




Биографија Иве Бачић 

Ива Бачић рођена је у Суботици 12. јуна 1992. године, где је завршила основну школу и 

природни смер Гимназије „Светозар Марковић“. Након тога, уписала је 2010. године основне 

академске студије на Физичком факултету Универзитета у Београду, смер Теоријска и 

експериментална физика, где је дипломирала 2014. године са просечном оценом 9.44/10. Исте 

године је уписала мастер академске студије на Физичком факултету, смер Теоријска и 

експериментална физика, које је завршила 2015. године са просечном оценом 9.67/10. У току 

мастер студија, Ива је посетила синхротрон SOLEIL у Француској, у склопу израде мастер рада 

на тему Inner-Shell Action Spectroscopy of Trapped Substance P Peptide Ions and their Nanosolvated 

Complexes, под менторством др Александра Милосављевића, вишег научног сарадника 

Института за физику у Београду. Мастер рад је оцењен оценом 10, а резултати рада су у 

представљени на конференцији COST XLIC WG2 Expert Meeting on Biomolecules на Фрушкој 

Гори у априлу 2015. године. Новембра 2015. године, Ива је уписала докторске академске 

студије на Физичком факултету, ужа научна област Статистичка физика. Под менторством др 

Игора Франовића, научног сарадника из Лабораторије за примену рачунара у науци (Scientific 

Computing Laboratory) Института за физику у Београду, Ива се у склопу докторских академских 

студија бави коефектима шума и вишеструких временских скала у системима спрегнутих 

ексцитабилних јединица. 

Од марта 2016. године, Ива је запослена на Институту за физику у Београду на позицији 

истраживач приправник у Лабораторији за примену рачунара у науци, где је ангажована на 

пројекту основних истраживања ОН171017 Моделирање и нумеричке симулације сложених 

вишечестичних система Министарства просвете, науке и технолошког развоја Републике 

Србије. Поред тога, учествовала је и у DAAD билатералном пројекту између Републике Србије 

и СР Немачке Emergent dynamics in systems of coupled excitable units 2017. и 2018. године, у 

оквиру ког је више пута посетила Weierstrass Institute (WIAS) у Берлину, Немачка, као и 

Технички универзитет у Берлину, Немачка. Такође, Ива учествује и на COST акцији CA17120 

Chemobrionics од 2018. године. 

Ива је до сада је објавила три научна рада категорије М21, један рад категорије М22 и два 

саопштења са међународних скупова штампана у изводу (М34). Ивин рад Disordered 

configurations of the Glauber model in two-dimensional networks, објављен у часопису EPL 

(Europhysics Letters), истакнут је у Research Highlights за 2018. годину на Europhysics News. 

Своје резултате је до сада представила на семинару на WIAS-у, као и на конференцији 

Dynamics of Coupled Oscillator Systems на WIAS-у. Позвана је на студијско усавршавање на 

зимску школу Complexity  Science Hub Winter School, која ће се одржати 2019. године у 

Обергурглу, Аустрија. 



Поред матерњег, Ива говори два светска језика, енглески и немачки. 

Преглед научне активности Иве Бачић 

Током мастер студија, Ива се бавила интеракцијом синхротронског зрачења са 

наносолватисаним молекулима. Под руководством др Александра Милосављевића, научног 

саветника из Лабораторије за физику сударних процеса Института за физику у Београду, на 

синхротрону SOLEIL у Француској, користећи тандем масену X-ray спектрометрију 

биополимера у јонској замци, испитивала је ефекте наносолватације на акционе спектре и 

фрагментацију. Уочена су два различита резонантна процеса која доводе до појачаног губитка 

воде са наносолватисаних молекула неуропептида Substance P, повезана са ексцитацијом K-

љуске кисеоникових атома који припадају или пептидној вези или кластеру молекула воде. 

Разматрање процеса фрагментације пептида као функције активационе енергије фотона у 

близини C, N и O K-ивице показало је да фрагментација има јаку зависност од активационе 

енергије. 

У склопу докторских студија, под руководством др Игора Франовића, научног сарадника из 

Лабораторије за примену рачунара у науци Института за физику у Београду, Ива се бави 

емергентним феноменима у спрегнутим системима, насталим услед садејства шума, 

адаптивности у интеракцији и локалне ексцитабилности. Ексцитабилност је заједничка 

карактеристика великог броја система, укључујући многобројне биолошке системе (неуронске 

мреже, срчано ткиво, бета ћелије панкреаса, генске регулаторне мреже), моделе хемијске 

кинетике, ласере, моделе социјалних интеракција, климатске динамике, земљотреса и др. Са 

аспекта теорије нелинеарних динамичких система, особина ексцитабилности је заснована на 

чињеници да се систем налази у близини бифуркације од стационарног ка осцилаторном 

режиму. Манифестујући богато колективно понашање, укључујући низ феномена 

синхронизације и парцијална синхронизације, патерне, таласе ексцитације, просторно 

локализована решења и др, системи интерагујућих ексцитабилних јединица издвојени су у 

посебну класу динамичких система. 

Комплексна динамика у ексцитабилним системима често укључује више карактеристичних 

временских скала на нивоу појединачних јединица (тзв. slow-fast динамика) и/или услед 

интеракција. Један од најважнијих примера где динамика интеракција укључује вишеструке 

временске скале односи се на концепт адаптивности, који подразумева коеволуцију локалне 

динамике и динамике интеракција. При томе, динамика веза (јачина интеракција, промена броја 

линкова) одвија се на споријој карактеристичној скали у односу на локалну динамику јединица. 

Међу најважнијим примерима система са адаптивношћу истичу се неуронски системи, где се у 

оквиру пластичности синапси, јачина синаптичких веза повећава или смањује у складу са 

релативним временима опаљивања пре- и пост-синаптичког неурона. 



Модели система спрегнутих ексцитабилних јединица типично укључују деловање шума, који 

потиче интринзичних флуктуација, флуктуација у окружењу или од coarse-grained динамике на 

нижим просторним и временским скалама. Неки од извора шума у ексцитабилних системима 

укључују quasi-random ослобађање неуротрансмитера у неуронима или finite-size ефекте у 

хемијским реакцијама. Под утицајем шума, особина ексцитабилности постаје израженија. 

Познато је да шум у системима који се налазе у близини бифуркационог прага може да 

индукује тзв. резонантне феномене, који подразумевају нелинеаран одговор система на шум, 

као последицу тога што шум уводи нову временску скалу у систем. У случају класичних 

ексцитабилних система, добро је познат феномен резонанце кохеренце, где осцилације изазване 

шумом постају најрегуларније на интермедијарном интензитету шума. У случају осцилаторних 

система у близини бифуркације, релативно недавно уочен је феномен инверзне стохастичке 

резонанце, где фреквенција осцилација пертурбованих шумом има минимум на 

интермедијарном интензитету шума. Експериментално је потврђено да овај феномен игра 

значајну улогу у неуронским системима, укључујући редуковање фреквенције опаљивања у 

одсуству неуромодулатора, сузбијање патолошки дуге краткорочне меморије, изазивање и 

супресију тоничног опаљивања као и оптимизацију преноса информација. 

У светлу наведеног, планирано је да најважнији допринос Ивине докторске дисертације буде 

анализа карактеристика ексцитабилног понашања интерагујућих система, за разлику од 

класичног концепта ексцитабилности који се односи на појединачне јединице. Посебно, рад у 

оквиру тезе тицаће се три групе емергентних феномена. Прва линија истраживања се односи на 

феномен макроскопске ексцитабилности, сценарија у којем се популација ексцитабилних 

јединица и сама понаша као ексцитабилни елемент. На примеру популације спрегнутих 

стохастичких неуронских мапа, развојем mean-field модела заснованог на гаусијанској 

апроксимацији, анализиране су карактеристике режима макроскопске ексцитабилности, као и 

других режима колективне динамике. Показано је да постоји висок степен квалитативне и 

квантитативне усаглашености између предвиђања mean-field модела и динамике реалног 

система у погледу карактеризације макроскопске ексцитабилности, стохастичких бифуркација, 

кривих фазног одговора макроскопских варијабли на пертурбацију, као и статистичких особина 

временских серија. У склопу друге линије истраживања, која се односи на мотиве адаптивно 

спрегнутих ексцитабилних јединица, испитан је стохастички процес switching динамике. 

Switching динамика подразумева споре стохастичке флуктуације између метастабилних стања 

изведених из коегзистентних атрактора одговарајућег детерминистичког система, или 

флуктуације између осцилаторних мода изазваних шумом. Откривене су две генеричке форме 

switching динамике, које зависе од брзине адаптације, и чија феноменологија је објашњена 

проучавањем layer проблема и reduced проблема у оквиру slow-fast анализе. Трећа линија 

истраживања подразумева испитивање резонантних феномена на мотивима спрегнутих 



ексцитабилних система. Досадашњи резултати, добијени на парадигматском моделу где је 

локална динамика представљена активним ротатором, открили су два нова генеричка сценарија 

за феномен инверзне стохастичке резонанце. 

Поред наведеног испитивања емергентних феномена у спрегнутим ексцитабилним системима, 

Ива Бачић се у току докторских студија бавила и процесом уређивања кинетичког Изинговог 

(Глауберовог) модела на комплексним мрежама, као и проучавањем структуре неуређених 

конфигурација. Разматрани су случајеви регуларне топологије повезаности, мрежа са случајном 

и small-world топологијом добијене преповезивањем регуларне решетке, као и двослојних 

мрежа с различитом структуром повезаности између слојева. Експлицитно је показано да small-

world топологија у термодинамичком лимесу онемогућава уређивање, при чему се неуређене 

конфигурације састоје од два домена, који одговарају мулти-кластер структурама на почетној 

регуларној решетци. 
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Mean-field dynamics of a population of stochastic map neurons
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We analyze the emergent regimes and the stimulus-response relationship of a population of noisy map neurons
by means of a mean-field model, derived within the framework of cumulant approach complemented by the
Gaussian closure hypothesis. It is demonstrated that the mean-field model can qualitatively account for stability
and bifurcations of the exact system, capturing all the generic forms of collective behavior, including macroscopic
excitability, subthreshold oscillations, periodic or chaotic spiking, and chaotic bursting dynamics. Apart from
qualitative analogies, we find a substantial quantitative agreement between the exact and the approximate system,
as reflected in matching of the parameter domains admitting the different dynamical regimes, as well as the
characteristic properties of the associated time series. The effective model is further shown to reproduce with
sufficient accuracy the phase response curves of the exact system and the assembly’s response to external
stimulation of finite amplitude and duration.

DOI: 10.1103/PhysRevE.96.012226

I. INTRODUCTION

Gaining a comprehensive understanding of the emergent
dynamics of neuronal populations and their interactions is a
topical issue in neuroscience [1,2]. The acquired neurobio-
logical data corroborate that the operational tasks at different
levels of the brain’s multiscale hierarchical organization are
distributed across anatomically segregated, but functionally
integrated, moduli [3–5]. Within theoretical studies, substan-
tial attention have received the phenomena unfolding on the
intermediate (mesoscopic) scale [6], whereby the considered
models are supposed to reflect the behavior of assemblies
comprising microcolumns or cortical columns [7–9]. The
mesoscopic dynamics typically consists of oscillations of dif-
ferent frequencies and amplitudes, which may be interspersed
by episodes of chaotic or pseudo-chaotic irregular behavior
[7]. This can further be modulated via interplay with activity
generated at other scales, primarily the stochastic fluctuations
from the microscopic level and the slow rhythms derived from
the macroscopic structures.

Conceptually, the given phenomena are often addressed
by invoking a paradigm where each population exhibiting
a collective mode is regarded as a large-scale oscillator,
such that the assembly’s response to external stimuli, noise,
or collective oscillations from afferent populations may be
examined using the methods of nonlinear dynamics [10]. The
ensuing models of collective motion are developed using
different forms of mean-field (MF) approximation, which
mainly apply the bottom-up strategy [11] to build reduced
and analytically tractable description of population behavior
starting from the high-dimensional system of (stochastic)
differential equations for the local neuron dynamics. An
additional point that makes the mesoscopic circuits particularly
suitable for the MF treatment is that the often used assumption
on assembly homogeneity approximately holds at this scale

*franovic@ipb.ac.rs
†olmaov@ipfran.ru

[12]. In terms of fashion by which the population dynamics
is statistically characterized, one may classify the effective
systems into neural mass or probability density models [8,13].
The former rely on the large coherence approximation and
yield the mean-rate dynamics [14], whereas the latter involve
the diffusion approximation, providing for the evolution of the
assembly-averaged dynamics and the corresponding variance
[15,16]. The MF approach and its generalization to spatially
extended systems have become a standard tool for analyzing
diverse problems in neuroscience and other fields [17–23].

Nevertheless, one should emphasize that the MF analysis
has so far exclusively been applied to the class of continuous-
time systems, while the effective models for assemblies of
coupled maps have been lacking. In particular, the collective
motion of spiking or bursting neurons influenced by noise has
been extensively studied using different models of coupled
discrete systems, such as Rulkov [24–31] or Izhikevich
neuron maps [32,33], but this has not been complemented
by an appropriate MF theory. The latter has likely been the
consequence of inability to implement the Fokker-Planck
formalism to discrete-time systems. In the present paper,
we obtain for the first time the MF theory for a population
of coupled stochastic neuronal maps. The derivation relies
on Gaussian approximation, which is introduced within the
framework of Gaussian closure hypothesis [34–40].

We apply the MF approach to systematically analyze the
emergent behavior and the stimulus-response relationship of
a population of stochastic map neurons, where the local
dynamics can exhibit a variety of regimes, including excitabil-
ity, subthreshold oscillations, regular and chaotic spiking
or bursting, as well as mixed spiking-bursting oscillations
[41–44]. The particular set of issues we address consists
in establishing whether and how the MF model can be
used to (i) qualitatively analyze the network stability and
bifurcations of the exact system associated to emergence of
generic collective regimes; (ii) provide adequate quantitative
predictions in terms of bifurcation thresholds, and the average
interspike intervals or bursting cycles of the exact system; as
well as (iii) accurately anticipate the population’s response

2470-0045/2017/96(1)/012226(12) 012226-1 ©2017 American Physical Society
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FIG. 1. Dynamical regimes exhibited by model (1). The heat map refers to variation of the amplitude of oscillations A of the x time
series in the J -β plane. The wave forms shown in subfigures I–VI illustrate the different forms of neuron’s behavior, including excitability (I),
subthreshold oscillations (II), regular spiking (III), chaotic bursting (IV), chaotic spiking (V), as well as the mixed spike-burst activity (VI).
The dots in the heat map indicate the particular (J,β) values where the representative wave forms are obtained.

to different forms of external stimuli. Within this context, it
will be examined whether the effective model is capable of
reproducing the properties of noise-activated, noise-induced,
and noise-perturbed modes of collective behavior.

The paper is organized as follows. In Sec. II, we make an
overview of the local map dynamics and introduce the popula-
tion model. Section III outlines the ingredients most relevant
for the derivation of the MF system, with the remaining tech-
nical details left for the Appendix. In Sec. IV, the qualitative
and quantitative agreement between the dynamics of the exact
and the MF model is illustrated by the appropriate bifurcation
diagrams, as well as by comparing the characteristic features
of the associated regimes. Section V concerns the assembly’s
stimulus-response relationship, first investigating the analogy
between the respective phase-response curves (PRCs) of the
exact system and the effective model in spiking and bursting
regimes and then considering the extent to which the MF model
reproduces the population’s response to rectangular pulses
of finite amplitude and duration. In Sec. VI, we provide a
summary of our main results.

II. MAP NEURON DYNAMICS AND THE
POPULATION MODEL

The dynamics of an isolated neuron conforms to a map
model first introduced in Refs. [45,46], which is given by

xn+1 = xn + G(xn) − βH (xn − d) − yn,
(1)

yn+1 = yn + �(xn − J ),

where n denotes the iteration step. The variable xn qualitatively
accounts for the membrane potential, whereas the recovery
variable yn, whose rate of change is set by a small parameter
� = 10−2, mimics the behavior of ion-gating channels. The
parameters a, β, and d modify the profile of the ensuing os-
cillations, while J crucially influences the neural excitability,
viz. the transitions from silence to active regimes.

The xn evolution features two nonlinear terms,
one being a FitzHugh-Nagumo-like cubic nonlinearity

G(xn) = xn(xn − a)(1 − xn), which is complemented by a
discontinuity term −βH (xn − d), where H stands for the
Heaviside step function. The parameters a = 0.1 and d =
0.45 are kept fixed throughout the paper. The impact of
discontinuity consists in making the fast subsystem [Eq. (1)
with � = 0] a Lorenz-type map within certain parameter
domains [46,47], which endows the model with the ability to
generate chaotic spike or burst oscillations, otherwise lacking
in the Fitzhugh-Nagumo type of systems.

Under variation of J and β, the map (1) may reproduce
a rich repertoire of generic regimes displayed by the real
neurons, as demonstrated in Fig. 1. In particular, the main
frame shows amplitudes of the corresponding x time series
for the given (J,β), while the remaining subfigures illustrate
the characteristic wave forms pertaining to excitable regime
(region I), subthreshold oscillations II), regular (III) or chaotic
spiking (I), chaotic bursting (V), as well as the mixed chaotic
spike-burst activity (VI). Some of the indicated boundaries,
such as those involving domains IV, V, and VI should be
understood as tentative, since the associated transitions are
smooth and therefore difficult to discern.

The detailed phase plane analysis concerning the relevant
unstable invariant curves and the mechanisms underlying tran-
sitions between the different dynamical regimes can be found
in Ref. [48]. Here we briefly mention that under increasing
J , the equilibrium loses stability via the Neimarck-Sacker
bifurcation, which gives rise to subthreshold oscillations. Note
that the latter may be considered an excitable state, in the sense
that a strong-enough perturbation can elicit genuine spike,
though the phase point does not relax to the equilibrium but
rather to a closed invariant curve.

