
Naučnom veću Instituta za fiziku u Beogradu 
Beograd, 03. juli 2019. godine 

 

Predmet: Molba za pokretanje postupka za sticanje zvanja naučni 
saradnik 

 

S obzirom da ispunjavam kriterijume propisane od strane Ministarstva 
prosvete, nauke i tehnološkog razvoja za sticanje naučnog zvanja naučni 
saradnik, kao i kriterijume propisane Pravilnikom o sticanju naučnih zvanja u 
Institutu za fiziku, molim Naučno veće Instituta za fiziku u Beogradu da 
pokrene postupak za moj izbor u navedeno zvanje. 

 

 

U prilogu dostavljam: 

1. Mišljenje rukovodioca projekta sa predlogom članova komisije 
2. Stručnu biografiju 
3. Pregled naučne aktivnosti 
4. Elemente za kvalitativnu analizu naučnog rada 
5. Elemente za kvantitativnu analizu naučnog rada 
6. Spisak objavljenih naučnih radova  
7. Podatke o citiranosti  
8. Skeniranu doktorsku diplomu sa sertifikatom, uz dokaz o nostrifikaciji 
9. Primerak doktorske disertacije 
10. Kopije objavljenih radova i doktorske diplome 

 

 

 

 

 

 

 

                                    Sa Poštovanjem, 

 

               

                                                                                          Dr Milena M. Filipović 





STRUČNA BIOGRAFIJA  

Milena (Milorad) Filipović je rođena 19. juna 1980. godine u Beogradu, gde je 
završila osnovnu školu Ujedinjene nacije i XIII beogradsku gimnaziju, a zatim 
je upisala Fizički fakultet Univerziteta u Beogradu, smer Teorijska i 
eksperimentalna fizika, gde je diplomirala 2007. godine. Iste godine je upisala 
Master studije fizike na Univerzitetu Ilinois u Čikagu koje je završila 2009. 
godine. Na Univerzitetu Ilnois, Milena je radila kao asistent u nastavi, gde je 
držala vežbe iz kurseva: Uvod u fiziku, Elektricitet i magnetizam, Astronomija i 
univerzum.  

Od 2010. do 2015. godine Milena je boravila na doktorskim studijama i post 
doktorskom usavršavanju u Nemačkoj, na Univerzitetu u Konstanci, gde je 
bila zaposlena kao naučni saradnik u istraživačkoj grupi za kvantni transport. 
Milena se bavila naučnim radom u okviru Integrisane Istraživačke Grupe 
Kolaborativnog Centra 767 “Kontrolisani nanosistemi: Interakcija i povezivanje 
na makronivou”. Bila je asistent u nastavi na predmetima: Kvantna teorija 
polja u fizici čvrstog stanja, Napredna kvantna mehanika i elektrodinamika. 
Mentor doktorskih studija bio joj je Prof. Dr Wolfgang Belzig. Milena je 
odbranila doktorsku disertaciju iz teorijske fizike kondenzovanog stanja, pod 
nazivom “Quantum Transport Through Molecular Magnets” u julu 2015. 
godine. Sa svojim mentorom Milena je nastavila saradnju do aprila 2018. 
godine.  

 

PREGLED NAUČNE AKTIVNOSTI 

Tokom svog rada Milena je teorijski izučavala vremenski zavisni elektronski i  
spinski transport kroz molekulsku orbitalu povezanu sa dva metalna kontakta i 
spregnutu sa molekularnim magnetom putem izmenske interakcije. Spin 
molekula je tretiran kao klasična varijabla koja precesira oko spoljašnjeg 
konstantnog magnetnog polja Larmorovom frekvencijom. Koristeći Keldysh-ov 
formalizam za Green-ove funkcije u neravnoteži izvedeni su izrazi za 
električnu i spinsku struju. Sprega između elektronskog spina i dinamike 
magnetizacije molekula vodi do neelastičnih procesa tunelovanja, koji 
doprinose spinskim strujama. Neelastične spinske struje izazivaju torziju 
molekularnog spina usled prenosa spinskog angularnog momenta između 
spinski polarizovane struje i molekularnog spina, koja je kompenzovana 
spoljašnjim faktorima. Ova povratna akcija uključuje doprinos Gilbertovom 
prigušenju i promeni frekvencije precesionog kretanja molekularnog spina. 
Koeficijent Gilbertovog prigušenja može da se kontroliše putem napona ili 
spoljašnjeg magnetnog polja i njegova zavisnost od širine molekularnog nivoa 
nije monotona. 

Sledeće, Milena je izučavala elektronski i spinski transport dodajući vremenski 
zavisne elektohemijske potencijale u metalne kontakte koji su povezani sa 
molekularnom orbitalom. Koristeći Keldysh-ov formalizam za neravnotežne 
Green-ove funkcije Milena je računala električnu i spinsku struju linearno u 
odnosu na vremenski zavisne potencijale. Oscilatorni elektrohemijski 
potencijali omogućavaju da se detektuje Larmorova frekvencija putem 
merenja provodnosti ako je frekvencija naizmenične struje jednaka 



Larmorovoj frekvenciji. U režimu niske frekvencije naizmenične struje sistem 
se ponaša kao klasično električno kolo, koje se sastoji od paralelno vezane 
dve redne kombinacije, otpornika i induktora, i otpornika i kondenzatora. 
Štaviše, pokazalo se da sistem može da se koristi za generisanje 
jednosmerne struje, koja se može kontrolisati promenom pravca 
magnetizacije molekula i relativnih faza izmedju Larmorove precesije i 
naizmeničnog napona. 

Na kraju, Milena je izučavala neravnotežni šum električne struje, spinskih 
struja i molekulske spinske torzije u odsustvu vremenski zavisnih 
elektrohemijskih potencijala, koristeći Keldysh-ov formalizam neravnotežnih 
Green-ovih funkcija. Slično kao kod Fano efekta, uočena su udubljenja kod 
šuma električne struje zbog prisustva neelastičnih procesa tunelovanja koji 
uključuju promenu energije transportnih elektrona u vrednosti jedne 
Larmorove frekvencije. Ovim procesima upravlja precesija molekularnog 
spina i oni vode do kvantne interferencije izmedju korelisanih struja. Napon i 
precesija molekularnog spina upravljaju komponentama šuma molekularne 
spinske torzije. Elastični i neelastični procesi tunelovanja spinskih cestica, 
koje prati promena energije za jednu ili dve Larmorove frekvencije daju 
doprinos komponentama šuma spinske torzije koje povezuju torzije u istom 
pravcu u precesionoj ravni. Korelacije ortogonalnih komponenti spinske torzije 
u precesionoj ravni su povezane sa Gilbertovim prigušenjem. 

 

ELEMENTI ZA KVALITATIVNU ANALIZU NAUČNOG RADA 

 

1. Kvalitet naučnih rezultata 
 

    1.1 Značaj naučnih rezultata 

Milena Filipović se bavi teorijskim istraživanjima kvantnog elektronskog i 
spinskog transporta kroz nanosisteme. Njena uža specijalnost je kvantni 
transport kroz sisteme koji sadrže molekularne magnete. Teorijski izučava 
vremenski zavisan transport elektrona i spina primenjujuci Keldysh-ov 
formalizam neravnotežnih Green-ovih funkcija. U tom kontekstu tokom svog 
rada razvila je koncept generalizovanog formalizma odziva. 

Milena je publikovala 3 rada u vrhunskom međunarodnom časopisu kao prvi 
autor. Bila je učesnik brojnih međunarodnih konferencija i letnjih škola gde je 
predstavila svoj rad. 

    1.2 Parametri kvaliteta časopisa 

Milena Filipović je publikovala 3 rada u vrhunskom međunarodnom časopisu 
Physical Review B [IF 3.813 (2017)], kategorije M21. 

 

 



    1.3 Podaci o citiranosti  

Prema podacima sa baze Google Scholar, radovi Milene Filipović su citirani 
13 puta, od čega 10 puta izuzimajući autocitate. Prema bazi Web of Science, 
radovi Milene Filipović su citirani 10 puta, a prema podacima sa baze Scopus, 
radovi kandidatkinje su citirani 11 puta. 

    1.4 Međunarodna saradnja 

Međunarodne aktivnosti Dr Milene Filipović obuhvataju: 

• Saradnju sa teorijskom grupom za kvantni transport čiji je rukovodilac 
Prof. Dr Wolfgang Belzig na Univerzitetu u Konstanci, Nemačka 

• Saradnju sa odsekom za fiziku Univerziteta Iinois u Čikagu, Sjedinjene 
Američke Države 
 
 

2. Normiranje broja koautorskih radova, patenata i 
tehničkih rešenja 

Budući da 1 objavljeni rad kandidatkinje ima 4 koautora, on nakon normiranja 
donosi 6.7 M-bodova, a ostali radovi se računaju sa punom težinom jer imaju 
po 2 koautora. 

 

3. Učešće u projektima, potprojektima i projektnim 
zadacima 
 

Kandidatkinja je učestvovala na sledećim projektima: 

• Collaborative Research Center SFB 767 “Controlled Nanosystems: 
Interactions and Interfacing to the Macroscale”, Project C03: Time-
dependent transport in correlated electron nanostructures, 01/2008-
12/2019 

• Collaborative Research Center SFB 767 “Controlled Nanosystems: 
Interactions and Interfacing to the Macroscale”, Project C08: 
Controlling quantum systems by electrical current, 2008-2011 

• Project UltraPhase of Prof. Dr. Alfred Leitenstorfer, ERC Advanced 
Grant-Condensed matter physics, 04/2012-03/2017 
 
 

4. Uticaj naučnih rezultata 

Uticaj naučnih rezultata Milene Filipović se ogleda u broju citata 
koji su navedeni u odeljku 1.3. Spisak radova koji citiraju radove 
kandidatkinje nalazi se u prilogu. 

 



5. Konkretan doprinos kandidatkinje u realizaciji radova u 
naučnim centrima u  zemlji i inostranstvu 
 

Milena Filipović je sve svoje istraživačke aktivnosti realizovala na 
Univerzitetu u Konstanci u Nemačkoj, u grupi za kvantni transport, 
čiji je rukovodilac Prof. Dr Wolfgang Belzig. Kandidatkinja je dala 
ključni doprinos objavljenim radovima i u svim radovima je prvi 
autor. Njen doprinos se ogleda u izradi proračuna, dobijanju, 
interpretaciji i prezentaciji rezultata, pisanju radova i komunikaciji 
sa urednicima i recenzentima časopisa. 

 

ELEMENTI ZA KVANTITATIVNU ANALIZU NAUČNOG RADA 

 

OSTVARENI M-BODOVI PO KATEGORIJAMA PUBLIKACIJA 

 

Kategorija      M-bodova po publikaciji      Broj publikacija     Ukupno M-bodova 

    M21               pun broj bodova  8                      2                            16 

    M21                normirani  6.7                             1                            6.7 

    M32                             1.5                                 1                            1.5 

    M34                             0.5                                 3                            1.5 

    M70                              6                                   1                             6 

 

Poređenje ostvarenog broja M-bodova sa minimalnim uslovima potrebnim za 
izbor u zvanje naučni saradnik: 

                                                                       Potrebno        Ostvareno 

                    Ukupno                                           16                  31.7 

M10+M20+M31+M32+M33+M41+M42               10                  24.2 

M11+M12+M21+M22+M23                                  6                   22.7 

 

Budući da je Mileni Filipović ovo prvi izbor u naučno zvanje, ona ima 3 rada 
(M21), jedno predavanje na medjunarodnoj konferenciji DPG Spring Meeting 
u Berlinu (M32), 3 saopštenja sa međunarodnog skupa (M34) i odbranjenu 
doktorsku disertaciju (M70).  



SPISAK RADOVA DR MILENE FILIPOVIĆ 

SPISAK OBJAVLJENIH RADOVA U VRHUNSKOM MEĐUNARODNOM 
ČASOPISU (M21): 

1. Spin transport and tunable Gilbert damping in a single-molecule 
magnet junction 
Milena Filipović, Cecilia Holmqvist, Federica Haupt and Wolfgang 
Belzig  
Phys. Rev. B 87, 045426 (2013); 88, 119901(E) (2013) 
 

2. Photon-assisted electronic and spin transport in a junction containing 
precessing molecular spin 
Milena Filipović and Wolfgang Belzig 
Phys. Rev. B 93, 075402 (2016) 
 

3. Shot noise of charge and spin transport in a junction with a precessing 
molecular spin 
Milena Filipović and Wolfgang Belzig 
Phys. Rev. B 97, 115441 (2018)  
 

PREDAVANJE PO POZIVU SA MEĐUNARODNOG SKUPA ŠTAMPANO U 
IZVODU (M32): 

03/2012     Tunable Gilbert Damping in a Single Molecule Magnet (talk) 

                  Deutsche Physikalische Gesellschaft (DPG) Spring Meeting, Berlin,  

                  Germany 

 

SAOPŠTENJA SA MEĐUNARODNOG SKUPA ŠTAMPANA U IZVODU 
(M34): 

09/2015     Quantum Transport Through Molecular Magnets (poster)       

                  The 19th  Symposium on Condensed Matter Physics, SFKM 2015,  

                  Belgrade, Serbia 

02/2013     Spin Transport and Tunable Gilbert Damping in a Single-Molecule  

                  Magnet Junction (poster)      

                  Trends in Nanoscience 2013, Kloster Irsee, Germany 

03/2011    Time-dependent Transport Through a Molecular Level Coupled to  

                 a Nanomagnet  (poster)     

                 Deutsche Physikalische Gesellschaft (DPG) Spring Meeting,  

                 Dresden, Germany 



ODBRANJENA DOKTORSKA DISERTACIJA (M70): 

 

1. Doktorska disertacija: “Kvantni Transport Kroz Molekularne Magnete” 
(naslov originala: “Quantum Transport Through Molecular Magnets”) 
Milena Filipović 
Doktorska disertacija (2015), Univerzitet u Konstanci, Nemačka 
Mentor: Prof. Dr Wolfgang Belzig 
 
Doktorska disertacija Milene Filipović se u elektronskoj formi može naći 
na sajtu:  
1. Nacionalne biblioteke Nemačke: 

https://d-nb.info/1098136519/34 
2. KOPS Univerziteta u Konstanci: 

http://kops.uni-konstanz.de/handle/123456789/31978 
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Nanoelectronics III -
Molecular Electronics
2

TT 44.3: Vortrag

Donnerstag, 29. März
2012, 15:30–15:45, BH
334

Auswahlstatus für diesen Beitrag:

Spin transport and tunable
Gilbert damping in a single-
molecule magnet — •MILENA

FILIPOVIC1, FEDERICA HAUPT2,
CECILIA HOLMQVIST1, and
WOLFGANG BELZIG1 —
1Fachbereich Physik, Universität
Konstanz, D-78457 Konstanz,

gemäß den Sitzungseinstellungen

Verhandlungen der Deutschen Physikalischen Gesellschaft https://www.dpg-verhandlungen.de/year/2012/conference/berlin/part/tt...
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Germany — 2Institut für Theorie
der Statistischen Physik, RWTH
Aachen, D-52056 Aachen,
Germany

We study spin transport through
a molecular level coupled to two
leads and a single-molecule
magnet in a magnetic field. The
molecular spin is treated as a
classical variable and, due to the
external magnetic field,
precesses around the field axis.
Expressions for charge and spin
currents are derived by means of
the Keldysh nonequilibrium
Green’s function technique in
linear response. The exchange
coupling between the electronic
spins and the magnetization
dynamics of the molecule creates
inelastic tunneling processes
which contribute to the spin
currents. The inelastic spin
currents, in turn, generate a spin

Verhandlungen der Deutschen Physikalischen Gesellschaft https://www.dpg-verhandlungen.de/year/2012/conference/berlin/part/tt...
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transfer torque [1,2] acting on
the molecular spin. This back-
action includes one component
that gives a contribution to the
Gilbert damping and one
component that changes the
precession frequency. The Gilbert
damping coefficient, α, can be
controlled by changing the bias
and gate voltages, and has a
non-monotonic dependence on
the tunneling rates. We compare
our results to the Gilbert
damping coefficient calculated in
Ref. [3] in the small precession
frequency regime ℏω≪ kBT.
Y. Tserkovnyak et al., Rev. Mod.
Phys. 77, 1375 (2005).
C. Holmqvist et al., Phys. Rev. B
83, 104521 (2011).
N. Bode et al.,
arXiv:1110.4270v1 (2011).
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DPG-Verhandlungen > 2012 > Berlin
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Thursday

TT 44: Transport: Nanoelectronics III - Molecular Electronics 2

Time: Thursday 15:00–17:15 Location: BH 334

TT 44.1 Thu 15:00 BH 334
Charge transport in single molecule junctions with graphene
leads — ∙Ivan Pshenichnyuk, Susanne Leitherer, Pedro B.
Coto, and Michael Thoss — Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany
High electron mobility, mechanical rigidity and optical transparency
make graphene a promising candidate as material for electrodes in na-
noelectronic devices. In this work, we investigate charge transport in
single molecule junctions with graphene leads. The methodology used
is based on a combination of first-principles electronic structure calcu-
lations to characterize the molecule-graphene junctions and the Lan-
dauer transport formalism. Considering different examples for molecu-
lar bridges between graphene electrodes, in particular pentacene-based
molecules as well as polyyne chains, we analyze the transmission prob-
ability and the current-voltage characteristics.

TT 44.2 Thu 15:15 BH 334
Thermopower of biphenyl-based single-molecule junctions
— ∙Marius Bürkle1, Linda A. Zotti2, Janne K. Viljas3,
Thomas Wandlowski4, Marcel Mayor5, Gerd Schön1, and
Fabian Pauly1 — 1Institut für Theoretische Festkörperphysik and
DFG Center for Functional Nanostructures, Karlsruhe Institute of
Technology, Karlsruhe, Germany — 2Departamento de Física Teórica
de la Materia Condensada, Universidad Autónoma de Madrid, Madrid,
Spain — 3Low Temperature Laboratory, Aalto University, Aalto, Fin-
land — 4Department of Chemistry and Biochemistry, University of
Bern, Bern, Switzerland — 5Department of Chemistry, University of
Basel, Basel, Switzerland
Employing ab initio electronic structure calculations combined with
non-equilibrium Green’s function techniques we study the dependence
of the thermopower on the degree of 𝜋-conjugation in biphenyl-based
single molecule gold junctions. We control the degree of 𝜋-conjugation
by changing the torsion angle 𝜙 between the two phenyl rings by means
of alkyl side chains connected to the molecules. We find that the ab-
solute value of the thermopower decreases weakly as cos2 𝜙. We show
that the observed cos2 𝜙 dependence is robust with respect to different
anchoring groups and binding positions. The anchoring group deter-
mines the sign of the thermopower. Sulfur and amine give rise to 𝑄 > 0
and cyano to 𝑄 < 0 respectively. Different binding positions on the
contrary lead to variations of the absolute values of the thermopower.
The observed ab initio results are found to be described well by means
of a 𝜋-electron tight binding model.

TT 44.3 Thu 15:30 BH 334
Spin transport and tunable Gilbert damping in a single-
molecule magnet — ∙Milena Filipovic1, Federica Haupt2, Ce-
cilia Holmqvist1, and Wolfgang Belzig1 — 1Fachbereich Physik,
Universität Konstanz, D-78457 Konstanz, Germany — 2Institut für
Theorie der Statistischen Physik, RWTH Aachen, D-52056 Aachen,
Germany
We study spin transport through a molecular level coupled to two leads
and a single-molecule magnet in a magnetic field. The molecular spin
is treated as a classical variable and, due to the external magnetic
field, precesses around the field axis. Expressions for charge and spin
currents are derived by means of the Keldysh nonequilibrium Green’s
function technique in linear response. The exchange coupling between
the electronic spins and the magnetization dynamics of the molecule
creates inelastic tunneling processes which contribute to the spin cur-
rents. The inelastic spin currents, in turn, generate a spin transfer
torque [1,2] acting on the molecular spin. This back-action includes
one component that gives a contribution to the Gilbert damping and
one component that changes the precession frequency. The Gilbert
damping coefficient, 𝛼, can be controlled by changing the bias and
gate voltages, and has a non-monotonic dependence on the tunneling
rates. We compare our results to the Gilbert damping coefficient cal-
culated in Ref. [3] in the small precession frequency regime ~𝜔 ≪ 𝑘𝐵𝑇 .
[1] Y. Tserkovnyak et al., Rev. Mod. Phys. 77, 1375 (2005).
[2] C. Holmqvist et al., Phys. Rev. B 83, 104521 (2011).
[3] N. Bode et al., arXiv:1110.4270v1 (2011).

TT 44.4 Thu 15:45 BH 334
THz torsional vibrations in biphenyl-based molecular junc-

tions: transient oscillations and resonance — ∙Matthias
Hinreiner1, Dmitry Ryndyk1, Denis Usvyat2, Thomas Merz2,
Martin Schütz2, and Klaus Richter1 — 1Institute for Theoretical
Physics, University of Regensburg, Regensburg, Germany — 2Institute
for Physical and Theoretical Chemistry, University of Regensburg, Re-
gensburg, Germany
We investigate the torsional vibrations in biphenyl-based molecular
junctions and transport properties in presence of an external THz field.

Ab-initio calculations with external electric fields show that the tor-
sional angle 𝜑 of 4,4’-dithiol-biphenyl demonstrates only very tiny re-
sponse. However, if functional groups are added to the molecule to
induce a dipole moment in each of the rings, an external field can
change 𝜑. Two examples of such molecules are 3,3’-diflouride-4,4’-
dithiol-biphenyl and 2,2’-dithiol-5,5’-bipyridine. As the conductivity
of biphenyl-based molecules is proportional to 𝑐𝑜𝑠2(𝜑), we show that
the current through these molecules drops if the external THz field
frequency gets in resonance to the torsional vibration mode.

15 min. break.

TT 44.5 Thu 16:15 BH 334
Electron transport through helical, biimidazole-based struc-
tures — ∙Thomas Brumme, Rafael Gutiérrez, and Gianaurelio
Cuniberti — Institute for Materials Science and Max Bergmann Cen-
ter of Biomaterials, TU Dresden, Germany
Molecular electronics and spintronics provide a promising strategy to
overcome limitations of semiconductor-based technologies by imple-
menting electronic functionalities at the molecular scale. However, in
order to create single molecule spintronics devices one needs to un-
derstand the spin-dependent transport through the molecular system,
its dependence on different molecular properties and possible mecha-
nisms to change the magnetization of the molecule. Molecular systems
with screw symmetry like DNA are especially interesting for spintron-
ics applications since the transport through these systems can be spin
selective [1]. We investigate the eletronic structure of a molecular helix
formed by silver atoms and biimidazole units ([𝐴𝑔(𝑁𝑂3)(𝐻2biim)]𝑛,
[2, 3]). First-principles calculations reveal that several molecular or-
bitals possess screw symmetry and are completely delocalized along the
helix. Based on this results we explore the possibility of spin-selective
electron transport through this molecular helix.
[1] B. Göhler et al., Science 331, 894 (2011)
[2] C.A. Hester et al., Polyhedron 16, 2893 (1997)
[3] M. Sowwan et al., Journal of Nanomaterials 2010 (2010)

TT 44.6 Thu 16:30 BH 334
Spin selective transport through helical molecular systems
— ∙Rafael Gutierrez1, Elena Diaz2, Ron Naaman3, and Gi-
anaurelio Cuniberti1 — 1Institute for Materials Science, Dresden
University of Technology, 01062 Dresden, Germany — 2GISC, Depar-
tamento de Fisica de Materiales, Universidad Complutense, E-28040
Madrid, Spain — 3Department of Chemical Physics, Weizmann Insti-
tute, 76100 Rehovot, Israel
Highly spin selective transport of electrons through a helically shaped
electrostatic potential is demonstrated in the frame of a minimal model
approach. The effect is significant even in the case of weak spin-orbit
coupling. Two main factors determine the selectivity, an unconven-
tional Rashba-like spin-orbit interaction, reflecting the helical sym-
metry of the system, and a weakly dispersive electronic band of the
helical system. The weak electronic coupling, associated with the small
dispersion, leads to a low mobility of the charges in the system and
allows even weak spin-orbit interactions to be effective. The results
are expected to be generic for chiral molecular systems displaying low
spin-orbit coupling and low conductivity.

TT 44.7 Thu 16:45 BH 334
Quantum Interference Effects in Single-Molecule Junctions
— ∙Stefan Ballmann1, Rainer Härtle2, Pedro Brana-Coto2,
Michael Thoss2, and Heiko B. Weber1 — 1Lehrstuhl für Ange-
wandte Physik, Universität Erlangen-Nürnberg, Germany — 2Institut
für Theoretische Festkörperphysik, Universität Erlangen-Nürnberg,
Germany
We analyze quantum interference effects in single-molecule junctions
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Transport

TT 38.27: Poster

Mittwoch, 16. März 2011,
14:00–18:00, P3

Auswahlstatus für diesen Beitrag:

Time-dependent transport
through a molecular level
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dot and the leads are treated as
noninteracting. We use the
Keldysh nonequilibrium Green
function technique to derive and
analyze the properties of the
spin-dependent tunneling current
and its linear response to the
applied time-dependent magnetic
field. We further analyze the
transport through the single level
quantum dot coupled to a
precessing molecular
nanomagnet.
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[1] V. Brosco et al., Phys. Rev. B 82, 041309(R) (2010).

TT 38.21 Wed 14:00 P3
Probing of coherence in molecular and CNT transport —
∙Birgit Kießig1,2, Ralph Krupke3, Regina Hoffmann2, Do-
minik Stöffler2, Kai Grube1, Roland Schäfer1, and Hilbert
von Löhneysen1,2 — 1Karlsruher Institut für Technologie, Insti-
tut für Festkörperphysik, 76021 Karlsruhe — 2Karlsruher Institut für
Technologie, Physikalisches Institut, 76128 Karlsruhe — 3Karlsruher
Institut für Technologie, Institut für Nanotechnologie, 76021 Karlsruhe
The advancing miniaturisation of electronic circuits has increased the
scientific interest in transport properties of single molecules as the
smallest available building blocks. Other promising candidates for ul-
trasmall electronic devices are carbon nanotubes (CNTs), which at the
same time are already today far easier to handle than molecules.

We aim to probe a very special characteristic of transport through
nanoscale devices, namely coherence. Its occurence in a single elec-
tronic building block leads to divergence of the behaviour of a combi-
nation of several such devices from the classical expectation.

Molecular transport measurements require the fabrication of conduc-
tive electrodes spaced only a few nm apart. To achieve such we chose
a feedback controlled electromigration procedure for the preparation
of our samples, which we investigated in detail.

Furthermore we also prepared and measured appropriate samples
for coherence probing of transport through CNTs.

TT 38.22 Wed 14:00 P3
Inelastic transport through octane molecules and a single
level model with light — ∙Thomas Hellmuth1, Fabian Pauly1,
and Gerd Schön1,2 — 1Institut für Theoretische Festkörperphysik,
Karlsruhe Institut of Technology (KIT) — 2Institut für Nanotechnolo-
gie, Karlsruhe Institut of Technology (KIT)
We study the transport and vibrational modes of single-molecule junc-
tions containing octandeamine and octanedithiol. For this we use a
scheme based on density functional theory. We compare our results
to experiments and map the calculated vibrational modes to the mea-
sured IETS [1]. We show the substantially different behavior for the
different terminal groups, namely the pulling of gold chains for dithiols,
while they are absent for the dimanines. In addition to these studies,
we explore the inelastic rectification current of a light irradiated single
level contact.
[1] Y. Kim, T. Hellmuth, F. Pauly, and E. Scheer (in preparation)

TT 38.23 Wed 14:00 P3
Ab-initio description of transport through biphenyl-based
molecular junctions — ∙Marius Bürkle1, Fabian Pauly1, and
Gerd Schön1,2 — 1Institut für Theoretische Festkörperphysik, Karl-
sruhe Institute of Technology — 2Institut für Nanotechnologie, Karl-
sruhe Institute of Technology
Biphenyl molecules serve as prototype systems for transport through
single molecule junctions. In combination with experiments, we study
the electric and thermoelectric transport properties by means of den-
sity functional theory. We explore the effects of molecular confor-
mation and anchoring groups on the electric transport in biphenyl
dithiols, dinitriles, and diamines [1,2,3]. In addition, we show that
they have also a strong influence on the thermoelectric properties.
Namely, increasing torsion angle generally decreases the thermopower
and, through doping via the anchoring groups, HOMO transport for
dithiol and diamine linked molecules changes to LUMO transport for
dinitriles.
[1] A. Mishchenko, D. Vonlanthen, V. Meded, M. Bürkle, C. Li, I. V.
Pobelov, A. Bagrets, J. K. Viljas, F. Pauly, F. Evers, M. Mayor, and
T. Wandlowski Nano Lett. 10, 156 (2010)
[2] A. Mishchenko, L. A. Zotti, D. Vonlanthen, M. Bürkle, F. Pauly, J.
C. Cuevas, M. Mayor, and T. Wandlowski J. Am. Chem. Soc. (2010),
accepted
[3] L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen and
M. L. Steigerwald, Nature 442, 904-907 (2006).

TT 38.24 Wed 14:00 P3
Optical Control of Single-Molecule Conductance — ∙Yaroslav
Zelinskyy1,2 and Volkhard May2 — 1Bogolyubov Institute for the-
oretical physics, National Academy of Science of Ukraine, 14-b Metro-
logichna str. UA-03680, Kiev, Ukraine — 2Institut für Physik, Hum-
boldt Universität zu Berlin, Newtonstraße 15, D-12489, Berlin, Ger-
many

A kinetic model is established for current formation through a sin-
gle molecule embedded in between two metallic electrodes and irra-
diated by an external laser pulse. Focusing on the particular case of
a molecule which can be moved in its excited electronic state if it
became singly charged, an analytical expression for the steady-state
current is presented. A detailed analysis of the current-voltage as well
as conductance-voltage characteristics at the different wavelength of
the applied laser light is carried out. Based on such computations a
photo-switching effect between molecular states of low and height con-
ductivity can be proposed. In the case of weak molecule-lead coupling
a voltage region showing negative differential resistance is found. Its
suppression due to laser pulse excitation is indicated.

TT 38.25 Wed 14:00 P3
Electrical Characterization of Short DNA Fragments —
∙Matthias Wieser1, Shou-Peng Liu2, Samuel Weisbrod2, Zhuo
Tang2, Andreas Marx2, Elke Scheer2, and Artur Erbe1 —
1Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden —
2Universität Konstanz, D-78457 Konstanz
The electrical transport properties of DNA molecules are important for
future molecular electronics applications. We characterized the elec-
trical conductance of single DNA fragments in ambient condition and
in buffer solution using a Mechanically Controllable Break Junction
(MCBJ) setup which allows us binding molecules between two gold
electrodes. We analyzed the electrical conductance of double stranded
DNA and G-quadruplex molecules. G-quadruplex molecules consist of
four guanine bases arranged in the shape of a square and a cation in
the center. The electrical characterization is done by investigating the
I-V curves characteristics of the molecules in different conditions.

TT 38.26 Wed 14:00 P3
Electronic transport through switchable molecules — ∙Bernd
Briechle1, Nikola Treska1, Dima Sysoiev2, Jannic Wolf2,
Youngsang Kim1, Johannes Boneberg1, Thomas Huhn2, Ul-
rich Groth2, Ulrich Steiner2, Artur Erbe3, and Elke Scheer1

— 1Department of Physics, University of Konstanz, Germany —
2Department of Chemistry, University of Konstanz, Germany —
3Forschungszentrum Dresden-Rossendorf, Dresden, Germany
We investigate transport properties of molecules in liquid solvent at
room temperature. For that purpose we use lithographically fabri-
cated Mechanically Controllable Break Junctions (MCBJs) to gen-
erate atomic-size contacts and atomically sharp tips to contact the
molecules. We study molecular switches for which reversible switching
from an opened to a closed conjugated backbone via light irradiation is
expected. The molecular switches feature thiol- or nitrogen-based end-
groups for a strong bond to the metal. Analysis is based on statistics
of conductance traces recorded during opening and closing the junc-
tion, and on current-voltage characteristics taken at constant electrode
distance. It has been shown that the latter can be described by a sim-
ple transport model involving a single broadened molecular orbital.
Fitting the experimental current-voltage characteristics to this model,
we can extract the strength of the molecule-metal bond as well as the
energy of the molecular orbital next to the Fermi level. This analysis
enables us to determine promising combinations of metal and molecule
endgroup for stable and reproducible contacting which is a crucial re-
quirement for our transport studies.

TT 38.27 Wed 14:00 P3
Time-dependent transport through a molecular level coupled
to a nanomagnet — ∙Milena Filipovic, Federica Haupt, and
Wolfgang Belzig — University of Konstanz, Konstanz, Germany
We study the transport through a single level quantum dot coupled
to two leads in the presence of a magnetic field. The magnetic field
is coupled to the quantum dot and the leads are treated as noninter-
acting. We use the Keldysh nonequilibrium Green function technique
to derive and analyze the properties of the spin-dependent tunneling
current and its linear response to the applied time-dependent mag-
netic field. We further analyze the transport through the single level
quantum dot coupled to a precessing molecular nanomagnet.

TT 38.28 Wed 14:00 P3
Quantum Interference and Dephasing Due to Vibronic Cou-
pling in a Single-Molecule Junction — ∙Michael Butzin,
Rainer Härtle, and Michael Thoss — Theoretische Festkörper-
physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudt-
str. 7/B2, D-91058 Erlangen, Germany
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3 2016
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H Hammar, J Fransson - Physical Review B, 2016 - APS
In single-molecule magnets, the exchange between a localized spin moment and the
electronic background provides a suitable laboratory for studies of dynamical aspects of
both local spin and transport properties. Here we address the time evolution of a localized …

Cited by 13 Related articles All 5 versions

H Hammar, J Fransson - Physical Review B, 2017 - APS
We explore the limitations and validity of semiclassically formulated spin equations of
motion. Using a single-molecule magnet as a test model, we employ three qualitatively
different approximation schemes. From a microscopic model, we derive a generalized spin …

Cited by 7 Related articles All 6 versions

H Hammar, J Fransson - Physical Review B, 2018 - APS
We address the dynamics of a localized molecular spin under the influence of external
voltage pulses using a generalized spin equation of motion which incorporates anisotropic
fields, nonequilibrium conditions, and nonadiabatic dynamics. We predict a recurring 4 π …

Cited by 3 Related articles All 5 versions

M Filipović, W Belzig - Physical Review B, 2016 - APS
We study the ac charge and-spin transport through an orbital of a magnetic molecule with
spin precessing in a constant magnetic field. We assume that the source and drain contacts
have time-dependent chemical potentials. We employ the Keldysh nonequilibrium Green's …

Cited by 3 Related articles All 6 versions

F Wang, G Li - Chinese Physics B, 2016 - iopscience.iop.org
The spin transport properties of S–Au–S junction and Au–Au–Au junction between Au
nanowires are investigated with density functional theory and the non-equilibrium Green's
function. We mainly focus on the spin resonance transport properties of the center Au atom …

Cited by 1 Related articles All 4 versions

H Hammar - 2019 - diva-portal.org
This thesis theoretically studies the dynamics of molecular magnets under electrical control.
Molecular magnets are nanoscale magnets that can, eg, consist of single-molecules or
singleatoms. In these magnets, the electronically mediated exchange and transport can be …

Related articles

H Hammar - 2014 - diva-portal.org
Electronic devices and circuits are getting smaller and smaller and more effective and has
for many years followed the prediction of Moore's law [1]. Conventional electronic devices as
silicon integrated circuits are now entering a level where quantum effects starts to come into …

Related articles

M Filipovic - 2015 - kops.uni-konstanz.de
In this thesis we theoretically study time-dependent electronic and spin transport through a
molecular orbital connected to two Fermi leads, and coupled to a molecular magnet via
exchange interaction. The molecular spin is considered as a classical variable and is …

Related articles All 2 versions

Spin transport and tunable Gilbert damping in a single-molecule magnet junction
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Time-dependent spin and transport properties of a single-molecule magnet in a
tunnel junction

Transient spin dynamics in a single-molecule magnet

Dynamical exchange and phase induced switching of a localized molecular spin

Photon-assisted electronic and spin transport in a junction containing precessing
molecular spin

Spin resonance transport properties of a single Au atom in S–Au–S junction and
Au–Au–Au junction

Dynamics of Magnetic Molecules under Electrical Control

Non-equilibrium dynamics ofa single spin in a tunnel junction

Quantum Transport Through Molecular Magnets
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L Pérez-Fuentes - 2014 - dadun.unav.edu
De igual manera, autorizo al Departamento de Física y Matemática Aplicada de la Uni- versidad
de Navarra, la distribución de esta memoria y, si procede, de la “fe de erratas” correspondiente
por cualquier medio, sin perjuicio de los derechos de propiedad inte- lectual que me …

Related articles All 2 versions

Dinámica de un dímero magnético
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A Płomińska, M Misiorny, I Weymann - Physical Review B, 2017 - APS
The finite-frequency transport properties of a large-spin molecule attached to ferromagnetic
contacts are studied theoretically in the Kondo regime. The focus is on the behavior of the
dynamical conductance in the linear response regime, which is determined by using the …

Cited by 5 Related articles All 7 versions

C Goel, S Kuhlmann, B Reznick - Linear Algebra and its Applications, 2016 - Elsevier
A famous theorem of Hilbert from 1888 states that for given n and d, every positive
semidefinite (psd) real form of degree 2d in n variables is a sum of squares (sos) of real
forms if and only if n= 2 or d= 1 or (n, 2 d)=(3, 4). In 1976, Choi and Lam proved the …

Cited by 3 Related articles All 10 versions

M Filipović, W Belzig - Physical Review B, 2018 - APS
Magnetic molecules and nanomagnets can be used to influence the electronic transport in
mesoscopic junction. In a magnetic field, the precessional motion leads to resonances in the
dc-and ac-transport properties of a nanocontact, in which the electrons are coupled to the …

Cited by 1 Related articles All 6 versions

Photon-assisted electronic and spin transport in a junction containing precessing
molecular spin

Search within citing articles

Spin-resolved dynamical conductance of a correlated large-spin magnetic molecule

On the Choi–Lam analogue of Hilbert's 1888 theorem for symmetric forms

Shot noise of charge and spin transport in a junction with a precessing molecular
spin
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A Roxburgh, JT Haraldsen - Physical Review B, 2018 - APS
In this study, we examine the thermodynamics and spin dynamics of spin-1/2 and spin-3/2
heptamers. Through an exact diagonalization of the isotropic Heisenberg Hamiltonian, we
find the closed-form, analytical representations for thermodynamic properties, spin …

Cited by 1 Related articles All 5 versions

Shot noise of charge and spin transport in a junction with a precessing molecular
spin

Search within citing articles

Thermodynamics and spin mapping of quantum excitations in a Heisenberg spin
heptamer
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Spin transport and tunable Gilbert damping in a single-molecule magnet junction

Milena Filipović,1 Cecilia Holmqvist,1 Federica Haupt,2 and Wolfgang Belzig1

1Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
2Institut für Theorie der Statistischen Physik, RWTH Aachen, D-52056 Aachen, Germany

(Received 15 November 2012; published 28 January 2013)

We study time-dependent electronic and spin transport through an electronic level connected to two leads
and coupled with a single-molecule magnet via exchange interaction. The molecular spin is treated as a
classical variable and precesses around an external magnetic field. We derive expressions for charge and spin
currents by means of the Keldysh nonequilibrium Green’s functions technique in linear order with respect to
the time-dependent magnetic field created by this precession. The coupling between the electronic spins and
the magnetization dynamics of the molecule creates inelastic tunneling processes which contribute to the spin
currents. The inelastic spin currents, in turn, generate a spin-transfer torque acting on the molecular spin. This
back-action includes a contribution to the Gilbert damping and a modification of the precession frequency. The
Gilbert damping coefficient can be controlled by the bias and gate voltages or via the external magnetic field and
has a nonmonotonic dependence on the tunneling rates.

DOI: 10.1103/PhysRevB.87.045426 PACS number(s): 73.23.−b, 75.76.+j, 85.65.+h, 85.75.−d

I. INTRODUCTION

Single-molecule magnets (SMMs) are quantum magnets,
i.e., mesoscopic quantum objects with a permanent mag-
netization. They are typically formed by paramagnetic ions
stabilized by surrounding organic ligands.1 SMMs show both
classical properties such as magnetization hysteresis2 and
quantum properties such as spin tunneling,3 coherence,4 and
quantum phase interference.2,5 They have recently been in the
center of interest2,6,7 in view of their possible applications as
information storage8 and processing devices.9

Currently, a goal in the field of nanophysics is to control
and manipulate individual quantum systems, in particular,
individual spins.10,11 Some theoretical works have investigated
electronic transport through a molecular magnet contacted to
leads.12–19 In this case, the transport properties are modified
due to the exchange interaction between the itinerant electrons
and the SMM,20 making it possible to read out the spin state
of the molecule using transport currents. Conversely, the spin
dynamics and hence the state of an SMM can also be controlled
by transport currents. Efficient control of the molecule’s spin
state can be achieved by coupling to ferromagnetic contacts as
well.21

Experiments have addressed the electronic transport prop-
erties through magnetic molecules such as Mn12 and Fe8,22,23

which have been intensively studied as they are promising
candidates for memory devices.24 Various phenomena such
as large conductance gaps,25 switching behavior,26 negative
differential conductance, dependence of the transport on
magnetic fields and Coulomb blockades have been experimen-
tally observed.22,23,27,28 Experimental techniques, including,
for instance, scanning tunneling microscopy (STM),22,23,29–31

break junctions,32 and three-terminal devices,22,23,27 have
been employed to measure electronic transport through an
SMM. Scanning tunneling spectroscopy and STM experiments
show that quantum properties of SMMs are preserved when
deposited on substrates.29 The Kondo effect in SMMs with
magnetic anisotropy has been investigated both theoretically14

and experimentally.33,34 It has been suggested35 and experi-

mentally verified36 that a spin-polarized tip can be used to
control the magnetic state of a single Mn atom.

In some limits, the large spin S of an SMM can be treated as
a classical magnetic moment. In that case, the spin dynamics
is described by the Landau-Lifshitz-Gilbert (LLG) equation
that incorporates effects of external magnetic fields as well as
torques originating from damping phenomena.37,38 In tunnel
junctions with magnetic particles, LLG equations have been
derived using perturbative couplings39,40 and the nonequi-
librium Born-Oppenheimer approximation.16 Current-induced
magnetization switching is driven by a generated spin-transfer
torque (STT)41–44 as a back-action effect of the electronic spin
transport on the magnetic particle.16,45–47 A spin-polarized
STM (Ref. 36) has been used to experimentally study STTs
in relation to a molecular magnetization.48 This experimental
achievement opens new possibilities for data storage technol-
ogy and applications using current-induced STTs.

The goal of this paper is to study the interplay between
electronic spin currents and the spin dynamics of an SMM.
We focus on the spin-transport properties of a tunnel junction
through which transport occurs via a single electronic energy
level in the presence of an SMM. The electronic level may
belong to a neighboring quantum dot (QD) or it may be an
orbital related to the SMM itself. The electronic level and the
molecular spin are coupled via exchange interaction, allowing
for interaction between the spins of the itinerant electrons
tunneling through the electronic level and the spin dynamics
of the SMM. We use a semiclassical approach in which the
magnetization of the SMM is treated as a classical spin whose
dynamics is controlled by an external magnetic field, while
for the electronic spin and charge transport we use instead
a quantum description. The magnetic field is assumed to be
constant, leading to a precessional motion of the spin around
the magnetic field axis. The electronic level is subjected
both to the effects of the molecular spin and the external
magnetic field, generating a Zeeman split of the level. The spin
precession makes additional channels available for transport,
which leads to the possibility of precession-assisted inelastic
tunneling. During a tunnel event, spin-angular momentum
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may be transferred between the inelastic spin currents and
the molecular spin, leading to an STT that may be used to
manipulate the spin of the SMM. This torque includes the
so-called Gilbert damping, which is a phenomenologically
introduced damping term of the LLG equation,38 and a term
corresponding to a modification of the precession frequency.
We show that the STT and hence the SMM’s spin dynamics
can be controlled by the external magnetic field, the bias
voltage across the junction, and the gate voltage acting on
the electronic level.

The paper is organized as follows: We introduce our
model and formalism based on the Keldysh nonequilibrium
Green’s functions technique49–51 in Sec. II, where we derive
expressions for the charge and spin currents in linear order
with respect to a time-dependent magnetic field and analyze
the spin-transport properties at zero temperature. In Sec. III
we replace the general magnetic field of Sec. II by an SMM
whose spin precesses in an external constant magnetic field,
calculate the STT components related to the Gilbert damping,
and the modification of the precession frequency, and analyze
the effects of the external magnetic field as well as the bias and
gate voltages on the spin dynamics. Conclusions are given in
Sec. IV.

II. CURRENT RESPONSE TO A TIME-DEPENDENT
MAGNETIC FIELD

A. Model and formalism

For the sake of clarity, we start by considering a junction
consisting of a noninteracting single-level QD coupled with
two normal, metallic leads in the presence of an external,
time-dependent magnetic field (see Fig. 1). The leads are
assumed to be noninteracting and unaffected by the external
field. The total Hamiltonian describing the junction is given
by Ĥ (t) = ĤL,R + ĤT + ĤD(t). The Hamiltonian of the free
electrons in the leads reads ĤL,R = ∑

k,σ,ξ∈{L,R} εkσξ ĉ
†
kσξ ĉkσξ ,

where ξ denotes the left (L) or right (R) lead, whereas the
tunnel coupling between the QD and the leads can be written
as ĤT = ∑

k,σ,ξ∈L,R[Vkσξ ĉ
†
kσξ d̂σ + V ∗

kσξ d̂
†
σ ĉkσξ ]. The tunnel

matrix element is given by Vkσξ . The operators ĉ
†
kσξ (ĉkσξ ) and

d̂†
σ (d̂σ ) are the creation (annihilation) operators of the electrons

in the leads and the QD, respectively. The subscript σ =↑ , ↓
denotes the spin-up or spin-down state of the electrons. The
electronic level ε0 of the QD is influenced by an external

eV

B(t)

FIG. 1. (Color online) A quantum dot with a single electronic
level ε0 coupled to two metallic leads with chemical potentials μL

and μR in the presence of an external time-dependent magnetic field
�B(t). The spin-transport properties of the junction are determined
by the bias voltage eV = μL − μR , the position of the level ε0, the
tunnel rates �L and �R , and the magnetic field.

magnetic field �B(t) consisting of a constant part �Bc and a time-
dependent part �B ′(t). The Hamiltonian of the QD describing
the interaction between the electronic spin �̂s and the magnetic
field is then given by ĤD(t) = Ĥ c

D + Ĥ ′(t), where the constant
and time-dependent parts are Ĥ c

D = ∑
σ ε0d̂

†
σ d̂σ + gμB �̂s �Bc

and Ĥ ′(t) = gμB �̂s �B ′(t). The proportionality factor g is the
gyromagnetic ratio of the electron and μB is the Bohr
magneton.

The average charge and spin currents from the left lead to
the electronic level are given by

ILν(t) = qν

〈
d

dt
N̂Lν

〉
= qν

i

h̄
〈[Ĥ ,N̂Lν]〉, (1)

where N̂Lν = ∑
k,σ,σ ′ ĉ

†
kσL(σ̂ν)σσ ′ ĉkσ ′L is the charge and spin

occupation number operator of the left contact. The index ν =
0 corresponds to the charge current, while ν = x,y,z indicates
the different components of the spin-polarized current. The
current coefficients qν are then q0 = −e and qν 
=0 = h̄/2. In
addition, it is useful to define the vector σ̂ν = (1̂, �̂σ ), where 1̂ is
the identity operator and �̂σ consists of the Pauli operators with
matrix elements ( �̂σ )σσ ′ . Using the Keldysh nonequilibrium
Green’s functions technique, the currents can then be obtained
as50,51

ILν(t) = −2qν

h̄
Re

∫
dt ′Tr

{
σ̂ν

[
Ĝr (t,t ′)�̂<

L (t ′,t)

+ Ĝ<(t,t ′)�̂a
L(t ′,t)

]}
, (2)

where Ĝr,a,< are the retarded, advanced, and lesser Green’s
functions of the electrons in the QD with the matrix elements
G

r,a
σσ ′(t,t ′) = ∓iθ (±t ∓ t ′)〈{d̂σ (t),d̂†

σ ′ (t ′)}〉 and G<
σσ ′(t,t ′) =

i〈d̂†
σ ′ (t ′)d̂σ (t)〉, while �̂

a,<
L (t,t ′) are self-energies from the cou-

pling between the QD and the left lead. Their matrix elements
are given by [�r,a,<

L (t,t ′)]σ ′σ = ∑
k VkσLg

r,a,<
kL (t,t ′)V ∗

kσ ′L. The
Green’s functions g

r,a,<
kL (t,t ′) are the retarded, advanced, and

lesser Green’s functions of the free electrons in the left lead.
The retarded Green’s functions Ĝr

0 of the electrons in the QD,
in the presence of the constant magnetic field �Bc, are found
using the equation of motion technique,52 while the lesser
Green’s functions Ĝ<

0 are obtained from the Keldysh equation
Ĝ<

0 = Ĝr
0�̂

<Ĝa
0, where multiplication implies internal time

integrations.51 The time-dependent part of the magnetic field
can be expressed as �B ′(t) = ∑

ω( �Bωe−iωt + �B∗
ωeiωt ), where

�Bω is a complex amplitude. This magnetic field acts as a
time-dependent perturbation that can be expressed as Ĥ ′(t) =∑

ω(Ĥωe−iωt + Ĥ †
ωeiωt ), where Ĥω is an operator in the

electronic spin space and its matrix representation in the basis
of eigenstates of ŝz is given by

Ĥω = gμB

2

(
Bωz Bωx − iBωy

Bωx + iBωy −Bωz

)
. (3)

Applying Dyson’s expansion, analytic continuation rules, and
the Keldysh equation,51 one obtains a first-order approxima-
tion of the Green’s functions describing the electrons in the
QD that can be written as

Ĝr ≈ Ĝr
0 + Ĝr

0Ĥ
′Ĝr

0,
(4)

Ĝ< ≈ Ĝr
0�̂

<Ĝa
0 + Ĝr

0Ĥ
′Ĝr

0�̂
<Ĝa

0 + Ĝr
0�̂

<Ĝa
0Ĥ

′Ĝa
0.
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The expression for the currents in this linear approximation is
given by

ILν(t) = 2qν

h̄
Re Tr

{
σ̂ν

[
Ĝr

0�̂
<
L + Ĝ<

0 �̂a
L

+ Ĝr
0Ĥ

′Ĝr
0�̂

<
L + Ĝr

0Ĥ
′Ĝ<

0 �̂a
L + Ĝ<

0 Ĥ ′Ĝa
0�̂

a
L

]}
. (5)

Equation (5) is then Fourier transformed in the wide-band
limit, in which the level width function, �(ε) = −2 Im{�r (ε)},
is constant, Re{�r (ε)} = 0, and one can hence write the
retarded self-energy originating from the dot-lead coupling
as �r,a(ε) = ∓i�/2. From this transformation, one obtains

ILν(t) = I dc
Lν +

∑
ω

[ILν(ω)e−iωt + I ∗
Lν(ω)eiωt ]. (6)

Using units in which h̄ = 1, the dc part of the currents51 I dc
Lν and

the time-independent complex components ILν(ω) are given
by

I dc
Lν = qν

∫
dε

π

�L�R

�
[fL(ε) − fR(ε)] Tr Im

{
σ̂νĜ

r
0(ε)

}
(7)

and

ILν(ω) = −iqν

∫
dε

2π

�L�R

�

{
[fL(ε) − fR(ε)]

× Tr
{
σ̂ν

[
Ĝr

0(ε − ω)ĤωĜr
0(ε)

+ 2i Im
{
Ĝr

0(ε)
}
ĤωĜa

0(ε + ω)
]}

+
∑

ξ=L,R

�ξ

�R

[fL(ε + ω) − fξ (ε)]

× Tr
[
σ̂νĜ

r
0(ε)ĤωĜa

0(ε + ω)
]}

. (8)

In the above expressions, fξ (ε) = [e(ε−μξ )/kBT + 1]−1 is the
Fermi distribution of the electrons in lead ξ , where kB is the
Boltzmann constant. The retarded Green’s function Ĝr

0(ε) is
given by Ĝr

0(ε) = [ε − ε0 − �r (ε) − (1/2)gμB �̂σ �Bc]−1.16

The linear response of the spin current with respect to the
applied time-dependent magnetic field can be expressed in
terms of complex spin-current susceptibilities defined as

χL
νj (ω) = ∂ILν(ω)

∂Bωj

, j = x,y,z. (9)

The complex components ILν(ω) are conversely given
by ILν(ω) = ∑

j χL
νj (ω)Bωj . By taking into account that

∂Ĥω/∂Bωj = (1/2)gμBσ̂j and using Eq. (8), the current
susceptibilities can be written as

χL
νj (ω) = −i

qνgμB

h̄

∫
dε

4π

�L�R

�

{
[fL(ε) − fR(ε)]

× Tr
{
σ̂ν

[
Ĝr

0(ε − ω)σ̂j Ĝ
r
0(ε)

+ 2i Im
{
Ĝr

0(ε)
}
σ̂j Ĝ

a
0(ε + ω)

]}
+

∑
ξ

�ξ

�R

[fξ (ε + ω) − fL(ε)]

× Tr
[
σ̂νĜ

r
0(ε)σ̂j Ĝ

a
0(ε + ω)

]}
. (10)

The components obey χL
νj (−ω) = χL∗

νj (ω). In other words, they
satisfy the Kramers-Kronig relations53 that can be written in a
compact form as

χL
νj (ω) = 1

iπ
P

∫ ∞

−∞

χL
νj (ξ )

ξ − ω
dξ, (11)

with P denoting the principal value.
For any i,j,k = x,y,z such that j 
= k and j,k 
= i, where

i indicates the direction of the constant part of the magnetic
field �Bc = Bc�ei , the complex current susceptibilities satisfy
the relations

χL
jj (ω) = χL

kk(ω) (12)

and χL
jk(ω) = −χL

kj (ω), (13)

in addition to Eq. (11). The other nonzero components are
χL

0i(ω) and χL
ii (ω). In the absence of a constant magnetic field,

the only nonvanishing components obey χL
xx(ω) = χL

yy(ω) =
χL

zz(ω).
Finally, the average value of the electronic spin in

the QD reads �s(t) = 〈�̂s(t)〉 = (1/2)
∑

σσ ′ �σσσ ′ 〈d̂†
σ (t)d̂σ ′(t)〉 =

−(i/2)
∑

σσ ′ �σσσ ′Ĝ<
σ ′σ (t,t) and the complex spin susceptibili-

ties are defined as

χs
ij (ω) = ∂si(ω)

∂Bωj

. (14)

They represent the linear responses of the electronic spin
components to the applied time-dependent magnetic field and
satisfy the relations similar to Eqs. (11)–(13) given above.

B. Analysis of the spin and current responses

We start by analyzing the transport properties of the junction
at zero temperature in response to the external time-dependent
magnetic field �B(t). The constant component of the magnetic
field �Bc generates a Zeeman split of the QD level ε0, resulting
in the levels ε↑,↓, where ε↑,↓ = ε0 ± gμBBc/2 in this section.
The time-dependent periodic component of the magnetic field
�B ′(t) then creates additional states, i.e., sidebands, at energies
ε↑ ± ω and ε↓ ± ω (see Fig. 2). These Zeeman levels and
sidebands contribute to the elastic transport properties of the
junction when their energies lie inside the bias-voltage window
of eV = μL − μR .

However, energy levels outside the bias-voltage window
may also contribute to the electronic transport due to inelastic
tunnel processes generated by the time-dependent magnetic
field. In these inelastic processes, an electron transmitted from
the left lead to the QD can change its energy by ω and
either tunnel back to the left lead or out into the right lead.
If this perturbation is small, as is assumed in this paper where
we consider first-order corrections, the transport properties
are still dominated by the elastic, energy-conserving tunnel
processes that are associated with the Zeeman levels.

