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HayuynoMm Behy UncruryTa 3a ¢pusuky y beorpany

IIpenaor 3a Crynenrcky Harpany MHcTuTyTa 32 pusuky y beorpany

ITomrroBanu,

Benuko Mu je 3am0BOJbCTBO Aa mpemioxkuMm ap Jdymana BynparoBmha 3a CryneHTcky Harpamy
WuctutyTta 3a dusuky y beorpamy 3a mokropcky aucepranujy mon HasuBoM "Faraday waves in
ultracold dipolar Bose gases", kojy je ombpanno 24. meuemOpa 2019. roamnHe Ha Puznuxom
¢axynrery Yausep3urera y beorpany.

Hp HAyman ByaparoBuh ce y cBoM HayyHOM pagy OaBH NpoOJieMHMa YITpaxjaTHHX OO030HCKHX
racoBa y IMpPUCYCTBY IUIOJN-AMION HMHTEPaKLUHWje, Kao W Pa3BOjeM MapajelHHX HYMEPUYKHX
anropurama u nporpama 3a HyMepHuuKe CUMYJIalfje OBUX (PU3NYKHUX CUCTEMA.

VY CBOM HCTpakuBamy, KOj€ je AeTaJbHO OMUCAHO Y AUCEPTalUjH, KaHIUIAT je IpoydaBao peHoMeHe
DapanejeBUX U PE30HAHTHHUX Tajlaca I'YCTHHE, KOjH HAcTajy Kao pe3yiraT XapMOHHjCKEe MOIyJaluje
cUcTeMa M TpeACTaBjba)y HEIMHEAapHE CeKCHUTAalWje CHCTeMa YycJell NPUCYCTBa WHTEPAKIHja,
Crpe3ameM KOJIEKTUBHHUX OCIMJIalMja M TapaMeTapCKUX pe3oHaHIu. MOTHUBAIH]jy 32 OBO MPEACTaBIba
n00po no3HaTH KinacuuHu ¢peHomeH PapajejeBux Tanaca, KOjH ce 1M0jaBibyjy Ha MOBPIIMHHU TUIUTKOT
CJI0ja TEYHOCTH YKOJIMKO C€ TIOCy/a Y K0jOj Ce Hala3y XapMOHH]CKH OCLMIIYje Y BEPTHKATHOM CMEpY.
VY ToM ciy4ajy 10jaBJbyjy ce MOBPIIMHCKH Talacu Ydje je maTepHe MPBU MOCMaTpao 1 onucao Majki
Qapanej mouetkoM XIX Beka. MHTepec 3a OBakBy BpPCTY €KCHMTalMja I0jaBHO C€ IIOHOBO
ocamzieceTHX roguHa XX BeKa Y KOHTEKCTY HEJIMHEApHUX TEYHOCTH, a Y KOHTEKCTY YATpaxiagHHUX
racoBa, PapazejeBu Tanacu cy mpBo mpoydaBanu Teopujcku 2002. ronuHe. Mako cy KoJ TEYHOCTH Y
MUTaky MOBPLUIMHCKU TANaCH, a Y YITPaxJIaJHUM KBaHTHUM TacoBHUMa CE paju O TaJllaCMMa T'yCTHHE,
KOPUCTHMO WCTH Ha3uB 3a Te¢ (heHOMeHe. HakoH MpBUX TEOPUjCKUX M HYMEPHUKHX pe3yirara 3a
CHCTEME Ca KOHTAKTHOM MHTEPAKIHjOM, Y EeKCIIepUMEHTHMA ca bo3e-AjHINTajH KOHIEH3aTOM aToMa
pyounujyma cy 2007. ronune ®apanejeBu Tanacu U3MEPEHH M KapaKTepUCAHU IMTOMONY MPOCTOPHOT
nepuoja, Ka0 M BpeMeHa MOAYyJaluje Koje je moTpeOHO Ja ce pa3BHjy. Y MHOCHEAmHUX HEKOJINKO
roguHa ¢eHomen PapazaejeBUX Talaca je MOHOBO JOOMO Ha HMHTEepecy 300T HEKOJMKO BasKHHX
eKcIiepuMeHaTa Koju cy oOjaBibeHn y Boaehum wacommcuma (Nature, Physical Review Letters,
Physical Review X).

C o63upom Ha cBe Behu 3HA4aj AYroJOMETHHX WMHTEPAKIMja M aHM30TPOIHOCTH CHUCTEMa, IITO Ce
noceOHO orjena y BEIMKOM Opojy pazoBa M eKCIIepMMEHaTa KOjU MpOoydaBajy yTHIA] JUIIOJI-IUTION
MHTEpaKLMje Ha OCOOMHE YNTpaxJaAHUX OO30HCKHX CHCTeMa, KaHIuAaT ce (HOKyCHpao Ha pasBoj
BapHjalliOHOT TMpHCTyna 3a omuc AuHamuke DapajejeBUX M PE30HAHTHUX Tanaca y IUIIOJHUM
KOHJIEH3aThMa, ILITO paHWje Huje Omio ypaheno. OBaj mpucTyn je 3acHOBaH Ha [aycoBom
BapHjalliOHOM aH3ally KOjH 3a apaMeTpe uMa IUpUHE KOHAEH3aTa, KOHjyroBaHe gase, a ykibyuyje u
MOJyJaluje TYCTHHE KaKo O OnMcao IMHAMUKY Tanaca IyCTHHE.

Kopucrehn pasBujeHH BapHjalliOHH NOPUCTYH, Ka0 M IyH HYMEPUYKH INPHUCTYI, AETaJbHO je
Mpoy4aBao 0COOMHE Tanaca r'yCTHHE Y AMIIOJIHUM KOHIEH3aTUMa Ha HYJITO] TEMIIEpaTypH, TAC JHUIIOII-
JUIIOJI MHTEPaKLUja Urpa BaXKHY yJOTY 300T HapylLlelka CUMETpHje yciel aHHU30TPONHje CHCTEMA.
W3Beo je jeqHaunHE KpeTama Koje OMHUCY]y AMHAMHUKY MOIYJIHCAHOT AUTIOIHOT OO30HCKOT CUCTEMa U
uAeHTH(PUKOBAO HajHECTaOMIHHje MoJe Koje oaroBapajy dapanejeBUM M PE30HAHTHUM TaJlaCHMa.
Jaibe, Ha OCHOBY TOTa, U3BEO je aHATUTHYKE U3pa3e 3a MPOCTOpHE Nepuojie o0a TUIa Tanaca rycTHHE,
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Kao M FBbUXOBY 3aBUCHOCT O]l jaunHe KOHTAKTHE M JUITOJI-AUINON uHTepaknuje. JloOujeHe BapujaoHe
pe3yiTaTe yHopeauo je ca pe3yiTaTuMa AeTaJbHUX HyMEPUUIKUX CUMYJIAlMja Koje pelaBajy AUMOIHY
I'poc-IluTaeBcku jenHAuMHY y TPW MPOCTOPHE AUMEH3HjE U TOOHO BeoMa J0OPO cllarame.

Kanangar je mpoy4aBao W yTHIA] KOHTaKTHE M AMIION-THUIION HMHTEPAKLHje HAa CBOjCTBA OCHOBHOT
CTamka W KOJEKTHBHUX OCHMJalWja AWMOIHMX KoHAeH3ata. Jlok moBehame jaunHe KOHTaKTHE
MHTEpaKIMje yBEeK ITOBOAM 10 LIMPEHa KOHJIEH3aTa, CHUTyalllja je CIOXEHHja Kaja ce MEma jaunHa
JUIOJNI-IUTION HWHTEpaknuje. 3a 3aMKy Yy OONMKy Lurape y KO0joj Cy IWIONH OpHjeHTHCAaHH Yy
panujamHOM CMepy, KaHIUAaT je moKas3ao Aa nosehame jaunHe TUION-AUION HHTEpaKIUje JOBOAU 0
MIMpea KOHJEH3aTa y JIOHTMTYIUHAJIHOM TpaBlly W y MpaBLy IMONapu3aluje, TOK ce LIHpPHHA Y
Tpehem mpaBuy cMmamyje. [lopea Tora, mpoydaBao je W (peKkBeHIHje KOJIECKTUBHHX MOAA, TIE CY
e(eKTH HHTEpaKIKja Mame u3pakeHd. OBO ce MoceOHO OJJHOCH HAa MOHOIOJIHY U KBaJPYyTOJIHY MOJY,
YHje BPEAHOCTH MPAKTUYHO OCTajy KOHCTAHTHE Y LIEJIOM PACIOHY EKCIIEPUMEHTATHO PEJIEBaHTHHUX
BpPEIHOCTH jaunHa uHTepakuuja. Ca mpyre crpane, (hpeKBeHLMja pagujajgHe KBaApYIIOJIHE MOJC je
OCeTJbHMBHja Ha MPOMEHY jaulHE MHTEpakiuje, NoceOHO jaunHe KOHTAKTHE MHTEpakiuje, 0K MpH
MPOMEHH jaylHE AUTION-IHUIION HHTEPaKIUje MoKa3yje HEMOHOTOHO MOHAIIAE.

Baxkan pe3yaraTt JOKTOpCKe AucepTalyje KaHauaaTa je ¥ pa3Boj NapajeIHuX HyMEpUYKHX METOa 32
pemaBambe TpoauMeH3noHanmHe [poc-IlutaeBcku jegHaumHe ca KOHTAKTHUM W JAWUINOJIHUM
MHTEPAKIMOHUM WIAHOM, IOMONY KOje Ce OMUCYjy MpOy4YaBaHW YNTPaxJaAHW OO30HCKH CHCTEMHU.
Bpemenckn 3aBucHa aunonHa I['poc-llutaecBckm jemHaumHa je mapuujaigHa IudepeHnrjanHa
jeaHaYrHa MO MPOCTOPHUM KOOpAMHATaMa U BpeMEHY M UMa CTPYKTypy HenuHeapHe [llpeannrepose
jeoHayMHe, TaKO Ja CaapXH NPBU M3BOJ TamacHe (YHKUHMje IO BpPEMEHY M Jpyre H3BOAE IO
NPOCTOPHUM KOOpAMHATaMa. JIMNOJIHM WHTEPaKIMOHM WIaH je ONWCaH IOMONy MpPOCTOPHOT
MHTETpaia, MOIITO je Y MUTalky JYyrOAOMEHTHA HHTepakiuja. Pa3BujeHn MeToa MoJesbeHOT Kopaka 3a
pemaBame ['poc-IluTaeBcku jegHauWHe YKIJbydyje IOUCKPETH3aLUjy MO MPOCTOPY M BpEMEHY,
MOjeAMHAYHy WHTETpalMjy IO MPOCTOPHHUM KOOpIMHATAMa W BPEMEHCKY IIpomaramnujy
JUCKPETH30BaHE jeJHAYMHE. YKOJHMKO j€ MO3HATO PELIeHhe y jeIHOM BPEMEHCKOM TPEHYTKY, OBa
Meroga omoryhaBa HalaXkeme pellema Iocie Malor BPEMEHCKOI KOpaka MponarupameM
JUCKPETH30BaHE jeHaYnHe. Y IHCepTalujd KaHAWIaTa KOPHUINTEHA je CeMU-UMIUTMIUTHA KpeHk-
Hukoncon amckpernsanyoHa IeMa Koja OCHIypaBa CTaOMIIHOCT pelliemha W 4yBa HOPMY TallacHE
¢yHKLIMje TOKOM TMpomaranuje y pealHOM BpeMeHy. HyMmepHuku anropuTMu KOjHU Cy paHHje
Pa3BHjeHU 3a ClIy4aj KOHTAKTHE MHTEpaKLHje Cy Y OKBHPY JOKTopara yonmTeHu Ha ['poc-IlutaeBcku
jeoHaYMHy ca JIUION-AWINoN HuHTepakuujoM. C 003MpOM Ha BENHMKY HYMEPHUYKY 3aXTEBHOCT
TPOAVMEH3MOHATTHUX CHUMYJaIja 3a MPOYyYaBamke PEaTHUX (PU3MYKUX CHCTEMA, CBH QJITOPUTMH CY
napaenn30BaHH.

Kanaugar je oBe pesynTare MpHKa3ao ACTAJHHO Y OKBUDPY JOKTOPCKE IUCEPTaLdje TOA Ha3HBOM
"Faraday waves in ultracold dipolar Bose gases ", koja je HamucaHa Ha €HIJIECKOM je3UKy U uma 7
nornasJba. HajsHauajHUju paioBH y KOjUMa Cy 00jaB/bEHHU NMPENCTABIbEHHU PE3YITATH CY:

1. D. Vudragovié, 1. Vidanovi¢, A. Balaz, P. Muruganandam, and S. K. Adhikari,
C Programs for Solving the Time-dependent Gross-Pitaevskii Equation in a Fully Anisotropic Trap,
Comput. Phys. Commun. 183, 2021 (2012).
DOI: 10.1016/j.cpc.2012.03.022; ISSN: 0010-4655; 1IF(2012) = 3.078

2. R. Kishor Kumar, L. Young-S., D. Vudragovi¢, A. Balaz, P. Muruganandam, and S. K. Adhikari,
Fortran and C Programs for the Time-dependent Dipolar Gross-Pitaevskii Equation in an Anisotropic
Trap, Comput. Phys. Commun. 195, 117 (2015).

DOI: 10.1016/j.cpc.2015.03.024; ISSN: 0010-4655; IF(2015) = 3.635
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3. L. Young-S., D. Vudragovié¢, P. Muruganandam, S. K. Adhikari, and A. Balaz,
OpenMP Fortran and C Programs for Solving the Time-dependent Gross-Pitaevskii Equation in an
Anisotropic Trap, Comput. Phys. Commun. 204, 209 (2016).
DOI: 10.1016/j.cpc.2016.03.015; ISSN: 0010-4655; IF(2016) = 3.936

4. L. Young-S., P. Muruganandam, S. K. Adhikari, V. Loncar, D. Vudragovi¢, and A. Balaz,
OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation,
Comput. Phys. Commun. 220, 503 (2017).
DOI: 10.1016/j.cpc.2017.07.013, ISSN: 0010-4655; 1F(2017) = 3.748

5. D. Vudragovi¢ and A. Balaz,
Faraday and Resonant Waves in Dipolar Cigar-Shaped Bose-Einstein Condensates,
Symmetry 11, 1090 (2019).
DOI: 10.3390/sym11091090; ISSN: 2073-8994; 1F(2018)=2.143

VY mpuiiory je Aat pelieBaHTaH CIMCaK myoiukanuja kanauaata. [lomro je on y nepuony ox 2008. mo
2012. rogune 6uo unan ATJIAC komabopauuje, pagoBu 00jaBJbeHU y TOM KOHTEKCTY Cy HaBEIEHH
noceOHO, jep HUCY Be3aHM 3a JOKTOPCKY AMCEpTaldjy Koja je OBOM MPHIMKOM HOMHHOBaHa 3a
Harpamy.

Jp HAyman Bynparosuh je mo camga o0jaBuo 22 paga y MelyHapoAHHUM dYacomucuMa, 3 TOTJaBiba y
MoHoOrpadujamMa, Kao W BHUILIE CAOMIITeHa ca MEhyHapOAHMX CKYNOBa INTaMIAaHUX y LEJIUHH H Y
n3Bony. Kaga ce m3y3my nyOnukanuje u3 nepuona anraxkoBama y ATJIAC komabopanuju u apyre
nyOiuKamyje Koju HUCY Be3aHe 3a JOKTopar, Kanaunar je oOjaBuo 8 pamoBa y MmehyHapomHum
Jacomucuma, o1l uera 4 kareropuje M21a, 2 kareropuje M21 u no jegan kareropuja M22 u M23,
on vera je Ha 3 paga Boaehu ayrop. Ykynan umMnakT ¢pakrop oBux panosa je 21,102. Y oBy rpymy
peneBaHTHUX MyOJMKaLyWja crajaajy u ABa MorjaBiba KaTeropuje M13 u jemHO moriaBibe KaTeropuje
M14, 2 caomurema kateropuje M33 u 6 caonmrema kareropuje M34.

ITpema 6a3u Web of Science, panosu ap dymana Byaparosuha cy uutupanu ykynHo 1937 myta (6e3
ayrouuTtara), y3 h=16. Kaga ce pasmarpajy camo myOiukamnuje pejeBaHTHE 3a JOKTOpAT, OHIA je
npema uctoj 60azu O6poj muraTa 293 (0e3 ayroumrara), a h=6. Kanaunar je OMo pereH3eHT YeTupu
pana y gacomucy Data Technologies and Applications, nBa pana y wacomucy Physics Letters A u
jemHor pama y uvacomucy Simulation: Transactions of the Society for Modeling and Simulation
International.

Hmajyhu cBe HaBeleHO y BHAY, ca 3a/10BOJbCTBOM mpepiaxem Ap Jlymana Byaparosuha 3a
Crynentcky Harpagy HHctuTtyTa 3a ¢msmky y beorpaay 3a Hajoosby MOKTOPCKY Te3y
on0pameny TokoMm 2019. roaune.

VY Beorpany, 29. 04. 2020. rogune
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Ip AHTyH banax, Hay4HH CaBETHUK

PYKOBOAMIIAL] L[CHTpa H3Yy3CTHUX BPCAHOCTH
3a U3ydaBarmbC KOMIUICKCHUX CUCTEMaA



buorpadmuja np Aymana Byaparosuha

Hyman Bynparosuh je pohen 3. maja 1980. rogune y Cpemckoj MutpoBui. OCHOBHY
mkoiy “Ilocurej O6panosuh” 3aBpmmo je y Ilyruninuma, a I'mmuazujy “CreBan Ilysuh” y
Pymu. OcHoBHe cTyauje je moxahao Ha @uznukom daxkynrery YHuBep3urera y beorpaay Ha
cmepy [Ipumemena gusuka u nndopmaruka y nepuony ox 1999. no 2005. rogune. Toxom
cTyauja 1obuo je crunenauje MunucrapctBa Hayke PenyOmuke Cp6uje u Bnane PemyOnuke
Cpbuje, xkao u Harpaxy 1000 Haj6ospux cryaenata y Cpb6buju Hopsemke ambacane y
beorpany. Juminomupao je 2005. roaune ca mpocedyHoM orieHoM 9.62. JIMMIOMCKHU paj moJ
Ha3uBOM ‘“‘Mepeme e(eKTHBHE TpaHCBEp3aJlHE €MHUTAHCE JOHCKOI CHOMa” ypaauo je MoJ
pykoBoJcTBOM ipod. np MiBaHa AHu4MHA.

Y nmepuony ox 2006. no 2008. rogune 6opasuo je y IIEPH-y (OKeneBa) kao capamHuk Ha
®I16 npojektuma SEE-GRID-2 (SEE-GRID elnfrastructure for regional eScience) u EGEE-
II (Enabling Grids for E-sciencE). CBoj uctpaxmuBauku pan je 3amoueo Ha ATJIAC
kosabopauuju 2008. ronune, koju npekuaa 2012. roguHe, HAaKOH Yera, MOJ MEHTOPCTBOM Jp
AntyHa banaxa, npenasu y Jlaboparopujy 3a nmpuMeHy pauyHapa y Hayuu MHcTuTyTa 32
¢usuxy y beorpany, y okBupy npojexra OH171017.

Jokropcke crynuje Ha PusnukoMm (akynrery YHuBep3utera y beorpany ymucao je 2012.
roaune. JIokTopcky aucepraiujy mox HacioBoM “‘Faraday waves in ultracold dipolar Bose
gases” (PapazejeBu Tanacu y yATpaxjaJHUM AUNOTHUM bo3e racoBuma) ypaheny mon
MeHTOpcTBOM Ap AHTyHa banaxa, ogOpanuo je 24. neuem6pa 2019. rogune.

Hyman Bynparosuh je 3anocnen y Muctutyty 3a ¢usuky y beorpamy xao ucrpaxuBau
capaaHuk y Jlaboparopuju 3a npuMeHy padyHapa y Hayuu HarmoHanHOT LeHTpa U3y3eTHHX
BPEIHOCTH 3a M3Yy4YaBamke KOMIUICKCHHX CHCTeMa. Y OKBHPY MehyHapoJHe capaimbe,
TPEeHYTHO je aHraxxoBaH Ha Xopu3oHT 2020 npojextrma NI4OS-Europe (National Initiatives
for Open Science in Europe) u SMARTCHAIN (Towards Innovation - driven and smart
solutions in short food supply chains).

Hp Ayman Bynparosuh je no cama ofjaBuo 22 pana y mehyHapogHum dacomnucuma, 3
NoryiaBjba y MOHOrpadujamMa, Kao M BHUIIE CaoNIITema ca MelyHapoaHuX CKymoBa
MITAMIAHUX Y LEJIUHU U y u3Boay. Kana ce uzy3smy nyOnukanuje u3 nepuoja aHraxoBama y
ATIJIAC xonabopamnuju u npyre myOiauKamnuje KOju HUCY BE3aHe 3a JOKTOpaT, KaHAWIAT je
o0jaBuo 8 panoBa y melynaponnum yaconucuma, o yera 4 kareropuje M21a, 2 kareropuje
M21 u no jenan kareropuja M22 u M23. V oBy rpyImy pelieBaHTHHX IyOJIMKalgja cragajy u
JBa TOrjaBjba Kareropuje M13 um jenmHo mnornasibe KaTeropuje M14, 2 caommTema
kareropuje M33 u 6 caonmrema kareropuje M34.

[Tpema 6a3zu Web of Science, pagosu ap [lymana Bynparosuha cy nuutupanu ykynuao 1937
nyTta (0e3 ayrommrata), y3 h=16. Kaga ce pa3smarpajy camo myOnuKanuje pejeBaHTHE 3a
JIOKTOpAT, OHJIa je IpeMa UcToj 6a3zu O6poj urara 293 (6e3 ayrouuTara), a h=6.



Crmmicak peneBaHTHHX ITyosmkarmja ap dynrana Byaparosmha

M13 — Monorpadcka cryauja/noraasibe y Kibu3u M11 nim pag y TeMaTcKoMm
300pHUKY Bojieher mel)yHapoaHor 3Ha4daja

1. D. Vudragovié, and A. Balaz, Science gateway for the Serbian condensed matter
physics community, Science gateways for distributed computing infrastructures, Ed.
Peter Kacsuk, p. 209-220, Springer (2014),

DOI: 10.1007/978-3-319-11268-8.

2. O. Prnjat, A. Balaz, D. Vudragovié, 1. Liabotis, C. Sener, B. Marovi¢, M. Kozlo-
vszky, and G. Neagu, SEE-GRID elnfrastructure for regional eScience, Data driven
e-Science, Eds. S. C. Lin and E. Yen, p. 91, Springer (2011),

DOI: 10.1007/978-1-4419-8014-4 7.

M14 — Monorpadcka cryauja/noraasibe y Kibu3u M12 uim pag y TeMaTcKom
300pHUKY Bojeher mehyHapoaHor 3Ha4Yaja

1. D. Stankovié¢, P. Jovanovié, A. Jovi¢, V. Slavni¢, D. Vudragovié, and A. Balaz,
Implementation and Benchmarking of New FFT Libraries in Quantum ESPRESSO,
High-performance computing infrastructure for South East Europe’s research co-
mmunities, p. 155-162, Springer (2014),

DOI: 10.1007/978-3-319-01520-0 _19.

M21a — PanoBu y mehynapogauMm yaconucmma m3y3eTHUX BPEIHOCTU

1. Luis E. Young-S., P. Muruganandam, S. K. Adhikari, V. Lon¢ar, D. Vudragovié,
and A. Balaz, OpenMP GNU and Intel Fortran programs for solving the time-
dependent Gross-Pitaevskii equation, Comput. Phys. Commun. 220, 503 (2017),
DOI: 10.1016/j.cpc.2017.07.013; IF(2017) = 3.748.

2. Luis E. Young-S., D. Vudragovié, P. Muruganandam, S. K. Adhikari, and A. Balaz,
OpenMP Fortran and C' programs for solving the time-dependent Gross-Pitaevskit

equation in an anisotropic trap, Comput. Phys. Commun. 204, 209 (2016),
DOI: 10.1016/j.cpc.2016.03.015; IF(2016) = 3.936.

3. R. K. Kumar, Luis E. Young-S., D. Vudragovié¢, A. Balaz, P. Muruganandam,
and S. K. Adhikari, Fortran and C programs for the time-dependent dipolar Gross-

Pitaevskii equation in an anisotropic trap, Comput. Phys. Commun. 195, 117 (2015),
DOI: 10.1016/j.cpc.2015.03.024; IF(2015) = 3.635.

4. D. Vudragovié, I. Vidanovi¢, A. Balaz, P. Muruganandam, and S. K. Adhikari,
C' Programs for solving the time-dependent Gross-Pitaevskii equation in a fully
anisotropic trap, Comput. Phys. Commun. 183, 2021 (2012),

DOI: 10.1016/j.cpc.2009.04.015; IF(2012) = 3.078.

M21 — PajoBu y BpXyHCKHUM MehyHapoHUM YacolimcuMma

1. A. Balaz, I. Vidanovié, D. Stojiljkovié, D. Vudragovié, A. Beli¢, and A. Bogojevi¢,
SPEEDUP code for calculation of transition amplitudes via the effective action
approach, Commun. Comput. Phys. 11, 739 (2012),

DOI: 10.4208 /cicp.131210.180411a, IF(2012) = 1.863.
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sections in proton-proton collisions at root s=7 TeV with the ATLAS
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Published: DEC 2010
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Search for New Particles in Two-Jet Final States in 7 TeV Proton-
Proton Collisions with the ATLAS Detector at the LHC

By: Aad, G.; Abbott, B.; Abdallah, J.; et al.
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Performance of the ATLAS detector using first collision data
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Group Author(s): ATLAS Collaboration

JOURNAL OF HIGH ENERGY PHYSICS Issue:9 Article Number: 056
Published: SEP 2010

@ Free Full Text from Publisher View Abstract ¥
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We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross—
Pitaevskii (GP) equation for a Bose-Einstein condensate in one, two, and three spatial dimensions,
optimized for use with GNU and Intel compilers. We use the split-step Crank-Nicolson algorithm
for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-
stationary solutions, respectively. The present OpenMP programs are designed for computers with multi-
core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular
free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful
comments for the users. All input parameters are listed at the beginning of each program. Different output
files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc.
We also present speedup test results for new versions of the programs.

New version program summary

Program title: BEC-GP-OMP-FOR software package, consisting of: (i) imagld-th, (ii) imag2d-th,
(iii) imag3d-th, (iv) imagaxi-th, (v) imagcir-th, (vi) imagsph-th, (vii) real 1d-th, (viii) real2d-th, (ix) real3d-
th, (x) realaxi-th, (xi) realcir-th, (xii) realsph-th.

Program files doi: http://dx.doi.org/10.17632/y8zk3jgn84.2

Licensing provisions: Apache License 2.0

Programming language: OpenMP GNU and Intel Fortran 90.

Computer: Any multi-core personal computer or workstation with the appropriate OpenMP-capable
Fortran compiler installed.

Number of processors used: All available CPU cores on the executing computer.

Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid. 204 (2016) 209.
Does the new version supersede the previous version?: Not completely. It does supersede previous Fortran
programs from both references above, but not OpenMP C programs from Comput. Phys. Commun. 204
(2016) 209.

Nature of problem: The present Open Multi-Processing (OpenMP) Fortran programs, optimized for use
with commercially-licensed Intel Fortran and free open-source GNU Fortran compilers, solve the time-
dependent nonlinear partial differential (GP) equation for a trapped Bose-Einstein condensate in one
(1d), two (2d), and three (3d) spatial dimensions for six different trap symmetries: axially and radially
symmetric traps in 3d, circularly symmetric traps in 2d, fully isotropic (spherically symmetric) and fully
anisotropic traps in 2d and 3d, as well as 1d traps, where no spatial symmetry is considered.

Solution method: We employ the split-step Crank-Nicolson algorithm to discretize the time-dependent
GP equation in space and time. The discretized equation is then solved by imaginary- or real-time
propagation, employing adequately small space and time steps, to yield the solution of stationary and
non-stationary problems, respectively.

E-mail addresses: luis.young@usantoto.edu.co (L.E. Young-S), anand@cnld.bdu.ac.in (P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari), vladimir.loncar@ipb.ac.rs
(V. Loncar), dusan.vudragovic@ipb.ac.rs (D. Vudragovi¢), antun.balaz@ipb.ac.rs (A. Balaz).
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Reasons for the new version: Previously published Fortran programs [ 1,2] have now become popular tools
[3] for solving the GP equation. These programs have been translated to the C programming language [4]
and later extended to the more complex scenario of dipolar atoms [5]. Now virtually all computers have
multi-core processors and some have motherboards with more than one physical computer processing
unit (CPU), which may increase the number of available CPU cores on a single computer to several tens.
The C programs have been adopted to be very fast on such multi-core modern computers using general-
purpose graphic processing units (GPGPU) with Nvidia CUDA and computer clusters using Message
Passing Interface (MPI) [6]. Nevertheless, previously developed Fortran programs are also commonly used
for scientific computation and most of them use a single CPU core at a time in modern multi-core laptops,
desktops, and workstations. Unless the Fortran programs are made aware and capable of making efficient
use of the available CPU cores, the solution of even a realistic dynamical 1d problem, not to mention the
more complicated 2d and 3d problems, could be time consuming using the Fortran programs. Previously,
we published auto-parallel Fortran programs [2] suitable for Intel (but not GNU) compiler for solving the
GP equation. Hence, a need for the full OpenMP version of the Fortran programs to reduce the execution
time cannot be overemphasized. To address this issue, we provide here such OpenMP Fortran programs,
optimized for both Intel and GNU Fortran compilers and capable of using all available CPU cores, which
can significantly reduce the execution time.

Summary of revisions: Previous Fortran programs [ 1] for solving the time-dependent GP equation in 1d, 2d,
and 3d with different trap symmetries have been parallelized using the OpenMP interface to reduce the
execution time on multi-core processors. There are six different trap symmetries considered, resulting in
six programs for imaginary-time propagation and six for real-time propagation, totaling to 12 programs
included in BEC-GP-OMP-FOR software package.

All input data (number of atoms, scattering length, harmonic oscillator trap length, trap anisotropy,
etc.) are conveniently placed at the beginning of each program, as before [2]. Present programs introduce
a new input parameter, which is designated by Number_of_Threads and defines the number of CPU
cores of the processor to be used in the calculation. If one sets the value 0 for this parameter, all available
CPU cores will be used. For the most efficient calculation it is advisable to leave one CPU core unused for
the background system’s jobs. For example, on a machine with 20 CPU cores such that we used for testing,
it is advisable to use up to 19 CPU cores. However, the total number of used CPU cores can be divided into
more than one job. For instance, one can run three simulations simultaneously using 10, 4, and 5 CPU
cores, respectively, thus totaling to 19 used CPU cores on a 20-core computer.

The Fortran source programs are located in the directory src, and can be compiled by the make
command using the makefile in the root directory BEC-GP-OMP-FOR of the software package. The
examples of produced output files can be found in the directory output, although some large density
files are omitted, to save space. The programs calculate the values of actually used dimensionless
nonlinearities from the physical input parameters, where the input parameters correspond to the identical
nonlinearity values as in the previously published programs [1], so that the output files of the old
and new programs can be directly compared. The output files are conveniently named such that their
contents can be easily identified, following the naming convention introduced in Ref. [2]. For example,
a file named <code>-out.txt, where <code> is a name of the individual program, represents
the general output file containing input data, time and space steps, nonlinearity, energy and chemical
potential, and was named fort.7 in the old Fortran version of programs [1]. A file named <code>-
den.txt is the output file with the condensate density, which had the names fort.3 and fort.4
in the old Fortran version [1] for imaginary- and real-time propagation programs, respectively. Other
possible density outputs, such as the initial density, are commented out in the programs to have a
simpler set of output files, but users can uncomment and re-enable them, if needed. In addition, there
are output files for reduced (integrated) 1d and 2d densities for different programs. In the real-time
programs there is also an output file reporting the dynamics of evolution of root-mean-square sizes
after a perturbation is introduced. The supplied real-time programs solve the stationary GP equation,
and then calculate the dynamics. As the imaginary-time programs are more accurate than the real-time
programs for the solution of a stationary problem, one can first solve the stationary problem using the
imaginary-time programs, adapt the real-time programs to read the pre-calculated wave function and
then study the dynamics. In that case the parameter NSTP in the real-time programs should be set to
zero and the space mesh and nonlinearity parameters should be identical in both programs. The reader
is advised to consult our previous publication where a complete description of the output files is given
[2]. A readme. txt file, included in the root directory, explains the procedure to compile and run the
programs.

We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs. The
parameters used for testing are given in sample input files, provided in the corresponding directory
together with the programs. In Table 1 we present wall-clock execution times for runs on 1, 6, and 19
CPU cores for programs compiled using Intel and GNU Fortran compilers. The corresponding columns
“Intel speedup” and “GNU speedup” give the ratio of wall-clock execution times of runs on 1 and 19 CPU
cores, and denote the actual measured speedup for 19 CPU cores. In all cases and for all numbers of CPU
cores, although the GNU Fortran compiler gives excellent results, the Intel Fortran compiler turns out to
be slightly faster. Note that during these tests we always ran only a single simulation on a workstation at a
time, to avoid any possible interference issues. Therefore, the obtained wall-clock times are more reliable
than the ones that could be measured with two or more jobs running simultaneously. We also studied
the speedup of the programs as a function of the number of CPU cores used. The performance of the
Intel and GNU Fortran compilers is illustrated in Fig. 1, where we plot the speedup and actual wall-clock
times as functions of the number of CPU cores for 2d and 3d programs. We see that the speedup increases
monotonically with the number of CPU cores in all cases and has large values (between 10 and 14 for 3d
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programs) for the maximal number of cores. This fully justifies the development of OpenMP programs,
which enable much faster and more efficient solving of the GP equation. However, a slow saturation in
the speedup with the further increase in the number of CPU cores is observed in all cases, as expected.
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Fig. 1. (a) Speedup for 2d and 3d programs compiled with the Intel (I) and GNU (G) Fortran compilers as a function of the number of CPU cores, measured on a workstation
with two Intel Xeon E5-2650 v3 CPUs. (b) Wall-clock execution time (in seconds) of 2d and 3d programs compiled with the Intel (I) and GNU (G) Fortran compilers as a

function of the number of CPU cores.
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Fig. 2. Speedup of real2d-th program, compiled with the Intel Fortran 90 compiler and executed on 19 CPU cores on a workstation with two Intel Xeon E5-2650 v3 CPUs, as
a function of the number of spatial discretization points NX=NY.

Table 1

Wall-clock execution times (in seconds) for runs with 1, 6, and 19 CPU cores of different pro-
grams using the Intel Fortran (ifort)and GNU Fortran (gf ortran) compilers on a workstation
with two Intel Xeon E5-2650 v3 CPUs, with a total of 20 CPU cores, and the obtained speedups
for 19 CPU cores.

# of cores 1 1 6 6 19 19 19 19

Fortran Intel GNU Intel GNU Intel GNU Intel GNU
time time time time time time speedup  speedup

imag1d 52 60 22 22 20 22 2.6 2.7
imagcir 22 30 14 15 14 15 1.6 2.0

imagsph 24 30 12 15 12 14 24 2.1
realld 205 345 76 108 62 86 33 4.0
realcir 145 220 55 73 48 59 3.0 3.7
realsph 155 250 57 76 46 61 3.4 2.7
imag2d 255 415 52 84 27 40 9.4 10.4
imagaxi 260 435 62 105 30 55 8.7 7.9
real2d 325 525 74 107 32 50 10.1 10.5
realaxi 160 265 35 49 16 24 10.0 11.0
imag3d 2080 2630 370 550 200 250 104 10.5

real3d 19500 26000 3650 5600 1410 2250 138 116
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The speedup tends to increase for programs in higher dimensions, as they become more complex and
have to process more data. This is why the speedups of the supplied 2d and 3d programs are larger than
those of 1d programs. Also, for a single program the speedup increases with the size of the spatial grid, i.e.,
with the number of spatial discretization points, since this increases the amount of calculations performed
by the program. To demonstrate this, we tested the supplied real2d-th program and varied the number
of spatial discretization points NX=NY from 20 to 1000. The measured speedup obtained when running
this program on 19 CPU cores as a function of the number of discretization points is shown in Fig. 2. The
speedup first increases rapidly with the number of discretization points and eventually saturates.
Additional comments: Example inputs provided with the programs take less than 30 minutes to run on a
workstation with two Intel Xeon E5-2650 v3 processors (2 QPI links, 10 CPU cores, 25 MB cache, 2.3 GHz).

© 2017 Elsevier B.V. All rights reserved.
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We present new version of previously published Fortran and C programs for solving the Gross-Pitaevskii
equation for a Bose-Einstein condensate with contact interaction in one, two and three spatial dimensions
inimaginary and real time, yielding both stationary and non-stationary solutions. To reduce the execution
time on multicore processors, new versions of parallelized programs are developed using Open Multi-
Processing (OpenMP) interface. The input in the previous versions of programs was the mathematical
quantity nonlinearity for dimensionless form of Gross-Pitaevskii equation, whereas in the present
programs the inputs are quantities of experimental interest, such as, number of atoms, scattering length,
oscillator length for the trap, etc. New output files for some integrated one- and two-dimensional densities
of experimental interest are given. We also present speedup test results for the new programs.

New version program summary

Program title: BEC-GP-OMP package, consisting of: (i) imagld, (ii) imag2d, (iii) imag3d, (iv) imagaxi,
(v) imagcir, (vi) imagsph, (vii) real1d, (viii) real2d, (ix) real3d, (x) realaxi, (xi) realcir, (xii) realsph.
Catalogue identifier: AEDU_v4_0.

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDU_v4_0.html

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.

Licensing provisions: Apache License 2.0

No. of lines in distributed program, including test data, etc.: 130308.

No. of bytes in distributed program, including test data, etc.: 929062.

Distribution format: tar.gz.

Programming language: OpenMP C; OpenMP Fortran.

Computer: Any multi-core personal computer or workstation.

Operating system: Linux and Windows.

RAM: 1 GB.

Number of processors used: All available CPU cores on the executing computer.

Classification: 2.9, 4.3, 4.12.

Catalogue identifier of previous version: AEDU_v1_0, AEDU_v2_0.

Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid. 183 (2012) 2021.

Does the new version supersede the previous version?; No. It does supersedes versions AEDU_v1_0 and
AEDU_v2_0, but not AEDU_v3_0, which is MPI-parallelized version.

E-mail addresses: luisevery@gmail.com (L.E. Young-S.), dusan.vudragovic@ipb.ac.rs (D. Vudragovi¢), anand@cnld.bdu.ac.in (P. Muruganandam), adhikari@ift.unesp.br

(S.K. Adhikari), antun.balaz@ipb.ac.rs (A. Balaz).

http://dx.doi.org/10.1016/j.cpc.2016.03.015
0010-4655/© 2016 Elsevier B.V. All rights reserved.



210

L.E. Young-S. et al. / Computer Physics Communications 204 (2016) 209-213

Nature of problem: The present OpenMP Fortran and C programs solve the time-dependent nonlinear
partial differential Gross-Pitaevskii (GP) equation for a Bose-Einstein condensate in one (1D), two (2D),
and three (3D) spatial dimensions in a harmonic trap with six different symmetries: axial- and radial-
symmetry in 3D, circular-symmetry in 2D, and fully anisotropic in 2D and 3D.

Solution method: The time-dependent GP equation is solved by the split-step Crank-Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The method yields the solution of stationary and/or non-stationary
problems.

Reasons for the new version: Previously published Fortran and C programs [ 1,2] for solving the GP equation
are recently enjoying frequent usage [3] and application to a more complex scenario of dipolar atoms [4].
They are also further extended to make use of general purpose graphics processing units (GPGPU) with
Nvidia CUDA [5], as well as computer clusters using Message Passing Interface (MPI) [6]. However, a
vast majority of users use single-computer programs, with which the solution of a realistic dynamical
1D problem, not to mention the more complicated 2D and 3D problems, could be time consuming.
Now practically all computers have multicore processors, ranging from 2 up to 18 and more CPU cores.
Some computers include motherboards with more than one physical CPU, further increasing the possible
number of available CPU cores on a single computer to several tens. The present programs are parallelized
using OpenMP over all the CPU cores and can significantly reduce the execution time. Furthermore, in the
old version of the programs [ 1,2] the inputs were based on the mathematical quantity nonlinearity for the
dimensionless form of the GP equation. The inputs for the present versions of programs are given in terms
of phenomenological variables of experimental interest, as in Refs. [4,5], i.e., number of atoms, scattering
length, harmonic oscillator length of the confining trap, etc. Also, the output files are given names which
make identification of their contents easier, as in Refs. [4,5]. In addition, new output files for integrated
densities of experimental interest are provided, and all programs were thoroughly revised to eliminate
redundancies.

Summary of revisions: Previous Fortran [1] and C [2] programs for the solution of time-dependent GP
equation in 1D, 2D, and 3D with different trap symmetries have been modified to achieve two goals.
First, they are parallelized using OpenMP interface to reduce the execution time in multicore processors.
Previous C programs [2] had OpenMP-parallelized versions of 2D and 3D programs, together with the
serial versions, while here all programs are OpenMP-parallelized. Secondly, the programs now have input
and output files with quantities of phenomenological interest. There are six trap symmetries and both in
C and in Fortran there are twelve programs, six for imaginary-time propagation and six for real-time
propagation, totaling to 24 programs. In 3D, we consider full radial symmetry, axial symmetry and full
anisotropy. In 2D, we consider circular symmetry and full anisotropy. The structure of all programs is
similar.

For the Fortran programs the input data (number of atoms, scattering length, harmonic oscillator trap
length, trap anisotropy, etc.) are conveniently placed at the beginning of each program. For the C programs
the input data are placed in separate input files, examples of which can be found in a directory named
input. The examples of output files for both Fortran and C programs are placed in the corresponding
directories called output. The programs then calculate the dimensionless nonlinearities actually used in
the calculation. The provided programs use physical input parameters that give identical nonlinearity
values as the previously published programs [1,2], so that the output files of the old and new programs
can be directly compared. The output files are conveniently named so that their contents can be easily
identified, following Refs. [4,5]. For example, file named <code>-out.txt, where <code> is a name of the
individual program, is the general output file containing input data, time and space steps, nonlinearity,
energy and chemical potential, and was named fort.7 in the old Fortran version. The file <code>-den.txt
is the output file with the condensate density, which had the names fort.3 and fort.4 in the old Fortran
version for imaginary- and real-time propagation, respectively. Other density outputs, such as the initial
density, are commented out to have a simpler set of output files. The users can re-introduce those by
taking out the comment symbols, if needed.

Table 1

Wall-clock execution times (in seconds) for runs with 1, 6 and 20 CPU cores with different programs using the Intel
Fortran ifort (F-1, F-6 and F-20, respectively) and Intel C icc (C-1, C-6 and C-20, respectively) compilers using a
workstation with two Intel Xeon E5-2650 v3 CPUs, with a total of 20 CPU cores, and obtained speedups (speedup-
F = F-1/F-20, -speedupC = C-1/C-20) for 20 CPU cores.

F-1 F-6 F-20 speedup-F C-1 C-6 C-20 speedup-C
imag1d 32 26 26 1.2 45 28 27 1.7
imagcir 15 15 15 1.0 21 15 15 14
imagsph 12 12 12 1.0 19 12 10 1.9
realld 194 84 72 2.7 304 110 98 3.1
realcir 132 62 57 23 182 78 64 2.8
realsph 119 68 67 1.8 191 76 61 3.1
imag2d 190 66 52 3.7 394 77 33 119
imagaxi 240 74 56 43 499 113 55 9.1
real2d 269 70 47 57 483 96 35 138
realaxi 132 37 25 5.3 237 51 22 10.8
imag3d 1682 472 366 4.6 2490 545 202 123

real3d 15,479 3494 2082 7.4 22,228 4558 1438 15.5
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Fig. 1. (a) Speedup of the C and Fortran (F) imag3d programs as a function of the number of CPU cores, measured in a workstation with two Intel Xeon E5-2650 v3 CPUs.
The speedup for the run with N CPU cores was calculated as the ratio between wall-clock execution times with one and N CPU cores. (b) Wall-clock time of the same runs
as a function of the number of CPU cores.

Also, some new output files are introduced in this version of programs. The files <code>-rms.txt are
the output files with values of root-mean-square (rms) sizes in the multi-variable cases. There are new
files with integrated densities, such as imag2d-den1d_x.txt, where the first part (imag2d) denotes that
the density was calculated with the 2D program imag2d, and the second part (den1d_x) stands for the 1D
density in the x-direction, obtained after integrating out the 2D density |¢(x, y)|? in the x-y plane over
y-coordinate,

o0
mot = [ gt P (1)
—0Q

Similarly, imag3d-den1d_x.txt and real3d-den1d_x.txt represent 1D densities from a 3D calculation ob-
tained after integrating out the 3D density |¢(x, y, z)|* over y- and z-coordinate. The files imag3d-
den2d_xy.txt and real3d-den2d_xy.txt are the integrated 2D densities in the x-y plane from a 3D calcu-
lation obtained after integrating out the 3D density over the z-coordinate, and similarly for other output
files. Again, calculation and saving of these integrated densities is commented out in the programs, and
can be activated by the user, if needed.

In real-time propagation programs there are additional results for the dynamics saved in files, such
as real2d-dyna.txt, where the first column denotes time, the second, third and fourth columns display
rms sizes for the x-, y-, and r-coordinate, respectively. The dynamics is generated by multiplying the
nonlinearity with a pre-defined factor during the NRUN iterations, and starting with the wave function
calculated during the NPAS iterations. Such files were named fort.8 in the old Fortran versions of programs.
There are similar files in the 3D real-time programs as well.

Often it is needed to get a precise stationary state solution by imaginary-time propagation and then
use it in the study of dynamics using real-time propagation. For that purpose, if the integer number NSTP
is set to zero in real-time propagation, the density obtained in the imaginary-time simulation is used as
initial wave function for real-time propagation, as in Refs. [4,5]. In addition, at the end of output files
<code>-out.txt, we have introduced two new outputs, wall-clock execution time and CPU time for each
run.

We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs, and present
results for all programs compiled with the Intel compiler. In Table 1 we show different wall-clock execu-
tion times for runs on 1, 6 and 20 CPU cores for Fortran and C. The corresponding columns “speedup-F”
and “speedup-C” give the ratio of wall-clock execution times of runs on 1 and 20 CPU cores, and denote
the actual measured speedup for 20 CPU cores. For the programs with effectively one spatial variable, the
Fortran programs turn out to be quicker for small number of cores, whereas for larger number of CPU cores
and for the programs with three spatial variables the C programs are faster. We also studied the speedup
of the programs as a function of the number of available CPU cores. The performance for the imag3d For-
tran and C programs is illustrated in Fig. 1(a) and (b), where we plot the speedup and actual wall-clock
time of the imag3d C and Fortran programs as a function of number of CPU cores in a workstation with two
Intel Xeon E5-2650 v3 CPUs, with a total of 20 CPU cores. The plot in Fig. 1(a) shows that the C program
parallelizes more efficiently than the Fortran program. However, as the wall-clock time in Fortran for a
single CPU core is less than that in C, the wall-clock times in both cases are comparable, viz. Fig. 1(b). A
saturation of the speedup with the increase of the number of CPU cores is expected in all cases. However,
the saturation is attained quicker in Fortran than in C programs, and therefore the use of C programs could
be recommended for larger number of CPU cores. For a small number of CPU cores the Fortran programs
should be preferable. For example, from Table 1 we see that for 6 CPU cores the Fortran programs are faster
than the C programs. In Fig. 1(a) the saturation of the speedup of the Fortran program is achieved for ap-
proximately 10 CPU cores, when the wall-clock time of the C program crosses that of the Fortran program.

Additional comments:

This package consists of 24 programs, see Program title above. For the particular purpose of each program,
please see descriptions below.

Running time:

Example inputs provided with the programs take less than 30 min in a workstation with two Intel Xeon
Processors E5-2650 v3, 2 QPI links, 10 CPU cores (25 MB cache, 2.3 GHz).
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Program summary (i), (v), (vi), (vii), (xi), (xii)
Program title: imag1d, imagcir, imagsph, real1d, realcir, realsph.

Title of electronic files in C: (imag1d.c and imag1d.h), (imagcir.c and imagcir.h), (imagsph.c and imagsph.h),
(realld.c and real1d.h), (realcir.c and realcir.h), (realsph.c and realsph.h).

Title of electronic files in Fortran 90: imag1d.f90, imagcir.f90, imagsph.fo0, real1d.f90, realcir.fo0,
realsph.f90.

Maximum RAM memory: 1 GB for the supplied programs.
Programming language used: OpenMP C and Fortran 90.
Typical running time: Minutes on a modern four-core PC.

Nature of physical problem: These programs are designed to solve the time-dependent nonlinear partial
differential GP equation in one spatial variable.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

Program summary (ii), (iv), (viii), (x)

Program title: imag2d, imagaxi, real2d, realaxi.

Title of electronic files in C: (imag2d.c and imag2d.h), (imagaxi.c and imagaxi.h), (real2d.c and real2d.h),
(realaxi.c and realaxi.h).

Title of electronic files in Fortran 90: imag2d.f90, imagaxi.fo0, real2d.f90, realaxi.f90.
Maximum RAM memory: 1 GB for the supplied programs.

Programming language used: OpenMP C and Fortran 90.

Typical running time: Hour on a modern four-core PC.

Nature of physical problem: These programs are designed to solve the time-dependent nonlinear partial
differential GP equation in two spatial variables.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

Program summary (iii), (ix)

Program title: imag3d, real3d.

Title of electronic files in C: (imag3d.c and imag3d.h), (real3d.c and real3d.h).
Title of electronic files in Fortran 90: imag3d.f90, real3d.f90.

Maximum RAM memory: 1 GB for the supplied programs.

Programming language used: OpenMP C and Fortran 90.

Typical running time: Few hours on a modern four-core PC.

Nature of physical problem: These programs are designed to solve the time-dependent nonlinear partial
differential GP equation in three spatial variables.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

© 2016 Elsevier B.V. All rights reserved.
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Dipolar atoms

Many of the static and dynamic properties of an atomic Bose-Einstein condensate (BEC) are usually
studied by solving the mean-field Gross-Pitaevskii (GP) equation, which is a nonlinear partial differential
equation for short-range atomic interaction. More recently, BEC of atoms with long-range dipolar atomic
interaction are used in theoretical and experimental studies. For dipolar atomic interaction, the GP
equation is a partial integro-differential equation, requiring complex algorithm for its numerical solution.
Here we present numerical algorithms for both stationary and non-stationary solutions of the full three-
dimensional (3D) GP equation for a dipolar BEC, including the contact interaction. We also consider the
simplified one- (1D) and two-dimensional (2D) GP equations satisfied by cigar- and disk-shaped dipolar
BECs. We employ the split-step Crank-Nicolson method with real- and imaginary-time propagations,
respectively, for the numerical solution of the GP equation for dynamic and static properties of a dipolar
BEC. The atoms are considered to be polarized along the z axis and we consider ten different cases,
e.g., stationary and non-stationary solutions of the GP equation for a dipolar BEC in 1D (along x and z
axes), 2D (in x-y and x-z planes), and 3D, and we provide working codes in Fortran 90/95 and C for these
ten cases (twenty programs in all). We present numerical results for energy, chemical potential, root-
mean-square sizes and density of the dipolar BECs and, where available, compare them with results of
other authors and of variational and Thomas-Fermi approximations.

Program summary

Program title: (i) imag1dz, (ii) imag1dX, (iii) imag2dXY, (iv) imag2dXZ, (v) imag3d, (vi) real1dz, (vii)
real1dX, (viii) real2dXY, (ix) real2dXZ, (x) real3d

Catalogue identifier: AEWL_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWL_v1_0.html

Program obtainable from: CPC Program Library, Queens University, Belfast, N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 111384

No. of bytes in distributed program, including test data, etc.: 604013

Distribution format: tar.gz
© 2015 Elsevier B.V. All rights reserved.

* This paper and its associated computer program are available via the Computer

1. Introduction

After the experimental realization of atomic Bose-Einstein con-

Physics Communication homepage on ScienceDirect (http://www.sciencedirect. densate (BEC) of alkali-metal and some other atoms, there has
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been a great deal of theoretical activity in studying the stat-
ics and dynamics of the condensate using the mean-field time-
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dependent Gross-Pitaevskii (GP) equation under different trap
symmetries [1]. The GP equation in three dimensions (3D) is a
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nonlinear partial differential equation in three space variables and
a time variable and its numerical solution is indeed a difficult task
specially for large nonlinearities encountered in realistic experi-
mental situations [2]. Very special numerical algorithms are nec-
essary for its precise numerical solution. In the case of alkali-metal
atoms the atomic interaction in dilute BEC is essentially of short-
range in nature and is approximated by a contact interaction and
at zero temperature is parametrized by a single parameter in a
dilute BEC — the s-wave atomic scattering length. Under this ap-
proximation the atomic interaction is represented by a cubic non-
linearity in the GP equation. Recently, we published the Fortran [3]
and C [4] versions of useful programs for the numerical solution
of the time-dependent GP equation with cubic nonlinearity under
different trap symmetries using split-step Crank-Nicolson scheme
and real- and imaginary-time propagations. Since then, these pro-
grams enjoyed widespread use [5].

More recently, there has been experimental observation of BEC
of 32Cr [6], 154Dy [7] and '%8Er [8] atoms with large magnetic dipole
moments. In this paper, for all trap symmetries the dipolar atoms
are considered to be polarized along the z axis. In these cases the
atomic interaction has a long-range dipolar counterpart in addition
to the usual contact interaction. The s-wave contact interaction is
local and spherically symmetric, whereas the dipolar interaction
acting in all partial waves is nonlocal and asymmetric. The
resulting GP equation in this case is a partial integro-differential
equation and special algorithms are required for its numerical
solution. Different approaches to the numerical solution of the
dipolar GP equation have been suggested [9-14]. Yi and You [10]
solve the dipolar GP equation for axially-symmetric trap while they
perform the angular integral of the dipolar term, thus reducing it
to one in axial (z, z’) and radial (p, p’) variables involving standard
Elliptical integrals. The dipolar term is regularized by a cut-off
at small distances and then evaluated numerically. The dipolar
GP equation is then solved by imaginary-time propagation. Goral
and Santos [11] treat the dipolar term by a convolution theorem
without approximation, thus transforming it to an inverse Fourier
transformation (FT) of a product of the FT of the dipolar potential
and the condensate density. The FT and inverse FT are then
numerically evaluated by standard fast Fourier transformation
(FFT) routines in Cartesian coordinates. The ground state of
the system is obtained by employing a standard split-operator
technique in imaginary time. This approach is used by some
others [15]. Ronen et al. perform the angular integral in the dipolar
term using axial symmetry. To evaluate it, in stead of FT in x, y, and
z [11], they use Hankel transformation in the radial p variable and
FT in the axial z variable. The ground state wave function is then
obtained by imaginary-time propagation and dynamics by real-
time propagation. This approach is also used by some others [16].
Bao et al. use Euler sine pseudospectral method for computing the
ground states and a time-splitting sine pseudospectral method for
computing the dynamics of dipolar BECs [9]. Blakie et al. solve the
projected dipolar GP equation using a Hermite polynomial-based
spectral representation [13]. Lahaye et al. use FT in x, y, and z to
evaluate the dipolar term and employ imaginary- and real-time
propagation after Crank-Nicolson discretization for stationary and
nonstationary solution of the dipolar GP equation [ 14].

Here we provide Fortran and C versions of programs for the
solution of the dipolar GP equation in a fully anisotropic 3D
trap by real- and imaginary-time propagation. We use split-step
Crank-Nicolson scheme for the nondipolar part as in Refs. [3,4] and
the dipolar term is treated by FT in x, y, z variables. We also present
the Fortran and C programs for reduced dipolar GP equation in one
(1D) and two dimensions (2D) appropriate for a cigar- and disk-
shaped BEC under tight radial (p) and axial (z) trapping, respec-
tively [17]. In the 1D case, we consider two possibilities: the 1D BEC
could be aligned along the polarization direction z or be aligned

perpendicular to the polarization direction along x axis. Similarly,
in the 2D case, two possibilities are considered taking the 2D plane
as x-y, perpendicular to polarization direction z or as x-z contain-
ing the polarization direction. This amounts to five different trap-
ping possibilities - two in 1D and 2D each and one in 3D - and two
solution schemes involving real- and imaginary-time propagation
resulting in ten programs each in Fortran and C.

In Section 2 we present the 3D dipolar GP equation in an
anisotropic trap. In addition to presenting the mean-field model
and a general scheme for its numerical solution in Sections 2.1
and 2.2, we also present two approximate solution schemes in
Sections 2.3 and 2.4 - Gaussian variational approximation and
Thomas-Fermi (TF) approximation - in this case. The reduced 1D
and 2D GP equations appropriate for a cigar- and a disk-shaped
dipolar BEC are next presented in Sections 2.5 and 2.6, respectively.
The details about the computer programs, and their input/output
files, etc. are given in Section 3. The numerical method and results
are given in Section 4. Finally, a brief summary is given in Section 5.

2. Gross-Pitaevskii (GP) equation for dipolar condensates in
three dimensions

2.1. The mean-field Gross-Pitaevskii equation

At ultra-low temperatures the properties of a dipolar conden-
sate of N,; atoms, each of mass m, can be described by the mean-
field GP equation with nonlocal nonlinearity of the form: [10,18]
dp(r, t) [ h? 47 h? aNy

— V24V,
ot oy + Vigap (1) + -

ih lp(r, )]

+ Nat / Uga(r — 1) |, )| dl"} ¢(r, 1), (1)

where f dr|¢(r, t)]> = 1. The trapping potential, Virap is assumed
to be fully asymmetric of the form

1
Vigap(£) = m (02X + w)y* + 022°)

where wy, wy and w; are the trap frequencies, a the atomic scatter-
ing length. The dipolar interaction, for magnetic dipoles, is given
by [11,16]

tofit> 1—3cos?6

Usa(R) = =~ R

; (2)

where R = r — r’ determines the relative position of dipoles
and 6 is the angle between R and the direction of polarization z,
Mo is the permeability of free space and i is the dipole moment
of the condensate atom. To compare the contact and dipolar in-
teractions, often it is useful to introduce the length scale aqq =
toft*m/ (127 1%) [6].

Convenient dimensionless parameters can be defined in terms
of a reference frequency o and the corresponding oscillator length
I = 4/h/(mw). Using dimensionless variables r = r/lLR =
R/l,a = a/l,agq = ag/l,t = tw, X =x/Ly =y/l,Z =2z/l,¢ =
P2, Eq. (1) can be rewritten (after removing the overhead bar
from all the variables) as

AP(r, t 1 1
200 1o 1 (v*%* + vy 4+ 1°2%) + 4maNy| 9|
ot 2 2
+ 3N,¢aqq f vjé’(R)w(r’,t)Pdr’]qb(r, t), 3)
with
3D 1—3cos26
Vad®) = — 5 (4)
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where y = wy/w,v = wy/®, A = w,/w. The reference frequency
 can be taken as one of the frequencies wy, w, or @, or their
geometric mean (wywy®,) . In the following we shall use Eq. (3)
where we have removed the ‘bar’ from all variables.

Although we are mostly interested in the numerical solution of
Eq. (3), in the following we describe two analytical approximation
methods for its solution in the axially-symmetric case. These ap-
proximation methods - the Gaussian variational and TF approxi-
mations - provide reasonably accurate results under some limiting
conditions and will be used for comparison with the numerical re-
sults. Also, we present reduced 1D and 2D mean-field GP equations
appropriate for the description of a cigar and disk-shaped dipolar
BEC under appropriate trapping condition. The numerical solution
and variational approximation of these reduced equations will be
discussed in this paper. A brief algebraic description of these topics
are presented for the sake of completeness as appropriate for this
study. For a full description of the same the reader is referred to
the original publications.

2.2. Methodology

We perform numerical simulation of the 3D GP equation (3)
using the split-step Crank-Nicolson method described in detail
in Ref. [3]. Here we present the procedure to include the dipolar
term in that algorithm. The inclusion of the dipolar integral term
in the GP equation in coordinate space is not straightforward due to
the singular behavior of the dipolar potential at short distances. It
is interesting to note that this integral is well defined and finite.
This problem has been tackled by evaluating the dipolar term
in the momentum (k) space, where we do not face a singular
behavior. The integral can be simplified in Fourier space by means
of convolution as

/v73D / / _ dk —lkl'
/dr Vig (r —)n(r', t) _/ (27[)3 V (k)n(k t), (5)

where n(r,t) = |¢(r, t)|>. The Fourier transformation (FT) and
inverse FT, respectively, are defined by

A(r) =

Ak) = / drA(r)e’", / dKA(K)e T, (6)

(2m)3
The FT of the dipole potential can be obtained analytically [19]

3k2
Vad (k) = h3D(k> 5 (172 - 1>, (7)
so that
/dr/vjc’f(r— n,t) = 4?”/ (2(:()3 e T T (KA, 1), (8)

To obtain Eq. (7), first the angular integration is performed. Then
a cut-off at small r is introduced to perform the radial integration
and eventually the zero cut-off limit is taken in the final result as
shown in Appendix A of Ref.[19]. The FT of density n(r) is evaluated
numerically by means of a standard FFT algorithm. The dipolar
integral in Eq. (3) involving the FT of density multiplied by FT of
dipolar interaction is evaluated by the convolution theorem (5).
The inverse FT is taken by means of the standard FFT algorithm.
The FFT algorithm is carried out in Cartesian coordinates and the
GP equation is solved in 3D irrespective of the symmetry of the
trapping potential. The dipolar interaction integrals in 1D and 2D
GP equations are also evaluated in momentum spaces. The solution
algorithm of the GP equation by the split-step Crank-Nicolson
method is adopted from Refs. [3,4].