Adopting model (1) for local dynamics, we focus on an
assembly of N stochastic neurons coupled in the all-to-all
fashion via electrical synapses (diffusive couplings). Each
neuron receives input from the units within the assembly and
is further influenced by synaptic noise from the embedding
environment. Note that it is quite common in two-dimensional
neuron models with sharp separation of characteristic time
scales to interpret the stochastic perturbation acting on the fast
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FIG. 2. Impact of noise on a single map neuron in the excitable
regime. (a) The mechanism behind noise-induced spiking. The data
are obtained for J = 0.046, β = 0.4, σ = 0.005. The equilibrium is
deterministically stable given that the line x = J intersects the invari-
ant curve y = G(x) below the curve’s minimum. (b) The xn series
corresponding to noise-induced bursting (J = 0.042, β = 0.2, σ =
0.008), whereas (c) demonstrates stochastic spiking superimposed on
subthreshold oscillations (J = 0.048, β = 0.4, σ = 0.008).

(slow) time scale as synaptic (intrinsic) noise [49–51]. The
population activity is then described by the following system:

xi,n+1 = xi,n + G(xi,n) − βH (xi,n − d) − yi,n + I
syn
i,n ,

yi,n+1 = yi,n + �(xi,n − J ), (2)

I
syn
i,n = I

coup
i,n + I rand

i,n = c

N

N�

j=1,j �=i

(xj,n − xi,n) + σξi,n,

where i specifies the particular neuron. The synaptic currents
I

syn
i,n comprise two types of terms. The diffusive couplings I

coup
i,n

are characterized by the strength c, which is assumed to be
uniform over the network and is set to c = 1 in the remainder of
the paper. The random inputs I rand

i,n involve uncorrelated white
noise [E[ξi,n] = 0,E[ξi,nξj,n�] = δijδ(n − n�)] of intensity σ .

Confined to a single unit, the stochastic component may
influence its dynamics either by perturbing the deterministic
oscillatory regimes or by inducing oscillations in the excitable
regime, cf. Fig. 2(b). The onset of noise-induced spiking or
bursting within the parameter domain where the fixed point
is deterministically stable (domain I in Fig. 1) corresponds
to a phenomenon of stochastic bifurcation [39,52–55]. The
latter are typically described phenomenologically, in a sense
that certain time-averaged quantities, such as the asymptotic
probability distributions of relevant variables or the associated
power spectra, exhibit a qualitative change under variation
of noise intensity. For instance, in continuous-time systems,
it has been shown that the stochastic Hopf bifurcation from
a stochastically stable fixed point to a stochastically stable
limit cycle is accompanied by the loss of Gaussian property
for the asymptotic distributions of the appropriate variables
[56]. At variance with standard deterministic bifurcations,
where one clearly observes a critical value of the control
parameter, the change of system’s behavior in noise-induced
transitions is gradual [39]. Note that noise can also play an
important part in the (J,β) region II where the deterministic
map shows subthreshold oscillations. Here noise can give rise
to a form of dynamics reminiscent of mixed-mode oscillations,
cf. Fig. 2(c).

So far, models similar to (2) have been applied to address
a number of problems associated to collective phenomena in

networks of coupled neurons, including synchronization of
electrically coupled units with spike-burst activity [57,58], pat-
tern formation in complex networks with modular architecture
[41,42,59], transient cluster activity in evolving dynamical
networks [44], as well as the basin stability of synchronization
regimes in small-world networks [43]. Within this paper, the
collective motion will be described in terms of the global
variables Xn = 1

N

�N
i=1 xi,n and Yn = 1

N

�N
i=1 yi,n.

III. DERIVATION OF THE MEAN-FIELD MODEL

Considering a MF approximation, our main goal lies
in deriving a reduced low-dimensional deterministic set of
nonlinear difference equations whose dynamics is qualitatively
analogous to the collective motion of the original system (2)
composed of 2N coupled stochastic maps. In particular, the
MF model should be able to generate all the regimes exhibited
by the exact system, qualitatively reproducing the bifurcations
that the latter undergoes. Also, applying the effective model,
one should be capable of inferring with sufficient accuracy
the parameter domains which admit the different collective
states of the exact system, with the corresponding time
series exhibiting similar characteristic quantitative features.
Regarding the explicit effects of noise, the MF model is
expected to account for the onset or suppression of different
types of collective modes associated to macroscopic spiking
or bursting activity, which are mediated by synchronization
or desynchronization of individual neuron dynamics, respec-
tively. The synchronization processes may be influenced by
noise in a variety of ways, including the scenarios where
noise acts as a perturbation to mainly deterministic (and
chaotic) local oscillations, or the ones where noise plays a
facilitatory role, in the sense that the collective mode emerges
via synchronization of noise-induced local dynamics.

Given that we consider a system of discrete-time equations,
one cannot adopt the usual method of deriving the MF
model via Fokker-Planck formalism [40]. Nevertheless, an
analytically tractable MF model may still be built by focusing
on the evolution of cumulants [34–36,39], whereby the full
density of states is factorized into a series of marginal
densities. The advantage of such an approach is that the
simplifying approximations aimed at truncating the underlying
cumulant series can be introduced in a controlled fashion. Such
approximations, stated in a form of closure hypothesis [34],
are required due to nonlinearity of the original system, which
causes the dynamics of cumulants of the given order to be
coupled to those of the higher order.

In our case, the derivation of the effective model incor-
porates an explicit Gaussian closure hypothesis [34–36,39],
by which all the cumulants above second order are assumed
to vanish. The collective dynamics is then described by a
set of five variables (the first- and second-order cumulants),
including

(i) the means, given by mx,n = lim
N→∞

1
N

�N
i=1 xi,n ≡ �xi,n�,

my,n = lim
N→∞

1
N

�N
i=1 yi,n ≡ �yi,n�;

(ii) the variances, defined as Sx,n = �x2
i,n� − �xi,n�2 =

�x2
i,n� − m2

x,n and Sy,n = �y2
i,n� − �yi,n�2 = �y2

i,n� − m2
y,n;

(iii) the covariance Un = �xi,nyi,n� − mx,nmy,n.
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The expressions for higher-order moments �xk
i,n� in terms

of the first- and second-order cumulants [60], such as
�
x3

i

�
= m3

x + 3mxSx

�
x4

i

�
= m4

x + 6m2
xSx + 3S2

x�
x2

i yi

�
= mySx + mym

2
x + 2mxU

(3)�
x3

i yi

�
= 3SxU + 3Sxmxmy + 3m2

xU + mym
3
x

�
x5

i

�
= m5

x + 15mxS
2
x + 10m3

xSx

�
x6

i

�
= m6

x + 15S3
x + 15m4

xSx + 45m2
xS

2
x ,

can be derived using the closure hypothesis.
The Gaussian approximation effectively amounts to an

assumption that the relation

lim
N→∞

1

N

N�

i=1

xk
i,n ≈ E

�
xk

i,n

�
, (4)

holds, whereby E refers to expectation value obtained by
averaging over an ensemble of different stochastic realizations.
In other words, one supposes that the local variables are inde-
pendent and are drawn from a normal distribution N (mx,Sx).
We do not know a priori whether such an assumption is
fulfilled but can only judge on its validity by verifying the
correctness of the predictions on the population dynamics
provided by the MF model. Also note that the effective model
concerns the assembly dynamics in the thermodynamic limit

N → ∞. The stochastic terms in this case can be neglected, as
one may show them to contribute to finite-size effects which
scale as 1/N . This means that the influence of noise in our MF
model is felt only via the noise intensity, which assumes the
role of an additional bifurcation parameter.

Let us illustrate the main technical points required for the
derivation of the MF model. Our focus will lie with a couple of
relevant examples, whereas the remaining details are provided
in the Appendix. We begin by considering the dynamics of
mx , which is given by

mx,n+1 = mx,n − my,n + �G(xi,n)� − β�H (xj,n − d)�. (5)

It is easy to see that there is no contribution from the coupling
term. As far as the third term on the right-hand side of Eq. (5)
is concerned, using Eq. (3), one arrives at

�G(xi)� =
�
− x3

i + (1 + a)x2
i − axi

�

= G(mx) + Sx(1 + a − 3mx). (6)

In the last expression, we have dropped the time index
for simplicity and have introduced the shorthand notation
G(mx) ≡ −m3

x + (1 + a)(m2
x + Sx).

The key problem is how to treat the final term in the right-
hand side of Eq. (5). Our approach consists in replacing the
assembly average by the expectation value (�H (xi − d)� ≈
E[H (xi − d)]), obtained by assuming that the local variables at
an arbitrary time moment are normally distributed according to
P (xi) ∼ N (mx,Sx). The expectation may then be evaluated as

E[−β�H (xi − d)�] =
�

dx1

�
dx2...

�
dxN

�
− β

N

�

i

H (xi − d)

�
p(x1,x2,...,xN )

= −β

� ∞

−∞
dx1H (x1 − d)p(x1) = −β

� ∞

d

1√
2πSx

e− (x1−mx )2

2Sx = −β

2

�
1 − Erf

�
d − mx√

2Sx

��
, (7)

with the error function Erf(x) = 2√
π

� x

0 e−t2
dt . In the above calculation, we have explicitly used the assumption on the

independence of distributions of local variables at any given moment of time.
In a similar fashion, one may consider the Sx dynamics, which constitutes the most demanding part of the derivation. In

particular, proceeding from the Sx definition, we obtain

Sx,n+1 =
�
x2

i,n+1

�
− �xi,n+1�2

= �[(1 − c)xi,n + G(xi,n) − βH (xi,n − d) − yi,n + ξi,n + cmx,n]2� − [mx,n − my,n + G(mx,n) + Sx,n(1 + a − 3mx,n)

−β�H (xi,n − d)�]2. (8)

As an illustration, let us evaluate one of the terms containing an average over the threshold function:

− 2βE[�G(xi)H (xi − d)�] = −2β

��
dx1G(x1)H (x1 − d)p(x1) −

�
dx1H (x1 − d)p(x1)[G(mx) + Sx(1 + a − 3mx)]

�

≈ −2β

��
dx1[G(mx) + G�(mx)(x1 − mx) + 1

2
G��(mx)(x1 − mx)2]H (x1 − d)p(x1)

−
�

dx1H (x1 − d)p(x1)[G(mx) + Sx(1 + a − 3mx)]

�
= ...

= −2β[(1 + a)(mx + d) − a − 3mxd]

�
Sx

2π
exp

�
− (d − mx)2

2Sx

�
. (9)

Again, the time indexes have been suppressed to simplify the notation.
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Leaving the remaining elements of the derivation for the Appendix, we now state the final equations of the MF model in the
thermodynamic limit

mx,n+1 = mx,n − my,n + G(mx,n) + Sx,n(1 + a − 3mx,n) − β

2

�
1 − Erf

�
d − mx,n�

2Sx,n

��

my,n+1 = my,n + �(mx,n − J )

Sx,n+1 = (1 − c)2Sx,n + Sy,n + σ 2 − 2(1 − c)Un + Sx,n

�
−3m2

x,n + 2(1 + a)mx,n − a
�2

− 2(1 − c)
�
3m2

x,nSx,n + 3S2
x,n − 2(1 + a)mx,nSx,n + aSx,n

�
+ 2(3Sx,nUn + 3m2

x,nUn − 2(1 + a)mx,nUn)

− 2β[(1 + a)(mx,n + d) − a − 3dmx,n]

�
Sx,n

2π
exp

�
− (d − mx,n)2

2Sx,n

�
− 2β(1 − c)

�
Sx,n

2π
exp

�
− (d − mx,n)2

2Sx,n

�

+ S2
x,n

�
36m2

x,n − 24(1 + a)mx,n + 2(1 + a)2 + 6a
�
+ 15S3

x,n

Sy,n+1 = Sy,n + �2Sx,n + 2�Un

Un+1 = Un − (a + c + �)Un + �(1 − c − a)Sx,n − Sy,n − (Un + �Sx,n)[3Sx,n + 3m2
x,n − 2(1 + a)mx,n]

−β�

�
Sx,n

2π
exp

�
− (d − mx,n)2

2Sx,n

�
. (10)

IV. ANALYSIS OF STABILITY AND BIFURCATIONS

In this section, our goal is to demonstrate the qualitative
and quantitative analogies between the dynamics of the exact
system and the MF model. To this end, we first examine the
succession of macroscopic regimes in the J -β parameter plane
for σ fixed at an intermediate value σ = 0.002, see Fig. 3. As
in case of a single unit, changing J is relevant for the system’s
excitability, viz. the transitions from silent to active regimes,
while β influences the wave forms of the active states (spiking,
bursting, or mixed spike-bursting activity). The assembly is
found to exhibit the collective modes which qualitatively
correspond to the dynamics of a single unit illustrated in plates

FIG. 3. Heat maps in (a) and (b) show the dependencies A(J,β)
and T (J,β) obtained by stochastic averaging for a network of N =
100 neurons, respectively. Panels (c) and (d) illustrate the analogous
results for the MF model. The noise intensity in all instances is
σ = 0.001.

III and VI of Fig. 1. The heat maps in the left column of Fig. 3
provide a comparison between the oscillation amplitudes A of
the global variable X (top row) and the MF variable mx (bottom
row) for the given (J,β). The right column indicates how well
are matched the average interspike interval (or the average
bursting cycle) T of the exact system with the corresponding
characteristics of the dynamics of the MF model (A1). In
the given instances, exact system comprises an assembly of
N = 100 neurons, having obtained A by averaging over a

FIG. 4. Macroscopic excitability feature. In (a) and (b) are shown
the maximum values of X and mx reached within the time series of
the exact and the MF system, starting from the analogous initial
conditions (X0,Y0) and (mx,0,my,0), respectively. The parameters are
J = 0.02,β = 0.4. (c) Illustrates the case where a strong-enough
perturbation elicits a single-spike response (J = 0.02,β = 0.4),
whereas (d) corresponds to a bursting response made up of three
spikes (J = 0.02,β = 0.15). In both instances, the time series of the
MF model (dotted line) is indistinguishable from that of the exact
system (dashed line).
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FIG. 5. (a) A family of R(J ) curves over β for a network of size N = 100 under fixed σ = 0.001. Superimposed are the results for the MF
model, whereby the symbols ×, + , ∗ ,� correspond to cases β = 0, 0.2, 0.3, and 0.4, respectively. Panels (b) and (c) illustrate the X series
associated to the spiking and the bursting collective modes. The considered network is made up of N = 100 neurons, with the parameters
set to J = 0.06, β = 0.4, σ = 0.001 in (b), and J = 0.08, β = 0.2, σ = 0.001 in (c). In (d) and (e) are provided the mx series obtained for
parameters from (b) and (c).

sufficiently long time series, whereas T is determined by
taking average over an ensemble of 20 different stochastic
realizations. With regard to T , we have selected a convenient
threshold θ = 0.2, which allows a clear detection of individual
spikes and enables one to unambiguously discern the initiation
stage of bursts, as required for calculating the length of the
bursting cycle.

Let us begin the analysis by focusing on the domain of J

values where the exact system exhibits the stochastically stable
equilibrium, while the MF model has a stable stationary state.
The stochastic stability physically implies that fluctuations
around the deterministic fixed point are typically of the
order of noise, though some rare spikes may still be evoked.
For J sufficiently close to the region admitting the sub-
threshold oscillations, the population manifests macroscopic
excitability. The term “macroscopic” here refers to a form
of emergent assembly behavior rather than the characteristic
spatial scale. To properly illustrate this feature, we have
analyzed the assembly dynamics in the limit σ = 0, cf. Fig. 4.
In particular, Figs. 4(a) and 4(b) show the maximum X and
mx values reached in the corresponding time series obtained
for sets of different initial conditions (X0,Y0) and (mx,0,my,0),
respectively. The comparison between the two plots clearly
corroborates that the boundary defining the domain of spiking
response is appropriately anticipated by the MF model. An
important remark is that for the given J , the assembly may
exhibit different forms of macroscopic excitability, generating
a single spike or a burst of spikes, as dependent on the value
of β. This is demonstrated by the time series in Figs. 4(c)
and 4(d). The former refers to a one-spike response in case
of β = 0.4. For smaller β, one observes responses comprising
two or more closely packed spikes, with Fig. 4(d) illustrating
a three-spike burst encountered for β = 0.25. Note that the
time series of the full system and the MF model are exactly
matched in the limit σ = 0.

Next we address the noise-influenced transitions from
silence to active regimes observed under increasing J . To
do so, in Fig. 5(a) we have plotted the change of the firing
(spiking or bursting) frequency R for an assembly consisting
of N = 100 neurons. The average frequency is determined by
considering an ensemble of 20 different stochastic realizations,
having σ fixed to the moderate value from Fig. 4. The results
from simulations of the full system (2) are compared against

the data obtained for the MF model. In this context, two points
should be stressed. First, for moderate σ , note that the firing
frequencies of the MF model lie in close agreement to those
of the exact system. As a second point, one finds that such
quantitative agreement extends to different forms of collective
behavior, viz. it holds for different types of transitions from
silent to active regimes. As already indicated, the wave forms
pertaining to the active states depend on β, such that the asso-
ciated transitions are mediated by the distinct synchronization
processes. For instance, at β = 0, synchronization involves
time series of single units that conform to spiking activity
of type III from Fig. 1, which are quite resilient to impact of
noise. On the other hand, for β = 0.3 or β = 0.4, the individual
units exhibit chaotic bursting or spiking activity, respectively,
such that the underlying synchronization process may be more
susceptible to stochastic effects. The typical X time series
illustrating the different collective modes are compared to the
corresponding mx series in Figs. 5(b)–5(e). The top (bottom)
row concerns the data for the exact system (MF model).