The energy levels of the QD determine transport properties
such as the spin-current susceptibilities and the spin suscep-
tibilities, which are shown in Fig. 3. The imaginary and real
parts of the susceptibilities are plotted as functions of the
frequency ω in Figs. 3(a) and 3(c). In this case, the position of
the unperturbed level ε0 is symmetric with respect to the Fermi
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μL μR = 0

0

↑ + ω

↑
↑ − ω

↓ + ω

↓ − ω

↓

FIG. 2. (Color online) Sketch of the electronic energy levels of
the QD in the presence of a time-dependent magnetic field. In a static
magnetic field, the electronic level ε0 (solid black line) splits into the
Zeeman levels ε↑,↓ (solid red and blue lines). If the magnetic field in
addition to the static component also includes a time-dependent part
with a characteristic frequency ω, additional levels appear at energies
ε↑ ± ω (dotted red lines) and ε↓ ± ω (dotted blue lines). Hence, there
are six channels available for transport.

surfaces of the leads and a peak or step in the spin-current and
spin susceptibilities appears at a value of ω, for which an
energy level is aligned with one of the lead Fermi surfaces.
In Figs. 3(b) and 3(d), the susceptibilities are instead plotted
as functions of the bias voltage, eV . Here, each peak or step
in the susceptibilities corresponds to a change in the number
of available transport channels. The bias voltage is applied in
such a way that the energy of the Fermi surface of the right
lead is fixed at μR = 0 while the energy of the left lead’s Fermi
surface is varied according to μL = eV .

z Bc

eV S⊥(t)

(a) (b) 

FIG. 4. (Color online) (a) Resonant tunneling in the presence of
an SMM and an external, constant magnetic field. The electronic
level of Fig. 1 is now coupled with the spin of an SMM via exchange
interaction with the coupling constant J . The dynamics of the SMM’s
spin �S is controlled by the external magnetic field �Bc that also affects
the electronic level. (b) Precessional motion of the SMM’s spin in a
constant magnetic field �Bc applied along the z axis.

III. SPIN-TRANSFER TORQUE AND MOLECULAR
SPIN DYNAMICS

A. Model with a precessing molecular spin

Now we apply the formalism of the previous section to the
case of resonant tunneling through a QD in the presence of a
constant external magnetic field and an SMM [see Fig. 4(a)].
An SMM with a spin S lives in a (2S + 1)-dimensional Hilbert
space. We assume that the spin S of the SMM is large and
neglecting the quantum fluctuations, one can treat it as a
classical vector whose end point moves on a sphere of radius
S. In the presence of a constant magnetic field �Bc = Bc�ez,
the molecular spin precesses around the field axis according
to �S(t) = S⊥ cos(ωLt)�ex + S⊥ sin(ωLt)�ey + Sz�ez, where S⊥ is
the projection of �S onto the xy plane, ωL = gμBBc is the
Larmor precession frequency, and Sz is the projection of the

0.0 0.5 1.0 1.5 2.0 2.5

1

0

1

0

χ
ijL
10

4
μ
B

μ L

a

μ L

0

Imχ zzL
ReχzzL
Imχ xyL
ReχxyL
Imχ xxL
ReχxxL

0.0 0.5 1.0 1.5 2.0

4

2

0

2

eV 0

eV 0

χ
ijL
10

4
μ
B

b

Imχ zzL
ReχzzL
Imχ xyL
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Imχ xxL
ReχxxL

0.0 0.5 1.0 1.5 2.0 2.5
2

1

0
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ijs
10

2
μ
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0
1

c

Imχ zzs
Reχzzs
Imχ xys
Reχxys
Imχ xxs
Reχxxs

0.0 0.5 1.0 1.5 2.0

4
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0

χ
ijs
10

1
μ
B
0
1

d

Imχ zzs
Reχzzs
Imχ xys
Reχxys
Imχ xxs
Reχxxs

FIG. 3. (Color online) (a) Frequency and (b) bias-voltage dependence of the spin-current susceptibilities. (c) Frequency and (d) bias-voltage
dependence of the spin susceptibilities. In (a) and (c), the chemical potential of the left lead is μL = 2ε0, while in (b) and (d) the frequency
is set to ω = 0.16ε0. All plots are obtained at zero temperature with �Bc = Bc�ez, and the other parameters set to μR = 0, ε↑ = 1.48ε0, ε↓ =
0.52ε0, � = 0.02ε0, and �L = �R = 0.01ε0.
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spin on the z axis [see Fig. 4(b)]. The spins of the electrons
in the electronic level are coupled to the spin of the SMM via
the exchange interaction J . The contribution of the external
magnetic field and the precessional motion of the SMM’s spin
create an effective time-dependent magnetic field acting on the
electronic level.

The Hamiltonian of the system is now given by Ĥ (t) =
ĤL,R + ĤT + ĤD(t) + ĤS , where the Hamiltonians ĤL,R and
ĤT are the same as in Sec. II. The Hamiltonian ĤS = gμB

�S �Bc

represents the interaction of the molecular spin �S with the
magnetic field �Bc and consequently does not affect the elec-
tronic transport through the junction but instead contributes
to the spin dynamics of the SMM. The Hamiltonian of the
QD in this case is given by ĤD(t) = Ĥ c

D + Ĥ ′(t). Here, Ĥ c
D =∑

σ ε0d̂
†
σ d̂σ + gμB �̂s �Bc

eff is the Hamiltonian of the electrons in
the QD in the presence of the constant part of the effective
magnetic field, given by �Bc

eff = [Bc + J
gμB

Sz]�ez. The second

term of the QD Hamiltonian, Ĥ ′(t) = gμB �̂s �B ′
eff(t), represents

the interaction between the electronic spins of the QD, �̂s,
and the time-dependent part of the effective magnetic field,
given by �B ′

eff(t) = JS⊥
gμB

[cos(ωLt)�ex + sin(ωLt)�ey]. The time-

dependent effective magnetic field can be rewritten as �B ′
eff (t) =

�BωL
e−iωLt + �B∗

ωL
eiωLt , where �BωL

consists of the complex
amplitudes BωLx = JS⊥/2gμB , BωLy = iJS⊥/2gμB , and
BωLz = 0. The time-dependent perturbation can then be ex-
pressed as Ĥ ′(t) = ĤωL

e−iωLt + Ĥ †
ωL

eiωLt , where ĤωL
is an

operator that can be written, using Eq. (3) and the above
expressions for BωLi , as

ĤωL
= JS⊥

2

(
0 1

0 0

)
. (15)

The time-dependent part of the effective magnetic field cre-
ates inelastic tunnel processes that contribute to the currents.
The in-plane components of the inelastic spin current fulfill

ILx(ωL) = −iILy(ωL)

= JS⊥
2gμB

[
χL

xx(ωL) + iχL
xy(ωL)

]
, (16)

where �Bc is replaced by �Bc
eff . The z component vanishes to

lowest order in H ′(t).54 Therefore, the inelastic spin current
has a polarization that precesses in the xy plane. The inelastic
spin-current components, in turn, exert an STT (Refs. 41–44)
on the molecular spin given by

�T (t) = �IL(t) + �IR(t), (17)

thus contributing to the dynamics of the molecular spin through

�̇S(t) = gμB
�Bc × �S(t) + �T (t). (18)

Using expressions (6), (8), and (15), the torque of Eq. (17)
can be calculated in terms of the Green’s functions Ĝr

0(ε) and
Ĝa

0(ε) as

Ti(t) = JS⊥
2

∫
dε

2π

∑
ξλ

�ξ�λ

�
[fξ (ε + ωL) − fλ(ε)]

× Im{(σ̂i)↓↑Gr
0,↑↑(ε)Ga

0,↓↓(ε + ωL)e−iωLt }, (19)

with λ = L,R. Here (σ̂i)↓↑, Gr
0,↑↑(ε), and Ga

0,↓↓(ε) are matrix

elements of σ̂i , Ĝr
0(ε) and Ĝa

0(ε) with respect to the basis of
eigenstates of ŝz. This STT can be rewritten in terms of the
SMM’s spin vector as

�T (t) = α

S
�̇S(t) × �S(t) + β �̇S(t) + γ �S(t). (20)

The first term in this back-action gives a contribution to
the Gilbert damping, characterized by the Gilbert damping
coefficient α. The second term acts as an effective constant
magnetic field and changes the precession frequency of the
spin �S with the corresponding coefficient β. The third term
cancels the z component of the Gilbert damping term, thus
restricting the STT to the xy plane. The coefficient of the third
term γ is related to α by γ /α = ωLS2

⊥/SSz. Expressing the
coefficients α and β in terms of the current susceptibilities
χ

ξ
xx(ωL) and χ

ξ
xy(ωL) results in

α = JSz

gμBωLS

∑
ξ

[
Re

{
χξ

xx(ωL)
} − Im

{
χξ

xy(ωL)
}]

, (21)

β = − J

gμBωL

∑
ξ

[
Im

{
χξ

xx(ωL)
} + Re

{
χξ

xy(ωL)
}]

. (22)

By inserting the explicit expressions for Gr
0,↑↑(ε) and

Ga
0,↓↓(ε + ωL), one obtains

α = 1

ωLS

∫
dε

8π

∑
ξλ

�ξ�λ[fξ (ε + ωL) − fλ(ε)]

× ω2
L − (ε↑ − ε↓)2[(

�
2

)2 + (ε − ε↑)2
][(

�
2

)2 + (ε − ε↓ + ωL)2
] , (23)

β = J

ωL�

∫
dε

4π

∑
ξλ

�ξ�λ[fξ (ε + ωL) − fλ(ε)]

×
(

�
2

)2 + (ε − ε↑)(ε − ε↓ + ωL)[(
�
2

)2 + (ε − ε↑)2
][(

�
2

)2 + (ε − ε↓ + ωL)2
] , (24)

where ε↑,↓ = ε0 ± gμBBc
eff/2 = ε0 ± (ωL + JSz)/2 are the

energies of the Zeeman levels in this section. In the small
precession frequency regime, ωL � kBT , γ → 0 and in the
limit of Sz/S → 1 the expression for the coefficient α is in
agreement with Ref. 16.

B. Analysis of the spin-transfer torque

In the case of resonant tunneling in the presence of a
molecular spin precessing in a constant external magnetic
field, one also needs to take the exchange of spin-angular
momentum between the molecular spin and the electronic
spins into account in addition to the effects of the external
magnetic field. Due to the precessional motion of the
molecular spin, an electron in the QD absorbing (emitting)
an energy ωL also undergoes a spin flip from spin up (down)
to spin down (up), as indicated by the arrows in Fig. 5.
As a result, the levels at energies ε↑,↓ ∓ ωL are forbidden
and hence do not contribute to the transport processes.
Consequently, there are only four transport channels, which
are located at energies ε↑,↓ ± ωL. Also in this case, there
are elastic and inelastic tunnel processes. Some of the
possible inelastic tunnel processes are shown in Fig. 6.
These restrictions on the inelastic tunnel processes are also
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μL μR = 0

↑

↓

↑ + ωL

↓ − ωL

FIG. 5. (Color online) Sketch of the electronic energy levels of the
QD in the presence of a molecular spin precessing with the frequency
ωL around an external, constant magnetic field. The corresponding
Zeeman levels are ε↑,↓. The precessional motion of the molecular spin
results in absorption (emission) of energy corresponding to a spin flip
from spin up (down) to spin down (up). Hence, there are only four
channels available for transport.

visible in Fig. 3(b), which identically corresponds to the
case of the presence of a precessing molecular spin with
ωL = 0.16ε0 and JSz = 0.8ε0. Namely, from Eq. (16),
which is equivalent to Re{ILx(ωL)} = Im{ILy(ωL)} =
JS⊥

2gμB
[Re{χL

xx(ωL)} − Im{χL
xy(ωL)}] and Im{ILx(ωL)} =

−Re{ILy(ωL)} = JS⊥
2gμB

[Im{χL
xx(ωL)} + Re{χxy(ωL)}], and

from the symmetries of the susceptibilities displayed in
Fig. 3(b), it follows that there are no spin currents at
eV = ε↑,↓ ∓ ωL.

As was mentioned, the spin currents generate an STT acting
on the molecular spin. A necessary condition for the existence
of an STT, and hence finite values of the coefficients α and β in
Eqs. (23) and (24), is that �IL(t) 
= −�IR(t) [see Eq. (17)]. This
condition is met by the spin currents generated, e.g., by the
inelastic tunnel processes shown in Figs. 6(b) and 6(c). These
tunnel processes occur when an electron can tunnel into the

μL

μL

μL

μL

μL

(a) 

(f) (e) (d) 

(c) (b) 

μL

FIG. 6. (Color online) Sketch of the inelastic spin-tunneling
processes in the QD in the presence of the precessing molecular
spin in the field �Bc = Bc�ez for different positions of the energy levels
with respect to the chemical potentials of the leads, μL and μR .
Only transitions between levels with the same color (blue or red) are
allowed. Different colored curved arrows (magenta, brown, or green)
represent different processes.

QD, undergo a spin flip, and then tunnel off the QD into either
lead. From these tunnel processes it is implied that the Gilbert
damping coefficient α and the coefficient β can be controlled
by the applied bias or gate voltage as well as by the external
magnetic field. If a pair of QD energy levels, coupled via
spin-flip processes, lie within the bias-voltage window, the spin
currents instead fulfill �IL(t) = �IR(t), leading to a vanishing
STT [see Fig. 6(d)]. In Figs. 6(e) and 6(f) the position of the
energy levels of the QD are symmetric with respect to the
Fermi levels of the leads, μL and μR . When the QD level
with energy ε↑ + ωL is aligned with μL, this simultaneously
corresponds to the energy level ε↓ − ωL being aligned with
μR [see Fig. 6(f)]. As a result, a spin-down electron can now
tunnel from the left lead into the level ε↑ + ωL, while a spin-up
electron in the level ε↓ − ωL can tunnel into the right lead.
These additional processes enhance the STT compared to that
of the case 6(e).

The two spin-torque coefficients α and β exhibit a non-
monotonic dependence on the tunneling rates �, as can be
seen in Figs. 7–9. For � → 0, it is obvious that α,β → 0. In
the weak coupling limit � � ωL, the coefficients α and β are
finite if the Fermi surface energy of the lead ξ , μξ fulfills either
of the conditions

ε↓ − ωL � μξ � ε↓ (25)

or ε↑ � μξ � ε↑ + ωL (26)

in such a way that each condition is satisfied by the Fermi
energy of maximum one lead. These conditions are relaxed for
larger tunnel couplings as a consequence of the broadening of
the QD energy levels, which is also responsible for the initial
enhancement of α and β with increasing �. Notice, however,
that α and β are eventually suppressed for � � ωL, when the
QD energy levels are significantly broadened and overlap so
that spin-flip processes are equally probable in each direction
and there is no net effect on the molecular spin. Physically, this
suppression of the STT can be understood by noticing that for
� � ωL a current-carrying electron perceives the molecular
spin as almost static due to its slow precession compared to the
electronic tunneling rates and hence the exchange of angular
momenta is reduced. With increasing tunneling rates, the
coefficient β becomes negative before it drops to zero, causing

the torque β �̇S to oppose the rotational motion of the spin �S.
In Fig. 7, the Gilbert damping coefficient α and the

coefficient β are plotted as functions of the applied bias voltage
at zero temperature. We analyze the case of the smallest value
of � (red lines), assuming that ωL > 0. For small eV , all
QD energy levels lie outside the bias-voltage window and
there is no spin transport [see Fig. 6(a)]. Hence α,β → 0. At
eV = ε↓ − ωL the tunnel processes in Fig. 6(b) come into play,
leading to a finite STT and the coefficient α increases while
the coefficient β has a local minimum. In the voltage region
specified by Eq. (25) for μL, the coefficient α approaches a
constant value while the coefficient β increases. By increasing
the bias voltage to eV = ε↓ the tunnel processes in Fig. 6(c)
occur, leading to a decrease of α and a local maximum of β.
For ε↓ < eV < ε↑, the coefficients α,β → 0 [see Fig. 6(d)]. In
the voltage region specified by Eq. (26) for μL, α approaches
the same constant value mentioned above while β decreases
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FIG. 7. (Color online) (a) Gilbert damping coefficient α and (b) coefficient β as functions of the applied bias voltage eV = μL − μR ,
with μR = 0, for different tunneling rates � at zero temperature. Other parameters are �L = �R = �/2, ε↑ = 1.48ε0, ε↓ = 0.52ε0, S = 100,
J = 0.01ε0, JSz = 0.8ε0, and ωL = 0.16ε0. In the case of the smallest value of � (red lines), α approaches a constant value when μL lies
within the energy range specified by Eqs. (25) and (26). The coefficient β has one local minimum and one local maximum for the same energy
range.

between a local maximum at eV = ε↑ and a local minimum
at eV = ε↑ + ωL, which have the same values as previously
mentioned extrema. With further increase of eV , all QD
energy levels lie within the bias-voltage window and the STT
consequently vanishes.

Figure 8 shows the spin-torque coefficients α and β as
functions of the position of the electronic level ε0. An STT
acting on the molecular spin occurs if the electronic level ε0

is positioned in such a way that the inequalities (25) and (26)
may be satisfied by some values of eV , εB , and ωL. Again,
we analyze the case of the smallest value of � (red curve).
For the particular choice of parameters in Fig. 8, there are four
regions in which the inequalities (25) and (26) are satisfied.
Within these regions, α approaches a constant value while β

has a local maximum as well as a local minimum. These local
extrema occur when one of the Fermi surfaces is aligned with
one of the energy levels of the QD. For other values of ε0, both
α and β vanish.

The coefficients α and β are plotted as functions of the
precession frequency ωL in Fig. 9. Here, ε0 = eV/2 and
therefore the positions of the energy levels of the QD are
symmetric with respect to the Fermi levels of the leads, μL

and μR . Once more, we focus first on the case of the smallest
value of � (indicated by the red curve). The energies of all

four levels of the QD depend on ωL, i.e., �Bc. For ωL > 0,
when the magnitude of the external magnetic field is large
enough, the tunnel processes in Fig. 6(f) take place due to the
above-mentioned symmetries. These tunnel processes lead to
a finite STT, a maximum for the Gilbert damping coefficient
α, and a negative minimum value for the β coefficient. As ωL

increases, the inequalities of Eqs. (25) and (26) are satisfied
and the tunnel processes shown in Fig. 6(e) may occur.
Hence, there is a contribution to the STT, but as is shown
in Eq. (23), the Gilbert damping decreases with increasing
precession frequency. At larger values of ωL, resulting in
ε↑ = μL, the Gilbert damping coefficient drops to zero, while
the coefficient β has a maximum value. For even larger value
of ωL, the conditions (25) and (26) are no longer fulfilled
and both coefficients vanish. It is energetically unfavorable
to flip the spin of an electron against the direction of the
effective constant magnetic field Bc

eff . As a consequence, as
ωL increases, more energy is needed to flip the electronic
spin to the direction opposite that of the field. This causes
α to decrease with increasing ωL. Additionally, the larger
the ratio ωL/�, the less probable it is that spin-angular
momentum will be exchanged between the molecular spin
and the itinerant electrons. For ωL = 0, the molecular spin is

static, i.e., �̇S = 0. In this case �T (t) = �0. According to Eq. (23),
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FIG. 8. (Color online) (a) Gilbert damping coefficient α and (b) coefficient β as functions of the position of the electronic level ε0 for
different tunneling rates � at zero temperature. The applied bias voltage is eV = μL − μR , with μR = 0. Other parameters are �L = �R = �/2,
ε↑ − ε0 = 0.24eV , S = 100, J = 0.005eV , JSz = 0.4eV and ωL = 0.08eV . In the case of the smallest value of � (red lines), there are four
regions in which the Gilbert damping and the change of the precession frequency occur. In each of these regions ε0 satisfies the inequalities
(25) and (26), and α approaches a constant value, while β has one local maximum and one local minimum.
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FIG. 9. (Color online) (a) Gilbert damping coefficient α and (b) coefficient β as functions of the precession frequency ωL = gμBBc of the
spin �S of the SMM, with �Bc = Bc�ez, for different tunneling rates � at zero temperature. The applied bias voltage is eV = μL − μR = 2ε0,
with μR = 0. The other parameters are the same as in Fig. 7. In the case of the smallest � (red lines), the coefficient α is positive for
ε↑ � eV � ε↑ + ωL, ωL > 0 and negative for ε↓ � eV � ε↓ − ωL, ωL < 0. The coefficient β has two local maxima and two local minima
corresponding to the resonance of μL with energy of the levels in the QD.

the coefficient α drops to zero for values ωL = ±(ε↑ − ε↓),
i.e., for values |ωL| equal to the Zeeman splitting energy. At
ωL = −(ε↑ − ε↓) = −0.4ε0, the level ε↓ − ωL is aligned with
the Zeeman level ε↑, while the level ε↑ + ωL is aligned with
the Zeeman level ε↓. Therefore there are only two channels
available for electronic transport. At this point, the Gilbert
damping vanishes while the coefficient β reaches an extremum
value for large values of �. With further decrease of ωL,
the relative position of the spin-up levels ε↑ and ε↓ − ωL is
reversed, as well as the relative position of the spin-down
levels ε↓ and ε↑ + ωL. In this case, the transfer of spin-angular
momenta occurs in such a way that the coefficient α takes
negative values and hence the molecular spin �S becomes
unstable. For ωL < 0 and � � |ωL| (red lines), at the value of
ωL for which μL = ε↓ − ωL, the coefficient α has a negative
minimum value while the coefficient β has a negative local
minimum. The coefficient α then increases with a further
decrease of ωL as long as ε↓ � μL � ε↓ − ωL. At the value
of ωL for which μL = ε↓, α drops to zero while β has a small
local maximum. According to Eq. (23), the Gilbert damping
also does not occur for ωL = ε↑ − ε↓, which is realized if �S is
perpendicular to �Bc.

IV. CONCLUSIONS

In this paper we have first theoretically studied time-
dependent charge and spin transport through a small junction
consisting of a single-level quantum dot coupled to two non-
interacting metallic leads in the presence of a time-dependent
magnetic field. We used the Keldysh nonequilibrium Green’s
functions method to derive the charge and spin currents in
linear order with respect to the time-dependent component
of the magnetic field with a characteristic frequency ω.

We then focused on the case of a single electronic level
coupled via exchange interaction to an effective magnetic field
created by the precessional motion of an SMM’s spin in a
constant magnetic field. The inelastic tunneling processes that
contribute to the spin currents produce an STT that acts on
the molecular spin. The STT consists of a Gilbert damping
component, characterized by the coefficient α, as well as a
component, characterized by the coefficient β, that acts as an
additional effective constant magnetic field and changes the
precession frequency ωL of the molecular spin. Both α and
β depend on ωL and show a nonmonotonic dependence on
the tunneling rates �. In the weak coupling limit � � ωL,
α can be switched on and off as a function of bias and
gate voltages. The coefficient β correspondingly has a local
extremum. For � → 0, both α and β vanish. Taking into
account that spin transport can be controlled by the bias
and gate voltages, as well as by external magnetic fields, our
results might be useful in spintronic applications using SMMs.
Besides a spin-polarized STM, it may be possible to detect
and manipulate the spin state of an SMM in a ferromagnetic
resonance experiment56–59 and thus extract information about
the effects of the current-induced STT on the SMM. Our study
could be complemented with a quantum description of an
SMM in a single-molecule magnet junction and its coherent
properties, as these render the SMM suitable for quantum
information storage.
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In this Erratum, we correct errors in the original paper which were mainly due to inconsistencies in the definitions of Fourier
transformations. These changes do not affect our conclusions. For the correct version, please see the revised paper.

In the original paper, we assume spin-independent tunneling so that, in Sec. II, p. 2, the correct tunnel matrix element in ĤT

should read Vkξ . In the fourth line after Eq. (2), “r” should be added in the superscript of the self-energies, which are diagonal
matrices in the electronic spin space with respect to the basis of eigenstates of ŝz, and their correct matrix elements should be
�

r,a,<
L (t,t ′) = ∑

k VkLg
r,a,<
kL (t,t ′)V ∗

kL. The correct forms of Eqs. (5), (17), (19), (21), and (24) should be multiplied by −1. The
difference fL(ε + ω) − fξ (ε) should be replaced by fξ (ε − ω) − fL(ε) in Eq. (8). The correct form of Eq. (22) should contain a
factor + instead of the factor − on the right-hand side. The multiplicative factor in Eq. (23) ω2

L − (ε↑ − ε↓)2 should be replaced
with J 2S2

z . Additionally, in the correct form of Eqs. (8) and (10), ε + ω should be replaced with ε − ω and vice versa, and in
Eqs. (19), (23), and (24), ε + ωL should be replaced with ε − ωL. The correct expressions of Eqs. (5), (8), (10), (17), (19), and
(21)–(24) should read

ILν(t) = −2qν

h̄
Re Tr

{
σ̂ν

[
Ĝr

0�̂
<
L + Ĝ<

0 �̂a
L + Ĝr

0Ĥ
′Ĝr

0�̂
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0Ĥ
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0 �̂a
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0 Ĥ ′Ĝa
0�̂

a
L

]}
, (5)

ILν(ω) = −iqν
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0(ε + ω)ĤωĜr
0(ε) + 2i Im

{
Ĝr

0(ε)
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ĤωĜa
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+
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	ξ
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]}

, (8)
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{
Ĝr
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�T (t) = −[ �IL(t) + �IR(t)], (17)
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} − Im

{
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β = J
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[
Im

{
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xx(ωL)
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ωLS
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	ξ	λ[fξ (ε − ωL) − fλ(ε)]
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z[(
	
2

)2 + (ε − ε↑)2
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2

)2 + (ε − ε↓ − ωL)2
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β = − J

ωL	

∫
dε

4π

∑
ξλ

	ξ	λ[fξ (ε − ωL) − fλ(ε)]

(
	
2

)2 + (ε − ε↑)(ε − ε↓ − ωL)[(
	
2

)2 + (ε − ε↑)2
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2

)2 + (ε − ε↓ − ωL)2
] . (24)

As a consequence of these changes, the energy levels of the quantum dot (QD) in the presence of a precessing molecular spin
should be changed to ε↑, ε↑ − ωL, ε↓ + ωL, and ε↓. Figures 3 and 5–9 should be replaced with the correct figures given in this
Erratum (and in the revised paper). The magnitude scale of the spin-current susceptibilities should be corrected as 10−3μB in
Fig. 3(a) and 10−2μB in Fig. 3(b). In the line before Eq. (16), p. 5, “inelastic” should be removed, and in the line before Eq. (23),
Ga

0,↓↓(ε + ωL) should be corrected as Ga
0,↓↓(ε − ωL).
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FIG. 3. (Color online) (a) Frequency and (b) bias-voltage dependence of the spin-current susceptibilities. (c) Frequency and (d) bias-voltage
dependence of the spin susceptibilities. In (a) and (c), the chemical potential of the left lead is μL = 2ε0, whereas, in (b) and (d), the frequency
is set to ω = 0.16ε0. All plots are obtained at zero temperature with �Bc = Bc�ez and the other parameters set to μR = 0, ε↑ = 1.48ε0, ε↓ =
0.52ε0, 	 = 0.02ε0, and 	L = 	R = 0.01ε0.

In the first paragraph of Sec. III B, in the second sentence, “absorbing (emitting)” should be replaced with “emitting
(absorbing).” In the same paragraph, ε↑,↓ ± ωL should be replaced with ε↑,↓ ∓ ωL, and vice versa. In the caption for Fig. 5,
“absorption (emission)” should be replaced with “emission (absorption).” In the remaining part of the same subsection, except
in the last paragraph that we separately analyze, ε↑ + ωL should be replaced with ε↑, ε↑ should be replaced with ε↑ − ωL, ε↓
should be replaced with ε↓ + ωL, and ε↓ − ωL should be replaced with ε↓. Therefore, the correct expressions for Eqs. (25) and
(26) read

ε↓ � μξ � ε↓ + ωL, (25)

or

ε↑ − ωL � μξ � ε↑, (26)

FIG. 5. (Color online) Sketch of the electronic energy levels of the QD in the presence of a molecular spin precessing with the frequency ωL

around an external constant magnetic field. The corresponding Zeeman levels are ε↑,↓. The precessional motion of the molecular spin results
in emission (absorption) of energy corresponding to a spin flip from spin up (down) to spin down (up). Hence, there are only four channels
available for transport.
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FIG. 6. (Color online) Sketch of the inelastic spin-tunneling processes in the QD in the presence of the precessing molecular spin in the
field �Bc = Bc�ez for different positions of the energy levels with respect to the chemical potentials of the leads μL and μR . Only transitions
between levels with the same color (blue or red) are allowed. Different colored curved arrows (magenta, brown, or green) represent different
processes.

FIG. 7. (Color online) (a) Gilbert damping coefficient α and (b) coefficient β as functions of the applied bias voltage eV = μL − μR

with μR = 0 for different tunneling rates 	 at zero temperature. Other parameters are 	L = 	R = 	/2, ε↑ = 1.48ε0, ε↓ = 0.52ε0, S = 100,
J = 0.01ε0, JSz = 0.8ε0, and ωL = 0.16ε0. In the case of the smallest value of 	 (red lines), α approaches a constant value when μL lies
within the energy range specified by Eqs. (25) and (26). The coefficient β has one local minimum and one local maximum for the same energy
range.

FIG. 8. (Color online) (a) Gilbert damping coefficient α and (b) coefficient β as functions of the position of the electronic level ε0 for
different tunneling rates 	 at zero temperature. The applied bias voltage is eV = μL − μR with μR = 0. Other parameters are 	L = 	R =
	/2, ε↑ − ε0 = 0.24 eV, S = 100, J = 0.005 eV, JSz = 0.4 eV, and ωL = 0.08 eV. In the case of the smallest value of 	 (red lines), there
are four regions in which the Gilbert damping and the change in the precession frequency occur. In each of these regions, ε0 satisfies the
inequalities (25) and (26), and α approaches a constant value, whereas, β has one local maximum and one local minimum.
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FIG. 9. (Color online) (a) Gilbert damping coefficient α and (b) coefficient β as functions of the precession frequency ωL = gμBBc of
the spin �S of the single-molecule magnet with �Bc = Bc�ez for different tunneling rates 	 at zero temperature. The applied bias voltage is
eV = μL − μR = 2ε0 with μR = 0. The other parameters are the same as in Fig. 7. In the case of the smallest 	 (red lines), the coefficient α

has a step increase towards a local maximum, whereas, the coefficient β has a local maximum or minimum at a value of ωL corresponding to a
resonance of μL with one of the levels in the QD.

giving the conditions for the spin-transfer torque (STT) to occur. Also, in the second paragraph of this subsection, in the sentence
before last, “spin-down” should be replaced with “spin-up” and vice versa.

In the paragraph before last in Sec. III, there is a typographical error in the second sentence, and εB should be replaced
with ε0.

The last part of Sec. III, beginning with “At larger values of ωL, resulting in,” p. 7, should be replaced with “At larger values
of ωL, resulting in ε↓ + ωL = μL, the Gilbert damping coefficient has a step increase towards a local maximum, whereas, the
coefficient β has a local maximum as a consequence of the enhancement of the STT due to additional spin-flip processes occurring
in this case. For even larger values of ωL, the conditions (25) and (26) are no longer fulfilled, and both coefficients vanish. It
is energetically unfavorable to flip the spin of an electron against the antiparallel direction of the effective constant magnetic
field �Bc

eff . Hence, as ωL increases, more energy is needed to flip the electronic spin to the direction of the field. This causes α to
decrease with increasing ωL. Additionally, the larger the ratio ωL/	, the less probable it is that spin-angular momentum will be

exchanged between the molecular spin and the itinerant electrons. For ωL = 0, the molecular spin is static, i.e., �̇S = 0. In this
case, �T (t) = �0. The coefficient α then drops to zero, whereas, the coefficient β reaches a negative local maximum which is close
to 0. Both α and β reach an extremum value for large values of 	 at this point. For ωL < 0 and 	 	 |ωL| (red lines), at the
value of ωL for which μL = ε↑ − ωL, the coefficient α has a step increase towards a local maximum, whereas, the coefficient β

has a negative local minimum. The coefficient α then decreases with a further decrease in ωL as long as ε↓ � μL � ε↑ − ωL. At
the value of ωL for which μL = ε↓, α has another step increase towards a local maximum, whereas, β has a maximum value.
According to Eq. (23), the Gilbert damping also does not occur if �S is perpendicular to �Bc. In this case, β � 0, and the only

nonzero torque component β �̇S(t) acts in the opposite direction than the molecular spin’s rotational motion. In the caption for
Fig. 9, the two last sentences should be replaced with the one given in this Erratum.
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Photon-assisted electronic and spin transport in a junction containing precessing molecular spin
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We study the ac charge and -spin transport through an orbital of a magnetic molecule with spin precessing in a
constant magnetic field. We assume that the source and drain contacts have time-dependent chemical potentials.
We employ the Keldysh nonequilibrium Green’s functions method to calculate the spin and charge currents
to linear order in the time-dependent potentials. The molecular and electronic spins are coupled via exchange
interaction. The time-dependent molecular spin drives inelastic transitions between the molecular quasienergy
levels, resulting in a rich structure in the transport characteristics. The time-dependent voltages allow us to reveal
the internal precession time scale (the Larmor frequency) by a dc conductance measurement if the ac frequency
matches the Larmor frequency. In the low-ac-frequency limit the junction resembles a classical electric circuit.
Furthermore, we show that the setup can be used to generate dc-spin currents, which are controlled by the
molecular magnetization direction and the relative phases between the Larmor precession and the ac voltage.

DOI: 10.1103/PhysRevB.93.075402

I. INTRODUCTION

Since the early 1970s, the potential use of molecules as
components of electronic circuitry was proposed [1], thereby
introducing the field of molecular electronics. Since then, the
goal of the field has been to create high-speed processing
molecular devices with miniature size [2,3]. In that respect,
it is important to investigate the properties of transport
through single molecules in the presence of external fields
[4–8]. Single-molecule magnets are a class of molecular
magnets with a large spin, strong magnetic anisotropy, and
slow magnetization relaxation at low temperatures [9]. Due
to both classical [10] and quantum [10–13] characteristics
of single-molecule magnets, their application in molecular
electronics became a topic of intense research, considering
their potential usage in creation of memory devices [14].
Several experiments have already achieved transport through
single-molecule magnets [15–17].

Time-dependent transport through molecular junctions has
been theoretically studied using different techniques, such as
nonequilibrium Green’s functions technique [18–22], time-
dependent density functional theory [23–27], reduced density
matrix approach [28], etc. Time-dependent periodic fields in
electrical contacts cause photon-assisted tunneling [4,29–31],
a phenomenon based on the fact that by applying an external
harmonic field with frequency � to the contact, the conduction
electrons interact with the ac field and, consequently, par-
ticipate in the inelastic tunneling processes by absorbing or
emitting an amount of energy n��, where n = ±1, ± 2, . . . .
Theoretically, photon-assisted tunneling through atoms and
molecules was investigated in numerous works [4,32–37].
Some experimental studies addressed photon-assisted tun-
neling through atomic-sized [38–40] and molecular [41,42]
junctions in the presence of laser fields. Time-dependent
electric control of the state of quantum spins of atoms has also
been investigated [43]. In junctions with time-dependent ac
bias, the presence of displacement currents is inevitable due
to the charge accumulation in the scattering region [44,45].
This problem can be solved either implicitly by including
the Coulomb interaction in the Hamiltonian of the system
[46,47] or explicitly by adding the displacement current to the

conduction current [45,48], thus providing the conservation of
the total ac current.

Spin transport through magnetic nanostructures can be used
to manipulate the state of the magnetization via spin-transfer
torques (STTs) [49,50]. The concept of STT is based on
the transfer of spin angular momenta from the conduction
electrons to a local magnetization in the scattering region,
generating a torque as a back-action of the spin transport, and
thus changing the state of the magnetic nanostructure [49–52].
Hence, current-induced magnetization reversal has become
an active topic in recent years [53–59]. The measurement
and control of the magnetization of single-molecule magnets
employing spin transport may bring important applications in
spintronics.

In this work we theoretically study the charge and spin
transport through a single electronic energy level in the
presence of a molecular spin in a constant magnetic field.
The electronic level may be an orbital of the molecule or it
may belong to a nearby quantum dot. The molecular spin,
treated as a classical magnetic moment, exhibits Larmor
precession around the magnetic field axis. The Zeeman field
and interaction of the orbital with the precessing molecular
spin result in four quasienergy levels in the quantum dot,
obtained using the Floquet theorem [60–63]. The system is
then connected to electric contacts subject to oscillating elec-
tric potentials, considered as a perturbation. The oscillating
chemical potentials induce photon-assisted charge and spin
tunneling. A photon-assisted STT is exerted on the molecular
spin by the photon-assisted spin currents. This torque is not
included in the dynamics of the molecular spin, since the
molecular spin precession is assumed to be kept steady by
external means, thus compensating the STT. The precessing
molecular spin in turn pumps spin currents into the leads,
acting as an external rotating exchange field. Some of our
main results are as follows:

(1) In the limit of low ac frequency, the junction can be
mapped onto a classical electric circuit modeling the inductive-
like or capacitive-like response.

(2) The real and imaginary components of the dynamic
conductance, associated with the resonant position of the
chemical potentials with molecular quasienergy levels, are
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both enhanced around the ac frequency matching the Larmor
frequency, allowing the detection of the internal precession
time scale (see Fig. 4).

(3) The setup can be employed to generate and control dc
spin currents by tuning the molecular precession angle and the
relative phases between the ac voltage and Larmor precession
if the ac frequency matches the Larmor frequency.

A part of this article is a complement to Ref. [64], repre-
senting the solution for the Gilbert damping coefficient [65],
nonperturbative in the coupling to the molecular magnet, in
the absence of time-varying voltage. The other corresponding
STT coefficients and an arising nonzero z component of the
STT are obtained as well.

The article is organized in the following way: We describe
the model setup of the system in Sec. II. The theoretical
formalism based on the Keldysh nonequilibrium Green’s
functions technique [18–20] is introduced in Sec. III. Here
we derive expressions for spin and charge currents in linear
order with respect to ac harmonic potentials in the leads. In
Sec. IV we obtain and analyze the dynamic conductance of the
charge current using the current partitioning scheme developed
by Wang et al. [48]. This section is followed by Sec. V in which
we analyze spin transport and STT under dc-bias voltage and
in the presence of oscillating chemical potentials. We finally
conclude in Sec. VI.

II. MODEL SETUP

We consider a junction consisting of a single spin-
degenerate molecular orbital of a molecular magnet with a
precessing spin in a constant magnetic field along z axis,
�B = B�ez, coupled to two normal metallic leads. We assume
the spin of the molecular magnet is large and neglecting the
quantum fluctuations treat it as a classical vector �S, with
constant length S = |�S|. The magnetic field does not affect
the electric contacts, which are assumed to be noninteracting.
An external ac harmonic potential V

ξ
ac(t) = v

ξ
accos(�t + φξ )

is applied to each lead ξ = L,R, modulating the single
electron energy as εkξ (t) = εkξ + eV

ξ
ac(t), with εkξ being the

single-particle energy of an electron with the wave number k, in
the absence of the time-varying voltage (see Fig. 1). Since we

μL ΓL ΓR

B S(t)
μR

0 s(t)

JgμB

evac
R cos(Ωt + φR)

∼

∼

eV

μR ∼

evac
L cos(Ωt + φL)

evac
R cos(Ωt + φR)

FIG. 1. Photon-assisted tunneling through a single molecular
level with energy ε0 coupled to the spin �S(t) of a molecular
magnet via exchange interaction with the coupling constant J in
the presence of a constant magnetic field �B. External ac potentials
V ac

ξ (t) = vac
ξ cos(�t + φξ ) are applied to the leads ξ = L,R with

chemical potentials μξ and tunnel rates �ξ .

want to unravel the quantum effects induced by the tunneling
electrons and the ac harmonic potentials, we consider a well
coupled molecular orbital and treat it as noninteracting by
disregarding the intraorbital Coulomb interactions between
the electrons.

The junction is described by the Hamiltonian
Ĥ (t) = ĤL(t) + ĤR(t) + ĤT + ĤMO(t) + ĤS . Here Ĥξ (t) =∑

k,σ εkξ (t)ĉ†kσξ ĉkσξ is the Hamiltonian of lead ξ = L,R.
The subscript σ = ↑,↓ = 1,2 = ±1 denotes the spin-up or
spin-down state of the electrons. The tunneling Hamiltonian
ĤT = ∑

k,σ,ξ [Vkξ ĉ
†
kσξ d̂σ + V ∗

kξ d̂
†
σ ĉkσξ ] introduces the spin-

independent tunnel coupling between the molecular orbital
and the leads, with matrix element Vkξ . The operators
ĉ
†
kσξ (ĉkσξ ) and d̂†

σ (d̂σ ) represent the creation (annihilation)
operators of the electrons in the leads and the molecular orbital.
The next term in the Hamiltonian of the system is given by
ĤMO(t) = ∑

σ ε0d̂
†
σ d̂σ + (gμB/�)�̂s �B + J �̂s �S(t). Here, the first

term describes the noninteracting molecular orbital with
energy ε0. The second term represents the electronic spin
in the molecular orbital, �̂s = (�/2)

∑
σσ ′( �̂σ )σσ ′ d̂†

σ d̂σ ′ , in the
presence of the external constant magnetic field �B, and
the third term expresses the exchange interaction between
the electronic spin and the molecular spin �S(t). Here
�̂σ = (σ̂x,σ̂y,σ̂z)T represents the vector of the Pauli matrices.
The proportionality factors g and μB are the gyromagnetic
ratio of the electron and the Bohr magneton, respectively,
while J is the exchange coupling constant between the
molecular and electronic spins.

Presuming, for simplicity, that the molecular spin g factor
equals that of a free electron, the term ĤS = gμB

�S �B represents
the energy of the classical molecular spin �S in the magnetic
field �B. Accordingly, the field �B exerts a torque on the spin
�S leading to its precession around the field axis with Larmor
frequency ωL = gμBB/�. To compensate for the dissipation
of magnetic energy due to the interaction with conduction
electrons, we assume that the molecular spin is kept precessing
by external means (e.g., rf fields) [66]. Hence, we keep the tilt
angle θ between �B and �S fixed and determined by the initial
conditions. The dynamics of the molecular spin is then given
by �S(t) = S⊥ cos(ωLt)�ex + S⊥ sin(ωLt)�ey + Sz�ez, where S⊥ is
the magnitude of the instantaneous projection of �S(t) onto the
x − y plane, given by S⊥ = S sin(θ ), while the projection of
the molecular spin on the z axis equals Sz = S cos(θ ). The
precessing spin �S(t) pumps spin currents into the system, but
the effects of spin currents onto the molecular spin dynamics
are compensated by the above-mentioned external sources.

III. THEORETICAL FORMALISM

The ensemble and quantum average charge and spin
currents from the lead ξ to the molecular orbital are given
by

Iξν(t) = qν

〈
d

dt
N̂ξν

〉
= qν

i

�
〈[Ĥ ,N̂ξν]〉, (1)

with N̂ξν = ∑
k,σ,σ ′ ĉ

†
kσξ (σν)σσ ′ ĉkσ ′ξ representing the charge

and spin occupation number operator of the contact ξ . The
index ν takes values ν = 0 for the charge and ν = 1,2,3
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for the components x,y,z of the spin-polarized current. The
prefactors qν correspond to the electronic charge q0 = −e

and spin qν 
=0 = �/2. Employing the Keldysh nonequilibrium
Green’s functions technique, the currents can be calculated in
units in which � = e = 1 as [19,20]

Iξν(t) = − 2qνRe
∫

dt ′Tr
{
σ̂ν

[
Ĝr (t,t ′)�̂<

ξ (t ′,t)

+ Ĝ<(t,t ′)�̂a
ξ (t ′,t)

]}
, (2)

where σ̂0 = 1̂ is the identity operator, while σ̂ν 
=0 are the
Pauli matrices. In Eq. (2), �̂

r,a,<
ξ (t,t ′) are the retarded,

advanced, and lesser self-energies from the tunnel coupling
between the molecular orbital and the lead ξ , while Ĝr,a,<(t,t ′)
are the corresponding Green’s functions of the electrons in
the molecular orbital. The matrices of the self-energies are
diagonal in the electronic spin space with respect to the
basis of eigenstates of ŝz, and their nonzero entries are given
by �

r,a,<
ξ (t,t ′) = ∑

k Vkξg
r,a,<
kξ (t,t ′)V ∗

kξ , where g
r,a,<
kξ (t,t ′) are

the retarded, advanced, and lesser Green’s functions of the
electrons in contact ξ . The matrix elements of the Green’s
functions Ĝr,a,<(t,t ′) are given by G

r,a
σσ ′(t,t ′) = ∓iθ (±t ∓

t ′)〈{d̂σ (t),d̂†
σ ′(t ′)}〉 and G<

σσ ′(t,t ′) = i〈d̂†
σ ′ (t ′)d̂σ (t)〉, where {·,·}

denotes the anticommutator. The self-energies of lead ξ can
be expressed as [18–20]

�<
ξ (t,t ′) = i

∫
dε

2π
e−iε(t−t ′)+iϕξ (t,t ′)fξ (ε)�ξ (ε), (3)

�r
ξ (t,t ′) = −iθ (t − t ′)

∫
dε

2π
e−iε(t−t ′)+iϕξ (t,t ′)�ξ (ε). (4)

Here we introduced the Faraday phases ϕξ (t,t ′) =
e
∫ t ′

t
dt ′′V ac

ξ (t ′′). From its definition, it follows that �a
ξ (t,t ′) =

[�r
ξ (t ′,t)]∗. Furthermore, fξ (ε) = [e(ε−μξ )/kBT + 1]−1 is the

Fermi-Dirac distribution of the electrons in the lead ξ , with
kB the Boltzmann constant and T the temperature, while
�ξ (ε) = 2π

∑
k |Vkξ |2δ(ε − εkξ ) is the tunnel coupling to the

lead ξ . Using the self-energies defined above, and applying the
double Fourier transformations in Eq. (2), in the wide-band
limit, in which �ξ is energy independent, one obtains

Iξν(t) = 2qν�ξ Im
∫

dε

2π

∫
dε′

2π
e−i(ε−ε′)t

×
∑
m,n

Jm

(
vac

ξ

�

)
Jn

(
vac

ξ

�

)
ei(m−n)φξ

× Tr

{
σ̂ν

[
fξ (ε′

m)Ĝr (ε,ε′
mn) + 1

2
Ĝ<(ε,ε′

mn)

]}
, (5)

with the abbreviations εm = ε − m� and εmn = ε −
(m − n)�. The generating function exp[ia sin(�t + φ)] =∑

m Jm(a) exp[im(�t + φ)] was used in Eq. (5), where Jm

is the Bessel function of the first kind of order m.
The matrix components of the retarded Green’s function

of the electrons in the molecular orbital, in the absence of
the ac harmonic potentials in the leads, can be obtained
exactly by applying Dyson’s expansion and analytic contin-
uation rules [20]. Their double Fourier transforms are written

as [67]

Gr
σσ (ε,ε′) = 2πδ(ε − ε′)G0r

σσ (ε)

1 − γ 2G0r
σσ (ε)G0r−σ−σ (εσ )

, (6)

Gr
σ−σ (ε,ε′) = 2πγ δ(εσ − ε′)G0r

σσ (ε)G0r
−σ−σ (εσ )

1 − γ 2G0r
σσ (ε)G0r−σ−σ (εσ )

, (7)

with γ = JS sin(θ )/2 and εσ = ε − σωL. The matrix el-
ements of the corresponding lesser Green’s function are
obtained using the Fourier transfomed Keldysh equation
Ĝ<(ε,ε′) = ∫

dε′′Ĝr (ε,ε′′)�̂<
0 (ε′′)Ĝa(ε′′,ε′)/2π [20]. Here

Ĝa(ε,ε′) = [Ĝr (ε′,ε)]† and �<
0 (ε) = i

∑
ξ �ξfξ (ε) is the lesser

self-energy originating from the orbital-lead coupling in the
absence of harmonic potentials in the leads. The retarded
Green’s functions Ĝ0r of the electrons in the molecular orbital,
in the presence of the static component of the molecular spin
and the constant magnetic field �B, are found using the equation
of motion technique [68] and, Fourier transformed, read
Ĝ0r (ε) = [ε − ε0 − �r

0(ε) − σ̂z(gμBB + JSz)/2]−1 [59,67],
where �r

0(ε) = −i�/2 and � = ∑
ξ �ξ .

For a weak ac field vac
ξ � �, the retarded and lesser Green’s

functions of the electrons in the molecular orbital can be
obtained by applying Dyson’s expansion, analytic continuation
rules, and the Keldysh equation [20]. Keeping only terms linear
in v

ξ
ac/� they read

Ĝr (ε,ε′) ≈ Ĝr (ε,ε′), (8)

Ĝ<(ε,ε′) ≈ Ĝ<(ε,ε′) + i
∑

ξ,n=±1

n�ξ

v
ξ
ac

�
einφξ

∫
dε′′

4π

× [fξ (ε′′
n ) − fξ (ε′′)]Ĝr (ε,ε′′

n )Ĝa(ε′′,ε′). (9)

In the rest of the paper we will stay in this limit.
The particle current contains the following contributions:

Iξν(t) = I
ωL

ξν (t) + I�
ξν(t) . (10)

The first component represents the transport in the absence of
ac voltages in the leads. It has a static and a time-dependent
contribution, which are both created by the precession of the
molecular spin. This precession-induced current reads

I
ωL

ξν (t) = 2qν�ξ Im

{ ∫
dε

2π

∫
dε′

2π
e−i(ε−ε′)t

× Tr

{
σ̂ν

[
1

2
Ĝ<(ε,ε′) + fξ (ε′)Ĝr (ε,ε′)

]}}
. (11)

In the limit γ 2 → 0, Eq. (11) reduces to the result obtained
previously [64]. The second term of Eq. (10) is induced when
an ac voltage is applied to lead ξ and can be expressed in linear
order with respect to v

ξ
ac/� using Eqs. (5), (8), and (9) as

I�
ξν(t) = qν

∑
ζ,n=±1

n�ξ�ζ

vac
ζ

�
Re

∫
dε

2π

∫
dε′

2π
e−i(ε−ε′)t+inφζ

×
{∫

dε′′

4π
{[fζ (ε′′

n )−fζ (ε′′)]Tr[σ̂ν Ĝr (ε,ε′′
n )Ĝa(ε′′,ε′)]}

− i

�ζ

δξζ [fζ (ε′
n) − fζ (ε′)]Tr[σ̂ν Ĝr (ε,ε′

n)]

}
. (12)

075402-3
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These expressions for the currents constitute the main results
of the article. They allow us to calculate the dynamic charge
conductance and spin transport properties of our molecular
contact. Note that spin currents are more conveniently dis-
cussed in terms of the spin-transfer torque exerted by the
inelastic spin currents onto the spin of the molecule, given
by [49–52]

�T (t) = �T ωL(t) + �T �(t) = −[ �IL(t) + �IR(t)] . (13)

Hence, in the remainder of the article we will concentrate on
the ac charge conductance and the dc spin-transfer torque.

IV. CHARGE TRANSPORT

A. Dynamic charge conductance

The time-dependent particle charge current from the lead
ξ to the molecular orbital is induced by the ac harmonic
potentials in the leads and can be written as

I�
ξ0(t) = Re

⎧⎨
⎩

∑
ζ

Gc
ξζ (�)vac

ζ e−i(�t+φζ )

⎫⎬
⎭, (14)

where Gc
ξζ (�) is the conductance between leads ξ and ζ .

In order to determine the dynamic conductance under ac
bias-voltage conditions, one also needs to take into account
the contribution from the displacement current. Coulomb
interaction leads to screening of the charge accumulation in the
quantum dot given by I d (t) = dQ(t)

dt
= −eIm{ d

dt
[TrĜ<(t,t)]}.

According to the Kirchhoff’s current law, I d (t) + ∑
ξ I�

ξ0(t) =
0. The following expression defines the total conductance of
charge current, Gξζ :

I
�,tot
ξ0 (t) = Re

⎧⎨
⎩

∑
ζ

Gξζ (�)vac
ζ e−i(�t+φζ )

⎫⎬
⎭, (15)

while the displacement conductance Gd
ζ is given by

I d (t) = Re

⎧⎨
⎩

∑
ζ

Gd
ζ (�)vac

ζ e−i(�t+φζ )

⎫⎬
⎭. (16)

The conservation of the total charge current and gauge
invariance with respect to the shift of the chemical potentials
lead to

∑
ξ Gξζ = 0 and

∑
ζ Gξζ = 0 [45]. These equations

are satisfied by partitioning the displacement current into
each lead [48], I

�,tot
ξ0 = I�

ξ0 + AξI
d , or, equivalently, Gξζ =

Gc
ξζ + AξG

d
ζ , in such a way that the sum of the partitioning

factors Aξ obeys
∑

ξ Aξ = 1. Using the sum rules given
above one obtains the expression for the dynamic conductance
[45,48],

Gξζ = Gc
ξζ − Gd

ζ

∑
λ Gc

ξλ∑
λ Gd

λ

, (17)

where Aξ = −(
∑

λ Gc
ξλ)/(

∑
λ Gd

λ), Gd
ζ = −∑

ξ Gc
ξζ , and

G(�) = GLL(�) = GRR(�) = −GLR(�) = −GRL(�). The
first term of Eq. (17) represents the dynamic response of the
charge current, while the second term is the internal response
to the applied external ac perturbation due to screening by
Coulomb interaction. Note that the dynamic conductance

consists of a real dissipative component GR and an imaginary
nondissipative component GI , indicating the difference in
phase between the current and the voltage. Due to the total
current conservation, the two terms in Eq. (17) should behave
in a way that a minimum (maximum) of Gc

ξζ (�) corresponds to
a maximum (minimum) of Gd

ζ (�) for both real and imaginary
parts.

B. Density of states in the quantum dot

Since the dynamic conductance is an experimentally di-
rectly accessible quantity, we hope that a measurement can
help to reveal the internal time scales of the coupling between
the molecular and electronic spins in the transport. We begin by
analyzing the density of states available for electron transport
in the quantum dot,

ρ(ε) = − 1

π

∑
σ=±1

Im

{
G0r

σσ (ε)

1 − γ 2G0r
σσ (ε)G0r−σ−σ (εσ )

}
. (18)

There are four resonant transmission channels. They are
positioned at quasienergy levels ε1 = ε↓ = ε0 − (ωL + JS)/2
(spin-down), ε2 = ε↓ + ωL = ε0 + (ωL − JS)/2 (spin-up),
ε3 = ε↑ − ωL = ε0 − (ωL − JS)/2 (spin-down) and ε4 =
ε↑ = ε0 + (ωL + JS)/2 (spin-up).

The Hamiltonian of the molecular orbital is a periodic func-
tion of time ĤMO(t) = ĤMO(t + τ ), with period τ = 2π/ωL.
Its Fourier expansion is given by ĤMO(t) = ∑

n Ĥ
(n)
MOeinωLt .

Applying the Floquet theorem, one can obtain the Floquet
quasienergy εα corresponding to the Floquet state |ψα(t)〉 in
the Schrödinger equation,

ĤMO(t)|ψα(t)〉 = εα|ψα(t)〉, (19)

where ĤMO(t) = ĤMO(t) − i∂t [60–63]. The Floquet Hamil-
tonian matrix is block diagonal, with matrix elements given
by 〈α; n|ĤF |β; m〉 = [Ĥ (n−m)

MO ]αβ + nωLδαβδnm [61], where
|α; n〉 describes the Floquet states, while α denotes the
electron spin states. For restricted Floquet quasienergies to
the frequency interval [0,ωL) a block is given by(

λ1 − ωL JS⊥/2

JS⊥/2 λ2

)
, (20)

with λ1,2 = ε0 ± (ωL + JSz)/2. The corresponding Floquet
quasienergies are eigenenergies of the matrix (20), equal
to ε1 and ε3. The precessing component of the molecular
spin couples states with quasienergies ε1 and ε3 to states
with quasienerges ε2 and ε4, which differ in energy by an
energy quantum ωL. Namely, due to the periodic motion
of the molecular spin, an electron can absorb or emit an
energy ωL, accompanied with a spin flip. Spin-flip processes
due to rotating magnetic field were analyzed in some works
[64,67]. A similar mechanism was discussed in a recent work
for a nanomechanical spin valve, in which inelastic spin-flip
processes are assisted by molecular vibrations [69].