The 3D GP equation (3) is numerically the most difficult to solve
involving large RAM and CPU time. A requirement for the success

of the split-step Crank-Nicolson method using a FT continuous at
the origin is that on the boundary of the space discretization region
the wave function and the interaction term should vanish. For the
long-range dipolar potential this is not true and the FT (7) is discon-
tinuous at the origin. The space domain (from —oo to +00) cannot
be restricted to a small region in space just covering the spatial ex-
tension of the BEC as the same domain is also used to calculate the
FT and inverse FT used in treating the long-range dipolar potential.
The use and success of FFT implies a set of noninteracting 3D peri-
odic lattice of BECs in different unit cells. This is not true for long-
range dipolar interaction which will lead to an interaction between
BECs in different cells. Thus, boundary effects can play a role when
finding the FT. Hence a sufficiently large space domain is to be used
to have accurate values of the FT involving the long-range dipolar
potential. It was suggested [ 12] that this could be avoided by trun-
cating the dipolar interaction conveniently at large distancesr = R
so that it does not affect the boundary, provided R is taken to be
larger than the size of the condensate. Then the truncated dipolar
potential will cover the whole condensate wave function and will
have a continuous FT at the origin. This will improve the accuracy
of a calculation using a small space domain. The FT of the dipolar
potential truncated at r = R, as suggested in Ref. [12], is used in
the numerical routines

2 .
V(i?(k) _4r (3k 1) |:1 n 3cos(kR) 3sm(kR)] ’

3 \ K KRZ K3R3
k= |K|. 9)

Needless to say, the difficulty in using a large space domain is the
most severe in 3D. In 3D programs the cut-off R of Eq. (9) improves
the accuracy of calculation and a smaller space region can be used
in numerical treatment. In 1D and 2D, a larger space domain can be
used relatively easily and no cut-off has been used. Also, no conve-
nient and efficient analytic cut-off is known in 1D and 2D [12]. The
truncated dipolar potential (9) has only been used in the numeri-
cal programsin 3D, e.g., imag3d* and real3d*. In all other numerical
programs in 1D and 2D, and in all analytic results reported in the
following the untruncated potential (7) has been used.

2.3. Gaussian variational approximation

In the axially-symmetric case (y = v), convenient analytic La-
grangian variational approximation of Eq. (3) can be obtained with
the following Gaussian ansatz for the wave function [20]

3/4

e —
oD = OV ®

+ia(t)p? + iﬂ(t)zz:|

(10)

X exp —'072 - il
wa,(t) 2w2(t)

wherer = {p, z}, p = {x, ¥}, w,(t) and w, (t) are widths and o(t)
and B(t) are chirps. The time dependence of the variational param-
eters w, (t), w;(t), oe(t) and B(t) will not be explicitly shown in the
following.

The Lagrangian density corresponding to Eq. (3) is given by

¢*(r) 3¢(r)} IVo(m?
2

—¢*(r)

L(r) = [(P( r)

+ foﬂpz + A22%)|@(r) > + 2maNy|p () [*

3addNat

lp(r )IZ/Vdd(R)|¢(r/)|2dr’- (11)
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Consequently, the effective Lagrangian L = f L (r)dr (per particle)
becomes [6,21]

2B VR A2 1 1
L = 2 - z P z 2 2 2
GOt T T T T T T T
Natla — aqaf (c)]
+w?pr 4 (12)
? «/an%a)z

The Euler-Lagrangian equations with this Lagrangian leads to the
following set of coupled ordinary differential equations (ODE) for
the widths w, and w, [22]:

1 n Na [2a — aqag (k)]

W, + y2w, = — , (13)
p TV e wl o 2n w3 w,
.. 1 2Ny [a — agac(x)]
i, + Mw, = — + ; 14
SRR T e wp? =
withx = w,/w, and
2 — 7k?% — 4k + 9x*d(k)
glk) = 1—x2) , (15)
1+ 10k% — 2k* — 9%d(x)
clk) = =7 ; (16)
0 1+ 2k? — 3ic?d(x) d00) atanh+/1 — k2 (17)
K) = , k)= ———.
1 — k2 V1—«2

The widths of a (time-independent) stationary state are obtained
from Egs. (13) and (14) by setting W, = w, = 0. The energy
(per particle) of the stationary state is the Lagrangian (12) with
oa=p=0-eg,

Nula — agaf ()] Vw2 22w?

V2rw,w? 2 4

The chemical potential u = 9E /9N, of the stationary state is given
by [22]

E 1 1

Na  2w?  4w?

(18)

1 1 2Ngla—agf ()] Vw2 22w?

K=-—+—+ + + - (19
2w/2) 4w22 «/27‘[wzu}l2) 2 4

2.4. Thomas-Fermi (TF) approximation

In the time-dependent axially-symmetric GP equation (3),
when the atomic interaction term is large compared to the kinetic
energy gradient term, the kinetic energy can be neglected and
the useful TF approximation emerges. We assume the normalized
density of the dipolar BEC of the form [1,23-25]

w0 =l ol = 12 P E o)

T BARE(DR,(D) R(t) R0 |’
where R,(t) and R,(t) are the radial and axial sizes. The time
dependence of these sizes will not be explicitly shown in the
following. Using the parabolic density (20), the energy functional
Err may be written as [24]

NQ2y*R2 + )\ZR;)]

Err = Etrap + Eint =|: 14

15 4maN?2 dd . _
+ 287 RIR, {1—7f(1<)} ) (21)

where K = R, /R, is the ratio of the condensate sizes and f (k) is
given by Eq. (17).InEq. (21), Er4p is the energy in the trap and Ejy, is
the interaction or release energy in the TF approximation. In the TF

regime one has the following set of coupled ODEs for the evolution
of the condensate sizes [23]:

15aN, [ 1 aw (1 3 fG&
Ll il E {()2 - (22)
R,R. |R2  a \R ' 2R —R?

P

. 15aN, | 1 2aqq [ 1 3 f(k)

R, = —A"R =+—|5+= . (23
¢ :+ %2 {jot p <R3+2Rg—R§ (23)

The sizes of a stationary state can be calculated from Egs. (22) and
(23) by setting the time derivatives R, and R, to zero leading to the
transcendental equation for k [23]:

2 b2 2
f(152) ()
=0, (24)

and

[ 15aN, Aaa {3 3 (i) /3
=[P e R )] =

with R, = R, /k. The chemical potential is given by [24]

I'ép _prz

15 4maNy; [ dad ] (26)

T trap int 87 R%RZ a f( )

We have the identities ETF/Nat = 5”71:/7, Eint/Nat = 2/~’LTF/77
Etrap/Nat = 3urr/7.

2.5. One-dimensional GP equation for a cigar-shaped dipolar BEC

2.5.1. z direction

For a cigar-shaped dipolar BEC with a strong axially-symmetric
(v = y)radial trap (A < v, y), we assume that the dynamics of
the BEC in the radial direction is confined in the radial ground state
[22,26,27]

p(p) = exp(=p?/2d3)/(d, /7)),  ydy =1, p=xY), (27)

of the transverse trap and the wave function ¢(r) can be written
as

o(r, t) = pip(z, t) X ¢(p)

02

1
[md? |: 2d;

where ¢1p(z, t) is the effective 1D wave function for the axial
dynamics and d,, is the radial harmonic oscillator length.

To derive the effective 1D equation for the cigar-shaped dipolar
BEC, we substitute the ansatz (28) in Eq. (3), multiply by the
ground-state wave function ¢(p) and integrate over p to get the
1D equation [22,26]

i| ¢1D(za t)a (28)

0¢1p(z, 1) [ 97 2’2 2aNy|pp|?
R B el L2
ot 2 2 d2
+3addNat/ Vit (lz — 2Dl (@, f)|2d2,:|¢m(2, t), (29)
1D _ 2 f
Vya Z) = 7\5% [33(\/5) + 24w
— VA et 1 - etV | (30)

where w = [Z/(«/Edp)]z, Z = |z — Z/|. Here and in all reductions
in Sections 2.5 and 2.6 we use the untruncated dipolar potential
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(7) and not the truncated potential (9). The integral term in the 1D
GP equation (29) is conveniently evaluated in momentum space
using the following convolution identity [22]

o0
/ VIP(1z — 2 Dlpio(e. 0)2dz’

o0
4 d,Z ﬂk z k dp
= 2%k, t)h , 31
3 ). 2}{ n(k;, t)hip ﬁ (31)
where
00 .
ks, ) = / e gz, D)Pdz, (32)
—00

fik,) = / P |gap(0)Pdp = B4,k = JI2+ K2 (33)
! / dk 3k 1| [fk,)|?

—_— — —1|[n(k

(2m)? 7l K s

1 /ood [ 322 _1] . _kzdp (34)
an% ; u s e, é’—ﬁ.

The 1D GP equation (29) can be solved analytically using the
Lagrangian variational formalism with the following Gaussian
ansatz for the wave function [22]:

hip(¢) =

¢1D(Z7 t) =

-1/ [ 72 ,
exp | — +iB(t)z :| (35)

~wz(t) 211)22 ()

where w,(t) is the width and B(t) is the chirp. The Lagrangian

variational formalism leads to the following equation for the width

w, (t) [22]:

2Ny [a — agac(R)]

1
+
wi(t)  V2m  d2wi(t)

i, (t) + 2w, (t) =

d/o
w,(t) .

The time-independent width of a stationary state can be obtained
from Eq. (36) by setting w,(t) = 0. The variational chemical
potential for the stationary state is given by [22]

1 2Nula - aaf ®)] | 22w?

K=

(36)

(37)

+ +
4w V2rw,d2 4
The energy per particle is given by
E 1 Nyla — agaf (R 22w?
E_ 1 Nl ®)] 2 38
Nat 4wz £V, 2 wzdf, 4

2.5.2. x direction

For a cigar-shaped dipolar BEC with a strong axially-symmetric
(v = A)radial trap (y < v, 1), we assume that the dynamics of the
BEC in the radial direction is confined in the radial ground state
[22,26,27]

P(p) = exp(—p?/2d3) /(dy/70), p=(.2), (39)

of the transverse trap and the wave function ¢ (r) can be written as

vdf) =1,

2

1
= ——eX
[ d? I.)|: 2d?
o

where ¢1p(x, t) is the effective 1D wave function for the dynamics
along x axis and d,, is the radial harmonic oscillator length.

To derive the effective 1D equation for the cigar-shaped dipolar
BEC, we substitute the ansatz (40) in Eq. (3), multiply by the

¢(r, t) = pip(x, 1) x ¢(p) } $p(x, 1), (40)

ground-state wave function ¢(p) and integrate over p to get the
1D equation

ia¢1D(X7 t) _ _373 " y2x? n 2aNy¢|$ipl?
ot 2 2 d2
OQ dkx 71kxx~
+ 47 agaNat — n(ky, )jip(tx) [@1p(x, 1), (41)
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where 7, = d,k,/~/2 and
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(42)
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To derive Eq. (41), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integrations over k, and
k, are performed in the dipolar term.

2.6. Two-dimensional GP equation for a disk-shaped dipolar BEC

2.6.1. x-y plane

For an axially-symmetric (v = y ) disk-shaped dipolar BEC with
a strong axial trap (A > v, y), we assume that the dynamics of the
BEC in the axial direction is confined in the axial ground state

d, = V1/(0), (44)

¢(2) = exp(—2*/2d2) [ (wd2)"/*,

and we have for the wave function
2

1 z
¢ (r) = ¢(2) X dap(p, t) = W exp |:_2d§j| dap(p, t),
(45)

where p = (x, ¥), p2p(p, t) is the effective 2D wave function for the
radial dynamics and d, is the axial harmonic oscillator length. To
derive the effective 2D equation for the disk-shaped dipolar BEC,
we use ansatz (45) in Eq. (3), multiply by the ground-state wave
function ¢ (z) and integrate over z to get the 2D equation [22,28]
Pewo. T _Vp |y 40y
ac L 2 2
dk,

@2m)?
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= [2 —3VmEexp(EH{1 —erf(©)})], &= -"=. (48)
2md, ﬁ
To derive Eq. (46), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integration over k, is
performed in the dipolar term.
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The 2D GP equation (46) can be solved analytically using the
Lagrangian variational formalism with the following Gaussian
ansatz for the wave function [22]:

-1/2 . pz N
xp | ——2

w,® TP | T 2020

where w,(t) is the width and «(t) is the chirp. The Lagrangian

variational formalism leads to the following equation for the width
w, [22]:

¢2D(pv t) - la(t)p2:| ) (49)

1 n Ny [2a — agag (k)]
wi)  V2r wid,
= w;iz(f). (50)

The time-independent width of a stationary state can be obtained
from Eq. (50) by setting w,(t) = 0. The variational chemical
potential for the stationary state is given by [22]

1 2Nala—aaf @] | v*w)
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The energy per particle is given by
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2.6.2. x-z plane
For a disk-shaped dipolar BEC with a strong axial trap along y

direction (v > A, y), we assume that the dynamics of the BEC in

the y direction is confined in the ground state

d(y) = exp(—y?/2d0) /(wd)'*,  dy = /1/(v), (53)

and we have for the wave function

2

2d2j| ¢ap(p, t),

(54)

1
o) = P(y) X dap(p, t) = W exp |:

where now p = (x, z), and ¢,p(p, t) is the circularly-asymmetric
effective 2D wave function for the 2D dynamics and d, is the
harmonic oscillator length along y direction. To derive the effective
2D equation for the disk-shaped dipolar BEC, we use ansatz (54)
in Eq. (3), multiply by the ground-state wave function ¢(y) and
integrate over y to get the 2D equation
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To derive Eq. (55), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integration over k, is
performed in the dipolar term.

3. Details about the programs

3.1. Description of the programs

In this subsection we describe the numerical codes for solving
the dipolar GP equations (29) and (41) in 1D, Egs. (46) and (55) in
2D, and Eq. (3) in 3D using real- and imaginary-time propagations.
The real-time propagation yields the time-dependent dynamical
results and the imaginary-time propagation yields the time-
independent stationary solution for the lowest-energy state for a
specific symmetry. We use the split-step Crank-Nicolson method
for the solution of the equations described in Ref. [3]. The present
programs have the same structure as in Ref. [3] with added
subroutines to calculate the dipolar integrals. In the absence of
dipolar interaction the present programs will be identical with the
previously published ones [3]. A general instruction to use these
programs in the nondipolar case can be found in Ref. [3] and we
refer the interested reader to this article for the same.

The present Fortran programs named (‘imagldX.f90’,
‘imag1dZ.fo0’), (‘imag2dXY.f90’, ‘imag2dXzZ.f90’), ‘imag3d.fo0’,
(‘real1dX.f90’, ‘real1dZ.f90’), (‘real2dXY.f90’, ‘real2dXZ.f90’),

‘real3d.f90’, deal with imaginary- and real-time propagations
in 1D, 2D, and 3D and are to be contrasted with previously
published programs [3] ‘imagtime1d.F, ‘imagtime2d.f90’, ‘imag-
time3d.f90’, ‘realtime1d.F’, ‘realtime2d.f90’, and ‘realtime3d.f90’,
for the nondipolar case. The input parameters in Fortran pro-
grams are introduced in the beginning of each program. The cor-
responding C codes are called (imag1dX.c, imag1dX.h, imagldZ.c,
imag1dZ.h,), (imag2dXY.c,imag2dXY.h,imag2dXZ.c,imag2dXZ.h,),
(imag3d.c, imag3d.h), (real1dX.c, real1dX.h, real1dZ.c, real1dZ.h,),
(real2dXY.c, real2dXY.h, real2dXZ.c, real2dXZ.h,), (real3d.c,
real3d.h), with respective input files (‘imagldX-input’, ‘imag1dZ-
input’), (‘imag2dXY-input’, ‘imag2dXZ-input’), ‘imag3d-input’,
(‘real1dX-input’, ‘realldZ-input’), (‘real2dXY-input’, ‘realldXZ
-input’), ‘real3d-input’, which perform identical executions as in
the Fortran programs.

We present in the following a description of input parameters.
The parameters NX, NY, and NZ in 3D (NX and NY in 2DXY, NX
and NZ in 2DXZ), and N in 1D stand for total number of space
points in X, y and z directions, where the respective space steps
DX, DY, and DZ can be made equal or different; DT is the time
step. The parameters NSTP, NPAS, and NRUN denote number of
time iterations. The parameters GAMMA (y ), NU (v), and LAMBDA
(A) denote the anisotropy of the trap. The number of atoms is
denoted NATOMS (N,), the scattering length is denoted AS (a) and
dipolar length ADD (aqq). The parameters GO (47 Ny:a) and GDDO
(3a4qNy,;) are the contact and dipolar nonlinearities. The parameter
OPTION = 2 (default) defines the equations of the present paper
with a factor of half before the kinetic energy and trap; OPTION = 1
defines a different set of GP equations without these factors, viz
Ref. [3]. The parameter AHO is the unit of length and Bohr_a0 is
the Bohr radius. In 1D the parameter DRHO is the radial harmonic
oscillator d, and in 2D the parameter D_Z or D_Y is the axial
harmonic oscillator length d, or d,. The parameter CUTOFF is the
cut-off R of Eq. (9) in the 3D programs. The parameters GPAR and
GDPAR are constants which multiply the nonlinearities GO and
GDDO in realtime routines before NRUN time iterations to study
the dynamics.

The programs, as supplied, solve the GP equations for specific
values of dipolar and contact nonlinearities and write the wave
function, chemical potential, energy, and root-mean-square (rms)
size(s), etc. For solving a stationary problem, the imaginary-time
programs are far more accurate and should be used. The real-time
programs should be used for studying non-equilibrium problems
reading an initial wave function calculated by the imaginary-time
program with identical set of parameters (set NSTP = 0, for this
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purpose, in the real-time programs). The real-time programs can
also calculate stationary solutions in NSTP time steps (set NSTP #
0 in real-time programs), however, with less accuracy compared to
the imaginary-time programs. The larger the value of NSTP in real-
time programs, more accurate will be the result [3]. The nonzero
integer parameter NSTP refers to the number of time iterations
during which the nonlinear terms are slowly introduced during
the time propagation for calculating the wave function. After
introducing the nonlinearities in NSTP iterations the imaginary-
time programs calculate the final result in NPAS plus NRUN time
steps and write some of the results after NPAS steps to check
convergence. The real-time programs run the dynamics during
NPAS steps with unchanged initial parameters so as to check the
stability and accuracy of the results. Some of the nonlinearities
are then slightly modified after NPAS iterations and the small
oscillation of the system is studied during NRUN iterations.

Each program is preset at fixed values of contact and dipolar
nonlinearities as calculated from input scattering length(s), dipolar
strength(s), and number of atom(s), correlated DX-DT values and
NSTP, NPAS, and NRUN, etc. A study of the correlated DX and DT
values in the nondipolar case can be found in Ref. [3]. Smaller the
steps DX, DY, DZ and DT, more accurate will be the result, provided
we integrate over a reasonably large space region by increasing NX,
NY, and NZ, etc. Each supplied program produces result up to a
desired precision consistent with the parameters employed — GO,
GDDO, DX, DY, DZ, DT, NX, NY, NZ, NSTP, NPAS, and NRUN, etc.

3.2. Description of Output files

Programs ‘imagnd® (n = 1, 2, 3, C and Fortran): They write fi-
nal density in files ‘imagnd-den.txt’ after NRUN iterations. In addi-
tion, in 2D and 3D, integrated 1D densities ‘imagnd*-den1d_x.txt’,
‘imagnd*-denld_y.txt’, ‘imagnd*-denld_z.txt’, along x, y, and z,
etc., are given. These densities are obtained by integrating the
densities over eliminated space variables. In addition, in 3D inte-
grated 2D densities ‘imag3d-den2d_xy.txt’, ‘imag3d-den2d_yz.txt’,
‘imag3d-den2d_zx.txt’, in xy, yz, and zx planes can be written (com-
mented out by default). The files ‘imagnd*-out.txt’ provide differ-
entinitial input data, as well as chemical potential, energy, size, etc.
at different stages (initial, after NSTP, NPAS, and after NRUN itera-
tions), from which a convergence of the result can be inferred. The
files ‘imagnd*-rms.txt’ provide the different rms sizes at different
stages (initial, after NSTP, NPAS, and after NRUN iterations).

Programs ‘realnd* (n = 1, 2, 3, Cand Fortran): The same output
files as in the imaginary-time programs are available in the real-
time programs. The real-time densities are reported after NPAS
iterations. In addition in the ‘realnd*-dyna.txt’ file the temporal
evolution of the widths are given during NPAS and NRUN itera-
tions. Before NRUN iterations the nonlinearities GO and GDDO are
multiplied by parameters GPAR and GDPAR to start an oscillation
dynamics.

3.3. Running the programs

In addition to installing the respective Fortran and C compil-
ers one needs also to install the FFT routine FFTW in the com-
puter. To run the Fortran programs the supplied routine fftw3.f03
should be included in compilation. The commands for running
the Fortran programs using INTEL, GFortran, and Oracle Sun com-
pilers are given inside the Fortran programs. The programs are
submitted in directories with option to compile using the com-
mand ‘make’. There are two files with general information about
the programs and FT for user named ‘readme.txt’ and ‘readme-
fftw.txt’. The Fortran and C programs are in directories./f_program
and./c_program. Inside these directories there are subdirectories
such as./input,./Joutput,./src. The subdirectory ./output contains

output files the programs generate, ./input contains input files for C
programs, and ./src contains the different programs. The command
‘make’ in the directory ./f_program or ./c_program compiles all the
programs and generates the corresponding executable files to run.
The command ‘make’ for INTEL, GFortran and OracleSun Fortran
are given.

4. Numerical results

In this section we present results for energy, chemical potential
and root-mean-square (rms) sizes for different stationary BECs
in 1D, 2D, and 3D, and compare with those obtained by using
Gaussian variational and TF approximations, wherever possible.
We also compare with available results by other authors. For a fixed
space and time step, sufficient number of space discretizing points
and time iterations are to be allowed to get convergence.

First we present in Table 1 numerical results for the energy
E, chemical potential u, and rms size (z) calculated using the
imaginary-time program for the 1D dipolar GP Eq. (29) for >2Cr
atoms with a = 6 nm (~113ay with ag the Bohr radius), and
agqa = 164qo for A = 1,d, = 1,1 = 1 um and for different num-
ber of atoms N, and different space and time steps dz and dt. The
Gaussian variational approximations obtained from Eqs. (36)-(38)
are also given for comparison. The variational results provide bet-
ter approximation to the numerical solution for a smaller number
of atoms.

In Table 2 we present results for the energy E, chemical
potential u, and rms size (p) of the 2D GP Eq. (46) for y =
v = 1,d;, = 1,1 = 1 pm. The numerical results are calculated
using different space and time steps dx, dy and dt and different
number N, of *>Cr atoms with agq = 16ap and a = 6 nm.
Axially-symmetric Gaussian variational approximations obtained
from Eqgs. (50)-(52) are also presented for comparison.

Now we present results of the solution of the 3D GP Eq. (3) with
some axially-symmetric traps. In this case we take advantage of
the cut-off introduced in Eq. (9) to improve the accuracy of the nu-
merical calculation. The cut-off parameter R was taken larger than
the condensate size and smaller than the discretization box. First
we consider the model 3D GP equation with a = 0 and different
Zad = 3aqaNa = 1, 2, 3, 4 in an axially-symmetric trap with A =
1/2 and v = y = 1. The numerical results for different number of
space and time steps together with Gaussian variational results ob-
tained from Eqs. (18) and (19) are shown in Table 3. These results
for energy E and chemical potential « are compared with those cal-
culated by Asad-uz-Zaman et al. [ 16,29]. The present calculation is
performed in the Cartesian x, y, z coordinates and the dipolar term
is evaluated by FT to momentum space. Asad-uz-Zaman et al. take
advantage of the axial symmetry and perform the calculation in the
axial p, z (p = x, y) variables and evaluate the dipolar term by a
combined Hankel-Fourier transformation to momentum space for
p and z, respectively. The calculations of Asad-uz-Zaman et al. for
stationary states involving two variables (p and z) thus could be
more economic and accurate than the present calculation involv-
ing three Cartesian variables for the axially-symmetric configura-
tion considered in Table 3. However, the present method, unlike
that of Ref. [16], is readily applicable to the fully asymmetric con-
figurations. Moreover, the present calculation for dynamics (non-
stationary states) in 3D are more realistic than the calculations of
Asad-uz-Zaman et al., where one degree of freedom is frozen. For
example, a vortex could be unstable [30] in a full 3D calculation,
whereas a 2D calculation could make the same vortex stable.

Next we consider the solution of the 3D GP Eq. (3) for a model
condensate of >2Cr atoms in a cigar-shaped axially-symmetric trap
with y = v = 1,1 = 1/2, first considered by Bao et al. [9].
The nonlinearities considered there (4ra = 0.20716,4waqq =
0.033146) correspond to the following approximate values of



124 R. Kishor Kumar et al. / Computer Physics Communications 195 (2015) 117-128
Table 1
The energy per particle E/Ny, chemical potential x, and rms size (z) of the 1D GP Eq. (29) for A = 1,d, = 1 pm for the 52Cr BEC witha = 6 nm, agq = 16ao
and different number of atoms N,. In Egs. (3) and (29) the lengths are expressed in oscillator unit: | = 1 wm. Numerical results are calculated for parameters (A)
dz = 0.05, dt = 0.0005, N = 2048 (B) dz = 0.1, dt = 0.001, N = 1024 and compared with variational results obtained from Egs. (36)-(38).
Nat (2) (2) (2) E/Nat E/Nat E/Nat 1 " I3
var (B) (A) var (B) (A) var (B) (A)
100 0.7939 0.7937 0.7937 0.7239 0.7222 0.7222 0.9344 0.9297 0.9297
500 1.0425 1.0381 1.0381 1.4371 1.4166 1.4166 22157 2.1691 2.1691
1000 1.2477 1.2375 1.2375 2.1376 2.0920 2.0920 3.4165 3.3234 3.3234
5000 2.0249 1.9939 1.9939 5.8739 5.6910 5.6910 9.6671 9.3488 9.3488
10,000 2.5233 2.4815 2.4815 9.2129 8.913 8.913 15.223 14.715 14.715
50,000 4.2451 4.1719 4.1719 26.505 25.622 25.622 43.993 42.527 42.527
Table 2

The energy per particle E/N,, chemical potential j, and rms size (p) of the 2D GP Eq. (46) for y = v = 1,d, = 1 wm for the >>Cr BEC with a = 6 nm, agy = 16ay and
different number of atoms Ny. In Eqs. (3) and (46) the lengths are expressed in oscillator unit: | = 1 pm. Numerical results are calculated for space and time steps (A)
dx = dy = 0.1,dt = 0.0005, NX = NY = & = 768, (B)dx = dy = 0.2,dt = 0.002, ;¢ = 384, and compared with variational results obtained from Egs. (50), (51) and

(52).

Nat <p> <p> <P> E/Nat E/Nat E/Nat " n "
var (B) (A) var (B) (A) var (B) (A)
100 1.0985 1.097 1.097 1.2182 1.2156 1.2157 1.4187 1.4120 1.4119
500 1.3514 1.342 1.342 1.8653 1.8383 1.8383 2.5437 2.4840 2.4840
1000 1.5482 1.530 1.531 2.4571 2.3988 2.3988 3.5070 3.3901 3.3901
5000 2.2549 2.208 2.208 5.2206 4.9989 4.9989 7.8005 7.4249 7.4249
10,000 2.6824 2.619 2.619 7.3787 7.029 7.029 11.090 10.522 10.522
50,000 4.0420 3.934 3.934 16.680 15.793 15.793 25.161 23.789 23.789
Table 3

Energy per particle E /N, and chemical potential . from a solution of Eq. (3)for y = v = 1, A> = 0.25, a = 0 and different nonlinearity g4q = 3aaqNa.. The present numerical
results are compared with Gaussian variational results obtained from Eqs. (18) and (19) as well as numerical results of Asad-uz-Zaman et al. [ 16,29]. Numerical results are
calculated for the following space and time steps and the following space discretizing points in the Crank-Nicolson discretization: (A) dx = dy = dz = 0.05, dt = 0.0004,
(NX =NY =NZ =N = 384);(B)0.1,dt = 0.002, (~# = 128,R = 6); and (C) 0.2, dt = 0.007, (N = 64,R = 6).

8dd E/Nat E/Nyt E /Nyt E/Nat E/Nat 2 Iz H Iz H
var © (B) (A) [29] var (€ (B) (A) [29]
0 1.2500 1.2498 1.2500 1.2500 1.2500 1.2500 1.2498 1.2500 1.2500 1.2500
1 1.2230 1.2220 1.2222 1.2222 1.2222 1.1934 1.1910 1.1912 1.1911 1.1911
2 1.1907 1.1872 1.1875 1.1874 1.1874 1.1203 1.1100 1.1100 1.1100 1.1100
3 1.1521 1.143 1.1439 1.1438 1.1437 1.0253 0.995 0.996 0.996 0.9955
4 1.1051 1.085 1.0857 1.0857 1.0856 0.8950 0.805 0.803 0.806 0.8062
Table 4

Energy per particle E/N,, and chemical potential x from a solution of Eq. (3) fory = v =
N, of atoms. These nonlinearity parameters taken from Ref. [9] correspond to a >>Cr dipolar BEC with a

~

1,A%2 = 0.25,4mwa = 0.20716, 4wagq = 0.033146 and different number
100ay and aqq & 16ag and oscillator length | ~ 0.321 pm.

Variational and TF results as well as numerical results of Bao et al. [9] are also shown. Numerical results are calculated using the following space and time steps and the
following space discretizing points in the Crank-Nicolson discretization: (A) dx = dy = dz =
take NX = NY = NZ = & = 128,R = 9 for N, = 100, 500, 1000 and & = 192, R = 14, for N, = 5000, 10,000, 50,000; and in (B) we take & = 64,R = 9, for
N, = 100, 500, 1000 and & = 96, R = 14, for N, = 5000, 10,000, 50,000.

0.15, dt

= 0.002; (B)dx = dy = dz = 0.3,dt =

0.005. In (A) we

Ny E/Nat E/Nat E/Nat E/Nat E/Nat iz iz I iz Iz
var TF (B) (A) [9] var TF (B) (A) [9]
100 1.579 0.945 1.567 1.567 1.567 1.840 1.322 1.813 1.813 1.813
500 2.287 1.798 2.224 2.224 2.225 2951 2518 2.835 2.835 2.837
1000 2.836 2.373 2.728 2.728 2.728 3.767 3.322 3.583 3.582 3.583
5000 5.036 4517 4.744 4.744 4.745 6.935 6.324 6.485 6.486 6.488
10,000 6.563 5.960 6.146 6.146 6.147 9.100 8.344 8.475 8.475 8.479
50,000 12.34 11.35 11.46 11.46 11.47 17.23 15.89 15.96 15.97 15.98
Table 5
The rms sizes (x) and (z) for the same systems illustrated in Table 4 using the same cut-off parameter R.
N (2) (2) (2) (2) (2) (x) x) (x) (x) (x)
TF var (B) (A) [9] TF var (B) (A) [9]
100 1.285 1.316 1.305 1.303 1.299 0.600 0.799 0.794 0.795 0.796
500 1.773 1.797 1.752 1.752 1.745 0.828 0.952 0.938 0.939 0.940
1000 2.037 2.079 2014 2014 2.009 0.951 1.054 1.035 1.035 1.035
5000 2.810 2.904 2.795 2.795 2.790 1.313 1.392 1.353 1.353 1.354
10,000 3.228 3.345 3.217 3.216 3.212 1.508 1.586 1.537 1.537 1.538
50,000 4.454 4.629 4.450 4.450 4.441 2.080 2.171 2.093 2.093 2.095
a,aqq and l: a ~ 100qap,aqq ~ 16ag, and I = 0.321 pm. variational and Thomas-Fermi (TF) results in this case together

We present results for energy E and chemical potential © in
Table 4 and rms sizes (z) and (x) in Table 5. We also present

with results of numerical calculation of Bao et al. [9]. The TF energy
and chemical potential in Table 4 are calculated using Egs. (21)
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Table 6

Energy per particle E /N,;, chemical potential .z, and rms sizes from a solution of Eq. (3) for *>Cratoms withy = 1, v = 1/2, A = 1/4, a = 110ay, agqy = 16a,, and harmonic
oscillator length | = 1 wm for different N,;. Numerical results are calculated using the following space and time steps and the following space discretizing points in the
Crank-Nicolson discretization: (A) dx = dy = dz = 0.1, dt = 0.001; and (B) 0.2, dt = 0.003. In (A) we take NX = NY = NZ = N = 128, R = 6 for N,y = 100, 500, 1000
and & = 256, R = 10.5, for N, = 5000, 10,000, 50,000; and in (B) we take & = 64, R = 6, for N;; = 100, 500, 1000 and & = 128, R = 12, for N;; = 5000, 10,000, 50,000.

N E/Nat E/Nqt 7 w (x) W) (2) (x) W) (2)
(B) (A) (B) (A) (B) (B) (B) (A) (A) (A)
100 1.219 1.219 1.321 1.321 0.742 0.901 1.120 0.742 0.901 1.119
500 1525 1.525 1.830 1.830 0.818 1.032 1.379 0.818 1.032 1.379
1000 1.784 1.784 2.232 2.232 0.874 1.128 1.559 0.874 1.129 1.558
5000 2.885 2.885 3.857 3.858 1.079 1.463 2.132 1.079 1.463 2.132
10,000 3.673 3.673 4.992 4.992 1.206 1.660 2.450 1.206 1.660 2.449
50,000 6.713 6.713 9.306 9.306 1.609 2.260 3.383 1.609 2.260 3.383
a o1 N=1000 e 3D (num) —— b 04 N =1000 3D (num) ——
a=6nm 1SDD( (varg a=6nm Z%D( (var)
num) s UM e
0121 aqq = 164, 1D (var) = 03 2D (var)
g g
S 0.08 3 0.2
= =
0.04 0.1
04 s R — o]
-10 -5 0 5 10 -4 -2 0 2 4
z x
Fig. 1. (a) Numerical (num) and variational (var) results for the one-dimensional axial density nip(z) = |¢1p(z)|? along z axis forv = y = 1,A = 0.25 of a cigar-

shaped BEC of N; = 1000 atoms obtained using the 1D Eq. (29) and that obtained after integrating the 3D density from Eq. (3) over x and y: nyp(z) = [ | (r)|?dxdy. (b)
Numerical (num) and variational (var) results for the 1D radial density nip(x) = [ | (r)|>dydz along x axis for v = y = 1, A = 4 of a disk-shaped BEC of N;; = 1000
atoms obtained after integrating the 3D density from Eq. (3) over y and z and after integrating the 2D density from Eq. (46) over y as follows: nyp(x) = f dy|éap(x,y)|? and

nip(x) = [ dydz|¢sp(x, y, z)|*. In all cases a = 6 nm and agq = 164o.

and (26), respectively. The TF sizes (x) and (z) in Table 5 are
obtained from Eqs. (24) and (25) using the TF density (20). For small
nonlinearities or small number of atoms, the Gaussian variational
results obtained from Egs. (13), (14), (18), and (19) are in good
agreement with the numerical calculations as the wave function
for small nonlinearities has a quasi-Gaussian shape. However, for
large nonlinearities or large number of atoms, the wave function
has an approximate TF shape (20), and the TF results provide
better approximation to the numerical results, as can be seen from
Tables 4 and 5.

After the consideration of 3D axially-symmetric trap now we
consider a fully anisotropic trap in 3D. In Table 6 we present
the results for energy E/Nj, chemical potential i and rms sizes
(x), (), (z) ofa>2Cr BECin a fully anisotropic trapwithy = 1, v =
1/+/2, & = 1/2 for different number of atoms. In this case we take
a = 110aq, agqg = 16a¢ and I = 1 wm. The convergence of the cal-
culation is studied by taking reduced space and time steps dx and
dt and different number of space discretization points. Sufficient
number of time iterations are to be allowed in each case to obtain
convergence. In 3D the estimated numerical error in the calcula-
tion is less than 0.05%. The error is associated with the intrinsic
accuracy of the FFT routine for long-range dipolar interaction.

The 1D and 2D GP Eqgs. (29) and (46) are valid for cigar- and
disk-shaped BECs, respectively. In case of cigar shape the 1D GP
equation yields results for axial density and in this case it is
appropriate to compare this density with the reduced axial density
obtained by integrating the 3D density over radial coordinates:
niz) = lp@* = [l¢x.y,2)|*dxdy. In Fig. 1(a) we compare
two axial densities obtained from the 1D and 3D GP equations. We
also show the densities calculated from the Gaussian variational
approximation in both cases. In the cigar case the trap parameters
arev = y = 1,12 = 1/4. Similarly, for the disk shape it is
interesting to compare the density along the radial direction in the
plane of the disk as obtained from the 3D Eq. (3) and the 2D Eq. (46).
In this case it is appropriate to calculate the 1D radial density along,
say, x direction by integrating 2D and 3D densities as follows:

mp(x) = [dylgp(x,y)[* and nip(x) = [ dydz|gsp(x,y,2)|%

In Fig. 1(b) we compare two radial densities obtained from the
2D and 3D GP equations. We also show the densities calculated
from the Gaussian variational approximation in both cases. For this
illustration, we consider the trap parametersv = y = 1, A = 4.
In both Figs. 1(a) and (b), the densities obtained from the solution
of the 3D GP equation are in satisfactory agreement with those
obtained from a solution of the reduced 1D and 2D equations. In
Fig. 1, the numerical and variational densities are pretty close to
each other, so are the results obtained from the 3D Eq. (3), on the
one hand, and the ones obtained from the 1D and 2D Egs. (29) and
(46), on the other.

A dipolar BEC is stable for the number of atoms N, below a
critical value [31]. Independent of trap parameters, such a BEC
collapses as N, crosses the critical value. This can be studied
by solving the 3D GP equation using imaginary-time propagation
with a nonzero value of NSTP while the nonlinearities are slowly
increased. In Fig. 2(a) we present the N,; — a stability phase plot
for a '%4Dy BEC with agq = 130qy in the disk-shaped trap with
v = y = 1,2 = 5 and 7. The oscillator length is taken to be
I = 1m. The shaded area in these plots shows a metastable region
where biconcave structure in 3D density appears. The metastable
region corresponds to a local minimum in energy in contrast to a
global minimum for a stable state. It has been established that this
metastability is a manifestation of roton instability encountered by
the system in the shaded region [31]. The biconcave structure in
3D density in a disk-shaped dipolar BEC is a direct consequence
of dipolar interaction: the dipolar repulsion in the plane of the
disk removes the atoms from the center to the peripheral region
thus creating a biconcave shape in density. In Fig. 2(b) and (c) we
plot the 3D isodensity contour of the condensate for A = 5 with
parameters in the shaded region corresponding to metastability. In
Fig. 2(b) the density on the contour is 0.001 whereas in Fig. 2(c), itis
0.027. Only for a larger density on the contour the biconcave shape
is visible. The biconcave shape predominates near the central
region of the metastable dipolar BEC.

In Fig. 1 we critically tested the reduced 1D and 2D Egs. (29)
and (46) along the z axis and in the x-y plane, respectively, by
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Fig. 2. (a) The N,; — a stability phase plot for a '**Dy BEC with aqq = 1304y in a disk-shaped trap with v = y
The 3D isodensity contour plot of density of a disk-shaped 54Dy BEC with agq = 130qao forv =y = 1,1 = 5,1

=(b) 0.001 and (c) 0.027 on the contour.
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Fig. 3. (a) Numerical results for the 1D radial density nqp(x) = f |¢(r)|?dydz along x axis and nyp(z) = f |¢(r)|?dxdy along z axis for A = y = 1, v = 4 of a disk-shaped
BEC of N;; = 2000 54Dy atoms obtained after integrating the 3D density from Eq. (3) and the 2D density from Eq. (55) over the eliminated variables. (b) Numerical results
for the 1D axial density nyp(x) = along x axis for v = A = 16, y = 1 of a cigar-shaped BEC of N,; = 2000 >2Cr atoms obtained using the 1D Eq. (41) and that obtained after
integrating the 3D density from Eq. (3) over z and y: nyp(x) = f |¢(r)|?>dzdy. In all cases a = 120ay and (a) agg = 132.7aq (b) agg = 164,.

comparing the different 1D densities from these equations with
those obtained from a solution of the 3D Eq. (3) as well as with
the variational densities. Now we perform a similar test with the
reduced 1D and 2D Eqgs. (41) and (55) along the x axis and in the
x-z plane, respectively. We consider a BEC of 2000 atoms in a disk-
shaped trap in the x-z plane with A = y = 1and v = 4. Because
of the strong trap in the y direction, the resultant BEC is of quasi-
2D shape in the x-z plane without circular symmetry in that plane
because of the anisotropic dipolar interaction. The integrated linear
density along the x and z axes as calculated from the 2D GP Eq. (55)
and the 3D GP Eq. (3) are illustrated in Fig. 3(a). Next we consider
the BEC of 2000 atoms in a cigar-shaped trap along the x axis with
v = A = 16 and y = 1. The integrated linear density along the
x axis in this case calculated from the 3D Eq. (3) is compared with
the same as calculate using the reduced 1D Eq. (41) in Fig. 3(b). In
both cases the densities calculated from the 3D GP equation are
in reasonable agreement with those calculated using the reduced
Eqgs.(55)and (41). Another interesting feature emerges from Figs. 1
and 3: the reduced 2D GP Eqgs. (46) and (55) with appropriate disk-
shaped traps yield results for densities in better agreement with
the 3D GP Eq. (3) as compared to the 1D GP Egs. (29) and (41)
with appropriate cigar-shaped traps. This feature, also observed in
non-dipolar BECs [17], is expected as the derivation of the reduced
1D equations involving two spatial integrations represent more
drastic approximation compared to the same of the reduced 2D
equations involving one spatial integration.

Now we report the dynamics of the dipolar BEC by real-time
propagation using the stationary state calculated by imaginary-
time propagation. In Fig. 4(a) we show the oscillation of the rms
sizes (z) and (p) from the reduced 1D and 2D GP Eqgs. (29) and (46),
respectively. In Fig. 4(a) we consider N,y = 10,000, agq = 16ay
(appropriate for *Cr), a = 6 nm (&1134ay) and oscillator length
I = 1pm.In 1D, we take dx = 0.025, dt = 0.0001, A = 1,d, =1,

number of space points N = 2048, and in 2D, we take dx = dy =
0.2,dt = 0.001,y = v = 1,d, = 1,NX = NY = 512.in
real-time simulation the oscillation is started by multiplying the
nonlinearities with the factor 1.05. To implement this, in real-time
routine we take GPAR = GDPAR = 1.1 and also take NSTP = 0 to
read the initial wave function. In 1D and 2D we also present re-
sults of the Gaussian variational approximations after a numeri-
cal solution of Egs. (36) and (50), respectively. The frequency of
the resultant oscillations agree well with the numerical 1D and 2D
calculations. However, slight adjustment of the initial conditions,
or initial values of width and its derivative, were necessary to get
an agreement of the amplitude of oscillation obtained from varia-
tional approximation and numerical simulation. The initial values
of width and its derivative are necessary to solve the variational
equations (36) and (50). In Fig. 4(b) we illustrate the oscillation of
the rms sizes (x), (y), and (z) in 3D using Eq. (3), where we perform
real-time simulation using the bound state obtained by imaginary-
time simulation as the initial state. The parameters used are N; =
1000, a = 110ag, agq = 16ap,y = 1,v = 1//2, % = 1/2,1 =
1pum,NX = NY = NZ = 128,dx = dy = dz = 0.2, dt = 0.002
in both real- and imaginary-time simulations. In addition, in real-
time simulation the oscillation is started by multiplying the nonlin-
earities with the factor 1.1. To implement this, in real-time routine
we take GPAR = GDPAR = 1.1 and also take NSTP = O to read the
initial wave function.

5. Summary

We have presented useful numerical programs in Fortran
and C for solving the dipolar GP equation including the contact
interaction in 1D, 2D, 3D. Two sets of programs are provided.
The imaginary-time programs are appropriate for solving the
stationary problems, while the real-time codes can be used for
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Fig.4. (a) Numerical (n) and variational (v) results for oscillation of rms sizes (z) and (p) from the real-time simulation using Eq. (29) in 1D and Eq. (46) in 2D, respectively,
for Ny = 10,000, a = 6 nm, aqq = 16ap, | = 1 wm, while a and a4y were both multiplied by 1.05 after NPAS iterations at t = 10. The wave function was first calculated
by imaginary-time routine with parameters dx = 0.025, dt = 0.0001,1 = 1,d, = 1, NPAS = 10°, N = 2048 in 1D, and dx = dy = 0.2, dt = 0.001, y =1,d, =
INPAS = 10% NX = NY = 512 in 2D. The results of the variational approximations in 1D and 2D as obtained from a numerical solution of Eqgs. (36) and (50) are also
shown. (b) Numerical results for oscillation of rms sizes (x), (y) and (z) from the real-time simulation in 3D using Eq. (3), for N;; = 1000, a = 110ag, agq = 16ap,! = 1 um,
y=1Lv= 1/ﬁ, A =1/2,NX =NY = NZ = 128, dx = dy = dz = 0.2, and dt = 0.002 while a and aqq were both multiplied by 1.1 after NPAS iterations. In all cases the
real-time calculation was performed with NSTP = 0 reading the 3D density from the numerical solution of the imaginary-time program using the same parameters.

studying non-stationary dynamics. The programs are developed
in Cartesian coordinates. We have compared the results of
numerical calculations for statics and dynamics of dipolar BECs
with those of Gaussian variational approximation, Thomas-Fermi
approximation, and numerical calculations of other authors, where
possible.
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We present C programming language versions of earlier published Fortran programs (Muruganandam and
Adhikari (2009) [1]) for calculating both stationary and non-stationary solutions of the time-dependent
Gross-Pitaevskii (GP) equation. The GP equation describes the properties of dilute Bose-Einstein
condensates at ultra-cold temperatures. C versions of programs use the same algorithms as the Fortran
ones, involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method.
In a one-space-variable form of the GP equation, we consider the one-dimensional, two-dimensional,
circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In
the two-space-variable form, we consider the GP equation in two-dimensional anisotropic and three-
dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also
considered. In addition to these twelve programs, for six algorithms that involve two and three space
variables, we have also developed threaded (OpenMP parallelized) programs, which allow numerical
simulations to use all available CPU cores on a computer. All 18 programs are optimized and accompanied
by makefiles for several popular C compilers. We present typical results for scalability of threaded
codes and demonstrate almost linear speedup obtained with the new programs, allowing a decrease in
execution times by an order of magnitude on modern multi-core computers.

New version program summary

Program title: GP-SCL package, consisting of: (i) imagtimeld, (ii) imagtime2d, (iii) imagtime2d-th,
(iv) imagtimecir, (v) imagtime3d, (vi) imagtime3d-th, (vii) imagtimeaxial, (viii) imagtimeaxial-th,
(ix) imagtimesph, (x) realtime1d, (xi) realtime2d, (xii) realtime2d-th, (xiii) realtimecir, (xiv) realtime3d,
(xv) realtime3d-th, (xvi) realtimeaxial, (xvii) realtimeaxial-th, (xviii) realtimesph.

Catalogue identifier: AEDU_v2_0.

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDU_v2_0.html.

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html.

No. of lines in distributed program, including test data, etc.: 180583.

No. of bytes in distributed program, including test data, etc.: 1188 688.

Distribution format: tar.gz.

Programming language: C and C/OpenMP.

Computer: Any modern computer with C language compiler installed.

Operating system: Linux, Unix, Mac OS, Windows.

RAM: Memory used with the supplied input files: 2-4 MB (i, iv, ix, X, xiii, xvi, xvii, xviii), 8 MB
(xi, xii), 32 MB (vii, viii), 80 MB (i, iii), 700 MB (xiv, xv), 1.2 GB (v, vi).

Number of processors used: For threaded (OpenMP parallelized) programs, all available CPU cores on the
computer.

Classification: 2.9, 4.3, 4.12.
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Catalogue identifier of previous version: AEDU_v1_0.
Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888.
Does the new version supersede the previous version?: No.
Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii (GP)
nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic,
circularly-symmetric, spherically-symmetric, axially-symmetric or fully anisotropic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.
Solution method: The time-dependent GP equation is solved by the split-step Crank-Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The method yields solutions of stationary and/or non-stationary
problems.
Reasons for the new version: Previous Fortran programs [1] are used within the ultra-cold atoms
[2-11] and nonlinear optics [12,13] communities, as well as in various other fields [14-16]. This new
version represents translation of all programs to the C programming language, which will make it
accessible to the wider parts of the corresponding communities. It is well known that numerical
simulations of the GP equation in highly experimentally relevant geometries with two or three space
variables are computationally very demanding, which presents an obstacle in detailed numerical studies
of such systems. For this reason, we have developed threaded (OpenMP parallelized) versions of
programs imagtime2d, imagtime3d, imagtimeaxial, realtime2d, realtime3d, realtimeaxial, which are
named imagtime2d-th, imagtime3d-th, imagtimeaxial-th, realtime2d-th, realtime3d-th, realtimeaxial-
th, respectively. Fig. 1 shows the scalability results obtained for OpenMP versions of programs realtime2d
and realtime3d. As we can see, the speedup is almost linear, and on a computer with the total of 8 CPU
cores we observe in Fig. 1(a) a maximal speedup of around 7, or roughly 90% of the ideal speedup, while
on a computer with 12 CPU cores we find in Fig. 1(b) that the maximal speedup is around 9.6, or 80% of
the ideal speedup. Such a speedup represents significant improvement in the performance.
Summary of revisions: All Fortran programs from the previous version [1] are translated to C and named
in the same way. The structure of all programs is identical. We have introduced the use of comprehensive
input files, where all parameters are explained in detail and can be set by a user. We have also
included makefiles with tested and verified settings for GNU’s gcc compiler, Intel’s icc compiler, IBM’s
xlc compiler, PGI's pgcc compiler, and Oracle’s suncc (former Sun’s) compiler. In addition to this, 6 new
threaded (OpenMP parallelized) programs are supplied (imagtime2d-th, imagtime3d-th, imagtimeaxial-
th, realtime2d-th, realtime3d-th, realtimeaxial-th) for algorithms involving two or three space variables.
They are written by OpenMP-parallelizing the most computationally demanding loops in functions
performing time evolution (calcnu, calclux, calcluy, calcluz), normalization (calcnorm), and calculation
of physical quantities (calcmuen, calcrms). Since some of the dynamically allocated array variables are
used within such loops, they had to be made private for each thread. This was done by allocating matrices
instead of arrays, with the first index in all such matrices corresponding to a thread number.
Additional comments: This package consists of 18 programs, see Program title above, out of which 12
programs (i, ii, iv, v, vii, ix, X, Xi, Xiii, xiv, Xvi, xviii) are serial, while 6 programs (iii, vi, viii, xii, Xv, xvii)
are threaded (OpenMP parallelized). For the particular purpose of each program, please see descriptions
below.
Running time: All running times given in descriptions below refer to programs compiled with gcc on quad-
core Intel Xeon X5460 at 3.16 GHz (CPU1), and programs compiled with icc on quad-core Intel Nehalem
E5540 at 2.53 GHz (CPU2). With the supplied input files, running times on CPU1 are: 5 min (i, iv, ix, xii,
xiii, xvii, xviii), 10 min (viii, xvi), 15 min (iii, x, xi), 30 min (ii, vi, vii), 2 h (v), 4 h (xv), 15 h (xiv). On CPU2,
running times are: 5 min (i, iii, iv, viii, ix, xii, Xiii, xvi, Xvii, xviii), 10 min (vi, X, xi), 20 min (ii, vii), 1 h
(v), 2 h (xv), 12 h (xiv).

© 2012 Elsevier B.V. All rights reserved.

New version program summary (i)
Program title: imagtime1d.
Title of electronic files: imagtime1d.c, imagtime1d.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 4 MB.

Programming language used: C.

Typical running time: 2 min (CPU1), 1 min (CPU2).

Nature of physical problem: This program is designed to solve the
time-dependent GP nonlinear partial differential equation in one

space dimension with a harmonic trap. The GP equation describes
the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (ii)

Program title: imagtime2d.

Title of electronic files: imagtime2d.c, imagtime2d.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 80 MB.

Programming language used: C.

Typical running time: 30 min (CPU1), 20 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
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New version program summary (iii)

Program title: imagtime2d-th.

Title of electronic files: imagtime2d-th.c, imagtime2d-th.h.
Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 80 MB.

Programming language used: C/OpenMP.

Typical running time: 15 min (CPU1), 5 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (iv)

Program title: imagtimecir.

Title of electronic files: imagtimecir.c, imagtimecir.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 2 MB.

Programming language used: C.

Typical running time: 2 min (CPU1), 1 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
two space dimensions with a circularly-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (v)

Program title: imagtime3d.

Title of electronic files: imagtime3d.c, imagtime3d.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 1.2 GB.

Programming language used: C.

Typical running time: 1.5 h (CPU1), 1 h (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (vi)

Program title: imagtime3d-th.

Title of electronic files: imagtime3d-th.c, imagtime3d-th.h.
Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 1.2 GB.

Programming language used: C/OpenMP.

Typical running time: 25 min (CPU1), 10 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation

in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (vii)
Program title: imagtimeaxial.
Title of electronic files: imagtimeaxial.c, imagtimeaxial.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 32 MB.

Programming language used: C.

Typical running time: 30 min (CPU1), 20 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP

equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (viii)
Program title: imagtimeaxial-th.
Title of electronic files: imagtimeaxial-th.c, imagtimeaxial-th.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 32 MB.

Programming language used: C/OpenMP.

Typical running time: 10 min (CPU1), 5 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP

equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (ix)
Program title: imagtimesph.
Title of electronic files: imagtimesph.c, imagtimesph.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 2.5 MB.

Programming language used: C.

Typical running time: 2 min (CPU1), 1 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with a spherically-symmetric trap. The GP

equation describes the properties of a dilute trapped Bose-Einstein
condensate.
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Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (X)

Program title: realtime1d.

Title of electronic files: realtime1d.c, realtime1d.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 4 MB.

Programming language used: C.

Typical running time: 15 min (CPU1), 10 min (CPU2).

Nature of physical problem: This program is designed to solve the
time-dependent GP nonlinear partial differential equation in one
space dimension with a harmonic trap. The GP equation describes
the properties of a dilute trapped Bose-Einstein condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.

New version program summary (Xi)

Program title: realtime2d.

Title of electronic files: realtime2d.c, realtime2d.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 8 MB.

Programming language used: C.

Typical running time: 15 min (CPU1), 10 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.

New version program summary (Xii)

Program title: realtime2d-th.

Title of electronic files: realtime2d-th.c, realtime2d-th.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 8 MB.

Programming language used: C/OpenMP.

Typical running time: 5 min (CPU1), 2 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.

New version program summary (Xiii)

Program title: realtimecir.

Title of electronic files: realtimecir.c, realtimecir.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 3 MB.

Programming language used: C.

Typical running time: 5 min (CPU1), 5 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
two space dimensions with a circularly-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.

New version program summary (Xiv)

Program title: realtime3d.

Title of electronic files: realtime3d.c, realtime3d.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 700 MB.

Programming language used: C.

Typical running time: 15 h (CPU1), 12 h (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.

New version program summary (Xv)

Program title: realtime3d-th.

Title of electronic files: realtime3d-th.c, realtime3d-th.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 700 MB.

Programming language used: C/OpenMP.

Typical running time: 4 h (CPU1), 1.8 h (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.

New version program summary (xvi)

Program title: realtimeaxial.

Title of electronic files: realtimeaxial.c, realtimeaxial.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 4 MB.

Programming language used: C.

Typical running time: 10 min (CPU1), 5 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
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Fig. 1. (Colour online) Speedup in the execution time of realtime2d-th and realtime3d-th threaded (OpenMP parallelized) programs as a function of the number of CPU
cores used. The results are obtained: (a) on an 8-core machine with 2x quad-core Intel Nehalem E5540 CPU at 2.53 GHz, using the icc compiler, (b) on a 12-core machine
with 2 x six-core Intel Nehalem X5650 CPU at 2.66 GHz, using the pgcc compiler. The spatial grid sizes used are 2000 x 2000 (realtime2d-th) and 1000 x 1000 x 300

(realtime3d-th).

New version program summary (Xvii)

Program title: realtimeaxial-th.

Title of electronic files: realtimeaxial-th.c, realtimeaxial-th.h.
Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 4 MB.

Programming language used: C/OpenMP.

Typical running time: 5 min (CPU1), 1 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.

New version program summary (Xviii)

Program title: realtimesph.

Title of electronic files: realtimesph.c, realtimesph.h.

Computer: Any modern computer with C language compiler
installed.

Maximum RAM memory: 2.5 MB.

Programming language used: C.

Typical running time: 5 min (CPU1), 5 min (CPU2).

Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with a spherically-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Method of solution: The time-dependent GP equation is solved by
the split-step Crank-Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
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Abstract. We present Path Integral Monte Carlo C code for calculation of quantum
mechanical transition amplitudes for 1D models. The SPEEDUP C code is based on the
use of higher-order short-time effective actions and implemented to the maximal order
p=18 in the time of propagation (Monte Carlo time step), which substantially improves
the convergence of discretized amplitudes to their exact continuum values. Symbolic
derivation of higher-order effective actions is implemented in SPEEDUP Mathematica
codes, using the recursive Schrodinger equation approach. In addition to the general
1D quantum theory, developed Mathematica codes are capable of calculating effective
actions for specific models, for general 2D and 3D potentials, as well as for a general
many-body theory in arbitrary number of spatial dimensions.
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1 Introduction

Exact solution of a given many-body model in quantum mechanics is usually expressed
in terms of eigenvalues and eigenfunction of its Hamiltonian

M

AD
A=Y 2L v(q,,qm), (1.1)
— 2m;

but it can be also expressed through analytic solution for general transition amplitude
A(a,b;T) = (ble~'TH/"|a) from the initial state |a) to the final state |[b) during the time of
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propagation T. Calculation of transition amplitudes is more suitable if one uses path inte-
gral formalism [1-3], but in principle, if eigenproblem of the Hamiltonian can be solved,
one should be able to calculate general transition amplitudes, and vice versa. However,
mathematical difficulties may prevent this, and even more importantly, exact solutions
can be found only in a very limited number of cases. Therefore, use of various analytic
approximation techniques or numerical treatment is necessary for detailed understand-
ing of the behavior of almost all models of interest.

In numerical approaches it could be demanding and involved to translate numerical
knowledge of transition amplitudes to (or from) eigenstates, but practically can be always
achieved. It has been implemented in various setups, e.g. through extraction of the
energy spectra from the partition function [2-5], and using the diagonalization of space-
discretized matrix of the evolution operator, i.e. matrix of transition amplitudes [6-10].
All these applications use the imaginary-time formalism [11, 12], typical for numerical
simulations of such systems.

Recently introduced effective action approach [13-17] provides an ideal framework
for exact numerical calculation of quantum mechanical amplitudes. It gives systematic
short-time expansion of amplitudes for a general potential, thus allowing accurate cal-
culation of short-time properties of quantum systems directly, as has been demonstrated
in [8-10]. For numerical calculations that require long times of propagation to be con-
sidered using e.g. Monte Carlo method, effective action approach provides improved
discretized actions leading to the speedup in the convergence of numerically calculated
discretized quantities to their exact continuum values. This has been also demonstrated
in Monte Carlo calculations of energy expectation values using the improved energy es-
timators [5, 18].

In this paper we present SPEEDUP codes [19] which implement the effective action
approach, and which were used for numerical simulations in [4,5,8-10,13-17]. The pa-
per is organized as follows. In Section 2 we briefly review the recursive approach for
analytic derivation of higher-order effective actions. SPEEDUP Mathematica codes capa-
ble of symbolic derivation of effective actions for a general one- and many-body theory
as well as for specific models is described in detail in Section 3, while in Section 4 we
describe SPEEDUP Path Integral Monte Carlo C code, developed for numerical calcula-
tion of transition amplitudes for 1D models. Section 5 summarizes presented results and
gives outlook for further development of the code.

2 Theoretical background

From inception of the path integral formalism, expansion of short-time amplitudes in
the time of propagation was used for the definition of path integrals through the time-
discretization procedure [2,3]. This is also straightforwardly implemented in the Path
Integral Monte Carlo approaches [20], where one usually relies on the naive discretization
of the action. Several improved discretized actions, mainly based on the Trotter formula
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and its generalizations, were developed and used in the past [21-23]. A recent analysis of
this method can be found in Jang et al [24]. Several related investigations dealing with the
speed of convergence have focused on improvements in short-time propagation [25, 26]
or the action [27]. More recently, split-operator method has also been developed [28-32],
later extended to include higher-order terms [33-36], and systematically improved using
the multi-product expansion [37-39].

The effective action approach is based on the ideal discretization concept [16]. It was
introduced first for single-particle 1D models [13-15] and later extended to general many-
body systems in arbitrary number of spatial dimensions [5,17]. This approach allows
systematic derivation of higher-order terms to a chosen order p in the short time of prop-
agation.

Recursive method for deriving discretized effective actions, established in [17], is
based on solving the underlying Schrodinger equation for the amplitude. It has proven
to be the most efficient tool for treatment of higher-order expansion. In this section we
give brief overview of the recursive method, which will be implemented in Mathematica
in the next section. We start with the case of single particle in 1D, used in the SPEEDUP
C code. Throughout the paper we will use natural system of units, in which 7 and all
masses are set to unity.

2.1 One particle in one dimension

In the effective action approach, transition amplitudes are expressed in terms of the ideal
discretized action S* in the form
Ty 1 —S*(a,b;T)

A(a,b;T) 27rTe , 2.1
which can be also seen as a definition of the ideal action [16]. Therefore, by definition,
the above expression is correct not only for short times of propagation, but for arbitrary
large times T. We also introduce the ideal effective potential W,

. 1/b—a\?

reminiscent of the naive discretized action, with the arguments of the effective potential
(a, b, T) usually written as W(#, b%” ,'T), to emphasize that we will be using mid-point
prescription.

However, ideal effective action and effective potential can be calculated analytically
only for exactly solvable models, while in all other cases we have to use some approxi-
mative method. We use expansion in the time of propagation, assuming that the time T
is small. If this is not the case, we can always divide the propagation into N time steps,
so that e=T/N is small. Long-time amplitude is than obtained by integrating over all
short-time ones,

A(a,b;T) :/dql---qu_l A(a,q1;€) A(q1,925€) - A(gn-1,bs¢€), (2.3)

, 2.2)
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paving the way towards Path Integral Monte Carlo calculation, which is actually imple-
mented in the SPEEDUP C code.

If we consider general amplitude A(gq,4’;¢), introduce the mid-point coordinate x =
(9+49')/2 and deviation X = (q'—q) /2, and express A using the effective potential,

T 2o ew(es
Alage)=—=e ePeW(nme) 2.4)

the time-dependent Schrodinger equation for the amplitude leads to the following equa-
tion for W
=3 L L 5 Lo 2, Lo 1

W4 xdW +ed, W — gsa W— gsa W+ gt (OW)~+ 3¢ (OW)“= 5 (Va+Vo), (2.5)
where Vo=V (x£x),i.e. V_=V(q), V.:=V(q'). The short-time expansion assumes that we
expand W to power series in ¢ to a given order, and calculate the appropriate coefficients
using Eq. (2.5). We could further expect that this results in coefficients depending on the
potential V(x) and its higher derivatives. However, this scheme is not complete, since
the effective potential depends not only on the mid-point x, but also on the deviation
%, and the obtained equations for the coefficients cannot be solved in a closed form. In
order to resolve this in a systematic way, we make use of the fact that, for short time of
propagation, deviation ¥ is on the average given by the diffusion relation ¥? ¢, allowing
double expansion of W in the form

e} m
W(x,xe)= ) Zcm,k(x)em_kfy‘. (2.6)
m=0k=0

Restricting the above sum over m to p—1 leads to level p effective potential W, (x,%;e)
which gives expansion of the effective action Sy, to order ¢7, and hence the level desig-
nation p for both the effective action and the corresponding potential W,. Thus, if the
diffusion relation is applicable (which is always the case in Monte Carlo calculations), in-
stead of the general double expansion in ¥ and ¢, we are able to obtain simpler, systematic
expansion in € only.

