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Преглед научне активности 

 

 

Научна активност Јадранке Васиљевић односи се на нелинеарну фотонику: испитивање 

феномена који се односе на процес интеракције ласерског зрачења са нелинеарном 

оптичком средином, истраживање ефеката приликом простирања светлости у сложеним 

фотонским решеткама, изучавање класе недифрагујућих Матјеових зрака у различитим 

нелинеарним срединама, као и експерименталну реализацију фотонских решетки помоћу 

ових зрака, како периодичних тако и квазипериодичних, уз помоћ оптички индуковане 

технике, и изучавање феномеана простирања и локализације светлости у њима, с акценотом 

на њихове потенцијалне примене.  

Досадашњи научно истраживачки рад Јадранке Васиљевић, базиран на горе поменутим 

проблемима, може се класификовати у следеће основне правце:  

1. Изучавање простирања и локализације светлосног таласа у једнодимензионалним 

квазипериодичним решеткама, формираним према правилима Фибоначијеве речи. 

2. Проучавање феномена при простирању Матјеових зрака у нелинеарној 

фоторефрактивној средини. 

3. Вођење светлосног таласа у појединачним Матјеовим фотонским решеткама. 

4. Формирање сложених фотонских решетки помоћу више Матјеових зрака. 

 

1. Изучавање простирања и локализације светлосног таласа у једнодимензионалним 

квазипериодичним решеткама, формираним према правилима Фибоначијеве речи 

Током израде мастер рада кандидат је теоријски, нумерички и експеримнтално изучавао 

простирања и локализацију ласерске светлости у једнодимензионалним квазипериодичним 

решеткама, формираним према правилима Фибоначијеве речи. Два Фибоначијева елемента 

А и Б, коришћена су као растојања између таласовода. Oптички индукованом техником 

направљена је једнодимензионална Фибоначијева решетка експериментално, у 

фоторефрактивном кристалу литијум ниобата, допираном гвожђем (0,05% Fe:LiNbO3). 

Демонстрирано је како нумерички тако и експериментално да је ширење таласа у оваквим 

таласоводима ефективно редуковано у поређењу са периодичним таласоводима. Разматран 

је и утицај промене индекса преламања на ширење таласа у оваквим системима. Доста 

израженија дифракција се јавља за мање промене индекса преламања. 

2. Проучавање феномена при простирању Матјеових зрака у нелинеарној 

фоторефрактивној средини 

У оквиру докторских студија Јадранка се бавила изучавањем недифрагујућих зрака пре 

свега класом од посебног интереса као што су Матјеови зраци. Акценат је стављен на 

примену ових зрака у нелинеарној оптици као и на услове за формирање различитих 



фотонских решетки уз помоћ оваквих зрака како теоријски тако и експериментално. У 

експерименталној реализацији коришћена је техника оптичке индукције за уписивање 

фотонске решетке у фоторефрактивном кристалу стронцијм баријум ниобату допираном 

церијумом. Нумеричке симулације служиле су за егзактно симулирање експеримента али и 

проналажење интереснатних феномена који би се поновили у експерименту. 

Експериментално и нумерички испитивано је нелинеарно простирање појединачних и 

елиптичних Матјеових зрака у фоторефрактивном кристалу. Испитивањем простирање 

појединачних Матијеових зрака нижег и вишег реда пронађени су ефекти слични 

дискретној дифракцији при преласку са једнодимензионалног на дводимензионални 

систем. 

Након тога изучавани су елиптични Матјеови зраци у разним нелинеарним режимима како 

би се откриле стабилне или динамичке структуре. Нумерички су рачунате релевантне 

физичке величине, као што су орбитални ангуларни моменти и Поинтингов вектор као 

погодна величина за мерење тока енергије код динамичких структура. Утврђено је да се при 

простирању елиптичних Матјеових зрака у нелинеарној средини формирају хирални 

таласоводи. Променом параметара нелинеарности и величине Матјеовог зрака могуће је 

контролисати величину и закривљеност хиралних таласовода. Нумерички предвиђени 

резултати експериментално су потврђени. 

3. Вођење светлосног таласа у појединачним Матјеовим фотонским решеткама 

Кандидат се бавио и испитивањем простирање елиптичних оптичких вортекса кроз 

одређене врсте Матјеових решетки. Демонстриране су нове вортексне структуре као што су 

стабилне вортексне огрлице, код којих се облик и величина фрагмената огрлице могу 

контролисати променом реда или елиптичности Матјеове решетке Повећањем 

нелинеарности формирају се осцилаторни диполи или динамичке нестабилности. 

4. Формирање сложених фотонских решетки помоћу више Матјеових зрака 
 

Јадранка је испитвала и услове за формирање фотонских решетки у фоторефрактивном 

кристалу стронцијм баријум ниобату коришћењем појединачних Матјеових зрака или 

интерференције више Матјеових зрака. Интерференцијом више Матјеових зрака различитог 

реда или интерференцијом више Матјеових зрака истог реда ротираних једнан у односу на 

други или на различитом растојању стварају се основни обрасци за формирање нових класа 

апериодичних решетки. 
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Discrete optical gratings are essential components to custom-
ize structured light waves, determined by the band structure
of the periodic potential. Beyond fabricating static devices,
light-driven diffraction management requires nonlinear
materials. Up to now, nonlinear self-action has been limited
mainly to discrete spatial solitons. Discrete solitons, how-
ever, are restricted to the eigenstates of the photonic lattice.
Here, we control light formation by nonlinear discrete dif-
fraction, allowing for versatile output diffraction states.
We observe morphing of diffraction structures for discrete
Mathieu beams propagating nonlinearly in photosensitive
media. The self-action of a zero-order Mathieu beam in a
nonlinear medium shows characteristics similar to discrete
diffraction in one-dimensional waveguide arrays. Mathieu
beamsof higher orders showdiscrete diffraction along curved
paths, showing the fingerprint of respective two-dimensional
photonic lattices. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.001592

Manipulating waves by customizing their interaction with
functional materials enables a variety of photonic applications,
e.g., tailored diffraction at gratings to discretize the waves’ spec-
tral components [1,2]. Waves in periodically structured media
show dynamics that cannot be realized in homogeneous media,
determined by the media’s band structure. Propagation of light
in dielectric media with a periodically varying refractive index
can mimic the spatio–temporal characteristics that are typically
encountered in discrete systems, and the underlying field evo-
lution effectively becomes “discretized” [1]. Most importantly,
the vision to control light with light is realizable only by exploit-
ing nonlinear materials as mediators [3]. Thus, shaping the peri-
odically varying refractive index structure allows for diffraction
management to control in turn the light distribution [4].

Different types of periodic photonic structures, including
arrays of evanescently coupled optical waveguides [5], optically
induced lattices in photorefractive materials [6], and photonic
crystals [7], have been employed to engineer and control

fundamental properties of wave propagation. Arrays or lattices
of evanescently coupled waveguides are prime examples of
structures in which discrete diffraction [2,5,8] can be observed.
These arrays consist of equally spaced identical waveguide
elements or sites, possessing all essential characteristics of a pho-
tonic crystal structure (Brillouin zones, band structure, etc.).
In such a physical setting, light couples between waveguides
through tunneling, showing its diffraction characteristics.
When low intensity light is injected into one or a few neigh-
boring waveguides, it couples to more and more waveguides,
broadening its spatial distribution. Fundamentally new physics
occur in contrast to diffraction in homogeneous media. High-
intensity light producing nonlinear responses in the refractive
index is capable of forming discrete spatial solitons [9]. A
renewed interest in nonlinear light–matter interaction goes be-
yond soliton formation. It is devoted to physical systems with
dimensionality morphing, e.g., the continuous transformation
of the lattice structure from 1D to 2D [10–12].

Nondiffracting beams, having propagation-invariant inten-
sity distributions, allow creating 1D and 2D photonic lattices
in photosensitive media. Particularly in the areas of optics and
atom physics, these beams enable novel applications [13–16].
Among the variety of different nondiffracting beams, Mathieu
beams [15,17] solve the Helmholtz equation in elliptic cylin-
drical coordinates [18]. They are used for a new type of optical
lattice-writing light [19–23] allowing solitons or even ellipti-
cally shaped vortex solitons, and are beneficially used for
particle manipulation [24]. However, their elliptical character-
istics allow going far beyond soliton investigations and extend-
ing applications of nonlinear self-action.

In this Letter, we exploit Mathieu beams as lattice-writing
light to fabricate discrete waveguide structures and investigate
their nonlinear self-action in these structures, leading to
morphing discrete diffraction. We investigate Mathieu beams
of different orders in a photorefractive crystal, experimentally
and numerically. We link linear discrete diffraction with non-
linear self-effects and demonstrate gradual transition from one
to two dimensions. We use the term morphing diffraction to
describe the nonlinear behavior similar to discrete diffraction.
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We observe discrete diffraction similar to the typical discrete
diffraction observed in 1D waveguide arrays, with Mathieu
beams of zeroth order propagating in nonlinear media. For
lower nonlinearity, we observe a behavior similar to broad
Gaussian beam diffraction in waveguide arrays. Increasing the
order of Mathieu beams, we demonstrate dimensionality
morphing of discrete diffraction, with a gradual transition from
1D to 2D waveguiding geometries. With higher-order Mathieu
beams, we observe discrete diffraction along each layer. For
higher nonlinearities, we observe reflection along one transverse
direction and asymmetric intensity distributions due to the
thermal diffusive effects.

To experimentally investigate the nonlinear propagation of
Mathieu beams, we use the setup shown in Fig. 1. A frequency-
doubled Nd:YVO4 laser illuminates a spatial light modulator
(SLM) “Holoeye Pluto” and is modulated in both amplitude
and phase [25]. An appropriate Fourier filter (FF) is imple-
mented. The extraordinary polarized structure beam interacts
with the photorefractive strontium barium niobate (SBN) crys-
tal, which has dimensions of 5 × 5 × 15 mm3. It is externally
biased with an electric field E ext � 1600 Vcm−1 parallel to
the optical c axis, directed along one of the shorter axes, parallel
to the x axis. The propagation of the paraxial light fields is
mainly in z direction. An adjustable microscope objective
and a camera build the imaging system to scan the entire in-
tensity volume by recording single transverse slices. In order to
measure the phase of the structure beam, we superimpose a
tilted plane wave as a reference beam and use a standard digital
holographic method.

We simulate the light propagation in a nonlinear photore-
fractive medium by solving the nonlinear Schrödinger equa-
tion (1) numerically using a spectral split-step propagation
method [26]:

i∂zψ�r� �
1

2kz
�Δ⊥ � V �I��ψ�r� � 0: (1)

The nonlinear light–matter interaction is calculated by
assuming a light-induced refractive index modulation as pro-
posed in [27]. The paraxial scalar light field ψ�r� with longi-
tudinal wave vector kz propagates in a nonlinear potential
V �I� � −k2z n2e r33Esc�I� defined by photorefractive nonlinear-
ity. The laser wavelength λ � 532 nm defines the wave num-
ber k � 2π∕λ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t � k2z

p
. ne � 2.358 is the extraordinary

bulk refractive index and r33 � 237 pmV−1 the corresponding
linear electro-optic coefficient. The electric space charge field
Esc�I� builds up inside the SBN crystal and depends on the
intensity I � jψ�r�j2. We model the nonlinear optical induc-
tion of the intensity-dependent, saturable, non-local, and
anisotropic refractive index modulation [28], as shown in
our previous works [23,29].

