger equation for the amplitude. It has proven
to be the most efficient tool for treatment of higher-order expansion. In this section we
give brief overview of the recursive method, which will be implemented in Mathematica
in the next section. We start with the case of single particle in 1D, used in the SPEEDUP
C code. Throughout the paper we will use natural system of units, in which h̄ and all
masses are set to unity.

2.1 One particle in one dimension

In the effective action approach, transition amplitudes are expressed in terms of the ideal
discretized action S⇤ in the form

A(a,b;T)=
1p

2pT
e�S⇤(a,b;T), (2.1)

which can be also seen as a definition of the ideal action [16]. Therefore, by definition,
the above expression is correct not only for short times of propagation, but for arbitrary
large times T. We also introduce the ideal effective potential W,

S⇤(a,b;T)=T

"
1

2

✓
b�a

T

◆2

+W

#

, (2.2)

reminiscent of the naive discretized action, with the arguments of the effective potential
(a, b, T) usually written as W

�
a+b

2 , b�a
2 ;T

�
, to emphasize that we will be using mid-point

prescription.
However, ideal effective action and effective potential can be calculated analytically

only for exactly solvable models, while in all other cases we have to use some approxi-
mative method. We use expansion in the time of propagation, assuming that the time T
is small. If this is not the case, we can always divide the propagation into N time steps,
so that #= T/N is small. Long-time amplitude is than obtained by integrating over all
short-time ones,

A(a,b;T)=
Z

dq1 ···dqN�1 A(a,q1;#)A(q1,q2;#)···A(qN�1,b;#), (2.3)
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paving the way towards Path Integral Monte Carlo calculation, which is actually imple-
mented in the SPEEDUP C code.

If we consider general amplitude A(q,q0;#), introduce the mid-point coordinate x =
(q+q0)/2 and deviation x̄=(q0�q)/2, and express A using the effective potential,

A(q,q0;#)=
1p
2p#

e�
2
# x̄2�#W(x,x̄;#) , (2.4)

the time-dependent Schrödinger equation for the amplitude leads to the following equa-
tion for W

W+ x̄ ∂̄W+#∂#W� 1

8
#∂2W� 1

8
#∂̄2W+

1

8
#2(∂W)2+

1

8
#2(∂̄W)2=

1

2
(V++V�), (2.5)

where V±=V(x±x̄), i.e. V�=V(q), V+=V(q0). The short-time expansion assumes that we
expand W to power series in # to a given order, and calculate the appropriate coefficients
using Eq. (2.5). We could further expect that this results in coefficients depending on the
potential V(x) and its higher derivatives. However, this scheme is not complete, since
the effective potential depends not only on the mid-point x, but also on the deviation
x̄, and the obtained equations for the coefficients cannot be solved in a closed form. In
order to resolve this in a systematic way, we make use of the fact that, for short time of
propagation, deviation x̄ is on the average given by the diffusion relation x̄2 µ #, allowing
double expansion of W in the form

W(x, x̄;#)=
•

Â
m=0

m

Â
k=0

cm,k(x)#m�kx̄2k . (2.6)

Restricting the above sum over m to p�1 leads to level p effective potential Wp(x, x̄;#)
which gives expansion of the effective action S⇤

p to order #p, and hence the level desig-
nation p for both the effective action and the corresponding potential Wp. Thus, if the
diffusion relation is applicable (which is always the case in Monte Carlo calculations), in-
stead of the general double expansion in x̄ and #, we are able to obtain simpler, systematic
expansion in # only.

As shown previously [13–15], when used in Path Integral Monte Carlo simulations for
calculation of long time amplitudes according to Eq. (2.3), use of level p effective action
leads to the convergence of discretized amplitudes proportional to #p, i.e. as 1/Np, where
N is the number of time steps used in the discretization.

If we insert the above level p expansion of the effective potential to Eq. (2.5), we obtain
the recursion relation derived in [17],

8(m+k+1)cm,k =(2k+2)(2k+1)cm,k+1+c00m�1,k�
m�2

Â
l=0

Â
r

c0l,r c0m�l�2,k�r

�
m�2

Â
l=1

Â
r

2r(2k�2r+2)cl,r cm�l�1,k�r+1, (2.7)
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Figure 1: Order in which the coe�cients cm,k are calculated: diagonal ones from Eq. (2.8), o↵-diagonal from
recursion (2.7).

where the sum over r goes from max{0, k�m+l+2} to min{k, l}. This recursion can
be used to calculate all coefficients cm,k to a given level p, starting from the known initial
condition, c0,0=V. The diagonal coefficients can be calculated immediately,

cm,m=
V(2m)

(2m+1)!
, (2.8)

and for a given value of m=0,··· p�1, the coefficients cm,k follow recursively from evalu-
ating (2.7) for k=m�1,··· ,1,0, as illustrated in Fig. 1.

2.2 Extension to many-body systems

The above outlined approach can be straightforwardly applied to many-body systems.
Again the amplitude is expressed through the effective action and the corresponding
effective potential, which now depends on mid-point positions and deviations of all par-
ticles. For simplicity, these vectors are usually combined into D⇥M dimensional vectors
x and x̄, where D is spatial dimensionality, and M is the number of particles. In this
notation,

A(q,q0;#)=
1

(2p#)DM/2
e�

2
# x̄2�#W(x,x̄;#) , (2.9)

where initial and final position q=(q1,··· ,qM) and q0=(q0
1,··· ,q0

M) are analogously de-
fined D⇥M dimensional vectors. Here we will not consider quantum statistics of parti-
cles. The required symmetrization or antisymmetrization must be applied after transition
amplitudes are calculated using the effective potential.

Many-body transition amplitudes satisfy D⇥M-dimensional generalization of the
time-dependent Schrödinger equation, which leads to the equation for the effective po-
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tential similar to Eq. (2.5), with vectors replacing previously scalar quantities,

W+ x̄·∂̄W+#∂#W� 1

8
#∂2W� 1

8
#∂̄

2
W+

1

8
#2(∂W)2+

1

8
#2(∂̄W)2=

1

2
(V++V�). (2.10)

The effective potential for short-time amplitudes again can be written in the form of the
double expansion in # and x̄. However, it turns out to be advantageous to use the expan-
sion

W(x,x̄;#)=
•

Â
m=0

m

Â
k=0

#m�kWm,k(x,x̄) , (2.11)

and work with fully contracted quantities Wm,k

Wm,k(x,x̄)= x̄i1 x̄i2 ··· x̄i2k
ci1,···,i2k

m,k (x), (2.12)

rather than with the respective coefficients ci1,···,i2k
m,k . In this way we avoid the computa-

tionally expensive symmetrization over all indices i1,··· ,i2k. After inserting the above
expansion into the equation for the effective potential, we obtain the recursion relation
which represents a generalization of previously derived Eq. (2.7) for 1D case, and has the
form

8(m+k+1)Wm,k =∂2Wm�1,k+ ∂̄
2
Wm,k+1�

m�2

Â
l=0

Â
r

(∂Wl,r)·(∂Wm�l�2,k�r)

�
m�2

Â
l=1

Â
r

(∂̄Wl,r)·(∂̄Wm�l�1,k�r+1). (2.13)

The sum over r runs from max{0, k�m+l+2} to min{k, l}, while diagonal quantities
Wm,m can be calculated directly,

Wm,m=
1

(2m+1)!
(x̄·∂)2m V . (2.14)

The above recursion disentangles, in complete analogy with the previously outlined case
of one particle in 1D, and is solved in the order shown in Fig. 1.

3 SPEEDUP Mathematica codes for deriving the higher-order
effective actions

The effective action approach can be used for numerically exact calculation of short-time
amplitudes if the effective potential Wp can be analytically derived to sufficiently high
values of p such that the associated error is smaller than the required numerical pre-
cision. The error #p for the effective action, obtained when level p effective potential
is used, translates into #p�DM/2 for a general many-body short-time amplitude. How-
ever, when amplitudes are calculated using the Path Integral Monte Carlo SPEEDUP C
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code [19], which will be presented in the next section, the errors of numerically calculated
amplitudes are always proportional to #p⇠1/Np, where N is number of time-steps in the
discretization of the propagation time T.

Therefore, accessibility of higher-order effective actions is central to the application of
this approach if it is used for direct calculation of short-time amplitudes [8–10], as well
as in the case when PIMC code is used [4, 5, 18]. However, increase in the level p leads
to the increase in complexity of analytic expressions for the effective potential. On one
hand, this limits the maximal accessible level p by the amount of memory required for
symbolic derivation of the effective potential. On the other hand, practical use of large
expressions for Wp may slow down numerical calculations, and one can opt to use lower
than the maximal available level p when optimizing total CPU time required for numer-
ical simulation. The suggested approach is to study time-complexity of the algorithm in
practical applications, and to choose optimal level p by minimizing the execution time
required to achieve fixed numerical precision.

We have implemented efficient symbolic derivation of higher-order effective actions
in Mathematica using the recursive approach. All source files described in this section
are located in the Mathematica directory of the SPEEDUP code distribution.

3.1 General 1D Mathematica code

SPEEDUP code [19] for symbolic derivation of the effective potential to specified level
p is implemented in Mathematica [40], and is available in the EffectiveAction-1D.nb

notebook. It implements the algorithm depicted in Fig. 1 and calculates the coefficients
cm,k for m= 0,··· ,p�1 and k=m,··· ,0, starting from the initial condition c0,0 =V. For a
given value of m, the diagonal coefficient cm,m is first calculated from Eq. (2.8), and then
all off-diagonal coefficients are calculated from the recursion (2.7).

In this code the potential V(x) is not specified, and the effective potential is derived
for a general one-particle 1D theory. The resulting coefficients cm,k and the effective po-
tential are expressed in terms of the potential V and its higher derivatives. Level p effec-
tive potential, constructed as

Wp(x, x̄;#)=
p�1

Â
m=0

m

Â
k=0

cm,k(x)#m�kx̄2k , (3.1)

contains derivatives of V to order 2p�2.
The only input parameter of this Mathematica code is the level p to which the effec-

tive potential should be calculated. As the code runs, it prints used amount of memory
(in MB) and CPU time. This information can be used to estimate the required comput-
ing resources for higher values of p. The calculated coefficients can be exported to a
file, and later imported for further numerical calculations. As an illustration, the file
EffectiveAction-1D-export-p5.m contains exported definition of all the coefficients
cm,k calculated at level p=5, while the notebook EffectiveAction-1D-matching-p5.nb
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contains matching output from the interactive session used to produce the above p= 5
result.

The execution of this code on a typical 2 GHz CPU for level p=10 requires 10-15 MB
of RAM and several seconds of CPU time. We have successfully run this code for levels as
high as p= 35 [19]. SPEEDUP C code implements effective actions to the maximal level
p = 18, with the size of the corresponding C function around 2 MB. If needed, higher
levels p can be easily implemented in C and added to the existing SPEEDUP code.

3.2 General 2D and 3D Mathematica code

Although we have developed Mathematica code capable of deriving effective actions
for a general many-body theory in arbitrary number of spatial dimensions, in practical
applications in 2D and 3D it can be very advantageous to use simpler codes, able to
produce results to higher levels p than the general code [9, 10].

This is done in files EffectiveAction-2D.nb and EffectiveAction-3D.nb, where
the recursive approach is implemented directly in 2D and 3D. Execution of these codes
requires more memory: for p = 10 effective action one needs 60 MB in 2D case, while
in 3D case the needed amount of memory increases to 860 MB. On the other hand, the
execution time is several minutes for 2D code and around 30 minutes for 3D code.

The distribution of the SPEEDUP code contains exported p = 5 definitions of con-
tractions Wm,k for both 2D and 3D general potential, as well as matching outputs from
interactive sessions used to generate these results.

3.3 Model-specific Mathematica codes

When general expressions for the effective actions, obtained using the above described
SPEEDUP Mathematica codes, are used in numerical simulations, one has to specify the
potential V and its higher derivatives to order 2p�2 in order to be able to calculate tran-
sition amplitudes. Such approach is justified for systems where the complexity of higher
derivatives increases. However, for systems where this is not the case, or where only a
limited number of derivatives is non-trivial (e.g. polynomial interactions), it might be
substantially beneficial to specify the potential at the beginning of the Mathematica code
and calculate the derivatives explicitly when iterating the recursion.

Using this approach, one is able to obtain coefficients cm,k and the effective poten-
tial W directly as functions of the mid-point x. This is implemented in the notebooks
EffectiveAction-1D-AHO.nb and EffectiveAction-2D-AHO.nb for the case of anhar-
monic oscillators in 1D and 2D,

V1D�AHO(x)=
A

2
x2+

g

24
x4 , (3.2)

V2D�AHO(x)=
A

2
(x2+y2)+

g

24
(x2+y2)2 . (3.3)



A. Balaž et al. / Commun. Comput. Phys., 11 (2012), pp. 739-755 747

These codes can be easily executed within few seconds and with the minimal amounts of
memory even for p= 20. For 1D anharmonic oscillator we have successfully calculated
effective actions to excessively large value p= 144, and in 2D to p= 67 [19], to illustrate
the advantage of this model-specific method.

Similar approach can be also used in another extreme case, when the complexity of
higher derivatives of the potential V increases very fast, so that entering the correspond-
ing expressions to the code becomes impractical. Even in this situation expressions for
effective actions can be usually simplified using some appropriate model-specific ansatz.
The form of such ansatz can be deduced from the form of model-specific effective po-
tentials, and then used to simplify their derivation. Such use-case is illustrated in the
SPEEDUP Mathematica code for the modified Pöscl-Teller potential,

V1D�MPT(x)=� l

(coshax)2
. (3.4)

For this potential, the coefficients cm,k of the effective potential can be expressed in the
form

cm,k(x)=
m

Â
l=0

dm,k,l
(tanhax)2l

(coshax)2m�2l+2
, (3.5)

and newly introduced constant coefficients dm,k,l can be calculated using the model-speci-
fic recursion in EffectiveAction-1D-MPT.nb. The form of the ansatz (3.5) is deduced
from the results of executing general 1D Mathematica code, with the model-specific po-
tential (3.4) defined before the recursion calculation of the coefficients is performed. Us-
ing this approach, we were able to obtain maximal level p=41 effective action [19].

3.4 General many-body Mathematica code

SPEEDUP Mathematica code for calculation of effective action for a general many-body
theory is implemented using the MathTensor [41] package for tensorial calculations in
Mathematica. This general implementation required some new functions related to the
tensor calculus to be defined in the source notebook EffectiveAction-ManyBody.nbpro-
vided with the SPEEDUP code.

The function GenNewInd[n] generates the required number n of upper and lower in-
dices using the MathTensor function UpLo, with the assigned names up1, lo1,···, as well
as lists upi and loi, each containing n strings corresponding to the names of generated
indices. These new indices are used in the implementation of the recursion for calcula-
tion of derivatives of Wm,k, contractions of the effective potential, and for this reason had
to be explicitly named and properly introduced.

The expressions obtained by iterating the recursion contain large numbers of contrac-
tions, and function NewDefUnique[contr] replaces all contracted indices with the newly-
introduced dummy ones in the contraction contr, so that they do not interfere with the
calculation of derivatives in the recursion. This is necessary since the derivatives in re-
cursion do not distinguish contracted indices from non-contracted ones if their names



748 A. Balaž et al. / Commun. Comput. Phys., 11 (2012), pp. 739-755

happen to be generated by the function GenNewInd. Note that the expression contr does
not have to be full contraction, i.e. function NewDefUnique will successfully act on ten-
sors of any kind if they have contracted indices, while it will leave them unchanged if no
contractions are present.

The function NewDerivativeVec[contr, vec, ind] implements calculation of the
first derivative of the tensor contr (which may or may not contain contracted indices,
but if it does, they are supposed to be uniquely defined dummy ones, which is achieved
using the function NewDefUnique). The derivative is calculated with respect to vector vec
with the vectorial index ind. The index ind can be either lower or upper one, and has to
be generated previously by the function GenNewInd.

Finally, the function NewLaplacianVec[contr, vec] implements the Laplacian of the
tensor contr with respect to the vector vec, i.e. it performs the calculation of contractions
of the type

∂

∂veci

∂

∂veci
contr. (3.6)

After all described functions are defined, the execution of the code proceeds by set-
ting the desired level of the effective action p, generating the needed number of named
indices using the function call GenNewInd[2 p + 2], and then by performing the recur-
sion according to the scheme illustrated in Fig. 1. The use of MathTensor function CanAll

in the recursion ensures that the obtained expressions for W[m, k] will be simplified if
possible. This is achieved in MathTensor by sorting and renaming all dummy indices
using the same algorithm and trying to simplify the expression obtained in such way. By
default, Mathematica will distinguish contracted indices in two expressions if they are
named differently, and MathTensor works around it using the renaming scheme imple-
mented in CanAll.

The computing resources required for the execution of the many-body SPEEDUP
Mathematica code depend strongly on the level of the effective action. For example,
for level p = 5 the code can be run within few seconds with the minimal memory re-
quirements. The notebook with the matching output of this calculation is available as
EffectiveAction-ManyBody-matching-p5.nb, and the exported results for W[m, k] are
available in EffectiveAction-ManyBody-export-p5.m. We were able to achieve maxi-
mal level p= 10 [19], with the CPU time of around 2 days on a recent 2 GHz processor.
The memory used by Mathematica was approximately 1.6 GB.

Note that exporting the definition of the effective potential from Mathematica to a file
will yield lower and upper indices named ll1, uu1, etc. In order to import previous re-
sults and use them for further calculations with the provided Mathematica code, it is nec-
essary to replace indices in the exported file to the proper index names used by the func-
tion GenNewInd. This is easily done using find/replace feature of any text editor. Prior to
importing definition of the effective potential, it is necessary to initialize MathTensor and
all additional functions defined in the notebook EffectiveAction-ManyBody.nb, and to
generate the needed number of named indices using the function call GenNewInd[2p+2].
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4 SPEEDUP C codes for Monte Carlo calculation of 1D
transition amplitudes

For short times of propagation, the effective actions derived using the above described
Mathematica codes can be directly used. This has been extensively used in [8, 9], where
SPEEDUP codes were applied for numerical studies of several lower-dimensional models
and calculation of large number of energy eigenvalues and eigenfunctions. The similar
approach is used in [10], where SPEEDUP code was used to study properties of fast-
rotating Bose-Einstein condensates in anharmonic trapping potentials. The availability
of a large number of eigenstates allowed not only precise calculation of global properties
of the condensate (such as condensation temperature and ground state occupancy), but
also study of density profiles and construction of time-of-flight absorption graphs, with
the exact quantum treatment of all available eigenfunctions.

However, in majority of applications the time of propagation cannot be assumed to
be small. The effective actions are found to have finite radius of convergence [8], and if
the typical propagation times in the considered case exceed this critical value, Path Inte-
gral Monte Carlo approach must be used in order to accurately calculate the transition
amplitudes and the corresponding expectation values [4, 18]. As outlined earlier, in this
case the time of propagation T is divided into N time steps, such that #= T/N is suffi-
ciently small and that the effective action approach can be used. The discretization of the
propagation time leads to the following expression for the discretized amplitude

A
(p)
N (a,b;T)=

Z
dq1 ···dqN�1

(2p#)N/2
e�S

(p)
N , (4.1)

where S
(p)
N stands for the discretized level p effective action,

S
(p)
N =

N�1

Â
k=0


(qk+1�qk)2

2#
+#Wp(xk, x̄k;#)

�
, (4.2)

and q0= a, qN =b, xk =(qk+1+qk)/2, x̄k =(qk+1�qk)/2.
Level p discretized effective action is constructed from the corresponding effective

potential Wp, calculated as power series expansion to order #p�1. Since it enters the action
multiplied by #, this leads to discretized actions correct to order #p, i.e. with the errors of

the order #p+1. The long-time transition amplitude A
(p)
N (a,b;T) is a product of N short-

time amplitudes, and its errors are expected to scale as N·#p+1⇠1/Np, as has been shown
in [5, 13–15] for transition amplitudes, and in [5, 18] for expectation values, calculated
using the corresponding consistently improved estimators.

4.1 Algorithm and structure of the code

SPEEDUP C source is located in the src directory of the code distribution [19]. It uses the
standard Path Integral Monte Carlo algorithm for calculation of transition amplitudes.
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The trajectories are generates by the bisection algorithm [20], hence the number of time-
steps N is always given as a power of two, N = 2s. When the amplitude is calculated
with 2s time steps, we can also easily calculate all discretized amplitudes in the hierarchy
2s�1,··· ,20 at no extra cost. This requires only minor additional CPU time and memory,
since the needed trajectories are already generated as subsets of maximal trajectories with
2s time-steps.

The trajectory is constructed starting from bisection level n= 0, where we only have
initial and final position of the particle. At bisection level n=1 the propagation is divided
into two time-steps, and we have to generate coordinate q of the particle at the moment
T/2, thus constructing the piecewise trajectory connecting points a at the time t = 0, q
at t= T/2, and b at t= T. The coordinate q is generated from the Gaussian probability
density function centered at (a+b)/2 and with the width s1 =

p
T/2. The procedure

continues iteratively, and each time a set of points is added to the piecewise trajectory. At
each bisection level n the coordinates are generated from the Gaussian centered at mid-
point of coordinates generated at level n�1, with the width sn =

p
T/2n. To generate

numbers h from the Gaussian centered at zero we use Box-Müller method,

h=
q
�2s2

n lnx1 cos2px2 , (4.3)

where numbers x1 and x2 are generated from the uniform distribution on the interval
[0,1], using the SPRNG library [42]. If the target bisection level is s, then at bisection
level n s we generate 2n�1 numbers using the above formula, and construct the new
trajectory by adding to already existing points the new ones, according to

q[(1+2i)·2s�n ]=hi+
q[i·2s�n+1]+q[(i+1)·2s�n+1]

2
, (4.4)

where i runs from 0 to 2n�1�1. This ensures that at bisection level s we get trajectory
with N=2s time-steps, consisting of N+1 points, with boundary conditions q[0]= a and
q[N]= b. At each lower bisection level n, the trajectory consists of 2n+1 points obtained
from the maximal one (level s trajectory) as a subset of points q[i·2s�n ] for i=0,1,··· ,2n.

The use of trajectories generated by the bisection algorithm requires normalization
factors from all Gaussian probability density functions with different widths to be taken
into account. This normalization is different for each bisection level, but can be calculated
easily during the initialization phase.

The basic C code is organized in three source files, main.c, p.c and potential.c,
with the accompanying header files. The file potential.c (its name can be changed, and
specified at compile time) must contain a user-supplied function V0(), defining the po-
tential V. For a given input value of the coordinate, V0() should initialize appropriate
variables to the value of the potential V and its higher derivatives to the required or-
der 2p�2. When this file is prepared, SPEEDUP code can be compiled and used. The
distributed source contains definition of 1D-AHO potential in the file potential.c, the
same as in the file 1D-AHO.c.
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The execution of the SPEEDUP code starts with the initialization and allocation of
memory in the main() function, and then the array of amplitudes and associated MC
error estimates for each bisection level n = 0,··· ,s is calculated by calling the function
mc(). After printing the output, main() deallocates used memory and exits. Function
mc() which implements the described MC algorithm is also located in the file main.c, as
well as the function distr(), which generates maximal (level s) trajectories.

The function mc() contains main MC sampling loop. In each step new level s trajec-
tory is generated by calling the function distr(). Afterwards, for each bisection level n,
function func() is invoked. This function is located in the file p.c, and returns the value
of the function e�S, properly normalized, as described earlier. This value (and its square)
is accumulated in the MC loop for each bisection level n and later averaged to obtain the
estimate of the corresponding discretized amplitude and the associated MC error.

The function func() makes use of C implementation of earlier derived effective ac-
tions for a general 1D potential. For a given trajectory at the bisection level n, func()
will first initialize appropriate variables with the values of the potential and its higher
derivatives (to the required level 2p�2) by calling the user-supplied function V0(), lo-
cated in the file potential.c. Afterwards the effective action is calculated according to
Eq. (4.2), where the effective potential is calculated by the function Wp(), located in the
file p.c. The desired level p of the effective action is selected by defining the appropriate
pre-processor variable when the code is compiled.

In addition to this basic mode, when SPEEDUP code uses general expression for level
p effective action, we have also implemented model-specific mode, described earlier. If
effective actions are derived for a specific model, then user can specify an alternative p.c

file to be used within the directory src/models/<model>, where <model> corresponds
to the name of the model. If this mode is selected at compile time, the compiler will
ignore p.c from the top src directory, and use the model-specific one, defined by the user.
The distributed source contains model definitions for 1D-AHO and 1D-MPT potentials
in directories src/models/1D-AHO and src/models/1D-MPT. Note that in this mode the
potential is specified directly in the definition of the effective potential, and therefore the
function V0() is not used (nor the potential.c file).

4.2 Compiling and using SPEEDUP C code

SPEEDUP C source can be easily compiled using the Makefile provided in the top direc-
tory of the distribution. The compilation has been thoroughly tested with GNU, Intel and
IBM XLC compilers. In order to compile the code one has to specify the compiler which
will be used in the Makefile by setting appropriately the variable COMPILER, and then to
proceed with the standard command of the type make <target>, where <target> could
be one of all, speedup, sprng, clean-all, clean-speedup, clean-sprng.

The SPRNG library [42] is an external dependency, and for this reason it is located in
the directory src/deps/sprng4.0. In principle, it has to be compiled only once, after the
compiler has been set. This is achieved by executing the command make sprng. After-
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wards the SPEEDUP code can be compiled and easily linked with the already compiled
SPRNG library. Note that if the compiler is changed, SPRNG library has to be recompiled
with the same compiler in order to be successfully linked with the SPEEDUP code.

To compile the code with level p=10 effective action and user-supplied function V0()

located in the file src/1D-AHO.c, the following command can be used:

make speedup P=10 POTENTIAL=1D-AHO.c

If not specified, POTENTIAL=potential.c is used, while the default level of the effective
action is P=1. To compile the code using a model-specific definition of the effective poten-
tial, instead of the POTENTIAL variable, we have to appropriately set the MODEL variable
on the command line. For example, to compile the supplied p.c file for 1D-MPT model
located in the directory src/models/1D-MPT using the level p=5 effective action, the fol-
lowing command can be used:

make speedup P=5 MODEL=1D-MPT

All binaries compiled using the POTENTIALmode are stored in the bin directory, while the
binaries for the MODEL mode are stored in the appropriate bin/models/<model>directory.
This information is provided by the make command after each successful compilation is
done.

The compilation is documented in more details in the supplied README.txt files. The
distribution of the SPEEDUP code also contains examples of compilation with the GNU,
Intel and IBM XLC compilers, as well as matching outputs and results of the execution
for each tested compiler, each model, and for a range of levels of the effective action p.

Once compiled, the SPEEDUP code can be used to calculate long-time amplitudes of
a system in the specified potential V. If executed without any command-line arguments,
the binary will print help message, with details of the usage. The obligatory arguments
are time of propagation T, initial and final position a and b, maximal bisection level s,
number of MC samples Nmc and seed for initialization of the SPRNG random number
generator. All further arguments are converted to numbers of the double type and made
available in the array par to the function V0(), or to the model-specific functions in the
file src/models/<model>/p.c. The output of the execution contains calculated value of
the amplitude for each bisection level n= 0,··· ,s and the corresponding MC estimate of
its error (standard deviation). At bisection level n = 0, where no integrals are actually
calculated and the discretized N=1 amplitude is simply given by an analytic expression,
zero is printed as the error estimate.

Fig. 2 illustrates the typical results obtained from the SPEEDUP code on the example
of 1D-MPT theory. In this figure we can see the convergence of numerically calculated
amplitudes with the number of time-steps N to the exact continuum value, obtained in
the limit N ! •. Such convergence is obtained for each level p of the effective action
used. However, the convergence is much faster when higher-order effective action is
used. Note that all results corresponding to the one value of level p on the graph are
obtained from a single run of the SPEEDUP code with the maximal bisection level s=10.
The simplest way to estimate the continuum value of the amplitude is to fit numerical
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results from single run of the code to the appropriate level p fitting function [13–15],

A
(p)
N =A(p)+

B(p)

Np +
C(p+1)

Np+1
+··· (4.5)

The constant term obtained by fitting corresponds to the best estimate of the exact ampli-
tude which can be found from the available numerical results.

As mentioned earlier, the effective action approach can be used for accurate calcula-
tion of a large number of energy eigenstates and eigenvalues by diagonalization of the
space-discretized matrix of transition amplitudes [6–10]. Fig. 3 illustrates this for the case
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of an anharmonic and double-well potential. The graph on the left gives several eigenval-
ues and eigenstates for 1D-AHO potential with A=1 and quartic anharmonicity g=48,
while the graph on the right gives low-lying spectrum and eigenfunctions of the double-
well potential, obtained for A =�10, with the moderate anharmonicity g = 12. More
details on this approach, including study of all errors associated with the discretization
process, can be found in [8, 9].

5 Conclusions

In this paper we have presented SPEEDUP Mathematica and C codes, which implement
the effective action approach for calculation of quantum mechanical transition ampli-
tudes. The developed Mathematica codes provide an efficient tool for symbolic deriva-
tion of effective actions to high orders for specific models, for a general 1D, 2D and 3D
single-particle theory, as well as for a general many-body systems in arbitrary number of
spatial dimensions. The recursive implementation of the code allows symbolic calcula-
tion of extremely high levels of effective actions, required for high-precision calculation
of transition amplitudes.

For calculation of long-time amplitudes we have developed SPEEDUP C Path Integral
Monte Carlo code. The C implementation of a general 1D effective action to maximal
level p = 18 and model-specific effective actions provide fast 1/Np convergence to the
exact continuum amplitudes.

Further development of the SPEEDUP C codes will include parallelization using MPI,
OPENMP and hybrid programming model, C implementation of the effective potential
to higher levels p, as well as providing model-specific effective actions for relevant po-
tentials, including many-body systems.
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A. Balaž et al. / Commun. Comput. Phys., 11 (2012), pp. 739-755 755
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Abstract Over the period of six years and three
phases, the SEE-GRID programme has estab-
lished a strong regional human network in the
area of distributed scientific computing and has
set up a powerful regional Grid infrastructure.
It attracted a number of user communities and
applications from diverse fields from countries
throughout the South-Eastern Europe. From the
infrastructure point view, the first project phase
has established a pilot Grid infrastructure with
more than 20 resource centers in 11 countries.
During the subsequent two phases of the project,
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the infrastructure has grown to currently 55 re-
source centers with more than 6,600 CPUs and 750
TBs of disk storage, distributed in 16 participating
countries. Inclusion of new resource centers to
the existing infrastructure, as well as a support
to new user communities, has demanded setup
of regionally distributed core services, develop-
ment of new monitoring and operational tools,
and close collaboration of all partner institution
in managing such a complex infrastructure. In
this paper we give an overview of the develop-
ment and current status of SEE-GRID regional
infrastructure and describe its transition to the
NGI-based Grid model in EGI, with the strong
SEE regional collaboration.

Keywords Grid · e-Infrastructure ·
Distributed computing

1 Introduction

The transition of the traditional science to e-
Science is fueled by the ever increasing need
for processing of exceedingly large amounts of
data and exponentially increasing computational
requirements: in order to realistically describe
and solve real-world problems, numerical simu-
lations are becoming more detailed, experimen-
tal sciences use more sophisticated sensors to
make precise measurements; and shift from the
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individuals-based science work towards collabora-
tive research model now starts to dominate.

Computing resources and services able to sup-
port needs of such a new model of scientific work
are available at different layers: local computing
centers, national and regional computing centers,
and supercomputing centers. The gap between the
needs of various user communities and dispersed
computing resources able to satisfy their require-
ments is effectively bridged by introduction of
Grid technology on the top of the networking
layer and local resource management layers.

Computing Grids are conceptually not unlike
electrical Grids. In an electrical Grid, the wall
outlets allow us to link to and use an infrastructure
of resources, which generate, distribute, and bill
for electrical power. When we connect to the elec-
trical Grid, we do not need to know details on the
power plant currently generating the electricity we
use. In the same way Grid technology uses mid-
dleware layer to coordinate and organize into one
logical resource a set of available distributed com-
puting and storage resources across a network,
allowing users to access them in a unified fashion.
The computing Grids, like electrical Grids, aim to
provide users with easy access to all the resources
they need, whenever they need them, regardless
of the underlying physical topology and manage-
ment model of individual clusters.

Grids address two distinct but related goals:
providing remote access to information technol-
ogy (IT) assets, and aggregating processing and
storage power. The most obvious resources in-
cluded in Grids are processors (CPUs) and data
storage systems, but Grids also can encompass
various sensors, applications, and other advanced
types of resources. One of the first commonly
known Grid initiatives was the SETI@HOME
project, which solicited several millions of volun-
teers to download a screensaver, which was able to
use idle processor time to analyze the astronomi-
cal data in the search for extraterrestrial life.

In the past six years the European Commission
has funded, through a number of targeted ini-
tiatives, activation of new user communities and
enabling collaborative research across a number
of fields in order to close existing technologi-
cal and scientific gaps. In addition, this helps in
bridging the digital divide, stimulating research

and consequently alleviating the brain drain in
the less-developed regions of Europe. This was
especially successful in the South-Eastern Eu-
rope (SEE), where a number of such initiatives
show excellent results. In the Grid arena, the
South-East European GRid e-Infrastructure De-
velopment (SEE-GRID) series of projects [1, 2],
through its first two 2-year phases, has established
a strong human network in the area of scientific
computing and has set up a powerful regional
Grid infrastructure, attracting large number of
applications from diverse fields from countries
throughout the South-Eastern Europe. The third
2-year phase of the SEE-GRID programme, SEE-
GRID-SCI [3] project, has aimed and succeeded
in having a catalytic effect on a number of SEE
user groups, with a strong focus on the key seismo-
logical, meteorological, and environmental com-
munities.

One of the main successes of the SEE-GRID
programme is cumulative structuring effort on
the establishment of National Grid Initiatives
(NGIs) in SEE countries and collaborative work
on achieving sustainable model of operation, sup-
ported strongly from national funding sources.
The regional SEE-GRID initiative has also sup-
ported and coordinated a successful transition of
all SEE countries from the centralized opera-
tions model to the NGI-based EGI infrastructure,
which is clearly visible from the participation of
all partner countries in the 4-year EGI-InSPIRE
project [4].

2 Resource Centers

The regional Grid infrastructure operated by
SEE-GRID-SCI project was built on top of the
pilot infrastructure established by the first SEE-
GRID project (2004–2006), which was since then
substantially extended and enlarged in terms of
resources and number of Grid sites, and upgraded
in terms of the deployed middleware and core
services provided to existing and new user com-
munities during the SEE-GRID-2 project (2006–
2008).

The operations activity adopted the pragmatic
model of the 2-layered infrastructures in which
mature sites were migrated to the EGEE [5]
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production infrastructure, while the start-up sites
from new institutes and user communities were
incubated within the SEE-GRID infrastructure
until they were ready to follow the requirements
of the full-scale production infrastructure. In this
way, both SEE-wide and national-level applica-
tions were able to benefit from the computing
resources of both infrastructures, by mainly using
the pilot infrastructure in the incubation phase
and production infrastructure later, when they
reach the production phase. Moreover, this ap-
proach ensured that smaller sites, typical for the
region, have a chance to be a part of the regional
SEE-GRID infrastructure acting as an incubator
for their maturing into EGEE production.

As applications developed in the region have
matured, new Virtual Organizations (VOs) have
spun off with the relevant core services supported
by the SEE-GRID-SCI operations activity SA1.
Discipline-specific services were deployed in mul-
tiple instances (for failover and for achieving load-
balancing through a wide geographic distribution)
over the e-Infrastructure and operationally main-
tained and supported by SA1. Sophisticated op-
erational tools, some of them being developed
within the joint research activity JRA1 of the

SEE-GRID-SCI project, were used to enhance
infrastructure performance.

SEE-GRID-SCI project has continued to op-
erate and further extend, develop and improve
this infrastructure, with the aim to cater for the
needs of all activated user communities in the
region, with special emphasis on the three iden-
tified target areas: meteorology, seismology, and
environmental sciences. Apart from computing
and storage resources made available to these user
communities, SA1 activity provided and main-
tained a set of existing and new operational and
monitoring tools so as to ensure proper operation
of the infrastructure, and a set of primary and
secondary core services for all deployed VOs in
order to ensure optimal geographical distribution
according to the underlying network structure,
load sharing, and quality of the service to end
users.

Currently SEE-GRID-SCI infrastructure en-
compasses approximately 55 Grid sites, more than
6600 CPUs, and around 750 TBs of available data
storage capacity, which is illustrated in Fig. 1, with
further details given in Table 1. Overall number
of CPUs has grown from 2400 at the beginning of
the SEE-GRID-SCI project in May 2008 to cur-

Fig. 1 Overview of the SEE-GRID-SCI infrastructure
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Table 1 SEE-GRID-SCI computing and storage resources

Country Total number Total storage
of CPUs [TB]

Greece 1,200 66.8
Bulgaria 1,210 42.3
Romania 120 4.0
Turkey 2,380 528.0
Hungary 8 2.0
Albania 34 1.3
Bosnia-Herzegovina 80 1.1
FYR of Macedonia 80 4.1
Serbia 974 97.0
Montenegro 40 0.6
Moldova 24 6.5
Croatia 44 0.2
Armenia 424 0.2
Georgia 16 0.1

Total 6,634 754.2

rently more than 6600, while the number of dedi-
cated CPUs for SEE-GRID-SCI VOs is currently
around 1500. Grid operations activity successfully
maintains such a large, geographically disperse
and ever-growing infrastructure, harmonizing its
operation with the pan-European EGEE/EGI in-
frastructure. In addition to this, one of the most
important achievements of SA1 activity is transfer
of knowledge and Grid know-how to all partici-
pating countries, and support to their NGI opera-
tion teams to reach the level of expertise needed
for sustainable NGI-based operational model in
EGI.

After the completion of the SEE-GRID-SCI
project in April 2010, the regional Grid in-
frastructure was seamlessly integrated to the
EGI infrastructure, and continues to support all
deployed Virtual Organizations (VOs) and appli-
cations developed during the 6-year SEE-GRID
programme. The strong human network remains
in place and still supports on-going transition of all
countries to independent NGI operations through
the SEE Regional Operations Centre. The catch-
all SEE-GRID Certification Authority will con-
tinue its operation until all the countries from
the region deploy their own national certification
authorities. In terms of Grid operations, currently
almost all (with only a few exceptions) NGI opera-
tions teams and infrastructures are fully validated
by EGI teams, while validation for the remaining

SEE countries is expected to finish within a few
months, i.e. by mid-2011.

3 User Communities

The core objective of the SEE-GRID-SCI project
was to engage user communities from different
regional countries in close collaboration. This
strategy had a structuring effect for crucial re-
gional communities. The target applications were
selected from core earth science disciplines in
the region, namely, seismology, meteorology and
environmental protection. Thus, the focus of the
project was to engage these three core cross-
border communities in the research fields crucial
for the region, structured in the form of Virtual
Organizations (VO):

– Seismology VO had six applications ranging
from Seismic Data Service to Earthquake
Location Finding, from Numerical Mod-
elling of Mantle Convection to Seismic Risk
Assessment [6–12].

– Meteorology VO, with two large-scale appli-
cations, follows an innovative approach to
weather forecasting that uses a multitude of
weather models and bases the final forecast on
an ensemble of weather model outputs. The
other problem tackled within this VO is the
reproduction/forecasting of the airflow over
complex terrain [13–21].

– Environmental Protection VO supports eight
applications focusing on environmental pro-
tection/response and environment-oriented
satellite image processing [22–32].

In the Seismology VO, the work was orga-
nized around the development of Seismic Data
Server (SDS) application services, providing dis-
tributed storage and serving of seismic data from
different partner countries, logical organization
and indexing of distributed seismic data, and pro-
gramming tools (called iterators) that provide
easy access to seismic data. In terms of applica-
tions, the focus was on gridification of five seis-
mology applications from different South-eastern
European countries: Seismic Risk Assessment
(SRA), Numerical Modeling of Mantle Convec-
tion (NMMC3D), Fault Plane Solution (FPS),
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Earthquake Location Finding (ELF) and Massive
Digital Seismological Signal Processing with the
Wavelet Analysis (MDSSP-WA).

In the Meteorology VO, with the aim to con-
tribute to the improvement of the forecasts in
the Mediterranean, among other techniques, the
regional ensemble forecasting technique has been
explored in the frame of the SEE-GRID-SCI.
Indeed the regional ensemble forecasting system
built over the Mediterranean, involves the need
of large infrastructure that was not easily available
at medium-scale research centres and institutions.
For that reason, the Grid infrastructure was ex-
plored for its ability to support the high CPU
and storage needs of such a regional ensemble
forecasting system. This application allowed the
meteorological entities participating in the project
to assess the probability of a particular weather
event to occur. This information is being made
freely available (to the participants and to the
general public, etc) through the project web page,
helping thus when needed, to make the necessary
decisions based on this probabilistic information.
In addition, another set of applications permitted
the entities participating in the project to improve
the quality of the understanding and forecasting
of the airflow over regions characterized by the
complex terrain. Further an important benefit of
this application is the possibility offered to use this
model for operational weather forecasting. Op-
erational weather forecasting model chains based
on this model have been developed in the frame
of this project over Bosnia and Herzegovina,
Armenia and Georgia. This is considered as an
important benefit for the meteorological services
of the aforementioned countries that did not have
up to now the infrastructure support to run op-

erationally weather forecasting models for their
region.

The Environmental VO has dealt with several
important problem areas in the domain of envi-
ronmental modeling and environmental protec-
tion and the applications developed within the VO
advanced the scientific knowledge and affected
the policy and decision-making process, respond-
ing to the EU directives and national priorities.
New modeling techniques and algorithms were
employed in several of the applications, using
the power of the Grid in order to increase the
spatial and temporal resolution and obtain more
adequate representation of the natural processes
under investigation. In other applications, estab-
lished techniques were used, combined with filters
and scripts developed by the project partners
in order to accommodate these systems to the
specifics of the Balkan region. The beneficiaries
of the systems developed during the projects life-
time include not only environmental scientists,
but also the relevant governmental and interna-
tional organizations, for example the international
air quality monitoring bodies. By employing the
Grid to increase the resolution these applications
are now starting to target new beneficiaries like
municipal authorities, small and medium enter-
prises and media. For many of the applications
the validation of the models and standardizing the
computational processes has been an important
achievement, since the methodological aspect of
these studies was a challenging one, especially in
the Balkan region.

Figure 2 gives some details on the size of ac-
tivated user communities, and the distribution of
computing resources they have utilized during the
project lifetime. Overall, during the period 2008–

Fig. 2 The distribution of the size of three target user communities (left, number of end users per VO), and the distribution
of the computing resources used by VOs (right)
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2010, SEE-GRID-SCI project has provided more
than 22.5 million elapsed CPU hours or 2,566
CPU years, and more than 4.5 million jobs were
executed on the regional infrastructure. Out of
this, SEE-GRID-SCI and national VOs amounted
to 16.4 million CPU hours or 1,872 CPU years
(73%). The total utilization of dedicated resources
(based on the average number of 1050 available
CPUs) was quite high, around 89%, and this has
attracted the growth of supported user communi-
ties, and enabled them to achieve the enormous
amount of new scientific results, as can be seen
by the large number of scientific papers published
in per-reviewed research journals [33–38] and pre-
sented at numerous scientific conferences [6–32].
The project itself has organized SEE-GRID-SCI
User Forum in December 2009, where the most
significant results were presented.