As shown previously [13-15], when used in Path Integral Monte Carlo simulations for
calculation of long time amplitudes according to Eq. (2.3), use of level p effective action
leads to the convergence of discretized amplitudes proportional to 7, i.e. as 1/ N?, where
N is the number of time steps used in the discretization.

If we insert the above level p expansion of the effective potential to Eq. (2.5), we obtain
the recursion relation derived in [17],

m—2
8(m+k+1)cu k= (2k+2) (2k+1) Carjer1 16— Y Y €2k
I=0 r
m—2
- Z ZZV(Zk_Zr‘*—Z)Cl,r Cm—1—1k—r+1/ (2~7)
I=1 r
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Figure 1: Order in which the coefficients c,, ; are calculated: diagonal ones from Eq. (2.8), off-diagonal from
recursion (2.7).

where the sum over r goes from max{0, k—m+I1+2} to min{k, I}. This recursion can
be used to calculate all coefficients c,, x to a given level p, starting from the known initial
condition, cgp = V. The diagonal coefficients can be calculated immediately,

v (2m)

Cm,m = W, (28)

and for a given value of m=0,---p—1, the coefficients c,, x follow recursively from evalu-
ating (2.7) fork=m—1,---,1,0, as illustrated in Fig. 1.

2.2 Extension to many-body systems

The above outlined approach can be straightforwardly applied to many-body systems.
Again the amplitude is expressed through the effective action and the corresponding
effective potential, which now depends on mid-point positions and deviations of all par-
ticles. For simplicity, these vectors are usually combined into D x M dimensional vectors
x and X, where D is spatial dimensionality, and M is the number of particles. In this
notation,

, 1 20 %
A(q,q ;S):We =X SW(X,X,S)’ (29)
where initial and final position q=(q1,---,qum) and q'=(q},---,q},) are analogously de-
fined D x M dimensional vectors. Here we will not consider quantum statistics of parti-
cles. The required symmetrization or antisymmetrization must be applied after transition
amplitudes are calculated using the effective potential.

Many-body transition amplitudes satisfy D x M-dimensional generalization of the
time-dependent Schrodinger equation, which leads to the equation for the effective po-



744 A. Balaz et al. / Commun. Comput. Phys., 11 (2012), pp. 739-755

tential similar to Eq. (2.5), with vectors replacing previously scalar quantities,

= 1 1 - 1 1,5, 1
W% IW +ed; W — 2 ed™W - gg;fw+ € @W) 2@ WP =3 (Vi +Vo).  (210)
The effective potential for short-time amplitudes again can be written in the form of the
double expansion in € and x. However, it turns out to be advantageous to use the expan-
sion

W(x,x;¢) Z Zsm kak (x,X), (2.11)
m=0k=0

and work with fully contracted quantities W, x
Wm,k(x,f() = fil fiz leka k ok (X) , (212)

rather than with the respective coefficients cl k . In this way we avoid the computa-
tionally expensive symmetrization over all 1nd1ces i1, -+ ,ipk. After inserting the above
expansion into the equation for the effective potential, we obtain the recursion relation
which represents a generalization of previously derived Eq. (2.7) for 1D case, and has the
form

m—2

(4K 1) Wi = 0 W13 Wonr1 = Y Y (OWL)- (0Won-i-24r)
I=0 r

- ZZ (OW1,) - (OWn— i1 f—r+1)- (2.13)

The sum over r runs from max{0, k—m+I[+42} to min{k, I}, while diagonal quantities
Wi,m can be calculated directly,

L x-9)2"V. (2.14)

Wm,m: m(x )

The above recursion disentangles, in complete analogy with the previously outlined case
of one particle in 1D, and is solved in the order shown in Fig. 1.

3 SPEEDUP Mathematica codes for deriving the higher-order
effective actions

The effective action approach can be used for numerically exact calculation of short-time
amplitudes if the effective potential W, can be analytically derived to sufficiently high
values of p such that the associated error is smaller than the required numerical pre-
cision. The error e’ for the effective action, obtained when level p effective potential
is used, translates into e?"PM/2 for a general many-body short-time amplitude. How-
ever, when amplitudes are calculated using the Path Integral Monte Carlo SPEEDUP C
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code [19], which will be presented in the next section, the errors of numerically calculated
amplitudes are always proportional to e’ ~1/N?, where N is number of time-steps in the
discretization of the propagation time T.

Therefore, accessibility of higher-order effective actions is central to the application of
this approach if it is used for direct calculation of short-time amplitudes [8-10], as well
as in the case when PIMC code is used [4, 5, 18]. However, increase in the level p leads
to the increase in complexity of analytic expressions for the effective potential. On one
hand, this limits the maximal accessible level p by the amount of memory required for
symbolic derivation of the effective potential. On the other hand, practical use of large
expressions for W, may slow down numerical calculations, and one can opt to use lower
than the maximal available level p when optimizing total CPU time required for numer-
ical simulation. The suggested approach is to study time-complexity of the algorithm in
practical applications, and to choose optimal level p by minimizing the execution time
required to achieve fixed numerical precision.

We have implemented efficient symbolic derivation of higher-order effective actions
in Mathematica using the recursive approach. All source files described in this section
are located in the Mathematica directory of the SPEEDUP code distribution.

3.1 General 1D Mathematica code

SPEEDUP code [19] for symbolic derivation of the effective potential to specified level
p is implemented in Mathematica [40], and is available in the EffectiveAction-1D.nb
notebook. It implements the algorithm depicted in Fig. 1 and calculates the coefficients
Cpk for m=0,---,p—1 and k=m,---,0, starting from the initial condition cgo=V. For a
given value of m, the diagonal coefficient c,, 5, is first calculated from Eq. (2.8), and then
all off-diagonal coefficients are calculated from the recursion (2.7).

In this code the potential V(x) is not specified, and the effective potential is derived
for a general one-particle 1D theory. The resulting coefficients c,, , and the effective po-
tential are expressed in terms of the potential V and its higher derivatives. Level p effec-
tive potential, constructed as

p=1 m
Wy(x, )= Y Y cmp(x)e" 2, (3.1)
m=0k=0

contains derivatives of V to order 2p —2.

The only input parameter of this Mathematica code is the level p to which the effec-
tive potential should be calculated. As the code runs, it prints used amount of memory
(in MB) and CPU time. This information can be used to estimate the required comput-
ing resources for higher values of p. The calculated coefficients can be exported to a
tile, and later imported for further numerical calculations. As an illustration, the file
EffectiveAction-1D-export-p5.m contains exported definition of all the coefficients
cm k calculated at level p =5, while the notebook EffectiveAction-1D-matching-p5.nb
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contains matching output from the interactive session used to produce the above p =5
result.

The execution of this code on a typical 2 GHz CPU for level p =10 requires 10-15 MB
of RAM and several seconds of CPU time. We have successfully run this code for levels as
high as p =35 [19]. SPEEDUP C code implements effective actions to the maximal level
p = 18, with the size of the corresponding C function around 2 MB. If needed, higher
levels p can be easily implemented in C and added to the existing SPEEDUP code.

3.2 General 2D and 3D Mathematica code

Although we have developed Mathematica code capable of deriving effective actions
for a general many-body theory in arbitrary number of spatial dimensions, in practical
applications in 2D and 3D it can be very advantageous to use simpler codes, able to
produce results to higher levels p than the general code [9,10].

This is done in files EffectiveAction-2D.nb and EffectiveAction-3D.nb, where
the recursive approach is implemented directly in 2D and 3D. Execution of these codes
requires more memory: for p =10 effective action one needs 60 MB in 2D case, while
in 3D case the needed amount of memory increases to 860 MB. On the other hand, the
execution time is several minutes for 2D code and around 30 minutes for 3D code.

The distribution of the SPEEDUP code contains exported p =5 definitions of con-
tractions W, x for both 2D and 3D general potential, as well as matching outputs from
interactive sessions used to generate these results.

3.3 Model-specific Mathematica codes

When general expressions for the effective actions, obtained using the above described
SPEEDUP Mathematica codes, are used in numerical simulations, one has to specify the
potential V and its higher derivatives to order 2p—2 in order to be able to calculate tran-
sition amplitudes. Such approach is justified for systems where the complexity of higher
derivatives increases. However, for systems where this is not the case, or where only a
limited number of derivatives is non-trivial (e.g. polynomial interactions), it might be
substantially beneficial to specify the potential at the beginning of the Mathematica code
and calculate the derivatives explicitly when iterating the recursion.

Using this approach, one is able to obtain coefficients c,, , and the effective poten-
tial W directly as functions of the mid-point x. This is implemented in the notebooks
EffectiveAction-1D-AHO.nb and EffectiveAction-2D-AHO.nb for the case of anhar-
monic oscillators in 1D and 2D,

A

VlD_AHo(x) = §x2+%x4, (3.2)
A

VZD_AHO(x):E(x2+y2)—l—2g—4(x2+y2)2. (33)
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These codes can be easily executed within few seconds and with the minimal amounts of
memory even for p=20. For 1D anharmonic oscillator we have successfully calculated
effective actions to excessively large value p =144, and in 2D to p =67 [19], to illustrate
the advantage of this model-specific method.

Similar approach can be also used in another extreme case, when the complexity of
higher derivatives of the potential V increases very fast, so that entering the correspond-
ing expressions to the code becomes impractical. Even in this situation expressions for
effective actions can be usually simplified using some appropriate model-specific ansatz.
The form of such ansatz can be deduced from the form of model-specific effective po-
tentials, and then used to simplify their derivation. Such use-case is illustrated in the
SPEEDUP Mathematica code for the modified Poscl-Teller potential,

Vib—mpr(x) =— ( A

coshax)?’ (3-4)

For this potential, the coefficients c,, x of the effective potential can be expressed in the

form ( )21
1 tanhax
Cm,k(x) = l;)dm,k,l (COShDCX)zm_21+2 4

(3.5)

and newly introduced constant coefficients d,, i ; can be calculated using the model-speci-
fic recursion in EffectiveAction-1D-MPT.nb. The form of the ansatz (3.5) is deduced
from the results of executing general 1D Mathematica code, with the model-specific po-
tential (3.4) defined before the recursion calculation of the coefficients is performed. Us-
ing this approach, we were able to obtain maximal level p =41 effective action [19].

3.4 General many-body Mathematica code

SPEEDUP Mathematica code for calculation of effective action for a general many-body
theory is implemented using the MathTensor [41] package for tensorial calculations in
Mathematica. This general implementation required some new functions related to the
tensor calculus to be defined in the source notebook EffectiveAction-ManyBody .nb pro-
vided with the SPEEDUP code.

The function GenNewInd [n] generates the required number n of upper and lower in-
dices using the MathTensor function UpLo, with the assighed names up1, 101,---, as well
as lists upi and loi, each containing n strings corresponding to the names of generated
indices. These new indices are used in the implementation of the recursion for calcula-
tion of derivatives of W, x, contractions of the effective potential, and for this reason had
to be explicitly named and properly introduced.

The expressions obtained by iterating the recursion contain large numbers of contrac-
tions, and function NewDefUnique [contr] replaces all contracted indices with the newly-
introduced dummy ones in the contraction contr, so that they do not interfere with the
calculation of derivatives in the recursion. This is necessary since the derivatives in re-
cursion do not distinguish contracted indices from non-contracted ones if their names



748 A. Balaz et al. / Commun. Comput. Phys., 11 (2012), pp. 739-755

happen to be generated by the function GenNewInd. Note that the expression contr does
not have to be full contraction, i.e. function NewDefUnique will successfully act on ten-
sors of any kind if they have contracted indices, while it will leave them unchanged if no
contractions are present.

The function NewDerivativeVec[contr, vec, ind] implements calculation of the
first derivative of the tensor contr (which may or may not contain contracted indices,
but if it does, they are supposed to be uniquely defined dummy ones, which is achieved
using the function NewDefUnique). The derivative is calculated with respect to vector vec
with the vectorial index ind. The index ind can be either lower or upper one, and has to
be generated previously by the function GenNewInd.

Finally, the function NewLaplacianVec [contr, vec] implements the Laplacian of the
tensor contr with respect to the vector vec, i.e. it performs the calculation of contractions
of the type

J -contr. (3.6)

dvec; dvec!

After all described functions are defined, the execution of the code proceeds by set-
ting the desired level of the effective action p, generating the needed number of named
indices using the function call GenNewInd[2 p + 2], and then by performing the recur-
sion according to the scheme illustrated in Fig. 1. The use of MathTensor function CanAll
in the recursion ensures that the obtained expressions for Wlm, k] will be simplified if
possible. This is achieved in MathTensor by sorting and renaming all dummy indices
using the same algorithm and trying to simplify the expression obtained in such way. By
default, Mathematica will distinguish contracted indices in two expressions if they are
named differently, and MathTensor works around it using the renaming scheme imple-
mented in CanAll.

The computing resources required for the execution of the many-body SPEEDUP
Mathematica code depend strongly on the level of the effective action. For example,
for level p =5 the code can be run within few seconds with the minimal memory re-
quirements. The notebook with the matching output of this calculation is available as
EffectiveAction-ManyBody-matching-p5.nb, and the exported results for Wlm, k] are
available in EffectiveAction-ManyBody-export-p5.m. We were able to achieve maxi-
mal level p =10 [19], with the CPU time of around 2 days on a recent 2 GHz processor.
The memory used by Mathematica was approximately 1.6 GB.

Note that exporting the definition of the effective potential from Mathematica to a file
will yield lower and upper indices named 111, uui, etc. In order to import previous re-
sults and use them for further calculations with the provided Mathematica code, it is nec-
essary to replace indices in the exported file to the proper index names used by the func-
tion GenNewInd. This is easily done using find /replace feature of any text editor. Prior to
importing definition of the effective potential, it is necessary to initialize MathTensor and
all additional functions defined in the notebook EffectiveAction-ManyBody.nb, and to
generate the needed number of named indices using the function call GenNewInd [2p+2].
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4 SPEEDUP C codes for Monte Carlo calculation of 1D
transition amplitudes

For short times of propagation, the effective actions derived using the above described
Mathematica codes can be directly used. This has been extensively used in [8, 9], where
SPEEDUP codes were applied for numerical studies of several lower-dimensional models
and calculation of large number of energy eigenvalues and eigenfunctions. The similar
approach is used in [10], where SPEEDUP code was used to study properties of fast-
rotating Bose-Einstein condensates in anharmonic trapping potentials. The availability
of a large number of eigenstates allowed not only precise calculation of global properties
of the condensate (such as condensation temperature and ground state occupancy), but
also study of density profiles and construction of time-of-flight absorption graphs, with
the exact quantum treatment of all available eigenfunctions.

However, in majority of applications the time of propagation cannot be assumed to
be small. The effective actions are found to have finite radius of convergence [8], and if
the typical propagation times in the considered case exceed this critical value, Path Inte-
gral Monte Carlo approach must be used in order to accurately calculate the transition
amplitudes and the corresponding expectation values [4,18]. As outlined earlier, in this
case the time of propagation T is divided into N time steps, such that e=T/N is suffi-
ciently small and that the effective action approach can be used. The discretization of the
propagation time leads to the following expression for the discretized amplitude

dql'-'qu,1 _clp
AJ(VP)W'Z”T):/ oL @1

where S ;f,’ ) stands for the discretized level p effective action,

N-1 —q.)2
S;\l;): Z [W"‘Ewp(xk/fk;g) , (4.2)

and qo=4a, g =b, X = (qrs1+qx) /2, Tk = (k1= 1) /2.

Level p discretized effective action is constructed from the corresponding effective
potential W,, calculated as power series expansion to order ¢” 1. Since it enters the action
multiplied by ¢, this leads to discretized actions correct to order €”, i.e. with the errors of

the order ¢?*1. The long-time transition amplitude A](\’f) (a,b;T) is a product of N short-
time amplitudes, and its errors are expected to scale as N .ePT1~1/NP, as has been shown
in [5,13-15] for transition amplitudes, and in [5, 18] for expectation values, calculated
using the corresponding consistently improved estimators.

4.1 Algorithm and structure of the code

SPEEDUP C source is located in the src directory of the code distribution [19]. It uses the
standard Path Integral Monte Carlo algorithm for calculation of transition amplitudes.
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The trajectories are generates by the bisection algorithm [20], hence the number of time-
steps N is always given as a power of two, N =2°. When the amplitude is calculated
with 2° time steps, we can also easily calculate all discretized amplitudes in the hierarchy
25-1 ... 20 a4t no extra cost. This requires only minor additional CPU time and memory,
since the needed trajectories are already generated as subsets of maximal trajectories with
2° time-steps.

The trajectory is constructed starting from bisection level n =0, where we only have
initial and final position of the particle. At bisection level n=1 the propagation is divided
into two time-steps, and we have to generate coordinate g of the particle at the moment
T/2, thus constructing the piecewise trajectory connecting points a at the time t =0, g
att=T/2,and b at t =T. The coordinate g is generated from the Gaussian probability
density function centered at (a+b)/2 and with the width 07 =+/T/2. The procedure
continues iteratively, and each time a set of points is added to the piecewise trajectory. At
each bisection level n the coordinates are generated from the Gaussian centered at mid-
point of coordinates generated at level n—1, with the width ¢,, =/T/2". To generate
numbers 7 from the Gaussian centered at zero we use Box-Miiller method,

=1/ —202In¢; cos2mly, (4.3)

where numbers ¢; and ¢, are generated from the uniform distribution on the interval
[0,1], using the SPRNG library [42]. If the target bisection level is s, then at bisection
level n <s we generate 2"~! numbers using the above formula, and construct the new
trajectory by adding to already existing points the new ones, according to

q[i‘zs—n-i-l] +q[(i+1) .zs—n-i-l]
2 7

al(1+20) 27" =g+ (4.4
where i runs from 0 to 2"~1—1. This ensures that at bisection level s we get trajectory
with N =2° time-steps, consisting of N+1 points, with boundary conditions g[0] =a and
q[N]=b. At each lower bisection level 1, the trajectory consists of 2" +1 points obtained
from the maximal one (level s trajectory) as a subset of points q[i-2°~"] fori=0,1,---,2".

The use of trajectories generated by the bisection algorithm requires normalization
factors from all Gaussian probability density functions with different widths to be taken
into account. This normalization is different for each bisection level, but can be calculated
easily during the initialization phase.

The basic C code is organized in three source files, main.c, p.c and potential.c,
with the accompanying header files. The file potential. c (its name can be changed, and
specified at compile time) must contain a user-supplied function V0 (), defining the po-
tential V. For a given input value of the coordinate, VO() should initialize appropriate
variables to the value of the potential V and its higher derivatives to the required or-
der 2p—2. When this file is prepared, SPEEDUP code can be compiled and used. The
distributed source contains definition of 1D-AHO potential in the file potential.c, the
same as in the file 1D-AHO. c.
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The execution of the SPEEDUP code starts with the initialization and allocation of
memory in the main() function, and then the array of amplitudes and associated MC
error estimates for each bisection level n =0,---,s is calculated by calling the function
mc (). After printing the output, main() deallocates used memory and exits. Function
mc () which implements the described MC algorithm is also located in the file main.c, as
well as the function distr (), which generates maximal (level s) trajectories.

The function mc () contains main MC sampling loop. In each step new level s trajec-
tory is generated by calling the function distr (). Afterwards, for each bisection level 7,
function func () is invoked. This function is located in the file p. ¢, and returns the value
of the function e~%, properly normalized, as described earlier. This value (and its square)
is accumulated in the MC loop for each bisection level n and later averaged to obtain the
estimate of the corresponding discretized amplitude and the associated MC error.

The function func () makes use of C implementation of earlier derived effective ac-
tions for a general 1D potential. For a given trajectory at the bisection level n, func ()
will first initialize appropriate variables with the values of the potential and its higher
derivatives (to the required level 2p—2) by calling the user-supplied function V0 (), lo-
cated in the file potential.c. Afterwards the effective action is calculated according to
Eq. (4.2), where the effective potential is calculated by the function Wp (), located in the
file p. c. The desired level p of the effective action is selected by defining the appropriate
pre-processor variable when the code is compiled.

In addition to this basic mode, when SPEEDUP code uses general expression for level
p effective action, we have also implemented model-specific mode, described earlier. If
effective actions are derived for a specific model, then user can specify an alternative p.c
file to be used within the directory src/models/<model>, where <model> corresponds
to the name of the model. If this mode is selected at compile time, the compiler will
ignore p. c from the top src directory, and use the model-specific one, defined by the user.
The distributed source contains model definitions for 1D-AHO and 1D-MPT potentials
in directories src/models/1D-AHO and src/models/1D-MPT. Note that in this mode the
potential is specified directly in the definition of the effective potential, and therefore the
function VO () is not used (nor the potential.c file).

4.2 Compiling and using SPEEDUP C code

SPEEDUP C source can be easily compiled using the Makefile provided in the top direc-
tory of the distribution. The compilation has been thoroughly tested with GNU, Intel and
IBM XLC compilers. In order to compile the code one has to specify the compiler which
will be used in the Makefile by setting appropriately the variable COMPILER, and then to
proceed with the standard command of the type make <target>, where <target> could
be one of all, speedup, sprng, clean-all, clean-speedup, clean-sprng.

The SPRNG library [42] is an external dependency, and for this reason it is located in
the directory src/deps/sprng4.0. In principle, it has to be compiled only once, after the
compiler has been set. This is achieved by executing the command make sprng. After-
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wards the SPEEDUP code can be compiled and easily linked with the already compiled
SPRNG library. Note that if the compiler is changed, SPRNG library has to be recompiled
with the same compiler in order to be successfully linked with the SPEEDUP code.

To compile the code with level p=10 effective action and user-supplied function V0 ()
located in the file src/1D-AHO. ¢, the following command can be used:

make speedup P=10 POTENTIAL=1D-AHO.c

If not specified, POTENTIAL=potential.c is used, while the default level of the effective
action is P=1. To compile the code using a model-specific definition of the effective poten-
tial, instead of the POTENTIAL variable, we have to appropriately set the MODEL variable
on the command line. For example, to compile the supplied p. c file for 1ID-MPT model
located in the directory src/models/1D-MPT using the level p =5 effective action, the fol-
lowing command can be used:

make speedup P=5 MODEL=1D-MPT

All binaries compiled using the POTENTIAL mode are stored in the bin directory, while the
binaries for the MODEL mode are stored in the appropriate bin/models/<model> directory.
This information is provided by the make command after each successful compilation is
done.

The compilation is documented in more details in the supplied README. txt files. The
distribution of the SPEEDUP code also contains examples of compilation with the GNU,
Intel and IBM XLC compilers, as well as matching outputs and results of the execution
for each tested compiler, each model, and for a range of levels of the effective action p.

Once compiled, the SPEEDUP code can be used to calculate long-time amplitudes of
a system in the specified potential V. If executed without any command-line arguments,
the binary will print help message, with details of the usage. The obligatory arguments
are time of propagation T, initial and final position a and b, maximal bisection level s,
number of MC samples Nmc and seed for initialization of the SPRNG random number
generator. All further arguments are converted to numbers of the double type and made
available in the array par to the function V0 (), or to the model-specific functions in the
file src/models/<model>/p.c. The output of the execution contains calculated value of
the amplitude for each bisection level n=0,---,s and the corresponding MC estimate of
its error (standard deviation). At bisection level n =0, where no integrals are actually
calculated and the discretized N=1 amplitude is simply given by an analytic expression,
zero is printed as the error estimate.

Fig. 2 illustrates the typical results obtained from the SPEEDUP code on the example
of 1D-MPT theory. In this figure we can see the convergence of numerically calculated
amplitudes with the number of time-steps N to the exact continuum value, obtained in
the limit N — co. Such convergence is obtained for each level p of the effective action
used. However, the convergence is much faster when higher-order effective action is
used. Note that all results corresponding to the one value of level p on the graph are
obtained from a single run of the SPEEDUP code with the maximal bisection level s =10.
The simplest way to estimate the continuum value of the amplitude is to fit numerical
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Figure 2: Convergence of SPEEDUP Monte-Carlo results for the transition amplitude A\ (—0.5,0.5;1) of 1D-
MPT potential as a function of the number of time steps N, calculated with level p=1,2,10 effective actions,
with the parameters of the potential A=a=1. The full lines give the fitted functions (4.5), where the constant
term Ay corresponds to the continuum-theory amplitude A(—0.5,0.5;1). The number of Monte-Carlo samples

was Ny =10°.
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Figure 3: (left) The anharmonic potential 1D-AHO, its energy eigenvalues (horizontal lines) and eigenfunctions,
obtained by direct diagonalization of the space-discretized matrix of the evolution operator with level p =21

effective action and parameters A=1, g=48. The discretization cutoff was L =8, spacing A=9.76-10"%, and
time of propagation t=0.02. (right) Results for the double-well potential, A=—10, g=12, L=10, A=1.22-1073,
t=0.1. On both graphs, left y-axis corresponds to V(x) and energy eigenvalues, while scale on the right y-axis
corresponds to values of eigenfunctions, each vertically shifted to level with the appropriate eigenvalue.

results from single run of the code to the appropriate level p fitting function [13-15],

B(r) clr+1)

(p) _
Ay _A(p)—i_ﬁ—’_w

+-- (4.5)
The constant term obtained by fitting corresponds to the best estimate of the exact ampli-
tude which can be found from the available numerical results.

As mentioned earlier, the effective action approach can be used for accurate calcula-
tion of a large number of energy eigenstates and eigenvalues by diagonalization of the
space-discretized matrix of transition amplitudes [6-10]. Fig. 3 illustrates this for the case
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of an anharmonic and double-well potential. The graph on the left gives several eigenval-
ues and eigenstates for 1D-AHO potential with A =1 and quartic anharmonicity g=48,
while the graph on the right gives low-lying spectrum and eigenfunctions of the double-
well potential, obtained for A = —10, with the moderate anharmonicity g =12. More
details on this approach, including study of all errors associated with the discretization
process, can be found in [8,9].

5 Conclusions

In this paper we have presented SPEEDUP Mathematica and C codes, which implement
the effective action approach for calculation of quantum mechanical transition ampli-
tudes. The developed Mathematica codes provide an efficient tool for symbolic deriva-
tion of effective actions to high orders for specific models, for a general 1D, 2D and 3D
single-particle theory, as well as for a general many-body systems in arbitrary number of
spatial dimensions. The recursive implementation of the code allows symbolic calcula-
tion of extremely high levels of effective actions, required for high-precision calculation
of transition amplitudes.

For calculation of long-time amplitudes we have developed SPEEDUP C Path Integral
Monte Carlo code. The C implementation of a general 1D effective action to maximal
level p =18 and model-specific effective actions provide fast 1/NF convergence to the
exact continuum amplitudes.

Further development of the SPEEDUP C codes will include parallelization using MPI,
OPENMP and hybrid programming model, C implementation of the effective potential
to higher levels p, as well as providing model-specific effective actions for relevant po-
tentials, including many-body systems.
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Abstract Over the period of six years and three
phases, the SEE-GRID programme has estab-
lished a strong regional human network in the
area of distributed scientific computing and has
set up a powerful regional Grid infrastructure.
It attracted a number of user communities and
applications from diverse fields from countries
throughout the South-Eastern Europe. From the
infrastructure point view, the first project phase
has established a pilot Grid infrastructure with
more than 20 resource centers in 11 countries.
During the subsequent two phases of the project,
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the infrastructure has grown to currently 55 re-
source centers with more than 6,600 CPUs and 750
TBs of disk storage, distributed in 16 participating
countries. Inclusion of new resource centers to
the existing infrastructure, as well as a support
to new user communities, has demanded setup
of regionally distributed core services, develop-
ment of new monitoring and operational tools,
and close collaboration of all partner institution
in managing such a complex infrastructure. In
this paper we give an overview of the develop-
ment and current status of SEE-GRID regional
infrastructure and describe its transition to the
NGI-based Grid model in EGI, with the strong
SEE regional collaboration.

Keywords Grid - e-Infrastructure -
Distributed computing

1 Introduction

The transition of the traditional science to e-
Science is fueled by the ever increasing need
for processing of exceedingly large amounts of
data and exponentially increasing computational
requirements: in order to realistically describe
and solve real-world problems, numerical simu-
lations are becoming more detailed, experimen-
tal sciences use more sophisticated sensors to
make precise measurements; and shift from the
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individuals-based science work towards collabora-
tive research model now starts to dominate.

Computing resources and services able to sup-
port needs of such a new model of scientific work
are available at different layers: local computing
centers, national and regional computing centers,
and supercomputing centers. The gap between the
needs of various user communities and dispersed
computing resources able to satisfy their require-
ments is effectively bridged by introduction of
Grid technology on the top of the networking
layer and local resource management layers.

Computing Grids are conceptually not unlike
electrical Grids. In an electrical Grid, the wall
outlets allow us to link to and use an infrastructure
of resources, which generate, distribute, and bill
for electrical power. When we connect to the elec-
trical Grid, we do not need to know details on the
power plant currently generating the electricity we
use. In the same way Grid technology uses mid-
dleware layer to coordinate and organize into one
logical resource a set of available distributed com-
puting and storage resources across a network,
allowing users to access them in a unified fashion.
The computing Grids, like electrical Grids, aim to
provide users with easy access to all the resources
they need, whenever they need them, regardless
of the underlying physical topology and manage-
ment model of individual clusters.

Grids address two distinct but related goals:
providing remote access to information technol-
ogy (IT) assets, and aggregating processing and
storage power. The most obvious resources in-
cluded in Grids are processors (CPUs) and data
storage systems, but Grids also can encompass
various sensors, applications, and other advanced
types of resources. One of the first commonly
known Grid initiatives was the SETI@RQHOME
project, which solicited several millions of volun-
teers to download a screensaver, which was able to
use idle processor time to analyze the astronomi-
cal data in the search for extraterrestrial life.

In the past six years the European Commission
has funded, through a number of targeted ini-
tiatives, activation of new user communities and
enabling collaborative research across a number
of fields in order to close existing technologi-
cal and scientific gaps. In addition, this helps in
bridging the digital divide, stimulating research
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and consequently alleviating the brain drain in
the less-developed regions of Europe. This was
especially successful in the South-Eastern Eu-
rope (SEE), where a number of such initiatives
show excellent results. In the Grid arena, the
South-East European GRid e-Infrastructure De-
velopment (SEE-GRID) series of projects [1, 2],
through its first two 2-year phases, has established
a strong human network in the area of scientific
computing and has set up a powerful regional
Grid infrastructure, attracting large number of
applications from diverse fields from countries
throughout the South-Eastern Europe. The third
2-year phase of the SEE-GRID programme, SEE-
GRID-SCI [3] project, has aimed and succeeded
in having a catalytic effect on a number of SEE
user groups, with a strong focus on the key seismo-
logical, meteorological, and environmental com-
munities.

One of the main successes of the SEE-GRID
programme is cumulative structuring effort on
the establishment of National Grid Initiatives
(NGIs) in SEE countries and collaborative work
on achieving sustainable model of operation, sup-
ported strongly from national funding sources.
The regional SEE-GRID initiative has also sup-
ported and coordinated a successful transition of
all SEE countries from the centralized opera-
tions model to the NGI-based EGI infrastructure,
which is clearly visible from the participation of
all partner countries in the 4-year EGI-InSPIRE
project [4].

2 Resource Centers

The regional Grid infrastructure operated by
SEE-GRID-SCI project was built on top of the
pilot infrastructure established by the first SEE-
GRID project (2004-2006), which was since then
substantially extended and enlarged in terms of
resources and number of Grid sites, and upgraded
in terms of the deployed middleware and core
services provided to existing and new user com-
munities during the SEE-GRID-2 project (2006—
2008).

The operations activity adopted the pragmatic
model of the 2-layered infrastructures in which
mature sites were migrated to the EGEE [5]
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production infrastructure, while the start-up sites
from new institutes and user communities were
incubated within the SEE-GRID infrastructure
until they were ready to follow the requirements
of the full-scale production infrastructure. In this
way, both SEE-wide and national-level applica-
tions were able to benefit from the computing
resources of both infrastructures, by mainly using
the pilot infrastructure in the incubation phase
and production infrastructure later, when they
reach the production phase. Moreover, this ap-
proach ensured that smaller sites, typical for the
region, have a chance to be a part of the regional
SEE-GRID infrastructure acting as an incubator
for their maturing into EGEE production.

As applications developed in the region have
matured, new Virtual Organizations (VOs) have
spun off with the relevant core services supported
by the SEE-GRID-SCI operations activity SA1.
Discipline-specific services were deployed in mul-
tiple instances (for failover and for achieving load-
balancing through a wide geographic distribution)
over the e-Infrastructure and operationally main-
tained and supported by SA1. Sophisticated op-
erational tools, some of them being developed
within the joint research activity JRA1 of the

Fig. 1 Overview of the SEE-GRID-SCI infrastructure

SEE-GRID-SCI project, were used to enhance
infrastructure performance.

SEE-GRID-SCI project has continued to op-
erate and further extend, develop and improve
this infrastructure, with the aim to cater for the
needs of all activated user communities in the
region, with special emphasis on the three iden-
tified target areas: meteorology, seismology, and
environmental sciences. Apart from computing
and storage resources made available to these user
communities, SA1 activity provided and main-
tained a set of existing and new operational and
monitoring tools so as to ensure proper operation
of the infrastructure, and a set of primary and
secondary core services for all deployed VOs in
order to ensure optimal geographical distribution
according to the underlying network structure,
load sharing, and quality of the service to end
users.

Currently SEE-GRID-SCI infrastructure en-
compasses approximately 55 Grid sites, more than
6600 CPUs, and around 750 TBs of available data
storage capacity, which is illustrated in Fig. 1, with
further details given in Table 1. Overall number
of CPUs has grown from 2400 at the beginning of
the SEE-GRID-SCI project in May 2008 to cur-
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Table1 SEE-GRID-SCI computing and storage resources

Country Total number Total storage
of CPUs [TB]
Greece 1,200 66.8
Bulgaria 1,210 423
Romania 120 4.0
Turkey 2,380 528.0
Hungary 8 2.0
Albania 34 13
Bosnia-Herzegovina 80 1.1
FYR of Macedonia 80 4.1
Serbia 974 97.0
Montenegro 40 0.6
Moldova 24 6.5
Croatia 44 0.2
Armenia 424 0.2
Georgia 16 0.1
Total 6,634 754.2

rently more than 6600, while the number of dedi-
cated CPUs for SEE-GRID-SCI VOs is currently
around 1500. Grid operations activity successfully
maintains such a large, geographically disperse
and ever-growing infrastructure, harmonizing its
operation with the pan-European EGEE/EGI in-
frastructure. In addition to this, one of the most
important achievements of SA1 activity is transfer
of knowledge and Grid know-how to all partici-
pating countries, and support to their NGI opera-
tion teams to reach the level of expertise needed
for sustainable NGI-based operational model in
EGL

After the completion of the SEE-GRID-SCI
project in April 2010, the regional Grid in-
frastructure was seamlessly integrated to the
EGI infrastructure, and continues to support all
deployed Virtual Organizations (VOs) and appli-
cations developed during the 6-year SEE-GRID
programme. The strong human network remains
in place and still supports on-going transition of all
countries to independent NGI operations through
the SEE Regional Operations Centre. The catch-
all SEE-GRID Certification Authority will con-
tinue its operation until all the countries from
the region deploy their own national certification
authorities. In terms of Grid operations, currently
almost all (with only a few exceptions) NGI opera-
tions teams and infrastructures are fully validated
by EGI teams, while validation for the remaining
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SEE countries is expected to finish within a few
months, i.e. by mid-2011.

3 User Communities

The core objective of the SEE-GRID-SCI project
was to engage user communities from different
regional countries in close collaboration. This
strategy had a structuring effect for crucial re-
gional communities. The target applications were
selected from core earth science disciplines in
the region, namely, seismology, meteorology and
environmental protection. Thus, the focus of the
project was to engage these three core cross-
border communities in the research fields crucial
for the region, structured in the form of Virtual
Organizations (VO):

— Seismology VO had six applications ranging
from Seismic Data Service to Earthquake
Location Finding, from Numerical Mod-
elling of Mantle Convection to Seismic Risk
Assessment [6—12].

— Meteorology VO, with two large-scale appli-
cations, follows an innovative approach to
weather forecasting that uses a multitude of
weather models and bases the final forecast on
an ensemble of weather model outputs. The
other problem tackled within this VO is the
reproduction/forecasting of the airflow over
complex terrain [13-21].

— Environmental Protection VO supports eight
applications focusing on environmental pro-
tection/response and environment-oriented
satellite image processing [22-32].

In the Seismology VO, the work was orga-
nized around the development of Seismic Data
Server (SDS) application services, providing dis-
tributed storage and serving of seismic data from
different partner countries, logical organization
and indexing of distributed seismic data, and pro-
gramming tools (called iterators) that provide
easy access to seismic data. In terms of applica-
tions, the focus was on gridification of five seis-
mology applications from different South-eastern
European countries: Seismic Risk Assessment
(SRA), Numerical Modeling of Mantle Convec-
tion (NMMC3D), Fault Plane Solution (FPS),
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Earthquake Location Finding (ELF) and Massive
Digital Seismological Signal Processing with the
Wavelet Analysis (MDSSP-WA).

In the Meteorology VO, with the aim to con-
tribute to the improvement of the forecasts in
the Mediterranean, among other techniques, the
regional ensemble forecasting technique has been
explored in the frame of the SEE-GRID-SCI.
Indeed the regional ensemble forecasting system
built over the Mediterranean, involves the need
of large infrastructure that was not easily available
at medium-scale research centres and institutions.
For that reason, the Grid infrastructure was ex-
plored for its ability to support the high CPU
and storage needs of such a regional ensemble
forecasting system. This application allowed the
meteorological entities participating in the project
to assess the probability of a particular weather
event to occur. This information is being made
freely available (to the participants and to the
general public, etc) through the project web page,
helping thus when needed, to make the necessary
decisions based on this probabilistic information.
In addition, another set of applications permitted
the entities participating in the project to improve
the quality of the understanding and forecasting
of the airflow over regions characterized by the
complex terrain. Further an important benefit of
this application is the possibility offered to use this
model for operational weather forecasting. Op-
erational weather forecasting model chains based
on this model have been developed in the frame
of this project over Bosnia and Herzegovina,
Armenia and Georgia. This is considered as an
important benefit for the meteorological services
of the aforementioned countries that did not have
up to now the infrastructure support to run op-

erationally weather forecasting models for their
region.

The Environmental VO has dealt with several
important problem areas in the domain of envi-
ronmental modeling and environmental protec-
tion and the applications developed within the VO
advanced the scientific knowledge and affected
the policy and decision-making process, respond-
ing to the EU directives and national priorities.
New modeling techniques and algorithms were
employed in several of the applications, using
the power of the Grid in order to increase the
spatial and temporal resolution and obtain more
adequate representation of the natural processes
under investigation. In other applications, estab-
lished techniques were used, combined with filters
and scripts developed by the project partners
in order to accommodate these systems to the
specifics of the Balkan region. The beneficiaries
of the systems developed during the projects life-
time include not only environmental scientists,
but also the relevant governmental and interna-
tional organizations, for example the international
air quality monitoring bodies. By employing the
Grid to increase the resolution these applications
are now starting to target new beneficiaries like
municipal authorities, small and medium enter-
prises and media. For many of the applications
the validation of the models and standardizing the
computational processes has been an important
achievement, since the methodological aspect of
these studies was a challenging one, especially in
the Balkan region.

Figure 2 gives some details on the size of ac-
tivated user communities, and the distribution of
computing resources they have utilized during the
project lifetime. Overall, during the period 2008—

Fig. 2 The distribution of the size of three target user communities (/eft, number of end users per VO), and the distribution

of the computing resources used by VOs (right)
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2010, SEE-GRID-SCI project has provided more
than 22.5 million elapsed CPU hours or 2,566
CPU years, and more than 4.5 million jobs were
executed on the regional infrastructure. Out of
this, SEE-GRID-SCI and national VOs amounted
to 16.4 million CPU hours or 1,872 CPU years
(73%). The total utilization of dedicated resources
(based on the average number of 1050 available
CPUs) was quite high, around 89%, and this has
attracted the growth of supported user communi-
ties, and enabled them to achieve the enormous
amount of new scientific results, as can be seen
by the large number of scientific papers published
in per-reviewed research journals [33-38] and pre-
sented at numerous scientific conferences [6-32].
The project itself has organized SEE-GRID-SCI
User Forum in December 2009, where the most
significant results were presented.

4 Core Services

To operationally provide computational and stor-
age resource to the three target scientific commu-

Fig. 3 Geographical distribution of core services
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nities supported by the SEE-GRID-SCI project,
three different VOs have been created: METEOQO,
SEISMO, and ENV VO. The support for these
VOs, as well as to the catch-all SEEGRID VO,
has been configured on all Resource Centres par-
ticipating in the regional infrastructure, and a set
of core services was installed and deployed by SA1
activity, as illustrated in Fig. 3.

For each VO a primary and secondary VO
Management Service (VOMS) has been deployed
and maintained by institutes involved in the cor-
responding VO application development. Addi-
tionally, a set of core Grid services was de-
ployed in order to support job management
operations (Workload Management System—
WMS, Logging and Bookkeeping—LB), Grid
information system (Berkeley Database Infor-
mation Index—BDII), data storage and trans-
fer operations (Logical File Catalog—LFC, File
Transfer Service—FTS, ARDA Metadata Grid
Application—AMGA), and management of digi-
tal credentials (MyProxy—PX). Deployment de-
tails of primary core Grid services are given in
Table 2.
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Table 2 List of primary Service METEO VO ENV VO SEISMO VO

core services deployed - - -

per VO VOMS voms.grid.auth.gr voms.ipp.acad.bg voms.ulakbim.gov.tr
WMS & LB wms.ipb.ac.rs wms.ipp.acad.bg wms.ulakbim.gov.tr
BDII bdii.ipb.ac.rs bdii.ipp.acad.bg bdii.ulakbim.gov.tr
LFC grid02.rcub.bg.ac.rs  IfcOl.mosigrid.utcluj.ro  Ifc.ulakbim.gov.tr
FTS grid16.rcub.bg.ac.rs fts.ulakbim.gov.tr
AMGA grid16.rcub.bg.ac.rs amga.ulakbim.gov.tr
PX myproxy.ipb.ac.rs myproxy.ipp.acad.bg myproxy.ulakbim.gov.tr

5 Grid Operations sibilities for their deployment and maintaining.

This section gives brief description of operational
procedures and key tools developed during the
course of the SEE-GRID programme. In addi-
tion, a number of operational tools have been
developed, improved and deployed by the SEE-
GRID-SCI SAT1 activity and used in day-to-day
infrastructure management, as illustrated in Fig. 4.
Table 3 lists all currently deployed tools including
those used for monitoring of the infrastructure,
some of which are described in more detail in the
next section, while Fig. 4 gives their geographi-
cal distribution, as well as distribution of respon-

The interactions and collaboration on the devel-
opment and usage of described tools with other
Grid initiatives/projects are emphasized wherever
applicable.

Recognizing that improvements in the quality
and shaping-up of the SEE-GRID infrastructure
are an important and continuous effort, necessary
for the successful work of SEE-GRID applica-
tion developers, as well as for the usage of our
infrastructure by the existing user communities,
the pro-active monitoring of Grid sites in the
region was organized through rotating shifts by
SAT1 country representatives (Grid Infrastructure

Fig. 4 Geographical distribution of SEE-GRID operational and monitoring tools
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Table 3 Deployment of Service

Service URL

operational and
monitoring tools in the
SEE-GRID
infrastructure

HGSM

BBmSAM
BBmobileSAM

Gstat

Accounting Portal
Nagios

Googlemap
MonALISA

Real Time Monitor
WatG Browser

WMS Monitoring Tool
Repository Service
Dwarf
Grid-Operator-On-Duty
Helpdesk

SEE-GRID Wiki
P-Grade Portal

https://hgsm.grid.org.tr/
https://c01.grid.etfbl.net/bbmsam/
https://c01.grid.etfbl.net/bbmsam/mobile.php
http://gstat.gridops.org/gstat/seegrid/
http://gserv4.ipp.acad.bg:8080/AccountingPortal/
https://portal.ipp.acad.bg:7443/seegridnagios/
http://www.grid.org.tr/eng/
http://monitor.seegrid.grid.pub.ro:8080/
http://gridportal.hep.ph.ic.ac.uk/rtm/applet.html
http://watgbrowser.scl.rs:8080/
http://wmsmon.scl.rs/
http://rpm.egee-see.org/yum/SEE-GRID/
https://dwarf.scl.rs/
http://wiki.egee-see.org/index.php/SG_GOOD
http://helpdesk.see-grid.eu/
http://wiki.egee-see.org/index.php/SEE-GRID_Wiki
http://portal.p-grade.hu/multi-grid

Managers—GIMs). During each shift, the corre-
sponding GIM is designated as Grid-Operator-
On-Duty, or GOOD [39].

Basically, the idea is that each GIM (i.e. GIM
team from one country) is on duty during one
week overseeing the infrastructure and opening
trouble tickets in the SEE-GRID Helpdesk to
sites from all countries where operational prob-
lems are identified using the available monitoring
tools. Of course, all GIMs are expected to contin-
ually monitor and provide support to sites from
their countries—this is their day-to-day duty, in
addition to regular regional GOOD shifts. Details
of the organization of GOOD shifts are given at
the SEE-GRID Wiki [39, 40]. For problems iden-
tified by GOODs, trouble tickets were created in
the SEE-GRID Helpdesk [42], and site managers
were expected to deal with such operational prob-
lems and provide feedback on the steps taken.
Typically, simple problems were resolved within
one working day, while for more complex issues
typical resolution time was up to three working
days.

On the request of applications which need MPI
support on sites, GOODs are expected to test
MPI setup on all SEE-GRID sites which support
MPI. The MPI setup tests are performed at least
once a week, and GOODs ensure that the test
parallel jobs run at the same time on at least
two WNss (to test ssh setup as well). More details
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can be found on the Wiki page on Testing MPI
support [40].

In this section we describe two selected tools
used for Grid operations: HGSM database (used
for maintaining the database of Grid resources
and personnel), Dwarf portal related to software
development and repositories (especially impor-
tant in maintaining updated of Grid middleware
and application software).

5.1 HGSM

Hierarchical Grid Site Management—HGSM [43]
is a web based management application primarily
geared towards Grid site administrators. At the
beginning it was designed to store static informa-
tion about Grid sites and personnel responsible
for the sites, but later it evolved to the central
information hub, also used for other Grid moni-
toring and checking services.

The idea behind the HGSM is to reflect the nat-
ural hierarchy present in the infrastructure. For
each supported infrastructure, HGSM has a ROC
(Regional Operational Centers) associated with it
at the top. These ROCs contain the countries that
participate in a particular infrastructure. Grid sites
of each country are listed under the respective
country tree, and all details related to a specific
Grid site can be viewed under the respective site
entry in the web front end of HGSM (Fig. 5). The
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Fig. 5 Overview of HGSM portal

management personnel information is also stored
for each organizational level (ROC, country, site),
containing contacts with both administrative and
management privileges.

While HGSM holds vast information about
Grid sites and core services, it also contains per-
sonal information for named contacts (names, e-
mail addresses and phone numbers). To properly
protect this information, HGSM uses a digital
certificate-based authentication system. HGSM
server only authorizes people with a valid Grid
certificate to view the information in HGSM web
front-end. Editing information is only allowed to
authorized personnel with administrative privi-
leges. The authorization is organized in a hier-
archical manner, so that an administrator at the
higher level can manage every aspect (including
the administrators) at lower organizational levels.

HGSM has already been used by communi-
ties and projects other than SEE-GRID, e.g.,
by the Deployment of Remote Instrumentation
Infrastructure—DORII project [44], as well as by
the Spanish and Portuguese NGIs [45].

5.2 Dwarf

Web-based Dwarf tool is composed of the Dwarf
web portal [46], Dwarf modules and Dwarf data-

base. Using the Public Key Infrastructure (PKI),
Dwarf framework provides digital certificate-
based management of RPM uploading and cre-
ation of APT and YUM repositories. The Dwarf
web portal home page, shown in Fig. 6, gives
an overview of repository structure together with
information on the context of each repository, and
latest build’s timestamp.

From the Dwarf web portal, properly authenti-
cated and authorized user can perform the follow-
ing operations on the repository:

— Create and change repository structure: Users
can create paths to new distributions and com-
ponents, by specifying their names. In the cur-
rent implementation of the Dwarf framework,
the users are able to create APT and YUM
repositories, as well as to create a MIRROR
to an existing remote repository.

— Package uploading: Users can upload differ-
ent software packages, but only to sections of
the repository for which they are authorized as
contributors.

— Build repository: After each RPM upload, a
user should re-build the repository structure.
If not, Dwarf system will do it automatically,
through a cron job.

@ Springer



144

A. Balaz et al.

Fig. 6 Overview of the SEE-GRID Dwarf web portal

Dwarf modules are implemented as bash scripts
which handle appropriate build actions on various
repositories.

After a new APT repository structure is cre-
ated from the Dwarf web portal, the RPMs must
be indexed to create the APT database. This is
done by the APT Dwarf module, which uses the
genbasedir tool for this purpose. It analyzes RPM
packages in a directory tree and builds informa-
tion files so that that directory tree can be used as
a proper APT repository.

The Dwarf database contains information
on security (authentication and authorization),
repositories types and metadata, mirror repos-
itories, and logging information. Dwarf data-
base contains metadata repository information on
build’s timestamps, contexts, and descriptions of
the repositories, as well as repository types. The
rules for creation of mirror repositories are also
kept in the Dwarf database. In addition, for se-
curity and auditing reasons, the database con-
tains a log of all user-initiated actions. The Dwarf
database is realized using the MySQL database
technology.
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Once the repository is constructed, it is made
available by HTTP and FTP servers configured
and working on the Dwarf web portal. The
DWAREF framework provides configurations that
should be included in the local HTTP and FTP
servers configuration files in order to provide the
context of repositories.

6 Monitoring of SEE-GRID Infrastructure

The monitoring of the heterogeneous and widely
geographically dispersed Grid infrastructure is an
essential task for achieving the required quality
of service to supported user communities. This
has been defined through the SEE-GRID Service
Level Agreement (SLA), which has served as a
prototype for the later adopted EGEE SLA. The
monitoring of the performance of sites is not only
used for formal assessment of the conformance
to SLA, but also for day-to-day Grid operations,
since various monitoring tools provide the main
channel for identification and diagnostics of oper-
ational problems by Grid Operators on Duty and



Development of Grid e-Infrastructure in South-Eastern Europe

145

GIMs. The most important such tools are listed in
Table 3, and we briefly describe them in this sec-
tion. To illustrate how the conformance of avail-
abilities of Grid services to the adopted SLA was
monitored and assessed, Fig. 7 gives overview of
the availability monitoring results for the second
year of the SEE-GRID-SCI project (May 2009 to
April 2010). Using the BBmSAM tool (described
below), precise measurement of the availability of
all services was systematically done, and detailed
results were provided at different levels or gran-
ularity: per service, per site, per country, and per
SEE-GRID infrastructure. For example, the over-
all availability of resources (weighted by the CPU
number of individual clusters) for the last four
quarters increased from around 78% in Q5 (May-
July 2009) to around 89% in Q8 (February—April
2010). Strict enforcement of SLA lead to a steady
increase in the availability and reliability of Grid
services offered to our target user communities.

6.1 BBmSAM

Availability monitoring of the infrastructure
is carried out using the Service Availability
Monitoring—SAM [47] framework developed in
EGEE project [5], which is further developed and
extended by SEE-GRID series of projects and
deployed by its SA1 activity. The original SAM
system consists of server and client components
which communicate using web services. The client

Fig. 7 Overview of
availability of Grid
services within the
SEE-GRID-SCI
infrastructure per quarter
in the second (final) year
of the project (May 2009
to April 2010)

initiates periodical tests of the infrastructure and
publishes data to the server which stores them in
the Oracle database. Main change in the SAM
framework in its adaptation for the SEE-GRID
community was its porting to MySQL, suitable for
the deployment in the region and in line with the
SEE-GRID open source philosophy.

BBmSAM [48-50] Platform is a web applica-
tion coded in PHP and using the MySQL Data-
base as data storage back-end (although any
standard-compliant SQL database server could be
used, since it does not rely on any of MySQL-
specific features). It has been tested under Apache
HTTPD and Microsoft IIS web servers, and
should work with any web server supporting PHP
(at least through CGI). Main features of BBm-
SAM system are:

— Use of unaltered client and sensor compo-
nents of EGEE SAM system.

— Synchronization with central HGSM service.

— Use of free and open source technologies.

BBmSAM client and sensors are the same as
ones used in the standard EGEE SAM distribu-
tion, and they operate in identical way. In design-
ing BBmSAM portal and dependent web services,
special care was taken so that the solution would
be compatible with EGEE/EGI tools and prac-
tices. This was achieved by implementing the same
web services in PHP/MySQL implementation as
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the ones used in the original Java/Oracle-based
SAM.

Main part of the BBmSAM web front-end,
shown in Fig. 8, is a summary of current results for
all tested Grid sites, containing site names, coun-
tries and other relevant details for each service.

6.2 SEE-GRID Accounting Portal

Accounting Portal [51] is a web-service based util-
ity to collect and statistically present information

Fig. 8 Overview of the SEE-GRID BBmSAM web portal
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on the CPU accounting data for the SEE-GRID
computing resources. Its main purpose is to collect
and manage accounting data for the sites in SEE-
GRID infrastructure. Recently a new publisher
was released, capable of collecting and processing
data for parallel MPI jobs, which are not properly
accounted for when using the standard publisher
provided by glite. The accounting processing
structure is based on two services: MPI log parser
and accounting publisher. The MPI log parser tool
processes PBS Server logs and inserts the data on
MPI jobs in the MPI accounting database on the
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MON node. Afterwards, the accounting publisher
aggregates the data from the standard accounting
database and MPI database and sends it to the
central accounting portal database. The publisher
is based on an independent module architecture
which allow the two modules (MPI and standard
serial) to work independently, so that sites that do
not support MPI can use the same publisher.
New web front-end interface of the accounting
portal (Fig. 9) is created to dynamically generates
account statistics and charts. It is written in Adobe
Flex and Java and implements the MVC design
pattern. The View module of the portal is written
in Flex, offering an interactive environment with
dynamic visualization of the accounting data man-
aged in tables, bar and pie charts. The Interface
module is a Java web service which accepts input
parameters such as data type, job type, period,
rows and columns for the tables. In addition, it is
capable of filtering the data by VO, country and
site, offering more flexible data organization. It
can also generate SQL queries based on the pro-

Fig. 9 Overview of the SEE-GRID accounting portal

vided parameters and extract required data from
the accounting database. The data are returned
in XML form, suitable for import to a variety of
other applications. The web portal is hosted on
a web server running under Apache Tomcat with
installed Apache Axis web-service framework.

6.3 WatG Browser

The What is at the Grid—WatG Browser [52] is
a web-based Grid Information System (GIS) visu-
alization application providing detailed overview
of the status and availability of various Grid re-
sources in a given glite-based e-Infrastructure. It
is able to query and present data obtained from
Grid information systems at different layers: from
local resource information system for a particular
Grid service (GRIS), to the Grid site information
system (site BDII), and to the top-level informa-
tion system for the whole Grid infrastructure (top-
level BDII).
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The efficient implementation of WatG Browser
allows quick and easy navigation through entries
and objects of the LDAP tree retrieved by the
specified query, even if the size of the output
is huge and hierarchically very complex. Highly
responsibility is achieved with implementation of
partial refreshes and asynchonization of a web
page. A partial refresh of WatG application can be
observed when an interaction event is triggered,
for example click on the plus icon of the LDAP
tree. The server processes the information and
returns a limited response specific to the data it
receives, for example LDAP’s subtree that re-
quires given condition. One may notice that WatG
server does not send back an entire page, like the
conventional “click, wait and refresh” web appli-
cations. Instead, WatG client updates the page
based on the response. This means that only part
of the page is updated. In other words, WatG’s
initial page (Fig. 10) is treated like a template:
WatG server and client exchange the data and the
client updates parts of the template based on the
data it receives from the server. Another way to

Fig. 10 Overview of WatG Browser
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think about it is to consider WatG application as
driven by events and data, whereas conventional
web applications are driven by pages. Asynchro-
nization of the WatG application is reflected in
the fact that after sending data to the server, the
client can continue processing while the server
does its processing in the background. During all
this, a user can continue interacting with the client
without noticing interruption or a lag in the re-
sponse. For example, a user can click on any plus
or minus icon even during the loading, and in that
way a new request will be created and executed
afterwards. The client does not have to wait for a
response from the server before continuing, as is
the case in the traditional, synchronous approach.
The WatG Browser is deployed by SCL [53] and
publicly available at the address given in [52].

6.4 WMS Monitoring Tool

The complex task of computing resources discov-
ery and management on behalf of user applica-
tions in the glite Grid environment is done by the
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Workload Management System (WMS) service.
WMS monitoring tool WMSMon [54] provides re-
liable, site-independent, centralized, and uniform
monitoring of glite WMS services.

WMSMon tool, developed and deployed by
SCL [53], is based on the collector-agent archi-
tecture that ensures monitoring of all properties
relevant for successful operation of glite WMS
service and triggering of the alarms if certain mon-
itored parameter values exceed predefined limits.
In addition, the tool provides links to the appro-
priate troubleshooting guides when problems are
identified.

WMSMon tool consists of two parts of soft-
ware. The first one, WMSMon Agent, should
be installed on all monitored WMS services,
and locally aggregates the values of all rele-
vant parameters described in the previous section.
The second component of WMSMon software is
WMSMon Collector, installed on a specific ma-

Fig. 11 Overview of WMSMon Portal

chine equipped with the web server and gridFTP
client, with the aim to collect the data from all
WMSMon Agents and to provide web interface to
the graphical presentation of the collected data.

WMSMon web portal presents information
from diverse WMS sources in a unified way, as
can be seen in Fig. 11. The main page provides the
aggregated status view of all monitored WMS ser-
vices from the target Grid infrastructure. This part
of the portal presents the data in a simplified way,
with the emphasis on WMS services identified not
to work properly. The portal also provides links
to pages with detailed information and graphs
for each monitored WMS service. These pages
contain the latest data, as well as historical data
presented in the graphical form.

In addition to the main WMSMon instance de-
ployed by SCL [53], other instances of WMSMon
are installed and used at Grid Operations Centre
at CERN [55] and at NIKHEF [56].
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7 SEE Involvement in High Performance
Computing

The Grid developments in the region, de-
scribed in this paper, are currently being comple-
mented with supercomputing/High-Performance
Computing (HPC) actions. The HP-SEE project
[57] (High-Performance Computing Infrastruc-
ture for South East Europes Research Commu-
nities) is currently work across several strategic
lines of action. First, it is linking the existing HPC
facilities in the region into a common infrastruc-
ture, and providing operational and management
solutions for it. Second, it is striving to open this
infrastructure to a wide range of new user commu-
nities, including those of non-resourced countries,
fostering collaboration and providing advanced
capabilities to more researchers, with an empha-
sis on strategic groups in computational physics,
computational chemistry and life sciences. Finally,
it acts as a catalyst for establishment of national
HPC initiatives, and will act as a SEE bridge for
DEISA [58], also presented in this edition, as well
as PRACE [59] infrastructure.

Figure 12 depicts the multi-dimensional re-
gional e-Infrastructure in South-East Europe,
where HP-SEE effectively adds the new Research
Infrastructure: HPC infrastructure and knowl-
edge/user layer, on top of the existing network
plane, and parallel to the existing Grid plane, thus

Fig. 12 SEE
e-Infrastructure with
HPC, and new user
communities
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Table 4 Current and planned computing power (TFlops)
by HP-SEE countries (double precision for CPU and single
precision for GPU)

Country 2010 2011 2012

Greece 0 40 80

Serbia 0 20 40

Bulgaria 25 30+8 GPU 40420 GPU
Romania 10 20+100 GPU 304100 GPU
Hungary 1 30 60

Overall 36 140+108 GPU 2504120 GPU

optimising all layers and further enabling a wide
range of new cross-border e-Science applications
to be deployed over the regional e-Infrastructure.
This approach effectively creates an integrated e-
Infrastructure for new virtual research communi-
ties, and provides a platform for collaboration be-
tween ICT engineers and computational scientists
dealing with the infrastructure on one hand, and
on the other the scientists from diverse scientific
communities in the region.

It should be noted that this vision will pro-
vide an integrated infrastructure, where Grid and
HPC layers and not mutually exclusive but rather
complementary, and tailored for the type of ap-
plications supported. Table 4 gives the overview
of the current and planned HPC resources that
will be available to the HP-SEE Virtual Research
Communities within the project.
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The available resources will be integrated
into a common infrastructure available for the
regional Virtual Research Communities. The cur-
rent and planned HPC infrastructure is heteroge-
neous, comprising of BlueGene supercomputers,
Intel/AMD clusters and enhanced with GPU com-
puting accelerators. Concerning the middleware
deployments, we believe the upcoming Unified
Middleware Distribution, which will combine
Unicore, gLite and ARC will be well suited for
the regional HPC infrastructure, taking into ac-
count the current situation, where various com-
binations of these middleware stacks with batch
systems and workflow management systems ex-
ist. The regional HP-SEE infrastructure will be
operated through the operations centre that will
be established within the project, which will carry
out analysis, requirements capture and evaluation,
and deployment of the existing solutions for sys-
tem management of the regional infrastructure;
will identify missing components, and provide op-
timal solutions. Solutions by system vendors and
successful developments from European projects,
especially DEISA, and PRACE, will be taken into
account. Wherever possible the existing solutions
will be adapted and enhanced for deployment in
the regional infrastructure. A set of operational
tools will be deployed, including user adminis-
tration, accounting, distributed data management,
security, authentication and authorization, mon-
itoring of distributed resources, resource man-
agement and allocation, and helpdesk for user
support.

The identified target user communities include
computational physics, computational chemistry
and life sciences. Computational physics is rep-
resented by 8 applications from 6 countries and
covers the fields of many-body condensed mat-
ter physics, including modeling of electron trans-
port, modeling of complex gas dynamics and
convection, plasma physics and image processing.
Computational chemistry community includes 7
applications from 6 countries, covering the fields
of molecular dynamics and simulations, and
materials science. Life sciences community has
7 applications from 5 countries, covering the
fields of computational biology, computational
genomics, computational biophysics and DNA
sequencing.