C. Analysis of dynamic conductance

Now we analyze the charge conductance in response to
the ac voltages. The suppression of dc conductance of charge
current due to photon-assisted processes in the presence of an
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FIG. 2. (a) Real part GR and (b) imaginary part GI of the dynamic conductance as functions of the chemical potential μ, with μ = μL = μR .
The plots are obtained for different ac frequencies � and tunneling rates � at zero temperature, with �L = �R = �/2, and �B = B�ez. All energies
are given in the units of ε0. The other parameters are set to: ωL = 0.5, J = 0.01, S = 100, θ = 1.25, γ ≈ 0.474. The molecular quasienergy
levels are positioned at: ε1 = 0.25, ε2 = 0.75, ε3 = 1.25, and ε4 = 1.75. The conductance components GR and GI are given in the units of
conductance quantum e2/h.

ac gate voltage, or a rotating magnetic field, was discussed in
Ref. [63]. Here we consider ac conductance in a double-driving
experiment, where we first induce molecular spin precession
at Larmor frequency ωL and then turn on the oscillating fields
with frequency � in the leads. Assuming equal chemical
potentials of the leads μL = μR = μ, we analyze the dynamic
conductance G(�) at zero temperature. Since we work in
the wide-band limit, this symmetry simplifies the partitioning

factors to Aξ = �ξ/�. Hence, Eq. (17) can be transformed
into

Gξζ (�) = e2

h

∫
dεTξζ (ε,�)

fζ (ε − �) − fζ (ε)

�
. (21)

Here Tξζ (ε,�) is the effective transmission function that
can be expressed as T (ε,�) = TLL(ε,�) = TRR(ε,�) =
−TLR(ε,�) = −TRL(ε,�), which reads

T (ε,�) = �L�R

�
(� − i�)

∑
σ=±1

G0r
σσ (ε)G0a

σσ (ε − �)
[
1 + γ 2G0r

−σ−σ (εσ )G0a
−σ−σ (εσ − �)

]
[
1 − γ 2G0a

σσ (ε − �)G0a−σ−σ (εσ − �)
][

1 − γ 2G0r
σσ (ε)G0r−σ−σ (εσ )

] . (22)

The real part GR and imaginary part GI of the dynamic
conductance versus chemical potential μ are plotted in
Figs. 2(a) and 2(b). Both GR and GI achieve their maximum
at μζ = εi , where the resonance peaks are positioned. In
accordance with Eq. (21) the electrons in lead ζ = L,R, with
energies μζ − � � ε � μζ , can participate in the transport
processes by absorbing a photon of energy �. For � → 0 the
dynamic conductance reduces to dc conductance, Gξζ (� →
0) = e2Tξζ (μζ ,� → 0)/h, and reaches its maximum at reso-
nances given by the Floquet quasienergies [63]. The imaginary
part of the dynamic conductance GI approaches zero for
� → 0 [black line in Fig. 2(b)]. The considerable contribution
of the displacement current to the total current is reflected in
the decrease of GR , and the increase of GI near resonances
with increasing �, as the displacement current opposes the
change of the particle charge current under ac bias [red and
blue dot-dashed lines in Figs. 2(a) and 2(b)]. For a small value
of both � and �, GR show sharp resonant peaks. However,
with the increase of �, each of the peaks in GR broadens
[green line in Fig. 2(a)]. It approaches a constant value around
the corresponding resonant level, with the width equal to 2�,
since the inequality

|εi − μζ | � � (23)

is the condition for the inelastic photon-assisted tunneling to
occur.

D. Frequency dependence of the ac conductance
and equivalent circuit

The behavior of the ac conductance in the low-ac-frequency
regime can be understood using a classical circuit theory
[70]. Namely, at small ac frequencies � � �, the molecular
magnet junction behaves as a parallel combination of two
serial connections: one of a resistor and an inductor and the
other of a resistor and a capacitor, i.e., as a classical electric
circuit (see Fig. 3). Depending on the phase difference between
the voltage and the current, the circuit shows inductive-like
(positive phase difference) or capacitive-like (negative phase
difference) responses to the applied ac voltage. Thus, the
dynamic conductance can be expanded up to the second order
in � in the small-ac-frequency limit as

G(�) = G(0) + G′(0)� + 1

2
G′′(0)�2 + O(�3)

≈ 1

R1
+ i

(
L

R2
1

− C

)
� +

(
R2C

2 − L2

R3
1

)
�2, (24)
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R1

R2

L

C

V (t)

FIG. 3. The equivalent classical circuit of the molecular magnet
junction in the low-ac-frequency regime. It is composed of two serial
combinations: one of a resistor and an inductor and the other of a
resistor and a capacitor connected in parallel and driven by a source
of ac voltage V (t). The resistances are denoted by R1 and R2; L is
the inductance and C is the capacitance of the circuit elements.

where R1, R2, L, and C denote the resistances, inductance,
and capacitance of the circuit. In our further analysis we will
assume that R1 = R2 = R. The first term of Eq. (24) represents
the dc conductance G(0) = 1/R. The second, imaginary term,
linear in �, is iGI in the low-ac-frequency limit.

Depending on the sign of L/R2 − C, the linear response is
inductive-like (GI > 0) while GR decreases or capacitive-like
(GI < 0) while GR increases with the increase of �. For C =
L/R2 the system behaves like a resistor with G = G(0). The
nondissipative component GI shows inductive-like behavior
for

|εi − μζ | <
�

2
, (25)

as we have observed in Fig. 2(b) (red line), and capacitive-like
or resistive behavior otherwise.

The behavior of the dynamic conductance components GR

and GI as functions of the ac frequency � for μ = ε3 and μ =
0.1 ε0, with two values of � at zero temperature is presented in
Fig. 4. The real part GR is an even, while the imaginary part GI

is an odd function of �. In the low-ac-frequency regime � �
�, GR is a quadratic function, while GI is a linear function of
ac frequency (solid and dashed black lines in Fig. 4). By fitting
parameters of these functions and using Eq. (24), one obtains
circuit parameters R, L, and C, confirming that in this limit
the ac conductance of the system resembles the previously
described classical circuit model. The circuit parameters can
be calculated in terms of the dynamic conductance according
to Eq. (24). Note that they depend on the relative position of
the Fermi energy of the leads with respect to the molecular
quasienergy levels.

Near the four resonances we expect the system to be
highly transmissive and therefore to conduct well. This is
confirmed by Figs. 2 and 4. Namely the imaginary conductance
component GI > 0 around resonances and is a positive linear
function of � in the low-ac-frequency limit [see Fig. 4(b),
black solid line]. This implies that the behavior of the system
is inductive-like, since the displacement current tends to reduce
the charge current, as electrons reside awhile in the quantum
dot, causing the delay in phase between the voltage and
the current. Accordingly, the real component GR decreases
quadratically from initial value G(0) upon switching on the
ac frequency � [black solid line in Fig. 4(a)]. However,
the off-resonance behavior is capacitive-like, resulting from
intraorbital Coulomb interactions, included via displacement
current [48]. Hence, in the low-ac-frequency limit GI (�) is
negative and decreases linearly with the increase of � for
Fermi energies of the leads which are far from the resonant
energies εi [black dashed line in Fig. 4(b)]. In this case
GR(�) increases quadratically with � [black dashed line in
Fig. 4(a)]. Obviously, the molecular magnet junction behaves
as a classical circuit only in the low-ac-frequency regime.

For higher ac frequencies � we use Eq. (21) to analyze
the behavior of GR and GI , where the dynamic response of
the system remains predominantly inductive-like for μ = ε↑ −
ωL = ε3. With further increase of �, the ac conductance G(�)
vanishes asymptotically. Upon turning on the ac frequency,
while the system is on resonance μ = ε↑ − ωL, the imaginary

FIG. 4. (a) Real part GR and (b) imaginary part GI of the dynamic conductance as functions of the ac frequency �. The plots are obtained
for two different tunneling rates � and chemical potentials μ, with μ = μL = μR and �B = B�ez, at zero temperature. All energies are given in the
units of ε0. The other parameters are set to: �L = �R = �/2, S = 100, J = 0.01, ωL = 0.5, θ = 1.25, γ ≈ 0.474. The molecular quasienergy
levels lie at: ε1 = 0.25, ε2 = 0.75, ε3 = 1.25, and ε4 = 1.75. In the resonant case μ = ε3, the response of the system is inductive-like in the
low-ac-frequency limit (GI > 0), and GR and GI are both enhanced around � = ωL, after going to a local minimum, as the channel with
quasienergy ε4 becomes available for photon-assisted tunneling, i.e., μ + � = ε4. The conductance components GR and GI are given in the
units of e2/h.
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component GI increases quickly from 0 to a local maximum
and then decreases to its minimum value around � = ωL

[green and blue lines in Fig. 4(b)]. The real part GR decreases
to a local minimum and then has a steplike increase towards
a local maximum around � = ωL [green and blue lines in
Fig. 4(a)]. This behavior of the dynamic conductance can be
understood as follows. For μ = ε↑ − ωL, at � = ωL, besides
the resonant level with quasienergy ε↑ − ωL, the upper level
with quasienergy ε↑ becomes available for photon-assisted
electron transport. It is then distanced by the energy � from
the chemical potential μ. Consequently, an electron with Fermi
energy equal to ε↑ − ωL can absorb a photon of energy � = ωL

in the lead ζ and tunnel into the level with quasienergy ε↑. This
leads to an enhancement of the response functions GR and GI ,
after going to a local minimum, with features corresponding to
photon-assisted tunneling processes. Each steplike increase of
GR and the corresponding dip of GI in Fig. 4 are determined
by the difference between the quasienergy levels εi and the
chemical potential μ, viz. |εi − μ| = �. Thus, for μ = ε3 and
the set of parameters given in Fig. 4, they are positioned
around �/ε0 = 0.5 and �/ε0 = 1. For the larger tunnel
couplings each steplike increase in GR is broadened due to
the level broadening �. We notice that the enhancement of the
dynamic conductance is higher around � = ωL than around
the subsequent frequency �/ε0 = 1. This is due to the fact
that the frequency has to traverse one resonant peak in GR , or
dip in GI , to reach the second one. We need to mention that
the off-diagonal conductances Gξζ = −G, where ξ 
= ζ , and
hence have a behavior that opposes that of the diagonal ones.

In the spirit of the scattering matrix formalism, the dynamic
conductance of our molecular magnet junction, in the low-ac-
frequency regime, can be expanded as [71]

Gξζ (�) = Gξζ (0) − i�Eξζ + �2Kξζ + O(�3), (26)

where Gξζ (0) is the dc conductance. The quantity Eξζ =
−Im{∂Gξζ (0)/∂�} is called the emittance [71]. It contains
the contribution from the displacement current and the partial
density of states that characterize the scattering process
[46,72,73]. The partial density of states can be calculated

using the scattering matrix, and can be understood as density
of states due to electrons injected from lead ζ , and leaving
through lead ξ [46,72,73]. The emittance Eξζ measures the
dynamic response of the system to an external oscillating ac
field and, depending on its sign, the response is capacitive-
like or inductive-like [71]. The matrix element of the third
term, Kξζ = Re{∂2Gξζ (0)/∂�2}/2, represents the correction
to the real part of the dynamic conductance and describes
the dynamic dissipation in the low-ac-frequency regime [71].
Both Eξζ and Kξζ obey the sum rules, since the total current
conservation and gauge invariance conditions have to be
satisfied [45]. According to Eq. (26), their diagonal elements
E = Eξξ and K = Kξξ can be approximated as E ≈ −GI/�

and K ≈ [GR − G(0)]/�2 in the low frequency limit [71].
Based on the analyzed GR and GI the behavior of E and K

can be examined. Around all resonances μ = εi the emittance
E < 0 (inductive-like response) and K < 0 since GR < G(0),
while off resonance E > 0 (capacitive-like response) and
K > 0 (see Figs. 2 and 4).

E. Effects of the molecular magnetization direction
on the ac conductance

Now we analyze the ac conductance components GR and
GI as functions of the tile angle θ of the molecular spin
�S from the external field �B, plotted in Figs. 5(a) and 5(b).
For θ = 1.25, the peaks of both GR and GI in Figs. 2(a)
and 2(b) at μ = ε↑,↓ ∓ ωL are much lower than those at
μ = ε↑,↓, implying that the molecular magnet junction is less
transmissive at the upper two mentioned resonances. This
can be qualitatively understood by looking at Fig. 5. The
behavior of the conductance components near the resonances
for μ = ε↑ − ωL (solid lines in Fig. 5) and μ = ε↑ (dot-dashed
lines in Fig. 5) depends on the direction of �S with respect to
the external magnetic field �B. For θ = 0 the molecular spin �S
is static and the only two levels available for electron transport
are Zeeman levels ε1 = ε↓ and ε4 = ε↑. In this case, when
the system is at the resonance μ = ε↑, the components GR

and GI take their maximum values, and GI > 0 displaying an

FIG. 5. (a) Real part GR and (b) imaginary part GI of the dynamic conductance as functions of the tilt angle θ of the molecular spin �S
from the magnetic field �B = B�ez. The plots are obtained for different values of � and μ, with μ = μL = μR , at zero temperature. All energies
are given in the units of ε0. The other parameters are set to S = 100, J = 0.01, ωL = 0.5, � = 0.2, and �L = �R = �/2. In the limit of
low frequency �, for θ → π/2, the conductance component GR , as well as GI , approaches equal value at each resonance. The conductance
components GR and GI are given in the units of conductance quantum e2/h.
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inductive-like behavior. For μ = ε↑ − ωL and θ = 0, both GR

and GI take their minimum values. There is no transmission
channel at this energy for θ = 0, but � is relatively large, and
GI < 0 displays a capacitive-like response. With the increase
of θ , the additional two channels at energies ε↑ − ωL and
ε↓ + ωL appear and become available for electron transport.
This leads to the increase of conductance components GR

and GI at μ = ε↑ − ωL, and their decrease at μL = ε↑, as
functions of θ (see Fig. 5). For θ → π/2, in the case of
small � the complex components of the effective transmission
function T (ε,�) approach the same height at resonant energies
εi , so the probability of transmission reaches equal value at
each level. Thus, both GR and GI show peaks of the same
height at the resonances. The points of intersection of solid
and dot-dashed lines of the same color in Fig. 5 correspond
to this particular case. For larger frequencies �, these points
are shifted away from θ → π/2, since the peaks broaden and
overlap and the suppression or increase of GR and GI is much
faster. Finally, for θ = π the situation is reversed compared to
the one with θ = 0, as again the static spin �S is in the direction
opposite that of the external field �B. The Zeeman splitting in
this case is equal to ωL − JS, so the only two levels available
for electron transport are ε2 and ε3. Therefore, for θ = π ,
when the system is at the resonance μ = ε3, the conductance
components GR and GI reach their maximum values, with
GI > 0. For μ = ε4, which is off resonance for θ = π , both
GR and GI take minimum values, with GI < 0.

V. SPIN TRANSPORT AND SPIN-TRANSFER TORQUE

A. Spin transport under dc-bias voltage

In the absence of ac harmonic potentials in the leads,
tunneling under dc-bias voltage takes place. The spin-angular
momenta between the itinerant electronic spins and the
precessing molecular spin are exchanged via exchange interac-
tion, governed by the coupling constant J . The molecular spin
precession pumps spin currents into the system but remains
undamped using external sources, which compensate effects
of the interaction with electron spins. Further simplification
of Eq. (11) gives time-independent z components of the
spin current, I

ωL

Lz , and the in-plane j = x,y time-dependent
spin-current components from the left lead,

I
ωL

Lj (t) = [ILj (ωL)e−iωLt + I ∗
Lj (ωL)eiωLt ]. (27)

The expressions for complex time-independent functions
ILx(ωL) and ILy(ωL), and the spin current I

ωL

Lz are given by
Eqs. (A1)–(A3) in the Appendix.

The spin-transport properties are characterized by elastic,
i.e., energy-conserving, tunnel processes [terms involving
factors [fL(ε) − fR(ε)] in Eqs. (A1) and (A3)] and inelastic,
i.e., energy-nonconserving, tunnel processes [terms involving
factors [fξ (ε − ωL) − fζ (ε)] in Eqs. (A1) and (A3)]. In the
latter ones an electron changes its energy by ωL and flips
its spin due to the exchange interaction with the rotational
component of the molecular spin. The spin-flip processes occur
between levels with quasienergies ε↑ and ε↑ − ωL and between
levels with quasienergies ε↓ and ε↓ + ωL.

The STT exerted by the inelastic spin-currents onto the spin
of the molecule is given by [49–52]

�T ωL(t) = −[ �IωL

L (t) + �IωL

R (t)
]

(28)

and can be expressed in terms of the matrix elements of the
Green’s functions Ĝ0r (ε) and Ĝ0a(ε) as

T
ωL

j (t) = −
∫

dε

2π

∑
ξζ

�ξ�ζ

�
[fξ (ε − ωL) − fζ (ε)]

× Im

{
(σ̂j )21

γG0r
11(ε)G0a

22(ε − ωL)∣∣1 − γ 2G0r
11(ε)G0r

22(ε − ωL)
∣∣2

× [1 − γ 2G0a
11(ε)G0r

22(ε − ωL)]e−iωLt

}
, (29)

T ωL

z = −
∫

dε

2π

∑
ξζ

�ξ�ζ [fξ (ε − ωL) − fζ (ε)]

× γ 2|G0r
11(ε)G0r

22(ε − ωL)|2
|1 − γ 2G0r

11(ε)G0r
22(ε − ωL)|2 . (30)

Regarding the molecular spin �S, the STT can be presented as

�T ωL(t) = α

S
�̇S(t) × �S(t) + β �̇S(t) + η �S(t), (31)

with the Gilbert damping coefficient α in the first term.
The coefficient β that characterizes the modulation of the
precession frequency of the molecular spin �S(t) is given by the
second term. The third coefficient η can be written in terms of
α and T ωL

z as η = [T ωL
z + ωLSα sin2(θ )]/Sz. Using Eqs. (29)

and (30), and comparing them with Eq. (31), one obtains exact
expressions for the torque coefficients α and β as

α = − 1

ωLS

∫
dε

2π

∑
ξζ

�ξ�ζ [fξ (ε − ωL) − fζ (ε)]
(JSz/2�)Im

{
G0r

11(ε)G0a
22(ε − ωL)

} − γ 2
∣∣G0r

11(ε)G0r
22(ε − ωL)

∣∣2∣∣1 − γ 2G0r
11(ε)G0r

22(ε − ωL)
∣∣2 , (32)

β = − J

ωL

∫
dε

4π

∑
ξζ

�ξ�ζ

�
[fξ (ε − ωL) − fζ (ε)]

Re
{
G0r

11(ε)G0a
22(ε − ωL)

} − γ 2
∣∣G0r

11(ε)G0r
22(ε − ωL)

∣∣2∣∣1 − γ 2G0r
11(ε)G0r

22(ε − ωL)
∣∣2 . (33)

In the limit γ 2 → 0, the expressions (29)–(33) are in
agreement with Ref. [64]. In the strong exchange coupling
limit J � � both Gilbert damping coefficient α and the
torque coefficient β drop to zero.

B. Photon-assisted spin transport under ac-bias voltage

We consider spin transport in the double-driving experi-
ment, where we first establish molecular spin precession at
Larmor frequency ωL and then apply the oscillating potentials
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with frequency � in the leads. The spin current components
indicating photon-assisted inelastic spin transport can be
obtained by further simplification of Eq. (12). The in-plane
x and y spin-current components consist of oscillating terms
involving both ac frequency � and Larmor frequency ωL.
Experimentally, by adjusting � = ±ωL, these currents may be
measurable. In this case they have one dc component and one
component oscillating with frequency 2�. The photon-assisted
spin currents are given by Eqs. (A4)–(A7) in the Appendix.

The time average of a periodic function F (t), with a period
T is defined as

〈F 〉t = 1

T

∫ T

0
F (t)dt. (34)

According to Eq. (A4), the time-averaged j = x,y compo-
nents of the total spin current �IL(t) are nonzero only for
� = ±ωL and read

〈ILj 〉t = 〈
I

�=±ωL

Lj

〉
t
=

∑
ξ

Re
{
I

j

Lξ (−ωL)e±iφξ
}
, (35)

while the time-averaged z component of the spin-current
equals

〈ILz〉t = I
ωL

Lz . (36)

Hence, the in-plane time-averaged x and y spin-current
components contain only contributions from photon-assisted
spin tunneling processes, while the z component contains only
contributions from spin tunneling under dc-bias voltage. The
time-averaged STT is then given by

〈 �T 〉t = −
∑

ξ

〈 �Iξ 〉t . (37)

All the torques are compensated by external means, which
keep the molecular spin precession undamped during the
experiment.

C. Analysis of the time-averaged spin transport

The in-plane components of the time-averaged spin current
and STT are presented in Figs. 6(a) and 6(b) as functions of the
bias-voltage eV = μL − μR . According to Eqs. (A6) and (35),

〈ILx〉t and 〈ILy〉t differ in phase by π/2. The plots are obtained
at zero temperature for two different phases of the ac field in
the left lead. We set � = ωL, the right lead’s Fermi energy
μR = 0, and apply an ac harmonic chemical potential only to
the left lead. According to the segment [fL(ε − �) − fL(ε)]
in Eq. (A5), electrons with energies within the window
[μL − �,μL] participate in the photon-assisted spin transport.
Each of these processes is followed by a spin-flip and emission
(apsorbtion) of an amount of energy ωL. This is caused
by the interaction of the electron spin with the precessing
component of the molecular spin. In turn, during the exchange
interaction, a photon-assisted STT is generated onto �S(t). In
regard to photon-assisted transmission of 1/2-spin particles,
the in-plane spin-current components show significant changes
in either magnitude or direction, controlled by the change
of the phase of the ac field in the left lead φL. Similarly
to the case of charge transport, the necessary condition for
photon-assisted spin tunneling is given by the inequality (23).
The cases with equality sign in (23) are represented by the
black arrows in Fig. 6, pointing to the eV scale. Each level
satisfying this condition corresponds to two black arrows. In
the region between each two black arrows the inequality (23)
is satisfied for at least one molecular quasienergy level. Here
the components of spin current and STT approach constant
values. If ε1 � μL � ε2 or ε3 � μL � ε4, then the inequality
(23) is satisfied for both ε1 and ε2 or ε3 and ε4. As a result,
the magnitude of spin currents and STT is enhanced under
these conditions, due to the involvement of both levels ε1

and ε2, or ε3 and ε4, in photon-assisted spin transport and
photon-assisted spin-flip processes. We should point out that
both spin-current components and STTs are antisymmetric
functions of eV with respect to the position of ε0. This is
a consequence of the antisymmetric position of levels εi

attributed to the spin-up or spin-down state of the electron
with respect to ε0. Using Eq. (35) with vR

ac = 0, φR = 0, we
obtain the largest magnitudes of the j = x,y time-averaged
spin-current components for

φL = arctan

(
Im

{
I

j

LL(−ωL)
}

Re
{
I

j

LL(−ωL)
})

. (38)

FIG. 6. Bias-voltage dependence of the time-averaged components of the spin-current and spin-transfer torque (a) 〈ILx〉t /v
ac
L and 〈Tx〉t /v

ac
L

and (b) 〈ILy〉t /v
ac
L and 〈Ty〉t /v

ac
L . The plots are obtained at zero temperature for two different phases φL, with �B = B�ez. All energies are

given in the units of ε0. The other parameters are set to � = 0.04, �L = �R = �/2, μR = 0, φR = 0, vac
R = 0, θ = 1.25, S = 100, J = 0.01,

and � = ωL = 0.25. Photon-assisted spin transport is enhanced for ε1 < μL < ε2 and ε3 < μL < ε4, where the in-plane components of the
spin-current and spin-transfer torque approach the constant largest magnitudes.
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FIG. 7. Time-averaged spin currents 〈ILx〉t /v
ac
L and 〈ILy〉t /v

ac
L for

θ ∈ [0,π ] and φL = 1.95, with maximal magnitudes around θ = π/2.
The plots are obtained at zero temperature for four different bias-
voltages varied as eV = μL. All energies are given in the units of
ε0. The other parameters are the same as in Fig. 6. Inset: In-plane
spin-current components for eV = 1.5, where ε3 < μL < ε4.

Simultaneously, the other in-plane time-averaged spin-current
equals zero.

The magnitude of the time-averaged spin currents (and
STTs) can also be controlled by tuning the tilt angle θ , as
presented in Fig. 7. For θ = 0, the in-plane spin currents are
equal to 0. Since the spin-flip is most probable with the largest
magnitude of the rotating field, the maximal magnitudes of
〈ILx〉t and 〈ILy〉t are obtained around θ = π/2 and increase
significantly if μL lies between any two levels connected with
spin-flip mechanism (see the inset in Fig. 7).

Some of the photon-assisted tunneling processes contribut-
ing to the spin transport are presented in Fig. 8. We show
examples of two opposite photon-assisted spin-flip processes.
Figure 8(a) corresponds to the case in which ε1 − μL < � (or
ε3 − μL < �). Here an electron from the left lead excited
by a photon of energy � = ωL tunnels into the level ε1

μL

Ω

ωL

(a)

μL

Ω ωL

(

∼
∼

b)

FIG. 8. Sketch of two opposite photon-assisted spin-flip pro-
cesses between molecular quasienergy levels in the presence of ac
harmonic potential with frequency � in the left lead. (a) Excited
electron with energy � tunnels into spin-down level ε↓ (or ε↑ − ωL).
It absorbs an amount of energy ωL, flips its spin due to the exchange
interaction with the precessing component of the molecular spin, and
exits into either lead. (b) Excited electron tunnels into spin-up level
ε↓ + ωL (or ε↑), flips its spin, and emits an energy quantum ωL. Then
it tunnels out to the right lead.

FIG. 9. Time-averaged spin-transfer torque components 〈Tj 〉t for
j = x,y as functions of ac frequency �. The plots are obtained at
zero temperature for two different �, with �L = �R = �/2, �B = B�ez,
and � = ωL. All energies are given in the units of ε0. The other
parameters are set to: μL = 0.25, μR = 0, φL = 1.95, vac

R = 0, φR =
0, θ = 1.25,J = 0.005, and S = 100. Each step or peak coincides
with a change in the number of available channels for photon-assisted
spin tunneling.

(or ε3). During the exchange interaction with the precessing
component of �S(t), it absorbs an energy ωL and flips its spin,
ending up in the level ε2 (or ε4), and then tunnels into either of
the leads. One photon-assisted spin-flip process through level
ε2 (or ε4) for ε1 � μL � ε2 (or ε3 � μL � ε4) is presented in
Fig. 8(b). In this case, an electron absorbs an energy � = ωL

interacting with ac field in the left lead and enter the spin-up
level ε2 (or ε4). Then, it emits energy quantum ωL, flips its
spin due to the interaction with the precessing component of
the molecular spin, and tunnels into the right lead.

In Fig. 9 the time-averaged x and y components of STT are
plotted as functions of ac frequancy � = ωL, for two different
tunnel coupling constants � = 0.04 (solid lines) and � =
0.12 (dot-dashed lines), at zero temperature. The grid lines
correspond to εi − μL = �. For � such that ε1 − μL = � the
molecular quasienergy level ε1 participates in photon-assisted
spin transport, followed by an electron spin-flip and hence a
finite STT. In this case 〈Tx〉t is initially enhanced while 〈Ty〉t
has a minimum value and increases after � = ε1 − μL [first
grid line in Fig. 9]. As � increases the inequality (23) is
satisfied for level ε1 leading to a nonzero STT. With further
increase of ac frequency � the photon-assisted spin transport
begins to take place in the level ε3. Both 〈Tx〉t and 〈Ty〉t
increase around � = ε3 − μL, after going to a local minimum,
due to the fact that level ε3 is now available for spin-flip
tunneling processes.

For larger � the inequality (23) is satisfied for both ε1 and
ε3. Consequently, both 〈Tx〉t , and 〈Ty〉t increase. Finally, as �

increases further, level ε2 also becomes available for photon-
assisted spin tunneling, leading to the largest enhancement
of both in-plane STT components. As � increases further,
inequality (23) is satisfied for levels ε1, ε2, and ε3, and photon-
assisted STT components are large and decreasing. After the
level ε4 becomes available for photon-assisted spin transport,
both components 〈Tx〉t and 〈Ty〉t drop to zero. This is due
to the previously mentioned antisymmetry. Namely, in this
case, the contributions of the photon-assisted STTs for ε1 <

μL < ε2 and ε3 < μL < ε4 are equal in magnitude but have
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FIG. 10. Time-averaged z component of the spin-transfer torque
〈Tz〉t as a function of the Larmor precession frequency ωL. The plots
are obtained for two different tunneling rates � at zero temperature,
with �B = B�ez and �L = �R = �/2. All energies are given in the
units of ε0. The other parameters are set to: μL = 0.25, μR =
0, θ = 1.25,J = 0.005, and S = 100. Each step corresponds to a
spin-tunneling process involving a spin-flip.

opposite directions. Therefore, they cancel each other as μL

satisfies both these inequalities simultaneously. Conditions of
inequality (23) are relaxed for larger � due to the broadening
of the levels εi .

The z component of the time-averaged STT, 〈Tz〉t is
plotted as a function of the Larmor frequency ωL in Fig. 10.
This component does not contain contributions from photon-
assisted spin tunneling but only from tunneling under dc-bias
voltage, followed by an electron spin flip due to the interaction
with the precessing component of the molecular spin �S(t).
In turn, an STT is exerted on the molecular spin. The
STT component 〈Tz〉t is an odd function of ωL since the
change of the direction of �B gives negative ωL. Each step
in Fig. 10 denotes a new available spin-transport channel, and
an additional spin-flip process, contributing to the STT, which
takes place for μξ = εi .

VI. CONCLUSIONS

In this paper we have theoretically studied photon-assisted
spin and charge transport through a molecular magnet junction.
The junction consists of single molecular orbital in the pres-
ence of a molecular spin precessing with Larmor frequency
ωL in a constant magnetic field. The orbital is connected to

two metal leads subject to harmonically varying chemical
potentials with frequency �, treated as a perturbation. We
used the Keldysh nonequilibrium Green’s functions method to
derive charge and spin currents and the spin-transfer torque.
We employed the displacement current partitioning scheme
of Wang et al. [48] to obtain gauge-invariant expressions for
the dynamic conductance of the charge current. The dynamic
response of the system is controlled by photon-assisted
transport. In the low-ac-frequency limit this junction displays
an inductive-like or capacitive-like behavior depending on
the system parameters. When the chemical potentials are in
resonance with a molecular quasienergy level εi , the real and
imaginary components of the ac conductance both increase
around the ac frequency which coincides with the Larmor
frequency, after going to a local minimum, thus allowing to
reveal the Larmor frequency by a conductance measurement.
The photon-assisted x and y spin-current components consist
of a dc part and a part that oscillates with frequency 2ωL

for � = ωL. This opens the possibility of experimentally in-
vestigating photon-assisted spin-transfer torque exerted on the
molecular magnet, which can be detected through the presence
of nonzero time-averaged contributions. By manipulating the
phases of the harmonic potentials in the leads with respect to
the precession, and the tilt angle between the magnetic field
and the molecular spin, the control of the direction and the
magnitude of the time-averaged photon-assisted spin current
components and spin-transfer torque is achievable. Finally,
in this work we present the nonperturbative Gilbert damping
and other STT coefficients with respect to the coupling γ , in
the zero ac frequency limit. Remarkably, the Gilbert damping
vanishes in the strong-coupling limit.

In the future it might be interesting to investigate further
transport properties like the current noise or the spin-torque
noise, as well as to find ways to manipulate the magnetic
moment using, e.g., ferromagnetic leads.
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APPENDIX: EXPRESSIONS FOR SPIN-CURRENT COMPONENTS

Here we present the expressions for spin-current complex components ILx(ωL) and ILy(ωL), spin current I
ωL

Lz in the presence
of dc-bias volatge, and spin currents in the presence of ac voltage in terms of the matrix elements of the Green’s functions Ĝ0r (ε)
and Ĝ0a(ε).

The expressions for spin-current complex components introduced by Eq. (27) are given by

ILx(ωL) = −i

∫
dε

4π

{
�L�R

�
[fL(ε)−fR(ε)]

[
γG0r

11(ε+ωL)G0r
22(ε)∣∣1−γ 2G0r

11(ε+ωL)G0r
22(ε)

∣∣2 +2iγ Im
{
G0r

11(ε)
}
G0a

22(ε−ωL)+γ 3
∣∣G0r

11(ε)G0r
22(ε−ωL)

∣∣2∣∣1−γ 2G0r
11(ε)G0r

22(ε−ωL)
∣∣2

]

+
∑

ξ,ζ=L,R

�ξ�ζ

�
[fξ (ε − ωL) − fζ (ε)]

[
δζL − δξLγ 2G0a

11(ε)G0r
22(ε − ωL)

] γG0r
11(ε)G0a

22(ε − ωL)∣∣1 − γ 2G0r
11(ε)G0r

22(ε − ωL)
∣∣2

}
, (A1)

ILy(ωL) = iILx(ωL), (A2)
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while I
ωL

Lz =
∫

dε

4π

{
�L�R

�
[fL(ε) − fR(ε)]

[
2Im

{
G0r

11(ε)
}

∣∣1 − γ 2G0r
11(ε)G0r

22(ε − ωL)
∣∣2 − 2Im

{
G0r

22(ε)
}

∣∣1 − γ 2G0r
11(ε + ωL)G0r

22(ε)
∣∣2

]

+
∑

ξ,ζ=L,R

�ξ�ζ [fξ (ε − ωL) − fζ (ε)](δξL + δζL)
γ 2

∣∣G0r
11(ε)G0r

22(ε − ωL)
∣∣2∣∣1 − γ 2G0r

11(ε)G0r
22(ε − ωL)

∣∣2

}
. (A3)

The spin-current components in the presence of oscillating chemical potentials in the leads, introduced as the second term in
Eq. (10), for ξ = L can be expressed in the following way:

I�
Lj (t) =

∑
ξ=L,R

Re
{[

I
j

Lξ (�)e−i(�t+φξ ) + I
j

Lξ (−�)ei(�t+φξ )
]
e−iωLt

}
, j = x,y, (A4)

where I x
Lξ (�) = γ�L�ξ

v
ξ
ac

�

∫
dε

4π
[fξ (ε − �) − fξ (ε)]

×
{G0a

11(ε − �)G0a
22(ε − � − ωL)

{
G0r

11(ε) + i
δLξ

�ξ

[
1 − γ 2G0r

11(ε)G0r
22(ε − ωL)

]}
[
1 − γ 2G0r

11(ε)G0r
22(ε − ωL)

][
1 − γ 2G0a

11(ε − �)G0a
22(ε − � − ωL)

]
+

G0r
11(ε + ωL)G0r

22(ε)
{
G0a

22(ε − �) − i
δLξ

�ξ

[
1 − γ 2G0a

11(ε − � + ωL)G0a
22(ε − �)

]}
[
1 − γ 2G0a

11(ε − � + ωL)G0a
22(ε − �)

][
1 − γ 2G0r

11(ε + ωL)G0r
22(ε)

] }
, (A5)

while I
y

Lξ (�) = iI x
Lξ (�), (A6)

and I�
Lz(t) =

∑
ξ=L,R

∑
σ = ±1

Re

{
�L�ξ

v
ξ
ac

�

∫
dε

4π
[fξ (ε − �) − fξ (ε)]e−i(�t+φξ )

×
[σ̂zĜ

0r (ε)Ĝ0a(ε − �)]σσ

{
2 − [

1 − i
δLξ

�ξ
(� + i�)

][
1 + γ 2G0r

−σ−σ (εσ )G0a
−σ−σ (εσ − �)

]}
[
1 − γ 2G0r

σσ (ε)G0r−σ−σ (εσ )
][

1 − γ 2G0a
σσ (ε − �)G0a−σ−σ (εσ − �)

] }
. (A7)
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Magnetic molecules and nanomagnets can be used to influence the electronic transport in mesoscopic junction.
In a magnetic field, the precessional motion leads to resonances in the dc- and ac-transport properties of a
nanocontact, in which the electrons are coupled to the precession. Quantities such as the dc conductance or the ac
response provide valuable information, such as the level structure and the coupling parameters. Here, we address
the current-noise properties of such contacts. This encompasses the charge current and spin-torque shot noise,
which both show a steplike behavior as functions of bias voltage and magnetic field. The charge-current noise
shows pronounced dips around the steps, which we trace back to interference effects of electrons in quasienergy
levels coupled by the molecular spin precession. We show that some components of the noise of the spin-torque
currents are directly related to the Gilbert damping, and hence are experimentally accessible. Our results show
that the noise characteristics allow us to investigate in more detail the coherence of spin transport in contacts
containing magnetic molecules.

DOI: 10.1103/PhysRevB.97.115441

I. INTRODUCTION

Shot noise of charge current has become an active research
topic in recent decades, since it enables the investigation of
microscopic transport properties, which cannot be obtained
from the charge current or conductance [1]. It has been
demonstrated that spin-flip induced fluctuations in diffusive
conductors connected to ferromagnetic leads enhance the noise
power, approaching the Poissonian value [2,3]. Accordingly,
the Fano factor defined as F = S(0)/e|I |, which describes the
deviation of the shot noise from the average charge current,
equals 1 in this case. On the other hand, it has been shown that
shot noise in a ferromagnet–quantum-dot–ferromagnet system
with antiparallel magnetization alignments can be suppressed
due to spin flip, with F < 1/2 [4].

The quantum-interference phenomenon, which is a mani-
festation of the wave nature of electrons, has attracted a lot
of attention. The quantum-interference effects occur between
coherent electron waves in nanoscale junctions [5]. Quantum
interference in molecular junctions influences their electronic
properties [6–10]. The Fano effect [11] due to the interference
between a discrete state and the continuum has an important
role in investigation of the interference effects in nanojunc-
tions, which behave in an analogous way, and are manifested
in the conductance or noise spectra [5,12,13]. Particularly
interesting examples involve spin-flip processes, such as in the
presence of Rashba spin-orbit interaction [14,15], a rotating
magnetic field [16], or in the case of magnetotransport [17–19].

In the domain of spin transport it is interesting to inves-
tigate the noise properties, as the discrete nature of electron
spin leads to the correlations between spin-carrying particles.
The spin current is usually a nonconserved quantity that is
difficult to measure, and its shot noise depends on spin-flip
processes leading to spin-current correlations with opposite
spins [20–22]. The investigation of spin-dependent scattering,
spin accumulation [23], and attractive or repulsive interactions

in mesoscopic systems can be obtained using the shot noise of
a spin current [24], as well as measuring the spin relaxation
time [20,24]. Even in the absence of charge current, a nonzero
spin current and its noise can still emerge [22,25,26]. Several
works have studied the shot noise of a spin current using, e.g.,
the nonequilibrium Green’s function method and scattering
matrix theory [22,27–29].

It was demonstrated that magnetization noise originates
from transferred spin current noise via a fluctuating spin-
transfer torque in ferromagnetic-normal-ferromagnetic sys-
tems [30] and magnetic tunnel junctions [31]. Experimentally,
spin Hall noise measurements have been demonstrated [32],
and in a similar fashion the spin-current shot noise due to
magnon currents can be related to the nonquantized spin of
interacting magnons in ferri-, ferro-, and antiferromagnets
[33,34]. Quantum noise generated from the scatterings be-
tween the magnetization of a nanomagnet and spin-polarized
electrons has been studied theoretically as well [35,36]. The
shot noise of spin-transfer torque was studied recently using a
magnetic quantum dot connected to two noncollinear magnetic
contacts [29]. According to the definition of spin-transfer
torque [37,38], both autocorrelations and cross-correlations
of the spin-current components contribute to the spin-torque
noise.

In this article, we study theoretically the noise of charge and
spin currents and spin-transfer torque in a junction connected
to two normal metallic leads. The transport occurs via a single
electronic energy level interacting with a molecular magnet in
a constant magnetic field. The spin of the molecular magnet
precesses around the magnetic field with the Larmor frequency,
which is kept undamped, e.g., due to external driving. The
electronic level may belong to a neighboring quantum dot or it
may be an orbital of the molecular magnet itself. The electronic
level and the molecular spin are coupled via exchange interac-
tion. We derive expressions for the noise components using the
Keldysh nonequilibrium Green’s functions formalism [39–41].
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FIG. 1. Tunneling through a single molecular level with energy ε0

in the presence of a precessing molecular spin �S(t) in a constant
magnetic field �B, connected to two metallic leads with chemical po-
tentials μξ , ξ = L,R. The molecular level is coupled to the spin of the
molecule via exchange interaction with the coupling constant J . The
applied dc-bias voltage eV = μL − μR , and the tunnel rates are �ξ .

The noise of charge current is contributed by both elastic
processes driven by the bias voltage, and inelastic tunneling
processes driven by the molecular spin precession. We observe
diplike features in the shot noise due to inelastic tunneling
processes and destructive quantum interference between elec-
tron transport channels involved in the spin-flip processes. The
driving mechanism of the correlations of the spin-torque com-
ponents in the same spatial direction involves both the preces-
sion of the molecular spin and the bias voltage. Hence, they are
contributed by elastic and inelastic processes, with the change
of energy equal to one or two Larmor frequencies. The nonzero
correlations of the perpendicular spin-torque components are
driven by the molecular spin precession, with contributions
of spin-flip tunneling processes only. These components are
related to the previously obtained Gilbert damping coefficient
[42,43], which characterize the Gilbert damping term of the
spin-transfer torque [44–46] at arbitrary temperature.

The article is organized as follows. The model and theoret-
ical framework based on the Keldysh nonequilibrium Green’s
functions formalism [39–41] are given in Sec. II. Here we
derive expressions for the noise of spin and charge currents. In
Sec. III we investigate and analyze the properties of the charge-
current shot noise. In Sec. IV, we derive and analyze the noise
of spin-transfer torque. The conclusions are given in Sec. V.

II. MODEL AND THEORETICAL FRAMEWORK

The junction under consideration consists of a noninteract-
ing single-level quantum dot in the presence of a precessing
molecular spin in a magnetic field along the z axis, �B = B�ez,
coupled to two noninteracting leads (Fig. 1).

The junction is described by the Hamiltonian

Ĥ (t) =
∑

ξ∈{L,R}
Ĥξ + ĤT + ĤD(t) + ĤS, (1)

where

Ĥξ =
∑
k,σ

εkξ ĉ
†
kσξ ĉkσξ (2)

is the Hamiltonian of contact ξ = L,R. The spin- (up or down)
state of the electrons is denoted by the subscript σ =↑ , ↓=
1,2 = ±1. The tunnel coupling between the quantum dot and
the leads reads

ĤT =
∑
k,σ,ξ

[Vkξ ĉ
†
kσξ d̂σ + V ∗

kξ d̂
†
σ ĉkσξ ], (3)

with spin-independent matrix element Vkξ . The creation (anni-
hilation) operators of the electrons in the leads and the quantum
dot are given by ĉ

†
kσξ (ĉkσξ ) and d̂†

σ (d̂σ ). The Hamiltonian of
the electronic level equals

ĤD(t) =
∑

σ

ε0d̂
†
σ d̂σ + gμB �̂s �B + J �̂s �S(t). (4)

The first term in Eq. (4) is the Hamiltonian of the non-
interacting single-level quantum dot with energy ε0. The
second term describes the electronic spin in the dot, �̂s =
(h̄/2)

∑
σσ ′(�σ )σσ ′ d̂†

σ d̂σ ′ , in the presence of a constant magnetic
field �B, and the third term represents the exchange interaction
between the electronic spin and the molecular spin �S(t). The
vector of the Pauli matrices is given by �̂σ = (σ̂x,σ̂y,σ̂z)T . The
g-factor of the electron and the Bohr magneton are g and
μB , whereas J is the exchange coupling constant between the
electronic and molecular spins.

The last term of Eq. (1) can be written as

ĤS = gμB
�S �B, (5)

and it represents the energy of the molecular spin �S in the
magnetic field �B. We assume that | �S| � h̄, and neglecting
quantum fluctuations we treat �S as a classical variable. The
magnetic field �B generates a torque on the spin �S that causes
the spin to precess around the field axis with Larmor frequency
ωL = gμBB/h̄. The dynamics of the molecular spin is kept
constant, which can be realized, e.g., by external rf fields [47]
to cancel the loss of magnetic energy due to the interaction
with the itinerant electrons. Thus, the precessing spin �S(t)
pumps spin currents into the leads, but its dynamics remains
unaffected by the spin currents, i.e., the spin-transfer torque
exerted on the molecular spin is compensated by the above-
mentioned external means. The undamped precessional motion
of the molecular spin, supported by the external sources, is
then given by �S(t) = S⊥ cos(ωLt)�ex + S⊥ sin(ωLt)�ey + Sz�ez,
with θ the tilt angle between �B and �S, and S⊥ = S sin(θ ) the
magnitude of the instantaneous projection of �S(t) onto the xy

plane. The component of the molecular spin along the field
axis equals Sz = S cos(θ ).

The charge- and spin-current operators of the lead ξ are
given by the Heisenberg equation [39,40]

Îξν(t) = qν

dN̂ξν

dt
= qν

i

h̄
[Ĥ ,N̂ξν], (6)

where [,] denotes the commutator, while N̂Lν =∑
k,σ,σ ′ ĉ

†
kσL(σν)σσ ′ ĉkσ ′L is the charge (ν = 0 and q0 = −e)

and spin (ν = x,y,z and qν 
=0 = h̄/2) occupation number
operator of the contact ξ . Here σ̂0 = 1̂ is the identity matrix.
Taking into account that only the tunneling Hamiltonian
ĤT generates a nonzero commutator in Eq. (6), the current
operator Îξν(t) can be expressed as

Îξν(t) = −qν

i

h̄

∑
σ,σ ′

(σν)σσ ′ Îξ,σσ ′ (t), (7)

where the operator component Îξ,σσ ′(t) equals

Îξ,σσ ′(t) =
∑

k

[Vkξ ĉ
†
kσξ (t)d̂σ ′(t) − V ∗

kξ d̂
†
σ (t)ĉkσ ′ξ (t)]. (8)
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The nonsymmetrized noise of charge and spin current is
defined as the correlation between fluctuations of currents Iξν

and Iζμ [1,40],

S
νμ
ξζ (t,t ′) = 〈δÎξν(t)δÎζμ(t ′)〉, (9)

with ν = μ = 0 for the charge-current noise. The fluctuation
operator of the charge and spin current in lead ξ is given by

δÎξν(t) = Îξν(t) − 〈Îξν(t)〉. (10)

Using Eqs. (7) and (10), the noise becomes

S
νμ
ξζ (t,t ′) = −qνqμ

h̄2

∑
σσ ′

∑
λη

(σν)σσ ′(σμ)ληS
σσ ′,λη

ξζ (t,t ′), (11)

where S
σσ ′,λη

ξζ (t,t ′) = 〈δÎξ,σσ ′ (t)δÎζ,λη(t ′)〉. The formal expres-
sion for S

νμ
ξζ (t,t ′) is given by Eq. (A10) in the Appendix, where

it is obtained using Eq. (11) and Eqs. (A1)–(A9).
Using Fourier transformations of the central-region Green’s

functions given by Eqs. (A6)–(A8) and self-energies in the
wide-band limit, the correlations given by Eq. (A9) can be
further simplified. Some correlation functions are not just
functions of the time difference t − t ′. Thus, as in Ref. [48],
we used a Wigner representation assuming that in experiments
fluctuations are measured on time scales much larger than the
driving period T = 2π/ωL, which is the period of one molec-
ular spin precession. The Wigner coordinates are given by
T ′ = (t + t ′)/2 and τ = t − t ′, while the correlation functions
are defined as

S
σσ ′,λη

ξζ (τ ) = 1

T

∫ T

0
dt〈δÎξ,σσ ′ (t + τ )δÎζ,λη(t)〉. (12)

The Fourier transform of S
σσ ′,λη

ξζ (τ ) is given by

S
σσ ′,λη

ξζ (�,�′) = 2πδ(� − �′)Sσσ ′,λη

ξζ (�), (13)

where

S
σσ ′,λη

ξζ (�) =
∫

dτ ei�τS
σσ ′,λη

ξζ (τ ). (14)

For the correlations that depend only on t − t ′, the Wigner
representation is identical to the standard representation.

The symmetrized noise of charge and spin currents reads
[1,40]

S
νμ

ξζS(t,t ′) = 1
2 〈{δÎξν(t),δÎζμ(t ′)}〉, (15)

where {,} denotes the anticommutator. According to Eqs. (11),
(12), (14), and (15), in the Wigner representation the nonsym-
metrized noise spectrum reads

S
νμ
ξζ (�) =

∫
dτ ei�τS

νμ
ξζ (τ )

=
∫

dτ ei�τ 1

T

∫ T

0
dt〈δÎξν(t + τ )δÎζμ(t)〉

= −qνqμ

h̄2

∑
σσ ′

∑
λη

(σν)σσ ′(σμ)ληS
σσ ′,λη

ξζ (�), (16)

while the symmetrized noise spectrum equals

S
νμ

ξζS(�) = 1

2

[
S

νμ
ξζ (�) + S

μν
ζξ (−�)

]
= −qνqμ

2h̄2

∑
σσ ′

∑
λη

(σν)σσ ′(σμ)ληS
σσ ′,λη

ξζS (�), (17)

where S
σσ ′,λη

ξζS (�) = [Sσσ ′,λη

ξζ (�) + S
λη,σσ ′
ζ ξ (−�)]/2. The ex-

perimentally most easily accessible quantity is the zero-
frequency noise power.

III. SHOT NOISE OF CHARGE CURRENT

For the charge-current noise, it is convenient to drop the
superscripts ν = μ = 0. The charge-current noise spectrum
can be obtained as [24]

Sξζ (�) = − e2

h̄2

[
S

11,11
ξζ + S

11,22
ξζ + S

22,11
ξζ + S

22,22
ξζ

]
(�). (18)

In this section, we analyze the zero-frequency noise power of
the charge current Sξζ = Sξζ (0) at zero temperature. Taking
into account that thermal noise disappears at zero temperature,
the only contribution to the charge-current noise comes from
the shot noise. The tunnel couplings between the molecular or-
bital and the leads, �ξ (ε) = 2π

∑
k |Vkξ |2δ(ε − εkξ ), are con-

sidered symmetric and in the wide-band limit�L = �R = �/2.
The average charge current from lead ξ can be expressed as

Iξ = e�ξ�ζ

h̄

∫
dε

2π
[fξ (ε) − fζ (ε)]

×
∑
σσ ′

σ 
= σ ′

|G0r
σσ (ε)|2[1 + γ 2|G0r

σ ′σ ′(ε + σ ′ωL)|2]∣∣1 − γ 2G0r
σσ (ε)G0r

σ ′σ ′(ε + σ ′ωL)
∣∣2 , (19)

where ξ 
= ζ , while G0r
σσ (ε) are matrix elements of Ĝ0r (ε) =

[ε − ε0 + i
∑

ξ �ξ/2 − σ̂z(gμBB + JSz)/2]−1 [49,50]. In the
above expression, fξ (ε) = [e(ε−μξ )/kBT + 1]−1 is the Fermi-
Dirac distribution of the electrons in lead ξ , with kB the
Boltzmann constant and T the temperature. The conservation
of the charge current implies that SLL(0) + SLR(0) = 0. Thus,
it is sufficient to study only one correlation function.

Tuning the parameters in the system such as the bias voltage
eV = μL − μR (where μL and μR are the chemical potentials
of the leads), �B, and the tilt angle θ , the shot noise can
be controlled and minimized. The shot noise in the small
precession frequency limit ωL  kBT is in agreement with
Ref. [22] for eV = 0.

In Fig. 2(a) we present the average charge current as a
staircase function of bias voltage, where the bias is varied
in four different ways. In the presence of the external mag-
netic field and the precessing molecular spin, the initially
degenerate electronic level with energy ε0 results in four
nondegenerate transport channels, which has an important
influence on the noise. Each step corresponds to a new available
transport channel. The transport channels are located at the
Floquet quasienergies [43] ε1 = ε0 − (ωL/2) − (JS/2), ε2 =
ε0 + (ωL/2) − (JS/2), ε3 = ε0 − (ωL/2) + (JS/2), and ε4 =
ε0 + (ωL/2) + (JS/2), which are calculated using the Floquet
theorem [16,51–54].

The correlated current fluctuations give nonzero noise
power, which is presented in Fig. 2(b). The noise power shows
the molecular quasienergy spectrum, and each step or diplike
feature in the noise denotes the energy of a new available
transport channel. The noise has two steps and two diplike
features that correspond to these resonances. Charge current
and noise power are saturated for large bias voltages. If the
Fermi levels of the leads lie below the resonances, the shot
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FIG. 2. (a) Charge current IL and (b) autocorrelation shot noise SLL as functions of bias-voltage eV . All plots are obtained at zero
temperature, with �B = B�ez. The other parameters are �L = �R = �/2, � = 0.05 ε0, ωL = 0.5 ε0, J = 0.01 ε0, S = 100, and θ = π/2. The
molecular quasienergy levels are located at ε1 = 0.25 ε0, ε2 = 0.75 ε0, ε3 = 1.25 ε0, and ε4 = 1.75 ε0.

noise approaches zero for eV → 0 [red and dashed pink lines
in Fig. 2(b)]. This is due to the fact that a small number of
electron states can participate in transport inside this small bias
window and both current and noise are close to 0. If the bias
voltage is varied with respect to the resonant energy ε1 such
that μL,R = ε1 ± eV/2 [dot-dashed blue line in Fig. 2(b)], or
with respect to ε0 such that μL,R = ε0 ± eV/2 [green line in
Fig. 2(b)], we observe a valley at zero bias eV = 0, which
corresponds to μL = μR = ε1 in the first case and nonzero
noise in the second case. For eV = 0, the charge current is zero,
but the precession-assisted inelastic processes involving the
absorption of an energy quantum ωL give rise to the noise here.

At small bias voltage, the Fano factor F = SLL/e|IL| is
inversely proportional to eV and hence diverges as eV →
0, indicating that the noise is super-Poissonian, as depicted
in Fig. 3. Due to absorption (emission) processes [16] and
quantum-interference effects, the Fano factor is a deformed
steplike function, where each step corresponds to a resonance.
As the bias voltage is increased, the noise is enhanced since the
number of correlated electron pairs increases with the increase
of the Fermi level. For larger bias, due to the absorption and
emission of an energy quantum ωL, electrons can jump to a
level with higher energy or lower level during the transport,

FIG. 3. Fano factor F as a function of bias voltage eV . All plots
are obtained at zero temperature, with �B = B�ez. The other parameters
are set to � = 0.05 ε0, �L = �R = �/2, ωL = 0.5 ε0, J = 0.01 ε0,
S = 100, and θ = π/2. The positions of the molecular quasienergy
levels are ε1 = 0.25 ε0, ε2 = 0.75 ε0, ε3 = 1.25 ε0, and ε4 = 1.75 ε0.

and the Fano factor F < 1 indicates the sub-Poissonian noise.
Around the resonances μL,R = εi , i = 1,2,3,4, the probability
of transmission is very high, resulting in a small Fano factor.
Elastic tunneling contributes to the sub-Poissonian Fano factor
around the resonances and competes with the spin-flip events
caused by the molecular spin precession. However, if the
resonant quasienergy levels are much higher than the Fermi
energy of the leads, the probability of transmission is very low
and the Fano factor is close to 1, as shown in Fig. 3 (red line).
This means that the stochastic processes are uncorrelated. If
the two levels connected with the inelastic photon emission
(absorption) tunnel processes, or all four levels, lie between
the Fermi levels of the leads, the Fano factor approaches
1/2, which is in agreement with Ref. [55]. For eV = ε3 [see
Fig. 3 (red line)], a spin-down electron can tunnel elastically
or inelastically in a spin-flip process, leading to the increase
of the Fano factor. Spin-flip processes increase the electron
traveling time, leading to sub-Poissonian noise. Similarly, the
Pauli exclusion principle is known to lead to sub-Poissonian
noise, since it prevents the double occupancy of a level.