FIG. 6. Family of R(J ) curves over σ obtained for a network
of N = 100 neurons under fixed β = 0.2. The different symbols
correspond to cases σ = 0.001 (squares), σ = 0.01 (circles), σ =
0.02 (triangles), and σ = 0.05 (diamonds). The crosses connected
by the dashed line highlight the R(J ) curve for the MF model at
σ = 0.001.
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FIG. 7. Noise-induced phenomena within the J interval in vicinity of the deterministic threshold. X series in (a) shows the noise-induced
spike-bursting activity on top of subthreshold oscillations (J = 0.047, β = 0.2, σ = 0.02). (b) Illustrates the “skipping” phenomenon where
the stochastic effects occasionally suppress the large-amplitude oscillations of the X variable (J = 0.058, β = 0.2, σ = 0.01). In (c) and (d)
are provided the mx series corresponding to parameter sets from (a) and (b), respectively.

In order to investigate more closely the influence of noise
for J interval in vicinity of the transition from silence to
active regimes, we examine how the profiles of R(J ) curves
change under increasing σ . The results shown in Fig. 6 refer
to β = 0.2 and a population comprised of N = 100 neurons.
As expected, the transition appears quite sharp for moderate
noise σ = 0.001 but is considerably flattened for larger σ , e.g.,
σ = 0.05. The crosses indicate the firing frequencies predicted
by the MF model for σ = 0.001.

For larger σ , the MF model fails to reproduce the behavior
of the exact system in vicinity of threshold J , in the sense
that it overestimates the maximal R value, as well as the
actual critical J characterizing the transition. Viewed from
another angle, one may infer that for sufficiently large σ and J

below the threshold given by the MF model, the latter fails
to capture the impact of synchronization processes taking
place between the noise-induced oscillations of individual
units. This especially refers to J interval where the spikes
or bursts (depending on the given β) are superimposed on
the background of subthreshold oscillations. An example of
such a discrepancy between the behavior of the exact and
the effective system is provided in Fig. 7, cf. Fig. 7(a)
and Fig. 7(c). Also, for strong σ and J values above the
transition, the firing frequencies anticipated by the effective
model are typically higher than those of the exact system (not
shown). Within this region, the stochastic effects suppress
synchronization between the chaotic oscillations of single
neurons, thereby reducing the corresponding R value. This
is not accounted for with sufficient accuracy by the MF
system. Note that such suppression of synchronization is
reflected in the corresponding X series by the spike (burst)
“skipping” mechanism, where the large-amplitude oscillations
are occasionally replaced with subthreshold oscillations. For
the associated J and σ values, such a phenomenon is absent in
the dynamics of the effective model, cf. Fig. 7(b) and Fig. 7(d).
In both of the scenarios illustrated in Fig. 7, the reason for the
failure of MF model is that the Gaussian approximation breaks
down due to large stochastic fluctuations.

The fashion in which the validity of the effective model’s
predictions deteriorates with increasing σ is made more
explicit in Fig. 8, which shows the A(J,σ ) and T (J,σ )
dependencies for the exact and the approximate system at

fixed β = 0.4. The considered size of the network is N = 100.
Comparison between the respective A (left column) and T

plots (right column) suggests that the range of σ values where
the MF approximation applies is contingent on J . For instance,
in the J region below the deterministic threshold, one may
estimate this range by noting that the effective bifurcation
diagram in Fig. 8(a) indicates that noise-induced macroscopic
oscillations emerge for σ ≈ 0.003. Since this point is not
adequately represented by the effective model, cf. Fig. 8(c),
one may state that the Gaussian approximation breaks down
around σ ≈ 0.003 within the given J region. Nevertheless, for
J above the deterministic threshold, the validity of the MF
model appears to depend rather strongly on particular J , with
the σ values where the Gaussian approximation effectively
fails spanning the range σ ∈ (0.002,0.006).

FIG. 8. Panels (a) and (b), respectively, refer to A(J,σ ) and
T (J,σ ) dependencies for the network of N = 100 neurons under
fixed β = 0.4. The results in (a) are obtained by averaging over a
sufficiently long time series, whereas data in (b) derive from averaging
over an ensemble of 20 different stochastic realizations. In (c) and
(d) are provided the A(J,σ ) and T (J,σ ) dependencies determined by
numerical simulations of the MF model.
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FIG. 9. R(J ) dependencies for increasing N under fixed (β,σ ) =
(0.2,0.05). The squares, circles, and diamonds correspond to cases
N = 100, N = 500, and N = 1500, respectively. The results pre-
dicted by the MF model are indicated by crosses connected via dashed
line.

So far, we have investigated the impact of noise by
comparing the results for the network of size N = 100 to
those obtained for the effective system. Nevertheless, within
Sec. III, it has already been emphasized that the MF model,
deterministic in character, refers to the system’s behavior
in the thermodynamic limit N → ∞, whereas the explicitly
stochastic terms could only be incorporated as finite-size
effects. This makes it relevant to examine how the behavior
of the exact system within the J domain around deterministic
threshold changes for large and fixed σ under increasing N . To
this end, we have plotted in Fig. 9 the R(J ) curves calculated
for N = 100 (squares), N = 500 (circles), and N = 1500
(diamonds) at fixed β = 0.2,σ = 0.05. The curve for N = 100
evinces that the given σ value is quite large in a sense of being
sufficient to induce collective oscillations within the excitable
regime. Apart from the dependencies for the full system, we
also show the R(J ) curve associated to the MF model (dashed
line with crosses). An interesting point regarding the latter is
that the J threshold for the emergence of the collective mode
is shifted toward a larger value compared to the case σ ≈ 0.01.
While the given transition itself appears quite sharp, the curves
corresponding to the exact system approach it with increasing
N , both in terms of the J threshold and the R values above the
transition. This corroborates that the (J,σ ) domain where the
Gaussian approximation behind the MF model fails expectedly
reduces with the increasing system size.

V. RESPONSE TO EXTERNAL STIMULI

The aim of this section is to investigate the extent to which
the MF model can be used to predict the stimulus-response
relationship of an assembly exhibiting different macroscopic
regimes, including the excitable state, as well as the spiking
and bursting collective modes. Let us first focus on the two
latter instances and examine the sensitivity of a population to
an external pulse perturbation within the framework of phase
resetting theory [61–64]. In order to compare the behavior
of the exact system and the effective model, we determine

FIG. 10. Assembly phase resetting. Panels (a) and (b) show the
PRCs for a population in spiking regime (J = 0.055, β = 0) under
excitatory (a = 0.008) and inhibitory stimulation (a = −0.008),
respectively. Results for the exact system (N = 500) are indicated
by the solid line, whereas the data for the MF model are denoted
by circles. The bottom row illustrates the PRCs for an assembly
exhibiting macroscopic bursting (J = 0.06, β = 0.1), whereby (c)
describes the effect of an excitatory (a = 0.01) and (d) of an inhibitory
pulse perturbation (a = −0.01). The insets in (a) and (c) demonstrate
how the phases are assigned to the points within the spiking and
bursting cycles, respectively. Phase is expressed in units of π .

the corresponding PRCs, which describe the phase shift 
φ,
induced by the perturbation, in terms of the phase φp when the
perturbation is applied. The considered stimulus has a form
of a short pulse current Ip = apH (n − ni)H (n − nf ), whose
magnitude ap and width 
 = ni − nf are small compared to
the amplitude and duration of the spiking (or bursting) cycle T0,
respectively. In case of the exact system, the same pulse current
is delivered to each neuron i, adding the term Ip to xi dynamics,
whereas in the effective model, stimulation is administered via
the mx variable. The phase ϕp is defined in reference to T0 by
ϕp = np/T0. The associated phase difference following the
reset is calculated as 
ϕ = 1 − T1/T0, where T1 denotes the
duration of the perturbed spiking or bursting cycle.

The PRCs characterizing the assembly response in the
spiking regime are provided in Fig. 10(a) and Fig. 10(b),
whereby the former is obtained under the action of an excita-
tory (ap > 0), and the latter under the influence of inhibitory
stimulation (ap < 0). We stress that, in both instances, the
results derived from the effective model, denoted by circles,
show excellent agreement with the data for the exact system
(solid lines). In qualitative terms, one observes that excitatory
stimulation may advance the phase of the spiking cycle if
it arrives sufficiently close to the spike but still before the
sharp rising stage. However, an excitatory perturbation acting
during the spike or within the effective refractory period has
a suppression effect, reflected in delaying of the next spike.
In contrast to excitatory stimulation, the inhibitory pulse
postpones the next firing time if it is introduced within the
interval close to the rising stage of spike.
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FIG. 11. Stimulus-response relationship in the excitable regime (J = 0.02). The top (middle) row refers to the response of the full system
(MF model), whereas the bottom row shows the profile of the external stimulation. In panels (a)–(c), the system parameters are β = 0.4, σ = 0,
while the perturbation is characterized by ap = 0.4,
 = 200. Panels (d)–(f) concern the response of an assembly (β = 0.1, σ = 0.001)
subjected to a rectangular pulse ap = 0.4, 
 = 200. Panels (g)–(i) illustrate the response of a population (β = 0.4, σ = 0.001) influenced by
the external stimulation ap = 0.1,
 = 50. The considered network is of size N = 500.

The PRCs determined for an assembly exhibiting collec-
tive bursting show qualitatively analogous effects to those
described so far, see Fig. 10(c) and Fig. 10(d). This especially
refers to impact of perturbation delivered sufficiently close to
a moment of burst initiation. An apparent difference compared
to Fig. 10(a) and Fig. 10(b) emerges during the bursting stage
itself, where the associated PRCs expectedly exhibit strong
fluctuations. Apart from that, one finds an interesting effect
that both the excitatory and the inhibitory stimulation have
a facilitatory role, i.e., cause phase advancement during the
relaxation stage of the bursting cycle.

For a population in the excitable state, we consider
scenarios where the system is influenced by a rectangular pulse
perturbation of finite magnitude and duration, in a sense that
the latter are comparable to corresponding features of typical
spiking or bursting cycles. Note that the selected J value
J = 0.02 lies sufficiently away from the interval admitting the
subthreshold oscillations. Again, our objective is to determine
whether the MF model correctly anticipates the response of the
exact system, now in the presence of small to moderate noise.
Some of the illustrative examples concerning the stimulus-
response relationship under the finite perturbation are provided
in Fig. 11. The top and the middle rows refer to X and
corresponding mx time series, respectively, while the bottom
row shows the profile of the applied stimulus. We find that in
the absence of noise or for sufficiently small σ , the effective
model reproduces the evoked behavior of the full system quite
accurately. This also refers to some highly complex forms of
responses, as corroborated in Figs. 11(a)–11(c), which concern
relatively large ap and 
. Under increasing σ , the ability of
the MF model to predict the dynamics of the exact system
gradually reduces but in a fashion that involves a nontrivial
dependence on β. In particular, for smaller β ≈ 0.1, which
would facilitate macroscopic spiking mode for supercritical
J , it turns out that the dynamics of the MF model lies in close
agreement to the one of the exact system even for moderate
noise σ = 0.001, cf. Figs. 11(d)–11(f). However, for higher
β, such an analogy between the responses of the exact and
the MF system is lost, see Figs. 11(g)–11(i). Naturally, the
validity of the predictions given by the MF model deteriorates
if the stimulation amplitude ap and the duration 
 are large,
especially in the presence of non-negligible noise.

VI. SUMMARY AND DISCUSSION

We have developed an MF approach in order to system-
atically analyze the emergent dynamics and the input-output
relationship of a population of stochastic map neurons. The
reduced low-dimensional model has been derived within the
framework of Gaussian approximation, formally introduced
in a form of a closure hypothesis. In physical terms, such
an approximation suggests that the local variables at an
arbitrary moment of time are independent and conform to
a normal distribution centered about the assembly mean and
characterized by the associated assembly variance. Validity of
such an approximation cannot be established a priori, but has
been systematically verified by numerically corroborating that
the MF model reproduces the behavior of the exact system
with sufficient accuracy.

In particular, we have first demonstrated that the effective
model can qualitatively capture all the bifurcations of the exact
system leading to the onset of different generic regimes of
collective behavior. As far as the quantitative agreement is
concerned, we have established substantial matching between
the parameter domains admitting the respective dynamical
regimes for the exact and the approximate system. More-
over, the typical features of the associated regimes, such
as the average interspike interval or the average bursting
cycle, exhibit analogous changes with parameter variation
and in many parameter domains display numerically similar
values.

An important issue has been to explicitly examine how
the effects of noise are reflected in the behavior of the MF
model. For the noise-perturbed activity, where the sufficiently
small noise weakly influences the deterministic attractors of
the system, the obtained results indicate that the Gaussian ap-
proximation holds. Nevertheless, the physical picture changes
in case of noise-induced collective behavior. In particular,
for different scenarios of stochastic bifurcations, typically
corresponding to transitions from subthreshold oscillations,
which involve generalized excitability feature, to spiking
or bursting regimes, the exact system undergoes a gradual
(smooth) change of collective dynamics, whereas the MF
model exhibits a standard deterministic bifurcation with a
sharp bifurcation threshold. In such instances, the collective
variables of exact system manifest large fluctuations, which
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explicitly violate the Gaussian approximation behind the
effective model. Note that the loss of Gaussianity property for
asymptotic distribution of relevant variables, which accompa-
nies the described stochastic bifurcations, does not imply per
se that our Gaussian approximation fails in the supercritical
state. This point is evinced by the fact that the dynamics
of the effective model shows qualitatively and quantitatively
similar features to those of the exact system if the considered
parameters lie sufficiently above the stochastic bifurcation. In
fact, the Gaussian approximation applied in the derivation of
the MF model breaks down only in vicinity of such transitions,
where the finite-size effects neglected in Eq. (A1) become
most prominent. We have numerically verified the prevalence
of finite-size effects in these parameter domains, showing that
the change of the appropriate order parameter, such as the
spiking frequency, becomes sharper as the size of the neural
assembly is increased. Nevertheless, the validity of Gaussian
approximation is regained once the system is sufficiently above
the bifurcation.

Apart from considering asymptotic dynamics, we have
verified that the MF model is capable of capturing the
stimulus-response features of the exact system. For short
pulse-like perturbations, it has been found that the approximate
system reproduces the PRCs of the exact system for both the
spiking and bursting regimes of collective activity with high

accuracy. Substantial analogies have also been observed in
case of macroscopic excitable regime for scenarios where the
assembly is stimulated by rectangular pulse perturbations of
finite amplitude and duration.

Having developed a viable MF approach, the present
research has set the stage for a more systematic exploration
of collective dynamics of assemblies of map neurons by
analytical means. We believe that the introduced techniques
can be successfully applied for treating the emergent behavior
of populations in case of chemically and delay-coupled
neurons [41]. Moreover, the method may likely be used to
explore the effects of parameter inhomogeneity, as well as to
study the impact of complex network topologies [41,43]. Our
ultimate goal will be to extend the MF approach to account
for collective behavior of interacting populations of map
neurons [41,42].
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APPENDIX

In the following, we provide the remaining details concerning the calculation of the Sx dynamics, which is the most complex
part of the derivation of the effective model. Following some algebra, Eq. (9) can be transformed to

Sx,n+1 = (1 − c)2Sx,n + Sy,n + σ 2 − 2(1 − c)Un + (�G(xi,n)2� − �G(xi,n)�2)� �� �
Var(G(xi,n))

+2(1 − c)(�xi,nG(xi,n)� − mx,n�G(xi,n)�)

− 2(�yi,nG(xi,n)� − my,n�G(xi,n)�) − 2β(1 − c)[�xi,nH (xi,n−d)� − mx,n�H (xi,n−d)�] − 2β(�G(xi,n)H (xi,n − d)�
− �G(xi,n)��H (xi,n − d)�) + β2 (�H (xi,n − d)2� − �H (xi,n − d)�2)� �� �

Var(H (xi,n−d)))

. (A1)

The partial results required for completing the calculation are given by

�xiG(xi)� − mx�G(xi)� = G�(mx)Sx − 3S2
x

(A2)
�yiG(xi)� − my�G(xi)� = −3SxUxy − 3m2

xUxy + 2(1 + a)mxUxy,

where G�(mx) ≡ −3m2
x + 2(1 + a)mx − a. Note that the time indexes have been omitted for simplicity. After some tedious

work, it may also be shown that the expression for variance Var(G(xi)) reads

Var(G(xi)) = G�2(mx)Sx + S2
x

�
36m2

x − 24(1 + a)mx + 2(1 + a)2 + 6a
�
+ 15S3

x . (A3)

Let us now explicitly calculate the terms containing the threshold function. First, we have

−2β(1 − c)[�xiH (xi − d)� − �xi��H (xi − d)�]

= −2β(1 − c)

��
dx1dx2...dxN

1

N

�

i

xiH (xi − d)p(x1,...,xN ) − mx

�
dx1dx2...dxN

1

N

�

i

H (xi − d)p(x1,...,xN )

�
= ...

= −2β(1 − c)

��
dx1(x1 − mx)H (x1 − d)p(x1)

�
= −2β(1 − c)

�
Sx

2π
exp

�
− (d − mx)2

2Sx

�
. (A4)

Note that the second term containing the threshold function has been evaluated in the main text, cf. Eq. (10).
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Finally, let us address the term β2Var[H (xi − d)], which can be estimated by considering the associated expectation
β2Var[H (xi − d)] ≈ β2[�H (xi − d)2� − �H (xi − d)�2]. Applying the technique introduced in Sec. III, we obtain

E[β2H (xi − d)2] = β2
�

dx1

�
dx2...