8 Transition to EGI and Conclusions

Over the period of six years and three phases, the
SEE-GRID programme aimed at creating inde-
pendent and sustainable NGIs in each country of
the South-Eastern Europe. That has allowed all
the countries to participate as full-fledged mem-
bers of the wider European Grid infrastructure
realized through the series of EGEE projects and
currently by the European Grid Initiative, EGI
[4]. EGI is established as a coordinating orga-
nization for the European Grid Infrastructure,
based on the federation of individual NGIs, aim-
ing to support a wide variety of multi-disciplinary
user communities. To facilitate the above aim,
the SEE-GRID programme has focused both at
stimulating the support to policy makers as well as
for creating sustainable operational structures in
each of the countries in the region.

In particular, on the policy level, the last two
years of the SEE-GRID programme have focused
on monitoring and improving the status of NGIs
in partner countries, and providing support for
their evolution and integration into the environ-
ment standardized by EGI, aiming to achieve
sustainability as active partners in this new pan-
European collaboration model. This effort re-
sulted in one of main successes of the project, with
all countries of the region currently members or
associate members of EGI and participating as
partners in the EGI-InSPIRE project.

On the operational level, the focus of SEE-
GRID was to create and increase the capacity
of Grid resources in the region, create indepen-
dent and stable operational structures, increase
the availability of Grid resources, deploy core
services in all countries of the region, as well
as to develop geographically distributed network
of Grid experts able to provide operational and
application level support to end users. At the end
of the 6th year of the SEE-GRID programme,
all SEE countries are providing such an opera-
tional infrastructure for the local and international
user communities from the pan-European EGI
infrastructure, either as independent NGIs or as
a part of the South-Easterrn Europe Regional
Operations Centre.

We describe bellow the procedure taken by
most of the countries in the region in order to
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become fully independent operational NGIs from
the technical point of view. The new NGIs use
EGIs Grid Operations Database, GOCDB [60]
to register their NGI management structure, sites
and operational personnel. Most of the SEE NGIs
base their operational portal on the central portal
that is provided by EGI, performing operations
via the NGI view that it offers. In cases like the
Greek NGI, a standalone operational portal has
been setup. During the course of the SEE-GRID
projects the regional Helpdesk was based on One-
OrZero as it has also been discussed in Section 4.
The SEE-GRID Helpdesk by the end of the SEE-
GRID projects was fully integrated with GGUS
and therefore it is a candidate system for NGls, to
use as their national Helpdesk solution integrated
with the Global Grid User Support, GGUS [61].
Further to that Request Tracker, RT [62] has been
integrated with GGUS and can offer the same
functionality. Based on the above the NGIs of
the regional can select which helpdesk solution to
use (either directly GGUS, OneOrZero, or RT).
Since infrastructure monitoring in EGI has moved
from SAM to Nagios, all new NGIs install and
operate their own instance of Nagios that inte-
grates with the rest of EGIs monitoring systems.
Finally, SEE NGIs use the Unified Middleware
Distribution (UMD) as a central repository for
installing basic middleware components while still
use the regional repository or even some national
repositories, for software packages that are tai-
lored to specific needs of their countries and are
not available in UMD.

Towards the end of the SEE-GRID-SCI
project (May 2010) all NGIs of the project where
migrated to EGEE/EGI via the SEE-ROC, utiliz-
ing the existing ROC infrastructure and services.
Since May 2010 and up to now (January 2011)
almost all the NGIs have migrated to the EGI
operational model. The average time for an NGI
to migrate its operational structure from SEE-
ROC to EGI is between 1 and 3 months.

The SEE-GRID programme had pivotal role
in bridging the digital divide in the SEE region,
in spearheading regional research collaborations,
and in creating a strong human network in ICT
field paving the way towards full integration of the
region into the European Research Area (ERA).
This work continues with the HP-SEE project
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[57], that aims at bringing together the national
HPC infrastructures in the region of South East-
ern Europe and the regional Virtual Research
Communities of Computational Physics, Compu-
tational Chemistry and Life Sciences. Enabling
of those user communities to get access to HPC
resources for their scientific work is the prime goal
of this new project, and demonstrates the success
of SEE-GRID series of projects in involving scien-
tists from the region in the development and pro-
duction use of distributed research infrastructures.
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Abstract: Faraday and resonant density waves emerge in Bose-Einstein condensates as a result of
harmonic driving of the system. They represent nonlinear excitations and are generated due to
the interaction-induced coupling of collective oscillation modes and the existence of parametric
resonances. Using a mean-field variational and a full numerical approach, we studied density waves
in dipolar condensates at zero temperature, where breaking of the symmetry due to anisotropy of the
dipole-dipole interaction (DDI) plays an important role. We derived variational equations of motion
for the dynamics of a driven dipolar system and identify the most unstable modes that correspond
to the Faraday and resonant waves. Based on this, we derived the analytical expressions for spatial
periods of both types of density waves as functions of the contact and the DDI strength. We compared
the obtained variational results with the results of extensive numerical simulations that solve the
dipolar Gross-Pitaevskii equation in 3D, and found a very good agreement.

Keywords: Bose-Einstein condensate; pattern formation; dipole-dipole interaction; parametric
resonance; interaction effects

1. Introduction

After pioneering experiments that realized Bose-Einstein condensates (BEC) in systems with weak
contact interactions, it took a decade of work on improvements of experimental techniques to enable
measurement of effects of the dipole-dipole interaction (DDI) that exist between atoms or molecules
with a permanent or induced electrical or magnetic dipole moment. The very first such experiment
was realized in 2005 with chromium atoms >2Cr [1], followed by the experiments with atoms with
much larger magnetic moments, such as dysprosium *4Dy [2] and erbium '%8Er [3]. Furthermore,
the dipolar BECs comprised of polar molecules with much stronger electrical [4] and magnetic [5]
dipole moments were also realized. While the contact interaction is symmetric and has a short-range,
the DDI between atoms or molecules is anisotropic and long-range. These features are responsible for
a whole series of new phenomena that appear in ultracold dipolar gases [6]. If we take into account
that the strength of the contact interactions can be varied over many orders of magnitude using the
Feshbach resonance [7] technique, and that the DDI strength can be also tuned using a fast rotating
magnetic or electric field [8,9], it is easy to see that such a versatility of dipolar quantum gases is
unparalleled and makes them an obligatory element in a toolbox for engineering quantum devices
and sensors.

Bose-Einstein condensates are usually termed quantum fluids, which encompasses a broader
range of physical systems where quantum effects are either dominant or very much pronounced.
Despite their name, some of quantum fluids do not share the trademark property of classical fluids,
incompressibility. In fact, the BECs are made of rarefied gases, but their fluid-like behavior stems from
the quantum coherence of such systems. Therefore, while in classical fluids density modulations can

Symmetry 2019, 11, 1090; doi:10.3390/sym11091090 www.mdpi.com/journal /symmetry
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be excited only under extreme conditions, in quantum fluids the density waves represent one of the
natural collective excitations. They appear due to nonlinearity in ultracold quantum gases, and can
be induced by a harmonic modulation of the trap frequencies or interaction strengths. However,
the motivation for study of such excitations comes from the classical phenomenon of Faraday waves,
which may appear on the surface of the shallow layer of liquid under certain conditions. Namely,
if the container with the liquid is harmonically oscillated in a vertical direction, the wave patterns may
emerge, depending on the ratio of the liquid depth and the container size, as well as depending on the
modulation frequency. This phenomenon was first studied and described by Michael Faraday at the
beginning of 19th century [10]. The interest for this type of excitations arose again during the 1980s,
as a consequence of the study of nonlinear liquids. In the context of ultracold gases, Faraday waves
were first investigated theoretically in 2002 by Staliunas [11]. After these theoretical and numerical
results for the systems with contact interaction, where it was assumed that the interaction strength is
harmonically modulated, the Faraday waves were first measured in BEC experiments with 8Rb in
2007 by Engels [12], and more recently with ”Li by Hulet and Bagnato [13,14]. In the first experiment,
the radial part of the harmonic trap was modulated, while the other two experiments have modulated
the contact interaction strength. However, qualitatively, this leads to the same type of density waves.

Parametric driving of system parameters can lead to pattern formation not only in BECs, where
Faraday waves are experimentally observed in cigar-shaped condensates [12-14], but also in helium
cells [15]. The actual experimental observation of this phenomenon in 2007 was preceded by numerical
studies starting in 2002 [11,16-20], all focusing on systems with short-range, contact interactions.
More recently, Faraday waves have been studied in dipolar [21-23] and two-component condensates,
including the systems with spatially-dependent contact interaction [24,25]. Numerical studies of
Faraday waves have also been extended to mixtures of Bose and Fermi gases [26], as well as Fermi
gases exhibiting superfluid behavior [27,28].

Faraday waves in ultracold gases are a consequence of the existence of parametric resonances
in the system. While the spatial period of these waves depends on the geometry of the system and
other parameters, the frequency of their oscillations is constant and is two times smaller than the
modulation frequency. This is a characteristic of all parametric resonant phenomena, and in the
variational approach leads to the Mathieu’s differential equation [29], which gives the observed ratio
of the frequency of Faraday waves and the modulation. The Faraday density waves with half of the
modulation frequency are not the only nonlinear excitation of the system. In a driven system, there are
always excitations with the same frequency as the modulation. However, they become resonant when
the modulation frequency corresponds to one of the collective modes or the trap frequencies, or their
linear combination. The resonant waves develop in the system and grow exponentially [30], faster
than the Faraday waves. Therefore, these two phenomena can be easily distinguished, not only by
comparing their frequencies, but also the corresponding onset times. We note that resonant behavior
can appear not only due to the modulation of the interaction strength or the trapping potential, but also
due to its spatial modulation [31-40].

In the context of dipolar BECs, the study of Faraday waves was limited mostly to their excitation
spectrum in one-dimensional and two-dimensional systems [21], while the properties of resonant
waves, to the best of our knowledge, have not been studied yet. In Section 2, we develop a mean-field
variational approach for the dynamics of a driven dipolar BEC at zero temperature and identify the
instability of the system leading to the emergence of Faraday and resonant waves. Using this approach,
we derive analytic expressions for the dependence of density wave properties on the strength of the
contact and the dipole-dipole interaction. In Section 3, we numerically study how such waves develop
and can be characterized in ultracold systems of three experimentally relevant magnetic dipolar species:
chromium %2Cr, erbium '%8Er, and dysprosium '*Dy. In Section 4, the analytically obtained expressions
for the spatial period of Faraday are compared to results of the extensive numerical simulations, which
solve the full three-dimensional mean-field equations for a dipolar BEC. The emergence of resonant
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waves and comparison of the corresponding analytical and numerical results is given in Section 5.
Finally, Section 6 summarizes our conclusions and presents outlook for future research.

2. Variational Approach

We consider the system in an experimentally-inspired setup, where the condensate is confined
into a cigar-shaped harmonic trap, with the equilibrium frequencies wy = 27t X 7 Hz, wy = w, = Oy =
27 x 160.5 Hz. These are typical values taken from Reference [12]. The dipole moments of the atoms
are assumed to be oriented along z direction, i.e., orthogonal to the weak-confinement axis x (which
we refer to as the longitudinal axis), since this maximizes the stability of the system. To ensure stability
of the system, we consider the condensate to have N = 10 atoms for all three species. The driving of
the system is achieved by harmonic modulation of the radial (y — z) part of the trap,

wy(t) = w;(t) = Qo (14 esinwpt), (1)

where € = 0.1 — 0.2 is the modulation amplitude and w,; is the modulation frequency.

For a variational study of Faraday and resonant waves in dipolar condensates, we use
a modification of the Gaussian ansatz [16-20,23-25,30,41,42] to capture the induced density waves in
the longitudinal, weak-confinement direction x,

_%_i—%+ix2¢x+iy2¢y+izz¢z
7l [1+4 (a+iB) coskx] , 2)

where the normalization of the wave function to unity is ensured by the prefactor

1 V2

3/4 ’
7T Ux Uy Uz \/2 + a2 + B2 + 4 e—k2uk/4 4 (a2 + B2) P

A= A(le, Uy, Uz, &, .B/ k) = ©

The above variational ansatz involves eight variational parameters {u;, ¢;, «, B}, which are
functions of time. The parameters u; represent the condensate widths, while ¢; are the conjugated
phases, which are necessary to properly describe the system’s dynamics. Note that these phases can be
omitted when we are interested only in the ground state. The multiplicative factor 1 + (a + i) cos kx
describes the density modulation along x direction, and the variational parameters « and 3 represent
the real and the imaginary part of the amplitude of the wave. The wave vector k, which is related to
the spatial period ¢ of the density waves by ¢ = 27t/k, is not treated here as a variational parameter.
We determine its value from the condition for the instability emergence, which leads to Faraday or
resonant waves.

The use of the Gaussian variational ansatz corresponds to the weak interaction regime with low
density of atoms, while the Thomas-Fermi profile is more appropriate for systems with high particle
density. Although the emergence of Faraday and resonant waves leads to higher particle densities,
we still use the Gaussian ansatz in all regimes. This is done since we are mostly interested just in
the onset of longitudinal density modulations, but also for mathematical convenience. Let us note
that tunability of all variational parameters may improve the accuracy of the applied approximation.
Nevertheless, the use of this ansatz can be fully justified only a posteriori, by comparison with
numerical results [16].

Note that we use the dimensionless units, where a chosen referent frequency w, defines the length
scale through the harmonic oscillator length /% /(mw;), where m is the mass of the corresponding
atomic species, the time scale as 1/w;, and the energy scale as fiw;. The trapping frequencies are also
expressed in units of w, through the trap aspect ratios v = wy/wy, v = wy/wy, and A = w;/wy, as well
as the modulation frequency #,, = wy,/w,. We choose below the value w, = )y, corresponding to
v = A = 1, but for now we keep all three aspect ratios as free parameters, for generality.
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If we insert the modified Gaussian ansatz (Equation (2)) into the Lagrangian density that yields
the dipolar Gross-Pitaevskii equation, we can express the Lagrangian of the system as a sum of five
terms. The first term reads

i . v Lo Y 5, af — Bi
=7 [dr = gd") = —5 (e + iy +0de) ~ 53 @
while the kinetic and the potential energy terms yield, respectively,

_1 a1 1 T 2.2 2.2 2.2\ (0 +B*) K2
2 /dl‘l[) Ay = 4 (u% * uj * u? g+ dutypy o iz 22+a2+p2)"7 ©
——/dr( vix? + v2y2+ )\22)|1p| (’yux+vu +A%u 2) (6)

The contact interaction term corresponds to
Na at + 1642 +2a28% + p4)

Ly(t) = ~27Nas [ dr |yf* = - : ( ) 7
4(t) s 9] Vo gty 202+ a2+ p2)2 @)

where a5 is the s-wave scattering length of atoms, expressed in units of the harmonic oscillator length.
The Lagrangian term that corresponds to the DDI energy is given by

3Na
Ls(t) = — zdd

[ drdd g (19" () Uaalx = 7 p(ep(x), ®
where the dipolar potential reads Ugq(r) = (1 —3cos?8)/r3, 0 is the angle between the dipoles’
orientation (z axis) and vector r, and a4q is the DDI interaction strength, that depends on the dipole
moment of atoms d and their mass m as agq = omd?/ (127th%). Note that it is conveniently expressed
in units of length and cast into a dimensionless quantity as outlined above. However, due to the spatial
modulation term in the modified Gaussian ansatz, it is not possible to perform exact integration and
obtain Ls(t). Using the convolution theorem, the DDI term can be written as

rrs [ deF (Ul () 7 [10F] 00, ©)

Ls(t) = —
where F stands for the Fourier transform, and
F [19P] () = Blke, B, ) e 3 (05 TG 74215 (10)
The coefficient B can be explicitly calculated and reads

4+4(e K (k—2ky )12 +e K (k+2kx )12 )a—i—(Z—i—e_k(k ky)u X+e—k(k+kx) )(062+ﬁ2)

B(kXI uJC/ 0(,.3, k)
2 [2 Fae iy 4 (14 e Ruk) (a2 + ﬁz)}

(11)
To proceed further, we take into account that the condensate width in the weak confinement
direction is large compared to the other widths, as well as compared to the spatial period of the density
waves, such that ku, > 1. We also take into account that the wave amplitude is small immediately
after the waves emerge, such that a, f < 1. Since the integral over k in Equation (9) cannot be
analytically performed even using these approximations, we replace B2, stemming from the square of
the Fourier transform F [||?], by its average over ky, and neglect all terms proportional to e ku3/8
and its powers, as already argued that ki, is a large quantity. The integration over k can now proceed
smoothly, yielding
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N N{Ildd Uy Uy _ 80(2
L5<t) B mux”yuzf (uZ,uZ> (1 (2+0‘2 ""_182)2) ’ (12)

where f is the standard dipolar anisotropy function [43].

Now that we have the explicit expression for the Lagrangian of the system L(t) = Y2, L;(t),
we can derive the corresponding Euler-Lagrange equations. We assume that the wave amplitudes «
and S are small, such that their quadratic and higher order terms can be neglected in the equations
of motion. The three equations for the phases yield ¢; = 1;/(2u;) and can be used to eliminate the
phases ¢; from the corresponding set of equations for the condensate widths u;, which have the form
of the second order differential equations,

1 2 N Uy U u
i R el _ Zx 7Y “x
iy + Y Uy " \/nu%uyuz as addf<uzzuz)+adduzf1< )
1 2 N Uy U u Uy U
.. 2 x “*y Y x "y
-/ = - o L=, =0, 14
iy +vTuy " 7w as ﬂddf<uz uz)+adduzf2< . Z)] (14)

1 2 N U, U u
T N _ dr My M
iy + A%u, 3 SRR as addf(uz o ﬂdduzfl
i (15)

where f; and f, are partial derivatives of the anisotropy function with respect to the first and the
second argument. The Euler-Lagrange equation for the variational parameter g yields g = 2i/k?,
which we use to eliminate  from the corresponding equation for the parameter &, as was done with
the phases. With this, the equation for a turns out to be the second order differential equation,

T+ ETRTRTS (as +dqa f (uZu)) k™| a=0. (16)

In the context of variational analysis of Faraday and resonant waves, the above equation of motion
for the wave amplitude « is usually cast into the form of the Mathieu-like equation [29]

& +

&+ [a(k) +eb(k)sin2t]a = 0. (17)

This equation can be solved perturbatively in the small modulation amplitude e. Assuming
a solution in the form of a harmonic oscillator

a(t,€) = P(eT) cos (T\/@) + Q(et) sin (T\/M) , (18)

we obtain that functions P and Q are exponentials of the form ¢*¢€T, where ¢ is a complex number.

The existence of the imaginary part of ¢ leads to the instability, i.e., to the exponential growth of
the wave amplitude, which yields Faraday or resonant waves. It was shown in Reference [29] that
the nonvanishing imaginary part of ¢ appears for a(k) = n%, where n € N, and this represents the
mathematical form of the instability condition.

To cast Equation (16) into the Mathieu-like form (Equation (17)), we need to take into account that
the radial trap frequencies are modulated, such that the corresponding trap aspect ratio is given by
v(t) = A(t) = Ag(1 + esinnpt), where Ay = g/ wy. This generates the dynamics of the system and
we need to obtain approximate expressions for the condensate widths in order to get explicit form of
the quantities a(k) and b(k). We assume that the condensate width u, slowly varies, and can be taken
to be constant at the onset of instability. We also assume that second derivatives of the radial widths



Symmetry 2019, 11, 1090 6 of 18

uy and uz, with respect to time, can be neglected, since they are proportional to the small modulation
amplitude €. Furthermore, for simplicity, we assume uy, ~ u; = u,, which now satisfies the modified
Equation (14) or (15) in the form

2 N a u u
2 4 _ dd P ! [
M (Bup =144/ 2o [as + 5 <u> — agaf: <u)] , (19)

where f;(x) = f(x, x). On the right-hand side of the above equation, we assume that the ratio u, /1y
is constant and equal to the corresponding ratio for the ground state, which can be calculated from
Equations (13)—(15). If we express u% from Equation (19), and use it to estimate the quantity u,u, ~ u%
in Equation (16), we obtain the equation for the variational parameter « in the form

iy [k4 AK?

&+

where A is given by
4,/2N o= 0 £ (32)]
. {1+ \/%% {ﬂs"f' a9a £, (%) — aqaf! (Z—i)} }1/2

After inserting the explicit form for A(f) into Equation (20), we still need to make a variable
change 77, — 27 in order to transform it into the Mathieu-like Equation (17). This finally yields the
expressions for the coefficients a(k) and b(k),

A — (21)

_ K AAR?
U

_ AgAK?
Na

a(k) ;o b(k) (22)
As previously discussed, the instability condition for the Faraday waves reads a(k) = 1, which

can be used to calculate the wave vector of density waves shortly after their emergence,

A A2A2
kp—J—gﬂ/gm,%z. (23)

This represents our analytical result for the wave vector kr and the spatial period /r = 27t/kr of
the Faraday waves, which can be directly compared with numerical or experimental results. Let us also
stress that the above analysis is consistent with the main characteristic of the Faraday waves, namely,
that their oscillation frequency is half that of the driving frequency. This can be concluded according
to T = n;,t/2 and Equation (18), where we see that indeed the solution of the derived Mathiue-like
equation oscillates with the frequency whose aspect ratio is 77, /2, i.e., with the frequency wy, /2.

If the modulation frequency is close to one of the characteristic oscillation modes of the system,
it will exhibit resonant behavior, which is suppressed for an arbitrary value of the modulation frequency.

While the system’s dynamics will certainly include the Faraday mode at the frequency wy, /2 even
close to a resonance, the resonant mode with the frequency wy, will have a larger amplitude and will
develop much faster. Although it is clear that the above analysis would break down, the condition for
the emergence of resonant waves still corresponds to a(k) = 22, i.e., the wave vector of the resonant

wave is given by
ApA AZA2
kRZ\l—g—l—\/Oél-i-‘lU%r (24)




Symmetry 2019, 11, 1090 7 of 18

In that case, according to T = #,,t/2 and Equation (18), the resonant density wave will oscillate
with the frequency whose aspect ratio is (,1/2)V22 = i, i.e., with the frequency wy,. Depending
on the system’s parameters, higher resonant modes can also appear corresponding to the conditions
a(k) = n?, where n is an integer, corresponding to the oscillation frequencies 1wy, /2.

3. Faraday Waves in Chromium, Erbium, and Dysprosium Condensates

To study Faraday waves in dipolar condensates, we performed extensive numerical simulations of
the real-time dynamics and solved the dipolar Gross-Pitaevskii equation using the programs described
in References [44-52]. The parameters of these simulations match the physical parameters of BECs of
chromium %2Cr, erbium %8Er, and dysprosium '**Dy, which, respectively ,have the dipole moments
d = 6up, d = 7up, and d = 10up, where B is the Bohr magneton. The corresponding background
s-wave scattering lengths are a; = 105a¢, a; = 10049, and as = 1004y, where ag is the Bohr radius.
We used these interaction strengths, unless otherwise specified.

As discussed previously, Faraday waves are expected as a main excitation mode of the system
when the modulation frequency w;, does not match any of the characteristic frequencies of the
system. For this reason, we used the value w;,;, = 200 x 27t Hz, for which we verified that these
conditions are satisfied. To characterize the density waves, we typically analyze their FFT spectra in the
time-frequency and spatial-frequency domains. However, instead of directly analyzing their density
profiles, for FFT, it is advantageous to have a clearer signal, which can be obtained by considering
only the density variations compared to the initial state, i.e., the ground state of the system, before
the modulation is switched on. Therefore, Figure 1 shows time dependence of the integrated density
profile variations in the weak confinement direction én(x, t) = n(x,t) —n(x,t = 0). Here, n(x, t) is
the column density profile calculated by integrating the 3D condensate density || over the radial
coordinates y and z.

The emergence of spatial patterns is clearly visible for all three atomic species after around 150 ms.
This is consistent with earlier experimental observations [12-14] and theoretical results [16,24,25].
The density waves in x direction from Figure 1 take time to develop and are a result of the transfer of
energy from the modes that are directly excited in the radial directions, where the trap is modulated.
On the other hand, the density waves in the radial directions (which are not shown here) emerge
immediately after the modulation is switched on at t = 0, and their frequency is equal to the modulation
frequency. By looking at Figure 1, we can even estimate the main oscillation frequency, e.g., counting
the number of maxima or minima in a given time interval. For instance, in the last 50 ms in each of the
panels in Figure 1, we count five periods, which corresponds to the frequency 100 x 27 Hz = wy, /2.
This is a distinguishing characteristic of Faraday waves, and therefore we can directly determine that
in this case the system develops this type of collective oscillations.

However, this way we can determine only the main excitation modes. The dynamics of the system
contains other modes as well, and over the time they can develop and even start to dominate the
behavior of the system. Therefore, it is important to analyze the spectra in more detail. This is done in
Figure 2 for all integrated density profile variations, separately for each spatial direction. For simplicity,
the FFT analysis is performed for the profiles at the trap center. As expected, in the weak confinement
direction (left column of Figure 2), the main excitation mode has a frequency wy, /2. In addition to
this, we observe two other modes, at w;, and 3 wy, /2. This is expected from the theoretical analysis in
Section 2, but could not be discerned directly from the density profiles or their variations.
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Figure 1. Time evolution of the integrated density profile variation dn(x, t) in the weak-confinement
direction for a BEC of chromium %2Cr (top), erbium '%8Er (middle), and dysprosium 164Dy (bottom),
for the modulation frequency wy, = 200 x 27t Hz and amplitude € = 0.2, and the system parameters
given in Section 2.

In the Fourier spectra of the integrated density profile variations in the radial directions (middle
and right columns of Figure 2), we see a somewhat richer set of excitation modes. In addition to the
main mode corresponding to the trap modulation at w;,, we see that also the breathing mode is excited
at the frequency wp =~ 321 x 27t Hz. This value can be calculated by linearizing the equations of
motion from Section 2. The spectra prominently contain the second modulation harmonic at 2 wy, as
well. We also see some other peaks, for instance the small peak at around 120 x 27t Hz, which can be
due to the linear combination of the modes wp — wy,. However, such an identification would require
further theoretical and numerical analysis, which is out of the scope of the present paper.
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Figure 2. The Fourier spectrum in the time-frequency domain of the integrated 1D density profile
variations of Faraday waves at the trap center dn(x = 0, ) in x direction (left column), én(y = 0,t)
in y direction (middle column), and én(z = 0,t) in z direction (right column) for a BEC of chromium
52Cr (top row), erbium 98Er (middle row), and dysprosium **Dy (bottom row). Vertical blue lines
represent theoretical predictions, where wy, /2 corresponds to Faraday waves, wy,;, 3wy /2, and 2 wy, to
resonant waves, and wp is the variational result for the breathing mode frequency, which is obtained
by linearization of the equations of motion from Section 2.

While the Fourier analysis in the time-frequency domain can be used to determine the character
of the induced density waves (Faraday, collective, and resonant), the analysis in the spatial-frequency
domain enables us to characterize the density patterns and calculate their spatial period. This is
illustrated in Figure 3 for Faraday waves for all three considered atomic species. The integrated
density profile variations are analyzed at appropriate times, which are determined to correspond to
the evolution stage when Faraday waves have fully emerged, but the system is still far from the violent
dynamics that inevitably follows after the long driving period.

In all three panels of Figure 3, the main peak corresponds to the wave vector kr of the Faraday
waves, and we see significant differences: for 52Cr, we obtained kr = 0.57 um™~!, yielding the spatial
period ¢r = 27/kr = 11.02 um; for 168Ey, we obtained kr = 0.98 um ! and ¢f = 6.41 um; and, for
164Dy, we obtained kr = 1.10 um~! and ¢f = 5.71 um. The variational analysis presented in Section 2
yields results which are in good agreement with the numerical ones, namely kr = 0.51 pm~! for >2Cr,
kp = 0.91 um~! for 18Er, and kr = 1.06 um ™! for 164Dy. These variational results are shown in Figure 3
by vertical blue lines, which illustrate their agreement with the Fourier analysis. The presented spectra
also contain some additional peaks that correspond to other geometrical features of the analyzed
density profile variations, such as the condensate widths and their higher harmonics, as well as the
higher harmonics of the Faraday waves periods, and linear combinations of all of these. However,
they are not of interest for our analysis and we did not study them further.
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Figure 3. The Fourier spectrum in the spatial-frequency domain of the integrated 1D density profile
variations of Faraday waves in x direction én(x,t = 272 ms) for 52Cr (left), on(x,t = 225 ms) for
168Er (middle), and én(x, t = 193 ms) for 164Dy (right) BECs with N = 10* atoms. The corresponding
density profile variations are shown in Figure 1. Vertical blue lines represent theoretical predictions for

the wave vector kr of the Faraday waves, Equation (23).

Note that the spatial period of Faraday waves can also be determined by directly looking at the
density profile variations in Figure 1, and estimating the spacing between the consecutive minima or
maxima at the appropriate evolution time. For instance, for chromium, we count three minima over
the spatial extent of 30 um, yielding an estimate {r ~ 10 um, and similarly for other species. Obviously,
such estimates are not as precise as the Fourier analysis results, and therefore we rely on FFT spectra
to systematically determine the spatial periods of Faraday waves and their functional dependencies on
the contact and the DDI strength.

4. Interaction Effects and Properties of Faraday Waves

In the previous section, we show how the Fourier analysis can be used to calculate the spatial
period of Faraday waves. Next, we systematically studied the interaction effects, namely how the
contact and the DDI strength affect the properties of generated density waves. First, we explored the
influence of the contact interaction on the emergence time and the spatial period of Faraday waves for
a fixed value of the DDI strength. In experiments, this can be achieved by employing the Feshbach
resonance technique, which allows tuning as by changing the external magnetic field, thus changing
the electronic structure of atoms and their scattering properties.

The existence of Faraday waves is a consequence of nonlinearity of the system, i.e., the presence of
the contact and the DDI terms in the Hamiltonian. In a linear system, described by the pure Schrodinger
equation, the harmonic modulation of the trap in the radial direction would not be transferred into the
longitudinal direction. Therefore, the emergence time of Faraday waves (and other types of density
waves in the longitudinal direction) critically depends on the strength of interatomic interactions.
However, if interaction strengths become sulfficiently large, the emergence time is less sensitive to their
changes. Since the DDI is strong in erbium and dysprosium, we can expect that the emergence time of
Faraday waves significantly depends on the contact interaction strength only in chromium, where a44
is small.

This is illustrated in Figure 4, where we see the density profile variations for chromium for three
different values of a;. Let us first note that the amplitude of density variations is much smaller in
the top panel for a; = 604y than in the middle panel for a; = 80 a9, and significantly smaller than
in the bottom panel for a; = 1504y. This is also evident from the fact that in the top and middle
panel we can clearly see the quadrupole collective oscillation mode, which has a frequency of around
wg = 12 x 27t Hz. This can be estimated from the figure and compared to the variational value of wg,
which can be obtained by linearizing the equations of motion in Section 2. When the interaction is
sufficiently large, the amplitude of Faraday waves is much larger than those of the collective modes,
and they cannot be even discerned in the bottom panel in Figure 4. Only for a weak interaction the
amplitude of the Faraday waves is comparable to the amplitude of the collective modes, and this is
why we can see them all for small values of a;.
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Figure 4. Emergence of Faraday waves for different strengths of the contact interaction: a; = 60ag
(top), as = 804y (middle), and a5 = 150 ay (bottom) for a BEC of 52Cr. We observe that Faraday waves
emerge faster as the contact interaction strength increases.

As with all other excitations, Faraday waves start to develop immediately after the modulation
is switched on. The question on their emergence time is related to their amplitude, which is
time-dependent and grows exponentially, as can be seen from the solution (Equation (18)) of the
Mathieu-like equation that describes the dynamics of the Faraday density oscillations. The imaginary
part of the parameter ¢ in Equation (18) is responsible for the exponential growth of the Faraday waves’
amplitude, which is not the case for collective modes. Therefore, in practical terms, the definition
of the emergence time of Faraday waves is always arbitrary and can be expressed as a time needed
for the density variations to reach a certain absolute or relative (compared to the total density) value.
One can even relate this to the experimental point of view, where there is a threshold for the density
variations that can be observed, due to measurement errors. However, in numerical simulations, there
are no such limitations and one can easily use an arbitrary definition to estimate the emergence time of
density waves. The more relevant quantity to study would be the exponent that governs the growth of
the wave amplitude, which depends on the interaction strength.

Now, we turn our attention to spatial features of the Faraday waves. Figure 5 presents the
dependence of the wave vector kr on the s-wave scattering length a, for all three considered species.
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We also show the variational results for the dependence kr(as) derived in Section 2. The agreement is
very good, with errors of the order of 10-15%. We stress that the derived variational expression closely
follows the numerical results not only by their values, but, more importantly, also their functional
dependence properly.

0.7
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Figure 5. Wave vector of the Faraday waves kr as a function of the contact interaction strength for a BEC
of 2Cr (left), 1®Er (middle), and '**Dy (right), for a fixed DDI strength. Red upper triangles were

numerically obtained values using the FFT analysis as in Figure 3, and blue lines are the variational
results according to Equation (23).

Next, we studied the effects of the DDI strength for a fixed value of the contact interaction. Figure 6
shows the corresponding dependence of kr on a44. In contrast to the contact interaction dependence,
where kr is a decreasing function of a5, here we see that kr increases as the DDI strength is increased.
Figure 6 also shows the variational results, where the level of agreement with the numerically obtained
results is different, with errors as small as 7% for chromium and up to around 25% for erbium and
dysprosium for largest values of a44. Due to complex approximations made in the derivation of
variational results, in particular those related to the DDI term, the obtained functional dependence is
not as good as in the case of contact interaction, but still provides reasonable estimates of the wave
vector values for the Faraday waves.

1.0 : : 2.0 : : 2.0 : :
520y simulation —a— | 168y simulation —a— | 164y simulation —a—
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Figure 6. Wave vector of the Faraday waves kr as a function of the DDI strength for a BEC of >Cr
(left), 18Er (middle), and 1®*Dy (right), for a fixed contact interaction strength. Red upper triangles
represent numerically obtained values using the FFT analysis as in Figure 3, and blue lines are the
variational results according to Equation (23).

5. Resonant Waves

In the presence of interactions, various excitation modes in dipolar BECs are coupled and the
energy pumped into the system by periodic driving can be transferred from the driving direction to
other, orthogonal directions. In the previous section, we show this for non-resonant driving, when
the harmonic modulation in the radial direction was transferred to the longitudinal direction in the
form of Faraday waves, which were the main excitation mode generated. The main distinguishing
property of these excitations is halving of the oscillation frequency, i.e., the induced density waves
have the frequency w;, /2. Next, we studied the other important case, when the modulation frequency
is resonant, such that the induced density waves have the same frequency. This happens when wy, is
close to one of the characteristic frequencies of the system, e.g., one of the frequencies of the collective
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oscillation modes or one of the trap frequencies. Although Faraday waves and all other collective
oscillation modes are also excited in this case, the largest amplitude corresponds to resonant waves
with the frequency w;,. When generated, these resonant waves dominate the behavior of the system
and make all other excitations negligible for the dynamics.

Figure 7 shows the integrated density profile variation of 1%®Er for a resonant wave induced
by a harmonic modulation of the radial part of the trapping potential at w;;, = (g, i.e., when the
modulation frequency coincides with the radial trapping frequency. The density waves in this case
develop much more quickly than for the non-resonant modulation and are clearly visible already after
55 ms. Due to a violent dynamics that emerges in the system very quickly, it is not easy to estimate
the frequency of the waves directly from Figure 7, as was possible before. Therefore, we relied on the
Fourier analysis in the time-frequency domain, as presented in the left panel of Figure 8. The obtained
FFT spectrum clearly shows that the main excitation mode has the frequency equal to w;,. We also see
that the spectrum is continuous, practically without distinct individual peaks, and only the second
harmonic at 2w, = 321 x 27t Hz yields a small local maximum. This demonstrates that the system is
far from the regime of small perturbations, where individual excitation modes can be observed.

In the right panel of Figure 8, we see the Fourier spectrum in the spatial-frequency domain, which
L and
the corresponding spatial period ¢ = 271 /kgr = 3.95 um for '%8Er. In the figure we also present the
variational result kg = 1.40 pm !, calculated using Equation (24). The agreement is again quite good,
which indicates that the variational approach developed in this paper can be reliably used not only for

yields the wave factor kg of resonant waves. The FFT results give the value kg = 1.59 um~

the Faraday waves, but also for the resonant waves.

Figure 7. Time evolution of the integrated density profile variation in the weak confinement direction
for a BEC of '8Er, with the modulation frequency equal to the weak confinement frequency, wy, = Q.
We observe resonant behavior corresponding to the first harmonic of the resonant frequency 0y, which
sets in after around 55 ms.

This can also be concluded from Figure 9, which presents the results for the dependence of
the resonant wave vector kg on the contact and the DDI strength. The agreement between the
numerical and variational results is of the order of 10% over the whole experimentally relevant domain.
We see similar behavior for the resonant waves as for the Faraday ones, namely the wave vector
decreases as the contact interaction strength increases, while the opposite is true for the DDI. Again,
the functional dependence obtained from the variational approach properly describes the numerical
results, thus confirming that Equation (24) can be used to calculate spatial period of resonant waves.
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Figure 8. The Fourier spectrum of the integrated 1D density profile variations dn(x, t) at the trap center
in the time-frequency domain (left), and of the density profile variations in x direction dn(x, t = 68 ms)
in the spatial-frequency domain (right) of resonant waves for a BEC of ®®Er. Vertical blue line in
the left panel represents the modulation frequency wy,, while in the right panel it corresponds to the
theoretical prediction for the wave vector kg of the resonant waves, Equation (24).
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Figure 9. Wave vector of the resonant waves kg as a function of the contact (left) and the DDI
(right) strength for a BEC of '%8Er. The results in the left panel are obtained for a fixed DDI strength,
and similarly in the right panel a fixed contact interaction strength is used. In both panels, red upper
triangles represent numerically obtained values using the FFT analysis as in the right panel of Figure 8,
and blue lines are the variational results according to Equation (24).

It is interesting to note that resonant behavior appears not only under conditions mentioned
above, when wy, is equal to one of the characteristic frequencies, but also when it matches their higher
harmonics. Figure 10 illustrates this for ®Er, which is harmonically modulated at twice the radial
trapping frequency, wy,, = 20y = 321 x 27t Hz. In this case, the amplitude of the resonant mode grows
even more quickly and significant density variations can be observed already after 30 ms. Therefore,
we see that the modulation at the second harmonic yields even more violent dynamics than the first
harmonic. The Fourier analysis in the time-frequency domain reveals that the main excitation mode
again has a frequency of g, but the mode at w;;, = 2Q)y is also present. From the experimental point
of view, resonant driving is very dangerous and leads to the destruction of the system in a matter of
tens of milliseconds. While numerical simulations can be performed for longer time periods, the atoms
leave the condensate due to a large, resonant transfer of energy to the system. As the condensate is
depleted, the mean-field description of the system breaks down and it can no longer be simulated by
the dipolar Gross-Pitaevskii equation.
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Figure 10. Time evolution of the integrated density profile variation in the weak confinement direction
for a BEC of '%Er. The modulation frequency is equal to twice the weak confinement frequency,
wm = 20)y. We observe resonant behavior corresponding to the second harmonic of the resonant
frequency (), which sets in more quickly than the first harmonic, already after around 30 ms.

6. Conclusions

We investigated here the Faraday and resonant density waves in ultracold dipolar Bose-Einstein
condensates for experimentally relevant atomic species with the permanent magnetic dipole moment:
chromium 2Cr, erbium '%Er, and dysprosium '®4Dy. The interplay of the contact and the dipole-dipole
interaction in such systems is a hot research topic today, but detailed understanding of their dynamics
and even their stability is still lacking. Our results contribute to variational and numerical description
of driven dipolar systems and their properties, which are important for ongoing experiments, and will
be of particular interest as the strongly dipolar regime becomes experimentally available.

To describe the dynamics of the Faraday and resonant waves in dipolar BECs, we relied here
on the variational approach introduced in Ref. [16] (and references therein), which was already used
in various setups [17-20,23-25,30,41,42]. This approach is based on the Gaussian variational ansatz
and includes the condensate widths and the conjugated dynamical phases as parameters. The ansatz
also includes the density modulations in order to capture the dynamics of density waves. Using our
variational approach, the obtained equations for the dynamical evolution of the system are cast into the
form of the Mathieu-like differential equation. This allowed us to identify the most unstable solutions
of the Mathieu’s equation with the Faraday and the resonant waves, which we observed numerically.
Based on this idea, we derived analytical expressions for the periods of these two types of density
waves. Performing the FFT analysis of the results of extensive numerical simulations, we were able
to calculate the corresponding periods numerically, as functions of the contact and the dipole-dipole
interaction strength. The comparison of variational and numerical results shows very good agreement
and demonstrates that the derived analytical expressions provide full understanding of the properties
of density waves in dipolar condensates.

In the future, we plan to study onset times for the emergence of Faraday and resonant waves,
and in particular the corresponding exponents and their dependence on the contact and the DDI.
It is well known that the periodic driving of a dipolar system may lead to its collapse, and we plan
to investigate if recently observed quantum droplets, that appear as a result of stabilization due to
quantum fluctuations, may also appear in a scenario which leads to Faraday waves.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, writing—original
draft preparation, and writing—review and editing, both authors; investigation, data curation, and visualization,
D.V.; and resources, supervision, project administration, and funding acquisition, A.B.

Funding: This research was funded by the Ministry of Education, Science, and Technological Development of the
Republic of Serbia under project ON171017.



Symmetry 2019, 11, 1090 16 of 18

Acknowledgments: We would like to acknowledge inspiring discussions with Vladimir Velji¢ and Ivana Vasic¢.
Numerical simulations were run on the PARADOX-IV supercomputing facility at the Scientific Computing
Laboratory, National Center of Excellence for the Study of Complex Systems, Institute of Physics Belgrade.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Lahaye, T.; Koch, T.; Frohlich, B.; Fattori, M.; Metz, J.; Griesmaier, A.; Giovanazzi, S.; Pfau, T. Strong dipolar
effects in a quantum ferrofluid. Nature 2007, 448, 672. [CrossRef] [PubMed]

2. Lu, M,; Burdick, N.Q.; Youn, S.H.; Lev, B.L. Strongly dipolar Bose-Einstein condensate of dysprosium.
Phys. Rev. Lett. 2011, 107, 190401. [CrossRef] [PubMed]

3. Aikawa, K; Frisch, A.; Mark, M.; Baier, S.; Rietzler, A.; Grimm, R.; Ferlaino, F. Bose-Einstein condensation of
erbium. Phys. Rev. Lett. 2012, 108, 210401. [CrossRef] [PubMed]

4. De Miranda, M.H.G.; Chotia, A.; Neyenhuis, B.; Wang, D.; Quemener, G.; Ospelkaus, S.; Bohn, J.L.; Ye, J.; Jin,
D.S. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 2011, 7, 502.
[CrossRef]

5. Frisch, A.; Mark, M.; Aikawa, K.; Baier, S.; Grimm, R.; Petrov, A.; Kotochigova, S.; Quemener, G.; Lepers, M.;
Dulieu, O.; Ferlaino, F. Ultracold dipolar molecules composed of strongly magnetic atoms. Phys. Rev. Lett.
2015, 115, 203201. [CrossRef] [PubMed]

6. Baranov, M.A. Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep.
2008, 464, 71. [CrossRef]

7. Inouye, S.; Andrews, M.R.; Stenger, J.; Miesner, H.J.; Stamper-Kurn, D.M.; Ketterle, W. Observation of
Feshbach resonances in a Bose-Einstein condensate. Nature 1998, 392, 32354. [CrossRef]

8.  Giovanazzi, S.; Gorlitz, A.; Pfau, T. Tuning the Dipolar Interaction in Quantum Gases. Phys. Rev. Lett.
2002, 89, 130401. [CrossRef]

9. Tang, Y,;Kao, W, Li, K.Y,; Lev, B.L. Tuning the Dipole-Dipole Interaction in a Quantum Gas with a Rotating
Magnetic Field. Phys. Rev. Lett. 2018, 120, 230401. [CrossRef]

10. Faraday, M. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles
upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 1831, 121, 299. [CrossRef]

11. Staliunas, K.; Longhi, S.; de Valcércel, G.]J. Faraday patterns in Bose-Einstein condensates. Phys. Rev. Lett.
2002, 89, 210406. [CrossRef] [PubMed]

12.  Engels, P; Atherton, C.; Hoefer, M.A. Observation of Faraday waves in a Bose-Einstein condensate.
Phys. Rev. Lett. 2007, 98, 095301. [CrossRef] [PubMed]

13. Pollack, S.E.; Dries, D.; Hulet, R.G.; Magalhdes, KM.F.,; Henn, E.A L.; Ramos, E.R.F,; Caracanhas, M.A.;
Bagnato, V.S. Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering
length. Phys. Rev. A 2010, 81, 053627. [CrossRef]

14. Nguyen, ].H.V,; Tsatsos, M.C.; Luo, D.; Lode, A.U.J.; Telles, G.D.; Bagnato, V.S.; Hulet, R.G. Parametric
Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation. Phys. Rev. X 2019, 9, 011052.
[CrossRef]

15. Abe, H.; Ueda, T.; Morikawa, M.; Saitoh, Y.; Nomura, R.; Okuda, Y. Faraday instability of superfluid surface.
Phys. Rev. E 2007, 76, 046305. [CrossRef] [PubMed]

16. Nicolin, A.L; Carretero-Gonzalez, R.; Kevrekidis, P.G. Faraday waves in Bose-Einstein condensates.
Phys. Rev. A 2007, 76, 063609. [CrossRef]

17.  Nicolin, A.L; Raportaru, M.C. Faraday waves in high-density cigar-shaped Bose-Einstein condensates.
Phys. A 2010, 389, 1062. [CrossRef]

18. Nicolin, A.I; Raportaru, M.C. Faraday waves in one-dimensional Bose-Einstein condensates.
Proc. Rom. Acad. 2011, 12, 209.

19. Nicolin, A.I. Faraday waves in Bose-Einstein condensates subject to anisotropic transverse confinement.
Rom. Rep. Phys. 2011, 63, 1329.

20. Balasubramanian, S.; Ramaswamy, R.; Nicolin, A.I. Faraday waves in cigar-shaped Bose-Einstein condensates
with radially inhomogeneous scattering lengths. Rom. Rep. Phys. 2013, 65, 820.

21. Nath, R.; Santos, L. Faraday patterns in two-dimensional dipolar Bose-Einstein condensates. Phys. Rev. A

2010, 81, 033626. [CrossRef]



Symmetry 2019, 11, 1090 17 of 18

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Lakomy, K.; Nath, R.; Santos, L. Faraday patterns in coupled one-dimensional dipolar condensates.
Phys. Rev. A 2012, 86, 023620. [CrossRef]

Nicolin, A.I. Density waves in dipolar Bose-Einstein condensates. Proc. Rom. Acad. 2013, 14, 35.

Balaz, A.; Nicolin, I. Faraday waves in binary nonmiscible Bose-Einstein condensates. Phys. Rev. A
2012, 85, 023613. [CrossRef]

Balaz, A.; Paun, R.; Nicolin, A.I; Balasubramanian, S.; Ramaswamy, R. Faraday waves in collisionally
inhomogeneous Bose-Einstein condensates. Phys. Rev. A 2014, 89, 023609. [CrossRef]

Abdullaev, FK.; Ogren, M.; Serensen, M.P. Faraday waves in quasi-one-dimensional superfluid Fermi-Bose
mixtures. Phys. Rev. A 2013, 87, 023616. [CrossRef]

Capuzzi, P; Vignolo, P. Faraday waves in elongated superfluid fermionic clouds. Phys. Rev. A
2008, 78, 043613. [CrossRef]

Tang, R.A; Li, H.C.; Xue, ] K. Faraday instability and Faraday patterns in a superfluid Fermi gas. J. Phys. B
2011, 44, 115303. [CrossRef]

McLachlan, N.W. Theory and Application of Mathieu Functions; Oxford University Press: New York,
NY, USA, 1951.

Nicolin, A.I. Resonant wave formation in Bose-Einstein condensates. Phys. Rev. E 2011, 84, 056202.
[CrossRef]

Capuzzi, P.; Gattobigio, M.; Vignolo, P. Suppression of Faraday waves in a Bose-Einstein condensate in the
presence of an optical lattice. Phys. Rev. A 2011, 83, 013603. [CrossRef]

Staliunas, K. Removal of excitations of Bose-Einstein condensates by space- and time-modulated potentials.
Phys. Rev. A 2011, 84, 013626. [CrossRef]

Gaul, C; Diaz, E.; Lima, RP.A.; Dominguez-Adame, F; Miiller, C.A. Stability and decay of Bloch oscillations
in the presence of time-dependent nonlinearity. Phys. Rev. A 2011, 84, 053627. [CrossRef]

Diaz, E.; Mena, A.G.; Asakura, K.; Gaul, C. Super-Bloch oscillations with modulated interaction. Phys. Rev. A
2013, 87, 015601. [CrossRef]

Brouzos, I.; Schmelcher, P. Controlled excitation and resonant acceleration of ultracold few-boson systems
by driven interactions in a harmonic trap. Phys. Rev. A 2012, 85, 033635. [CrossRef]

Diakonos, EK.; Kalozoumis, P.A.; Karanikas, A.I; Manifavas, N.; Schmelcher, P. Geometric-phase-propagator
approach to time-dependent quantum systems. Phys. Rev. A 2012, 85, 062110. [CrossRef]

Al-Jibbouri, H.; Pelster, A. Breakdown of the Kohn theorem near a Feshbach resonance in a magnetic trap.
Phys. Rev. A 2013, 88, 033621. [CrossRef]

Kobyakov, D.; Bezett, A.; Lundh, E.; Marklund, M.; Bychkov, V. Quantum swapping of immiscible
Bose-Einstein condensates as an alternative to the Rayleigh-Taylor instability. Phys. Rev. A 2012, 85, 013630.
[CrossRef]

Hu, WH,; Jin, L.; Song, Z. Dynamics of one-dimensional tight-binding models with arbitrary time-dependent
external homogeneous fields. Quantum Inf. Process. 2013, 12, 3569. [CrossRef]

Sakhel, R.R.; Sakhel, A.R.; Ghassib, H.B. Nonequilibrium Dynamics of a Bose-Einstein Condensate Excited
by a Red Laser Inside a Power-Law Trap with Hard Walls. ]. Low Temp. Phys. 2013, 173, 177. [CrossRef]
Sudharsan, ].B.; Radha, R.; Raportaru, M.C.; Nicolin, A.I; Balaz, A. Faraday and resonant waves in binary
collisionally-inhomogeneous Bose-Einstein condensates. J. Phys. B 2016, 49, 165303. [CrossRef]

Nicolin, A.I. Variational treatment of Faraday waves in inhomogeneous Bose-Einstein condensates. Phys. A
2012, 391, 1062. [CrossRef]

Giovanazzi, S.; Pedri, P.; Santos, L.; Griesmaier, A.; Fattori, M.; Koch, T.; Stuhler, J.; Pfau, T. Expansion
dynamics of a dipolar Bose-Einstein condensate. Phys. Rev. A 2006, 74, 013621. [CrossRef]
Muruganandam, P.; Adhikari, S.K. Fortran programs for the time-dependent Gross-Pitaevskii equation in
a fully anisotropic trap. Comput. Phys. Commun. 2009, 180, 1888. [CrossRef]

Vudragovi¢, D.; Vidanovi¢, I.; Balaz, A.; Muruganandam, P.; Adhikari, S.K. C Programs for solving the
time-dependent Gross-Pitaevskii equation in a fully anisotropic trap. Comput. Phys. Commun. 2012, 183,
2021. [CrossRef]

Kumar, R.K;; Young-S., L.E.; Vudragovi¢, D.; Balaz, A.; Muruganandam, P.; Adhikari, S.K. Fortran and C
programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap. Comput. Phys.
Commun. 2015, 195, 117. [CrossRef]



Symmetry 2019, 11, 1090 18 of 18

47.

48.

49.

50.

51.

52.

Lonéar, V.; Balaz, A.; Bogojevi¢, A; Skrbi¢, S.; Muruganandam, P.; Adhikari, S. K. CUDA programs for
solving the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap. Comput. Phys. Commun.
2016, 200, 406. [CrossRef]

Satari¢, B.; Slavni¢, V.; Beli¢, A.; Balaz, A.; Muruganandam, P.; Adhikari, SK. Hybrid OpenMP/MPI
programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap. Comput. Phys.
Commun. 2016, 200, 411. [CrossRef]

Young-S., L.E.; Vudragovi¢, D.; Muruganandam, P.; Adhikari, S.K.; Balaz, A. OpenMP Fortran and C
programs for solving the time-dependent Gross-Pitaevskii equation in an anisotropic trap. Comput. Phys.
Commun. 2016, 204, 209.[CrossRef]

Young-S., L.E.; Muruganandam, P.; Adhikari, S.K,; Lon¢ar, V.; Vudragovi¢, D.; Balaz, A. OpenMP GNU and
Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation. Comput. Phys. Commun.
2017, 220, 503. [CrossRef]

Loncar, V.; Young-S., LE; Skrbi¢, S.; Muruganandam, P.; Adhikari, SK.; Balaz, A. OpenMP,
OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent dipolar Gross-Pitaevskii
equation. Comput. Phys. Commun. 2016, 209, 190. [CrossRef]

Kumar, R.K,; Lonéar, V.; Muruganandam, P.; Adhikari, S.K.; Balaz, A. C and Fortran OpenMP programs for
rotating Bose-Einstein condensates. Comput. Phys. Commun. 2019, 240, 74. [CrossRef]

(© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



. DOT 10.12694 /scpe.v19i2.1396
H SCALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
.. Volume 19, Number 2, pp. 215-221. http://www.scpe.org (© 2018 SCPE

VI-SEEM DREAMCLIMATE SERVICE

DUSAN VUDRAGOVIC? LUKA ILIC] PETAR JOVANOVIC! SLOBODAN NICKOVIC! ALEKSANDAR BOGOJEVICT
AND ANTUN BALAZI

Abstract. Premature human mortality due to cardiopulmonary disease and lung cancer is found in epidemiological studies to
be correlated to increased levels of atmospheric particulate matter. Such negative dust effects on the human mortality in the North
Africa — Europe — Middle East region can be successfully studied by the DREAM dust model. However, to assess health effects
of dust and its other impacts on the environment, a detailed modelling of the climate for a period of one year in a high-resolution
mode is required. We describe here a parallel implementation of the DREAM dust model, the DREAMCLIMATE service, which is
optimised for use on the high-performance regional infrastructure provided by the VI-SEEM project. In addition to development
and integration of this service, we also present a use-case study of premature mortality due to desert dust in the North Africa —
Europe — Middle East region for the year 2005, to demonstrate how the newly deployed service can be used.

Key words: DREAM model, dust effects, human mortality, VI-SEEM project, application service

AMS subject classifications. 68W10, 68M14, 68N30

1. Introduction. Exposure to airborne mineral dust particles can significantly influence human health.
Atmospheric dust particles are primarily driven by mesoscale and synoptic processes, and may be present in high
concentrations near the sources and carried over long distances while having adverse health effects. Drought and
desertification, as climate-related changes and human activities such as changes in land use, affect potential dust
sources of fine particulate matter in arid areas. Therefore, numerical modelling with sufficiently high resolution
of the processes of the atmospheric dust cycle that drive dust emissions and transport is a useful approach to
assessment of the potential health effects of exposure to dust.

The previously developed Dust REgional Atmospheric Modeling (DREAM) system [1] is a component of
a comprehensive atmospheric model designed to simulate and predict the atmospheric cycle of mineral dust
aerosols. The DREAM provides a climatology of dust based on long-term re-analysis of the model. It is widely
used by the research and operational dust forecasting communities in more than 20 countries, including its
recent use in a series of NASA-funded projects [2, 3, 4, 5] dealing with health aspects of dust suspended in
the air. The Institute of Physics Belgrade group, which is a partner in the Sand and Dust Storm Warning
Advisory and Assessment System (SDS-WAS) project of the World Meteorological Organization, uses DREAM
to provide daily dust forecasts to the SDS-WAS model inter-comparisons and validation activities. Also, it is
used for investigation on how fine particulate matter contributes to air pollution in North Africa — Europe —
Middle East region.

To assess health effects of dust in the region and other dust impacts on the environment, it is usual to
consider at least a one-year modelling climatology for the given region. In this case this was achieved by
solving the DREAM model in a high-resolution mode with the horizontal grid resolution of 15 km. Such a
high resolution model is capable to accurately describe the behaviour of small-scale dust sources in the desert
areas (Sahara, Middle East), as well as the mesoscale atmospheric conditions. However, due to numerical
complexity it requires a parallelised version of the DREAM code, which we created and optimised for usage on
high-performance computing infrastructures available today.

*Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of
Belgrade, Serbia (dusan.vudragovic@ipb.ac.rs).

TEnvironmental Physics Laboratory, Institute of Physics Belgrade, University of Belgrade, Serbia (luka.ilic@ipb.ac.rs).

*Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of
Belgrade, Serbia (petar.jovanovic@ipb.ac.rs).

$Environmental  Physics  Laboratory, Institute  of Physics  Belgrade, University of  Belgrade, Serbia
(slobodan.nickovic@ipb.ac.rs).

9Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of
Belgrade, Serbia (aleksandar.bogojevic@ipb.ac.rs).

I Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of
Belgrade, Serbia (antun.balaz@ipb.ac.rs).

215



216 D. Vudragovié, L. 1lié¢, P. Jovanovié, S. Nickovié, A. Bogojevié, A. Balaz

In parallel to development of the DREAM model, a number of initiatives were crucial for enabling high-
quality climate research in the region. This was achieved by providing e-Infrastructure resources, application
support and training through the VI-SEEM project [6], funded by the EU H2020 programme. The project
brings together regional e-Infrastructures in order to build capacity and better utilise synergies, as well as to
provide improved service within a unified virtual research environment for several inter-disciplinary scientific
user communities. The overall aim is to offer a user-friendly integrated e-Infrastructure platform for regional
cross-border scientific communities in climatology, life sciences, and cultural heritage. This includes integration
of computing, data, and visualisation resources, as well as services, models, software solutions and tools. The
VI-SEEM virtual research environment provides the support to scientists in a full lifecycle of collaborative
research.

By efforts of the DREAM code developers and the VI-SEEM support team, the DREAM model was
successfully refactored and tuned for usage on high-performance computing infrastructures in a form of the
DREAMCLIMATE service, presented here. Section 2 briefly describes the DREAM model, which is capable of
producing results in the required high-resolution mode for a one year period. The DREAMCLIMATE service
is presented in detail in Section 3, while Section 4 describes produced datasets and main results. By using
an order of magnitude finer DREAM model grid than available before, we perform a detailed analysis of dust
impacts to public health.

2. DREAM model. Premature human mortality due to cardiopulmonary disease and lung cancer is found
in epidemiological studies to be correlated to increased levels of atmospheric particulate matter, in particular
to long-term exposure to particulate matter with an aerodynamic diameter smaller than 2.5 ym. In order to
estimate the premature mortality caused by the long-term exposure to airborne desert dust, we use results of
the DREAM gridded model dust climatology of fine particulate matter and dust concentrations. This analysis
follows the previous study [7] that indicates that there is a large number of premature deaths by cardiopulmonary
disease and a significant number of deaths by lung cancer, mostly in the dust belt region neighbouring Sahara
and Middle East deserts.

The DREAM model is developed as an add-on component of a comprehensive atmospheric model and
is designed to simulate and/or predict the atmospheric cycle of mineral dust aerosols. It solves a coupled
system of the Euler-type partial differential nonlinear equations for dust mass continuity, one equation for each
particle size class, which is one of the governing prognostic equations in an atmospheric numerical prediction
model [8, 9, 10]. The DREAM model takes into account all major processes of the atmospheric dust cycle.
During the model simulation, calculation of the surface dust emission fluxes is made over the model cells
declared as deserts. A viscous sub-layer parameterisation regulates the amount of dust mass emission for a
range of near-surface turbulent regimes. Once injected into the air, dust aerosols are driven by the atmospheric
dynamics and corresponding physical quantities: by turbulence in the early stage of the process, when dust is
lifted from the ground to the upper levels; by winds in later phases of the process, when dust travels away from
the sources; and finally, by thermodynamic processes, rainfall and land cover features that provide wet and dry
deposition of dust over the Earth surface.

The model is implemented as a bundle of Fortran programs and libraries. These components are divided into
three groups: the preprocessing system, the model operational system, and post-processing and visualisation
tools. The preprocessing consists of two phases. The first is the setup in which the simulation domain, model
configuration and interpolation of terrestrial data are defined. These parameters are mostly hard-coded and any
change to parameters in this phase requires recompilation. The second stage of preprocessing is interpolation of
the meteorological input data from the global meteorological model to the current simulation domain, as well as
a setup of initial boundary conditions for the dust model. The model operational system is the main component,
and it runs the numerical integration program. Post-processing and visualisation tools include GrADS [11] with
conversion from Arakawa E-grid to geo-referenced grid and plots.

The code is predominantly written in the style of the Fortran 77 standard. Some of the more pressing con-
straints of the standard were the lack of support for dynamic memory allocation and command line arguments.
These two constraints required for a number of parameters to be hard-coded. As a consequence, this limited
the number of users who could use the application independently, and the number of parallel tests that could be
ran at once. Recompilation also requires a deep technical knowledge of the implementation itself, which reduces
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usability and dissemination of the model.

3. DREAMCLIMATE service. Within the framework of the VI-SEEM project, the DREAM model
was successfully re-factored and tuned for usage on high-performance computing infrastructures. The DREAM-
CLIMATE service was developed and deployed using the VI-SEEM infrastructure modules. Configuration of
the considered physical system is separated from the source code of the application, and all relevant parameters
are grouped into a single configuration file. Such an improved configuration approach enabled more user-friendly
way to configure various model setups, without the need for each user to dive into the code and technical details
of the implementation. This also enables multiple users to run their model instances independently. Important
additional improvements include significant reduction of the disk-space consumption, as well as standardisation
of its usage through an environment-module approach.

Configuration files follow the format of the Python configuration parser, which is a convenient, flexible, and
powerful way for parsing configuration files. It uses simple INI style configuration syntax, i.e., a text file with
a basic structure composed of sections, properties, and values. Parameters are divided into sections which are
designated by square brackets. Within one section, each parameter is specified in a separate line and its name
and value are delimited by the equals sign. In-line comments are also permissible and corresponding lines begin
with a semicolon. In addition to this, a support for variable interpolation is included as well.