The precessing molecular spin induces quantum interfer-
ence between the transport channels connected with spin-flip
events and the change of energy by one energy quantum ωL,
i.e., between levels with energies ε1 and ε2 = ε1 + ωL, or
ε3 and ε4 = ε3 + ωL. The destructive quantum-interference
effects manifest themselves in the form of diplike features in
Fig. 2(b). When one or both pairs of the levels connected with
spin-flip events enter the bias-voltage window, then an electron
from the left lead can tunnel through both levels via elastic
or inelastic spin-flip processes. Different tunneling pathways
ending in the final state with the same energy destructively
interfere, as in the Fano effect [11]. Namely, the state with
lower energy ε1 (or ε3) mimics the discrete state in the Fano
effect. An electron tunnels into the state ε1 (or ε3), undergoes
a spin flip, and absorbs an energy quantum ωL. The other state
with energy ε2 (or ε4) is an analog of the continuum in the
Fano effect, and the electron tunnels elastically through this
level. These two tunneling processes (one elastic and the other
inelastic) interfere, leading to a diplike feature in the noise
power. If we vary, for instance, the bias voltage as eV = μL,
where μR = 0 [Fig. 2(b), red line], we observe diplike features
for eV = ε2 and eV = ε4.
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FIG. 4. Shot noise of charge current SLL as a function of the
Larmor frequency ωL for different tilt angles θ , with �B = B�ez, at zero
temperature. The other parameters are � = 0.05 ε0, �L = �R = �/2,
μL = 0.75 ε0, μR = 0.25 ε0, J = 0.01 ε0, and S = 100. For ωL =
μL − μR , we observe a dip due to destructive quantum interference.

The destructive interference effect is also presented in
Fig. 4, where noise power SLL is depicted as a function of ωL.
Here, we observe a dip due to the quantum-interference effect
around ωL = 0.5 ε0, which corresponds to μL = ε2 and μR =
ε1. The other two steps in Fig. 4 occur when the Fermi energy of
the right or left lead is in resonance with one of the quasienergy
levels. The magnitude of the precessing component of the
molecular spin, which induces spin-flip processes between
molecular quasienergy levels, equals JS sin(θ )/2. Therefore,
the dip increases with the increase of the tilt angle θ , and it is
maximal and distinct for θ = π/2.

Finally, in Fig. 5 we plotted the noise power of charge
current SLL as a function of μ = μL = μR at zero temperature.
It shows a nonmonotonic dependence on the tunneling rates �.
For small � (Fig. 5, red line) the noise is increased if μ is posi-
tioned between levels connected with spin-flip events, and it is
contributed only by absorption processes of an energy quantum
ωL as we vary the chemical potentials. For larger � (Fig. 5,
green line), the charge-current noise is increased since levels
broaden and overlap, and more electrons can tunnel. With a fur-
ther increase of � (Fig. 5, dotted blue line) the noise starts to de-

FIG. 5. Shot noise of charge current SLL as a function of the
chemical potential of the leads μ = μL = μR , with �B = B�ez, for
three different couplings �, where �L = �R = �/2, at zero tempera-
ture. The other parameters are ωL = 0.5 ε0, J = 0.01 ε0, S = 100,
and θ = π/2. The molecular quasienergy levels are positioned at
ε1 = 0.25 ε0, ε2 = 0.75 ε0, ε3 = 1.25 ε0, and ε4 = 1.75 ε0.

crease, and it is finally suppressed for � � ωL since a current-
carrying electron sees the molecular spin as nearly static in this
case, leading to a reduction of the inelastic spin-flip processes.

IV. SHOT NOISE OF SPIN CURRENT AND
SPIN-TRANSFER TORQUE

In this section, we present the spin-current noise spectrum
components and relations between them. Later we introduce
the noise of spin-transfer torque, and we investigate the
zero-frequency spin-torque shot noise at zero temperature.
The components of the nonsymmetrized spin-current noise
spectrum read

Sxx
ξζ (�) = − 1

4

[
S

12,21
ξζ + S

21,12
ξζ

]
(�), (20)

S
xy

ξζ (�) = − i
4

[
S

12,21
ξζ − S

21,12
ξζ

]
(�), (21)

Szz
ξζ (�) = − 1

4

[
S

11,11
ξζ − S

11,22
ξζ − S

22,11
ξζ + S

22,22
ξζ

]
(�), (22)

where Eq. (22) denotes the noise of the z component of the
spin current [22,24]. Since the polarization of the spin current
precesses in the xy plane, the remaining components of the
spin-current noise spectrum satisfy the following relations:

S
yy

ξζ (�) = Sxx
ξζ (�), (23)

S
yx

ξζ (�) = −S
xy

ξζ (�), (24)

Sxz
ξζ (�) = Szx

ξζ (�) = S
yz

ξζ (�) = S
zy

ξζ (�) = 0. (25)

Taking into account that the spin current is not a conserved
quantity, it is important to notice that the complete information
from the noise spectrum can be obtained by studying both
the autocorrelation noise spectrum S

jk

ξξ (�) and the cross-

correlation noise spectrum S
jk

ξζ (�), ζ 
= ξ . Therefore, it is
more convenient to investigate the spin-torque noise spectrum,
where both autocorrelation and cross-correlation noise com-
ponents of spin currents are included. The spin-transfer torque
operator can be defined as

T̂j = −(ÎLj + ÎRj ), j = x,y,z, (26)

while its fluctuation reads

δT̂j (t) = −[δÎLj (t) + δÎRj (t)]. (27)

Accordingly, the nonsymmetrized and symmetrized spin-
torque noise can be obtained using the spin-current noise
components as

S
jk

T (t,t ′) = 〈δT̂j (t)δT̂k(t ′)〉
=

∑
ξζ

S
jk

ξζ (t,t ′), j,k = x,y,z; (28)

S
jk

T S(t,t ′) = 1
2

[
S

jk

T (t,t ′) + S
kj

T (t ′,t)
]
, (29)

with the corresponding noise spectrums given by

S
jk

T (�) =
∑
ξζ

S
jk

ξζ (�), (30)

S
jk

T S(�) =
∑
ξζ

S
jk

ξζS(�). (31)
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FIG. 6. Spin-torque shot-noise components S
jk

T as functions of
the bias voltage eV for μR = 0, μL = eV . All plots are obtained
at zero temperature, with �B = B�ez, and �L = �R = �/2, for � =
0.05 ε0. The other parameters are set to ωL = 0.5 ε0, J = 0.01 ε0,
and S = 100. The molecular quasienergy levels lie at ε1 = 0.25 ε0,
ε2 = 0.75 ε0, ε3 = 1.25 ε0, and ε4 = 1.75 ε0.

According to Eqs. (23), (24), and (30), Sxx
T (�) = S

yy

T (�) and
S

yx

T (�) = −S
xy

T (�).
In the remainder of the section, we investigate the zero-

frequency spin-torque shot noise S
jk

T = S
jk

T (0) at zero tem-
perature, where Sxx

T (0) = Sxx
T S(0), S

yy

T (0) = S
yy

T S(0), Szz
T (0) =

Szz
T S(0), while S

xy

T (0) is a complex imaginary function, and
S

xy

T S(0) = 0 according to Eqs. (24) and (31). Since Sxx
T (0) =

S
yy

T (0), all results and discussions related to Sxx
T (0) also refer

to S
yy

T (0).
Spin currents Iξx and Iξy are periodic functions of time,

with period T = 2π/ωL, while Iξz is time-independent. It has
already been demonstrated that spin-flip processes contribute
to the noise of spin current [22]. The presence of the precessing
molecular spin affects the spin-current noise. Since the number
of particles with different spins changes due to spin-flip
processes, additional spin-current fluctuations are generated.
Currents with the same and with different spin orientations are
correlated during transport. Due to the precessional motion
of the molecular spin, inelastic spin currents with spin-flip
events induce noise of spin currents and spin-torque noise,
which can be nonzero even for eV = 0. The noise component
S

xy

T is induced by the molecular spin precession and vanishes
for a static molecular spin. The noises of spin currents and
spin-transfer torque are driven by the bias voltage and by
the molecular spin precession. Hence, in the case when both
the molecular spin is static (absence of inelastic spin-flip
processes) and eV = 0 (no contribution of elastic tunneling
processes), they are all equal to zero. The noise of spin-transfer
torque can be modified by adjusting system parameters such
as the bias voltage eV , the magnetic field �B, or the tilt angle θ .

In Fig. 6 we present the zero-frequency spin-torque noise
components Sxx

T = S
yy

T , Im{Sxy

T }, and Szz
T as functions of the

bias voltage eV = μL − μR for μR = 0 and different tilt
angles θ between �B and �S at zero temperature. They give
information on available transport channels and inelastic spin-
flip processes. The magnitude of the torque noise at resonance
energies εi , i = 1,2,3,4, is determined by θ . In cases θ = 0
and θ = π , there are only two transport channels of opposite
spins determined by the resulting Zeeman field B ± JS/gμB .
The component Sxx

T shows two steps with equal heights

FIG. 7. Spin-torque shot-noise components S
jk

T as functions of
the Larmor frequency ωL for θ = π/2, μR = 0, and μL = 1.5 ε0.
All plots are obtained for �B = B�ez at zero temperature. The other
parameters are �L = �R = �/2, � = 0.05 ε0, J = 0.01 ε0, and S =
100.

located at these resonances, where the only contribution to
the spin-torque noise comes from elastic tunneling events
(dotted purple and red lines in Fig. 6). For θ = π/2, the
elastic tunneling contributes with four steps with equal heights
located at resonances εi , but due to the contributions of the
inelastic precession-assisted processes between quasienergy
levels ε1(ε3) and ε2(ε4), the heights of the steps in Sxx

T are
not equal anymore (dot-dashed pink line in Fig. 6). Here,
we observed that the contribution of the inelastic tunneling
processes to Sxx

T , involving absorption of an energy quantum
ωL and a spin flip, shows steps at spin-down quasienergy
levels ε1 and ε3, while it is constant between and after the
bias has passed these levels. The component Szz

T shows similar
behavior (green line in Fig. 6). As in the case of the inelastic
tunneling involving the absorption of one energy quantum
ωL, in Sxx

T = S
yy

T we observed inelastic spin-flip processes
involving the absorption of two energy quanta 2ωL in the form
of steps at spin-down levels ε1, ε3, ε2 − 2ωL, and ε4 − 2ωL,
which have a negligible contribution compared to the other
terms. These processes are a result of correlations of two
oscillating spin-currents. For large bias voltage, the spin-torque
noise components Sxx

T and Szz
T saturate.

The behavior of the component Im{Sxy

T } is completely
different in nature. It is contributed only by one energy quantum
ωL absorption (emission) spin-flip process. Interestingly, we
obtained the following relation between the Gilbert damping
parameter α [42,43] and Im{Sxy

T } at arbitrary temperature:

Im
{
S

xy

T

} = ωLS sin2(θ )

2
α. (32)

Hence, the component Im{Sxy

T } is increased for Fermi levels
of the leads positioned in the regions where inelastic tunneling
processes occur (blue line in Fig. 6).

The spin-torque noise is influenced by the magnetic field
�B since it determines the spin-up and spin-down molecular
quasienergy levels. The dependence of Sxx

T , Im{Sxy

T }, and Szz
T

on the Larmor frequency ωL is depicted in Fig. 7. The steps,
dips, or peaks in the plots are located at resonant tunneling
frequencies ωL = ±|2μL,R − 2ε0 ± JS|. For ωL = 0 there
are only two transport channels, one at energy ε0 + JS/2,
which is equal to the Fermi energy of the left lead, and the other
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FIG. 8. Spin-torque shot-noise components as functions of the
tilt angle θ for μL = ε3, μR = 0. All plots are obtained at zero
temperature, with �B = B�ez, � = 0.05 ε0, and �L = �R = �/2. The
other parameters are ωL = 0.5 ε0, J = 0.01 ε0, and S = 100.

at ε0 − JS/2 located between μL and μR . The contributions of
the elastic spin transport processes through these levels result
in dips in the components Sxx

T and Szz
T , while Im{Sxy

T } = 0.
For ω = ε0 corresponding to μR = ε1 and μR = ε4 − 2ωL,
both the elastic and spin-flip tunneling events involving the
absorption of energy of one quantum ωL contribute with a dip,
while the spin-flip processes involving the absorption of an
energy equal to 2ωL contribute with a peak to the component
Sxx

T . For ωL = 2 ε0 and ωL = 3 ε0 corresponding to μL = ε2

and μR = ε3, both elastic and spin-flip processes with the
absorption of an energy equal to ωL contribute with a step,
while the inelastic processes involving the absorption of an
energy 2ωL give negligible contribution to Sxx

T . The component
Szz

T shows dips at these two points, since here the dominant
contribution comes from inelastic tunneling spin-flip events.
The component Szz

T is an even function of ωL, while Im{Sxy

T }
is an odd function of ωL. The spin-torque noise Sxx

T is an even
function of ωL for θ = π/2.

The spin-torque noise components as functions of θ for
μL = ε3 and μR = 0 at zero temperature are shown in Fig. 8.
The magnitudes and the appearance of the spin-torque noise
components at resonance energies εi can be controlled by θ ,
since it influences the polarization of the spin current. Here we
see that both Szz

T and Im{Sxy

T } are zero for θ = 0 and θ = π , as
the molecular spin is static and its magnitude is constant along
the z direction in both cases. These torque-noise components
take their maximum values for θ = π/2, where both elastic and
inelastic tunneling contributions are maximal. The component
Sxx

T takes its minimum value for θ = 0 and its maximum

value for θ = π , with only elastic tunneling contributions in
both cases. For θ = π/2, the inelastic tunneling events make
a maximal contribution while energy-conserving processes
make a minimal contribution to Sxx

T .

V. CONCLUSIONS

In this article, we studied theoretically the noise of charge
and spin transport through a small junction, consisting of a
single molecular orbital in the presence of a molecular spin
precessing with Larmor frequency ωL in a constant magnetic
field. The orbital is connected to two Fermi leads. We used
the Keldysh nonequilibrium Green’s function method to
derive the noise components of charge and spin currents and
spin-transfer torque.

Then, we analyzed the shot noise of charge current and
observed characteristics that differ from the ones in the current.
In the noise power, we observed diplike features that we
attribute to inelastic processes, due to the molecular spin
precession, leading to the quantum-interference effect between
correlated transport channels.

Since the inelastic tunneling processes lead to a spin-
transfer torque acting on the molecular spin, we have also
investigated the spin-torque noise components contributed by
these processes, involving the change of energy by an energy
quantum ωL. The spin-torque noise components are driven by
both the bias voltage and the molecular spin precession. The
in-plane noise components Sxx

T and S
yy

T are also contributed by
the processes involving the absorption of an energy equal to
2ωL. We obtained the relation between Im{Sxy

T } and the Gilbert
damping coefficient α at arbitrary temperature.

Taking into account that the noise of charge and spin trans-
port can be controlled by parameters such as the bias voltage
and external magnetic field, our results might be useful in
molecular electronics and spintronics. The experimental obser-
vation of the predicted noise properties might be a challenging
task due to complicated tunneling processes through molecular
magnets. Finding a way to control the spin states of single-
molecule magnets in tunnel junctions might be a future task.
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APPENDIX: FORMAL EXPRESSION FOR THE NONSYMMETRIZED NOISE

Here, we present the derivation of the formal expression for the nonsymmetrized noise S
νμ
ξζ (t,t ′). The correlation functions

S
σσ ′,λη

ξζ (t,t ′), introduced in Eq. (11), can be expressed by means of Wick’s theorem [56] as

S
σσ ′,λη

ξζ (t,t ′) =
∑
kk′

[VkξVk′ζG
>
σ ′,k′λζ (t,t ′)G<

η,kσξ (t ′,t) − VkξV
∗
k′ζG

>
σ ′λ(t,t ′)G<

k′ηζ,kσξ (t ′,t)

− V ∗
kξVk′ζG

>
kσ ′ξ,k′λζ (t,t ′)G<

ησ (t ′,t) + V ∗
kξV

∗
k′ζG

>
kσ ′ξ,λ(t,t ′)G<

k′ηζ,σ (t ′,t)], (A1)
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with the mixed Green’s functions defined, using units in which h̄ = e = 1, as

G<
η,kσξ (t,t ′) = i〈ĉ†kσξ (t ′)d̂η(t)〉, (A2)

G>
σ ′,k′λζ (t,t ′) = −i〈d̂σ ′ (t)ĉ†k′λζ (t ′)〉, (A3)

while Green’s functions G<
kσξ,η(t,t ′) = −[G<

η,kσξ (t ′,t)]∗ and G>
k′λζ,σ ′ (t,t ′) = −[G>

σ ′,k′λζ (t ′,t)]∗. The Green’s functions of the leads
and the central region are defined as

G<
kσξ,k′σ ′ζ (t,t ′) = i〈ĉ†k′σ ′ζ (t ′)ĉkσξ (t)〉, (A4)

G>
kσξ,k′σ ′ζ (t,t ′) = −i〈ĉkσξ (t)ĉ†k′σ ′ζ (t ′)〉, (A5)

G<
σσ ′(t,t ′) = i〈d̂†

σ ′ (t ′)d̂σ (t)〉, (A6)

G>
σσ ′(t,t ′) = −i〈d̂σ (t)d̂†

σ ′(t ′)〉, (A7)

G
r,a
σσ ′(t,t ′) = ∓iθ (±t ∓ t ′)〈{d̂σ (t),d̂†

σ ′(t ′)}〉. (A8)

Since the self-energies originating from the coupling between the electronic level and the lead ξ are diagonal in the electron spin
space, their entries can be written as �

<,>,r,a
ξ (t,t ′) = ∑

k Vkξg
<,>,r,a
kξ (t,t ′)V ∗

kξ , where g<,>,r,a(t,t ′) are the Green’s functions of
the free electrons in lead ξ . Applying Langreth analytical continuation rules [57], Eq. (A1) transforms into

S
σσ ′,λη

ξζ (t,t ′) =
∫

dt1

∫
dt2

{[
Gr

σ ′λ(t,t1)�>
ζ (t1,t

′) + G>
σ ′λ(t,t1)�a

ζ (t1,t
′)
][

Gr
ησ (t ′,t2)�<

ξ (t2,t) + G<
ησ (t ′,t2)�a

ξ (t2,t)
]

+ [
�>

ξ (t,t1)Ga
σ ′λ(t1,t

′) + �r
ξ (t,t1)G>

σ ′λ(t1,t
′)
][

�<
ζ (t ′,t2)Ga

ησ (t2,t) + �r
ζ (t ′,t2)G<

ησ (t2,t)
]

− G>
σ ′λ(t,t ′)

[
�r

ζ (t ′,t1)Gr
ησ (t1,t2)�<

ξ (t2,t) + �<
ζ (t ′,t1)Ga

ησ (t1,t2)�a
ξ (t2,t)

+ �r
ζ (t ′,t1)G<

ησ (t1,t2)�a
ξ (t2,t)

] − [
�r

ξ (t,t1)Gr
σ ′λ(t1,t2)�>

ζ (t2,t
′)

+ �>
ξ (t,t1)Ga

σ ′λ(t1,t2)�a
ζ (t2,t

′) + �r
ξ (t,t1)G>

σ ′λ(t1,t2)�a
ζ (t2,t

′)
]
G<

ησ (t ′,t)
}

− δξζ

[
δησG>

σ ′λ(t,t ′)�<
ξ (t ′,t) + δσ ′λ�

>
ξ (t,t ′)G<

ησ (t ′,t)
]
. (A9)

Finally, using Eqs. (11) and (A9), the obtained formal expression for the nonsymmetrized noise of charge current [40,58] and
spin currents in standard coordinates t and t ′ can be written as

S
νμ
ξζ (t,t ′) = − qνqμ

h̄2 Tr

{ ∫
dt1

∫
dt2

{
σ̂ν

[
Ĝr (t,t1)�̂>

ζ (t1,t
′) + Ĝ>(t,t1)�̂a

ζ (t1,t
′)
]
σ̂μ

[
Ĝr (t ′,t2)�̂<

ξ (t2,t) + Ĝ<(t ′,t2)�̂a
ξ (t2,t)

]
+ σ̂ν

[
�̂>

ξ (t,t1)Ĝa(t1,t
′) + �̂r

ξ (t,t1)Ĝ>(t1,t
′)
]
σ̂μ

[
�̂<

ζ (t ′,t2)Ĝa(t2,t) + �̂r
ζ (t ′,t2)Ĝ<(t2,t)

]
− σ̂νĜ

>(t,t ′)σ̂μ

[
�̂r

ζ (t ′,t1)Ĝr (t1,t2)�̂<
ξ (t2,t) + �̂<

ζ (t ′,t1)Ĝa(t1,t2)�̂a
ξ (t2,t) + �̂r

ζ (t ′,t1)Ĝ<(t1,t2)�̂a
ξ (t2,t)

]
− σ̂ν

[
�̂r

ξ (t,t1)Ĝr (t1,t2)�̂>
ζ (t2,t

′) + �̂>
ξ (t,t1)Ĝa(t1,t2)�̂a

ζ (t2,t
′) + �̂r

ξ (t,t1)Ĝ>(t1,t2)�̂a
ζ (t2,t

′)
]
σ̂μĜ<(t ′,t)

}
− δξζ σ̂ν

[
Ĝ>(t,t ′)σ̂μ�̂<

ξ (t ′,t) + �̂>
ξ (t,t ′)σ̂μĜ<(t ′,t)

]}
, (A10)

where Tr denotes the trace in the electronic spin space.
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“It is strange that we need just a little to be happy, and it is even

more strange how often we miss just that little.”

Ivo Andrić





Abstract

In this thesis we theoretically study time-dependent electronic and spin trans-
port through a molecular orbital connected to two Fermi leads, and coupled to a
molecular magnet via exchange interaction. The molecular spin is considered as a
classical variable and is assumed to precess around an external magnetic field with
Larmor frequency. We derive expressions for charge and spin currents using the
Keldysh nonequilibrium Green’s functions formalism. The coupling between the
electronic spins and the magnetization dynamics of the molecule leads to inelastic
tunneling processes, which contribute to the spin currents. The inelastic spin cur-
rents exert a spin-transfer torque on the molecular spin, which is compensated by
external means. This back-action includes a contribution to the Gilbert damping
and a change of the precession frequency. The Gilbert damping coefficient can be
controlled by the bias and gate voltages, or via the external magnetic field, and
has a nonmonotonic dependence on the broadening of the molecular level.

Next, we study the ac-charge and -spin transport through the molecular orbital,
where we assume that the source and drain contacts have time-dependent electro-
chemical potentials. By means of the Keldysh nonequilibrium Green’s functions
method we calculate the spin and charge currents in linear order with respect to the
time-dependent potentials. Oscillating electrochemical potentials allow to detect
the Larmor frequency by a measurement of the conductance if the ac-frequency
matches the Larmor frequency. In the low ac-frequency regime the junction be-
haves as an equivalent classical circuit, which can be tuned from capacitive-like
to inductive-like response. Furthermore, we show that the setup can be used to
generate dc-spin currents, which are controlled by the molecular magnetization di-
rection and the relative phases between the Larmor precession and the ac-voltage.

Finally, we study the nonequilibrium noise of charge and spin transport through
the junction, in the presence of dc-bias voltage. Using the Keldysh Green’s func-
tions method we obtain the noise components of charge and spin currents and
spin-transfer torque. Then we analyze the shot noise of charge current and ob-
serve dip-like features due to inelastic tunneling processes involving the change of
energy by one Larmor frequency. These processes are driven by the molecular spin
precession and lead to a quantum interference effect between correlated currents,
with electron waves passing through the levels connected with inelastic processes.
The spin-torque noise components are driven by both the dc-bias voltage and the
molecular spin precession. The torque noise components correlating spin-transfer
torques in the same spatial direction in the precession plane are contributed by
elastic tunneling processes, and by inelastic processes, where current-carrying spin
particles change their energy by one or two Larmor frequencies. In the end, we
show that the correlations of the perpendicular components of the spin-transfer
torque in the precession plane are related to the Gilbert damping coefficient at
zero temperature.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der theoretischen Untersuchung des zeitabhä-
ngigen Ladungs- und Spin-Transport durch ein molekulares Energieniveau, das
an zwei Kontakte gekoppelt ist, sowie mit einem molekularen Magneten wechsel-
wirkt. Der molekulare Spin, der als klassische Größe behandelt wird, präzediert mit
der Larmorfrequenz um ein externes Magnetfeld. Unter Anwendung des Keldysh-
Formalismus für Nichtgleichgewichts Green’sche Funktionen werden die Ausdrücke
für Ladungs- und Spin-Ströme hergeleitet. Die Wechselwirkung des Spins der Elek-
tronen mit der dynamischen Magnetisierung des Moleküls führt zu inelastischen
Tunnelprozessen, welche zum Spinstrom beitragen. Dieser inelastische Beitrag im
Spinstrom führt zu einem Drehmoment auf das magnetische Moment, was ex-
tern kompensiert wird. Diese Rückkopplung beinhaltet einen Beitrag zur Gilbert-
Dämpfung sowie eine Änderung der Drehfrequenz. Der Dämpfungskoeffizient wird
entweder durch die Transport- und Gatter-Spannungen kontrolliert oder über das
externe Magnetfeld und hängt nichtmonoton mit der Verbreiterung des moleku-
laren Energieniveaus zusammen.

Als nächstes untersuchen wir den zeitabhängigen Ladungs- und Spin-Transport
durch das molekulare Energieniveau, wobei wir annehmen dass die beiden Kon-
takte zeitabhängige elektrochemische Potenziale haben. Mithilfe des Keldysh-
Formalismus berechnen wir Spin und Ladungsströme in linearer Ordnung bezüglich
der zeitabhängigen Potenziale. Oszillierende elektrochemische Potenziale erlauben
eine Bestimmung der Larmorfrequenz durch Messen des Gleichstrom-Leitwerts,
wenn die Wechselspannungsfrequenz mit der Larmorfrequenz übereinstimmt. Bei
kleinen Wechselspannungsfrequenzen verhält sich der Kontakt äquivalent zu einem
klassischen Schwingkreis, der von einem induktiven zu einem kapazitiven Verhal-
ten gesteuert werden kann. Des Weiteren zeigen wir, dass dieser Aufbau dazu
verwendet werden kann Gleichgewichts-Spinströme zu erzeugen, die durch die
Magnetisierungsrichtung und die relative Phase zwischen Larmorpräzession und
Wechselspannung kontrolliert werden.

Als letztes untersuchen wir das quantenmechanische Rauschen der Ladungs-
und Spinströme durch den Kontakt bei Gleichspannung. Der Keldysh-Formalismus
liefert uns hierbei die Rauschkomponenten des Ladungs- und Spinstromrauschens,
sowie des mit dem Spin-Transport verbundenen Drehmoments. Hierbei analysieren
wir das Schrotrauschen des Ladungstransports und beobachten peakartige Struk-
turen, die auf inelastische Tunnelprozesse zurückzuführen sind, bei denen sich die
Energie um das Äquivalent einer Larmorfrequenz ändert. Solche Prozesse wer-
den durch die molekulare Spin-Präzession ausgelöst und führen zu quantenmecha-
nischen Interferenzeffekten zwischen korrelierten Strömen, bei denen Elektronen-
wellen durch Energieniveaus propagieren, die durch inelastische Prozesse verknüpft
sind. Das Spin-Drehmoment-Rauschen wird sowohl durch die Gleichspannung als
auch durch die Prezession des molekularen Spins ausgelöst. Die Komponen-
ten des Drehmoment-Rauschens, die Spin-Transport Drehmomente in derselben
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räumlichen Richtung in der Präzessions-Ebene korrelieren, werden durch elastis-
che Tunnelprozesse, sowie durch inelastische Prozesse mit einer Energieänderung
von ein oder zwei Larmorfrequenzen verursacht. Zuletzt zeigen wir, dass die
Korrelationen der senkrechten Komponenten der Spin-Transport-Drehmomente
in der Präzessionsebene, am Temperaturnullpunkt mit dem Gilbert-Dämpfungs-
Koeffizienten zusammenhängen.
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Chapter 1

Introduction

1.1 Molecular electronics and spintronics

One of the challenges in modern electronics is to create high-speed processing

devices of miniature size. New advancements in technology enable investigation

of transport on nanoscale, using quantum dots, quantum wires, molecules, etc.

The pioneers of molecular electronics A.Aviram and M.Ratner first proposed the

potential use of molecules as components of electronic circuitry [1]. Transport

through single molecules or molecular clusters has attracted much attention in

the last decades [2, 3]. This is in accordance with the Moore’s law which tells

that the number of transistors in computer processors exponentially increases in

time [4]. The research in molecular electronics involve the study of molecular level

structure, transport properties such as charge current, conductance, and noise,

as well as the possible applications as memory devices, wires, switches, rectifiers

[4–6], etc. Besides various technological motives, from the physical point of view

the research in this field is useful, to comprehend the transport properties on the

molecular scale. Many kinds of molecules are considered as good candidates for

fabrication of devices, from small organic polymers [4, 7, 8] and large biomolecules

[9–11], to carbon nanotubes [12–14].

Using chemical engineering various types of molecules with desired character-

istics can be synthesized for quantum transport investigations. If the Coulomb

interactions are weak one finds that the current as a function of bias voltage

increases with the increase of the number of the available transport channels.

However, in the presence of strong Coulomb interactions and due to the Pauli

exclusion principle, important effects such as e.g., Coulomb blockade [15], Kondo

effect [16–19], and negative differential resistance [20, 21] can arise. The dynamics

1
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µR

drain

gate

source
µL

molecule

Figure 1.1: Setup of a molecular transport junction. The molecule is coupled
to two metallic leads with chemical potentials µL and µR. The charge current
is driven by the bias voltage eV = µL − µR. An additional gate electrode can
be used to modify the molecular electrostatic potential.

of current-carrying electrons in molecular transport junctions is complicated since

they move in the field of other electrons and nuclei in molecules. The geometry

and organization of the molecule can be changed, under the influence of charge

current. Unique transport characteristics were observed in molecular junctions due

to the interaction between electrons and vibrational degrees of freedom [15, 22–27]

and spins [28–30], which are absent in quantum dots and carbon nanotubes.

The molecular conduction behavior range from the absence of the electron con-

duction (insulators) [31] to superconducting behavior [32]. The conduction prop-

erties of molecules can be controlled by the application of lasers, since external

electromagnetic fields excite the electrons in molecules to orbitals with higher en-

ergy, thus changing the current-voltage characteristics of charge transport [33–39].

Photon-assisted tunneling is a phenomenon based on the influence of the exter-

nal time-dependent periodic fields in molecular junctions, where excited electrons

participate in inelastic tunneling processes [33]. The control of electron transport

through molecules can also be obtained by employing magnetic fields [29, 40, 41],

e.g., in the presence of Kondo effect [18], or in junctions with single-molecule mag-

nets [42].

Molecular transport junction is an open system, consisting of two leads (source

and drain), coupled to a molecule or group of molecules [7]. The leads are consid-

ered large reservoirs, treated as grand canonical ensembles of free electrons, with

different chemical potentials, where the current through the interacting (central)

region is generated by the bias-voltage eV = µL−µR. A gate electrode can be used

to control the position of molecular orbitals with respect to the chemical potentials

of the leads [43, 44]. A typical molecular junction is shown in Fig. 1.1. The setup



1.1. Molecular electronics and spintronics 3

of the molecule coupled to contacts is described by the following Hamiltonian

Ĥ = Ĥleads + ĤT + Ĥmolecule, (1.1)

where Ĥleads is the Hamiltonian of the leads, while ĤT represents the tunnel cou-

pling between the leads and the molecule, and Ĥmolecule is the Hamiltonian of the

molecule. In calculations, the wide-band limit is a frequently used approxima-

tion, where one assumes that the self-energy originating from the coupling of the

molecule with the leads is energy-independent, including only the broadening of

the molecular level, while the energy shift of the level is neglected [45].

The nonequilibrium Green’s functions method has been widely used in study

of both dc and ac transport through molecules [46–49]. Many works using this

method include perturbation theory [22, 50, 51], equation of motion technique [52],

etc. Employing nonequilibrium Green’s functions technique one can take into ac-

count electron-phonon interactions, external magnetic field and decoherence in the

calculation of transport properties through molecular devices. Theoretically, quan-

tum transport through molecules has also been investigated using various other

methods, such as scattering theory [53–56], density functional theory [57, 58],

time-dependent density functional theory [59–61], density-matrix theory [62–66],

real-time path integration [67, 68], and numerical renormalization group method

[69–71].

Various experimental techniques have been used to manufacture molecular

junctions. Molecules can be contacted to leads using scanning tunneling mi-

croscopy, where a molecule is placed between tip and substrate [27, 72–75]. The

other possibility is to use break junction method [7, 44, 76, 77] or electromigration

[15, 78, 79], with a molecule placed in the gap of a wire between two ends where

bias-voltage is applied. Usually, a gate electrode is also present to control and shift

energy spectrum of the molecular orbitals [80]. Atomic force microscopy has also

been widely used [81, 82]. Using these techniques, the current and its derivative

with respect to the applied voltage (conductance) are measured. Inelastic electron

tunneling spectroscopy measures the second derivative of current with respect to

voltage, and gives information about the vibrations of atoms in the molecular

junction [83–85].

Besides charge, electrons possess intrinsic spin degree of freedom. Spin depen-

dent electron transport i.e., spintronics is a new field of research where electron

spins are the carriers of transport [40, 86]. Many spintronic devices use giant mag-

netoresistance effect where the resistance of the system, consisting of alternating

ferromagnetic and nonmagnetic layers, depends on the spin of the conduction

electrons and is controlled by changing the orientation of the magnetization in

the ferromagnetic layers [87, 88]. Here, the antiparallel alignment of the electron
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spins and the magnetization of a ferromagnetic layer lead to the high resistance,

while for their parallel alignment the resistance is low. The research in spintron-

ics started with the discovery of the giant magnetoresistance effect. Spintronic

devices can also be manufactured e.g., by using ferromagnetic leads as sources of

spin-polarized currents [40, 89, 90]. Spintronic devices are smaller, cheaper, spend

less energy, with faster information processing, than devices using electron charge,

which makes them more convenient for applications in technology.

Single-molecule magnets are an important group of molecules [91]. They are

nanomagnets with both quantum [92–101] and classical [92] characteristics, and

due to their properties are good candidates for quantum computing [102, 103]

and information storage [104, 105], molecular electronics and spintronics [2, 5, 86,

106, 107]. Molecular spintronics investigates the influence of spin-polarized cur-

rents on the state of the magnetization of the molecular magnets. The spin state

of the molecular magnet can be controlled and manipulated using spin-polarized

currents. During the transfer of spin-angular momentum between the molecular

spin and spin-polarized current a spin-transfer torque is exerted onto the molec-

ular spin [108–111]. Current-induced magnetization switching of single-molecule

magnets has been experimentally observed [90, 112–114]. Solving the dynamics

of the molecular spin in the presence of the spin-polarized currents could lead to

its efficient manipulation and control. Experimental realization of spintronic de-

vices aiming to control and manipulate the spin states of the molecules are e.g.,

molecular spin transistor, spin-valve, and multi-dot devices [40].

1.2 Thesis outline

In this thesis we theoretically study the time-dependent spin and charge trans-

port through a molecular level in the presence of the precessing molecular spin in

a magnetic field. The molecular spin is treated as a classical variable, while for

the electron spin and charge transport we use a quantum-mechanical description.

In Chapter 2 we introduce the Keldysh nonequilibrium Green’s functions tech-

nique which is used to derive and analyze spin and charge currents and noise.

Later, in the same chapter, we briefly introduce single-molecule magnets and the

concept of spin-transfer torque.

In Chapter 3 we derive expressions for charge and spin currents in the pres-

ence of an arbitrary time-dependent magnetic field in linear approximation with

respect to the field. Then we analyze the inelastic tunneling processes created by

the coupling between the electronic and precessing molecular spins in a constant

magnetic field. The inelastic spin currents in turn exert a spin-transfer torque
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on the spin of the molecule, including the Gilbert damping term and a term that

modifies the precession frequency. The molecular spin precession is kept steady

by external means and pumps electron spins into the leads. The Gilbert damping

coefficient and the coefficient related to the change of the precession frequency can

be controlled by the bias and gate voltages, or via the external magnetic field.

In Chapter 4 we go beyond and turn on time-dependent periodic fields in the

leads. Here, we calculate the spin and charge currents, linear in time-dependent

chemical potentials. Then we analyze the dynamic charge conductance and show

that in the low ac-frequency limit the junction behaves as a classical electric circuit.

The real and imaginary components of the ac conductance are both enhanced after

going to a local minimum, for resonant positions of the chemical potentials with

molecular quasienergy levels, around the ac frequency that matches the Larmor

frequency of the molecular spin precession. Later, we calculate and analyze the

photon-assisted spin currents and spin-transfer torque. We show that the system

can be employed to obtain dc-spin currents with arbitrary magnetization direction

for the ac frequency matching the Larmor frequency.

In Chapter 5 we investigate shot noise of charge and spin currents and spin-

transfer torque in the presence of only dc-bias voltage. The competition between

the contributions of elastic and inelastic precession-assisted tunneling, including

the possibility of quantum interference between correlated currents, result in the

dip-like features in the shot noise of charge current. The driving mechanism of the

spin-torque noise components involves both precession of the molecular spin and

the bias-voltage. The correlations of spin-torques in the same spatial direction

in the plane of precession are contributed by elastic processes, and by inelastic

processes where current-carrying spin particles change the energy by one or two

Larmor frequencies. The elastic tunneling contributions are not present in the

correlations of the perpendicular spin-torque components in the precession plane.

We obtained relations which connect these components of the spin-torque noise

and the Gilbert damping coefficient at zero temperature.

Finally, in Chapter 6 we conclude and give an outlook of the possible directions

in future research.





Chapter 2

Theory of quantum transport

2.1 Nonequilibrium Green’s functions formalism

2.1.1 Introduction

In condensed matter physics quantum mechanical systems are modeled by

the Hamiltonian operator, which is usually not solvable exactly. In order to at-

tack this problem, various perturbative techniques are used. In the presence of

time-dependent magnetic or electric fields, or if the system is connected to elec-

tric contacts with different chemical potentials, for example, the system is in a

nonequilibrium state. In these cases, the Keldysh nonequilibrium Green’s func-

tions technique is used as an efficient method to obtain ensemble and quantum

averages of various observables that characterize the system under consideration

[46, 115, 116]. This technique is particularly useful to analyze quantum transport

in mesoscopic systems [46]. Section 2.1 is based on [46, 117–120].

In equilibrium, in the presence of interactions, the Hamiltonian of a system

consists of a solvable, noninteracting, diagonalizable Hamiltonian Ĥ0, and an in-

teracting part Ĥ i,1

Ĥ = Ĥ0 + Ĥ i. (2.1)

Considering the grand canonical ensemble, with the particle number operator N̂ ,

and the chemical potential µ maintained by a particle reservoir, one needs to

incorporate the term −µN̂ in Ĥ0. The system is in contact with the thermostat

at temperature T .

1We use a hat ”ˆ” over a symbol to denote an operator and/or a matrix.

7
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At zero temperature, the system is in the ground state |Ψ0�, and the single-

particle Green’s function is given by [117, 121, 122]

G(�r, t;�r�, t�) = −i
�Ψ0|Tt{ψ̂H(�r, t)ψ̂

†

H
(�r�, t�)}|Ψ0�

�Ψ0|Ψ0�
, (2.2)

where we use units in which � = 1, and Tt is the time-ordering operator. In

Eq. (2.2), ψ̂H(�r, t) are the field operators in the Heisenberg picture, with respect

to the Hamiltonian Ĥ.

Since the ground state |Ψ0� is unknown, the Green’s functions are obtained

using the scattering Ŝ-matrix, which connects the initial and final states of a

system in the interaction picture, |Ψ(t)� = Ŝ(t, t�)|Ψ(t�)�. The Ŝ-matrix is given

by [118, 122]

Ŝ(t, t�) = Tt{e
−i

�
t

t� dt
��
Ĥ

i

H0
(t��)

}, (2.3)

where Ĥ i

H0
(t) is the interaction operator Ĥ i in the interaction picture. The Gell-

Mann-Low theorem relates the exact ground state of the system |Ψ0� and the

noninteracting ground state |Φ0� as |Ψ0� = Ŝ(0,−∞)|Φ0� [123]. Using this theo-

rem the single-particle Green’s function at zero temperature becomes [46, 117]

G(�r, t;�r�, t�) = −i
�Φ0|Tt{Ŝ(∞,−∞)ψ̂H0(�r, t)ψ̂

†

H0
(�r�, t�)}|Φ0�

�Φ0|Ŝ(∞,−∞)|Φ0�
, (2.4)

where ψ̂H0(�r, t) is the field operator in the interaction picture. In Eq. (2.4) one can

apply the Wick’s theorem, and obtain the perturbation expansion of the Green’s

function [117].

When the system is in a nonequilibrium state, or in an equilibrium state at

nonzero temperature, the Gell-Mann-Low theorem fails, since the system usually

does not return to its initial state after infinitely long time. In these cases, the

perturbation expansion can be constructed by employing closed time path formal-

ism, in which contour-ordering operator is used instead of time-ordering operator

[46, 115, 116, 119, 124, 125]. With the contour-ordered Green’s functions, the

nonequilibrium approach is formally equivalent to the equilibrium theory [125].

2.1.2 Average of an observable in nonequilibrium

In a nonequilibrium situation, the total Hamiltonian of the system can be

formulated as follows:

Ĥ(t) = Ĥ + Ĥ �(t), (2.5)
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where Ĥ is the time-independent part given by Eq. (2.1), while Ĥ �(t) represents the

nonequilibrium term, which is turned on at time t = t0. Assuming that the system

is in thermal equilibrium before turning on the time-dependent perturbation, it

can be described by density matrix

ρ̂(Ĥ) =
e−βĤ

Tr[e−βĤ ]
, (2.6)

where β = 1/(kBT ). In the Heisenberg picture the operators evolve in accordance

with the Hamiltonian Ĥ(t), i.e.,

ÔH(t) = û†

H
(t, t0)ÔûH(t, t0), (2.7)

where Ô = ÔH(t0) is the corresponding operator in the Schrödinger picture. In

Eq. (2.7) the evolution operator is given by

ûH(t, t0) = Tt{e
−i

�
t

t0
dt

�Ĥ(t�)
}. (2.8)

The quantum statistical expectation value of the observable ÔH(t) with respect to

ρ̂(Ĥ) for t > t0 is given by

�ÔH(t)� = Tr[ρ̂(Ĥ)ÔH(t)]. (2.9)

If the system evolves according to the time-independent Hamiltonian Ĥ, where

the evolution operator can be written as

ûH(t, t0) = e−iĤ(t−t0), (2.10)

then the time evolution of the operator ÔH(t) in the Heisenberg picture is given

by

ÔH(t) = û†

H
(t, t0)ÔûH(t, t0). (2.11)

According to Eqs. (2.7) and (2.11) the time evolution of the observable ÔH(t)

can be further expressed as

ÔH(t) = v̂†
H
(t, t0)ÔH(t)v̂H(t, t0), (2.12)

where

v̂H(t, t0) = Tt

�
e−i

�
t

t0
dt

�
Ĥ

�
H
(t�)�. (2.13)

The contour-ordering operator TCt
on the contour Ct which is depicted in

Fig. 2.1(a), applied to a product of n fermion operators, orders them in a way
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that the latest time on the contour Ct comes first

TCt
{Ô1(t1)Ô2(t2)...Ôn(tn)} = (−1)P Ôp1(tp1)Ôp2(tp2)...Ôpn(tpn), (2.14)

tp1 >Ct
tp2 >Ct

... >Ct
tpn. In the factor (−1)P , the number of permutations of

operators from the original order is given by P .

Using the contour-ordering operator TCt
, an equivalent form of Eq. (2.12) can

be written as [46, 119, 125]

ÔH(t) = TCt

�
e−i

�
Ct

dτĤ
�
H
(τ)ÔH(t)

�
. (2.15)

The goal is to express the time-dependent part of the average value �ÔH(t)�

using the interaction picture, in which the evolution of the operator is governed

by the noninteracting Hamiltonian Ĥ0,

ÔH0(t) = û†

H0
(t, t0)ÔûH0(t, t0). (2.16)

Here, the evolution operator reads

ûH0(t, t0) = e−iĤ0(t−t0). (2.17)

Employing Eqs. (2.7) and (2.16), one obtains the relation

ÔH(t) = v̂†
H0
(t, t0)ÔH0(t)v̂H0(t, t0), (2.18)

with v̂H0(t, t0) = û†

H0
(t, t0)ûH(t, t0). Finding ∂tv̂H0(t, t0), and integrating the ob-

tained expression over time interval from t0 to t, with the boundary condition

v̂H0(t, t0) = 1̂, where 1̂ is the identity operator, one transforms Eq. (2.18) with the

help of the contour-ordering operator TCt
into [119, 125]

ÔH(t) = TCt
{e−i

�
Ct

dτ [Ĥi

H0
(τ)+Ĥ

�
H0

(τ)]ÔH0(t)}. (2.19)

In order to enable the application of the Wick’s theorem, the expectation value

in Eq. (2.9) needs to be transformed to the one in the interaction picture with

respect to the quadratic density matrix ρ̂(Ĥ0). This can be easily obtained by

using the following relation [119, 125]

e−βĤ = e−βĤ0TCβ
{e−i

� t0−iβ

t0
dτĤ

i

H0
(τ)
}, (2.20)

and the closed contour C running from t0 to t and back to t0, where the contour-

time variable τ lies on either the upper or lower part of the contour, depicted in
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t0 t

Ct
C

Cβ

C∗ = C ∪ Cβt0 − iβ

t0

C = C1 ∪ C2

C1

C2

t

t1

τ1 t1�

τ1�

(a) (b)

Figure 2.1: (a) Contour Ct running from t0 to t and back to t0 on the real-time
axis. (b) Keldysh contour in the complex-time plane, C∗ = C ∪ Cβ , where C
runs from t0 to t and back to t0, passing through contour-times τ1 and τ �

1
only

once. The contour time τ �
1
>C τ1, where >C denotes greater in the contour

sense. The contour part Cβ runs from t0 to t0 − iβ.

Fig. 2.1(b). The contour Cβ runs from t0 to t0−iβ, with the corresponding contour-

ordering operator denoted as TCβ
. The contour-ordering operator TC which orders

operators along the contour C, places the operators with the latest contour times

first, regardless of their projections on the real-time axis. The contours C and Cβ

form the Keldysh contour C∗ = C ∪ Cβ shown in Fig. 2.1(b) [116]. According to

Eqs. (2.19) and (2.20), the expectation value given by Eq. (2.9) can be written

using the Keldysh contour C∗ as [119, 120, 125]

�ÔH(t)� =
Tr

�
e−βĤ0TCβ

{e−i
� t0−iβ

t0
dτĤ

i

H0
(τ)
}TC{Ŝi

C
Ŝ �

C
ÔH0(t)}

�

Tr
�
e−βĤ0TCβ

{e−i
� t0−iβ

t0
dτĤ

i

H0
(τ)
}
�

=
Tr

�
ρ̂(Ĥ0)TC∗{Ŝi

C∗Ŝ �

C
ÔH0(t)}

�

Tr
�
ρ̂(Ĥ0)TC∗{Ŝi

C∗Ŝ �

C
}
� , (2.21)

where
Ŝi

C
= e−i

�
C
dτĤ

i

H0
(τ), (2.22)

Ŝ �

C
= e−i

�
C
dτĤ

�
H0

(τ), (2.23)

Ŝi

C∗ = e−i
�
C∗ dτĤ

i

H0
(τ). (2.24)

In this factorization, the time-dependent part is reduced only to the evolution of

the operator with respect to the noninteracting Hamiltonian Ĥ0. The main result

for the further consideration is contained in Eq. (2.21), since it can be decomposed

using Wick’s theorem.

2.1.3 Nonequilibrium perturbation expansion

Using the contour-ordering opeartor TC and the fermion field operator in the

Heisenberg picture ψ̂H and its adjoint, one can define the contour-ordered Green’s
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G(1, 1�) =

1

U(2) Σ(2, 3)

2

3

G(0)(1, 1�) + +

1
G(0)(1, 2)

1 1

2

G(0)(1, 2)

G(3, 1�)G(2, 1�)

U(2) Σ(2, 3)

2

3

G(0)(1, 1�) + +

1
G(0)(1, 2)

1 1

2

G(0)(1, 2)

G(0)(2, 1�) G(0)(3, 1�)

+ ...

=

1� 1� 1�

1�1�1�

1�

Figure 2.2: Representation of the Dyson equation in terms of Feynman dia-
grams.

function of a single particle as

G(1, 1�) = −i�TC{ψ̂H(1)ψ̂
†

H
(1�)}�. (2.25)

In the abbreviation (1) ≡ (�x1, τ1), the variable �x1 symbolizes the particle position

in space, and may include other degrees of freedom, like spin, while τ1 is the con-

tour time. The contour C runs from t0 to max{t1, t�1} or infinity and back to t0.

According to Eq. (2.21), the Green’s function given by Eq. (2.25) can be ob-

tained in the interaction picture as [119, 125]

G(1, 1�) = −i
Tr[ρ̂(Ĥ0)TC∗{Ŝi

C∗Ŝ �

C
ψ̂H0(1)ψ̂

†

H0
(1�)}]

Tr[ρ̂(Ĥ0)TC∗{Ŝi

C∗Ŝ �

C
}]

. (2.26)

Presuming that the system was in equilibrium before turning on the external

perturbation, so that the initial correlations can be neglected, one can use the

initial time limit t0 → −∞. This means that the integration over Cβ can be

discarded in Eq. (2.26), since the perturbation caused by the external field vanishes

on this segment of the contour, i.e., C∗ ≡ C [119, 125]. With this boundary

condition, the denominator in Eq. (2.26), Tr[ρ̂(Ĥ0)TC{Ŝi

C
Ŝ �

C
}] = 1, as the contour

C is closed, leading to TC{Ŝi

C
Ŝ �

C
} = 1̂, and the Green’s function can be obtained

in the interaction picture as [119, 125]

G(1, 1�) = −iTr[ρ̂(Ĥ0)TC{Ŝ
i

C
Ŝ �

C
ψ̂H0(1)ψ̂

†

H0
(1�)]. (2.27)

The right-hand side of Eq. (2.27) can be expanded in terms of products of

field operators averaged with respect to ρ̂(Ĥ0). Assuming for simplicity that the
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time-dependent perturbation term in the Hamiltonian is presented by coupling

of particles to an external potential U(�x, t), the first two terms in this expansion

read2 [46, 119, 125]

G(0)(1, 1�) = −iTr[ρ̂(Ĥ0)TC{ψ̂H0(1)ψ̂
†

H0
(1�)}], (2.28)

G(1)(1, 1�) = (−i)2
�
d�x2

�

C

dτ2 U(2)Tr[ρ̂(Ĥ0)TC{ψ̂
†

H0
(2)ψ̂H0(2)ψ̂H0(1)ψ̂

†

H0
(1�)}]

=

�
d�x2

�

C

dτ2 G
(0)(1, 2)U(2)G(0)(2, 1�). (2.29)

Each term G(n)(1, 1�), where n denotes the order of expansion can be further

decomposed into products, using Wick’s theorem which works also for contour-

ordered products of field operators. Every product contains the free particle Green’s

function G(0)(1, 1�). The terms of the expansion can be summed up by the Dyson’s

equation [46, 119, 125]

G(1, 1�) = G(0)(1, 1�) +G(1)(1, 1�) +G(2)(1, 1�) + ...

= G(0)(1, 1�) +

�
d�x2

�

C

dτ2 G
(0)(1, 2)U(2)G(2, 1�)

+

�
d�x2

�

C

dτ2

�
d�x3

�

C

dτ3 G
(0)(1, 2)Σ(2, 3)G(3, 1�), (2.30)

where the interactions are included in a functional of G, called the self-energy Σ[G].

All perturbation expansion terms and the Dyson’s equation can be represented

diagrammatically, using Feynman diagrams [46, 117–119], as shown in Fig. 2.2.

Thin lines from one argument to the other, with an arrow in the middle depict

the free contour-ordered Green’s function G(0). The full Green’s function G is

illustrated by a thick line. The interaction of the particles with the potential U is

represented by a cross, while the self-energy Σ joins the rest of the diagram by two

external fermion lines. Nonequilibrium perturbation theory with contour-ordered

Green’s functions is rather formal. In order to solve practical problems, one needs

to replace contour integrals by integrals over real time.

2.1.4 Analytic continuation and Langreth theorem

Analytic continuation ia a method to generate real-time Green’s functions from

a contour-ordered Green’s function [115, 126]. Since t0 → −∞, the part of the

contour C that starts at −∞ and ends at ∞, can be denoted as C1, while C2

symbolizes the branch from ∞ to −∞. Depending on the position of the time

2An integral in space denotes an integration over the entire real space.
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t0 t1 t1�

C1

C1�

τ1

τ1�

Figure 2.3: Deformation of the contour C into two loops C1 and C1� for τ1
on the upper half and τ1� on the lower half of the contour.

arguments on the contour C, the contour-ordered Green’s function includes the

following functions:

G(1, 1�) =






GC1(1, 1
�) τ1, τ1� ∈ C1

G<(1, 1�) τ1 ∈ C1, τ1� ∈ C2

G>(1, 1�) τ1 ∈ C2, τ1� ∈ C1

GC2(1, 1
�) τ1, τ1� ∈ C2

, (2.31)

where, GC1(1, 1
�), G<(1, 1�), G>(1, 1�), and GC2(1, 1

�) are the time-ordered, lesser,

greater and antitime-ordered Green’s functions defined as

GC1(1, 1
�) = −i�Tt[ψ̂H(1)ψ̂

†

H
(1�)]�

= −iθ(t1 − t1�)�ψ̂H(1)ψ̂
†

H
(1�)�+ iθ(t1� − t1)�ψ̂

†

H
(1�)ψ̂H(1)�, (2.32)

G<(1, 1�) = +i�ψ̂†

H
(1�)ψ̂H(1)�, (2.33)

G>(1, 1�) = −i�ψ̂H(1)ψ̂
†

H
(1�)�, (2.34)

GC2(1, 1
�) = −i�T̃t[ψ̂H(1)ψ̂

†

H
(1�)]�

= −iθ(t1� − t1)�ψ̂H(1)ψ̂
†

H
(1�)�+ iθ(t1 − t1�)�ψ̂

†

H
(1�)ψ̂H(1)�. (2.35)

It is useful to introduce the retarded and advanced Green’s functions Gr(1, 1�) and

Ga(1, 1�), which appear in analytic continuation,

Gr(1, 1�) = −iθ(t1 − t1�)�{ψ̂H(1), ψ̂
†

H
(1�)}�, (2.36)

Ga(1, 1�) = iθ(t1� − t1)�{ψ̂H(1), ψ̂
†

H
(1�)}�, (2.37)

where the brackets {·, ·} indicate an anticommutator.

According to the above definitions, the Green’s functions are connected by the

important relations given by

GC1,C2(1, 1
�) = θ(t1,1� − t1�,1)G

>(1, 1�) + (t1�,1 − t1,1�)G
<(1, 1�), (2.38)

GC1(1, 1
�) +GC2(1, 1

�) = G>(1, 1�) +G<(1, 1�), (2.39)
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Gr,a(1, 1�) = θ(t1,1� − t1�,1)[G
>,<(1, 1�)−G<,>(1, 1�)], (2.40)

Gr(1, 1�)−Ga(1, 1�) = G>(1, 1�)−G<(1, 1�). (2.41)

Using general functions of two contour times A(τ, τ �), B(τ, τ �), C(τ, τ �), and

D(τ, τ �) instead of the contour-ordered Green’s functions, one notices that the

contour integrations in Dyson equation take the forms

C(τ1, τ1�) =

�

C

dτ2 A(τ1, τ2)B(τ2, τ1�), (2.42)

D(τ1, τ1�) =

�

C

dτ2

�

C

dτ3 A(τ1, τ2)B(τ2, τ3)C(τ3, τ1�). (2.43)

The transition from contour-ordered Green’s function to real time Green’s func-

tions is obtained using Langreth theorem [126], which tells that components of the

function given by Eq. (2.42) on the real-time axis can be expressed as

C<,>(t1, t1�) =

�
∞

−∞

dt [Ar(t1, t)B
<,>(t, t1�) + A<,>(t1, t)B

a(t, t1�)], (2.44)

Cr,a(t1, t1�) =

�
∞

−∞

dtAr,a(t1, t)B
r,a(t, t1�). (2.45)

The proof is obtained by proper deformations of the contour C, depending on the

choice of contour-time variables. For the choice of variables τ1 ∈ C1 and τ1� ∈ C2,

one finds C<(t1, t1�) using the deformation contour depicted in Fig. 2.3 in the

following way

C<(t1, t1�) =

�

C1

dτ2 A(τ1, τ2)B(τ2, τ1�) +

�

C1�
dτ2 A(τ1, τ2)B(τ2, τ1�)

=

�
t1

−∞

dt2 A
>(t1, t2)B

<(t2, t1�) +

�
−∞

t1

dt2 A
<(t1, t2)B

<(t2, t1�)

+

�
t1�

−∞

dt2 A
<(t1, t2)B

<(t2, t1�) +

�
−∞

t1�

dtA<(t1, t2)B
>(t2, t1�)

=

�
∞

−∞

dt2 θ(t1 − t2)[A
>(t1, t2)− A<(t1, t2)]B

<(t2, t1�)

+

�
∞

−∞

dt2 θ(t1� − t2)A
<(t1, t2)[B

<(t2, t1�)− B>(t2, t1�)], (2.46)

with τ2 <C1 τ1� and τ2 >
C1� τ1, where <C1 and >

C1� denote lesser or greater in

the contour sense. Using Eq. (2.40), one gets Eq. (2.44) for C<(t1, t1�), while the

proof for C>(t1, t1�) can be carried out in a similar way, by choosing τ1 ∈ C2 and

τ1� ∈ C1. The proof of Eq. (2.45) can be obtained by using Eqs. (2.40) and (2.44).