4 Core Services

To operationally provide computational and stor-
age resource to the three target scientific commu-

nities supported by the SEE-GRID-SCI project,
three different VOs have been created: METEO,
SEISMO, and ENV VO. The support for these
VOs, as well as to the catch-all SEEGRID VO,
has been configured on all Resource Centres par-
ticipating in the regional infrastructure, and a set
of core services was installed and deployed by SA1
activity, as illustrated in Fig. 3.

For each VO a primary and secondary VO
Management Service (VOMS) has been deployed
and maintained by institutes involved in the cor-
responding VO application development. Addi-
tionally, a set of core Grid services was de-
ployed in order to support job management
operations (Workload Management System—
WMS, Logging and Bookkeeping—LB), Grid
information system (Berkeley Database Infor-
mation Index—BDII), data storage and trans-
fer operations (Logical File Catalog—LFC, File
Transfer Service—FTS, ARDA Metadata Grid
Application—AMGA), and management of digi-
tal credentials (MyProxy—PX). Deployment de-
tails of primary core Grid services are given in
Table 2.

Fig. 3 Geographical distribution of core services
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Table 2 List of primary
core services deployed
per VO

Service METEO VO ENV VO SEISMO VO
VOMS voms.grid.auth.gr voms.ipp.acad.bg voms.ulakbim.gov.tr
WMS & LB wms.ipb.ac.rs wms.ipp.acad.bg wms.ulakbim.gov.tr
BDII bdii.ipb.ac.rs bdii.ipp.acad.bg bdii.ulakbim.gov.tr
LFC grid02.rcub.bg.ac.rs lfc01.mosigrid.utcluj.ro lfc.ulakbim.gov.tr
FTS grid16.rcub.bg.ac.rs fts.ulakbim.gov.tr
AMGA grid16.rcub.bg.ac.rs amga.ulakbim.gov.tr
PX myproxy.ipb.ac.rs myproxy.ipp.acad.bg myproxy.ulakbim.gov.tr

5 Grid Operations

This section gives brief description of operational
procedures and key tools developed during the
course of the SEE-GRID programme. In addi-
tion, a number of operational tools have been
developed, improved and deployed by the SEE-
GRID-SCI SA1 activity and used in day-to-day
infrastructure management, as illustrated in Fig. 4.
Table 3 lists all currently deployed tools including
those used for monitoring of the infrastructure,
some of which are described in more detail in the
next section, while Fig. 4 gives their geographi-
cal distribution, as well as distribution of respon-

sibilities for their deployment and maintaining.
The interactions and collaboration on the devel-
opment and usage of described tools with other
Grid initiatives/projects are emphasized wherever
applicable.

Recognizing that improvements in the quality
and shaping-up of the SEE-GRID infrastructure
are an important and continuous effort, necessary
for the successful work of SEE-GRID applica-
tion developers, as well as for the usage of our
infrastructure by the existing user communities,
the pro-active monitoring of Grid sites in the
region was organized through rotating shifts by
SA1 country representatives (Grid Infrastructure

Fig. 4 Geographical distribution of SEE-GRID operational and monitoring tools
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Table 3 Deployment of
operational and
monitoring tools in the
SEE-GRID
infrastructure

Service Service URL
HGSM https://hgsm.grid.org.tr/
BBmSAM https://c01.grid.etfbl.net/bbmsam/
BBmobileSAM https://c01.grid.etfbl.net/bbmsam/mobile.php
Gstat http://gstat.gridops.org/gstat/seegrid/
Accounting Portal http://gserv4.ipp.acad.bg:8080/AccountingPortal/
Nagios https://portal.ipp.acad.bg:7443/seegridnagios/
Googlemap http://www.grid.org.tr/eng/
MonALISA http://monitor.seegrid.grid.pub.ro:8080/
Real Time Monitor http://gridportal.hep.ph.ic.ac.uk/rtm/applet.html
WatG Browser http://watgbrowser.scl.rs:8080/
WMS Monitoring Tool http://wmsmon.scl.rs/
Repository Service http://rpm.egee-see.org/yum/SEE-GRID/
Dwarf https://dwarf.scl.rs/
Grid-Operator-On-Duty http://wiki.egee-see.org/index.php/SG_GOOD
Helpdesk http://helpdesk.see-grid.eu/
SEE-GRID Wiki http://wiki.egee-see.org/index.php/SEE-GRID_Wiki
P-Grade Portal http://portal.p-grade.hu/multi-grid

Managers—GIMs). During each shift, the corre-
sponding GIM is designated as Grid-Operator-
On-Duty, or GOOD [39].

Basically, the idea is that each GIM (i.e. GIM
team from one country) is on duty during one
week overseeing the infrastructure and opening
trouble tickets in the SEE-GRID Helpdesk to
sites from all countries where operational prob-
lems are identified using the available monitoring
tools. Of course, all GIMs are expected to contin-
ually monitor and provide support to sites from
their countries—this is their day-to-day duty, in
addition to regular regional GOOD shifts. Details
of the organization of GOOD shifts are given at
the SEE-GRID Wiki [39, 40]. For problems iden-
tified by GOODs, trouble tickets were created in
the SEE-GRID Helpdesk [42], and site managers
were expected to deal with such operational prob-
lems and provide feedback on the steps taken.
Typically, simple problems were resolved within
one working day, while for more complex issues
typical resolution time was up to three working
days.

On the request of applications which need MPI
support on sites, GOODs are expected to test
MPI setup on all SEE-GRID sites which support
MPI. The MPI setup tests are performed at least
once a week, and GOODs ensure that the test
parallel jobs run at the same time on at least
two WNs (to test ssh setup as well). More details

can be found on the Wiki page on Testing MPI
support [40].

In this section we describe two selected tools
used for Grid operations: HGSM database (used
for maintaining the database of Grid resources
and personnel), Dwarf portal related to software
development and repositories (especially impor-
tant in maintaining updated of Grid middleware
and application software).

5.1 HGSM

Hierarchical Grid Site Management—HGSM [43]
is a web based management application primarily
geared towards Grid site administrators. At the
beginning it was designed to store static informa-
tion about Grid sites and personnel responsible
for the sites, but later it evolved to the central
information hub, also used for other Grid moni-
toring and checking services.

The idea behind the HGSM is to reflect the nat-
ural hierarchy present in the infrastructure. For
each supported infrastructure, HGSM has a ROC
(Regional Operational Centers) associated with it
at the top. These ROCs contain the countries that
participate in a particular infrastructure. Grid sites
of each country are listed under the respective
country tree, and all details related to a specific
Grid site can be viewed under the respective site
entry in the web front end of HGSM (Fig. 5). The
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Fig. 5 Overview of HGSM portal

management personnel information is also stored
for each organizational level (ROC, country, site),
containing contacts with both administrative and
management privileges.

While HGSM holds vast information about
Grid sites and core services, it also contains per-
sonal information for named contacts (names, e-
mail addresses and phone numbers). To properly
protect this information, HGSM uses a digital
certificate-based authentication system. HGSM
server only authorizes people with a valid Grid
certificate to view the information in HGSM web
front-end. Editing information is only allowed to
authorized personnel with administrative privi-
leges. The authorization is organized in a hier-
archical manner, so that an administrator at the
higher level can manage every aspect (including
the administrators) at lower organizational levels.

HGSM has already been used by communi-
ties and projects other than SEE-GRID, e.g.,
by the Deployment of Remote Instrumentation
Infrastructure—DORII project [44], as well as by
the Spanish and Portuguese NGIs [45].

5.2 Dwarf

Web-based Dwarf tool is composed of the Dwarf
web portal [46], Dwarf modules and Dwarf data-

base. Using the Public Key Infrastructure (PKI),
Dwarf framework provides digital certificate-
based management of RPM uploading and cre-
ation of APT and YUM repositories. The Dwarf
web portal home page, shown in Fig. 6, gives
an overview of repository structure together with
information on the context of each repository, and
latest build’s timestamp.

From the Dwarf web portal, properly authenti-
cated and authorized user can perform the follow-
ing operations on the repository:

– Create and change repository structure: Users
can create paths to new distributions and com-
ponents, by specifying their names. In the cur-
rent implementation of the Dwarf framework,
the users are able to create APT and YUM
repositories, as well as to create a MIRROR
to an existing remote repository.

– Package uploading: Users can upload differ-
ent software packages, but only to sections of
the repository for which they are authorized as
contributors.

– Build repository: After each RPM upload, a
user should re-build the repository structure.
If not, Dwarf system will do it automatically,
through a cron job.
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Fig. 6 Overview of the SEE-GRID Dwarf web portal

Dwarf modules are implemented as bash scripts
which handle appropriate build actions on various
repositories.

After a new APT repository structure is cre-
ated from the Dwarf web portal, the RPMs must
be indexed to create the APT database. This is
done by the APT Dwarf module, which uses the
genbasedir tool for this purpose. It analyzes RPM
packages in a directory tree and builds informa-
tion files so that that directory tree can be used as
a proper APT repository.

The Dwarf database contains information
on security (authentication and authorization),
repositories types and metadata, mirror repos-
itories, and logging information. Dwarf data-
base contains metadata repository information on
build’s timestamps, contexts, and descriptions of
the repositories, as well as repository types. The
rules for creation of mirror repositories are also
kept in the Dwarf database. In addition, for se-
curity and auditing reasons, the database con-
tains a log of all user-initiated actions. The Dwarf
database is realized using the MySQL database
technology.

Once the repository is constructed, it is made
available by HTTP and FTP servers configured
and working on the Dwarf web portal. The
DWARF framework provides configurations that
should be included in the local HTTP and FTP
servers configuration files in order to provide the
context of repositories.

6 Monitoring of SEE-GRID Infrastructure

The monitoring of the heterogeneous and widely
geographically dispersed Grid infrastructure is an
essential task for achieving the required quality
of service to supported user communities. This
has been defined through the SEE-GRID Service
Level Agreement (SLA), which has served as a
prototype for the later adopted EGEE SLA. The
monitoring of the performance of sites is not only
used for formal assessment of the conformance
to SLA, but also for day-to-day Grid operations,
since various monitoring tools provide the main
channel for identification and diagnostics of oper-
ational problems by Grid Operators on Duty and
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GIMs. The most important such tools are listed in
Table 3, and we briefly describe them in this sec-
tion. To illustrate how the conformance of avail-
abilities of Grid services to the adopted SLA was
monitored and assessed, Fig. 7 gives overview of
the availability monitoring results for the second
year of the SEE-GRID-SCI project (May 2009 to
April 2010). Using the BBmSAM tool (described
below), precise measurement of the availability of
all services was systematically done, and detailed
results were provided at different levels or gran-
ularity: per service, per site, per country, and per
SEE-GRID infrastructure. For example, the over-
all availability of resources (weighted by the CPU
number of individual clusters) for the last four
quarters increased from around 78% in Q5 (May–
July 2009) to around 89% in Q8 (February–April
2010). Strict enforcement of SLA lead to a steady
increase in the availability and reliability of Grid
services offered to our target user communities.

6.1 BBmSAM

Availability monitoring of the infrastructure
is carried out using the Service Availability
Monitoring—SAM [47] framework developed in
EGEE project [5], which is further developed and
extended by SEE-GRID series of projects and
deployed by its SA1 activity. The original SAM
system consists of server and client components
which communicate using web services. The client

initiates periodical tests of the infrastructure and
publishes data to the server which stores them in
the Oracle database. Main change in the SAM
framework in its adaptation for the SEE-GRID
community was its porting to MySQL, suitable for
the deployment in the region and in line with the
SEE-GRID open source philosophy.

BBmSAM [48–50] Platform is a web applica-
tion coded in PHP and using the MySQL Data-
base as data storage back-end (although any
standard-compliant SQL database server could be
used, since it does not rely on any of MySQL-
specific features). It has been tested under Apache
HTTPD and Microsoft IIS web servers, and
should work with any web server supporting PHP
(at least through CGI). Main features of BBm-
SAM system are:

– Use of unaltered client and sensor compo-
nents of EGEE SAM system.

– Synchronization with central HGSM service.
– Use of free and open source technologies.

BBmSAM client and sensors are the same as
ones used in the standard EGEE SAM distribu-
tion, and they operate in identical way. In design-
ing BBmSAM portal and dependent web services,
special care was taken so that the solution would
be compatible with EGEE/EGI tools and prac-
tices. This was achieved by implementing the same
web services in PHP/MySQL implementation as

Fig. 7 Overview of
availability of Grid
services within the
SEE-GRID-SCI
infrastructure per quarter
in the second (final) year
of the project (May 2009
to April 2010)
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the ones used in the original Java/Oracle-based
SAM.

Main part of the BBmSAM web front-end,
shown in Fig. 8, is a summary of current results for
all tested Grid sites, containing site names, coun-
tries and other relevant details for each service.

6.2 SEE-GRID Accounting Portal

Accounting Portal [51] is a web-service based util-
ity to collect and statistically present information

on the CPU accounting data for the SEE-GRID
computing resources. Its main purpose is to collect
and manage accounting data for the sites in SEE-
GRID infrastructure. Recently a new publisher
was released, capable of collecting and processing
data for parallel MPI jobs, which are not properly
accounted for when using the standard publisher
provided by gLite. The accounting processing
structure is based on two services: MPI log parser
and accounting publisher. The MPI log parser tool
processes PBS Server logs and inserts the data on
MPI jobs in the MPI accounting database on the

Fig. 8 Overview of the SEE-GRID BBmSAM web portal
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MON node. Afterwards, the accounting publisher
aggregates the data from the standard accounting
database and MPI database and sends it to the
central accounting portal database. The publisher
is based on an independent module architecture
which allow the two modules (MPI and standard
serial) to work independently, so that sites that do
not support MPI can use the same publisher.

New web front-end interface of the accounting
portal (Fig. 9) is created to dynamically generates
account statistics and charts. It is written in Adobe
Flex and Java and implements the MVC design
pattern. The View module of the portal is written
in Flex, offering an interactive environment with
dynamic visualization of the accounting data man-
aged in tables, bar and pie charts. The Interface
module is a Java web service which accepts input
parameters such as data type, job type, period,
rows and columns for the tables. In addition, it is
capable of filtering the data by VO, country and
site, offering more flexible data organization. It
can also generate SQL queries based on the pro-

vided parameters and extract required data from
the accounting database. The data are returned
in XML form, suitable for import to a variety of
other applications. The web portal is hosted on
a web server running under Apache Tomcat with
installed Apache Axis web-service framework.

6.3 WatG Browser

The What is at the Grid—WatG Browser [52] is
a web-based Grid Information System (GIS) visu-
alization application providing detailed overview
of the status and availability of various Grid re-
sources in a given gLite-based e-Infrastructure. It
is able to query and present data obtained from
Grid information systems at different layers: from
local resource information system for a particular
Grid service (GRIS), to the Grid site information
system (site BDII), and to the top-level informa-
tion system for the whole Grid infrastructure (top-
level BDII).

Fig. 9 Overview of the SEE-GRID accounting portal
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The efficient implementation of WatG Browser
allows quick and easy navigation through entries
and objects of the LDAP tree retrieved by the
specified query, even if the size of the output
is huge and hierarchically very complex. Highly
responsibility is achieved with implementation of
partial refreshes and asynchonization of a web
page. A partial refresh of WatG application can be
observed when an interaction event is triggered,
for example click on the plus icon of the LDAP
tree. The server processes the information and
returns a limited response specific to the data it
receives, for example LDAP’s subtree that re-
quires given condition. One may notice that WatG
server does not send back an entire page, like the
conventional “click, wait and refresh” web appli-
cations. Instead, WatG client updates the page
based on the response. This means that only part
of the page is updated. In other words, WatG’s
initial page (Fig. 10) is treated like a template:
WatG server and client exchange the data and the
client updates parts of the template based on the
data it receives from the server. Another way to

think about it is to consider WatG application as
driven by events and data, whereas conventional
web applications are driven by pages. Asynchro-
nization of the WatG application is reflected in
the fact that after sending data to the server, the
client can continue processing while the server
does its processing in the background. During all
this, a user can continue interacting with the client
without noticing interruption or a lag in the re-
sponse. For example, a user can click on any plus
or minus icon even during the loading, and in that
way a new request will be created and executed
afterwards. The client does not have to wait for a
response from the server before continuing, as is
the case in the traditional, synchronous approach.
The WatG Browser is deployed by SCL [53] and
publicly available at the address given in [52].

6.4 WMS Monitoring Tool

The complex task of computing resources discov-
ery and management on behalf of user applica-
tions in the gLite Grid environment is done by the

Fig. 10 Overview of WatG Browser
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Workload Management System (WMS) service.
WMS monitoring tool WMSMon [54] provides re-
liable, site-independent, centralized, and uniform
monitoring of gLite WMS services.

WMSMon tool, developed and deployed by
SCL [53], is based on the collector-agent archi-
tecture that ensures monitoring of all properties
relevant for successful operation of gLite WMS
service and triggering of the alarms if certain mon-
itored parameter values exceed predefined limits.
In addition, the tool provides links to the appro-
priate troubleshooting guides when problems are
identified.

WMSMon tool consists of two parts of soft-
ware. The first one, WMSMon Agent, should
be installed on all monitored WMS services,
and locally aggregates the values of all rele-
vant parameters described in the previous section.
The second component of WMSMon software is
WMSMon Collector, installed on a specific ma-

chine equipped with the web server and gridFTP
client, with the aim to collect the data from all
WMSMon Agents and to provide web interface to
the graphical presentation of the collected data.

WMSMon web portal presents information
from diverse WMS sources in a unified way, as
can be seen in Fig. 11. The main page provides the
aggregated status view of all monitored WMS ser-
vices from the target Grid infrastructure. This part
of the portal presents the data in a simplified way,
with the emphasis on WMS services identified not
to work properly. The portal also provides links
to pages with detailed information and graphs
for each monitored WMS service. These pages
contain the latest data, as well as historical data
presented in the graphical form.

In addition to the main WMSMon instance de-
ployed by SCL [53], other instances of WMSMon
are installed and used at Grid Operations Centre
at CERN [55] and at NIKHEF [56].

Fig. 11 Overview of WMSMon Portal
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7 SEE Involvement in High Performance
Computing

The Grid developments in the region, de-
scribed in this paper, are currently being comple-
mented with supercomputing/High-Performance
Computing (HPC) actions. The HP-SEE project
[57] (High-Performance Computing Infrastruc-
ture for South East Europes Research Commu-
nities) is currently work across several strategic
lines of action. First, it is linking the existing HPC
facilities in the region into a common infrastruc-
ture, and providing operational and management
solutions for it. Second, it is striving to open this
infrastructure to a wide range of new user commu-
nities, including those of non-resourced countries,
fostering collaboration and providing advanced
capabilities to more researchers, with an empha-
sis on strategic groups in computational physics,
computational chemistry and life sciences. Finally,
it acts as a catalyst for establishment of national
HPC initiatives, and will act as a SEE bridge for
DEISA [58], also presented in this edition, as well
as PRACE [59] infrastructure.

Figure 12 depicts the multi-dimensional re-
gional e-Infrastructure in South-East Europe,
where HP-SEE effectively adds the new Research
Infrastructure: HPC infrastructure and knowl-
edge/user layer, on top of the existing network
plane, and parallel to the existing Grid plane, thus

Table 4 Current and planned computing power (TFlops)
by HP-SEE countries (double precision for CPU and single
precision for GPU)

Country 2010 2011 2012
Greece 0 40 80
Serbia 0 20 40
Bulgaria 25 30+8 GPU 40+20 GPU
Romania 10 20+100 GPU 30+100 GPU
Hungary 1 30 60

Overall 36 140+108 GPU 250+120 GPU

optimising all layers and further enabling a wide
range of new cross-border e-Science applications
to be deployed over the regional e-Infrastructure.
This approach effectively creates an integrated e-
Infrastructure for new virtual research communi-
ties, and provides a platform for collaboration be-
tween ICT engineers and computational scientists
dealing with the infrastructure on one hand, and
on the other the scientists from diverse scientific
communities in the region.

It should be noted that this vision will pro-
vide an integrated infrastructure, where Grid and
HPC layers and not mutually exclusive but rather
complementary, and tailored for the type of ap-
plications supported. Table 4 gives the overview
of the current and planned HPC resources that
will be available to the HP-SEE Virtual Research
Communities within the project.

Fig. 12 SEE
e-Infrastructure with
HPC, and new user
communities
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The available resources will be integrated
into a common infrastructure available for the
regional Virtual Research Communities. The cur-
rent and planned HPC infrastructure is heteroge-
neous, comprising of BlueGene supercomputers,
Intel/AMD clusters and enhanced with GPU com-
puting accelerators. Concerning the middleware
deployments, we believe the upcoming Unified
Middleware Distribution, which will combine
Unicore, gLite and ARC will be well suited for
the regional HPC infrastructure, taking into ac-
count the current situation, where various com-
binations of these middleware stacks with batch
systems and workflow management systems ex-
ist. The regional HP-SEE infrastructure will be
operated through the operations centre that will
be established within the project, which will carry
out analysis, requirements capture and evaluation,
and deployment of the existing solutions for sys-
tem management of the regional infrastructure;
will identify missing components, and provide op-
timal solutions. Solutions by system vendors and
successful developments from European projects,
especially DEISA, and PRACE, will be taken into
account. Wherever possible the existing solutions
will be adapted and enhanced for deployment in
the regional infrastructure. A set of operational
tools will be deployed, including user adminis-
tration, accounting, distributed data management,
security, authentication and authorization, mon-
itoring of distributed resources, resource man-
agement and allocation, and helpdesk for user
support.

The identified target user communities include
computational physics, computational chemistry
and life sciences. Computational physics is rep-
resented by 8 applications from 6 countries and
covers the fields of many-body condensed mat-
ter physics, including modeling of electron trans-
port, modeling of complex gas dynamics and
convection, plasma physics and image processing.
Computational chemistry community includes 7
applications from 6 countries, covering the fields
of molecular dynamics and simulations, and
materials science. Life sciences community has
7 applications from 5 countries, covering the
fields of computational biology, computational
genomics, computational biophysics and DNA
sequencing.

8 Transition to EGI and Conclusions

Over the period of six years and three phases, the
SEE-GRID programme aimed at creating inde-
pendent and sustainable NGIs in each country of
the South-Eastern Europe. That has allowed all
the countries to participate as full-fledged mem-
bers of the wider European Grid infrastructure
realized through the series of EGEE projects and
currently by the European Grid Initiative, EGI
[4]. EGI is established as a coordinating orga-
nization for the European Grid Infrastructure,
based on the federation of individual NGIs, aim-
ing to support a wide variety of multi-disciplinary
user communities. To facilitate the above aim,
the SEE-GRID programme has focused both at
stimulating the support to policy makers as well as
for creating sustainable operational structures in
each of the countries in the region.

In particular, on the policy level, the last two
years of the SEE-GRID programme have focused
on monitoring and improving the status of NGIs
in partner countries, and providing support for
their evolution and integration into the environ-
ment standardized by EGI, aiming to achieve
sustainability as active partners in this new pan-
European collaboration model. This effort re-
sulted in one of main successes of the project, with
all countries of the region currently members or
associate members of EGI and participating as
partners in the EGI-InSPIRE project.

On the operational level, the focus of SEE-
GRID was to create and increase the capacity
of Grid resources in the region, create indepen-
dent and stable operational structures, increase
the availability of Grid resources, deploy core
services in all countries of the region, as well
as to develop geographically distributed network
of Grid experts able to provide operational and
application level support to end users. At the end
of the 6th year of the SEE-GRID programme,
all SEE countries are providing such an opera-
tional infrastructure for the local and international
user communities from the pan-European EGI
infrastructure, either as independent NGIs or as
a part of the South-Easterrn Europe Regional
Operations Centre.

We describe bellow the procedure taken by
most of the countries in the region in order to
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become fully independent operational NGIs from
the technical point of view. The new NGIs use
EGIs Grid Operations Database, GOCDB [60]
to register their NGI management structure, sites
and operational personnel. Most of the SEE NGIs
base their operational portal on the central portal
that is provided by EGI, performing operations
via the NGI view that it offers. In cases like the
Greek NGI, a standalone operational portal has
been setup. During the course of the SEE-GRID
projects the regional Helpdesk was based on One-
OrZero as it has also been discussed in Section 4.
The SEE-GRID Helpdesk by the end of the SEE-
GRID projects was fully integrated with GGUS
and therefore it is a candidate system for NGIs, to
use as their national Helpdesk solution integrated
with the Global Grid User Support, GGUS [61].
Further to that Request Tracker, RT [62] has been
integrated with GGUS and can offer the same
functionality. Based on the above the NGIs of
the regional can select which helpdesk solution to
use (either directly GGUS, OneOrZero, or RT).
Since infrastructure monitoring in EGI has moved
from SAM to Nagios, all new NGIs install and
operate their own instance of Nagios that inte-
grates with the rest of EGIs monitoring systems.
Finally, SEE NGIs use the Unified Middleware
Distribution (UMD) as a central repository for
installing basic middleware components while still
use the regional repository or even some national
repositories, for software packages that are tai-
lored to specific needs of their countries and are
not available in UMD.

Towards the end of the SEE-GRID-SCI
project (May 2010) all NGIs of the project where
migrated to EGEE/EGI via the SEE-ROC, utiliz-
ing the existing ROC infrastructure and services.
Since May 2010 and up to now (January 2011)
almost all the NGIs have migrated to the EGI
operational model. The average time for an NGI
to migrate its operational structure from SEE-
ROC to EGI is between 1 and 3 months.

The SEE-GRID programme had pivotal role
in bridging the digital divide in the SEE region,
in spearheading regional research collaborations,
and in creating a strong human network in ICT
field paving the way towards full integration of the
region into the European Research Area (ERA).
This work continues with the HP-SEE project

[57], that aims at bringing together the national
HPC infrastructures in the region of South East-
ern Europe and the regional Virtual Research
Communities of Computational Physics, Compu-
tational Chemistry and Life Sciences. Enabling
of those user communities to get access to HPC
resources for their scientific work is the prime goal
of this new project, and demonstrates the success
of SEE-GRID series of projects in involving scien-
tists from the region in the development and pro-
duction use of distributed research infrastructures.
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Abstract: Faraday and resonant density waves emerge in Bose-Einstein condensates as a result of
harmonic driving of the system. They represent nonlinear excitations and are generated due to
the interaction-induced coupling of collective oscillation modes and the existence of parametric
resonances. Using a mean-field variational and a full numerical approach, we studied density waves
in dipolar condensates at zero temperature, where breaking of the symmetry due to anisotropy of the
dipole-dipole interaction (DDI) plays an important role. We derived variational equations of motion
for the dynamics of a driven dipolar system and identify the most unstable modes that correspond
to the Faraday and resonant waves. Based on this, we derived the analytical expressions for spatial
periods of both types of density waves as functions of the contact and the DDI strength. We compared
the obtained variational results with the results of extensive numerical simulations that solve the
dipolar Gross-Pitaevskii equation in 3D, and found a very good agreement.

Keywords: Bose-Einstein condensate; pattern formation; dipole-dipole interaction; parametric
resonance; interaction effects

1. Introduction

After pioneering experiments that realized Bose-Einstein condensates (BEC) in systems with weak
contact interactions, it took a decade of work on improvements of experimental techniques to enable
measurement of effects of the dipole-dipole interaction (DDI) that exist between atoms or molecules
with a permanent or induced electrical or magnetic dipole moment. The very first such experiment
was realized in 2005 with chromium atoms 52Cr [1], followed by the experiments with atoms with
much larger magnetic moments, such as dysprosium 164Dy [2] and erbium 168Er [3]. Furthermore,
the dipolar BECs comprised of polar molecules with much stronger electrical [4] and magnetic [5]
dipole moments were also realized. While the contact interaction is symmetric and has a short-range,
the DDI between atoms or molecules is anisotropic and long-range. These features are responsible for
a whole series of new phenomena that appear in ultracold dipolar gases [6]. If we take into account
that the strength of the contact interactions can be varied over many orders of magnitude using the
Feshbach resonance [7] technique, and that the DDI strength can be also tuned using a fast rotating
magnetic or electric field [8,9], it is easy to see that such a versatility of dipolar quantum gases is
unparalleled and makes them an obligatory element in a toolbox for engineering quantum devices
and sensors.

Bose-Einstein condensates are usually termed quantum fluids, which encompasses a broader
range of physical systems where quantum effects are either dominant or very much pronounced.
Despite their name, some of quantum fluids do not share the trademark property of classical fluids,
incompressibility. In fact, the BECs are made of rarefied gases, but their fluid-like behavior stems from
the quantum coherence of such systems. Therefore, while in classical fluids density modulations can

Symmetry 2019, 11, 1090; doi:10.3390/sym11091090 www.mdpi.com/journal/symmetry
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be excited only under extreme conditions, in quantum fluids the density waves represent one of the
natural collective excitations. They appear due to nonlinearity in ultracold quantum gases, and can
be induced by a harmonic modulation of the trap frequencies or interaction strengths. However,
the motivation for study of such excitations comes from the classical phenomenon of Faraday waves,
which may appear on the surface of the shallow layer of liquid under certain conditions. Namely,
if the container with the liquid is harmonically oscillated in a vertical direction, the wave patterns may
emerge, depending on the ratio of the liquid depth and the container size, as well as depending on the
modulation frequency. This phenomenon was first studied and described by Michael Faraday at the
beginning of 19th century [10]. The interest for this type of excitations arose again during the 1980s,
as a consequence of the study of nonlinear liquids. In the context of ultracold gases, Faraday waves
were first investigated theoretically in 2002 by Staliunas [11]. After these theoretical and numerical
results for the systems with contact interaction, where it was assumed that the interaction strength is
harmonically modulated, the Faraday waves were first measured in BEC experiments with 87Rb in
2007 by Engels [12], and more recently with 7Li by Hulet and Bagnato [13,14]. In the first experiment,
the radial part of the harmonic trap was modulated, while the other two experiments have modulated
the contact interaction strength. However, qualitatively, this leads to the same type of density waves.

Parametric driving of system parameters can lead to pattern formation not only in BECs, where
Faraday waves are experimentally observed in cigar-shaped condensates [12–14], but also in helium
cells [15]. The actual experimental observation of this phenomenon in 2007 was preceded by numerical
studies starting in 2002 [11,16–20], all focusing on systems with short-range, contact interactions.
More recently, Faraday waves have been studied in dipolar [21–23] and two-component condensates,
including the systems with spatially-dependent contact interaction [24,25]. Numerical studies of
Faraday waves have also been extended to mixtures of Bose and Fermi gases [26], as well as Fermi
gases exhibiting superfluid behavior [27,28].

Faraday waves in ultracold gases are a consequence of the existence of parametric resonances
in the system. While the spatial period of these waves depends on the geometry of the system and
other parameters, the frequency of their oscillations is constant and is two times smaller than the
modulation frequency. This is a characteristic of all parametric resonant phenomena, and in the
variational approach leads to the Mathieu’s differential equation [29], which gives the observed ratio
of the frequency of Faraday waves and the modulation. The Faraday density waves with half of the
modulation frequency are not the only nonlinear excitation of the system. In a driven system, there are
always excitations with the same frequency as the modulation. However, they become resonant when
the modulation frequency corresponds to one of the collective modes or the trap frequencies, or their
linear combination. The resonant waves develop in the system and grow exponentially [30], faster
than the Faraday waves. Therefore, these two phenomena can be easily distinguished, not only by
comparing their frequencies, but also the corresponding onset times. We note that resonant behavior
can appear not only due to the modulation of the interaction strength or the trapping potential, but also
due to its spatial modulation [31–40].

In the context of dipolar BECs, the study of Faraday waves was limited mostly to their excitation
spectrum in one-dimensional and two-dimensional systems [21], while the properties of resonant
waves, to the best of our knowledge, have not been studied yet. In Section 2, we develop a mean-field
variational approach for the dynamics of a driven dipolar BEC at zero temperature and identify the
instability of the system leading to the emergence of Faraday and resonant waves. Using this approach,
we derive analytic expressions for the dependence of density wave properties on the strength of the
contact and the dipole-dipole interaction. In Section 3, we numerically study how such waves develop
and can be characterized in ultracold systems of three experimentally relevant magnetic dipolar species:
chromium 52Cr, erbium 168Er, and dysprosium 164Dy. In Section 4, the analytically obtained expressions
for the spatial period of Faraday are compared to results of the extensive numerical simulations, which
solve the full three-dimensional mean-field equations for a dipolar BEC. The emergence of resonant
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waves and comparison of the corresponding analytical and numerical results is given in Section 5.
Finally, Section 6 summarizes our conclusions and presents outlook for future research.

2. Variational Approach

We consider the system in an experimentally-inspired setup, where the condensate is confined
into a cigar-shaped harmonic trap, with the equilibrium frequencies wx = 2p ⇥ 7 Hz, wy = wz = W0 =
2p ⇥ 160.5 Hz. These are typical values taken from Reference [12]. The dipole moments of the atoms
are assumed to be oriented along z direction, i.e., orthogonal to the weak-confinement axis x (which
we refer to as the longitudinal axis), since this maximizes the stability of the system. To ensure stability
of the system, we consider the condensate to have N = 104 atoms for all three species. The driving of
the system is achieved by harmonic modulation of the radial (y � z) part of the trap,

wy(t) = wz(t) = W0 (1 + e sin wmt) , (1)

where e = 0.1 � 0.2 is the modulation amplitude and wm is the modulation frequency.
For a variational study of Faraday and resonant waves in dipolar condensates, we use

a modification of the Gaussian ansatz [16–20,23–25,30,41,42] to capture the induced density waves in
the longitudinal, weak-confinement direction x,

y(x, y, z, t) = A e
� x2

2u2x
� y2

2u2y
� z2

2u2z
+ix2fx+iy2fy+iz2fz

[1 + (a + ib) cos kx] , (2)

where the normalization of the wave function to unity is ensured by the prefactor

A ⌘ A(ux, uy, uz, a, b, k) =
1

p3/4puxuyuz

p
2q

2 + a2 + b2 + 4a e�k2u2
x/4 + (a2 + b2) e�k2u2

x

. (3)

The above variational ansatz involves eight variational parameters {ui, fi, a, b}, which are
functions of time. The parameters ui represent the condensate widths, while fi are the conjugated
phases, which are necessary to properly describe the system’s dynamics. Note that these phases can be
omitted when we are interested only in the ground state. The multiplicative factor 1 + (a + ib) cos kx
describes the density modulation along x direction, and the variational parameters a and b represent
the real and the imaginary part of the amplitude of the wave. The wave vector k, which is related to
the spatial period ` of the density waves by ` = 2p/k, is not treated here as a variational parameter.
We determine its value from the condition for the instability emergence, which leads to Faraday or
resonant waves.

The use of the Gaussian variational ansatz corresponds to the weak interaction regime with low
density of atoms, while the Thomas-Fermi profile is more appropriate for systems with high particle
density. Although the emergence of Faraday and resonant waves leads to higher particle densities,
we still use the Gaussian ansatz in all regimes. This is done since we are mostly interested just in
the onset of longitudinal density modulations, but also for mathematical convenience. Let us note
that tunability of all variational parameters may improve the accuracy of the applied approximation.
Nevertheless, the use of this ansatz can be fully justified only a posteriori, by comparison with
numerical results [16].

Note that we use the dimensionless units, where a chosen referent frequency wr defines the length
scale through the harmonic oscillator length

p
h̄/(mwr), where m is the mass of the corresponding

atomic species, the time scale as 1/wr, and the energy scale as h̄wr. The trapping frequencies are also
expressed in units of wr through the trap aspect ratios g = wx/wr, n = wy/wr, and l = wz/wr, as well
as the modulation frequency hm = wm/wr. We choose below the value wr = W0, corresponding to
n = l = 1, but for now we keep all three aspect ratios as free parameters, for generality.
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If we insert the modified Gaussian ansatz (Equation (2)) into the Lagrangian density that yields
the dipolar Gross-Pitaevskii equation, we can express the Lagrangian of the system as a sum of five
terms. The first term reads

L1(t) =
i
2

Z
dr (y⇤ẏ � yẏ⇤) = �1

2

⇣
u2

xḟx + u2
yḟy + u2

z ḟz

⌘
� aḃ � bȧ

2 + a2 + b2 , (4)

while the kinetic and the potential energy terms yield, respectively,

L2(t) =
1
2

Z
dr y⇤Dy = �1

4

 
1

u2
x
+

1
u2

y
+

1
u2

z
+ 4u2

xf2
x + 4u2

yf2
y + 4u2

zf2
z

!
� (a2 + b2) k2

2(2 + a2 + b2)
, (5)

L3(t) = �
Z

dr
✓

1
2

g2x2 +
1
2

n2y2 +
1
2

l2z2
◆
|y|2 = �1

4

⇣
g2u2

x + n2u2
y + l2u2

z

⌘
. (6)

The contact interaction term corresponds to

L4(t) = �2pNas

Z
dr |y|4 = � Nasp

2p uxuyuz

✓
1 +

a4 + 16a2 + 2a2b2 + b4)
2(2 + a2 + b2)2

◆
, (7)

where as is the s-wave scattering length of atoms, expressed in units of the harmonic oscillator length.
The Lagrangian term that corresponds to the DDI energy is given by

L5(t) = �3Nadd
2

Z
dr dr0 y⇤(r)y⇤(r0)Udd(r � r0)y(r0)y(r) , (8)

where the dipolar potential reads Udd(r) = (1 � 3 cos2 q)/r3, q is the angle between the dipoles’
orientation (z axis) and vector r, and add is the DDI interaction strength, that depends on the dipole
moment of atoms d and their mass m as add = µ0md2/(12ph̄2). Note that it is conveniently expressed
in units of length and cast into a dimensionless quantity as outlined above. However, due to the spatial
modulation term in the modified Gaussian ansatz, it is not possible to perform exact integration and
obtain L5(t). Using the convolution theorem, the DDI term can be written as

L5(t) = � 3Nadd
2 (2p)3

Z
dkF [Udd] (k)F

h
|y|2

i2
(k) , (9)

where F stands for the Fourier transform, and

F
h
|y|2

i
(k) = B(kx, ux, a, b, k) e�

1
4 (k

2
xu2

x+k2
yu2

y+k2
zu2

z) . (10)

The coefficient B can be explicitly calculated and reads

B(kx, ux, a, b, k) =
4 + 4(e�

k
4 (k�2kx)u2

x + e�
k
4 (k+2kx)u2

x ) a + (2 + e�k(k�kx)u2
x + e�k(k+kx)u2

x ) (a2 + b2)

2
h
2 + 4 e�

1
4 k2u2

x a + (1 + e�k2u2
x ) (a2 + b2)

i .

(11)
To proceed further, we take into account that the condensate width in the weak confinement

direction is large compared to the other widths, as well as compared to the spatial period of the density
waves, such that kux � 1. We also take into account that the wave amplitude is small immediately
after the waves emerge, such that a, b ⌧ 1. Since the integral over k in Equation (9) cannot be
analytically performed even using these approximations, we replace B2, stemming from the square of
the Fourier transform F

⇥
|y|2

⇤
, by its average over kx, and neglect all terms proportional to e�k2u2

x/8

and its powers, as already argued that kux is a large quantity. The integration over k can now proceed
smoothly, yielding
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L5(t) =
Naddp

2p uxuyuz
f
✓

ux
uz

,
uy

uz

◆✓
1 � 8a2

(2 + a2 + b2)2

◆
, (12)

where f is the standard dipolar anisotropy function [43].
Now that we have the explicit expression for the Lagrangian of the system L(t) = Â5

i=1 Li(t),
we can derive the corresponding Euler-Lagrange equations. We assume that the wave amplitudes a

and b are small, such that their quadratic and higher order terms can be neglected in the equations
of motion. The three equations for the phases yield fi = u̇i/(2ui) and can be used to eliminate the
phases fi from the corresponding set of equations for the condensate widths ui, which have the form
of the second order differential equations,
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x
�
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2
p

N
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xuyuz

"
as � add f

✓
ux
uz

,
uy

uz

◆
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uz
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✓
ux
uz

,
uy

uz

◆#
= 0 , (13)
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uy
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uy
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◆#
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uz
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uy
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uz
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uy
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,
uy
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◆#
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(15)

where f1 and f2 are partial derivatives of the anisotropy function with respect to the first and the
second argument. The Euler-Lagrange equation for the variational parameter b yields b = 2ȧ/k2,
which we use to eliminate b from the corresponding equation for the parameter a, as was done with
the phases. With this, the equation for a turns out to be the second order differential equation,

ä +

"
k4

4
+

r
2
p

N
uxuyuz

✓
as + add f

✓
ux
uz

,
uy

uz

◆◆
k2

#
a = 0 . (16)

In the context of variational analysis of Faraday and resonant waves, the above equation of motion
for the wave amplitude a is usually cast into the form of the Mathieu-like equation [29]

ä + [a(k) + eb(k) sin 2t] a = 0 . (17)

This equation can be solved perturbatively in the small modulation amplitude e. Assuming
a solution in the form of a harmonic oscillator

a(t, e) = P(et) cos
✓

t
q

a(k)
◆
+ Q(et) sin

✓
t
q

a(k)
◆

, (18)

we obtain that functions P and Q are exponentials of the form e±ixet , where x is a complex number.
The existence of the imaginary part of x leads to the instability, i.e., to the exponential growth of
the wave amplitude, which yields Faraday or resonant waves. It was shown in Reference [29] that
the nonvanishing imaginary part of x appears for a(k) = n2, where n 2 N, and this represents the
mathematical form of the instability condition.