�
dxN

�
1

N2

�

i

�

j

H (xi − d)H (xj − d)

�
p(x1,x2,...,xN )

= β2

N2
N

�
dx1H (x1 − d)p(x1)

� �� �
N cases where i=j

+ β2

N2
N (N − 1)

�
dx1

�
dx2H (x1 − d)H (x2 − d)p(x1)p(x2)

� �� �
N(N−1) cases where i �=j

= β2

2N

�
1 − Erf

�
d − mx√

2Sx

��
+ β2

4N2
N (N − 1)

�
1 − Erf

�
d − mx√

2Sx

��2

. (A5)

Given that β2�H (xi − d)�2 = β2

4 [1 − Erf( d−mx√
2Sx

)]
2
, one arrives at

β2Var[H (xi − d)] = β2

4N

�
1 − Erf

�
d − mx√

2Sx

���
1 + Erf

�
d − mx√

2Sx

��
. (A6)

This shows that the variance of the threshold function ultimately contributes to a finite-size effect which can be neglected in the
thermodynamic limit.
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4 Complexity Science Hub - Josefstädterstraße 39, A-1080 Vienna, Austria

received 31 January 2018; accepted 13 February 2018
published online 28 February 2018

PACS 89.75.Fb – Structures and organization in complex systems
PACS 89.75.Hc – Networks and genealogical trees

Abstract – We analyze the ordering efficiency and the structure of disordered configurations for
the zero-temperature Glauber model on Watts-Strogatz networks obtained by rewiring 2D regular
square lattices. In the small-world regime, the dynamics fails to reach the ordered state in the
thermodynamic limit. Due to the interplay of the perturbed regular topology and the energy
neutral stochastic state transitions, the stationary state consists of two intertwined domains,
manifested as multiclustered states on the original lattice. Moreover, for intermediate rewiring
probabilities, one finds an additional source of disorder due to the low connectivity degree, which
gives rise to small isolated droplets of spins. We also examine the ordering process in paradigmatic
two-layer networks with heterogeneous rewiring probabilities. Comparing the cases of a multiplex
network and the corresponding network with random inter-layer connectivity, we demonstrate
that the character of the final state qualitatively depends on the type of inter-layer connections.

Copyright c� EPLA, 2018

The interplay of local dynamics and the underlying net-
work topology has been in the focus of research in physics
and various interdisciplinary fields [1–3], having recently
attracted considerable interest in the context of phase or-
dering processes [4–6]. The Ising-Glauber model [7] consti-
tutes one of the paradigmatic models for analyzing such
processes [8]. While it has been introduced to describe
the nonequilibrium dynamical behavior of magnetic sys-
tems consisting of a large number of interacting particles,
it has since been applied to a variety of other problems,
including those in social sciences [9], geology [10], and
electrochemistry [11].

Within the Glauber model, the spin variables can as-
sume two discrete values, having the states of nodes evolve
according to the local majority rule. The Glauber model
was initially defined on a regular lattice [7]. Neverthe-
less, given that non-lattice topologies including random,
scale-free [12] and small-world [13] networks are often
better suited to describe real-world systems, the issue of
Glauber dynamics on complex networks has been gaining

increasing attention [8,14–16]. Apart from such models,
complexity of interactions in many real-world systems may
also involve “networks of networks” featuring modular or
multilayer architecture [17], the scenarios which have been
much less explored in the framework of Glauber dynamics.

Our work addresses two problems of ordering in complex
networks: i) the disordered states of the zero-temperature
Glauber model on monolayer rewired networks, where we
identify two types of disordered configurations, and ii) the
ordering process on two-layer rewired networks, where we
find that the ordering process is strongly affected by the
type of inter-layer connections.

In case of the two-dimensional square lattice, when only
interactions between four nearest neighbors are taken into
account, see fig. 1(a), the zero-temperature Glauber dy-
namics is multistable [18]. In particular, the system ei-
ther reaches the ground state for ≈2/3 of all the process
realizations, or ends up in the frozen striped state with
probability pf ≈ 1/3. Concerning rewired square lattices
with coordination number �k� = 4, it has been shown that
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a) b)

c) d)

Fig. 1: (Color online) Considered network topologies.
Panel (a) shows the scenario of a monolayer network with
nearest-neighbor interactions (k = 4), whereas panel (b) shows
the case where the next-nearest neighbor interactions are also
included (k = 8). Panel (c) shows results for the multiplex
two-layer network, whereas panel (d) shows results when there
is random connectivity between the two layers.

the dynamics fails to reach the ground state [15,19], but
little is known about the nature of the associated disor-
dered configurations.

Our immediate goals are to understand why the Glauber
model on small-world networks fails to reach ground state
and to gain insight into the character of the disordered
states on rewired networks with �k� = 4 and �k� = 8.
We also study the ordering process on two-layer rewired
networks with �k� = 4, comparing the effects of different
types of inter-layer connectivity, including multiplexing,
see fig. 1(c), and the scenario with connections distributed
between randomly selected pairs of nodes, cf. fig. 1(d).

Model. – In the Glauber model, the interactions are
usually confined (but not necessarily restricted) to nearest-
neighboring units. Incorporating higher-order competing
(frustrated) interactions is one of the classical scenarios for
the onset of new phases and potentially new types of phase
transitions lying outside of Ising universality class. While
the ferromagnetic interactions imposed by the model favor
parallel alignment of spins, thermal noise prevents the sys-
tem from reaching the ground state at any nonzero value
of temperature. To avoid such stochastic effects which
prevent full ordering, we consider systems quenched from
an infinitely high temperature to absolute zero, in which
spin states are initially uncorrelated and the net magne-
tization is vanishing. The Hamiltonian of the system is
given by H = −

�
�ij� JijSiSj where Si = ±1 are Ising

spin variables, the sum �ij� is over pairs of neighbors, and
Jij > 0 are ferromagnetic coupling constants, assumed to
be uniform in our paper (Jij = J). Each pair of parallel
neighboring spins contributes −J to the energy, while the
contribution of antiparallel pairs is +J . Without loss of
generality, we set J = 1 in the present study.

The state of the system evolves according to the major-
ity rule applied to spins sequentially selected at random
in each time step. This dynamical rule allows only energy

lowering or the energy neutral state transitions. The for-
mer correspond to events where the spin variable is up-
dated to the state prevalent in its local neighborhood,
while the latter conform to scenario without a local ma-
jority, such that the given spin evolves stochastically with
both orientations being equally likely.

Watts and Strogatz [13] have introduced an algorithm
for generating small-world and random graphs by gradu-
ally rewiring a regular lattice. In their model, links from
the regular lattice are chosen at random and replaced with
new ones until a desired fraction of links p is rewired.
Rewiring effectively introduces shortcuts between distant
nodes, thereby drastically reducing the mean shortest path
even in the limit p → 0. By increasing the amount of dis-
order (p → 1) one obtains a random network with the
mean connectivity conserved. Small-world networks are
generated by introducing an intermediate level of disorder
(0 < p ≪ 1), and are characterized by the high clustering
coefficient and the short average path length. The for-
mer implies that neighboring nodes tend to group in well
connected clusters, whereas the latter means that an ar-
bitrary distant node can be reached by a small number of
intermediate links.

We simulate Glauber dynamics of Ising spins on
Watts-Strogatz rewired networks generated from two-
dimensional regular L×L lattices with periodic boundary
conditions. To understand the interplay between topolog-
ical effects and the local majority dynamical rule, we vary
several parameters in addition to L and the rewiring prob-
ability p, including the mean connectivity degree �k� and
the initial magnetization m0. As an additional ingredient,
we also examine how the ordering process is affected by
whether the Glauber dynamical rule allows for stochastic
flipping or not. We refer to the rule without stochastic
flipping as the modified Glauber rule.

To distinguish the influence of rewiring itself from the ef-
fect of connectivity of the network, we compare the results
of simulations on networks with �k� = 4 and �k� = 8 in the
small-world regime. We regard the next nearest neighbors
as first neighbors in the topological sense by setting all in-
teractions to be of equal strength. Assigning a finite value
to the initial magnetization m0 �= 0 can be understood as
introducing an initial bias toward local state clustering in
the network. Modifying the Glauber dynamical rule by
allowing state transitions only in the case of a strong lo-
cal majority allows us to understand the effect of energy
neutral processes on ordering in disordered topologies. In
this scenario, nodes with an equal number of neighbors in
both states are ignored when encountered during a trial
rather than having their state determined stochastically.
It turns out that the ground state is always reached on reg-
ular square lattices when a strong majority is necessary for
state transition, i.e., the striped state turns out to be the
consequence of energy neutral stochastic flips.

To gain a more comprehensive insight into structure
of the disordered configurations, we make a distinction
between the domains comprised of topologically connected
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nodes in the same state, and the clusters with respect to
positions of the nodes on the original regular lattice. The
lattice and the graph neighborhoods are always identical
for spins placed on regular lattices. However, as the
lattice structure is modified such that the links between
neighbors are replaced by links to distant nodes, the
lattice and the topological neighbors may not necessarily
coincide, which results in rich patterns on the lattice.
In order to investigate the crossover from frozen striped
configurations occurring in regular lattices to disordered
states occurring in the rewired lattices, we compare
the correlation length ξ to characteristic graph length
measures, namely the radius R, diameter D and the
mean shortest path �s�. The correlation length is defined
as the decay rate of the two-point correlation function
G(l) = �SiSj�−�Si��Sj� which measures the correlation of
states as a function of the Manhattan distance l between
the nodes. Note that ξ characterizes the competition
between topology and dynamics on the state of distant
nodes, while R, D and �s� are purely topological measures.

We also address the issue of how connecting two net-
works of the same size with different rewiring probabili-
ties affects the ordering process. To do so, we compare
the results obtained for the two-layer multiplex network
(N bonds connecting nodes of two layers in one-to-one
fashion) with the results for the case where the same num-
ber of inter-layer connections is distributed between ran-
domly chosen pairs of nodes.

The main quantity of interest is the fraction of config-
urations that have not reached the ground state (“active
configurations”) fa after a given simulation time T as a
function of p. The absolute value of net magnetization |m|
is an order parameter for individual systems: |m| = 1 cor-
responds to the ground case, whereas |m| = 0 corresponds
to the case in which there is an equal number of spins in
both states. Thus, we measure the dependence of the final
value of the magnetization |mf | in disordered configura-
tions on p. However, |mf | contains no information about
clustering in the network.

We simulate the dynamics on networks consisting of
50 × 50, 80 × 80 and 150 × 150 nodes for fixed values of
N , �k�, p and m0. The total number of trials in each
particular case is set to 1000. In summary, our numerical
algorithm consists of the following steps:

I) Regular network initialization. Construct lattices
with k = 4 or k = 8 as in fig. 1.

II) Rewiring. Following the method described in [15],
our rewiring process ensures that there are no self-
loops or multiple links between pairs of nodes, and
that the minimal connectivity degree is 2. Bonds
are sequentially selected at random and rewired with
probability p until a desired fraction p of the total
number of bonds is rewired.

III) Spin state initialization. The initial state is set by
randomly putting each of the N spins into one of the

possible states. If the initial magnetization is m0, the
state of each spin is set to +1 with the probability
pspin = 1+m0

2
and to −1 with probability 1 − pspin.

IV) Glauber dynamics. The evolution of the system
is governed by the original or the modified (non-
stochastic) Glauber dynamical rule, proceeding either
until it reaches the ground state or until it fails to do
so after a predetermined number of steps. We choose
this value to be T = 5000N (5000 attempted spin
flips per node).

In what follows, we first analyze the case of a monolayer
Watts-Strogatz network, and then consider the ordering
process in paradigmatic two-layer networks with two types
of inter-layer connections.

Monolayer networks. – Figure 2(a) shows how the
fraction of active configurations fa depends on p for Watts-
Strogatz networks with local Glauber dynamics following
a zero-temperature quench (m0 = 0). The nonlinear de-
pendence of fa on p is observed regardless of �k�, but turns
out to be qualitatively different for the cases �k� = 4
and �k� = 8. When �k� = 8, with increasing random-
ness (p � 0.5), the dynamics leads to almost complete
ordering. Nevertheless, when �k� = 4, a finite fraction of
configurations fails to reach the ground state in the ther-
modynamic limit over the whole range of p values. In
the small-world regime, however, the ground state is not
reached in the thermodynamic limit in either case. The re-
sult that ordering cannot be attained in small worlds when
state transitions are governed by Glauber dynamics has
been previously demonstrated for rewired rings (d = 1)
and rewired square lattices (d = 2) with �k� = 4 [15,19].

One infers that the local neighborhood majority rule
with stochastic spin flips cannot lead to an ordered state
on graphs with a perturbed regular topology. While the
neighborhood from the regular lattice is mostly conserved
in the small-world limit, R, D and �s� on the other hand
monotonically decrease with p due to the presence of short-
cuts (see fig. 3). Thus, it follows that perturbing the local
neighborhood essentially leads to dynamical frustration of
the local majority rule. A very small amount of topological
disorder is sufficient to induce the critical slowing-down of
dynamics, causing the disordered states to appear as de-
formed stripes on the lattice. Further deformation of the
stripes leads to multiclustering on the lattice, which is re-
flected in the crossover effect [20]. We have established
that this effect corresponds to the drop of ξ below the
topological distances. At the same time, the low value of
ξ indicates the absence of long-range ferromagnetic order.
The two-point correlation function is found to satisfy an

exponential scaling law G(l) ∝ e− l
ξ over the whole range

of p. Furthermore, depending on the p value, both ξ and
R, D and �s� exhibit different scaling regimes.

In particular, in the small-world regime, R, D, �s� and
ξ exhibit a power law dependence on p, r ∝ p−a with
r ∈ {R, D, �s�, ξ} and a ∈ {aR, aD, a�s�, aξ}. For 80 × 80
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Fig. 2: (Color online) (a) Final fraction of active runs fa in terms of rewiring probability p for the standard Glauber rule with
m0 = 0. The results are provided for networks with �k� = 4 and �k� = 8 neighbors and L ∈ {50, 80, 150}. Note that complete
ordering is not observed in the small-world regime 0 < p ≪ 1 independent of �k�. (b) Impact of modified Glauber rule: for
�k� = 8, the system reaches complete ordering (hence only the curve corresponding to L = 150 is shown), whereas for �k� = 4, the
frustration effect emerges at intermediate p, becoming more pronounced with the network size. Panel (c) displays fa for systems
governed by the standard Glauber rule starting from initial conditions m0 �= 0. The influence of small worldliness is such that
it suppresses disorder regardless of �k� with increasing m0, while it still promotes disorder at intermediate p range for �k� = 4.
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Fig. 3: (Color online) Correlation length ξ compared to graph
distance measures (radius R, diameter D, and average path
length �s�) as functions of p. While ξ reflects the interplay
between the dynamics and the network structure, the remain-
ing quantities characterize purely topological features of the
network. Crossing of ξ(p) with other curves indicates the tran-
sition between the dynamics typical for the regular lattices and
that for the rewired networks. Note that all four quantities ex-
hibit a power law dependence r ∝ p−a in the p region approx-
imately coinciding with the small-world regime. The results
refer to networks with 80 × 80 nodes and �k� = 4.

networks, the following values for the exponent a are
found: aR = −0.259 ± 0.004, aD = −0.296 ± 0.005,
a�s� = −0.25 ± 0.003 and aξ = −0.77 ± 0.01. For larger
values of p, the topological measures do not change signifi-
cantly with increasing p indicating that topological effects
remain the same after ≈0.5. Nevertheless, ξ decays to
zero as p → 1, which implies that the dynamics is sensi-
tive to rewiring over the whole range of p, as corroborated
by the growing number of “clusters” of decreased sizes in
disordered configurations for large p, see fig. 4.

Interestingly, a deeper understanding of the difference
in ordering efficiency in terms of p may be gained by

considering fa for configurations governed by the modi-
fied Glauber rule. Evidently, the difficulty in attaining
order subsides when stochasticity is eliminated from the
dynamics in the small-world limit regardless of �k�, see
fig. 2(b). In other words, the ground state is reached with
probability one if energy-neutral state transitions are not
allowed. This always holds for �k� = 8, and also for net-
works with �k� = 4 in the limits p → 0 and p → 1. For
intermediate p, ordering remains suppressed to a certain
degree.

The next objective is to demonstrate that varying initial
magnetization m0 allows one to interpolate between the
influences of dynamics and topology. Figure 2(c) shows
fa as a function of p for m0 �= 0 under the standard
Glauber rule. While initial bias towards local clustering
promotes complete ordering for regular networks, the dy-
namical outcome is different for rewired networks. In case
�k� = 8, small values of m0 �= 0 significantly increase
ordering, whereby the position of the peak of fa(p) coin-
cides with the peak value of fa(p) at m0 = 0. Perturbing
the quenched initial state on graphs in the small-world
regime increases the prevalence of the ground state. Nev-
ertheless, the peaks of fa(p) curves for �k� = 4 networks
in fig. 2(c) shift toward the peak value from fig. 2(b) as
m0 is increased. A fraction of configurations still fails to
reach the ground state for some values of p, even for high
values of m0. The shift demonstrates that as the number
of stochastic state transitions decreases due to the initial
bias in clustering, the dynamical frustration is reduced.
Nonetheless, the topological obstructions in networks with
low �k� can suppress ordering even for high values of m0.