The rules for product of three functions of two contour times given by Eq. (2.43),

can be generated from the rules found for product of two functions. They are
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given by

D<,> = ArBrC<,> + ArB<,>Ca + A<,>BaCa, (2.47)

Dr,a = Ar,aBr,aCr,a, (2.48)

where products denote internal integrations over space (and spin), and internal

real-time integrations. For the products of two functions of two parallel or an-

tiparallel contour times

C(τ, τ �) = A(τ, τ �)B(τ, τ �), (2.49)

D(τ, τ �) = A(τ, τ �)B(τ �, τ), (2.50)

one obtains on the real-time axis the lesser, greater and retarded components as

C<,>(t, t�) = A<,>(t, t�)B<,>(t, t�), (2.51)

D<,>(t, t�) = A<,>(t, t�)B>,<(t�, t), (2.52)

Cr(t, t�) = A<(t, t�)Br(t, t�) + Ar(t, t�)B<(t, t�) + Ar(t, t�)Br(t, t�), (2.53)

Dr(t, t�) = A<(t, t�)Ba(t�, t) + Ar(t, t�)B<(t�, t). (2.54)

Employing analytic continuation rules obtained by the application of the Langreth

theorem [126], one can express any contour-ordered Green’s function or any term

in its perturbation expansion through real-time Green’s functions.

2.1.5 Keldysh equation

By means of analytic continuation rules given by Eqs. (2.44) and (2.47), applied

to the Dyson’s equation, the expression for the lesser Green’s function G< can be

written as

G< = G<

0
+Gr

0
UG< +G<

0
UGa +Gr

0
ΣrG< +Gr

0
Σ<Ga +G<

0
ΣaGa. (2.55)

Since the potential U can be incorporated into G0, one can neglect it and obtain

G< as

G< = G<

0
+Gr

0
Σr(G<

0
+Gr

0
ΣrG< +Gr

0
Σ<Ga +G<

0
ΣaGa) +Gr

0
Σ<Ga +G<

0
ΣaGa

= (1 +GrΣr)G<

0
(1 + ΣaGa) +GrΣ<Ga, (2.56)

known as the Keldysh integral equation [46, 116]. If the system was in an equilib-

rium state in infinite past, the first term in Eq. (2.56) drops to zero. The Keldysh
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equation for the steady state systems then reads [46]

G< = GrΣ<Ga. (2.57)

The Keldysh equation (2.57) is widely used in calculations related to mesoscopic

transport properties, such as charge current, shot noise etc.

2.1.6 Physical meaning of real-time Green’s functions

According to the definition of the greater Green’s function, in the real time

domain iG>(�x, t, �x�, t�) = �ψ̂H(�x, t)ψ̂
†

H
(�x�, t�)� can be interpreted as the probability

amplitude of finding a particle at the point (�x, t), given that it is added to the sys-

tem at the point (�x�, t�). In a similar way, −iG<(�x, t, �x�, t�) = �ψ̂†

H
(�x�, t�)ψ̂H(�x, t)�

represents the propagation of a ’hole’ from the point (�x, t) to the point (�x�, t�).

The expectation values of experimentally measurable observables can be com-

puted using Green’s functions [46, 117]. Let Ô =
�

i
ô(�xi) be the single-particle

operator in the first quantization, where ô(�xi) acts on the i-th particle. Its second-

quantized form in the Heisenberg picture is given by

ÔH(t) =

�
d�x ψ̂†

H
(�x, t)ô(�x)ψ̂H(�x, t). (2.58)

The expectation value of ÔH(t) can be written as [117]

�ÔH(t)� =

�
d�x �ψ̂†

H
(�x, t)ô(�x)ψ̂H(�x, t)�

=

�
d�x lim

�x�→�x

lim
t�→t

ô(�x)�ψ̂†

H
(�x�, t�)ψ̂H(�x, t)�

= −i

�
d�x lim

�x�→�x

ô(�x)G<(�x, t, �x�, t). (2.59)

For instance, the particle density operator in the first quantization can be written

as n̂(�x) =
�

i
δ(�x− �xi) [117]. The average of the corresponding second-quantized

operator in the Heisenberg picture n̂(�x, t) = ψ̂†

H
(�x, t)ψ̂H(�x, t) can be directly ob-

tained using the real-time lesser Green’s function as

�n̂(�x, t)� = −iG<(�x, t, �x, t), (2.60)

which is in agreement with Eq. (2.59). Other quantities such as charge current

and current noise in nanoscale conductors can be evaluated using lesser Green’s

functions.
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The real-time retarded Green’s function Gr(t, t�) contains θ(t− t�) and is inter-

preted as response of a given system at time t to a perturbation occurred at time

t� < t.

The spectral function is defined as [46]

A(t, t�) = i[Gr(t, t�)−Ga(t, t�)], (2.61)

and represents the time-dependent local density of states.

2.1.7 Nonequilibrium formalism in mesoscopic transport

Let us investigate the time-dependent tunneling current in a system which is

in nonequilibrium. The system consists of two metallic leads, left (L) and right

(R), with free, noninteracting electrons, and chemical potentials µξ, ξ = L,R, and

the interacting central region. In the distant past, each region was in thermal

equilibrium and they were uncoupled. Upon turning on the time-dependent tun-

nel coupling the charge current starts to flow. Time-dependent external driving

is applied to the leads and the central region, and the system is now far from

equilibrium.

The Hamiltonian of the system is given by [45, 46]

Ĥ(t) =
�

ξ∈{L,R}

Ĥξ(t) + ĤT (t) + ĤC(t), (2.62)

where Ĥξ(t) is the Hamiltonian of the electrons in the lead ξ = L,R given by

Ĥξ(t) =
�

k

�kξ(t)ĉ
†

kξ
ĉkξ, (2.63)

with the single-particle energy in the lead ξ modulated by an external time-

dependent driving ∆ξ(t) as �kξ(t) = �kξ + ∆ξ(t). The tunnel coupling between

the leads and the central region is described by

ĤT (t) =
�

k,ξ,n

[Vkξ,n(t)ĉ
†

kξ
d̂n + V ∗

kξ,n
(t)d̂†

n
ĉkξ], (2.64)

with matrix element Vkξ,n(t), and can be modulated with time-dependent gate

voltages. The operators ĉ†
kξ
(ĉkξ) are the creation (annihilation) operators of the

electrons in the leads, while {d̂†
n
} and {d̂n} are the complete, orthonormal set

of the creation and annihilation operators of electrons in the central region. The

Hamiltonian of the central region ĤC reads
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ĤC(t) = [{d̂†
n
}; {d̂n}, t], (2.65)

and its exact description depends on the system under investigation.

The average charge current from lead ξ to the central region is given by [45, 46]

Iξ(t) = −e

�
d

dt
N̂ξ

�

= −e
i

�
��
Ĥ(t), N̂ξ

��

= −e
i

�
��
ĤT (t), N̂ξ

��

=
ie

�
�

k,n

[Vkξ,n(t)�ĉ
†

kξ
d̂n� − V ∗

kξ,n
(t)�d̂†

n
ĉkξ�], (2.66)

where N̂ξ =
�

k
ĉ†
kξ
ĉkξ is the charge occupation number operator of the contact ξ.

Defining two new Green’s functions

G<

n,kξ
(t, t�) = i�ĉ†

kξ
(t�)d̂n(t)�, (2.67)

G<

kξ,n
(t, t�) = i�d̂†

n
(t�)ĉkξ(t)�, (2.68)

and taking into account that G<

kξ,n
(t, t�) = −[G<

n,kξ
(t�, t)]∗, the expression for the

current can be further simplified as [45, 46]

Iξ(t) =
2e

� Re
��

k,n

Vkξ,n(t)G
<

n,kξ
(t, t)

�
. (2.69)

Employing the equation of motion technique [118] by applying partial deriva-

tive −i∂t� to the time-ordered Green’s function Gt

n,kξ
(t, t�) = −i�Tt{d̂n(t)ĉ

†

kξ
(t�)}�,

and replacing the intermediate time integration with the integration on the com-

plex contour, one obtains the Dyson equation for the contour-ordered Green’s

function Gn,kξ(τ, τ �) = −i�TC{d̂n(τ)ĉ
†

kξ
(τ �)}�,

Gn,kξ(τ, τ
�) =

�

m

�

C

dτ1Gnm(τ, τ1)V
∗

kξ,m
(τ1)gkξ(τ1, τ

�). (2.70)

Here, Gnm(τ, τ �) = −i�TC{d̂n(τ)d̂†m(τ
�)}� and gkξ(τ, τ �) = −i�TC{ĉkξ(τ)ĉ

†

kξ
(τ �)}�

are the contour-ordered Green’s functions of the central region and the leads.

Applying analytic continuation rules and Langreth theorem [126] to Eq. (2.70),

one obtains3

G<

n,kξ
(t, t�) =

�

m

�
dt1V

∗

kξ,m
(t1)[G

r

nm
(t, t1)g

<

kξ
(t1, t

�) +G<

nm
(t, t1)g

a

kξ
(t1, t

�)], (2.71)

3An integral without limits over one variable denotes an integral from −∞ to ∞.
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with the real-time Green’s functions of the contact ξ given by

g<
kξ
(t, t�) = i�ĉ†

kξ
(t�)ĉkξ(t)� = if(�kξ)e

−i
�
t

t� dt1�kξ(t1), (2.72)

gr
kξ
(t, t�) = −iθ(t− t�)�{ĉkξ(t), ĉ

†

kξ
(t�)}� = −iθ(t− t�)e−i

�
t

t� dt1�kξ(t1), (2.73)

and ga
kξ
(t, t�) = [gr

kξ
(t�, t)]∗. Inserting the expression for the real-time Green’s

function G<

n,kξ
(t, t�) given by Eq. (2.71) into Eq. (2.69), and defining the matrix

components of the tunneling self-energy in the indices of the central region m,n

as

Σr,a,<,>

ξ,mn
(t, t�) =

�

k

V ∗

kξ,m
(t)gr,a,<,>

kξ
(t, t�)Vkξ,n(t

�), (2.74)

one arrives at the expression for the charge current from contact ξ given by [45, 46]

Iξ(t) =
2e

� Re

�
dt�Tr

�
[Ĝr(t, t�)Σ̂<

ξ
(t�, t) + Ĝ<(t, t�)Σ̂a

ξ
(t�, t)]

�
, (2.75)

where the Green’s functions Ĝr,<(t, t�) and self-energies Σ̂<,a

ξ
(t�, t) are matrices in

the central-region indices m,n. The self-energy Σ̂<

ξ
is related to the occupation in

the lead ξ, while Ĝ< is related to the occupation in the central region. Accordingly,

the first term in Eq. (2.75) can be associated to the current tunneling from the

lead ξ to the central region, while the second term can be related to the tunneling

into the lead ξ.

The summation over k in the leads can be converted into an energy integration�
d�ρα(�), where ρα(�) is the density of states in channel α. Defining the level-

width function, which describes the coupling between the lead ξ and the central

region as [45, 46]

[Γξ(�, t1, t)]mn = 2π
�

α∈ξ

ρα(�)Vα,n(�, t)V
∗

α,m
(�, t1)e

−i
� t1
t

dt2∆α(�,t2), (2.76)

the equation (2.75) can be rewritten as [45, 46]

Iξ(t)=−
2e

�

�
t

−∞

dt1

�
d�

2π
ImTr

�
e−i�(t1−t)Γ̂ξ(�, t1, t)[Ĝ

<(t, t1)+fξ(�)Ĝ
r(t, t1)]

�
. (2.77)

Eqs. (2.75) and (2.77) express the tunneling current through an interacting

central region, tunnel-coupled to noninteracting leads. They are rather formal

since the calculation of Ĝr,<(t, t�) is usually a complicated task. It is particularly

useful for stationary transport, time-dependent resonant-level model, transport in

the presence of harmonic time modulation, linear response [45, 46], etc.



2.1. Nonequilibrium Green’s functions formalism 21

2.1.7.1 Stationary mesoscopic transport

In the absence of external time-dependent driving in the leads and the central

region, upon turning on the time-independent tunnel coupling, a charge current

starts to flow under dc-bias voltage eV = µL − µR. This nonequilibrium prob-

lem can be solved taking into account that in the stationary limit the Green’s

functions and self-energies depend on the time difference t− t�. Applying Fourier

transformations in Eq. (2.75) one obtains stationary current flowing from lead ξ

as [46, 127]

Iξ =
2e

� Re

�
d�

2π
Tr

�
[Ĝr(�)Σ̂<

ξ
(�) + Ĝ<(�)Σ̂a

ξ
(�)]

�
. (2.78)

Employing Eq. (2.41) in Fourier space, Ĝr(�) − Ĝa(�) = Ĝ>(�) − Ĝ<(�), which

also holds for matrices of self-energies, Σ̂r(�) − Σ̂a(�) = Σ̂>(�) − Σ̂<(�), one finds

[46, 120]

Iξ =
e

�

�
d�

2π
Tr

�
[Ĝ>(�)Σ̂<

ξ
(�)− Ĝ<(�)Σ̂>

ξ
(�)]

�
. (2.79)

The Green’s function Ĝ<(�) (Ĝ>(�)) is related to the number of occupied (avail-

able) states in the central region, while Σ̂>

ξ
(�) (Σ̂<

ξ
(�)) gives the tunneling rate into

(out of) lead ξ. Thus, the first term in Eq. (2.79) represents the charge current

flowing from the lead ξ to the central region, while the second term is the tunneling

current into the lead ξ.

In the stationary limit, the Fourier transforms of the tunneling self-energies

given by Eq. (2.74) result in [46, 120]

Σr,a

ξ,mn
(�) = Λξ,mn(�)∓

i

2
Γξ,mn(�), (2.80)

Σ<

ξ,mn
(�) = iΓξ,mn(�)fξ(�), (2.81)

Σ>

ξ,mn
(�) = −iΓξ,mn(�)[1− fξ(�)]. (2.82)

In the presence of the interactions in the central region, with the corresponding

self energy Σ̂<,>

int
(�), the total lesser or greater self-energy equals [46, 120]

Σ̂<,>(�) = Σ̂<,>

int
(�) + Σ̂<,>

L
(�) + Σ̂<,>

R
(�). (2.83)

Combining the Keldysh equation (2.57) and Eq. (2.41) in Fourier space leads to

the following relation

Tr[Σ̂<(�)Ĝ>(�)− Σ̂>(�)Ĝ<(�)] = 0. (2.84)
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Using Eqs. (2.79), (2.83) and (2.84) the necessary condition for the charge current

conservation can be obtained as [46, 120]

0 =
�

ξ

Iξ =
e

�

�
d�

2π
Tr

�
[Ĝ>(�)[Σ̂<(�)− Σ̂<

int
(�)]− Ĝ<(�)[Σ̂>(�)− Σ̂>

int
(�)]

�

=
e

�

�
d�

2π
Tr

�
[Ĝ<(�)Σ̂>

int
(�)− Ĝ>(�)Σ̂<

int
(�)]

�
, (2.85)

which is ensured by the proper model of the interacting self-energy Σ<,>

int
(�), and

in noninteracting case.

In the case of stationary current, Eq. (2.77) becomes [46, 127]

Iξ =
ie

�

�
d�

2π
Tr

�
Γ̂ξ(�){Ĝ

<(�) + fξ(�)[Ĝ
r(�)− Ĝa(�)]}

�
. (2.86)

Assuming constant ratio between level-width functions of the left and right leads,

Γ̂L(�)Γ̂
−1

R
(�)=const., the conserved steady-state current IL = −IR = (IL − IR)/2

can be expressed as [46, 127]

IL =
e

�

�
d�

2π
[fL(�)− fR(�)]T (�), (2.87)

where T (�) = Tr{T̂ (�)}, T̂ (�) = [Γ̂L(�)Γ̂R(�)Γ̂−1(�)Â(�)]. The level-width function

Γ̂(�) = Γ̂L(�) + Γ̂R(�), while Â(�) = i[Ĝr(�)− Ĝa(�)] is the spectral function of the

interacting region. If the central region is noninteracting, the function T (�) is the

elastic transmission probability. In that case the zero-temperature conductance at

small bias-voltages G = IL/V is given by the Landauer formula G = (e2/h)T (Ef )

(should be multiplied by a factor of 2 for spin degeneracy), where Ef is the Fermi

energy of the leads [54, 128, 129]. Note that in the interacting case, the func-

tion T (�) cannot be considered as the elastic transmission probability, since one

needs to include the interactions into the Green’s functions of the central region

[46]. Namely, if a current-carrying electron undergoes a spin-flip, or interacts with

a phonon, for example, it emits or absorbs energy, which leads to an inelastic

contribution to the tunneling current.

2.1.8 Nonequilibrium current fluctuations

Besides charge current and conductance, additional information concerning

transport in mesoscopic conductors can be obtained by the investigation of the

current correlations, referred to as noise [130]. Noise measurements can give in-

formation on the transmission eigenvalues, effective transferred charge, quantum

entanglement, etc. We will discuss the properties of shot noise, which arises due
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to discreteness of electron charge [131], in more detail in Chapter 5. In this sub-

section we first present the calculation of noise using the nonequilibrium Green’s

functions formalism in the case of time-dependent transport [46, 49], where the

Hamiltonian of the system is given by Eq. (2.62) [45, 46]. Later, we discuss noise

in stationary-transport regime, where time-dependent external fields are absent

[46, 132–136, 138].

The current operator in lead ξ is given by [45, 46]

Îξ(t) = −e
d

dt
N̂ξ

=
ie

�
�

k,n

[Vkξ,n(t)ĉ
†

kξ
(t)d̂n(t)− V ∗

kξ,n
(t)d̂†

n
(t)ĉkξ(t)]. (2.88)

Symmetrized charge-current noise is defined via temporal correlations between

charge currents in contacts ξ and η as [130]

Sξη(t, t
�) =

1

2
�{δÎξ(t), δÎη(t

�)}�, (2.89)

where δÎξ(t) = Îξ(t) − �Îξ(t)� is the current-fluctuation operator in contact ξ.

According to the definition of the current-fluctuation operator, Eq. (2.89) can be

further expressed as

Sξη(t, t
�) =

1

2
[�Îξ(t)Îη(t

�)�+ h.c− 2Iξ(t)Iη(t
�)]. (2.90)

Using Eq. (2.88), the noise of charge current can be computed as [46, 49]

Sξη(t, t
�) = −

e2

2�2
�

kk�nm

�
Vkξ,n(t)Vk�η,m(t

�)�ĉ†
kξ
(t)d̂n(t)ĉ

†

k�η(t
�)d̂m(t

�)�

−Vkξ,n(t)V
∗

k�η,m(t
�)�ĉ†

kξ
(t)d̂n(t)d̂

†

m
(t�)ĉk�η(t

�)�

−V ∗

kξ,n
(t)Vk�η,m(t

�)�d̂†
n
(t)ĉkξ(t)ĉ

†

k�η(t
�)d̂m(t

�)�

+V ∗

kξ,n
(t)V ∗

k�η,m(t
�)�d̂†

n
(t)ĉkξ(t)d̂

†

m
(t�)ĉk�η(t

�)�
�

+h.c.− Iξ(t)Iη(t
�). (2.91)

According to the Wick’s theorem the quantum and ensemble averages of four

operator products in Eq. (2.91) can be decomposed into sums of products of cor-

relations [117]. The mixed Green’s functions can be expressed in terms of correla-

tions involving one creation (annihilation) operator of electrons in lead ξ, and the

other creation (annihilation) operator of electrons in the central region,

G>

n,kξ
(t, t�) = −i�d̂n(t)ĉ

†

kξ
(t�)�, (2.92)

G>

kξ,n
(t, t�) = −i�ĉkξ(t)d̂

†

n
(t�)�. (2.93)
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The definitions of the corresponding lesser Green’s functions were already intro-

duced in Eqs. (2.67) and (2.68). The Green’s functions of the leads and the central

region are defined as

G<

kξ,k�η(t, t
�) = i�ĉ†

k�η(t
�)ĉkξ(t)�, (2.94)

G>

kξ,k�η(t, t
�) = −i�ĉkξ(t)ĉ

†

k�η(t
�)�, (2.95)

G<

nm
(t, t�) = i�d̂†

m
(t�)d̂n(t)�, (2.96)

G>

nm
(t, t�) = −i�d̂n(t)d̂

†

m
(t�)�. (2.97)

Since the four-operator products in Eq. (2.91) can be expressed in terms of

sums of products of the above Green’s functions, while the average current is

given by Eq. (2.69), the charge current noise becomes [46, 49]

Sξη(t, t
�) = −

e2

�2Re
� �

kk�nm

[Vkξ,n(t)Vk�η,m(t
�)G>

n,k�η(t, t
�)G<

m,kξ
(t�, t)

− Vkξ,n(t)V
∗

k�η,m(t
�)G>

nm
(t, t�)G<

k�η,kξ(t
�, t)

− V ∗

kξ,n
(t)Vk�η,m(t

�)G>

kξ,k�η(t, t
�)G<

mn
(t�, t)

+ V ∗

kξ,n
(t)V ∗

k�η,m(t
�)G>

kξ,m
(t, t�)G<

k�η,n(t
�, t)]

�
. (2.98)

Following the same procedure as in Section 2.1.7, i.e., applying analytic continua-

tion rules and Langreth theorem [126], one obtains the above Green’s functions in

terms of gr,a,<,>

kξ
(t, t�) [see e.g., Eqs. (2.72) and (2.73)], and the Green’s functions

of the central region. Substituting them in Eq. (2.98), and using Eq. (2.74) which

defines the tunneling self-energies, yields [46, 49]

Sξη(t, t
�) = −

e2

�2ReTr
��

dt1

�
dt2

�
[Ĝr(t, t1)Σ̂

>

η
(t1, t

�) + Ĝ>(t, t1)Σ̂
a

η
(t1, t

�)]

× [Ĝr(t�, t2)Σ̂
<

ξ
(t2, t) + Ĝ<(t�, t2)Σ̂

a

ξ
(t2, t)]

+ [Σ̂>

ξ
(t, t1)Ĝ

a(t1, t
�) + Σ̂r

ξ
(t, t1)Ĝ

>(t1, t
�)]

× [Σ̂<

η
(t�, t2)Ĝ

a(t2, t) + Σ̂r

η
(t�, t2)Ĝ

<(t2, t)]

− Ĝ>(t, t�)[Σ̂r

η
(t�, t1)Ĝ

r(t1, t2)Σ̂
<

ξ
(t2, t) + Σ̂<

η
(t�, t1)Ĝ

a(t1, t2)Σ̂
a

ξ
(t2, t)

+ Σ̂r

η
(t�, t1)Ĝ

<(t1, t2)Σ̂
a

ξ
(t2, t)]

− [Σ̂r

ξ
(t, t1)Ĝ

r(t1, t2)Σ̂
>

η
(t2, t

�) + Σ̂>

ξ
(t, t1)Ĝ

a(t1, t2)Σ̂
a

η
(t2, t

�)

+ Σ̂r

ξ
(t, t1)Ĝ

>(t1, t2)Σ̂
a

η
(t2, t

�)]Ĝ<(t�, t)
�

− δξη[Ĝ
>(t, t�)Σ̂<

ξ
(t�, t) + Σ̂>

ξ
(t, t�)Ĝ<(t�, t)]

�
, (2.99)

where the Green’s functions Ĝr,a,<,> are matrices in the central-region indicesm,n.
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Together, Eqs. (2.75) and (2.99) represent important tools in solving charge-

transport problems through various interacting systems connected to two nonin-

teracting terminals. These formal expressions enable the calculation of the charge

current and noise in terms of known Green’s functions of the central, interacting

region, and the self-energies associated with the tunnel coupling to the leads.

In the rest of this section we focus on the stationary limit, with the interacting

central region, where noise depends only on time difference t − t�. The Fourier

transform of noise is known as spectral density or power spectrum of noise [130]

2πδ(Ω− Ω�)Sξη(Ω) =

�
∞

−∞

�
∞

−∞

dt dt�eiΩte−iΩ�
t
�
Sξη(t− t�). (2.100)

A number of works derived noise power spectrum employing nonequilibrium Green’s

functions formalism [133, 134, 136, 139]. Considering zero-frequency noise power

which is usual case in experimental setups, and taking into account that the con-

dition for the charge-current conservation requires that [130]

S ≡ SLL(Ω = 0) = SRR(Ω = 0) = −SLR(Ω = 0) = −SRL(Ω = 0), (2.101)

one obtains [46, 134, 135, 138]

S =
e2

�2

�
d�

2π

�
− fL(�)[1− fL(�)]

�
Tr{[Γ̂L(�)Ĝ

r(�)]2 + [Γ̂L(�)Ĝ
a(�)]2}

+ ifLTr{Γ̂L(�)Ĝ
>(�)}− i[1− fL(�)]Tr{Γ̂L(�)Ĝ

<(�)}

+ fL(�)Tr{Γ̂L(�)Ĝ
>(�)Γ̂L(�)[Ĝ

r(�)− Ĝa(�)]}+ Tr{Γ̂L(�)Ĝ
>(�)Γ̂L(�)Ĝ

<(�)}

− [1− fL(�)]Tr{Γ̂L(�)[Ĝ
r(�)− Ĝa(�)]Γ̂L(�)Ĝ

<(�)}
�
. (2.102)

This is a general expression for zero-frequency noise power in the presence of

interactions, expressed in terms of Fermi-Dirac distributions of the leads and local

Green’s functions of the central region.

In noninteracting case, Eq. (2.102) reduces to the Landauer-Büttiker expression

for noise power obtained by using scattering matrix formalism [130, 140, 141]

S =
e2

�2

�
d�

2π

�
{fL(�)[1− fL(�)] + fR(�)[1− fR(�)]}Tr{T̂ (�)}

+ [fL(�)− fR(�)]
2Tr{[1− T̂ (�)]T̂ (�)}

�
, (2.103)

where matrix T̂ (�) = [Γ̂L(�)Γ̂R(�)Γ̂−1(�)Â(�)] is the transmission coefficient matrix

introduced in Eq. (2.87). The first two terms in Eq. (2.103) represent the contri-

bution due to the thermal excitations in the leads, called the thermal or Johnson-

Nyquist noise [130, 142, 143]. In equilibrium, where eV = 0, the Fermi distribution
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functions of the leads are equal f(�) = fL(�) = fR(�), and S in Eq. (2.103) reduces

to the thermal noise which is connected with the linear conductance G via the

fluctuation-dissipation theorem as [142–145]

S = 2kBTG, (2.104)

where the Fermi-Dirac distributions satisfy f(�)[1− f(�)] = −kBT∂f(�)/∂�, while

the conductance reads

G =
e2

�

�
d�

2π

�
−

∂f(�)

∂�

�
Tr{T̂ (�)}. (2.105)

In nonequilibrium, where eV �= 0, the third term in Eq. (2.103) represents the

shot noise contribution [130, 131]. Since it contains nondiagonal matrix elements

of the transmission matrix T̂ (�), it gives additional information about the charge

transport, which is not contained in the conductance. In the low bias-voltage

limit eV � kBT the noise is predominantly termal, while in the low temperature

limit kBT � eV the dominant contribution comes from the shot noise. At zero

temperature, thermal noise vanishes and S reduces to the shot noise, making this

special case particularly interesting.

In the presence of interactions in the central region, like e.g., electron-phonon

interactions, the zero-frequency noise power cannot be divided into thermal and

shot noise contributions like in Eq. (2.103) [136].

2.2 Single-molecule magnets

One challenge of modern electronics is to incorporate single-molecule magnets

into quantum computers [97, 102]. Due to the bistability of the single-molecule

magnets [146], they can be used in quantum computing with superpositions of

spin states performing the roles of qubits, which can be entangled with each other

[102]. Single-molecule magnets can be used for magnetic memory storage due to

their slow magnetization relaxation at low temperatures [97, 146, 147].

In this section we describe physical properties of isolated single-molecule mag-

nets, or subject to external magnetic fields at low temperatures. Single-molecule

magnets are quantum magnets, i.e., mesoscopic quantum objects with a perma-

nent magnetization [146, 148, 149]. They are typically formed by paramagnetic

ions stabilized by surrounding organic ligands [148]. Single-molecule magnets show

both classical properties such as magnetization hysteresis [92], and quantum prop-

erties such as magnetization tunneling [93–96], coherence [97–99], quantum phase
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data,33 and for the g tensor the values g! =1.93 and g!

=1.96 from high-frequency EPR.34–36 The uniaxial aniso-
tropy terms −DSz

2 and −BSz
4 can be attributed to the single-

ion anisotropy of the Mn3+ ions,34 which is due to the crystal
field effects resulting in the Jahn-Teller distortions of the
coordination octahedra, where the elongation axes are ap-
proximately parallel to the ĉ axis of the crystal. Considering
only the diagonal terms, the energy level scheme would be a
series of doublets of degenerate states, "±m#, separated by a
barrier with a total height of DS2+BS4$66.6K %Fig. 1&b'(.
The transverse anisotropy terms, E&Sx

2−Sy
2'−C&S+

4 +S−
4', lift

the degeneracy of the "±m# states and allow quantum tunnel-
ing of the giant spin through the anisotropy barrier. We call
!m the matrix element for the tunneling of the giant spin
through the mth doublet, and 2!m the corresponding tunnel-
ing splitting. The C&S+

4 +S−
4' term arises from the fourfold S4

point symmetry of the molecule, but there is now solid ex-
perimental evidence37,38 for the prediction39 that a disorder in
the acetic acid of crystallization is present and gives rise to
six different isomers of Mn12 cluster, four of which have
symmetry lower than tetragonal and therefore have a nonzero
rhombic term E&Sx

2−Sy
2'. EPR experiments give an upper

bound E"14 mK.37 For the purpose of NMR experiments,
such isomerism may cause slight variations in the local hy-
perfine couplings, causing extra broadening in the 55Mn reso-
nance lines. Very recently, a new family of Mn12 clusters has
been synthesized, which does not suffer from the solvent
disorder mentioned above and yields indeed more sharply
defined 55Mn NMR spectra.40

When adding spin-phonon interactions,41,42 the possible
transitions between the energy levels of Eq. &1' are sketched
in Fig. 1&b'. We distinguish between intrawell spin-phonon
excitations, where the spin state remains inside the same en-
ergy potential well, and the interwell transitions, which in-
volve spin reversal by quantum tunneling through the barrier,

allowed by the terms in Eq. &1' that do not commute with Sz.
Thermally assisted tunneling involves both these types of
transitions.

The above discussion refers to the majority of the mol-
ecules in a real sample, but for our experiments, the crucial
feature of Mn12-ac is the presence of fast-relaxing molecules
&FRMs',43 i.e., clusters characterized by a lower anisotropy
barrier and a much faster relaxation rate, as observed for
instance by ac susceptibility44 and magnetization
measurements.45 It has been recognized that such FRMs
originate from Jahn-Teller isomerism,46 i.e., the presence in
the molecule of one or two Mn3+ sites where the elongated
Jahn-Teller axis points in a direction roughly perpendicular
instead of parallel to the crystalline ĉ axis. This results in the
reduction of the anisotropy barrier to 35 or 15 K in the case
of one or two flipped Jahn-Teller axes, respectively,47 and
presumably in an increased strength of the nondiagonal
terms in the spin Hamiltonian as well. Furthermore, the an-
isotropy axis z of the whole molecule no longer coincides
with the crystallographic ĉ axis, but deviates, e.g., by )10°
in the molecules with a 35 K barrier.45 The Jahn-Teller isom-
erism is very different from the above-mentioned effect of
disorder in solvent molecules and produces much more im-
portant effects for the present study. As will be argued below,
the presence of the FRMs is essential for the interpretation of
our results and, to some extent, may be regarded as a fortu-
nate feature for this specific experiment.

The sample used in the experiment consisted of about
60 mg of polycrystalline Mn12-ac, with a typical crystallite
volume )0.1 mm3. The crystallites were used as grown &i.e.,
not crushed', mixed with Stycast 1266 epoxy, inserted in a �
6 mm capsule, and allowed to set for 24 h in the room-
temperature bore of a 9.4 T superconducting magnet. With
this procedure, the magnetic easy axis of the molecules
&which coincides with the long axis of the needlelike crys-
tallites' ends up being aligned along the field within a few

FIG. 1. &Color online' &a' Structure of the Mn12-ac cluster, with the labeling of the three inequivalent Mn sites as described in the text.
&b' Energy level scheme for the electron spin as obtained from the Hamiltonian %Eq. &1'(, retaining only the terms diagonal in Sz. The
nondiagonal terms allow transitions between states on opposite sides of the anisotropy barrier by means of quantum tunneling &QT'. In the
presence of intrawell transitions induced by spin-phonon interaction &S-Ph', thermally assisted quantum tunneling &Th-A T' between excited
doublets can also take place.
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Figure 2.4: Crystal structure of Mn12-acetate [Mn12O12(CH3COO)16(H2O)4].
The ground state spin S = 10. Four positive ions Mn4+ with spins S = 3/2
(orange spheres) are surrounded with eight positive ions Mn3+ with spins S = 2
(blue and green spheres). Adapted from [137].

interference [92, 100, 101], and Kondo effect [150–152]. The two crucial charac-

teristics of single-molecule magnets are a large spin ground state and strong easy

axis anisotropy [153].

One frequently studied single-molecule magnet with strong uniaxial anisotropy

is Mn12-acetate [154], which is presented in Fig. 2.4. Its ground state spin S = 10

and geometric structure obeys S4 symmetry [91]. Due to the strong exchange in-

teractions between the metal ions in Mn12-acetate, which are dominant in the spin

Hamiltonian, the giant spin approximation is used to describe this nanomagnet

[155, 156]. The tunnel splitting between the ground states of this single-molecule

magnet at low temperatures is negligible, since the transverse anisotropy is weak.

For Mn12-acetate the anisotropy constants are given by D = 0.057meV and

E = 0.27× 10−5 meV [156].

2.2.1 Giant spin approximation

In the giant spin approximation the effective molecular spin is considered large

and rigid [28, 42, 149, 157, 158]. This approximation is limited in the sense that the

contributions of the individual ions to the magnetic behavior of the single-molecule

magnet remain unknown. The form of the Hamiltonian depends on the symmetry

of the system. One simple model of the Hamiltonian of a single-molecule magnet,

like Mn12-acetate or Fe8, in the presence of an external magnetic field �B, in the



28 Chapter 2. Theory of quantum transport

giant spin approximation can be written as

Ĥ = −DŜ2

z
+ E(Ŝ2

x
− Ŝ2

y
) + gµB

�B �̂S. (2.106)

where z-axis is the easy magnetization axis. The molecular spin operators along

the i = x, y, z axes are given by Ŝi, while D is the axial anisotropy constant [149].

This constant is positive, to ensure that the lowest-energy state is the ground

state of the spin. The second term is a transverse anisotropy term with transverse

anisotropy constant E [149]. Some of the causes of anisotropy can be molecular

symmetry [149], spin orbit coupling [159], exchange coupling [160] and magnetic

fields [96, 153]. The Zeeman interaction is presented in the third term of the

Hamiltonian, where g is the Landé factor, while µB is the Bohr magneton. All

the eigenstates of the Hamiltonian in Eq. (2.106) are linear combinations of the

eigenstates of Ŝz, denoted as |m�, where the spin projections along the easy axis

m ∈ {−S, S}.

For the beginning, let us assume that the transverse anisotropy is weak |E/D|�1,

like in the case of Mn12-acetate [156], and the external magnetic field is directed

along the easy z-axis. In other words we neglect the transverse anisotropy and

transverse magnetic fields. In this limit, the operator Ŝz can be considered a

conserved quantity, and {|m�} is a common eigenbasis of the Hamiltonian and

Ŝz. In the absence of the longitudinal external magnetic field, the corresponding

eigenvalues of the Hamiltonian E0

m
= −Dm2 are degenerate, with the ground-

state energy −DS2. Axial anisotropy leads to an energy barrier to spin reversal

of single-molecule magnets. The barrier height which separates states with m > 0

(spin-up) and m < 0 (spin-down) equals U0 = DS2 and the system is bistable.

This type of anisotropy removes the energy degeneracy of the spin states in the

absence of external fields and is called zero-field splitting [161].

Applying the magnetic field along the easy axis, the degeneracy of the Hamil-

tonian is removed due to the Zeeman splitting. In this case the eigenenergies are

modified as [149]

Em = −Dm2 + gµBBzm. (2.107)

Thus, for the spin in the state withm = −S the energy Em=−S decreases if Bz > 0,

whereas the energy barrier increases as [149]

U = D

�
S +

gµBBz

2D

�2

. (2.108)

The energy spectrum of a single-molecule magnet can be presented as a double

well potential, with states corresponding to m < 0 in one well, and states corre-

sponding to m > 0 in the other well. In the absence of the longitudinal magnetic
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FIG. 3. The difference between the magnetization M and its
asymptotic value, M0, versus time on a semilogarithmic plot
for a sample cooled to 2.4 K in zero field and then exposed
to a field of 0.9 and 0.95 T. The straight lines are fits to an
exponential function with the first �2000 sec of data omitted.
The values of M0 were determined from the fit.

�2000 sec that is not understood. Fits to the data for
t . 2000 sec yield time constants of 1048 and 2072 sec
for 0.9 and 0.95 T, respectively. Similar increases in re-
laxation rate occur at all magnetic fields where steps in
the magnetization are observed.
Our experimental findings for the orientationally or-

dered sample can be summarized as follows: (1) Steps
are observed in the hysteresis loop with increasing field at
equal intervals of field; no steps occur as the field is de-
creased. (2) The magnetic relaxation is more rapid when
the magnetic field is in the neighborhood of such a step.
(3) New steps appear at higher fields as the temperature is
reduced while steps at lower fields become less apparent.
(4) These frozen steps can be recovered by reducing the
field sweep rate.
Following the suggestion of Barbara et al. [6] and of

Novak and Sessoli [11], who found anomalous relaxation
rates at H � 0 and 0.3 T in an unoriented sample, we
attribute our observations to thermally assisted resonant
tunneling between quantum spin states in Mn12. In zero
field, the spin of the molecule has two degenerate ground
states separated by an anisotropy barrier, corresponding to
spin parallel �m � S� or antiparallel �m � 2S� to the c
axis; a magnetic field breaks the symmetry making one
state a true ground state. This is illustrated in Fig. 4,
where the system is initially populated in the metastable
m � S ground state in the left-hand well. Tunneling
across the barrier is induced when an applied field makes
this state resonant with an excited level in the right-
hand well; the tunneling is followed by rapid spontaneous
decay from the excited state to the ground state. We
propose that each step in the magnetization corresponds
to such a resonance.
The simplest Hamiltonian for this system is

H � 2DS
2
z

2 gmBS ? H , (1)

FIG. 4. Schematic diagram of the resonant tunneling model.
Tunneling from the metastable state m � S to an excited state
m � 2S 1 n is followed by a rapid spontaneous decay into
the ground state.

where D represents the anisotropy energy that breaks
the zero-field Zeeman degeneracy. (We assume that the
exchange interactions within the molecule are so large
that it can be treated as a single spin-10 object). If the
field is applied along the easy axis, the eigenstates of this
Hamiltonian are jS, m�, where S is the total spin and m is
the corresponding magnetic quantum number. For clarity,
we make jS, S� the initial state of the system. A simple
calculation reveals that the field at which the state jS, S�
coincides in energy with the state jS, 2S 1 n�, is

HS,2S1n � 2Dn�gmB . (2)

Thus, steps occur at even intervals of field, as observed.
Since the Hamiltonian, Eq. (1), commutes with Sz , the
tunneling must arise from a perturbation, such as trans-
verse anisotropy or a small off-axis component of the
magnetic field. Interestingly, our model implies that
whenever the field is tuned to a step, each state in the
left well coincides with a state in the right well, setting
up a multiple resonance. Given that a step occurs every
0.46 T, we find D�g � 0.21 cm21, consistent with the
published values of D � 0.5 cm21 and g � 1.9 obtained
from high-field and ESR experiments [13,14]. As a fur-
ther check, we estimate that the anisotropy barrier at zero
field is g�D�g�S2 � �1.9� �0.21 cm21� �100� � 41 cm21,
consistent with the estimate of 49 cm21 obtained from
the blocking temperature. For an S � 10 system, there
should be 21 steps (n � 0 to 20), the last correspond-
ing to the elimination of the barrier. Assuming that
the blocking temperature on resonance scales as TB �
�1 2 H�Hc�2 � �1 2 n�nc�2, we find a zero-temperature
intercept of nc � 21.6, indicating there are roughly the
number of steps predicted by our model. Measurements
at lower temperatures are needed to observe the higher-
numbered steps; we estimate that step 19 should become
apparent at around 10 mK and 8.74 T.
We find experimentally that the transition rate decreases

rapidly as temperature is reduced, indicating that the res-
onant tunneling is thermally assisted. As noted above,
our model predicts multiple level crossings at each reso-
nant field, implying that all levels can tunnel simultane-
ously. Novak and Sessoli [11] have suggested that the

3832

Figure 2.5: Double-well potential and energy levels of Mn12-acetate in the
presence of a magnetic field with the longitudinal component Br

z = 2D/gµB.
Energy levels corresponding to the states |m = S� and |m = −S + 2� match.
A small transverse component of the magnetic field induces tunneling of the
magnetization, followed by a spontaneous decay into the ground state. Taken
from [93].

field the eigenenergies E0

m
= E0

−m
, while for Bz �= 0 the eigenenergies of the states

with m < 0 and m > 0 shift in the opposite directions, as shown in Fig. 2.5. For

some values of the longitudinal field Bz the two energy levels corresponding to the

eigenstates |m� in one well and |m�� in the other well match, where |m| �= |m�|.

These resonant fields are given by [93, 94]

Br

z
=

(m+m�)D

gµB

. (2.109)

Due to the conservation of Ŝz the transitions between its eigenstates are for-

bidden. The energy barrier prevents the reversal of magnetization along the easy

axis. Hence, transverse magnetic fields or transverse anisotropy induce quantum

tunneling of the magnetization [153].

2.2.2 Quantum tunneling of magnetization

Since the spin operators Ŝx and Ŝy do not commute with the Hamiltonian

of the system, upon turning on the transverse magnetic field, the resonant-field

degeneracy of energy levels corresponding to |m� and |m�� is removed. Namely,

there is an energy gap ∆m,m� , called tunnel splitting [92, 149, 162, 163], between

the new eigenstates, which are symmetric and antisymmetric superpositions of

the initial degenerate states |m� and |m��. These superpositions allow quantum

tunneling of the magnetic moment [93–96], as the spin can flip from the state |m�

to the state |m��, with the rate of transitions given by the tunneling frequency

ωm,m� = ∆m,m�/� [92, 149, 162, 163]. The barrier height and tunnel splittings can
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Figure 8 Detail of the energy level diagram near an avoided level crossing. m and m� are the
quantum numbers of the energy level. Pm,m� is the Landau–Zener tunnel probability when sweeping
the applied field from the left to the right over the anticrossing. The greater the gap ∆ and the slower
the sweeping rate, the higher is the tunnel rate [equation (2)].
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molecules are in the m = 10 ground state; that is, the magnetization of all molecules is
reversed. As phonon emission can only change the molecule state by ∆m = 1 or 2, there
is a phonon cascade for higher applied fields.

In order to apply quantitatively the Landau–Zener formula [equation (2)], we first satu-
rated the crystal of Fe8 clusters in a field of Hz = −1.4 T, yielding an initial magnetization
Min = −Ms. Then, we swept the applied field at a constant rate over one of the resonance
transitions and measured the fraction of molecules which reversed their spin. This proce-
dure yields the tunneling rate P−10,10−n and thus the tunnel splitting ∆−10,10−n [equa-
tion (2)] with n = 0, 1, 2, . . . .

We first checked the predicted Landau–Zener sweeping field dependence of the tunnel-
ing rate. We found a good agreement for sweeping rates between 10 and 0.001 T/s [30].
The deviations at lower sweeping rates are mainly due to the hole-digging mechanism [65]
which slows down the relaxation. Our measurements showed for the first time that the
Landau–Zener method is particularly adapted for molecular clusters because it works even
in the presence of dipolar fields which spread the resonance transition provided that the
field sweeping rate is not too small.

3.2 Oscillations of tunnel splitting

An applied field in the xy−plane adjusts the tunnel splittings ∆m,m� via the Sx and Sy

spin operators of the Zeeman terms that do not commute with the spin Hamiltonian. This
effect can be demonstrated by using the Landau–Zener method (Section 3.1). Figure 9
presents a detailed study of the tunnel splitting ∆±10 at the tunnel transition between m =
±10, as a function of transverse fields applied at different angles ϕ, defined as the azimuth
angle between the anisotropy hard axis and the transverse field (Figure 5). For small angles
ϕ the tunneling rate oscillates with a period of ∼0.4 T, whereas no oscillations showed
up for large angles ϕ [30]. In the latter case, a much stronger increase of ∆±10 with
transverse field is observed. The transverse field dependence of the tunneling rate for
different resonance conditions between the state m = −10 and (10 − n) can be observed
by sweeping the longitudinal field around µ0Hz = n × 0.22 T with n = 0, 1, 2, . . . .
The corresponding tunnel splittings ∆−10,10−n oscillate with almost the same period of
∼0.4 T (Figure 9). In addition, comparing quantum transitions between m = −10 and
(10 − n), with n even or odd, revealed a parity (or symmetry) effect that is analogous to
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Single-Molecule Magnets

chemistry to modify SMMs, it is clear that
chemistry will permit a systematic study
of the physical phenomena associated
with these molecular nanomagnets.

Quantum Tunneling and
Quantum Coherence

The magnetization of nano-sized par-
ticles can in principle also relax through
an under-barrier mechanism via quantum
admixing of the “up” and “down” states.
Macroscopic quantum tunneling (MQT)
has long been sought, following theoreti-
cal predictions of its presence in nano-
sized magnetic particles.13 However, MQT
must be a rare event, for a macroscopic
particle is by definition a system that is
large enough to behave classically during
most of the time it is being observed. In
1996,14–16 MQT of the magnetization was
first reported for a sample of 1. In fact, the
hysteresis loop, shown in Figure 3, is not
smooth. Steps can be observed at regular
intervals in the plot of magnetization ver-
sus magnetic field. The observed steps in
the hysteresis loop correspond to an in-
crease in the rate of change in magnetiza-
tion occurring when there is an energy
coincidence of the levels on the opposite
parts of the double-well potential. For
these critical field values, tunneling of the
magnetization is allowed, and therefore a
noticeable increase in the relaxation rate
is seen.

The origin of magnetization tunneling
in SMMs is still a matter of active research.
As illustrated in Figure 4, tunneling occurs
between two levels that have the same en-
ergy if some admixing of the two states oc-
curs. The transverse interaction that mixes

the states and gives rise to the so-called
“tunnel splitting” can be provided by low-
symmetry components of the crystal field,
or by a magnetic field provided either by
magnetic nuclei or by the neighboring
molecules. The larger the value of ms, the
smaller the admixture of the two wave
functions and the lower the tunneling
rate. For 1, no direct evidence of tunneling
between the ms ! !10 levels has been ob-
tained, while tunneling between smaller
ms levels is indicated by the appearance of
steps on the magnetization hysteresis loop
(Figure 3).

Detailed studies7 of the Fe8 Complex 2
(Figure 5) using HFEPR17 and inelastic neu-
tron scattering (INS)18 data clearly indicate
that the transverse magnetic anisotropy of
the Fe8 Complex 2 is much larger than that
of the Mn12 Complex 1. This means that
tunneling between the lowest ms states
can be observed. In fact, the Fe8 Complex 2
exhibits a temperature-independent mag-
netization relaxation rate below 0.35 K,
which is only explicable in terms of a tun-
neling of the magnetization occurring in
the lowest energy levels, that is, between
the ms ! "10 and ms ! #10 levels.19 Re-
cently, the very small tunnel splitting in
the Fe8 Complex 2 (i.e., the matrix element
that couples the ms ! "10 and ms ! #10
levels) has been measured.20 Its depend-

ence on the magnetic field applied along
the axis of hard magnetization has also
been measured. The application of a field
along the hard axis does not necessarily
increase the tunneling rate, but gives rise
to oscillations, with quenching of the tun-
neling for critical values of the field where
a destructive interference between the
tunneling pathways occurs. The tunneling
rate oscillates with a period that is simply
related to the zero-field splitting parame-
ter(s).21 By applying a transverse magnetic
field, it is therefore possible to control the
tunneling rate of the axial magnetization
and consequently the coercivity in the hys-
teresis loops. This phenomenon, which
has potential technological applications, is
a characteristic feature of SMMs and their
intrinsic quantum nature.

In 2, the tunnel splitting in zero field
was found to be of the order of 10"8 K.
Any axial field that splits the two ground
levels by an energy exceeding this value
suppresses the tunneling mechanism. In
order to rationalize the observation of tun-
neling, the magnetic field of the nuclei,
which is still fluctuating at low tempera-
ture, has been considered a source of level
broadening and, therefore, of tunneling.

The role of the nuclear magnetic field was
very recently definitively established22 for
the Fe8 Complex 2. The magnetization re-
laxation rate of the standard Fe8 sample
was compared with those of two isotopi-
cally modified samples: (a) 56Fe replaced
by 57Fe and (b) a fraction of the 1H atoms
replaced by 2H atoms. The 56Fe atoms had
no nuclear spin (I ! 0), whereas 57Fe had a
spin of I ! 1/2. Similarly, 1H had I ! 1/2,
while 2H had I ! 1, but with a much
smaller gyromagnetic factor. A strong in-
fluence of nuclear spins on resonant mag-
netization tunneling was observed, where
the tunneling rate was found to be larger
when the hyperfine field was stronger.
Manganese-containing SMMs are not
suited to this kind of experiment, as the
hyperfine field is dominated by the only
stable 55Mn isotope (I ! 5/2).

The interplay of nuclear and electron
spins in the dynamics of the macroscopic
magnetization seems very appealing for
potential use in quantum computing. In
fact, the use of the nuclear magnetization
through modified nuclear magnetic reso-
nance experiments has been suggested as
a model of quantum computing.

The S ! 9/2 Mn4 Complex 3 has also
been shown to have a temperature-
independent magnetization relaxation
rate.11 This complex has a well-isolated
S ! 9/2 ground state with D ! "0.53 cm"1.
Magnetization relaxation rates have been
determined in the 0.394–2.00 K range.
Below 0.60 K, the rate becomes temperature-

Figure 3. Magnetization versus
magnetic field hysteresis loop for
Mn12-acetate Complex 1. Data were
recorded on a single crystal with the
magnetic field applied along the
tetragonal axis of each Mn12 molecule.
The vertical parts of the “steps”
correspond to critical values of the field
where resonant magnetization
tunneling is allowed.

Figure 4. Drawing showing how the
potential-energy diagram of an SMM
changes as the magnetic field is swept
from H ! 0 to H ! nD/g$B. Resonant
magnetization tunneling occurs when
the energy levels are aligned between
the two halves of the diagram.

Figure 2.6: (left) Quantum tunneling of magnetization of a single-molecule
magnet, where P denotes the Landau-Zener probability of spin tunneling from
state |m� to state |m��, whereas ∆ is the tunnel splitting. Adapted from [167].
(right) Magnetization hysteresis loop for an Mn12-acetate at low temperature.
Taken from [148].

be varied using magnetic fields. The Landau-Zener model with the probability

of tunneling for a two-level system [164, 165] can be applied to spin tunneling

in single-molecule magnets [92, 166]. The quantum magnetization tunneling of

a single-molecule magnet is shown in Fig. 2.6 (left). The energy gaps appear at

the resonant magnetic fields, where in the absence of the transverse field, only the

crossings of levels are present. It has been shown that tunnel splitting oscillates as

a function of the transverse magnetic field if the angle between the field and the

hard axis is small. This is due to the Berry-phase interference of two tunneling

paths [100, 101].

Classically, in the low temperature regime,where kBT�U , the spin of a single-

molecule magnet cannot overcome the potential energy barrier, leading to the hys-

teresis in the magnetization [92]. Fig. 2.6 (right) plots the magnetization of Mn12-

acetate as a function of longitudinal magnetic field at a low temperature. The steps

in the hysteresis loop occur at resonant fields, where the relaxation of the magne-

tization is much faster due to the quantum tunneling of magnetization [93–96].

2.2.3 Large spin and classical limit

A single-molecule magnet with a large spin S � 1 has a large number of

spin states, 2S + 1. Its spin can be considered as a classical variable under some

conditions. Tunnel splitting ∆m,m� vanishes for large S [149]. For single-molecule

magnets typically |E/D| < 1, and transverse Zeeman energy is lower than axial

anisotropy energy. In the classical limit, it is required that the magnetic field

along the easy axis Bz is strong, so that the corresponding Zeeman energy is much
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larger than the anisotropy barrier, i.e., gµBBzS � DS2 [168]. In many cases, the

required field Bz can be on the order of tesla. For strong longitudinal magnetic

fields the energy barrier and bistability disappear, allowing complete reversal of

the magnetization.

2.3 Spin-transfer torque

Besides quantum tunneling due to transverse anisotropy, or transverse exter-

nal magnetic fields, another interesting way to manipulate the magnetization of

a single-molecule magnet is by employing spin-polarized currents. In the absence

of charge current, spin currents can be injected into the magnetic nanostructures

and manipulate their magnetization via spin-transfer torques [169]. The study

of spin-transfer torque in view of control and manipulation of nanomagnets has

attracted both technological and academic interest. Current-induced spin-transfer

torque was first predicted independently by Slonczewski and Berger in magnetic

multilayer systems [108, 109], and later experimentally confirmed [111, 170–172].

In the macrospin model, the individual spins in a magnetic nanostructure

are aligned, coupled with strong exchange interactions and form a giant spin

[111, 173]. If the orbital angular momentum can be neglected, then the magneti-

zation and spin of the magnetic nanostructure are related as �M(t) = −γs�S(t). The

macrospin dynamics in this approximation, with neglected internal spin degrees

of freedom, can be described by the Landau-Lifshitz-Gilbert-Slonczewski equation

[108, 174–176], where Slonczewski remodeled the Landau-Lifshitz-Gilbert equa-

tion by adding one additional term that accounts for current-induced spin-transfer

torque as
�̇S(t) = γs �Beff × �S(t) +

α0

S
�̇S(t)× �S(t) + �T (t). (2.110)

In Eq. (2.110) the magnitude of the macrospin is constant, |�S(t)| = S.

In the ideal case the energy of the system is conserved and the field-like torque,

given by the first term in Eq. (2.110), acts on the macrospin. The spin precesses

around the effective magnetic field axis with Larmor frequency ωL = γsBeff , where

γs = gsµB is the gyromagnetic ratio, with the Landé factor gs. The effective field in-

cludes the applied external magnetic field, anisotropy, demagnetization, exchange,

and magnetoelastic fields [175].