To cast Equation (16) into the Mathieu-like form (Equation (17)), we need to take into account that
the radial trap frequencies are modulated, such that the corresponding trap aspect ratio is given by
n(t) = l(t) = l0(1 + e sin hmt), where l0 = W0/wr. This generates the dynamics of the system and
we need to obtain approximate expressions for the condensate widths in order to get explicit form of
the quantities a(k) and b(k). We assume that the condensate width ux slowly varies, and can be taken
to be constant at the onset of instability. We also assume that second derivatives of the radial widths
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uy and uz, with respect to time, can be neglected, since they are proportional to the small modulation
amplitude e. Furthermore, for simplicity, we assume uy ⇡ uz ⌘ ur, which now satisfies the modified
Equation (14) or (15) in the form

l2(t)u4
r = 1 +

r
2
p

N
ux


as +

add
2

fs

✓
ur

ux

◆
� add f 0s

✓
ur

ux

◆�
, (19)

where fs(x) = f (x, x). On the right-hand side of the above equation, we assume that the ratio ur/ux
is constant and equal to the corresponding ratio for the ground state, which can be calculated from
Equations (13)–(15). If we express u2

r from Equation (19), and use it to estimate the quantity uyuz ⇡ u2
r

in Equation (16), we obtain the equation for the variational parameter a in the form

ä +


k4

4
+

Lk2

4
l(t)

�
a = 0 , (20)

where L is given by

L =
4
q

2
p N

h
as � add

2 fs

⇣
ur

ux

⌘i

ux

⇢
1 +

q
2
p

N
ux

h
as +

add
2 fs

⇣
ur

ux

⌘
� add f 0s

⇣
ur

ux

⌘i�1/2 . (21)

After inserting the explicit form for l(t) into Equation (20), we still need to make a variable
change hmt ! 2t in order to transform it into the Mathieu-like Equation (17). This finally yields the
expressions for the coefficients a(k) and b(k),

a(k) =
k4

h2
m
+

l0Lk2

h2
m

, b(k) =
l0Lk2

h2
m

. (22)

As previously discussed, the instability condition for the Faraday waves reads a(k) = 1, which
can be used to calculate the wave vector of density waves shortly after their emergence,

kF =

vuut�l0L
2

+

s
l2

0L2

4
+ h2

m . (23)

This represents our analytical result for the wave vector kF and the spatial period `F = 2p/kF of
the Faraday waves, which can be directly compared with numerical or experimental results. Let us also
stress that the above analysis is consistent with the main characteristic of the Faraday waves, namely,
that their oscillation frequency is half that of the driving frequency. This can be concluded according
to t = hmt/2 and Equation (18), where we see that indeed the solution of the derived Mathiue-like
equation oscillates with the frequency whose aspect ratio is hm/2, i.e., with the frequency wm/2.

If the modulation frequency is close to one of the characteristic oscillation modes of the system,
it will exhibit resonant behavior, which is suppressed for an arbitrary value of the modulation frequency.
While the system’s dynamics will certainly include the Faraday mode at the frequency wm/2 even
close to a resonance, the resonant mode with the frequency wm will have a larger amplitude and will
develop much faster. Although it is clear that the above analysis would break down, the condition for
the emergence of resonant waves still corresponds to a(k) = 22, i.e., the wave vector of the resonant
wave is given by

kR =

vuut�l0L
2

+

s
l2

0L2

4
+ 4h2

m . (24)
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In that case, according to t = hmt/2 and Equation (18), the resonant density wave will oscillate
with the frequency whose aspect ratio is (hm/2)

p
22 = hm, i.e., with the frequency wm. Depending

on the system’s parameters, higher resonant modes can also appear corresponding to the conditions
a(k) = n2, where n is an integer, corresponding to the oscillation frequencies nwm/2.

3. Faraday Waves in Chromium, Erbium, and Dysprosium Condensates

To study Faraday waves in dipolar condensates, we performed extensive numerical simulations of
the real-time dynamics and solved the dipolar Gross-Pitaevskii equation using the programs described
in References [44–52]. The parameters of these simulations match the physical parameters of BECs of
chromium 52Cr, erbium 168Er, and dysprosium 164Dy, which, respectively ,have the dipole moments
d = 6µB, d = 7µB, and d = 10µB, where B is the Bohr magneton. The corresponding background
s-wave scattering lengths are as = 105a0, as = 100a0, and as = 100a0, where a0 is the Bohr radius.
We used these interaction strengths, unless otherwise specified.

As discussed previously, Faraday waves are expected as a main excitation mode of the system
when the modulation frequency wm does not match any of the characteristic frequencies of the
system. For this reason, we used the value wm = 200 ⇥ 2p Hz, for which we verified that these
conditions are satisfied. To characterize the density waves, we typically analyze their FFT spectra in the
time-frequency and spatial-frequency domains. However, instead of directly analyzing their density
profiles, for FFT, it is advantageous to have a clearer signal, which can be obtained by considering
only the density variations compared to the initial state, i.e., the ground state of the system, before
the modulation is switched on. Therefore, Figure 1 shows time dependence of the integrated density
profile variations in the weak confinement direction dn(x, t) = n(x, t)� n(x, t = 0). Here, n(x, t) is
the column density profile calculated by integrating the 3D condensate density |y|2 over the radial
coordinates y and z.

The emergence of spatial patterns is clearly visible for all three atomic species after around 150 ms.
This is consistent with earlier experimental observations [12–14] and theoretical results [16,24,25].
The density waves in x direction from Figure 1 take time to develop and are a result of the transfer of
energy from the modes that are directly excited in the radial directions, where the trap is modulated.
On the other hand, the density waves in the radial directions (which are not shown here) emerge
immediately after the modulation is switched on at t = 0, and their frequency is equal to the modulation
frequency. By looking at Figure 1, we can even estimate the main oscillation frequency, e.g., counting
the number of maxima or minima in a given time interval. For instance, in the last 50 ms in each of the
panels in Figure 1, we count five periods, which corresponds to the frequency 100 ⇥ 2p Hz = wm/2.
This is a distinguishing characteristic of Faraday waves, and therefore we can directly determine that
in this case the system develops this type of collective oscillations.

However, this way we can determine only the main excitation modes. The dynamics of the system
contains other modes as well, and over the time they can develop and even start to dominate the
behavior of the system. Therefore, it is important to analyze the spectra in more detail. This is done in
Figure 2 for all integrated density profile variations, separately for each spatial direction. For simplicity,
the FFT analysis is performed for the profiles at the trap center. As expected, in the weak confinement
direction (left column of Figure 2), the main excitation mode has a frequency wm/2. In addition to
this, we observe two other modes, at wm and 3 wm/2. This is expected from the theoretical analysis in
Section 2, but could not be discerned directly from the density profiles or their variations.
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Figure 1. Time evolution of the integrated density profile variation dn(x, t) in the weak-confinement
direction for a BEC of chromium 52Cr (top), erbium 168Er (middle), and dysprosium 164Dy (bottom),
for the modulation frequency wm = 200 ⇥ 2p Hz and amplitude e = 0.2, and the system parameters
given in Section 2.

In the Fourier spectra of the integrated density profile variations in the radial directions (middle
and right columns of Figure 2), we see a somewhat richer set of excitation modes. In addition to the
main mode corresponding to the trap modulation at wm, we see that also the breathing mode is excited
at the frequency wB ⇡ 321 ⇥ 2p Hz. This value can be calculated by linearizing the equations of
motion from Section 2. The spectra prominently contain the second modulation harmonic at 2 wm as
well. We also see some other peaks, for instance the small peak at around 120 ⇥ 2p Hz, which can be
due to the linear combination of the modes wB � wm. However, such an identification would require
further theoretical and numerical analysis, which is out of the scope of the present paper.
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Figure 2. The Fourier spectrum in the time-frequency domain of the integrated 1D density profile
variations of Faraday waves at the trap center dn(x = 0, t) in x direction (left column), dn(y = 0, t)
in y direction (middle column), and dn(z = 0, t) in z direction (right column) for a BEC of chromium
52Cr (top row), erbium 168Er (middle row), and dysprosium 164Dy (bottom row). Vertical blue lines
represent theoretical predictions, where wm/2 corresponds to Faraday waves, wm, 3wm/2, and 2 wm to
resonant waves, and wB is the variational result for the breathing mode frequency, which is obtained
by linearization of the equations of motion from Section 2.

While the Fourier analysis in the time-frequency domain can be used to determine the character
of the induced density waves (Faraday, collective, and resonant), the analysis in the spatial-frequency
domain enables us to characterize the density patterns and calculate their spatial period. This is
illustrated in Figure 3 for Faraday waves for all three considered atomic species. The integrated
density profile variations are analyzed at appropriate times, which are determined to correspond to
the evolution stage when Faraday waves have fully emerged, but the system is still far from the violent
dynamics that inevitably follows after the long driving period.

In all three panels of Figure 3, the main peak corresponds to the wave vector kF of the Faraday
waves, and we see significant differences: for 52Cr, we obtained kF = 0.57µm�1, yielding the spatial
period `F = 2p/kF = 11.02µm; for 168Er, we obtained kF = 0.98µm�1 and `F = 6.41µm; and, for
164Dy, we obtained kF = 1.10µm�1 and `F = 5.71µm. The variational analysis presented in Section 2
yields results which are in good agreement with the numerical ones, namely kF = 0.51µm�1 for 52Cr,
kF = 0.91µm�1 for 168Er, and kF = 1.06µm�1 for 164Dy. These variational results are shown in Figure 3
by vertical blue lines, which illustrate their agreement with the Fourier analysis. The presented spectra
also contain some additional peaks that correspond to other geometrical features of the analyzed
density profile variations, such as the condensate widths and their higher harmonics, as well as the
higher harmonics of the Faraday waves periods, and linear combinations of all of these. However,
they are not of interest for our analysis and we did not study them further.
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Figure 3. The Fourier spectrum in the spatial-frequency domain of the integrated 1D density profile
variations of Faraday waves in x direction dn(x, t = 272 ms) for 52Cr (left), dn(x, t = 225 ms) for
168Er (middle), and dn(x, t = 193 ms) for 164Dy (right) BECs with N = 104 atoms. The corresponding
density profile variations are shown in Figure 1. Vertical blue lines represent theoretical predictions for
the wave vector kF of the Faraday waves, Equation (23).

Note that the spatial period of Faraday waves can also be determined by directly looking at the
density profile variations in Figure 1, and estimating the spacing between the consecutive minima or
maxima at the appropriate evolution time. For instance, for chromium, we count three minima over
the spatial extent of 30 µm, yielding an estimate `F ⇡ 10µm, and similarly for other species. Obviously,
such estimates are not as precise as the Fourier analysis results, and therefore we rely on FFT spectra
to systematically determine the spatial periods of Faraday waves and their functional dependencies on
the contact and the DDI strength.

4. Interaction Effects and Properties of Faraday Waves

In the previous section, we show how the Fourier analysis can be used to calculate the spatial
period of Faraday waves. Next, we systematically studied the interaction effects, namely how the
contact and the DDI strength affect the properties of generated density waves. First, we explored the
influence of the contact interaction on the emergence time and the spatial period of Faraday waves for
a fixed value of the DDI strength. In experiments, this can be achieved by employing the Feshbach
resonance technique, which allows tuning as by changing the external magnetic field, thus changing
the electronic structure of atoms and their scattering properties.

The existence of Faraday waves is a consequence of nonlinearity of the system, i.e., the presence of
the contact and the DDI terms in the Hamiltonian. In a linear system, described by the pure Schrödinger
equation, the harmonic modulation of the trap in the radial direction would not be transferred into the
longitudinal direction. Therefore, the emergence time of Faraday waves (and other types of density
waves in the longitudinal direction) critically depends on the strength of interatomic interactions.
However, if interaction strengths become sufficiently large, the emergence time is less sensitive to their
changes. Since the DDI is strong in erbium and dysprosium, we can expect that the emergence time of
Faraday waves significantly depends on the contact interaction strength only in chromium, where add
is small.

This is illustrated in Figure 4, where we see the density profile variations for chromium for three
different values of as. Let us first note that the amplitude of density variations is much smaller in
the top panel for as = 60 a0 than in the middle panel for as = 80 a0, and significantly smaller than
in the bottom panel for as = 150 a0. This is also evident from the fact that in the top and middle
panel we can clearly see the quadrupole collective oscillation mode, which has a frequency of around
wQ = 12 ⇥ 2p Hz. This can be estimated from the figure and compared to the variational value of wQ,
which can be obtained by linearizing the equations of motion in Section 2. When the interaction is
sufficiently large, the amplitude of Faraday waves is much larger than those of the collective modes,
and they cannot be even discerned in the bottom panel in Figure 4. Only for a weak interaction the
amplitude of the Faraday waves is comparable to the amplitude of the collective modes, and this is
why we can see them all for small values of as.
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Figure 4. Emergence of Faraday waves for different strengths of the contact interaction: as = 60 a0
(top), as = 80 a0 (middle), and as = 150 a0 (bottom) for a BEC of 52Cr. We observe that Faraday waves
emerge faster as the contact interaction strength increases.

As with all other excitations, Faraday waves start to develop immediately after the modulation
is switched on. The question on their emergence time is related to their amplitude, which is
time-dependent and grows exponentially, as can be seen from the solution (Equation (18)) of the
Mathieu-like equation that describes the dynamics of the Faraday density oscillations. The imaginary
part of the parameter x in Equation (18) is responsible for the exponential growth of the Faraday waves’
amplitude, which is not the case for collective modes. Therefore, in practical terms, the definition
of the emergence time of Faraday waves is always arbitrary and can be expressed as a time needed
for the density variations to reach a certain absolute or relative (compared to the total density) value.
One can even relate this to the experimental point of view, where there is a threshold for the density
variations that can be observed, due to measurement errors. However, in numerical simulations, there
are no such limitations and one can easily use an arbitrary definition to estimate the emergence time of
density waves. The more relevant quantity to study would be the exponent that governs the growth of
the wave amplitude, which depends on the interaction strength.

Now, we turn our attention to spatial features of the Faraday waves. Figure 5 presents the
dependence of the wave vector kF on the s-wave scattering length as for all three considered species.
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We also show the variational results for the dependence kF(as) derived in Section 2. The agreement is
very good, with errors of the order of 10–15%. We stress that the derived variational expression closely
follows the numerical results not only by their values, but, more importantly, also their functional
dependence properly.
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Figure 5. Wave vector of the Faraday waves kF as a function of the contact interaction strength for a BEC
of 52Cr (left), 168Er (middle), and 164Dy (right), for a fixed DDI strength. Red upper triangles were
numerically obtained values using the FFT analysis as in Figure 3, and blue lines are the variational
results according to Equation (23).

Next, we studied the effects of the DDI strength for a fixed value of the contact interaction. Figure 6
shows the corresponding dependence of kF on add. In contrast to the contact interaction dependence,
where kF is a decreasing function of as, here we see that kF increases as the DDI strength is increased.
Figure 6 also shows the variational results, where the level of agreement with the numerically obtained
results is different, with errors as small as 7% for chromium and up to around 25% for erbium and
dysprosium for largest values of add. Due to complex approximations made in the derivation of
variational results, in particular those related to the DDI term, the obtained functional dependence is
not as good as in the case of contact interaction, but still provides reasonable estimates of the wave
vector values for the Faraday waves.
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Figure 6. Wave vector of the Faraday waves kF as a function of the DDI strength for a BEC of 52Cr
(left), 168Er (middle), and 164Dy (right), for a fixed contact interaction strength. Red upper triangles
represent numerically obtained values using the FFT analysis as in Figure 3, and blue lines are the
variational results according to Equation (23).

5. Resonant Waves

In the presence of interactions, various excitation modes in dipolar BECs are coupled and the
energy pumped into the system by periodic driving can be transferred from the driving direction to
other, orthogonal directions. In the previous section, we show this for non-resonant driving, when
the harmonic modulation in the radial direction was transferred to the longitudinal direction in the
form of Faraday waves, which were the main excitation mode generated. The main distinguishing
property of these excitations is halving of the oscillation frequency, i.e., the induced density waves
have the frequency wm/2. Next, we studied the other important case, when the modulation frequency
is resonant, such that the induced density waves have the same frequency. This happens when wm is
close to one of the characteristic frequencies of the system, e.g., one of the frequencies of the collective
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oscillation modes or one of the trap frequencies. Although Faraday waves and all other collective
oscillation modes are also excited in this case, the largest amplitude corresponds to resonant waves
with the frequency wm. When generated, these resonant waves dominate the behavior of the system
and make all other excitations negligible for the dynamics.

Figure 7 shows the integrated density profile variation of 168Er for a resonant wave induced
by a harmonic modulation of the radial part of the trapping potential at wm = W0, i.e., when the
modulation frequency coincides with the radial trapping frequency. The density waves in this case
develop much more quickly than for the non-resonant modulation and are clearly visible already after
55 ms. Due to a violent dynamics that emerges in the system very quickly, it is not easy to estimate
the frequency of the waves directly from Figure 7, as was possible before. Therefore, we relied on the
Fourier analysis in the time-frequency domain, as presented in the left panel of Figure 8. The obtained
FFT spectrum clearly shows that the main excitation mode has the frequency equal to wm. We also see
that the spectrum is continuous, practically without distinct individual peaks, and only the second
harmonic at 2wm = 321 ⇥ 2p Hz yields a small local maximum. This demonstrates that the system is
far from the regime of small perturbations, where individual excitation modes can be observed.

In the right panel of Figure 8, we see the Fourier spectrum in the spatial-frequency domain, which
yields the wave factor kR of resonant waves. The FFT results give the value kR = 1.59µm�1 and
the corresponding spatial period `R = 2p/kR = 3.95µm for 168Er. In the figure we also present the
variational result kR = 1.40µm�1, calculated using Equation (24). The agreement is again quite good,
which indicates that the variational approach developed in this paper can be reliably used not only for
the Faraday waves, but also for the resonant waves.

Figure 7. Time evolution of the integrated density profile variation in the weak confinement direction
for a BEC of 168Er, with the modulation frequency equal to the weak confinement frequency, wm = W0.
We observe resonant behavior corresponding to the first harmonic of the resonant frequency W0, which
sets in after around 55 ms.

This can also be concluded from Figure 9, which presents the results for the dependence of
the resonant wave vector kR on the contact and the DDI strength. The agreement between the
numerical and variational results is of the order of 10% over the whole experimentally relevant domain.
We see similar behavior for the resonant waves as for the Faraday ones, namely the wave vector
decreases as the contact interaction strength increases, while the opposite is true for the DDI. Again,
the functional dependence obtained from the variational approach properly describes the numerical
results, thus confirming that Equation (24) can be used to calculate spatial period of resonant waves.
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Figure 8. The Fourier spectrum of the integrated 1D density profile variations dn(x, t) at the trap center
in the time-frequency domain (left), and of the density profile variations in x direction dn(x, t = 68 ms)
in the spatial-frequency domain (right) of resonant waves for a BEC of 168Er. Vertical blue line in
the left panel represents the modulation frequency wm, while in the right panel it corresponds to the
theoretical prediction for the wave vector kR of the resonant waves, Equation (24).
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Figure 9. Wave vector of the resonant waves kR as a function of the contact (left) and the DDI
(right) strength for a BEC of 168Er. The results in the left panel are obtained for a fixed DDI strength,
and similarly in the right panel a fixed contact interaction strength is used. In both panels, red upper
triangles represent numerically obtained values using the FFT analysis as in the right panel of Figure 8,
and blue lines are the variational results according to Equation (24).

It is interesting to note that resonant behavior appears not only under conditions mentioned
above, when wm is equal to one of the characteristic frequencies, but also when it matches their higher
harmonics. Figure 10 illustrates this for 168Er, which is harmonically modulated at twice the radial
trapping frequency, wm = 2W0 = 321 ⇥ 2p Hz. In this case, the amplitude of the resonant mode grows
even more quickly and significant density variations can be observed already after 30 ms. Therefore,
we see that the modulation at the second harmonic yields even more violent dynamics than the first
harmonic. The Fourier analysis in the time-frequency domain reveals that the main excitation mode
again has a frequency of W0, but the mode at wm = 2W0 is also present. From the experimental point
of view, resonant driving is very dangerous and leads to the destruction of the system in a matter of
tens of milliseconds. While numerical simulations can be performed for longer time periods, the atoms
leave the condensate due to a large, resonant transfer of energy to the system. As the condensate is
depleted, the mean-field description of the system breaks down and it can no longer be simulated by
the dipolar Gross-Pitaevskii equation.
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Figure 10. Time evolution of the integrated density profile variation in the weak confinement direction
for a BEC of 168Er. The modulation frequency is equal to twice the weak confinement frequency,
wm = 2W0. We observe resonant behavior corresponding to the second harmonic of the resonant
frequency W0, which sets in more quickly than the first harmonic, already after around 30 ms.

6. Conclusions

We investigated here the Faraday and resonant density waves in ultracold dipolar Bose-Einstein
condensates for experimentally relevant atomic species with the permanent magnetic dipole moment:
chromium 52Cr, erbium 168Er, and dysprosium 164Dy. The interplay of the contact and the dipole-dipole
interaction in such systems is a hot research topic today, but detailed understanding of their dynamics
and even their stability is still lacking. Our results contribute to variational and numerical description
of driven dipolar systems and their properties, which are important for ongoing experiments, and will
be of particular interest as the strongly dipolar regime becomes experimentally available.

To describe the dynamics of the Faraday and resonant waves in dipolar BECs, we relied here
on the variational approach introduced in Ref. [16] (and references therein), which was already used
in various setups [17–20,23–25,30,41,42]. This approach is based on the Gaussian variational ansatz
and includes the condensate widths and the conjugated dynamical phases as parameters. The ansatz
also includes the density modulations in order to capture the dynamics of density waves. Using our
variational approach, the obtained equations for the dynamical evolution of the system are cast into the
form of the Mathieu-like differential equation. This allowed us to identify the most unstable solutions
of the Mathieu’s equation with the Faraday and the resonant waves, which we observed numerically.
Based on this idea, we derived analytical expressions for the periods of these two types of density
waves. Performing the FFT analysis of the results of extensive numerical simulations, we were able
to calculate the corresponding periods numerically, as functions of the contact and the dipole-dipole
interaction strength. The comparison of variational and numerical results shows very good agreement
and demonstrates that the derived analytical expressions provide full understanding of the properties
of density waves in dipolar condensates.

In the future, we plan to study onset times for the emergence of Faraday and resonant waves,
and in particular the corresponding exponents and their dependence on the contact and the DDI.
It is well known that the periodic driving of a dipolar system may lead to its collapse, and we plan
to investigate if recently observed quantum droplets, that appear as a result of stabilization due to
quantum fluctuations, may also appear in a scenario which leads to Faraday waves.
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Abstract. Premature human mortality due to cardiopulmonary disease and lung cancer is found in epidemiological studies to
be correlated to increased levels of atmospheric particulate matter. Such negative dust e↵ects on the human mortality in the North
Africa – Europe – Middle East region can be successfully studied by the DREAM dust model. However, to assess health e↵ects
of dust and its other impacts on the environment, a detailed modelling of the climate for a period of one year in a high-resolution
mode is required. We describe here a parallel implementation of the DREAM dust model, the DREAMCLIMATE service, which is
optimised for use on the high-performance regional infrastructure provided by the VI-SEEM project. In addition to development
and integration of this service, we also present a use-case study of premature mortality due to desert dust in the North Africa –
Europe – Middle East region for the year 2005, to demonstrate how the newly deployed service can be used.

Key words: DREAM model, dust e↵ects, human mortality, VI-SEEM project, application service

AMS subject classifications. 68W10, 68M14, 68N30

1. Introduction. Exposure to airborne mineral dust particles can significantly influence human health.
Atmospheric dust particles are primarily driven by mesoscale and synoptic processes, and may be present in high
concentrations near the sources and carried over long distances while having adverse health e↵ects. Drought and
desertification, as climate-related changes and human activities such as changes in land use, a↵ect potential dust
sources of fine particulate matter in arid areas. Therefore, numerical modelling with su�ciently high resolution
of the processes of the atmospheric dust cycle that drive dust emissions and transport is a useful approach to
assessment of the potential health e↵ects of exposure to dust.

The previously developed Dust REgional Atmospheric Modeling (DREAM) system [1] is a component of
a comprehensive atmospheric model designed to simulate and predict the atmospheric cycle of mineral dust
aerosols. The DREAM provides a climatology of dust based on long-term re-analysis of the model. It is widely
used by the research and operational dust forecasting communities in more than 20 countries, including its
recent use in a series of NASA-funded projects [2, 3, 4, 5] dealing with health aspects of dust suspended in
the air. The Institute of Physics Belgrade group, which is a partner in the Sand and Dust Storm Warning
Advisory and Assessment System (SDS-WAS) project of the World Meteorological Organization, uses DREAM
to provide daily dust forecasts to the SDS-WAS model inter-comparisons and validation activities. Also, it is
used for investigation on how fine particulate matter contributes to air pollution in North Africa – Europe –
Middle East region.

To assess health e↵ects of dust in the region and other dust impacts on the environment, it is usual to
consider at least a one-year modelling climatology for the given region. In this case this was achieved by
solving the DREAM model in a high-resolution mode with the horizontal grid resolution of 15 km. Such a
high resolution model is capable to accurately describe the behaviour of small-scale dust sources in the desert
areas (Sahara, Middle East), as well as the mesoscale atmospheric conditions. However, due to numerical
complexity it requires a parallelised version of the DREAM code, which we created and optimised for usage on
high-performance computing infrastructures available today.
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In parallel to development of the DREAM model, a number of initiatives were crucial for enabling high-
quality climate research in the region. This was achieved by providing e-Infrastructure resources, application
support and training through the VI-SEEM project [6], funded by the EU H2020 programme. The project
brings together regional e-Infrastructures in order to build capacity and better utilise synergies, as well as to
provide improved service within a unified virtual research environment for several inter-disciplinary scientific
user communities. The overall aim is to o↵er a user-friendly integrated e-Infrastructure platform for regional
cross-border scientific communities in climatology, life sciences, and cultural heritage. This includes integration
of computing, data, and visualisation resources, as well as services, models, software solutions and tools. The
VI-SEEM virtual research environment provides the support to scientists in a full lifecycle of collaborative
research.

By e↵orts of the DREAM code developers and the VI-SEEM support team, the DREAM model was
successfully refactored and tuned for usage on high-performance computing infrastructures in a form of the
DREAMCLIMATE service, presented here. Section 2 briefly describes the DREAM model, which is capable of
producing results in the required high-resolution mode for a one year period. The DREAMCLIMATE service
is presented in detail in Section 3, while Section 4 describes produced datasets and main results. By using
an order of magnitude finer DREAM model grid than available before, we perform a detailed analysis of dust
impacts to public health.

2. DREAM model. Premature human mortality due to cardiopulmonary disease and lung cancer is found
in epidemiological studies to be correlated to increased levels of atmospheric particulate matter, in particular
to long-term exposure to particulate matter with an aerodynamic diameter smaller than 2.5µm. In order to
estimate the premature mortality caused by the long-term exposure to airborne desert dust, we use results of
the DREAM gridded model dust climatology of fine particulate matter and dust concentrations. This analysis
follows the previous study [7] that indicates that there is a large number of premature deaths by cardiopulmonary
disease and a significant number of deaths by lung cancer, mostly in the dust belt region neighbouring Sahara
and Middle East deserts.

The DREAM model is developed as an add-on component of a comprehensive atmospheric model and
is designed to simulate and/or predict the atmospheric cycle of mineral dust aerosols. It solves a coupled
system of the Euler-type partial di↵erential nonlinear equations for dust mass continuity, one equation for each
particle size class, which is one of the governing prognostic equations in an atmospheric numerical prediction
model [8, 9, 10]. The DREAM model takes into account all major processes of the atmospheric dust cycle.
During the model simulation, calculation of the surface dust emission fluxes is made over the model cells
declared as deserts. A viscous sub-layer parameterisation regulates the amount of dust mass emission for a
range of near-surface turbulent regimes. Once injected into the air, dust aerosols are driven by the atmospheric
dynamics and corresponding physical quantities: by turbulence in the early stage of the process, when dust is
lifted from the ground to the upper levels; by winds in later phases of the process, when dust travels away from
the sources; and finally, by thermodynamic processes, rainfall and land cover features that provide wet and dry
deposition of dust over the Earth surface.

The model is implemented as a bundle of Fortran programs and libraries. These components are divided into
three groups: the preprocessing system, the model operational system, and post-processing and visualisation
tools. The preprocessing consists of two phases. The first is the setup in which the simulation domain, model
configuration and interpolation of terrestrial data are defined. These parameters are mostly hard-coded and any
change to parameters in this phase requires recompilation. The second stage of preprocessing is interpolation of
the meteorological input data from the global meteorological model to the current simulation domain, as well as
a setup of initial boundary conditions for the dust model. The model operational system is the main component,
and it runs the numerical integration program. Post-processing and visualisation tools include GrADS [11] with
conversion from Arakawa E-grid to geo-referenced grid and plots.

The code is predominantly written in the style of the Fortran 77 standard. Some of the more pressing con-
straints of the standard were the lack of support for dynamic memory allocation and command line arguments.
These two constraints required for a number of parameters to be hard-coded. As a consequence, this limited
the number of users who could use the application independently, and the number of parallel tests that could be
ran at once. Recompilation also requires a deep technical knowledge of the implementation itself, which reduces
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usability and dissemination of the model.

3. DREAMCLIMATE service. Within the framework of the VI-SEEM project, the DREAM model
was successfully re-factored and tuned for usage on high-performance computing infrastructures. The DREAM-
CLIMATE service was developed and deployed using the VI-SEEM infrastructure modules. Configuration of
the considered physical system is separated from the source code of the application, and all relevant parameters
are grouped into a single configuration file. Such an improved configuration approach enabled more user-friendly
way to configure various model setups, without the need for each user to dive into the code and technical details
of the implementation. This also enables multiple users to run their model instances independently. Important
additional improvements include significant reduction of the disk-space consumption, as well as standardisation
of its usage through an environment-module approach.

Configuration files follow the format of the Python configuration parser, which is a convenient, flexible, and
powerful way for parsing configuration files. It uses simple INI style configuration syntax, i.e., a text file with
a basic structure composed of sections, properties, and values. Parameters are divided into sections which are
designated by square brackets. Within one section, each parameter is specified in a separate line and its name
and value are delimited by the equals sign. In-line comments are also permissible and corresponding lines begin
with a semicolon. In addition to this, a support for variable interpolation is included as well.

The DREAM processing stages remain similar to the original version of the code, and consist of the pre-
processing, the model operational processing, and the post-processing phase. Majority of changes are related to
reducing the complexity of configuration in the setup stage of preprocessing. In a typical use-case, a user begins
the simulation project by loading the environment module for the DREAMCLIMATE service, which sets the
environment paths for the commands used to initialise and prepare the DREAM model simulation. Afterwards,
by invoking the dreamclimate init script the default configuration file is created in the working directory and
files needed for a configuration of the local simulation instance are created in the .dreamclimate subdirectory.
After the parameters are set in the configuration file, the dreamclimate reconfig script is called to execute the
setup stage, which encapsulates recompilation of the components, depending on the parameters changed. The
resulting binaries, which are used to run simulation, are placed in the .dreamclimate/bin directory. This step
isolates each user’s simulation instance from others and enables multiple instances to work without interference.
The next step in this stage generates and interpolates vegetation and soil texture for the forecast domain, by
calling the gt30mounth, gt30source, gt30vegetadirect, text4eta, and texteta components.

After the setup, preprocessing continues by invoking the dreamclimate preproc script whose role is to
prepare input data for the Eta model grid. This script invokes the following components:

• climsst – horizontal grid (IMT, JMT) Eta model indexing from the SST as a function of the month,
• anecw – horizontal grid (IMT, JMT) Eta model indexing from global initial data,
• pusiWRF – set of the vertical variables and vertical interpolation of the pressure to sigma surfaces,
• const – conversion of the initial fields in Eta model coordinates from 2D horizontal (IMT, JMT)
indexing to 1D (IMJM), definition of dummy initial boundary soil moisture and temperature values,
and calculation of the constants needed for the 1D version of the soil model,

• dboco – creation of the boundary condition files,
• gfdlco2 – interpolation of the transmission functions grid, for which the transmission functions have
been pre-calculated, to the grid structure.

This preprocessing step produces binary files interpolated to the model grid (i.e., Arakawa E-grid) in
the output directory specified in the configuration file. All the routines of the model itself, which describe
atmospheric processes including the dust cycle, are built into the main executable file. This is a parallel MPI
program that runs the simulation and is submitted to the job scheduling system using the job description
script, which is automatically generated earlier in the setup stage. The post-processing includes the conversion
of the main GrADS output file from the Arakawa E-grid to the GrADS grid. These steps are handled by the
dreamclimate post-process script.

Many of the configuration parameters in the generated configuration file have sensible default values, to
minimise the need for users to search through lengthy lists of output file locations. The domain parameters of
interest for configuring the model itself, inside the ALLINC section, are:

• TLM0D – longitude of the centre point of the domain,
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• TPH0D – latitude of the centre point of the domain,
• WBD – western boundary of the domain with respect to the centre point (always less than 0),
• SBD – southern boundary of the domain with respect to the centre point (always less than 0),
• DLMD – longitudinal model grid resolution,
• DPHD – latitudinal model grid resolution,
• DTB – time step of the model, which depends on DLMD and DPHD values by means of the Couranf-
Friedrichs-Lewy (CFL) criteria,

• LM – the number of vertical levels.
Another set of commonly changed model parameters are dimensions of the model grid. These are grouped

in the PARMETA section of the configuration file:
• IM – the number of mass grid points along the first row, essentially half of the total number of grid
points in the west-east direction, due to the horizontal staggering of mass and wind points,

• JM – the number of rows in the north-south direction.
These parameters also influence the number of processes and the topology of the MPI parallel execution.

The rest of the parameters in the configuration file specify paths for input, output and intermediate files.
With these paths defined during configuration, a significant reduction in disk space usage was achieved, as the
data files no longer need to be copied together with the code, and no longer have to be in fixed relative locations.

The DREAMCLIMATE service is deployed during the first VI-SEEM development access call at the PARA-
DOX high-performance computing cluster [12], hosted by the Scientific Computing Laboratory, Center for the
Study of Complex Systems of the Institute of Physics Belgrade. This cluster is part of the VI-SEEM infrastruc-
ture, and consists of 106 working nodes. Working nodes (HP ProLiant SL250s Gen8) are configured with two
Intel Xeon E5-2670 8-core Sandy Bridge processors, at a frequency of 2.6 GHz and 32 GB of RAM. The total
number of CPU-cores available in the cluster is 1696, and each working node contains an additional GP-GPU
card (NVIDIA Tesla M2090) with 6 GB of RAM. The peak computing power is 105 TFlops. The PARADOX
provides a data storage system, which consists of two service nodes (HP DL380p Gen8) and 5 additional disk
enclosures. One disk enclosure is configured with 12 SAS drives of 300 GB each (3.6 TB in total), while the
other four disk enclosures are configured each with 12 SATA drives of 2 TB (96 TB in total), so that the cluster
provides around 100 TB of storage space. Storage space is distributed via a Lustre high-performance parallel
file system that uses Infiniband QDR interconnect technology, and is available on both working and service
nodes.

Although the DREAMCLIMATE code is a copyright-protected software, it can be obtained for research
purposes with the permission of the principal investigator (S. Ničković). Therefore, the DREAMECLIMATE
service source code is only internally available at the VI-SEEM code repository [13], as well as a module at
the PARADOX cluster software repository. Transfer of the software to third parties or its use for commercial
purposes is not permitted, unless a written permission from the author is received.

4. Produced datasets and results. Using the DREAMCLIMATE service at PARADOX during the
first VI-SEEM call for production use of resources and services, we produced a dataset with the aerosol optical
thickness and surface dust concentration for the one-year period. We selected the year 2005 for this analysis,
which serves as an example and demonstrates usability of DREAMCLIMATE service. The dataset covers wide
region of North Africa, Southern Europe and Middle East in 30 km horizontal resolution with 28 vertical levels,
and is made publicly available via the VI-SEEM data repository [14].

In addition to this initial dataset, we also produced a dataset with a higher resolution of 15 km for the same
region and period of time. The global mean DREAMCLIMATE-modelled dust concentration for year 2005 is
presented in Fig. 4.1.

Using the human health impact function introduced in Refs. [15, 16], we can relate the changes in pollutant
concentrations to the changes in human mortality, and estimate the global annual premature mortality due to
airborne desert dust. For this, we use as a baseline the mortality rate estimated by the World Health Orga-
nization (WHO) Statistical Information System on the country-level based on the International Classification
of Diseases 10th Revision (ICD-10) classification, and regional data from the WHO Global burden of disease
for countries with no data. Population statistics we used for the year 2005 is based on the United Nations
Department of Economic and Social A↵airs (UNDES 2011) database, while gridded global population numbers
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Fig. 4.1. Calculated mean dust concentrations in µg/m3, obtained from the DREAMCLIMATE model. The model integration
area covers region of North Africa, Southern Europe and Middle East, with 15 km horizontal resolution in 28 vertical levels for
the year 2005.

Table 4.1
Total CPD and LC premature mortalities for the threshold concentrations between 0 and 10 µg/m3.

Baseline concentration
(in µg/m3) 0 5.0 7.5 10
CPD premature mortality
(in thousands) 765 615 567 524
LC premature mortality
(in thousands) 14.8 10.2 9.1 8.4

are taken from the Columbia University Center for International Earth Science Information Network (CIESIN)
database. We used the population cohort of 30 years and older in the health impact function.

Applying the health impact function to the considered population, the DREAM model output suggests
a significant contribution of desert dust to premature human mortality. For the global background of dust
concentration of 7.5 µg/m3 i.e., threshold below which no premature mortality occurs, the estimated premature
mortality (per grid cell) by cardiopulmonary disease (CPD) and lung cancer (LC) is illustrated in Fig. 4.2. In
total, around 570,000 premature deaths in the model domain are predicted to occur during a one-year period,
as a negative consequence of dust. According to our results, top five countries with the highest induced CPD-
mortality in the year 2005 are: Egypt with 74,000; Iraq with 67,000; Iran with 50,000; Nigeria with 46,000;
Sudan with 45,000. On the other hand, top five countries with the highest induced LC-mortality in the same
year are: Iraq with 1,200; Iran with 900; Sudan with 800; Egypt with 800; Uzbekistan and Turkey with 500
premature deaths each.

We also investigated the sensitivity of our results on the value of the threshold concentrations, which is
above assumed to be 7.5 µg/m3. Table 4.1 gives the obtained total CPD and LC premature mortalities for the
threshold concentrations between 0 and 10 µg/m3. This analysis is presented to showcase capabilities of the
model and the developed DREAMCLIMATE service, and can be e�ciently used to study desired regions and
time periods if the required input data are provided.

5. Conclusions. Using the VI-SEEM project infrastructure and services, we have successfully re-factored
the DREAM atmospheric model. We have developed and implemented the DREAMCLIMATE service, which
is tuned for usage on high-performance computing infrastructures available today. In order to demonstrate a
typical use-case, we have produced a dataset with the aerosol optical thickness and surface dust concentration
for the one-year period for the wide region of North Africa, Southern Europe and Middle East. We have used
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Fig. 4.2. Estimated global premature mortality per grid cell by cardiopulmonary disease (top) and lung cancer (down) due to
the long-term exposure to desert dust with an aerodynamic diameter smaller than 2.5 µm, calculated by the VI-SEEM DREAM-
CLIMATE service.

both the 30 km and the 15 km horizontal resolution, with 28 vertical levels. To showcase how results of the
DREAMCLIMATE service can be applied, using the human health impact function and calculated global fine
particulate matter concentrations, we have estimated the premature mortality caused by the long-term exposure
to airborne desert dust with an aerodynamic diameter smaller than 2.5 µm for the year 2005 in the considered
region. The results show that the large total number of premature deaths (around 570,000) in the model domain
is mainly due to cardiopulmonary disease, but a significant number of deaths is also caused by lung cancer. The
model also shows high sensitivity of the results on the threshold concentration, which is a significant parameter
of relevance to public health.
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Chapter 15
Science Gateway for the Serbian
Condensed Matter Physics Community

Dušan Vudragović and Antun Balaž

Abstract The Academic and Educational Grid Initiative of Serbia hosts and
maintains the scientific gateway of the Serbian condensed matter physics com-
munity. The gateway is built around a code set addressing problems from the
physics of ultracold quantum gases, solving the nonlinear Schroedinger equation,
the Gross–Pitaevskii equation in real and imaginary time, and a path integral
algorithm for estimation of quantum-mechanical transition amplitudes, which are
relevant for various applications. Here we present the realization of the gateway and
technologies used for its implementation.

15.1 Introduction

Condensed matter physics and materials science address problems that highly rel-
evant for fundamental research, as well as for practical applications and society.
The development of high-impact materials with enhanced and engineered proper-
ties, or research in quantum information, for example, depend on the results from
these areas of physical sciences, and contribute to the IT and smartphone industry,
semiconductor technology, the energy sector, and others.

Numerical simulations are now indispensible tools in science and technology,
and are used to speed up the research and development while decreasing the costs.
In condensed matter physics, scientists deploy a broad range of algorithms, such as
solving nonlinear partial differential equations, classical and quantum Monte Carlo
techniques, including solving of the Bose–Hubbard and Fermi–Hubbard models,
exact diagonalization techniques for strongly correlated systems, etc. Whichever
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algorithm is used, typically it requires large-scale computing resources for simu-
lations of relevant physical systems.

In the Serbian condensed matter physics community (CMPC), the most prom-
inent use of computing resources is related to the three applications developed at the
national level: SPEEDUP, QSPEEDUP, and GP-SCL.

SPEEDUP code (Balaz 2012-1) uses Monte Carlo-based path integral algorithms
for the calculation of quantum mechanical transition amplitudes for 1D models. It is
based on the use of higher-order short-time effective actions in the time of prop-
agation (Monte Carlo time step), which substantially improves the convergence of
discretized amplitudes to their exact continuum values.

QSPEEDUP code (Vudrag 2010) presents a quasi-Monte Carlo extension of the
SPEEDUP code. The extended algorithm uses Sobol’s set of quasi-random num-
bers for generation of trajectories relevant for calculation of transition amplitudes in
the path integral formalism. Both applications use identical algorithm, supplied with
different random number generators, which allows their unification into a single
application designated as (Q)SPEEDUP.

GP-SCL (Vudrag 2012) is a set of codes parallelized using the OpenMP
approach for calculating the dynamics and ground states of quantum fluids (such as
Bose–Einstein condensates and superfluids). Quantum fluids represent macroscopic
quantum phenomena where large numbers of atoms or molecules behave coher-
ently, allowing special properties to emerge. In the mean-field regime, such systems
can be described by a nonlinear Schroedinger equation, usually called the
Gross–Pitaevskii equation (Pethick 2008). GP-SCL codes solve the time-(in)
dependent Gross–Pitaevskii nonlinear partial differential equation in one, two, and
three space dimensions in an arbitrary trapping potential using imaginary-time and
real-time propagation. The equation is solved using the semi-implicit split-step
Crank–Nicolson method by discretizing space and time, as described in Murug
(2009). The discretized equation is then propagated in imaginary or real time over
small time steps.

Applications have been developed by scientists from the Scientific Computing
Laboratory (SCL 2014) of the Institute of Physics Belgrade (IPB 2014) and are used
by an increasing number of collaborators within Serbia and also from other
countries in Europe, as well as from Brazil, India, and China. The applications are
deployed on the computing infrastructure provided by the Academic and Educa-
tional Grid Initiative of Serbia (AEGIS 2014), which is part of the European Grid
Infrastructure (EGI 2014).

To increase the potential user base of the applications, we have decided to create
the AEGIS CMPC science gateway (SG) in the framework of the SCI-BUS project
(SCI-BUS 2014), to provide seamless access to the software and the data generated
by the applications. This science gateway also hides the complexity of use of the
Grid and applications, which was a barrier for many scientists.
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15.2 Building the Science Gateway

Before the AEGIS CMPC science gateway was built and put into production, the
default interface to DCI within the AEGIS CMPC was based on gLite technology
provided by the European Middleware Initiative (EMI 2014). This is a command
line interface, and it requires a personal certificate issued by one of recognized
certificate authorities, membership in a virtual organization (VO) that supports the
applications, and access to a user interface (UI) machine. A personal certificate is
obtainable from the national AEGIS CA, while the Serbian AEGIS National Grid
Initiative provides the VO membership service. A central UI machine is available at
the IPB, but within the community personal UI virtual machines are used as well.