We use even Mathieu beams ψm�ξ, η� [15], mathematically
described as a product of radial cem and angular J em Mathieu
functions of order m:

ψm�ξ, η� � Cm�q�J em�ξ; q�cem�η; q�, (2)

where Cm�q� is a weighting constant that depends on q �
f 2k2t ∕4, a parameter of ellipticity which is related to the posi-
tions f of the two foci and the transverse wave number kt �
2π∕a, where a is a characteristic structure size. ξ and ηare ellip-
tical coordinates and their relation with spatial coordinates x, y is
given by x � iy � f cosh��iη�. Here we choose a � 25 μm.

Before investigating the nonlinear propagation of Mathieu
beams, we exemplarily characterize the free-space propagation
of a zeroth-order even Mathieu writing beam with q � 25
experimentally. The quasi 1D discrete intensity distribution
is shown in Fig. 2(A1), accompanied by the phase pattern (A2).
It propagates invariantly (A3) over a distance of 6.36 mm in
free space, which corresponds to 15 mm in the homogeneous
SBN crystal. The same conclusions are worthy for higher-order
Mathieu beams used later to demonstrate intermediate and 2D
discrete diffraction.

Their discrete intensity distribution with a complex trans-
verse curvature makes Mathieu beams highly suited to inves-
tigate morphing diffraction in self-induced waveguides. We
find that the lattice-fabricating Mathieu beam in Fig. 2 shows
nonlinear discrete diffraction as a consequence of its self-action
in dependence of the beam power P that influences the strength
of the nonlinearity, shown in Fig. 3. The first row depicts the

Fig. 1. Scheme of experimental setup. BS, beam splitter; FF,
Fourier filter; L, lens; MO, microscope objective; SLM, phase-only
spatial light modulator.

Fig. 2. Experimental characterization of a zeroth-order lattice fab-
ricating even Mathieu beam. (A1) Transverse intensity and (A2) phase
distributions. (A3) Cross section through the intensity volume at the
orientation indicated with the white line in (A1).

Fig. 3. (1) Simulated nonlinear propagation of Mathieu beams
shows morphing discrete diffraction for increasing beam powers P.
(2) Simulated and (3) experimentally observed intensity distributions
at the crystal’s back face.
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simulated yz cross section through the intensity volume (A1),
and further the simulated (A2) and the experimentally obtained
(A3) transverse intensity distributions at the back face of the
SBN crystal for P � P0 � 10 μW, showing that the wave-
guides are well fabricated. The observed discrete diffraction
has similarities to that of a broad Gaussian beam propagating
in 1D periodic waveguide arrays [2]. By doubling the beam
power twice [Figs. 3(B) and 3(C)], we observe a spreading
of highest intensities away from the center and towards the
outer parts along the y axis. This effect is the nonlinear counter-
part of linear discrete diffraction in 1D waveguide arrays. Since
the envelope of the 1D intensity distribution along the y axis of
an initial zeroth-order Mathieu beam has its maximum in the
origin, the refractive index modulation and thus the self-action
of the writing beam is strongest in the center. Very high beam
powers of 4P0 increase diffusive effects [23,29] along the
optical c axis, parallel to the x axis, apparent at the shift in
intensity in (B3) and (C3).

Beyond 1D nonlinear discrete diffraction, we realize morph-
ing discrete diffraction along curved 2D paths at the example of
Mathieu lattices showing dimensionality crossover. We chose

the sixth-order even Mathieu beam with q � 325 [10–12],
imaged in Fig. 4, for demonstration of dimensionality cross-
over. The figure shows the simulated (A) and experimentally
observed (B) transverse intensity distributions at the back face
of the SBN crystal in dependence of a successive doubling of
the initial beam power P0 � 10 μW. We observe intensity dis-
tributions that reflect the fingerprint of linear discrete diffrac-
tion; however, the outward directed intensity transport in the
nonlinear lattices follows mainly along each hyperbolic layer of
the Mathieu beam (C).

For the lowest power P0, the highest intensities located in
the center of an initial sixth-order Mathieu beam are redistrib-
uted towards the outer parts in y direction, shown by the
intensity profile along the green line (B1) and (C1). Increasing
the power P, we observe that further hyperbolic arms of the
Mathieu lattice are affected. Central intensities spread outwards
along 2D curves (2 and 3). Additionally, a diffusion driven
shift in x direction and merging intensities due to modulation
instabilities influence the intensity redistribution; however, the
pure effect of 2D nonlinear discrete diffraction along hyper-
bolic paths is predominantly observable.

To demonstrate that discrete Mathieu lattices themselves
imprint the intensity distribution on probing light that is
typical for discrete diffraction, we simulate linear propagation
of narrow Gaussian beams in the lattices presented above.
Figure 5(A) images the intensity distribution of such a Gaussian
probe beam inside the Mathieu lattice in Fig. 3(A). The initial
plane in Fig. 5(A) indicates the lattice. The perpendicularly
launched probe beam couples from waveguide to waveguide,
presenting diffraction characteristics as in 1D waveguide arrays.
Further configurations are launching probe beams in the
2D lattice in Fig. 4(A1) in the center and the outermost layer
[purple hyperbola in Fig. 4(B1)]. The intensity of the central
excitation diffracts discrete in central and neighboring layers,
shown in (B). The outer excitation evolves to discrete diffrac-
tion along the hyperbolic waveguide layer, imaged in (C).

In summary, we demonstrated morphing diffraction of
Mathieu beams with transition from 1D to 2D. These nondif-
fracting beams allow realizing discrete lattices in general elliptic
geometries. We showed that discrete diffraction on unconven-
tional paths is possible as a result of the self-action of Mathieu
beams in nonlinear material. We observed discrete diffraction
similar to that observed in 1D waveguide arrays using Mathieu
beams of zeroth order, or discrete diffraction similar to the one
in 2D photonic lattices with higher-order Mathieu beams.
Increasing the nonlinearity, reflections along one transverse
direction are observed as well as asymmetric intensity distribu-
tions due to thermal diffusive effects. Thus, nonlinear discrete

Fig. 4. Morphing discrete diffraction on curved paths based on the
self-action of sixth-order even Mathieu beams: (A) simulated and
(B) experimentally observed transverse intensity distributions at the
crystal’s back face. (C) Intensity profiles along the hyperbolic wave-
guide layers indicated in (B).

Fig. 5. Gaussian probe beam in Mathieu lattice potentials from: (A) Fig. 3(A1); (B) Fig. 4(B1) central waveguides; (C) Fig. 4(B1) purple wave-
guide layer.
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diffraction allows controlling the light dynamics in lattices by
light itself, providing a simple technique to create novel gratings
and nonlinear switches.
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transverse invariant intensity distributions 
and continuously modulated phase dis-
tributions are suited. The class of nondif-
fracting beams has attracted considerable 
interest and features not only applications 
in optics, but also in solid state and atom 
physics.[7–11] A detailed understanding 
of their energy flows therefore is of high 
importance in many communities. How-
ever, the energy flow of continuously mod-
ulated nondiffracting beams withstands a 
direct observation because it is hidden for 
the case of linear propagation in homo-
geneous media. The transverse intensity 
distribution stays invariant and the energy 
flow is continuously redistributed.

Four nondiffracting beam families exist 
as solutions of the paraxial as well as the 
nonparaxial Helmholtz equation in dif-
ferent coordinate systems:[12–17] Discrete 
beams in Cartesian, Bessel beams[8] in 
spherical, Mathieu beams in elliptic, and 

Weber beams in parabolic coordinates. Among these diverse 
families, Mathieu beams[9,10,18,19] may be interpreted as a gener-
alized beam class, capable to interpolate between Cartesian and 
spherical coordinates. In contrast to parabolic Weber beams, 
their transverse spatial intensity distributions can form closed 
paths on ellipses, with spatially structured orbital angular 
momenta[6,20] showing periodic boundaries.

Mathieu beams are highly appealing to access fundamental 
physical effects in elliptical coordinates.[21] In several studies, 
they have been beneficially used for particle manipulation,[5] 
and served as lattice-writing light,[22–26] featuring the nonlinear 
propagation of (vortex) solitons in these previously linearly 
induced elliptic lattices. However, the self-action of Mathieu 
beams in nonlinear media was not investigated until now.

Scalar even and odd Mathieu beams exhibit only real-valued 
field distributions. Their transverse Poynting vector there-
fore vanishes. In contrast, the complex superposition of even 
and odd Mathieu beams leads to generalized elliptic Mathieu 
beams, showing outstanding continuously modulated spatial 
phase distributions, i.e., OAM.[5,6,20] Thus, for these beams a 
transverse energy flow is present. Until today, only a few works 
have addressed the energy flow in these complex spatially 
modulated beams with its unique OAM characteristics, e.g., 
using the OAM structure of Mathieu beams to transfer orbital 
angular momentum to particles that start to rotate.[5,6,20]

With this work, we present an approach to visualize the 
energy flow of light at the example of elliptic Mathieu beams. 
We demonstrate experimentally and numerically that the 

Exploiting the energy flow of light fields is an essential key to tailor complex 
optical multistate spin and orbital angular momentum (OAM) dynamics. 
With this work, the energy flow is identified and quantified by a novel 
approach that is based on the symmetry breaking induced by nonlinear 
light–matter interaction of OAM carrying beams at the example of Mathieu 
beams, showing transverse invariant intensity distributions. These complex 
scalar nondiffracting beams exhibit outstanding transverse energy flows on 
elliptic paths. Although their energy is continuously redistributed during 
linear propagation in homogeneous media, the beams stay nondiffracting. 
This approach to visualize the energy flow of light is based on the nonlinear 
self-action in a nonlinear crystal. By this, the sensitive equilibrium is per-
turbed and accumulation of rotating high-intensity spots is enabled. Intensity 
distributions on elliptic, chiral paths are demonstrated as a manifestation of 
the energy flow. Furthermore, the formation of corresponding refractive index 
modulations that may be implemented as chiral waveguides, is controlled via 
the beam power and structure size.
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Chiral Photonic Structures

1. Introduction

The energy flow of light is determined by both, its spin angular 
momentum and its orbital angular momentum (OAM), and 
is generally described by the Poynting vector.[1] Controlling 
the spatial polarization and phase structure of light, the com-
bination of binary spin states and multistate orbital angular 
momentum dynamics is an essential key to further establish 
modern high-dimensional singular optics. These abilities ena-
bled breakthrough research in the areas of spatial polarization 
modulation,[2] classical entanglement,[3] high-density signal 
transmission,[4] or optical micromanipulation.[5,6]