The DREAM processing stages remain similar to the original version of the code, and consist of the pre-
processing, the model operational processing, and the post-processing phase. Majority of changes are related to
reducing the complexity of configuration in the setup stage of preprocessing. In a typical use-case, a user begins
the simulation project by loading the environment module for the DREAMCLIMATE service, which sets the
environment paths for the commands used to initialise and prepare the DREAM model simulation. Afterwards,
by invoking the dreamclimate_init script the default configuration file is created in the working directory and
files needed for a configuration of the local simulation instance are created in the .dreamclimate subdirectory.
After the parameters are set in the configuration file, the dreamclimate _reconfig script is called to execute the
setup stage, which encapsulates recompilation of the components, depending on the parameters changed. The
resulting binaries, which are used to run simulation, are placed in the .dreamclimate/bin directory. This step
isolates each user’s simulation instance from others and enables multiple instances to work without interference.
The next step in this stage generates and interpolates vegetation and soil texture for the forecast domain, by
calling the gt30mounth, gt30source, gt30vegetadirect, textdeta, and texteta components.

After the setup, preprocessing continues by invoking the dreamclimate_preproc script whose role is to
prepare input data for the Eta model grid. This script invokes the following components:

e climsst — horizontal grid (IMT, JMT) Eta model indexing from the SST as a function of the month,

e anecw — horizontal grid (IMT, JMT) Eta model indexing from global initial data,

e pusiWRF — set of the vertical variables and vertical interpolation of the pressure to sigma surfaces,

e const — conversion of the initial fields in Eta model coordinates from 2D horizontal (IMT, JMT)
indexing to 1D (IMJM), definition of dummy initial boundary soil moisture and temperature values,
and calculation of the constants needed for the 1D version of the soil model,

e dboco — creation of the boundary condition files,

e gfdlco2 — interpolation of the transmission functions grid, for which the transmission functions have
been pre-calculated, to the grid structure.

This preprocessing step produces binary files interpolated to the model grid (i.e., Arakawa E-grid) in
the output directory specified in the configuration file. All the routines of the model itself, which describe
atmospheric processes including the dust cycle, are built into the main executable file. This is a parallel MPI
program that runs the simulation and is submitted to the job scheduling system using the job description
script, which is automatically generated earlier in the setup stage. The post-processing includes the conversion
of the main GrADS output file from the Arakawa E-grid to the GrADS grid. These steps are handled by the
dreamclimate_post-process script.

Many of the configuration parameters in the generated configuration file have sensible default values, to
minimise the need for users to search through lengthy lists of output file locations. The domain parameters of
interest for configuring the model itself, inside the ALLINC section, are:

e TLMOD - longitude of the centre point of the domain,
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TPHOD — latitude of the centre point of the domain,
WBD — western boundary of the domain with respect to the centre point (always less than 0),
SBD - southern boundary of the domain with respect to the centre point (always less than 0),
DLMD - longitudinal model grid resolution,
DPHD - latitudinal model grid resolution,
DTB - time step of the model, which depends on DLMD and DPHD values by means of the Couranf-
Friedrichs-Lewy (CFL) criteria,
e LM — the number of vertical levels.

Another set of commonly changed model parameters are dimensions of the model grid. These are grouped

in the PARMETA section of the configuration file:
e IM — the number of mass grid points along the first row, essentially half of the total number of grid
points in the west-east direction, due to the horizontal staggering of mass and wind points,
e JM — the number of rows in the north-south direction.
These parameters also influence the number of processes and the topology of the MPI parallel execution.

The rest of the parameters in the configuration file specify paths for input, output and intermediate files.
With these paths defined during configuration, a significant reduction in disk space usage was achieved, as the
data files no longer need to be copied together with the code, and no longer have to be in fixed relative locations.

The DREAMCLIMATE service is deployed during the first VI-SEEM development access call at the PARA-
DOX high-performance computing cluster [12], hosted by the Scientific Computing Laboratory, Center for the
Study of Complex Systems of the Institute of Physics Belgrade. This cluster is part of the VI-SEEM infrastruc-
ture, and consists of 106 working nodes. Working nodes (HP ProLiant SL250s Gen8) are configured with two
Intel Xeon E5-2670 8-core Sandy Bridge processors, at a frequency of 2.6 GHz and 32 GB of RAM. The total
number of CPU-cores available in the cluster is 1696, and each working node contains an additional GP-GPU
card (NVIDIA Tesla M2090) with 6 GB of RAM. The peak computing power is 105 TFlops. The PARADOX
provides a data storage system, which consists of two service nodes (HP DL380p Gen8) and 5 additional disk
enclosures. One disk enclosure is configured with 12 SAS drives of 300 GB each (3.6 TB in total), while the
other four disk enclosures are configured each with 12 SATA drives of 2 TB (96 TB in total), so that the cluster
provides around 100 TB of storage space. Storage space is distributed via a Lustre high-performance parallel
file system that uses Infiniband QDR interconnect technology, and is available on both working and service
nodes.

Although the DREAMCLIMATE code is a copyright-protected software, it can be obtained for research
purposes with the permission of the principal investigator (S. Nic¢kovi¢). Therefore, the DREAMECLIMATE
service source code is only internally available at the VI-SEEM code repository [13], as well as a module at
the PARADOX cluster software repository. Transfer of the software to third parties or its use for commercial
purposes is not permitted, unless a written permission from the author is received.

4. Produced datasets and results. Using the DREAMCLIMATE service at PARADOX during the
first VI-SEEM call for production use of resources and services, we produced a dataset with the aerosol optical
thickness and surface dust concentration for the one-year period. We selected the year 2005 for this analysis,
which serves as an example and demonstrates usability of DREAMCLIMATE service. The dataset covers wide
region of North Africa, Southern Europe and Middle East in 30 km horizontal resolution with 28 vertical levels,
and is made publicly available via the VI-SEEM data repository [14].

In addition to this initial dataset, we also produced a dataset with a higher resolution of 15 km for the same
region and period of time. The global mean DREAMCLIMATE-modelled dust concentration for year 2005 is
presented in Fig. 4.1.

Using the human health impact function introduced in Refs. [15, 16], we can relate the changes in pollutant
concentrations to the changes in human mortality, and estimate the global annual premature mortality due to
airborne desert dust. For this, we use as a baseline the mortality rate estimated by the World Health Orga-
nization (WHO) Statistical Information System on the country-level based on the International Classification
of Diseases 10th Revision (ICD-10) classification, and regional data from the WHO Global burden of disease
for countries with no data. Population statistics we used for the year 2005 is based on the United Nations
Department of Economic and Social Affairs (UNDES 2011) database, while gridded global population numbers
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Fic. 4.1. Calculated mean dust concentrations in ug/m?’, obtained from the DREAMCLIMATE model. The model integration
area covers region of North Africa, Southern Europe and Middle East, with 15 km horizontal resolution in 28 vertical levels for
the year 2005.

TABLE 4.1
Total CPD and LC premature mortalities for the threshold concentrations between 0 and 10 ug/m?’.

Baseline concentration

(in pg/m?) 0 5.0 7.5 10
CPD premature mortality

(in thousands) 765 615 567 524
LC premature mortality

(in thousands) 14.8 10.2 9.1 8.4

are taken from the Columbia University Center for International Earth Science Information Network (CIESIN)
database. We used the population cohort of 30 years and older in the health impact function.

Applying the health impact function to the considered population, the DREAM model output suggests
a significant contribution of desert dust to premature human mortality. For the global background of dust
concentration of 7.5 ug/ m® i.e., threshold below which no premature mortality occurs, the estimated premature
mortality (per grid cell) by cardiopulmonary disease (CPD) and lung cancer (LC) is illustrated in Fig. 4.2. In
total, around 570,000 premature deaths in the model domain are predicted to occur during a one-year period,
as a negative consequence of dust. According to our results, top five countries with the highest induced CPD-
mortality in the year 2005 are: Egypt with 74,000; Iraq with 67,000; Iran with 50,000; Nigeria with 46,000;
Sudan with 45,000. On the other hand, top five countries with the highest induced LC-mortality in the same
year are: Iraq with 1,200; Iran with 900; Sudan with 800; Egypt with 800; Uzbekistan and Turkey with 500
premature deaths each.

We also investigated the sensitivity of our results on the value of the threshold concentrations, which is
above assumed to be 7.5 pg/ m®. Table 4.1 gives the obtained total CPD and LC premature mortalities for the
threshold concentrations between 0 and 10 ug/m?’. This analysis is presented to showcase capabilities of the
model and the developed DREAMCLIMATE service, and can be efficiently used to study desired regions and
time periods if the required input data are provided.

5. Conclusions. Using the VI-SEEM project infrastructure and services, we have successfully re-factored
the DREAM atmospheric model. We have developed and implemented the DREAMCLIMATE service, which
is tuned for usage on high-performance computing infrastructures available today. In order to demonstrate a
typical use-case, we have produced a dataset with the aerosol optical thickness and surface dust concentration
for the one-year period for the wide region of North Africa, Southern Europe and Middle East. We have used
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Fic. 4.2. Estimated global premature mortality per grid cell by cardiopulmonary disease (top) and lung cancer (down) due to
the long-term exposure to desert dust with an aerodynamic diameter smaller than 2.5 um, calculated by the VI-SEEM DREAM-
CLIMATE service.

both the 30 km and the 15 km horizontal resolution, with 28 vertical levels. To showcase how results of the
DREAMCLIMATE service can be applied, using the human health impact function and calculated global fine
particulate matter concentrations, we have estimated the premature mortality caused by the long-term exposure
to airborne desert dust with an aerodynamic diameter smaller than 2.5 pum for the year 2005 in the considered
region. The results show that the large total number of premature deaths (around 570,000) in the model domain
is mainly due to cardiopulmonary disease, but a significant number of deaths is also caused by lung cancer. The
model also shows high sensitivity of the results on the threshold concentration, which is a significant parameter
of relevance to public health.
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Chapter 15
Science Gateway for the Serbian
Condensed Matter Physics Community

Dusan Vudragovi¢ and Antun Balaz

Abstract The Academic and Educational Grid Initiative of Serbia hosts and
maintains the scientific gateway of the Serbian condensed matter physics com-
munity. The gateway is built around a code set addressing problems from the
physics of ultracold quantum gases, solving the nonlinear Schroedinger equation,
the Gross—Pitaevskii equation in real and imaginary time, and a path integral
algorithm for estimation of quantum-mechanical transition amplitudes, which are
relevant for various applications. Here we present the realization of the gateway and
technologies used for its implementation.

15.1 Introduction

Condensed matter physics and materials science address problems that highly rel-
evant for fundamental research, as well as for practical applications and society.
The development of high-impact materials with enhanced and engineered proper-
ties, or research in quantum information, for example, depend on the results from
these areas of physical sciences, and contribute to the IT and smartphone industry,
semiconductor technology, the energy sector, and others.

Numerical simulations are now indispensible tools in science and technology,
and are used to speed up the research and development while decreasing the costs.
In condensed matter physics, scientists deploy a broad range of algorithms, such as
solving nonlinear partial differential equations, classical and quantum Monte Carlo
techniques, including solving of the Bose—Hubbard and Fermi—Hubbard models,
exact diagonalization techniques for strongly correlated systems, etc. Whichever

D. Vudragovi¢ (<) - A. Balaz

Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,
Belgrade, Serbia

e-mail: dusan@ipb.ac.rs

A. Balaz
e-mail: antun@ipb.ac.rs

© Springer International Publishing Switzerland 2014 209
P. Kacsuk (ed.), Science Gateways for Distributed Computing Infrastructures,
DOI 10.1007/978-3-319-11268-8_15



210 D. Vudragovi¢ and A. Balaz

algorithm is used, typically it requires large-scale computing resources for simu-
lations of relevant physical systems.

In the Serbian condensed matter physics community (CMPC), the most prom-
inent use of computing resources is related to the three applications developed at the
national level: SPEEDUP, QSPEEDUP, and GP-SCL.

SPEEDUP code (Balaz 2012-1) uses Monte Carlo-based path integral algorithms
for the calculation of quantum mechanical transition amplitudes for 1D models. It is
based on the use of higher-order short-time effective actions in the time of prop-
agation (Monte Carlo time step), which substantially improves the convergence of
discretized amplitudes to their exact continuum values.

QSPEEDUP code (Vudrag 2010) presents a quasi-Monte Carlo extension of the
SPEEDUP code. The extended algorithm uses Sobol’s set of quasi-random num-
bers for generation of trajectories relevant for calculation of transition amplitudes in
the path integral formalism. Both applications use identical algorithm, supplied with
different random number generators, which allows their unification into a single
application designated as (Q)SPEEDUP.

GP-SCL (Vudrag 2012) is a set of codes parallelized using the OpenMP
approach for calculating the dynamics and ground states of quantum fluids (such as
Bose—FEinstein condensates and superfluids). Quantum fluids represent macroscopic
quantum phenomena where large numbers of atoms or molecules behave coher-
ently, allowing special properties to emerge. In the mean-field regime, such systems
can be described by a nonlinear Schroedinger equation, usually called the
Gross—Pitaevskii equation (Pethick 2008). GP-SCL codes solve the time-(in)
dependent Gross—Pitaevskii nonlinear partial differential equation in one, two, and
three space dimensions in an arbitrary trapping potential using imaginary-time and
real-time propagation. The equation is solved using the semi-implicit split-step
Crank—Nicolson method by discretizing space and time, as described in Murug
(2009). The discretized equation is then propagated in imaginary or real time over
small time steps.

Applications have been developed by scientists from the Scientific Computing
Laboratory (SCL 2014) of the Institute of Physics Belgrade (IPB 2014) and are used
by an increasing number of collaborators within Serbia and also from other
countries in Europe, as well as from Brazil, India, and China. The applications are
deployed on the computing infrastructure provided by the Academic and Educa-
tional Grid Initiative of Serbia (AEGIS 2014), which is part of the European Grid
Infrastructure (EGI 2014).

To increase the potential user base of the applications, we have decided to create
the AEGIS CMPC science gateway (SG) in the framework of the SCI-BUS project
(SCI-BUS 2014), to provide seamless access to the software and the data generated
by the applications. This science gateway also hides the complexity of use of the
Grid and applications, which was a barrier for many scientists.
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15.2 Building the Science Gateway

Before the AEGIS CMPC science gateway was built and put into production, the
default interface to DCI within the AEGIS CMPC was based on gLite technology
provided by the European Middleware Initiative (EMI 2014). This is a command
line interface, and it requires a personal certificate issued by one of recognized
certificate authorities, membership in a virtual organization (VO) that supports the
applications, and access to a user interface (UI) machine. A personal certificate is
obtainable from the national AEGIS CA, while the Serbian AEGIS National Grid
Initiative provides the VO membership service. A central Ul machine is available at
the IPB, but within the community personal UI virtual machines are used as well.

In this approach, the use of AEGIS CMPC applications requires preparation of a
parameter input file that describes the physical system of interest. In addition, the
DCI description of computational task has to be prepared as well. In a gLite- based
UI machine this is typically done using the Job Description Language (JDL).
Depending on machine architecture and the software stack provided by DCI in
terms of available compilers, a CMPC application could be compiled locally at a UL
machine or remotely at a DCI, on a target worker node. In the first case, a statically
linked executable is submitted to the predefined architectures, while in the latter
case the source code is transferred to the computation node, where one of the
various predeployed compilers performs the compilation. A CMPC application with
a physical system description from the parameter input file and with a DCI
description of the computational task from the JDL file is submitted from the UI
machine to the DCI by the glite command line interface. Further job management
(job cancelation, monitoring, and output retrieval) is done by the gLite command
line interface as well.

This approach demands several skills: knowledge of CMPC application source
codes and their parallelization techniques, knowledge of different compiler tech-
nologies, knowledge of Linux operating system and its common tools, and
knowledge of gLite command line interface and DCI technology. This variety of
skills, which is required for solving even trivial problems, creates a strong barrier
that prevents ready use of CMPC applications within the community, and adversely
affects attracting new people who are interested in numerical simulations based on
the available set of codes. Since the knowledge of the underlying physics (quantum
theory and Bose—FEinstein condensation) and understanding of CMPC applications
should be the only real requirements, the development of a scientific gateway
effectively solves the identified problems and enables new users to perform
numerical simulations in this field without much technical knowledge of the
operating system, compiler technology, low-level DCI interface, and DCI itself.
Furthermore, AEGIS CMPC SG promotes sharing of the results of simulations
within the community, and in this way increases understanding of the behavior of
particular physical systems of interest.

The desired level of automation of CMPC applications is achieved through the
use of WS-PGRADE/gUSE (gUSE 2014) workflows. For example, typical usage of
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the GP-SCL application first requires calculation of the ground state of the system,
achieved by the imaginary-time propagation until convergence is reached, and then,
starting from this result, one can study the dynamics of the system through the real
time-propagation. A workflow concept unifies these two kinds of time-propagation
algorithms into a single task, hiding the complexity from the end user. Furthermore,
besides the results in the form of raw data that describe the propagation of
the system in time, AEGIS CMPC scientific gateway provides visualization of the
propagation in the form of graphs and movies.

In the case of the (Q)SPEEDUP codes, numerical convergence of quantum-
mechanical transition amplitudes to their continuum values is achieved only when
the number of Monte Carlo samples goes to infinity. The central limit theorem
states that the statistical distribution of numerical results obtained using a large
number of independent Monte Carlo samples is always a Gaussian. This allows
automation of a process workflow for a desired maximal error of calculated tran-
sition amplitude, which is introduced as a new, more generic input parameter. In
other words, for a described physical system of interest and predefined acceptable
error of the result, AEGIS CMPC SG workflow provides sufficient statistics in
execution of the code to achieve the desired accuracy of the amplitude.

15.3 Architecture of the Science Gateway

AEGIS CMPC science gateway has been developed to support SPEEDUP,
QSPEEDUP, and GP-SCL applications. These programs are fully written in the C
programming language, and do not depend on any external library. Codes could be
compiled with different popular compilers: GNU’s gcc compiler, Intel’s icc com-
piler, IBM’s xlc compiler, PGI’s pgcc compiler, and Oracle’s suncc (former Sun)
compiler. Besides serial versions of the codes, parallel versions are produced as
well. In the case of SPEEDUP and QSPEEDUP applications, parallelization is
achieved through the message passing interface (MPI), while the GP-SCL code is
parallelized using OpenMP API. All codes are accompanied by appropriate
makefiles, which allow specification of the compiler, type of parallelization, and
customization of compiler optimization flags. These makefiles play a significant
role in the porting process, and simplify utilization of various hardware resources.

Although applications use different algorithms, from a purely technical point of
view they have the common use scenario: for a particular description of physical
system of interest, given in the form of a single input file, after considerable
number-crunching each application produces corresponding output with numerical
results. The generated numerical results are analyzed, classified, and visualized by
the scientific gateway. This allows for the creation of a generic architecture for all
AEGIS CMPC applications.

The generic architecture behind the AEGIS CMPC scientific gateway is illus-
trated in Fig. 15.1. It consists of four main blocks: the AEGIS CMPC portal, the
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Fig. 15.1 Generic architecture behind AEGIS CMPC workflows

WS-PGRADE/gUSE portal, the database back-end, and the DCI used for
calculations.

The AEGIS CMPC portal (CMPC 2014) (Fig. 15.2) is a user-oriented interface
that visually unifies outputs of SPEEDUP, QSPEEDUP and GP-SCL applications.
It provides a summary of collected numerical results, which is organized per
application and per configuration of a physical system. In addition, the AEGIS
CMCEP portal allows querying of the available configurations, as well as submission
of new configurations. While the submission requires authentication, browsing of
the results is publicly available. Applications’ configurations and results are stored
in the database back-end. Communication between the portal and the database is
established through a dedicated RESTful web service. On the database side, the

Fig. 15.2 GP-SCL view of the AEGIS CMPC Portal
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workflow submission engine (WSE) daemon process looks for configurations
waiting for the executions, and performs application-specific workflow submission
through the WS-PGRADE/gUSE Remote API interface. The portal was developed
within the Google Web Toolkit (Tacy 2013) environment using Bootstrap (Cochran
2012) front-end framework, and it was deployed through the Apache Tomcat
(Brittain 2007) server (available at: http://sci-bus.ipb.ac.rs/).

The WS-PGRADE/gUSE Portal is a workflow developer-oriented interface based
on the WS-PGRADE/gUSE technology. It allows creation of new workflows,
modification of existing ones, and manual testing. Use of the portal requires a Lif-
eray-based (Liferay 2014) account, a valid digital certificate and membership in
cmpc.aegis.rs VO. Potential users are able to request Liferay-based account by filling
out the generic Liferay Create Account form available at home page of AEGIS
CMPC SG. The National Grid Initiative (NGI) AEGIS VOMS-admin portal provides
management of cmpc.aegis.rs VO membership. The membership request form of the
VOMS-admin portal requires a digital certificate, and therefore, in order to fill it out, a
workflow developer has to import a personal certificate into the web browser. The
AEGIS WS-PGRADE/gUSE Portal extends the default WS-PGRADE/gUSE
installation with the Remote API plugin that enables usage of the core gUSE services
without the WS-PGRADE user interface component. The Remote API allows one
to run and manage workflows from a custom user interface, such as the AEGIS
CMPC Portal.

Workflows of AEGIS CMPC applications are created within the WS-PGRADE/
gUSE Portal, and are exposed for the external usage through the Remote API
component. Since SPEEDUP and QSPEEDUP applications use identical algo-
rithms, just supplied with different random number generators, both applications
use a single workflow—a (Q)SPEEDUP workflow. In order to minimize the net-
work overhead, all application binaries are preinstalled on each of DCI resource
centers supporting the cmpc.aegis.rs VO. The VO software area is used for this
purpose, while the installation and upgrade of particular applications is performed
by VO managers.

The workflow behind the (Q)SPEEDUP application is illustrated in Fig 15.3. It
has three main components:

e (Q)SPEEDUP-PREPARATION retrieves user-defined physical system configu-
rations from the database. Retrieved JSON output is then converted to the
application-specific configuration file, which is forwarded to the next process in
the workflow. Together with the configuration file, technical metadata (consumed
CPU time, application version, random number generator stream, etc.) produced
in this part of the workflow are forwarded to the next process. This is not a CPU-
intensive task, and it is executed at the server that hosts the WS-PGRADE/gUSE
portal (localhost).

e (Q)SPEEDUP-EXECUTION is responsible for the application execution at the
DCI, and then it retrieves the results. It equips the application with the wrapper that
is able to determine the location of the preinstalled application at the DCI, sup-
ply input parameters, initiate execution, and collect results. This CPU-intensive
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Fig. 15.3 AEGIS CMPC (Q)SPEEDUP (fop) and GP-SCL (bottom) workflows

task is executed on the DCI. Outputs of the application are permanently stored on
the storage elements provided by the DCI, while the workflow engine is informed
of their locations.

e (Q)SPEEDUP-PUBLICATION transforms the collected results from the pre-
vious two tasks to a corresponding JSON structure, and stores the result in the
database through the RESTful web service.

The AEGIS CMPC GP-SCL portlet relies on the workflow illustrated in
Fig. 15.3. The workflow has the following components:

e GP-SCL-PREPARATION retrieves the physical system configuration from the
database, and produces an application-specific parameter input file. The task is
executed on the server hosting the WS-PGRADE/gUSE portal. Technical
metadata collected in this part of the workflow are forwarded to the next pro-
cess. Each node in the workflow will expand this initial metadata structure,
while the last node will upload collected metadata together with the application
results to the database.

e GP-SCL-EXECUTION performs submission of the simulation to the DCI and
output retrieval. After the execution, the produced results are divided between
two tasks running in parallel: GP-SCL-GRAPH and GP-SCL-ANIMATION.
Results are permanently stored on the DCI, and only their locations are trans-
ferred back to the science gateway.

e GP-SCL-GRAPH produces graphs requested in the configuration. Graphs are
produced using gnuplot-based APIs. This task is not CPU-intensive, and
therefore it is performed on the local machine. Only part of the total output
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produced within the GP-SCL-EXECUTION task is transferred from the DCI to
the machine running the science gateway for this purpose.

e GP-SCL-ANIMATION produces animation (movie) of a dilute, trapped
Bose-Einstein condensate evolution in time. This part of the workflow is CPU
intensive and is executed on the DCI.

e GP-SCL-PUBLICATION accumulates results, technical metadata, graphs, and
locations of the movies, and stores them in the document-oriented database.

AEGIS CMPC DB is a document-oriented database that stores configurations
and numerical results from all applications supported by the science gateway.
Initially, it was deployed using a relational database, but with the increase of the
number of physical properties to be monitored, it has become very difficult to break-
out the design of the SG into relational schemas. Instead of perpetual reorganization
of schemas, the database back-end has been migrated to the document-oriented data
model. Due to several additional features, such as offline replication, multiversion
concurrency control, incremental replication, and fault-tolerance, MySQL tech-
nology (Harrison 2008) has been replaced by CouchDB technology (Anderson
2009).

Querying of and structuring the information available in the science gateway is
realized by CouchDB views. Different views are constructed by functions that act as
a mapping part of the map/reduce operation. These functions take the documents
and transform them into single values that they return. CouchDB indexes the view
and keep the indexes updated as new documents are added, removed, or updated.

Authentication and authorization of the requests coming to the AEGIS CMPC
SG, together with the tracking and merging mechanisms, are implemented as an
additional layer placed in front of the CouchDB. In order to change or add new
information (POST and PUT methods), a workflow developer has to be authenti-
cated and authorized; however, reading of information is publicly available (GET
method). Authentication and authorization could be done by username/password,
an X.509 certificate, or an X.509 RFC 3,820-compliant proxy certificate; this is
followed by an update of the document with the JSON tracking structure. This
section contains workflow developer information, the IP address of the client from
which the request was triggered, and the timestamp of the action. For this reason,
each document stored in AEGIS CMPC CouchDB has additional JSON structure
related to the tracking mechanism.

All documents stored in CouchDB are versioned, and CouchDB determines
which of the changes will be stored as the latest revision. When doing this, it does
not attempt to merge the conflicting revision. A developer always decides how the
merging should be done, and it is up to a developer to specify the latest revision.
This task is simplified with the AEGIS CMPC CouchDB merging mechanism, and
a workflow developer no longer needs to deal with the CouchDB revisions. The
system automatically discovers the latest version of a particular document, and
performs merging of the existing information with additional information. Existing
CouchDB documents could be updated with different or new information only,
which is not the case in the standard CouchDB model. In addition, the AEGIS
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CMPC CouchDB instance sanctions DELETE requests in order to prevent loss of
any information.

DCT used by the AEGIS CMPC SG is organized around the cmpc.aegis.rs VO.
Establishment of a separate VO has allowed lobbying at the resource providers for
additional or new resources. Also, it guaranties execution of jobs submitted from
the scientific gateways in reasonable time, and provides an exact mechanism for
tracking the of number of users, CPU usage, and other DCI-related statistics. The
cmpc.aegis.rs VO is currently supported by three NGI_AEGIS Grid sites, part of
EGI infrastructure (AEGISO1-IPB-SCL, AEGIS04-KG, and AEGIS11-MISANU),
and by the largest HPC installation in Serbia, the PARADOX cluster, totaling to
more than 2,700 CPUs and 140 TBs of storage space. Recently, AEGIS CMPC
scientific gateway has been also supported by the largest HPC installation in Serbia.
PARADOX cluster is equipped with 1,696 Sandy Bridge CPUs at a frequency of
2.6 GHz, 106 NVIDIA Tesla M2090 GPU cards, and 100 TBs of storage space. It is
interconnected via the QDR Infiniband technology, and achieves peak computing
performance of 105 TFlops.

Management of VO membership is centralized and provided by the NGI_AEGIS
VOMS-admin portal. Core Grid services necessary for users to be able to access all
computing and data storage resources are provided by the NGI_AEGIS as well, in
particular: the BDII information system (bdii.ipb.ac.rs), workload management
system (wms.ipb.ac.rs, wms-aegis.ipb.ac.rs), logging and bookkeeping service (Ib.
ipb.ac.rs, Ib-aegis.ipb.ac.rs), myproxy service (myproxy.ipb.ac.rs), and logical file
catalogue (Ifc.ipb.ac.rs). All services are running the latest version of the middle-
ware EMI 3 (Monte Bianco) release.

15.4 Usage of the Scientific Gateway

AEGIS CMPC SG achieved production mode in September 2013. Currently, there
are 20 registered users, and according to the EGI accounting portal, 19,000 cmpc.
aegis.rs VO jobs have been so far submitted from the portal. Jobs are uniformly
distributed over the CMPC applications, while the average execution time per job is
around 24 h.

With the introduction of the science gateway, the CPMC job success rate has
dramatically increased. One of the indicators is the ratio between totally consumed
CPU time and the number of jobs. Currently this ratio is approximately 23 h, which
corresponds to the average execution time per job. In the case of failures, this time
would be smaller. Users are allowed to tune application’s configuration only, so
there is not much space for changes that will lead to application crashes or an
unpredictable behavior. Also, only CPU-intensive parts of the workflow are exe-
cuted on the DCI, and other tasks are executed locally, on the machine running the
science gateway. The success rate of the local jobs is practically 100 %, while the
jobs submitted to the DCI may fail due to various infrastructure problems. For this
reason, each job submitted to the DCI is configured to allow automatic resubmission.
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There are two kinds of resubmissions supported by the NGI_AEGIS DCI: deep
resubmission and shallow resubmission. The resubmission is deep when the job fails
after it has started running on the computation node, and shallow otherwise. Both
deep and shallow resubmissions are limited by default to five attempts for AEGIS
CMPC SG jobs. Furthermore, even if after these five attempts (Q)SPEEDUP job
fails, it will not affect the results, since they are obtained using a large number of
independent jobs. For GP-SCL jobs this is not the case, and results will not be
produced if the workflow node fails. This could be overseen by an additional module
that monitors relations between configurations and corresponding results, and per-
forms complete workflow resubmissions when necessary.
In this period, AEGIS CMPC SG was mainly used for:

e Study of Faraday waves in binary nonmiscible Bose—Einstein condensates
(Balaz 2012-2);

e Study of Faraday waves in single-component Bose—Einstein condensates with
spatially inhomogeneous atomic interactions (Balaz 2014), as well as conden-
sates with dipolar interactions (Nikolic 2013);

e Study of fragmentation of a Bose—Finstein condensate through periodic mod-
ulation of the scattering length (Vidan 2011);

e Study of geometric resonances in Bose—FEinstein condensates with two- and
three-body interactions (Jibbouri 2013).

Using the numerical results obtained via the AEGIS CMPC SG and analytical
variational calculations, it was shown that elongated binary nonmiscible Bose—
Einstein condensates subject to periodic modulation of the radial confinement
exhibit a Faraday instability, similar to that seen in one-component condensates.
Modulation of the radial confinement leads to the emergence of density waves in
the longitudinal direction. Considering two hyperfine states of rubidium conden-
sates, AEGIS CMPC GP-SCL application was able to calculate two experimentally
relevant stationary-state configurations: one in which the components form a dark-
bright symbiotic pair (the ground state of the system), and one in which the
components are segregated (first excited state). For each of these two configura-
tions, it was shown numerically that far from resonances, the Faraday waves excited
in the two components are of similar periods, emerge simultaneously, and do not
impact the dynamics of the bulk of the condensate. This numerical result was
confirmed analytically, and it was shown that the period of the Faraday waves can
be estimated using a variational treatment of the coupled Gross—Pitaevskii equa-
tions combined with a Mathieu-type analysis for the selection mechanism of the
excited waves.

Numerical study of Faraday waves in systems with spatially inhomogeneous
atomic interactions has revealed that in the regime of weak inhomogeneity, the
system practically behaves as in the homogeneous case. However, for the case of
strong inhomogeneity, the properties of density waves substantially depend on the
typical inhomogeneity scale. For systems with dipolar interaction, the stability of
the ground state was found to be the major issue. Only for smaller numbers of
atoms (up to several tens of thousands) is the system stable enough to support the
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Fig. 15.4 Emergence of Faraday waves in the density profile of dipolar Bose—Einstein condensate
of chromium

ground state. Harmonic modulation of the radial part of the confining potential is
found again to generate Faraday density waves. For strong dipolar interaction,
periods of emergent density waves (see Fig. 15.4) are found to be multiples of the
corresponding periods when only contact interaction 1s present—a feature that has
yet to be understood.

Investigation of fragmentation of Bose—FEinstein condensates through periodic
modulation of the scattering length is motivated by recent experimental results on
the dynamics of a cigar-shaped Bose—Finstein condensate of atomic lithium.
Dynamics of such system is investigated numerically, using the AEGIS CMPC SG,
and analytically. It was shown that for resonant drives of large amplitude the
condensate reaches a fragmented state. The fragmented state is a hybrid state of the
condensate that includes a quadrupole mode on which a longitudinal resonant
density wave is grafted.

Geometric resonances in Bose—FEinstein condensates were investigated by
solving the underlying time-dependent Gross—Pitaevskii equation for systems with
two- and three-body interactions in an axially symmetric harmonic trap. For this, a
recently developed analytical method (Vidan 2011) was used, as well as a detailed
numerical study of a set of ordinary differential equations for variational parame-
ters. By changing the anisotropy of the confining potential, strong nonlinear effects
can be observed numerically and analytically—these are shifts in the frequencies of
collective oscillation modes of the system. Additionally, coupling of collective
modes can be seen, with the coupling strength strongly depending on the geometry
of the system. Such results are highly relevant for experimental studies and help
plan the parameters of experimental setups.
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15.5 Conclusions

A new AEGIS CMPC science gateway (CMPC 2014) was developed and deployed
for the Serbian condensed matter physics community in the framework of the
SCI-BUS (2014) project. It was based on the WS-PGRADE/gUSE technology, and
was implemented using the workflows approach. Three modules within the science
gateway are responsible for managing user interaction with the supported appli-
cations (SPEEDUP, QSPEEDUP, and GP-SCL). Since September 2013, when this
science gateway achieved the production status, its usage is steadily increasing, and
the job success rate is high and stable.

Further developments will include support for more applications used within this
user community, as well as adding more workflows for specific use cases requested
by the scientists. We also plan to extend support to the Serbian computational
chemistry community, which is of considerable size and already uses a number of
applications on computing resources of the Academic and Educational Grid Ini-
tiative of Serbia (AEGIS 2014) and European Grid Initiative (EGI 2014).
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Abstract In the past 6 years, a number of targeted initiatives, funded by the Eu-
ropean Commission via its information society and RTD programmes and Greek
infrastructure development actions, have articulated a successful regional develop-
ment actions in South East Europe that can be used as a role model for other inter-
national developments. The SEEREN (South-East European Research and Educa-
tion Networking initiative) project, through its two phases, established the SEE
segment of the pan-European G "EANT network and successfully connected the
research and scientific communities in the region. Currently, the SEE-LIGHT pro-
ject is working towards establishing a dark-fiber backbone that will interconnect
most national Research and Education networks in the region. On the distributed
computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East
European GRID e-Infrastructure Development) project, similarly through its two
phases, has established a strong human network in the area of scientific computing
and has set up a powerful regional Grid infrastructure, and attracted a number of
applications from different fields from countries throughout the South-East
Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the
regional user communities from fields of meteorology, seismology and environ-
mental protection in common use and sharing of the regional e-Infrastructure. Cur-
rent technical initiatives in formulation are focusing on a set of coordinated ac-
tions in the area of HPC and application fields making use of HPC initiatives.
Finally, the current SEERA-EI project brings together policy makers — programme
managers from 10 countries in the region. The project aims to establish a commu-
nication platform between programme managers, pave the way towards common
e-Infrastructure strategy and vision, and implement concrete actions for common
funding of electronic infrastructures on the regional level. The regional vision on
establishing an e-Infrastructure compatible with European developments, and em-
powering the scientists in the region in equal participation in the use of pan-
European infrastructures, is materializing through the above initiatives. This mod-
el has a number of concrete operational and organizational guidelines which can
be adapted to help e-Infrastructure developments in other world regions. In this
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paper we review the most important developments and contributions by the SEE-
GRID-SCI project.

1 INTRODUCTION

Science is becoming largely digital -it needs to deal with ever increasing amounts
of data and computational needs. Numerical simulations become more detailed,
experimental science uses more sophisticated sensors to make precise measure-
ments, and shift from the tradition of individuals-based science work towards
more collaborative models now starts to dominate.

Computing resources and services able to support needs of such a new model
of scientific work are available at different layers: local computing centers, na-
tional and regional computing centers, and European supercomputing centers. The
gap between needs of various user communities and computing resources able to
satisfy their requirements is addressed by introduction of Grid technology on the
top of pan-European academic network. _

Computing Grids are conceptually not unlike electrical grids. In an electrical
grid, the wall outlets allow us to link to and use an infrastructure of resources,
which generate, distribute, and bill for electrical power. When we connect to the
electrical grid, we do not need to know details on the power plant currently gener-
ating the electricity we use. In the same way Grid technology uses middleware
layer to coordinate and organize into one logical resource a set of available dis-
tributed computing and storage resources across a network, allowing users to ac-
cess them in a unified fashion. The computing Grids, like electrical grids, aim to
provide users with easy access to all the resources they need, whenever they need
them, regardless of the underlying physical topology and management model of
individual clusters.

Grids address two distinct but related goals: providing remote access to infor-
mation technology (IT) assets, and aggregating processing and storage power. The
most obvious resources included in Grids are processors (CPUs), but Grids also
can encompass various sensors, data-storage systems, applications, and other types
of resources. One of the first commonly known Grid initiatives was the
SETI@HOME project, which solicited several millions of volunteers to download
a screensaver, which was able to use idle processor time to analyze the astronomi-
cal data in the search for extraterrestrial life.

In the past 6 years the European Commission has funded through a number of
targeted initiatives activating of new user communities and enabling collaborative
research across a number of fields in order to close existing technological and sci-
entific gaps, and thus bridging the digital divide, stimulating research and conse-
quently alleviating the brain drain in the less-developed regions of Europe. This
was especially successful in the South-East Europe (SEE), where a number of
such initiatives show excellent results. In the Grid arena, the South-East European
GRid elnfrastructure Development (SEE-GRID) project [1], through its two 2-
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year phases, has established a strong human network in the area of scientific com-
puting and has set up a powerful regional Grid infrastructure, attracting large
number of applications from diverse fields from countries throughout the South-
East Europe. The third phase of the SEE-GRID program (SEE-GRID-SCI) aims to
have a catalytic and structuring effect on a number of SEE user groups, with a
strong focus on the key seismological, meteorological, and environmental com-
munities.

SEE-GRID-SCI (SEE-GRID elnfrastructure for regional eScience) involves
three strategic international scientific communities (Virtual Organisations): seis-
mology, meteorology, environmental protection. It aims to further stimulate the
use and expansion of the existing regional elnfrastructure and its services, and ca-
pitalize on the existing human network to further strengthen scientific collabora-
tion and cooperation among participating SEE communities in the area of elnfra-
structures. The inclusion of the new scientific communities and the expansion of
the infrastructure in terms of both size and geographical spread, together with a set
of coordinated actions aimed at strengthening the National Grid Infrastructures
(NGIs) in the region, ensures that at the end of the project each country in the re-
gion will be ready to join the long-term, sustainable European Initiatives as a full-
fledged peer.

Overall, the project is composed of four Networking Activities (NA), one Ser-
vice Activity (SA), and one Joint Research Activity (JRA). NAI activity deals
with the project administrative and technical management, while NA2 activity
provides support to NGlIs and coordinates international collaboration. It focuses on
supporting non-EGEE countries of the Western Balkans, Moldova, Georgia and
Armenia. Guidelines for NGI best-practices are developed and refined, and a set
of coherent actions are carried out to ensure that NGIs reach the adequate maturity
levels and organizational models for joining EGI. The other line of action is the
dissemination of the NGI know-how to other peripheral regions, and establishing
strong collaboration channels with other regional Grid initiatives as well as with
pan-European initiatives. The collaboration goes beyond NGI issues and will also
involve other project activities such as applications development and application-
level services, operations, training and dissemination. NA3 activity deals with the
dissemination and training, while NA4 activity provides round-the-clock support
to user communities. Grid infrastructure operations and management of regional
resources is done by the SA1 activity, which ensures that user community needs in
terms of size and availability of computing, storage, networking and application-
specific resources are catered for. In research activities, JRA1 deals with the de-
velopment of application-level services and application-related operational exten-
sions, customized to the needs of the specific user communities.
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2 GRID INFRASTRUCTURE OPERATIONS

The regional Grid infrastructure [2] operated by SEE-GRID-SCI project is built on
top of the pilot infrastructure established by the first SEE-GRID project (2004-
2006), which was since then substantially extended and enlarged in terms of re-
sources and number of Grid sites, and upgraded in terms of the deployed middle-
ware and core services provided to existing and new user communities during the
SEE-GRID-2 project (2006-2008).

The operations activity [3] adopted the pragmatic model of the 2-layered infra-
structures in which mature sites move to EGEE production infrastructure while the
start-up sites from new institutes and user communities incubate within the SEE-

'GRID infrastructure. In this way, both SEE-wide and national-level applications

are able to benefit from the computing resources of both infrastructures, by mainly
using the pilot infrastructure in the incubation phase and production infrastructure
in the production phase. Moreover, this approach ensured that smaller sites, typi-
cal for the region, have a chance to be a part of the regional SEE-GRID infrastruc-
ture acting as an incubator for their maturing into EGEE production. As applica-
tions mature, new VOs spun off with the relevant core services supported by SEE-
GRID-SCL. Discipline-specific services are deployed over the elnfrastructure and
supported by SA1. Sophisticated operational tools some of them developed within
JRA1 -are used to enhance infrastructure performance. :

SEE-GRID-SCI project continues to operate and further extend, develop and
improve this infrastructure, with the aim to cater for the need of all activated user
communities in the region, with special emphasis on the three identified target ar-
eas: meteorology, seismology, and environmental sciences. Apart from computing
and storage resources made available to these user communities, SA1 activity pro-
vides and maintains a set of existing and new operational and monitoring tools so
as to ensure proper operation of the infrastructure, and a set of primary and secon-
dary core services for all deployed VOs in order to ensure optimal geographical
distribution according to the underlying network structure, load sharing, and qual-
ity of the service to end users. )

Currently SEE-GRID-SCI infrastructure encompasses approximately 54 Grid
sites, more than 6600 CPUs, and around 750 TBs of available data storage capac-
ity, which is illustrated in Tab. 1 and in Fig. 1.
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Fig. 1: Overview of the SEE-GRID-SCI infrastructure.

Table 1: SEE-GRID-SCI computing and storage resources.

Country Total number of CPUs Total storage {TB]
Greece 1200 656.8
Bulgaria 1210 42.3
Romania 120 4.0
Turkey 2380 5280
Hungary 8 2.4
Albania 20 1.3
Bosnig-Herzegovina 80 1.1
FYR of Macedonia &0 4.1
Serbia 874 g1.0
Montenegro 40 0.6
Moldova 24 6.5
Croatia 44 0.2
Armenia 424 0.2
Georgia 16 0.1
Total (620 Th4.2

Overall number of CPUs has grown from 2400 at the beginning of the project
in May 2008 to currently more than 6600, while the number of dedicated CPUs
for SEE-GRID-SCI VOs is currently around 1500. Grid operations activity suc-
cessfully maintains such a large, geographically disperse and ever growing infra-
structure, harmonizing its operation with the pan-European EGEE infrastructure.
In addition to this, one of the most important achievements of SA1 activity is
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transfer of knowledge and Grid know-how to all participating countries, and sup-
port to their NGI operation teams to reach the level of expertise needed for sus-
tainable EGI-based operational model.

3 USER COMMUNITIES SUPPORT

SEE-GRID-SCI aims to accelerate e-Infrastructure uptake by new user groups ex-
tending over the region. Hence, the NA4 user communities support activities pro-
vide round-the-clock user support for a range of applications from three target
fields: seismology, meteorology and environmental protection. Each of them is
structured in the form of a virtual organization to facilitate collaborations among
researchers from the field [4]. Dedicated support teams for the regional applica-
tions provide both gridification support and run-time production-level user support
including training of interested researchers.

3.1 Meteorology VO

Weather forecasting is based on the use of numerical weather prediction (NWP)
models that are able to perform the necessary calculations that describe/predict the
major atmospheric processes. NWP applications require considerable processing
power and data storage resources, and thus can benefit from the offerings of grid
technologies.

wodad
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Fig. 2: REFS workflow.

In the frame of Meteorology VO two NWP applications are ported to the grid:
— First, a regional scale multi-model, multi-analysis ensemble forecasting
system (REFS) was built and ported on the grid infrastructure and it is
currently in production phase. REFS is based on the use of four limited
area models (namely BOLAM, MMS, ETA, and NMM) that are run us-
ing a multitude of initial and boundary conditions over the Mediterra-
nean [5]. This activity involves the need of large infrastructure that is

gKople fur Lizenzkunden der TIB Hannover, geliefert und ausgedruckt fir CERN Library/Interlibrary Loan CA 1174780 385 Rt. de Meyrin, 23.05.11
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not easily available at medium-scale research centers and institutions.
Its workflow is summarized in Fig. 2.

— Moreover, the Weather Research and Forecasting Advanced Research
WRF (WRF-ARW) prognostic model has been ported to the grid as the
second application of this VO. The SEE region is a big challenge for the
meteorologists because of the complexity of the reproduc-
tion/forecasting of the airflow over complex terrain. High resolution
model grids are thus needed to study complex

— terrain airflow, and this is a quite demanding application in CPU, mem-
ory and data storage. To address these needs, WRF-ARW is used for
weather research purposes as well as for operational weather forecast-

ing.

3.2 Seismology VO

Scientists in the seismology field need computational resources for mathematical
modeling of seismic phenomena, as well as storage resources for massive collec-
tions of seismic data from geographically distributed sensors. Seismology VO [6]
aims to bring seismology data from the SEE region to the grid platform and also to
gridify seismology applications that are of interest to not only the seismologists
but also to the industry such as the insurance companies. To realize these goals,
the Seismic Data Server Application Service (SDSAS) was developed to provide
distributed storage and serving of seismic data from different partner countries,
logical organization and indexing of distributed seismic data, and programming
tools, developed for automatically downloading waveform data from the
NERIES/ORFEUS datacenter in addition to the client interface for downloading
earthquake event quakeml files from European-Mediterranean Seismological Cen-
tre.

The applications gridified within this VO include Seismic Risk Assessment,
Numerical Modeling of Mantle Convection, Fault Plane Solution, Earthquake Lo-
cation Finding, Massive Digital Seismological Signal Processing with Wavelet
Analysis and Web Interface to SDSAS.
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Fig. 3: Seismology VO platform.

3.3 Environmental VO

The applications from this VO, developed and deployed within the project, in-
clude Multi-Scale Atmospheric Composition Modeling [7], Monte Carlo Sensitiv-
ity Analysis for Environmental Systems [8], Refinement of surface and vegetation
parameters in SEE region based on satellite images, Modeling System for Emer-
gency Response to the Release of Harmful Substances in the Atmosphere,
Groundwater Flow Simulation System, Changes of Environment with Remote
Sensing, Modeling the assessment of climate change impact on air quality, based
on an established methodology, Regional Ocean Modeling System. The use of
Grid resources enabled the researchers to achieve results which they could not ob-
tain using their local clusters or workstations. For example, the validation of the
model for simulation of climate change impact on air quality for the period 1991-
2000 takes tens of compute nodes with 8 CPU cores each for several days and
produces terabytes of intermediate data (Fig. 4).

soruy 2008 A0 ) W LHBPR
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Fig. 4: Pollution levels for the period 1991-2000.
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4 DEVELOPMENT OF APPLICATION-LEVEL SERVICES
AND OPERATIONAL TOOLS

In course of the SEE-GRID-SCI project, a growing number of applications have
been gridified within the regional user communities working in the three earth sci-
ence disciplines. All three disciplines require inter-application teamwork in ad-
dressing common issues and emphasize the importance of data sharing and sup-
port for distributed collaboration.

The SEE-GRID-SCI JRA1 (Joint Research Activity) facilitates development
and gridification of applications and usage of the underlying grid infrastructure by
employing the expertise that goes beyond local communities. It aims to improve
the usability of the infrastructure and Grid services for the end-users from target
communities and manageability of the infrastructure by focusing in:

—  Addressing some issues common to several user communities and their
applications that are not addressed by the existing middleware and in-
frastructure, thus contributing to enhancement of services provided to
end-users.

— Researching in the application-focused features of operational tools and
development of new or extending of existing operational tools.

All SEE-GRID-SCI software developers were asked to provide their recom-
mendations for development, deployment, internal and user documentation, main-
tenance, licensing, support practices and tools, and interaction of developed soft-
ware with gLite grid environment. The resulting guidelines intend to address the
quality of the software produced and facilitate support and extendibility of the
tools and services.

Details of these services and operational tools are available at JRA1 common-
alities wiki [9], which provides information on their purpose, status, architecture,
requirements, deployment, code and documentation, usage, relation with other de-
velopments, dissemination, partnerships, practical and scientific impact, and ex-
pected long-term developments.

A number of application services was identified and developed, including:
FMJ-API (SEE-GRID File Management Java API), DM-Web (Data Management
Web Portal), SDSAS (SDS (Seismic Data Server Application Service, see Fig. 3),
AWT (Advanced-Workflow Development Tool and Orchestration Service),
ULMON (User Level Monitoring Tool), Work Binder, RAS (Rendering Applica-
tion Service), ESIP Platform (Environment Oriented Satellite Data Processing
Platform), CWRE (Common Workflow Repository Extension of P-GRADE Por-
tal), Event Logger, and MEWS (Mathematical Expressions Web Service).

A set of applications services is already deployed and used by the grid applica-
tions demonstrating their usage and their benefits for the user communities of the
project.
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The JRA1 operational and monitoring tools developments include: JTS (Job
Track Service), BBmSAM Extensions illustrated in Fig. 5, GSSVA (Grid Site
Software Vulnerability Analyzer), NMTT (No Mercy Ticketing System),
USGIME (User/Application Specific Grid Infrastructure Monitoring Extension),
Logwatch-G, and Alert Messaging Service. GSSVA and Logwatch-G are related
to site-level monitoring, while the others are related to grid-level monitoring and
control. All 7 operational tools are in production usage.

Some of the developed applications services are already essential building
blocks of specific applications, while other services and tools are used to facilitate
user level monitoring and/or operational support for more effective and easy usage
of the underlying grid resources.

BEBmEAM DR BBros Al Server

Fig. 5: BBmSAM overview.

A further effort was made to develop the application services using software
engineering standards that would allow them to become more accessible and able
to be adopted by any interested user community. Some application services are
specifically promoted outside the scope of SEE-GRID-SCI. For example, Work
Binder and ESIP Platform application services were submitted to EGEE for inclu-
sion in its RESPECT program [10], while FM-J-API was a subject of a recent
EUAsiaGrid lecture [11]. About 30 journal and conference papers were produced.

The expected overall impact of JRA1 activity will be to ease the involvement
of new users, applications and resource providers, automating and simplifying
common and burdensome tasks. In a wider context, it will make its results avail-
able to other regional and global initiatives, providing its most successful tools
and components to other projects and contributing to optimal development and use
of elnfrastructures and establishing a feature rich grid environment.

——— |
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5 TRAINING AND DISSEMINATION

The SEE-GRID-SCI project established a central knowledge database on Grid-
technology [12] including ready-made training materials, and a large set of grid
technology educated trainers, who are able to train different Grid user groups
(trainthe trainer concept). The SEE-GRID-SCI and its predecessor projects build
up an effective training model with a training infrastructure and carry out lot of
training events in order to raise the national-level and regional-level expertise and
end-user adoption.

All SEE-GRID-SCI project partners are heavily involved in training activities,
in total almost 40 trainers are qualified to deliver trainings in the SEE region (Fig.
6). Setting up a stable trainer community was an important milestone in the life of
the project, enabling easy access to trainers and specialized knowledge.

Fig. 6: Trainer community distribution within the SEE region.

Training infrastructure has been set up early in the project, and has proven to be
a crucial tool for enabling flexible on-demand trainings. The training VO
(SGDEMO VO) is supported on a set of smaller SEE-GRID sites. In addition to
this, all core services are provided to this VO, so that during the training events
the usage of Grid infrastructure can be fully demonstrated to users. The created
training infrastructure offers a homogenous, reliable, grid-focused training envi-
ronment, with standardized access control. To avoid delays and organizational
overhead, special SEE-GRID Demo Certification Authority is used, which allows
trainers to generate necessary number of temporary Grid certificates before any
training event. These certificates are automatically added to the SGDEMO VO, so
that users can access the Grid from the start of each training event. The training
environment offers as additional service: annotated training material repository, a
training agenda system, on-line surveys to evaluate the trainings and assure quality
control. Older materials created from previous training events plays also an impor-
tant knowledge resource, therefore it is accessible to everyone and can be reused
for future trainings: these materials are freely available also by the wider public.
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SEE-GRID-SCI project consortium performed focused dissemination events at
regional and at national level during the project years, with the aim to bring to-
gether members of the targeted scientific communities and demonstrate to them
examples of the Grid paradigm, strength scientific collaboration and cooperation
among participating SEE communities in the area of elnfrastructures.

SEE-GRID-SCI is maintaining close ties with other key elnfrastructure pro-
jects, most notably the SEEREN initiative, the GEANT project, with EDGeS,
EELA, BSI, GENESI-DR, BELIEF, as well as EGEE-II1. The project participated
both on numerous international conferences (EGEE Conference 2008 and 2009),
User Forums (EGEE User Forum 2009 and 2010) and attracted a large audience,
with a large number of dedicated project speeches during these conferences. The
EELA2 project collaboration continues strongly on the basis of previous collabo-
rations, mainly in the field of operations and SEE-GRID-SCI support for the Latin
American National Grid Initiatives. The EGI DS project was provided with a
number of concrete inputs from SEE-GRID-SCI, including operations, applica-
tions, and, most importantly, NGIs. GENESI-DR collaboration is reflected in ex-
change of scientific data and applications. BELIEF link is mainly exploited
through disseminations and mutual PR support. The project established 5 Memo-
randa of Understanding during the first year of the project with the above men-
tioned key international projects.

The project has developed content-rich websites, generic and VO-specific
posters, released S internal newsletters, carried out disseminations public media
(TV, press releases, newspapers, e-newspapers). More than 80 scientific papers
have been published as a result of the project’s research work.

Main target of the developed training model is to provide discipline-specific
trainings for the new SEE-GRID-SCI communities with a self-sustaining training
environment. The project has created a trainer community, defined a ”Grid evolu-
tion path”. It categorized training community targets and materials, established a
training material repository and supports trainers with information how to use or
reuse these training materials.
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6 CONCLUSIONS

The SEE-GRID series of projects have successfully led the Grid-related develop-
ments in the South-East Europe in the past 6 years. This included establishing, de-
velopment, maintenance and operation of the largest computing resource in the re-
gion, training of users and site administrators and coordination of operations in all
countries of the region, reaching the level of sustainable NGI-based operations and
expertise needed in transition to the EGI operations model. In addition to the in-
frastructure-related achievements, the project has actively worked on the develop-
ment of policy and international collaboration, and spearheaded the establishment
of NGIs in all partner countries. The dissemination events carried out by the pro-
ject have substantially boosted public awareness of Grid technology and attracted
interest of policy makers to the development of distributed research infrastructures
in SEE countries, and their inclusion to the pan-European eScience infrastructures.
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Abstract. Quantum ESPRESSO (QE) software package allows electro-
nic-structure calculations and materials modeling at the nanoscale, based
on density-functional theory, plane waves, and pseudopotentials. It ex-
tensively uses Fast Fourier Transform (FFT) during all computations. In
addition to the built-in FFT libraries, QE enables integration of newly
developed FFT algorithms. Since Fastest Fourier Transform of the East
(FFTE) library has shown performance comparable with the widely used
and vendor-supplied libraries, the same behavior is foreseen in QE. In
this paper we present FFTE-enabled and thread-enabled FFTW3 exten-
sions of QE, together with benchmarking and performance results.

Keywords: FFT, Quantum ESPRESSO, multithreading, hybrid
parallelism, OpenMP, MPI.

1 Introduction

Quantum Espresso is an integrated suite of open-source codes for electronic
structure calculations and materials modeling at the nanoscale. It is based on
density-functional theory, plane waves and pseudopotentials [1J.

Fourier transformation is used in a large part in calculations performed in
QE, so any gains in FFT performance would be positively reflected in the per-
formance of the entire QE suite. Most major hardware platforms, along with
their corresponding numerical libraries, are already supported in QE (such as
IBM ESSL, Intel MKL, SGI SCSL and so on), which include routines for FFT
calculations. Also, the open-source FFTW (version 2) and FFTW3 libraries [2]
are supported.

Parallelization in Quantum ESPRESSO is achieved using MPI and OpenMP,
and hybrid parallelism using both MPI and OpenMP together is currently sup-
ported only with the internally supplied FFTW library. The work on imple-
menting the support for the open-source FFTE library was motivated by its
performance results [3], so it was expected to show better performance than the
open-source libraries already supported in QE. The work on implementing the
support for hybrid FFTW3 library was considered because hybrid parallelism
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is becoming more important, as computing nodes on modern HPC systems of-
ten comprise many CPU cores. Since the open-source FFTW3 library is widely
used, and has both multi-threaded routines, and serial thread-safe routines, it
was selected for implementation.

2 Quantum ESPRESSO Code Structure and Applied
Modifications

Quantum ESPRESSO is written mostly in FORTRAN 90. It has a modular
structure, with different modules for higher level domain specific calculations
(for example, CP or PW modules), and also some general purpose parts which
are then used in many other modules (for example FFT calculations or time
logging).

The development of this project used QE 5.0 as a baseline, and was localized to
the parts of the code responsible for FFT calculations. Analysis of the QE source
code revealed that all the routines for performing FFT are located in a file named
[t scalar.f90. Routines for 1D, 2D and 3D FFT are defined in this file. They serve
as wrappers and invoke corresponding routines of the aforementioned numerical
libraries, where the actual computation is performed. Selecting which particular
numerical library will be used is performed by conditional compilation, using pre-
processor directives (such as #ifdef, #elif, #endif and so on). Whenever a
numerical library supporting FFT is found during the configuration phase of
the QE software package, a corresponding macro parameter is defined in the
Makefile, and is used to select an appropriate compilation path. For example,
when the FFTW3 library is used, a macro parameter named __FFTW3 will be
defined, and only the code where FFTW3 routines are called will be compiled.

2.1 Enabling FFTE Library in Quantum ESPRESSO

We have extended QE to utilize the FFTE numerical library for performing FFT
in 1D, 2D or 3D. The version of FFTE used is 5.0, accessible on the website [3].
FFTE is written in Fortran, supports parallelism with MPI, OpenMP, or both
when hybrid variant is used. Also, FFT transformations for up to 3 dimensions
are supported. Code development was done according to Quantum ESPRESSO
development manual [4], which defines guidelines regarding the programming
style.

A new macro parameter named __FFTE was created, and used in parts of the
source code whenever a FFTE routine is called, or some initialization is per-
formed. The configure script was also modified so that the configuration process
can recognize if the FFTE library is present on the system, whether on the sys-
tem path, or in the path specified during configuration. If the library is found,
the __FFTE macro parameter is added to the Makefile. Variables needed to ini-
tialize FFTE, or store data between execution of FFTE routines were introduced
as to be easily distinguishable by their prefix (ffte_).
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In Quantum ESPRESSO, an internal decomposition of the data is used to
perform 3D FFT transforms as a combination of multiple calls to serial 1D and
2D FFT routines, which are divided among processes. MPI is used for communi-
cation and data exchange in-between these phases. The reason for this approach
is to avoid performing unnecessary transforms of subsections of the large 3D grid
which already have zero values, as this pattern is common in data sets used by
QE. A more detailed explanation of this decomposition can be found in Ref. [5].

It should be mentioned that the FFTE library does not support computation
on many Fourier Transforms (on different arrays), in a single routine call. This
can have some impact on the performance, because in QE there are many calls
to 1D and 2D routines needed to complete transform on the entire data set. Also,
when using FFTE, an initialization routine needs to be called before each trans-
form, which includes even more overhead during execution. Significant drops in
performance were not observed during our testing, but these factors should be
considered when using the FFTE library in other projects.

2.2 Enabling FFTW3 Threading in Quantum ESPRESSO

Second extension of QFE is related to support of threading of the FFTW3 li-
brary, which would enable hybrid parallelism (when used combined with the
MPI), since it is already supported in Quantum ESPRESSO. The FFTW3 li-
brary supports threading in two modes:

— implicit, where an additional library 1ibfftw3_omp has to be installed; in this
case, FF'TW3 routines support multi-threaded execution internally, so they
are called like the serial ones, and

— explicit, where serial routines are used, but are called from within multiple
threads running in parallel; this is possible because routines for FF'T execution
are thread-safe.

The following pseudocode representation roughly shows how the two threading
modes were implemented in Quantum ESPRESSO (for the implicit mode, a
single internally threaded routine call performs nsl transforms on arrays with
length of dim_z, and for the explicit mode each routine call is serial):

— implicit
fftw_execute_many_dft(fw_plan, c, cout, nsl, dim_z)
— explicit

#pragma omp for
for i=1 to mnsl

offset=(i-1)*dim_=z

fftw_execute_dft(fw_plan, cloffset], coutl[offset])
end for
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The FFTW3 library supports reusing of plans, and also supports calculation of
many transforms within a single routine call. This allows greater flexibility when
using multiple transforms, and is optimal in terms of performance. More details
on this can be found in Ref. [6].

In order to use implicit threading, FF'TW3 thread initialization routines had
to be called before calling any FFTW3 routines for FFT planning and execution.
After the thread initialization has been successfully performed, the code for
serial version can be reused, and threading is done automatically in the library
routines.

With explicit threading, some modifications had to be made with the code.
Because in the serial version many 1D or 2D transforms are aggregated in a
single call for efficiency, execution had to be split into separate routine calls for
each transform. This way, we actually had many routine calls, which can then
be called from parallel threads. An OpenMP parallel for region was inserted,
where in each iteration of the loop, FFT is performed on a separate sub-array.
Since these routines are executed in parallel, and there are no data dependencies
between loop iterations, this approach could be applied successfully.

3 Performance Tests

Here we will present performance tests done to compare newly supported FFTE
library, and also performance of threaded FFTW3 library. Benchmarks were
performed so that the performance was compared to most similar numerical
libraries already supported in Quantum ESPRESSO.

3.1 FFTE Performance

We have tested Quantum ESPRESSO with enabled FFTE library, and com-
pared it with the FFTW3 library that is already supported. These tests show
only performances of serial libraries, since threaded FFTE was not implemented
(because it wasn’t always reliable when built with some compilers).