In this approach, the use of AEGIS CMPC applications requires preparation of a
parameter input file that describes the physical system of interest. In addition, the
DCI description of computational task has to be prepared as well. In a gLite- based
UI machine this is typically done using the Job Description Language (JDL).
Depending on machine architecture and the software stack provided by DCI in
terms of available compilers, a CMPC application could be compiled locally at a UI
machine or remotely at a DCI, on a target worker node. In the first case, a statically
linked executable is submitted to the predefined architectures, while in the latter
case the source code is transferred to the computation node, where one of the
various predeployed compilers performs the compilation. A CMPC application with
a physical system description from the parameter input file and with a DCI
description of the computational task from the JDL file is submitted from the UI
machine to the DCI by the gLite command line interface. Further job management
(job cancelation, monitoring, and output retrieval) is done by the gLite command
line interface as well.

This approach demands several skills: knowledge of CMPC application source
codes and their parallelization techniques, knowledge of different compiler tech-
nologies, knowledge of Linux operating system and its common tools, and
knowledge of gLite command line interface and DCI technology. This variety of
skills, which is required for solving even trivial problems, creates a strong barrier
that prevents ready use of CMPC applications within the community, and adversely
affects attracting new people who are interested in numerical simulations based on
the available set of codes. Since the knowledge of the underlying physics (quantum
theory and Bose–Einstein condensation) and understanding of CMPC applications
should be the only real requirements, the development of a scientific gateway
effectively solves the identified problems and enables new users to perform
numerical simulations in this field without much technical knowledge of the
operating system, compiler technology, low-level DCI interface, and DCI itself.
Furthermore, AEGIS CMPC SG promotes sharing of the results of simulations
within the community, and in this way increases understanding of the behavior of
particular physical systems of interest.

The desired level of automation of CMPC applications is achieved through the
use of WS-PGRADE/gUSE (gUSE 2014) workflows. For example, typical usage of
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the GP-SCL application first requires calculation of the ground state of the system,
achieved by the imaginary-time propagation until convergence is reached, and then,
starting from this result, one can study the dynamics of the system through the real
time-propagation. A workflow concept unifies these two kinds of time-propagation
algorithms into a single task, hiding the complexity from the end user. Furthermore,
besides the results in the form of raw data that describe the propagation of
the system in time, AEGIS CMPC scientific gateway provides visualization of the
propagation in the form of graphs and movies.

In the case of the (Q)SPEEDUP codes, numerical convergence of quantum-
mechanical transition amplitudes to their continuum values is achieved only when
the number of Monte Carlo samples goes to infinity. The central limit theorem
states that the statistical distribution of numerical results obtained using a large
number of independent Monte Carlo samples is always a Gaussian. This allows
automation of a process workflow for a desired maximal error of calculated tran-
sition amplitude, which is introduced as a new, more generic input parameter. In
other words, for a described physical system of interest and predefined acceptable
error of the result, AEGIS CMPC SG workflow provides sufficient statistics in
execution of the code to achieve the desired accuracy of the amplitude.

15.3 Architecture of the Science Gateway

AEGIS CMPC science gateway has been developed to support SPEEDUP,
QSPEEDUP, and GP-SCL applications. These programs are fully written in the C
programming language, and do not depend on any external library. Codes could be
compiled with different popular compilers: GNU’s gcc compiler, Intel’s icc com-
piler, IBM’s xlc compiler, PGI’s pgcc compiler, and Oracle’s suncc (former Sun)
compiler. Besides serial versions of the codes, parallel versions are produced as
well. In the case of SPEEDUP and QSPEEDUP applications, parallelization is
achieved through the message passing interface (MPI), while the GP-SCL code is
parallelized using OpenMP API. All codes are accompanied by appropriate
makefiles, which allow specification of the compiler, type of parallelization, and
customization of compiler optimization flags. These makefiles play a significant
role in the porting process, and simplify utilization of various hardware resources.

Although applications use different algorithms, from a purely technical point of
view they have the common use scenario: for a particular description of physical
system of interest, given in the form of a single input file, after considerable
number-crunching each application produces corresponding output with numerical
results. The generated numerical results are analyzed, classified, and visualized by
the scientific gateway. This allows for the creation of a generic architecture for all
AEGIS CMPC applications.

The generic architecture behind the AEGIS CMPC scientific gateway is illus-
trated in Fig. 15.1. It consists of four main blocks: the AEGIS CMPC portal, the
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WS-PGRADE/gUSE portal, the database back-end, and the DCI used for
calculations.

The AEGIS CMPC portal (CMPC 2014) (Fig. 15.2) is a user-oriented interface
that visually unifies outputs of SPEEDUP, QSPEEDUP and GP-SCL applications.
It provides a summary of collected numerical results, which is organized per
application and per configuration of a physical system. In addition, the AEGIS
CMCP portal allows querying of the available configurations, as well as submission
of new configurations. While the submission requires authentication, browsing of
the results is publicly available. Applications’ configurations and results are stored
in the database back-end. Communication between the portal and the database is
established through a dedicated RESTful web service. On the database side, the

Fig. 15.1 Generic architecture behind AEGIS CMPC workflows

Fig. 15.2 GP-SCL view of the AEGIS CMPC Portal
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workflow submission engine (WSE) daemon process looks for configurations
waiting for the executions, and performs application-specific workflow submission
through the WS-PGRADE/gUSE Remote API interface. The portal was developed
within the Google Web Toolkit (Tacy 2013) environment using Bootstrap (Cochran
2012) front-end framework, and it was deployed through the Apache Tomcat
(Brittain 2007) server (available at: http://sci-bus.ipb.ac.rs/).

TheWS-PGRADE/gUSE Portal is a workflow developer-oriented interface based
on the WS-PGRADE/gUSE technology. It allows creation of new workflows,
modification of existing ones, and manual testing. Use of the portal requires a Lif-
eray-based (Liferay 2014) account, a valid digital certificate and membership in
cmpc.aegis.rs VO. Potential users are able to request Liferay-based account by filling
out the generic Liferay Create Account form available at home page of AEGIS
CMPC SG. The National Grid Initiative (NGI) AEGIS VOMS-admin portal provides
management of cmpc.aegis.rs VO membership. The membership request form of the
VOMS-admin portal requires a digital certificate, and therefore, in order to fill it out, a
workflow developer has to import a personal certificate into the web browser. The
AEGIS WS-PGRADE/gUSE Portal extends the default WS-PGRADE/gUSE
installation with the Remote API plugin that enables usage of the core gUSE services
without the WS-PGRADE user interface component. The Remote API allows one
to run and manage workflows from a custom user interface, such as the AEGIS
CMPC Portal.

Workflows of AEGIS CMPC applications are created within the WS-PGRADE/
gUSE Portal, and are exposed for the external usage through the Remote API
component. Since SPEEDUP and QSPEEDUP applications use identical algo-
rithms, just supplied with different random number generators, both applications
use a single workflow—a (Q)SPEEDUP workflow. In order to minimize the net-
work overhead, all application binaries are preinstalled on each of DCI resource
centers supporting the cmpc.aegis.rs VO. The VO software area is used for this
purpose, while the installation and upgrade of particular applications is performed
by VO managers.

The workflow behind the (Q)SPEEDUP application is illustrated in Fig 15.3. It
has three main components:

• (Q)SPEEDUP-PREPARATION retrieves user-defined physical system configu-
rations from the database. Retrieved JSON output is then converted to the
application-specific configuration file, which is forwarded to the next process in
the workflow. Together with the configuration file, technical metadata (consumed
CPU time, application version, random number generator stream, etc.) produced
in this part of the workflow are forwarded to the next process. This is not a CPU-
intensive task, and it is executed at the server that hosts the WS-PGRADE/gUSE
portal (localhost).

• (Q)SPEEDUP-EXECUTION is responsible for the application execution at the
DCI, and then it retrieves the results. It equips the applicationwith thewrapper that
is able to determine the location of the preinstalled application at the DCI, sup-
ply input parameters, initiate execution, and collect results. This CPU-intensive
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task is executed on the DCI. Outputs of the application are permanently stored on
the storage elements provided by the DCI, while the workflow engine is informed
of their locations.

• (Q)SPEEDUP-PUBLICATION transforms the collected results from the pre-
vious two tasks to a corresponding JSON structure, and stores the result in the
database through the RESTful web service.

The AEGIS CMPC GP-SCL portlet relies on the workflow illustrated in
Fig. 15.3. The workflow has the following components:

• GP-SCL-PREPARATION retrieves the physical system configuration from the
database, and produces an application-specific parameter input file. The task is
executed on the server hosting the WS-PGRADE/gUSE portal. Technical
metadata collected in this part of the workflow are forwarded to the next pro-
cess. Each node in the workflow will expand this initial metadata structure,
while the last node will upload collected metadata together with the application
results to the database.

• GP-SCL-EXECUTION performs submission of the simulation to the DCI and
output retrieval. After the execution, the produced results are divided between
two tasks running in parallel: GP-SCL-GRAPH and GP-SCL-ANIMATION.
Results are permanently stored on the DCI, and only their locations are trans-
ferred back to the science gateway.

• GP-SCL-GRAPH produces graphs requested in the configuration. Graphs are
produced using gnuplot-based APIs. This task is not CPU-intensive, and
therefore it is performed on the local machine. Only part of the total output

Fig. 15.3 AEGIS CMPC (Q)SPEEDUP (top) and GP-SCL (bottom) workflows
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produced within the GP-SCL-EXECUTION task is transferred from the DCI to
the machine running the science gateway for this purpose.

• GP-SCL-ANIMATION produces animation (movie) of a dilute, trapped
Bose–Einstein condensate evolution in time. This part of the workflow is CPU
intensive and is executed on the DCI.

• GP-SCL-PUBLICATION accumulates results, technical metadata, graphs, and
locations of the movies, and stores them in the document-oriented database.

AEGIS CMPC DB is a document-oriented database that stores configurations
and numerical results from all applications supported by the science gateway.
Initially, it was deployed using a relational database, but with the increase of the
number of physical properties to be monitored, it has become very difficult to break-
out the design of the SG into relational schemas. Instead of perpetual reorganization
of schemas, the database back-end has been migrated to the document-oriented data
model. Due to several additional features, such as offline replication, multiversion
concurrency control, incremental replication, and fault-tolerance, MySQL tech-
nology (Harrison 2008) has been replaced by CouchDB technology (Anderson
2009).

Querying of and structuring the information available in the science gateway is
realized by CouchDB views. Different views are constructed by functions that act as
a mapping part of the map/reduce operation. These functions take the documents
and transform them into single values that they return. CouchDB indexes the view
and keep the indexes updated as new documents are added, removed, or updated.

Authentication and authorization of the requests coming to the AEGIS CMPC
SG, together with the tracking and merging mechanisms, are implemented as an
additional layer placed in front of the CouchDB. In order to change or add new
information (POST and PUT methods), a workflow developer has to be authenti-
cated and authorized; however, reading of information is publicly available (GET
method). Authentication and authorization could be done by username/password,
an X.509 certificate, or an X.509 RFC 3,820-compliant proxy certificate; this is
followed by an update of the document with the JSON tracking structure. This
section contains workflow developer information, the IP address of the client from
which the request was triggered, and the timestamp of the action. For this reason,
each document stored in AEGIS CMPC CouchDB has additional JSON structure
related to the tracking mechanism.

All documents stored in CouchDB are versioned, and CouchDB determines
which of the changes will be stored as the latest revision. When doing this, it does
not attempt to merge the conflicting revision. A developer always decides how the
merging should be done, and it is up to a developer to specify the latest revision.
This task is simplified with the AEGIS CMPC CouchDB merging mechanism, and
a workflow developer no longer needs to deal with the CouchDB revisions. The
system automatically discovers the latest version of a particular document, and
performs merging of the existing information with additional information. Existing
CouchDB documents could be updated with different or new information only,
which is not the case in the standard CouchDB model. In addition, the AEGIS
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CMPC CouchDB instance sanctions DELETE requests in order to prevent loss of
any information.

DCI used by the AEGIS CMPC SG is organized around the cmpc.aegis.rs VO.
Establishment of a separate VO has allowed lobbying at the resource providers for
additional or new resources. Also, it guaranties execution of jobs submitted from
the scientific gateways in reasonable time, and provides an exact mechanism for
tracking the of number of users, CPU usage, and other DCI-related statistics. The
cmpc.aegis.rs VO is currently supported by three NGI_AEGIS Grid sites, part of
EGI infrastructure (AEGIS01-IPB-SCL, AEGIS04-KG, and AEGIS11-MISANU),
and by the largest HPC installation in Serbia, the PARADOX cluster, totaling to
more than 2,700 CPUs and 140 TBs of storage space. Recently, AEGIS CMPC
scientific gateway has been also supported by the largest HPC installation in Serbia.
PARADOX cluster is equipped with 1,696 Sandy Bridge CPUs at a frequency of
2.6 GHz, 106 NVIDIA Tesla M2090 GPU cards, and 100 TBs of storage space. It is
interconnected via the QDR Infiniband technology, and achieves peak computing
performance of 105 TFlops.

Management of VO membership is centralized and provided by the NGI_AEGIS
VOMS-admin portal. Core Grid services necessary for users to be able to access all
computing and data storage resources are provided by the NGI_AEGIS as well, in
particular: the BDII information system (bdii.ipb.ac.rs), workload management
system (wms.ipb.ac.rs, wms-aegis.ipb.ac.rs), logging and bookkeeping service (lb.
ipb.ac.rs, lb-aegis.ipb.ac.rs), myproxy service (myproxy.ipb.ac.rs), and logical file
catalogue (lfc.ipb.ac.rs). All services are running the latest version of the middle-
ware EMI 3 (Monte Bianco) release.

15.4 Usage of the Scientific Gateway

AEGIS CMPC SG achieved production mode in September 2013. Currently, there
are 20 registered users, and according to the EGI accounting portal, 19,000 cmpc.
aegis.rs VO jobs have been so far submitted from the portal. Jobs are uniformly
distributed over the CMPC applications, while the average execution time per job is
around 24 h.

With the introduction of the science gateway, the CPMC job success rate has
dramatically increased. One of the indicators is the ratio between totally consumed
CPU time and the number of jobs. Currently this ratio is approximately 23 h, which
corresponds to the average execution time per job. In the case of failures, this time
would be smaller. Users are allowed to tune application’s configuration only, so
there is not much space for changes that will lead to application crashes or an
unpredictable behavior. Also, only CPU-intensive parts of the workflow are exe-
cuted on the DCI, and other tasks are executed locally, on the machine running the
science gateway. The success rate of the local jobs is practically 100 %, while the
jobs submitted to the DCI may fail due to various infrastructure problems. For this
reason, each job submitted to the DCI is configured to allow automatic resubmission.
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There are two kinds of resubmissions supported by the NGI_AEGIS DCI: deep
resubmission and shallow resubmission. The resubmission is deep when the job fails
after it has started running on the computation node, and shallow otherwise. Both
deep and shallow resubmissions are limited by default to five attempts for AEGIS
CMPC SG jobs. Furthermore, even if after these five attempts (Q)SPEEDUP job
fails, it will not affect the results, since they are obtained using a large number of
independent jobs. For GP-SCL jobs this is not the case, and results will not be
produced if the workflow node fails. This could be overseen by an additional module
that monitors relations between configurations and corresponding results, and per-
forms complete workflow resubmissions when necessary.

In this period, AEGIS CMPC SG was mainly used for:

• Study of Faraday waves in binary nonmiscible Bose–Einstein condensates
(Balaz 2012-2);

• Study of Faraday waves in single-component Bose–Einstein condensates with
spatially inhomogeneous atomic interactions (Balaz 2014), as well as conden-
sates with dipolar interactions (Nikolic 2013);

• Study of fragmentation of a Bose–Einstein condensate through periodic mod-
ulation of the scattering length (Vidan 2011);

• Study of geometric resonances in Bose–Einstein condensates with two- and
three-body interactions (Jibbouri 2013).

Using the numerical results obtained via the AEGIS CMPC SG and analytical
variational calculations, it was shown that elongated binary nonmiscible Bose–
Einstein condensates subject to periodic modulation of the radial confinement
exhibit a Faraday instability, similar to that seen in one-component condensates.
Modulation of the radial confinement leads to the emergence of density waves in
the longitudinal direction. Considering two hyperfine states of rubidium conden-
sates, AEGIS CMPC GP-SCL application was able to calculate two experimentally
relevant stationary-state configurations: one in which the components form a dark-
bright symbiotic pair (the ground state of the system), and one in which the
components are segregated (first excited state). For each of these two configura-
tions, it was shown numerically that far from resonances, the Faraday waves excited
in the two components are of similar periods, emerge simultaneously, and do not
impact the dynamics of the bulk of the condensate. This numerical result was
confirmed analytically, and it was shown that the period of the Faraday waves can
be estimated using a variational treatment of the coupled Gross–Pitaevskii equa-
tions combined with a Mathieu-type analysis for the selection mechanism of the
excited waves.

Numerical study of Faraday waves in systems with spatially inhomogeneous
atomic interactions has revealed that in the regime of weak inhomogeneity, the
system practically behaves as in the homogeneous case. However, for the case of
strong inhomogeneity, the properties of density waves substantially depend on the
typical inhomogeneity scale. For systems with dipolar interaction, the stability of
the ground state was found to be the major issue. Only for smaller numbers of
atoms (up to several tens of thousands) is the system stable enough to support the
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ground state. Harmonic modulation of the radial part of the confining potential is
found again to generate Faraday density waves. For strong dipolar interaction,
periods of emergent density waves (see Fig. 15.4) are found to be multiples of the
corresponding periods when only contact interaction is present—a feature that has
yet to be understood.

Investigation of fragmentation of Bose–Einstein condensates through periodic
modulation of the scattering length is motivated by recent experimental results on
the dynamics of a cigar-shaped Bose–Einstein condensate of atomic lithium.
Dynamics of such system is investigated numerically, using the AEGIS CMPC SG,
and analytically. It was shown that for resonant drives of large amplitude the
condensate reaches a fragmented state. The fragmented state is a hybrid state of the
condensate that includes a quadrupole mode on which a longitudinal resonant
density wave is grafted.

Geometric resonances in Bose–Einstein condensates were investigated by
solving the underlying time-dependent Gross–Pitaevskii equation for systems with
two- and three-body interactions in an axially symmetric harmonic trap. For this, a
recently developed analytical method (Vidan 2011) was used, as well as a detailed
numerical study of a set of ordinary differential equations for variational parame-
ters. By changing the anisotropy of the confining potential, strong nonlinear effects
can be observed numerically and analytically—these are shifts in the frequencies of
collective oscillation modes of the system. Additionally, coupling of collective
modes can be seen, with the coupling strength strongly depending on the geometry
of the system. Such results are highly relevant for experimental studies and help
plan the parameters of experimental setups.

Fig. 15.4 Emergence of Faraday waves in the density profile of dipolar Bose–Einstein condensate
of chromium
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15.5 Conclusions

A new AEGIS CMPC science gateway (CMPC 2014) was developed and deployed
for the Serbian condensed matter physics community in the framework of the
SCI-BUS (2014) project. It was based on the WS-PGRADE/gUSE technology, and
was implemented using the workflows approach. Three modules within the science
gateway are responsible for managing user interaction with the supported appli-
cations (SPEEDUP, QSPEEDUP, and GP-SCL). Since September 2013, when this
science gateway achieved the production status, its usage is steadily increasing, and
the job success rate is high and stable.

Further developments will include support for more applications used within this
user community, as well as adding more workflows for specific use cases requested
by the scientists. We also plan to extend support to the Serbian computational
chemistry community, which is of considerable size and already uses a number of
applications on computing resources of the Academic and Educational Grid Ini-
tiative of Serbia (AEGIS 2014) and European Grid Initiative (EGI 2014).

220 D. Vudragović and A. Balaž



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Kopie für Lizenzkunden der TIB Hannover, geliefert und ausgedruckt für CERN Library/Interlibrary Loan   CA 1174780   385 Rt. de Meyrin, 23.05.11



Implementation and Benchmarking of New FFT

Libraries in Quantum ESPRESSO
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Abstract. Quantum ESPRESSO (QE) software package allows electro-
nic-structure calculations and materials modeling at the nanoscale, based
on density-functional theory, plane waves, and pseudopotentials. It ex-
tensively uses Fast Fourier Transform (FFT) during all computations. In
addition to the built-in FFT libraries, QE enables integration of newly
developed FFT algorithms. Since Fastest Fourier Transform of the East
(FFTE) library has shown performance comparable with the widely used
and vendor-supplied libraries, the same behavior is foreseen in QE. In
this paper we present FFTE-enabled and thread-enabled FFTW3 exten-
sions of QE, together with benchmarking and performance results.

Keywords: FFT, Quantum ESPRESSO, multithreading, hybrid
parallelism, OpenMP, MPI.

1 Introduction

Quantum Espresso is an integrated suite of open-source codes for electronic
structure calculations and materials modeling at the nanoscale. It is based on
density-functional theory, plane waves and pseudopotentials [1].

Fourier transformation is used in a large part in calculations performed in
QE, so any gains in FFT performance would be positively reflected in the per-
formance of the entire QE suite. Most major hardware platforms, along with
their corresponding numerical libraries, are already supported in QE (such as
IBM ESSL, Intel MKL, SGI SCSL and so on), which include routines for FFT
calculations. Also, the open-source FFTW (version 2) and FFTW3 libraries [2]
are supported.

Parallelization in Quantum ESPRESSO is achieved using MPI and OpenMP,
and hybrid parallelism using both MPI and OpenMP together is currently sup-
ported only with the internally supplied FFTW library. The work on imple-
menting the support for the open-source FFTE library was motivated by its
performance results [3], so it was expected to show better performance than the
open-source libraries already supported in QE. The work on implementing the
support for hybrid FFTW3 library was considered because hybrid parallelism
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is becoming more important, as computing nodes on modern HPC systems of-
ten comprise many CPU cores. Since the open-source FFTW3 library is widely
used, and has both multi-threaded routines, and serial thread-safe routines, it
was selected for implementation.

2 Quantum ESPRESSO Code Structure and Applied
Modifications

Quantum ESPRESSO is written mostly in FORTRAN 90. It has a modular
structure, with different modules for higher level domain specific calculations
(for example, CP or PW modules), and also some general purpose parts which
are then used in many other modules (for example FFT calculations or time
logging).

The development of this project used QE 5.0 as a baseline, and was localized to
the parts of the code responsible for FFT calculations. Analysis of the QE source
code revealed that all the routines for performing FFT are located in a file named
fft scalar.f90. Routines for 1D, 2D and 3D FFT are defined in this file. They serve
as wrappers and invoke corresponding routines of the aforementioned numerical
libraries, where the actual computation is performed. Selecting which particular
numerical library will be used is performed by conditional compilation, using pre-
processor directives (such as #ifdef, #elif, #endif and so on). Whenever a
numerical library supporting FFT is found during the configuration phase of
the QE software package, a corresponding macro parameter is defined in the
Makefile, and is used to select an appropriate compilation path. For example,
when the FFTW3 library is used, a macro parameter named __FFTW3 will be
defined, and only the code where FFTW3 routines are called will be compiled.

2.1 Enabling FFTE Library in Quantum ESPRESSO

We have extended QE to utilize the FFTE numerical library for performing FFT
in 1D, 2D or 3D. The version of FFTE used is 5.0, accessible on the website [3].
FFTE is written in Fortran, supports parallelism with MPI, OpenMP, or both
when hybrid variant is used. Also, FFT transformations for up to 3 dimensions
are supported. Code development was done according to Quantum ESPRESSO
development manual [4], which defines guidelines regarding the programming
style.

A new macro parameter named __FFTE was created, and used in parts of the
source code whenever a FFTE routine is called, or some initialization is per-
formed. The configure script was also modified so that the configuration process
can recognize if the FFTE library is present on the system, whether on the sys-
tem path, or in the path specified during configuration. If the library is found,
the __FFTE macro parameter is added to the Makefile. Variables needed to ini-
tialize FFTE, or store data between execution of FFTE routines were introduced
as to be easily distinguishable by their prefix (ffte_).
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In Quantum ESPRESSO, an internal decomposition of the data is used to
perform 3D FFT transforms as a combination of multiple calls to serial 1D and
2D FFT routines, which are divided among processes. MPI is used for communi-
cation and data exchange in-between these phases. The reason for this approach
is to avoid performing unnecessary transforms of subsections of the large 3D grid
which already have zero values, as this pattern is common in data sets used by
QE. A more detailed explanation of this decomposition can be found in Ref. [5].

It should be mentioned that the FFTE library does not support computation
on many Fourier Transforms (on different arrays), in a single routine call. This
can have some impact on the performance, because in QE there are many calls
to 1D and 2D routines needed to complete transform on the entire data set. Also,
when using FFTE, an initialization routine needs to be called before each trans-
form, which includes even more overhead during execution. Significant drops in
performance were not observed during our testing, but these factors should be
considered when using the FFTE library in other projects.

2.2 Enabling FFTW3 Threading in Quantum ESPRESSO

Second extension of QE is related to support of threading of the FFTW3 li-
brary, which would enable hybrid parallelism (when used combined with the
MPI), since it is already supported in Quantum ESPRESSO. The FFTW3 li-
brary supports threading in two modes:

– implicit, where an additional library libfftw3_omp has to be installed; in this
case, FFTW3 routines support multi-threaded execution internally, so they
are called like the serial ones, and

– explicit, where serial routines are used, but are called from within multiple
threads running in parallel; this is possible because routines for FFT execution
are thread-safe.

The following pseudocode representation roughly shows how the two threading
modes were implemented in Quantum ESPRESSO (for the implicit mode, a
single internally threaded routine call performs nsl transforms on arrays with
length of dim_z, and for the explicit mode each routine call is serial):

– implicit

fftw_execute_many_dft(fw_plan , c, cout , nsl , dim_z)

– explicit

#pragma omp for

for i=1 to nsl

offset =(i-1)* dim_z

fftw_execute_dft(fw_plan , c[offset], cout[offset ])

end for
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The FFTW3 library supports reusing of plans, and also supports calculation of
many transforms within a single routine call. This allows greater flexibility when
using multiple transforms, and is optimal in terms of performance. More details
on this can be found in Ref. [6].

In order to use implicit threading, FFTW3 thread initialization routines had
to be called before calling any FFTW3 routines for FFT planning and execution.
After the thread initialization has been successfully performed, the code for
serial version can be reused, and threading is done automatically in the library
routines.

With explicit threading, some modifications had to be made with the code.
Because in the serial version many 1D or 2D transforms are aggregated in a
single call for efficiency, execution had to be split into separate routine calls for
each transform. This way, we actually had many routine calls, which can then
be called from parallel threads. An OpenMP parallel for region was inserted,
where in each iteration of the loop, FFT is performed on a separate sub-array.
Since these routines are executed in parallel, and there are no data dependencies
between loop iterations, this approach could be applied successfully.

3 Performance Tests

Here we will present performance tests done to compare newly supported FFTE
library, and also performance of threaded FFTW3 library. Benchmarks were
performed so that the performance was compared to most similar numerical
libraries already supported in Quantum ESPRESSO.

3.1 FFTE Performance

We have tested Quantum ESPRESSO with enabled FFTE library, and com-
pared it with the FFTW3 library that is already supported. These tests show
only performances of serial libraries, since threaded FFTE was not implemented
(because it wasn’t always reliable when built with some compilers).

The cluster used for testing is made of nodes containing two AMD Magny-
Cours Opteron 6174 processors, with 12 cores each. Nodes are connected via
Infiniband network. The GCC compiler suite [7] was used in testing on this clus-
ter. Our implementation was tested on benchmarks for PW module of Quantum
ESPRESSO. FFTE Code was compiled with gfortran, version 4.1.2 with flags
-O3, and the FFTW3 library was compiled with gcc, version 4.1.2 with flags

-O3 -fomit-frame-pointer -fstrict-aliasing -fno-schedule-insns

-ffast-math.

For the first test, up to 6 computing nodes were used (up to 72 processes).
Execution times and scaling of the PW module are shown in Figure 1 for the
case when the number of MPI processes is increased, and in Figure 2 when the
problem size is increased, and the number of MPI processes stays constant (24
MPI processes were used in this test).
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Fig. 1. Performance of the PW module of QE FFTE extension compared with the
QE FFTW3 implementation: (left) Execution times of QE FFTW3/FFTE codes for
different number of MPI processes; (right) Speedup in the execution time of QE
FFTW3/FFTE codes as a function of a number of MPI processes (execution time
on 1 MPI process used as a baseline)

Fig. 2. Performance of the PW module of QE FFTE extension compared with the QE
FFTW3 implementation: execution times as a function of 3D FFT mesh size

It can be seen that the FFTE library slightly outperforms FFTW3 in both
cases (execution times are lower for the FFTE). The gap in performance grows
as the size of the problem grows, so the FFTE seems suitable for large test cases.
The difference in performance that is related to the problem size is also exhibited
in the test case with the increasing number of MPI processes. As the number of
MPI processes grows, each process gets less and less data to compute, and the
difference in execution time diminishes. Because of this, the FFTE library shows
worse speedup than the FFTW3.

3.2 FFTW3 Threaded Performance

For the performance testing of the threaded FFTW3 library, an FFTW (version
2) library internally supplied with Quantum ESPRESSO was selected for com-
parison. This was done because it was the only library supporting threading in
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the hybrid mode (when used together with the MPI), and is also open-source
and widely available.

Implementation of threaded FFTW3 was tested on a cluster with Intel Xeon
processors, with two quad-core CPUs per node, and with Gigabit Ethernet in-
terconnecting network. Library code was compiled with the Intel’s icc compiler
version 11.1 with the -O3 flag, and Intel’s ifortran was used for compilation of
Quantum ESPRESSO.

Hybrid extension of the FFTW3 library was also tested with benchmarks for
the PW module of QE. Tests were conducted again in the similar way, increasing
the number of CPU cores in one case, and increasing input grid size in another.
Configurations of 2 and 4 threads per MPI process were used, and also compared
to the pure MPI case. Both threading variants (implicit and explicit) were tested
with the FFTW3 library, and its performance is shown along with the internally
supplied FFTW library (labeled as FFTW internal) in Figures 3 and 4. Total
number of computing cores at some point is fixed, and is equal to a number of
MPI processes times the number of threads per MPI process.

From this we see that both threading variants implemented for FFTW3 out-
perform the internal FFTW when executed with hybrid parallelism for most
cases. Although, both threaded libraries are still slower than the pure MPI ver-
sion. This is probably due to the fact that for the type of input data used with
Quantum ESPRESSO, the overhead related to the thread management is prob-
ably greater than benefits of reduced MPI communication. Evidence for this are
runs with four threads per MPI process, where performance gets significantly
worse.

Fig. 3. Performance of the PW module of QE FFTW3 threaded extensions compared
with the internal QE FFTW hybrid implementation and pure MPI FFTW3 imple-
mentation: Execution times of QE FFTW3 implicit and explicit/internal FFTW/pure
MPI codes for different number of MPI processes



Implementation and Benchmarking of New FFT Libraries 161

Fig. 4. Performance of the PW module of QE FFTW3 threaded extensions compared
with the internal QE FFTW hybrid implementation and pure MPI FFTW3 implemen-
tation: QE FFTW3 implicit and explicit / internal FFTW execution times as functions
of 3D FFT mesh size.

These results agree with what was presented in Ref. [5], where similar thing
was investigated, and was shown that threading does not increase performance
in all cases. Better performance was observed only in some cases where the
number of MPI processes was significantly large. Also, Quantum ESPRESSO
has other ways to control parallelism in software (for example, task groups,
pools of processes, etc.) which is related to a particular input data set. Because
these options were not primarily designed with hybrid parallelism in mind, it
is not easy to fine tune Quantum ESPRESSO to achieve optimal performance
when threading is used.

It is also worth mentioning that no significant difference in performance be-
tween implicit and explicit variants of FFTW3 threading was noticed. Looking
at how threading is implemented in those two cases, an advantage of the explicit
mode is that the OpenMP parallel region is created only once, and inside of it
there are calls to many routines where FFT is computed. This should be optimal
with regards to the overhead related to thread creation and synchronization. On
the other hand, when using implicit threading, a new OpenMP parallel region
has to be created with every routine call. However, because an advanced FFTW3
interface is used with implicit threading mode, it allows many transforms on dif-
ferent arrays to be aggregated in a single routine call from FORTRAN. It is
possible that the native implementation of FFTW3 threaded library is aware of
that, and that it successfully avoids unnecessary creation of parallel regions for
each separate Fourier Transform.
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4 Conclusions

In this project two extensions to Quantum ESPRESSO were implemented: the
support for FFTE library for computing Fourier Transform in the serial mode,
as well as the FFTW3 library in threaded mode. These extensions showed better
performance compared to default QE libraries (open-source FFTW version 2 and
3 were selected for comparison). In the case of the FFTE library, performance
increase could be significant when the large charge density mesh is requested for
the simulation of a physical system. Both the explicit and implicit variants of
FFTW3 threading showed better performance compared to internally supplied
FFTW (version 2) when tested in hybrid configuration (two and four threads
per MPI process), and while still not faster than the pure MPI version, should
be considered when there is a need for hybrid parallelism. It is expected that a
much larger problem size and more CPU cores are needed in order to get sat-
isfactory performance of the hybrid FFTW3, which can match, or even surpass
the performance of the pure MPI version.
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Abstract

After pioneering experiments that realized Bose-Einstein condensates in systems of

ultracold atoms with weak contact interactions, it took a decade for experimental

techniques to advance and enable measurement of effects of the dipole-dipole inter-

action that exist between atoms or molecules with a permanent or induced electric

or magnetic dipole moment. The first such experiment was realized in 2005 with

chromium atoms, followed by the experiments with atoms with much larger magnetic

moments, such as dysprosium and erbium. Furthermore, the dipolar condensates

comprised of polar molecules with much stronger electrical or magnetic dipole mo-

ments were also realized. While the contact interaction is symmetric and has a short

range, the dipole-dipole interaction between atoms or molecules is anisotropic and

has a long range. These features are responsible for a whole series of new phenomena

that appear in ultracold dipolar gases. If we take into account that the strength of

the contact interactions can be varied over many orders of magnitude using the Fes-

hbach resonance technique, and that the dipole-dipole interaction strength can also

be tuned using a fast rotating magnetic or electric field, it is easy to see that such a

versatility of dipolar quantum gases is unparalleled and makes them an obligatory

element in a toolbox for engineering quantum devices and sensors.

The main contribution of this thesis is the study of Faraday and resonant density

waves in ultracold bosonic systems with the contact and the dipole-dipole interac-

tion. Such waves emerge in Bose-Einstein condensates as a result of the harmonic

driving of the system. They represent nonlinear excitations and are generated due to

the interaction-induced coupling of collective oscillation modes and the existence of

parametric resonances. We introduce here a variational mean-field approach for the

description of the dynamics of the Faraday and resonant waves in dipolar conden-

sates. This approach is based on the Gaussian variational ansatz, which includes

the condensate widths and the conjugated dynamical phases as parameters. The

ansatz also includes the density modulations in order to capture the dynamics of

density waves.

v



Using the developed variational approach, as well as a full numerical approach,

we study in detail the properties of density waves in dipolar condensates at zero

temperature, where breaking of the symmetry due to anisotropy of the dipole-dipole

interaction plays an important role. We derive equations of motion for the dynamics

of a driven dipolar system and identify the most unstable modes that correspond to

the Faraday and resonant waves. Based on this, we derive the analytical expressions

for spatial periods of both types of density waves as functions of the contact and the

dipole-dipole interaction strength. We compare the obtained variational results with

the results of extensive numerical simulations that solve the dipolar Gross-Pitaevskii

equation in three dimensions, and find a very good agreement.

In this thesis, we also study the effects of the contact and the dipole-dipole inter-

action on the properties of the ground state and of the collective oscillation modes of

dipolar condensates. While the increase of the contact interaction strength always

leads to an increase of condensate widths, the situation is more complex when the

dipole-dipole interaction is varied. In a cigar-shaped geometry, when the dipoles are

oriented in the radial direction, the increase of the dipole-dipole interaction strength

leads to the increase of condensate widths in the weak-confinement direction and in

the direction of the dipoles, while the width in the third direction decreases. We

also study the frequencies of the collective modes, where the interaction effects turn

out to be less pronounced, in particular for the breathing and the quadrupole mode,

whose values practically remain constant over the whole range of experimentally rel-

evant values of both interaction strengths. The frequency of the radial-quadrupole

mode is more sensitive to changes of interaction strengths, especially the contact

interaction strength, and shows a nonmonotonous behavior as a function of the

dipole-dipole interaction strength.

Keywords: Bose-Einstein condensate, pattern formation, dipole-dipole interaction,

parametric resonance, interaction effects

Research field: Physics

Research subfield: Condensed matter physics

UDC number: 538.9
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Резиме

Након пионирских експеримената са системима ултрахладних атома у ко-

jима jе реализована Бозе-Аjнштаjн кондензациjа са слабом контактном интер-

акциjом, била jе потребна читава децениjа да би се прецизност експеримената

повећала и омогућила мерење ефеката дипол-дипол интеракциjе коjа постоjи из-

међу атома или молекула са перманентним или индукованим електричним или

магнетним диполним моментом. Први такав експеримент jе изведен 2005. го-

дине са атомима хрома, а након тога су уследили експерименти са диспрози-

jумом и ербиjумом, атомима са jаким магнетним диполним моментима, као и

са поларним молекулима са далеко већим електричним и магнетним диполним

моментима. Док jе контактна интеракциjа симетрична и краткодометна, дипол-

дипол интеракциjа између атома или молекула jе анизотропна и дугодометна

и узрок jе читавог низа нових особина ултрахладних бозонских система. Ако

узмемо у обзир да се у експериментима jачина контактне интеракциjе може ме-

њати од jако одбоjне до jако привлачне користећи технику Фешбах резонанци,

као и то да се jачина дипол-дипол интеракциjе може контролисати помоћу брзо

ротираjућег магнетног или електричног поља, лако jе закључити да прилаго-

дљивост и разноврсност особина диполних квантних гасова чини ове системе

неупоредивим и обавезним алатом у инжењерингу квантних уређаjа и сензора.

Главни допринос ове дисертациjе jе проучавање феномена Фарадеjевих и ре-

зонантних таласа густине у ултрахладним бозонским системима са контактном

и дипол-дипол интеракциjом. Овакви таласи настаjу као резултат хармониj-

ске модулациjе система и представљаjу нелинеарне ексцитациjе система услед

присуства интеракциjа, спрезањем колективних осцилациjа и параметарских

резонанци. У овоj дисертациjи смо у оквиру теориjе средњег поља развили

вариjациони приступ за опис динамике Фарадеjевих и резонантних таласа у

диполним кондензатима. Оваj приступ jе заснован на Гаусовом вариjационом

анзацу коjи за параметре има ширине кондензата, конjуговане фазе, а укључуjе

и модулациjе густине како би описао динамику таласа густине.
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Користећи развиjени вариjациони приступ, као и пун нумерички приступ,

детаљно смо проучавали особине таласа густине у диполним кондензатима на

нултоj температури, где дипол-дипол интеракциjа игра важну улогу због на-

рушења симетриjе услед анизотропиjе система. Извели смо jедначине кретања

коjе описуjу динамику модулисаног диполног бозонског система и идентифико-

вали наjнестабилниjе моде коjе одговараjу Фарадеjевим и резонантним таласи-

ма. Даље, на основу тога, извели смо аналитичке изразе за просторне периоде

оба типа таласа густине, као и њихову зависност од jачине контактне и дипол-

дипол интеракциjе. Добиjене вариjационе резултате упоредили смо са резулта-

тима детаљних нумеричких симулациjа коjе решаваjу диполну Грос-Питаевски

jедначину у три просторне димензиjе и добили смо веома добро слагање.

У овоj дисертациjи проучавали смо и утицаj контактне и дипол-дипол ин-

теракциjе на своjства основног стања и колективних осцилациjа диполних кон-

дензата. Док повећање jачине контактне интеракциjе увек доводи до ширења

кондензата, ситуациjа jе сложениjа када се мења jачина дипол-дипол интерак-

циjе. За замку у облику цигаре у коjоj су диполи ориjентисани у радиjалном

смеру, повећање jачине дипол-дипол интеракциjе доводи до ширења кондензата

у лонгитудиналном правцу и у правцу поларизациjе, док се ширина у трећем

правцу смањуjе. Поред тога, проучавали смо и фреквенциjе колективних мода,

где су ефекти интеракциjа мање изражени. Ово се посебно односи на монополну

(дишућу) и квадруполну моду, чиjе вредности практично остаjу константне у

целом распону експериментално релевантних вредности jачина интеракциjа. Са

друге стране, фреквенциjа радиjалне квадруполне моде jе осетљивиjа на проме-

ну jачине интеракциjе, посебно jачине контактне интеракциjе, док при промени

jачине дипол-дипол интеракциjе показуjе немонотоно понашање.

Кључне речи: Бозе-Аjнштаjн кондензациjа, формирање патерна, дипол-дип-

ол интеракциjа, параметарска резонанца, ефекти интеракциjе
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1 Introduction

According to the quantum statistical physics, there is a critical temperature below

which the weakly-interacting bosons populate the lowest energy state of the system,

which becomes macroscopically occupied. For temperatures well below the critical

one, the thermal excitations can be usually neglected, and the same applies to the

quantum fluctuations. The emergence of a macroscopically occupied ground state

represents one of the few macroscopic quantum phenomena and is known as the

Bose-Einstein condensation. It was experimentally realized for the first time in 1995

in dilute ultracold atomic gases of alkali metals, such as lithium 7Li [1], rubidium
87Rb [2] and sodium 23Na [3]. Theoretically, the Bose-Einstein condensate (BEC)

as a new phase of matter was predicted in 1924 by Indian physicist Satyendra Nath

Bose [4] and German physicist Albert Einstein [5]. The theoretical study of BECs

and a long quest for its experimental realization has significantly contributed to the

development of quantum statistical physics, condensed matter physics, atomic and

molecular physics, quantum optics, and laser physics, as well as to the other areas

of physics, such as quantum information, quantum field theory, high-energy physics,

and even the theory of general relativity. Such a wide applicability stems from the

fact that BECs represent almost ideal Feynman’s quantum simulators [6] for many

physical systems.

In typical experiments with BECs, an ultracold dilute atomic cloud has a number

density between 1019 − 1021 m−3, i.e., three to six orders of magnitude lower than

the density of air at room temperature and atmospheric pressure. The system is

usually confined in a magneto-optical trap that can be described by a harmonic

1



potential, which is experimentally realized by a six-beam laser setup, where two

counter-propagating beams in each spatial direction provide harmonic confinement.