In order to investigate two-dimensional energy flows in 
the transverse plane, in particular nondiffracting beams with 
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energy flow of elliptic Mathieu beams becomes observable by 
propagating in a nonlinear photorefractive crystal. The nonlin-
earity breaks the sensitive equilibrium of the energy redistribu-
tion of the beam and enables the formation of high-intensity 
spots that encircle a common center, driven by the OAM in 
the direction of the energy flow. Due to the nonlinear interac-
tion, the intensity distribution is transferred to a correspond-
ingly twisted refractive index modulation. We demonstrate that 
we can control the formation and rotation of high-intensity 
spots by increasing the strength of the nonlinearity or by tai-
loring the size of the initial beam. Note, that by this, photonic 
structures can be implemented as chiral waveguides, sup-
porting the actual and rich field of research on chiral photonic 
structures.[27–31]

2. Characteristics of Elliptic Mathieu Beams

Fundamental Mathieu beams are solutions of the Helmholtz 
equation in elliptical cylindrical coordinates (ξ, η, z). They are 
mathematically described by a product of radial and angular 
Mathieu functions and exist either as even or odd solutions.[9] 
Elliptic Mathieu beams represent a complex linear superposi-
tion of even and odd Mathieu beams of the same order m. For 
a monochromatic, scalar elliptic Mathieu beam of order m, the 
light field is given by[21]

, e ; e ; i o ; e ;ψ ξ η ξ η ξ η( ) ( ) ( ) ( ) ( ) ( )( ) = +C q J q c q S q J q s qm m m m m m  (1)

where Jem and Jom are the even and odd radial Mathieu func-
tions, and cem and sem are the even and odd angular Mathieu 
functions of order m, respectively. Cm(q) and Sm(q) are weighting 
constants that depend on /42

t
2=q f k  that in turn determines 

the ellipticity of the Mathieu beams. It is related to the posi-
tions f of the two foci and the transverse wave number kt = 2π/a 
that corresponds to a characteristic structure size a.

The transverse time-averaged Poynting vector 〈S〉 of a line-
arly polarized, transverse light field ψ is determined by the spa-
tial OAM distribution and given by[32]

i

2
* *0S

ωε ψ ψ ψ ψ( )= ∇ − ∇
 

(2)

where ω = ck is the angular-frequency that connects the speed 
of light c with the wave number k = 2π/λ, defined by the wave-
length λ. ε0 is the vacuum permittivity.

Figure 1 exemplarily shows an elliptic Mathieu beam of 
order m = 10 with an ellipticity of q = 25 (Panels (a,b)), and our 
concept to visualize its energy flow (Panel (c)). The numeri-
cally calculated transverse field as well as the experimentally 
obtained field are shown in intensity and phase at the initial 
plane in Figure 1a,b, respectively. While it is natural to calcu-
late numerically an electric field ψ, experimentally only the 
transverse intensity (I) and phase (φ) are accessible. From 
these, we construct the experimentally obtained electric field 

exp[i ]ψ φ= I . Using Equation (2), we calculate and image the 
transverse Poynting vector of this beam, indicated with over-
lying arrows. Figure 1c shows a characteristic numerical simu-
lation that illustrates how the main intensity that is distributed 
on an ellipse enters the front of a nonlinear crystal, optically 
induces a photonic structure that yields to the formation of 
high-intensity spots which start to rotate in the direction of the 
energy flow. At the back face of the crystal several spots remain 
that prove the existence of the initial energy flow.

In the following, we present our approach to visualize 
numerically and experimentally the energy flow of elliptic 
Mathieu beams and thus tailor the realization of chiral wave-
guides. We further demonstrate that we can control the rotation 
and the degree of filamentation mainly by the strength of the 
nonlinearity and the structure sizes of the Mathieu beams. In 
this work, we exemplary demonstrate our results for an elliptic 
Mathieu beam of order m = 10 and ellipticity q = 25. However, 

Adv. Optical Mater. 2018, 1701355

Figure 1. a,b) Poynting vector of the elliptic Mathieu beam and c) its nonlinear propagation. The energy flow, characterized by the Poynting vector 
(indicated by arrows), is (a) calculated and (b) observed experimentally for the initial beam profiles, shown in (a1, b1) intensity and (a2, b2) phase. 
The formation of rotating high-intensity filaments due to the nonlinear self-interaction is illustrated in (c).
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realizations with elliptic Mathieu beams that differ in their 
order or ellipticity are possible within a certain parameter range 
that also depends on the further properties of the beam and the 
nonlinearity.

3. Details on the Numerical Simulations and the 
Experimental Setup

In the experiment, which is shown in Figure 2, we use a fre-
quency-doubled Nd:YVO4 laser. The broad laser beam illumi-
nates as a plane wave a spatial light modulator “Holoeye Pluto 
VIS.” We adopt the method of Ref. [33] to modulate both, 
amplitude and phase of the initial transverse (x-y-plane) light 
field with one phase-only modulator. An appropriate Fourier fil-
tering is required. The extraordinary polarized structure beams 
interact with a nonlinear Strontium Barium Niobate (SBN) 
crystal which has geometrical dimensions of 5 × 5 × 15 mm3. It 
is biased with an external electric field Eext along the optical c-
axis, directed along one of the shorter axis, parallel to the x-axis. 
The paraxial structured light field propagates mainly in z-direc-
tion. The intensity distribution at the back face of the SBN 
crystal is magnified with a microscope objective and imaged by 
a camera. In order to measure the phase of the structure beam, 
we superimpose a tilted plane wave as reference beam and use 
a digital holographic method.[34]

Numerically, we solve the nonlinear Schrödinger  
Equation (3) by applying a spectral split step propagation 
method[35,36]

i
1

2
0

k
V Iz

z

r rψ ψ[ ]( ) ( ) ( )∂ + ∆ + =⊥

 
(3)

It describes the paraxial propagation of a scalar light field ψ(r) 
with longitudinal wave vector kz in a potential ( ) ( )2

e
2

33= −V I k n r E Iz  
due to the photorefractive nonlinearity. 2 / ( )t

2 2 1/2π λ= = +k k kz  is 
the wave number and defined by the wavelength λ = 532 nm.  
ne = 2.358 is the extraordinary bulk refractive index, and  
r33 = 237 pm V−1 is the corresponding electro–optic coefficient.

Photorefractive SBN provides a strong nonlinearity at 
comparatively low power levels and the ability of reversible 

inductions. The electric field E(I) = Eext + Esc(I) that builds up 
inside the SBN crystal is a superposition of a static external 
electric field Eext = 1600 V cm−1 and an internal space charge 
field Esc(I) that results due to the incident intensity distribution  
I(r) = |ψ(r)|2.[37] We calculate the resulting intensity-depended, 
saturable, nonlocal, and anisotropic refractive index modulation 
via Esc = ∂xφsc by solving the modeling potential Equation (4) 
numerically[38]

ln 1 ln 1sc sc extφ φ ( ) ( )∆ + ∇ ∇ + = ∂ +I E Ix  (4)

4. Visualizing the Energy Flow of Elliptic  
Mathieu Beams

The balanced intensity redistribution of elliptic Mathieu beams 
is only present for their linear propagation in homogeneous 
media. We break this sensitive equilibrium by controlling the 
nonlinear self-action of elliptic Mathieu beams in a photorefrac-
tive crystal. When interacting with the optically induced refrac-
tive index modulation, the energy flow is altered. This leads to 
the accumulation of intensity at defined spots, where in turn 
the refractive index is increased. In this way, helically twisted 
refractive index lattices form and rotate in a predetermined 
direction.

Observing experimentally the formation and accumulation 
of high-intensity spots at the back face of the SBN crystal that 
are substantiated by corresponding numerical simulations and 
additionally controllable by the power and structure size of the 
writing beam represents our concept to visualize the energy 
flow of Mathieu beams. Furthermore, this method features the 
fabrication of chiral waveguide arrays.

We investigate the nonlinear self-action of the Mathieu 
beams with a structure size of a = 15 µm in the SBN crystal 
and reveal their energy flow by optically inducing a refractive 
index modulation with the structure beams. Based on the com-
parison with the numerical simulations, we estimate that the 
optically induced refractive index depth is in the order of 10−4. 
Systematically, we increase the initial beam power P0 ≈ 20 µW 
and double it in two steps in both, numerical simulation and 

Adv. Optical Mater. 2018, 1701355

Figure 2. The experimental setup. BS: beam splitter, FF: Fourier filter, L: lens, M: mirror, MO: microscope objective, SLM: spatial light modulator.
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experiment. Figure 3 shows the transverse intensity distribu-
tions at the back face of the SBN crystal. For the numerical 
simulations, we indicated with arrows that the Poynting vector 
(the energy flow) is still directed along the initial ellipse. Our 
construction scheme to experimentally obtain the complex elec-
tric field ψ and thus calculate the Poynting vector is not appli-
cable here, since the spatial phase distribution φ is not acces-
sible by using holographic techniques when imaging through 
the inhomogeneous refractive index modulation. As well, an 
experimental glance inside the crystal to see the 3D intensity 
distribution is not possible, since the light in the observing 
plane would be refracted by the inhomogeneous photonic 
structure in an unpredictable manner. Thus, we show that the 
experimental intensity distribution obtained at the back face of 
the crystal is tunable by changing the beam power so that spots 
of high intensity can be realized with changing positions and 
connect their individual manifestation with the formation of 
chiral lattices inside the crystal. The back face intensity distri-
butions of simulation and experiment are in high agreement 
and substantiate our numerical simulations for the 3D distribu-
tion of the intensity inside the volume.

In particular, we show the transition from quasi linear propa-
gation to a strong nonlinear self-interaction which introduces a 
symmetry breaking of the energy flow. For a weak beam power 
P0 the beam propagates almost linearly, apparent at an almost 
unchanged output intensity distribution, indicating that the 
beam is still nondiffracting. When doubling the power, modula-
tions emerge in form of occurring accumulations of intensity 
along the beforehand smoothly modulated ellipse. The writing 
beam thus can no longer be considered as nondiffracting nor 
as Mathieu beam. For the highest beam power of 4P0, separated 
spots of high intensity appear and rotate in the direction indi-
cated by the Poynting vector, thereby forming rotating refrac-
tive index strands in analogy to the simulation in Figure 1c. 
The spots that occur at the back face of the SBN crystal are a 
consequence of modulation instabilities[39] on an ellipse. Thus, 

the amount of spots does not only depend on 
the order m of the elliptic Mathieu beams, 
but is influenced by several parameters, like 
the strength of the nonlinearity, the structure 
size, or the propagation distance.

Due to the modulation of the intensity 
distribution along the innermost ellipse and 
the anisotropic medium, the refractive index 
modulation is predominantly established 
in the direction of the optical c-axis. Subse-
quently, the energy flow, which is typically 
located on an ellipse, is now preferentially 
directed perpendicular to the c-axis where 
the refractive index modulation is weak, 
but is especially hindered to flow parallel to 
the c-axis due to the strong variations in the 
potential. Thus, conglomerations of high 
intensity form in particular at the trough of 
high refractive index where enough intensity 
is accumulated to create solitary strands of 
increased refractive index.