The cluster used for testing is made of nodes containing two AMD Magny-
Cours Opteron 6174 processors, with 12 cores each. Nodes are connected via
Infiniband network. The GCC compiler suite [7] was used in testing on this clus-
ter. Our implementation was tested on benchmarks for PW module of Quantum
ESPRESSO. FFTE Code was compiled with gfortran, version 4.1.2 with flags
-03, and the FFTW3 library was compiled with gcc, version 4.1.2 with flags

-03 -fomit-frame-pointer -fstrict-aliasing -fno-schedule-insns
-ffast-math.

For the first test, up to 6 computing nodes were used (up to 72 processes).
Execution times and scaling of the PW module are shown in Figure [ for the
case when the number of MPI processes is increased, and in Figure [2] when the
problem size is increased, and the number of MPI processes stays constant (24
MPI processes were used in this test).
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Fig. 1. Performance of the PW module of QE FFTE extension compared with the
QE FFTW3 implementation: (left) Execution times of QE FFTW3/FFTE codes for
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Fig. 2. Performance of the PW module of QE FFTE extension compared with the QE
FFTW3 implementation: execution times as a function of 3D FFT mesh size

It can be seen that the FFTE library slightly outperforms FFTW3 in both
cases (execution times are lower for the FFTE). The gap in performance grows
as the size of the problem grows, so the FFTE seems suitable for large test cases.
The difference in performance that is related to the problem size is also exhibited
in the test case with the increasing number of MPI processes. As the number of
MPI processes grows, each process gets less and less data to compute, and the
difference in execution time diminishes. Because of this, the FFTE library shows
worse speedup than the FFTW3.

3.2 FFTW3 Threaded Performance

For the performance testing of the threaded FFTW3 library, an FFTW (version
2) library internally supplied with Quantum ESPRESSO was selected for com-
parison. This was done because it was the only library supporting threading in
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the hybrid mode (when used together with the MPI), and is also open-source
and widely available.

Implementation of threaded FFTW3 was tested on a cluster with Intel Xeon
processors, with two quad-core CPUs per node, and with Gigabit Ethernet in-
terconnecting network. Library code was compiled with the Intel’s icc compiler
version 11.1 with the -03 flag, and Intel’s ifortran was used for compilation of
Quantum ESPRESSO.

Hybrid extension of the FFTW3 library was also tested with benchmarks for
the PW module of QE. Tests were conducted again in the similar way, increasing
the number of CPU cores in one case, and increasing input grid size in another.
Configurations of 2 and 4 threads per MPI process were used, and also compared
to the pure MPI case. Both threading variants (implicit and explicit) were tested
with the FF'TW3 library, and its performance is shown along with the internally
supplied FFTW library (labeled as FFTW internal) in Figures [3 and [ Total
number of computing cores at some point is fixed, and is equal to a number of
MPI processes times the number of threads per MPI process.

From this we see that both threading variants implemented for FFTW3 out-
perform the internal FFTW when executed with hybrid parallelism for most
cases. Although, both threaded libraries are still slower than the pure MPI ver-
sion. This is probably due to the fact that for the type of input data used with
Quantum ESPRESSO, the overhead related to the thread management is prob-
ably greater than benefits of reduced MPI communication. Evidence for this are
runs with four threads per MPI process, where performance gets significantly
worse.

FFTW internal — 2 threads —w—
5. FFTW internal — 4 threads

% FFTW3 implicit — 2 threads &
- FFTW3 implicit — 4 threads &
4 FFTW3 explicit — 2 threads A
FFTW3 explicit — 4 threads
FFTW3 pure MPI ---A--

execution time [1 033]
w

Number of CPU cores

Fig. 3. Performance of the PW module of QE FFTW3 threaded extensions compared
with the internal QE FFTW hybrid implementation and pure MPI FFTW3 imple-
mentation: Execution times of QE FFTW3 implicit and explicit/internal FFTW /pure
MPI codes for different number of MPI processes
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FFTW intemal — 2 threads per MPI —v—
FFTW3 explicit — 2 threads per MPI bl
6 r  FFTWS3 implicit — 2 threads per MPI -7

execution time [1 033]
~

100 150 200 250
size of three — dimensional FFT mesh
Fig. 4. Performance of the PW module of QE FFTW3 threaded extensions compared
with the internal QE FFTW hybrid implementation and pure MPI FFTW3 implemen-

tation: QE FFTW3 implicit and explicit / internal FETW execution times as functions
of 3D FFT mesh size.

These results agree with what was presented in Ref. [5], where similar thing
was investigated, and was shown that threading does not increase performance
in all cases. Better performance was observed only in some cases where the
number of MPI processes was significantly large. Also, Quantum ESPRESSO
has other ways to control parallelism in software (for example, task groups,
pools of processes, etc.) which is related to a particular input data set. Because
these options were not primarily designed with hybrid parallelism in mind, it
is not easy to fine tune Quantum ESPRESSO to achieve optimal performance
when threading is used.

It is also worth mentioning that no significant difference in performance be-
tween implicit and explicit variants of FFTW3 threading was noticed. Looking
at how threading is implemented in those two cases, an advantage of the explicit
mode is that the OpenMP parallel region is created only once, and inside of it
there are calls to many routines where FFT is computed. This should be optimal
with regards to the overhead related to thread creation and synchronization. On
the other hand, when using implicit threading, a new OpenMP parallel region
has to be created with every routine call. However, because an advanced FFTW3
interface is used with implicit threading mode, it allows many transforms on dif-
ferent arrays to be aggregated in a single routine call from FORTRAN. It is
possible that the native implementation of FFTW3 threaded library is aware of
that, and that it successfully avoids unnecessary creation of parallel regions for
each separate Fourier Transform.
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4 Conclusions

In this project two extensions to Quantum ESPRESSO were implemented: the
support for FFTE library for computing Fourier Transform in the serial mode,
as well as the FF'TW3 library in threaded mode. These extensions showed better
performance compared to default QE libraries (open-source FEFTW version 2 and
3 were selected for comparison). In the case of the FFTE library, performance
increase could be significant when the large charge density mesh is requested for
the simulation of a physical system. Both the explicit and implicit variants of
FFTW3 threading showed better performance compared to internally supplied
FFTW (version 2) when tested in hybrid configuration (two and four threads
per MPI process), and while still not faster than the pure MPI version, should
be considered when there is a need for hybrid parallelism. It is expected that a
much larger problem size and more CPU cores are needed in order to get sat-
isfactory performance of the hybrid FFTW3, which can match, or even surpass
the performance of the pure MPI version.
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Abstract

After pioneering experiments that realized Bose-Einstein condensates in systems of
ultracold atoms with weak contact interactions, it took a decade for experimental
techniques to advance and enable measurement of effects of the dipole-dipole inter-
action that exist between atoms or molecules with a permanent or induced electric
or magnetic dipole moment. The first such experiment was realized in 2005 with
chromium atoms, followed by the experiments with atoms with much larger magnetic
moments, such as dysprosium and erbium. Furthermore, the dipolar condensates
comprised of polar molecules with much stronger electrical or magnetic dipole mo-
ments were also realized. While the contact interaction is symmetric and has a short
range, the dipole-dipole interaction between atoms or molecules is anisotropic and
has a long range. These features are responsible for a whole series of new phenomena
that appear in ultracold dipolar gases. If we take into account that the strength of
the contact interactions can be varied over many orders of magnitude using the Fes-
hbach resonance technique, and that the dipole-dipole interaction strength can also
be tuned using a fast rotating magnetic or electric field, it is easy to see that such a
versatility of dipolar quantum gases is unparalleled and makes them an obligatory

element in a toolbox for engineering quantum devices and sensors.

The main contribution of this thesis is the study of Faraday and resonant density
waves in ultracold bosonic systems with the contact and the dipole-dipole interac-
tion. Such waves emerge in Bose-Einstein condensates as a result of the harmonic
driving of the system. They represent nonlinear excitations and are generated due to
the interaction-induced coupling of collective oscillation modes and the existence of
parametric resonances. We introduce here a variational mean-field approach for the
description of the dynamics of the Faraday and resonant waves in dipolar conden-
sates. This approach is based on the Gaussian variational ansatz, which includes
the condensate widths and the conjugated dynamical phases as parameters. The
ansatz also includes the density modulations in order to capture the dynamics of

density waves.



Using the developed variational approach, as well as a full numerical approach,
we study in detail the properties of density waves in dipolar condensates at zero
temperature, where breaking of the symmetry due to anisotropy of the dipole-dipole
interaction plays an important role. We derive equations of motion for the dynamics
of a driven dipolar system and identify the most unstable modes that correspond to
the Faraday and resonant waves. Based on this, we derive the analytical expressions
for spatial periods of both types of density waves as functions of the contact and the
dipole-dipole interaction strength. We compare the obtained variational results with
the results of extensive numerical simulations that solve the dipolar Gross-Pitaevskii

equation in three dimensions, and find a very good agreement.

In this thesis, we also study the effects of the contact and the dipole-dipole inter-
action on the properties of the ground state and of the collective oscillation modes of
dipolar condensates. While the increase of the contact interaction strength always
leads to an increase of condensate widths, the situation is more complex when the
dipole-dipole interaction is varied. In a cigar-shaped geometry, when the dipoles are
oriented in the radial direction, the increase of the dipole-dipole interaction strength
leads to the increase of condensate widths in the weak-confinement direction and in
the direction of the dipoles, while the width in the third direction decreases. We
also study the frequencies of the collective modes, where the interaction effects turn
out to be less pronounced, in particular for the breathing and the quadrupole mode,
whose values practically remain constant over the whole range of experimentally rel-
evant values of both interaction strengths. The frequency of the radial-quadrupole
mode is more sensitive to changes of interaction strengths, especially the contact
interaction strength, and shows a nonmonotonous behavior as a function of the

dipole-dipole interaction strength.

Keywords: Bose-Einstein condensate, pattern formation, dipole-dipole interaction,
parametric resonance, interaction effects

Research field: Physics

Research subfield: Condensed matter physics

UDC number: 538.9
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Pe3ume

Hakon nmuoHWpCKUX eKcllepuMeHaTa ca CHCTEMHUMa YIATPaXJIaJHUX aToMa y KO-
juma je peanmszoBana boze-AjHmITaju KoHIeH3aIMja ca c1aboM KOHTAKTHOM HHTEP-
akIujom, Omiia je morpebHa UMTaBa JeleHuja Jia OU ce MPeIU3HOCT eKClliepruMeHaTa
nosehaJjia u omoryhusia Mepeme edekara JIUI0JI-IATI0 HHTEPaKIIije KOja MMOCTOjU 13-
MeDy aroMa mjn MoJieKyJia ca IMepMaHeHTHIM U WHIYKOBAHUM €JIeKTPUIHUM WU
MarHeTHUM JIUIIOJIHUM MomeHToM. IIpBu Takas ekcriepuMmeHT je m3Bejien 2005. ro-
JINHE Ca aTOMHUMa, XpOMa, & HaKOH TOra Cy YCJIEJIMIN €KCIEPUMEHTHU Ca JTUCITPO3U-
jymMoMm m epbujymMoM, aTOMUMa Ca jaKUM MAarHETHUM JIUTOJHUM MOMEHTHMA, Kao W
ca TOJIAPHUM MOJIEKY/IUMA Ca JIaJIeKO BeNUM eJIEKTPUIHUM U MArHETHUM JTUTIOJTHUM
MOoMeHTuMa. /0K je KOHTaKTHa MHTEepaKIlija CUMETPUIHA U KPATKOJIOMETHA, JTUTIOJI-
JITIONT MHTEpaKInja u3Mehy aToMa WM MOJIEKYJa je aHU30TPOIHA U JIyTOJIOMETHA
U y3POK je UATABOI HU3a HOBUX OCOOMHA YJITPaXJIQIHUX OO30HCKHX cucTeMa. AKO
y3MEMO y 003Up Jia ce y eKCIIEPUMEHTUMAa jauruHa KOHTaKTHE MHTEPaKInje MOXKE Me-
AT 0J1 jJaKo 0JI00jHe JI0 jako IpuBjadHe kopuctehn Texnuky Perdax pe3oHaHIHN,
Kao ¥ TO JIa Ce jadrHa JUTOJI-UION HHTEPAKIIAje MOYKe KOHTpoJcaTn momohy 6p3o
porupajyher MarseTHOr WM €JIeKTPUIHOL I0Jba, JIAKO je 3aK/byIUTU Jia MPUJIAro-
JIJBUBOCT U PA3HOBPCHOCT OCOOMHA JIUIIOJHUX KBAHTHUX I'acoBa YMHU OBE CUCTEME

HEYTIOPEIUBUM 1 00ABE3HUM AJIATOM y WHXKEHHEPUHTY KBAHTHUX ypehaja u ceHzopa.

['naBuu lonpuHoc oBe jiucepTaliyje je npoydaBaibe (penomena PapajiejeBux u pe-
30HAHTHUX TaJIaca I'YCTUHE Y YITPAXJIAIHIUM OO30HCKUM CHCTEMUMA Ca KOHTAKTHOM
U JIUIOJI-IAII0 wHTepakimjoM. OBakKBM TaJlacl HACTajy Kao pe3yJITar XapMOHH]-
CKe MOJlyJallje CUCTeMa U MPeJICTaB/bajy HeJNHeapHe eKCIUTAIje CUCTEMa YCJIes
MPUCYCTBA WHTEPAKIINja, CIIPe3aheM KOJEKTUBHUX OCIUJIAIN]a W IapaMeTapCKuX
pe3oHaHIM. ¥ OBOj JUCEPTAIUju CMO Y OKBUDPY TEOPHje CPEber I0Jba PAa3BUJIN
BapujallMiOHN IPUCTYI 3a omuc jguHamuke PapajiejeBUX U PE30HAHTHUX Tajaca y
aunoJinuM KongienzatuMa. OBaj mpuctyn je 3acnoBan Ha ['aycoBoMm Bapujarmonom
aH3ally KOju 3a apaMeTpe nMa IIUPUHe KOHJIeH3aTa, KOHjyropane gase, a YK/bydyje

U MOJyJallje TYCTHHEe KaKo O OIMcao JUHAMUKY TaJaca I'yCTHHE.

vil



Kopucrehn pazsujenn Bapujarmonu MpuCTyIl, Ka0 U IIYH HYMEPUYKU ITPUCTYII,
JIeTa/bHO CMO TIpOydYaBaJii OcOOMHE Tajaca I'yCTUHE Y JIUIIOJHUM KOHJICH3aTHMa Ha
HYJITOj TeMIIepaTypPH, TJIe JIUIOJ-IUIION WHTEPAKINja UI'Ppa BayKHY YJIOry 300T Ha-
pyliema CUMeTpHje ycjes aHn30Tponuje cucrema. 3Ben cmo jeqnadnne KpeTamba
KOje OINCY]y AMHAMUKY MOJLYJIUCAHOL JTUIIOJIHOI DO30HCKOI' CUCTEMA U UIeHTH(MUKO-
BaJ/Ii HajHecTaOMWJIHKje Mojie Koje ojiroBapajy PapajiejeBUM 1 pe30HAHTHUM TaJIaCH-
Ma. /lasbe, Ha OCHOBY TOra, U3BeJIM CMO aHAJIUTUYKE U3pa3e 3a IPOCTOPHE IepHuo/ie
oba Tumna Tajaca I'yCTHHE, Ka0 U IbUXOBY 3aBUCHOCT OJ] jadlHe KOHTAKTHE W JTUTIOJ-
JIATIo)T mHTepakiyje. /lobujeHe Bapujarmone pe3ysitare yIOPEJIUIn CMO Ca Pe3ysITa-
THMa JIeTa/bHUX HyMEPUIKUX CUMYyJIalija Koje pemanajy jaurnosny ['poc-IlnraeBcku

jeHaYunuHy y TPU IPOCTOPHE JIMMEH3Uje U JOOWIM CMO BeoMa JI00PO Cjiararbe.

Y 0BOj JucepTalyji MpOoyvaBaJii CMO W YTHUIA] KOHTAKTHE W JIMIIOJI-TUIIOJ WH-
TepakIije Ha CBOjCTBA OCHOBHOT CTarba W KOJIEKTUBHUX OCITAJIAIIN]a JTUITOJTHAX KOH-
nensara. /lok mopehame jaunHe KOHTAKTHE MHTEPAKIMje YBEK JIOBOJH JIO HMINPEHHA
KOHJIeH3aTa, CUTyallija je CJI0XKeHuja KaJa ce Merba jaunuHa JIATOJI- U0 NHTEPaK-
nuje. 3a 3aMKy y OOJIMKY IHUrape y KOjoj Cy JUIIONN OPUjeHTHCAHU Y PaujaHOM
cMepy, roBeharbe jaunne JIUIOJI-IATION HHTEPAKIIUje TIOBOJIH JI0 MUPEHa KOHJIEH3ATa
y JIOHTUTY/IMHAJHOM IIPABILYy W y IMPAaBIy IoJapusaliije, J0K ce MupuHa y Tpehem
npasity cmamyje. [lope Tora, mpoydaBajin cMoO 1 PpeKBeHIje KOJEKTUBHUX MOJIa,
e ¢y epeKTn HHTEepaKIja Mamke n3paxkenn. OBo ce moceOHO OJTHOCH Ha MOHOTIOJTHY
(mummyhy) u KBaJPYNoHy MOy, YHje BPEJIHOCTH MPAKTUYHO OCTajy KOHCTAHTHE Y
1I€JIOM PACIIOHY €KCIIEPUMEHTAJIHO PeIeBAHTHUX BPEIHOCTH jaunHa nnrepakimja. Ca
Jipyre cTpane, (bpeKBEHINja PaJiijaHe KBaIPYIIOJHE MO/JIE je OCET/bUBUja HA ITPOMe-
HYy jaunHe WHTEpaKIuje, IoCeOHO jaunHe KOHTaKTHE UHTEPAKIIHje, JIOK IIPU ITPOMEHN

jaduHe JIUIOJI-IUII0J MHTEPaKIdje II0Ka3yje HEMOHOTOHO ITOHAIIAbe.

Kibyune peun: Boze-Ajumraju KonjieH3aimja, GopMupame maTepHa, U0 ITl-
0J1 MHTEPAaKIINja, IMapaMeTapcka pe3oHaHIla, eeKTH THTEPAKII]e
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1 Introduction

According to the quantum statistical physics, there is a critical temperature below
which the weakly-interacting bosons populate the lowest energy state of the system,
which becomes macroscopically occupied. For temperatures well below the critical
one, the thermal excitations can be usually neglected, and the same applies to the
quantum fluctuations. The emergence of a macroscopically occupied ground state
represents one of the few macroscopic quantum phenomena and is known as the
Bose-Einstein condensation. It was experimentally realized for the first time in 1995
in dilute ultracold atomic gases of alkali metals, such as lithium “Li [1], rubidium
87Rb |2| and sodium ?3Na [3]. Theoretically, the Bose-Einstein condensate (BEC)
as a new phase of matter was predicted in 1924 by Indian physicist Satyendra Nath
Bose [4] and German physicist Albert Einstein [5]. The theoretical study of BECs
and a long quest for its experimental realization has significantly contributed to the
development of quantum statistical physics, condensed matter physics, atomic and
molecular physics, quantum optics, and laser physics, as well as to the other areas
of physics, such as quantum information, quantum field theory, high-energy physics,
and even the theory of general relativity. Such a wide applicability stems from the
fact that BECs represent almost ideal Feynman’s quantum simulators [6] for many

physical systems.

In typical experiments with BECs, an ultracold dilute atomic cloud has a number
density between 10 — 102! m™3, i.e., three to six orders of magnitude lower than
the density of air at room temperature and atmospheric pressure. The system is

usually confined in a magneto-optical trap that can be described by a harmonic



potential, which is experimentally realized by a six-beam laser setup, where two
counter-propagating beams in each spatial direction provide harmonic confinement.
Atoms of selected species are cooled down to the nanokelvin temperatures using a
combination of different techniques, such as the Zeeman slower, the laser cooling,
and the evaporative cooling. In order to experimentally realize a BEC in a system
with weak inter-atomic interactions, it is essential that the gas is rarefied. If this is
the case, the system is close to the ideal gas of bosons, and the standard Bogoliubov
theory can be applied. In practice, the diluteness requirement can be expressed by
the condition |7, 8]:

na < 1, (1.1)
where n is the number density and a, is the s-wave scattering length of atoms, which

characterizes atomic interactions, seen as scattering processes in a dilute gas. Fig-

ure 1.1 illustrates the experimentally measured momentum distribution of a sodium

Figure 1.1: The first experimental realization of a BEC in 1995 in a dilute ultracold
atomic gas of sodium 23Na. The three momentum distributions at different temper-
atures illustrate how the condensation sets in: well above T, we have the Maxwell-
Boltzmann distribution (left); at 7. the peak corresponding to the macroscopic
occupation of the ground state appears (middle); well below T, the thermal cloud
disappears and only the peak around p = 0 remains (right). The figure is taken from
Wikipedia and authored by NIST/JILA /CU-Boulder [NIST Image, public domain,

https://commons.wikimedia.org/wiki/File:Bose_Einstein_condensate.png].


https://commons.wikimedia.org/wiki/File:Bose_Einstein_condensate.png

gas at three different temperatures. The distribution on the left-hand side cor-
responds to the thermal (Maxwell-Boltzmann) distribution at a temperature well
above the critical one (T.), while the distribution in the middle represents the re-
sults for the system at the critical temperature 1. = 170nK. This distribution is
bimodal, containing both the thermal component and a peak that corresponds to
the emerging condensed fraction of atoms. The distribution on the right-hand side
is obtained after an additional evaporative cooling brings the system down to the
temperature T'= 20nK < T,.. Since the system is now significantly below the criti-
cal temperature, practically all atoms are in the condensate, and the experimental
momentum distribution exhibits a single-peak distribution that corresponds just to

the condensed fraction.

1.1 Role of interactions

Investigation of ultracold quantum gases is a very attractive research field that
involves a large number of theoretical and experimental groups worldwide. Such a
widespread interest comes from the fact that properties of the BEC systems can
be broadly tuned in an unprecedented range. In particular, this applies to the
strength of contact interactions that can be varied over many orders of magnitude
using the Feshbach resonance [9] technique. The existence of Feshbach resonances
is related to atomic bound states and can be practically manipulated by an external
magnetic field, thus adjusting the electronic structure of atoms. In this way, close
to a Feshbach resonance, the strength of the contact interaction can be dynamically
tuned over a wide range of values. Furthermore, not only the amplitude, but also
the sign of the interaction can be changed, i.e., the interaction can be tuned from

very repulsive to very attractive.

After pioneering experiments that realized BEC in systems with weak contact
interactions, it took a decade of work on accuracy improvement of experimental
techniques to enable measurement of effects of the dipole-dipole interaction (DDI)

that exists between atoms or molecules with a permanent or induced electrical or



magnetic dipole moment. The very first such experiment was realized in 2005 with
chromium atoms *2Cr [10], while the experiments with atoms with much larger
magnetic moments, such as dysprosium %Dy [11] and erbium %*Er [12] came after.
Furthermore, the dipolar condensates comprised of ultracold polar molecules with
much stronger electrical [13] and magnetic [14] dipole moment were realized some
years ago. While the contact interaction is symmetric and has a short-range, the
DDI between atoms or molecules is anisotropic and long-range. These features are
responsible for a whole series of new phenomena that appear in ultracold dipolar
gases [15]. For example, due to the attractive component of the DDI, an instability
exists, and the system is stable only for a number of atoms below the critical one.
This is closely related to the trap geometry, and if the system contains a number
of particles larger than the critical one, it may still be quasi-stable or collapse.
The stability of the system depends not only on the trap geometry, but also on its
interplay with the orientation of the dipoles. Note that in experiments the dipoles
are not randomly oriented, but usually follow a preferential direction, determined
by an external magnetic or electric field. If the system becomes unstable due to
changes in the geometry of the trap or due to a number of particles which is above
the critical, it undergoes a dynamical collapse during which interesting structures

appear [16-18|.

Although quantum fluctuations can be usually neglected, close to stability border
they may play a crucial role and lead to new states of matter, such as the quantum
droplets that were recently observed in dipolar condensates of dysprosium [19,20]
and erbium [21]. In these recent experiments, it was observed that the Rosensweig
instability [22] due to the DDI is compensated by the stabilizing effect of quantum
fluctuations. Note that the quantum droplets, emerging from the partial condensate
collapse, are arranged in a lattice that, under certain circumstances can behave as
the elusive supersolid state of matter [23|. Another interesting feature of quantum
droplets is that they can be considered to be made of an incompressible quantum

liquid.

The strength of the DDI can be also tuned using a fast rotating magnetic or



electric field [24,25]. Therefore, both the contact interaction and the DDI strength
can be varied in experiments, and they represent the important parameters of the
system. We also note that the dimensionality of the system can be tuned and con-
sidered as a free parameter. Namely, by manipulating the harmonic trap frequen-
cies, the geometry of the system can be transformed from the three-dimensional
to quasi-two-dimensional or quasi-one-dimensional. Furthermore, this can also be
done dynamically, during the experiment, at the same time as possible changes of
the contact interaction and the DDI. Due to all of these features, the versatility
of dipolar quantum gases is unparalleled and makes them obligatory elements of a

toolbox for engineering quantum devices and sensors.

1.2 Collective oscillation modes

The very first BEC experiments have focused on the measurement of frequencies
of low-lying collective oscillations modes of the system [26,27|. Until nowadays
such experiments remain the most accurate, and the frequencies of the collective
oscillations can be measured with the precision of few per mill. These experiments
are also the most natural ones, since they measure the response of the system to small
perturbations. In a typical experiment, the system is prepared such that it occupies
the ground state for a given set of parameters and the trap geometry. Afterward,
the system is excited by a small perturbation of one of the parameters, e.g., a small
variation of one of the trap frequencies, or moving of the trap origin, or change of the
interaction strength. Such a perturbation generates the dynamical response of the
system, which can be measured by imaging of the density profile of the system. This
is done by the time-of-flight imaging or using one of in situ techniques |7,8], which
allow to measure the time dependence of the BEC properties, such as a center of mass
position, condensate widths, etc. The Fourier analysis of these time dependencies
reveals frequencies of the low-lying collective modes, typically breathing, quadrupole,

radial-quadrupole, and dipole mode.

However, this approach does not allow the specific collective modes to be iden-



tified with the corresponding frequencies. Only if we know how the system should
be excited in order to induce only one of the modes, it is possible to measure its
frequency. Even if this the case, BEC systems are nonlinear and different collective
modes are coupled. Therefore, although initially only one mode could be excited,
other collective modes will get excited over time through the transfer of energy.
Only detailed theoretical modeling of the systems’ dynamics allows us to identify
the frequencies with the corresponding collective modes properly. One of the most
conventional methods for this is the time-dependent variational approach. Usually,
variational parameters include the condensate widths and their dynamics reveal not
only the frequencies, but also the type of the collective modes. The variational ap-
proach leads to a set of nonlinear differential equations, which reflect the nonlinear
nature of BECs. The analysis of these equations allows to calculate not only the
collective oscillation modes, but also to study the dynamics of the system. This
includes the response of the system to driving of one of the parameters and the

emergence of parametric resonances.

From a theoretical point of view, a BEC is usually studied in the formalism of
second quantization. The corresponding many-body Hamiltonian includes the two-
body interactions between the particles, which are of two types: the short-range
contact interaction and the long-range DDI. Since the interactions are usually weak,
they can be treated perturbatively, and the mean-field theory gives a basic descrip-
tion of the system. At zero temperature, we can neglect thermal excitations, and the
mean-field theory yields the Gross—Pitaevskii equation (GPE). For dipolar systems,
the standard GPE has to be extended to include the corresponding dipolar interac-
tion term. These equations, which are also called nonlinear Schréodinger equations,
due to the presence of nonlinear interaction-induced terms, are capable of describing
practically all phenomena that appear in BEC systems, with reasonable precision.
In particular, the GPE can be used as a basis for the variational approach, as out-
lined above. However, if a more precise description of the system is necessary, a
full numerical solution of the GPE may be required. Its analysis can also be used
to calculate the frequencies of the collective modes. Since the frequencies of the

collective modes are measured experimentally with high accuracy, they are used to



estimate the accuracy of all theoretical and numerical approaches for the modeling of
BECs. While the variational and other theoretical approaches enable the derivation
of functional dependencies of the collective mode frequencies on the system’s pa-
rameters, it is clear that their accuracy is limited by the selection of the variational
ansatz and by the approximation order in a perturbation expansion. On the other
hand, a full numerical approach is much more accurate. It allows direct solving of
the mean-field theory equations, or higher-order theories, but requires a numerical
simulation for each given set of parameters. Only a combination of analytical and
numerical approaches, and a comparison with experimental results, provide us with

full description and understanding of the system in a comprehensive way.

In addition to well-known low-lying excitation modes mentioned previously, due
to nonlinearity in ultracold quantum gases some other types of excitations can
emerge as well. Density waves are an important example of nonlinear excitations
and can be induced by a harmonic modulation of the trap frequencies or interaction
strength. The motivation for this comes from the classical phenomenon of Faraday
waves, which may appear on the surface of the shallow layer of liquid under certain
conditions. Namely, if the container with the liquid is harmonically oscillated in a
vertical direction, the wave patterns may emerge, depending on the ratio of the lig-
uid depth and the container size, as well as depending on the modulation frequency.
This phenomenon was first studied and described by Michael Faraday at the begin-
ning of the XIX century [28]. The interest for such type of excitations arose again
during the 1980s in the context of nonlinear liquids. In the context of ultracold
gases, Faraday waves were first investigated theoretically in 2002 by Staliunas [29].
After his first theoretical and numerical results for the systems with contact interac-
tion where he assumed that the interaction strength is harmonically modulated, the
Faraday waves were first measured in the BEC experiments with rubidium atoms
in 2007 by Engels [30]. In the experiment, the radial part of the harmonic trap was
modulated instead of interaction strength. However, qualitatively this leads to the
same type of density waves. Although in the case of nonlinear liquids the generated
waves are surface waves, in the literature the same name, i.e., Faraday waves is also

used for the density waves that emerge as a result of the harmonic modulation in



the realm of ultracold quantum gases.

Faraday waves in ultracold gases are a consequence of the existence of parametric
resonances in the system. While the spatial period of these waves depends on the
geometry of the system and other parameters, the frequency of their oscillations is
constant and is two times smaller than the modulation frequency. This is character-
istic of all parametric resonant phenomena, and in the variational approach leads to
the Mathieu-like differential equation that gives the observed ratio of the frequency
of Faraday waves and the modulation. The Faraday density waves with half of the
modulation frequency, are not the only nonlinear excitation of the system. In a
driven system, there are always excitations corresponding to waves that have the
same frequency as the modulation. However, they become resonant when the modu-
lation frequency corresponds to one of the collective mode frequencies, or their linear
combination, or a multiple. The resonant waves develop in the system and grow ex-
ponentially, much faster than the Faraday waves. Therefore, these two phenomena
can be easily distinguished, not only by comparing their frequencies, but also the
corresponding onset times. So far, Faraday and resonant waves have been studied
in a single [29] and binary BEC systems [31], both with spatially homogeneous and

inhomogeneous contact interactions [32].

1.3 This thesis

The focus of this thesis is on the study of excitation modes of dipolar Bose-Einstein
condensates, including the collective oscillation modes, and density waves that
emerge as a result of the driving of the system. In particular, the thesis investi-

gates the Faraday waves and effects of the contact and dipole-dipole interaction.

Chapter 1 gives an introduction into the field of ultracold atoms and important
role that interactions play for the properties of Bose-Einstein condensates. It also
introduces collective oscillation modes, Faraday and resonant waves, and discusses

the theoretical approaches used for their description.



Chapter 2 describes in detail noninteracting Bose gases at zero temperature,
and presents a mean-field theory for weakly interacting Bose systems with the
short-range contact and the long-range dipole-dipole interaction. This chapter also

presents a variational approach for the description of static and dynamic properties

of dipolar BECs.

Ground-state properties of dipolar condensates are explored in Chapter 3. Us-
ing the variational approach introduced in Chapter 2, the corresponding equations
for the ground state are derived, including the special cases of cylindrical symme-
try, and pure contact interaction. The variational results are compared with full
numerical results obtained by solving the three-dimensional dipolar GPE for three
atomic species that posses the magnetic dipolar moments: chromium, erbium, and

dysprosium.

Chapter 4 provides a variational description of the collective oscillation modes
and derives the expressions for their frequencies as functions of the contact and
dipole-dipole interaction strength, which are then verified by comparison with the

full numerical results.

The Faraday and resonant waves are studied in Chapter 5. At first, a variational
approach is developed, that is capable of capturing the emergence and dynamics of
density waves in dipolar condensates. Using the properties of Mathieu’s differential
equation, the most unstable modes are identified and the expressions for the spatial
periods of Faraday and resonant waves are derived. The phenomenon of density
waves is then studied numerically in detail for the three atomic species and the

obtained results are compared with the variational ones [33].

Chapter 6 presents details on the algorithm we use to solve the dipolar GPE and
the split-step semi-implicit Crank-Nicolson method. Finally, Chapter 7 summarizes
all results and gathers our conclusions. Appendices A — F present further analytical
and numerical details that are relevant for certain chapters, but would overburden

the main text.



2 Bose-Einstein condensation and dipole-dipole

interaction

BEC is usually described in the formalism of second quantization [7,8|. First, using
this formalism we will show that the macroscopic occupation of the ground state
leads to the spatial coherence in the condensate, i.e., to the off-diagonal long-range
order (ODLRO). The system is described in terms of the one-body density matrix,

which can be defined in the coordinate space by

p(r,r’) = (¥i(r) ¥ ('), (2.1)
where @T(r) is a creation operator and \if(r) is the corresponding annihilation oper-
ator, and the averaging is performed over the ensemble. These operators describe a
creation or annihilation of a particle at the position r, and, in the case of bosons,

satisfy the bosonic commutation relations

A A A

(), W] = o ), (B, )] =0, [B@).E@)=0.  (22)

For the system consisting of /N identical bosons in a pure state, which is described
by the N-body wave function ¥, (ry,...,ry), the one-body density matrix can be

written as an integral
pu(r,r’) = N/drz coedey U (1,1, .., en) U, (Y e, L Ty, (2.3)

which motivates the name of the matrix p. In a more general case, for a system
in a mixed state in thermodynamic equilibrium, the one-body density matrix is

calculated as an ensemble average, where the weights are given by the Boltzmann
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distribution
1 _
p(r,r) = 7 E e PEn p(r,1) (2.4)

where n enumerates system’s eigenstates V,,, § = 1/(kgT) is the inverse temper-
ature, and Z = ) e PP is the partition function. The diagonal elements of the

density matrix correspond to the particle density

A

(e, 1) = (¥ (1) (x)) = nr). 2.5)
and the total number of particles can be calculated as N = [drn(r) = [drp(r,r).

Similarly, the one-body density matrix can be represented in the momentum
space

A

p(p.p) = (¥ (p) ¥(p)), (2:6)
where the field operator in momentum space can be obtained from the coordinate
representation by a Fourier transform

U(p) = W /dr e_%p'r\il(r) : (2.7)

Again, the diagonal elements give the density of the particles, this time in momentum
space, n(p) = p(p,p), and the total number of particles can be calculated in a
similar manner, N = [dpn(p). In a Bose-Einstein-condensed system, we have a
macroscopic occupation of the ground state, which means that the particle density

in momentum space has a form

n(p) = Nod(p) +n(p), (2.8)

where the occupation Ny/N < 1. Let us see what consequences this has for the
density matrix. If we insert equation (2.7) into equation (2.6) for p = p’, we get
1 S S .
n(p):W/desp<R+§,R—§> enPs, (2.9)
where R represents center-of-mass coordinate, and s the distance between the two
arguments in density matrix. For a uniform and isotropic system of volume V|
where we assume that in the thermodynamic limit N,V — oo the particle density

is constant n = N/V, the one-body density matrix depends only on the distance
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s, and not on the center-of-mass coordinate R, i.e., p(R+s/2,R —s/2) = p(s).

Therefore, the above equation for the density yields

p(s) = %/dpn(p) e iPE, (2.10)
For a normal system with a smooth momentum distribution n(p) at small momenta,
the one-body density vanishes in the limit s — oo, due to oscillatory nature of the
phase factor e~ P, However, the condensed system, which contains a delta function
at p = 0 gives a surprising result that p(s) — Ny/N when s — co. The fact that
off-diagonal elements of the one-body density matrix do not vanish even in the limit
s — 00, shows that the existence of the condensate leads to coherence in the system,

i.e., the long-range order.

To study excitations of the system, we use eigenstates of the density matrix
©i(r), where we assume, for simplicity, that the spectrum is discrete. In this basis,
the density matrix is expressed as

p(r,r') = Nogi(x)po(r') + ) Nigi (1)pilr’). (2.11)

>0

Here ¢ represents the single-particle state with the occupancy Ny, while N; are
occupancies of excited states. Note that the above equation leads to expression
(2.8) for the density n(p) using equation (2.9) and orthonormality of the eigenstates
@i(r). For a uniform system of non-interacting bosons, the eigenstates are plane
waves p(r) = e®*/"/\/V while in a general case the functions o; have to be
determined by solving the corresponding eigenproblem. Using this basis, the field

operator can be expressed as
Ur) =) @i (2.12)

where new bosonic operators a; represent elementary excitations of the system and

obey bosonic commutation relations
la;,at) = 0;, lai.a;) =0, [af,al]=0. (2.13)

If the system is well below the critical temperature for Bose-Einstein condensation,

we can use a zero-temperature approximation and neglect thermal excitations. We
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can also assume that practically all of the particles are in the ground state and that
only a small fraction is excited, which corresponds to the following decomposition
of the field operator

A

U(r) = Uo(r) + 60(r), (2.14)

where Uo(r) = @o(r)ao ~ vVNopo is the wave function of the condensate and
SU(r) = 3, 20 i(r) @; represents excitations due to quantum fluctuation. Note
that the ground-state operators ay and dg can be replaced by a c-number /Ny
due to macroscopic occupation of the ground state, and the fact that Bose-Einstein
condensation corresponds to breaking of the U(1) symmetry associated with the
phase of the wave function [8]. In other words, below the critical temperature the

order parameter does not vanish,

(o) = (ah) = /No #0. (2.15)

The time evolution of the system is determined by eiflt/ h where H is the Hamil-
tonian of the system, so the evolution of the ground-state wave function of the

condensate is given by

Wo(r,t) = Wo(r)e /", (2.16)
where
OF
p=E(No) — E(No— 1) = N v, (2.17)

is the system’s chemical potential.

2.1 Noninteracting Bose gas

Previously we have neglected the thermal excitations and have used the zero-tempe-
rature approximation. However, depending on the temperature, we may have to take
into account thermal excitations. For a uniform noninteracting Bose gas in a box
of volume V', the eigenstates are plain waves that satisfy the periodic boundary
conditions and have a dispersion relation €(p) = p*/2m. According to the Bose-

Einstein distribution function, the number of atoms in thermal (excited) states is

13



given by
1
Nn(T') = ; eBP?/2m—p) _ 1’ (2.18)
P

where m is the mass of an atom. Using a semi-classical approximation and replacing

the above sum with the integral, - — V/(27h)* [ dp, we obtain

Vo2 [ 2dx 1%
=3 =] a3 Bu 2.19
)\%ﬁ o e Prer—1 )\% 93/2(6 ) ( )

Nn(T)
where Ay = /27h23/m is the thermal wavelength and g,(z) = Y77, 2!/IP is Bose
function. From the above equation we obtain the critical temperature 7, at which

all atoms are in the thermal population, i.e., Ny, (T.) = N. This leads to

k2 ( n )2/3
kpT. = , 2.20
b m \ gs/2(1) (2:20)

where n = N/V is the density of the gas and g3/»(1) ~ 2.612. Note that the
chemical potential of a uniform system above the critical temperature can be taken
to be zero due to the dispersion relation, such that e®* = 1. Above the critical
temperate all particles are in the thermal cloud, and we have N = Vg3/0(1)/A%.
according to equation (2.19). On the other hand, below 7T, the number of thermal
atoms decreases, and we have Ny, (T) = (T/T,)?/? N, which is obtained by combining

equations (2.19) and (2.20). Therefore, the number of particles in the condensate is

No(T) = N [1 - (%)3/2

and becomes macroscopic for T' < T..

given by
, (2.21)

The situation changes in the presence of an external trapping potential. The
most frequently encountered and experimentally used potential is a harmonic trap,
given by

m. o 2

U(z,y,z) = 5( ST+ w§y2 +w?2?), (2.22)

where w;, i € {z,y, 2}, are the trapping frequencies. The temperature dependence

of the number of atoms in the condensate is now different and reads

No(T) = N [1 - (%)3 (2.23)
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This is illustrated in Figure 2.1, where the blue line represents the condensate frac-
tion for a homogeneous system, and red line the condensate fraction in the presence
of an external harmonic trap. Not only that temperature dependence is modified
by the presence of the trap, but also the critical temperature changes, and is now

defined as

I (%)w , (2.24)

1/3 i the geometric average of the trap frequencies, and ¢ (3) =

where w = (wywyw,)
g3(1) =~ 0.94. Note that the energy scale for the critical temperature is now given
by the trap energy Aw, and that T, now depends on the number of particles as N/3,

while for the uniform case it was N2/3.
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Figure 2.1: The condensate fraction Ny/N as a function of the temperature 7'/T.. for

a noninteracting Bose gas: homogeneous case (blue line) and harmonically trapped

case (red line).

2.2 Weakly-interacting Bose gas

The ground-state energy of an ideal Bose gas is equal to zero, this leads to zero
pressure and infinite compressibility. However, the presence of interactions in the
system, even the weak ones, dramatically changes this. Here we briefly outline the
Bogoliubov theory to first order in the interaction strength, which is capable of
describing a dilute Bose-Einstein-condensed gas. Precisely such systems were exper-
imentally realized, and it was shown that only two-particle interactions significantly
contribute to the energy of the systems, while interactions of three and more parti-

cles can be neglected. Also, due to large inter-particle distances, the details of the
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two-body interactions can be neglected as well, i.e., they can be modeled just as
s-wave scattering processes in a dilute Bose gas, described by the s-wave scattering

length. The many-body Hamiltonian of such a system is given by

H= 2712 drV\ifT(r)V\if(r)—i—% / dr dr’ U (r) Ut (') Uy(r — )T (') U(r), (2.25)

m

where U.(r) represents the model potential for the above-described contact interac-
tions. The field operator in the case of a uniform gas and in the basis of plane waves
reads U(r) = o ape™ /" /\/V where G, is the operator annihilating a particle in
the state with momentum p. Inserting this into the above Hamiltonian, we obtain
2
H = Z Qp_m apa Z Ue(q p1+q p2 alp1lp; 5 (2.26)
p q P1,P2

where p; and ps denote momenta of the interacting particles before the collision,
q the exchanged momentum in the collision, while U.(q f Ue(r e~tar/hdy s
a Fourier transform of the interaction potential. For the temperatures below the
critical one, the main contribution of the interaction to the Hamiltonian is due
to the particles with small momenta, q ~ 0. If we denote the zero-momentum

component by g = U.(q = 0), the Hamiltonian of the system can be rewritten as
A= Z o il + S5 D b, ipy (2.27)

P1,P2

Note that the above approximation is mathematically equivalent to replacing the real

inter-particle interaction potential with the modeled contact potential U.(r — r') =

go(r—r').

As we have seen, below the critical temperature the order parameter does not
vanish and we can replace the operators ao and dg by a c-number /Ny, where
Ny = N at zero temperature, when all particles are condensed. If we restrict the
sums in equation (2.27) to zero momentum contributions, which yield the ground

state, we obtain for the ground-state energy

gN? 1
0 o 5 ng (2.28)

The interaction coupling constant g can be expressed via s-wave scattering length a

as g = 4mh*a,/m. Contrary to the noninteracting case, the pressure P of a condensed
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weakly-interacting Bose gas does not vanish at zero temperature. Instead, it is given
by P = —0Fy/0V = gn?/2, and the compressibility is now finite, dn/dP = 1/(gn).
The compressibility is related to the speed of sound ¢ by a relation 1/(mc?) =

on/OP. Using this, we can derive the sound velocity in the condensate and obtain

gn/m

The above zeroth-order approximation is capable of providing us with the esti-
mates for the ground-state energy, but not more than that. In order to describe the
system in more detail, we have to go to the higher-order approximation such that
we include the operators ap and &L with p # 0. The Hamiltonian does not contain

the linear terms in ap, and the first non-trivial approximation is quadratic,

i =2 alabaoao + > 2 afap + 2 (ag Loty + ahal paodo + agagapa_p> .

’ (2.29)
Luckily, quadratic Hamiltonians can be explicitly diagonalized, which we do here
following Bogoliubov prescription. As it was done in the zeroth-order approximation,
in the terms in brackets of Equation (2.29) we replace the operators o and 4/, with
V/N, while for the first term we have to use a better approximation that is obtained

from the normalization djag 4+ > = N, which leads to

pséO p
ahabaoto = N* — 2N Y " alay,, (2.30)

p#0
up to terms quadratic in ap. Note that the scattering theory [34], to the same

approximation order, requires the renormalization of the interaction strength ¢
g m
— 1+ = — . 2.31
99 ( - ; p2> (2.31)

By substituting Equations (2.30) and (2.31) into the Hamiltonian (2.29), we obtain

it 1 L L L mgn
p#0

which can be diagonalized using the Bogoliubov transformation

ap = upbp +v* 01, al +u_pb_p. (2.33)
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We require that new operators Bp and BL obey the same bosonic commutation rela-
tions as the operators ap and aj,, which leads to the condition |up|* — [v_p|* = 1.
From this, we see that the coefficients u© and v can be parametrized as follows

up = coshay,, v_p =sinhag. (2.34)

In the above equation, the parameter ap has to be chosen such that non-diagonal

elements of the Hamiltonian (2.32) vanish. For such ap, the Hamiltonian becomes

H=FEo+ Y ep)biby . (2.35)
p#0
where
~ 1 p* | m(gn)®
Ey=FEy+ - —gn — — 2.
0 o+2§[6(p) =Gt | (2.36)

with €(p) given by

e(p) = \/ (%)2 +ep? (2.37)

which is known as the Bogoliubov dispersion law. Here ¢ stands for the speed
of sound ¢ = \/W The diagonalization of the system using the Bogoliubov
transformation allows us to connect the system of interacting bosons with a nonin-
teracting system of particles with the energy ¢(p), whose annihilation and creation
operators are I;p and EL, respectively. Although this system is noninteracting, the
dispersion is modified and is not given by a free particle expression p?/2m. In the
limit of small momenta p < me, the dispersion (2.37) becomes €(p) = ¢p. From
this, we see that elementary excitations of the system in the long-wavelength regime
correspond to sound waves. From a symmetry point of view, these elementary exci-

tations can be thought of as the Goldstone modes that correspond to breaking of the

U(1) symmetry of quantum mechanics due to the Bose-Einstein phase transition.

Note that the ground-state energy Ey is given by

N 128
e _— 3
Ey = Ey (1 + 15\/?/71@3) : (2.38)

which is expressed in terms of the perturbation parameter na?

o. Therefore, we see
that the Bogoliubov theory is valid if the previously introduced criterion (1.1) is
satisfied, such that the correction to the energy, given in brackets of Equation (2.38)

is small.
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2.3 Mean-field theory for dipolar Bose gas in a trap

Bose-Einstein condensation is experimentally realized with a dilute Bose gas trapped
in the external potential. Such a setup produces a nonuniform system, which is ex-
perimentally necessary to provide confinement of the system. However, this changes
the properties of the system and is responsible for new phenomena, such as col-
lective oscillations. Here we briefly outline the mean-field theory for a nonuniform
Bose gas in the external potential U(r,t), both for stationary and non-stationary
systems. However, as outlined in Chapter 1, in this thesis, we consider not only
the short-range contact interaction U.(r —r’) = gd(r — r’), but also the long-range

dipole-dipole interaction
po d?r? — 3 (r-d)’
4T 7o

where po is the vacuum permeability and d is the magnetic dipole moment. We

Udd(r) = s (239)

assume that all dipoles are oriented in the same direction, as in experiments where,
due to the present magnetic fields, this is always the case. If the dipoles are oriented

in the z direction of the Cartesian coordinate system, the potential has the form

 pop 1 —3cos®f
 Arm r3

where 6 is the angle made by the vector r and the polarization direction z. The

Udd(r)

, (2.40)

angle 6 determines if DDI is attractive or repulsive. For instance, for § = 0 we
have an attractive DDI, while for § = 7/2 the interaction is repulsive, as illustrated
in Figure 2.2. Note that the strength of the DDI is usually defined by the dipolar

length
ot — fopim
T 2Rz

This is convenient since it allows us to express the DDI in a similar way as the

(2.41)

contact interaction strength is expressed in terms of the s-wave scattering length.

With all these ingredients, the Hamiltonian of the system in the Heisenberg

picture is given by

A h2 N o o o
H = —/dr VUi (r t) VU(r,t) +/drx1ﬂ(r,t) Ulr, t) Wi, )
2m
| (2.42)
+5 / dr de' Ut (e, )T (¢, 1) U (r — ') (2’ )0 (x, 1),
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Figure 2.2: Illustration of dipole-dipole interactions of atoms whose dipole moments
are polarized along the z axis. In the middle, we have a generic case determined
by relative position between atoms r and angle between the polarization axis z and
vector r. On the left-hand side is a special case § = 0, which is usually called
head-to-tail configuration, when the dipoles attract each other. On the right-hand
side is another special case, corresponding to § = 7/2, when the dipoles repel. This

configuration is usually called side-by-side.

where Upy(r) = Ue(r) + Uqa(r). The dynamics of the system is governed by the
Heisenberg equation
0

ih s (r. 1) = [\if(r,t),lﬂ . (2.43)

For the Hamiltonian (2.42), the above commutator can be readily calculated, and

we obtain the equation of motion as follows

A

2
ih 2\I/(r,t) =| - h—V2 + U(r,t) + /dr’ U, t) Ui (r — 1)

ot 2m (v, t)] \i’(ra t).

(2.44)
The mean-field theory is obtained, according to (2.14), when we replace the field

operator with the wave function of the condensate \if(r,t) = 1(r,t) and neglect
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quantum fluctuations, yielding the dipolar GPE in the form

0 n?

ihoeth(r,t) = | = o =V2+ U(r ) + gl (r, 1)/
ot { (2.45)

+ /dr’w*(r',t)Udd(r — 1’ (' 1) | (r, t).

The above equation is also called the nonlinear Schrédinger equation, where two
types of nonlinearities are present due to the two types of interactions, namely the

contact interaction and the DDI.

The dipolar GPE can be cast into a dimensionless form, which is useful for ana-
lytical and numerical considerations. This is done by choosing a reference frequency
w,, and by expressing all other physical variables in units defined by it, i.e., lengths
in units of harmonic oscillator length | = \/W, time in units of 1/w,, and

energy in units of Aw,. This leads to dimensionless variables

x y z as add
r— -, yYy— 5, Z—> =, s —> —, Q44 — ——, t — wt,
l l l [ l (2.46)
1 1 :
¢(r7 t) - l3/2 ’QZ)(I', t) ) U(I‘, t) - U(I‘, t) ) Udd(rv t) — Udd(r7 t) :
hew, hew,
This rescales the harmonic trapping potential to the form
1 2.2
Ur,t) = 5('yx + 7y + N2 (2.47)

where v = w,/w,, ¥ = wy/w,, and A = w,/w, are the trap aspect ratios, which may

be time-dependent. Taking all this into account, the dimensionless dipolar GPE

reads
1
i 81/1((9;, t_ {——VQ +5 (72 + 0%y + X%2%) + dxNay [ (r, 1)
| 3eesd (2.48)
— O COS
N [ S 0 [vte).

where 6 is the angle between the vector r —r’ and z axis. The wave function here is
normalized to unity [ dr|¢(r,t)]> = 1, and the density profile is given by n(r,t) =
N |¢(r,t)|%. In the mean-field approximation, the many-body wave function can be

written as

\I/<I'1,...,I'N, H

=1

U(r;, t) (2.49)

E\H
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The above time-dependent dipolar GPE describes the dynamics of the system.
Since the ground state wave function has a common phase, it can be chosen to be
zero, thus making the wave function real. The time-independent ground state wave

function 1y (r) satisfies the time-independent GPE, or the eigenequation

1 1
pbo(r) = [—EVZ + 3 (v’2® + °y* + N?2°) + 47 Na, lih(x)|”

2.50
— 3cos? 6 ( )

+ 3Nay / ' (@) |w(r),

lr — /|3
where the chemical potential p is the corresponding eigenvalue. Both the time-
dependent and time-independent dipolar GPE can be exactly solved only numer-
ically. In this thesis, we do so using the Crank-Nicolson split-step semi-implicit
method [35-37]. From the analytic point of view, we use the variational approach,

which is presented in the next section.

2.4 Variational approach

The dipolar GPE equation can be written as the Euler-Lagrange equation for the

following Lagrangian density
i : - 1,
£0,7) = 5 (¥ = ¥4 ) + 50"V3 — UJgP - 2nNa, |yf*

. 2
-2 [ 2 P

2 r —r/|3

where the wave function of the condensate is a function of space and time variables
Y = ¢(r,t), and the trap potential U = U(r,t) is given by Equation (2.47). The
GPE (2.48) is obtained as the Euler-Lagrange equation with respect to ¢*, or as
the complex-conjugate of the Euler-Lagrange equation with respect to ). The above
Lagrangian can be used as a starting point for a variational description of the ground
state and the dynamics of a BEC. This is done by selecting a suitable ansatz for the
wave function, calculating the Lagrangian of the system L(t) = [ dr £, and deriving
the equations of motion for the variational parameters present in the wave function
ansatz. The variational approach is a valuable method to study the behavior and
properties of BECs and we use it to investigate the collective modes and density

waves.
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For the variational study, we use the Gaussian ansatz [38-41|

1 —at B 2 iRy tizes
w(l" y’ 27 t) e —7T3/4 e 2ufg Quy 2ug ’ (252)

/U Uy U

where the six variational parameters {u;, ¢;} are functions of time and represent

the condensate widths and conjugated phases, respectively. If only the ground state
is studied, then the phases ¢; can be omitted, and the condensate widths can be
assumed to be constant. However, if we want to study the system’s dynamics, then
the phases are necessary, and therefore we take them into account. The coefficient in
front of the exponent function is chosen so as to keep the wave function normalized

to unity.

Using the Lagrangian density (2.51) and ansatz function (2.52), by integration

we calculate Lagrangian of the system, consisting of five terms
L(t) = Ly(t) + Lo(t) + L3(t) + Ly(t) + Ls(t) . (2.53)

We calculate all term independently. The first one reads

L) =g [ (070 007) =5 (w2 +udd, +020) . (250

while the kinetic energy term gives

1 ) 1/1 1 1
Ly(t) = §/drw V2 = - (E Tt AuS el + dulel + 4u§¢3) . (2.55)
x Yy z

The term corresponding to the potential energy yield
1
La(t) = — /drU 97 = =5 (P + v+ ) (2.56)

and the contact interaction term gives

Na,
V2T uguyu,

The DDI term is more complex to calculate. It reads

Ly(t) = —27rNa5/dr |t = — (2.57)

Ly(t) = 20 / dr [(r) / dr' Ugar — ©') [(") 2, (2.58)

where, in the rescaled units, the dipolar potential is given by

1 —3cos?d
r3 ’

Uga(r) = (2.59)
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The r’ integral can be calculated using the convolution theorem,

. 3Nadd

Lo(t) = =255 [ ar o) PF {F U (9 F 0] 00} (). (200

where F stands for the direct and F~! for the inverse Fourier transform. The
above expression can be further simplified if we explicitly write the inverse Fourier
transform,

3NCde
2 (2m)3

Ly(t) = [k F a0 7 [08) 00 [ de e, o

The last integral is equal to F [W)m, which can be readily calculated,
F[[9] (k) = e athithpg th). (2.62)

The Fourier transform of the dipolar potential F [Ugq] (k) is calculated in Ap-
pendix A and reads

F [Uad] (k) = %ﬂ (3cos®d—1) = Am <3kz — 1) : (2.63)

3\ K2
If we put all these elements together, the DDI term of the Lagrangian is given by

3N6de /{33 1 E2u2+k2u2 +k2u2
“@:‘my/%(%ﬂWHﬁ—le““yyZ* (2.64)
z Yy z

and, as shown in Appendix B, can be expressed in terms of the anisotropy function

f

Nagq (um uy>
Ls(t) = ———f—,— | . 2.65
5() \/ﬁuxuyuzf Uy Uy ( )

The anisotropy function [42] is defined as

27 iy
1 3 22y? cos? 0
y)=—— [ do [ dfsinf -1,
J(z.9) A / 7 / o <(a72 sin? ¢ + 42 cos? @) sin? 0 + 2292 cos? 0 )
0 0

(2.66)

and its solution can be expressed via elliptic integrals [43] of the first and the second
kind. Details on the anisotropy function and how it can be expressed for different
values of the arguments = and y are given in Appendix C. Now that we have calcu-
lated the Lagrangian of the system, we derive the Euler-Lagrange equations for the

variational parameters,

d (0L oL
E (a_(]z) - 8% = 07 q; € {Uxauy7uz7¢m7¢y;¢z}7 (267)
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that describe the time evolution of the parameters.

tions for the phases ¢;, which turn out to be

U

b =

QUZ' .

We first proceed with the equa-

(2.68)

The Euler-Lagrange equations for the condensate widths u; contain the phases ¢;

and their derivatives, which can be eliminated using the above equations. This leads

to the second-order differential equations for the parameters u; in the form

.. 1 2 N Uy Uy Uy U
iy + 7 1ty — 3_\/j 2 [as—addf( )+add—f1( y)] =0
us T UG Uy U, u, U, u, U,

(2.69)

. 1 2 N Uy U Uy U
uy+V2“y_ 3_\/i 2 as —addf( y)+add—f2( y)] =0
U T U UL w, U, U w, U,

Y

(2.70)

1 2 N Uy U U Uy U
. 2 T Yy x T Yy
u; T Ug Uy U uz U, U, Uy Uy

(2.71)

where f; and f5 are partial derivatives of the anisotropy function with respect to

the first and the second argument. More details

Appendix C.

on these derivatives are given in

The above equations are used to variationally study the dipolar BEC dynamics,

as well as the corresponding ground state. The algebraic equations determining the

ground state are obtained by assuming that the

condensate widths are constant,

thus removing their second derivatives from the equations of motion.
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3 Ground-state properties

In the previous section, we have seen that the condensation corresponds to the accu-
mulation of a macroscopic number of particles in the ground state. In the mean-field
theory at zero temperature, all atoms are condensed in the lowest single-particle
quantum state, while the ground-state wave function |[¢(r)[*> = n(r) determines
the density distribution of atoms. The wave function is a complex quantity, whose
square of the modulus describes the contribution of the condensate to the diagonal
elements of the density matrix p, and whose phase has a role in the coherence char-
acterization. The wave function is defined up to a constant phase factor, reflecting
the U(1) symmetry of quantum mechanics. For a system with a time-independent
Hamiltonian, the condensation leads to a symmetry breaking, such that the whole
condensate is described by a constant phase, which can be set to zero. This can
be also seen as a consequence of the off-diagonal long-range order discussed ear-
lier. Since its phase can be set to zero, the wave function of the ground state can
be always taken to be real-valued. In BEC experiments, the ground state usually
represents the first step and is achieved by cooling an atomic or molecular sample
using a variety of techniques. The ground state can be reliably described by the
GPE [7,8], as discussed previously. In typical experiments, the dynamics of the sys-
tem is induced from the ground state by perturbing the system or changing some of
the system parameters, such as the interaction strength or the trap geometry. The

behavior of the system is then observed using the time-of-flight imaging technique

or in-situ types of measurements.
For a noninteracting system, the GPE reduces to a Schrédinger equation with a
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given trap potential. In case of a harmonic potential (2.22), the ground state of a
noninteracting bosonic system is determined by the lowest single-particle quantum

state, which is given by the Gaussian function
3/4 N
0l .2) = (2)" () i o) (31)
T

Therefore, in the weak-interaction limit a Gaussian function represents a good choice
for a perturbative or variational treatment of the system. In the other limiting case,
when the interaction is strong such that the kinetic energy term can be neglected,
one can use the inverted parabola of the Thomas-Fermi approximation as a starting

point for various analytic approaches.

3.1 Variational description of the ground state

To describe the ground state variationally, we rely on the Gaussian ansatz (2.52). In

the static case, the dynamical equations of motion (2.69) - (2.71) have the following
\/5 Na, \/5 Nadd Uy Uy \/fNadd f U Uy _
T uu,u, uzuyuz U, U, T U Uyyu2 "\, )
(
\/5 Nayg \/ENadd Uy Uy \/ENadd f Uy Uy _0
T upulu, u$u2uz w, U, T U Uy U2 N w, )
\/5 Na, \/5 Nadd Uy Uy N 2 Naddf Uy Uy
T uxuyu2 T uguyu?’ \u, u, T uyu’ u, U,

2Nad§f (%7%) =0.
T UpUs, U, U,

(3.4)

form

The ground state of the system is characterized by the constant condensate widths
u;, © € {x,y,2z}. Solving the above system of nonlinear algebraic equations we
directly obtain the widths of the condensate. In some special cases, this can be
done analytically. For example, if we neglect the dipole-dipole interaction by setting

aqqa = 0, and if the system is cylindrically symmetric, such that u, = u, = u,, the
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variational equations reduce to

2 Nagu,

2,4
=1 = 3.5
VU =144/~ w2 (3.5)
2 Na,
uy =1+ — (3.6)

Because the number of atoms in the system is much larger than 1, the first term

in the above equations can be neglected and the widths of the condensate can be

>N 1/5 5 1/5
Qs
Uy A (\/; i ) .U, N (\/%N@ﬂ) : (3.7)

As we can see, if we have only the contact interaction, the size of the condensate

expressed as

increases in all directions with the increase of the interaction strength as ar®. We
also see that the condensate width u, in the direction of weak confinement is always

larger than u,, since u,/u, = 1/7 > 1.