However, the system interacts with the environment, and due to energy dissipa-

tion the macrospin �S(t) is moving along spiral trajectory towards the equilibrium

antiparallel alignment with the effective magnetic field �Beff . The damping term is

phenomenologically introduced as the second term in Eq. (2.110), where α0 is the

intrinsic Gilbert damping parameter.
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Figure 2.7: Sketch of a spin-transfer torque �T (t), induced by spin currents,
acting on a magnetic nanostructure with spin �S(t) in an effective magnetic field
�Beff . The in-plane component TII(t) is (anti)parallel to the intrinsic Gilbert
damping torque, whereas the perpendicular component T⊥(t) modifies the pre-
cession frequency of the spin.

In the presence of spin current, the incoming flow of spin carriers interacts with

the macrospin via exchange interactions, and transfers spin-angular momentum to

the macrospin [108–111]. The torque generated on the macrospin during these in-

teractions is called spin-transfer torque, given by the third term in Eq. (2.110).

The outgoing flow of spin current differs from the incoming flow by the amount of

spin-transfer torque exerted on the macrospin [108, 110, 177, 178]

�T (t) = �Iout(t)− �Iin(t), (2.111)

where we assume that the incoming electron spins are not subject to any addi-

tional spin interactions. Taking into account that the magnitude of the spin, S, is

preserved, the spin-transfer torque can be written as [108, 110, 177, 178]

�T (t) = �eS ×

�
[�Iout(t)− �Iin(t)]× �eS

�
, (2.112)

where the unit vector �eS = �S/S indicates the direction of the spin. On the other

hand, since the total spin angular momentum is conserved, the macrospin exerts a

torque −�T (t) on the spin current. This process of generating spin currents by the

macrospin dynamics is called spin pumping [110, 179]. Thus, spin-transfer torque

(reaction) and spin pumping (action) are two opposite effects caused by the inter-

action of the spin current with the macrospin dynamics.
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Devices with stable macrospin precession, which occurs if the intrinsic Gilbert

damping term is balanced by the spin-transfer torque acting in the opposite di-

rection, are called spin-transfer nano-oscillators [171, 180]. Due to the stable

precession of magnetization, these devices can convert dc current into microwave

signals. If the spin current is strong enough, it can induce macrospin (magnetiza-

tion) switching [108, 170, 181].

Since the spin-transfer torque is perpendicular to the macrospin �S, it can be

written as [182]
�T (t) = �TII(t) + �T⊥(t). (2.113)

The in-plane component �TII(t) is collinear with the intrinsic Gilbert damping

torque [182], as presented in Fig. 2.7, and can either enhance the damping of

the macrospin (dissipate energy), or act in the opposite direction (add energy),

leading to the stable precession, or magnetization reversal, for sufficiently large

currents. Effectively, the in-plane component TII(t) modifies the Gilbert damping

coefficient into α0 + α, where α is the contribution attributed to the spin-transfer

torque [110, 179]. The out-of plane (perpendicular) component �T⊥(t) acts as an

additional field-like torque induced by the spin currents, thus modifying the pre-

cession frequency [182].





Chapter 3

Spin transport and tunable

Gilbert damping in a molecular

magnet junction

3.1 Introduction

Currently, a goal in the field of nanophysics is to control and manipulate in-

dividual quantum systems, in particular, individual spins [40, 183]. Some theo-

retical works have investigated electronic transport through a molecular magnet

contacted to leads [42, 150, 151, 184–193]. In this case, the transport properties

are modified due to the exchange interaction between the itinerant electrons and

the single-molecule magnet [194], making it possible to read out the spin state of

the molecule using transport currents. Conversely, the spin dynamics and hence

the state of a single-molecule magnet can also be controlled by transport currents.

Efficient control of the molecule’s spin state can be achieved by coupling to ferro-

magnetic contacts as well [195].

Experiments have addressed the electronic transport properties through mag-

netic molecules such as Mn12 and Fe8 [28, 29], which have been intensively studied

as they are promising candidates for memory devices [102]. Various phenomena

such as large conductance gaps [196], switching behavior [197–199], negative differ-

ential conductance, dependence of the transport on magnetic fields and Coulomb

This chapter is adapted from M. Filipović, C. Holmqvist, F. Haupt, and W. Belzig, Phys.
Rev. B 87, 045426 (2013); 88, 119901(E) (2013). See also: arXiv:1211.3611.
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blockades have been experimentally observed [28, 29, 200, 201]. Experimental tech-

niques, including, e.g., scanning tunneling microscopy [28, 29, 202–204], break

junctions [7, 44, 205], and three-terminal devices [28, 29, 200], have been em-

ployed to measure electronic transport through a single-molecule magnet. Scan-

ning tunneling spectroscopy and scanning tunneling microscopy experiments show

that quantum properties of single-molecule magnets are preserved when deposited

on substrates [204]. The Kondo effect in single-molecule magnets with magnetic

anisotropy has been investigated both theoretically [150, 151] and experimentally

[206, 207]. It has been suggested [208] and experimentally verified [209] that a

spin-polarized tip can be used to control the magnetic state of a single Mn atom.

In some limits, the large spin S of a molecular magnet can be treated as

a classical magnetic moment. In that case, the spin dynamics is described by

the Landau-Lifshitz-Gilbert equation that incorporates effects of external mag-

netic fields as well as torques originating from damping phenomena [174, 175].

In tunnel junctions with magnetic particles, Landau-Lifshitz-Gilbert equations

have been derived using perturbative couplings [210, 211] and the nonequilibrium

Born-Oppenheimer approximation [189]. Current-induced magnetization switch-

ing is driven by a generated spin-transfer torque [108–111] as a back-action effect

of the electronic spin transport on the magnetic particle [189, 212–215]. A spin-

polarized scanning tunneling microscopy [209] has been used to experimentally

study spin-transfer torques in relation to a molecular magnetization [216, 217].

This experimental achievement opens new possibilities for data storage technol-

ogy and applications using current-induced spin-transfer torques.

Our goal is to study the interplay between electronic spin currents and the

spin dynamics of a molecular magnet. We focus on the spin-transport properties

of a tunnel junction through which transport occurs via a single electronic energy

level in the presence of a molecular magnet. The electronic level may belong to a

neighboring quantum dot or it may be an orbital related to the molecular magnet

itself. The electronic level and the molecular spin are coupled via exchange interac-

tion, allowing for interaction between the spins of the itinerant electrons tunneling

through the electronic level and the spin dynamics of the molecular magnet. We

use a semiclassical approach in which the magnetization of the molecular magnet

is treated as a classical spin, whose dynamics is controlled by an external magnetic

field and kept nondissipative by external means [218], while for the electronic spin

and charge transport we use instead a quantum description. The magnetic field

is assumed to be constant, leading to a precessional motion of the molecular spin

around the magnetic field axis. The electronic level is subjected to both the effects

of the molecular spin and the external magnetic field, generating a Zeeman split of

the level. The spin precession makes additional channels available for transport,
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which leads to the possibility of precession-assisted inelastic tunneling. During a

tunnel event, spin-angular momentum may be transferred between the inelastic

spin currents and the molecular spin, leading to a spin-transfer torque that may

be used to manipulate the spin of the molecular magnet. This torque includes

the so-called Gilbert damping, which is a phenomenologically introduced damping

term of the Landau-Lifshitz-Gilbert-Slonczewski equation [108, 174–176], and a

term corresponding to a modification of the precession frequency. We show that

the spin-transfer torque and hence the spin dynamics of the molecular magnet can

be controlled by the external magnetic field, the bias voltage across the junction,

and the gate voltage acting on the electronic level [219].

The chapter is organized as follows: We introduce our model and formalism

based on the Keldysh nonequilibrium Green’s functions technique [45, 46, 220] in

Sec. 3.2, where we derive expressions for the charge and spin currents in linear or-

der with respect to a time-dependent magnetic field and analyze the spin-transport

properties at zero temperature. In Sec. 3.3 we replace the general magnetic field

of Sec. 3.2 by a molecular magnet whose spin precesses in an external constant

magnetic field, calculate the components of the spin-transfer torque related to the

Gilbert damping, and the modification of the precession frequency, and analyze

the effects of the external magnetic field as well as the bias and gate voltages on

the spin dynamics. Conclusions are given in Sec. 3.4.

3.2 Current response to a time-dependent mag-

netic field

3.2.1 Model and formalism

For the sake of clarity, we start by considering a junction consisting of a nonin-

teracting single-level quantum dot coupled with two normal, metallic leads in the

presence of an external, time-dependent magnetic field (see Fig. 3.1). The leads

are assumed to be noninteracting and unaffected by the external field. The total

Hamiltonian describing the junction is given by

Ĥ(t) =
�

ξ∈{L,R}

Ĥξ + ĤT + ĤD(t), (3.1)

where the Hamiltonian of the free electrons in the lead ξ = L,R reads

Ĥξ =
�

k,σ

�kξ ĉ
†

kσξ
ĉkσξ, (3.2)
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eV

�B(t)

Figure 3.1: A quantum dot with a single electronic energy level �0 coupled
to two metallic leads with chemical potentials µL and µR in the presence of an
external time-dependent magnetic field �B(t). The spin-transport properties of
the junction are determined by the dc-bias voltage eV = µL − µR, the position
of the electronic energy level �0, the tunnel rates ΓL and ΓR, and the external
magnetic field.

whereas the tunnel coupling between the quantum dot and the leads can be written

as

ĤT =
�

k,σ,ξ∈{L,R}

[Vkξ ĉ
†

kσξ
d̂σ + V ∗

kξ
d̂†
σ
ĉkσξ]. (3.3)

Here, the spin-independent tunnel matrix element is given by Vkξ. The operators

ĉ†
kσξ

(ĉkσξ) and d̂†
σ
(d̂σ) are the creation (annihilation) operators of the electrons in

the leads and the quantum dot, respectively. The subscript σ =↑, ↓ denotes the

spin-up or spin-down state of the electrons. The electronic level �0 of the quantum

dot is influenced by an external magnetic field �B(t) consisting of a constant part
�Bc and a time-dependent part �B�(t). The Hamiltonian of the quantum dot with

the magnetic field �B(t) acting on the electronic spin �̂s is then given by

ĤD(t) = Ĥc

D
+ Ĥ �(t), (3.4)

where the constant part reads

Ĥc

D
=

�

σ

�0d̂
†

σ
d̂σ + gµB�̂s �B

c, (3.5)

while the the time-dependent part Ĥ �(t) can be written as

Ĥ �(t) = gµB�̂s �B
�(t). (3.6)

The proportionality factor g is the gyromagnetic ratio of the electron and µB is

the Bohr magneton.
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The average charge and spin currents from the left lead to the electronic level

are given by

ILν(t) = qν

�
d

dt
N̂Lν

�
= qν

i

�
��
Ĥ, N̂Lν

��
, (3.7)

where N̂Lν =
�

k,σ,σ�
ĉ†
kσL

(σν)σσ� ĉkσ�L is the charge and spin occupation number

operator of the left contact. The index ν = 0 corresponds to the charge current,

while ν = x, y, z indicates the different components of the spin-polarized current.

The current coefficients qν are then q0 =−e and qν �=0 = �/2. In addition, it is useful

to define the vector σ̂ν = (1̂, �̂σ), where 1̂ is the identity matrix and �̂σ consists of

the Pauli matrices with matrix elements (�σ)σσ� . Using the Keldysh nonequilibrium

Green’s functions technique, the currents can then be obtained as [45, 46]

ILν(t) =−
2qν
� Re

�
dt�Tr

�
σ̂ν [Ĝ

r(t, t�)Σ̂<

L
(t�, t)

+ Ĝ<(t, t�)Σ̂a

L
(t�, t)]

�
, (3.8)

where Ĝr,a,< are the retarded, advanced, and lesser Green’s functions of the elec-

trons in the quantum dot. The matrix elements of these Green’s functions are

given by Gr,a

σσ�(t, t�) = ∓iθ(±t∓ t�)�{d̂σ(t), d̂
†

σ�(t�)}� and G<

σσ�(t, t�) = i�d̂†
σ�(t�)d̂σ(t)�,

while Σ̂r,a,<

L
(t, t�) are self-energies from the coupling between the quantum dot

and the left lead. Their nonzero matrix elements are diagonal in the electronic

spin space with respect to the basis of eigenstates of ŝz, and can be written as

Σr,a,<

L
(t, t�) =

�
k
VkLg

r,a,<

kL
(t, t�)V ∗

kL
. The Green’s functions gr,a,<

kL
(t, t�) are the re-

tarded, advanced and lesser Green’s functions of the free electrons in the left lead.

The retarded Green’s functions Ĝr

0
of the electrons in the quantum dot, in the

presence of the constant magnetic field �Bc, are found using the equation of mo-

tion technique [118], while the lesser Green’s functions Ĝ<

0
are obtained from the

Keldysh equation Ĝ<

0
= Ĝr

0
Σ̂<Ĝa

0
, where multiplication implies internal time inte-

grations [46].

The time-dependent part of the magnetic field can be expressed as

�B�(t) =
�

ω

( �Bωe
−iωt + �B∗

ω
eiωt), (3.9)

where �Bω is a complex amplitude. This magnetic field acts as a time-dependent

perturbation that can be expressed as

Ĥ �(t) =
�

ω

(Ĥωe
−iωt + Ĥ†

ω
eiωt), (3.10)

where Ĥω is an operator in the electronic spin space and its matrix representaton
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in the basis of eigenstates of ŝz is given by

Ĥω =
gµB

2

�
Bωz Bωx − iBωy

Bωx + iBωy −Bωz

�
. (3.11)

Applying Dyson’s expansion, analytic continuation rules and the Keldysh equa-

tion [46], one obtains a first-order approximation of the Green’s functions describ-

ing the electrons in the quantum dot that can be written as

Ĝr
≈ Ĝr

0
+ Ĝr

0
Ĥ �Ĝr

0
, (3.12)

Ĝ<
≈ Ĝr

0
Σ̂<Ĝa

0
+ Ĝr

0
Ĥ �Ĝr

0
Σ̂<Ĝa

0
+ Ĝr

0
Σ̂<Ĝa

0
Ĥ �Ĝa

0
. (3.13)

The expression for the currents in this linear approximation is given by

ILν(t) =−
2qν
� ReTr

�
σ̂ν [Ĝ

r

0
Σ̂<

L
+ Ĝ<

0
Σ̂a

L

+ Ĝr

0
Ĥ �Ĝr

0
Σ̂<

L
+ Ĝr

0
Ĥ �Ĝ<

0
Σ̂a

L
+ Ĝ<

0
Ĥ �Ĝa

0
Σ̂a

L
]
�
. (3.14)

Eq. (3.14) is then Fourier transformed in the wide-band limit, in which the level

width function, Γ(�) = −2 Im{Σr(�)}, is constant, Re{Σr(�)} = 0, and one can

hence write the retarded self-energy originating from the dot-lead coupling as

Σr,a(�) = ∓iΓ/2. From this transformation, one obtains

ILν(t) = Idc
Lν

+
�

ω

[ILν(ω)e
−iωt + I∗

Lν
(ω)eiωt]. (3.15)

Using units in which � = 1, the dc part of the currents [46] Idc
Lν

and the time-

independent complex components ILν(ω) are given by

Idc
Lν

= qν

�
d�

π

ΓLΓR

Γ
[fL(�)− fR(�)] Tr Im{σ̂νĜ

r

0
(�)} (3.16)

and

ILν(ω) =− iqν

�
d�

2π

ΓLΓR

Γ

�
[fL(�)− fR(�)]

× Tr{σ̂ν [Ĝ
r

0
(�+ ω)ĤωĜ

r

0
(�) + 2i Im{Ĝr

0
(�)}ĤωĜ

a

0
(�− ω)]}

+
�

ξ=L,R

Γξ

ΓR

[fξ(�− ω)− fL(�)] Tr[σ̂νĜ
r

0
(�)ĤωĜ

a

0
(�− ω)]

�
. (3.17)

In the above expressions, fξ(�) = [e(�−µξ)/kBT + 1]−1 is the Fermi distribution of

the electrons in lead ξ, where kB is the Boltzmann constant. The retarded Green’s

function Ĝr

0
(�) is given by Ĝr

0
(�) = [�− �0 − Σr(�)− (1/2)gµB�̂σ �Bc]−1 [189, 221].
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The linear response of the spin current with respect to the applied time-

dependent magnetic field can be expressed in terms of complex spin-current sus-

ceptibilities defined as

χL

νj
(ω) =

∂ILν(ω)

∂Bωj

, j = x, y, z. (3.18)

The complex components ILν(ω) are conversely given by ILν(ω) =
�

j
χL

νj
(ω)Bωj.

Taking into account that ∂Ĥω/∂Bωj = (1/2)gµBσ̂j and using Eq. (3.17), the

current susceptibilities can be written as

χL

νj
(ω) =− iqνgµB

�
d�

4π

ΓLΓR

Γ

�
[fL(�)− fR(�)]

× Tr{σ̂ν [Ĝ
r

0
(�+ ω)σ̂jĜ

r

0
(�) + 2i Im{Ĝr

0
(�)}σ̂jĜ

a

0
(�− ω)]}

+
�

ξ

Γξ

ΓR

[fξ(�− ω)− fL(�)]Tr[σ̂νĜ
r

0
(�)σ̂jĜ

a

0
(�− ω)]

�
. (3.19)

The components obey χL

νj
(−ω) = χL∗

νj
(ω). In other words, they satisfy the Kramers-

Kronig relations [145] that can be written in a compact form as

χL

νj
(ω) =

1

iπ
P

�
∞

−∞

χL

νj
(ξ)

ξ − ω
dξ, (3.20)

with P denoting the principal value.

For any i, j, k = x, y, z such that j �= k and j, k �= i, where i indicates the

direction of the constant part of the magnetic field �Bc = Bc�ei, the complex current

susceptibilities satisfy the relations

χL

jj
(ω) = χL

kk
(ω) (3.21)

and χL

jk
(ω) = −χL

kj
(ω), (3.22)

in addition to Eq. (3.20). The other nonzero components are χL

0i
(ω) and χL

ii
(ω). In

the absence of a constant magnetic field, the only nonvanishing components obey

χL

xx
(ω) = χL

yy
(ω) = χL

zz
(ω).

Finally, the average value of the electronic spin in the quantum dot reads

�s(t) = ��̂s(t)� = (1/2)
�

σσ� �σσσ��d̂†
σ
(t)d̂σ�(t)� = −(i/2)

�
σσ� �σσσ�G<

σ�σ(t, t) and the

complex spin susceptibilities are defined as

χs

ij
(ω) =

∂si(ω)

∂Bωj

. (3.23)

They represent the linear responses of the electronic spin components to the ap-

plied time-dependent magnetic field and satisfy the relations similar to Eqs. (3.20),

(3.21), and (3.22) given above.



42 Chapter 3. Spin transport and tunable Gilbert damping in a molecular magnet junction
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Figure 3.2: Sketch of the electronic levels of the quantum dot in the presence
of a time-dependent magnetic field. In a static magnetic field, the electronic
level �0 (solid black line) splits into the Zeeman levels �↑,↓ (solid red and blue
lines). If the magnetic field in addition to the static component also includes a
time-dependent part with a characteristic frequency ω, additional levels appear
at energies �↑±ω (dotted red lines) and �↓±ω (dotted blue lines). Hence, there
are six channels available for transport.

3.2.2 Analysis of the spin and current responses

We start by analyzing the transport properties of the junction at zero tempera-

ture in response to the external time-dependent magnetic field �B(t). The constant

component of the magnetic field �Bc generates a Zeeman split of the quantum dot

level �0, resulting in the levels �↑,↓, where �↑,↓ = �0 ± gµBBc/2 in this subsection.

The time-dependent periodic component of the magnetic field �B�(t) then creates

additional states, i.e., sidebands, at energies �↑±ω and �↓±ω (see Fig. 3.2). These

Zeeman levels and sidebands contribute to the elastic transport properties of the

junction when their energies lie inside the bias-voltage window of eV = µL − µR.

However, electronic levels of the quantum dot which lie outside the bias-voltage

window may also contribute to the electronic transport due to inelastic tunnel pro-

cesses generated by the time-dependent magnetic field. In these inelastic processes,

an electron transmitted from the left lead to the quantum dot can change its en-

ergy by ω and either tunnel back to the left lead or out into the right lead. If this

perturbation is small, as is assumed in this chapter where we consider first-order

corrections, the transport properties are still dominated by the elastic, energy-

conserving tunnel processes that are associated with the Zeeman levels.
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The levels of the quantum dot determine transport properties such as the spin-

current susceptibilities and the spin susceptibilities, which are shown in Figs. 3.3

and 3.4. The imaginary and real parts of the susceptibilities are plotted as func-

tions of the frequency ω in Figs. 3.3(a) and 3.3(b). In this case, the position of

the unperturbed level �0 is symmetric with respect to the Fermi energies of the

leads and a peak or step in the spin-current susceptibilities and spin susceptibili-

ties appears at a value of ω, for which a quantum dot level is aligned with one of

the Fermi energies of the leads.

In Figs. 3.4(a) and 3.4(b), the susceptibilities are instead plotted as functions

of the bias voltage, eV . Here, each peak or step in the susceptibilities corresponds

to a change in the number of available transport channels. The bias voltage is

applied in such a way that the Fermi energy of the right lead is fixed at µR = 0,

while the Fermi energy of the left lead is varied according to µL = eV .

3.3 Spin-transfer torque and molecular spin dy-

namics

3.3.1 Model with a precessing molecular spin

Now we apply the formalism of the previous section to the case of resonant

tunneling through a quantum dot in the presence of a constant external magnetic

field and a molecular magnet [see Fig. 3.5(a)]. A molecular magnet with a spin S

lives in a (2S + 1)-dimensional Hilbert space. We assume that the spin S of the

molecular magnet is large and neglecting the quantum fluctuations, one can treat it

as a classical vector whose end point moves on a sphere of radius S. In the presence

of a constant magnetic field �Bc = Bc�ez, the molecular spin precesses around the

field axis according to �S(t) = S⊥ cos(ωLt)�ex+S⊥ sin(ωLt)�ey+Sz�ez, where S⊥ is the

projection of �S onto the xy plane, ωL = gµBBc is the Larmor precession frequency

and Sz is the projection of the spin on the z-axis [see Fig. 3.5(b)]. The spins of the

electrons in the electronic level are coupled to the spin of the molecular magnet via

the exchange interaction J . The contribution of the external magnetic field and

the precessional motion of the molecular spin create an effective time-dependent

magnetic field acting on the electronic level.

The Hamiltonian of the system is now given by

Ĥ(t) =
�

ξ∈{L,R}

Ĥξ + ĤT + ĤD(t) + ĤS, (3.24)
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Figure 3.3: Frequency dependence of (a) the spin-current susceptibilities and
(b) the spin susceptibilities. The chemical potential of the left lead is equal to
µL = 2 �0. All plots are obtained at zero temperature, with �Bc = Bc�ez, and
the other parameters set to: µR = 0, �↑ = 1.48 �0, �↓ = 0.52 �0, Γ = 0.02 �0, and
ΓL = ΓR = 0.01 �0.
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Figure 3.4: Bias-voltage dependence of (a) the spin-current susceptibilities
and (b) the spin susceptibilities. The frequency is set to ω = 0.16 �0. All plots
are obtained at zero temperature with �Bc = Bc�ez, µL is varied as µL = eV , and
the other parameters are the same as in Fig. 3.3. Resonant transport channels
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z �Bc

eV
�S⊥(t)

(a) (b)

Figure 3.5: (a) Tunneling in the presence of a molecular magnet and an ex-
ternal, constant magnetic field. The electronic level of Fig. 3.1 is now coupled
with the spin of the molecular magnet via exchange interaction with the cou-
pling constant J . The dynamics of the molecular spin �S(t) is controlled by the
external magnetic field �Bc that also affects the electronic level. (b) Precessional
motion of the spin of the molecular magnet in a constant magnetic field �Bc

applied along the z-axis.

where the Hamiltonians Ĥξ and ĤT are the same as in Sec. 3.2. The Hamiltonian

ĤS = gµB
�S �Bc (3.25)

represents the molecular spin �S in the magnetic field �Bc and contributes to the

spin dynamics of the molecular magnet. The Hamiltonian of the quantum dot in

this case is given by

ĤD(t) = Ĥc

D
+ Ĥ �(t), (3.26)

where

Ĥc

D
=

�

σ

�0d̂
†

σ
d̂σ + gµB�̂s �B

c

eff
(3.27)

is the Hamiltonian of the electrons in the quantum dot in the presence of the

constant part of the effective magnetic field, given by

�Bc

eff
=

�
Bc +

J

gµB

Sz

�
�ez. (3.28)

The second term of the quantum dot Hamiltonian,

Ĥ �(t) = gµB�̂s �B
�

eff
(t), (3.29)

represents the interaction between the electronic spins of the quantum dot, �̂s, and

the time-dependent part of the effective magnetic field, given by

�B�

eff
(t) =

JS⊥

gµB

�
cos(ωLt)�ex + sin(ωLt)�ey

�
. (3.30)
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The time-dependent effective magnetic field can be rewritten as

�B�

eff
(t) = �BωL

e−iωLt + �B∗

ωL
eiωLt, (3.31)

where �BωL
is the complex amplitude which consists of the components given by

BωLx
= JS⊥/2gµB, BωLy

= iJS⊥/2gµB, and BωLz
= 0. The time-dependent

perturbation can then be expressed as

Ĥ �(t) = ĤωL
e−iωLt + Ĥ†

ωL
eiωLt, (3.32)

where ĤωL
is an operator that can be written, using Eq. (3.11) and the above

expressions for BωLj
, j = x, y, z, as

ĤωL
=

JS⊥

2

�
0 1

0 0

�
. (3.33)

The time-dependent part of the effective magnetic field creates inelastic tunnel

processes that contribute to the currents. The in-plane components of the spin

current fulfill

ILx(ωL) = −iILy(ωL)

=
JS⊥

2gµB

[χL

xx
(ωL) + iχL

xy
(ωL)], (3.34)

where �Bc is replaced by �Bc

eff
. The z component vanishes to lowest order in H �(t)

[222]. Therefore, the inelastic spin current has a polarization that precesses in the

xy plane. The inelastic spin-current components, in turn, exert a spin-transfer

torque on the molecular spin given by [108–111]

�T (t) = −[�IL(t) + �IR(t)]. (3.35)

Using expressions (3.15), (3.17), and (3.33), the torque of Eq. (3.35) can be

calculated in terms of the Green’s functions Ĝr

0
(�) and Ĝa

0
(�) as

Ti(t) =−
JS⊥

2

�
d�

2π

�

ξλ

ΓξΓλ

Γ
[fξ(�− ωL)− fλ(�)]

× Im{(σi)↓↑G
r

0,↑↑
(�)Ga

0,↓↓
(�− ωL)e

−iωLt}, (3.36)

with λ = L,R. Here (σi)↓↑, Gr

0,↑↑
(�), and Ga

0,↓↓
(�) are matrix elements of σ̂i, Ĝr

0
(�)
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and Ĝa

0
(�) with respect to the basis of eigenstates of ŝz. This spin-transfer torque

can be rewritten in terms of the spin vector of the molecular magnet as

�T (t) =
α

S
�̇S(t)× �S(t) + β �̇S(t) + η�S(t). (3.37)

The first term in this back-action gives a contribution to the Gilbert damping,

characterized by the Gilbert damping coefficient α. The second term acts as an

effective constant magnetic field and changes the precession frequency of the spin
�S with the corresponding coefficient β. The third term cancels the z component

of the Gilbert damping term, thus restricting the spin-transfer torque to the xy

plane. The coefficient of the third term η is related to α by η/α = ωLS2

⊥
/SSz.

Expressing the coefficients α and β in terms of the current susceptibilities χξ

xx
(ωL)

and χξ

xy
(ωL) results in

α =−
JSz

gµBωLS

�

ξ

[Re{χξ

xx
(ωL)}− Im{χξ

xy
(ωL)}], (3.38)

β =
J

gµBωL

�

ξ

[Im{χξ

xx
(ωL)}+ Re{χξ

xy
(ωL)}]. (3.39)

By inserting the explicit expressions for Gr

0,↑↑
(�) and Ga

0,↓↓
(�−ωL), one obtains the

following expressions for the torque coefficients [219]

α =
J2S2

z

ωLS

�
d�

8π

�

ξλ

ΓξΓλ[fξ(�− ωL)− fλ(�)]

×
1

[(Γ
2
)2 + (�− �↑)2][(

Γ

2
)2 + (�− �↓ − ωL)2]

, (3.40)

β =−
J

ωLΓ

�
d�

4π

�

ξλ

ΓξΓλ[fξ(�− ωL)− fλ(�)]

×
(Γ
2
)2 + (�− �↑)(�− �↓ − ωL)

[(Γ
2
)2 + (�− �↑)2][(

Γ

2
)2 + (�− �↓ − ωL)2]

, (3.41)

where �↑,↓ = �0 ± gµBBc

eff
/2 = �0 ± (ωL + JSz)/2 are the energies of the Zeeman

levels in this subsection. In the small precession frequency regime, ωL � kBT ,

η → 0 and in the limit of Sz/S → 1 the expression for the coefficient α is in

agreement with [189].
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�↓ + ωL

Figure 3.6: Sketch of the electronic quasienergy levels of the quantum dot in
the presence of a molecular spin precessing with the frequency ωL around an
external, constant magnetic field. The corresponding Zeeman levels are �↑,↓.
The precessional motion of the molecular spin results in emission (absorption)
of energy corresponding to a spin flip from spin up (down) to spin down (up).
Hence, there are only four channels available for transport.

3.3.2 Analysis of the spin-transfer torque

In the case of resonant tunneling in the presence of a molecular spin precess-

ing in a constant external magnetic field, one also needs to take the exchange of

spin-angular momentum between the molecular spin and the electronic spins into

account in addition to the effects of the external magnetic field. Due to the pre-

cessional motion of the molecular spin, an electron in the quantum dot emitting

(absorbing) an energy ωL also undergoes a spin flip from spin up (down) to spin

down (up), as indicated by the arrows in Fig. 3.6. As a result, the levels at energies

�↑ + ωL and �↓ − ωL are forbidden and hence do not contribute to the transport

processes. Consequently, there are only four transport channels, which are located

at energies �↓, �↓ +ωL, �↑ −ωL, and �↑. We should point out that these quasiener-

gies can be obtained using the Floquet theorem [224–228], taking into account

that we treat the periodic time-dependent part of the Hamiltonian as a pertur-

bation (see Appendix A). In this case there are also elastic and inelastic tunnel

processes. Some of the possible inelastic tunnel processes are shown in Fig. 3.7.

These restrictions on the inelastic tunnel processes are also visible in Fig. 3.4(a),

which identically corresponds to the case of the presence of a precessing molecular

spin with the Larmor frequency ωL = 0.16 �0, and JSz = 0.8 �0. Namely, from
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Figure 3.7: Sketch of the inelastic spin-tunneling processes in the quantum
dot in the presence of the precessing molecular spin in the field �Bc = Bc�ez,
for different positions of the quasienergy levels with respect to the chemical
potentials of the leads, µL and µR. Only transitions between levels with the
same color (blue or red) are allowed. Different colored curved arrows (magenta,
brown, or green) represent different processes.

Eq. (3.34), which is equivalent to

Re{ILx(ωL)} = Im{ILy(ωL)} =
JS⊥

2gµB

[Re{χL

xx
(ωL)}− Im{χL

xy
(ωL)}], (3.42)

Im{ILx(ωL)} = −Re{ILy(ωL)} =
JS⊥

2gµB

[Im{χL

xx
(ωL)}+ Re{χxy(ωL)}], (3.43)

and from the symmetries of the susceptibilities displayed in Fig. 3.4(a), it follows

that there are no spin currents at eV = �↑ + ωL and eV = �↓ − ωL.

As was mentioned, the spin currents generate a spin-transfer torque acting

on the molecular spin. A necessary condition for the existence of a spin-transfer

torque, and hence finite values of the coefficients α and β in Eqs. (3.40) and (3.41),

is that �IL(t) �= −�IR(t) [see Eq. (3.35)]. This condition is met by the spin currents

generated, e.g., by the inelastic tunnel processes shown in Figs. 3.7(b) and 3.7(c).

These tunnel processes occur when an electron can tunnel into the quantum dot,

undergo a spin flip, and then tunnel off the quantum dot into either lead. From

these tunnel processes it is implied that the Gilbert damping coefficient α and the

coefficient β can be controlled by the applied bias or gate voltage as well as by the

external magnetic field. If a pair of quantum dot’s quasienergy levels, coupled via
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spin-flip processes, lie within the bias-voltage window, the spin currents instead

fulfill �IL(t) = �IR(t), leading to a vanishing spin-transfer torque [see Fig. 3.7(d)].

In Figs. 3.7(e) and 3.7(f) the position of the quasienergy levels of the quantum

dot are symmetric with respect to the Fermi levels of the leads, µL and µR. When

the quantum dot’s level with energy �↑ is aligned with µL, this simultaneously

corresponds to the level �↓ being aligned with µR [see Fig. 3.7(f)]. As a result,

an electron can now tunnel from the left lead into the level �↑, while a spin-down

electron in the level �↓ can tunnel into the right lead. These additional processes

enhance the spin-transfer torque compared to that of the case 3.7(e).

The two spin-torque coefficients α and β exhibit a nonmonotonic dependence

on the tunneling rates Γ, as can be seen in Figs. 3.8, 3.9, and 3.10. For Γ → 0, it

is obvious that α, β → 0. In the weak coupling limit Γ � ωL, the coefficients α

and β are finite if the Fermi energy of the lead ξ, µξ fulfills either of the conditions

�↓ ≤ µξ ≤ �↓ + ωL, (3.44)

or �↑ − ωL ≤ µξ ≤ �↑, (3.45)

in such a way that each condition is satisfied by the Fermi energy of maximum

one lead. These conditions are relaxed for larger tunnel couplings as a conse-

quence of the broadening of the quantum dot’s levels, which is also responsible for

the initial enhancement of α and β with increasing Γ. Notice, however, that α

and β are eventually suppressed for Γ � ωL, when the quasienergy levels of the

quantum dot are significantly broadened and overlap so that spin-flip processes

are equally probable in each direction and there is no net effect on the molecular

spin. Physically, this suppression of the spin-transfer torque can be understood by

noticing that for Γ � ωL a current-carrying electron perceives the molecular spin

as almost static due to its slow precession compared to the electronic tunneling

rates, and hence the exchange of angular momenta is reduced. With increasing

tunneling rates, the coefficient β becomes negative before it drops to zero, causing

the torque β �̇S to oppose the rotational motion of the spin �S.

In Fig. 3.8, the Gilbert damping coefficient α and the coefficient β are plotted

as functions of the applied bias voltage at zero temperature. We analyze the case

of the smallest value of Γ (red lines), assuming that ωL > 0. For small eV , all

quasienergy levels of the quantum dot lie outside the bias-voltage window and

there is no spin transport [see Fig. 3.7(a)]. Hence α, β → 0. At eV = �↓ the tunnel

processes in Fig. 3.7(b) come into play, leading to a finite spin-transfer torque

and the coefficient α increases while the coefficient β has a local minimum. In the

voltage region specified by inequality (3.44) for µL, the coefficient α approaches a

constant value while the coefficient β increases. By increasing the bias voltage to
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Figure 3.8: (a) Gilbert damping coefficient α and (b) coefficient β as func-
tions of the applied bias voltage eV = µL − µR, with µR = 0, and �Bc = Bc�ez,
for different tunneling rates Γ, at zero temperature. The other parameters are:
ΓL = ΓR = Γ/2, �↑ = 1.48 �0, �↓ = 0.52 �0, S = 82, J = 0.01 �0, JSz = 0.8 �0,
and ωL = 0.16 �0. In the case of the smallest value of Γ (red lines), α approaches
a constant value when µL lies within the energy range specified by inequali-
ties (3.44) and (3.45). The coefficient β has one local minimum and one local
maximum for the same energy range.
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eV = �↓ + ωL the tunnel processes in Fig. 3.7(c) occur, leading to a decrease of α

and a local maximum of β. For �↓ + ωL < eV < �↑ − ωL, the coefficients α, β → 0

[see Fig. 3.7(d)]. In the voltage region specified by inequality (3.45) for µL, α ap-

proaches the same constant value mentioned above while β decreases between a

local maximum at eV = �↑−ωL and a local minimum at eV = �↑, which approach

the same values as previously mentioned extrema. With further increase of eV ,

all quasienergy levels of the quantum dot lie within the bias-voltage window and

the spin-transfer torque consequently vanishes.

Figure 3.9 shows the spin-torque coefficients α and β as functions of the posi-

tion of the electronic level �0. A spin-transfer torque acting on the molecular spin

occurs if the electronic level �0 is positioned in such a way that the inequalities

(3.44) and (3.45) may be satisfied by some values of eV , �0 and ωL. Again, we

analyze the case of the smallest value of Γ (red curve). For the particular choice of

parameters in Fig. 3.9, there are four regions in which the inequalities (3.44) and

(3.45) are satisfied. Within these regions, α approaches a constant value while

β has a local maximum as well as a local minimum. These local extrema occur

when one of the Fermi energies is aligned with one of the quasienergy levels of the

quantum dot. For other values of �0, both α and β vanish.

The coefficients α and β are plotted as functions of the precession frequency ωL

in Fig. 3.10. Here, �0 = eV/2 and therefore the positions of the quasienergy levels

of the quantum dot are symmetric with respect to the Fermi levels of the leads, µL

and µR. Once more, we focus first on the case of the smallest value of Γ (indicated

by the red curve). The energies of all four levels of the quantum dot depend on ωL,

i.e., �Bc. For ωL > 0, when the magnitude of the external magnetic field is large

enough, the tunnel processes in Fig. 3.7(f) take place due to the above-mentioned

symmetries. These tunnel processes lead to a finite spin-transfer torque, a maxi-

mum for the Gilbert damping coefficient α, and a negative minimum value for the

β coefficient. As ωL increases, the inequalities (3.44) and (3.45) are satisfied and

the tunnel processes shown in Fig. 3.7(e) may occur. Hence, there is a contribution

to the spin-transfer torque, but as is shown in Eq. (3.40), the Gilbert damping

decreases with increasing precession frequency. At larger values of ωL, resulting in

�↓ + ωL = µL, the Gilbert damping coefficient has a step increase towards a local

maximum, whereas, the coefficient β has a local maximum, as a consequence of

the enhancement of the spin-transfer torque due to additional spin-flip processes

occurring in this case. For even larger value of ωL, the conditions (3.44) and (3.45)

are no longer fulfilled and both coefficients vanish. It is energetically unfavorable

to flip the spin of an electron against the antiparallel direction of the effective

constant magnetic field �Bc

eff
. Hence, as ωL increases, more energy is needed to flip

the electronic spin to the direction of the field. This causes α to decrease with
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Figure 3.9: (a) Gilbert damping coefficient α and (b) coefficient β as functions
of the position of the electronic level �0 for different tunneling rates Γ, with
�Bc = Bc�ez, at zero temperature. The applied bias voltage is eV = µL−µR, with
µR = 0. The other parameters are: ΓL = ΓR = Γ/2, �↑ − �0 = 0.24 eV , S = 82,
J = 0.005 eV , JSz = 0.4 eV , and ωL = 0.08 eV . In the case of the smallest
value of Γ (red lines), there are four regions in which the Gilbert damping and
the change of the precession frequency occur. In each of these regions �0 satisfies
the inequalities (3.44) and (3.45), and α approaches a constant value, whereas,
β has one local maximum and one local minimum.
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Figure 3.10: (a) Gilbert damping coefficient α and (b) coefficient β as func-
tions of the precession frequency ωL = gµBBc of the spin �S of the molecular
magnet, with �Bc = Bc�ez, for different tunneling rates Γ, at zero temperature.
The applied bias voltage is eV = µL − µR = 2 �0, with µR = 0. The other
parameters are the same as in Fig. 3.8. In the case of the smallest Γ (red lines),
the coefficient α has a step increase towards a local maximum, whereas, the
coefficient β has a local maximum or minimum at a value of ωL corresponding
to a resonance of µL with one of the levels in the quantum dot.
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increasing ωL. Additionally, the larger the ratio ωL/Γ, the less probable it is that

spin-angular momentum will be exchanged between the molecular spin and the

itinerant electrons. For ωL = 0, the molecular spin is static, i.e., �̇S = 0. In this

case �T (t) = �0. The coefficient α then drops to zero, whereas, the coefficient β

reaches a negative local maximum which is close to 0. Both α and β reach an

extremum value for large values of Γ at this point. For ωL < 0 and Γ � |ωL|

(red lines), at the value of ωL for which µL = �↑ − ωL, the coefficient α has a step

increase towards a local maximum, whereas, the coefficient β has a negative local

minimum. The coefficient α then decreases with a further decrease of ωL as long

as �↓ ≤ µL ≤ �↑ − ωL. At the value of ωL for which µL = �↓, α has another step

increase towards a local maximum, whereas, β has a maximum value. According

to Eq. (3.40), the Gilbert damping also does not occur if �S is perpendicular to
�Bc. In this case β � 0, and the only nonzero torque component β �̇S(t) acts in the

oposite direction than the molecular spin’s rotational motion.

3.4 Conclusions

In this chapter we have first theoretically studied time-dependent charge and

spin transport through a small junction, consisting of a single-level quantum dot

coupled to two noninteracting metallic leads in the presence of a time-dependent

magnetic field. We used the Keldysh nonequilibrium Green’s functions method

to derive the charge and spin currents in linear order with respect to the time-

dependent component of the magnetic field with a characteristic frequency ω.

We then focused on the case of a single electronic level coupled via exchange

interaction to an effective magnetic field created by the precessional motion of the

spin of a molecular magnet in a constant magnetic field. The inelastic tunneling

processes that contribute to the spin currents produce a spin-transfer torque that

acts on the molecular spin. The spin-transfer torque consists of a Gilbert damping

component, characterized by the coefficient α, as well as a component, character-

ized by the coefficient β, that acts as an additional effective constant magnetic

field, and changes the precession frequency ωL of the molecular spin. Both α and

β depend on ωL and show a nonmonotonic dependence on the tunneling rates Γ.

In the weak coupling limit Γ � ωL, α can be switched on and off as a function of

bias and gate voltages. The coefficient β correspondingly has a local extremum.

For Γ → 0, both α and β vanish.

Taking into account that spin transport can be controlled by the bias and gate

voltages, as well as by external magnetic fields, our results might be useful in
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spintronics applications using molecular magnets. Besides a spin-polarized scan-

ning tunneling microscopy, it may be possible to detect and manipulate the spin

state of a molecular magnet in a ferromagnetic resonance experiment [229–232],

and thus extract information about the effects of the current-induced spin-transfer

torque on the molecular magnet. Our study could be complemented by a quantum

description of a single-molecule magnet in a single-molecule magnet junction and

its coherent properties, as these render the single-molecule magnet suitable for

quantum information storage.





Chapter 4

Photon-assisted electronic and

spin transport through a

precessing spin of a molecular

magnet

4.1 Introduction

Time-dependent transport through molecular junctions has been theoretically

studied using different techniques, such as nonequilibrium Green’s functions tech-

nique [45, 46, 48, 220, 233], time-dependent density functional theory [59, 61, 234–

236], reduced density matrix approach [237], etc. Time-dependent periodic fields

in electrical contacts cause photon-assisted tunneling [33, 36, 238–240], a phe-

nomenon based on the fact that by applying an external harmonic field with

frequency Ω to the contact, the conduction electrons interact with the ac field

and consequently participate in the inelastic tunneling processes by absorbing or

emitting an amount of energy n�Ω, where n ∈ Z �= 0. Theoretically, photon-

assisted tunneling through atoms and molecules was investigated in numerous

works [33, 36, 241–250]. Some experimental studies addressed photon-assisted

tunneling through atomic-sized [251–253] and molecular [254, 255] junctions in the

presence of laser fields. Time dependent electric control of the state of quantum

spins of atoms has also been investigated [209]. In junctions with time-dependent

This chapter is adapted from a submitted manuscript by M. Filipović and W. Belzig,
arXiv:1412.3994.
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ac bias the presence of displacement currents is inevitable due to the charge ac-

cumulation in the scattering region [256, 257]. This problem can be solved either

implicitly by including the Coulomb interaction in the Hamiltonian of the system

[258, 259], or explicitly by adding the displacement current to the conduction cur-

rent [257, 260], thus providing the conservation of the total ac current.

Spin transport through magnetic nanostructures can be used to manipulate

the state of the magnetization via spin-transfer torques [108, 109]. The concept

of spin-transfer torque is based on the transfer of spin angular momenta from the

conduction electrons to a local magnetization in the scattering region, generating

a torque as a back-action of the spin transport, and thus changing the state of the

magnetic nanostructure [108–111]. Hence, current-induced magnetization reversal

became an active topic in recent years [90, 189, 194, 208, 212–214]. The measure-

ment and control of the magnetization of single-molecule magnets [146] employing

spin transport may bring important applications in spintronics.

In this chapter we theoretically study the charge and spin transport through

a single electronic energy level in the presence of a precessing spin of a molecular

magnet in a constant magnetic field. The electronic level may be an orbital of

the molecule, or it may belong to a nearby quantum dot. The molecular spin,

treated as a classical magnetic moment, exhibits Larmor precession around the

magnetic field axis. The Zeeman field and the interaction of the orbital with the

precessing molecular spin result in four quasienergy levels in the quantum dot,

obtained using the Floquet theorem [224–228]. The system is then connected to

electric contacts subject to oscillating electric potentials considered as a perturba-

tion. The oscillating chemical potentials induce photon-assisted charge and spin

tunneling. A photon-assisted spin-transfer torque is exerted on the molecular spin

by the photon-assisted spin-currents. This torque is not included in the dynam-

ics of the molecular spin, since its precession is kept steady by external means,

thus compensating the spin-transfer torque. The precessing molecular spin in turn

pumps spin-currents into the leads, acting as an external rotating exchange field.

We observe a few major effects [223]:

1. In the limit of low ac frequency the junction can be mapped onto a classical

electric circuit.

2. The real and imaginary components of the dynamic conductance, associ-

ated with the resonant position of the chemical potentials with molecular

quasienergy levels, are both enhanced after going to a local minimum, around

the ac frequency matching the Larmor frequency, allowing the detection of

the internal precession time scale.
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µL ΓL ΓR

�B �S(t)
µR

�0 �s(t)

JgµB

evacR cos(Ωt+ φR)

∼

∼

eV

µR ∼

evacL cos(Ωt+ φL)

evacR cos(Ωt+ φR)

Figure 4.1: Photon-assisted tunneling through a single molecular level with
energy �0, coupled to the spin �S(t) of a molecular magnet via exchange inter-
action with the coupling constant J , in the presence of a constant magnetic
field �B. External ac potentials V ac

ξ
(t) = vac

ξ
cos(Ωt+φξ) are applied to the leads

ξ = L,R with chemical potentials µξ and tunnel rates Γξ.

3. The setup can be employed to generate and control dc-spin currents by tun-

ing the molecular magnetization direction and the relative phases between

the ac-voltage and Larmor precession, if ac frequency matches the Larmor

frequency.

A part of this chapter is a complement to [219], representing the solution for

the Gilbert damping coefficient [110, 175, 179], nonperturbative in the coupling

to the molecular magnet in the absence of time-varying voltage. The other cor-

responding spin-torque coefficients, and an arising nonzero z component of the

spin-transfer torque are obtained as well.

The chapter is organized in the following way: We describe the model setup of

the system in Sec. 4.2. The theoretical formalism based on the Keldysh nonequi-

librium Green’s functions technique [45, 46, 220] is introduced in Sec. 4.3. Here we

derive expressions for spin and charge currents in linear order with respect to ac

harmonic potentials in the leads. In Sec. 4.4 we obtain and analyze the dynamic

conductance of the charge current using the current partitioning scheme developed

by Wang et al. in [260]. This section is followed by Sec. 4.5 in which we analyze

spin transport and spin-transfer torque under dc-bias voltage and oscillating bias

voltage. We finally conclude in Sec. 4.6.

4.2 Model setup

We consider a junction consisting of a single spin-degenerate molecular orbital

of a molecular magnet with a precessing spin in a constant magnetic field along z-

axis, �B = B�ez, coupled to two normal metallic leads (see Fig. 4.1). We assume the
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spin of the molecular magnet is large enough so that we can neglect the quantum

fluctuations and treat it as a classical vector �S, with constant length S = |�S|. The

magnetic field does not affect the electric contacts, which are assumed to be nonin-

teracting. An external ac harmonic potential V ac

ξ
(t) = vac

ξ
cos(Ωt+φξ) is applied to

each lead ξ = L,R, modulating the single electron energy as �kξ(t) = �kξ+eV ac

ξ
(t),

with �kξ being the single-particle energy of an electron with the wave number k,

in the absence of the time-varying voltage. Since we want to unravel the quantum

effects induced by the tunneling electrons and the ac harmonic potentials in the

leads, we consider a well coupled molecular orbital and treat it as noninteracting

by disregarding the intra-orbital Coulomb interactions between the electrons.

The junction is described by the Hamiltonian

Ĥ(t) =
�

ξ∈{L,R}

Ĥξ(t) + ĤT + ĤMO(t) + ĤS, (4.1)

where

Ĥξ(t) =
�

k,σ

�kξ(t)ĉ
†

kσξ
ĉkσξ (4.2)

is the Hamiltonian of lead ξ = L,R. The subscript σ =↑, ↓= 1, 2 = ±1 denotes

the spin-up or spin-down state of the electrons. The tunneling Hamiltonian

ĤT =
�

k,σ,ξ

[Vkξ ĉ
†

kσξ
d̂σ + V ∗

kξ
d̂†
σ
ĉkσξ] (4.3)

introduces the spin-independent tunnel coupling between the molecular orbital and

the leads, with matrix element Vkξ. The operators ĉ
†

kσξ
(ĉkσξ) and d̂†

σ
(d̂σ) represent

the creation (annihilation) operators of the electrons in the leads and the molecular

orbital. The next term in the Hamiltonian of the system is given by

ĤMO(t) =
�

σ

�0d̂
†

σ
d̂σ + gµB�̂s �B + J�̂s�S(t). (4.4)

The first term in Eq. (4.4) describes the noninteracting molecular orbital with

energy �0. The second term represents the electronic spin in the molecular orbital,

�̂s = (�/2)
�

σσ�(�σ)σσ� d̂†
σ
d̂σ� , in the presence of the external constant magnetic field

�B, and the third term expresses the exchange interaction between the electronic

spin and the molecular spin �S(t). Here, �̂σ = (σ̂x, σ̂y, σ̂z)T represents the vector of

the Pauli matrices. The proportionality factors g and µB are the gyromagnetic

ratio of the electron and the Bohr magneton, respectively, while J is the exchange

coupling constant between the molecular and electronic spins.
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Presuming for simplicity that the molecular spin g-factor equals that of a free

electron, the last term in the Hamiltonian of the junction

ĤS = gµB
�S �B (4.5)

represents the molecular spin �S in the magnetic field �B. Accordingly, the field
�B exerts a torque on the spin �S, leading to its precession around the field axis

with Larmor frequency ωL = gµBB. To compensate for the dissipation of the

magnetic energy due to the interaction with the conduction electrons, we as-

sume that the molecular spin is kept precessing by external means (e.g., rf fields)

[218]. Hence, we keep the tilt angle θ between �B and �S fixed and determined

by the initial conditions. The dynamics of the molecular spin is then given by
�S(t) = S⊥ cos(ωLt)�ex+S⊥ sin(ωLt)�ey +Sz�ez, where S⊥ is the magnitude of the in-

stantaneous projection of �S(t) onto the xy plane, given by S⊥ = S sin(θ), while the

projection of the molecular spin on the z-axis equals Sz = S cos(θ). The precessing

spin �S(t) pumps spin-currents into the system, but the effects of spin-currents onto

the molecular spin dynamics are compensated by the above mentioned external

sources.

4.3 Theoretical formalism

The ensemble and quantum average charge and spin currents from the lead ξ

to the molecular orbital are given by

Iξν(t) = qν

�
d

dt
N̂ξν

�
= qν

i

�
��
Ĥ, N̂ξν

��
, (4.6)

with N̂ξν =
�

k,σ,σ�
ĉ†
kσξ

(σν)σσ� ĉkσ�ξ representing the charge and spin occupation

number operator of the contact ξ. The index ν takes values ν = 0 for the charge

and ν = 1, 2, 3 for the components x, y, z of the spin-polarized current. The pre-

factors qν correspond to the electronic charge q0 = −e and spin qν �=0 = �/2.
Employing the Keldysh nonequilibrium Green’s functions technique, the currents

can be calculated in units in which � = e = 1 as [45, 46]

Iξν(t) =− 2qνRe

�
dt�Tr

�
σ̂ν [Ĝ

r(t, t�)Σ̂<

ξ
(t�, t)

+ Ĝ<(t, t�)Σ̂a

ξ
(t�, t)]

�
, (4.7)

where σ̂0 = 1̂ is the identity matrix, while σ̂ν �=0 are the Pauli matrices. In Eq. (4.7),

Σ̂r,a,<

ξ
(t, t�) are the retarded, advanced, and lesser self-energies from the tunnel
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coupling between the molecular orbital and the lead ξ, while Ĝr,a,<(t, t�) are the

corresponding Green’s functions of the electrons in the molecular orbital. The

matrices of the self-energies are diagonal in the electronic spin space with re-

spect to the basis of eigenstates of ŝz, and their nonzero entries are given by

Σr,a,<

ξ
(t, t�) =

�
k
V
kξ
gr,a,<
kξ

(t, t�)V ∗

kξ
, where gr,a,<

kξ
(t, t�) are the retarded, advanced

and lesser Green’s functions of the electrons in contact ξ. The matrix elements

of the retarded, advanced and lesser Green’s functions Ĝr,a,<(t, t�) are given by

Gr,a

σσ�(t, t�) = ∓iθ(±t ∓ t�)�{d̂σ(t), d̂
†

σ�(t�)}� and G<

σσ�(t, t�) = i�d̂†
σ�(t�)d̂σ(t)�, where

{·, ·} denotes the anticommutator. The self-energies of lead ξ can be expressed as

[45, 46, 220]

Σ<

ξ
(t, t�) = i

�
d�

2π
e−i�(t−t

�)+iϕξ(t,t
�)fξ(�)Γξ(�), (4.8)

Σr

ξ
(t, t�) = −iθ(t− t�)

�
d�

2π
e−i�(t−t

�)+iϕξ(t,t
�)Γξ(�) . (4.9)

Here we introduced the Faraday phases ϕξ(t, t�) = e
�

t
�

t
dt��V ac

ξ
(t��). From its defini-

tion it follows that Σa

ξ
(t, t�) = [Σr

ξ
(t�, t)]∗. Furthermore, fξ(�) = [e(�−µξ)/kBT + 1]−1

is the Fermi-Dirac distribution of the electrons in the lead ξ, with kB the Boltz-

mann constant, T the temperature, while Γξ(�) = 2π
�

k
|Vkξ|

2δ(� − �kξ) is the

tunnel coupling to the lead ξ. Using the self-energies defined above and applying

the double Fourier transformations in Eq. (4.7), in the wide-band limit in which

Γξ is energy independent one obtains

Iξν(t) = 2qνΓξIm

�
d�

2π

�
d��

2π
e−i(�−�

�)t

×

�

m,n

Jm

�
vac
ξ

Ω

�
Jn

�
vac
ξ

Ω

�
ei(m−n)φξ

× Tr
�
σ̂ν [fξ(�

�

m
)Ĝr(�, ��

mn
) +

1

2
Ĝ<(�, ��

mn
)]
�
, (4.10)

where we used the abbreviations �m = � − mΩ and �mn = � − (m − n)Ω. The

generating function exp[ia sin(Ωt + φ)] =
�

m
Jm(a) exp[im(Ωt + φ)] was used in

Eq. (4.10), where Jm is the Bessel function of the first kind of order m.