Note that these twisted photonic struc-
tures may act as waveguides for further 

probe beams and guide light on elliptical, chiral paths. Our 
numerical simulations and the experimental results both 
indicate that the period of rotation changes during formation 
as well as the radius from the central axis. Moreover, some 
streams of intensity branch and multiple intensity maxima 
occur (cf. Section 5). Our approach therefore provides a flex-
ible and easy to implement method to realize chiral photonic 
media. Further investigations could potentially show advanced 
light–matter interactions, e.g., when probing these diverse 
chiral structures with chiral light.

5. Tailored, Nonlinear Mathieu Lattices

Additional to the previously discussed dependence of the for-
mation of rotating waveguides on the strength of the nonlin-
earity, we demonstrate the control of the induction of elliptic 
Mathieu lattices in the nonlinear medium by changing the 
characteristic structure size a = 2π/kt. Different elliptic Mathieu 
beams show a very rich rotating behavior with different spot 
characteristics.

Figure 4 shows the nonlinear control of the beam rotation by 
changing the beam size parameter a, whereby the beam power 
is constant at P0 ≈ 20 µW. We apply characteristic beam sizes 
of a = [15, 20, 25] µm. Compared are our experimental results 
with corresponding numerical simulations. Arrows again 
indicate the Poynting vector. We found that by increasing the 
structure size a of elliptic Mathieu beams, the local slope of 
the helix of the emerging rotating strands of higher refractive 
index is decreased. We also observe a coupling of the rota-
tion to the quantity of spots. For a = 15 µm in Figure 4, we 
hardly see conglomerations of intensity. For a = 20 µm similar 
rotating waveguides occur as we have observed them for the 
structure size of a = 15 µm with a power P that is comparable 
to be between 2P0 and 4P0, shown in Figure 3. By this, we find 
a regime where the strength of the nonlinearity is suited to 

Adv. Optical Mater. 2018, 1701355

Figure 3. The transverse intensity distributions of elliptic Mathieu beams (a = 15 µm) at the 
back face of the SBN crystal, nonlinearly inscribed with increasing beam powers. Compared 
are numerical simulations (calculated Poynting vector indicated by arrows) with experimental 
results.
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host the rotating photonic structures. This in turn is justified 
by the fact that for a = 25 µm the self-action is strong and tends 
to become stronger for larger structure sizes a, also recogniz-
able by the Poynting vector that directs outward for the outer 
high-intensity spots. Figure 4 shows the numerically simulated 
3D intensity volume for a = 25 µm, and demonstrates exem-
plary for this borderline case the enhanced degree of branching 
for increased beam sizes. In the presented case, new branches 
of high intensity start to form after a propagation distance of 
about 10 mm and rotate. Further branches appear after longer 
propagation distances. Note that for larger structure sizes, 
the intensity spreads to ellipses located more outside due to 
increasing modulation instabilities of the broader beam. Thus, 

rotating strands of high intensity can only 
induce chiral refractive index strands for 
these proper parameters.

6. Conclusion

We presented an approach to identify and 
visualize the energy flow of light based on 
the symmetry breaking by nonlinear light–
matter interaction of OAM carrying beams. 
As an example, we chose elliptic Mathieu 
beams with outstanding continuously modu-
lated OAM distributions. We used a nonline-
arity introduced in form of a photorefractive 
SBN crystal in order to break the sensitive 
equilibrium, which is present for linear 
propagation of nondiffracting beams. We 
demonstrated exemplarily that the nonlinear 
self-action of elliptic Mathieu beams leads 
to the formation of high-intensity filaments, 
which rotated in the direction determined 
by the energy flow. The dependence of these 
emerging photonic structures on the strength  
of the nonlinearity and the structure size 
of the Mathieu beams was investigated and 
we pointed out that the twisted refractive 
index formation could act as chiral wave-
guides. We worked out that the formation 
of chiral Mathieu lattices is possible only in 
this limited regime with proper parameters 
for the nonlinearity and structure size. Cor-
responding numerical simulations substan-
tiate our results. For elliptic Mathieu beams, 
our approach furthermore is well suited 
to fabricate rotating photonic structures 
with elliptic trajectories, thereby consider-
ably advancing the field of chiral light and 
photo nic structures.

Note that chiral lattices created by our 
approach show longitudinally increasing 
“helix slopes”, and additionally tailored trans-
verse ellipticities. Both properties may be 
considered as novel degree of freedom to 
design unique band structures and realize 
artificial photonic media with new topologies.
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Figure 4. Numerically calculated (top) and experimentally measured (middle) transverse inten-
sity distributions at the back face of the SBN crystal after nonlinear and self-interacting propa-
gation of elliptic Mathieu beams (P ≈ 20 µW), for beams with different structure sizes a. Arrows 
indicate the Poynting vector. The 3D intensity volume (bottom) visualizes the branching to due 
modulation instabilities on an ellipse for the case that a = 25 µm.
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We demonstrate unusual kinds of discrete vortex beams, elliptical necklaces, realized by Mathieu photonic
lattices. Varying the order of the Mathieu lattices and their ellipticity, we can control the shape and size of such
necklaces. Besides stable vortex states, we observe oscillatory dipole states or dynamical instabilities and study
their orbital angular momentum. Dynamical instabilities occur for higher beam power and higher-order vortices.
Also the decay of higher-order phase singularities and their separation is observed in dependence on the ellipticity.
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I. INTRODUCTION

An optical vortex that possesses a phase singularity and a
rotational flow around the singular point in a given direction
can be found in physical systems of different nature and scale,
ranging from water whirlpools and atmospheric tornadoes
to quantized vortices in superfluids and quantized lines of
magnetic flux in superconductors [1]. The study of optical
vortices and associated localized vortex states is important for
both fundamental and applied physics, leading to applications
in many areas that include optical data storage, distribution
and processing, optical interconnects between electronic chips
and boards, and free-space communication links [2–4]. They
also have potential uses in optical tweezers [5], optical ma-
nipulation and trapping [6,7], microscopy [8], and quantum
information processing [9,10].

The evolution of nonlinear excitations in systems whose
properties are modulated is especially interesting and in optics
can be realized when an intense laser beam propagates in the
material with a suitable transverse refractive index modula-
tion that can be fabricated in nonlinear materials including
semiconductors, liquid crystals, fused silica, polymers, and
photorefractive media [11–18]. The combination of diffrac-
tive and nonlinear effects with transverse refractive index
modulation in photonic lattices opens the possibility to pro-
duce spatially localized states of light [19,20]. To optically
induce two-dimensional photonic lattices it is appropriate to
use nondiffracting light beams that are exact solutions of the
Helmholtz equation in different coordinate systems [21,22]:
plane waves in Cartesian, Bessel beams in circular cylindrical
[23], Mathieu beams in elliptic cylindrical [24], and parabolic
beams in parabolic cylindrical coordinates [25].

In this paper we report on the existence of elliptical necklace
beams in photonic lattices optically induced by Mathieu
nondiffracting beams, using vortices as a probe beam. These
necklace beams show discrete intensity spots on elliptical
curves, associated with discrete phase vortices. We investigate
the conditions for their existence as well as their properties,
both experimentally and theoretically. Changing the lattice el-
lipticity and choosing Mathieu lattices of appropriate order, we
control the shape and the size of an elliptical necklace, as well

as the number of the “pearls” in the necklace. We investigate
the breakup of higher-order vortices (topological charge CT =
2,3,4) into CT = 1 vortices and their rate of separation during
propagation. Phase singularity distances increase with CT ,
higher lattice ellipticity, and propagation distance. Further, we
study the stability of such elliptic necklaces. Supported by the
strong nonlinearity, we show the formation of oscillating dipole
states in the intensity distribution for very long propagation
distances and discuss our results by investigating additionally
the transfer of orbital angular momentum (AM) to the lattice.
Finally, a high intensity of the probe beam leads to nonlinear
dynamical instabilities observable in the intensity distribution
of the necklaces.

II. EXPERIMENTAL METHOD AND MODELING OF
VORTEX BEAM PROPAGATION IN MATHIEU LATTICES

Figure 1 shows the experimental setup to realize elliptical
necklaces. A frequency-doubled, expanded, and collimated
Nd:YVO4 laser with wavelength λ = 532 nm is split into
two separate beams: an ordinary polarized writing and an
extraordinary polarized probe beam. Both are spatially tailored
in intensity and phase by a phase-only spatial light modulator
Holoeye Pluto VIS. For this purpose, special Fourier filters
(FF1 and FF2) are required [26]. The structure beam opti-
cally induces refractive index modulations in the 15-mm-long
photorefractive Strontium Barium Niobate crystal doped by
Cerium (SBN:Ce), thereby addressing the weaker electro-
optic coefficient r13 = 47 pm/V. The birefringent crystal has
refractive indices no = 2.325 and ne = 2.358 and is externally
biased with an electric field Eext = 1600 V/cm aligned along
the optical c = x axis, perpendicular to the direction of propa-
gation (z axis). Probing the artificial photonic structure is done
with the extraordinary polarized probe beam that addresses
the stronger electro-optic coefficient r33 = 237 pm/V. An
imaging system consisting of a microscope objective and
camera detects transverse intensity distributions at the back
of the crystal.

We model our experiment by solving the nonlinear
Schrödinger equation for an initial scalar electric field A(r)
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FIG. 1. Experimental setup for the investigation of vortex beams
in a Mathieu lattice optically induced in a photorefractive SBN
crystal: BS, beam splitter; FF, Fourier filter; L, lens; M, mirror; MO,
microscope objective; and SLM, spatial light modulator.

numerically by using a beam propagation method [27]:

i∂zA(r) + 1

2kz

�⊥A(r) + kz

2n2
o,e

δn2[|A(r)|2]A(r) = 0. (1)

By this, the nonlinear propagation of the field A(r) with
longitudinal wave vector kz in a photorefractive nonlinearity is
evaluated. The wave number k = 2π/λ =

√
k2
⊥ + k2

z is defined
by the wavelength λ. We use elliptical Laguerre Gaussian
vortex beams as probe beams [28]. The potential is given
by δn2[|A(r)|2] = −n4

o,er13,33E. The electric field E = Eext +
Esc that builds up inside the strontium barium niobate (SBN)
crystal is a superposition of an external electric field Eext and
an internal space charge field Esc that results due to the incident
intensity distribution I (r) = |A(r)|2. Owing to the biased SBN
crystal, we use an anisotropic approximation to calculate the
refractive index modulation and solve the potential equation
[29]

�φsc + ∇φsc∇ ln(1 + I + Ilatt) = Eext∂x ln(1 + I + Ilatt),

(2)

where Esc = ∂xφsc and Ilatt is the lattice intensity according
to the corresponding Mathieu beams. We use Mathieu beams
Mm(ξ,η) mathematically described as the product of radial cem

and angular Jem Mathieu functions of order m,

Mm(ξ,η) = Cm(q)Jem(ξ ; q)cem(η; q), (3)

where Cm(q) is a weighting constant. The functions depend on
q = f 2k2

⊥/4, a parameter of ellipticity which is related to the
positions f of the two foci and the transverse wave number
k⊥ = 2π/a, where a is the characteristic structure size; here
Ilatt = |Mm(ξ,η)|2 and a = 90 μm. We present results with
even Mathieu functions, but our conclusions are the same for
odd Mathieu functions.