If we now take into account the dipole-dipole interaction, the system of equations
(3.2) - (3.4) cannot be analytically solved anymore. However, it can be simplified
when the direction of weak confinement matches the direction of the dipoles’ polar-
ization. Assuming cylindrical symmetry of the trap, the anisotropy function satisfies
the following limit

(2 + %) f,(2)

o (3.8)

limz fi(z,y) = limy fo(x,y) =
y—T y—z

where fs(z) = f(x,z) is the cylindrically symmetric anisotropy function which is

defined in Appendix C. Using this the variational equations (3.2) - (3.4) lead to the

system
2 Nu
up =1 =—"[as — aqa Az 3.9
Ty =144/~ a2 a5 — aaa Aa(K)] (3.9)
2N
up =1+ — las — aqa A,(K)] , (3.10)

where £ = wu,/u,, while functions A,(x) and A,(k) are defined by

2 — Tk? — 4k + 9kt d(k)
Aal) = 2(1 — K2)2 ’

(3.11)
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1410k — 962 d(k) — 2K*
B (1—k2)2 ’

Ay(k) (3.12)

with

(k) tanh™' /1 — K2

K) = )
V1 — k?

In the limit of small x, the above functions have limits A,(k) = 1, A (k) — 1, with

(3.13)

k2d(rk) — 0. If we again neglect the first term in Equations (3.9) and (3.10) due to
N > 1, this system can be solved analytically in the zeroth-order in x. The solutions
are the same as (3.7), with a, replaced by as = as — aqq. However, depending on the
value of k, the corrections of the order x and higher could be important, such that
the system (3.9) and (3.10) has to be solved without applying £ — 0 approximation.
In this case, the above equations cannot be solved analytically and the numerical
approach is necessary. As we are considering a case when the dipoles are oriented in
the 2z direction and the cylindrical symmetry is not present anymore, we have to use
the full set of variational equations (3.2) - (3.4) in order to determine the ground

state widths.

Note that the above equations for the ground state widths, with or without cylin-
drical symmetry, can be used to assess the stability of the system as well. Namely,
we know that even in the absence of the dipole-dipole interaction the system can
become unstable if the contact interaction is attractive (a; < 0). This happens if
the number of atoms is sufficiently large, such that the right-hand sides of equations
(3.2) - (3.4) become negative. The situation is more complex in the presence of the
dipole-dipole interaction, which is anisotropic and can lead to instability due to the
trap geometry, even for a large and positive contact interaction. The numerical ap-
pearance of negative condensate widths can be used to detect the onset of instability

in the solutions of the above equations.

3.2 Ground state of °’Cr, 'Er and '“Dy BECs

Now we will explore how the ground state looks like for condensates of atomic

chromium *2Cr, erbium '®FEr, and dysprosium '6*Dy, using a numeric and a varia-
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tional approach for the system which parameters are given in detail in Appendix D.
As outlined in Chapter 6, the numerical calculation of the ground state relies on
the imaginary-time propagation. As a starting point we always use a Gaussian
wave function that corresponds to the noninteracting case (3.1), i.e., the variational
ansatz (2.52) with u; = 1/y/wi/w, and ¢; = 0, given by Equation D.3. Starting
from such a state, depending on how far from the ground state it is, the imaginary-
time propagation evolves it exponentially fast to the ground state. Figure 3.1 shows
the ground-state condensate density for N = 10* atoms of the considered atomic
species, together with the chosen Gaussian initial state. We plot the corresponding

integrated densities
o) = [ [ dydzlotas. 2P, (3.14)
(o) = [ [ dzdelotey )P, (3.5)
n(z) ://dxdy|@/)(x,y,z)|2, (3.16)

where blue line represents the corresponding initial, Gaussian state density n;, and
red line the numerically obtained ground state density n;. The trap weakly confines
the atoms in the = direction, and therefore the condensate density ny(x) is much
more elongated than the other two densities. This can be seen in Figure 3.1 for
all species, with the corresponding width for 2Cr of around 35.706 pm, while for
18 Er and 94Dy the widths are around 23.201 pm and 23.339 pm, respectively. Here
the widths w;, i € {z,y,2} are defined as two times the root-mean-square of the

corresponding coordinate, i.e., 24/(x2), 24/(y2), 2/(22). Note that for the initial

states we have w; = 2u; = 2/ \/m The differences in the numerically obtained
values of w, are mainly the result of the contact interaction, i.e., a combination of
the s-wave scattering lengths and masses of atoms. The values of a, for all three
species are quite similar, and therefore the main difference in the ground state widths
comes from the mass difference, while the dipole-dipole effects are very small due
to the small density n(z). It is one order of magnitude smaller than the densities
in other directions, as can be seen from Figure 3.1. However, the dipole-dipole
interaction significantly changes the densities in the y — z plane. Although the

trap is cylindrically symmetric in that plane, the dipole-dipole interaction breaks
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Figure 3.1: Integrated ground-state densities (red lines) of BEC of N = 10* atoms of
chromium 52Cr (first row), erbium %8Er (second row), and dysprosium %Dy (third
row). The initial Gaussian wave function that corresponds to the noninteracting case
(blue) is propagated in the imaginary time for 100 ms to obtain the ground state
(red line). The first, second, and third column give the corresponding integrated
densities in x, y, and z direction, respectively. The observed significant elongation of

the condensate in the z direction is due to the trap geometry defined in Appendix D.

this symmetry, which can be seen by comparing the middle and the right-hand side

column in Figure 3.1.

In recent experiments it was demonstrated that the strength of the dipole-dipole
interaction can be tuned by applying a fast-rotating magnetic field, or for electric
dipoles, a fast-rotating electric field [24,25]. In our description, this corresponds
to changing the value of the parameter aqq. If we set agq = 0, then the system is
reduced to a BEC with only the contact interaction. Note that this can be effectively

achieved if the external field that orders the dipoles is switched off. To compare how

31



S — S b
g 2Cr agqg =0 — = [0 agqa =0 — s |20 g =0 —
=l 3 51 - R = o = e b
> agq = 15.126 ay — = agq = 15126 ap — = aqq = 15126 ¢y —
£ 02 £ 47 1E 4y ]
Q S Q
£ £ 3 £ 3
2 01 2 2 2 2
o 3 OB
= 0.0 N g ob—~A . 0N = ob—A . N
—40 =20 0 20 40 -4 -2 0 2 4 —4 =2 0 2 4
z (pm) y  (pm) z (pm)
05 ‘ ‘ ‘ R 1 P 1
g 18 gy aga =0 — i Er agq =0 — g 1 Er agq =0 —
r\: 0.4t aqq = 66.564 ag — ] = 97 agq = 66.564ap — | = 9 aqq = 66.564 ¢y — |
5 03} g 5
= = 6 = 6F
< 0] g z
0l ~ 3 3
= = K
£ 0.0 : ' ' =0 : : ' ' : S0 . . .
—40  —20 0 20 40 -3 -2-1 0 1 2 3 -3 -2 -1 0 1 2 3
z (pm) y (pum) z (pm)
05 ‘ ‘ ‘ T — o
é 164Dy agq = 0 — g 1()4DY Aqq = 0 — % 1(’4Dy Agqq = 0 —
T 0 aw=132607a — | F 9t aw=132007a — | F 0| au=1320607a — |
5 03 3 g
= = 6 = 6
Z 0] Z &
— 0.1 — 37 1 Py 3¢
= = )
= 0.0 : ‘ ‘ S oL . N = 0 R
—40 —20 0 20 40 -3 -2-10 1 2 3 -3 -2-1 0 1 2 3

x (pm) y (pm) z (pm)

Figure 3.2: Integrated ground-state densities of BEC of N = 10* atoms of chromium
»2Cr (first row), erbium '®Er (second row), and dysprosium %Dy (third row).
Red lines correspond to the densities obtained by taking into account the dipole-
dipole interaction, while blue lines are obtained for aqq = 0. The first, second, and
third column give the corresponding integrated densities in z, y, and z direction,
respectively. Table 1 gives relative differences in the condensate widths due to

dipolar effects.

the dipole-dipole interaction contributes to the ground state properties, Figure 3.2
gives the corresponding results for chromium *?Cr (first row), erbium %®*Er (second
row), and dysprosium %Dy (third row), with (red) and without (blue lines) the
dipole-dipole interaction. As expected, the figure shows cylindrical symmetry in the
y — z plane when the dipolar effects are neglected, while the asymmetry grows when
they are taken into account, from chromium to dysprosium, as the dipole moment
increases. Table 1 gives relative differences of the condensate widths due to the

dipole-dipole interaction, Aw;/w; = 1 — w;(0)/w;(aqq). Positive values correspond
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Table 1: Relative differences of the ground-state condensate widths due to the dipole-
dipole interaction. The values correspond to the integrated densities from Figure 3.2
for a BEC of N = 10* atoms. The differences are calculated as Aw;/w; = 1 —
w;(0)/w;(aqa), i € {x,y,z}. A positive value represents an increase of the width,

and negative the opposite.

Species aga (ao)  Awg/w, (%) Awy/w, (%) Aw,/w, (%)
2Cr 15.126 0.959 -1.055 2.044
168 Ey 66.564 4.009 -10.987 13.469
164y 132.607 3.624 225457 20.748

to the increase of the width due to dipolar effects, and negative values the opposite.
As expected, the condensate elongates in the direction of the dipoles, while due to
the interplay of geometry and interaction effects, its width increases in the z and
decreases in the y direction. As noted earlier, the relative change in the x direction
is negligible, while in other directions it is quite significant for species with large

dipole moments.

As mentioned earlier, propagation in imaginary-time is used to calculate the
true ground state of the system starting from any initial state (provided that it is
not orthogonal to the ground state). The convergence to the ground state can be

detected by the convergence of all physical quantities that describe the system, in

35 : 45 : 45
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Figure 3.3: Convergence of the chemical potential of a BEC of N = 10* atoms of
chromium 52Cr (left), erbium %*Er (middle), and dysprosium ‘Dy (right) during
imaginary-time propagation, with (red) and without (blue line) the dipole-dipole

interaction for the system parameters given in Appendix D.
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particular, its chemical potential, energy, and the expectation value of the system’s
size. Therefore, the convergence of these quantities is used as a criterion in numerical
simulations, which is illustrated in Figure 3.3. In the left panel we can see the
decrease of the chemical potential for chromium %2Cr, in the middle panel for erbium
168Er, and in the right panel for dysprosium %4Dy, both with and without dipole-
dipole interaction. The chemical potential is expressed in units of Aw,, where w, =
160.5 x 27 Hz is rescaling frequency. From Figure 3.3, we observe that the dipole-
dipole interaction increases the energy of the system. Furthermore, this energy
difference increases with the strength of the interaction agqq, and reads 306 hw;,

1444 hw,, and 2101 Aw,, respectively for the listed atoms.

3.3 Interaction effects on the ground state

In this section, we study the influence of the short-range contact interaction on the
ground state properties of dipolar condensates. For the first experimental realization
of BEC, it was possible to tune the strength of contact interactions over a wide range
using the Feshbach resonance technique [9]. By adjusting the external magnetic field
close to a Feshbach resonance, the contact interaction strength can be tuned from
large positive to large negative values, i.e., it is even possible to switch between
repulsive and attractive interactions. To model this, we keep fixed the dipole-dipole
interaction strength to experimentally measured values listed in Appendix D for each
species, and investigate the ground state properties when the contact interaction
parameter is varied in the interval from a, = 10 ag to a; = 200 ag for the condensate
of N = 10* atoms. It turns out that erbium '®*Er BEC is unstable for low values
of as, so we use the region from a, = 40a¢ to as = 200aq in this case. Similarly,
for dysprosium %Dy we use the interval from a, = 90 ag to a, = 200 ag. Figure 3.4
illustrates the contact interaction strength dependence of the condensate widths in
x, y, and z direction obtained from the numerical simulations (red) and variational
calculation (blue line). As expected, the increase of the repulsive contact interaction
leads to the increase of condensate widths in all directions. Results of numerical

simulations agree with the results of the variational analysis with the relative error
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Figure 3.4: Condensate widths as functions of the contact interaction strength for
a BEC of N = 10* atoms of chromium **Cr (first row), erbium '®®Er (second row),
and dysprosium %Dy (third row). Results are obtained for fixed dipole-dipole
interaction strengths given in Table 2. Red lines represent numerically obtained

widths, and blue lines the variational ones.

of around 30%. As we can see from Table 2, which lists relative differences of the
ground-state condensate widths for two values of the contact interaction strength,
as = 90 ag and ay = 200 ag, the increase of the repulsive contact interaction increases
the condensate width in all directions and for all species. We also observe that
the dipole-dipole interaction suppresses elongation of the condensate in z direction,

where it is attractive.

Although more difficult, it is also possible to tune-down the strength of the
dipole-dipole interaction for magnetic atomic species using a fast-rotating magnetic
field [24,25]. The maximal possible values are defined by the permanent magnetic

moment of the corresponding species. To investigate the effects of the dipole-dipole
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Table 2: Relative differences of the ground-state condensate widths due to the
contact interaction. The values correspond to the condensate widths from Fig-
ure 3.4 for a BEC of N = 10* atoms. The differences are calculated as Aw;/w; =
w; (200 ag) /w;(90ag) — 1, i € {z,y, z}.

Species aga (ao) Awz/w, (%)  Awy/w, (%) Aw,/w, (%)
2Cr 15.126 16.917 9.748 7.957
168y 66.564 15.361 14.612 5.353
164Dy 132.607 17.446 21.554 2.139

interaction on the ground-state properties, we numerically and variationally calcu-
late the condensate widths of chromium %2Cr, erbium '%8Er, and dysprosium '®4Dy
in the interval from aqq = 0ag to aga = 170ag, keeping the contact interaction
strength fixed. Due to the instability of erbium and dysprosium condensates for
large values of aqq, we have used the interval from agqq = O0ag to aqq = 140 ag for
those two species. Figure 3.5 illustrates the striking effect of the dipole-dipole inter-
action which has a non-monotonous behavior of the condensate width in z direction,
causes a decrease in y direction and increase in z direction. The agreement between
numerical and variational results as quite reasonable, with the error of around 30%.
Table 3 gives relative differences of the ground-state condensate widths for aqq = 0

and aqqg = 100ag. As we see, the change is most prominent in y and z direc-

Table 3: Relative differences of the ground-state condensate widths due to the dipole-
dipole interaction. The values correspond to the condensate widths from Figure 3.5
for a BEC of N = 10* atoms. The differences are calculated as Aw;/w; = 1 —
w;(100 ag) /w;(0), i € {z,y, z}. A positive value represents an increase of the width,

and negative the opposite.

Species as (ag)  Awg/w, (%) Aw,/w, (%) Aw,/w, (%)
2Cr 105 5.004 -12.180 14.676
168y 100 4.290 -17.326 17.388
164Dy 100 4.308 -17.205 17.336
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Figure 3.5: Condensate widths as functions of the dipole-dipole interaction strength
for a BEC of N = 10* atoms of chromium *?Cr (first row), erbium '®Er (second
row), and dysprosium '%4Dy (third row). Results are obtained for fixed contact
interaction strengths given in Table 3. Red lines represent numerically obtained

widths, and blue lines the variational ones.

tion. With an increase of the dipole-dipole interaction, the size of the condensate
increases in z direction, and decreases in y direction. This is expected since it is
well known that the condensate elongates along the direction of maximal attraction
of the dipole-dipole interaction. On the other hand, the increase of the size in x

direction is also observed but is much smaller.
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4 Collective oscillation modes

Calculation of the system’s ground state is usually the first step in analytical and
numerical approaches. The same applies to the experimental studies, where obtain-
ing and characterizing the ground state represents the first and necessary step before
proceeding to further measurements. The characterization of the ground state in-
cludes measurement of its density profile and condensate widths, as we have seen
in the previous section. In addition to these static properties, an important way
to probe the system is to study its low-lying excitations or collective modes. Such
excitations can be generated from the ground state by a small perturbation of the
system’s parameters. This results in small oscillations of the condensate density
and its widths, which can be experimentally observed using the time-of-flight imag-
ing or some of the in-situ techniques. The analysis of experimental results, as well
as the results obtained in numerical simulations, includes the Fourier analysis of

condensate widths, which yields the frequencies of the collective modes [44-46].

It is well known that the collective oscillation modes of a noninteracting Bose gas
are disentangled, i.e., independent in each spatial direction, with the frequency equal
to twice the corresponding trap frequency. The presence of interactions in the system
couples different modes, which results in the appearance of the breathing mode,
quadrupole mode, radial-quadrupole mode, dipole mode, etc. Their frequencies are
shifted with respect to the noninteracting case, and the study of these interaction-
induced frequency shifts represents one of the important characterization methods
used to describe the ground-state properties. From the experimental point of view,

probing of the collective excitations is one of the most accurate measurements that
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can be performed in ultracold atom systems, with the precision of the order of one
per mille. Therefore, a comparison of numerically or analytically obtained estimates
for the frequencies of collective modes is an excellent method to check the validity
and level of confidence of the models used. As in our case, there are two types
of interaction in the system, and both of them independently affect the collective

modes and their frequencies, which we study in this section.

In the case of externally driven systems, which is necessary to generate the den-
sity excitations, such as Faraday waves, one can expect the appearance of resonances
in the system. This usually happens when the driving frequency is close to one of
the frequencies of the collective modes, or their linear combination. In some cases,
this leads to the emergence of the Faraday waves, while sometimes resonant waves
appear, as we show in Chapter 5. Therefore, it is essential to understand well the
collective modes of the system, to either avoid resonant behavior or to induce it

when necessary.

4.1 Variational description of collective modes

For the variational study of the collective modes, we use the Gaussian variational
ansatz (2.52), and equations of motion (2.69) - (2.71) derived in Section (2.4). The
system is perturbed from the ground state by a small change of one of its parameters,

such that the condensate widths become time-dependent,
wi(t) = wio + ou;(t), i€ {x,y, 2}, (4.1)

where u;y are the constant ground-state widths, and du;(t) are small oscillation
amplitudes, |du;(t)] < u. If we insert the expression (4.1) for the condensate
widths into the equations of motion (2.69) - (2.71), and linearize the system by
expanding it in the small parameters ou;(t) and keeping only the terms of the first
order, we obtain a coupled system of ordinary linear differential equations of the

second order, which can be expressed in the matrix form as
du(t) + Méu(t) =0. (4.2)

39



Here du(t) is a vector [0u,(t) du,(t) du.(t)]”, and elements of the matrix M are

calculated from the Lagrangian of the system (2.53),
0?L(u)

(9uz- 8Uj u=ug

. 1) €{y 2} (4.3)

To calculate the frequencies of the oscillations induced in the system, we write the

solution of equation (4.2) in the following form
Su(t) = due™t, (4.4)

where du is a constant vector, and w denotes a collective mode frequency. If we insert
this into the matrix equation (4.2), the collective mode frequencies are eigenvalues

of the matrix M, i.e., solution of the following eigenproblem

det(M — w?*I) =0. (4.5)

The above eigenproblem can be analytically solved in a simple way in some
special cases. For example, if the system is cylindrically symmetric, such that u, =
u, = u,, the problem is essentially two dimensional leading to additional symmetry
in the matrix M, which now has the form

my My My
M= my mg ms| - (4.6)
my M3 Mo
Due to this, the corresponding eigenproblem can be fully solved in a closed form.

The frequencies of the collective modes in this case are

m1+m2—|—mg+\/(mg—f—mg—ml)2—|—8m?1

2
— 4.7

wh = m1+mz+ms—\/<w213+mz—m1>2+8mi7 (4.8)
Who = M2 — M3, (4.9)

with the corresponding eigenvectors

T
uB:[m1—m2—m3+\/(223;+m2—m1)2+8m421 1 1} , (4.10)
T
ug = |:m1*m2*m3*\/(2inni+m2*ml)2+8mi 1 1:| , (411)
1 T
URQ:E [O —1 1} . (4.12)
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In the above expressions, index B denotes the breathing mode, Q the quadrupole
mode and RQ the radial-quadrupole mode. The modes can be identified by analyzing
the corresponding eigenvectors. In the first case, all three components of ug are
positive, which means that it corresponds to the breathing mode. In the second case,
the longitudinal component of ug is of the opposite sign of the radial components,
thus it represents the quadrupole mode, and in the third case, the longitudinal
component of upg is zero, while the two radial components are of the opposite sign,

which means that this mode can be identified with the radial-quadrupole mode.

Next, we consider the system with contact interaction only. If we set aqq = 0,

the derivatives (4.3) of Lagrangian (2.53) yield the following elements of matrix M

3 2 Na,
Uz 7Tu:zroupo
3 2 Nag
Upo Wuxoupo
2 Nayg
My =)= — (4.15)
T Uy Uy

2 Nag

where w;, i € {x,p} are the ground-state condensate widths given by equations
(3.5) and (3.6). Using the above expressions in (4.7) - (4.9), we can calculate the
frequencies of the collective modes as functions of the contact interaction strength
ag, the number of particles N, and the trap aspect ratio . For the noninteracting
system, in the limit a;, — 0, we obtain for the collective mode frequencies wg = 2,
wg = 27, and wrg = 2. These frequencies are given in dimensionless units, while
the physical values are obtained by multiplying them with the referent frequency
Wy = wy = w,, such that wp = 2w,, wg = 2w,, and wrg = 2w,. As mentioned
earlier, in this special case we obtain the collective mode frequencies equal to twice

the trap frequencies.

If the contact interaction is present in the system, then the collective mode fre-
quencies depend on its strength a,. Figure 4.1 shows this dependence, obtained from

the variational approach for a BEC of N = 10* atoms of chromium 2Cr, where the
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Figure 4.1: Frequencies of the breathing (left), quadrupole (middle), and radial-
quadrupole (right) collective mode as functions of the contact interaction strength
for a BEC of N = 10* atoms of chromium *?Cr. Results are obtained using the

variational approach, and neglecting the dipole-dipole interactions.

dipole-dipole interaction is neglected. As we can see, when the contact interaction
parameter is varied in the interval from as = 0 to as = 200 ag, the frequency of the
breathing mode slowly increases, while the frequency of the quadrupole mode slowly
decreases. The decrease in the frequency of the radial-quadrupole mode is more
prominent than in the case of the quadrupole mode. On this figure we also observe
that in the noninteracting limit wp and wgrg tend to 321 x 2 Hz = 2% 160.5 x 27 Hz,
and that wg tends to 14 x 27 Hz =2 x 7 x 27 Hz.

In order to compare the variational results with experiments, we use the values
obtained in Reference [44] for a BEC of N = 1.5 x 107 atoms of »Na. For a trap
with the frequencies 16.93(2) x 2r Hz and w, = 230(20) x 27 Hz, the experimentally
measured value of the quadrupole mode frequency was wg = 1.569(4) w,, which
in excellent agreement with our variationally result wg = 1.581w,. For the same
parameters, the results of numerical simulations yield the frequency wg = 1.575 wy,
which is in even better agreement with the experimental value. Therefore, we con-
clude that the above variational and numerical approach can be reliably applied to

study ultracold atomic systems.

While it is still justified to neglect the dipole-dipole interaction for atomic species
such as *?Cr, for species with larger values of the dipole moment it is necessary to
take it into account. We now present the variational calculation of the collective

mode frequencies for the case of a cylindrically symmetric system with the dipoles
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oriented in the direction of weak confinement. In this case, the elements of matrix M
again have the form given by Equation (4.6). We have calculated the ground-state
widths (3.9) and (3.10) for such a system in the previous section, which allows us

to calculate the elements of matrix M as follows

i = 4 u%o N 2\/2 usi\; p (0, () (4.17)
me =1+ U%o + 2\/2%2\;;%0 (as — aggA,p(K)) , (4.18)
ms = \/g%f)\;éo (as — aggAzp(K)) , (4.19)
- \/g#uiﬁo (0 — dagAu(K)) | (4.20)

where £ = wy0/uz0, and functions A;;(x), i, j € {z, p} are defined by

4kS — 126 — 9kMd(K) + 51K? — 36K7d(K) + 2

Aze(K) 21— ) : (4.21)
32k% — 99k8d (k) + 141K* — 36k*d(Kk) — H4K? + 16
16K5 — 45k d(k) + 51k — 30K2 + 8
A, (k) = : 4.23
P(’i) 8 (1 _ H2)3 ( )
4K5 — 36K* + 45K d(K) — 15K + 2
A = 4.24
with
tanh™" /1 — K2
d(k) = 2 = (4.25)

V1— k2

During the calculation of the matrix elements (4.21) - (4.24), in addition to (3.8),

we have used the following identities satisfied by the anisotropy function

9[(4+2?) fi(z) —2(1 — 2?)]

lim x,y) = lim T,Y) = , 4.26

e fu(z,y) e fa2(2,9) S(1— 22 (4.26)
, , 8+ 8x2 —xh) fo(x) —2(4 — ba? + 2

lim fia(z,y) = lim for (2, ) = ) Jelw) ~ 2 ) o)

Yy—x Yy—T 12 (1 _ 1’2)

where fs(z) = f(x, ) is the cylindrically symmetric anisotropy function, and f;; are

second partial derivatives,
82

fij(ilil,l’Q) = Mf(xbe) . (428)

In the limit of small x, which corresponds to the cigar-shaped trap geometry

that we consider (7 < 1), the above functions can be approximated in the zeroth
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order by A,.(k) = A,(k) = Aup(k) = App(k) — 1, with k*d(k) — 0. In this
approximation, the matrix elements can be cast in the same form as Equations
(4.13) - (4.16), just with a, replaced by as = a5z — aqq. The corresponding collective
mode frequencies are given again by Equations (4.7) - (4.9), which are evaluated

using the above-approximated values of m;,.

We now consider the experimentally relevant system when the dipoles are ori-
ented in the z direction, such that the cylindrical symmetry is not present anymore,
although the trap remains cylindrically symmetric. In this case, the matrix M is
just a symmetric matrix, without the additional symmetry we had before. After a

lengthy, but straightforward calculation, we obtain

3 2 N [ sz
YA T S T - | e
Uz T UpoUyoUzo L 2
3 2 N r KJQZ
M22: 1 +T+2 3 as_add(f_/fyzf2+ Y fgz)] , (430)
uyO m U’-’EOuyOuZO - 2
3 2 N r
Mz = 14+ —+24/ ————5 |5 — daa (f + 264: 1 + 2Ky fot (4.31)
’LLZO T Umouyouzo L
ﬁiz KQZ
’i:pz/iyzfm + Tfn + Tyfgz)] 5 (432)
2 N r
My, = ;UQ w2 as — Gdd (f - "fxzfl - fiyzf? + /?:vzﬁyzf12>i| 5 (433)
0 “y0 %20 -
2 N i 2
M13 = ;—u2 " u2 s — Qdq (f - /ﬁ?xzfl -+ K)yzfg — /ﬂ?leﬁlyzflg — szf11>:| s (434)
20 %y0%20 -
2 N )
Moz = P S as — Add (f + Kgo f1 — Kyafo — KezKyzfi2 — K,yzfgg):| , (4.35)
z0%y0%20 -

where we have used abbreviations k;; = uio/ujo, f = f (Kaz, £y2), and

0 0?

fi= an(/szy ’fyz) ) fij = f(’ixza /fyz) . (4'36>

Gmiz 8an

4.2 Interaction effects and the collective modes

The usual low-lying collective oscillation modes, such as the breathing, quadrupole,
and radial-quadrupole mode, are direct consequences of the existence of interactions

in the system. In the absence of interactions, the many-body physics is reduced to a
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one-body problem, and for bosons this amounts to simple disentangled oscillations
along the trap axes as the normal modes, with the frequencies equal to twice the
corresponding trap frequencies. In this noninteracting case, although each atom
would oscillate independently with the corresponding frequency even if no other
atoms are present, the fact that the atoms are identical and that all of them would
perform the same type of oscillations makes their dynamics practically a collective

mode.

The presence of interactions, even if quite weak, changes the situation dramat-
ically and allows the emergence of the well-known collective modes [44]. In the
previous section, we have derived the variational expressions for the frequencies of
those collective modes and we now study how they are affected by the strength of
the contact and the dipole-dipole interaction. We have already seen in Figure 4.1,
where the frequencies of the collective modes are calculated variationally as func-
tions of the contact interaction strength by neglecting the DDI, that the breathing
and the quadrupole mode frequencies depend very weakly on a,, while the radial-
quadrupole mode is more sensitive. Figure 4.2 presents numerical and variational
results for all three atomic species, where we take into account the DDI, both nu-
merically when solving the dipolar GPE and variationally, using the expressions
derived in Section 4.1. Not surprisingly, the breathing and the quadrupole mode
frequencies still exhibit the flat behavior, while the radial-quadrupole mode shows
a significant dependence on a,. Therefore, the contact interaction strength, which
can be tuned in experiments in a very broad range, can be considered as a control
parameter only for the radial-quadrupole mode, whose frequency can be adjusted

this way, although in a limited range.

From Figure 4.2, we see that our variational approach properly captures the
functional behavior of all the modes and gives frequency values, which are in very
good agreement with the numerical ones. The absolute errors are of the order of
few Hz, which makes them practically negligible for the breathing and the radial-
quadrupole mode, while in the case of the quadrupole mode, due to its low value of

around 12 Hz, the relative error amounts to 10%.
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Figure 4.2: Effects of the contact interaction on frequencies of collective oscilla-
tion modes: the breathing mode (left column), the quadrupole mode (middle col-
umn), the radial-quadrupole mode (right column), for a BEC of N = 10* atoms of
chromium *?Cr (top row), '®Er (middle row), and '**Dy (bottom row), for a fixed
dipole-dipole interaction strength given in Appendix D. Red upper triangles are
numerically obtained values using the FFT analysis, and blue lines are variational

results from Section 4.1.

Next, we focus on the effects of the dipole-dipole interaction strength, presented
in Figure 4.3. The results for the breathing and the quadrupole mode are quite
similar, although one can see a slight increase in the breathing mode frequency
and a slight decrease in the quadrupole mode frequency as aqq increases. However,
the radial-quadrupole mode frequency shows a nonmonotonous behavior, albeit in
an even more limited range. The variational approach works equally well here as
in the case of the contact interaction, and, in particular, it properly describes the

nonmonotonous behavior of the radial-quadrupole mode.
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Figure 4.3: Effects of the dipole-dipole interaction on frequencies of collective os-
cillation modes: the breathing mode (left column), the quadrupole mode (middle
column), the radial-quadrupole mode (right column), for a BEC of N = 10* atoms
of chromium *2Cr (top row), '®Er (middle row), and '®*Dy (bottom row), for a fixed
contact interaction strength given in Appendix D. Red upper triangles are numeri-
cally obtained values using the FF'T analysis, and blue lines are variational results

from Section 4.1.

The precise knowledge of the collective oscillation mode frequencies is essential
not only for comparison with the experiments, where measurements of these fre-
quencies are the most precise and can be used for testing of various theoretical and
numerical approaches, but also for a deeper understanding of the dynamical re-
sponse of the system in many experimental situations. This is of particular interest
for driven systems, where resonances may appear close to frequencies of collective
oscillation modes. This is also relevant for the study of Faraday waves, which can
be generated only by modulating the system at non-resonant frequencies, as we will

see in Chapter 5.

A7



5 Faraday and resonant waves

In the previous section, we have seen that a small perturbation of one of the system
parameters generates collective oscillation modes, which we have analyzed using the
spectral analysis of the condensate widths. We demonstrated that frequencies of the
collective modes depend on the geometry of the system, as well as on the strength
of the contact and the dipole-dipole interactions, but we did not discuss the spatial
period of the induced waves since it was much larger than the size of condensate.
Therefore, one can assume that the condensate density is only slightly spatially mod-
ulated in the presence of collective modes. However, if the perturbation is performed
periodically, i.e., if one of the system parameters is harmonically modulated in time,
the spatial period can become small enough to produce observable density patterns
in the condensate. The classical phenomenon of Faraday waves inspired this line of
research [28], and although oscillations of a shallow layer of liquid generate surface
waves, while periodic modulation of one of the system parameters of a quantum fluid
produces density waves, both share the common name in the literature — Faraday

waves.

Bose-Einstein condensates are usually termed quantum fluids, which encom-
passes a broader range of physical systems where quantum effects are either domi-
nant or very much pronounced. Despite their name, some of quantum fluids do not
share the trademark property of classical fluids, incompressibility. In fact, the BECs
are made of rarefied gases, but their fluid-like behavior stems from the quantum co-
herence of such systems. Therefore, while in classical fluids density modulations

can be excited only under extreme conditions, in quantum fluids the density waves
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represent one of the natural collective excitations. Parametric driving of system
parameters can lead to pattern formation not only in BECs, where Faraday waves
are experimentally observed in cigar-shaped rubidium [30] and lithium [47] conden-
sates, but also in helium cells [48]. The actual experimental observation of this
phenomenon in 2007 was preceded by numerical studies starting in 2002 [29,49-53],
all focusing on systems with short-range, contact interactions. More recently, Fara-
day waves have been studied in dipolar [33,54-56] and two-component condensates,
including the systems with spatially-dependent contact interaction [31,32]. Nu-
merical studies of Faraday waves have also been extended to mixtures of Bose and
Fermi gases [57], as well as Fermi gases exhibiting superfluid behavior [58,59]. An
interesting phenomenon of Bose fireworks [60] is related to Faraday waves, but ap-
pears during the free expansion of the system, when density patterns may also

emerge [61-63].

The parametric modulation of a BEC system generically leads to the emergence
of the Faraday waves. However, resonant behavior can also be observed if the system
is modulated at one of its collective mode frequencies [64]. In that case, the Faraday
waves are suppressed and resonant waves emerge on a much shorter time scale.
Interestingly this can happen not only by modulation of the interaction strength,
but also by the modulation of the trapping potential or even the spatial modulation

of the trap [65-79].

In the context of dipolar BECs, the study of Faraday waves was limited mostly
to their excitation spectrum in one-dimensional and two-dimensional systems [54],
while the properties of resonant waves were not studied to the best of our knowl-
edge. Here, we focus on an analytical description of Faraday and resonant waves in
dipolar condensates [33]. In particular, we study how such waves develop in ultra-
cold systems of three dipolar species: chromium [10], erbium [12], dysprosium [11].
We consider the system with the parameters specified in Appendix D, with the
dipoles oriented along z direction and the cigar-shaped trap in the weakly confined

x direction. The radial (y — z) component of the trap is harmonically modulated,
wy(t) = w,(t) = Qo(1 + esinwy,t) , (5.1)
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where € = 0.1 — 0.2 is the modulation amplitude and w,, is modulation frequency.

These are typical values taken from the experiment of Reference [30].

In this chapter, we develop a variational approach for the study of the dynamics
of a driven dipolar BEC and identify the instability of the system leading to the
emergence of Faraday and resonant waves. Using this approach, we calculate the
dependence of wave properties on the strength of the contact and the dipole-dipole
interaction. The analytically obtained expressions for the spatial period of Faraday
and resonant waves are compared to results of the extensive numerical simulations,

which solve the full three-dimensional mean-field equations for a dipolar BEC.

5.1 Variational approach

For a variational study of Faraday and resonant waves in dipolar condensates, we use
a modification [31,32,49-53, 56,64, 80, 81] of the Gaussian ansatz (2.52) to capture

the induced density waves in the direction of weak confinement (z direction),

2 2 22

-2 ;2 2
D,y 2,1) = Ae 23 2F nZ TG

1+ (a+iB)coskz] , (5.2)

where A = A(uy, uy, us, @, B, k) ensures the normalization of the wave function to

unity,

B 1 V2
AN V24 02 + 2+ dae a4 (o + B2) e R '

The above variational ansatz involves eight variational parameters {u;, ¢;, «, 8},

(5.3)

which are functions of time. The parameters u; represent the condensate widths,
while ¢; are the conjugated phases, which are necessary to describe the system’s
dynamics properly. Note that these phases can be omitted when we are interested
only in the ground state. The multiplicative factor 1 + (v + if3) cos kz describes
the density modulation along x direction, and the variational parameters o and [
represent the real and the imaginary part of the amplitude of the wave. The wave
vector k, which is related to the spatial period ¢ of the density waves by ¢ = 27 /k,
is not treated here as a variational parameter. We determine its value from the

condition for the instability emergence, which leads to Faraday or resonant waves.
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If we insert the modified Gaussian ansatz (5.2) into the Lagrangian density (2.51),
we obtain the expressions for the five terms (2.53) of the Lagrangian of the system.

The first term reads

i L N1 : : : _aﬁ—ﬁd
b= [ (s = (i 20) T
and the kinetic energy term is equal to
Lit) = 5 [ drvrviy
(a2 + B%) k2 (5.5)

i il 4 2 2 4 242 4 2 42 _ )
4 \ug A A A A oy

1 /1 1 1
= —- + =5+
Uy
The potential energy term is calculated using the expression (2.47) for the potential,
yielding
1
Ls(t) = — /drU ] = - (vVuZ +vPul + Nul) | (5.6)

while the contact interaction term reads

Na, (1 at +16a% + 20262 + 54)>
V2T gy, 2(2 4 a? + (?2)? .

Ly(t) = —27rNas/dr |t = —
(5.7)

The Lagrangian term that corresponds to the DDI is calculated following a procedure
similar to the one described in Section 2.4. However, due to the modulation term
in the modified Gaussian ansatz, it is not possible to perform exact integration to

obtain Ls(t). Using the convolution theorem, the DDI term can be written as

. 3Nadd
2 (2m)3

Lo(t) =~ iyt [ Ak F ) (0 F [0 (19 [[ar [0 er, (53)
where the last integral is equal to F [|1/1|2} (k), and can be calculated exactly,
F Uw’ﬂ (k) _ Be—%(kiui—f—kiu%-&-k?ui) : (59)

where B = B(k,, ug, o, 5, k) is given by

B 4+ 4(e—§(k—2kz)ui 4 e—%(k+2kz)ui) o+ (2+ e k(h—ke)ui e—k(k-‘rk‘x)u%) (a® + 3?)

2 [2 +de a4 (1 + e Ful) (a2 + 52)
(5.10)

Grouping all elements together, the DDI term of the Lagrangian becomes

3Nadd/ k2 9 _1(p2,2 2,2 1.2,,2
Ly(t) = — dk (3 ——=2—— — 1| B?e alkauathyuythzuz) 5.11
() =~ 5 ( 2R+ k2 ¢ (5.11)
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and cannot be exactly calculated. To proceed further, we take into account that
the condensate width in the weak confinement direction is large compared to the
order widths, as well as compared to the spatial period of the density waves, such
that ku, > 1. We also take into account that the wave amplitude is small imme-
diately after the waves emerge, such that a, 8 < 1. Therefore, we approximate the

expression for B2 in the following manner
2
a o
B*x~1 B? B2, 5.12
NPT 1+(2—|—a2—|—52)2 2 (5.12)

where B} = Bi(ky,u,, k) and By = B3 (k,, ug, k) are given by

1 2 1 2 2
Bf = 4 ik (gl 1), (5.13)

B2 = 4 o= Fhlkt2ke)u? <e%kkzu§ _ 1>2 (ekkzug _ Geskhaud o 1) ’ (5.14)

and correspond to the coefficients in front of the terms linear and quadratic in the
wave amplitude, respectively. Since the integral over k cannot be performed exactly
even for the approximate expression (5.12), we replace the coefficients B? and B3

by their averages over k,,

ok (B ) BB [k (35 1) Brei
(B7) = k2 Tlew 12 i (5.15)

After that, we obtain (B?) ~ 0 and (B3) ~ —8. Note that we have neglected all

—k2u2/8

terms proportional to e and its powers, as already argued that ku, is a large

quantity. Therefore, B? turns out to depend only on « and 3, and reads

8a?
L . 5.16
(2+ a2+ %) (5.16)

If we look at the expression (5.11), we see that now B? can be put in front of the

integral sign, and integration over k can now proceed as in Section 2.4, yielding, i.e.,

the DDI term of the Lagrangian in terms of the anisotropy function f becomes
Nagq (ux u ) ( 8a? )
Ls(t) = —— 44 g2z v ) (1 — . 5.17
s(1) V2T uxuyuzf Uy U, (2 4+ a? + ?2)? (5:17)

Let us compare the calculated Lagrangian terms (2.54)—(2.57) and (2.65) in Sec-

tion 2.4 with expressions (5.4)—(5.7) and (5.17), respectively. Except for the poten-

tial energy term L3(t), which remains unchanged, we see that all other terms are
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modified by an additional additive or multiplicative factor, arising due to additional
variational parameters o and 5. The Euler-Lagrange equations for the system are

given by

d (0L OL
% (aqz) - an - 07 q; S {umyuy7UZa¢$7¢y;¢z,O{,6}, (518)

where L is a sum of all five calculated terms. Assuming that the wave amplitudes «

and [ are small, such that their quadratic and higher-order terms can be neglected,

the equations for the condensate widths, turn out to coincide with those obtained

in Section 2.4. The three equations for the phases ¢; yield, as in Section 2.4,
U;

- 2u;

i

(5.19)

After elimination of the phases ¢; from the corresponding set of equations for the
condensate widths u;, we obtain the second-order differential equations (2.69)—(2.71)

again. The Euler-Lagrange equation for the variational parameters g yields
2¢
== (5.20)

which we use to eliminates S from the corresponding equation for the parameter
a, as was done with the phases. With this, the equation for o turns out to be the

second-order differential equation,
k* 2 N .
d+{—+\ﬁ [aﬁaddf(“—,@)}k?}a:o. (5.21)
4 T Ug Uy U, Uy Uy

In the context of variational analysis of Faraday and resonant waves, the above

equation of motion for the wave amplitude « is usually cast into the form of the

Mathieu-like equation
G+ la(k) + eb(k)sin27]a = 0. (5.22)

This equation can be solved perturbatively in the small modulation amplitude e.

Assuming a solution in the form of a harmonic oscillator

a(T,€) = P(eT) cos <T a(k;)) + Q(eT) sin (7’ a(k)) : (5.23)

+iéT

we obtain that functions P and () are exponentials of the form e**”, where £ is a

complex number. The existence of the imaginary part of £ leads to the instability,
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e., to the exponential growth of the wave amplitude, which yields Faraday or
resonant waves. It was shown in Reference [82] that the nonvanishing imaginary
part of £ appears for a(k) = n?, where n € N, and this represents the mathematical

form of the instability condition.

In order to cast Equation (5.21) into the Mathieu-like form (5.22), we need to
take into account that the radial trap frequencies are modulated, such that the
corresponding trap aspect ratio is given by v(t) = A(t) = A\o(1 + esinn,,t), where
Ao = Qo/w, and 1, = wy,/w,. This generates the dynamics of the system and we
need to obtain approximate expressions for the condensate widths in order to get an
explicit form of the quantities a(k) and b(k). We assume that the condensate width
u, slowly varies, and can be taken to be constant at the onset of instability. We also
assume that second derivatives of the radial widths u, and u,, with respect to time,
can be neglected, since they are proportional to the small modulation amplitude
€. Furthermore, for simplicity, we assume u, ~ u, = u,, which now satisfies the

modified equation (2.70) or (2.71),

=t E o 2 () (2)]

On the right-hand side of the above equation we assume that the ratio u,/u, is
constant and equal to the corresponding ration for the ground state, which can be
calculated as in Section 3.1. To derive Equation (5.24), we also use the following

limits of the anisotropy function

2+2*)filx)
2(1 —2?) ’

lim f(,) = —3 £Lfa),  lmafiloy) = £(1/2).

fi(@) = lima fi(z,y) = limy fo(z,y) =
e e (5.25)

If we express uz from Equation (5.24), and use it to estimate the quantity u,u, ~ uz

in Equation (5.21), as well as the above limits, that yield

Uy uy\ 1 u
f (u— u—y> =5/ (U—Z) : (5.26)

the equation for the variational parameter o can be written as

i + {T +AT]“2A( )] a=0, (5.27)
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where A is given by

N[ ()

" : (5.28)
e {0 2 oo (2) — ot (2]}

Inserting the explicit form for A(¢), we obtain

&+ la(k) + eb(k) sinn,t]ja =0, (5.29)
where
4 A 2 A 2
a(k) = % + Aof . b(k) = A04k . (5.30)

In order to transform the above equation into the Mathieu-like equation (5.22), we

need to make a variable change 7,,t — 27, which finally yields the expressions for

the coefficients a = a(k) and b = b(k),

Kt NgAK?
_l’_

oAk
ConZ A B '

n?

;o b(k)

(5.31)

As previously discussed, the instability condition for the Faraday waves reads

a(k) = 1, which can be used to calculate the wave vector of waves shortly after the

A 22
k:F:\/—A; +\/A°4 2, (5.32)

This represents the variational prediction for the wave vector k and the spatial period

emergence of the waves,

¢ =27 /k of the Faraday waves, which can be directly compared with numerical or
experimental results. Let us also stress that the above analysis is consistent with the
main characteristic of the Faraday waves, namely, that their oscillation frequency is
half that of the driving frequency. Since 7 = n,,t/2, from Equation (5.22) we see
that indeed, the solution of the derived Mathieu-like equation oscillates with the
frequency 7,,/2, i.e., with the frequency w,,/2.

If the modulation frequency is close to one of the collective oscillation modes,
the system will exhibit resonant behavior, which is suppressed for an arbitrary value
of the modulation frequency. While the system’s dynamics will certainly include

the Faraday mode at the frequency w,,/2 even close to a resonance, the resonant
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mode with the frequency w,, will have a larger amplitude and will develop much
faster. Although it is clear that the analysis of this section would break down, the
condition for the emergence of resonant waves still corresponds to a(k) = 22, i.e.,

the wave vector of the resonant wave is given by

oA A2A2
kR:\/—‘; A A (5.33)

In that case, according to 7 = n,,t/2 and Equation (5.23), the resonant density wave

will oscillate with the frequency whose aspect ratio is (7,,/2)V22 = n,,, i.e., with
the frequency w,,. Depending on the system’s parameters, higher resonant modes
can also appear corresponding to the conditions a(k) = n?, where n is an integer,

corresponding to the oscillation frequencies nw,y, /2.

5.2 Faraday waves in °’Cr, '®Er and '“Dy BECs

In order to study Faraday waves in dipolar condensates, we have performed exten-
sive numerical simulations of the real-time dynamics and solved the dipolar GPE
using the programs described in Chapter 6. The parameters for these simulations
closely match the physical parameters of BECs of chromium *2Cr, erbium '68Er, and
dysprosium %Dy, which are given in detail in Appendix D. It is well known [65-79]
that Faraday waves can be expected as a main excitation mode of the system when
the modulation frequency w,, does not match any of the characteristic frequencies
of the system, i.e., when it is sufficiently far from any of the collective oscillations
modes or the trap frequencies. Therefore, we use the value w,, = 200 x 27 Hz, which
we know satisfies these conditions from our study of collective modes from Chapter

4, and the values of the trap frequencies listed in Appendix D.

Figure 5.1 shows time dependence of the integrated density profile in the weak
confinement direction n(x,t), which is obtained by integrating the condensate den-
sity over the radial coordinates y and z according to Equation (3.14). The emergence
of spatial patterns is clearly visible for all three atomic species after around 150 ms.

This is consistent with earlier experimental observations [30,47| and theoretical re-
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Figure 5.1: Time evolution of the integrated density in the weak confinement direc-
tion for a BEC of N = 10* atoms of chromium **Cr (top), erbium '*Er (middle),
and dysprosium %Dy (bottom). The results are obtained for a periodic modula-
tion of the trap frequencies w, and w, according to Equation 5.1 with ¢ = 0.2 and
wy, = 200 x 2 Hz. The contact interaction strength is a, = 150 ag and the DDI
strength is given in Appendix D for each species. The Faraday waves can be visually

observed after approximately 150 ms for all three species.
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sults [65-79]. The density waves in x direction from Figure 5.1 take time to develop
and are the result of the transfer of energy from the modes that are directly excited
in the radial directions, where the trap is modulated. This can be seen in Figure 5.2,
where we show the corresponding time dependence of integrated density profiles in y
and z direction. The density waves in the radial directions emerge immediately after

the modulation is switched on at t = 0, and their frequency is equal to the mod-

Figure 5.2: Time evolution of the integrated density in y direction (left column)
and z direction (right column) for a BEC of N = 10* atoms of chromium 5?Cr (first
row), erbium 1% Er (second row), and dysprosium %Dy (third row). The results are
obtained for the same parameters as in Figure 5.1. The frequency of oscillations of
the condensate densities in the radial direction is equal to w,, = 200 x 27 Hz. We
see that, due to the dipole-dipole interaction, the width of the condensate is larger
in the direction parallel to the dipoles (z direction) than in the orthogonal direction

(y direction), in particular for *Er and %Dy, as already shown in Section 3.3.
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ulation frequency. Comparing the left and right column in Figure 5.2, we can also
directly observe the DDI effects. As we know, the dipole-dipole interaction causes
the elongation of the condensate width in the polarization direction of the dipoles.
Although the trap frequencies in y and z direction are equal, we see in Figure 5.2
that the condensate widths in z direction for all three species are larger than the
corresponding y direction widths, and the difference increases as the strength of the

DDI increases from chromium to dysprosium.

In order to characterize the density waves, we typically analyze their FF'T spec-
tra in the time-frequency and in the spatial-frequency domain. This enables us to
determine the frequencies of the main excitation modes, as well as the spatial period
of the observed density patterns. However, instead of directly analyzing the density
profiles presented in Figures 5.1 and 5.2, for the FFT it is advantageous to have
a clearer signal, which can be obtained by considering only the density variations
compared to the initial state, i.e., the ground state of the system, before the mod-
ulation is switched on. The integrated density profile variation in the confined x
direction is shown in Figure 5.3, and the corresponding density profile variations in

y and z directions are presented in Figure 5.4.

As expected, the emergence of Faraday waves is now more easily discernible
in Figure 5.3, and the same applies to the oscillations of the density shown in
Figure 5.4. By looking at these two figures, we can even estimate the main oscillation
frequency, e.g., counting the number of maxima or minima in a given time interval.
For instance, in the last 50 ms in each of the panels in Figure 5.3 we count 5 periods,
which corresponds to the frequency 100 x 27 Hz = w,,/2. This is a distinguishing
characteristic of Faraday waves, and therefore we directly determine that in this
case the system develops this type of collective oscillations. On the other hand,
in Figure 5.4 we can count 10 periods (maxima or minima) in a given 50 ms time
interval, which corresponds to the modulation frequency w,,. Thus, in the radial
directions we observe as the main excitation mode the direct response of the system

to the harmonic modulation of the trap.

However, this way we can determine only the main excitation modes. The dy-
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Figure 5.3: Time evolution of the integrated density profile variation in the weak
confinement direction for a BEC of N = 10* atoms of chromium **Cr (top), erbium
18Er (middle), and dysprosium %Dy (bottom), for the same parameters as in
Figure 5.1. The variations dn(x,t) are obtained by subtracting the density profile
of the ground state n(x,t = 0) from the time-dependent integrated density n(z,t)

presented in Figure 5.1.
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namics of the system contains other modes as well, and, over time, they can develop
and even start to dominate the behavior of the system. Therefore, it is important to
analyze the spectra in more detail. This is done in Figure 5.5 for all integrated den-
sity profile variations from Figures 5.3 and 5.4. For simplicity, the FFT analysis is
performed for the profiles at the trap center. As expected, in the weak confinement
direction, the left column in Figure 5.5, the main excitation mode has a frequency

wm/2. In addition to this, we observe two other modes, at w,, and 3w,,/2. This

Figure 5.4: Time evolution of the integrated density profile variations in y direction
(left column) and in z direction (right column) for a BEC of N = 10* atoms of
chromium **Cr (first row), erbium '®®*Er (second row), and dysprosium Dy (third
row), for the same parameters as in Figure 5.1. The variation in a given direction
y or z is obtained by subtracting the density profile of the ground state from the
corresponding time-dependent integrated density presented in Figure 5.2. The dif-
ference between the condensate widths in y and z direction, which was observed in

Figure 5.2, is also clearly visible here.
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is expected from the theoretical analysis in Section 5.1, but could not be discerned

directly from the density profiles or their variations.

In the Fourier spectra of the integrated density profile variations in the radial
directions, middle and right column in Figure 5.5, we see a somewhat richer set of
excitation modes. In addition to the main mode corresponding to the trap mod-
ulation at w,,, we see that also the breathing mode is excited at the frequency
wp ~ 321 x 27 Hz, which was determined in Section 4.1. The spectra prominently
contain the second modulation harmonic at 2w, as well. We see some other peaks
in the spectra as well. For instance, the small peak at around 120 x 27 Hz, which
can be due to the linear combination of the modes wgp — w,,. However, such an
identification would require further theoretical and numerical analysis, which is out

of the scope of this thesis.

While the Fourier analysis in the time-frequency domain can be used to deter-
mine the character of the induced density waves (Faraday, collective, resonant), the
analysis in the spatial-frequency domain enables us to characterize the density pat-
terns and calculate their spatial period. This is illustrated in Figure 5.6 for Faraday
waves for all three considered atomic species. The integrated density profile varia-
tions are analyzed at appropriate times, which are determined to correspond to the
evolution stage when Faraday waves have fully emerged, but the system is still far

from the violent dynamics that inevitably follows after the long driving period.

In all three panels of Figure 5.6 the main peak corresponds to the wave vec-
tor kp of the Faraday waves, and we see significant differences: for *>Cr we obtain
kr = 0.57 um™!, yielding the spatial period ¢ = 27/kr = 11.02um; for '®Er we
get kp = 0.98um™! and ¢ = 6.41um; for %Dy we have kp = 1.10 um~! and
¢ = 5.71um. The variational analysis presented in Section 5.1 yields results which
are in good agreement with the numerical ones, namely kr = 0.51 um~! for *2Cr,
kr = 0.91 yum~* for 1Er, and kr = 1.06 um~! for *Dy. These variational results
are shown in Figure 5.6 by vertical blue lines, which illustrates their agreement with
the Fourier analysis. The presented spectra also contain some additional peaks that

correspond to other geometrical features of the analyzed density profile variations,
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such as the condensate width and its higher harmonics, as well as the higher harmon-
ics of the Faraday wave periods, and linear combinations of all of these. However,

they are not of interest in our analysis and we will not study them further.

Note that the spatial period of Faraday waves can be also determined by directly
looking at the density profile variations in Figure 5.3, and estimating the spacing

between the consecutive minima or maxima at the appropriate evolution time. For
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Figure 5.5: The Fourier spectrum in the time-frequency domain of the integrated
1D density profile variations of Faraday waves at the trap center dn(x = 0,t) in x
direction (first column), én(y = 0,t) in y direction (second column), and dn(z =
0,t) in z direction (third column) for a BEC of N = 10* atoms of chromium *Cr
(first row), erbium '®Er (second row), and dysprosium %Dy (third row). The
corresponding density profile variations are shown in Figures 5.3 and 5.4. Vertical
blue lines represent theoretical predictions, where w,,/2 corresponds to Faraday
waves, w,, and 2w, to resonant waves, and wp is the variational result for the

breathing mode frequency obtained in Section 4.1.
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Figure 5.6: The Fourier spectrum in the spatial-frequency domain of the integrated
1D density profile variations of Faraday waves in x direction on(z,t = 272 ms) for
2Cr (left), on(x,t = 225 ms) for '®Er (middle), and dn(z,t = 193 ms) for 61Dy
(right) BECs with N = 10% atoms. The corresponding density profile variations are
shown in Figure 5.3. Vertical blue lines represent theoretical predictions for the wave
vector kr of the Faraday waves, i.e., the variational result obtained in Section 5.1,

Equation (5.32).

instance, for chromium, we count three minima over the spatial extent of 30 pm,
yielding an estimate ¢ ~ 10um. Similarly, for erbium, we count 5 minima over
the spatial extent of 30 um, yielding ¢ ~ 6um, and for dysprosium, the count and
the estimate are the same. Obviously, these estimates are not as precise as the
Fourier analysis results, and therefore we rely on FFT spectra to systematically
determine the spatial periods of Faraday waves and their functional dependencies

on the contact and dipole-dipole interaction strength.

5.3 Interaction effects and properties of Faraday waves

In the previous section, we have shown how Fourier analysis can be used to calculate
the spatial period of Faraday waves. Now we systematically study the interaction
effects, i.e., how the contact and the dipole-dipole interaction strength affect the
properties of generated density waves. First, we explore the influence of the contact
interaction on the emergence time and the spatial period of Faraday waves for a
fixed value of the dipole-dipole interaction strength, by varying the s-wave scattering
length in the experimentally relevant regime. In laboratory this can be achieved by

employing the Feshbach resonance technique, which allows to tune a, by changing
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the external magnetic field, thus changing the electronic structure of atoms and their

scattering properties.

The existence of Faraday waves is a consequence of nonlinearity of the system,
i.e., the presence of the contact and the dipole-dipole interaction terms in the Hamil-
tonian. In a linear system, described by the pure Schrodinger equation, the harmonic
modulation of the trap in the radial direction would not be transferred into the longi-
tudinal direction. Therefore, the emergence time of Faraday waves (and other types
of density waves in the longitudinal direction) critically depends on the strength of
interatomic interactions. However, if interaction strengths become sufficiently large,
the emergence time is less sensitive to their changes. Since we are considering three
species where the dipole-dipole interaction is strong in erbium and dysprosium, we
can expect that the emergence time of Faraday waves significantly depends on the

contact interaction strength only in chromium, where a4q is small.

This is illustrated in Figure 5.7, where we see the density profile variations for
chromium for three different values of a,. Let us first note that the amplitude
of density variations is much smaller in the top panel for a; = 60ay than in the
middle panel for a, = 80ag, and significantly smaller than in the bottom panel
for a; = 150aq. This is also evident from the fact that in the top and middle
panel we can clearly see the quadrupole collective oscillation mode, which has a
frequency of around wg = 12 x 2w Hz. This can be estimated from the figure and
compared to the value obtained in Section 4.2 for chromium, Figure 4.2. When the
interaction is sufficiently large, the amplitude of Faraday waves is much larger than
those of the collective modes, and they cannot be even discerned in the bottom
panel in Figure 5.7. Only for weak interactions the amplitude of the Faraday waves
is comparable to the amplitude of the collective modes, and this is the reason why

we can see them all for small values of a.

Like all other excitations, Faraday waves start to develop immediately after the
modulation is switched on. The question on their emergence time is related to their
amplitude, which is time-dependent and grows exponentially, as can be seen from

the solution (5.23) of the Mathieu-like equation that describes the dynamics of the
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Figure 5.7: Emergence of Faraday waves for different strengths of the contact in-
teraction: as = 60ag (top), as = 80ay (middle), and a; = 150ay (bottom) for a
BEC of N = 10* atoms of *2Cr. From these integrated 1D density profile variations
on(x,t), obtained for a fixed value of the dipole-dipole interaction strength given in
Appendix D, we observe that Faraday waves emerge faster as the contact interaction

strength increases.
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Faraday density oscillations. The imaginary part of the parameter £ in Equation
(5.23) is responsible for the exponential growth of the Faraday waves’ amplitude,
which is not the case for collective modes. Therefore, in practical terms, the defini-
tion of the emergence time of Faraday waves is always arbitrary and can be expressed
as a time needed for the density variations to reach a certain absolute or relative
(compared to the total density) value. One can even relate this to the experimen-
tal point of view, where there is a threshold for the density variations that can be
observed, due to measurement errors. However, in numerical simulations there are
no such limitations and one can easily use an arbitrary definition to estimate the
emergence time of density waves. The more relevant quantity to study would be
the exponent that governs the growth of the wave amplitude, which depends on the

interaction strength.

Now we turn our attention to spatial features of the Faraday waves. Figure 5.8
presents the dependence of the wave vector kr on the s-wave scattering length a, for
all three considered species. We also show the variational results for the dependence
kr(as) derived in Section 5.1. The agreement is very good, with errors of the order
of 10 - 15 %. We stress that the derived variational expression closely follows the
numerical results not only by their values, but, even more importantly, it follows

their functional dependence properly.
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Figure 5.8: Wave vector of the Faraday waves kr as a function of the contact
interaction strength for a BEC of N = 10* atoms of *2Cr (left), **Er (middle), and
164Dy (right), for a fixed dipole-dipole interaction strength given in Appendix D.
Red upper triangles are numerically obtained values using the FFT analysis as in

Figure 5.6, and blue lines are the variational results according to Equation (5.32).
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Figure 5.9: Wave vector of the Faraday waves kr as a function of the dipole-dipole
interaction strength for a BEC of N = 10* atoms of *2Cr (left), '®*Er (middle), and
164Dy (right), for a fixed contact interaction strength given in Appendix D. Red
upper triangles represent numerically obtained values using the FFT analysis as in

Figure 5.6, and blue lines are the variational results according to Equation (5.32).

Next, we study the effects of the dipole-dipole interaction strength for a fixed
value of the contact interaction. Figure 5.9 shows the corresponding dependence of
kr on agqq. In contrast to the contact interaction dependence, where kr was a de-
creasing function of a4, here we see that kr increases as the dipole-dipole interaction
strength is increased. Figure 5.9 also shows the variational results, where the level of
agreement with the numerically obtained results is different, with errors as small as
7 % for chromium up to around 25 % for erbium and dysprosium for largest values
of agq. Due to complex approximations made in the derivation of variational re-
sults, in particular those related to the dipole-dipole interaction term, the obtained
functional dependence is not as good as in the case of contact interaction, but still

provides reasonable estimates of the wave vector values for the Faraday waves.

5.4 Resonant waves

In the presence of interactions various excitation modes in dipolar BECs are coupled
and the energy pumped into the system by periodic driving can be transferred from
the driving direction to other, orthogonal directions. In the previous section, we
have seen this for non-resonant driving, when the harmonic modulation in the radial
direction was transferred to the longitudinal direction in the form of Faraday waves,

which were the main excitation mode generated. The main distinguishing property
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of these excitations is halving of the oscillation frequency, i.e., the induced density
waves have the frequency w,, /2. Here we study the other important case, when the
modulation frequency is resonant, such that the induced density waves have the same
frequency. This happens when w,, is close to one of the characteristic frequencies
of the system, e.g., one of the frequencies of the collective oscillation modes or one
of the trap frequencies. Although Faraday waves and all other collective oscillation
modes are also excited in this case, the largest amplitude corresponds to resonant
waves with the frequency w,,. When generated, these resonant waves dominate the

behavior of the system and make all other excitations negligible for the dynamics.

Figure 5.10 shows the integrated density profile variation of '%*Er for a resonant
wave induced by a harmonic modulation of the radial part of the trapping potential
at w, = wy, = w,, i.e., when the modulation frequency coincides with the radial
trapping frequency. In this case, the density waves develop much faster than for

non-resonant modulation and are clearly visible already after 55 ms. Due to a vi-

Figure 5.10: Time evolution of the integrated density profile variation in the weak
confinement direction for a BEC of N = 10* atoms of erbium '®®*Er. The parameters
of the system are given in Appendix D, and the modulation frequency used is equal
to the weak confinement frequency, w,, = 160.5 x 27 Hz = w, = w,. We observe
resonant behavior corresponding to the first harmonic of the resonant frequency

wy = w,, which sets in after around 55 ms.
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olent dynamics that emerges in the system very fast, it is not easy to estimate the
frequency of the waves directly from Figure 5.10, as was possible before. There-
fore, we rely on the Fourier analysis in the time-frequency domain, presented in the
left panel of Figure 5.11. The obtained FFT spectrum clearly shows that the main
excitation mode has a frequency equal to w,,. We also see that the spectrum is con-
tinuous, practically without distinct individual peaks, and only the second harmonic
at 2w,, = 321 x 2m Hz yields a small local maximum. This demonstrates that the
system is far from the regime of small perturbations, where individual excitation

modes can be observed.