Atoms of selected species are cooled down to the nanokelvin temperatures using a

combination of different techniques, such as the Zeeman slower, the laser cooling,

and the evaporative cooling. In order to experimentally realize a BEC in a system

with weak inter-atomic interactions, it is essential that the gas is rarefied. If this is

the case, the system is close to the ideal gas of bosons, and the standard Bogoliubov

theory can be applied. In practice, the diluteness requirement can be expressed by

the condition [7, 8]:

na3
s � 1 , (1.1)

where n is the number density and as is the s-wave scattering length of atoms, which

characterizes atomic interactions, seen as scattering processes in a dilute gas. Fig-

ure 1.1 illustrates the experimentally measured momentum distribution of a sodium

Figure 1.1: The first experimental realization of a BEC in 1995 in a dilute ultracold

atomic gas of sodium 23Na. The three momentum distributions at different temper-

atures illustrate how the condensation sets in: well above Tc we have the Maxwell-

Boltzmann distribution (left); at Tc the peak corresponding to the macroscopic

occupation of the ground state appears (middle); well below Tc the thermal cloud

disappears and only the peak around p = 0 remains (right). The figure is taken from

Wikipedia and authored by NIST/JILA/CU-Boulder [NIST Image, public domain,

https://commons.wikimedia.org/wiki/File:Bose_Einstein_condensate.png].
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gas at three different temperatures. The distribution on the left-hand side cor-

responds to the thermal (Maxwell–Boltzmann) distribution at a temperature well

above the critical one (Tc), while the distribution in the middle represents the re-

sults for the system at the critical temperature Tc = 170 nK. This distribution is

bimodal, containing both the thermal component and a peak that corresponds to

the emerging condensed fraction of atoms. The distribution on the right-hand side

is obtained after an additional evaporative cooling brings the system down to the

temperature T = 20 nK� Tc. Since the system is now significantly below the criti-

cal temperature, practically all atoms are in the condensate, and the experimental

momentum distribution exhibits a single-peak distribution that corresponds just to

the condensed fraction.

1.1 Role of interactions

Investigation of ultracold quantum gases is a very attractive research field that

involves a large number of theoretical and experimental groups worldwide. Such a

widespread interest comes from the fact that properties of the BEC systems can

be broadly tuned in an unprecedented range. In particular, this applies to the

strength of contact interactions that can be varied over many orders of magnitude

using the Feshbach resonance [9] technique. The existence of Feshbach resonances

is related to atomic bound states and can be practically manipulated by an external

magnetic field, thus adjusting the electronic structure of atoms. In this way, close

to a Feshbach resonance, the strength of the contact interaction can be dynamically

tuned over a wide range of values. Furthermore, not only the amplitude, but also

the sign of the interaction can be changed, i.e., the interaction can be tuned from

very repulsive to very attractive.

After pioneering experiments that realized BEC in systems with weak contact

interactions, it took a decade of work on accuracy improvement of experimental

techniques to enable measurement of effects of the dipole-dipole interaction (DDI)

that exists between atoms or molecules with a permanent or induced electrical or

3



magnetic dipole moment. The very first such experiment was realized in 2005 with

chromium atoms 52Cr [10], while the experiments with atoms with much larger

magnetic moments, such as dysprosium 164Dy [11] and erbium 168Er [12] came after.

Furthermore, the dipolar condensates comprised of ultracold polar molecules with

much stronger electrical [13] and magnetic [14] dipole moment were realized some

years ago. While the contact interaction is symmetric and has a short-range, the

DDI between atoms or molecules is anisotropic and long-range. These features are

responsible for a whole series of new phenomena that appear in ultracold dipolar

gases [15]. For example, due to the attractive component of the DDI, an instability

exists, and the system is stable only for a number of atoms below the critical one.

This is closely related to the trap geometry, and if the system contains a number

of particles larger than the critical one, it may still be quasi-stable or collapse.

The stability of the system depends not only on the trap geometry, but also on its

interplay with the orientation of the dipoles. Note that in experiments the dipoles

are not randomly oriented, but usually follow a preferential direction, determined

by an external magnetic or electric field. If the system becomes unstable due to

changes in the geometry of the trap or due to a number of particles which is above

the critical, it undergoes a dynamical collapse during which interesting structures

appear [16–18].

Although quantum fluctuations can be usually neglected, close to stability border

they may play a crucial role and lead to new states of matter, such as the quantum

droplets that were recently observed in dipolar condensates of dysprosium [19, 20]

and erbium [21]. In these recent experiments, it was observed that the Rosensweig

instability [22] due to the DDI is compensated by the stabilizing effect of quantum

fluctuations. Note that the quantum droplets, emerging from the partial condensate

collapse, are arranged in a lattice that, under certain circumstances can behave as

the elusive supersolid state of matter [23]. Another interesting feature of quantum

droplets is that they can be considered to be made of an incompressible quantum

liquid.

The strength of the DDI can be also tuned using a fast rotating magnetic or
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electric field [24, 25]. Therefore, both the contact interaction and the DDI strength

can be varied in experiments, and they represent the important parameters of the

system. We also note that the dimensionality of the system can be tuned and con-

sidered as a free parameter. Namely, by manipulating the harmonic trap frequen-

cies, the geometry of the system can be transformed from the three-dimensional

to quasi-two-dimensional or quasi-one-dimensional. Furthermore, this can also be

done dynamically, during the experiment, at the same time as possible changes of

the contact interaction and the DDI. Due to all of these features, the versatility

of dipolar quantum gases is unparalleled and makes them obligatory elements of a

toolbox for engineering quantum devices and sensors.

1.2 Collective oscillation modes

The very first BEC experiments have focused on the measurement of frequencies

of low-lying collective oscillations modes of the system [26, 27]. Until nowadays

such experiments remain the most accurate, and the frequencies of the collective

oscillations can be measured with the precision of few per mill. These experiments

are also the most natural ones, since they measure the response of the system to small

perturbations. In a typical experiment, the system is prepared such that it occupies

the ground state for a given set of parameters and the trap geometry. Afterward,

the system is excited by a small perturbation of one of the parameters, e.g., a small

variation of one of the trap frequencies, or moving of the trap origin, or change of the

interaction strength. Such a perturbation generates the dynamical response of the

system, which can be measured by imaging of the density profile of the system. This

is done by the time-of-flight imaging or using one of in situ techniques [7, 8], which

allow to measure the time dependence of the BEC properties, such as a center of mass

position, condensate widths, etc. The Fourier analysis of these time dependencies

reveals frequencies of the low-lying collective modes, typically breathing, quadrupole,

radial-quadrupole, and dipole mode.

However, this approach does not allow the specific collective modes to be iden-
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tified with the corresponding frequencies. Only if we know how the system should

be excited in order to induce only one of the modes, it is possible to measure its

frequency. Even if this the case, BEC systems are nonlinear and different collective

modes are coupled. Therefore, although initially only one mode could be excited,

other collective modes will get excited over time through the transfer of energy.

Only detailed theoretical modeling of the systems’ dynamics allows us to identify

the frequencies with the corresponding collective modes properly. One of the most

conventional methods for this is the time-dependent variational approach. Usually,

variational parameters include the condensate widths and their dynamics reveal not

only the frequencies, but also the type of the collective modes. The variational ap-

proach leads to a set of nonlinear differential equations, which reflect the nonlinear

nature of BECs. The analysis of these equations allows to calculate not only the

collective oscillation modes, but also to study the dynamics of the system. This

includes the response of the system to driving of one of the parameters and the

emergence of parametric resonances.

From a theoretical point of view, a BEC is usually studied in the formalism of

second quantization. The corresponding many-body Hamiltonian includes the two-

body interactions between the particles, which are of two types: the short-range

contact interaction and the long-range DDI. Since the interactions are usually weak,

they can be treated perturbatively, and the mean-field theory gives a basic descrip-

tion of the system. At zero temperature, we can neglect thermal excitations, and the

mean-field theory yields the Gross–Pitaevskii equation (GPE). For dipolar systems,

the standard GPE has to be extended to include the corresponding dipolar interac-

tion term. These equations, which are also called nonlinear Schrödinger equations,

due to the presence of nonlinear interaction-induced terms, are capable of describing

practically all phenomena that appear in BEC systems, with reasonable precision.

In particular, the GPE can be used as a basis for the variational approach, as out-

lined above. However, if a more precise description of the system is necessary, a

full numerical solution of the GPE may be required. Its analysis can also be used

to calculate the frequencies of the collective modes. Since the frequencies of the

collective modes are measured experimentally with high accuracy, they are used to
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estimate the accuracy of all theoretical and numerical approaches for the modeling of

BECs. While the variational and other theoretical approaches enable the derivation

of functional dependencies of the collective mode frequencies on the system’s pa-

rameters, it is clear that their accuracy is limited by the selection of the variational

ansatz and by the approximation order in a perturbation expansion. On the other

hand, a full numerical approach is much more accurate. It allows direct solving of

the mean-field theory equations, or higher-order theories, but requires a numerical

simulation for each given set of parameters. Only a combination of analytical and

numerical approaches, and a comparison with experimental results, provide us with

full description and understanding of the system in a comprehensive way.

In addition to well-known low-lying excitation modes mentioned previously, due

to nonlinearity in ultracold quantum gases some other types of excitations can

emerge as well. Density waves are an important example of nonlinear excitations

and can be induced by a harmonic modulation of the trap frequencies or interaction

strength. The motivation for this comes from the classical phenomenon of Faraday

waves, which may appear on the surface of the shallow layer of liquid under certain

conditions. Namely, if the container with the liquid is harmonically oscillated in a

vertical direction, the wave patterns may emerge, depending on the ratio of the liq-

uid depth and the container size, as well as depending on the modulation frequency.

This phenomenon was first studied and described by Michael Faraday at the begin-

ning of the XIX century [28]. The interest for such type of excitations arose again

during the 1980s in the context of nonlinear liquids. In the context of ultracold

gases, Faraday waves were first investigated theoretically in 2002 by Staliunas [29].

After his first theoretical and numerical results for the systems with contact interac-

tion where he assumed that the interaction strength is harmonically modulated, the

Faraday waves were first measured in the BEC experiments with rubidium atoms

in 2007 by Engels [30]. In the experiment, the radial part of the harmonic trap was

modulated instead of interaction strength. However, qualitatively this leads to the

same type of density waves. Although in the case of nonlinear liquids the generated

waves are surface waves, in the literature the same name, i.e., Faraday waves is also

used for the density waves that emerge as a result of the harmonic modulation in
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the realm of ultracold quantum gases.

Faraday waves in ultracold gases are a consequence of the existence of parametric

resonances in the system. While the spatial period of these waves depends on the

geometry of the system and other parameters, the frequency of their oscillations is

constant and is two times smaller than the modulation frequency. This is character-

istic of all parametric resonant phenomena, and in the variational approach leads to

the Mathieu-like differential equation that gives the observed ratio of the frequency

of Faraday waves and the modulation. The Faraday density waves with half of the

modulation frequency, are not the only nonlinear excitation of the system. In a

driven system, there are always excitations corresponding to waves that have the

same frequency as the modulation. However, they become resonant when the modu-

lation frequency corresponds to one of the collective mode frequencies, or their linear

combination, or a multiple. The resonant waves develop in the system and grow ex-

ponentially, much faster than the Faraday waves. Therefore, these two phenomena

can be easily distinguished, not only by comparing their frequencies, but also the

corresponding onset times. So far, Faraday and resonant waves have been studied

in a single [29] and binary BEC systems [31], both with spatially homogeneous and

inhomogeneous contact interactions [32].

1.3 This thesis

The focus of this thesis is on the study of excitation modes of dipolar Bose-Einstein

condensates, including the collective oscillation modes, and density waves that

emerge as a result of the driving of the system. In particular, the thesis investi-

gates the Faraday waves and effects of the contact and dipole-dipole interaction.

Chapter 1 gives an introduction into the field of ultracold atoms and important

role that interactions play for the properties of Bose-Einstein condensates. It also

introduces collective oscillation modes, Faraday and resonant waves, and discusses

the theoretical approaches used for their description.
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Chapter 2 describes in detail noninteracting Bose gases at zero temperature,

and presents a mean-field theory for weakly interacting Bose systems with the

short-range contact and the long-range dipole-dipole interaction. This chapter also

presents a variational approach for the description of static and dynamic properties

of dipolar BECs.

Ground-state properties of dipolar condensates are explored in Chapter 3. Us-

ing the variational approach introduced in Chapter 2, the corresponding equations

for the ground state are derived, including the special cases of cylindrical symme-

try, and pure contact interaction. The variational results are compared with full

numerical results obtained by solving the three-dimensional dipolar GPE for three

atomic species that posses the magnetic dipolar moments: chromium, erbium, and

dysprosium.

Chapter 4 provides a variational description of the collective oscillation modes

and derives the expressions for their frequencies as functions of the contact and

dipole-dipole interaction strength, which are then verified by comparison with the

full numerical results.

The Faraday and resonant waves are studied in Chapter 5. At first, a variational

approach is developed, that is capable of capturing the emergence and dynamics of

density waves in dipolar condensates. Using the properties of Mathieu’s differential

equation, the most unstable modes are identified and the expressions for the spatial

periods of Faraday and resonant waves are derived. The phenomenon of density

waves is then studied numerically in detail for the three atomic species and the

obtained results are compared with the variational ones [33].

Chapter 6 presents details on the algorithm we use to solve the dipolar GPE and

the split-step semi-implicit Crank-Nicolson method. Finally, Chapter 7 summarizes

all results and gathers our conclusions. Appendices A – F present further analytical

and numerical details that are relevant for certain chapters, but would overburden

the main text.
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2 Bose-Einstein condensation and dipole-dipole

interaction

BEC is usually described in the formalism of second quantization [7,8]. First, using

this formalism we will show that the macroscopic occupation of the ground state

leads to the spatial coherence in the condensate, i.e., to the off-diagonal long-range

order (ODLRO). The system is described in terms of the one-body density matrix,

which can be defined in the coordinate space by

ρ(r, r′) = 〈Ψ̂†(r) Ψ̂(r′)〉 , (2.1)

where Ψ̂†(r) is a creation operator and Ψ̂(r) is the corresponding annihilation oper-

ator, and the averaging is performed over the ensemble. These operators describe a

creation or annihilation of a particle at the position r, and, in the case of bosons,

satisfy the bosonic commutation relations

[Ψ̂(r) , Ψ̂†(r′)] = δ(r− r′) , [Ψ̂(r) , Ψ̂(r′)] = 0 , [Ψ̂†(r) , Ψ̂†(r′)] = 0 . (2.2)

For the system consisting of N identical bosons in a pure state, which is described

by the N -body wave function Ψn(r1, . . . , rN), the one-body density matrix can be

written as an integral

ρn(r, r′) = N

∫
dr2 · · · drN Ψ∗n(r, r2, . . . , rN) Ψn(r′, r2, . . . , rN) , (2.3)

which motivates the name of the matrix ρ. In a more general case, for a system

in a mixed state in thermodynamic equilibrium, the one-body density matrix is

calculated as an ensemble average, where the weights are given by the Boltzmann
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distribution

ρ(r, r′) =
1

Z

∑
n

e−βEn ρn(r, r′) , (2.4)

where n enumerates system’s eigenstates Ψn, β = 1/(kBT ) is the inverse temper-

ature, and Z =
∑

n e
−βEn is the partition function. The diagonal elements of the

density matrix correspond to the particle density

ρ(r, r) = 〈Ψ̂†(r) Ψ̂(r)〉 = n(r) , (2.5)

and the total number of particles can be calculated as N =
∫
drn(r) ≡

∫
dr ρ(r, r).

Similarly, the one-body density matrix can be represented in the momentum

space

ρ(p,p′) = 〈Ψ̂†(p) Ψ̂(p′)〉 , (2.6)

where the field operator in momentum space can be obtained from the coordinate

representation by a Fourier transform

Ψ̂(p) =
1

(2π~)3/2

∫
dr e−

i
~p·r Ψ̂(r) . (2.7)

Again, the diagonal elements give the density of the particles, this time in momentum

space, n(p) = ρ(p,p), and the total number of particles can be calculated in a

similar manner, N =
∫
dpn(p). In a Bose-Einstein-condensed system, we have a

macroscopic occupation of the ground state, which means that the particle density

in momentum space has a form

n(p) = N0 δ(p) + ñ(p) , (2.8)

where the occupation N0/N . 1. Let us see what consequences this has for the

density matrix. If we insert equation (2.7) into equation (2.6) for p = p′, we get

n(p) =
1

(2π~)3

∫
dR ds ρ

(
R +

s

2
,R− s

2

)
e
i
~p·s . (2.9)

where R represents center-of-mass coordinate, and s the distance between the two

arguments in density matrix. For a uniform and isotropic system of volume V ,

where we assume that in the thermodynamic limit N, V → ∞ the particle density

is constant n = N/V , the one-body density matrix depends only on the distance
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s, and not on the center-of-mass coordinate R, i.e., ρ (R + s/2,R− s/2) = ρ(s).

Therefore, the above equation for the density yields

ρ(s) =
1

V

∫
dpn(p) e−

i
~ p·s . (2.10)

For a normal system with a smooth momentum distribution n(p) at small momenta,

the one-body density vanishes in the limit s → ∞, due to oscillatory nature of the

phase factor e−
i
~ p·s. However, the condensed system, which contains a delta function

at p = 0 gives a surprising result that ρ(s) → N0/N when s → ∞. The fact that

off-diagonal elements of the one-body density matrix do not vanish even in the limit

s→∞, shows that the existence of the condensate leads to coherence in the system,

i.e., the long-range order.

To study excitations of the system, we use eigenstates of the density matrix

ϕi(r), where we assume, for simplicity, that the spectrum is discrete. In this basis,

the density matrix is expressed as

ρ(r, r′) = N0ϕ
∗
0(r)ϕ0(r′) +

∑
i>0

Niϕ
∗
i (r)ϕi(r

′) . (2.11)

Here ϕ0 represents the single-particle state with the occupancy N0, while Ni are

occupancies of excited states. Note that the above equation leads to expression

(2.8) for the density n(p) using equation (2.9) and orthonormality of the eigenstates

ϕi(r). For a uniform system of non-interacting bosons, the eigenstates are plane

waves ϕp(r) = eip·r/~/
√
V , while in a general case the functions ϕi have to be

determined by solving the corresponding eigenproblem. Using this basis, the field

operator can be expressed as

Ψ̂(r) =
∑
i

ϕiâi . (2.12)

where new bosonic operators âi represent elementary excitations of the system and

obey bosonic commutation relations

[âi , â
†
j] = δij , [âi , âj] = 0 , [â†i , â

†
j] = 0 . (2.13)

If the system is well below the critical temperature for Bose-Einstein condensation,

we can use a zero-temperature approximation and neglect thermal excitations. We
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can also assume that practically all of the particles are in the ground state and that

only a small fraction is excited, which corresponds to the following decomposition

of the field operator

Ψ̂(r) = Ψ0(r) + δΨ̂(r) , (2.14)

where Ψ0(r) ≡ ϕ0(r) â0 ≈
√
N0 ϕ0 is the wave function of the condensate and

δΨ̂(r) =
∑

i6=0 ϕi(r) âi represents excitations due to quantum fluctuation. Note

that the ground-state operators â0 and â†0 can be replaced by a c-number
√
N0

due to macroscopic occupation of the ground state, and the fact that Bose-Einstein

condensation corresponds to breaking of the U(1) symmetry associated with the

phase of the wave function [8]. In other words, below the critical temperature the

order parameter does not vanish,

〈â0〉 = 〈â†0〉 =
√
N0 6= 0 . (2.15)

The time evolution of the system is determined by e−iĤt/~, where Ĥ is the Hamil-

tonian of the system, so the evolution of the ground-state wave function of the

condensate is given by

Ψ0(r, t) = Ψ0(r)e−iµt/~ , (2.16)

where

µ = E(N0)− E(N0 − 1) =
∂E

∂N

∣∣∣
N=N0

(2.17)

is the system’s chemical potential.

2.1 Noninteracting Bose gas

Previously we have neglected the thermal excitations and have used the zero-tempe-

rature approximation. However, depending on the temperature, we may have to take

into account thermal excitations. For a uniform noninteracting Bose gas in a box

of volume V , the eigenstates are plain waves that satisfy the periodic boundary

conditions and have a dispersion relation ε(p) = p2/2m. According to the Bose-

Einstein distribution function, the number of atoms in thermal (excited) states is
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given by

Nth(T ) =
∑
p6=0

1

eβ(p2/2m−µ) − 1
, (2.18)

where m is the mass of an atom. Using a semi-classical approximation and replacing

the above sum with the integral,
∑

p → V/(2π~)3
∫
dp, we obtain

Nth(T ) =
V

λ3
T

2√
π

∫ ∞
0

x1/2 dx

e−βµ ex − 1
=

V

λ3
T

g3/2(eβµ) , (2.19)

where λT =
√

2π~2β/m is the thermal wavelength and gp(z) =
∑∞

l=1 z
l/lp is Bose

function. From the above equation we obtain the critical temperature Tc at which

all atoms are in the thermal population, i.e., Nth(Tc) = N . This leads to

kBTc =
2π~2

m

(
n

g3/2(1)

)2/3

, (2.20)

where n = N/V is the density of the gas and g3/2(1) ≈ 2.612. Note that the

chemical potential of a uniform system above the critical temperature can be taken

to be zero due to the dispersion relation, such that eβµ = 1. Above the critical

temperate all particles are in the thermal cloud, and we have N = V g3/2(1)/λ3
Tc
,

according to equation (2.19). On the other hand, below Tc the number of thermal

atoms decreases, and we have Nth(T ) = (T/Tc)
3/2N , which is obtained by combining

equations (2.19) and (2.20). Therefore, the number of particles in the condensate is

given by

N0(T ) = N

[
1−

(
T

Tc

)3/2
]
, (2.21)

and becomes macroscopic for T < Tc.

The situation changes in the presence of an external trapping potential. The

most frequently encountered and experimentally used potential is a harmonic trap,

given by

U(x, y, z) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (2.22)

where ωi, i ∈ {x, y, z}, are the trapping frequencies. The temperature dependence

of the number of atoms in the condensate is now different and reads

N0(T ) = N

[
1−

(
T

Tc

)3
]
. (2.23)
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This is illustrated in Figure 2.1, where the blue line represents the condensate frac-

tion for a homogeneous system, and red line the condensate fraction in the presence

of an external harmonic trap. Not only that temperature dependence is modified

by the presence of the trap, but also the critical temperature changes, and is now

defined as

kBTc = ~ω
(
N

ζ(3)

)1/3

, (2.24)

where ω = (ωxωyωz)
1/3 is the geometric average of the trap frequencies, and ζ(3) =

g3(1) ≈ 0.94. Note that the energy scale for the critical temperature is now given

by the trap energy ~ω, and that Tc now depends on the number of particles as N1/3,

while for the uniform case it was N2/3.

1− (T/Tc)
3

1− (T/Tc)
3/2

T/Tc

N
0
/N

1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2.1: The condensate fraction N0/N as a function of the temperature T/Tc for

a noninteracting Bose gas: homogeneous case (blue line) and harmonically trapped

case (red line).

2.2 Weakly-interacting Bose gas

The ground-state energy of an ideal Bose gas is equal to zero, this leads to zero

pressure and infinite compressibility. However, the presence of interactions in the

system, even the weak ones, dramatically changes this. Here we briefly outline the

Bogoliubov theory to first order in the interaction strength, which is capable of

describing a dilute Bose-Einstein-condensed gas. Precisely such systems were exper-

imentally realized, and it was shown that only two-particle interactions significantly

contribute to the energy of the systems, while interactions of three and more parti-

cles can be neglected. Also, due to large inter-particle distances, the details of the
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two-body interactions can be neglected as well, i.e., they can be modeled just as

s-wave scattering processes in a dilute Bose gas, described by the s-wave scattering

length. The many-body Hamiltonian of such a system is given by

Ĥ =
~2

2m

∫
dr∇Ψ̂†(r)∇Ψ̂(r) +

1

2

∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)Uc(r− r′)Ψ̂(r′)Ψ̂(r) , (2.25)

where Uc(r) represents the model potential for the above-described contact interac-

tions. The field operator in the case of a uniform gas and in the basis of plane waves

reads Ψ̂(r) =
∑

p âpe
ip·r/~/

√
V , where âp is the operator annihilating a particle in

the state with momentum p. Inserting this into the above Hamiltonian, we obtain

Ĥ =
∑
p

p2

2m
â†pâp +

1

2V

∑
q,p1,p2

Uc(q) â†p1+qâ
†
p2−qâp1 âp2 , (2.26)

where p1 and p2 denote momenta of the interacting particles before the collision,

q the exchanged momentum in the collision, while Uc(q) =
∫
Uc(r) e

−iq·r/~dr is

a Fourier transform of the interaction potential. For the temperatures below the

critical one, the main contribution of the interaction to the Hamiltonian is due

to the particles with small momenta, q ≈ 0. If we denote the zero-momentum

component by g ≡ Uc(q = 0), the Hamiltonian of the system can be rewritten as

Ĥ =
∑
p

p2

2m
â†pâp +

g

2V

∑
p1,p2

â†p1
â†p2

âp1 âp2 . (2.27)

Note that the above approximation is mathematically equivalent to replacing the real

inter-particle interaction potential with the modeled contact potential Uc(r− r′) =

g δ(r− r′).

As we have seen, below the critical temperature the order parameter does not

vanish and we can replace the operators â0 and â†0 by a c-number
√
N0, where

N0 = N at zero temperature, when all particles are condensed. If we restrict the

sums in equation (2.27) to zero momentum contributions, which yield the ground

state, we obtain for the ground-state energy

E0 =
gN2

2V
=

1

2
Nng . (2.28)

The interaction coupling constant g can be expressed via s-wave scattering length as

as g = 4π~2as/m. Contrary to the noninteracting case, the pressure P of a condensed
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weakly-interacting Bose gas does not vanish at zero temperature. Instead, it is given

by P = −∂E0/∂V = gn2/2, and the compressibility is now finite, ∂n/∂P = 1/(gn).

The compressibility is related to the speed of sound c by a relation 1/(mc2) =

∂n/∂P . Using this, we can derive the sound velocity in the condensate and obtain

c =
√
gn/m.

The above zeroth-order approximation is capable of providing us with the esti-

mates for the ground-state energy, but not more than that. In order to describe the

system in more detail, we have to go to the higher-order approximation such that

we include the operators âp and â†p with p 6= 0. The Hamiltonian does not contain

the linear terms in âp, and the first non-trivial approximation is quadratic,

Ĥ =
g

2V
â†0â

†
0â0â0 +

∑
p

p2

2m
â†pâp +

g

2V

∑
p6=0

(
â†0â

†
pâ0âp + â†pâ

†
−pâ0â0 + â†0â

†
0âpâ−p

)
.

(2.29)

Luckily, quadratic Hamiltonians can be explicitly diagonalized, which we do here

following Bogoliubov prescription. As it was done in the zeroth-order approximation,

in the terms in brackets of Equation (2.29) we replace the operators â0 and â†0 with
√
N , while for the first term we have to use a better approximation that is obtained

from the normalization â†0â0 +
∑

p6=0 â
†
pâp = N , which leads to

â†0â
†
0â0â0 = N2 − 2N

∑
p6=0

â†pâp , (2.30)

up to terms quadratic in âp. Note that the scattering theory [34], to the same

approximation order, requires the renormalization of the interaction strength g

g → g

(
1 +

g

V

∑
p6=0

m

p2

)
. (2.31)

By substituting Equations (2.30) and (2.31) into the Hamiltonian (2.29), we obtain

Ĥ = g
N2

2V
+
∑
p

p2

2m
â†pâp +

1

2
gn
∑
p6=0

(
2â†pâp + â†pâ

†
−p + âpâ−p +

mgn

p2

)
, (2.32)

which can be diagonalized using the Bogoliubov transformation

âp = upb̂p + v∗−pb̂
†
−p , â†p = u∗pb̂

†
p + v−pb̂−p . (2.33)
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We require that new operators b̂p and b̂†p obey the same bosonic commutation rela-

tions as the operators âp and â†p, which leads to the condition |up|2 − |v−p|2 = 1.

From this, we see that the coefficients u and v can be parametrized as follows

up = coshαp , v−p = sinhαp . (2.34)

In the above equation, the parameter αp has to be chosen such that non-diagonal

elements of the Hamiltonian (2.32) vanish. For such αp, the Hamiltonian becomes

Ĥ = Ẽ0 +
∑
p6=0

ε(p) b̂†pb̂p , (2.35)

where

Ẽ0 = E0 +
1

2

∑
p6=0

[
ε(p)− gn− p2

2m
+
m(gn)2

p2

]
, (2.36)

with ε(p) given by

ε(p) =

√(
p2

2m

)2

+ c2p2 , (2.37)

which is known as the Bogoliubov dispersion law. Here c stands for the speed

of sound c =
√
gn/m. The diagonalization of the system using the Bogoliubov

transformation allows us to connect the system of interacting bosons with a nonin-

teracting system of particles with the energy ε(p), whose annihilation and creation

operators are b̂p and b̂†p, respectively. Although this system is noninteracting, the

dispersion is modified and is not given by a free particle expression p2/2m. In the

limit of small momenta p � mc, the dispersion (2.37) becomes ε(p) = cp. From

this, we see that elementary excitations of the system in the long-wavelength regime

correspond to sound waves. From a symmetry point of view, these elementary exci-

tations can be thought of as the Goldstone modes that correspond to breaking of the

U(1) symmetry of quantum mechanics due to the Bose-Einstein phase transition.

Note that the ground-state energy Ẽ0 is given by

Ẽ0 = E0

(
1 +

128

15
√
π

√
na3

s

)
, (2.38)

which is expressed in terms of the perturbation parameter na3
s. Therefore, we see

that the Bogoliubov theory is valid if the previously introduced criterion (1.1) is

satisfied, such that the correction to the energy, given in brackets of Equation (2.38)

is small.
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2.3 Mean-field theory for dipolar Bose gas in a trap

Bose-Einstein condensation is experimentally realized with a dilute Bose gas trapped

in the external potential. Such a setup produces a nonuniform system, which is ex-

perimentally necessary to provide confinement of the system. However, this changes

the properties of the system and is responsible for new phenomena, such as col-

lective oscillations. Here we briefly outline the mean-field theory for a nonuniform

Bose gas in the external potential U(r, t), both for stationary and non-stationary

systems. However, as outlined in Chapter 1, in this thesis, we consider not only

the short-range contact interaction Uc(r− r′) = g δ(r− r′), but also the long-range

dipole-dipole interaction

Udd(r) =
µ0

4π

d2r2 − 3 (r · d)2

r5
, (2.39)

where µ0 is the vacuum permeability and d is the magnetic dipole moment. We

assume that all dipoles are oriented in the same direction, as in experiments where,

due to the present magnetic fields, this is always the case. If the dipoles are oriented

in the z direction of the Cartesian coordinate system, the potential has the form

Udd(r) =
µ0µ

2
d

4π

1− 3 cos2 θ

r3
, (2.40)

where θ is the angle made by the vector r and the polarization direction z. The

angle θ determines if DDI is attractive or repulsive. For instance, for θ = 0 we

have an attractive DDI, while for θ = π/2 the interaction is repulsive, as illustrated

in Figure 2.2. Note that the strength of the DDI is usually defined by the dipolar

length

add =
µ0µ

2
dm

12π~2
. (2.41)

This is convenient since it allows us to express the DDI in a similar way as the

contact interaction strength is expressed in terms of the s-wave scattering length.

With all these ingredients, the Hamiltonian of the system in the Heisenberg

picture is given by

Ĥ =
~2

2m

∫
dr∇Ψ̂†(r, t)∇Ψ̂(r, t) +

∫
dr Ψ̂†(r, t)U(r, t) Ψ̂†(r′, t)

+
1

2

∫
dr dr′ Ψ̂†(r, t)Ψ̂†(r′, t)Uint(r− r′) Ψ̂(r′, t)Ψ̂(r, t) ,

(2.42)
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Figure 2.2: Illustration of dipole-dipole interactions of atoms whose dipole moments

are polarized along the z axis. In the middle, we have a generic case determined

by relative position between atoms r and angle between the polarization axis z and

vector r. On the left-hand side is a special case θ = 0, which is usually called

head-to-tail configuration, when the dipoles attract each other. On the right-hand

side is another special case, corresponding to θ = π/2, when the dipoles repel. This

configuration is usually called side-by-side.

where Uint(r) = Uc(r) + Udd(r). The dynamics of the system is governed by the

Heisenberg equation

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
. (2.43)

For the Hamiltonian (2.42), the above commutator can be readily calculated, and

we obtain the equation of motion as follows

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∇2 + U(r, t) +

∫
dr′ Ψ̂†(r′, t)Uint(r− r′) Ψ̂(r′, t)

]
Ψ̂(r, t) .

(2.44)

The mean-field theory is obtained, according to (2.14), when we replace the field

operator with the wave function of the condensate Ψ̂(r, t) = ψ(r, t) and neglect
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quantum fluctuations, yielding the dipolar GPE in the form

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + U(r, t) + g|ψ(r, t)|2

+

∫
dr′ ψ∗(r′, t)Udd(r− r′, t)ψ(r′, t)

]
ψ(r, t) .

(2.45)

The above equation is also called the nonlinear Schrödinger equation, where two

types of nonlinearities are present due to the two types of interactions, namely the

contact interaction and the DDI.

The dipolar GPE can be cast into a dimensionless form, which is useful for ana-

lytical and numerical considerations. This is done by choosing a reference frequency

ωr, and by expressing all other physical variables in units defined by it, i.e., lengths

in units of harmonic oscillator length l =
√
~/(mωr), time in units of 1/ωr, and

energy in units of ~ωr. This leads to dimensionless variables

x → x

l
, y → y

l
, z → z

l
, as →

as
l
, add →

add

l
, t → ωrt ,

ψ(r, t) → l3/2 ψ(r, t) , U(r, t)→ 1

~ωr
U(r, t) , Udd(r, t)→ 1

~ωr
Udd(r, t) .

(2.46)

This rescales the harmonic trapping potential to the form

U(r, t) =
1

2

(
γ2x2 + ν2y2 + λ2z2

)
, (2.47)

where γ = ωx/ωr, ν = ωy/ωr, and λ = ωz/ωr are the trap aspect ratios, which may

be time-dependent. Taking all this into account, the dimensionless dipolar GPE

reads

i
∂ψ(r, t)

∂t
=

[
−1

2
∇2 +

1

2

(
γ2x2 + ν2y2 + λ2z2

)
+ 4πNas |ψ(r, t)|2

+ 3Nadd

∫
dr′

1− 3 cos2 θ

|r− r′|3 |ψ(r′, t)|2
]
ψ(r, t) ,

(2.48)

where θ is the angle between the vector r− r′ and z axis. The wave function here is

normalized to unity
∫
dr |ψ(r, t)|2 = 1, and the density profile is given by n(r, t) =

N |ψ(r, t)|2. In the mean-field approximation, the many-body wave function can be

written as

Ψ(r1, . . . , rN , t) ≈
N∏
i=1

1√
N
ψ(ri, t) . (2.49)
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The above time-dependent dipolar GPE describes the dynamics of the system.

Since the ground state wave function has a common phase, it can be chosen to be

zero, thus making the wave function real. The time-independent ground state wave

function ψ0(r) satisfies the time-independent GPE, or the eigenequation

µψ0(r) =

[
−1

2
∇2 +

1

2

(
γ2x2 + ν2y2 + λ2z2

)
+ 4πNas |ψ(r)|2

+ 3Nadd

∫
dr′

1− 3 cos2 θ

|r− r′|3 |ψ(r′)|2
]
ψ(r) ,

(2.50)

where the chemical potential µ is the corresponding eigenvalue. Both the time-

dependent and time-independent dipolar GPE can be exactly solved only numer-

ically. In this thesis, we do so using the Crank-Nicolson split-step semi-implicit

method [35–37]. From the analytic point of view, we use the variational approach,

which is presented in the next section.

2.4 Variational approach

The dipolar GPE equation can be written as the Euler-Lagrange equation for the

following Lagrangian density

L(ψ, ψ∗) =
i

2

(
ψ∗ψ̇ − ψψ̇∗

)
+

1

2
ψ∗∇2ψ − U |ψ|2 − 2πNas |ψ|4

− 3Nadd

2
|ψ|2

∫
dr′

1− 3 cos2 θ

|r− r′|3 |ψ(r′)|2 ,
(2.51)

where the wave function of the condensate is a function of space and time variables

ψ ≡ ψ(r, t), and the trap potential U ≡ U(r, t) is given by Equation (2.47). The

GPE (2.48) is obtained as the Euler-Lagrange equation with respect to ψ∗, or as

the complex-conjugate of the Euler-Lagrange equation with respect to ψ. The above

Lagrangian can be used as a starting point for a variational description of the ground

state and the dynamics of a BEC. This is done by selecting a suitable ansatz for the

wave function, calculating the Lagrangian of the system L(t) =
∫
drL, and deriving

the equations of motion for the variational parameters present in the wave function

ansatz. The variational approach is a valuable method to study the behavior and

properties of BECs and we use it to investigate the collective modes and density

waves.
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For the variational study, we use the Gaussian ansatz [38–41]

ψ(x, y, z, t) =
1

π3/4√uxuyuz
e
− x2

2u2
x
− y2

2u2
y
− z2

2u2
z

+ix2φx+iy2φy+iz2φz
, (2.52)

where the six variational parameters {ui, φi} are functions of time and represent

the condensate widths and conjugated phases, respectively. If only the ground state

is studied, then the phases φi can be omitted, and the condensate widths can be

assumed to be constant. However, if we want to study the system’s dynamics, then

the phases are necessary, and therefore we take them into account. The coefficient in

front of the exponent function is chosen so as to keep the wave function normalized

to unity.

Using the Lagrangian density (2.51) and ansatz function (2.52), by integration

we calculate Lagrangian of the system, consisting of five terms

L(t) = L1(t) + L2(t) + L3(t) + L4(t) + L5(t) . (2.53)

We calculate all term independently. The first one reads

L1(t) =
i

2

∫
dr
(
ψ∗ψ̇ − ψψ̇∗

)
= −1

2

(
u2
xφ̇x + u2

yφ̇y + u2
zφ̇z

)
, (2.54)

while the kinetic energy term gives

L2(t) =
1

2

∫
drψ∗∇2ψ = −1

4

(
1

u2
x

+
1

u2
y

+
1

u2
z

+ 4u2
xφ

2
x + 4u2

yφ
2
y + 4u2

zφ
2
z

)
. (2.55)

The term corresponding to the potential energy yield

L3(t) = −
∫
drU |ψ|2 = −1

4

(
γ2u2

x + ν2u2
y + λ2u2

z

)
, (2.56)

and the contact interaction term gives

L4(t) = −2πNas

∫
dr |ψ|4 = − Nas√

2π uxuyuz
. (2.57)

The DDI term is more complex to calculate. It reads

L5(t) = −3Nadd

2

∫
dr |ψ(r)|2

∫
dr′ Udd(r− r′) |ψ(r′)|2 , (2.58)

where, in the rescaled units, the dipolar potential is given by

Udd(r) =
1− 3 cos2 θ

r3
. (2.59)
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The r′ integral can be calculated using the convolution theorem,

L5(t) = −3Nadd

2

∫
dr |ψ(r)|2F−1

{
F [Udd] (k)F

[
|ψ|2

]
(k)
}

(r) . (2.60)

where F stands for the direct and F−1 for the inverse Fourier transform. The

above expression can be further simplified if we explicitly write the inverse Fourier

transform,

L5(t) = − 3Nadd

2 (2π)3

∫
dkF [Udd] (k)F

[
|ψ|2

]
(k)

∫
dr |ψ(r)|2 eik·r . (2.61)

The last integral is equal to F
[
|ψ|2

]
, which can be readily calculated,

F
[
|ψ|2

]
(k) = e−

1
4

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) . (2.62)

The Fourier transform of the dipolar potential F [Udd] (k) is calculated in Ap-

pendix A and reads

F [Udd] (k) =
4π

3

(
3 cos2 θ − 1

)
=

4π

3

(
3 k2

z

k2
− 1

)
. (2.63)

If we put all these elements together, the DDI term of the Lagrangian is given by

L5(t) = −3Nadd

(2π)2

∫
dk

(
3

k2
z

k2
z + k2

y + k2
z

− 1

)
e−

1
2

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) , (2.64)

and, as shown in Appendix B, can be expressed in terms of the anisotropy function

f ,

L5(t) =
Nadd√

2π uxuyuz
f

(
ux
uz
,
uy
uz

)
. (2.65)

The anisotropy function [42] is defined as

f(x, y) = − 1

4π

2π∫
0

dϕ

π∫
0

dθ sin θ

(
3x2y2 cos2 θ

(x2 sin2 ϕ+ y2 cos2 ϕ) sin2 θ + x2y2 cos2 θ
− 1

)
,

(2.66)

and its solution can be expressed via elliptic integrals [43] of the first and the second

kind. Details on the anisotropy function and how it can be expressed for different

values of the arguments x and y are given in Appendix C. Now that we have calcu-

lated the Lagrangian of the system, we derive the Euler-Lagrange equations for the

variational parameters,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , qi ∈ {ux, uy, uz, φx, φy, φz} , (2.67)
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that describe the time evolution of the parameters. We first proceed with the equa-

tions for the phases φi, which turn out to be

φi =
u̇i
2ui

. (2.68)

The Euler-Lagrange equations for the condensate widths ui contain the phases φi

and their derivatives, which can be eliminated using the above equations. This leads

to the second-order differential equations for the parameters ui in the form

üx + γ2ux −
1

u3
x

−
√

2

π

N

u2
xuyuz

[
as − addf

(
ux
uz
,
uy
uz

)
+ add

ux
uz
f1

(
ux
uz
,
uy
uz

)]
= 0

(2.69)

üy + ν2uy −
1

u3
y

−
√

2

π

N

uxu2
yuz

[
as − addf

(
ux
uz
,
uy
uz

)
+ add

uy
uz
f2

(
ux
uz
,
uy
uz

)]
= 0

(2.70)

üz + λ2uz −
1

u3
z

−
√

2

π

N

uxuyu2
z

[
as − addf

(
ux
uz
,
uy
uz

)
− add

ux
uz
f1

(
ux
uz
,
uy
uz

)

− add
uy
uz
f2

(
ux
uz
,
uy
uz

)]
= 0

(2.71)

where f1 and f2 are partial derivatives of the anisotropy function with respect to

the first and the second argument. More details on these derivatives are given in

Appendix C.