III. ELLIPTICAL NECKLACE STRUCTURES

To systematically investigate the propagation of vortex
beams in Mathieu lattices, we start our studies by considering
the Mathieu lattices optically induced with even Mathieu
function of order m = 8, dependent on different ellipticity pa-
rameters q. We examine the conditions of existence of spatially
localized vortex states. It is well known that the presence of

FIG. 2. Elliptical necklaces in Mathieu lattices with different
ellipticity parameter q and CT = 1. The input vortex beam is shown
with the layout of the lattice beams indicated by open circles (the first
column). The corresponding intensity distributions are shown at the
exit crystal face in numerics (the second column) and experiment (the
third column). The parameters are E0 = 1600 V/cm, numerical lattice
intensity Ilatt = 0.3, and input vortex intensity 0.005; the experimental
lattice power Platt = 20 μW and input vortex power 8 μW.

the lattice during vortex breakup induces confinement of the
filaments approximately at the location of the incident vortex
ring and the surrounding lattice sites. We choose the input
vortex beam with CT = 1 to cover the lattice sites of the inner
lattice elliptical ring.

Figure 2 summarizes our results for three different values of
ellipticity parameter q. At the beginning, we consider the case
with no ellipticity (q = 0) and observe a stable necklace beam
for very low nonlinearity (almost linear). Increasing the lattice
ellipticity for the same experimental conditions, we observe
elliptical necklaces, with lobes slightly closer to each other,
owing to the shape and distribution of the lattice sites in that
lattice area. Investigating the stability of these necklaces, we
find that these vortex states are stable during propagation along
the crystal. With Mathieu lattices of higher order (m > 8), we
observe elliptical necklaces with a larger number of pearls,
staying stable along the length of the crystal. With broader
vortex beams we find vortex solutions with two necklaces,
covering the inner and next ring of the Mathieu lattice. These
states are not stable during the propagation.

Next we investigate higher-order vortex beams in Mathieu
lattices. We choose the same input ring vortex beam with
different CT (Fig. 3). Energy flow inside the inner lattice
ring causes an increase in asymmetry when incrementing CT .
In the overall phase distribution, we observe a central area
having the expected vortex state. However, on the inner lattice
ring, we observe a vortex state corresponding to the input CT ,
but circularly shifted with respect to the central vortex area.

033848-2
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FIG. 3. Single- and multiple-charged elliptical necklaces for the
numerically observed intensity (the first column) and phase distribu-
tions (the second column). The third column presents experimentally
observed intensity distributions. The lattice ellipticity q = 15 and
other parameters are as in Fig. 2.

Considering phase distributions along the propagation, we
observe the phase distribution shifting along the inner lattice
ring, as well as in the central part of the phase distributions.

For higher-order vortices we observe a spatial separation
of several single-charged phase singularities [30], unlike the
conventional multiple-charged vortex where the embedded
phase singularity is multiply folded. The elliptical necklaces
show an unfolded behavior in the phase distribution, with the

FIG. 4. Phase singularity separation versus CT for various lattice
ellipticities after a 15-mm propagation distance. Separations are
measured as the Euclidean distance between the two singularities.

FIG. 5. Phase singularity separation versus propagation distance
for various CT . Separations are measured between the two singu-
larities for lattice ellipticity q = 15 as a Euclidean distance. The
parameters are as in Fig. 3.

appearance of multiple single-charged phase singularities sep-
arated by a finite distance. We found that the phase singularity
separation depends on the lattice ellipticity, as well as the input
vortex CT . We measure the Euclidean distance between the two
furthest singularities [as indicated in Fig. 3(c ii)] for different
lattice ellipticity and presented results in Fig. 4. Higher values
of separations are observed for higher ellipticities q. Phase
singularity separation distances also increase with propagation
distance, for higher CT = 2,3,4 and q = 15 (Fig. 5). Higher
values of separations are observed for higher CT .

FIG. 6. Dipole states in Mathieu lattices of various ellipticity
(a) q = 0, (b) q = 10, and (c) q = 15. Intensity and phase distri-
butions are presented after 10-cm propagation. (d) Normalized z

component of the angular momentum along the propagation distance.
Other parameters are as in Fig. 2.

033848-3
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FIG. 7. Nonlinear vortex propagation in Mathieu lattices. The
first and third columns present intensity distributions, and the second
column presents the corresponding phase distributions at the exit face
of crystal. Input vortex intensities in numerics are (a i) 0.01 arb. units
and (b i) 0.1 arb. units, and input vortex power in experiment are (a iii)
20 μW and (b iii) 30 μW. The other parameters are as in Fig. 2(c).

IV. ELLIPTICAL NECKLACE INSTABILITIES

Finally, we discuss in detail the (in)stability of elliptical
necklaces. We demonstrated in Sec. III that these vortex states
observed in linear and very low nonlinear regimes (Fig. 2)
are stable during propagation in our nonlinear photorefractive
crystal. We also further investigate their stability for longer
propagation distances numerically, in order to address length
scales that are not accessible in the experiment. While the
elliptical necklaces remain stable for propagation length a few
times longer than our crystal size, after 10 cm they transforms
to oscillating dipole states (Fig. 6). Their phase distributions
remain unchanged in the center, but along the inner lattice
ring their initial phase distribution for stable states is broken.
Higher-order vortex states, observed in the form of slightly
asymmetric necklaces [Figs. 3(b)–3(d)] with lower powers,
are stable only for short propagation distances (crystal size).

Also, we investigate the orbital AM of necklace beams
during propagation [31,32]. The standard definition for the
(normalized) z component of the orbital AM is adopted [32]:

Lz = − i

2

∫ ∫
dx dy A∗(x,y)(x∂y − y∂x)A(x,y) + c.c.

(4)

Figure 6(d) presents the mean orbital AM Lz per transverse
plane dependent on the propagation distance z of the necklace
states along the propagation distance for different ellipticity
parameters q. Less pronounced AM transfer is observed for
higher lattice ellipticity. For lower ellipticities, the neighboring
lobes exchange more power during the propagation and the
transfer of angular momentum from the vortex to the photonic
lattice is more pronounced (red plot).

Increasing the input vortex power, we investigate the stabil-
ity of vortex states. The most illustrative cases are presented
in Fig. 7 for vortex states with CT = 1 and lattice elipticity
q = 15. With lower powers, neighboring lobes exchange some
power, the stable elliptical necklace is broken, and regular
oscillations along the propagation take place [Fig. 7(a)]. When
increasing the beam power, irregular oscillations take place
which are more pronounced for longer propagation distances
[Fig. 7(b)]. With higher beam powers, phase distributions stay
unchanged only in the central part and are broken along the
inner lattice ring.

V. CONCLUSION

In summary, we have demonstrated experimental and nu-
merical investigations of the elliptical necklace in a photore-
fractive medium with optically induced Mathieu lattices. We
have analyzed how various orders of Mathieu lattices and their
ellipticities could control the shape and the size of the elliptical
necklace, as well as the number of pearls in them. Phase
singularity separations were investigated for higher-order vor-
tices. We have observed that such separations increase with
CT , higher lattice ellipticities, and the propagation distance.
The stability of elliptical necklaces was studied as well as
their AM. Stable vortex states were observed for lower beam
powers and shorter distances, but oscillatory dipole states or
dynamical instabilities were observed for longer propagation
distances, higher beam power, and higher-order vortices. Our
results enable further investigations of vortex beam control
in photonic lattices optically induced by other than Mathieu
beams and could find applications in the field of optical
micromanipulation to guide, trap, and sort objects.
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We demonstrate a kind of aperiodic photonic structure realized using the interference of multiple Mathieu-
Gauss beams. Depending on the beam configurations, their mutual distances, angles of rotation, or phase
relations we are able to observe different classes of such aperiodic optically induced refractive index structures.
Our experimental approach is based on the optical induction in a single parallel writing process.
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I. INTRODUCTION

Since nondiffracting beams have been introduced in the late
1980s [1,2] as light structures, only recently these structures
have drawn considerable attention in various topics such as
trapping of colloidal and in vivo particles in biophysics [3],
atom optics [4], applications of optical lattices in quantum
computing [5], as well as quantum optics [6], optical tweez-
ing [7,8], and nonlinear optics [9–11]. Such nondiffracting
structures are coming from the well-known classes of simple
nondiffracting light beams that are exact solutions of the
Helmholtz equation in different coordinate systems [12]: plane
waves in Cartesian, Bessel beams in circular cylindrical [2],
Mathieu beams in elliptic cylindrical [13], and parabolic beams
in parabolic cylindrical coordinates [14].

A simple and robust implementation of optical micro-
manipulation technologies—optical tweezers—based on non-
diffracting beams, has become a standard tool in biological,
medical, and physics research laboratories [15]. Another trend
in optical manipulation is the use of synthesized optical beams
rather than single beams only; such beams enable a much
greater freedom in object manipulation than conventional
Gaussian beams [16].

The potential of nondiffracting structures is of significant
importance for advances in discrete and nonlinear modern
photonics [17–21]. Although the physics of periodic photonic
systems are of fundamental importance, deviations from
periodicity are of importance as they may result in higher
complexity. One such deviation in optics results in the
realization of photonic quasicrystals [20,22], the structures
that lie between periodic and disordered one. They show
sharp diffraction patterns that confirm the existence of wave
interference resulting from their long-range order. Recently,
a new serial approach for the generation of aperiodic de-
terministic Fibonacci and Vogel spirals as refractive index
structures was presented [23,24]. In particular, the Fourier
spectra of tailored aperiodic lattices can be customized to
range from discrete to continuous [25], thus featuring unique
light propagation as well as localization properties in aperiodic
photonic lattices. Of particular interest are also flat-band
lattices with a dispersionless energy band composed of entirely
degenerate states, so that any excitation of these states yields
nondiffracting waves. Such flat band systems have been
studied in a number of lattice models including quasi-one-,

two-, or three-dimensional settings, diamond ladder, Lieb, or
kagome lattices [26–28].

In this paper, we demonstrate a powerful approach for
the creation of two-dimensional (2D) aperiodic photonic
lattices in a single writing process in parallel. It is based
on synthesizing two or more nondiffracting Mathieu-Gauss
(MG) beams [29]. By coherently superimposing MG beams
with different orders, positions, and relative phases we realize
transverse invariant propagating intensity distributions capable
of optically inducing corresponding refractive index lattices in
photosensitive media. Our approach features the fabrication of
versatile aperiodic lattices with controllable properties as well
as quasi-one-dimensional structures.

II. CHARACTERIZATION OF SYNTHESIZED
MATHIEU-GAUSS BEAMS

For the experimental realization of synthesized MG beams
we use the experimental setup shown in Fig. 1. We use a
frequency-doubled Nd:YVO4 laser, expand the laser beam, and
illuminate as a plane wave a phase-only spatial light modulator
“Holoeye Pluto VIS.” The reflected light field is modulated
in both amplitude and phase. This is possible by addressing a
precalculated hologram to the SLM containing the information
of the complex light field encoded with an additional blazed
grating. By applying an appropriate Fourier filter, the tailored
complex light field is realized [30,31]. Additionally, the
telescope L1-L2 scales down the SLM size by a factor of
10. This extraordinary polarized “structure beam” is used to
optically inscribe refractive index modulations in the 15 mm
long photorefractive SBN:Ce crystal which is externally biased
with an electric dc field of Eext = 2000V cm−1 aligned along
the optical c = x axis, perpendicular to the direction of
propagation (z axis).