Further insight on this issue can be gained by observ-
ing how |mf | averaged over active configurations depends
on p, see fig. 5. The initial increase in magnetization cor-
responds to the divergence of relaxation time in the limit
p → 0, i.e., the crossover from large-world to small-world
behavior. Expectedly, there is a qualitative difference in
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Fig. 4: (Color online) Snapshots of disordered configurations at T = Tf on the lattice. The top (bottom) row refers to networks
with �k� = 4 (�k� = 8). The rewiring probabilities are p = 0 in (a) and (g), p = 0.02 in (b) and (h), p = 0.1 in (c) and (i),
p = 0.3 in (d) and (j), p = 0.5 in (e) and (k), as well as p = 1 in (f) and (l). The stripe structure is gradually lost with
increasing p, giving way to the multiclustered states with respect to the original lattice. The number of domains increases with
p as the network topology substantially departs from the lattice one. In terms of the network structure, each of the disordered
configurations consists of two connected components. All the results are obtained for networks with 80 × 80 nodes.
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Fig. 5: (Color online) Final magnetization averaged over the
ensemble of disordered configurations |mf | in dependence of
p. For �k� = 8, one finds approximately equal numbers of
nodes in both states as p → 0. For �k� = 4, within the small-
world regime, |mf | is reduced compared to the regular lattice,
while for intermediate p, the droplet configurations lead to an
increase of |mf |. The peak of |mf |(p) gets shifted because the
fraction of active runs is higher at a wider range of p values for
larger networks, cf. fig. 2(a).

the |mf |(p) profile for different �k� under increasing p.
The curves for �k� = 8 monotonically decrease, indicating
that the small number of configurations that does survive
converges to a state consisting of a similar number of op-
posite spins in the limit p → 1. In contrast, the initial
decrease in |mf | for networks with �k� = 4 is followed
by the peak at intermediate values of p, associated to the
presence of droplet configurations with |mf | → 1.

Moreover, we have verified that the disordered config-
urations in the small-world regime consist of two inter-
twined topological spin domains of almost similar size with
stochastically fluctuating interfaces. An example of such
a two-component state for p = 0.1 is provided in fig. 6,
whereby the corresponding lattice domain configuration
is shown in fig. 4(c). Blinkers that arise as a result of the

a) b) c)

Fig. 6: (Color online) Example of a disordered configuration
obtained for the network of size 80 × 80, with �k� = 4 neigh-
bors on average and p = 0.1 rewired links. (a) refers to the full
configuration, whereas (b) and (c) show the larger component
(3637 nodes) and the smaller component (2763 nodes), respec-
tively. The final magnetization is |mf | ≈ 0.14. The nodes are
separated into two domains of similar size, forming a multi-
domain state on the lattice, cf. fig. 5(c).

long-range connections can be present along with stochas-
tic flipping of interfaces on the lattice. Increasing p corre-
sponds to the formation of domains with decreasing size
with respect to the lattice. Several examples of configura-
tions with two topological components for different p are
shown in fig. 4. The number of these domains counted on
the lattice grows exponentially with p (not shown). In the
random network limit, as the fraction of links belonging
to the original lattice 1 − p decreases, clusters become
indistinguishable when observed on the lattice. Topo-
logically, the two-domain configuration is reminiscent of
the disordered configurations of the voter model on small-
world networks [8,21]. Once the dynamics cannot cause
further decrease in energy, the interface length reaches a
constant value, as interface diffusion is no longer possi-
ble. In this scenario, while a fraction of nodes with even
connectivity degrees continues to flip indefinitely with
no energy cost, the states of the odd-degree nodes be-
come stationary.

Nevertheless, the disordered configurations associated
to the increase of fa in fig. 2(b) for �k� = 4 are
frozen at very high values of |mf |, viz. |mf | → 1 in
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Fig. 7: (Color online) (a) Ordering in two-layer multiplex networks: fa for the layer with rewiring probability p1 (see the legend)
in terms of the rewiring probability p2 of the other layer. For comparison, the results for the single (monolayer) network are
indicated by the dashed line. (b) fa of a single layer of a multiplex network as a function of p1 and p2. The states of two layers
are strongly correlated, but the ordering is completely inhibited in the small-world regime. (c) fa of a layer of the network with
random inter-layer connectivity. Ordering is significantly improved for all values of p. All the results are obtained for networks
with 80 × 80 nodes and �k� = 4.

the thermodynamic limit, and correspond to absorbing

states of the network. These configurations result from
low connectivity and consist of a tiny fraction of spins
isolated in small domains surrounded by the “sea” of
nodes of the opposite orientation. In this scenario, nodes
with small k form stable droplets of opposing magnetiza-
tion which cannot be dynamically influenced by the nodes
from the rest of the network, preventing the system from
reaching the full order. These droplets may appear on
the remnants of the regular lattice, such that their inte-
rior consists of nodes connected by links from the regular
lattice (k = 4), whereas their boundary is mainly com-
prised of nodes with one removed link (k = 3), thereby
trapping the “interior” in the same state. Even-degree
nodes that appear on the boundaries have more links with
nodes within the droplet than with other neighbors, such
that their state cannot be changed either. With further
rewiring of the lattice, stable droplets may still form as
even smaller groups of interconnected nodes with small
degrees (k = 2 or k = 3), likewise disconnected from the
rest of the network. The larger the network, the more
likely becomes such a scenario. Also, for larger network
sizes, a larger number of droplets may be present, which is
the reason why a larger fraction of configurations fails to
reach order. This peculiar frustration on the remnants of
a regular lattice also accounts for the incomplete ordering
of systems governed by the standard Glauber dynamics
in rewired networks with �k� = 4, and explains for the
difference in the behavior in the limit p → 1. Final con-
figurations in networks with �k� = 4 can consist of two
large components and a few isolated droplets for p above
the small-world regime, similar to final configurations ob-
tained for m0 �= 0.

Two-layer networks. – We now address the or-
dering process in multilayer networks, focussing on the
paradigmatic example of two coupled �k� = 4 networks
with different rewiring probabilities p1 and p2. By our

algorithm, the individual layers are rewired consecutively,
after which N links are introduced between them, either
at random or with the one-to-one correspondence between
the layers’ nodes. The simulation is terminated after 2T
steps if order is not reached. Note that introducing new
links effectively generates a large network with �k� = 5
and 5N bonds.

Our findings indicate that both cases lead to highly
correlated states of layers, which are simultaneously or-
dered/disordered and have mf1 ≈ mf2. For this rea-
son, fa of a single layer presents an appropriate quantity
to characterize the ordering process. We find that the
dependence of fa on rewiring probability changes qualita-
tively depending on the nature of the inter-layer bonds,
cf. fig. 7(a) and fig. 7(c). The multiplex configura-
tion turns out to suppress ordering of both networks
in the small-world regime, as indicated in fig. 7(a) and
fig. 7(b). However, fig. 7(a) shows that ordering efficiency
can be increased if at least one of the networks is “suffi-
ciently random”, with a smooth transition taking place at
0.35 � p � 0.45. Interestingly, the other scenario, which
involves placing the same number of bonds between ran-
domly chosen pairs of nodes from both networks, promotes
both ordering and correlation between the layer states.
This is corroborated by fig. 7, suggesting that regardless
of p1 and p2, ordering in this case is significantly improved
compared to that on a single network and the multiplex
network.

The curves obtained for multiplex networks resemble
the ones obtained for the single network even for p as large
as 0.6, while those obtained for random inter-layer con-
nections are monotonically decreasing as p2 is increased
over the whole range of p. Even though in both cases
networks become correlated in terms of mf and order-
ing, multiplexing seems to preserve the type of dynamics
obtained on small-world structures of one network, while
introducing random bonds between the layers destroys the
small-worldliness effect.
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Conclusions. – We have analyzed ordering efficiency
of the Glauber model of Ising spin kinetics on the
Watts-Strogatz networks obtained by rewiring from the
two-dimensional square lattices with coordination num-
bers �k� = 4 and �k� = 8. We have extended the previous
results concerning the failure of such systems to reach the
ground state in the small-world regime 0 < p ≪ 1, gain-
ing insight into the associated disordered configurations.
The fraction of active configurations exhibits a nonlinear
dependence on the rewiring probability. It is interest-
ing that a similar type of dependence has been observed
in relation to the synchronization process on small-world
networks [22]. It is found that the Glauber dynamics on
small-world networks becomes stuck in metastable station-
ary active configurations, which consist of two intertwined
domains of opposite spins, whereby the fraction of nodes
on the interfaces flips indefinitely. This effect is mani-
fested as clustering patterns in the lattice representation.
The size of domains on the lattice becomes smaller as p is
increased. We have demonstrated that the limiting value
of p at which the number of lattice and topological do-
mains is equal (to two) corresponds to the value where
the correlation length ξ becomes smaller than the average
path length in the network.

Our analysis shows that the active configurations in the
small-world regime emerge when the perturbed regular
topology constrains the number of possible energy low-
ering processes, while the stochastic energy-neutral spin-
flipping processes contribute to dynamical frustration and
trap the system in a set of metastable states with the
same energy. While the ground state is not accessible
because energy lowering processes are not possible, the
energy-neutral processes allow for the transitions between
states of the same energy. This is similar to what has been
reported for Glauber dynamics on 3D regular lattices [23],
Glauber dynamics on random graphs [8], and the voter
model on small-world networks [21].

We have further demonstrated that there exists a finite
probability of finding another type of disordered configu-
ration in networks with low connectivity for intermediate
values of p. These are frozen, almost completely ordered
states with a few isolated droplets of opposing magne-
tization. For �k� = 8, such configurations become un-
likely due to the high average connectivity degree in the
network, giving way to fully ordered states if p is suffi-
ciently increased (p > 0.5). In networks with �k� = 4,
a certain fraction of configurations exists as a combina-
tion of these states, especially if an initial bias towards
clustering (m0 �= 0) is introduced.

We have also examined the features of the ordering pro-
cess in paradigmatic two-layer networks. It has been found
that the structure of inter-layer connections strongly af-
fects the ordering process. In particular, multiplexing
decreases ordering efficiency in the small-world regime
0 < p ≪ 1, but improves it if the rewiring probability
in both layers is sufficiently high. Nevertheless, random
connectivity between the layers always promotes ordering,

regardless of layer topology. In all the considered scenar-
ios, the layers typically end up in highly correlated states.

We believe that the future research may be directed to-
wards extending our findings on the dynamics of interact-
ing rewired networks. In particular, it could be interesting
to modify inter-layer coupling strengths, vary the number
of connections between the layers or consider hierarchical
networks and networks with a large number of layers.
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Abstract. We demonstrate that the interplay of noise and plasticity
gives rise to slow stochastic fluctuations in a system of two adaptively
coupled active rotators with excitable local dynamics. Depending on the
adaptation rate, two qualitatively different types of switching behav-
ior are observed. For slower adaptation, one finds alternation between
two modes of noise-induced oscillations, whereby the modes are distin-
guished by the different order of spiking between the units. In case of
faster adaptation, the system switches between the metastable states
derived from coexisting attractors of the corresponding determinis-
tic system, whereby the phases exhibit a bursting-like behavior. The
qualitative features of the switching dynamics are analyzed within the
framework of fast-slow analysis.

1 Introduction

In many complex systems, ranging from biology, physics and chemistry to social sci-
ences and engineering, the interaction patterns are not static, but are rather affected
by the states of constituent units [1–4]. This gives rise to complex feedback mecha-
nisms, where the coupling weights adapt to dynamical processes at the units, which in
turn influences the evolution of units itself. Modeling of such systems is based on the
paradigm of adaptive networks, where self-organization unfolds both at the level of
coupling weights and the collective states of the units, typically involving a separation
of characteristic timescales. The faster and the slower timescales are naturally asso-
ciated to the dynamics of units and couplings, respectively, such that the short-term
evolution of the units occurs on a quasi-static network, whereas the slow changes in
coupling weights depend on the time-averaged dynamics of the units. An important
example of adaptive connectivity is provided by neuronal systems, where the strength
of synaptic couplings is adjusted to the underlying spiking activity via spike-time-
dependent plasticity (STDP), a temporally asymmetric form of Hebbian learning [5],

a e-mail: franovic@ipb.ac.rs
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promoting causal relationship between the spikes of pre- and postsynaptic neurons
[6–8].

Motivated by the research on neuronal systems, in the present paper we study
a simplified model which incorporates the basic ingredients of neurodynamics, such
as excitability, plasticity and noise. The considered system consists of two adap-
tively coupled active rotators, whose intrinsic dynamics is set to excitable regime
and subjected to noise. The plasticity rule is introduced in such a way that one may
continuously interpolate between the coupling dynamics characteristic to Hebbian
learning and STDP. We demonstrate that the interplay of plasticity and noise may
facilitate two qualitatively different forms of slow stochastic fluctuations, depend-
ing on the adaptation rate. While for slower adaptation the self-organized dynamics
consists of switching between the two modes of noise-induced oscillations, in case of
faster adaptation, the switching dynamics comprises metastable states associated to
attractors of the deterministic system.

In the context of neuroscience, one may compare the considered system to a binary
neuron motif. It is well known that the same structural motif, defined at the level
of anatomy, can support multiple functional motifs [9–12], characterized by different
weight configurations and potentially distinct directions of information flow. In these
terms, our study will show that the co-effect of plasticity and noise may (i) contribute
to the emergence of different functional motifs on top of the given structural one and
(ii) trigger slow alternation between the functional motifs.

So far, the co-effects of noise and the STDP plasticity rule have been analyzed in
systems of two coupled neural oscillators, as well as in networks of oscillators. In case
of two units, multistability between different weight configurations has been found,
surprisingly indicating that noise may stabilize configurations of strong bidirectional
coupling absent in the deterministic system [13]. At variance with this, our study
concerns excitable local dynamics and explicitly addresses the slow stochastic fluctu-
ations between metastable states. For networks of adaptively coupled neural or phase
oscillators, the previous research has mainly focused on the impact of plasticity on the
synchronization behavior. In the absence of noise, several generic forms of macroscopic
dynamics have been identified, including desynchronized or partially synchronized
states with weak couplings, as well as cluster states [14–18]. In presence of noise,
an interesting effect of self-organized noise resistance to desynchronization has been
reported in the case of a network of neural oscillators [19]. In networks of excitable
units, the STDP rule has been shown to give rise to oscillating coupling configurations
that facilitate switching between strongly and weakly synchronized states [20–22].

The paper is organized as follows. The details of the model are introduced in
Section 2. An overview of the underlying deterministic dynamics, characterizing the
impact of plasticity on the stationary states and the onset of emergent oscillations,
is provided in Section 3. Section 4 is dedicated to a fast–slow analysis of the deter-
ministic dynamics, whereas in Section 5 are explained the features of the two generic
types of switching behavior. In Section 6 we provide a summary of our main results.

2 Model
We consider a system of two stochastic active rotators interacting by adaptive cou-
plings, where the dynamics of the phases {ϕ1(t),ϕ2(t)} and the coupling weights
{κ1(t),κ2(t)} is given by

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1) +
√
Dξ1

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2) +
√
Dξ2

κ̇1 = �(−κ1 + sin(ϕ2 − ϕ1 + β))

κ̇2 = �(−κ2 + sin(ϕ1 − ϕ2 + β)), (1)
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where ϕ1,ϕ2 ∈ S1, while κ1 and κ2 are real variables. The rotators are assumed to be
identical, having their local dynamics governed by the excitability parameter I0, which
gives rise to a SNIPER bifurcation at I0 = 1. We focus on the excitable regime, such
that I0 = 0.95 is kept fixed throughout the paper. In this case, the uncoupled system
always converges to a steady state, whereas the collective dynamics emerges due to
interaction and noise. The parameter � � 1 defines the scale separation between the
fast dynamics of the phases and the slow dynamics of adaptation. White noise of
variance D acts only within the subspace of fast variables, whereby the terms ξ1(t)
and ξ2(t) are independent (ξi(t)ξj(t

�) = δijδ(t− t�) for i, j ∈ {1, 2}). In the context of
neuroscience, I0 can be interpreted as external bias current, whereas the impact of
stochastic terms is analogous to that of synaptic noise. Note that the deterministic
version of (1) is symmetric with respect to the exchange of indices 1 ↔ 2.

The plasticity rule is controlled by the parameter β, which allows one to interpo-
late between the different adaptation modalities. The analogy between the adaptivity
dynamics in classical neuronal systems and the systems of coupled phase oscillators
has been addressed in [14,23,24], whereas a deeper analysis of the correspondence
between the phase-dependent plasticity rules and the STDP has been provided in
[13]. From these studies, it follows that the scenario found for β = 3π/2, where the
stationary weights increase for smaller phase differences and decrease for larger ones
(“like-and-like” form of behavior), qualitatively resembles the Hebbian learning rule
[23,24]. Nevertheless, in the case β = π, the two coupling weights always change in
opposite directions, which may be interpreted as promoting an STDP-like plasticity
rule. In the present paper, we are interested in the β interval between these two limit
cases, since it admits two coexisting excitable fixed points.

3 Deterministic dynamics of the full system

In this section, we analyze the details of the deterministic dynamics of the full
system (1), considering first the stationary states and the associated excitability
feature, and then focusing on the scenario that gives rise to emergent oscillations.

3.1 Stationary states and excitable dynamics

Fixed points (ϕ∗
1,ϕ

∗
2,κ

∗
1,κ

∗
2) of the complete system (1) for D = 0 are given by the

solutions of the following set of equations:

sinϕ∗
1 − sin(ϕ∗

2 − ϕ∗
1 + β) sin(ϕ∗

2 − ϕ∗
1) = I0,

sinϕ∗
2 − sin(ϕ∗

1 − ϕ∗
2 + β) sin(ϕ∗

1 − ϕ∗
2) = I0, (2)

with

κ∗
1 = sin(ϕ∗

2 − ϕ∗
1 + β),

κ∗
2 = sin(ϕ∗

1 − ϕ∗
2 + β). (3)

Equation (2) can be solved numerically for any fixed parameter set, or numerical
path-following can be applied in order to study the dependence of the fixed points
on the parameters.