The above equations are used to variationally study the dipolar BEC dynamics,

as well as the corresponding ground state. The algebraic equations determining the

ground state are obtained by assuming that the condensate widths are constant,

thus removing their second derivatives from the equations of motion.
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3 Ground-state properties

In the previous section, we have seen that the condensation corresponds to the accu-

mulation of a macroscopic number of particles in the ground state. In the mean-field

theory at zero temperature, all atoms are condensed in the lowest single-particle

quantum state, while the ground-state wave function |ψ(r)|2 = n(r) determines

the density distribution of atoms. The wave function is a complex quantity, whose

square of the modulus describes the contribution of the condensate to the diagonal

elements of the density matrix ρ, and whose phase has a role in the coherence char-

acterization. The wave function is defined up to a constant phase factor, reflecting

the U(1) symmetry of quantum mechanics. For a system with a time-independent

Hamiltonian, the condensation leads to a symmetry breaking, such that the whole

condensate is described by a constant phase, which can be set to zero. This can

be also seen as a consequence of the off-diagonal long-range order discussed ear-

lier. Since its phase can be set to zero, the wave function of the ground state can

be always taken to be real-valued. In BEC experiments, the ground state usually

represents the first step and is achieved by cooling an atomic or molecular sample

using a variety of techniques. The ground state can be reliably described by the

GPE [7,8], as discussed previously. In typical experiments, the dynamics of the sys-

tem is induced from the ground state by perturbing the system or changing some of

the system parameters, such as the interaction strength or the trap geometry. The

behavior of the system is then observed using the time-of-flight imaging technique

or in-situ types of measurements.

For a noninteracting system, the GPE reduces to a Schrödinger equation with a
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given trap potential. In case of a harmonic potential (2.22), the ground state of a

noninteracting bosonic system is determined by the lowest single-particle quantum

state, which is given by the Gaussian function

ψ(x, y, z) =
(m
π~

)3/4

(ωx ωy ωz)
1/4 e−

m
2~ (ωxx2+ωyy2+ωzz2) . (3.1)

Therefore, in the weak-interaction limit a Gaussian function represents a good choice

for a perturbative or variational treatment of the system. In the other limiting case,

when the interaction is strong such that the kinetic energy term can be neglected,

one can use the inverted parabola of the Thomas-Fermi approximation as a starting

point for various analytic approaches.

3.1 Variational description of the ground state

To describe the ground state variationally, we rely on the Gaussian ansatz (2.52). In

the static case, the dynamical equations of motion (2.69) - (2.71) have the following

form

γ2ux −
1

u3
x

−
√

2

π

Nas
u2
xuyuz

+

√
2

π

Nadd

u2
xuyuz

f

(
ux
uz
,
uy
uz

)
−
√

2

π

Nadd

uxuyu2
z

f1

(
ux
uz
,
uy
uz

)
= 0 ,

(3.2)

ν2uy −
1

u3
y

−
√

2

π

Nas
uxu2

yuz
+

√
2

π

Nadd

uxu2
yuz

f

(
ux
uz
,
uy
uz

)
−
√

2

π

Nadd

uxuyu2
z

f2

(
ux
uz
,
uy
uz

)
= 0 ,

(3.3)

λ2uz −
1

u3
z

−
√

2

π

Nas
uxuyu2

z

+

√
2

π

Nadd

uxuyu2
z

f

(
ux
uz
,
uy
uz

)
+

√
2

π

Nadd

uyu3
z

f1

(
ux
uz
,
uy
uz

)
+

√
2

π

Nadd

uxu3
z

f2

(
ux
uz
,
uy
uz

)
= 0 .

(3.4)

The ground state of the system is characterized by the constant condensate widths

ui, i ∈ {x, y, z}. Solving the above system of nonlinear algebraic equations we

directly obtain the widths of the condensate. In some special cases, this can be

done analytically. For example, if we neglect the dipole-dipole interaction by setting

add = 0, and if the system is cylindrically symmetric, such that uy = uz = uρ, the
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variational equations reduce to

γ2u4
x = 1 +

√
2

π

Nasux
u2
ρ

, (3.5)

u4
ρ = 1 +

√
2

π

Nas
ux

. (3.6)

Because the number of atoms in the system is much larger than 1, the first term

in the above equations can be neglected and the widths of the condensate can be

expressed as

ux ≈
(√

2

π

Nas
γ4

)1/5

, uρ ≈
(√

2

π
Nasγ

)1/5

. (3.7)

As we can see, if we have only the contact interaction, the size of the condensate

increases in all directions with the increase of the interaction strength as a1/5
s . We

also see that the condensate width ux in the direction of weak confinement is always

larger than uρ, since ux/uρ = 1/γ � 1.

If we now take into account the dipole-dipole interaction, the system of equations

(3.2) - (3.4) cannot be analytically solved anymore. However, it can be simplified

when the direction of weak confinement matches the direction of the dipoles’ polar-

ization. Assuming cylindrical symmetry of the trap, the anisotropy function satisfies

the following limit

lim
y→x

x f1(x, y) = lim
y→x

y f2(x, y) =
(2 + x2)fs(x)

2(1− x2)
− 1 , (3.8)

where fs(x) = f(x, x) is the cylindrically symmetric anisotropy function which is

defined in Appendix C. Using this the variational equations (3.2) - (3.4) lead to the

system

γ2u4
x = 1 +

√
2

π

Nux
u2
ρ

[as − addAx(κ)] , (3.9)

u4
ρ = 1 +

√
2

π

N

ux
[as − addAρ(κ)] , (3.10)

where κ = uρ/ux, while functions Ax(κ) and Aρ(κ) are defined by

Ax(κ) =
2− 7κ2 − 4κ4 + 9κ4 d(κ)

2 (1− κ2)2
, (3.11)
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Aρ(κ) =
1 + 10κ2 − 9κ2 d(κ)− 2κ4

(1− κ2)2
, (3.12)

with

d(κ) =
tanh−1

√
1− κ2

√
1− κ2

. (3.13)

In the limit of small κ, the above functions have limits Ax(κ)→ 1, Aρ(κ)→ 1, with

κ2d(κ)→ 0. If we again neglect the first term in Equations (3.9) and (3.10) due to

N � 1, this system can be solved analytically in the zeroth-order in κ. The solutions

are the same as (3.7), with as replaced by ãs = as−add. However, depending on the

value of κ, the corrections of the order κ and higher could be important, such that

the system (3.9) and (3.10) has to be solved without applying κ→ 0 approximation.

In this case, the above equations cannot be solved analytically and the numerical

approach is necessary. As we are considering a case when the dipoles are oriented in

the z direction and the cylindrical symmetry is not present anymore, we have to use

the full set of variational equations (3.2) - (3.4) in order to determine the ground

state widths.

Note that the above equations for the ground state widths, with or without cylin-

drical symmetry, can be used to assess the stability of the system as well. Namely,

we know that even in the absence of the dipole-dipole interaction the system can

become unstable if the contact interaction is attractive (as < 0). This happens if

the number of atoms is sufficiently large, such that the right-hand sides of equations

(3.2) - (3.4) become negative. The situation is more complex in the presence of the

dipole-dipole interaction, which is anisotropic and can lead to instability due to the

trap geometry, even for a large and positive contact interaction. The numerical ap-

pearance of negative condensate widths can be used to detect the onset of instability

in the solutions of the above equations.

3.2 Ground state of 52Cr, 168Er and 164Dy BECs

Now we will explore how the ground state looks like for condensates of atomic

chromium 52Cr, erbium 168Er, and dysprosium 164Dy, using a numeric and a varia-
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tional approach for the system which parameters are given in detail in Appendix D.

As outlined in Chapter 6, the numerical calculation of the ground state relies on

the imaginary-time propagation. As a starting point we always use a Gaussian

wave function that corresponds to the noninteracting case (3.1), i.e., the variational

ansatz (2.52) with ui = 1/
√
ωi/ωr and φi = 0, given by Equation D.3. Starting

from such a state, depending on how far from the ground state it is, the imaginary-

time propagation evolves it exponentially fast to the ground state. Figure 3.1 shows

the ground-state condensate density for N = 104 atoms of the considered atomic

species, together with the chosen Gaussian initial state. We plot the corresponding

integrated densities

n(x) =

∫∫
dy dz |ψ(x, y, z)|2 , (3.14)

n(y) =

∫∫
dz dx |ψ(x, y, z)|2 , (3.15)

n(z) =

∫∫
dx dy |ψ(x, y, z)|2 , (3.16)

where blue line represents the corresponding initial, Gaussian state density ni, and

red line the numerically obtained ground state density nf . The trap weakly confines

the atoms in the x direction, and therefore the condensate density nf (x) is much

more elongated than the other two densities. This can be seen in Figure 3.1 for

all species, with the corresponding width for 52Cr of around 35.706 µm, while for
168Er and 164Dy the widths are around 23.201 µm and 23.339 µm, respectively. Here

the widths wi, i ∈ {x, y, z} are defined as two times the root-mean-square of the

corresponding coordinate, i.e., 2
√
〈x2〉, 2

√
〈y2〉, 2

√
〈z2〉. Note that for the initial

states we have wi = 2ui = 2/
√
ωi/ωr. The differences in the numerically obtained

values of wx are mainly the result of the contact interaction, i.e., a combination of

the s-wave scattering lengths and masses of atoms. The values of as for all three

species are quite similar, and therefore the main difference in the ground state widths

comes from the mass difference, while the dipole-dipole effects are very small due

to the small density n(x). It is one order of magnitude smaller than the densities

in other directions, as can be seen from Figure 3.1. However, the dipole-dipole

interaction significantly changes the densities in the y − z plane. Although the

trap is cylindrically symmetric in that plane, the dipole-dipole interaction breaks
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Figure 3.1: Integrated ground-state densities (red lines) of BEC of N = 104 atoms of

chromium 52Cr (first row), erbium 168Er (second row), and dysprosium 164Dy (third

row). The initial Gaussian wave function that corresponds to the noninteracting case

(blue) is propagated in the imaginary time for 100 ms to obtain the ground state

(red line). The first, second, and third column give the corresponding integrated

densities in x, y, and z direction, respectively. The observed significant elongation of

the condensate in the x direction is due to the trap geometry defined in Appendix D.

this symmetry, which can be seen by comparing the middle and the right-hand side

column in Figure 3.1.

In recent experiments it was demonstrated that the strength of the dipole-dipole

interaction can be tuned by applying a fast-rotating magnetic field, or for electric

dipoles, a fast-rotating electric field [24, 25]. In our description, this corresponds

to changing the value of the parameter add. If we set add = 0, then the system is

reduced to a BEC with only the contact interaction. Note that this can be effectively

achieved if the external field that orders the dipoles is switched off. To compare how
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Figure 3.2: Integrated ground-state densities of BEC of N = 104 atoms of chromium
52Cr (first row), erbium 168Er (second row), and dysprosium 164Dy (third row).

Red lines correspond to the densities obtained by taking into account the dipole-

dipole interaction, while blue lines are obtained for add = 0. The first, second, and

third column give the corresponding integrated densities in x, y, and z direction,

respectively. Table 1 gives relative differences in the condensate widths due to

dipolar effects.

the dipole-dipole interaction contributes to the ground state properties, Figure 3.2

gives the corresponding results for chromium 52Cr (first row), erbium 168Er (second

row), and dysprosium 164Dy (third row), with (red) and without (blue lines) the

dipole-dipole interaction. As expected, the figure shows cylindrical symmetry in the

y− z plane when the dipolar effects are neglected, while the asymmetry grows when

they are taken into account, from chromium to dysprosium, as the dipole moment

increases. Table 1 gives relative differences of the condensate widths due to the

dipole-dipole interaction, ∆wi/wi = 1 − wi(0)/wi(add). Positive values correspond
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Table 1: Relative differences of the ground-state condensate widths due to the dipole-

dipole interaction. The values correspond to the integrated densities from Figure 3.2

for a BEC of N = 104 atoms. The differences are calculated as ∆wi/wi = 1 −
wi(0)/wi(add), i ∈ {x, y, z}. A positive value represents an increase of the width,

and negative the opposite.

Species add (a0) ∆wx/wx (%) ∆wy/wy (%) ∆wz/wz (%)
52Cr 15.126 0.959 -1.055 2.044
168Er 66.564 4.009 -10.987 13.469
164Dy 132.607 3.624 -25.457 20.748

to the increase of the width due to dipolar effects, and negative values the opposite.

As expected, the condensate elongates in the direction of the dipoles, while due to

the interplay of geometry and interaction effects, its width increases in the x and

decreases in the y direction. As noted earlier, the relative change in the x direction

is negligible, while in other directions it is quite significant for species with large

dipole moments.

As mentioned earlier, propagation in imaginary-time is used to calculate the

true ground state of the system starting from any initial state (provided that it is

not orthogonal to the ground state). The convergence to the ground state can be

detected by the convergence of all physical quantities that describe the system, in
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Figure 3.3: Convergence of the chemical potential of a BEC of N = 104 atoms of

chromium 52Cr (left), erbium 168Er (middle), and dysprosium 164Dy (right) during

imaginary-time propagation, with (red) and without (blue line) the dipole-dipole

interaction for the system parameters given in Appendix D.
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particular, its chemical potential, energy, and the expectation value of the system’s

size. Therefore, the convergence of these quantities is used as a criterion in numerical

simulations, which is illustrated in Figure 3.3. In the left panel we can see the

decrease of the chemical potential for chromium 52Cr, in the middle panel for erbium
168Er, and in the right panel for dysprosium 164Dy, both with and without dipole-

dipole interaction. The chemical potential is expressed in units of ~ωr, where ωr =

160.5 × 2π Hz is rescaling frequency. From Figure 3.3, we observe that the dipole-

dipole interaction increases the energy of the system. Furthermore, this energy

difference increases with the strength of the interaction add, and reads 306 ~ωr,

1444 ~ωr, and 2101 ~ωr, respectively for the listed atoms.

3.3 Interaction effects on the ground state

In this section, we study the influence of the short-range contact interaction on the

ground state properties of dipolar condensates. For the first experimental realization

of BEC, it was possible to tune the strength of contact interactions over a wide range

using the Feshbach resonance technique [9]. By adjusting the external magnetic field

close to a Feshbach resonance, the contact interaction strength can be tuned from

large positive to large negative values, i.e., it is even possible to switch between

repulsive and attractive interactions. To model this, we keep fixed the dipole-dipole

interaction strength to experimentally measured values listed in Appendix D for each

species, and investigate the ground state properties when the contact interaction

parameter is varied in the interval from as = 10 a0 to as = 200 a0 for the condensate

of N = 104 atoms. It turns out that erbium 168Er BEC is unstable for low values

of as, so we use the region from as = 40 a0 to as = 200 a0 in this case. Similarly,

for dysprosium 164Dy we use the interval from as = 90 a0 to as = 200 a0. Figure 3.4

illustrates the contact interaction strength dependence of the condensate widths in

x, y, and z direction obtained from the numerical simulations (red) and variational

calculation (blue line). As expected, the increase of the repulsive contact interaction

leads to the increase of condensate widths in all directions. Results of numerical

simulations agree with the results of the variational analysis with the relative error
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Figure 3.4: Condensate widths as functions of the contact interaction strength for

a BEC of N = 104 atoms of chromium 52Cr (first row), erbium 168Er (second row),

and dysprosium 164Dy (third row). Results are obtained for fixed dipole-dipole

interaction strengths given in Table 2. Red lines represent numerically obtained

widths, and blue lines the variational ones.

of around 30%. As we can see from Table 2, which lists relative differences of the

ground-state condensate widths for two values of the contact interaction strength,

as = 90 a0 and as = 200 a0, the increase of the repulsive contact interaction increases

the condensate width in all directions and for all species. We also observe that

the dipole-dipole interaction suppresses elongation of the condensate in z direction,

where it is attractive.

Although more difficult, it is also possible to tune-down the strength of the

dipole-dipole interaction for magnetic atomic species using a fast-rotating magnetic

field [24, 25]. The maximal possible values are defined by the permanent magnetic

moment of the corresponding species. To investigate the effects of the dipole-dipole
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Table 2: Relative differences of the ground-state condensate widths due to the

contact interaction. The values correspond to the condensate widths from Fig-

ure 3.4 for a BEC of N = 104 atoms. The differences are calculated as ∆wi/wi =

wi(200 a0)/wi(90 a0)− 1, i ∈ {x, y, z}.

Species add (a0) ∆wx/wx (%) ∆wy/wy (%) ∆wz/wz (%)
52Cr 15.126 16.917 9.748 7.957
168Er 66.564 15.361 14.612 5.353
164Dy 132.607 17.446 21.554 2.139

interaction on the ground-state properties, we numerically and variationally calcu-

late the condensate widths of chromium 52Cr, erbium 168Er, and dysprosium 164Dy

in the interval from add = 0 a0 to add = 170 a0, keeping the contact interaction

strength fixed. Due to the instability of erbium and dysprosium condensates for

large values of add, we have used the interval from add = 0 a0 to add = 140 a0 for

those two species. Figure 3.5 illustrates the striking effect of the dipole-dipole inter-

action which has a non-monotonous behavior of the condensate width in x direction,

causes a decrease in y direction and increase in z direction. The agreement between

numerical and variational results as quite reasonable, with the error of around 30%.

Table 3 gives relative differences of the ground-state condensate widths for add = 0

and add = 100 a0. As we see, the change is most prominent in y and z direc-

Table 3: Relative differences of the ground-state condensate widths due to the dipole-

dipole interaction. The values correspond to the condensate widths from Figure 3.5

for a BEC of N = 104 atoms. The differences are calculated as ∆wi/wi = 1 −
wi(100 a0)/wi(0), i ∈ {x, y, z}. A positive value represents an increase of the width,

and negative the opposite.

Species as (a0) ∆wx/wx (%) ∆wy/wy (%) ∆wz/wz (%)
52Cr 105 5.004 -12.180 14.676
168Er 100 4.290 -17.326 17.388
164Dy 100 4.308 -17.205 17.336
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Figure 3.5: Condensate widths as functions of the dipole-dipole interaction strength

for a BEC of N = 104 atoms of chromium 52Cr (first row), erbium 168Er (second

row), and dysprosium 164Dy (third row). Results are obtained for fixed contact

interaction strengths given in Table 3. Red lines represent numerically obtained

widths, and blue lines the variational ones.

tion. With an increase of the dipole-dipole interaction, the size of the condensate

increases in z direction, and decreases in y direction. This is expected since it is

well known that the condensate elongates along the direction of maximal attraction

of the dipole-dipole interaction. On the other hand, the increase of the size in x

direction is also observed but is much smaller.
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4 Collective oscillation modes

Calculation of the system’s ground state is usually the first step in analytical and

numerical approaches. The same applies to the experimental studies, where obtain-

ing and characterizing the ground state represents the first and necessary step before

proceeding to further measurements. The characterization of the ground state in-

cludes measurement of its density profile and condensate widths, as we have seen

in the previous section. In addition to these static properties, an important way

to probe the system is to study its low-lying excitations or collective modes. Such

excitations can be generated from the ground state by a small perturbation of the

system’s parameters. This results in small oscillations of the condensate density

and its widths, which can be experimentally observed using the time-of-flight imag-

ing or some of the in-situ techniques. The analysis of experimental results, as well

as the results obtained in numerical simulations, includes the Fourier analysis of

condensate widths, which yields the frequencies of the collective modes [44–46].

It is well known that the collective oscillation modes of a noninteracting Bose gas

are disentangled, i.e., independent in each spatial direction, with the frequency equal

to twice the corresponding trap frequency. The presence of interactions in the system

couples different modes, which results in the appearance of the breathing mode,

quadrupole mode, radial-quadrupole mode, dipole mode, etc. Their frequencies are

shifted with respect to the noninteracting case, and the study of these interaction-

induced frequency shifts represents one of the important characterization methods

used to describe the ground-state properties. From the experimental point of view,

probing of the collective excitations is one of the most accurate measurements that

38



can be performed in ultracold atom systems, with the precision of the order of one

per mille. Therefore, a comparison of numerically or analytically obtained estimates

for the frequencies of collective modes is an excellent method to check the validity

and level of confidence of the models used. As in our case, there are two types

of interaction in the system, and both of them independently affect the collective

modes and their frequencies, which we study in this section.

In the case of externally driven systems, which is necessary to generate the den-

sity excitations, such as Faraday waves, one can expect the appearance of resonances

in the system. This usually happens when the driving frequency is close to one of

the frequencies of the collective modes, or their linear combination. In some cases,

this leads to the emergence of the Faraday waves, while sometimes resonant waves

appear, as we show in Chapter 5. Therefore, it is essential to understand well the

collective modes of the system, to either avoid resonant behavior or to induce it

when necessary.

4.1 Variational description of collective modes

For the variational study of the collective modes, we use the Gaussian variational

ansatz (2.52), and equations of motion (2.69) - (2.71) derived in Section (2.4). The

system is perturbed from the ground state by a small change of one of its parameters,

such that the condensate widths become time-dependent,

ui(t) = ui0 + δui(t) , i ∈ {x, y, z} , (4.1)

where ui0 are the constant ground-state widths, and δui(t) are small oscillation

amplitudes, |δui(t)| � ui0. If we insert the expression (4.1) for the condensate

widths into the equations of motion (2.69) - (2.71), and linearize the system by

expanding it in the small parameters δui(t) and keeping only the terms of the first

order, we obtain a coupled system of ordinary linear differential equations of the

second order, which can be expressed in the matrix form as

δü(t) +M δu(t) = 0 . (4.2)
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Here δu(t) is a vector [δux(t) δuy(t) δuz(t)]
T , and elements of the matrix M are

calculated from the Lagrangian of the system (2.53),

Mij = −2
∂2L(u)

∂ui ∂uj

∣∣∣∣
u=u0

, i, j ∈ {x, y, z} . (4.3)

To calculate the frequencies of the oscillations induced in the system, we write the

solution of equation (4.2) in the following form

δu(t) = δu eiωt , (4.4)

where δu is a constant vector, and ω denotes a collective mode frequency. If we insert

this into the matrix equation (4.2), the collective mode frequencies are eigenvalues

of the matrix M , i.e., solution of the following eigenproblem

det(M − ω2I) = 0 . (4.5)

The above eigenproblem can be analytically solved in a simple way in some

special cases. For example, if the system is cylindrically symmetric, such that uy =

uz ≡ uρ, the problem is essentially two dimensional leading to additional symmetry

in the matrix M , which now has the form

M =


m1 m4 m4

m4 m2 m3

m4 m3 m2

 . (4.6)

Due to this, the corresponding eigenproblem can be fully solved in a closed form.

The frequencies of the collective modes in this case are

ω2
B =

m1 +m2 +m3 +
√

(m3 +m2 −m1)2 + 8m2
4

2
, (4.7)

ω2
Q =

m1 +m2 +m3 −
√

(m3 +m2 −m1)2 + 8m2
4

2
, (4.8)

ω2
RQ = m2 −m3 , (4.9)

with the corresponding eigenvectors

uB =
[
m1−m2−m3+

√
(m3+m2−m1)2+8m2

4

2m4
1 1

]T
, (4.10)

uQ =
[
m1−m2−m3−

√
(m3+m2−m1)2+8m2

4

2m4
1 1

]T
, (4.11)

uRQ =
1√
2

[
0 −1 1

]T
. (4.12)
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In the above expressions, index B denotes the breathing mode, Q the quadrupole

mode and RQ the radial-quadrupole mode. The modes can be identified by analyzing

the corresponding eigenvectors. In the first case, all three components of uB are

positive, which means that it corresponds to the breathing mode. In the second case,

the longitudinal component of uQ is of the opposite sign of the radial components,

thus it represents the quadrupole mode, and in the third case, the longitudinal

component of uRQ is zero, while the two radial components are of the opposite sign,

which means that this mode can be identified with the radial-quadrupole mode.

Next, we consider the system with contact interaction only. If we set add = 0,

the derivatives (4.3) of Lagrangian (2.53) yield the following elements of matrix M

m1 = γ2 +
3

u4
x0

+ 2

√
2

π

Nas
u3
x0u

2
ρ0

, (4.13)

m2 = 1 +
3

u4
ρ0

+ 2

√
2

π

Nas
ux0u

4
ρ0

, (4.14)

m3 =

√
2

π

Nas
ux0u

4
ρ0

, (4.15)

m4 =

√
2

π

Nas
u2
x0u

3
ρ0

, (4.16)

where ui0, i ∈ {x, ρ} are the ground-state condensate widths given by equations

(3.5) and (3.6). Using the above expressions in (4.7) - (4.9), we can calculate the

frequencies of the collective modes as functions of the contact interaction strength

as, the number of particles N , and the trap aspect ratio γ. For the noninteracting

system, in the limit as → 0, we obtain for the collective mode frequencies ωB = 2,

ωQ = 2 γ, and ωRQ = 2. These frequencies are given in dimensionless units, while

the physical values are obtained by multiplying them with the referent frequency

ωr = ωy = ωz, such that ωB = 2ωr, ωQ = 2ωx, and ωRQ = 2ωr. As mentioned

earlier, in this special case we obtain the collective mode frequencies equal to twice

the trap frequencies.

If the contact interaction is present in the system, then the collective mode fre-

quencies depend on its strength as. Figure 4.1 shows this dependence, obtained from

the variational approach for a BEC of N = 104 atoms of chromium 52Cr, where the
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Figure 4.1: Frequencies of the breathing (left), quadrupole (middle), and radial-

quadrupole (right) collective mode as functions of the contact interaction strength

for a BEC of N = 104 atoms of chromium 52Cr. Results are obtained using the

variational approach, and neglecting the dipole-dipole interactions.

dipole-dipole interaction is neglected. As we can see, when the contact interaction

parameter is varied in the interval from as = 0 to as = 200 a0, the frequency of the

breathing mode slowly increases, while the frequency of the quadrupole mode slowly

decreases. The decrease in the frequency of the radial-quadrupole mode is more

prominent than in the case of the quadrupole mode. On this figure we also observe

that in the noninteracting limit ωB and ωRQ tend to 321×2π Hz = 2×160.5×2π Hz,

and that ωQ tends to 14× 2π Hz = 2× 7× 2π Hz.

In order to compare the variational results with experiments, we use the values

obtained in Reference [44] for a BEC of N = 1.5 × 107 atoms of 23Na. For a trap

with the frequencies 16.93(2)×2π Hz and ωρ = 230(20)×2π Hz, the experimentally

measured value of the quadrupole mode frequency was ωQ = 1.569(4)ωx, which

in excellent agreement with our variationally result ωQ = 1.581ωx. For the same

parameters, the results of numerical simulations yield the frequency ωQ = 1.575ωx,

which is in even better agreement with the experimental value. Therefore, we con-

clude that the above variational and numerical approach can be reliably applied to

study ultracold atomic systems.

While it is still justified to neglect the dipole-dipole interaction for atomic species

such as 52Cr, for species with larger values of the dipole moment it is necessary to

take it into account. We now present the variational calculation of the collective

mode frequencies for the case of a cylindrically symmetric system with the dipoles
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oriented in the direction of weak confinement. In this case, the elements of matrixM

again have the form given by Equation (4.6). We have calculated the ground-state

widths (3.9) and (3.10) for such a system in the previous section, which allows us

to calculate the elements of matrix M as follows

m1 = γ2 +
3

u4
x0

+ 2

√
2

π

N

u3
x0u

2
ρ0

(as − addAxx(κ)) , (4.17)

m2 = 1 +
3

u4
ρ0

+ 2

√
2

π

N

ux0u
4
ρ0

(as − addAρρ(κ)) , (4.18)

m3 =

√
2

π

N

ux0u
4
ρ0

(as − addAxρ(κ)) , (4.19)

m4 =

√
2

π

N

u2
x0u

3
ρ0

(as − addAρx(κ)) , (4.20)

where κ = uρ0/ux0, and functions Aij(κ), i, j ∈ {x, ρ} are defined by

Axx(κ) =
4κ6 − 12κ4 − 9κ4d(κ) + 51κ2 − 36κ2d(κ) + 2

2 (1− κ2)3
, (4.21)

Aρρ(κ) =
32κ6 − 99κ6d(κ) + 141κ4 − 36κ4d(κ)− 54κ2 + 16

16 (1− κ2)3
, (4.22)

Axρ(κ) =
16κ6 − 45κ6 d(κ) + 51κ4 − 30κ2 + 8

8 (1− κ2)3
, (4.23)

Aρx(κ) =
4κ6 − 36κ4 + 45κ4 d(κ)− 15κ2 + 2

2 (1− κ2)3
, (4.24)

with

d(κ) =
tanh−1

√
1− κ2

√
1− κ2

. (4.25)

During the calculation of the matrix elements (4.21) - (4.24), in addition to (3.8),

we have used the following identities satisfied by the anisotropy function

lim
y→x

f11(x, y) = lim
y→x

f22(x, y) =
9 [(4 + x2) fs(x)− 2 (1− x2)]

8 (1− x2)2 , (4.26)

lim
y→x

f12(x, y) = lim
y→x

f21(x, y) =
(8 + 8x2 − x4) fs(x)− 2 (4− 5x2 + x4)

8x2 (1− x2)2 , (4.27)

where fs(x) ≡ f(x, x) is the cylindrically symmetric anisotropy function, and fij are

second partial derivatives,

fij(x1, x2) =
∂2

∂xi ∂xj
f(x1, x2) . (4.28)

In the limit of small κ, which corresponds to the cigar-shaped trap geometry

that we consider (γ � 1), the above functions can be approximated in the zeroth
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order by Axx(κ) = Aρρ(κ) = Axρ(κ) = Aρx(κ) → 1, with κ2d(κ) → 0. In this

approximation, the matrix elements can be cast in the same form as Equations

(4.13) - (4.16), just with as replaced by ãs = as − add. The corresponding collective

mode frequencies are given again by Equations (4.7) - (4.9), which are evaluated

using the above-approximated values of mi.

We now consider the experimentally relevant system when the dipoles are ori-

ented in the z direction, such that the cylindrical symmetry is not present anymore,

although the trap remains cylindrically symmetric. In this case, the matrix M is

just a symmetric matrix, without the additional symmetry we had before. After a

lengthy, but straightforward calculation, we obtain

M11 = γ2 +
3

u4
x0

+ 2

√
2

π

N

u3
x0uy0uz0

[
as − add

(
f − κxzf1 +

κ2
xz

2
f11

)]
, (4.29)

M22 = 1 +
3

u4
y0

+ 2

√
2

π

N

ux0u3
y0uz0

[
as − add

(
f − κyzf2 +

κ2
yz

2
f22

)]
, (4.30)

M33 = 1 +
3

u4
z0

+ 2

√
2

π

N

ux0uy0u3
z0

[
as − add

(
f + 2κxzf1 + 2κyzf2+ (4.31)

κxzκyzf12 +
κ2
xz

2
f11 +

κ2
yz

2
f22

)]
, (4.32)

M12 =

√
2

π

N

u2
x0u

2
y0uz0

[
as − add

(
f − κxzf1 − κyzf2 + κxzκyzf12

)]
, (4.33)

M13 =

√
2

π

N

u2
x0uy0u2

z0

[
as − add

(
f − κxzf1 + κyzf2 − κxzκyzf12 − κ2

xzf11

)]
, (4.34)

M23 =

√
2

π

N

ux0u2
y0u

2
z0

[
as − add

(
f + κxzf1 − κyzf2 − κxzκyzf12 − κ2

yzf22

)]
, (4.35)

where we have used abbreviations κij = ui0/uj0, f ≡ f (κxz, κyz), and

fi =
∂

∂κiz
f(κxz, κyz) , fij =

∂2

∂κiz ∂κjz
f(κxz, κyz) . (4.36)

4.2 Interaction effects and the collective modes

The usual low-lying collective oscillation modes, such as the breathing, quadrupole,

and radial-quadrupole mode, are direct consequences of the existence of interactions

in the system. In the absence of interactions, the many-body physics is reduced to a
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one-body problem, and for bosons this amounts to simple disentangled oscillations

along the trap axes as the normal modes, with the frequencies equal to twice the

corresponding trap frequencies. In this noninteracting case, although each atom

would oscillate independently with the corresponding frequency even if no other

atoms are present, the fact that the atoms are identical and that all of them would

perform the same type of oscillations makes their dynamics practically a collective

mode.

The presence of interactions, even if quite weak, changes the situation dramat-

ically and allows the emergence of the well-known collective modes [44]. In the

previous section, we have derived the variational expressions for the frequencies of

those collective modes and we now study how they are affected by the strength of

the contact and the dipole-dipole interaction. We have already seen in Figure 4.1,

where the frequencies of the collective modes are calculated variationally as func-

tions of the contact interaction strength by neglecting the DDI, that the breathing

and the quadrupole mode frequencies depend very weakly on as, while the radial-

quadrupole mode is more sensitive. Figure 4.2 presents numerical and variational

results for all three atomic species, where we take into account the DDI, both nu-

merically when solving the dipolar GPE and variationally, using the expressions

derived in Section 4.1. Not surprisingly, the breathing and the quadrupole mode

frequencies still exhibit the flat behavior, while the radial-quadrupole mode shows

a significant dependence on as. Therefore, the contact interaction strength, which

can be tuned in experiments in a very broad range, can be considered as a control

parameter only for the radial-quadrupole mode, whose frequency can be adjusted

this way, although in a limited range.

From Figure 4.2, we see that our variational approach properly captures the

functional behavior of all the modes and gives frequency values, which are in very

good agreement with the numerical ones. The absolute errors are of the order of

few Hz, which makes them practically negligible for the breathing and the radial-

quadrupole mode, while in the case of the quadrupole mode, due to its low value of

around 12 Hz, the relative error amounts to 10%.
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Figure 4.2: Effects of the contact interaction on frequencies of collective oscilla-

tion modes: the breathing mode (left column), the quadrupole mode (middle col-

umn), the radial-quadrupole mode (right column), for a BEC of N = 104 atoms of

chromium 52Cr (top row), 168Er (middle row), and 164Dy (bottom row), for a fixed

dipole-dipole interaction strength given in Appendix D. Red upper triangles are

numerically obtained values using the FFT analysis, and blue lines are variational

results from Section 4.1.

Next, we focus on the effects of the dipole-dipole interaction strength, presented

in Figure 4.3. The results for the breathing and the quadrupole mode are quite

similar, although one can see a slight increase in the breathing mode frequency

and a slight decrease in the quadrupole mode frequency as add increases. However,

the radial-quadrupole mode frequency shows a nonmonotonous behavior, albeit in

an even more limited range. The variational approach works equally well here as

in the case of the contact interaction, and, in particular, it properly describes the

nonmonotonous behavior of the radial-quadrupole mode.
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Figure 4.3: Effects of the dipole-dipole interaction on frequencies of collective os-

cillation modes: the breathing mode (left column), the quadrupole mode (middle

column), the radial-quadrupole mode (right column), for a BEC of N = 104 atoms

of chromium 52Cr (top row), 168Er (middle row), and 164Dy (bottom row), for a fixed

contact interaction strength given in Appendix D. Red upper triangles are numeri-

cally obtained values using the FFT analysis, and blue lines are variational results

from Section 4.1.

The precise knowledge of the collective oscillation mode frequencies is essential

not only for comparison with the experiments, where measurements of these fre-

quencies are the most precise and can be used for testing of various theoretical and

numerical approaches, but also for a deeper understanding of the dynamical re-

sponse of the system in many experimental situations. This is of particular interest

for driven systems, where resonances may appear close to frequencies of collective

oscillation modes. This is also relevant for the study of Faraday waves, which can

be generated only by modulating the system at non-resonant frequencies, as we will

see in Chapter 5.
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5 Faraday and resonant waves

In the previous section, we have seen that a small perturbation of one of the system

parameters generates collective oscillation modes, which we have analyzed using the

spectral analysis of the condensate widths. We demonstrated that frequencies of the

collective modes depend on the geometry of the system, as well as on the strength

of the contact and the dipole-dipole interactions, but we did not discuss the spatial

period of the induced waves since it was much larger than the size of condensate.

Therefore, one can assume that the condensate density is only slightly spatially mod-

ulated in the presence of collective modes. However, if the perturbation is performed

periodically, i.e., if one of the system parameters is harmonically modulated in time,

the spatial period can become small enough to produce observable density patterns

in the condensate. The classical phenomenon of Faraday waves inspired this line of

research [28], and although oscillations of a shallow layer of liquid generate surface

waves, while periodic modulation of one of the system parameters of a quantum fluid

produces density waves, both share the common name in the literature – Faraday

waves.

Bose-Einstein condensates are usually termed quantum fluids, which encom-

passes a broader range of physical systems where quantum effects are either domi-

nant or very much pronounced. Despite their name, some of quantum fluids do not

share the trademark property of classical fluids, incompressibility. In fact, the BECs

are made of rarefied gases, but their fluid-like behavior stems from the quantum co-

herence of such systems. Therefore, while in classical fluids density modulations

can be excited only under extreme conditions, in quantum fluids the density waves
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represent one of the natural collective excitations. Parametric driving of system

parameters can lead to pattern formation not only in BECs, where Faraday waves

are experimentally observed in cigar-shaped rubidium [30] and lithium [47] conden-

sates, but also in helium cells [48]. The actual experimental observation of this

phenomenon in 2007 was preceded by numerical studies starting in 2002 [29,49–53],

all focusing on systems with short-range, contact interactions. More recently, Fara-

day waves have been studied in dipolar [33,54–56] and two-component condensates,

including the systems with spatially-dependent contact interaction [31, 32]. Nu-

merical studies of Faraday waves have also been extended to mixtures of Bose and

Fermi gases [57], as well as Fermi gases exhibiting superfluid behavior [58, 59]. An

interesting phenomenon of Bose fireworks [60] is related to Faraday waves, but ap-

pears during the free expansion of the system, when density patterns may also

emerge [61–63].

The parametric modulation of a BEC system generically leads to the emergence

of the Faraday waves. However, resonant behavior can also be observed if the system

is modulated at one of its collective mode frequencies [64]. In that case, the Faraday

waves are suppressed and resonant waves emerge on a much shorter time scale.

Interestingly this can happen not only by modulation of the interaction strength,

but also by the modulation of the trapping potential or even the spatial modulation

of the trap [65–79].

In the context of dipolar BECs, the study of Faraday waves was limited mostly

to their excitation spectrum in one-dimensional and two-dimensional systems [54],

while the properties of resonant waves were not studied to the best of our knowl-

edge. Here, we focus on an analytical description of Faraday and resonant waves in

dipolar condensates [33]. In particular, we study how such waves develop in ultra-

cold systems of three dipolar species: chromium [10], erbium [12], dysprosium [11].

We consider the system with the parameters specified in Appendix D, with the

dipoles oriented along z direction and the cigar-shaped trap in the weakly confined

x direction. The radial (y − z) component of the trap is harmonically modulated,

ωy(t) = ωz(t) = Ω0(1 + ε sinωmt) , (5.1)
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where ε = 0.1 − 0.2 is the modulation amplitude and ωm is modulation frequency.

These are typical values taken from the experiment of Reference [30].

In this chapter, we develop a variational approach for the study of the dynamics

of a driven dipolar BEC and identify the instability of the system leading to the

emergence of Faraday and resonant waves. Using this approach, we calculate the

dependence of wave properties on the strength of the contact and the dipole-dipole

interaction. The analytically obtained expressions for the spatial period of Faraday

and resonant waves are compared to results of the extensive numerical simulations,

which solve the full three-dimensional mean-field equations for a dipolar BEC.

5.1 Variational approach

For a variational study of Faraday and resonant waves in dipolar condensates, we use

a modification [31, 32, 49–53, 56, 64, 80, 81] of the Gaussian ansatz (2.52) to capture

the induced density waves in the direction of weak confinement (x direction),

ψ(x, y, z, t) = Ae
− x2

2u2
x
− y2

2u2
y
− z2

2u2
z

+ix2φx+iy2φy+iz2φz
[1 + (α + iβ) cos kx] , (5.2)

where A ≡ A(ux, uy, uz, α, β, k) ensures the normalization of the wave function to

unity,

A =
1

π3/4√uxuyuz

√
2√

2 + α2 + β2 + 4α e−k2u2
x/4 + (α2 + β2) e−k2u2

x

. (5.3)

The above variational ansatz involves eight variational parameters {ui, φi, α, β},
which are functions of time. The parameters ui represent the condensate widths,

while φi are the conjugated phases, which are necessary to describe the system’s

dynamics properly. Note that these phases can be omitted when we are interested

only in the ground state. The multiplicative factor 1 + (α + iβ) cos kx describes

the density modulation along x direction, and the variational parameters α and β

represent the real and the imaginary part of the amplitude of the wave. The wave

vector k, which is related to the spatial period ` of the density waves by ` = 2π/k,

is not treated here as a variational parameter. We determine its value from the

condition for the instability emergence, which leads to Faraday or resonant waves.
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If we insert the modified Gaussian ansatz (5.2) into the Lagrangian density (2.51),

we obtain the expressions for the five terms (2.53) of the Lagrangian of the system.

The first term reads

L1(t) =
i

2

∫
dr
(
ψ∗ψ̇ − ψψ̇∗

)
= −1

2

(
u2
xφ̇x + u2

yφ̇y + u2
zφ̇z

)
− αβ̇ − βα̇

2 + α2 + β2
, (5.4)

and the kinetic energy term is equal to

L2(t) =
1

2

∫
drψ∗∇2ψ

= −1

4

(
1

u2
x

+
1

u2
y

+
1

u2
z

+ 4u2
xφ

2
x + 4u2

yφ
2
y + 4u2

zφ
2
z

)
− (α2 + β2) k2

2(2 + α2 + β2)
.

(5.5)

The potential energy term is calculated using the expression (2.47) for the potential,

yielding

L3(t) = −
∫
drU |ψ|2 = −1

4

(
γ2u2

x + ν2u2
y + λ2u2

z

)
, (5.6)

while the contact interaction term reads

L4(t) = −2πNas

∫
dr |ψ|4 = − Nas√

2π uxuyuz

(
1 +

α4 + 16α2 + 2α2β2 + β4)

2(2 + α2 + β2)2

)
.

(5.7)

The Lagrangian term that corresponds to the DDI is calculated following a procedure

similar to the one described in Section 2.4. However, due to the modulation term

in the modified Gaussian ansatz, it is not possible to perform exact integration to

obtain L5(t). Using the convolution theorem, the DDI term can be written as

L5(t) = − 3Nadd

2 (2π)3

∫
dkF [Udd] (k)F

[
|ψ|2

]
(k)

∫
dr |ψ|2 eik·r , (5.8)

where the last integral is equal to F
[
|ψ|2

]
(k), and can be calculated exactly,

F
[
|ψ|2

]
(k) = B e−

1
4

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) , (5.9)

where B ≡ B(kx, ux, α, β, k) is given by

B =
4 + 4(e−

k
4

(k−2kx)u2
x + e−

k
4

(k+2kx)u2
x)α + (2 + e−k(k−kx)u2

x + e−k(k+kx)u2
x) (α2 + β2)

2
[
2 + 4 e−

1
4
k2u2

xα + (1 + e−k2u2
x) (α2 + β2)

] .