We simulate the nonlinear light propagation in a photonic
structure by numerically solving the nonlinear Schrödinger
equation:

i∂zA(r) + 1
2�⊥A(r) + 1

2�E(|A(r)|2)A(r) = 0, (1)

where � = k2
0w

2
0n

4
o,er13,33, k0 = 2π/λ is the wave number and

defined by the wavelength λ = 532 nm, no = 2.325 is the
ordinary, ne = 2.358 is the extraordinary bulk refractive index,
r13 = 47 pm/V, r33 = 237 pm/V are the corresponding
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FIG. 1. Experimental setup for the investigation of synthesized
MG beams and their optical induction in a photorefractive SBN
crystal. BS: beam splitter; FF: Fourier filter; L: lens; MO: microscope
objective; SLM: spatial light modulator. Depicted on the left side is
a scheme that shows how two single MG beams interfere to create
more complex light fields, addressed to the SLM.

electro-optic coefficients, respectively, and w0 is an arbitrary
scaling factor. The electric field E = Eext + Esc that builds up
inside the SBN crystal is a superposition of an external electric
field Eext and an internal space charge field Esc that results due
to the incident intensity distribution I (r) = |A(r)|2. Owing to
the biased SBN crystal, we use an anisotropic approximation
to calculate the refractive index modulation [32] and solve the
potential equation:

�φsc + ∇φsc∇ ln (1 + I ) = Eext∂x ln (1 + I ), (2)

where Esc = ∂xφsc.
The complex aperiodic beams in this work are based on

even Mathieu beams Am(ξ,η) [13], mathematically described
as a product of radial cem and angular Jem Mathieu function of
order m:

Am(ξ,η) = Cm(q)Jem(ξ ; q)cem(η; q), (3)

where Cm(q) is a weighting constant that depends on q =
f 2k2

t /4, a parameter of ellipticity which is related to the
positions f of the two foci and the transverse wave number
kt = 2π/a, where a is the characteristic structure size. ξ and
η are elliptical coordinates and their relation with spatial
coordinates x, y are given with x + iy = f cosh(ξ + iη). Here
we use q = 25 and a = 25 μm. Additionally, the Mathieu
beams are apodized with Gaussian beams which yields MG
beams [29].

We start our investigations by considering the interference
of two even MG beams of different order m1 and m2 (Fig. 2),
and present their intensity distributions at the input crystal
face. For MG beams whose orders have the same parity (even
or odd), symmetric synthesized MG structures are observed
that propagate unchanged as nondiffracting beams due to
identical structure sizes of the individual beams. The intensity
distributions are presented for two examples in experiment
as well as in numerical simulations in Figs. 2(a) and 2(b).
We demonstrate that the superposition of two MG beams of
different parity leads to asymmetric intensity distributions
[Figs. 2(c) and 2(d)]. In the case of the π out of phase
interference, mirror symmetric structures are observed (not
shown here). For interfering MG beams of different orders and
different parities it is possible to observe symmetric structures
only for phase differences of π/2 that are comparable to
synthesized mirror symmetric structures.

FIG. 2. Interference of two MG beams of different order. Intensity
distributions of interfering beams with the same parity: (a) both
even: m1 = 0, m2 = 10; (b) both odd: m1 = 1, m2 = 7. Intensity
distributions of interfering beams with different parity: (c) m1 = 2,
m2 = 7; (d) m1 = 13, m2 = 14.

Next, we superimpose two even MG beams with the
same order, oriented at 90◦ with respect to each other,
considering additionally the in phase and π out of phase
configurations. Superimposing MG beams of even parity,
we observe distinctive structures for the two different phase
configurations [Figs. 3(a), 3(e) and 3(b), 3(f)]. However, using
MG beams of odd parity (m = 5 or m = 7), the same intensity
distributions are observed, but mirror symmetric to each other,
when changing the phase configurations [Figs. 3(c), 3(g) and
3(d), 3(h)]. This mirror symmetry of superimposed MG beams
with odd orders m is related to the intrinsic symmetry of the
related Mathieu functions.

Our approach to realize two-dimensional aperiodic lattices
finds its origin in synthesizing versatile standard MG beams at
different mutual distances. This allows one to continuously
increase the degree of aperiodicity. We provide a field

FIG. 3. Transverse interference patterns of two Mathieu-Gauss
beams of the same order oriented at 90◦ with respect to each other:
(a),(e) m1 = m2 = 2, (b),(f) m1 = m2 = 8 and (c),(g) m1 = m2 = 5,
(d),(h) m1 = m2 = 7.
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FIG. 4. Interfering MG beams of the same order at different
vertical mutual distances: (a),(b) m = 6 and (c),(d) m = 7. D =
20 μm.

distribution that serves as “unit cell” for more complex
aperiodic writing light capable of being transferred to tailored
refractive index modulations in photosensitive media. A first
example that demonstrates the concept (Fig. 4) shows the inter-
ference of two even MG beams of the same order. Therefore,
we chose MG beams of the order m = 6 or m = 7 and arrange
them at various mutual distances as shown in Figs. 4(a), 4(b)
and 4(c), 4(d), respectively. For the following synthesization,
we identify the intensity distribution that results for the
displacement of 2D = 40 μm as most suited.

III. GENERATION OF COMPLEX APERIODIC
PHOTONIC STRUCTURES

In order to find conditions for the generation of complex
aperiodic photonic structures, we use previously observed
synthesized MG beams that provide a unit cell of the photonic
lattice. First, we use the example from Fig. 2(b) that has
similarities with the unit cell of a periodic lattice created by the
interference of six plane waves. By multiplying this structure
twice in one row at a distance of Dx = 80 μm, we observe a
single array [Fig. 5(a)]. Subsequently we multiply the resulting
array along the y direction at three different mutual distances
Dy = 80 μm, Dy = 88 μm, and Dy = 96 μm. This leads to
various aperiodic lattice structures shown in Figs. 5(b)–5(d)
that exhibit areas where the initial unit cell is preserving its
shape, while additionally novel unit cells emerge whose shape
depends on the mutual distances between the multiplied arrays.

Next, configurations are investigated that result from the
duplication of the necklace structure from Fig. 3(e). Again,
we start with multiplying the structure in one row at different
distances. One example is presented in Fig. 5(e) for Dx =
144 μm. With such an array, we realize different in two
dimensions extended aperiodic structures by changing the
mutual distances between the arrays this time additionally in y

direction: Dy = 120 μm, Dy = 144 μm, and Dy = 152 μm
[Figs. 5(f)–5(h)]. The initial unit cell is visible in all structures,
and it repeats at proper distances, where as well other unit cell

FIG. 5. Generation of aperiodic photonic structures. The first and
second rows: multiplying of the structure from Fig. 2(b); the third and
fourth rows: multiplying of the structure from Fig. 3(e) at different
distances.

structures are visible that can be controlled by changing the
distances between initial unit structures used for multiplying.

Figure 6 presents some examples of aperiodic photonic
structures, observed using the synthesized MG beams of
the sixth and seventh order [Figs. 4(a2) and 4(c2)], as the
unit cell. For the synthesized MG beams of the sixth order

FIG. 6. Aperiodic photonic structures. The first and second row:
multiplying of the structure from Fig. 4(a2); the third and fourth
row: multiplying of the structure from Fig. 4(c2) at different mutual
distances.
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FIG. 7. Waveguiding in aperiodic photonic structures. (a),(b)
Lattice beam from Fig. 5(h) and (d),(e) lattice beam from Fig. 6(h)
along the longitudinal direction along the propagation, and at the back
face of the crystal, respectively. (c),(f) Probe beam at the exit face of
the crystal.

(the first and second row), the first three examples present
the multiplying of the unit structure along x direction but
at different mutual distances: Dx = 152 μm [Fig. 6(a)],
Dx = 176 μm [Fig. 6(b)], and Dx = 192 μm [Fig. 6(c)]. As
one can see, the shape of the initial structure is preserved, with
slightly different interfering patterns between them. The last
example [Fig. 6(d)] presents the multiplying of the structure
from Fig. 6(b) along y direction for Dy = 104 μm.

Synthesized aperiodic MG beams based on seventh order
MG beams are presented in the third and fourth row. Figure 6(e)
shows the multiplying of the structure from Fig. 4(c2) along
the x direction for Dx = 176 μm. This structure is further
used for multiplying along the y direction at various mutual
distances: Dy = 72 μm, Dy = 96 μm, and Dy = 104 μm,
and new kinds of aperiodic photonic structures are observed
[Figs. 6(f)–6(h)].

We confirm the nondiffracting character of the synthe-
sized MG beams, presented in Figs. 2–6, monitoring their
linear propagation through the 20 mm long homogeneous
crystal. We exemplarily select the two aperiodic beams
demonstrated in Figs. 5(h) and 6(h), and present their linear
propagation through the crystal. Figures 7(a) and 7(d) show
xz cross sections through the intensity volume that prove

their nondiffracting character. In order to verify that this
intensity distribution is capable of realizing aperiodic refrac-
tive index modulations, we transfer these ordinary polarized
writing beams to aperiodic photonic lattices. The illumination
time is 35 s with a moderate laser power of ≈30 μW
and an external electric field of 2000 V/cm. The nonlinear
self-interaction is weak and we show the lattice writing
beams at the back face of the modulated SBN crystal in
Figs. 7(b) and 7(e). Subsequently, we probe the optically
induced aperiodic structures with an extraordinarily polarized
plane wave. Figures 7(c) and 7(f) conclude these results that
clearly demonstrate waveguiding of the initial plane wave in
the two-dimensional aperiodic lattice, manifested in a spatially
modulated intensity distribution according to the underlying
refractive index modulation. Thus the intensity is preferentially
guided in areas where the refractive index is increased and
spots of high intensity are formed.

The presented method enables the creation of various novel
kinds of two-dimensional aperiodic photonic structures in a
single optical induction process in parallel. Our approach
features the realization of a high versatility of aperiodic lattices
that can be tailored in their degree of disorder, ranging from
fundamental Mathieu lattices with a high regularity to highly
disordered aperiodic structures with quasicontinuous power
spectra. It is very flexible owing to the control of the mutual
distance between appropriate structures that is easy to realize
in experiment, especially compared to previously used optical
induction methods [23,24].

IV. CONCLUSIONS

In summary, we have investigated the interference of
synthesized MG beams experimentally and numerically.
Depending on different configurations, the number of beams,
and their mutual distance as well as phase relations, in-
terference effects of two or more spatially displaced or
rotated MG beams could be used for optical induction of
novel light guiding aperiodic structures in a single parallel
writing process. Our experimental results and methods enable
further investigations of light propagating in such aperiodic
photonic lattices, and could find applications in modern optical
information processing.
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We investigate light propagation along one-dimensional quasi-periodic Fibonacci waveguide array optically
induced in Fe:LiNbO3 crystal. Two Fibonacci elements, A and B, are used as a separation between waveguides.
We demonstrate numerically and experimentally that a beam expansion in such arrays is effectively reduced
compared to the periodic ones, without changing beam expansion scaling law. The influence of refractive index
variation on the beam expansion in such systems is discussed: more pronounced diffraction suppression is
observed for a higher refractive index variation. © 2015 Optical Society of America
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1. INTRODUCTION

The discovery of quasi-crystals in condensed matter by
Shechtman et al. [1] and their theoretical analysis by Levine
and Steinhardt [2] has inspired a new field of research in optics
and photonics.