The bifurcation diagram in Figure 1 shows how the number and stability of fixed
points of the full system change with β. In particular, depending on β, there may
be two, four or six fixed points. Due to symmetry, the solutions always appear in
pairs of points sharing the same stability features. Since our study concerns plastic-
ity rules which support excitable fixed points, we have confined the analysis to the
interval β ∈ (3.298, 4.495), where the system has two stable fixed points, which lie off
the synchronization manifold ϕ1 = ϕ2. Apart from that, there are also four unstable
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Fig. 1. (a) Bifurcation diagram for the fixed points of system (1) with D = 0 in the
(β,ϕ1,ϕ2) space. (b) Projection of the bifurcation diagram to (β,ϕ1) plane. The two fixed
points independent on β belong to the synchronization manifold: the red (blue) one is
always longitudinally stable (unstable). The solid lines denote stable fixed points, whereas
the dashed and dotted lines denote saddles of unstable dimension 1 and 2, respectively.

fixed points. The bifurcations associated to the boundaries of the given β interval
are as follows: at β = 3.298 the system undergoes a supercritical symmetry-breaking
pitchfork bifurcation where a symmetry related pair of two stable fixed points off the
synchronization manifold is created, whereas at β = 4.495, this pair meets another
pair of unstable fixed points off the synchronization manifold such that both are
annihilated in symmetry related inverse saddle-node bifurcations. For instance, at
β = 4.1, one finds the symmetry related pair of stable foci given by (ϕ1,ϕ2,κ1,κ2) =
(1.177, 0.175, 0.032,−0.92) and (ϕ1,ϕ2,κ1,κ2) = (0.175, 1.177,−0.92, 0.032). Note
that these weight levels support effective master-slave configurations, where one unit
exerts a much stronger influence on the other unit than vice versa.

The two stable asymmetric fixed points in the interval β ∈ (3.298, 4.495) are
excitable, and may exhibit several different types of response to external pertur-
bations, see the classification in Figure 2. Introducing the perturbations by setting
different initial conditions, we plot in Figure 2 the phase dynamics in the fast sub-
space while keeping the weights (κ1,κ2) fixed. Note that in the case where both units
respond with a single spike, the order of firing is such that the unit with larger initial
phase ϕi(0), i ∈ {1, 2} fires first.

3.2 Onset of oscillations

The onset of emergent oscillations in system (1) with D = 0 depends on the interplay
between the plasticity rule, specified by β, and the speed of adaptation, characterized
by �. A parameter scan indicating the variation of κ1, Aκ1 = max(κ1(t))−min(κ1(t))
in terms of (β, �) is shown in Figure 3a. The results are obtained by numerical con-
tinuation beginning from a stable periodic solution, such that the final state reached
for a certain set of (β, �) values provides the initial conditions for the simulation of
the system at incremented parameter values. By this method, we have determined
the maximal stability region of the periodic solution.

One finds that for a fixed β, there actually exists an interval of timescales sep-
aration � ∈ (�min, �max) admitting oscillations, cf. Figure 3b. The periodic solutions
in this interval coexist with the two symmetry-related stable stationary states. One
observes that the threshold �min reduces with β, whereas the upper boundary value
�max grows with increasing β. The detailed bifurcation mechanisms behind the onset
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Fig. 2. Modalities of the response to external perturbation for system (1) with D = 0. The
system parameters are I0 = 0.95, � = 0.01 and β = 4.212, whereas the initial conditions for
the coupling weights are set to κ1(0) = −0.0077, κ2(0) = −0.846. Depending on the initial
phases (ϕ1(0),ϕ2(0)), one may observe the following regimes: (0) no spikes; (1) the unit
with larger ϕ(0) emits one spike and the other does not; (2) both units emit a single spike,
with the unit with larger ϕ(0) firing first; (3) the unit with larger ϕ(0) emits two spikes and
the other unit emits one; (4) both units spike synchronously.

of oscillations and multistability are beyond the scope of this paper, and essentially
involve an interplay between the fast and slow variables.

Enhancing � under fixed β gives rise to a supercritical symmetry-breaking
pitchfork bifurcation of limit cycles, indicated by PFL in Figure 3b. Below the
bifurcation, the phases ϕ1(t) and ϕ2(t) maintain a small phase-shift, while the
oscillation profiles κi(t), i ∈ {1, 2} are rather different, see Figures 3d and 3e, respec-
tively. Above the bifurcation, the system gains the anti-phase space-time symmetry
ϕ1(t) = ϕ2(t+ T/2),κ1(t) = κ2(t+ T/2) where T denotes the oscillation period, cf.
the associated waveforms in Figures 3g and 3f.

4 Slow-fast analysis of the deterministic dynamics

The deterministic dynamics in case of slow adaptation, corresponding to a strong
timescale separation between the fast and slow variables, may be analyzed within the
framework of standard fast-slow analysis. In general, one may either consider the
layer problem, defined on the fast timescale, or the reduced problem, which concerns
the slow timescale. Within the layer problem, the aim is to determine the fast flow
dynamics ϕ1(t;κ1,κ2),ϕ2(t;κ1,κ2) by treating the slow variables κ1 and κ2 as param-
eters, whereas the reduced problem consists in determining the dynamics of the slow
flow (κ1(t),κ2(t)) (reduced flow) assuming that the fast flow of the layer problem is
either at a stable equilibrium or at the averaged value of a stable regime.

In this section, we first investigate the fast layer problems. Depending on the
values of the slow variables (κ1,κ2), the fast flow can exhibit several attractors, such
that multiple sheets of the slow flow emerge from the averaged dynamics on the
different attractors of the fast flow.
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Fig. 3. Onset of oscillations in the full system (1) for D = 0. In panel (a) is shown how
the variation Aκ1 of coupling weight κ1 changes in the (β, �) plane. Panel (b) shows how
the mean coupling weights �κ1� and �κ2� of oscillatory states (thick lines) change with �
under fixed β = 4.212. The thin solid lines indicate the stationary state. In panel (c) are
plotted the analogous dependencies for variation of the oscillation. The dotted lines in (b)
and (c) indicate the � values corresponding to the time traces in Figure 7, whereas the dashed
lines indicate the boundaries of the � region supporting the stable periodic solutions. The
symmetry-breaking pitchfork bifurcation of limit cycles is denoted by PFL. In panels (d)–(g)
are shown the waveforms of periodic solutions without and with the anti-phase space-time
symmetry, obtained for � = 0.03 and � = 0.09, respectively (see the arrows). The excitability
parameter is fixed to I0 = 0.95.

4.1 Dynamics of the fast flow

Within the layer problem, one studies the dynamics of the fast variables

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1)

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2), (4)

where κ1,κ2 ∈ [−1, 1] are considered as additional system parameters. Formally,
system (4) is obtained by setting ε = 0 in (1) for D = 0.

The numerically obtained bifurcation diagram in Figure 4a shows that the fast
flow is monostable for most of the (κ1,κ2) values, possessing either an equilibrium or
a limit cycle attractor. The stability boundary of the periodic solution (red curves)
has been obtained by the method of numerical continuation where, beginning from a
stable periodic solution, the initial conditions for incremented parameter values are
given by the final state reached for the previous set of (β, �) values. The coexistence
between a stable fixed point, lying on the synchronization manifold, and a limit cycle
is found within a small region near the diagonal, see Figure 4a. Let us first classify
the fixed points of the fast flow and then examine the scenarios that give rise to
oscillations.

It can be shown that the fast flow admits either two or four fixed points, with
the associated regions indicated in Figure 4b. In particular, two fixed points FP1 and
FP2 on the synchronization manifold are independent on κ1 and κ2. They are given
by (ϕ∗

1,ϕ
∗
2) = (arcsin I0, arcsin I0) and (ϕ∗

1,ϕ
∗
2) = (π − arcsin I0,π − arcsin I0). One

may also find two additional fixed points off the synchronization manifold, referred
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Fig. 4. (a) Attractors of the fast flow (4) in terms of κ1 and κ2, now considered as param-
eters. The fast flow is typically monostable, supporting either a stable fixed point (FP)
or a stable limit cycle (LC), apart from a small region around the main diagonal, where it
exhibits bistable behavior. The green dashed curves indicate approximations of two branches
of SNIPER bifurcations, obtained by the method described in the text. The red lines cor-
respond to the numerically determined stability boundaries of the oscillatory solution. (b)
Classification of the fixed points of the fast flow (4). The fixed points are labeled the same
way as in the main text, with their stability indicated as follows: full circles denote stable
fixed points, semi-full circles represent saddle points and white circles correspond to doubly
unstable fixed points. Within the four light-shaded triangular-shaped regions, the doubly
unstable fixed point is a focus, rather than a node. The notation I–VIII refers to parameter
values corresponding to the phase portraits in Figure 5.

to as FP3 and FP4 in Figure 4b. The bifurcations affecting the number and stability
of the fixed points, beginning from the lower left region of the (κ1,κ2) plane, can
be summarized as follows. Along the main diagonal κ1 = κ2, we find two points of
supercritical pitchfork bifurcations (PF), where from the symmetric fixed points the
saddles FP3 and FP4 appear and disappear. Off the main diagonal, the pitchforks
are unfolded into curves of saddle-node (SN) and transcritical bifurcations (TC), see
Figure 4b.

The (κ1,κ2) region featuring stable oscillations almost completely matches the
lower left domain admitting two unstable fixed points. Within this region, each peri-
odic solution obtained for (κ1,κ2) above the main diagonal κ1 = κ2 has a counterpart
in the domain below the main diagonal, related to it by the exchange symmetry of
units indices. Typically, the periodic solutions emerge via SNIPER bifurcations, com-
prising two branches where either κ1 or κ2 remain almost constant and close to zero.
In both cases, the two fixed points that collide and disappear are FP3 and FP4. Nev-
ertheless, such scenarios cannot be maintained in the small (κ1,κ2) region admitting
coexistence between a fixed point and a limit cycle, because the SNIPER bifurcation
is accompanied by a change in the number of fixed points. Our findings suggest that
near the main diagonal, the limit cycle emerges via a heteroclinic bifurcation, where
an orbit connects two saddles lying off the synchronization manifold (not shown).
Note that the orbit of the limit cycle follows the unstable manifold of the saddle
point FP2 on the synchronization manifold. To the left or the right of the main diag-
onal, instead of a heteroclinic bifurcation, one finds homoclinic bifurcations, whereby
a saddle point, either FP3 or FP4, touches the limit cycle orbit. The schematic phase
portraits indicating the stable and unstable manifolds of the fixed points and the limit
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Fig. 5. Schematic phase portraits corresponding to the characteristic regimes of the fast
flow. The panels I–VIII refer to representative parameter values indicated in Figure 4b.
Also, the stability of fixed points is presented the same way as in Figure 4b. The invariant
synchronization manifold is denoted by the red color, whereas the orbit of a stable/unstable
limit cycle is indicated by the solid/dashed blue lines.

cycle for the characteristic regimes of the fast flow, denoted by I–VIII in Figure 4b,
are illustrated in Figure 5.

The two branches of SNIPER bifurcations may readily be approximated for small
values of κ1 and κ2 by a simple scheme, which amounts to reducing the fast flow to
a normal form of saddle-node bifurcation. Suppose first that κ1 � 1 and I0 − 1 � 1.
More specifically, let ξ � 1 be a small parameter such that I0 − 1 = ξ (close to the
threshold) and κ1 = γξ, i.e. γ is a rescaling parameter of κ1, allowing for a zoom in
the neighborhood of zero. Then, the steady states are given by the system

1 + ξ − sinϕ1 + ξγ sin(ϕ2 − ϕ1) = 0,

1 + ξ − sinϕ2 + κ2 sin(ϕ1 − ϕ2) = 0. (5)

The first equation in the zeroth order approximation leads to ϕ1 = π/2. Hence, using
the perturbation approach, we have

ϕ∗
1 =

π

2
+
�
ξΨ1 + · · · ; ϕ∗

2 = Ψ2 + · · · , (6)

where the
√
ξ scaling follows from the Taylor expansion of the function sinϕ1 at π/2.

Inserting (6) into (5), one obtains the system of equations for Ψ1 and Ψ2

1 +
1

2
Ψ2
1 − γ cosΨ2 = 0,

1− sinΨ2 + κ2 cosΨ2 = 0. (7)

From system (7), it is not difficult to see that the saddle-node bifurcation takes place if
the condition 1− γ cosΨ2 = 0 is satisfied. This leads to the parametric representation
κ1 = ξγ = I0−1

cosΨ2
,κ2 = sinΨ2−1

cosΨ2
, of the saddle-node curve for small κ1 values, where

Ψ2 plays the role of the parameter along the curve. An analogous approach may be
used to capture the second branch of saddle-node bifurcations, cf. the green dashed
lines in Figure 4a.
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4.2 Dynamics of the slow flow

We have numerically obtained the dynamics of the slow flow by applying a two-step
approach. First, for fixed values (κ1,κ2), we determine the time-averaged dynamics
of the fast flow (4), �ϕ2 −ϕ1�t = f(κ1,κ2). Here, the averaging �·�t is performed over
a sufficiently large time interval, having eliminated a transient. Hence, this average
depends on the attractor of the fast flow for the given (κ1,κ2). In particular, if the
fast flow possesses a stable fixed point, then �ϕ2 − ϕ1�t = ϕ∗

2 − ϕ∗
1, where (ϕ∗

1,ϕ
∗
2) is

a solution of

I0 − sinϕ∗
1 + κ1 sin (ϕ

∗
2 − ϕ∗

1) = 0

I0 − sinϕ∗
2 + κ2 sin (ϕ

∗
1 − ϕ∗

2) = 0. (8)

This procedure just results in determining the slow critical manifold of the system.
In case when the attractor of the fast flow is periodic, �ϕ2 − ϕ1�t presents the time
average over the period. Averaging approximation in case of a periodic attractor of
the fast flow constitutes a standard approach [13,25], rather natural for describing
the influence of oscillations in the fast flow on the dynamics of the slow flow. At the
second stage, the obtained time-averages are substituted into the dynamics of the
weights

κ̇1 = �[−κ1 + sin(f(κ1,κ2) + β)]

κ̇2 = �[−κ2 + sin(−f(κ1,κ2) + β)]. (9)

The system (9) is used to determine the vector field of the slow flow by taking into
account only the attractors of the fast flow, such that the vector field associated to
each attractor is plotted within its respective stability region, cf. Figure 6.

In regions of the (κ1,κ2) plane where there are coexisting stable solutions of
the fast flow, the corresponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(κ1,κ2) depends on the initial
conditions. In our case, this occurs only in a small region of coexistence between an
equilibrium and a stable limit cycle.

One should single out two important features of the slow flow: (i) it exhibits two
symmetry-related fixed points in the green and blue regions in Figure 6, and (ii) the
slow vector field is pointed in opposite directions close to the boundary between the
fast oscillatory regime (orange region) and the steady states of the fast flow (blue,
green and white regions). The latter in particular implies that interesting effects
occur close to the border of the oscillatory and the steady state regime of the fast
flow. Moreover, adding noise gives rise to fluctuations around this boundary, which
leads to switching between the quasi-stationary and the fast spiking dynamics. Such
effects are studied in more detail within the next section.

5 Switching dynamics

Our main observation in this section is that the interplay of plasticity and noise
induces slow stochastic fluctuations (switching dynamics), mediating two qualita-
tively different scenarios depending on the speed of adaptation. The latter include
(i) switching between two modes of noise-induced oscillations for slower adaptation
(small � � 0.01) and (ii) switching between multiple coexisting attractors of the
deterministic dynamics for faster adaptation (intermediate � � 0.05).

In case (i), the impact of noise is twofold: on a short timescale, it gives rise to spik-
ing dynamics, whereas on a long time scale, it induces random transitions between
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Fig. 6. Vector field of the slow flow obtained by taking into account only stable attractors
of the fast flow for β = 4.212, I0 = 0.95. The color coding is as follows: orange color denotes
the region associated to the stable limit cycle of the fast flow, white stands for the stable
fixed point of the fast flow FP1, whereas blue and green color correspond to the two stable
fixed points FP3 and FP4. Within the light-shaded regions, FP3 and FP4 are foci rather
than nodes, cf. Figure 4b.

the two oscillatory modes. In case (ii), the switching dynamics comprises metastable
states derived from two fixed points, as well as two limit cycles associated to emergent
oscillations of the corresponding deterministic system. The key difference between the
effects (i) and (ii) is that for slower adaptation, the system switches between the oscil-
latory modes that do not exist as deterministic attractors. Moreover, the two generic
types of switching are characterized by distinct phase dynamics: for slower adapta-
tion, one finds alternation of patterns with different order of spiking between the
units, whereas for faster adaptation, the phases effectively exhibit bursting behav-
ior, involving a succession between episodes of spiking and relative quiescence. An
overview on how the typical dynamics of couplings changes with � at fixed β is pro-
vided in Figure 7. Note that the difference between the average coupling weights of
the stable periodic solutions of the deterministic system are much smaller than a typ-
ical distance between the coupling levels for the stationary states. The prevalence of
metastable states is affected by � so that intermediate adaptation favors oscillatory
modes, whereas the fast adaptation apparently promotes the two quasi-stationary
states. In the next two subsections, we provide further insight into the mechanisms
behind the switching dynamics using the results of the fast-slow analysis.