The matrix components of the retarded Green’s function of the electrons in

the molecular orbital, in the absence of the ac harmonic potentials in the leads,

can be obtained exactly by applying Dyson’s expansion and analytic continuation

rules [46]. Their double Fourier transforms are written as [221]

G
r

σσ
(�, ��) =

2πδ(�− ��)G0r

σσ
(�)

1− γ2G0r
σσ
(�)G0r

−σ−σ(�σ)
, (4.11)

G
r

σ−σ
(�, ��) =

2πγδ(�σ − ��)G0r

σσ
(�)G0r

−σ−σ
(�σ)

1− γ2G0r
σσ
(�)G0r

−σ−σ(�σ)
, (4.12)
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with γ = JS sin(θ)/2 and �σ = �−σωL. The matrix elements of the corresponding

lesser Green’s function are obtained using the Fourier-transfomed Keldysh equa-

tion Ĝ<(�, ��) =
�
d���Ĝr(�, ���)Σ̂<

0
(���)Ĝa(���, ��)/2π [46]. Here Ĝa(�, ��) = [Ĝr(��, �)]†,

and Σ<

0
(�) = i

�
ξ
Γξfξ(�) is the lesser self-energy originating from the orbital-

lead coupling in the absence of harmonic potentials in the leads. The retarded

Green’s functions Ĝ0r of the electrons in the molecular orbital, in the presence of

the static component of the molecular spin and the constant magnetic field �B, are

found using the equation of motion technique [118], and Fourier transformed read

Ĝ0r(�) = [�− �0 − Σr

0
(�)− σ̂z(gµBB + JSz)/2]−1 [189, 221], where Σr

0
(�) = −iΓ/2

and Γ =
�

ξ
Γξ.

For a weak ac field vac
ξ

� Ω, the retarded and lesser Green’s functions of the

electrons in the molecular orbital can be obtained by applying Dyson’s expansion,

analytic continuation rules and the Keldysh equation [46]. Keeping only terms

linear in vac
ξ
/Ω they read

Ĝr(�, ��) ≈ Ĝ
r(�, ��), (4.13)

Ĝ<(�, ��) ≈ Ĝ
<(�, ��) + i

�

ξ,n=±1

nΓξ

vac
ξ

Ω
einφξ

×

�
d���

4π
[fξ(�

��

n
)− fξ(�

��)]Ĝr(�, ���
n
)Ĝa(���, ��) . (4.14)

In the rest of the chapter we will stay in this limit.

The particle current contains the following contributions

Iξν(t) = IωL

ξν
(t) + IΩ

ξν
(t) . (4.15)

The first component represents the transport in the absence of ac-voltages in the

leads. It has a static and a time-dependent contribution, which are both created

by the precession of the molecular spin. This precession-induced current reads

IωL

ξν
(t) =2qνΓξIm

��
d�

2π

�
d��

2π
e−i(�−�

�)t

× Tr{σ̂ν [
1

2
Ĝ
<(�, ��) + fξ(�

�)Ĝr(�, ��)]}

�
. (4.16)

In the limit γ2 → 0, Eq. (4.16) reduces to the result obtained in the previous

chapter [219]. The second term of Eq. (4.15) is induced when an ac voltage is

applied to lead ξ and can be expressed in linear order with respect to vac
ξ
/Ω using
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Eqs. (4.10), (4.13) and (4.14) as

IΩ
ξν
(t) = qν

�

ζ,n=±1

nΓξΓζ

vac
ζ

Ω
Re

�
d�

2π

�
d��

2π
e−i(�−�

�)t+inφζ

×

��
d���

4π
{[fζ(�

��

n
)− fζ(�

��)]Tr[σ̂νĜ
r(�, ���

n
)Ĝa(���, ��)]}

−
i

Γζ

δξζ [fζ(�
�

n
)− fζ(�

�)]Tr[σ̂νĜ
r(�, ��

n
)]
�
. (4.17)

These expressions for the currents constitute the main results of the chapter. They

allow us to calculate the dynamic charge and spin conductance properties of our

molecular contact. Note that spin currents are more conveniently discussed in

terms of the spin-transfer torque exerted by the inelastic spin-currents onto the

spin of the molecule [108–111], given by

�T (t) = �T ωL(t) + �TΩ(t) = −[�IL(t) + �IR(t)] . (4.18)

Hence, in the remainder of the chapter we will concentrate on the ac-charge con-

ductance and the dc spin-transfer torque.

4.4 Charge transport

4.4.1 Dynamic charge conductance

The time-dependent particle charge current from the lead ξ to the molecular

orbital is induced by the ac harmonic potentials in the leads and can be written

as

IΩ
ξ0
(t) = Re

��

ζ

Gc

ξζ
(Ω)vac

ζ
e−i(Ωt+φζ)

�
. (4.19)

This expression defines the conductance Gc

ξζ
(Ω) between leads ξ and ζ. Combining

equations (4.17) and (4.19), and taking into account that

G0r

σσ
(�)−G0a

σσ
(�− Ω) = −(Ω+ iΓ)G0r

σσ
(�)G0a

σσ
(�− Ω), (4.20)

the complex components Gc

ξζ
(Ω) can be obtained as

Gc

ξζ
(Ω) = −

e2

h
[ΓξΓζ − Γξδξζ(Γ− iΩ)]

�
d�

[fζ(�− Ω)− fζ(�)]

Ω
T c(�,Ω), (4.21)
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with the energy-dependent complex function T c(�,Ω), which can be written as

T c(�,Ω) =
�

σ=±1

G0r

σσ
(�)G0a

σσ
(�− Ω)[1 + γ2G0r

−σ−σ
(�σ)G0a

−σ−σ
(�σ − Ω)]

[1− γ2G0a
σσ
(�− Ω)G0a

−σ−σ(�σ − Ω)][1− γ2G0r
σσ
(�)G0r

−σ−σ(�σ)]
. (4.22)

In order to determine the dynamic conductance under ac bias-voltage condi-

tions, besides the particle current one needs to take into account the contribu-

tion from the displacement current. Coulomb interaction leads to screening of the

charge accumulation in the quantum dot given by

Id(t) =
dQ(t)

dt

= −eIm{
d

dt
[TrĜ<(t, t)]}. (4.23)

According to the Kirchhoff’s current law,

Id(t) +
�

ξ

IΩ
ξ0
(t) = 0. (4.24)

The following expression defines the total conductance of charge current, Gξζ ,

IΩ,tot

ξ0
(t) = Re

��

ζ

Gξζ(Ω)v
ac

ζ
e−i(Ωt+φζ)

�
, (4.25)

while the displacement conductance Gd

ζ
is given by

Id(t) = Re
��

ζ

Gd

ζ
(Ω)vac

ζ
e−i(Ωt+φζ)

�
. (4.26)

The conservation of the total charge current and gauge invariance with re-

spect to the shift of the chemical potentials lead to
�

ξ
Gξζ = 0 and

�
ζ
Gξζ = 0

[257]. These conditions are satisfied by partitioning the displacement current into

each lead [260]

IΩ,tot

ξ0
= IΩ

ξ0
+ AξI

d, (4.27)

or equivalently

Gξζ = Gc

ξζ
+ AξG

d

ζ
, (4.28)

in such a way that the sum of the partitioning factors Aξ obeys
�

ξ
Aξ = 1. Using

the sum rules given above one obtains the expression for the dynamic conductance

[257, 260]

Gξζ = Gc

ξζ
−Gd

ζ

�
λ
Gc

ξλ�
λ
Gd

λ

, (4.29)
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with λ = L,R, where Aξ = −(
�

λ
Gc

ξλ
)/(

�
λ
Gd

λ
), Gd

ζ
= −

�
ξ
Gc

ξζ
, and

G(Ω) = GLL(Ω) = GRR(Ω) = −GLR(Ω) = −GRL(Ω). (4.30)

The first term of Eq. (4.29) represents the dynamic response of the charge cur-

rent, while the second term is the internal response to the applied external ac

perturbation due to screening by the Coulomb interaction. Note that the dynamic

conductance consists of a real dissipative component GR, and an imaginary nondis-

sipative component GI indicating the difference in phase between the current and

the voltage. Due to the total current conservation, the two terms in Eq. (4.29)

should behave in a way that a minimum (maximum) of Gc

ξζ
(Ω) corresponds to a

maximum (minimum) of Gd

ζ
(Ω), for both real and imaginary parts.

4.4.2 Density of states in the quantum dot

Since the dynamic conductance is an experimentally directly accessible quan-

tity, we hope that a measurement can help to reveal the internal time scales of the

coupling between the molecular and electronic spins in the transport. We begin

by analyzing the density of states available for electron transport in the quantum

dot

ρ(�) = −
1

π

�

σ=±1

Im

�
G0r

σσ
(�)

1− γ2G0r
σσ
(�)G0r

−σ−σ(�σ)

�
. (4.31)

The dc-bias transmission coefficient Tdc(�) = 2πΓLΓRρ(�)/Γ is plotted in Fig. 4.2(a)

(black line). There are four resonant transmission channels. They manifest them-

selves as peaks positioned at Floquet quasienergies �1 = �↓ = �0−(ωL+JS)/2 (spin

down), �2 = �↓+ωL = �0+(ωL−JS)/2 (spin up), �3 = �↑−ωL = �0− (ωL−JS)/2

(spin down) and �4 = �↑ = �0 + (ωL + JS)/2 (spin up). According to the

expression for ρ(�) these resonances are given by the real part of the poles of

[1− γ2G0r

σσ
(�)G0r

−σ−σ
(�σ)]−1.

The Hamiltonian of the molecular orbital is a periodic function of time, with

the period T = 2π/ωL, ĤMO(t) = ĤMO(t + T ). Accordingly, the quasienergies �i,

i = 1, 2, 3, 4, can be obtained using the Floquet theorem [224–228] (see Appendix

A). The precessing component of the molecular spin couples state with quasienergy

�1 (or �3) to the state with quasienergy �2 (or �4) which differ in energy by an en-

ergy quantum ωL. Namely, due to the periodic motion of the molecular spin an

electron can absorb or emit an energy ωL accompanied with a spin-flip. Spin-flip

processes due to rotating magnetic field were analyzed in some works [219, 221]. A

similar mechanism was discussed in a recent work for a nanomechanical spin-valve

in which inelastic spin-flip processes are assisted by molecular vibrations [261].



4.4. Charge transport 69

4.4.3 Analysis of the dynamic conductance

Now we analyze the charge conductance in response to the ac-voltages. The

conductance of charge current under dc bias in the presence of a rotating field,

or in the presence of an ac gate voltage where photon-assisted tunneling was

observed was discussed in [227]. Here we consider ac conductance in a double-

driving experiment, where we first induce molecular spin precession at Larmor

frequency ωL, and then turn on the oscillating fields with frequency Ω in the

leads. Assuming equal chemical potentials of the leads µL = µR = µ, we analyze

the dynamic conductance G(Ω) at zero temperature. Since we work in the wide

band limit, this symmetry simplifies the partitioning factors to Aξ = Γξ/Γ. Hence,

Eq. (4.29) can be transformed into

Gξζ(Ω) =
e2

h

�
d�Tξζ(�,Ω)

fζ(�− Ω)− fζ(�)

Ω
. (4.32)

Here Tξζ(�,Ω) is the effective transmission function that can be expressed as

T (�,Ω) = TLL(�,Ω) = TRR(�,Ω) = −TLR(�,Ω) = −TRL(�,Ω), which reads

T (�,Ω) =
ΓLΓR

Γ
(Γ− iΩ)T c(�,Ω). (4.33)

In Figs. 4.2(a) and 4.2(b) we plotted the energy dependence of the real part

TR(�,Ω) and the imaginary part TI(�,Ω) of the effective transmission function

T (�,Ω), for several ac frequences Ω, at zero temperature. In the limit Ω → 0

(black lines in Fig. 4.2), TR(�,Ω → 0) coincides with the dc transmission func-

tion Tdc(�), while TI(�,Ω) → 0. Upon turning on the ac-bias voltage, due to the

inelastic transport channels TR decreases near each of the four resonances with in-

creasing Ω, and splits into two different peaks distanced by Ω. Namely, the peaks

positioned at �i and �i + Ω appear as a signature of photon-assisted tunneling.

They represent bands in the leads through which an electron can tunnel after it

absorbs an energy Ω from the ac field. The photon-assisted bands through which

the transport occurs are represented by the peaks on green (small Γ) and blue

dot-dashed (larger Γ) lines in Fig. 4.2(a). Compared to Fig. 4.2(a), in Fig. 4.2(b)

the peaks of TI increase with increasing Ω.

The corresponding real part GR and imaginary part GI of the dynamic con-

ductance versus chemical potential µ are plotted in Figs. 4.3(a) and 4.3(b). Both

GR and GI achieve their maximum at µξ = �i, where the resonance peaks are posi-

tioned. In accordance with Eq. (4.32) the electrons with energies µζ −Ω ≤ � ≤ µζ

can participate in the transport processes by absorbing a photon of energy Ω.

For ac frequency Ω → 0 the dynamic conductance reduces to dc conductance
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Figure 4.2: Energy dependence of (a) the real part TR and (b) the imag-
inary part TI of the effective transmission function. The plots are obtained
for different ac frequencies Ω and tunneling rates Γ at zero temperature, with
�B = B�ez, and ΓL = ΓR = Γ/2. All energies are given in the units of �0. The
other parameters are set to: ωL = 0.5, J = 0.01, S = 100, θ = 1.25, γ ≈ 0.474.
The positions of the molecular quasienergy levels are: �1 = 0.25, �2 = 0.75,
�3 = 1.25, and �4 = 1.75.
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Figure 4.3: (a) Real part GR and (b) imaginary part GI of the dynamic con-
ductance as functions of the chemical potential µ, with µ = µL = µR. The plots
are obtained for different ac frequencies Ω and tunneling rates Γ at zero temper-
ature, with ΓL = ΓR = Γ/2, and �B = B�ez. All energies are given in the units
of �0. The other parameters are set to: ωL = 0.5, J = 0.01, S = 100, θ = 1.25,
and γ ≈ 0.474. The molecular quasienergy levels are positioned at: �1 = 0.25,
�2 = 0.75, �3 = 1.25, and �4 = 1.75. The conductance components GR and GI

are given in the units of conductance quantum e2/h.
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Gξζ(Ω → 0) = e2Tξζ(µζ ,Ω → 0)/h, and reaches its maximum near the reso-

nances given by the Floquet quasienergies [227]. The dc conductance has four

peaks emerging from the peaks in the resonant tunneling transmission function

Tdc(�) [black lines in Figs. 4.2(a) and 4.3(a)]. Following the behavior of TI , the

imaginary part of the dynamic conductance GI approaches zero for Ω → 0 [black

lines in Figs. 4.2(b) and 4.3(b)]. The considerable contribution of the displacement

current to the total current is reflected in the decrease of GR, and the increase

of GI near resonances with increasing Ω, as the displacement current opposes the

change of the particle charge current under ac bias [red and blue dot-dashed lines

in Figs. 4.3(a) and 4.3(b)]. For a small value of both Γ and Ω, complex components

TR and GR show sharp peaks. However, with the increase of Ω, each of the peaks

in GR broadens [green line in Fig. 4.3(a)]. It approaches a constant value around

the corresponding resonant level, with the width equal to 2Ω, since the inequality

|�i − µξ| ≤ Ω (4.34)

is the condition for the inelastic photon-assisted tunneling to occur.

4.4.4 Frequency dependence of the ac conductance and

equivalent circuit

In this subsection we analyze the behavior of the dynamic conductance compo-

nents GR and GI as functions of the ac frequency Ω for µ = �↑−ωL = �3 [Fig. 4.4,

green and blue lines] and µ = 0.1 �0 [Fig. 4.4, red and purple-dotted lines], for two

values of Γ at zero temperature.

The behavior of the ac-conductance components in the low ac-frequency regime

can be understood using an effective circuit theory [262]. Namely, at small ac fre-

quencies Ω � Γ, the molecular magnet junction behaves as a parallel combination

of two serial connections: one of a resistor and an inductor and the other of a

resistor and a capacitor, i.e., as a classical electric circuit [see Fig. 4.5]. Depending

on the phase difference between the voltage and the current, the circuit shows

inductive-like (positive phase difference) or capacitive-like (negative phase differ-

ence) responses to the applied ac voltage. Therefore, the dynamic conductance

can be expanded up to the second order in Ω in the small ac-frequency limit in
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Figure 4.4: (a) Real part GR and (b) imaginary part GI of the dynamic
conductance as functions of the ac frequency Ω. The plots are obtained for two
different tunneling rates Γ and chemical potentials µ, with µ = µL = µR and
�B = B�ez, at zero temperature. All energies are given in the units of �0. The
other parameters are set to: ΓL = ΓR = Γ/2, S = 100, J = 0.01, ωL = 0.5,
θ = 1.25, γ ≈ 0.474. The molecular quasienergy levels lie at: �1 = 0.25,
�2 = 0.75, �3 = 1.25, and �4 = 1.75. In the resonant case µ = �3, the response
of the system is inductive-like in the low ac frequency limit (GI > 0), and GR

and GI are both enhanced around Ω = ωL, after going to a local minimum, as
the channel with energy �4 becomes available for photon-assisted tunneling, i.e.,
µ+ Ω = �4. The conductance components GR and GI are given in the units of
conductance quantum e2/h.
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L
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V (t)

Figure 4.5: The equivalent classical circuit of the molecular magnet junction
in the low ac frequency regime. It is composed of two serial combinations:
one of a resistor and an inductor, and the other of a resistor and a capacitor,
connected in parallel, and driven by a source of ac-voltage V (t). The resistances
are denoted by R1 and R2; L is the inductance, and C is the capacitance of the
circuit elements.

the following way:

G(Ω) = G(0) +G�(0)Ω+
1

2
G��(0)Ω2 +O(Ω3) (4.35)

≈
1

R1

+ i

�
L

R2
1

− C

�
Ω+

�
R2C

2
−

L2

R3
1

�
Ω2, (4.36)

where R1, R2, L and C denote the resistances, inductance and capacitance of the

circuit. In our further analysis we will assume that R1 = R2 = R. The first term

of Eq. (4.36) represents therefore the dc conductance G(0) = 1/R. The second,

imaginary term, linear in Ω is iGI in the low ac-frequency regime.

Depending on the sign of the expression L/R2 − C, the linear response is

inductive-like (GI > 0) while GR decreases, or capacitive-like (GI < 0) while GR

increases, with the increase of Ω. For C = L/R2 the system behaves like a resistor

with G = G(0). The nondissipative component GI shows inductive-like behavior

for
|�i − µξ| <

Γ

2
, (4.37)

as we have observed in Fig. 4.3(b) (red line), and capacitive-like otherwise. The

equality sign corresponds to resistive behavior.

The real part GR is an even, while the imaginary part GI is an odd function

of Ω. In the low ac-frequency regime Ω � Γ, GR is a quadratic function [black,

solid and dashed lines in Fig. 4.4 (a)], while GI is a linear function of frequency

[black, solid and dashed lines in Fig. 4.4(b)]. By fitting parameters of these func-

tions and using Eq. (4.36), one obtains R, L, and C components, confirming that

in this limit the ac conductance of the system resembles the previously described
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classical circuit model. The circuit parameters can be calculated in terms of the

dynamic conductance according to Eqs. (4.35) and (4.36). Note that they depend

on the relative position of the Fermi energy of the leads with respect to the molec-

ular quasienergy levels.

Near the four resonances we expect the system to be highly transmissive and

therefore to conduct well. This is confirmed by Figs. 4.3 and 4.4. Namely, the

imaginary conductance component GI > 0 around resonances and is a positive

linear function of Ω in the low ac-frequency limit [see Fig. 4.4(b), black solid

line]. This implies that the behavior of the system is inductive-like since the dis-

placement current tends to reduce the charge current, as electrons reside awhile

in the quantum dot, causing the delay in phase between the voltage and the

current. Accordingly, the real component GR decreases quadratically from initial

value G(0) upon switching on the ac frequency Ω [black solid line in Fig. 4.4(a)].

However, the off-resonance behavior is capacitive-like resulting from intra-orbital

Coulomb interactions included via displacement current [260]. Hence, in the low

ac-frequency limit GI(Ω) is negative, and decreases linearly with the increase of Ω

for Fermi energies of the leads which are far from the resonant energies �i [black

dashed line in Fig. 4.4(b)]. In this case GR(Ω) increases quadratically with Ω

[black dashed line in Fig. 4.4(a)]. Obviously the molecular magnet junction be-

haves as a classical circuit only in the low ac-frequency regime.

For higher ac-frequencies Ω we use Eq. (4.32) to analyze the behavior of GR and

GI [see Fig. 4.4], where the dynamic response of the system remains predominantly

inductive-like for µ = �↑ − ωL = �3. With further increase of Ω, the ac conduc-

tance G(Ω) vanishes asymptotically. Upon turning on the ac frequency while the

system is on resonance µ = �↑ − ωL = �3, the imaginary component GI increases

quickly from 0 to a local maximum and then decreases to its minimum value

around Ω = ωL [green and blue lines in Fig. 4.4(b)]. The real part GR decreases

to a local minimum and then has a step-like increase towards a local maximum

around Ω = ωL [green and blue lines in Fig. 4.4(a)]. This behavior of the dynamic

conductance can be understood as follows. For µ = �↑ − ωL = �3, at Ω = ωL,

besides resonant level with energy �↑−ωL, the upper level with energy �↑ becomes

available for photon-assisted electron transport. It is then distanced by the energy

Ω from the chemical potential µ. Consequently, an electron with Fermi energy

equal to �↑ − ωL can absorb a photon of energy Ω = ωL and tunnel into the level

with energy �↑. This leads to an enhancement of the response functions GR and

GI after going to a local minimum, with features corresponding to photon-assisted

tunneling processes. Each step-like increase of GR and the corresponding dip of

GI in Fig. 4.4 are determined by the difference between the quasienergy levels �i
and the chemical potential µ, viz. |�i − µ| = Ω. Thus, for µ = �3 and the set of
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parameters given in Fig. 4.4, they are positioned around Ω/�0 = 0.5 and Ω/�0 = 1.

For the larger tunnel couplings the step-like increases in GR are broadened due to

the level broadening Γ. We notice that the enhancement of the dynamic conduc-

tance is higher around Ω = ωL than around the subsequent frequency Ω/�0 = 1.

This is due to the fact that the frequency has to traverse one resonant peak in GR,

or dip in GI , to reach the second one. We need to mention that the off-diagonal

conductances Gξζ = −G, where ξ �= ζ, and hence have the opposite behavior than

the diagonal ones.

In the spirit of the scattering matrix formalism, the dynamic conductance of

our molecular magnet junction, in the low ac-frequency regime, can be expanded

as [263]
Gξζ(Ω) = Gξζ(0)− iΩEξζ + Ω2Kξζ +O(Ω3), (4.38)

where Gξζ(0) is the dc conductance. The quantity Eξζ = −Im{∂Gξζ(0)/∂Ω} is

called the emittance [263]. It contains the contribution from the displacement

current and the partial density of states that characterize the scattering process

[258, 264, 265]. The partial density of states can be calculated using the scattering

matrix, and can be understood as density of states due to electrons injected from

lead ζ and leaving through lead ξ [258, 264, 265]. The emittance Eξζ measures the

dynamic response of the system to an external oscillating ac field, and depending

on its sign, the response is capacitive-like or inductive-like [263]. The matrix ele-

ment of the third term, Kξζ = Re{∂2Gξζ(0)/∂Ω2}/2, represents the correction to

the real part of the dynamic conductance, and describes the dynamic dissipation

in the low ac-frequency regime [263]. Both Eξζ and Kξζ obey the sum rules, since

the total current conservation and gauge invariance conditions have to be satisfied

[257]. According to Eq. (4.38), their diagonal elements E = Eξξ and K = Kξξ can

be approximated as E ≈ −GI/Ω and K ≈ [GR−G(0)]/Ω2 in the low ac-frequency

limit [263]. Based on the analyzed GR and GI the behavior of E and K can be

examined. Around all resonances µ = �i the emittance E < 0 (inductive-like re-

sponse), and K < 0 since GR < G(0), while off resonance E > 0 (capacitive-like

response), and K > 0 [see Figs. 4.3 and 4.4].

4.4.5 Effects of other parameters on the ac conductance

The conductance components GR and GI as functions of the Larmor preces-

sion frequency ωL are presented in Figs. 4.6(a) and 4.6(b), while Figs. 4.7(a) and

4.7(b) depict the dependence of GR and GI on the exchange coupling constant J .

They show similar characteristics as in Fig. 4.3, with higher peaks at resonancies

corresponding to µξ = �1,4, while lower peaks correspond to µξ = �2,3. In the
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Figure 4.6: Larmor frequency dependence of (a) the real part GR and (b)
the imaginary part GI of the dynamic conductance. The plots are obtained
for different ac frequencies Ω and tunneling rates Γ at zero temperature, with
ΓL = ΓR = Γ/2, and �B = B�ez. All energies are given in the units of �0.
The molecular spin is set to S = 100, and the tilt angle to θ = 1.25. The
exchange coupling constant J = 0.01, and the chemical potentials of the leads
are µL = µR = 1.25. The conductance components GR and GI are given in the
units of conductance quantum e2/h.
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Figure 4.7: (a) Real part GR and (b) imaginary part GI of the dynamic
conductance as functions of the exchange coupling J . The plots are obtained
for different ac frequencies Ω and tunneling rates Γ at zero temperature, with
ΓL = ΓR = Γ/2, and �B = B�ez. All energies are given in the units of �0. The
molecular spin is set to S = 100, and the tilt angle to θ = 1.25. The Larmor
frequency is equal to ωL = 0.5, and the chemical potentials of the leads are
µL = µR = 0.25. The conductance components GR and GI are given in the
units of conductance quantum e2/h.
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low ac-frequency limit the system shows inductive-like behavior (GI > 0) around

resonancies for values of ωL or J for which the inequality (4.37) is satisfied [see

Figs. 4.6(b) and 4.7(b)]. The response of the system is resistive (GI = 0) or

capacitive-like (GI < 0) otherwise. In the limit of weak tunnel coupling Γ each

peak of GR broaden for large Ω approaching a constant value. Their width is equal

to 4Ω and 4Ω/S in Figs. 4.6(a) and 4.7(a) (green lines), since for these values of

ωL and J the inequality (4.34) is fulfilled.

For θ = 1.25 the peaks of both GR and GI in Figs. 4.3(a) and 4.3(b) at

µ = �↑,↓∓ωL are much smaller than those at µ = �↑,↓, implying that the molecular

magnet junction is less transmissive at the upper two mentioned resonances. This

can be qualitatively understood by looking at Figs. 4.8(a) and 4.8(b) where we

plotted GR and GI as functions of the tilt angle θ between the external magnetic

field �B and the molecular spin �S(t). The behavior of the conductance components

near the resonances for µ= �↑ −ωL (solid lines in Fig. 4.8) and µ= �↑ (dot-dashed

lines in Fig. 4.8) depends on the direction of �S with respect to the external mag-

netic field. For θ=0 the molecular spin �S is static and the only two levels available

for electron transport are Zeeman levels �1= �↓ and �4= �↑. In this case, when the

system is at the resonance µ = �↑, the components GR and GI take their maxi-

mum values, and GI > 0 displaying an inductive-like behavior. For µ = �↑ − ωL

and θ= 0, both GR and GI take their minimum values. There is no transmission

channel at this energy for θ = 0, but Γ is relatively large, and GI < 0 displaying

a capacitive-like response. With the increase of θ, the additional two channels at

energies �↑ − ωL and �↓ + ωL appear, and become available for electron transport.

This leads to the increase of conductance components GR and GI at µ= �↑ − ωL,

and their decrease at µ= �↑, as functions of θ (see Fig. 4.8). For θ→π/2, in the case

of small Ω the complex components of the effective transmission function T (�,Ω)

approach the same height at resonant energies �i, so that the probability of trans-

mission reaches equal value at each level. Thus, the dynamic response function

GR approaches equal characteristics at each resonance as well as GI . The points of

intersection of solid and dot-dashed lines of the same color in Fig. 4.8 correspond

to this particular case. For larger frequencies Ω, these points are shifted away from

θ→π/2, since the peaks broaden and overlap and the suppression or increase of GR

and GI is much faster. Finally, for θ = π the situation is reversed compared to the

one with θ = 0, as the again static spin �S is in the opposite direction than that of

the external field �B. The Zeeman splitting in this case is equal to ωL−JS, so that

the only two levels available for electron transport are �2 and �3. Therefore, for

θ = π, when the system is at the resonance µ = �3, the conductance components

GR and GI reach their maximum values, with GI > 0. For µ = �4, which is off

resonance for θ = π, both GR and GI take minimum values, with GI < 0.
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Figure 4.8: (a) Real part GR and (b) imaginary part GI of the dynamic
conductance as functions of the tilt angle θ of the molecular spin �S from the
magnetic field �B = B�ez. The plots are obtained for different values of Ω and
µ, with µ = µL = µR, at zero temperature. All energies are given in the
units of �0. The other parameters are set to S = 100, J = 0.01, ωL = 0.5,
Γ = 0.2, and ΓL = ΓR = Γ/2. In the limit of low frequency Ω, for θ → π/2,
the conductance component GR, as well as GI , approaches equal value at each
resonance. The conductance components GR and GI are given in the units of
conductance quantum e2/h.
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4.5 Spin transport and spin-transfer torque

4.5.1 Spin transport under dc-bias voltage

In the absence of ac harmonic potentials in the leads, tunneling under dc-bias

voltage takes place. The spin-angular momenta between the itinerant electronic

spins and the precessing molecular spin are exchanged via exchange interaction,

governed by the coupling constant J . The molecular spin precession pumps spin

currents into the system, but remains undamped using external sources which

compensate effects of the interaction with electron spins. Further simplification of

Eq. (4.16) gives time-independent z component of the spin current, IωL

Lz
, and the

in-plane j = x, y time-dependent spin-current components, from the left lead

IωL

Lj
(t) = [ILj(ωL)e

−iωLt + I∗
Lj
(ωL)e

iωLt]. (4.39)

The complex time-independent functions ILx(ωL) and ILy(ωL), and the spin cur-

rent IωL

Lz
can be expressed as

ILx(ωL) =− i

�
d�

4π

�
ΓLΓR

Γ
[fL(�)− fR(�)]

�
γG0r

11
(�+ ωL)G0r

22
(�)

|1− γ2G0r
11
(�+ ωL)G0r

22
(�)|2

(4.40)

+
2iγIm{G0r

11
(�)}G0a

22
(�− ωL) + γ3|G0r

11
(�)G0r

22
(�− ωL)|2

|1− γ2G0r
11
(�)G0r

22
(�− ωL)|2

�

+
�

ξ,ζ=L,R

ΓξΓζ

Γ
[fξ(�− ωL)− fζ(�)]

�
δζL − δξLγ

2G0a

11
(�)G0r

22
(�− ωL)

�

×
γG0r

11
(�)G0a

22
(�− ωL)

|1− γ2G0r
11
(�)G0r

22
(�− ωL)|2

�
,

ILy(ωL) = iILx(ωL), (4.41)

IωL

Lz
=

�
d�

4π

�
ΓLΓR

Γ
[fL(�)− fR(�)] (4.42)

×

�
2Im{G0r

11
(�)}

|1− γ2G0r
11
(�)G0r

22
(�− ωL)|2

−
2Im{G0r

22
(�)}

|1− γ2G0r
11
(�+ ωL)G0r

22
(�)|2

�

+
�

ξ,ζ=L,R

ΓξΓζ [fξ(�− ωL)− fζ(�)](δξL + δζL)
γ2|G0r

11
(�)G0r

22
(�− ωL)|2

|1− γ2G0r
11
(�)G0r

22
(�− ωL)|2

�
.

The spin-transport properties are characterized by the elastic, i.e., energy-

conserving tunnel processes [terms involving factors fL(�) − fR(�) in Eqs. (4.40)

and (4.42)], and the inelastic, i.e., energy-nonconserving tunnel processes [terms

which involve factors fξ(� − ωL) − fζ(�) in Eqs. (4.40) and (4.42)]. In the later
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ones an electron changes its energy by ωL and flips its spin due to the exchange

interaction with the rotational component of the molecular spin. The spin-flip

processes occur between levels with energies �↑ and �↑ − ωL, and between levels

with energies �↓ and �↓ + ωL.

The spin-transfer torque exerted by the inelastic spin-currents onto the spin of

the molecule is given by [108–111]

�T ωL(t) = −[�IωL

L
(t) + �IωL

R
(t)]. (4.43)

Using Eqs. (4.39)–(4.43), the spatial components of the spin-transfer torque can

be expressed in terms of the matrix elements of the Green’s functions Ĝr

0
(�) and

Ĝa

0
(�) as

T ωL

j
(t) =−

�
d�

2π

�

ξζ

ΓξΓζ

Γ
[fξ(�− ωL)− fζ(�)]

× Im
�
(σ̂j)21

γG0r

11
(�)G0a

22
(�− ωL)

|1− γ2G0r
11
(�)G0r

22
(�− ωL)|2

× [1− γ2G0a

11
(�)G0r

22
(�− ωL)]e

−iωLt

�
, (4.44)

T ωL

z
=−

�
d�

2π

�

ξζ

ΓξΓζ [fξ(�− ωL)− fζ(�)]

×
γ2|G0r

11
(�)G0r

22
(�− ωL)|2

|1− γ2G0r
11
(�)G0r

22
(�− ωL)|2

. (4.45)

Regarding the molecular spin �S(t), the spin-transfer torque can be presented as

�T ωL(t) =
α

S
�̇S(t)× �S(t) + β �̇S(t) + η�S(t), (4.46)

with the Gilbert damping coefficient α in the first term. The coefficient β that

characterizes the modulation of the precession frequency of the molecular spin
�S(t) is given by the second term. The third coefficient η can be written in terms

of α and T ωL

z
as η = [T ωL

z
+ ωLSα sin2(θ)]/Sz. Using Eqs. (4.44) and (4.45), and

comparing them with Eq. (4.46), one obtains exact expressions for the torque

coefficients α and β as [223]

α =−
1

ωLS

�
d�

2π

�

ξζ

ΓξΓζ [fξ(�− ωL)− fζ(�)]

×
(JSz/2Γ)Im{G0r

11
(�)G0a

22
(�− ωL)}− γ2|G0r

11
(�)G0r

22
(�− ωL)|2

|1− γ2G0r
11
(�)G0r

22
(�− ωL)|2

, (4.47)
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β =−
J

ωL

�
d�

4π

�

ξζ

ΓξΓζ

Γ
[fξ(�− ωL)− fζ(�)]

×
Re{G0r

11
(�)G0a

22
(�− ωL)}− γ2|G0r

11
(�)G0r

22
(�− ωL)|2

|1− γ2G0r
11
(�)G0r

22
(�− ωL)|2

. (4.48)

In the limit γ2 → 0, the expressions (4.40)–(4.48) are in agreement with [219] (see

Section 3.3.1). In the strong exchange coupling limit J � Γ both Gilbert damping

coefficient α and the torque coefficient β drop to zero.

4.5.2 Photon-assisted spin transport under ac-bias voltage

We consider spin transport in the double-driving experiment, where we first

establish molecular spin precession at Larmor frequency ωL, and then apply the

oscillating potentials with frequency Ω in the leads. The spin current components

indicating photon-assisted inelastic spin transport can be obtained by further sim-

plification of Eq. (4.17). The in-plane x and y spin-current components consist of

oscillating terms involving both ac frequency Ω and Larmor frequency ωL. Exper-

imentally, by adjusting Ω = ±ωL, these currents may be measurable. In this case

they have one dc component and one component oscillating with frequency 2Ω.

The in-plane photon-assisted spin currents read

IΩ
Lj
(t) =

�

ξ=L,R

Re
�
[Ij

Lξ
(Ω)e−i(Ωt+φξ) + Ij

Lξ
(−Ω)ei(Ωt+φξ)]e−iωLt

�
, (4.49)

where j = x, y. In Eq. (4.49) the time-independent complex components Ij
Lξ
(Ω)

can be written as

Ix
Lξ
(Ω) = γΓLΓξ

vac
ξ

Ω

�
d�

4π
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×

{G0a

22
(�− Ω)− i δLξ

Γξ

[1− γ2G0a
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22
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[1− γ2G0a
11
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22
(�− Ω)]

�
,

Iy
Lξ
(Ω) = iIx

Lξ
(Ω). (4.51)
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The z component of the photon-assisted spin-current is given by

IΩ
Lz
(t) =

�

ξ=L,R

�

σ=±1

Re

�
ΓLΓξ

vac
ξ

Ω

�
d�

4π
[fξ(�− Ω)− fξ(�)]e

−i(Ωt+φξ) (4.52)

×
[σ̂zĜ0r(�)Ĝ0a(�− Ω)]σσ
[1− γ2G0r

σσ
(�)G0r

−σ−σ(�σ)]

×

�
2− [1− i δLξ

Γξ

(Ω+ iΓ)][1 + γ2G0r

−σ−σ
(�σ)G0a

−σ−σ
(�σ − Ω)]
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σσ
(�− Ω)G0a
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�
.

The time average of a periodic function F (t) with a period Tp is defined as

�F �t =
1

Tp

�
Tp

0

F (t)dt. (4.53)

According to Eq. (4.49), the time-averaged j = x, y components of the total spin

current �IL(t) are nonzero only for Ω = ±ωL and read

�ILj�t = �IΩ=±ωL

Lj
�t =

�

ξ

Re
�
Ij
Lξ
(−ωL)e

±iφξ

�
, (4.54)

while the time-averaged z component of the spin current equals

�ILz�t = IωL

Lz
. (4.55)

Hence, the in-plane time-averaged x and y spin-current components contain only

contributions from photon-assisted spin tunneling processes, while the z compo-

nent contains only contributions from spin tunneling under dc-bias voltage. The

time-averaged spin-transfer torque is then given by

��T �t = −

�

ξ

��Iξ�t. (4.56)

All the torques are compensated by external means which keep the molecular spin

precession undamped during the experiment.

4.5.3 Analysis of the time-averaged spin transport

We start by analyzing the in-plane x and y components of the time-averaged

spin current, which differ in phase by π/2 according to Eqs. (4.51) and (4.54),

and the spin-transfer torque. They are presented as functions of the bias-voltage

eV = µL−µR in Figs. 4.9(a) and 4.9(b), and as functions of the exchange coupling
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Figure 4.9: Bias-voltage dependence of the time-averaged components of the
spin-current and spin-transfer torque (a) �ILx�t and �Tx�t, and (b) �ILy�t and
�Ty�t. All plots are obtained at zero temperature for two different phases φL,

with �B = B�ez. The other parameters are set to ΓL = ΓR = Γ/2, Γ = 0.04 �0,
µR = 0, φR = 0, vac

R
= 0, vac

L
= 0.02 �0, θ = 1.25, S = 100, J = 0.01 �0, and

Ω = ωL = 0.25 �0. Photon-assisted spin transport is enhanced for �1 < µL < �2
and �1 < µL < �2, where the in-plane components of the spin-current and
spin-transfer torque approach the constant largest magnitudes.
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Figure 4.10: Time-averaged components of the spin-current and spin-transfer
torque (a) �ILx�t, �Tx�t; and (b) �ILy�t, �Ty�t; as functions of the exchange
coupling J . All plots are obtained at zero temperature for two different phases
φL, with �B = B�ez. The other parameters are set to ΓL = ΓR = Γ/2, Γ = 0.04 �0,
µL = 0.375 �0, µR = 0, φR = 0, vac
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= 0.02 �0, θ = 1.25, S = 100, and

Ω = ωL = 0.25�0.
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constant J in Figs. 4.10(a) and 4.10(b). The plots are obtained at zero temper-

ature, for two different phases of ac field in the left lead. We set Ω = ωL, the

right lead’s Fermi energy µR = 0, and apply an ac harmonic chemical potential

only to the left lead. In Figs. 4.9(a) and 4.9(b) we vary the Fermi energy of the

left lead as µL = eV , while in Figs. 4.10(a) and 4.10(b) we set µL = 0.375 �0.

According to the segment [fL(�−Ω)− fL(�)] in Eq. (4.50), electrons with energies

within the window [µL −Ω, µL] participate in the photon-assisted spin transport.

Each of these processes is followed by a spin-flip and emission (apsorbtion) of an

amount of energy ωL. This is caused by the interaction of the electron spin with

the precessing component of the molecular spin. In turn, during the exchange in-

teraction a photon-assisted spin-transfer torque is generated onto �S(t). In regard

to photon-assisted transmission of 1/2 - spin particles, the in-plane spin-current

components show significant changes either in magnitude, or direction, controlled

by the change of the phase of the ac field in the left lead φL. Similarly to the

case of charge transport, the necessary condition for photon-assisted spin tunnel-

ing is given by the inequality (4.34). The cases with equality sign in (4.34) are

represented by the black arrows in Figs. 4.9 and 4.10, pointing to the eV and J

scale. Each level satisfying this condition corresponds to two black arrows. In the

region between each two black arrows the inequality (4.34) is satisfied for at least

one molecular quasienergy level. Here, the components of spin current and spin-

transfer torque approach constant values. If �1 ≤ µL ≤ �2 or �3 ≤ µL ≤ �4, the

inequality (4.34) is satisfied for both �1 and �2, or �3 and �4. As a result, the magni-

tude of spin currents and spin-transfer torque is enhanced under these conditions,

due to the involvement of both levels �1 and �2, or �3 and �4, in photon-assisted

spin transport and photon-assisted spin-flip processes. We should point out that

both spin-current components and spin-torques are antisymmetric functions of eV

with respect to the position of �0, and odd functions of exchange coupling J . This

is a consequence of the antisymmetric position of levels �i attributed to spin-up or

spin-down state of the electron with respect to �0. Using Eq. (4.54) with vac
R

= 0

and φR = 0, we obtain the largest magnitudes of the j = x, y time-averaged

spin-currents for

φL = arctan

�
Im{Ij

LL
(−ωL)}

Re{Ij
LL

(−ωL)}

�
, (4.57)

where Ω = ±ωL. Simultaneously, the other in-plane time-averaged spin-current

equals zero. The magnitude and direction of the time-averaged spin currents and

spin-transfer torques can also be controlled by changing the tilt angle θ. For

θ = 0, the in-plane spin currents are equal to 0. If µL lies between any two levels

connected with spin-flip mechanism, then the largest magnitudes of the in-plane

components of the spin-current and spin-transfer torque are obtained for θ = π/2.
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Figure 4.11: Sketch of two opposite photon-assisted spin-flip processes be-
tween molecular quasienergy levels in the presence of ac harmonic potential
with frequency Ω in the left lead. (a) Excited electron with energy Ω tunnels
into spin-down level �↓ (or �↑ − ωL). It absorbs an amount of energy ωL, flips
its spin due to the exchange interaction with the precessing component of the
molecular spin, and exits into either lead. (b) Excited electron tunnels into
spin-up level �↓ + ωL (or �↑), flips its spin and emits an energy quantum ωL.
Then it tunnels out to the right lead.

In this case, the spin-flip is most probable, with the largest magnitude of the ro-

tating field.

Some of the photon-assisted tunneling processes contributing to the spin trans-

port are presented in Fig. 4.11, where we show examples of the two opposite

photon-assisted spin-flip processes. Fig. 4.11(a) corresponds to the case in which

�1−µL < Ω (or �3−µL < Ω). Here an electron from the left lead excited by energy

Ω = ωL tunnels into the level �1 (or �3). During the exchange interaction with the

precessing component of �S(t) it absorbs an energy ωL and flips its spin, ending up

in the level �2 (or �4), and then tunnels into either lead. One photon-assisted spin-

flip process through level �2 (or �4) for �1 ≤ µL ≤ �2 (or �3 ≤ µL ≤ �4) is presented

in Fig. 4.11(b). In this case an electron absorbs an energy Ω = ωL interacting

with ac field in the left lead and enter the spin-up level �2 (or �4). Then it emits

energy quantum ωL and flips its spin due to the interaction with the precessing

molecular spin, and tunnels into the right lead.

We analyzed the time-averaged photon-assisted spin transport for Γ � ωL.

However, for Γ comparable with ωL, we should take into account the possibility

of quantum interference between spin states with energies �1 and �2, or �3 and �4.

This effect is presented in Fig. 4.12, where it manifests itself in the form of two

peaks located at µL = (�1 + �2)/2 and µL = (�3 + �4)/2.

In Fig. 4.13, the time-averaged x and y components of the spin-transfer torque

are plotted as functions of ac frequancy Ω = ωL, for two different tunnel coupling

constants Γ = 0.04 �0 (solid lines) and Γ = 0.12 �0 (dot-dashed lines) at zero tem-

perature. The grid lines correspond to �i − µL = Ω. For Ω such that �1 − µL = Ω,

the level �1 participates in photon-assisted spin transport, followed by an electron
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Figure 4.12: Time-averaged spin-current components �ILj�t for j = x, y as
functions of bias-voltage eV . The plots are obtained at zero temperature, with
�B = B�ez, Γ = 0.14 �0, and ΓL = ΓR = Γ/2. The other parameters are set
to: Ω = ωL = 0.25 �0, µR = 0, vac

L
= 0.02 �0, φL = 1.95, vac

R
= 0, φR = 0,

θ = 1.25, J = 0.01 �0, and S = 100. Grid lines correspond to peaks due to
quantum interference effect between two opposite spin states with quasienergies
�1 (or �3) and �2 (or �4), distanced by ωL.

spin-flip, and hence a finite spin-transfer torque. In this case �Tx�t is initially en-

hanced, while �Ty�t has a minimum value and increases after Ω = �1 − µL [first

grid line in Fig. 4.13]. As Ω increases the inequality (4.34) is satisfied for level �1
leading to a nonzero spin-transfer torque. With further increase of ac frequency Ω

the photon-assisted spin transport begins to take place in the level �3. Both �Tx�t

and �Ty�t increase around Ω = �3 − µL, after going to a local minimum, due to

the fact that level �3 is now available for spin-flip tunneling processes. For larger

Ω the inequality (4.34) is satisfied for both �1 and �3. Consequently, both �Tx�t,

and �Ty�t increase. Finally, as Ω increases further, level �2 also becomes available

for photon-assisted spin tunneling, leading to the largest enhancement of both in-

plane components of the spin-transfer torque. As Ω increases inequality (4.34) is

satisfied for levels �1, �2 and �3, and photon-assisted time-averaged components of

the spin-transfer torque are large and decreasing. After the level �4 becomes avail-

able for photon-assisted spin transport, both components �Tx�t and �Ty�t drop to

zero. This is due to the previously mentioned antisymmetry. Namely, in this case

the contributions of the photon-assisted spin-transfer torques for �1<µL< �2 and

�3<µL< �4 are equal in magnitude, but have opposite directions. Therefore, they

cancel each other as µL satisfies both these inequalities simultaneously. Conditions

of inequality (4.34) are relaxed for larger Γ due to the broadening of the levels �i.



90 Chapter 4. Photon-assisted electronic and spin transport . . .

0.0 0.5 1.0 1.5 2.0

0

1

2

� �Ε0�

�10�4
Ε 0
�

�Tx�tΜ L
�
�
�
Ε 4

Μ L
�
�
�
Ε 2

Μ L
�
�
�
Ε 3

Μ L
�
�
�
Ε 1

�� 0.12 Ε0
�� 0.04 Ε0

�T �t �T �ty

� �ΩL

x

t
�T

j
�

Figure 4.13: Time-averaged spin-transfer torque components �Tj�t for j = x, y
as functions of ac frequency Ω. The plots are obtained at zero temperature for
two different Γ, with �B = B�ez, Ω = ωL, and ΓL = ΓR = Γ/2. The other
parameters are set to: µL = 0.25 �0, µR = 0, vac

L
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φR = 0, θ = 1.25, J = 0.005 �0, and S = 100. Each step or dip coincides with a
change in the number of available channels for photon-assisted spin tunneling.
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Figure 4.14: Time-averaged z component of the spin-transfer torque �Tz�t as
a function of the Larmor precession frequency ωL. The plots are obtained for
two different tunneling rates Γ at zero temperature, with ΓL = ΓR = Γ/2 and
�B = B�ez. The other parameters are set to: µL = 0.25 �0, µR = 0, θ = 1.25,
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The z component of the time-averaged spin-transfer torque, �Tz�t = T ωL

z
[see

Eq. (4.45)] is plotted as a function of the Larmor frequency ωL in Fig. 4.14. This

component does not contain contributions from photon-assisted spin tunneling,

but only from spin tunneling under dc-bias voltage, followed by an electron spin-

flip due to the interaction with the precessing component of the molecular spin
�S(t). Thus, it does not depend on ac frequency Ω. In turn, a spin-transfer torque

is exerted on the molecular spin. The spin-torque component �Tz�t is an odd func-

tion of ωL, since the change of the direction of �B gives negative ωL. Each step

in Fig. 4.14 denotes a new available spin-transport channel, and an additional

spin-flip process, contributing to the spin-transfer torque, which takes place for

µξ = �i.

4.6 Conclusions

In this chapter we have theoretically studied photon-assisted spin and charge

transport through a molecular magnet junction. The junction consists of a single

molecular orbital, in the presence of a molecular spin, precessing with Larmor fre-

quency ωL in a constant magnetic field. The orbital is connected to two metal leads

subject to harmonically varying chemical potentials with frequency Ω, treated as

a perturbation. We used the Keldysh nonequilibrium Green’s functions method

to derive charge and spin currents and the spin-transfer torque. We employed

the displacement current partitioning scheme of Wang et al. [260] to obtain gauge

invariant expressions for the dynamic conductance of the charge current.

The dynamic response of the system is controlled by photon-assisted transport.

In the low ac-frequency limit, this junction displays an inductive-like or capacitive-

like behavior, depending on the system parameters.

When the chemical potentials are in resonance with a molecular quasienergy

level �i, the real and imaginary components of the ac conductance both increase

around the ac frequency which coincides with the Larmor frequency, after going to

a local minimum, thus allowing to reveal the Larmor frequency by a conductance

measurement.

The photon-assisted x and y spin-current components consist of a dc part and

a part that oscillates with the frequency 2Ω for Ω = ωL. This opens a possibility

to experimentally investigate photon-assisted spin-transfer torque exerted on the

molecular magnet, which can be detected through the presence of nonzero time-

averaged contributions. By manipulating the phases of the harmonic potentials

in the leads with respect to the Larmor precession, and the tilt angle between the
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magnetic field and the molecular spin, the control of the direction and the magni-

tude of the time-averaged photon-assisted spin currents and spin-transfer torque

is achievable.

Finally, in this chapter we present the nonperturbative Gilbert damping and

the other spin-torque coefficients, with respect to the coupling γ, in the zero ac-

frequency limit. Remarkably, the Gilbert damping vanishes in the strong coupling

limit.

In the future, it might be interesting to investigate further transport properties

like the current noise or the spin-torque noise, as well as to find ways to manipulate

molecular magnetic moments by using e.g., ferromagnetic leads.



Chapter 5

Shot noise of charge and spin

transport in a molecular magnet

junction

5.1 Introduction

Shot noise of charge current has become an active research topic in the last

decades, since it enables the investigation of microscopic transport properties,

which cannot be obtained from the charge current or conductance [130]. Some of

these properties result from the quantization of electron charge [130]. Namely, the

nonequilibrium time-dependent fluctuations of charge current arise due to discrete

nature of electron charge. Classical zero-frequency shot noise given by Schottky’s

formula S(0) = e�I� corresponds to uncorrelated charge carriers with Poissonian

distribution [131]. Accordingly, the Fano factor defined as F = S(0)/e�I�, which

describes the deviation of the shot noise from the charge current, equals 1 in this

case. In quantum devices the Fermi-Dirac distribution and the Pauli exclusion

principle suppress (F < 1) [140, 266, 267], while the Coulomb interaction can

either suppress (F < 1) [268, 269] or enhance (F > 1) [270] the shot noise, de-

pending on the system under consideration.

The quantum interference phenomenon, which is a manifestation of the wave

nature of electrons has attracted a lot of attention. The quantum interference ef-

fects occur between coherent electron waves in nanoscale junctions [271]. Quantum

This chapter is based on a manuscript in preparation by M. Filipović and W. Belzig.
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interference in molecular junctions influences their electronic properties [272–276].

The Fano effect [277] due to the interference between a discrete state and the

continuum has an important role in investigation of the interference effects in

nanojunctions, which behave in an analogous way, and are manifested in the con-

ductance or noise spectra [271, 278, 279]. Particularly interesting examples involve

spin-flip processes, like in the presence of Rashba spin-orbit interaction [280, 281],

rotating magnetic field [227], or in the case of the magnetotransport [282–284].

It has been demonstrated that spin-flip induced fluctuations in diffusive con-

ductors connected to ferromagnetic leads enhance the noise power, approaching

the Poissonian value F = 1 [285]. On the other hand, it has been shown that shot

noise in a ferromagnet-quantum dot-ferromagnet system with antiparallel magne-

tization alignments can be suppressed due to spin-flip, with F < 1/2 [138]. Shot

noise can be used to study correlations of wave functions [286] and kinetics of elec-

trons [287], for example. Theoretically, shot noise has been mostly investigated

in mesoscopic systems under dc-bias voltage. If the charge current is conserved,

only current correlation at the same contact (auto-correlation noise) or between

different contacts (cross-correlation noise) is needed to describe the shot noise of

the system with two probes [130]. The cross-correlations take negative definite

values for fermions [140, 288]. Noise of charge current has been investigated using

e.g., nonequilibrium Green’s function method [133, 134, 136, 139], scattering ma-

trix theory [130], equation of motion method [289], and Floquet master equation

approach [33].

In the domain of spin transport it is interesting to investigate the noise prop-

erties, as the discrete nature of electron spin leads to the correlations between

spin-carrying particles. The spin current is usually a nonconserved quantity diffi-

cult to measure, and its shot noise depends on spin-flip processes leading to the

spin-current correlations with opposite spins [290–292]. Consequently, in order to

investigate the shot noise of spin current, one needs to study both auto-correlations

and cross-correlations. The investigation of the spin-dependent scattering, spin ac-

cumulation [293] and attractive or repulsive interactions in mesoscopic systems can

be obtained using shot noise of spin current [294], as well as measuring the spin

relaxation time [290, 294]. One should mention that even in the absence of charge

current, a nonzero spin current and its noise can emerge [292, 295, 296]. Several

works have studied shot noise of spin current using e.g., nonequilibrium Green’s

functions method and scattering matrix theory [292, 297–299].

It was demonstrated that the magnetization noise originates from transferred

spin current noise via a fluctuating spin-transfer torque in ferromagnetic-normal-

ferromagnetic systems [300], and magnetic tunnel junctions [215]. Quantum noise

generated from the scatterings between the magnetization of a nanomagnet and
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spin-polarized electrons has been shown as well [301, 302]. The shot noise of

spin-transfer torque has been recently studied using a magnetic quantum dot con-

nected to two noncollinear magnetic contacts [299]. According to the definition

of the spin-transfer torque, both auto-correlations and cross-correlations of the

spin-current components contribute to the spin-torque noise.

In this chapter we theoretically study noise of charge and spin currents and

spin-transfer torque in a tunnel junction through which transport occurs via a

single electronic energy level, in the presence of a molecular magnet in a constant

magnetic field, connected to two normal metallic leads. The spin of the molecular

magnet precesses around the magnetic field with Larmor frequency. Its preces-

sion is kept undamped by external sources. The electronic level may belong to a

neighboring quantum dot or it may be an orbital of the molecular magnet itself.

The electronic level and the molecular spin are coupled via exchange interaction.

We derive expressions for the noise components using the Keldysh nonequilib-

rium Green’s functions formalism. The noise of charge current is contributed by

both elastic processes driven by the bias voltage, and inelastic tunneling processes

driven by the molecular spin precession. We observe dip-like features in the shot

noise due to inelastic tunneling processes and destructive quantum interference be-

tween electron transport channels involved in the spin-flip processes. The driving

mechanism of the correlations of the spin-torque components in the same spa-

tial direction involves both precession of the molecular spin and the bias-voltage.

Hence, they are contributed by elastic and inelastic processes, with the change of

energy equal to one or two Larmor frequencies. The nonzero correlations of the

perpendicular spin-torque components are driven by the molecular spin precession,

with contributions of spin-flip tunneling processes only. These components are re-

lated to the previously obtained Gilbert damping coefficient at zero temperature.

The chapter is organized as follows. The model and theoretical framework based

on the Keldysh nonequilibrium Green’s functions formalism[45, 46, 220] are given

in Sec. 5.2. Here we derive expressions for the noise of spin and charge currents.

In Sec. 5.3 we investigate and analyze the properties of the charge-current shot

noise. This section is followed by Sec. 5.4 in which we derive and analyze the noise

of spin-transfer torque. The conclusions are given in Sec. 5.5.