Examples in the field of optics are photonic quasi-crystals
with dielectric multilayers forming the Fibonacci sequence as
proposed by Kohmoto et al. [3], and realized in [4–6], as well
as other deterministic aperiodic structures with long-range
order [7,8]. Photonic quasi-crystals have peculiar optical prop-
erties. Namely, they lie between periodic and disordered struc-
tures and exhibit unique and rich symmetries in Fourier space
that are not possible within periodic lattices. The large variety
of aperiodic structures is very important and could provide sig-
nificant flexibility and richness when engineering the optical
response of devices [9].

The localization of waves is a ubiquitous phenomenon ob-
served in a variety of classical and quantum systems [10–12],
including light waves [13–16], Bose–Einstein condensates
[17,18], and sound waves [19]. Although stated more than
50 years ago [11], Anderson localization is still one of the most
appealing approaches in optical wave manipulation. In this re-
gard, a transverse localization of light in waveguide lattices turns
out to be a particularly interesting concept [13,14]. As the
transverse expansion properties in periodic photonic lattices
[20–23], as well as in disordered ones [14,24–26], have been
investigated extensively, the quasi-periodic photonic lattices
emerged as a further attractive research field. The light locali-
zation in the Aubry–André model of a quasi-periodic lattice is

observed [27], but the transverse expansion in many other
models of photonic quasi-crystals [28] is still an open question.

In this paper, we extend these concepts to the beam expan-
sion in quasi-periodic Fibonacci waveguide arrays, considering
light propagation along waveguides. We fabricate the array of
identical waveguides (identical refractive index profile). The
distance between successive waveguides is modulated in the
Fibonacci manner. This means that the sequence of separations
consists of two elements, A and B, lined in such a way to make a
Fibonacci word. We consider how various input beam posi-
tions (incident positions) influence diffraction, and compare
them with appropriate periodic waveguide arrays. In general,
we find the beam expansion is slowed in quasi-periodic
Fibonacci waveguide arrays. Increasing the refractive index
variation, the effect is more pronounced.

2. EXPERIMENTAL SETUP AND THEORETICAL
BACKGROUND

For the experimental realization of the Fibonacci waveguide
array we use LiNbO3 crystal, doped with 0.05% of iron.
Dimensions of the crystal are 3mm × 0.5mm × 10mm, with
the optical axis along the z direction (10 mm). Waveguides are
fabricated using an in-house developed laser writing system
with a CW laser at 473 nm and a precise two-axis positioning
platform. The platform can move the crystal in the x–z plane.
The laser beam propagates along the y axis and it is focused by
the 50× microscope objective slightly below the upper surface
of the crystal. In this way, the laser makes a controllable local
change of the refractive index. By moving the sample along the
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z direction, a uniform modification of the refractive index pro-
file is achieved [Fig. 1(a)]. The width of the waveguide obtained
in this way is approximately 5 μm with a maximum refractive
index variation of Δn ∼ 1 × 10−4, estimated from numerical
simulations. The distances between the centers of the adjacent
waveguides are a � 10 μm and b � 16.18 μm, and follow the
Fibonacci word rule, with the golden ratio b∕a � �1� ffiffiffi

5
p �∕2

in our case [Fig. 1(c)].
A scheme of the experimental setup is shown in Fig. 1(b).

A beam from He:Ne laser, after appropriate preparation, is
focused on the front face of the crystal and propagates along
the z direction. The beam waist is around 10.5 μm and the
power is 10 nW. The light is polarized linearly in the y direc-
tion. The crystal is situated in a holder which can be moved in
the x direction in small steps. In this way, we can launch the
beam into appropriate position in the waveguide array. The in-
tensity pattern appearing at the exit face of the crystal is
observed by means of an imaging system which consists of a
microscope objective and CCD camera.

To theoretically model light propagation in quasi-periodic
Fibonacci waveguide arrays, along the propagation distance
z, we consider the paraxial wave equation for the slowly varying
electric field amplitude E :

i
∂E
∂z

� −
1

2

∂2E
∂x2

− V �x�E; (1)

where V �x� � ns � Δn
PN

i�1 e
−�x−xi�2∕2σ2 is the quasi-periodic

refractive index profile of the array, ns is a bulk material
refractive index, and Δn is an optically induced refractive
index variation. The two Fibonacci elements, A and B, are
used as a separation between the waveguides a and b [see
Fig. 1(c)]. An array of N waveguides modeled with
Gaussian functions centered at xi is spaced to follow some
Fibonacci word. For example, we experimentally realized a
waveguide array that represents the following Fibonacci word:
ABAABABAABAABABAABA (the first 20 elements) [see

Fig. 1(c)]. For solving our model equation, we use the split-step
method with the parameters of our experiment.

3. LIGHT PROPAGATION IN FIBONACCI
WAVEGUIDE ARRAYS: EXPERIMENT VERSUS
THEORY

We consider beam propagating in Fibonacci waveguide arrays
fabricated in our crystal, launched at different incident posi-
tions. The propagation characteristics are obtained numerically
and experimentally; Fig. 2 summarizes our results. We choose
three typical incident positions inside waveguides marked by
numbers 1, 2, and 3 in Fig. 1(c). Propagations from these
positions are represented in the first, second, and third row
in Fig. 2. The first column presents intensity distribution along
the propagation distance observed numerically, with output
profiles in the second column. Experimental results for the
same incident positions are presented as intensity distributions
at the exit face of the crystal (the forth column) with corre-
sponding profiles in the third column. One can see a very good
agreement with numerically obtained profiles.

The main reason for more pronounced diffraction suppression
for incident beam positions 1 and 2 [Figs. 2(b) and 2(f)], in com-
parison with position 3 [Fig. 2(j)], is the separation between in-
cident and neighboring waveguides. While propagating in the
medium, the beam displays slowing of beam expansion, compared
to the appropriate periodic waveguide arrays [Fig. 4(b)].

Next, we study beam propagating characteristics for incident
positions between waveguides marked by numbers 4, 5, and 6
in Fig. 1(c). Figure 3 summarizes our numerical and experi-
mental results for these cases. The layout of this figure is the
same as in Fig. 2: incident positions 4, 5, and 6 in Fig. 1(c)
correspond to the results in the first, second, and third row
in Fig. 3, respectively. Beam diffraction for incident positions

Fig. 1. Setup for an investigation of light propagation in Fibonacci
waveguide arrays. (a) Scheme of the laser writing waveguide arrays proc-
ess in an Fe:LiNbO3 crystal. (b) Schematic of the experimental setup:
He:Ne laser at 632.8 nm; L, lens; PH, pinhole; VNDF, variable neutral
density filter; M, mirror; HWP, half-wave plate; MO, microscope ob-
jective; CCD, camera. (c) A schematic of a refractive index profile used
in numerics (V �x�), with two separations between waveguides, a and b.
Arrows with numbers show incident beam positions inside waveguides
(black) and between waveguides (gray). (d) Schematic geometry of
Fibonacci lattice with Gaussian probe beam.

Fig. 2. Light propagation in Fibonacci waveguide arrays. Incident
positions of the beam are inside certain waveguides, marked with num-
bers in Fig. 1(c): the first row corresponds to the position 1; the second
row corresponds to 2; and the third row corresponds to 3. Intensity
distributions of the beam in longitudinal direction during the propa-
gation: (a), (e), and (i) observed numerically. Corresponding intensity
profiles at the exit face of the crystal observed numerically: (b), (f ),
and (j) and experimentally (c), (g), and (k). Experimentally measured
intensity distributions at the exit face of the crystal (d), (h), and (l).
Physical parameters: the crystal length L � 1 cm, refractive index
variation Δn � 1 × 10−4, and Gaussian beam width 10 μm.
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between waveguides is more pronounced than for incident po-
sitions inside waveguides (Fig. 2), but again less pronounced
then in periodic waveguide arrays [Fig. 4(b)]. One can see a
more pronounced tendency toward diffraction suppression
for incident beam position 5 [Fig. 3(g)], compared with 4
[Fig. 3(c)] and 6 [Fig. 3(k)]. We want to stress that these con-
clusions are relevant only for the distance of propagation in our
experiment (1 cm). More general conclusions are drawn in the
next chapter, where numerical simulations are performed on
longer propagation distances.

4. LIGHT PROPAGATION IN WAVEGUIDE
ARRAYS: PERIODIC VERSUS FIBONACCI

We study numerically the beam propagation in Fibonacci
waveguide arrays considering longer propagation distances
(L � 10 cm). To characterize the level of beam expansion,
we use the effective beam width ωeff � P−1∕2, where P �R jE j4�x; L�dx∕fR jE j2�x; L�dxg2 is the inverse participation
ratio. In such a system, it is useful to perform averaging over
different incident beam positions to remove the effects of the
local environment, i.e., the influence of the neighboring wave-
guides. Averaged effective beam width is calculated along the
propagation distance, and compared for the Fibonacci wave-
guide array and three different periodic waveguide arrays.
Separations a and b in Fibonacci waveguide arrays are used
as periods d � 16.18 μm and d � 10 μm for two periodic
waveguide arrays. The third periodic array is produced in such
a way that the same number of waveguides as in quasi-periodic
is arranged in periodic manner in the same space (in our geom-
etry, its lattice period is d � 12.38 μm), aimed as the most
appropriate for comparison with Fibonacci waveguide array.

Figure 4(a) presents the averaged effective width (averaged
over incident positions) along the propagation distance for
Fibonacci lattice and refractive index variation Δn � 1 × 10−4,

with the effective beam width for all previously mentioned
periodic lattices for the same value of refractive index variation.
It should be stressed that the beam width increases more slowly
in a Fibonacci lattice compared to the periodic lattices. Clearly,
the beam propagation in periodic lattice with d � 10 μm
displays the strongest discrete diffraction, followed by other
periodic lattices and then quasi-periodic. We also observe that
the Fibonacci lattice follows the same beam expansion scaling
law [29]. For shorter propagation distances (up to 1.5 cm),
beam diffraction in the periodic lattice with d � 16.18 μm is
slightly less pronounced than in quasi-periodic because of the
weaker coupling between adjacent waveguides in that lattice.

Figure 4(b) presents a typical beam spreading along the
propagation distance, for a periodic lattice with d � 12.38 μm,
simulated for 10 cm of propagation. The averaged intensity
distribution for hundreds of different incident positions in a
Fibonacci lattice is presented in Fig. 4(c). Compared with the
appropriate periodic lattice [Fig. 4(b)], a tendency of
Fibonacci lattice to suppress diffraction is evident [Fig. 4(c)].