5.1 Switching dynamics under slow adaptation

As already indicated, � is here taken sufficiently small, such that it cannot facilitate
emergent oscillations in the full system (1). For � � 0.01 and under appropriate noise
levels, one observes noise-induced oscillations [26]. The latter arise via a scenario
involving a multiple-timescale stochastic bifurcation, whereby noise acts only within
the fast subsystem of (1). The onset of oscillations under increasing D occurs in two
stages. In the first stage, the phase dynamics gradually exhibits more induced spikes,
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Fig. 7. Switching dynamics under variation of �. The time traces (κ1(t),κ2(t)) are obtained
for fixed I0 = 0.95, D = 0.006, β = 4.212, whereas � assumes the following values: (a)
� = 0.008, (b) � = 0.02, (c) � = 0.03, (d) � = 0.06, (e) � = 0.09, (f) � = 0.11.

 Time

-0.6

-0.4

-0.2

0

1
, 

2

5800 5850 5900 5950 6000

 Time

0

2

4

6

1
2

 Time

0

2

4

6

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

8950 9000 9050 9100

(a)

)c()b(

(d)

Fig. 8. Switching dynamics between the two modes of noise-induced oscillations. Time traces
of the weights are shown in panel (a), whereas panel (b) and (c) display the corresponding
time traces of the phases during the intervals between the dashed lines in panel (a). In panel
(d), the (κ1(t),κ2(t)) projections of the orbits associated to each of the two modes (blue
color), as well as the switching episode, shown in white, are superimposed to the vector field
of the slow flow from Figure 6. The shaded area corresponds to the stable limit cycle. The
system parameters are I0 = 0.95,β = 4.212, � = 0.01, D = 0.009.

such that the stationary distributions of phases eventually acquire a longer tail reflect-
ing the occurrence of spikes (not shown). Nevertheless, the stationary distributions
P (κi) change appreciably only at the second stage, which takes place for sufficiently
large D. Such a change accompanies the emergence of coupling oscillations. Note that
the system (1) actually exhibits two modes of noise-induced oscillations, character-
ized by the different order of firing between the two units, cf. the time traces of phase
dynamics and the associated evolution of couplings in Figure 8a.

It is interesting to examine whether the vector field of the slow flow from
Section 4.2 can be used to explain the slow stochastic fluctuations of the coupling
weights. To this end, we have superimposed the (κ1(t),κ2(t)) orbits of the two noise-
induced modes, as well as a switching episode, to a vector field of the slow flow from
Figure 6. Note that the orbits typically lie close to the boundary outlining the tran-
sition between the two attractors of the fast flow, featuring non-negligible coupling
weights. Moreover, the two modes are confined to small areas of the (κ1,κ2) plane
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Fig. 9. Time traces of the phases (a) and weights (b) associated to noise-induced switching
between the coexisting attractors of the deterministic system. The results are obtained for
I0 = 0.95,β = 4.212, � = 0.05, D = 0.004. In panel (c) is provided the deterministic dynamics
of weights obtained for the same parameter values. In panel (d), the (κ1(t),κ2(t)) orbit
corresponding to the interval between the dashed lines in (b) is super-imposed on the vector
field of the slow flow cf. Figure 6.

symmetrical with respect to the main diagonal κ1 = κ2, whereas the switching episode
virtually takes place on the diagonal. Apparently, the noise-induced modes occupy
regions where the oscillations in the fast flow emerge via homoclinic bifurcations,
rather than the SNIPER scenario. Nonetheless, the switching episode seems to involve
the domain featuring coexistence of the two stable sheets of the slow vector field.
Within these sheets, which correspond to two attractors of the fast flow (a stable
node and a stable limit cycle), the vector fields are oriented in opposite directions,
thereby contributing to switching.

5.2 Switching dynamics for faster adaptation

In case of faster adaptation associated to intermediate �, the switching dynamics
involves four metastable states, derived from the attractors of the deterministic
system. The deterministic multistable behavior includes two symmetry-related sta-
tionary states, as well as two symmetry-related limit cycles. Note that while the two
stable steady states exist for arbitrary small � and are therefore visible in the slow
flow in Figure 6, the oscillatory solutions disappear for small � and hence cannot
be observed in the slow flow. The two oscillatory regimes are characterized by the
same phase shift, but the reverse order of firing between the two units. Influenced by
noise, the phases effectively engage in bursting behavior, manifesting slow stochas-
tic fluctuations between episodes of intensive spiking activity and periods of relative
quiescence, see Figure 9a. For a fixed noise level, the prevalence of metastable states,
defined by transition probabilities between them, changes with adaptation speed. One
observes that for � � 0.05, the oscillatory dynamics is preferred, whereas for � � 0.1,
the quasi-stationary states are more ubiquitous.

A comparison of the (κ1,κ2) orbits displaying switching dynamics and the vec-
tor field of the slow flow from Figure 6 again shows that the former is confined
to the criticality region at the boundary between the stationary and oscillatory
regimes in the fast flow, cf. Figure 9. One should remark on how the transitions
between the different metastable states take place. In particular, from Figure 9b, it is
clear that there can be no direct transitions between the two quasi-stationary states,
but they rather have to be mediated by the system passing through the oscillatory
states. Also, the transition from oscillatory to quasi-stationary states typically occurs
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once the couplings approach a master-slave-like configuration, where the coupling in
one direction is much stronger than the other one. This scenario coincides with the
SNIPER bifurcation of the fast flow described in Section 4.1. The scenario of tran-
sition between the two metastable oscillatory states resembles closely the one from
Section 5.2.

6 Summary

In the present study, we have analyzed a system of two adaptively coupled active
rotators with excitable intrinsic dynamics, demonstrating that the interplay of plas-
ticity and noise may give rise to slow stochastic fluctuations. Two qualitatively
different types of self-organized behavior have been identified, depending on the adap-
tation speed. For slower adaptation, the switching dynamics consists of an alternation
between two modes of noise-induced oscillations, associated to a preferred order of
spiking between the two units. In this case, noise plays a twofold role: on one hand, it
perturbs the excitable local dynamics giving rise to oscillations on a short timescale,
whereas on the other hand, it elicits the alternation between the two oscillatory states
on a long timescale. The underlying phase dynamics shows slow switching between
two patterns distinguished by the different order in which the units are spiking. In
case of faster adaptation, the coupling becomes capable of eliciting emergent oscilla-
tions in the deterministic system [27]. The latter then exhibits complex multistable
behavior, involving two stationary and two oscillatory regimes. Under the influence
of noise, the system undergoes switching between these four different metastable
states, whose prevalence at fixed noise level depends on the speed of adaptation. The
deterministic attractors associated to metastable states are related by the Z2 symme-
try. Thus, a mismatch in excitability parameters would lead to symmetry-breaking,
whereby a small mismatch would induce a bias in switching dynamics, whereas a
larger mismatch, corresponding to a scenario with one excitable and one oscillatory
unit, would completely alter the observed dynamics.

Though the underlying phenomena are not found in the singular limit of infinite
scale separation, the fast-slow analysis we have applied still allows one to explain
the qualitative features of both considered types of switching behavior. Studying the
layer problem, and in particular the vector field of the slow flow, has enabled us to
gain insight into the metastable states and the transitions between them. It has been
demonstrated that the coupling dynamics is always in a state of “criticality”, being
confined to the boundary between the stationary and oscillatory regimes of the fast
flow.

Given that excitability, plasticity and noise are inherent ingredients of neuronal
systems, the obtained results can be interpreted in the context of neuroscience. It is
well known that the backbone of neural networks is made up of binary and ternary
neuron motifs, whereby the structural motifs typically support multiple functional
motifs, essentially characterized by the weight configuration and the underlying direc-
tion of the information flow. With this in mind, the scenario of switching under slow
adaptation may be important, because it implies that a binary motif can display slow
alternation between two effectively unidirectional weight configurations, promoting
opposite direction of information flow. For faster adaptation, one finds multistabil-
ity between unidirectional coupling and bidirectional coupling of moderate strength.
Nonetheless, the underlying phase dynamics, if extended to networks, may be con-
sidered as a paradigm for UP-DOWN states, typical for cortical dynamics [28,29].
Thus, it would be of interest to examine the impact of plasticity in networks of
noisy excitable units, where one may expect different types of emergent behavior,
such as cluster, non-synchronized and partially synchronized states, depending on
the frustration of local dynamics and the impact of noise.
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PACS 05.40.Ca – Noise
PACS 87.19.ln – Oscillations and resonance

Abstract – Inverse stochastic resonance is a phenomenon where an oscillating system influenced
by noise exhibits a minimal oscillation frequency at an intermediate noise level. We demonstrate
a novel generic scenario for such an effect in a multi-timescale system, considering an example
of emergent oscillations in two adaptively coupled active rotators with excitable local dynamics.
The impact of plasticity turns out to be twofold. First, at the level of multiscale dynamics,
one finds a range of intermediate adaptivity rates that give rise to multistability between the
limit cycle attractors and the stable equilibria, a condition necessary for the onset of the effect.
Second, applying the fast-slow analysis, we show that the plasticity also plays a facilitatory role
on a more subtle level, guiding the fast flow dynamics to parameter domains where the stable
equilibria become focuses rather than nodes, which effectively enhances the influence of noise.
The described scenario persists for different plasticity rules, underlying its robustness in the light
of potential applications to neuroscience and other types of cell dynamics.

Copyright c� EPLA, 2018

Introduction. – Noise in coupled excitable or bistable
systems may induce two types of generic effects [1]. On
the one hand, it can modify the deterministic behavior
by acting non-uniformly on different states of the sys-
tem, thus amplifying or suppressing some of its features.
On the other hand, noise may give rise to completely
novel forms of behavior, typically based on crossing the
thresholds or separatrices, or involving enhanced stabil-
ity of deterministically unstable structures. In neuronal
systems, the constructive role of noise at different stages
of information processing, referred to as “stochastic facili-
tation” [2,3], mainly comprises resonant phenomena. A
classical example is the stochastic resonance [4], which
allows for the detection of weak subthreshold periodic
signals. A more recent development concerns the ef-
fect of inverse stochastic resonance (ISR) [3,5–12], where
noise selectively reduces the spiking frequency of neuronal
oscillators, converting the tonic firing into intermittent
bursting-like activity or a short-lived transient followed

(a)E-mail: franovic@ipb.ac.rs

by a long period of quiescence. The name of the effect
should be taken cum grano salis, because in contrast to
stochastic resonance, it involves no additional external sig-
nal: one rather observes a non-monotonous dependence of
the spiking rate on noise variance, whereby the oscilla-
tion frequency becomes minimal at a preferred noise level.
Such an inhibitory effect of noise has recently been shown
for cerebellar Purkinje cells [11], having explicitly demon-
strated how the lifetimes of the spiking (“up”) and the
silent (“down”) states [13–15] are affected by the noise
variance. ISR has been indicated to play important func-
tional roles in neuronal systems, including the reduction
of spiking frequency in the absence of neuromodulators,
suppression of pathologically long short-term memories,
triggering of on-off tonic spiking activity and even opti-
mization of information transfer along the signal propaga-
tion pathways [3,7,9,11].

So far, theoretical studies on ISR have mostly con-
cerned the scenario where a single neuron exhibits bistable
deterministic dynamics, featuring coexistence between a
limit cycle and a stable equilibrium. Such bistability is
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typical for Type-II neurons below the subcritical Hopf bi-
furcation, e.g., classical Hodgkin-Huxley and Morris-Lecar
models [3,6–8]. There, applying noise induces switching
between the metastable states, but at an intermediate
noise level, one surprisingly finds a strong asymmetry of
the associated switching rates, which makes the periods
spent in the vicinity of equilibrium much longer than the
periods of spiking activity.

An important open problem concerns conditions giving
rise to ISR in coupled excitable systems, where noise influ-
ences the emergent oscillations. Here we address in detail
this issue, as it may be crucial to understanding the preva-
lence of the effect in neural networks, whose activity de-
pends on the interplay of excitability, coupling properties
and noise. Synaptic dynamics typically involves the plas-
ticity feature, which makes self-organization in neuronal
systems a multi-timescale process: the short-term spiking
activity unfolds on a quasi-static coupling configuration,
while the slow adjustment of coupling weights depends on
the time-averaged evolution of units.

Motivated by the findings in neuroscience, we focus on
the onset of ISR in a simplified, yet paradigmatic system
of two adaptively coupled stochastic active rotators with
excitable local dynamics. Active rotators are canonical for
Type-I excitability and may be seen as equivalent to the
theta-neuron model. Adaptivity is introduced in a way
that allows continuous interpolation between a spectrum
of plasticity rules, including Hebbian learning and spike-
time-dependent plasticity (STDP) [16–18].

We demonstrate a generic scenario for the plasticity-
induced ISR, where the system’s multiscale structure, de-
fined by the adaptivity rate, plays a crucial role. On a
basic level, plasticity gives rise to multistable behavior in-
volving coexisting stationary and oscillatory regimes. An
additional subtlety, which we show by the fast-slow anal-
ysis, is that the plasticity promotes the resonant effect by
guiding the fast flow toward the parameter region where
the stable fixed points are focuses rather than nodes.

The paper is organized as follows. In the next sec-
tion the details of the model and the numerical bifurca-
tion analysis of the deterministic dynamics are presented.
The third section contains the results on the ISR effect
and the supporting conditions. In the fourth section the
fast-slow analysis is applied to explain the mechanism by
which plasticity enhances the system’s non-linear response
to noise. Apart from providing a brief summary, in the
last section we also discuss the prevalence of the observed
effect.

Model and bifurcation analysis of deterministic
dynamics. – Our model involves two stochastic active
rotators interacting by adaptive couplings [19–22],

ϕ̇1 = I0 − sin ϕ1 + κ1 sin (ϕ2 − ϕ1) +
√

Dξ1(t),

ϕ̇2 = I0 − sin ϕ2 + κ2 sin (ϕ1 − ϕ2) +
√

Dξ2(t),
κ̇1 = �(−κ1 + sin(ϕ2 − ϕ1 + β)),
κ̇2 = �(−κ2 + sin(ϕ1 − ϕ2 + β)),

(1)

where the phases {ϕ1, ϕ2} ∈ S1, while the coupling
weights {κ1, κ2} are real variables.

The excitability parameters I0, which one may interpret
as external bias currents in the context of neuroscience,
are assumed to be identical for both units. For such a
setup, the deterministic version of (1) possesses a Z2 sym-
metry, being invariant to the exchange of units’ indices.
The uncoupled units undergo a SNIPER bifurcation at
I0 = 1, with the values I0 < 1 (I0 > 1) corresponding to
the excitable (oscillatory) regime. We consider the case of
excitable local dynamics, keeping I0 = 0.95 fixed through-
out the paper, such that the oscillations may emerge only
due to the coupling terms and/or noise. The scale sepa-
ration between the fast dynamics of the phases and the
slow dynamics of adaptation is adjusted by the parameter
� � 1. The fast variables are influenced by independent
white noise of variance D such that ξi(t)ξj(t�) = δijδ(t−t�)
for i, j ∈ {1, 2}. Conceptually, adding stochastic input to
the fast variables embodies the action of synaptic noise in
neuronal systems [23].

The modality of the plasticity rule is specified by the
parameter β, whose role may be understood by invok-
ing the qualitative analogy between the adaptation dy-
namics in classical neuronal systems and the systems of
coupled phase oscillators. This issue has first been ad-
dressed in [24–26], and a deeper analysis of the correspon-
dence between the phase-dependent plasticity rules and
the STDP has been carried out in [19]. In particular, it
has been shown that the plasticity dynamics for β = 3π/2,
where the stationary weights between the oscillators with
smaller/larger phase differences increase/decrease, quali-
tatively resembles the Hebbian learning rule [25,26]. Nev-
ertheless, when β = π, the coupling weights encode a
causal relationship between the spiking of oscillators by
changing in the opposite directions, in analogy to an
STDP-like plasticity rule. Our interest lies with the β
interval interpolating between these two limiting cases.

Using bifurcation analysis of the deterministic dynam-
ics of (1), we first show how the modality of the plasticity
rule influences the number of stationary states, and then
explain how the onset of oscillations depends on adap-
tivity rate. The bifurcation diagram in fig. 1 indicates
that the number and the stability of fixed points of (1)
change with β in such a way that the system may pos-
sess two, four or six fixed points. Due to invariance to
Z2 symmetry, one always finds pairs of solutions shar-
ing the same stability features. We consider the plastic-
ity rules described by β ∈ (3.298, 4.495), cf. the shaded
region in fig. 1, where the system has two stable fixed
points lying off the synchronization manifold ϕ1 = ϕ2, as
well as four unstable fixed points. The bifurcations oc-
curring at the boundaries of the relevant β interval are
as follows. At β = 3.298, the system undergoes a su-
percritical symmetry-breaking pitchfork bifurcation giving
rise to a pair of stable fixed points off the synchroniza-
tion manifold. For β = 4.495, this pair of stable fixed
points collides with a pair of unstable fixed points off

40004-p2



Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling

0 1 2 3 4 5 6
0

0.5

1.0

1.5

2.0

2.5

3.0

β

ϕ
1

Fig. 1: (Color online) Bifurcation diagram for the fixed points
of (1) with D = 0 under variation of β. Solid lines refer to
stable fixed points, while dashed and dotted lines correspond
to saddles of unstable dimension 1 and 2, respectively. Shad-
ing indicates the considered range of plasticity rules. The two
fixed points independent on β belong to the synchronization
manifold. The remaining parameters are I0 = 0.95, � = 0.05.

the synchronization manifold, getting annihilated in two
symmetry- related inverse fold bifurcations. Note that the
weight levels typical for the two stable stationary states
support effective unidirectional interaction, in a sense that
one unit exerts a much stronger impact on the dynamics
of the other unit than vice versa. When illustrating the
effect of ISR, we shall mainly refer to the case β = 4.2.
For this β, the two stable focuses of (1) at D = 0 are
given by (ϕ1, ϕ2, κ1, κ2) = (1.177, 0.175, 0.032,−0.92) and
(ϕ1, ϕ2, κ1, κ2) = (0.175, 1.177,−0.92, 0.032). Within the
considered β interval, the two stable fixed points of the
coupled system exhibit excitable behavior, responding to
external perturbation by generating either the successive
spikes or synchronized spikes [21].