5.2 Model and theoretical framework

We use the model with a precessing molecular spin, where the system is sub-

jected to a dc-bias voltage, which was thoroughly described in Sec. 3.3. Here we

assume that the interaction between the spin of the itinerant electrons and the
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precessing component of the molecular magnetization presented by the Hamilto-

nian Ĥ �(t) is strong enough to be treated exactly, i.e., we do not neglect nonlinear

terms in γ. For the sake of clarity we repeat the Hamiltonian of the system,

Ĥ(t) =
�

ξ∈{L,R}

Ĥξ + ĤT + ĤD(t) + ĤS, (5.1)

where

Ĥξ =
�

k,σ

�kξ ĉ
†

kσξ
ĉkσξ (5.2)

is the Hamiltonian of lead ξ = L,R. The tunneling Hamiltonian is given by

ĤT =
�

k,σ,ξ

[Vkξ ĉ
†

kσξ
d̂σ + V ∗

kξ
d̂†
σ
ĉkσξ], (5.3)

while the Hamiltonian of the electronic level equals

ĤD(t) =
�

σ

�0d̂
†

σ
d̂σ + gµB�̂s �B + J�̂s�S(t). (5.4)

The Hamiltonian of the molecular spin �S in the magnetic field �B = B�ez is given

by

ĤS = gµB
�S �B. (5.5)

The dynamics of the molecular spin, which we treat as a classical variable can be

written as �S(t) = S⊥ cos(ωLt)�ex + S⊥ sin(ωLt)�ey + Sz�ez, where S⊥ = S sin(θ) is

the magnitude of the instantaneous projection of �S(t) onto the xy plane, while

z component equals Sz = S cos(θ), with θ the tilt angle between �B and �S, and

ωL = gµBB the Larmor frequency.

The charge and spin current operator of the lead ξ is given by the Heisenberg

equation [45, 46]

Îξν(t) = qν
dN̂ξν

dt
= qν

i

� [Ĥ, N̂ξν ], (5.6)

where [ , ] denotes the commutator, while N̂Lν =
�

k,σ,σ�
ĉ†
kσL

(σν)σσ� ĉkσ�L is the

charge (ν = 0 and q0 = −e ) and spin (ν = x, y, z and qν �=0 = �/2) occupation

number operator of the contact ξ. Taking into account that only the tunneling

Hamiltonian ĤT generates a nonzero commutator in Eq. (5.6), the current operator

Îξν(t) can be expressed as

Îξν(t) = −qν
i

�
�

σ,σ�

(σν)σσ� Îξ,σσ�(t), (5.7)
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where the operator component Îξ,σσ�(t) equals

Îξ,σσ�(t) =
�

k

[Vkξ ĉ
†

kσξ
(t)d̂σ�(t)− V ∗

kξ
d̂†
σ
(t)ĉkσ�ξ(t)]. (5.8)

The nonsymmetrized noise of charge and spin current is defined as the corre-

lation between fluctuations of currents Iξν and Iζµ [46, 130],

Sνµ

ξζ
(t, t�) = �δÎξν(t)δÎζµ(t

�)�, (5.9)

with ν = µ = 0 for the charge current noise. The fluctuation operator of the charge

and spin current in lead ξ is given by

δÎξν(t) = Îξν(t)− �Îξν(t)�. (5.10)

Using Eqs. (5.7) and (5.10), the noise becomes

Sνµ

ξζ
(t, t�) = −

qνqµ
�2

�

σσ�

�

λη

(σν)σσ�(σµ)ληS
σσ

�
,λη

ξζ
(t, t�), (5.11)

where Sσσ
�
,λη

ξζ
(t, t�) = �δÎξ,σσ�(t)δÎζ,λη(t�)�. The correlation functions Sσσ

�
,λη

ξζ
(t, t�)

can be expressed by means of the Wick’s theorem [117] as

Sσσ
�
,λη

ξζ
(t, t�) =

�

kk�

[VkξVk�ζG
>

σ�,k�λζ(t, t
�)G<

η,kσξ
(t�, t)

− VkξV
∗

k�ζG
>

σ�λ(t, t
�)G<

k�ηζ,kσξ(t
�, t)

− V ∗

kξ
Vk�ζG

>

kσ�ξ,k�λζ(t, t
�)G<

ησ
(t�, t)

+ V ∗

kξ
V ∗

k�ζG
>

kσ�ξ,λ(t, t
�)G<

k�ηζ,σ(t
�, t)], (5.12)

with the mixed Green’s functions defined as

G<

η,kσξ
(t, t�) = i�ĉ†

kσξ
(t�)d̂η(t)�, (5.13)

G>

σ�,k�λζ(t, t
�) = −i�d̂σ�(t)ĉ†

k�λζ(t
�)�, (5.14)

while G<

kσξ,η
(t, t�) = −[G<

η,kσξ
(t�, t)]∗ and G>

k�λζ,σ�(t, t�) = −[G>

σ�,k�λζ(t
�, t)]∗. The

Green’s functions of the leads and the central region are defined as

G<

kσξ,k�σ�ζ(t, t
�) = i�ĉ†

k�σ�ζ(t
�)ĉkσξ(t)�, (5.15)

G>

kσξ,k�σ�ζ(t, t
�) = −i�ĉkσξ(t)ĉ

†

k�σ�ζ(t
�)�, (5.16)

G<

σσ�(t, t�) = i�d̂†
σ�(t�)d̂σ(t)�, (5.17)

G>

σσ�(t, t�) = −i�d̂σ(t)d̂
†

σ�(t�)�. (5.18)
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Since the self-energies originating from the coupling between the electronic level

and the lead ξ are diagonal in the electron spin space, their equal diagonal elements

can be written as Σ<,>,r,a

ξ
(t, t�). Taking into account that the mixed Green’s func-

tions can be expressed in terms of Green’s functions of the leads and the central

region using Langreth analytical continuation rules, Eq. (5.12) transforms into

Sσσ
�
,λη

ξζ
(t, t�) =

�
dt1

�
dt2

�
[Gr

σ�λ(t, t1)Σ
>

ζ
(t1, t

�) +G>

σ�λ(t, t1)Σ
a

ζ
(t1, t

�)]

× [Gr

ησ
(t�, t2)Σ

<

ξ
(t2, t) +G<

ησ
(t�, t2)Σ

a

ξ
(t2, t)]

+ [Σ>

ξ
(t, t1)G

a

σ�λ(t1, t
�) + Σr

ξ
(t, t1)G

>

σ�λ(t1, t
�)]

× [Σ<

ζ
(t�, t2)G

a

ησ
(t2, t) + Σr

ζ
(t�, t2)G

<

ησ
(t2, t)]

−G>

σ�λ(t, t
�)[Σr

ζ
(t�, t1)G

r

ησ
(t1, t2)Σ

<

ξ
(t2, t) + Σ<

ζ
(t�, t1)G

a

ησ
(t1, t2)Σ

a

ξ
(t2, t)

+ Σr

ζ
(t�, t1)G

<

ησ
(t1, t2)Σ

a

ξ
(t2, t)]

− [Σr

ξ
(t, t1)G

r

σ�λ(t1, t2)Σ
>

ζ
(t2, t

�) + Σ>

ξ
(t, t1)G

a

σ�λ(t1, t2)Σ
a

ζ
(t2, t

�)

+ Σr

ξ
(t, t1)G

>

σ�λ(t1, t2)Σ
a

ζ
(t2, t

�)]G<

ησ
(t�, t)

�

− δξζ [δησG
>

σ�λ(t, t
�)Σ<

ξ
(t�, t) + δσ�λΣ

>

ξ
(t, t�)G<

ησ
(t�, t)]. (5.19)

Using Fourier transformations of the central-region Green’s functions and self-

energies in the wide-band limit, the correlations given by Eq. (5.19) can be fur-

ther simplified. Detailed expression for correlations Sσσ
�
,λη

ξζ
(t, t�) and their Fourier

transforms can be found in Appendix B. Some correlation functions are not just

functions of time difference t− t�. Thus, similarly as in [303] we used Wigner rep-

resentation assuming that in experiments fluctuations are measured on timescales

much larger than the driving period T = 2π/ωL, which is the period of one molec-

ular spin precession. The Wigner coordinates are given by T � = (t + t�)/2 and

τ = t− t�, while the correlation functions are defined as

Sσσ
�
,λη

ξζ
(τ) =

1

T

�
T

0

dt�δÎξ,σσ�(t+ τ)δÎζ,λη(t)�. (5.20)

The Fourier transform of Sσσ
�
,λη

ξζ
(τ) can be written as

Sσσ
�
,λη

ξζ
(Ω,Ω�) = 2πδ(Ω− Ω�)Sσσ

�
,λη

ξζ
(Ω), (5.21)

where
Sσσ

�
,λη

ξζ
(Ω) =

�
dτeiΩτSσσ

�
,λη

ξζ
(τ). (5.22)

For the correlations which depend only on t − t�, the Wigner representation is

identical to the standard representation.
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Finally, using Eqs. (5.11) and (5.19), the formal expression for the nonsym-

metrized noise of charge and spin currents in standard coordinates t and t� can be

obtained as

Sνµ

ξζ
(t, t�) = −

qνqµ
�2 Tr

��
dt1

�
dt2

�
σ̂ν [Ĝ

r(t, t1)Σ̂
>

ζ
(t1, t

�) + Ĝ>(t, t1)Σ̂
a

ζ
(t1, t

�)]

× σ̂µ[Ĝ
r(t�, t2)Σ̂

<

ξ
(t2, t) + Ĝ<(t�, t2)Σ̂

a

ξ
(t2, t)]

+ σ̂ν [Σ̂
>

ξ
(t, t1)Ĝ

a(t1, t
�) + Σ̂r

ξ
(t, t1)Ĝ

>(t1, t
�)]

× σ̂µ[Σ̂
<

ζ
(t�, t2)Ĝ

a(t2, t) + Σ̂r

ζ
(t�, t2)Ĝ

<(t2, t)]

− σ̂νĜ
>(t, t�)σ̂µ[Σ̂

r

ζ
(t�, t1)Ĝ

r(t1, t2)Σ̂
<

ξ
(t2, t) + Σ̂<

ζ
(t�, t1)Ĝ

a(t1, t2)Σ̂
a

ξ
(t2, t)

+ Σ̂r

ζ
(t�, t1)Ĝ

<(t1, t2)Σ̂
a

ξ
(t2, t)]

− σ̂ν [Σ̂
r

ξ
(t, t1)Ĝ

r(t1, t2)Σ̂
>

ζ
(t2, t

�) + Σ̂>

ξ
(t, t1)Ĝ

a(t1, t2)Σ̂
a

ζ
(t2, t

�)

+ Σ̂r

ξ
(t, t1)Ĝ

>(t1, t2)Σ̂
a

ζ
(t2, t

�)]σ̂µĜ
<(t�, t)

�

− δξζ σ̂ν [Ĝ
>(t, t�)σ̂µΣ̂

<

ξ
(t�, t) + Σ̂>

ξ
(t, t�)σ̂µĜ

<(t�, t)]
�
, (5.23)

where Tr denotes the trace in the electronic spin space.

The symmetrized noise of charge and spin currents reads [46, 130]

Sνµ

ξζS
(t, t�) =

1

2
�{δÎξν(t), δÎζµ(t

�)}�, (5.24)

where {, } denotes the anticommutator. According to Eqs. (5.11), (5.20), (5.22)

and (5.24), in the Wigner representation the nonsymmetrized noise spectrum reads

Sνµ

ξζ
(Ω) =

�
dτeiΩτSνµ

ξζ
(τ)

=

�
dτeiΩτ

1

T

�
T

0

dt�δÎξν(t+ τ)δÎζµ(t)�

= −
qνqµ
�2

�

σσ�

�

λη

(σν)σσ�(σµ)ληS
σσ

�
,λη

ξζ
(Ω), (5.25)

while the symmetrized noise spectrum equals

Sνµ

ξζS
(Ω) =

1

2
[Sνµ

ξζ
(Ω) + Sµν

ζξ
(−Ω)]

= −
qνqµ
2�2

�

σσ�

�

λη

(σν)σσ�(σµ)ληS
σσ

�
,λη

ξζS
(Ω), (5.26)

where Sσσ
�
,λη

ξζS
(Ω) = [Sσσ

�
,λη

ξζ
(Ω) + Sλη,σσ

�

ζξ
(−Ω)]/2. It is of experimental interest

to investigate zero-frequency noise power. The expressions for the zero-frequency

noise power of both charge and spin current components, Sνµ

ξζS
(Ω = 0), can be

found in Appendix B.



100 Chapter 5. Shot noise of charge and spin transport in a molecular magnet junction

5.3 Shot noise of charge current

For the charge current noise it is convenient to drop superscripts ν = µ = 0.

The charge current noise spectrum can be obtained as [294]

Sξζ(Ω) = −
e2

�2 [S
11,11

ξζ
(Ω) + S11,22

ξζ
(Ω) + S22,11

ξζ
(Ω) + S22,22

ξζ
(Ω)]. (5.27)

In this section we analyze the zero-frequency noise power of the charge current

Sξζ = Sξζ(0) = SξζS(0) at zero temperature. Taking into account that thermal

noise disappears at zero temperature, the only contribution to the noise comes from

the shot noise. We consider symmetric coupling between the molecular orbital and

the leads in the wide-band limit ΓL = ΓR = Γ/2.

The charge current from lead ξ can be expressed as

Iξ =
eΓξΓζ

�

�
d�

2π
[fξ(�)− fζ(�)]

×[|Grδ

11
(�)|2 + |Grδ

12
(�)|2 + |Grδ

21
(�)|2 + |Grδ

22
(�)|2], (5.28)

where ξ �= ζ, with complex functions Grδ

11
(�), Grδ

12
(�), Grδ

21
(�) and Grδ

22
(�) defined

in Appendix B. The charge current conservation implies that the auto-correlation

noise power SLL(0) and cross-correlation noise power SLR(0) satisfy the relation

SLL(0) + SLR(0) = 0. Thus, it is sufficient to study only one correlation function.

Tunning the parameters in the system such as the tilt angle θ, the dc-bias

voltage eV = µL − µR, where µL and µR are the chemical potentials of the leads,

and �B, the shot noise can be controlled and minimized. In Fig. 5.1(a) we present

the average charge current as a staircase function of bias voltage, where the bias

is varied in four different ways. Each step corresponds to a new available trans-

port channel. The transport channels are located at the Floquet quasienergies

�1 = �0 − (ωL/2)− (JS/2), �2 = �0 + (ωL/2)− (JS/2), �3 = �0 − (ωL/2) + (JS/2),

and �4 = �0 + (ωL/2) + (JS/2) (see Appendix A).

In the presence of the external magnetic field and the precessing molecular spin,

the initially degenerate electronic level with energy �0 results in four nondegenerate

transport channels, which has an important influence on the noise. The precessing

molecular spin helps incoming electrons to jump into the higher levels, absorbing

an energy quantum ωL. Due to photon absorption and emission processes the shot

noise can be nonzero even if the average charge current is zero. The correlated

current fluctuations give nonzero noise power. The tunneling of electrons followed

by photon absorption lead to the novel features in the noise. Elastic tunneling con-

tributes to the sub-Poissonian Fano factor around resonances and competes with

the spin-flip events caused by the molecular spin precession. The resulting noise is
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Figure 5.1: (a) Charge current IL and (b) auto-correlation shot noise SLL as
functions of bias-voltage eV . All plots are obtained at zero temperature, with
�B = B�ez. The other parameters are: ΓL = ΓR = Γ/2, Γ = 0.05 �0, ωL = 0.5 �0,
J = 0.01 �0, S = 100, and θ = π/2. The molecular quasienergy levels are located
at: �1 = 0.25 �0, �2 = 0.75 �0, �3 = 1.25 �0, and �4 = 1.75 �0.
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presented in Fig. 5.1(b). The noise power shows the molecular quasienergy spec-

trum and each step or dip-like feature in the noise denotes the energy of a new

available transport channel. The noise has two steps and two dip-like features

which correspond to these resonances. Charge current and noise power are satu-

rated for large bias voltages. The Fano factor is depicted in Fig. 5.2. Due to the

absorption (emission) processes [227] and quantum interference effect the Fano fac-

tor is a deformed step-like function, where each step corresponds to a resonance.

If the Fermi levels of the leads lie below the resonances, the shot noise ap-

proaches zero for eV → 0 [red and dashed pink lines in Fig. 5.1(b)]. This is due

to the fact that a small number of electron states can participate in transport

inside this small bias window and both current and noise are close to 0. If the bias

voltage is varied with respect to the resonant energy �1 such that µL,R = �1±eV/2

[dot-dashed blue line in Fig. 5.1(b)], we observe a valley at zero bias, which cor-

responds to µL = µR = �1. As eV = 0 the net tunneling current is zero, but the

precession-assisted inelastic processes, involving absorption of an energy quantum

ωL give rise to the noise here. If the bias-voltage is varied with respect to �0 such

that µL,R = �0 ± eV/2 [green line in Fig. 5.1(b)], at eV = 0 the inelastic processes

involving absorption of an energy quantum ωL give nonzero noise power. Thus, for

eV → 0 the Fano factor F � 1 indicating that the noise is super Poissonian. In

this regime electrons can absorb emitted energy quantum ωL and occupy energy

level with higher energy. As the bias voltage is increased, the noise is enhanced

since the number of the correlated electron pairs increases with the increase of

the Fermi level. For larger bias, due to the absorption and emission of an energy

ωL, electrons can jump to a level with higher energy or lower level during the

transport, and the Fano factor F < 1 indicating the sub-Poissonian noise.

Around resonances µL,R = �i, i = 1, 2, 3, 4, the probability of transmission is

very high, resulting in the small Fano factor. However, if the resonant quasienergy

levels are much higher than the Fermi energy of the leads, the probability of trans-

mission is very low and the Fano factor is close to 1 as shown in Fig. 5.2 (red line).

This means that the stochastic processes are uncorrelated. If the two levels con-

nected with the inelastic photon emission (absorption) tunnel processes, or all four

levels, lie between the Fermi levels of the leads, the Fano factor approaches 1/2,

which is in agreement with [304]. For eV = �3 [see Fig. 5.2 (red line)] a spin

down electron can tunnel elastically, or inelastically in a spin-flip process leading

to the increase of the Fano factor. Spin-flip processes increase electron traveling

time, leading to sub-Poissonian noise. Pauli exclusion principle also leads to sub-

Poissonian noise, since it prevents the double occupancy of a level.
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Figure 5.2: Fano factor F as a function of bias-voltage eV . All plots are
obtained at zero temperature, with �B = B�ez. The other parameters are set to:
Γ = 0.05 �0, ΓL = ΓR = Γ/2, ωL = 0.5 �0, J = 0.01 �0, S = 100, and θ = π/2.
The positions of the molecular quasienergy levels are: �1 = 0.25 �0, �2 = 0.75 �0,
�3 = 1.25 �0, and �4 = 1.75 �0.

The precessing molecular spin induces interference between electron states con-

nected with spin-flip processes. The dip-like features in the noise power are present

due to the destructive interference effect between the transport channels connected

with spin-flip events and the change of energy by one energy quantum ωL, i.e., be-

tween levels with energies �1 and �2 = �1 + ωL, or �3 and �4 = �3 + ωL. When one

or both pairs of the levels connected with spin-flip events enter the bias-voltage

window, then an electron from the left lead can tunnel through both levels via

elastic or inelastic spin-flip processes. Different tunneling pathways ending in the

final state with the same energy, destructively interfere, similarly as in the Fano

effect [277], leading to a dip in the noise power. Namely, the state with lower

energy, �1 (or �3) mimics the discrete state in the Fano effect. An electron tunnels

into the state �1 (or �3), undergoes a spin-flip and absorbs an energy quantum ωL.

The other state with energy �2 (or �4) is an analog of the continuum in the Fano

effect, and the electron tunnels elastically through this level. These two tunneling

processes, one elastic and the other inelastic interfere, leading to a dip in the noise

power. This is presented in Fig. 5.3 where we observe a distinct dip due to the

quantum interference effect for ωL = 0.5 �0, which corresponds to µL = �2 and

µR = �1. The other two steps occur when the Fermi energy of the right or left lead
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Figure 5.3: Shot noise of charge current SLL as a function of the Larmor
frequency ωL, for different tilt angles θ, with �B = B�ez, at zero temperature. The
other parameters are: Γ = 0.05 �0, ΓL = ΓR = Γ/2, µL = 0.75 �0, µR = 0.25 �0,
J = 0.01 �0, and S = 100. For ωL = µL−µR we observe a dip due to destructive
quantum interference.

is in resonance with one of the quasienergy levels. The magnitude of the precess-

ing component of the molecular spin, which induces spin-flip processes between

molecular quasienergy levels, equals JS sin(θ)/2. Therefore, the dip increases with

the increase of the tilt angle θ, and is maximal for θ = π/2. Quantum interference

effects manifest themselves in the form of dip-like features in Fig. 5.1(b). If we

vary, for instance, the bias-voltage as eV = µL, where µR = 0 (red line), we ob-

serve dip-like features for eV = �2 and eV = �4, i.e., when one or both pairs of the

levels which are connected with spin-flip events enter the bias-voltage window.

Finally, in Fig. 5.4 we plotted the noise power of charge current SLL as a func-

tion of µ = µL = µR at zero temperature. It shows nonmonotonic dependence on

the tunneling rates Γ. Here, for small Γ (red line) the noise is increased if µ is po-

sitioned between levels connected with spin-flip events, and is contributed only by

absorption processes of an energy quantum ωL, as we vary the chemical potentials.

For larger Γ (green line), the charge current noise is increased since levels broaden

and overlap, and more electrons can tunnel through them. With further increase

of Γ (dotted blue line) the noise starts to decrease, and it is finally suppressed for

Γ � ωL, since a current-carrying electron sees the molecular spin as nearly static

in this case, leading to the reduction of the inelastic spin-flip processes.
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Figure 5.4: Shot noise of charge current SLL as a function of the chemical
potential of the leads µ = µL = µR, with �B = B�ez, for three different couplings
Γ, where ΓL = ΓR = Γ/2, at zero temperature. The other parameters are:
ωL = 0.5 �0, J = 0.01 �0, S = 100, and θ = π/2. The molecular quasienergy
levels are positioned at: �1 = 0.25 �0, �2 = 0.75 �0, �3 = 1.25 �0, and �4 = 1.75 �0.

5.4 Shot noise of spin current and spin-transfer

torque

In this section we present the spin-current noise-spectrum components and

relations between them. Later we introduce the noise of spin-transfer torque and

investigate the zero-frequency spin-torque shot noise at zero temperature. The

components of the nonsymmetrized spin-current noise spectrum read

Sxx

ξζ
(Ω) = −

1

4
[S12,21

ξζ
(Ω) + S21,12

ξζ
(Ω)], (5.29)

Sxy

ξζ
(Ω) = −

i

4
[S12,21

ξζ
(Ω)− S21,12

ξζ
(Ω)], (5.30)

Szz

ξζ
(Ω) = −

1

4
[S11,11

ξζ
(Ω)− S11,22

ξζ
(Ω)− S22,11

ξζ
(Ω) + S22,22

ξζ
(Ω)], (5.31)

where Eq. (5.31) denotes the noise of the z component of the spin current [292,

294]. Since the polarization of the spin current precesses in the xy plane, the

remaining components of the spin-current noise spectrum satisfy the following
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relations:

Syy

ξζ
(Ω) = Sxx

ξζ
(Ω), (5.32)

Syx

ξζ
(Ω) = −Sxy

ξζ
(Ω), (5.33)

Sxz

ξζ
(Ω) = Szx

ξζ
(Ω) = Syz

ξζ
(Ω) = Szy

ξζ
(Ω) = 0. (5.34)

Taking into account that the spin current is not a conserved quantity, it

is important to notice that the complete information from the noise spectrum

can be obtained by studying both auto-correlation noise spectrum Sjk

ξξ
(Ω) and

cross-correlation noise spectrum Sjk

ξζ
(Ω), ζ �= ξ. Therefore, it is more convenient

to investigate the spin-torque noise spectrum, where both auto-correlation and

cross-correlation noise components of spin currents are included. The spin-transfer

torque operator can be defined as

T̂j = −(ÎLj + ÎRj), j = x, y, z; (5.35)

while its fluctuation reads

δT̂j(t) = −[δÎLj(t) + δÎRj(t)]. (5.36)

Accordingly, the nonsymmetrized and symmetrized spin-torque noise can be ob-

tained using the spin-current noise components as

Sjk

T
(t, t�) = �δT̂j(t)δT̂k(t

�)�

=
�

ξζ

Sjk

ξζ
(t, t�), j, k = x, y, z; (5.37)

Sjk

TS
(t, t�) =

1

2
[Sjk

T
(t, t�) + Skj

T
(t�, t)], (5.38)

with the corresponding noise spectrums given by

Sjk

T
(Ω) =

�

ξζ

Sjk

ξζ
(Ω), (5.39)

Sjk

TS
(Ω) =

�

ξζ

Sjk

ξζS
(Ω). (5.40)

According to Eqs. (5.32), (5.33), and (5.39), Sxx

T
(Ω)=Syy

T
(Ω) and Syx

T
(Ω)=−Sxy

T
(Ω).

In the remainder of the section we investigate the zero-frequency spin-torque

shot noise Sjk

T
= Sjk

T
(0) at zero temperature. The exact expressions for the zero-

frequency noise components are given in Appendix B, where Sxx

T
(0) = Sxx

TS
(0),

Syy

T
(0) = Syy

TS
(0), Szz

T
(0) = Szz

TS
(0), while Sxy

T
(0) is a complex imaginary function,

and Sxy

TS
(0) = 0 according to Eqs. (5.33) and (5.40). Since Sxx

T
(0) = Syy

T
(0), all

results and discussions related to Sxx

T
(0) also refer to Syy

T
(0).
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In the absence of spin-flip events each spin-transport channel can be treated in-

dependently. The presence of the precessing molecular spin affects the spin current

noise. This occurs due to the spin-flip processes which convert spin-up state into

spin down state and vice versa. It has already been demonstrated that spin-flip

processes contribute to the noise of spin current [292]. Since the number of par-

ticles with different spins changes and is not conserved, this generates additional

spin-current fluctuations. Spin-flip processes induce correlations of currents with

opposite spins. Superposition of opposite spin states and quantum interference ef-

fect can contribute to the spin-torque noise, and offers the possibility of molecular

spin manipulation via these interference effects.

Spin currents Iξx and Iξy are periodic functions of time, with period T = 2π/ωL,

while Iξz is time-independent. Spin currents are auto-correlated in the sense that

two spin-currents polarized along the same direction are correlated, while Iξx and

Iζy are also correlated between themselves. Due to the precessional motion of the

molecular spin, inelastic spin currents with spin-flip events induce noise of spin cur-

rents even for eV = 0. Nonequilibrium precession-assisted noise of spin-transfer

torque at zero temperature is the subject of our investigation here. Electrons

with the same and different spin orientations are correlated during transport. The

spin-current formula gives information on available transport channels and inelas-

tic spin-flip processes. The correlations between the torques in the same direction

induce spin-torque noise, which is nonzero even for eV = 0, due to the molecu-

lar spin precession. The noise component Sxy

T
is induced by the molecular spin

precession and vanishes for a static molecular spin. The noises of spin currents

and spin-transfer torque are driven by the bias voltage and by the molecular spin

precession. Hence, in the case when both the molecular spin is static (absence of

inelastic spin-flip processes) and eV = 0 (no net contribution of elastic tunneling

processes), they are all equal to zero.

In Fig. 5.5(a) we present zero-frequency spin-torque noise components Sxx

T
,

Im{Sxy

T
}, and Szz

T
as functions of the bias voltage eV = µL−µR, for µR = 0 at zero

temperature. The magnitude of the noise at resonance energies �i, i = 1, 2, 3, 4,

is determined by the angle θ between the molecular spin and �ez. We plotted

component Sxx

T
for θ = 0 [dotted purple line in Fig. 5.5(a)], θ = π [red line in

Fig. 5.5(a)] and θ = π/2 [dot-dashed pink line in Fig. 5.5(a)], while Im{Sxy

T
} and

Szz

T
are plotted for θ = π/2 [blue and green lines in Fig. 5.5(a)]. In cases θ = 0, π,

there are only two transport channels of opposite spins determined by the resulting

Zeeman field B± JS/gµB. The two steps of equal height are located at these res-

onances, where the only contribution to the spin-torque noise comes from elastic

tunneling events. For θ = π/2, the elastic tunneling contributes with four steps

with equal heights located at resonances �i, but due to the contributions of the
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Figure 5.5: Spin-torque shot noise components Sjk

T
as functions of the bias

voltage eV for (a) µR = 0, µL = eV and (b) µL,R = �1 ± (eV/2). All plots

are obtained at zero temperature, with �B = B�ez, and ΓL = ΓR = Γ/2, for
Γ = 0.05 �0. The other parameters are: ωL = 0.5 �0, J = 0.01 �0, and S = 100.
The molecular quasienergy levels lie at: �1 = 0.25 �0, �2 = 0.75 �0, �3 = 1.25 �0,
and �4 = 1.75 �0.
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inelastic precession-assisted processes between quasienergy levels, the heights of

the peaks in Sxx

T
are not equal anymore (dot-dashed pink line). We observed that

the contribution of the one quantum ωL absorption tunneling processes to Sxx

T

shows steps at spin-down levels �1 and �3, while it is constant between and after

the bias has passed these levels. The component Szz

T
shows similar behavior (green

line). Similarly as in the case of the inelastic tunneling involving the absorption

of one energy quantum ωL, in Sxx

T
we observed inelastic processes involving the

absorption of two energy quanta 2ωL, in the form of steps at spin-down levels �1,

�3, �2−2ωL and �4−2ωL, which have negligible contribution compared to the other

terms. These processes are a result of correlations of two oscillating spin-currents.

For large bias voltage the spin-torque noise components Sxx

T
and Szz

T
become sat-

urated.

The behavior of the component Im{Sxy

T
} is completely different in nature. It

is contributed only by one energy quantum ωL absorption (emission) processes.

Interestingly, we obtained the following relation between the Gilbert damping pa-

rameter given by Eq. (4.47) and Im{Sxy

T
} at zero temperature

Im{Sxy

T
} =

ωLS sin2(θ)

2
α. (5.41)

Hence, the component Im{Sxy

T
} is nonzero for Fermi levels of the leads positioned

in the regions where inelastic tunneling processes occur.

Fig. 5.5(b) shows bias-voltage dependence of Sxx

T
, Im{Sxy

T
}, and Szz

T
for chem-

ical potentials µL,R = �1 ± eV/2 at zero temperature. Similarly as in the case of

charge current shot noise, we observe a valley at zero bias, which corresponds to

µL = µR = �1 in the case of Sxx

T
and Szz

T
. For eV = 0 the contribution of elastic

tunnel processes to the noise is 0, but the precession-assisted inelastic processes,

involving absorption of an energy quantum ωL, give rise to the spin-torque noise

components Sxx

T
and Szz

T
. The spin-torque noise is increased via precession-assisted

inelastic processes. The steps correspond to the position of the chemical potentials

µL,R at the other three resonances. Similarly as the Gilbert damping coefficient α,

the torque noise component Im{Sxy

T
} approaches a constant value in the regions

of the bias-voltage where inelastic spin-flip processes occur.

In Fig. 5.6 we plotted Sxx

T
, Im{Sxy

T
} and Szz

T
components of the spin-torque

noise as functions of the bias voltage eV = µL − µR for µR = �1. Both Sxx

T
and

Szz

T
show a dip at µL = �2, i.e., eV = �2− �1 = ωL. The dip is due to the quantum

interference effect between the spin-tunneling paths through levels �1 and �2, again

in analogy with the Fano effect [277].

The spin-torque noise is influenced by the magnetic field �B, since it deter-

mines the spin-up and spin-down molecular quasienergy levels. The dependence
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Figure 5.6: Spin-torque shot noise components Sjk

T
as functions of the bias-

voltage eV = µL − µR with µR = (�1 + �2)/2, θ = π/2, and �B = B�ez, at zero
temperature. The other parameters are set to: Γ = 0.05 �0, ΓL = ΓR = Γ/2,
ωL = 0.5 �0, J = 0.01 �0, and S = 100. The molecular quasienergy levels are
located at: �1 = 0.25 �0, �2 = 0.75 �0, �3 = 1.25 �0, and �4 = 1.75 �0.
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Figure 5.7: Spin-torque shot noise components Sjk

T
as functions of the Larmor

frequency ωL for µL = 1.5 �0, µR = 0, and θ = π/2. All plots are obtained for
�B = B�ez at zero temperature. The other parameters are set to: ΓL = ΓR = Γ/2,
Γ = 0.05 �0, J = 0.01 �0, and S = 100.
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Figure 5.8: Spin-torque shot noise components as functions of the tilt angle θ
for µL = �3, µR = 0. All plots are obtained at zero temperature, with �B = B�ez,
Γ = 0.05 �0, and ΓL = ΓR = Γ/2. The other parameters are set to: ωL = 0.5 �0,
J = 0.01 �0, and S = 100.

of Sxx

T
, Im{Sxy

T
}, and Szz

T
on the Larmor frequency ωL is depicted in Fig. 5.7.

The steps, dips or peaks in the plots are located at resonant tunneling frequencies

ωL = ±|2µL,R−2�0±JS|. For ωL = 0 there are only two transport channels, one at

energy �0+JS/2 which is equal to the Fermi energy of the left lead, and the other

at �0 − JS/2 located between µL and µR. The contributions of the elastic spin

transport processes through these levels result in dips in the components Sxx

T
and

Szz

T
, while Im{Sxy

T
} = 0. For ω = �0 corresponding to µR = �1 and µR = �4 − 2ωL,

both the elastic and spin-flip tunneling events involving the absorption of energy

of one quantum ωL contribute with a dip, while the spin-flip processes involving

the absorption of an energy equal to 2ωL contribute with a peak to the component

Sxx

T
. For ωL = 2 �0 and ωL = 3 �0 corresponding to µL = �2 and µR = �3, both elas-

tic and spin-flip processes with the absorption of an energy equal to ωL contribute

with a step, while the inelastic processes involving the absorption of an energy

2ωL give negligible contribution to Sxx

T
. The component Szz

T
shows dips at these

two points, since here the dominant contribution comes from inelastic tunneling

spin-flip events. The component Szz

T
is an even, while Im{Sxy

T
} is an odd function

of ωL. The spin-torque noise Sxx

T
is an even function of ωL for θ = π/2.

The noise of spin-transfer torque can be modified by changing the tilt angle

θ, bias-voltage eV , or the magnetic field �B, i.e., by adjusting these parameters.

The spin-torque noise components as functions of θ for µL = �3 and µR = 0 at
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zero temperature are shown in Fig. 5.8. As already mentioned, the magnitudes

and the appearance of the spin-torque noise components at resonance energies can

be controlled by θ, since it influences the polarization of the spin currents. Here

we see that both Szz

T
and Im{Sxy

T
} are zero for θ = 0, π, as then the molecular

spin is static and its magnitude is constant along z-direction. These torque noise

components take their maximum values for θ = π/2, where both elastic and inelas-

tic tunneling contributions are maximal. The component Sxx

T
takes its minimum

value for θ = 0, and its maximum value for θ = π, with only elastic tunneling con-

tributions in both cases. For θ = π/2 the inelastic tunneling events give maximal

contribution, while energy conserving processes give minimal contribution to Sxx

T
.

5.5 Conclusions

In this chapter we have first theoretically studied noise of charge and spin

transport through a small junction, consisting of a single molecular orbital in the

presence of a molecular spin precessing with Larmor frequency ωL in a constant

magnetic field. The orbital is connected to two Fermi leads. We used the Keldysh

nonequilibrium Green’s functions method to derive the noise components of charge

and spin currents and spin-transfer torque.

Then we analyzed the shot noise of charge current and observed characteristics

which differ from the ones in the current. In the noise power we observed dip-like

features which we attribute to inelastic processes, due to the molecular spin pre-

cession, leading to the quantum interference effect between correlated transport

channels.

Since the inelastic tunneling processes lead to a spin-transfer torque acting on

the molecular spin, we have also investigated the spin-torque noise components

contributed by these processes, involving the change of energy by an energy quan-

tum ωL. We observed quantum interference between spin-tunneling processes as

well. The spin-torque noise components are driven by both the bias voltage and

the molecular spin precession. The in-plane noise components Sxx

T
and Syy

T
are also

contributed by the processes involving the absorption of an energy equal to 2ωL.

We obtained the relation between Im{Sxy

T
} and the Gilbert damping coefficient α

at zero temperature.

Taking into account that the noise of charge and spin transport can be con-

trolled by the parameters such as bias voltage and external magnetic field, our

results might be useful in molecular electronics and spintronics. Finding a way to

control the spin states of single-molecule magnets in tunnel junctions could be one

of the future tasks.
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Conclusions and outlook

In this thesis we have investigated the charge and spin transport through a

molecular orbital connected to two leads, and coupled via exchange interaction

with a precessing molecular spin in a magnetic field. The expressions for charge and

spin currents and related noises have been derived using the Keldysh nonequilib-

rium Green’s functions formalism. The exchange coupling between the electronic

spins and the magnetization dynamics of the molecule leads to inelastic tunneling

processes, which contribute to the spin currents. In turn, a spin-transfer torque

is generated onto the molecular spin by the spin-currents. This torque includes a

Gilbert damping and a field-like torque component that modifies the precession

frequency. The related torque coefficients can be controlled by the bias and gate

voltages, or via the external magnetic fields.

We have also theoretically studied the ac-transport through the molecular or-

bital in the presence of oscillating voltages in the leads treated as a perturbation.

We have found that in the low ac-frequency regime the molecular junction behaves

as a classical electric circuit, which can be tuned from capacitive-like to inductive-

like response. For an ac frequency that matches the Larmor frequency we have

observed two effects. First, around ac frequency matching the Larmor frequency,

the components of the dynamic conductance associated with the resonant position

of the chemical potentials with molecular quasienergy levels, both increase after

going to a local minimum, allowing the detection of the internal precession time

scale. Second, the setup can be employed to generate and manipulate dc-spin cur-

rents by adjusting the molecular spin direction and the phase difference between

ac voltages in the leads and Larmor precession.

In the end, we have studied the fluctuations of charge and spin transport

through the junction under a dc-bias voltage. We have observed dips in the shot

noise of charge current due to precession-assisted inelastic tunneling processes,
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leading to the destructive quantum interference effect between different tunneling

pathways. The correlations between the spin-transfer torques in the same direction

are driven by the bias voltage and the molecular spin precession. The spin-torque

noise components in the plane of the molecular spin precession are contributed by

spin-flip processes, involving the absorption of energy equal to one or two Larmor

frequencies. The correlations between the perpendicular spin-transfer torques in

the precession plane are related to the Gilbert damping coefficient. We observed

quantum destructive interference effects between spin-tunneling processes as well.

Taking into account that spin-transport properties can be controlled by exter-

nal parameters such as bias and gate voltages, as well as by external magnetic

fields, our results might be useful in molecular spintronics. It may be possible to

control the spin state of a single-molecule magnet via current-induced torques us-

ing e.g., ferromagnetic leads. One of the tasks for future research could be the

quantum treatment of a single-molecule magnet in tunneling junctions, in view of

its possible application in magnetic storage. This would have to be complemented

by a theoretical study of the molecular magnetization dynamics in the presence of

spin transport.



Appendix A

Floquet theorem

We consider a system with a time-periodic Hamiltonian Ĥ(t) = Ĥ(t + T ),

where T is the period, while ω = 2π/T is the corresponding frequency. The

Hamiltonian consists of a nonperturbed part Ĥ0 and a time-dependent periodic

part V̂ (t) = V̂ (t+ T ),

Ĥ(t) = Ĥ0 + V̂ (t). (A.1)

The Hamiltonian Ĥ(t) can be expressed as a Fourier series

Ĥ(t) =
∞�

n=−∞

Ĥ(n)einωt. (A.2)

The Floquet theorem claims that the solutions of the Schrödinger equation

Ĥ(t)|ψ(t)� = i� ∂

∂t
|ψ(t)�, (A.3)

can be written as

|ψα(t)� = e−i�αt|φα(t)�, (A.4)

with |φα(t)� = |φα(t+ T )� [224–226]. The wave function |ψα(t)� is the wave func-

tion of the system called the quasienergy state, while �α is called the quasienergy.

Replacing Eq. (A.4) into Eq. (A.3) yields

Ĥ(t)|φα(t)� = �α|φα(t)�, (A.5)

where Ĥ(t) = Ĥ(t) − i∂/∂t. The quasienergy state |ψα(t)� can be expanded as

a Fourier series, using the orthonormal set of eigenstates of the Hamiltonian Ĥ0
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denoted as {|β�},

|ψα(t)� = e−i�αt
�

n,β

F (n)

αβ
e−inωt

|β�. (A.6)

Substituting Eqs. (A.2) and (A.6) into Eq. (A.3) one eliminates the time depen-

dence and after some algebra obtains [225, 228]

�

k,γ

�αn|ĤF
|γk�F (k)

γβ
= �βF

(n)

αβ
, (A.7)

with |αn� = |α� ⊗ |n�, where �t|n� = einωt, n ∈ Z, are the Fourier vectors, while

index α characterize the system. In Eq. (A.7), ĤF is the Floquet Hamiltonian

with matrix elements given by [225, 228]

�αn|ĤF
|βm� = �α|Ĥ(n−m)

|β�+ nωδαβδnm, (A.8)

which can be written in a shorter form as

HF

αn,βm
= H(n−m)

αβ
+ nωδαβδnm, (A.9)

whereas the quaienergies �α can be obtained as the eigenvalues of the Floquet

Hamiltonian ĤF,

det|ĤF
− �Î|= 0. (A.10)

The number of quasienergies corresponding to the quasienergy state |ψα(t)� is infi-

nite, given by �α+n�ω. Thus, it is sufficient to consider, for instance, quasienergies

within the interval [−ω/2,ω/2).

Example: We consider Hamiltonian of the molecular orbital given by Eq. (4.4)

in the Hilbert space spanned by the eigenvectors of electron spin operator ŝz,

|↓� = |1� and |↑� = |2�,

ĤMO(t) = λ1|1��1|+ λ2|2��2|+
JS⊥

2
eiωLt|1��2|+

JS⊥

2
e−iωLt|2��1|, (A.11)

where λ1 = �0 − (ωL + JSz)/2 and λ2 = �0 + (ωL + JSz)/2. The only nonzero

components of the ĤMO(t) expressed as a Fourier series

ĤMO(t) =
∞�

n=−∞

Ĥ(n)

MO
einωLt, (A.12)
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are given by

Ĥ(0)

MO
= λ1|1��1|+ λ2|2��2|, (A.13)

Ĥ(1)

MO
=

JS⊥

2
eiωLt|1��2|, (A.14)

Ĥ(−1)

MO
=

JS⊥

2
e−iωLt|2��1|. (A.15)

Using Eq. (A.9) the matrix elements of the Floquet Hamiltonian can be obtained

as

HF

1n,1m
= (λ1 + n�ωL)δnm, (A.16)

HF

1n,2m
=

JS⊥

2
δn,m+1, (A.17)

HF

2n,1m
=

JS⊥

2
δn,m−1, (A.18)

HF

2n,2m
= (λ2 + n�ωL)δnm. (A.19)

Similarly as in [227] the matrix of the Floquet Hamiltonian is block diagonal with

a block given by 


λ2 + (n− 1)ωL JS⊥/2

JS⊥/2 λ1 + nωL



 . (A.20)

Choosing n = 0, we obtain the corresponding quasienergies given by the eigenval-

ues of the block as

�1 = �0 −
ωL

2
−

JS

2
, (A.21)

�3 = �0 −
ωL

2
+

JS

2
. (A.22)

The states of the neighboring block are equal to

�2 = �1 + ωL = �0 +
ωL

2
−

JS

2
, (A.23)

�4 = �2 + ωL = �0 +
ωL

2
+

JS

2
. (A.24)

The precessing component of the molecular spin couples state with quasienergy

�1 with the state with quasienergy �2, and state with quasienergy �3 with the

state with quasienergy �4, where an electron can absorb or emit an energy ωL

accompanied with a spin-flip.

In the case when the time-dependent part of the Hamiltonian ĤMO(t) given by

Eq. (A.11) can be treated as a perturbation, as in Chapter 3, where (JS⊥/2)2 → 0,
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the quasienergies can be approximated as

�1,2 = �0 ∓
ωL

2
−

JSz

2
, (A.25)

�3,4 = �0 ∓
ωL

2
+

JSz

2
. (A.26)



Appendix B

Noise power of charge and spin

transport

Here we present the expressions for the zero-frequency noise power components

of the charge and spin currents and spin-transfer torque, starting from the general

expression given below. In the wide-band limit, the retarded and advanced self-

energies Σr,a are energy independent, and Sσσ
�
,λη

ξζ
(t, t�) given by Eq. (5.19) can be

expressed as

Sσσ
�
,λη

ξζ
(t, t�) =

�
d�1
2π

�
d�2
2π

�
d�3
2π

�
d�4
2π

e−i(�1−�2)tei(�3−�4)t
�

×
�
[Gr

σ�λ(�1, �3)Σ
>

ζ
(�3) + 2G>

σ�λ(�1, �3)Σ
a

ζ
]

× [Gr

ησ
(�4, �2)Σ

<

ξ
(�2) + 2G<

ησ
(�4, �2)Σ

a

ξ
]

+ [Σ>

ξ
(�1)G

a

σ�λ(�1, �3) + 2G>

σ�λ(�1, �3)Σ
r

ξ
]

× [Σ<

ζ
(�4)G

a

ησ
(�4, �2) + 2G<

ησ
(�4, �2)Σ

r

ζ
]

+ 4Σr

ξ
Σa

ζ
G<

ησ
(�4, �2)G

>

σ�λ(�1, �3)
�

− δξζ

�
d�1
2π

�
d�2
2π

�
d�3
2π

×
�
e−i(�1−�2)tei(�3−�2)t

�
δησG

>

σ�λ(�1, �3)Σ
<

ξ
(�2)

+ e−i(�1−�2)tei(�1−�3)t
�
δσ�λΣ

>

ξ
(�1)G

<

ησ
(�3, �2)

�
. (B.1)
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The Fourier transform of Eq. (B.1) in the Wigner representation is given by

Sσσ
�
,λη

ξζ
(Ω) =

�
d�

2π

�
[Grδ

σ�λ(�)Σ
>

ζ
(�) + 2G>δ

σ�λ(�)Σ
a

ζ
]

× [Grδ

ησ
(�− Ω)Σ<

ξ
(�− Ω) + 2G<δ

ησ
(�− Ω)Σa

ξ
]

+ [Σ>

ξ
(�)Gaδ

σ�λ(�) + 2G>δ

σ�λ(�)Σ
r

ξ
]

× [Σ<

ζ
(�− Ω)Gaδ

ησ
(�− Ω) + 2G<δ

ησ
(�− Ω)Σr

ζ
]

+ 4Σr

ξ
Σa

ζ
G<δ

ησ
(�− Ω)G>δ

σ�λ(�)

− δξζ [δησG
>δ

σ�λ(�)Σ
<

ξ
(�− Ω) + δσ�λΣ

>

ξ
(�)G<δ

ησ
(�− Ω)]

�
, (B.2)

where {σσ�,λη} =
�
{11, 11}, {12, 21}, {11, 22}, {22, 11}, {21, 12}, {22, 22}

�
. For

all other configurations of superscripts, Fourier transforms Sσσ
�
,λη

ξζ
(Ω) equal zero,

i.e., Sσσ,12

ξζ
(Ω) = Sσσ,21

ξζ
(Ω) = S12,σσ

ξζ
(Ω) = S21,σσ

ξζ
(Ω) = S12,12

ξζ
(Ω) = S21,21

ξζ
(Ω) = 0.

In the expression (B.2),

Grδ

11
(�) =

G0r

11
(�)

1− γ2G0r
11
(�)G0r

22
(�− ωL)

:= A(�), (B.3)

Grδ

12
(�) =

γG0r

11
(�)G0r

22
(�− ωL)

1− γ2G0r
11
(�)G0r

22
(�− ωL)

:= B(�), (B.4)

Grδ

21
(�) =

γG0r

11
(�+ ωL)G0r

22
(�)

1− γ2G0r
11
(�+ ωL)G0r

22
(�)

:= B(�+ ωL), (B.5)

Grδ

22
(�) =

G0r

22
(�)

1− γ2G0r
22
(�)G0r

11
(�+ ωL)

:= C(�), (B.6)

G<δ,>δ

11
(�) = Σ<,>(�)|A(�)|2 + Σ<,>(�− ωL)|B(�)|2, (B.7)

G<δ,>δ

12
(�) = Σ<,>(�)A(�)B∗(�) + Σ<,>(�− ωL)B(�)C∗(�− ωL), (B.8)

G<δ,>δ

21
(�) = Σ<,>(�+ ωL)B(�+ ωL)A

∗(�+ ωL) + Σ<,>(�)C(�)B∗(�+ ωL), (B.9)

G<δ,>δ

22
(�) = Σ<,>(�)|C(�)|2 + Σ<,>(�+ ωL)|B(�+ ωL)|

2. (B.10)
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The auto-correlation zero-frequency noise power of the charge current, and the

noise power of the spin current polarized along the z-direction are given by

S00,zz

LLS
(0) = q2

0,z

�
d�

2π

×
�
{fL(�)[1− fR(�)] + fR(�)[1− fL(�)]}

× [2Γ2

L
ΓRIm{A(�)}|A(�)|2 + Γ3

L
ΓR|A(�)|

4

+ ΓLΓR|A(�)|
2 + Γ3

L
ΓR|B(�+ ωL)|

4

±
�
2Γ2

L
ΓRIm{C(�)}|B(�+ ωL)|

2 + 2Γ2

L
ΓRIm{A(�)}|B(�)|2

+ 2Γ3

L
ΓR|A(�)|

2
|B(�)|2 + 2Γ3

L
ΓR|B(�+ ωL)|

2
|C(�)|2

�

+ 2Γ2

L
ΓRIm{C(�)}|C(�)|2+ Γ3

L
ΓR|C(�)|4+ ΓLΓR|C(�)|2+ Γ3

L
ΓR|B(�)|4]

+{fL(�)[1− fL(�− ωL)] + fL(�− ωL)[1− fL(�)]}

× [2Γ3

L
Im{A(�)}|B(�)|2 + Γ4

L
|A(�)|2|B(�)|2 + Γ2

L
|B(�)|2

±
�
2Γ3

L
Im{B2(�)A∗(�)}+ 2Γ3

L
Im{B2(�)C∗(�− ωL)}

− 2Γ2

L
Re{B2(�)}+ 2Γ4

L
Re{A(�)B∗2(�)C(�− ωL)}

�

+ 2Γ3

L
Im{C(�− ωL)}|B(�)|2 + Γ4

L
|B(�)|2|C(�− ωL)|

2 + Γ2

L
|B(�)|2]

+{fL(�)[1− fR(�− ωL)] + fR(�− ωL)[1− fL(�)]}

× [2Γ2

L
ΓRIm{A(�)}|B(�)|2 + Γ3

L
ΓR|A(�)|

2
|B(�)|2 + ΓLΓR|B(�)|2

±
�
2Γ2

L
ΓRIm{B2(�)C∗(�− ωL)}+ 2Γ3

L
ΓRRe{A(�)B

∗2(�)C(�− ωL)}
�

+ Γ3

L
ΓR|B(�)|2|C(�− ωL)|

2]

+{fR(�)[1− fL(�− ωL)] + fL(�− ωL)[1− fR(�)]}

× [Γ3

L
ΓR|A(�)|

2
|B(�)|2 + 2Γ2

L
ΓR|B(�)|2Im{C(�− ωL)}

±
�
2Γ2

L
ΓRIm{A∗(�)B2(�)}+ 2Γ3

L
ΓRRe{A(�)B

∗2(�)C(�− ωL)}
�

+ Γ3

L
ΓR|B(�)|2|C(�− ωL)|

2 + ΓLΓR|B(�)|2]

+{fR(�)[1− fR(�− ωL)] + fR(�− ωL)[1− fR(�)]}

× [Γ2

L
Γ2

R
|A(�)|2|B(�)|2 + Γ2

L
Γ2

R
|B(�)|2|C(�− ωL)|

2

± 2Γ2

L
Γ2

R
Re{A(�)B∗2(�)C(�− ωL)}]

�
. (B.11)
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The cross-correlation zero-frequency noise power of the charge current, and the

noise power of the spin current polarized along the z-direction read

S00,zz

LRS
(0) = q2

0,z

�
d�

2π

×
�
{fL(�)[1− fR(�)] + fR(�)[1− fL(�)]}

× [ΓLΓRΓIm{A(�)}|A(�)|2 − ΓLΓRRe{A
2(�)}

+ Γ2

L
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R
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L
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R
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L
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R
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4

±
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ΓR|B(�)|2Im{C(�− ωL)}+ Γ3
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2
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L
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R
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The auto-correlation zero-frequency noise power of the spin current polarized along

the x-direction can be expressed as

Sxx

LLS
(0) =

�
d�

8π

×
�
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, (B.13)

and

Syy

LLS
(0) = Sxx

LLS
(0). (B.14)
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The cross-correlation zero-frequency noise power of the spin current polarized

along the x-direction can be written as

Sxx
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R
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2
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3

R
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2
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�
, (B.15)

and

Syy

LRS
(0) = Sxx

LRS
(0). (B.16)
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The symmetrized auto-correlation zero-frequency noise, correlating the spin cur-

rents polarized along the x- and y-directions is equal to zero,

Sxy

LLS
(0) = 0. (B.17)

The cross-correlation zero-frequency noise, correlating the spin currents polarized

along the x- and y-directions is given by

Sxy

LRS
(0) =

�
d�

8π

×
�
{fL(�)[1− fR(�)] + fR(�)[1− fL(�)]}

×[(ΓLΓ
2

R
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L
ΓR)|A(�)|

2Re{C(�)}+ (Γ2

L
ΓR − ΓLΓ

2

R
)Re{A(�)}|C(�)|2]

+{fL(�)[1− fL(�− ωL)] + fL(�− ωL)[1− fL(�)]}

×[Γ2

L
ΓR|B(�)|2Re{C(�)}− Γ2

L
ΓRRe{A(�− ωL)}|B(�)|2]

+{fL(�)[1− fR(�− ωL)] + fR(�− ωL)[1− fL(�)]}

×[ΓLΓ
2

R
|B(�)|2Re{C(�)}+ Γ2

L
ΓRRe{A(�− ωL)}|B(�)|2]
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2

R
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�
. (B.18)
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The zero-frequency spin-torque noise power of the spin-torque component along

the x-direction can be expressed as

Sxx

T
(0) =

�
d�

8π

×
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2
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2
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2
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2
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, (B.19)

and

Syy

T
(0) = Sxx

T
(0). (B.20)
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The nonsymmetrized zero-frequency spin-torque noise, correlating spin-torque com-

ponents along the x- and y-directions, reads

Sxy

T
(0) = i

�
d�

8π

×
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�
. (B.21)

The symmetrized zero-frequency spin-torque noise, correlating spin-torque com-

ponents along the x- and y-directions, is equal to zero,

Sxy

TS
(0) = 0. (B.22)
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The zero-frequency spin-torque noise power of the spin-torque component along

the z-direction can be written as

Szz
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[263] M. Büttiker and T. Christen, in Quantum Transport in Semiconductor Sub-

micron Structures, edited by B. Kramer (Kluwer Academic Publishers, Dor-

drecht, 1996).
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[266] A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys.

Rev. Lett. 76, 2778 (1996).

[267] V. V. Kuznetsov, E. E. Mendez, X. Zuo, G. L. Snider, and E. T. Croke,

Phys. Rev. Lett. 85, 397 (2000).

[268] O. M. Bulashenko and J. M. Rub́ı, Phys. Rev. B 64, 045307 (2001).

[269] O. M. Bulashenko and J. M. Rub́ı, Phys. Rev. B 67, 115322 (2003).

[270] E. Onac, F. Balestro, B. Trauzettel, C. F. J. Lodewijk, and L. P. Kouwen-

hoven, Phys. Rev. Lett. 96, 026803 (2006).

[271] A. E. Miroschnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82,

2257 (2010).
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[286] T. Gramespacher and M. Büttiker, Phys. Rev. Lett. 81, 2763 (1998).

[287] R. Landauer, Nature 392, 658 (1998).
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	Filipović: Photon-assisted electronic and spin transport... - Google Scholarcitations
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