(5.10)

Grouping all elements together, the DDI term of the Lagrangian becomes

L5(t) = −3Nadd

(2π)2

∫
dk

(
3

k2
z

k2
x + k2

y + k2
z

− 1

)
B2e−

1
2

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) , (5.11)
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and cannot be exactly calculated. To proceed further, we take into account that

the condensate width in the weak confinement direction is large compared to the

order widths, as well as compared to the spatial period of the density waves, such

that kux � 1. We also take into account that the wave amplitude is small imme-

diately after the waves emerge, such that α, β � 1. Therefore, we approximate the

expression for B2 in the following manner

B2 ≈ 1 +
α

2 + α2 + β2
B2

1 +
α2

(2 + α2 + β2)2
B2

2 , (5.12)

where B2
1 ≡ B2

1(kx, ux, k) and B2
2 ≡ B2

2(kx, ux, k) are given by

B2
1 = 4 e−

1
4
k(k+2kx)u2

x

(
e

1
2
kkxu2

x − 1
)2

, (5.13)

B2
2 = 4 e−

1
4
k(k+2kx)u2

x

(
e

1
2
kkxu2

x − 1
)2 (

ekkxu
2
x − 6e

1
2
kkxu2

x + 1
)
, (5.14)

and correspond to the coefficients in front of the terms linear and quadratic in the

wave amplitude, respectively. Since the integral over k cannot be performed exactly

even for the approximate expression (5.12), we replace the coefficients B2
1 and B2

2

by their averages over kx,

〈B2
i 〉 =

∫
dkx

(
3 k2

z

k2
x+k2

y+k2
z
− 1
)
B2
i e
− 1

2
k2
xu

2
x∫

dkx

(
3 k2

z

k2
x+k2

y+k2
z
− 1
)
e−

1
2
k2
xu

2
x

≈
∫
dkx

(
3 k2

z

k2
x
− 1
)
B2
i e
− 1

2
k2
xu

2
x∫

dkx

(
3 k2

z

k2
x
− 1
)
e−

1
2
k2
xu

2
x

(5.15)

After that, we obtain 〈B2
1〉 ≈ 0 and 〈B2

2〉 ≈ −8. Note that we have neglected all

terms proportional to e−k2u2
x/8 and its powers, as already argued that kux is a large

quantity. Therefore, B2 turns out to depend only on α and β, and reads

B2 ≈ 1− 8α2

(2 + α2 + β2)2
. (5.16)

If we look at the expression (5.11), we see that now B2 can be put in front of the

integral sign, and integration over k can now proceed as in Section 2.4, yielding, i.e.,

the DDI term of the Lagrangian in terms of the anisotropy function f becomes

L5(t) =
Nadd√

2π uxuyuz
f

(
ux
uz
,
uy
uz

)(
1− 8α2

(2 + α2 + β2)2

)
. (5.17)

Let us compare the calculated Lagrangian terms (2.54)–(2.57) and (2.65) in Sec-

tion 2.4 with expressions (5.4)–(5.7) and (5.17), respectively. Except for the poten-

tial energy term L3(t), which remains unchanged, we see that all other terms are
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modified by an additional additive or multiplicative factor, arising due to additional

variational parameters α and β. The Euler-Lagrange equations for the system are

given by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , qi ∈ {ux, uy, uz, φx, φy, φz, α, β} , (5.18)

where L is a sum of all five calculated terms. Assuming that the wave amplitudes α

and β are small, such that their quadratic and higher-order terms can be neglected,

the equations for the condensate widths, turn out to coincide with those obtained

in Section 2.4. The three equations for the phases φi yield, as in Section 2.4,

φi =
u̇i
2ui

. (5.19)

After elimination of the phases φi from the corresponding set of equations for the

condensate widths ui, we obtain the second-order differential equations (2.69)–(2.71)

again. The Euler-Lagrange equation for the variational parameters β yields

β =
2α̇

k2
, (5.20)

which we use to eliminates β from the corresponding equation for the parameter

α, as was done with the phases. With this, the equation for α turns out to be the

second-order differential equation,

α̈ +

{
k4

4
+

√
2

π

N

uxuyuz

[
as + add f

(
ux
uz
,
uy
uz

)]
k2

}
α = 0 . (5.21)

In the context of variational analysis of Faraday and resonant waves, the above

equation of motion for the wave amplitude α is usually cast into the form of the

Mathieu-like equation

α̈ + [a(k) + εb(k) sin 2τ ]α = 0 . (5.22)

This equation can be solved perturbatively in the small modulation amplitude ε.

Assuming a solution in the form of a harmonic oscillator

α(τ, ε) = P (ετ) cos
(
τ
√
a(k)

)
+Q(ετ) sin

(
τ
√
a(k)

)
, (5.23)

we obtain that functions P and Q are exponentials of the form e±iξτ , where ξ is a

complex number. The existence of the imaginary part of ξ leads to the instability,
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i.e., to the exponential growth of the wave amplitude, which yields Faraday or

resonant waves. It was shown in Reference [82] that the nonvanishing imaginary

part of ξ appears for a(k) = n2, where n ∈ N, and this represents the mathematical

form of the instability condition.

In order to cast Equation (5.21) into the Mathieu-like form (5.22), we need to

take into account that the radial trap frequencies are modulated, such that the

corresponding trap aspect ratio is given by ν(t) = λ(t) = λ0(1 + ε sin ηmt), where

λ0 = Ω0/ωr and ηm = ωm/ωr. This generates the dynamics of the system and we

need to obtain approximate expressions for the condensate widths in order to get an

explicit form of the quantities a(k) and b(k). We assume that the condensate width

ux slowly varies, and can be taken to be constant at the onset of instability. We also

assume that second derivatives of the radial widths uy and uz, with respect to time,

can be neglected, since they are proportional to the small modulation amplitude

ε. Furthermore, for simplicity, we assume uy ≈ uz ≡ uρ, which now satisfies the

modified equation (2.70) or (2.71),

λ2(t)u4
ρ = 1 +

√
2

π

N

ux

[
as +

add

2
fs

(
uρ
ux

)
− addf

′
s

(
uρ
ux

)]
. (5.24)

On the right-hand side of the above equation we assume that the ratio uρ/ux is

constant and equal to the corresponding ration for the ground state, which can be

calculated as in Section 3.1. To derive Equation (5.24), we also use the following

limits of the anisotropy function

f
′

s(x) = lim
y→x

x f1(x, y) = lim
y→x

y f2(x, y) =
(2 + x2)fs(x)

2(1− x2)
− 1 ,

lim
y→1

f(x, y) = −1

2
fs(1/x) , lim

y→1
xf1(x, y) = f

′

s(1/x) ,

(5.25)

If we express u2
ρ from Equation (5.24), and use it to estimate the quantity uyuz ≈ u2

ρ

in Equation (5.21), as well as the above limits, that yield

f

(
ux
uz
,
uy
uz

)
= −1

2
fs

(
uρ
ux

)
, (5.26)

the equation for the variational parameter α can be written as

α̈ +

[
k4

4
+

Λk2

4
λ(t)

]
α = 0 , (5.27)
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where Λ is given by

Λ =
4
√

2
π
N
[
as − add

2
fs

(
uρ
ux

)]
ux

{
1 +

√
2
π
N
ux

[
as + add

2
fs

(
uρ
ux

)
− addf ′s

(
uρ
ux

)]}1/2
. (5.28)

Inserting the explicit form for λ(t), we obtain

α̈ + [a(k) + εb(k) sin ηmt]α = 0 , (5.29)

where

a(k) =
k4

4
+
λ0Λk2

4
, b(k) =

λ0Λk2

4
. (5.30)

In order to transform the above equation into the Mathieu-like equation (5.22), we

need to make a variable change ηmt → 2τ , which finally yields the expressions for

the coefficients a ≡ a(k) and b ≡ b(k),

a(k) =
k4

η2
m

+
λ0Λk2

η2
m

, b(k) =
λ0Λk2

η2
m

. (5.31)

As previously discussed, the instability condition for the Faraday waves reads

a(k) = 1, which can be used to calculate the wave vector of waves shortly after the

emergence of the waves,

kF =

√
−λ0Λ

2
+

√
λ2

0Λ2

4
+ η2

m . (5.32)

This represents the variational prediction for the wave vector k and the spatial period

` = 2π/k of the Faraday waves, which can be directly compared with numerical or

experimental results. Let us also stress that the above analysis is consistent with the

main characteristic of the Faraday waves, namely, that their oscillation frequency is

half that of the driving frequency. Since τ = ηmt/2, from Equation (5.22) we see

that indeed, the solution of the derived Mathieu-like equation oscillates with the

frequency ηm/2, i.e., with the frequency ωm/2.

If the modulation frequency is close to one of the collective oscillation modes,

the system will exhibit resonant behavior, which is suppressed for an arbitrary value

of the modulation frequency. While the system’s dynamics will certainly include

the Faraday mode at the frequency ωm/2 even close to a resonance, the resonant
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mode with the frequency ωm will have a larger amplitude and will develop much

faster. Although it is clear that the analysis of this section would break down, the

condition for the emergence of resonant waves still corresponds to a(k) = 22, i.e.,

the wave vector of the resonant wave is given by

kR =

√
−λ0Λ

2
+

√
λ2

0Λ2

4
+ 4η2

m . (5.33)

In that case, according to τ = ηmt/2 and Equation (5.23), the resonant density wave

will oscillate with the frequency whose aspect ratio is (ηm/2)
√

22 = ηm, i.e., with

the frequency ωm. Depending on the system’s parameters, higher resonant modes

can also appear corresponding to the conditions a(k) = n2, where n is an integer,

corresponding to the oscillation frequencies nωm/2.

5.2 Faraday waves in 52Cr, 168Er and 164Dy BECs

In order to study Faraday waves in dipolar condensates, we have performed exten-

sive numerical simulations of the real-time dynamics and solved the dipolar GPE

using the programs described in Chapter 6. The parameters for these simulations

closely match the physical parameters of BECs of chromium 52Cr, erbium 168Er, and

dysprosium 164Dy, which are given in detail in Appendix D. It is well known [65–79]

that Faraday waves can be expected as a main excitation mode of the system when

the modulation frequency ωm does not match any of the characteristic frequencies

of the system, i.e., when it is sufficiently far from any of the collective oscillations

modes or the trap frequencies. Therefore, we use the value ωm = 200×2π Hz, which

we know satisfies these conditions from our study of collective modes from Chapter

4, and the values of the trap frequencies listed in Appendix D.

Figure 5.1 shows time dependence of the integrated density profile in the weak

confinement direction n(x, t), which is obtained by integrating the condensate den-

sity over the radial coordinates y and z according to Equation (3.14). The emergence

of spatial patterns is clearly visible for all three atomic species after around 150 ms.

This is consistent with earlier experimental observations [30, 47] and theoretical re-
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Figure 5.1: Time evolution of the integrated density in the weak confinement direc-

tion for a BEC of N = 104 atoms of chromium 52Cr (top), erbium 168Er (middle),

and dysprosium 164Dy (bottom). The results are obtained for a periodic modula-

tion of the trap frequencies ωy and ωz according to Equation 5.1 with ε = 0.2 and

ωm = 200 × 2π Hz. The contact interaction strength is as = 150 a0 and the DDI

strength is given in Appendix D for each species. The Faraday waves can be visually

observed after approximately 150 ms for all three species.
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sults [65–79]. The density waves in x direction from Figure 5.1 take time to develop

and are the result of the transfer of energy from the modes that are directly excited

in the radial directions, where the trap is modulated. This can be seen in Figure 5.2,

where we show the corresponding time dependence of integrated density profiles in y

and z direction. The density waves in the radial directions emerge immediately after

the modulation is switched on at t = 0, and their frequency is equal to the mod-

Figure 5.2: Time evolution of the integrated density in y direction (left column)

and z direction (right column) for a BEC of N = 104 atoms of chromium 52Cr (first

row), erbium 168Er (second row), and dysprosium 164Dy (third row). The results are

obtained for the same parameters as in Figure 5.1. The frequency of oscillations of

the condensate densities in the radial direction is equal to ωm = 200 × 2π Hz. We

see that, due to the dipole-dipole interaction, the width of the condensate is larger

in the direction parallel to the dipoles (z direction) than in the orthogonal direction

(y direction), in particular for 168Er and 164Dy, as already shown in Section 3.3.
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ulation frequency. Comparing the left and right column in Figure 5.2, we can also

directly observe the DDI effects. As we know, the dipole-dipole interaction causes

the elongation of the condensate width in the polarization direction of the dipoles.

Although the trap frequencies in y and z direction are equal, we see in Figure 5.2

that the condensate widths in z direction for all three species are larger than the

corresponding y direction widths, and the difference increases as the strength of the

DDI increases from chromium to dysprosium.

In order to characterize the density waves, we typically analyze their FFT spec-

tra in the time-frequency and in the spatial-frequency domain. This enables us to

determine the frequencies of the main excitation modes, as well as the spatial period

of the observed density patterns. However, instead of directly analyzing the density

profiles presented in Figures 5.1 and 5.2, for the FFT it is advantageous to have

a clearer signal, which can be obtained by considering only the density variations

compared to the initial state, i.e., the ground state of the system, before the mod-

ulation is switched on. The integrated density profile variation in the confined x

direction is shown in Figure 5.3, and the corresponding density profile variations in

y and z directions are presented in Figure 5.4.

As expected, the emergence of Faraday waves is now more easily discernible

in Figure 5.3, and the same applies to the oscillations of the density shown in

Figure 5.4. By looking at these two figures, we can even estimate the main oscillation

frequency, e.g., counting the number of maxima or minima in a given time interval.

For instance, in the last 50 ms in each of the panels in Figure 5.3 we count 5 periods,

which corresponds to the frequency 100 × 2π Hz = ωm/2. This is a distinguishing

characteristic of Faraday waves, and therefore we directly determine that in this

case the system develops this type of collective oscillations. On the other hand,

in Figure 5.4 we can count 10 periods (maxima or minima) in a given 50 ms time

interval, which corresponds to the modulation frequency ωm. Thus, in the radial

directions we observe as the main excitation mode the direct response of the system

to the harmonic modulation of the trap.

However, this way we can determine only the main excitation modes. The dy-
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Figure 5.3: Time evolution of the integrated density profile variation in the weak

confinement direction for a BEC of N = 104 atoms of chromium 52Cr (top), erbium
168Er (middle), and dysprosium 164Dy (bottom), for the same parameters as in

Figure 5.1. The variations δn(x, t) are obtained by subtracting the density profile

of the ground state n(x, t = 0) from the time-dependent integrated density n(x, t)

presented in Figure 5.1.
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namics of the system contains other modes as well, and, over time, they can develop

and even start to dominate the behavior of the system. Therefore, it is important to

analyze the spectra in more detail. This is done in Figure 5.5 for all integrated den-

sity profile variations from Figures 5.3 and 5.4. For simplicity, the FFT analysis is

performed for the profiles at the trap center. As expected, in the weak confinement

direction, the left column in Figure 5.5, the main excitation mode has a frequency

ωm/2. In addition to this, we observe two other modes, at ωm and 3ωm/2. This

Figure 5.4: Time evolution of the integrated density profile variations in y direction

(left column) and in z direction (right column) for a BEC of N = 104 atoms of

chromium 52Cr (first row), erbium 168Er (second row), and dysprosium 164Dy (third

row), for the same parameters as in Figure 5.1. The variation in a given direction

y or z is obtained by subtracting the density profile of the ground state from the

corresponding time-dependent integrated density presented in Figure 5.2. The dif-

ference between the condensate widths in y and z direction, which was observed in

Figure 5.2, is also clearly visible here.
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is expected from the theoretical analysis in Section 5.1, but could not be discerned

directly from the density profiles or their variations.

In the Fourier spectra of the integrated density profile variations in the radial

directions, middle and right column in Figure 5.5, we see a somewhat richer set of

excitation modes. In addition to the main mode corresponding to the trap mod-

ulation at ωm, we see that also the breathing mode is excited at the frequency

ωB ≈ 321× 2π Hz, which was determined in Section 4.1. The spectra prominently

contain the second modulation harmonic at 2ωm as well. We see some other peaks

in the spectra as well. For instance, the small peak at around 120 × 2π Hz, which

can be due to the linear combination of the modes ωB − ωm. However, such an

identification would require further theoretical and numerical analysis, which is out

of the scope of this thesis.

While the Fourier analysis in the time-frequency domain can be used to deter-

mine the character of the induced density waves (Faraday, collective, resonant), the

analysis in the spatial-frequency domain enables us to characterize the density pat-

terns and calculate their spatial period. This is illustrated in Figure 5.6 for Faraday

waves for all three considered atomic species. The integrated density profile varia-

tions are analyzed at appropriate times, which are determined to correspond to the

evolution stage when Faraday waves have fully emerged, but the system is still far

from the violent dynamics that inevitably follows after the long driving period.

In all three panels of Figure 5.6 the main peak corresponds to the wave vec-

tor kF of the Faraday waves, and we see significant differences: for 52Cr we obtain

kF = 0.57µm−1, yielding the spatial period ` = 2π/kF = 11.02µm; for 168Er we

get kF = 0.98µm−1 and ` = 6.41µm; for 164Dy we have kF = 1.10µm−1 and

` = 5.71µm. The variational analysis presented in Section 5.1 yields results which

are in good agreement with the numerical ones, namely kF = 0.51µm−1 for 52Cr,

kF = 0.91µm−1 for 168Er, and kF = 1.06µm−1 for 164Dy. These variational results

are shown in Figure 5.6 by vertical blue lines, which illustrates their agreement with

the Fourier analysis. The presented spectra also contain some additional peaks that

correspond to other geometrical features of the analyzed density profile variations,
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such as the condensate width and its higher harmonics, as well as the higher harmon-

ics of the Faraday wave periods, and linear combinations of all of these. However,

they are not of interest in our analysis and we will not study them further.

Note that the spatial period of Faraday waves can be also determined by directly

looking at the density profile variations in Figure 5.3, and estimating the spacing

between the consecutive minima or maxima at the appropriate evolution time. For
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Figure 5.5: The Fourier spectrum in the time-frequency domain of the integrated

1D density profile variations of Faraday waves at the trap center δn(x = 0, t) in x

direction (first column), δn(y = 0, t) in y direction (second column), and δn(z =

0, t) in z direction (third column) for a BEC of N = 104 atoms of chromium 52Cr

(first row), erbium 168Er (second row), and dysprosium 164Dy (third row). The

corresponding density profile variations are shown in Figures 5.3 and 5.4. Vertical

blue lines represent theoretical predictions, where ωm/2 corresponds to Faraday

waves, ωm and 2ωm to resonant waves, and ωB is the variational result for the

breathing mode frequency obtained in Section 4.1.
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Figure 5.6: The Fourier spectrum in the spatial-frequency domain of the integrated

1D density profile variations of Faraday waves in x direction δn(x, t = 272 ms) for
52Cr (left), δn(x, t = 225 ms) for 168Er (middle), and δn(x, t = 193 ms) for 164Dy

(right) BECs with N = 104 atoms. The corresponding density profile variations are

shown in Figure 5.3. Vertical blue lines represent theoretical predictions for the wave

vector kF of the Faraday waves, i.e., the variational result obtained in Section 5.1,

Equation (5.32).

instance, for chromium, we count three minima over the spatial extent of 30 µm,

yielding an estimate ` ≈ 10µm. Similarly, for erbium, we count 5 minima over

the spatial extent of 30 µm, yielding ` ≈ 6µm, and for dysprosium, the count and

the estimate are the same. Obviously, these estimates are not as precise as the

Fourier analysis results, and therefore we rely on FFT spectra to systematically

determine the spatial periods of Faraday waves and their functional dependencies

on the contact and dipole-dipole interaction strength.

5.3 Interaction effects and properties of Faraday waves

In the previous section, we have shown how Fourier analysis can be used to calculate

the spatial period of Faraday waves. Now we systematically study the interaction

effects, i.e., how the contact and the dipole-dipole interaction strength affect the

properties of generated density waves. First, we explore the influence of the contact

interaction on the emergence time and the spatial period of Faraday waves for a

fixed value of the dipole-dipole interaction strength, by varying the s-wave scattering

length in the experimentally relevant regime. In laboratory this can be achieved by

employing the Feshbach resonance technique, which allows to tune as by changing
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the external magnetic field, thus changing the electronic structure of atoms and their

scattering properties.

The existence of Faraday waves is a consequence of nonlinearity of the system,

i.e., the presence of the contact and the dipole-dipole interaction terms in the Hamil-

tonian. In a linear system, described by the pure Schrödinger equation, the harmonic

modulation of the trap in the radial direction would not be transferred into the longi-

tudinal direction. Therefore, the emergence time of Faraday waves (and other types

of density waves in the longitudinal direction) critically depends on the strength of

interatomic interactions. However, if interaction strengths become sufficiently large,

the emergence time is less sensitive to their changes. Since we are considering three

species where the dipole-dipole interaction is strong in erbium and dysprosium, we

can expect that the emergence time of Faraday waves significantly depends on the

contact interaction strength only in chromium, where add is small.

This is illustrated in Figure 5.7, where we see the density profile variations for

chromium for three different values of as. Let us first note that the amplitude

of density variations is much smaller in the top panel for as = 60 a0 than in the

middle panel for as = 80 a0, and significantly smaller than in the bottom panel

for as = 150 a0. This is also evident from the fact that in the top and middle

panel we can clearly see the quadrupole collective oscillation mode, which has a

frequency of around ωQ = 12 × 2π Hz. This can be estimated from the figure and

compared to the value obtained in Section 4.2 for chromium, Figure 4.2. When the

interaction is sufficiently large, the amplitude of Faraday waves is much larger than

those of the collective modes, and they cannot be even discerned in the bottom

panel in Figure 5.7. Only for weak interactions the amplitude of the Faraday waves

is comparable to the amplitude of the collective modes, and this is the reason why

we can see them all for small values of as.

Like all other excitations, Faraday waves start to develop immediately after the

modulation is switched on. The question on their emergence time is related to their

amplitude, which is time-dependent and grows exponentially, as can be seen from

the solution (5.23) of the Mathieu-like equation that describes the dynamics of the
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Figure 5.7: Emergence of Faraday waves for different strengths of the contact in-

teraction: as = 60 a0 (top), as = 80 a0 (middle), and as = 150 a0 (bottom) for a

BEC of N = 104 atoms of 52Cr. From these integrated 1D density profile variations

δn(x, t), obtained for a fixed value of the dipole-dipole interaction strength given in

Appendix D, we observe that Faraday waves emerge faster as the contact interaction

strength increases.
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Faraday density oscillations. The imaginary part of the parameter ξ in Equation

(5.23) is responsible for the exponential growth of the Faraday waves’ amplitude,

which is not the case for collective modes. Therefore, in practical terms, the defini-

tion of the emergence time of Faraday waves is always arbitrary and can be expressed

as a time needed for the density variations to reach a certain absolute or relative

(compared to the total density) value. One can even relate this to the experimen-

tal point of view, where there is a threshold for the density variations that can be

observed, due to measurement errors. However, in numerical simulations there are

no such limitations and one can easily use an arbitrary definition to estimate the

emergence time of density waves. The more relevant quantity to study would be

the exponent that governs the growth of the wave amplitude, which depends on the

interaction strength.

Now we turn our attention to spatial features of the Faraday waves. Figure 5.8

presents the dependence of the wave vector kF on the s-wave scattering length as for

all three considered species. We also show the variational results for the dependence

kF (as) derived in Section 5.1. The agreement is very good, with errors of the order

of 10 - 15 %. We stress that the derived variational expression closely follows the

numerical results not only by their values, but, even more importantly, it follows

their functional dependence properly.
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Figure 5.8: Wave vector of the Faraday waves kF as a function of the contact

interaction strength for a BEC of N = 104 atoms of 52Cr (left), 168Er (middle), and
164Dy (right), for a fixed dipole-dipole interaction strength given in Appendix D.

Red upper triangles are numerically obtained values using the FFT analysis as in

Figure 5.6, and blue lines are the variational results according to Equation (5.32).
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Figure 5.9: Wave vector of the Faraday waves kF as a function of the dipole-dipole

interaction strength for a BEC of N = 104 atoms of 52Cr (left), 168Er (middle), and
164Dy (right), for a fixed contact interaction strength given in Appendix D. Red

upper triangles represent numerically obtained values using the FFT analysis as in

Figure 5.6, and blue lines are the variational results according to Equation (5.32).

Next, we study the effects of the dipole-dipole interaction strength for a fixed

value of the contact interaction. Figure 5.9 shows the corresponding dependence of

kF on add. In contrast to the contact interaction dependence, where kF was a de-

creasing function of as, here we see that kF increases as the dipole-dipole interaction

strength is increased. Figure 5.9 also shows the variational results, where the level of

agreement with the numerically obtained results is different, with errors as small as

7 % for chromium up to around 25 % for erbium and dysprosium for largest values

of add. Due to complex approximations made in the derivation of variational re-

sults, in particular those related to the dipole-dipole interaction term, the obtained

functional dependence is not as good as in the case of contact interaction, but still

provides reasonable estimates of the wave vector values for the Faraday waves.

5.4 Resonant waves

In the presence of interactions various excitation modes in dipolar BECs are coupled

and the energy pumped into the system by periodic driving can be transferred from

the driving direction to other, orthogonal directions. In the previous section, we

have seen this for non-resonant driving, when the harmonic modulation in the radial

direction was transferred to the longitudinal direction in the form of Faraday waves,

which were the main excitation mode generated. The main distinguishing property
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of these excitations is halving of the oscillation frequency, i.e., the induced density

waves have the frequency ωm/2. Here we study the other important case, when the

modulation frequency is resonant, such that the induced density waves have the same

frequency. This happens when ωm is close to one of the characteristic frequencies

of the system, e.g., one of the frequencies of the collective oscillation modes or one

of the trap frequencies. Although Faraday waves and all other collective oscillation

modes are also excited in this case, the largest amplitude corresponds to resonant

waves with the frequency ωm. When generated, these resonant waves dominate the

behavior of the system and make all other excitations negligible for the dynamics.

Figure 5.10 shows the integrated density profile variation of 168Er for a resonant

wave induced by a harmonic modulation of the radial part of the trapping potential

at ωm = ωy = ωz, i.e., when the modulation frequency coincides with the radial

trapping frequency. In this case, the density waves develop much faster than for

non-resonant modulation and are clearly visible already after 55 ms. Due to a vi-

Figure 5.10: Time evolution of the integrated density profile variation in the weak

confinement direction for a BEC of N = 104 atoms of erbium 168Er. The parameters

of the system are given in Appendix D, and the modulation frequency used is equal

to the weak confinement frequency, ωm = 160.5 × 2π Hz = ωy = ωz. We observe

resonant behavior corresponding to the first harmonic of the resonant frequency

ωy = ωz, which sets in after around 55 ms.

69



olent dynamics that emerges in the system very fast, it is not easy to estimate the

frequency of the waves directly from Figure 5.10, as was possible before. There-

fore, we rely on the Fourier analysis in the time-frequency domain, presented in the

left panel of Figure 5.11. The obtained FFT spectrum clearly shows that the main

excitation mode has a frequency equal to ωm. We also see that the spectrum is con-

tinuous, practically without distinct individual peaks, and only the second harmonic

at 2ωm = 321 × 2π Hz yields a small local maximum. This demonstrates that the

system is far from the regime of small perturbations, where individual excitation

modes can be observed.

In the right panel of Figure 5.11 we see the Fourier spectrum in the spatial-

frequency domain, which yields the wave factor kR of resonant waves. The FFT

results give the value kR = 1.59µm−1 and the corresponding spatial period ` =

2π/kR = 3.95µm for 168Er. In the figure we also present the variational result

kR = 1.40µm−1, calculated using Equation (5.33). The agreement is again quite
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Figure 5.11: The Fourier spectrum of the integrated 1D density profile variations

δn(x, t) at the trap center in the time-frequency domain (left), and of the density

profile variations in x direction δn(x, t = 68 ms) in the spatial-frequency domain

(right) of resonant waves for a BEC of N = 104 atoms of 168Er for the same pa-

rameters as in Figure 5.10. The vertical blue line in the left panel represents the

modulation frequency ωm, while in the right panel it corresponds to the theoreti-

cal prediction for the wave vector kR of the resonant waves derived in Section 5.1,

Equation (5.33).
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good, which indicates that the variational approach we developed in this thesis can

be reliably used not only for the Faraday waves, but also for the resonant waves.

This can also be concluded from Figure 5.12, which presents the results for

the dependence of the resonant wave vector kR on the contact and dipole-dipole

interaction strength. The agreement between the numerical and variational results

is of the order of 10 % over the whole experimentally relevant domain. We see similar

behavior for the resonant waves as for the Faraday ones, namely the wave vector

decreases as the contact interaction strength increases, while the opposite is true for

the dipole-dipole interaction. Again the functional dependence obtained from the

variational approach properly describes the numerical results, thus confirming that

Equation (5.33) can be used to calculate the spatial period of resonant waves.

It is interesting to note that resonant behavior appears not only under the con-

ditions mentioned above, when ωm is equal to one of the characteristic frequen-

cies, but also when it matches their higher harmonics. Figure 5.13 illustrates this

for 168Er, which is harmonically modulated at twice the radial trapping frequency,
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Figure 5.12: Wave vector of the resonant waves kR as a function of the contact

(left) and dipole-dipole (right) interaction strength for a BEC of N = 104 atoms of
168Er. The results in the left panel are obtained for a fixed dipole-dipole interaction

strength given in Appendix D, and similarly, in the right panel, a fixed contact

interaction strength from Appendix D is used. In both panels, red upper triangles

represent numerically obtained values using the FFT analysis as in the right panel of

Figure 5.11, and blue lines are the variational results according to Equation (5.33).
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Figure 5.13: Time evolution of the integrated density profile variation in the weak

confinement direction for a BEC of N = 104 atoms of erbium 168Er. The parameters

of the system are given in Appendix D, and the modulation frequency used is equal

to twice the weak confinement frequency, ωm = 321 × 2π Hz = 2ωy. We observe

resonant behavior corresponding to the second harmonic of the resonant frequency

ωy = ωz, which sets in faster than the first harmonic, already after around 30 ms.

ωm = 321×2π Hz. In this case, the amplitude of the resonant mode grows even faster

and significant density variations can be observed already after 30 ms. Therefore, we

see that the modulation at the second harmonic yields even more violent dynamics

than the first harmonic. The Fourier analysis in the time-frequency domain reveals

that the main excitation mode again has a frequency of 160.5×2π Hz, but the mode

at ωm = 321× 2π Hz is also present. From the experimental point of view, resonant

driving is very dangerous and leads to the destruction of the system in a matter

of tens of milliseconds. While numerical simulations can be performed for longer

time periods, the atoms leave the condensate due to a large, resonant transfer of

energy to the system. As the condensate is depleted, the mean-field description of

the system breaks down and it cannot be anymore simulated by the dipolar GPE.
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6 Algorithm for solving the dipolar GPE

The existence of nonlinear terms in equations describing various physical systems is

usually a source of novel phenomena. However, their understanding requires detailed

and careful analysis, mainly because we can no longer rely on our intuition based

on linear equations and instinctively predict the evolution of the system. From the

experimental point of view, the analysis requires development and fine-tuning of

new methods that focus on particular phenomena in the condensate. On the other

hand, it is often necessary to establish or further develop an analytical or numerical

method to solve the corresponding set of equations, usually a set of nonlinear partial

differential equations. In the case of a BEC with dipole-dipole interaction, we mostly

rely on the dipolar GPE.

A wide range of different numerical methods was developed in the literature.

Some of them are focused on the calculation of the ground state properties [83–86],

while others focus on the dynamics of the time-dependent GPE [87–95]. Also, there

are several methods able to calculate a numerical solution both for the ground state

and non-stationary dynamics of a BEC [87–95]. These methods can be divided into

several categories: finite difference, split-step, and spectral methods.

A finite difference method approximates the spatial and time derivatives with

finite differences, up to the desired order of accuracy, which is derived from the

Taylor series expansion. This approach introduces discretization of space and time,

with the time step denoted by ∆t, and the space step denoted by ∆h. Note that

the space discretization step can be different in different directions, in which case
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we denote the corresponding steps by ∆hj, where j = 1, 2, 3. When dealing with

dipolar GPE, such discretization is usually implemented using a forward, backward,

or central difference scheme in time and a second-order central difference scheme

for space derivatives. An algorithm that implements a forward difference scheme

in time is known as an explicit method, a backward difference approach yields an

implicit method, and a central difference approach in time is a combination of the

two, and is designated as a semi-implicit algorithm, or the Crank–Nicolson semi-

implicit algorithm [35–37]. In its usual form, it introduces a quadratic error in the

calculation in the discretization steps, O(∆t2) +O(∆h2), both in the time and the

space steps. The fact that we are using a semi-implicit algorithm, i.e., that the space

derivatives are expressed as averages of their finite difference approximations in the

present and future time step, makes the Crank-Nicolson scheme unconditionally

stable [36, 37]. We have used this method in all our implementations.

The split-step method relies on the splitting of the time evolution in each time

step into several sub-steps, which corresponds to splitting the Hamiltonian that gov-

ernance system’s dynamics into several parts, and then evolving the wave function

independently with respect to each of them. This method is usually combined with

the finite difference method, and practically realized by splitting the Hamiltonian

Ĥ = T̂ + V̂ into the kinetic energy part T̂ and the potential energy part V̂ , which

includes the trap potential and nonlinear terms corresponding to the contact and

the dipole-dipole interaction. In order to implement the splitting of the Hamiltonian

and calculate the time evolution of the system we use the Baker-Campbell-Hausdorff

lemma [96]

e∆t(Ô1+Ô2) = e∆tÔ1 e∆tÔ2 e−
∆t2

2 [Ô1,Ô2]e
∆t3

6 (2[Ô2,[Ô1,Ô2]]+[Ô1,[Ô1,Ô2]]) . . . (6.1)

The above form of the lemma, know as the Zassenhaus formula [97], expresses the

exponential of the sum of two operators Ô1 and Ô2, that do not commute in general,

by a product of their individual exponentials and higher-order terms that contain

quadratic and higher orders of the parameter ∆t. If the parameter ∆t is small we

can neglect these higher-order terms and use the splitting formula which, for the
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case of the time evolution of the Hamiltonian Ĥ = T̂ + V̂ reads

e−
i
~ Ĥ∆t = e−

i
~(T̂+V̂ )∆t = e−

i
~ T̂∆t e−

i
~ V̂∆t +O(∆t2) . (6.2)

In this way, we make the error of the same order as the one due to the finite difference

scheme used to approximate time derivatives. In principle, we can go to higher orders

in the Zassenhaus formula, but this would be numerically very time-consuming. It

would also have to be accompanied by a higher order of approximation for the

time derivative. The numerical complexity of such a method would be even higher

due to this and therefore is rarely used. One can achieve the desired accuracy of

the calculation by using smaller values of the discretization steps. In addition to

split-step methods there are also other, direct methods for solving the GPE (or,

in general, partial differential equations) such as Euler or Runge-Kutta [98], where

time evolution is done in one step, avoiding the Hamiltonian division altogether.

Spectral methods rely on expressing the solution of the GPE in an appropri-

ately chosen basis as a linear combination of orthonormal special functions. In this

case, the original equation is rewritten as a set of equations for the corresponding

coefficients of the wave function expansion in the selected basis. For instance, if

we use the plane-wave basis we get the most common spectral decomposition of

the wave function. The kinetic energy part and the potential energy part of the

Hamiltonian are diagonal in the k-space and in the real space, respectively, and

forward and backward Fourier transformation enables us to compute the evolution

with respect to the corresponding part of the Hamiltonian. Note that the spectral

methods also belong to the category of split-step approaches and use the Zassenhaus

approximation (6.2).

Our numerical algorithm to solve the GPE combines the split-step approach

with the semi-implicit Crank-Nicolson method [35–37]. The ground state of the

system is calculated using propagation in the imaginary-time [84–86] starting from

an arbitrary initial state, while the system’s dynamics is obtained using the real-

time propagation from a given initial wave function. Our programs that practically
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implement the algorithm solve the dimensionally reduced form of the GPE

i
∂ψ(r, t)

∂t
=

[
−1

2
∇2 + U(r, t) + 4πNas |ψ(r, t)|2

+ 3Nadd

∫
dr′ Udd(r− r′) |ψ(r′, t)|2

]
ψ(r, t) .

(6.3)

Equation (6.3) is derived from the dimensional GPE (2.45) by choosing a reference

frequency ωr, and by expressing all other physical variables in units defined using

this frequency

x → x

l
, y → y

l
, z → z

l
, as →

as
l
, add →

add

l
, t → ωrt ,

ψ(r, t) → l3/2 ψ(r, t) , U(r, t)→ 1

~ωr
U(r, t) , Udd(r, t)→ 1

~ωr
Udd(r, t) .

(6.4)

Here the unit of length l is harmonic oscillator length l =
√

~/(mωr) for the fre-

quency ωr and the mass m of the atoms in the condensate. In order to transform the

numerical results obtained in simulations to the physical units, one has to perform

the inverse rescaling.

As a result of this, the trapping potential U(r, t) is transformed into a dimen-

sionless form

U(r, t) =
1

2

(
γ2x2 + ν2y2 + λ2z2

)
, (6.5)

where γ = ωx/ωr, ν = ωy/ωr, and λ = ωz/ωr are the trap aspect ratios. For practical

reasons, we usually set one of the trap frequencies as the referent ωr. Another

convenient choice is the geometric mean of the trap frequencies, ωr = (ωxωyωz)
1/3.

Our programs allow to use all three trap aspect ratios independently, but in our

simulations, with the cigar-shaped condensates along the x-axis, we choose ωr =

ωy = ωz, so that the trap aspect ratios ν and λ are equal to 1.

6.1 Split-step semi-implicit Crank-Nicolson method

The split-step semi-implicit Crank-Nicolson method introduces the discretization of

time and spatial coordinates. The total time of simulation T is discretized into N

equal sub-steps ∆t = T/N . The simulation is performed in three spatial dimensions,

and we introduce a spatial mesh withNx, Ny, andNz equidistant points in x, y, and z
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direction, respectively. The corresponding spatial extents of the system (simulation

box sizes) are Lx = Nx ∆x, Ly = Ny ∆y, and Lz = Nz ∆z, where ∆x, ∆y, and ∆z

are the discretization steps. It is customary to place the coordinate system in the

center of the simulation box, such that the coordinates x, y, and z take values from

the intervals [−Lx/2, Lx/2], [−Ly/2, Ly/2], and [−Lz/2, Lz/2], respectively.

During the small evolution time ∆t, the split-step approach of the algorithm

divides the Hamiltonian into the non-derivative (Ĥ0) and derivative (Ĥ1, Ĥ2, Ĥ3)

parts, as follows

Ĥ0 = U(r; t) + 4πNas |ψ(r; t)|2 + 3Nadd

∫
dr′ Udd(r− r′; t) |ψ(r′; t)|2 , (6.6)

Ĥ1 =
∂2

∂x2
, Ĥ2 =

∂2

∂y2
, Ĥ3 =

∂2

∂z2
, (6.7)

where the Laplacian is split into three parts. Therefore, the initial dipolar GPE

given by equation (6.3) transforms into four sequential partial differential equations,

i
∂ψ(r; t)

∂t
= Ĥj ψ(r; t) , j = 0, 1, 2, 3 , (6.8)

which are solved one after the other in the algorithm.

Starting from a preceding solution ψn(r), obtained in the previous complete

time step, the time evolution with respect to Ĥ0 in the current time step yields an

intermediate solution ψn+1/4(r) of equation (6.8) for j = 0. The superscript 1/4

denotes that this is a first of four sub-steps in the current time iteration. Since

Ĥ0 has no derivatives, it is diagonal in real space and the solution can be written

exactly as

ψn+1/4(r) = e−iĤ0∆t ψn(r) ≡ P̂(Ĥ0)ψn(r) . (6.9)

From this intermediate solution, using the semi-implicit Crank-Nicolson scheme,

the time propagation of the wave function continues and is calculated by solving the
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series of partial differential equations,

i
ψn+2/4(r)− ψn+1/4(r)

∆t
=

1

2
Ĥ1

[
ψn+2/4(r) + ψn+1/4(r)

]
, (6.10)

i
ψn+3/4(r)− ψn+2/4(r)

∆t
=

1

2
Ĥ2

[
ψn+3/4(r) + ψn+2/4(r)

]
, (6.11)

i
ψn+1(r)− ψn+3/4(r)

∆t
=

1

2
Ĥ3

[
ψn+1(r) + ψn+3/4(r)

]
. (6.12)

On the left-hand side, partial derivatives in time are estimated by a two-point for-

mula, and on the right-side, the wave function is averaged over the current and the

future time sub-step, which is a characteristic for the finite-difference semi-implicit

Crank–Nicolson method. Equations (6.10) - (6.12) have a formal solution that prop-

agates the wave function to the next intermediate solution,

ψn+2/4(r) =
1− iĤ1∆t/2

1 + iĤ1∆t/2
ψn+1/4(r) ≡ P̂(Ĥ1)ψn+1/4(r) , (6.13)

ψn+3/4(r) =
1− iĤ2∆t/2

1 + iĤ2∆t/2
ψn+2/4(r) ≡ P̂(Ĥ2)ψn+2/4(r) , (6.14)

ψn+1(r) =
1− iĤ3∆t/2

1 + iĤ3∆t/2
ψn+3/4(r) ≡ P̂(Ĥ3)ψn+3/4(r) . (6.15)

The numerical algorithm for solving the above equations is worked out in Ap-

pendix E. Let us denote by ψ
n+j/4
i the wave function value in the current time

iteration after sub-step j and at the position i in the mesh in the corresponding spa-

tial direction. The algorithm determines the wave function by a recursive relation

ψ
n+(j+1)/4
i+1 = αjiψ

n+(j+1)/4
i + β

n+j/4
i , (6.16)

for j = 1, 2, 3, where j corresponds to spatial direction x, y, and z direction, respec-

tively. The coefficients αji and β
n+j/4
i are defined via backward recursion relations

αji−1 = γjiA
−
j , (6.17)

β
n+j/4
i−1 = γji

(
A+
j β

n+j/4
i −Bn+j/4

i

)
, (6.18)

where coefficients γji , A
−
j , A

+
j , A0

j , and B
n+j/4
i are defined by relations

A−j = A+
j = − ∆t

4∆h2
j

, A0
j = 1 + i

∆t

2∆h2
j

, (6.19)

B
n+j/4
i = i

∆t

4∆h2
j

(
ψ
n+j/4
i+1 − 2ψ

n+j/4
i + ψ

n+j/4
i−1

)
+ ψ

n+j/4
i , (6.20)
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where ∆hj denote spatial mesh step in ∆x, ∆y, and ∆z direction for j = 1, 2, 3,

respectively. The above backward recursion expresses the coefficients Bn+j/4
i explic-

itly in terms of the wave function in the previous sub-step, thus disentangling the

semi-implicit form of equations (6.10) - (6.12). From the technical point of view,

we see that the coefficients A±j , A0
j , α

j
i , and γ

j
i do not depend on the wave function

(i.e., on the time step n), and therefore can be calculated before the time loop in

a particular simulation. In other words, these coefficients depend only on the dis-

cretization parameters. Within the main time loop, only coefficients βn+j/4
i have to

be recalculated in each sub-step.

6.2 Dipole-dipole interaction

While the calculation of the potential and nonlinear contact interaction term within

the non-derivative part of the Hamiltonian (Ĥ0) of equation (6.8) for j = 0 is

straightforward, the calculation of the nonlinear term corresponding to the dipole-

dipole interaction at each mesh point introduces additional convolution integral.