5. DEPENDENCE OF LIGHT PROPAGATION ON
THE REFRACTIVE INDEX VARIATION

At the end, we study the influence of various refractive index
variations (Δn) on the beam propagation in Fibonacci wave-
guide arrays. Again, we calculate the averaged effective width
along the propagation distance for each value of Δn. The in-
crease of refractive index variation makes diffraction suppres-
sion more pronounced [Fig. 5(a)]: the broadening of the
beam becomes almost completely suppressed for longer propa-
gation distances. These curves show a transition from ballistic
spreading (normal diffusion) to anomalous diffusion. In addi-
tion, a higher refractive index variation changes the anomalous
diffusion behavior. The averaged intensity distribution, for
hundreds of different incident positions, is presented for Δn �
2 × 10−4 in Fig. 5(b), and Δn � 4 × 10−4 in Fig. 5(c). These
should be compared with the corresponding distribution in
Fig. 4(c) for Δn � 1 × 10−4. The tendency to suppress diffrac-
tion is evident as for a higher refractive index variation; a larger
portion of the beam is confined between adjacent waveguides.

Typical averaged intensity distribution profiles in longitudinal
direction for propagation lengths of 2, 3, and 4 cm are presented

Fig. 3. Light propagation in Fibonacci waveguide arrays with inci-
dent positions of the beam between certain waveguides, marked with
numbers in Fig. 1(c): position 4 corresponds to the first row, 5 to the
second row, and 6 to the third row. Intensity distributions of the beam in
longitudinal direction during the propagation: (a), (e), and (i) observed
numerically. Corresponding intensity profiles at the exit face of the crys-
tal observed numerically (b), (f), and (j) and experimentally (c), (g), and
(k). Experimentally measured intensity distributions at the exit face of
the crystal (d), (h), and (l). Physical parameters are as in Fig. 2.

Fig. 4. Comparison between beam diffraction in periodic and
quasi-periodic waveguide arrays. (a) Averaged effective beam widths
versus the propagation distance, for refractive index variation
Δn � 1 × 10−4. (b) Field intensity of the beam in longitudinal direc-
tion (z) during the propagation for periodic lattice with
d � 12.38 μm. (c) Averaged field intensity distribution for
Fibonacci lattice. Crystal length is L � 10 cm.
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for three values of refractive index variation: Δn � 1 × 10−4,
Δn � 2 × 10−4, and Δn � 4 × 10−4 [Figs. 5(d)–5(f)]. Again,
one can see a transition toward stronger diffraction suppression
with a higher refractive index variation.

6. CONCLUSIONS

In summary, we have observed the beam expansion is slowed
down in optically induced Fibonacci waveguide arrays. We
have analyzed experimentally and numerically how various in-
cident positions influence propagation characteristics. The ex-
perimental results fully agree with the theoretical analysis.
Diffraction suppression is observed with Fibonacci waveguide
arrays, compared to the appropriate periodic waveguide arrays.
We have investigated the influence of refractive index variation
on the beam spreading in Fibonacci waveguide arrays. More
pronounced diffraction suppression is observed for higher re-
fractive index variations.
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Chirality and discrete diffraction in nonlinear Mathieu lattices 
 

M. Rimmler1, A. Zannotti1, J. M. Vasiljevic2, D. V. Timotijevic2,3, D. M. Jovic Savic2, and C. Denz1 
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Non-diffracting beams are highly relevant in optics and atom physics, particularly because their transverse 

intensity distributions propagate unchanged for hundreds of diffraction lengths. Thus, they feature applications in 

free-space wireless communications, optical interconnections, long-distance laser machining, and surgery. Four 

different fundamental families of propagation invariant light fields exist. They distinguish in the underlying real 

space coordinate system: Discrete, Bessel, Weber, and Mathieu non-diffracting beams. Latter ones obey the 

Helmholtz equation in elliptic cylindrical coordinates and are therefore best suited to address physical effects in 

elliptical coordinates. 

 

Mathieu beams are classified according to their symmetry properties as even and odd. Their transverse discrete 

intensity distributions in elliptical or hyperbolical geometries can be shaped by their order and an ellipticity 

parameter. These real-valued beams have only discrete spatial phase distributions. In contrast, so called elliptical 

and helical Mathieu beams are obtained as complex superpositions of appropriate even and odd Mathieu beams, 

thus showing outstanding continuously modulated spatial phase distributions that act as orbital angular momenta, 

associated with a transverse energy flow. 

 

In our contribution we investigate and control the nonlinear optical induction of photonic Mathieu lattices in 

photosensitive media. As flexible material we chose a photorefractive SBN crystal, showing a non-local, 

anisotropic nonlinearity.  

 

Focusing on elliptic Mathieu beams, during linear propagation their transverse energy redistribution along 

elliptic paths is compensated in each point, enabling for an invariant transverse intensity distribution. However, 

this energy flow withstands a direct observation. We demonstrate that their nonlinear self-action in SBN breaks 

this sensitive equilibrium. Consequently, a new type of rotating beam formation arises with high intensity 

filaments corresponding to the energy flow in an enforced preferential direction. This process is beneficially 

applied to realize chiral twisted photonic refractive index structures with a tunable ellipticity. 

 

Further, we present our studies on the nonlinear dynamics of discrete Mathieu beams in SBN, showing examples 

of appropriate fundamental even Mathieu beams in order to realize one- and two-dimensional transverse lattices. 

The nonlinear optical induction process leads to the formation of discrete refractive index lattices and a self-

interaction of the writing Mathieu beams with the realized photonic structure, capable of altering the writing 

beams’ propagation similar to the well-known linear discrete diffraction. Controlling the strength of the 

nonlinearity allows tailoring the degree of diffraction. Moreover, probing the lattice linearly with Gaussian 

beams and tunable incident angles reveals the signature of discrete and anomalous diffraction. This allows to 

control the strength of diffraction, such that under certain tilts, the probing beams may cross the lattice 

diffractionless.  

 

Our investigations both represent individual contributions towards the realization of advanced complex 

waveguiding in photorefractive crystals.  
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Realizing aperiodic photonic lattices by synthesized Mathieu-Gauss beams 
 

J. M. Vasiljević1, Alessandro Zannotti2, D. V. Timotijević1,3, Cornelia Denz2, D. M. Jović Savić1 
1Institute of Physics,University of Belgrade, P.O. Box 68, 11001 Belgrade, Serbia 
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Over the years, non-diffracting wave configurations have drawn considerable attention, particularly in the 

areas of optics, atom physics, biophysics, as well as optical tweezing [1], and nonlinear optics [2, 3]. The 

interest in such optical waves is due to the fact that, their transverse intensity distributions propagate 

unchanged for hundreds of diffraction lengths. The potential of non-diffracting structures is of significant 

importance for advances in discrete and nonlinear modern photonics [4, 5]. One prominent class of non-

diffracting waves is given by Mathieu beams, which appear as translationally invariant solution of the 

Helmholtz equation in elliptic cylindrical coordinates. 

Synthesizing two or more non-diffracting Mathieu-Gauss (MG) beams, we demonstrate a powerful new 

approach for the creation of two-dimensional (2D) aperiodic photonic lattices, in a single writing process in 

parallel. Depending on the beam configurations of coherently superimposed MG beams, their mutual 

distances, angles of rotation or phase relations we are able to realize transverse invariant propagating intensity 

distributions capable to optically induce corresponding refractive index lattices in photosensitive media. Our 

approach features the fabrication of versatile aperiodic lattices with controllable properties as well as quasi 

one-dimensional structures. Our results and methods enable further investigations of light propagating in such 

aperiodic photonic lattices, and could find applications in modern optical information processing. 

 

REFERENCES 

[1] V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002). 

[2] J.W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).  

[3] H. Martin, E. D. Eugenieva, and Z. Chen, Phys. Rev. Lett. 92, 123902 (2004).  

[4] F. Diebel, B. M. Bokić, M. Boguslawski, A. Piper, D. V. Timotijević, D. M. Jović, and C. Denz, Phys. 

Rev. A 90, 033802 (2014). 

[5] F. Diebel, B. M. Bokić, D. V. Timotijević, D. M. Jović Savić, and C. Denz, Opt. Express 23, 24351 (2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAADProject
Highlight



Nonlinear optics                                                                                      Contributed papers 
 

74 
 

We have also found a PBG fiber and a gas configuration whose characteristics permit the 
propagation of such stable solitons. Nevertheless, the linear gain, that is possible because 
the gas is only confined in the hollow core but not in the cladding holes, brings 
background instability. 
 
Here, we systematically address the configurations of gases confined in PBG fibers that 
are more suitable for stable dissipative solitons, studying the dependence of sign and 
magnitude of the equation parameters with the experimental conditions. Moreover, we 
will obtain a propagation equation in fourth order which introduces a delayed Raman 
scattering term. This new term creates a new branch of solutions that exist and are stable 
in a limited range of the parameter space for which there is linear loss, so that, the 
background is stable. 
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During the 1980s quasi-crystallographic structures in solid state physics fundamentally 
amazed the scientific community [1], and inspired a new field of research in optics and 
photonics. Owing to the analogy of photonic lattices to solid state systems, the first 
optical experiments were implemented analyzing aperiodic media [2]. Irregular photonic 
lattices are of great interest as these structures offer proper band gaps where propagation 
is forbidden while translation invariance and thus the general scheme of Bloch wave 
propagation within periodic arrangements are broken. Asking for aperiodic structures 
rapidly the nomenclature of Fibonacci grating came up for this often is referred to as the 
embodiment of irregularity [3,4]. Generally spoken, the research field of aperiodic lattices 
is a fertile topic [5] as these structures offer the possibility of light localization in 
deterministic disordered structures that are settled between periodic and disordered 
systems [6]. Light localization in quasi-periodic photonic lattices is observed in Aubry 
André model and also realized experimentally in AlGaAs substrate [7]. 
 

DAADProject
Highlight



Nonlinear optics                                                                                      Contributed papers 
 

75 
 

We extend these concepts to quasi-periodic Fibonacci waveguide arrays, considering light 
propagation along waveguides. We fabricate the array of identical waveguides (identical 
refractive index profile) in Fe:LiNbO3 crystal. The distance between successive 
waveguides is modulated in Fibonacci manner. This means that the sequence of 
separations consists of two elements, A and B, lined in such a way to make Fibonacci 
word. We have analyzed experimentally and numerically how various incident beam 
positions influence propagation and localization characteristics and compare it with 
appropriate periodic waveguide arrays. In general, we find the beam expansion is slowed 
down in quasi-periodic Fibonacci waveguide arrays, and localization properties in such 
lattice are closer to a random than periodic lattice. However, with a modification of the 
refractive index variation, the localization effects are observed for shorter propagation 
distances by increasing refractive index variation.  
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We construct solitonic solutions for the system of two optical beams propagating in 
opposite directions [1, 2] in parity-time (PT) symmetric [3, 4] photonic lattices by using 
modified Petviashvili method [5]. Our system support PT symmetric fundamental 
solitons, as well as solitary vortices. We propagate them and investigate their basic 
characteristics. We report power transfer between counterpropagating beams and 
symmetry breaking (or split-up) transition. 
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