In the right panel of Figure 5.11 we see the Fourier spectrum in the spatial-
frequency domain, which yields the wave factor kg of resonant waves. The FFT

results give the value kr = 1.59 um™!

and the corresponding spatial period ¢ =
27 /kr = 3.95um for ®Er. In the figure we also present the variational result

kr = 1.40 yum™!, calculated using Equation (5.33). The agreement is again quite
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Figure 5.11: The Fourier spectrum of the integrated 1D density profile variations
on(z,t) at the trap center in the time-frequency domain (left), and of the density
profile variations in x direction dn(x, t = 68 ms) in the spatial-frequency domain
(right) of resonant waves for a BEC of N = 10* atoms of ®Er for the same pa-
rameters as in Figure 5.10. The vertical blue line in the left panel represents the
modulation frequency w,,, while in the right panel it corresponds to the theoreti-
cal prediction for the wave vector kg of the resonant waves derived in Section 5.1,

Equation (5.33).
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good, which indicates that the variational approach we developed in this thesis can

be reliably used not only for the Faraday waves, but also for the resonant waves.

This can also be concluded from Figure 5.12, which presents the results for
the dependence of the resonant wave vector kr on the contact and dipole-dipole
interaction strength. The agreement between the numerical and variational results
is of the order of 10 % over the whole experimentally relevant domain. We see similar
behavior for the resonant waves as for the Faraday ones, namely the wave vector
decreases as the contact interaction strength increases, while the opposite is true for
the dipole-dipole interaction. Again the functional dependence obtained from the
variational approach properly describes the numerical results, thus confirming that

Equation (5.33) can be used to calculate the spatial period of resonant waves.

It is interesting to note that resonant behavior appears not only under the con-
ditions mentioned above, when w,, is equal to one of the characteristic frequen-
cies, but also when it matches their higher harmonics. Figure 5.13 illustrates this

for 1% Er, which is harmonically modulated at twice the radial trapping frequency,
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Figure 5.12: Wave vector of the resonant waves kr as a function of the contact
(left) and dipole-dipole (right) interaction strength for a BEC of N = 10* atoms of
168Er. The results in the left panel are obtained for a fixed dipole-dipole interaction
strength given in Appendix D, and similarly, in the right panel, a fixed contact
interaction strength from Appendix D is used. In both panels, red upper triangles
represent numerically obtained values using the FF'T analysis as in the right panel of

Figure 5.11, and blue lines are the variational results according to Equation (5.33).
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Figure 5.13: Time evolution of the integrated density profile variation in the weak
confinement direction for a BEC of N = 10* atoms of erbium '®*Er. The parameters
of the system are given in Appendix D, and the modulation frequency used is equal
to twice the weak confinement frequency, w,, = 321 x 27 Hz = 2w,. We observe
resonant behavior corresponding to the second harmonic of the resonant frequency

wy = w,, which sets in faster than the first harmonic, already after around 30 ms.

Wy = 321 %27 Hz. In this case, the amplitude of the resonant mode grows even faster
and significant density variations can be observed already after 30 ms. Therefore, we
see that the modulation at the second harmonic yields even more violent dynamics
than the first harmonic. The Fourier analysis in the time-frequency domain reveals
that the main excitation mode again has a frequency of 160.5 x 27 Hz, but the mode
at w,, = 321 x 27w Hz is also present. From the experimental point of view, resonant
driving is very dangerous and leads to the destruction of the system in a matter
of tens of milliseconds. While numerical simulations can be performed for longer
time periods, the atoms leave the condensate due to a large, resonant transfer of
energy to the system. As the condensate is depleted, the mean-field description of

the system breaks down and it cannot be anymore simulated by the dipolar GPE.
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6 Algorithm for solving the dipolar GPE

The existence of nonlinear terms in equations describing various physical systems is
usually a source of novel phenomena. However, their understanding requires detailed
and careful analysis, mainly because we can no longer rely on our intuition based
on linear equations and instinctively predict the evolution of the system. From the
experimental point of view, the analysis requires development and fine-tuning of
new methods that focus on particular phenomena in the condensate. On the other
hand, it is often necessary to establish or further develop an analytical or numerical
method to solve the corresponding set of equations, usually a set of nonlinear partial
differential equations. In the case of a BEC with dipole-dipole interaction, we mostly

rely on the dipolar GPE.

A wide range of different numerical methods was developed in the literature.
Some of them are focused on the calculation of the ground state properties [83-86],
while others focus on the dynamics of the time-dependent GPE [87-95]. Also, there
are several methods able to calculate a numerical solution both for the ground state
and non-stationary dynamics of a BEC [87-95]. These methods can be divided into

several categories: finite difference, split-step, and spectral methods.

A finite difference method approximates the spatial and time derivatives with
finite differences, up to the desired order of accuracy, which is derived from the
Taylor series expansion. This approach introduces discretization of space and time,
with the time step denoted by At, and the space step denoted by Ah. Note that

the space discretization step can be different in different directions, in which case
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we denote the corresponding steps by Ah;, where j = 1,2,3. When dealing with
dipolar GPE, such discretization is usually implemented using a forward, backward,
or central difference scheme in time and a second-order central difference scheme
for space derivatives. An algorithm that implements a forward difference scheme
in time is known as an explicit method, a backward difference approach yields an
implicit method, and a central difference approach in time is a combination of the
two, and is designated as a semi-implicit algorithm, or the Crank-Nicolson semi-
implicit algorithm [35-37|. In its usual form, it introduces a quadratic error in the
calculation in the discretization steps, O(At?) + O(Ah?), both in the time and the
space steps. The fact that we are using a semi-implicit algorithm, i.e., that the space
derivatives are expressed as averages of their finite difference approximations in the
present and future time step, makes the Crank-Nicolson scheme unconditionally

stable [36,37]. We have used this method in all our implementations.

The split-step method relies on the splitting of the time evolution in each time
step into several sub-steps, which corresponds to splitting the Hamiltonian that gov-
ernance system’s dynamics into several parts, and then evolving the wave function
independently with respect to each of them. This method is usually combined with
the finite difference method, and practically realized by splitting the Hamiltonian
H =T +V into the kinetic energy part T and the potential energy part V, which
includes the trap potential and nonlinear terms corresponding to the contact and
the dipole-dipole interaction. In order to implement the splitting of the Hamiltonian
and calculate the time evolution of the system we use the Baker-Campbell-Hausdorff

lemma [96]

eAt(@ri—@z) _ eAtél eAt@g e—ATtQ[@1,@2]eATts(2[@2,[@1,@2]]+[@1,[@1,@2]]) o (61)

The above form of the lemma, know as the Zassenhaus formula [97], expresses the
exponential of the sum of two operators O, and @27 that do not commute in general,
by a product of their individual exponentials and higher-order terms that contain
quadratic and higher orders of the parameter At. If the parameter At is small we

can neglect these higher-order terms and use the splitting formula which, for the
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case of the time evolution of the Hamiltonian H = T + V reads
ef%HAt _ e—%(T—&-V)At _ efi,;bTAt ef%VAt + O(Atz) _ (62)

In this way, we make the error of the same order as the one due to the finite difference
scheme used to approximate time derivatives. In principle, we can go to higher orders
in the Zassenhaus formula, but this would be numerically very time-consuming. It
would also have to be accompanied by a higher order of approximation for the
time derivative. The numerical complexity of such a method would be even higher
due to this and therefore is rarely used. One can achieve the desired accuracy of
the calculation by using smaller values of the discretization steps. In addition to
split-step methods there are also other, direct methods for solving the GPE (or,
in general, partial differential equations) such as Euler or Runge-Kutta [98], where

time evolution is done in one step, avoiding the Hamiltonian division altogether.

Spectral methods rely on expressing the solution of the GPE in an appropri-
ately chosen basis as a linear combination of orthonormal special functions. In this
case, the original equation is rewritten as a set of equations for the corresponding
coefficients of the wave function expansion in the selected basis. For instance, if
we use the plane-wave basis we get the most common spectral decomposition of
the wave function. The kinetic energy part and the potential energy part of the
Hamiltonian are diagonal in the k-space and in the real space, respectively, and
forward and backward Fourier transformation enables us to compute the evolution
with respect to the corresponding part of the Hamiltonian. Note that the spectral
methods also belong to the category of split-step approaches and use the Zassenhaus

approximation (6.2).

Our numerical algorithm to solve the GPE combines the split-step approach
with the semi-implicit Crank-Nicolson method [35-37]. The ground state of the
system is calculated using propagation in the imaginary-time [84-86] starting from
an arbitrary initial state, while the system’s dynamics is obtained using the real-

time propagation from a given initial wave function. Our programs that practically
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implement the algorithm solve the dimensionally reduced form of the GPE

Z—% — {_%VQ +U(r,t) + 47 Na [y (x, )
(6.3)

+ 3Nadd/dr’ Uga(r — ') [ (x', 0)|* |0(x,t).
Equation (6.3) is derived from the dimensional GPE (2.45) by choosing a reference

frequency w,, and by expressing all other physical variables in units defined using

this frequency

T Yy < as aqd

T = -, Y= 5, Z—=> 5, QG — —, Gy —> —, t = wtl,
l z z l l (6.4
1 1 :
¢(r7t> - l3/21/}(1',t) ) U(I‘, t) - 7 U(I‘,t) ) Udd(r7 t) — K Udd<r7t) :

Here the unit of length [ is harmonic oscillator length | = \/h/(mw;) for the fre-
quency w, and the mass m of the atoms in the condensate. In order to transform the
numerical results obtained in simulations to the physical units, one has to perform

the inverse rescaling.

As a result of this, the trapping potential U(r,t) is transformed into a dimen-
sionless form

Ur,t) = = (v%2* + 7%y + X?2%) | (6.5)

N —

where 7 = w, /wy, ¥ = wy /wy, and A = w, /w, are the trap aspect ratios. For practical
reasons, we usually set one of the trap frequencies as the referent w,. Another
convenient choice is the geometric mean of the trap frequencies, w, = (w,w,w.)">.
Our programs allow to use all three trap aspect ratios independently, but in our
simulations, with the cigar-shaped condensates along the x-axis, we choose w, =

wy = w;, so that the trap aspect ratios v and A are equal to 1.

6.1 Split-step semi-implicit Crank-Nicolson method

The split-step semi-implicit Crank-Nicolson method introduces the discretization of
time and spatial coordinates. The total time of simulation 7" is discretized into N
equal sub-steps At = T'/N. The simulation is performed in three spatial dimensions,

and we introduce a spatial mesh with NV, V,,, and IV, equidistant points in z, y, and 2
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direction, respectively. The corresponding spatial extents of the system (simulation
box sizes) are L, = N, Az, L, = N, Ay, and L, = N, Az, where Az, Ay, and Az
are the discretization steps. It is customary to place the coordinate system in the

center of the simulation box, such that the coordinates x, y, and z take values from

the intervals [—L,/2, L, /2|, [-L,/2, L,/2], and [—L,/2, L, /2], respectively.

During the small evolution time At, the split-step approach of the algorithm
divides the Hamiltonian into the non-derivative (Hy) and derivative (Hy, Hy, Hs)

parts, as follows

Ho = U(x: £) + 47 Nag |¢:(x;0)* + 3N aaq / dr' Uga(r — st) (s )%, (6.6)

2 2 2
i 0 0 0

1:@7 QZa_yQa H3:@7 (67)

where the Laplacian is split into three parts. Therefore, the initial dipolar GPE

given by equation (6.3) transforms into four sequential partial differential equations,

- O(r;t)
ot

which are solved one after the other in the algorithm.

= Hjv(r;t), j=0,1,2,3, (6.8)

Starting from a preceding solution ¢™(r), obtained in the previous complete
time step, the time evolution with respect to H, in the current time step yields an
intermediate solution 1" */4(r) of equation (6.8) for j = 0. The superscript 1/4
denotes that this is a first of four sub-steps in the current time iteration. Since
H, has no derivatives, it is diagonal in real space and the solution can be written
exactly as

() = e MY (v) = P(Ho) U (r). (6.9)

From this intermediate solution, using the semi-implicit Crank-Nicolson scheme,

the time propagation of the wave function continues and is calculated by solving the
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series of partial differential equations,

. ¢n+2/4(r) _ V,D”'HM(I‘)
1

A = DA ] (60

n+3/4 n+2/4
Z¢ i (r>A_t1/1 2/4(r) _ %1-:[2 [wn+3/4(r) _{_wn+2/4(r)] , (6.11)
iwnﬂ(r) _Azbn+3/4(r) _ %I:I;), [wnJrl(r) X ¢n+3/4(r)] ‘ (6.12)

On the left-hand side, partial derivatives in time are estimated by a two-point for-
mula, and on the right-side, the wave function is averaged over the current and the
future time sub-step, which is a characteristic for the finite-difference semi-implicit
Crank—Nicolson method. Equations (6.10) - (6.12) have a formal solution that prop-

agates the wave function to the next intermediate solution,

n+2/4 iﬁlAt/2 n+1/4 — DT n+1/4
G = R ) = PU) ), (619
n43/40\ _ _ZH2At/2 n4+2/4( N — DT n+2/4
P (r) —1 LA 2 P (r) = P(Ha) " (x) (6.14)
wr ey = SR i = i) ). (6.15)

1+ ZHgAt/z

The numerical algorithm for solving the above equations is worked out in Ap-
pendix E. Let us denote by w"ﬂ/ * the wave function value in the current time
iteration after sub-step 7 and at the position ¢ in the mesh in the corresponding spa-

tial direction. The algorithm determines the wave function by a recursive relation

wz—i—l( +1)/4 ]w”‘i‘ (J+1)/ + B”‘H/‘l (616)

for j = 1,2, 3, where j corresponds to spatial direction x, y, and z direction, respec-

tively. The coefficients ag and 3! T/ are defined via backward recursion relations
1 1= Y A_ (617)
B = (A*ﬁ"”“ B (6.18)

7

where coefficients 77, A7, AF, A%, and B"/* are defined by relations

At At
j j 4AR2° BTNy 2AR3° (6:19)
At ' '
B = IAR2 CAGETair 1/;”*”/4) + i, (6.20)
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where Ah; denote spatial mesh step in Az, Ay, and Az direction for j = 1,2, 3,
respectively. The above backward recursion expresses the coefficients B;' /4 explic-
itly in terms of the wave function in the previous sub-step, thus disentangling the
semi-implicit form of equations (6.10) - (6.12). From the technical point of view,
we see that the coefficients Aji, Ag-), a{ , and ’yf do not depend on the wave function
(i.e., on the time step n), and therefore can be calculated before the time loop in
a particular simulation. In other words, these coefficients depend only on the dis-
+35/4

cretization parameters. Within the main time loop, only coefficients 3" have to

be recalculated in each sub-step.

6.2 Dipole-dipole interaction

While the calculation of the potential and nonlinear contact interaction term within
the non-derivative part of the Hamiltonian (Hp) of equation (6.8) for j = 0 is
straightforward, the calculation of the nonlinear term corresponding to the dipole-
dipole interaction at each mesh point introduces additional convolution integral.
The integral can be easily solved by moving to the Fourier space, i.e., by treating

the dipole-dipole interaction term in momentum space as

/dr’ Udd(r - 1") |¢(r’)|2 =F! {]:[Udd] (k) F [Wﬂ (k)} (r) ) (6-21)

where F represents Fourier transform and F ! inverse Fourier transform, defined

respectively by

FUN00 = k) = [ dr firyeee. (6:22)

A = 0) = s [ e e, (6.23

Implementation of the algorithm uses Fast Fourier transform (FFT) for calcula-
tion of Fourier transform of the density of wave function, while the Fourier transform

of the dipole potential is calculated analytically in Appendix A, yielding

FlUa(k) = %ﬂ (3cos®d —1) = %ﬁ (3k§ - 1) , (6.24)
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where 6 is the angle between the orientation of dipoles and vector k, i.e., in our
setup, angle between z direction and vector k. Within the same time step, ori-
entations are constant, so the transformation is performed once per time step At.
The Fourier transform of density |¢(r)|> and inverse Fourier transform is evaluated
numerically by using a standard FF'T algorithm. The FFT algorithm is carried out
in Cartesian coordinates, and the GPE is solved in 3D irrespective of the symmetry

of the trapping potential.

Successful implementation of the split-step Crank-Nicolson method using Fourier
transformation has to ensure that the wave function and the interaction term dis-
appear at the boundary of the discretization mesh. For the Fourier transform of the
long-range dipolar potential, this is not true, and equation (6.24) is undefined at the
origin in k-space, i.e., at boundaries in coordinate space. Since the same domain
is used for Fourier and inverse Fourier transform in treating the dipolar potential,
cutting off the k-space origin will affect the space domain. Thus, boundary effects
can play a role when finding the Fourier transform, and a sufficiently large space
domain has to be used to have accurate values of the Fourier transform involving
the long-range dipolar potential. Inspired by equation (A.10), it was suggested [99]
that this could be avoided by truncating the dipolar interaction conveniently at
large distances » = R so that it does not affect the boundary, provided R is taken
to be larger than the size of the condensate. Then the truncated dipolar potential
will cover the whole condensate wave function and will have a continuous Fourier
transform at the origin. This improves the accuracy of a calculation using a small
space domain. The Fourier transform of the dipolar potential truncated at r = R is

used in our implementation of the algorithm for solving dipolar GPE as

~ 4 (3 K2 cos (kR) sin (kR)
Udd(k)z?(k? _1)[ SRR P TRR

(6.25)

The difficulty in using a large space domain is the most severe in 3D algorithms for
solving dipolar GPE by the split-step Crank-Nicolson method. The cut-off param-

eter R of equation (6.25) improves the accuracy of the calculation.
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6.3 Calculation of physical quantities

During the evolution of the system, the relevant physical quantities can be calcu-
lated using the obtained time-dependent wave function. Since the wave function is
obtained with the time resolution of At, we can calculate all physical quantities with
the same time resolution or choose to calculate them less frequently, to decrease the
computation time. Here we list the expectation values calculated by our programs

by default.

The size of the system in x, y, and z direction is expressed by the root-mean-

square of the corresponding coordinate,
rne = V@), () = [dra? o) (6.26)
s =V, () = [y o)l (6.27)
reme = /Y. <z2>:/drz2 ()2 (6.28)

while the size of the whole system is estimated by the quadratic mean,

Fems = \/ (22) + (2) + (22). (6.29)

For stationary states, the wave function has a trivial time dependence ¥ (r,t) =
P(r) e where u is the chemical potential. If we substitute this into Equation
(6.3), and multiply it by ¥*(r), taking into account that the wave function is nor-

malized to 1, we obtain the following formula for the chemical potential

= / dr [; V() + U() [ + dnNay [(0)]*
(6.30)
+3Nag / dr' Una(r — ) [ [9 ()2 -

The above expression can be also used for non-stationary states, to obtain the ex-

pectation values of the Hamiltonian.

The following expression for the energy FE is obtained by multiplying the inter-
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action terms by 1/2 in equation (6.30)

B = [ar |SIV0 + U [0(e)* + 20, oo (6.31)

+;Nadd/dr'Udd(r—r')|¢(r')|2|w(r)|2 :

In a variational approach, the GPE can be obtained by minimizing the above func-

tional with respect to the wave function.

The norm of the wave function is calculated by definition

[ e (6.32)

and in the real-time propagation, it should be always equal to 1. The Crank-Nicolson
scheme conserves the normalization of the wave function, but its monitoring can be
used as an early check of the validity of the simulation. However, this is not the
case in imaginary-time propagation, since then the evolution operator is not unitary.

Therefore, it is necessary to normalize the wave function again after each time step

At.

6.4 Numerical integration and derivation

Numerical integration within the algorithm is implemented using Simpson’s rule
N/2
[ e f@) = 553 (e + 4fai+ ) (6.33)
3 2i—2 2i—1 21 .

i=1

where N is a number of equidistant points and Az the size of a spatial step.

In order to calculate the energy and the chemical potential we also need spatial
derivatives of the wave function. For this we use the Richardson extrapolation
formula of the fourth order. For instance, the spatial derivative of the wave function
in direction j is approximated with

owr 1
oh; — 12Ah,

(V7 g — 8y + 8T — Ufy) (6.34)
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6.5 Algorithm wrap-up

Practical usage of the programs that implement the algorithm for solving the dipolar
GPE requires the preparation of an input file that provides the parameter values of
the system of interest. This includes a number of atoms in the condensate, which
is typically between 10 and 10°. One also has to specify a unit of length [ in units
of Bohr radius (ag = 5.2917721092 x 107" m). For a chosen reference frequency w,
it is calculated as [ = \/W for atoms with mass m, and is typically of the
order of ym. Physical parameters of the system also include the s-wave scattering
length a4, which measures the contact interaction strength, and the dipolar length
a4q, which measures dipole-dipole interaction strength. Both are expressed in units

of Bohr radius within the input file.

In addition of physical parameters, we also have to supply discretization details
such as the time step At (in units of 1/w,) and the number of iterations N. Typical
values of the time step At we used for our simulations was between 1072 and 1073,
which corresponds to 1072 — 1073 ms after re-scaling with the frequency w, = 27 x
160.5 Hz. Therefore, for the simulation of the evolution for 250 ms, the number of

iterations IV has to be between 2.5 x 10* and 2.5 x 10°.

The spatial discretization is defined by the size of steps and the number of mesh
points in x, y, and z direction. In the simulations, we have used equal numbers
of mesh points in all directions, N, = N, = N, = 500, with different step sizes,
typically Az = 0.5 and Ay = Az = 0.1, due to the cigar shape of the condensate.

Such mesh creates a simulation box of the volume of approximately 250 x 50 x 50 pim3.

Flowchart of the algorithm for solving the dipolar GPE is illustrated in Fig-
ure 6.1. Using the parameters specified in the configuration input file, the algorithm
in the very first step generates an initial wave function or reads its values from the
external file. This is represented by the operator f, which will initialize the wave
function matrix to be propagated within the main loop of the algorithm. In the

case of imaginary-time propagation, most frequently, the initial wave function will
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be generated in the form of a predefined Gaussian, or if it is explicitly defined in the
input file, it will be populated by the values from the external file. For real-time
propagation, the initial wave function is always read from the external file. Usually,
it is a wave function obtained from the previous calculation, either in imaginary- or

real-time propagation.

Using the initial wave function, the algorithm in N equal time steps At prop-
agates the wave function. Each time step consists of four sub-steps, which are
implemented using the operators P(Hy), P(H,), P(Hy), P(Hs). After each step,
the operator M calculates the relevant physical quantities. In the case of imaginary-
time propagation, there is an additional operation in which we normalize the wave
function to 1 using the operator N. After the main loop is finished, the simulation

saves the wave function for further use (operator &).

— Ty =0

Jj=0 N "
P(Ho)(r) M(r) |- N ()
joi+l .
.S
P(HL) ¥(r) = 2
+ | 0 .0
d] & s
joi+l |8 o
Tle L
P11 b(x) ~|£ g
E =
& 15D
j—=i+1 :g

— <N |

P(Hs) ) Lo

E(r) =N

Figure 6.1: Flowchart of the algorithm for solving the dipolar GPE. The operator
7 is responsible for the initialization of the wave function matrix. Propagation of
the wave function is done in four sub-steps using operators P(Hy), P(H;), P(Hs),
75([:13) The operator M calculates physical quantities of the system, and the op-
erator € saves the wave function for further use. In the case of imaginary-time

propagation, the operator N normalizes the wave function.
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6.6 Parallelization and optimization

The algorithm for solving fully-anisotropic three-dimensional dipolar GPE is devel-
oped based on our previous programs [88,89]. The original program for the contact
interaction GPE was written in Fortran [87] by Adhikari and Muruganandam. Later
on, we have rewritten this program in the C programming language, and parallelized
it using the Open Multi-Processing (OpenMP) library [90-92,95]. Afterward, we
have developed the programs that include both the contact and the dipole-dipole
interaction in C and in Fortran [93,94]. We have demonstrated excellent agreement
of recent experimental observation of dipolar BECs of °2Cr, %*Dy, and '®®*Er atoms
with the numerical results. The programs had to be parallelized, which allows the
utilization of all available processors/cores on a shared memory computer, leading

to the speedup of 70 — 90% of the ideal one.

Figure 6.2 illustrates the speedup (blue down triangles) and the efficiency (red
up triangles) in the execution time of the imaginary-time (left panel) and real-time
(right panel) propagation as a function of a number of utilized CPU cores. The
speedup S (N.) is calculated as a ratio of the execution time of a simulation on a

single CPU core and a simulation using N, cores. The efficiency E (N.) = S (N.) /N
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Figure 6.2: Speedup (blue down triangles) and efficiency (red up triangles) of the
algorithm for solving the dipolar GPE during imaginary-time (left) and real-time
(right) propagation as a function of the number of utilized CPU cores. Solid lines

represent fits to measured data according to Amdahl’s law.
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is defined as a ratio of the speedup, measured in numerical experiments, and the idea
one which is equal to N.. In all simulations, we have used a consistent spatial mesh
of the size of 500 x 500 x 500. Starting from a single CPU core, we gradually increase
the number of utilized cores up to 16 on an Intel Xeon CPU E5-2670 machine with
a clock frequency of 2.60 GHz. The programs are compiled and optimized using the

Intel compiler.

Based on Amdahl’s law [100], the expected execution times of a sequential (which
remains constant) and a parallelized region of the code (which scales with a number
of cores N.). If p is parallelized fraction of the code, the expected speedup is given

by
1
(1—p)+p/Ne’

and similarly for £ (N.). Solid lines in Figure 6.2 represent the fits to measured

S (N,) = (6.35)

data according to relation (6.35), which allows us to verify the consistency of the

performance of our programs and to estimate the parallel fraction p.

Details on the testing of parallelization scaling are given in Appendix F.
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7 Conclusions

This thesis explores the Faraday and resonant density waves in ultracold dipolar
Bose-Einstein condensates. It also studies the collective oscillation modes of dipolar
condensates and their ground-state properties for experimentally relevant atomic
species with the permanent magnetic dipole moment: chromium 2Cr, erbium '%*Er,
and dysprosium '**Dy. The interplay of the contact and the dipole-dipole interaction
in such systems is a hot research topic today, but a detailed understanding of their
dynamics and even the stability is still lacking. This thesis contributes to variational
and numerical description of driven dipolar systems and their properties, which are
important for ongoing experiments, and will be of particular interest as the strongly

dipolar regime becomes experimentally available.

We have introduced here a variational approach and used it to describe the
ground state, the collective oscillation modes, and the Faraday and resonant waves
in dipolar BECs. This approach is based on the Gaussian variational ansatz, which
includes the condensate widths and the conjugated dynamical phases as parameters.
The ansatz is extended to include density modulations in order to capture the dy-
namics of density waves. Using our approach, we have derived analytical expressions
for the ground-state widths of the condensate, and the frequencies of the collective
oscillation modes: the breathing, the quadrupole, and the radial-quadrupole mode.
These results are verified by comparison with the numerical results obtained by solv-
ing the dipolar GPE for each of the three atomic species. We have found very good
agreement between the analytical and numerical results, and confirmed that the de-

rived expressions for the ground-state widths and collective oscillation frequencies
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can be reliably used in the relevant parameter ranges.

We have studied the effects of the contact and the dipole-dipole interaction on
the properties of the ground state and of the collective oscillation modes. While the
increase of the contact interaction strength always leads to an increase of condensate
widths, the situation is more complex when the dipole-dipole interaction is varied.
In a cigar-shaped geometry when the dipoles are oriented in the radial direction,
the increase of the DDI strength leads to the increase of condensate widths in the
weak-confinement direction and in the direction of the dipoles, while the width in
the third direction decreases. We have also studied the frequencies of the collective
modes, where the interaction effects turn out to be less pronounced, in particular for
the breathing and the quadrupole mode, whose values practically remain constant
over the whole range of experimentally relevant values of as and agq. The frequency
of the radial-quadrupole mode is more sensitive to changes of interaction strengths,
especially the contact interaction strength a,, and shows a nonmonotonous behavior

as a function of the dipole-dipole interaction strength aqq.

The main contribution of the thesis is the study of driven dipolar BECs, where
the emergence of density waves is expected. This phenomenon is investigated in
an experimentally-inspired setup, where the dipolar condensate is confined into a
cigar-shaped harmonic trap. The dipole moments of the atoms are assumed to
be orthogonal to the weak confinement axis, since this maximizes the stability of
the system. The driving of the system is achieved by harmonic modulation of the
radial part of the trap, and the density waves were observed in the longitudinal,

weak-confinement direction.

Using our variational approach, the obtained equations for the dynamical evolu-
tion of the system are cast into the form of the Mathieu-like differential equation.
This allowed us to identify the most unstable solutions of the Mathieu’s equation
with the Faraday and the resonant waves, which we have observed numerically.
Based on this idea, we have derived analytical expressions for the periods of these
two types of density waves. Performing the FF'T analysis of the results of extensive

numerical simulations, we were able to calculate the corresponding periods numer-
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ically, as functions of the contact and the dipole-dipole interaction strength. The
comparison of variational and numerical results shows very good agreement and
demonstrates that the derived analytical expressions provide a full understanding of

the properties of density waves in dipolar condensates.

The thesis presents the split-step semi-implicit Crank-Nicolson method used to
solve the dipolar GPE, as well as the details about the corresponding programs,
including the calculation of the dipole-dipole interaction term and relevant physical
quantities. We have also presented the scalability testing results of our parallel

programs, which demonstrate their efficiency on parallel computer clusters.
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A Fourier transform of the DDI potential

In contrast to the contact interaction, which is symmetric and has a short range, the
dipolar interaction between atoms or molecules is anisotropic and has a long range.
The dipolar effects are brought in into the GPE through an additional nonlinear

interaction term that reads in the dimensionless form

3Nagq / dr' Ugq(r — ') | (x")|? (A.1)

where N is the number of atoms in the condensate, aqq the length that quantifies
the strength of the DDI, |¢)(r')|? the density of the condensate, and Ugq(r — r’) the
DDI potential. For an arbitrary orientation of the dipoles defined by a unit vector
m, the dipolar potential is given by

r> — 3 (r-m)’

7o

Udd(r) = (A?)

If the dipoles are oriented in z direction, the above expression transforms into

1 —3cos?6d
r3 ’

Uga(r) = (A.3)

where 6 is the angle between the vector r and the polarization axis (z direction).

In coordinate space, due to issues with the numerical divergence at short dis-
tances, calculation of the dipolar term in the GPE is not straightforward. This is
usually resolved by switching to the k-space, where the calculation does not suffer
from a singular behavior. Additionally, this allows the use of the FF'T, which speeds
up numerical calculations. By means of the convolution theorem, the integral (A.1)

transforms into

/ dr' Uga(r — ') [0 (¢)]} = FH{F Uad) (k) F [[0°] ()} (r),  (A4)

where F represents the Fourier transform and F~! the inverse Fourier transform,

defined respectively by

FUN00 = k) = [ dr firye . (A5)
A = 1) = s [ k0 (A6)
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The Fourier transform of the dipolar potential Udd(k) can be calculated analytically

using the spherical coordinates,

00 27 m
Uga(k) :/dr Uga(r) e 15T = /dr/dgo/sin@d@
0 0 0 (A.7)

1 —3cos?*d
r

% e—ikr(sin@sin 0 cos(p—pg)+cos 6 cos O )

)

where, in spherical coordinates, k = (k, 0k, ¢x). Although the coordinate system is
chosen such that the vector m is oriented along z axis, we still have the freedom to
rotate it around this axis, which makes it possible to eliminate the angle ¢;. If we

denote the 6, in the selected coordinate system by «, the integral (A.7) becomes

(%s) 21 T
Gaatl) = [ ar [y [ apsing I=2E000 Sinp + 0050 c090)” treons

r
0 0 0
(A.8)
After integration over the variable ¢, we obtain
) oo g 1_ 9 0 '
Uga(k) = 7 (3cos® o — 1) /dr / df sin 0 3 Cos e tkrcost (A.9)
r
0 0
The #-integral above is solved by a variable change u = cos @, yielding
~ B 9 sin (kr)  3cos(kr) 3sin(kr)
Uaa(k) = 47 (1 — 3cos” o) /dr [ e + 28 T g (A.10)
0
This integral is calculated using another variable change v = kr,
Uga(k) = 47 (1 — 3cos® a) lim oodv S v + Jcosv sy
ddi®) = =7 b—0 v2 v3 v
kb
kb kb) — si
— 4 (1 — 3cos? a) lim 0.C03 (h) — sin (kD) (A-11)
b—0 (kb)
4m 4 (3 K2
:?(3003204—1) =73 ( 2 —1) .

According to this, we can immediately write the general expression for an arbitrary

orientation of the dipoles m in the form

Uga(k) = 4% [3(mk_2k)2 — 11 : (A.12)
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B Lagrangian of the DDI term

Using the Lagrangian density (2.51), we calculate the Lagrangian term (2.64) that
corresponds to the DDI energy for the Gaussian ansatz (2.52), used in the variational
study of the collective oscillation modes, as well as the term (5.11) for the modified
ansatz (5.2), used to describe the Faraday and resonant waves. Note that both

expressions can be written in the form

3Nadd 2/ /{32 _1(1.2,2 2,2 2,2
Ls(t) = — B* [dk (32— —1 (kg -hyuy +hzus) B.1
»(?) (27)2 k2 + k2 + k2 € ’ (B.1)

where expression (2.64) is obtained for B = 1, while we get expression (5.11) for
8 a?
(2+ a2+ B?)?

The above integral describes the anisotropic character of the dipole-dipole interac-

B =1-

(B.2)

tion in ultracold quantum gases. After switching to the spherical coordinate system

via the following change of variables
kyuy, = ksinfcosgp, kyu, =ksinfsiny, k,u, =kcosf, (B.3)

the above integral transforms into

0o 21 s
N
Ls(t) = —— 244 BQ/dk er—’fz/?/dgo/desme
(2m)% uyuyu,
0 0 0 (B.4)

3 =5 cos* 0
XL'ZQ 2 LZ'29'2 1 29_1'
o2 sin” 0 cos go—l—u% sin” f'sin” ¢ + -5 cos

The integral over k is of the Gaussian type that can be solved analytically, leading

N
Ls(t) = — dad \[ / dgp d051n9
( 2ugpuyu,

2
uu
3 uyCOSQQ
z
X u%ze 9 uz.ge.z u%u% 29_1
w2 sin” 0 cos? ¢ + T4 sin” f'sin” 4 =7+ cos

to

(B.5)

If we introduce the dipolar anisotropy function [42|, see Appendix C for details,

3 2%y? cos? 6
=—— [ d df sin 0 -1
J(@y) / S0/ sin (x2 sin? psin? 0 + y2 cos? @ sin? 2y cos? 0 ) ’

(B.6)
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we can write Ls(t) as

Nagq 9 Uy Uy
Ls(t) = —B —, — B.7
(1) V2T uguyu, / (U/ u, )’ (B.7)

where exact expressions for the anisotropy function in terms of the elliptic integrals
of the first (F) and the second (FE) kind for different values of its arguments are
listed in Appendix C. For our analysis, due to geometry of the system described in
Appendix D, the most relevant region of parameters is 0 < u,/u, < 1 < u,/u,, in

which the anisotropy function can be written as

1+2y*  Bwyy/a? — 4> E(0, k) 3zy F(0, k)

=7 @-D1-9)  @-0/ g
where k = /(22 — 1)/(2% — 4?), and sin = /2% — y?/z.

flx,y) =

(B.8)
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C Anisotropy function

In theoretical studies of dipolar ultracold atomic or molecular systems, the anisotro-
py function emerges as a consequence of the anisotropic character of the dipole-dipole

interaction [42]. It is defined as

2 T
1 3 22y? cos?
r,y)=——1[4d df sin 6 -1
f(@.y) A7 / 7 / <x2 sin? psin? § + y2 cos? psin® § + 22y cos? f
0 0
3 2%y? 1

d@sin@coszé/d :
4 / 4 (22sin® ¢ + y2 cos? @) sin? O + 22y cos?
0 0

=1

(C.1)

According to the above definition, we can assume z,y > 0 without loss of generality.

The ¢ integral can be solved using relation (3.642.1) from Reference [43], yielding

32y 7 ‘ cos? 6
z,y)=1——= [ dfsinf ' C2
f(@y) 2 N e Vi s A

0
Note that function f is symmetric in its arguments f(z,y) = f(y, z) [42]. Depending

on the values of the arguments x and y, we can consider the following cases:

l.z<y<l1
Using the substitution u = v/1 — 22 cos 6, the integral (C.2) becomes

5 V1—z2 )

Ty U

S AN d .
(1—a2)32 / VTRevi—& (C3)

flz,y) =1+

where k% = (1 —y?)/(1 — 2%) < 1. The solution of the above u-integral can be
expressed via elliptic integrals [43] of the first and the second kind, respectively,

sin 0

0
1 1
R = / . \/(1 —u?)(1 — k?u?) - /d9 1 — k2sin%6 ’ (C4)

0

sin 0

0
V1 — k2u?
E(0,k) = /du— _2:/d0 V1 — k2sin?6, (C.5)
0 L=u 0
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yielding
E0,k) — F(0,k)

x,y) =14 3x ,
f(z,y) AT W
where sin = /1 — 2.

(C.6)

Ly<z <l
Due to the symmetry of the anisotropy function, its value f(z,y) can be cal-

culated as f(y,z) according to case 1.

Lr<l<y
In this region it is necessary to analytically continue the function (C.6) using

the table (8.127) from Reference [43]. With the transformations

ik , k' sind cos §
k‘l = ?, Sln91 = AG COS 6‘1 = A—e, (C?)
we obtain
1+ 21’2 gilfy y2 — 12 E(Ql, k1> 3Iy F(@l, kl)
r,Y) = + + , C.8
[z, y) 1 — 22 (y> — 1)(z2 = 1) (yz—l)\/m (C-8)

where k; = ,/;’22_—_;2 and sin 0 = \/y? — 22 /y.

Ly<l<z
Due to the symmetry of the anisotropy function, its value f(z,y) can be cal-

culated as f(y,z) according to case 3.

<<y
In this region we proceed similarly as in the case 3, using the transformations
K ) k sin 0 1

T sinf; = ! AS;n : cosfy = g’ (C.9)
where &/ = v/1 — k2 and A0 = /1 — k2sin? 4, and obtain
1+ 21‘2 3$y E(@l, /{1)

L—22 (22— 1)2 -1’
where k; = ,/y;:“f and sin#; = \/y? — 1/y.

Cl<y<a

ky =

flz,y) =

(C.10)

Due to the symmetry of the anisotropy function, its value f(x,y) can be cal-

culated as f(y, ) according to case 5.

95



7. x=y
In the special case of equal arguments, + — y, which corresponds to cylindrical
symmetry of the system, the anisotropy function depends only on a single

argument, and is given as

1+ 22% — 322 d(z)

fule) =l f,g) = 220 (1)
where d(z) is given by
ﬁtanh_lvl —x?, <1,
d(r) = 0, r=1, (C.12)
K\/I+771tam_1 2—-1, 1<uzx.
8. x#y=
F(e.1) = lim f(e,) = —3 £.(1/2) (€13
9. x=1#y
FLy) = F1) = —5 (/) (C.14)

In this thesis, the parameters of the anisotropy function are ratios of the con-
densate widths u,/u, and u,/u,. As we have seen in Chapter 3, due to geometry of
the system, the condensate in the ground state is much more elongated in = direc-
tion than in the other two directions. Also, we have observed that the dipole-dipole
interaction increases the condensate width in z direction, and decreases it in y di-
rection. The same relationships between the condensate widths are valid during the
non-stationary dynamics of the condensate, as we have seen in Chapters 4 and 5.
Therefore, in our analysis 0 < u, < u, < ug, i.e.,, 0 < u,/u, <1 < u,/u,, which

corresponds to the case 4 above.

In the thesis we use f;(x, y) to denote the first partial derivative of the anisotropy
function with respect to its argument ¢ = 1,2, and f;; to denote the second partial

derivative
92

fij(xl,.l’g) = 8{L‘~ax'f(xl7x2) . (015)
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In our analysis of the cylindrically symmetric ultracold quantum gases, which exists
if the polarization direction matches the weak confinement direction of the trap, we

have used the following useful limits:

ti o o (o.) =ty o) = fie) = ZEEED (©.16)
i i) = i o) = A S L) cam)
i e, 0) = i o .0) = (8 + 822 — x45%)xésg)——x§)(24 ) g
limy i (2,) = J1(1/2). (©.19)
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D Parameters of the system

In all numerical simulations and variational calculations we have used the system and
discretization parameters specified here, unless otherwise stated. We have considered
three atomic species and Table 4 lists the corresponding values of the mass m in
atomic mass units u, the s-wave scattering length a, in units of Bohr radius ay,
the dipole moment pq in units of Bohr magneton ug, the dipole-dipole interaction
strength agq in units of Bohr radius (ag), and the harmonic oscillator length [ with

respect to the chosen referent frequency w, = 160.5 x 27 Hz.

Table 4: Summary of atomic species parameters used in numerical simulations and

variational calculations.

Species m (u) as (aop) pa (1) aqq (aop) [ (pm)
2Cr 51.94050 105 6 15.126 1.10112
168y 167.93237 100 7 66.564 0.61238
164Dy 163.92918 100 10 132.607 0.61981

All simulations and calculations are performed with the same number of atoms,

N = 10%

We have considered the harmonically trapped system, with the frequencies taken
from Reference [30], i.e., w, = 7x 27 Hz, w, = 160.5x 27 Hz, and w, = 160.5x 27 Hz.
The trapping potential is defined by Equation (2.22), and for the chosen frequencies
the atoms are weakly confined in x direction, i.e., we have used a cigar-shaped
trap. Therefore, we refer to = direction as the longitudinal one, while y and z
direction represent the radial ones. In order to cast the underlying equations into
a dimensionless form, we have chosen the referent frequency w, = w, = w, =
160.5 x 27 Hz, which defines the length scale through the harmonic oscillator length
[ = \/W, the time scale as 1/w,, the energy scale as fw,. The trapping
frequencies are also expressed in units of w, through the trap aspect ratios v =

Wy /wy = 0.04361, v = w,/w, =1, and A = w, /w, = L.

98



We assume that the dipoles are oriented along z direction, i.e., orthogonal to
the weakly confined = direction. The Fourier transform of the dipolar interaction

potential is thus

47

Flouel00 =5 (35 1) D.1)

The system is driven by a harmonic modulation of the frequencies in the tightly

confined y and z direction,
wy(t) = w,(t) = Qo(1 + esinwy,t), (D.2)

where 2y = w, = w, has a value given above, € = 0.1 — 0.2 is the modulation ampli-
tude, and w,, is the modulation frequency. The modulation frequency is expressed

in units of w, through the aspect ratio 7,, = wy,/w,.

We have studied the properties of the ground state, collective oscillation modes,
Faraday and resonant waves as functions of the contact and the dipole-dipole inter-
action strength. This models BEC experiments, where the strength of the contact
interaction can be varied over a broad range of values using the Feshbach resonance
technique [9]. This is also possible for the strength of the DDI, which can be tuned
using a fast rotating magnetic field [24,25]. Therefore, the values of a, and aqq
listed in Table 4 are used whenever we refer to their fixed values, while in some
calculations we have considered experimentally relevant ranges of these interaction

strengths.

In numerical simulations, we have discretized space and time by defining the
corresponding spacings and the time step, as well as the size of the space mesh
and the number of the time steps. In our simulations we have used equal numbers
of mesh points in all directions, N, = N, = N, = 500, with different spacings,
Az = 0.5 and Ay = Az = 0.1. This choice was made due to the cigar shape
of the condensate. Such a mesh corresponds to the simulation box of the volume
of approximately 250 x 50 x 50 pm?, which is appropriate for the above trapping

potential and the considered atomic species.

Time was discretized using the time step At with the typical values between
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1072 and 1072 in units of 1/w,. For the Faraday and resonant waves, the number
of time steps (iterations) N was in the range 1 — 2 x 10°, which corresponds to
the simulation of the evolution in the range 250-500 ms. For the calculation of the
collective oscillation modes, we had to use much larger iteration numbers, for at

least one order of magnitude, in order to achieve the accuracy of 0.1 Hz.

The value of the cutoff parameter R from Equation (6.25) in all simulations was

R =10.

The ground state of the condensate was calculated using the imaginary-time

propagation starting from the Gaussian initial wave function, defined by

A 1/4
Wo,,2) = LT da et (D.3)
T

It corresponds to the solution of the Schrodinger equation, i.e., the GPE for a, =

agqa = 0, and represents the dimensionless form of Equation (3.1).

The values of the physical constants used are as follows:

u = 1.6605390 x 10~*7 kg (atomic mass unit),
ap = 5.29177210 x 10" m (Bohr radius),

ps = 9.2740099 x 10724 JT~! (Bohr magneton).
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E Semi-implicit Crank—Nicolson scheme

Here we describe the practical implementation of the semi-implicit Crank—Nicolson
algorithm [35-37]. In Chapter 6 we have introduced the time and the spatial dis-
cretization used to solve the dipolar GPE. The total evolution time T that will
be simulated is discretized by dividing it into NV; equal sub-steps of the duration
At = T/N,. The spatial coordinates are discretized by introducing a spatial mesh
of N, Ny, and N, equidistant points in z, y, and z direction, respectively. The
spatial extents of the system considered are given by L, = N, Az, L, = N, Ay, and
L, = N, Az, where Az, Ay, and Az are discretization steps in the corresponding di-
rections. For practical reasons, the center of the coordinate system coincides with the
simulation box center, such that the coordinates take the values x € [-L,/2, L, /2],

y€[~L,/2,L,/2, and z € [~L./2,L./2.

In addition to this, within each time step At, the split-step nature of the algo-
rithm divides our Hamiltonian into four parts: the non-derivative part f]o, and the

three parts that contain spatial derivatives, H 1 Flg, H. 3, which read

Hy = U(r,t) + 4nNa, |1h(r, t)]> + 3Nadd/dr’ Uga(r =) [0 1)]>,  (B.1)
R 82 . 82 . 62
1= 53 sza—QQ, H3=@~ (E.2)

By doing this, we have approximated our single dipolar GPE with the four sequential

partial differential equations,

@a¢é;’t) _ ]:Iow(rvt)7 (ES)
Z.awé;, t) _ Hy(r, 1), Z'(Mg;’ b _ Hyi)(r,t), ia¢é§’t) = Hy(r,t), (EA4)

which are solved one after the other in the algorithm.

In a given time step n, we start with the wave function ™ (r), obtained in the
previous time step. We point out that the time dependence of the wave function
is now denoted by the superscript n, which corresponds to the time t = n At. The

time propagation proceeds by solving Equation (E.3), which can be done explicitly
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according to (6.9). This produces the intermediate solution ¢"*/4(r), ready to be
propagated in time by solving Equations (E.4). This is done by expressing the

corresponding derivative operators in a semi-implicit form,

) ¢n+2/4(r) _ ¢”+1/4(r)

1 n+2/4 n+1/4
N = 5 H [0 () £y )] (E5)
. 1/1n+3/4(1"> - ¢n+2/4(r) _ 1 n+3/4 n+2/4
() AL =5 H, [w / (r) + / (r)] ) (E.6)
. Qﬁnﬂ(r) - ¢n+3/4(r) 1 n+1 n+3/4
R = S [5H() + 9] (E7)

The complete propagation procedure outlined above yields the wave function ¢"*1(r)
at the moment ¢ = (n + 1)At. On the left-hand sides of Equations (E.5) - (E.7) the
partial derivative with respect to time is expressed by a two-point formula, while
on the right-hand sides instead of the wave function at the current time, we use a
linear combination of the current and the future wave function values to improve

the stability of the algorithm. This makes the algorithm semi-implicit.

For convenience, let us denote the spatial mesh step in the x, y, and z direc-
tion by Ah;, respectively, and use the lower index of the wave function to define
a position in the mesh in the given direction. For instance, when we are consid-
ering Equation (E.5) along z direction, w?H /* denotes the wave function value at
x = —L,/2 4 i Ahy, while the values of the other two coordinates are implicitly
assumed. In this notation, with the three-point formula for the Laplacian on the
right-hand side of Equations (E.5) - (E.7), the equation in the given direction j
reads

¢n+(j+1)/4 _ ¢n+j/4 1

.Yy 4 n+(j 4 n—+(j n
' At = oy (R — Uyt OeD
J

(E.8)
+¢Z:j/4 2wn+g/4+wn+]/4>

where 7 = 1, 2, 3 defines the spatial direction of propagation. In the above equation,
the known quantities have the upper index n + j/4, while the unknown quantities
have the superscript n + (j + 1)/4. Taking this into account, Equation (E.8) can be

written in the form of a series of tridiagonal equations,

A wn+(]+l + Agw?ﬂjﬂ A+w?++1]+1)/4 _ Bn+]/4’ (E9)



where the following coefficients are defined by the known quantities,

At At

AT = A = —— A =1 E.10
P =T AR AR (E.10)
. At , ,
BZL+]/4 — Z 4Ah2 <¢Z:-1j/4 2¢n+]/4 + wn+]/4> + 'QZ}?+J/4 ) (El]_)
J

Equation (E.9) is solved by using the forward recursion method, i.e., by express-
ing the mesh values of the propagated wave function in each spatial direction in the

form

GO = g U g gl (£12)

Inserting the above rule into Equation (E.9), the propagated mesh values of the

wave function are given by

w?+(j+1)/4 = (A ¢n+ (G+1)/ —I— Ajﬁ?ﬂﬂ _ Bin+j/4> 7 (E.13)
with
: 1
J_ N
v = _AQ n AJ.rozj . (E.14)
n+j/4

We now obtain the backward recursion relations for the coefficients a and f3;

from Equations (E.12) and (E.13),

z 1 rYz Ai (E15)

Bt = o (A7 Bt - Bt (E.16)

)

In the algorithm, the coefficients af/ *and gt /* are calculated starting from i =

N; —2 to 7 = 0. Since the value of the wave function must vanish at the mesh
boundary, we chose the initial border values of oz _, and ﬁnﬂ %o be equal to 0.

The coefficients A}, AJ-F, AQ, o, and ”yf do not depend on the time step n, and

1)

n+j/4

are therefore constant for a particular mesh setup. Only the coefficients [, , and

consequentially B; nti/ 4, have to be recalculated after each time step, for each spatial

direction j = 1,2, 3.
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F Details on testing of the scaling of programs

Here we give the details related to the testing setup used in Chapter 6. The code
that implements the algorithm for solving the dipolar GPE is optimized for use with
the commercially-licensed Intel and the free, open-source GNU compiler suite. We
have also tested and verified the compilation with IBM’s xlc compiler, PGI’s pgcc
compiler, and Oracle’s suncc (former Sun’s) compiler. Beside of the most generic,
fully-anisotropic three-dimensional trap, we have written additional independent
codes for 1D and 2D systems, for 3D system with cylindrical (effectively 2D) and
spherical (effectively 1D) symmetry, and 2D systems with cylindrical symmetry
(effectively 1D). All outputs from the simulations are stored using the Hierarchical
Data Format (HDF) library [101]|, which is designed to store and organize large
amounts of data. Using HDF, the average size of the results of a typical simulation
is around 2 GB of storage space. This includes the wave function calculated in the
imaginary-time simulation and all results of the real-time propagation. Compared
to the same amount of information stored in a plain text format, HDF provides
compression by an average factor of ten. Also, since HDF is a widely used format,
various externally developed visualization tools can be used for the analysis of the

obtained results.

In addition to the OpenMP-parallelized version of the code [90-92], our group
has parallelized the algorithm using the Message Passing Interface (MPI) library [92]
that enables utilization of distributed memory computing systems (computer clus-
ters). Furthermore, using the CUDA toolkit, the group has developed algorithms
optimized for the graphics processing units (GPU) able to utilize hardware accel-
erators [93]. Finally, combining all parallelization techniques (OpenMP, MPI, and
CUDA), hybrid programs for solving the dipolar GPE were also developed and made
publicly available [94]|. These programs are able to utilize state-of-the-art computing

clusters available today.

The PARADOX computing cluster at the Scientific Computing Laboratory, Cen-
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ter for the Study of Complex Systems of the Institute of Physics Belgrade has been
used for development and testing of the programs. This resource has more than
2,500 Intel Xeon E5-2670 Sandy Bridge processing cores at a frequency of 2.6 GHz
and 32 GB of RAM (2 GB per CPU core). Additional 106 NVIDIA Tesla M2090
graphic cards with 6 GB of RAM are distributed over available computing nodes.
The cluster nodes are interconnected via a QDR Infiniband technology, through a
non-blocking 144-port Mellanox QDR Infiniband switch. The communication speed
of all nodes is 40 Gbps in both directions, while the peak computing power of PARA-
DOX is 105 TFlops. The cluster provides around 100 TB of storage space, which is
distributed via a Lustre high-performance parallel file system that uses Infiniband

technology.
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1. AytopcTBoO. [Jo3BOrbaBate yMHOXaBake, OUCTPMOYUMjy M jaBHO caomniTaBare
Aena, u npepage, ako ce HaBede MMe ayTopa Ha HaumnH ogpeneH o4 cTpaHe ayTopa unm
AaBaoua nuueHue, Yak u y komepumjanHe cepxe. OBO je HajcnobogHuja o CBUMX
NULEHUMN.

2. AyTopcTBO — HeKoMepumjanHo. [1o3BosbaBaTe yMHOXaBake, AUCTPUOYLMjy 1 jaBHO
caonwTtaBawe Jena, U npepage, ako ce HaBede UMe ayTopa Ha HauduH oapeheH of
CTpaHe ayTtopa unu gasaoua nuueHue. OBa nuueHUa He O03BOSfbaBa KomepuujarnHy
ynotpeby gena.

3. AyTOpCcTBO — HeKomepumjanHO — Ge3 npepapga. [Jo3BorbaBaTe yMHOXaBah-€,
anctpmbyumnjy M jaBHO caonwtaBakwe Aena, 6e3 npomeHa, npeobrnvkoBara WnIu
ynotpebe aenay cBOM eny, ako ce HaBede MMe ayTopa Ha HauuH ogpefeH oa cTpaHe
aytopa unuv gasaoua nuueHue. OBa nuueHua He 403BOSbaBa KoMepuumjanHy ynotpeby
gena. Y ogHOCy Ha CBe ocTare fiMueHLEe, OBOM JTMLIEHLIOM Ce OrpaHmMyaBa Hajsehu obum
npasa Kopuwhewa gena.

4. AyTopCcTBO — HEKOMepLuMjanHo — AeNMMTU nog UCTUM ycrnoBuma. [lo3BosbaBaTte
YMHOXaBake, AMCTpMOyLMjy 1 jaBHO caonwiTaBawe gerna, u npepage, ako ce HaBede
nMe ayTopa Ha HauvH ogpeheH oA CcTpaHe ayTopa unu gasBaoua NUuEHLEe U ako ce
npepaga Aauctpubyvmpa nog WCTOM WAM CNnYHOM nuvueHuoM. OBa nuvueHua He
A03BOSbaBa koMepuujanHy ynotpeby aena v npepaga.

5. AytopcTBO — 6e3 npepapa. [lo3BorbaBate yMHOXaBakwe, UCTpUbyumMjy 1 jaBHO
caonwTaBake gena, 6e3 npomeHa, npeobnvkoBara nnu ynotpede gena y ceom geny,
aKko ce HaBede MMe ayTopa Ha HaumH ogpeheH of CTpaHe ayTopa unu gasaola
nunueHue. OBa nuueHua 0o3BofbaBa koMepuumjanHy ynotpeby gena.

6. AyTopcTBO — AenuTu noa WUCTUM ycrnoBuma. [lo3BoSbaBaTe YMHOXaBake,
ANCTpnbyumjy 1 jaBHO caoniwiTaBawe Aena, u npepage, ako ce Hasede MMe ayTopa Ha
HauuH oapefheH o4 cTpaHe ayTopa WM JaBaoua fuueHue M ako ce npepaja
anctpubympa nog WMCTOM MM cnuyHoM nuvueHuoM. OBa nuueHua [03BOSbaBa
KomepuujanHy ynotpeby gena u npepaga. CnnyHa je COPTBEPCKAM InMLUeHLama,
O[HOCHO INnLeHuamMa OTBOpPEeHOor Koaa.






	DVudragovic-radovi-PhD-uverenje.pdf
	HP-SEE-UF-Springer.pdf
	Preface
	Organization
	Contents
	Simulation of Electron Transport Using HPCInfrastructure in South-Eastern Europe
	1 Introduction
	2 The Quantum Kinetic Integral Equation
	3 Monte Carlo Approach
	4 Parallel Implementation and Numerical Results
	5 Conclusions and Future Work
	References

	Density Waves in Dipolar Bose-Einstein Condensates by Means of Symbolic Computations
	1 Introduction
	2 Variational Treatment
	3 Roton-Maxon Structures
	4 Conclusions
	References

	Using Parallel Computing to Calculate Static Interquark Potential in LQCD
	1 Introduction
	2 Materials and Methods
	2.1 The Static Quark-Antiquark Potential
	2.2 FermiQCD and BG – HPC Cluster

	3 Preliminary Physics Results
	3.1 Quark-Antiquark Potential from Planar and Volume Wilson Loops

	4 Conclusions
	References

	Modelling of Disaster Spreading Dynamics
	1 Introduction
	2 Percolation Probability Density
	3 Fire Spreading on Percolating Networks
	4 Cascade Failures
	5 Conclusion
	References

	Determination of Zone of Flow Instability in a Gas Flow Past a Square Particle in a Narrow Microchannel
	1 Introduction
	2 Continuum Model Equations
	3 Problem Formulation, Results and Discussion
	4 Conclusions
	References

	Quenched Hadron Spectroscopy Using FermiQCD
	1 Introduction
	1.1 Introduction to Lattice QCD
	1.2 Introduction to FermiQCD

	2 Materials and Methods
	3 Results and Discussions
	4 Conclusions
	References

	Self-Avoiding Hamiltonian Walks Counting in Parallel Processing Mode
	1 Introduction
	2 Hamiltonian Walks on Sierpinski Gasket Fractals
	3 Hamiltonian Walks on Given-Mandelbrot Fractals
	4 Implementation and Parallelization
	4.1 Parallelization and Scalability

	5 Summary and Conclusion
	References

	Conformational Analysis and HF ab initio Geometry Optimization of Kyotorphine and Its Sulfo-Analogues Norsulfoarginine-Tyrosine and Tyrosine-Norsulfoarginine
	1 Introduction
	2 Computational
	3 Results and Discussion
	References

	Dynamics of Uninhibited and Covalently Inhibited Cysteine Protease on Non-physiological pH
	1 Introduction
	2 Results and Discussion
	3 Conclusions
	4 Experimental
	References

	Mechanisms of Polarization
	1 Introduction
	2 Methods
	3 Results and Discussion
	3.1 Squaraines
	3.2 Lithiated Derivatives
	3.3 Noble Gas Derivatives

	References

	Some Aspects of the Comparative Study of Semi-empirical Combustion Models on FLUENT and OpenFOAM Codes
	1 Introduction
	2 Combustion Mechanisms
	2.1 Theory – Species Transport Equations

	3 Combustion Simulation Results
	4 Scalability Testing
	4.1 Execution Times
	4.2 Scalability Analysis

	5 Summary and Conclusion
	References

	Development of a Hybrid Statistical Physics – Quantum Mechanical Methodology for Computer Simulations of Condensed Phases and Its Implementation on High-Performance Computing Systems
	1 Introduction
	2 Computational Details and Algorithms
	3 Results and Discussion
	4 Conclusions and Directions for Future work
	References

	Solvatochromic Effect for the Denaturation and Mutation Processes in DNA: Computational Study
	1 Introduction
	2 Methods
	3 Implementation on the HPC Infrastructure
	4 Results and Discussion
	5 Conclusion
	References

	Dynamic Features of Complex Systems: A Molecular Simulation Study
	1 Introduction
	2 Construction and Simulation Data
	3 Results and Discussions
	4 Conclusion
	References

	Using Adaptive Mesh Refinement Strategy for Numerical Solving of Gas Dynamics Problems on Multicore Computers
	1 Introduction
	2 Methods
	2.1 Formulation of the Problem
	2.2 AMR Method
	2.3 Calculation Algorithm

	3 Results
	3.1 AMR PAR 64-Bit Application
	3.2 Adopting AMR PAR Application to the Regional HPCResources

	4 Discussion and Conclusions
	4.1 Future Work

	References

	Number Theory Algorithms on GPU Clusters
	1 Introduction
	2 Preliminaries
	3 Implementation Details and Computational Experiments
	3.1 Description of the Implementation and Experiments
	3.2 Computational Resources Used
	3.3 Obtained Results

	4 Conclusion and Future Work
	References

	Advanced Vulnerability Assessment Tool for Distributed Systems
	1 Introduction
	1.1 Large Scientific Computing Resources
	1.2 Motivation
	1.3 Vulnerability Trends

	2 Related Work
	3 Design and Implementation
	3.1 Architecture
	3.2 Introducing gLite Based Resources

	4 Investigating the Results of the Test Scans
	4.1 SEE-GRID VO
	4.2 HP-SEE Supercomputing Infrastructure

	5 Conclusion and Future Work
	References

	Performance and Scalability Evaluation of Short Fragment Sequence Alignment Applications
	1 Introduction
	2 HP-SEE’s Bioinformatics eScience Gateway
	2.1 Disease Gene Mapper
	2.2 Deep Aligner

	3 Performance Analysis
	3.1 Job 1
	3.2 Job 2
	3.3 Job 3

	4 Performance Measurement Results
	4.1 Runtime Benchmark
	4.2 DB Fragment Numbers
	4.3 Real World Performance

	5 Conclusion
	6 Future Work
	References

	Implementation and Benchmarking of New FFT Libraries in Quantum ESPRESSO
	1 Introduction
	2 Quantum ESPRESSO Code Structure and AppliedModifications
	2.1 Enabling FFTE Library in Quantum ESPRESSO
	2.2 Enabling FFTW3 Threading in Quantum ESPRESSO

	3 PerformanceTests
	3.1 FFTE Performance
	3.2 FFTW3 Threaded Performance

	4 Conclusions
	References

	An Analysis of FFTW and FFTE Performance
	1 Introduction
	2 FFT Libraries and Methods
	2.1 FFTW
	2.2 FFTE

	3 Benchmarking of FFT Libraries Using Developed In-HouseCodes
	4 FFT Benchmark Codes Results and Interpretation
	4.1 CURIE Results
	4.2 JUGENE Results

	5 Conclusions and Recommendations
	References

	Author Index