The integral can be easily solved by moving to the Fourier space, i.e., by treating

the dipole-dipole interaction term in momentum space as∫
dr′ Udd(r− r′) |ψ(r′)|2 = F−1

{
F [Udd] (k)F

[
|ψ|2

]
(k)
}

(r) , (6.21)

where F represents Fourier transform and F−1 inverse Fourier transform, defined

respectively by

F [f ](k) = f̃(k) =

∫
dr f(r) e−ik·r , (6.22)

F−1[f̃ ](r) = f(r) =
1

(2π)3

∫
dk f̃(k) eik·r . (6.23)

Implementation of the algorithm uses Fast Fourier transform (FFT) for calcula-

tion of Fourier transform of the density of wave function, while the Fourier transform

of the dipole potential is calculated analytically in Appendix A, yielding

F [Udd](k) =
4π

3

(
3 cos2 θ − 1

)
=

4π

3

(
3 k2

z

k2
− 1

)
, (6.24)
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where θ is the angle between the orientation of dipoles and vector k, i.e., in our

setup, angle between z direction and vector k. Within the same time step, ori-

entations are constant, so the transformation is performed once per time step ∆t.

The Fourier transform of density |ψ(r)|2 and inverse Fourier transform is evaluated

numerically by using a standard FFT algorithm. The FFT algorithm is carried out

in Cartesian coordinates, and the GPE is solved in 3D irrespective of the symmetry

of the trapping potential.

Successful implementation of the split-step Crank-Nicolson method using Fourier

transformation has to ensure that the wave function and the interaction term dis-

appear at the boundary of the discretization mesh. For the Fourier transform of the

long-range dipolar potential, this is not true, and equation (6.24) is undefined at the

origin in k-space, i.e., at boundaries in coordinate space. Since the same domain

is used for Fourier and inverse Fourier transform in treating the dipolar potential,

cutting off the k-space origin will affect the space domain. Thus, boundary effects

can play a role when finding the Fourier transform, and a sufficiently large space

domain has to be used to have accurate values of the Fourier transform involving

the long-range dipolar potential. Inspired by equation (A.10), it was suggested [99]

that this could be avoided by truncating the dipolar interaction conveniently at

large distances r = R so that it does not affect the boundary, provided R is taken

to be larger than the size of the condensate. Then the truncated dipolar potential

will cover the whole condensate wave function and will have a continuous Fourier

transform at the origin. This improves the accuracy of a calculation using a small

space domain. The Fourier transform of the dipolar potential truncated at r = R is

used in our implementation of the algorithm for solving dipolar GPE as

Ũdd(k) =
4π

3

(
3 k2

z

k2
− 1

)[
1 + 3

cos (kR)

k2R2
− 3

sin (kR)

k3R3

]
. (6.25)

The difficulty in using a large space domain is the most severe in 3D algorithms for

solving dipolar GPE by the split-step Crank-Nicolson method. The cut-off param-

eter R of equation (6.25) improves the accuracy of the calculation.
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6.3 Calculation of physical quantities

During the evolution of the system, the relevant physical quantities can be calcu-

lated using the obtained time-dependent wave function. Since the wave function is

obtained with the time resolution of ∆t, we can calculate all physical quantities with

the same time resolution or choose to calculate them less frequently, to decrease the

computation time. Here we list the expectation values calculated by our programs

by default.

The size of the system in x, y, and z direction is expressed by the root-mean-

square of the corresponding coordinate,

xrms =
√
〈x2〉 ,

〈
x2
〉

=

∫
drx2 |ψ(r)|2 , (6.26)

yrms =
√
〈y2〉 ,

〈
y2
〉

=

∫
dr y2 |ψ(r)|2 , (6.27)

zrms =
√
〈z2〉 ,

〈
z2
〉

=

∫
dr z2 |ψ(r)|2 , (6.28)

while the size of the whole system is estimated by the quadratic mean,

rrms =
√
〈x2〉+ 〈y2〉+ 〈z2〉 . (6.29)

For stationary states, the wave function has a trivial time dependence ψ(r, t) =

ψ(r) e−iµt, where µ is the chemical potential. If we substitute this into Equation

(6.3), and multiply it by ψ∗(r), taking into account that the wave function is nor-

malized to 1, we obtain the following formula for the chemical potential

µ =

∫
dr

[
1

2
|∇ψ(r)|2 + U(r) |ψ(r)|2 + 4πNas |ψ(r)|4

+ 3Nadd

∫
dr′ Udd(r− r′) |ψ(r′)|2 |ψ(r)|2

]
.

(6.30)

The above expression can be also used for non-stationary states, to obtain the ex-

pectation values of the Hamiltonian.

The following expression for the energy E is obtained by multiplying the inter-
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action terms by 1/2 in equation (6.30)

E =

∫
dr

[
1

2
|∇ψ(r)|2 + U(r) |ψ(r)|2 + 2πNas |ψ(r)|4

+
3

2
Nadd

∫
dr′ Udd(r− r′) |ψ(r′)|2 |ψ(r)|2

]
.

(6.31)

In a variational approach, the GPE can be obtained by minimizing the above func-

tional with respect to the wave function.

The norm of the wave function is calculated by definition∫
dr |ψ(r)|2 , (6.32)

and in the real-time propagation, it should be always equal to 1. The Crank-Nicolson

scheme conserves the normalization of the wave function, but its monitoring can be

used as an early check of the validity of the simulation. However, this is not the

case in imaginary-time propagation, since then the evolution operator is not unitary.

Therefore, it is necessary to normalize the wave function again after each time step

∆t.

6.4 Numerical integration and derivation

Numerical integration within the algorithm is implemented using Simpson’s rule∫
dx f(x) ≈ ∆x

3

N/2∑
i=1

(f2i−2 + 4f2i−1 + f2i) (6.33)

where N is a number of equidistant points and ∆x the size of a spatial step.

In order to calculate the energy and the chemical potential we also need spatial

derivatives of the wave function. For this we use the Richardson extrapolation

formula of the fourth order. For instance, the spatial derivative of the wave function

in direction j is approximated with

∂ψni
∂hj
≈ 1

12∆hj

(
ψni−2 − 8ψni−1 + 8ψni+1 − ψni+2

)
. (6.34)
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6.5 Algorithm wrap-up

Practical usage of the programs that implement the algorithm for solving the dipolar

GPE requires the preparation of an input file that provides the parameter values of

the system of interest. This includes a number of atoms in the condensate, which

is typically between 104 and 106. One also has to specify a unit of length l in units

of Bohr radius (a0 = 5.2917721092× 10−11 m). For a chosen reference frequency ωr

it is calculated as l =
√

~/(mωr) for atoms with mass m, and is typically of the

order of µm. Physical parameters of the system also include the s-wave scattering

length as, which measures the contact interaction strength, and the dipolar length

add, which measures dipole-dipole interaction strength. Both are expressed in units

of Bohr radius within the input file.

In addition of physical parameters, we also have to supply discretization details

such as the time step ∆t (in units of 1/ωr) and the number of iterations N . Typical

values of the time step ∆t we used for our simulations was between 10−2 and 10−3,

which corresponds to 10−2 − 10−3 ms after re-scaling with the frequency ωr = 2π ×
160.5 Hz. Therefore, for the simulation of the evolution for 250 ms, the number of

iterations N has to be between 2.5× 104 and 2.5× 105.

The spatial discretization is defined by the size of steps and the number of mesh

points in x, y, and z direction. In the simulations, we have used equal numbers

of mesh points in all directions, Nx = Ny = Nz = 500, with different step sizes,

typically ∆x = 0.5 and ∆y = ∆z = 0.1, due to the cigar shape of the condensate.

Such mesh creates a simulation box of the volume of approximately 250×50×50 µm3.

Flowchart of the algorithm for solving the dipolar GPE is illustrated in Fig-

ure 6.1. Using the parameters specified in the configuration input file, the algorithm

in the very first step generates an initial wave function or reads its values from the

external file. This is represented by the operator Î, which will initialize the wave

function matrix to be propagated within the main loop of the algorithm. In the

case of imaginary-time propagation, most frequently, the initial wave function will
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be generated in the form of a predefined Gaussian, or if it is explicitly defined in the

input file, it will be populated by the values from the external file. For real-time

propagation, the initial wave function is always read from the external file. Usually,

it is a wave function obtained from the previous calculation, either in imaginary- or

real-time propagation.

Using the initial wave function, the algorithm in N equal time steps ∆t prop-

agates the wave function. Each time step consists of four sub-steps, which are

implemented using the operators P̂(Ĥ0), P̂(Ĥ1), P̂(Ĥ2), P̂(Ĥ3). After each step,

the operator M̂ calculates the relevant physical quantities. In the case of imaginary-

time propagation, there is an additional operation in which we normalize the wave

function to 1 using the operator N̂ . After the main loop is finished, the simulation

saves the wave function for further use (operator Ê).

Î ψ(r)

P̂(Ĥ0)ψ(r)

P̂(Ĥ1)ψ(r)

P̂(Ĥ2)ψ(r)

P̂(Ĥ3)ψ(r)

Ê ψ(r)

M̂ψ(r) N̂ ψ(r)

i = 0

j → j + 1

j → j + 1

j → j + 1

i < N

t
→
t

+
∆
t
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Figure 6.1: Flowchart of the algorithm for solving the dipolar GPE. The operator

Î is responsible for the initialization of the wave function matrix. Propagation of

the wave function is done in four sub-steps using operators P̂(Ĥ0), P̂(Ĥ1), P̂(Ĥ2),

P̂(Ĥ3). The operator M̂ calculates physical quantities of the system, and the op-

erator Ê saves the wave function for further use. In the case of imaginary-time

propagation, the operator N̂ normalizes the wave function.
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6.6 Parallelization and optimization

The algorithm for solving fully-anisotropic three-dimensional dipolar GPE is devel-

oped based on our previous programs [88,89]. The original program for the contact

interaction GPE was written in Fortran [87] by Adhikari and Muruganandam. Later

on, we have rewritten this program in the C programming language, and parallelized

it using the Open Multi-Processing (OpenMP) library [90–92, 95]. Afterward, we

have developed the programs that include both the contact and the dipole-dipole

interaction in C and in Fortran [93,94]. We have demonstrated excellent agreement

of recent experimental observation of dipolar BECs of 52Cr, 164Dy, and 168Er atoms

with the numerical results. The programs had to be parallelized, which allows the

utilization of all available processors/cores on a shared memory computer, leading

to the speedup of 70− 90% of the ideal one.

Figure 6.2 illustrates the speedup (blue down triangles) and the efficiency (red

up triangles) in the execution time of the imaginary-time (left panel) and real-time

(right panel) propagation as a function of a number of utilized CPU cores. The

speedup S (Nc) is calculated as a ratio of the execution time of a simulation on a

single CPU core and a simulation using Nc cores. The efficiency E (Nc) = S (Nc) /Nc

imag-time efficiency
imag-time speedup

number of CPU cores

effi
ci
en
cy

in
th
e
ex
ec
u
ti
on

ti
m
e

sp
ee
d
u
p
in

th
e
ex
ec
u
ti
on

ti
m
e

1.0

0.9

0.8

0.7

0.6
1614121086420

12

10

8

6

4

2

0
real-time efficiency
real-time speedup

number of CPU cores

effi
ci
en
cy

in
th
e
ex
ec
u
ti
on

ti
m
e

sp
ee
d
u
p
in

th
e
ex
ec
u
ti
on

ti
m
e

1.0

0.9

0.8

0.7

0.6
1614121086420

12

10

8

6

4

2

0

Figure 6.2: Speedup (blue down triangles) and efficiency (red up triangles) of the

algorithm for solving the dipolar GPE during imaginary-time (left) and real-time

(right) propagation as a function of the number of utilized CPU cores. Solid lines

represent fits to measured data according to Amdahl’s law.
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is defined as a ratio of the speedup, measured in numerical experiments, and the idea

one which is equal to Nc. In all simulations, we have used a consistent spatial mesh

of the size of 500×500×500. Starting from a single CPU core, we gradually increase

the number of utilized cores up to 16 on an Intel Xeon CPU E5-2670 machine with

a clock frequency of 2.60 GHz. The programs are compiled and optimized using the

Intel compiler.

Based on Amdahl’s law [100], the expected execution times of a sequential (which

remains constant) and a parallelized region of the code (which scales with a number

of cores Nc). If p is parallelized fraction of the code, the expected speedup is given

by

S (Nc) =
1

(1− p) + p/Nc

, (6.35)

and similarly for E (Nc). Solid lines in Figure 6.2 represent the fits to measured

data according to relation (6.35), which allows us to verify the consistency of the

performance of our programs and to estimate the parallel fraction p.

Details on the testing of parallelization scaling are given in Appendix F.
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7 Conclusions

This thesis explores the Faraday and resonant density waves in ultracold dipolar

Bose-Einstein condensates. It also studies the collective oscillation modes of dipolar

condensates and their ground-state properties for experimentally relevant atomic

species with the permanent magnetic dipole moment: chromium 52Cr, erbium 168Er,

and dysprosium 164Dy. The interplay of the contact and the dipole-dipole interaction

in such systems is a hot research topic today, but a detailed understanding of their

dynamics and even the stability is still lacking. This thesis contributes to variational

and numerical description of driven dipolar systems and their properties, which are

important for ongoing experiments, and will be of particular interest as the strongly

dipolar regime becomes experimentally available.

We have introduced here a variational approach and used it to describe the

ground state, the collective oscillation modes, and the Faraday and resonant waves

in dipolar BECs. This approach is based on the Gaussian variational ansatz, which

includes the condensate widths and the conjugated dynamical phases as parameters.

The ansatz is extended to include density modulations in order to capture the dy-

namics of density waves. Using our approach, we have derived analytical expressions

for the ground-state widths of the condensate, and the frequencies of the collective

oscillation modes: the breathing, the quadrupole, and the radial-quadrupole mode.

These results are verified by comparison with the numerical results obtained by solv-

ing the dipolar GPE for each of the three atomic species. We have found very good

agreement between the analytical and numerical results, and confirmed that the de-

rived expressions for the ground-state widths and collective oscillation frequencies
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can be reliably used in the relevant parameter ranges.

We have studied the effects of the contact and the dipole-dipole interaction on

the properties of the ground state and of the collective oscillation modes. While the

increase of the contact interaction strength always leads to an increase of condensate

widths, the situation is more complex when the dipole-dipole interaction is varied.

In a cigar-shaped geometry when the dipoles are oriented in the radial direction,

the increase of the DDI strength leads to the increase of condensate widths in the

weak-confinement direction and in the direction of the dipoles, while the width in

the third direction decreases. We have also studied the frequencies of the collective

modes, where the interaction effects turn out to be less pronounced, in particular for

the breathing and the quadrupole mode, whose values practically remain constant

over the whole range of experimentally relevant values of as and add. The frequency

of the radial-quadrupole mode is more sensitive to changes of interaction strengths,

especially the contact interaction strength as, and shows a nonmonotonous behavior

as a function of the dipole-dipole interaction strength add.

The main contribution of the thesis is the study of driven dipolar BECs, where

the emergence of density waves is expected. This phenomenon is investigated in

an experimentally-inspired setup, where the dipolar condensate is confined into a

cigar-shaped harmonic trap. The dipole moments of the atoms are assumed to

be orthogonal to the weak confinement axis, since this maximizes the stability of

the system. The driving of the system is achieved by harmonic modulation of the

radial part of the trap, and the density waves were observed in the longitudinal,

weak-confinement direction.

Using our variational approach, the obtained equations for the dynamical evolu-

tion of the system are cast into the form of the Mathieu-like differential equation.

This allowed us to identify the most unstable solutions of the Mathieu’s equation

with the Faraday and the resonant waves, which we have observed numerically.

Based on this idea, we have derived analytical expressions for the periods of these

two types of density waves. Performing the FFT analysis of the results of extensive

numerical simulations, we were able to calculate the corresponding periods numer-

88



ically, as functions of the contact and the dipole-dipole interaction strength. The

comparison of variational and numerical results shows very good agreement and

demonstrates that the derived analytical expressions provide a full understanding of

the properties of density waves in dipolar condensates.

The thesis presents the split-step semi-implicit Crank-Nicolson method used to

solve the dipolar GPE, as well as the details about the corresponding programs,

including the calculation of the dipole-dipole interaction term and relevant physical

quantities. We have also presented the scalability testing results of our parallel

programs, which demonstrate their efficiency on parallel computer clusters.
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A Fourier transform of the DDI potential

In contrast to the contact interaction, which is symmetric and has a short range, the

dipolar interaction between atoms or molecules is anisotropic and has a long range.

The dipolar effects are brought in into the GPE through an additional nonlinear

interaction term that reads in the dimensionless form

3Nadd

∫
dr′ Udd(r− r′) |ψ(r′)|2 , (A.1)

where N is the number of atoms in the condensate, add the length that quantifies

the strength of the DDI, |ψ(r′)|2 the density of the condensate, and Udd(r− r′) the

DDI potential. For an arbitrary orientation of the dipoles defined by a unit vector

m, the dipolar potential is given by

Udd(r) =
r2 − 3 (r ·m)2

r5
. (A.2)

If the dipoles are oriented in z direction, the above expression transforms into

Udd(r) =
1− 3 cos2 θ

r3
. (A.3)

where θ is the angle between the vector r and the polarization axis (z direction).

In coordinate space, due to issues with the numerical divergence at short dis-

tances, calculation of the dipolar term in the GPE is not straightforward. This is

usually resolved by switching to the k-space, where the calculation does not suffer

from a singular behavior. Additionally, this allows the use of the FFT, which speeds

up numerical calculations. By means of the convolution theorem, the integral (A.1)

transforms into∫
dr′ Udd(r− r′) |ψ(r′)|2 = F−1

{
F [Udd] (k)F

[
|ψ|2

]
(k)
}

(r) , (A.4)

where F represents the Fourier transform and F−1 the inverse Fourier transform,

defined respectively by

F [f ](k) = f̃(k) =

∫
dr f(r) e−ik·r , (A.5)

F−1[f̃ ](r) = f(r) =
1

(2π)3

∫
dk f̃(k) eik·r . (A.6)
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The Fourier transform of the dipolar potential Ũdd(k) can be calculated analytically

using the spherical coordinates,

Ũdd(k) =

∫
drUdd(r) e−ik·r =

∞∫
0

dr

2π∫
0

dϕ

π∫
0

sin θ dθ

× 1− 3 cos2 θ

r
e−ikr(sin θ sin θk cos(ϕ−ϕk)+cos θ cos θk) ,

(A.7)

where, in spherical coordinates, k = (k, θk, ϕk). Although the coordinate system is

chosen such that the vector m is oriented along z axis, we still have the freedom to

rotate it around this axis, which makes it possible to eliminate the angle ϕk. If we

denote the θk in the selected coordinate system by α, the integral (A.7) becomes

Ũdd(k) =

∞∫
0

dr

2π∫
0

dϕ

π∫
0

dθ sin θ
1− 3 (sinα sin θ sinϕ+ cosα cos θ)2

r
e−ikr cos θ .

(A.8)

After integration over the variable ϕ, we obtain

Ũdd(k) = π
(
3 cos2 α− 1

) ∞∫
0

dr

π∫
0

dθ sin θ
1− 3 cos2 θ

r
e−ikr cos θ . (A.9)

The θ-integral above is solved by a variable change u = cos θ, yielding

Ũdd(k) = 4π
(
1− 3 cos2 α

) ∞∫
0

dr

[
sin (kr)

kr2
+

3 cos (kr)

k2r3
− 3 sin (kr)

k3r4

]
. (A.10)

This integral is calculated using another variable change v = kr,

Ũdd(k) = 4π
(
1− 3 cos2 α

)
lim
b→0

∞∫
kb

dv

[
sin v

v2
+

3 cos v

v3
− 3 sin v

v4

]

= 4π
(
1− 3 cos2 α

)
lim
b→0

kb cos (kb)− sin (kb)

(kb)3

=
4π

3

(
3 cos2 α− 1

)
=

4π

3

(
3 k2

z

k2
− 1

)
.

(A.11)

According to this, we can immediately write the general expression for an arbitrary

orientation of the dipoles m in the form

Ũdd(k) =
4π

3

[
3 (m · k)2

k2
− 1

]
. (A.12)
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B Lagrangian of the DDI term

Using the Lagrangian density (2.51), we calculate the Lagrangian term (2.64) that

corresponds to the DDI energy for the Gaussian ansatz (2.52), used in the variational

study of the collective oscillation modes, as well as the term (5.11) for the modified

ansatz (5.2), used to describe the Faraday and resonant waves. Note that both

expressions can be written in the form

L5(t) = −3Nadd

(2π)2
B2

∫
dk

(
3

k2
z

k2
x + k2

y + k2
z

− 1

)
e−

1
2

(k2
xu

2
x+k2

yu
2
y+k2

zu
2
z) , (B.1)

where expression (2.64) is obtained for B = 1, while we get expression (5.11) for

B2 = 1− 8α2

(2 + α2 + β2)2
. (B.2)

The above integral describes the anisotropic character of the dipole-dipole interac-

tion in ultracold quantum gases. After switching to the spherical coordinate system

via the following change of variables

kxux = k sin θ cosϕ , kyuy = k sin θ sinϕ , kzuz = k cos θ , (B.3)

the above integral transforms into

L5(t) = − Nadd

(2π)2 uxuyuz
B2

∞∫
0

dk k2e−k
2/2

2π∫
0

dϕ

π∫
0

dθ sin θ

×
(

3 1
u2
z

cos2 θ
1
u2
x

sin2 θ cos2 ϕ+ 1
u2
y

sin2 θ sin2 ϕ+ 1
u2
z

cos2 θ
− 1

)
.

(B.4)

The integral over k is of the Gaussian type that can be solved analytically, leading

to

L5(t) = − Nadd

(2π)2uxuyuz
B2

√
π

2

2π∫
0

dϕ

π∫
0

dθ sin θ

×

 3
u2
xu

2
y

u4
z

cos2 θ

u2
y

u2
z

sin2 θ cos2 ϕ+ u2
x

u2
z

sin2 θ sin2 ϕ+
u2
xu

2
y

u4
z

cos2 θ
− 1

 .

(B.5)

If we introduce the dipolar anisotropy function [42], see Appendix C for details,

f(x, y) = − 1

4π

2π∫
0

dϕ

π∫
0

dθ sin θ

(
3x2y2 cos2 θ

x2 sin2 ϕ sin2 θ + y2 cos2 ϕ sin2 θx2y2 cos2 θ
− 1

)
,

(B.6)
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we can write L5(t) as

L5(t) =
Nadd√

2π uxuyuz
B2f

(
ux
uz
,
uy
uz

)
, (B.7)

where exact expressions for the anisotropy function in terms of the elliptic integrals

of the first (F ) and the second (E) kind for different values of its arguments are

listed in Appendix C. For our analysis, due to geometry of the system described in

Appendix D, the most relevant region of parameters is 0 < uy/uz < 1 < ux/uz, in

which the anisotropy function can be written as

f(x, y) =
1 + 2y2

1− y2
− 3xy

√
x2 − y2E(θ, k)

(x2 − 1)(1− y2)
+

3xy F (θ, k)

(x2 − 1)
√
x2 − y2

, (B.8)

where k =
√

(x2 − 1)/(x2 − y2), and sin θ =
√
x2 − y2/x.
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C Anisotropy function

In theoretical studies of dipolar ultracold atomic or molecular systems, the anisotro-

py function emerges as a consequence of the anisotropic character of the dipole-dipole

interaction [42]. It is defined as

f(x, y) = − 1

4π

2π∫
0

dϕ

π∫
0

dθ sin θ

(
3x2y2 cos2 θ

x2 sin2 ϕ sin2 θ + y2 cos2 ϕ sin2 θ + x2y2 cos2 θ
− 1

)

= 1− 3x2y2

4π

π∫
0

dθ sin θ cos2 θ

π∫
0

dϕ
1

(x2 sin2 ϕ+ y2 cos2 ϕ) sin2 θ + x2y2 cos2 θ
.

(C.1)

According to the above definition, we can assume x, y ≥ 0 without loss of generality.

The ϕ integral can be solved using relation (3.642.1) from Reference [43], yielding

f(x, y) = 1− 3xy

2

π∫
0

dθ sin θ
cos2 θ√

1− (1− x2) cos2 θ
√

1− (1− y2) cos2 θ
. (C.2)

Note that function f is symmetric in its arguments f(x, y) = f(y, x) [42]. Depending

on the values of the arguments x and y, we can consider the following cases:

1. x < y < 1

Using the substitution u =
√

1− x2 cos θ, the integral (C.2) becomes

f(x, y) = 1 +
3xy

(1− x2)3/2

√
1−x2∫
0

du
u2

√
1− k2u2

√
1− u2

, (C.3)

where k2 = (1− y2)/(1− x2) < 1. The solution of the above u-integral can be

expressed via elliptic integrals [43] of the first and the second kind, respectively,

F (θ, k) =

sin θ∫
0

du
1√

(1− u2)(1− k2u2)
=

θ∫
0

dθ
1√

1− k2 sin2 θ
, (C.4)

E(θ, k) =

sin θ∫
0

du

√
1− k2u2

√
1− u2

=

θ∫
0

dθ
√

1− k2 sin2 θ , (C.5)
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yielding

f(x, y) = 1 + 3xy
E(θ, k)− F (θ, k)

(1− y2)
√

1− x2
, (C.6)

where sin θ =
√

1− x2.

2. y < x < 1

Due to the symmetry of the anisotropy function, its value f(x, y) can be cal-

culated as f(y, x) according to case 1.

3. x < 1 < y

In this region it is necessary to analytically continue the function (C.6) using

the table (8.127) from Reference [43]. With the transformations

k1 =
i k

k′
, sin θ1 =

k′ sin θ

∆θ
, cos θ1 =

cos θ

∆θ
, (C.7)

we obtain

f(x, y) =
1 + 2x2

1− x2
+

3xy
√
y2 − x2E(θ1, k1)

(y2 − 1)(x2 − 1)
+

3xy F (θ1, k1)

(y2 − 1)
√
y2 − x2

, (C.8)

where k1 =
√

y2−1
y2−x2 and sin θ1 =

√
y2 − x2/y.

4. y < 1 < x

Due to the symmetry of the anisotropy function, its value f(x, y) can be cal-

culated as f(y, x) according to case 3.

5. 1 < x < y

In this region we proceed similarly as in the case 3, using the transformations

k1 =
k′

i k
, sin θ1 = −i k sin θ

∆θ
, cos θ1 =

1

∆θ
, (C.9)

where k′ =
√

1− k2 and ∆θ =
√

1− k2 sin2 θ, and obtain

f(x, y) =
1 + 2x2

1− x2
+

3xy E(θ1, k1)

(x2 − 1)
√
y2 − 1

, (C.10)

where k1 =
√

y2−x2

y2−1
and sin θ1 =

√
y2 − 1/y.

6. 1 < y < x

Due to the symmetry of the anisotropy function, its value f(x, y) can be cal-

culated as f(y, x) according to case 5.
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7. x = y

In the special case of equal arguments, x→ y, which corresponds to cylindrical

symmetry of the system, the anisotropy function depends only on a single

argument, and is given as

fs(x) = lim
x→y

f(x, y) =
1 + 2x2 − 3x2 d(x)

1− x2
, (C.11)

where d(x) is given by

d(x) =


1√

1−x2 tanh−1
√

1− x2 , x < 1 ,

0 , x = 1 ,

1√
x2−1

tan−1
√
x2 − 1 , 1 < x .

(C.12)

8. x 6= y = 1

f(x, 1) = lim
y→1

f(x, y) = −1

2
fs(1/x) (C.13)

9. x = 1 6= y

f(1, y) = f(y, 1) = −1

2
fs(1/y) (C.14)

In this thesis, the parameters of the anisotropy function are ratios of the con-

densate widths ux/uz and uy/uz. As we have seen in Chapter 3, due to geometry of

the system, the condensate in the ground state is much more elongated in x direc-

tion than in the other two directions. Also, we have observed that the dipole-dipole

interaction increases the condensate width in z direction, and decreases it in y di-

rection. The same relationships between the condensate widths are valid during the

non-stationary dynamics of the condensate, as we have seen in Chapters 4 and 5.

Therefore, in our analysis 0 < uy < uz < ux, i.e., 0 < uy/uz < 1 < ux/uz, which

corresponds to the case 4 above.

In the thesis we use fi(x, y) to denote the first partial derivative of the anisotropy

function with respect to its argument i = 1, 2, and fij to denote the second partial

derivative

fij(x1, x2) =
∂2

∂xi ∂xj
f(x1, x2) . (C.15)
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In our analysis of the cylindrically symmetric ultracold quantum gases, which exists

if the polarization direction matches the weak confinement direction of the trap, we

have used the following useful limits:

lim
y→x

x f1(x, y) = lim
y→x

y f2(x, y) = f ′s(x) =
(2 + x2)fs(x)

2(1− x2)
− 1 , (C.16)

lim
y→x

f11(x, y) = lim
y→x

f22(x, y) =
9 [(4 + x2) fs(x)− 2 (1− x2)]

8 (1− x2)2 , (C.17)

lim
y→x

f12(x, y) = lim
y→x

f21(x, y) =
(8 + 8x2 − x4) fs(x)− 2 (4− 5x2 + x4)

8x2 (1− x2)2 , (C.18)

lim
y→1

xf1(x, y) = f ′s(1/x) . (C.19)
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D Parameters of the system

In all numerical simulations and variational calculations we have used the system and

discretization parameters specified here, unless otherwise stated. We have considered

three atomic species and Table 4 lists the corresponding values of the mass m in

atomic mass units u, the s-wave scattering length as in units of Bohr radius a0,

the dipole moment µd in units of Bohr magneton µB, the dipole-dipole interaction

strength add in units of Bohr radius (a0), and the harmonic oscillator length l with

respect to the chosen referent frequency ωr = 160.5× 2π Hz.

Table 4: Summary of atomic species parameters used in numerical simulations and

variational calculations.

Species m (u) as (a0) µd (µB) add (a0) l (µm)
52Cr 51.94050 105 6 15.126 1.10112
168Er 167.93237 100 7 66.564 0.61238
164Dy 163.92918 100 10 132.607 0.61981

All simulations and calculations are performed with the same number of atoms,

N = 104.

We have considered the harmonically trapped system, with the frequencies taken

from Reference [30], i.e., ωx = 7×2π Hz, ωy = 160.5×2π Hz, and ωz = 160.5×2π Hz.

The trapping potential is defined by Equation (2.22), and for the chosen frequencies

the atoms are weakly confined in x direction, i.e., we have used a cigar-shaped

trap. Therefore, we refer to x direction as the longitudinal one, while y and z

direction represent the radial ones. In order to cast the underlying equations into

a dimensionless form, we have chosen the referent frequency ωr = ωy = ωz =

160.5×2π Hz, which defines the length scale through the harmonic oscillator length

l =
√
~/(mωr), the time scale as 1/ωr, the energy scale as ~ωr. The trapping

frequencies are also expressed in units of ωr through the trap aspect ratios γ =

ωx/ωr = 0.04361, ν = ωy/ωr = 1, and λ = ωz/ωr = 1.
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We assume that the dipoles are oriented along z direction, i.e., orthogonal to

the weakly confined x direction. The Fourier transform of the dipolar interaction

potential is thus

F [Udd(r)](k) =
4π

3

(
3 k2

z

k2
− 1

)
. (D.1)

The system is driven by a harmonic modulation of the frequencies in the tightly

confined y and z direction,

ωy(t) = ωz(t) = Ω0(1 + ε sinωmt) , (D.2)

where Ω0 = ωy = ωz has a value given above, ε = 0.1− 0.2 is the modulation ampli-

tude, and ωm is the modulation frequency. The modulation frequency is expressed

in units of ωr through the aspect ratio ηm = ωm/ωr.

We have studied the properties of the ground state, collective oscillation modes,

Faraday and resonant waves as functions of the contact and the dipole-dipole inter-

action strength. This models BEC experiments, where the strength of the contact

interaction can be varied over a broad range of values using the Feshbach resonance

technique [9]. This is also possible for the strength of the DDI, which can be tuned

using a fast rotating magnetic field [24, 25]. Therefore, the values of as and add

listed in Table 4 are used whenever we refer to their fixed values, while in some

calculations we have considered experimentally relevant ranges of these interaction

strengths.

In numerical simulations, we have discretized space and time by defining the

corresponding spacings and the time step, as well as the size of the space mesh

and the number of the time steps. In our simulations we have used equal numbers

of mesh points in all directions, Nx = Ny = Nz = 500, with different spacings,

∆x = 0.5 and ∆y = ∆z = 0.1. This choice was made due to the cigar shape

of the condensate. Such a mesh corresponds to the simulation box of the volume

of approximately 250 × 50 × 50 µm3, which is appropriate for the above trapping

potential and the considered atomic species.

Time was discretized using the time step ∆t with the typical values between
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10−2 and 10−3 in units of 1/ωr. For the Faraday and resonant waves, the number

of time steps (iterations) N was in the range 1 − 2 × 105, which corresponds to

the simulation of the evolution in the range 250-500 ms. For the calculation of the

collective oscillation modes, we had to use much larger iteration numbers, for at

least one order of magnitude, in order to achieve the accuracy of 0.1 Hz.

The value of the cutoff parameter R from Equation (6.25) in all simulations was

R = 10.

The ground state of the condensate was calculated using the imaginary-time

propagation starting from the Gaussian initial wave function, defined by

ψ(x, y, z) =
(γ ν λ)1/4

π3/4
e−

1
2

(γx2+νy2+λz2) . (D.3)

It corresponds to the solution of the Schrödinger equation, i.e., the GPE for as =

add = 0, and represents the dimensionless form of Equation (3.1).

The values of the physical constants used are as follows:

u = 1.6605390× 10−27 kg (atomic mass unit),

a0 = 5.29177210× 10−11 m (Bohr radius),

µB = 9.2740099× 10−24 JT−1 (Bohr magneton).
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E Semi-implicit Crank–Nicolson scheme

Here we describe the practical implementation of the semi-implicit Crank–Nicolson

algorithm [35–37]. In Chapter 6 we have introduced the time and the spatial dis-

cretization used to solve the dipolar GPE. The total evolution time T that will

be simulated is discretized by dividing it into Nt equal sub-steps of the duration

∆t = T/Nt. The spatial coordinates are discretized by introducing a spatial mesh

of Nx, Ny, and Nz equidistant points in x, y, and z direction, respectively. The

spatial extents of the system considered are given by Lx = Nx ∆x, Ly = Ny ∆y, and

Lz = Nz ∆z, where ∆x, ∆y, and ∆z are discretization steps in the corresponding di-

rections. For practical reasons, the center of the coordinate system coincides with the

simulation box center, such that the coordinates take the values x ∈ [−Lx/2, Lx/2],

y ∈ [−Ly/2, Ly/2], and z ∈ [−Lz/2, Lz/2].

In addition to this, within each time step ∆t, the split-step nature of the algo-

rithm divides our Hamiltonian into four parts: the non-derivative part Ĥ0, and the

three parts that contain spatial derivatives, Ĥ1, Ĥ2, Ĥ3, which read

Ĥ0 = U(r, t) + 4πNas |ψ(r, t)|2 + 3Nadd

∫
dr′ Udd(r− r′) |ψ(r′, t)|2 , (E.1)

Ĥ1 =
∂2

∂x2
, Ĥ2 =

∂2

∂y2
, Ĥ3 =

∂2

∂z2
. (E.2)

By doing this, we have approximated our single dipolar GPE with the four sequential

partial differential equations,

i
∂ψ(r, t)

∂t
= Ĥ0 ψ(r, t) , (E.3)

i
∂ψ(r, t)

∂t
= Ĥ1 ψ(r, t) , i

∂ψ(r, t)

∂t
= Ĥ2 ψ(r, t) , i

∂ψ(r, t)

∂t
= Ĥ3 ψ(r, t) , (E.4)

which are solved one after the other in the algorithm.

In a given time step n, we start with the wave function ψn(r), obtained in the

previous time step. We point out that the time dependence of the wave function

is now denoted by the superscript n, which corresponds to the time t = n∆t. The

time propagation proceeds by solving Equation (E.3), which can be done explicitly
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according to (6.9). This produces the intermediate solution ψn+1/4(r), ready to be

propagated in time by solving Equations (E.4). This is done by expressing the

corresponding derivative operators in a semi-implicit form,

i
ψn+2/4(r)− ψn+1/4(r)

∆t
=

1

2
Ĥ1

[
ψn+2/4(r) + ψn+1/4(r)

]
, (E.5)

i
ψn+3/4(r)− ψn+2/4(r)

∆t
=

1

2
Ĥ2

[
ψn+3/4(r) + ψn+2/4(r)

]
, (E.6)

i
ψn+1(r)− ψn+3/4(r)

∆t
=

1

2
Ĥ3

[
ψn+1(r) + ψn+3/4(r)

]
. (E.7)

The complete propagation procedure outlined above yields the wave function ψn+1(r)

at the moment t = (n+ 1)∆t. On the left-hand sides of Equations (E.5) - (E.7) the

partial derivative with respect to time is expressed by a two-point formula, while

on the right-hand sides instead of the wave function at the current time, we use a

linear combination of the current and the future wave function values to improve

the stability of the algorithm. This makes the algorithm semi-implicit.

For convenience, let us denote the spatial mesh step in the x, y, and z direc-

tion by ∆hi, respectively, and use the lower index of the wave function to define

a position in the mesh in the given direction. For instance, when we are consid-

ering Equation (E.5) along x direction, ψn+j/4
i denotes the wave function value at

x = −Lx/2 + i∆h1, while the values of the other two coordinates are implicitly

assumed. In this notation, with the three-point formula for the Laplacian on the

right-hand side of Equations (E.5) - (E.7), the equation in the given direction j

reads

i
ψ
n+(j+1)/4
i − ψn+j/4

i

∆t
=

1

4 ∆h2
j

(
ψ
n+(j+1)/4
i+1 − 2ψ

n+(j+1)/4
i + ψ

n+(j+1)/4
i−1

+ ψ
n+j/4
i+1 − 2ψ

n+j/4
i + ψ

n+j/4
i−1

)
,

(E.8)

where j = 1, 2, 3 defines the spatial direction of propagation. In the above equation,

the known quantities have the upper index n + j/4, while the unknown quantities

have the superscript n+ (j + 1)/4. Taking this into account, Equation (E.8) can be

written in the form of a series of tridiagonal equations,

A−j ψ
n+(j+1)/4
i−1 + A0

jψ
n+(j+1)/4
i + A+

j ψ
n+(j+1)/4
i+1 = B

n+j/4
i , (E.9)
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where the following coefficients are defined by the known quantities,

A−j = A+
j = − ∆t

4∆h2
j

, A0
j = 1 + i

∆t

2∆h2
j

, (E.10)

B
n+j/4
i = i

∆t

4∆h2
j

(
ψ
n+j/4
i+1 − 2ψ

n+j/4
i + ψ

n+j/4
i−1

)
+ ψ

n+j/4
i . (E.11)

Equation (E.9) is solved by using the forward recursion method, i.e., by express-

ing the mesh values of the propagated wave function in each spatial direction in the

form

ψ
n+(j+1)/4
i+1 = αjiψ

n+(j+1)/4
i + β

n+j/4
i . (E.12)

Inserting the above rule into Equation (E.9), the propagated mesh values of the

wave function are given by

ψ
n+(j+1)/4
i = γji

(
A−j ψ

n+(j+1)/4
i−1 + A+

j β
n+j/4
i −Bn+j/4

i

)
, (E.13)

with

γji = − 1

A0
j + A+

j α
j
i

. (E.14)

We now obtain the backward recursion relations for the coefficients αji and βn+j/4
i

from Equations (E.12) and (E.13),

αji−1 = γjiA
−
j , (E.15)

β
n+j/4
i−1 = γji

(
A+
j β

n+j/4
i −Bn+j/4

i

)
. (E.16)

In the algorithm, the coefficients αj/4i and β
n+j/4
i are calculated starting from i =

Nj − 2 to i = 0. Since the value of the wave function must vanish at the mesh

boundary, we chose the initial border values of αj/4Nj−1 and βn+j/4
Nj−1 to be equal to 0.

The coefficients A−j , A
+
j , A0

j , α
j
i , and γji do not depend on the time step n, and

are therefore constant for a particular mesh setup. Only the coefficients βn+j/4
i , and

consequentially Bn+j/4
i , have to be recalculated after each time step, for each spatial

direction j = 1, 2, 3.
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F Details on testing of the scaling of programs

Here we give the details related to the testing setup used in Chapter 6. The code

that implements the algorithm for solving the dipolar GPE is optimized for use with

the commercially-licensed Intel and the free, open-source GNU compiler suite. We

have also tested and verified the compilation with IBM’s xlc compiler, PGI’s pgcc

compiler, and Oracle’s suncc (former Sun’s) compiler. Beside of the most generic,

fully-anisotropic three-dimensional trap, we have written additional independent

codes for 1D and 2D systems, for 3D system with cylindrical (effectively 2D) and

spherical (effectively 1D) symmetry, and 2D systems with cylindrical symmetry

(effectively 1D). All outputs from the simulations are stored using the Hierarchical

Data Format (HDF) library [101], which is designed to store and organize large

amounts of data. Using HDF, the average size of the results of a typical simulation

is around 2 GB of storage space. This includes the wave function calculated in the

imaginary-time simulation and all results of the real-time propagation. Compared

to the same amount of information stored in a plain text format, HDF provides

compression by an average factor of ten. Also, since HDF is a widely used format,

various externally developed visualization tools can be used for the analysis of the

obtained results.

In addition to the OpenMP-parallelized version of the code [90–92], our group

has parallelized the algorithm using the Message Passing Interface (MPI) library [92]

that enables utilization of distributed memory computing systems (computer clus-

ters). Furthermore, using the CUDA toolkit, the group has developed algorithms

optimized for the graphics processing units (GPU) able to utilize hardware accel-

erators [93]. Finally, combining all parallelization techniques (OpenMP, MPI, and

CUDA), hybrid programs for solving the dipolar GPE were also developed and made

publicly available [94]. These programs are able to utilize state-of-the-art computing

clusters available today.

The PARADOX computing cluster at the Scientific Computing Laboratory, Cen-

104



ter for the Study of Complex Systems of the Institute of Physics Belgrade has been

used for development and testing of the programs. This resource has more than

2,500 Intel Xeon E5-2670 Sandy Bridge processing cores at a frequency of 2.6 GHz

and 32 GB of RAM (2 GB per CPU core). Additional 106 NVIDIA Tesla M2090

graphic cards with 6 GB of RAM are distributed over available computing nodes.

The cluster nodes are interconnected via a QDR Infiniband technology, through a

non-blocking 144-port Mellanox QDR Infiniband switch. The communication speed

of all nodes is 40 Gbps in both directions, while the peak computing power of PARA-

DOX is 105 TFlops. The cluster provides around 100 TB of storage space, which is

distributed via a Lustre high-performance parallel file system that uses Infiniband

technology.
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