The onset of oscillations for the deterministic version
of (1) relies on the interplay between the plasticity rule,
controlled by β, and the adaptation rate, characterized
by �. In fig. 2(a) are shown the results of parameter sweep
indicating the variation of κ1 variable, σκ1 = max(κ1(t))−
min(κ1(t)), within the (β, �) parameter plane. The sweep
indicates the maximal stability region of the two emerging
periodic solutions, related by the exchange symmetry
of units indices. The data are obtained by numerical
continuation starting from a stable periodic solution, such
that the final state reached for the given parameter set is
used as initial conditions of the system dynamics for incre-
mented parameter values. One observes that for fixed β,
there exists an interval of timescale separation ratios � ∈
(�min, �max) admitting oscillations, see fig. 2(b). Within
the given � range, the system exhibits multistability
where periodic solutions coexist with the two symmetry-
related stable stationary states. The lower threshold for
oscillations, �min, reduces with β, whereas the upper
boundary value, �max, is found to grow as β is enhanced.
Note that the waveform of oscillations also changes as
� is increased under fixed β. In particular, for smaller
�, the waveforms corresponding to the two units are
rather different. Nevertheless, around � ≈ 0.06 the system
undergoes a pitchfork bifurcation of limit cycles, such that
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Fig. 2: (Color online) Onset of oscillations in (1) for D = 0.
(a) Variation σκ1 of the coupling weight κ1 in the (β, �)-plane.
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periodic solutions.
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Fig. 3: (Color online) (a) Mean spiking rate �f� in terms of
D for � ∈ {0.06, 0.08, 0.1}. The curves exhibit a character-
istic minimum at an intermediate noise level. (b)–(d) Time
traces ϕ1(t) and ϕ2(t) for noise levels below, at and above
the resonant value. The remaining parameters are I0 = 0.95,
β = 4.2, � = 0.06.

the oscillatory solution gains the anti-phase space-time
symmetry ϕ1(t) = ϕ2(t+T/2), κ1(t) = κ2(t+T/2), where
T denotes the oscillation period [21].

Numerical results on ISR. – Inverse stochastic
resonance manifests itself as noise-mediated suppression
of oscillations, whereby the frequency of noise-perturbed
oscillations becomes minimal at a preferred noise level.
For system (1), we find such an effect to occur generically
for intermediate adaptivity rates, supporting multistabil-
ity between the stationary and the oscillatory solutions,
as described in the previous section. A family of curves
describing the dependence of the oscillation frequency on
noise variance �f�(D) for different � values is shown in
fig. 3. All the curves corresponding to � ≥ �min(β) show
a characteristic non-monotonous behavior, displaying a
minimum at the optimal noise intensity. For weaker noise,
the oscillation frequency remains close to the determinis-
tic one, whereas for much stronger noise, the frequency
increases above that of unperturbed oscillations. The dis-
played results are obtained by averaging over an ensemble
of 1000 different stochastic realizations, having excluded
the transient behavior, and having fixed a single set of ini-
tial conditions within the basin of attraction of the limit
cycle attractor. Nevertheless, we have verified that the
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qualitatively analogous results are obtained if for each
realization of stochastic process one selects a set of ran-
dom initial conditions lying within the stability basin of
the periodic solution. The suppression effect of noise de-
pends on the adaptivity rate, and is found to be more pro-
nounced for faster adaptivity. Indeed, for smaller �, ϕ(t)
series corresponding to the noise levels around the min-
imum of �f�(D) exhibit bursting-like behavior, whereas
for larger �, noise is capable of effectively quenching the
oscillations, such that the minimal observed frequency ap-
proaches zero.

The core of the described effect concerns switching
dynamics between the metastable states associated to
coexisting attractors of the deterministic version of sys-
tem (1). To illustrate this, in fig. 4 we have considered
the stationary distributions of one of the phase vari-
ables, P (ϕ), for the noise levels below, at and above the
minimum of the �f�(D), having fixed the remaining pa-
rameters to (β, �) = (4.2, 0.06). The distribution P (ϕ)
is characterized by two lateral peaks, reflecting the two
symmetry-related quasi-stationary states, and the area
around the central peak, corresponding to the oscillatory
mode. For small noise D = 0.0015, see fig. 4(a), and
very large noise D = 0.006, cf. fig. 4(c), the central
peak of P (ϕ) is expectedly prevalent compared to the two
lateral peaks. Nevertheless, the switching dynamics for

D = 0.0025, the noise level about the minimum of �f�(D),
is fundamentally different, and the corresponding distribu-
tion P (ϕ) in fig. 4(b) shows that the system spends much
more time in the quasi-stationary states than performing
the oscillations. The onset of ISR in the dynamics of fast
variables is accompanied by the increased bimodality of
the stationary distribution of the couplings, see fig. 4(d).

In order to observe the non-monotonous response of
the system’s frequency to noise, the geometry of the
phase space has to be asymmetrical with respect to the
separatrix between the coexisting attractors in such a
way that the limit cycle attractor lies much closer to
the separatrix than the stationary states. Such structure
of phase space gives rise to asymmetry in switching
dynamics, whereby at the preferred noise level around the
minimum of �f�(D), the transition rate from the stability
basin of the limit cycle attractor to that of stationary
states γLC→FP becomes much larger than the transition
rate in the inverse direction, γFP→LC . Figures 5(a)
and (b) corroborate that the dependences γLC→FP (D)
and γFP→LC(D) are qualitatively distinct: the former
displays a maximum at the resonant noise level, whereas
the latter just increases monotonously with noise. The
fact that ISR is more pronounced for higher adaptivity
rates is reflected in that the curve γLC→FP (D) for � = 0.1
lies substantially above that for � = 0.06, see fig. 5(a).
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Fig. 6: (Color online) Mean spiking rate �f� as a function of β
and D for fixed � = 0.05. The results evince the robustness of
the ISR effect with respect to different plasticity rules.

To understand why the interplay of adaptivity rate and
noise yields a stronger resonant effect for larger �, we have
investigated the susceptibility of the limit cycle attractor
to external perturbation. In particular, fig. 5(c) shows how
the determinant of the Jacobian calculated along the limit
cycle orbit change for � = 0.06 (blue line) and � = 0.1 (red
line), respectively. For smaller �, one may identify two
particular points where the determinant of the Jacobian
is the largest, i.e., where the impact of external pertur-
bation is felt the strongest. This implies that noise is
most likely to drive the systems trajectory away from the
limit cycle attractor around these two sections of the orbit,
which should lie closest to the boundary to the stability
basins of the stationary states. Such a physical picture
is maintained for larger �, but one should stress that the
sensitivity of limit cycle attractor to external perturbation
substantially increases along the entire orbit, cf. fig. 5(c).
In other words, faster adaptivity enhances the impact of
noise, contributing to a more pronounced ISR effect. This
point is addressed from another perspective in the next
section.

We also examine the robustness of ISR to different
modalities of the plasticity rule specified by β. Figure 6
shows how the average oscillation frequency changes with
β and D for fixed � = 0.05. The non-linear response to
noise, conforming to a resonant effect with a minimum of
oscillation frequency at an intermediate noise level, per-
sists in a wide range of β, essentially interpolating between
the Hebbian-like and the STDP-like adaptive dynamics.

Fast-slow analysis: role of plasticity in the reso-
nant effect. – Though ISR is observed for intermediate �,
here we show that the fast-slow analysis may still be
applied to demonstrate a peculiar feature of the mecha-
nism behind the resonant effect. In particular, we find
that the plasticity enhances the resonant effect by driv-
ing the fast flow dynamics toward the parameter domain
where the stationary state is a focus rather than a node. It
is well known that the response to noise in multi-timescale
systems qualitatively depends on the character of station-
ary states. Indeed, by using the sample-paths approach
and other advanced techniques, it has already been shown

that such systems may exhibit fundamentally different
scaling regimes with respect to noise variance and the
scale-separation ratio [27,28]. Moreover, the resonant ef-
fects may typically be expected in the case in which quasi-
stationary states are focuses [27], essentially because the
local dynamics around the stationary state then involves
an eigenfrequency.

Within the standard fast-slow analysis, one may ei-
ther consider the layer problem, defined on the fast
timescale, or the reduced problem, concerning the slow
timescale [29]. For the layer problem, the fast flow dynam-
ics ϕ1(t; κ1, κ2), ϕ2(t; κ1, κ2) is obtained by treating the
slow variables κ1 and κ2 as system parameters, whereas in
the case of the reduced problem, determining the dynamics
of the slow flow (κ1(t), κ2(t)) involves time-averaging over
the stable regimes of the fast flow of the layer problem.
The fast flow can in principle exhibit several attractors,
which means that multiple stable sheets of the slow flow
may emerge from the averaged dynamics on the different
attractors of the fast flow. Our key point concerns the dy-
namics of the slow flow, which requires us to first classify
the attractors of the fast flow.

The fast flow dynamics is given by

ϕ̇1 = I0 − sin ϕ1 + κ1 sin (ϕ2 − ϕ1),
ϕ̇2 = I0 − sin ϕ2 + κ2 sin (ϕ1 − ϕ2),

(2)

where κ1, κ2 ∈ [−1, 1] are considered as additional system
parameters. One may formally obtain (2) by setting � = 0
in (1) with D = 0. We find that the fast flow is monos-
table for most of the (κ1, κ2) values, exhibiting either a
stable equilibrium or a limit cycle attractor, see fig. 7(a).
In general, the fast flow admits either two or four fixed
points, and a more detailed physical picture, including
the associated bifurcations, is presented in [21]. The sta-
bility region of the oscillatory regime, outlined by the red
color, has been calculated by numerical continuation start-
ing from a stable periodic solution. Bistability between a
stable fixed point and a limit cycle is observed only in a
small area near the main diagonal κ1 = κ2. Within the
region featuring oscillatory regime, each periodic solution
obtained for (κ1, κ2) above the main diagonal has a Z2

symmetry-related counterpart below the diagonal. Typi-
cally, the periodic solutions emanate from SNIPER bifur-
cations, which make up two branches where either κ1 or
κ2 are almost constant and close to zero.

Using the results from the analysis of the layer problem,
our goal is to determine the vector fields corresponding
to the stable sheets of the slow flow. We have numeri-
cally obtained the dynamics of the slow flow by a standard
two-step approach [19,30]. First, for fixed values (κ1, κ2),
we have determined the time-averaged dynamics of the
fast flow (2), �ϕ2 − ϕ1�t = h(κ1, κ2), whereby the averag-
ing �·�t is carried out over a sufficiently long time interval,
having excluded the transient behavior. As already in-
dicated, such an average depends on the attractor of the
fast flow for the given (κ1, κ2). If the fast flow possesses
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Fig. 7: (Color online) (a) Attractors of the fast flow (2) in terms of κ1 and κ2, now treated as free parameters. The fast flow
is typically monostable, admitting either a stable fixed point (FP) or a stable limit cycle (LC), apart from a small region of
bistability (FP+LC) around the main diagonal. (b) Vector field of the slow flow (3) determined by considering only the stable
regimes of the fast flow for β = 4.2, I0 = 0.95. Within the yellow-highlighted regions, the stable fixed point of the fast flow is
a focus rather than the node. The displayed orbit (κ1(t), κ2(t)) corresponds to a switching episode from the oscillatory state
to the quasi-stationary state and back (evolution direction indicated by arrows). Panels (c) and (d) show the time traces of
phases and couplings during the switching episode. (e) Conditional probability pF (D) for � = 0.06 (blue squares) and � = 0.1
(red circles).

a stable fixed point, then �ϕ2 − ϕ1�t = ϕ∗
2 − ϕ∗

1, which
corresponds to the slow critical manifold of the system.
For (κ1, κ2) where the attractor of the fast flow is a peri-
odic solution, �ϕ2−ϕ1�t amounts to the time average over
the period. Averaging over a periodic attractor of the fast
flow is a standard approximation [30], quite natural when
describing the influence of oscillations in the fast flow to
the dynamics of the slow flow.

As the second step, the obtained time averages are sub-
stituted into the coupling dynamics

κ̇1 = �[−κ1 + sin(h(κ1, κ2) + β)],
κ̇2 = �[−κ2 + sin(−h(κ1, κ2) + β)].

(3)

The system (3) allows one to determine the vector fields
on the stable sheets of the slow flow, which correspond to
the attractors of the fast flow. In fig. 7(b), the vector fields
associated to each of the attractors (fixed point or limit
cycle) are presented within its respective (κ1, κ2) stability
region. In the small region of the (κ1, κ2)-plane support-
ing coexisting stable solutions of the fast flow, the corre-
sponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(κ1, κ2)
depends on the initial conditions.

Within the above framework, one is able to explain a
subtle influence of adaptivity on the mechanism behind
the ISR. To this end, in fig. 7(b) we have projected a
typical example of the (κ1(t), κ2(t)) trajectory of the full
system (1) corresponding to a switching episode between
the metastable states associated to a limit cycle attractor
and a stable equilibrium of the deterministic system, see
the time traces in figs. 7(c), (d). One observes that for
the oscillating regime, the coupling dynamics always re-
mains close to the SNIPER bifurcation of the fast flow, cf.
fig. 7(a), which makes the oscillations quite susceptible to
noise. Recall that the fast flow is typically monostable.
Thus, switching events in the full system are naturally
associated to the fast flow undergoing the SNIPER bifur-
cation: either a direct one, leading from the oscillatory to
the stationary regime, or the inverse one, unfolding in the

opposite direction. For (κ1, κ2) values immediately after
the SNIPER bifurcation toward the quiescent state, the
stable equilibrium of the fast flow is a node. Nevertheless,
for the noise levels where the effect of ISR is most pro-
nounced, we find that the coupling dynamics guides the
system into the region where the equilibrium is a stable
focus rather than a node, see the yellow highlighted re-
gion in fig. 7(b). We have verified that this feature is a
hallmark of the resonant effect by numerically calculating
the conditional probability pF that the events of crossing
the SNIPER bifurcation are followed by the system’s orbit
visiting the (κ1, κ2) region where the stable equilibrium is
a focus. The pF (D) dependences for two characteristic �
values at fixed β = 4.2 are plotted in fig. 7(e). One learns
that pF (D) has a maximum for the resonant noise levels,
where the corresponding curve f(D) displays a minimum.
In other words, the fact that the coupling dynamics drives
the fast flow to the focus-associated regions of the (κ1, κ2)-
plane results in trapping the phase variables for a longer
time in the quasi-stationary (quiescent) state. Small noise
below the resonant values is insufficient to drive the system
to this region, whereas for too large a noise, the stochastic
fluctuations completely take over, washing out the quasi-
stationary regime. Note that for the faster adaptivity rate,
the facilitatory role of coupling becomes more pronounced,
as evinced by the fact that the curve pF (D) for � = 0.1
lies above the one for � = 0.06.

Discussion. – In the present paper, we have demon-
strated a novel generic scenario for the onset of ISR, which
involves an interplay between the local excitability fea-
ture and the adaptive dynamics of the couplings. For
the example of two active rotators with coupling plastic-
ity, we have shown that the spiking frequency correspond-
ing to emergent oscillations varies non-monotonously with
noise, displaying a minimum at a preferred noise level.
Though the model per se is simplified, the underlying
paradigm is relevant for combining the two core features
of typical neuronal systems. The effect derives from the
multi-timescale structure of the system, whereby the scale
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separation between the local and the weight dynamics is
tuned via adaptivity rate. Within a range of intermedi-
ate adaptivity rates, the deterministic dynamics of the full
system exhibits multistability between the limit cycle at-
tractors and the stable equilibria, each appearing in pairs
due to the systems invariance to Z2 symmetry. Applying
the standard fast-slow analysis, we have shown that the
resonant effect with noise is in fact plasticity-enhanced:
plasticity promotes the impact of noise by guiding the fast
flow toward the parameter domain where the stable equi-
libria become focuses instead of nodes. This mechanism
increases the trapping efficiency by which the noise is able
to deviate the systems trajectory from the metastable os-
cillatory states to the non-spiking regime. For faster adap-
tivity, the resonant effect is found to be more pronounced
in a sense that the frequency dependence on noise shows
deeper minima. Our scenario has proven to persist in a
wide range of plasticity rules, interpolating between the
cases analogous to Hebbian learning and STDP.

In earlier studies, observation of ISR has mostly been
confined to Type-II neurons with intrinsic bistable dynam-
ics, as in case of Hodgkin-Huxley or Morris-Lecar neurons
near the subcritical Hopf bifurcation [3,6–9]. Even in case
of networks, the macroscopic ISR effect has been linked
to dynamical features of single units, only being modu-
lated by the details of synaptic dynamics and the network
topology [10]. In contrast to that, our results show that
ISR may not rely on bistability of local dynamics, but
may rather emerge due to the facilitatory role of coupling,
here reflected in the interplay of multiscale dynamics and
plasticity. Another distinction from most of the previous
studies is that our scenario concerns Type-I units. For
this class of systems, it is known that the dependence of
the oscillating frequency of a single unit with noise is just
monotonous [3,12], so that the resonant effect can only
be observed in case of coupled units. So far, the latter
case has been analyzed only once [5], but the underlying
scenario is different from ours insofar as it involves static,
rather than the adaptive couplings, and the effect per se
is confined to a narrow region of the parameter space.

Quite recently, the onset of ISR has been reported for a
single Fitzhugh-Nagumo oscillator [12], which is the first
observation of the effect for Type-II neuron model in the
vicinity of the supercritical Hopf bifurcation. Similar to
the scenario we elaborated, ISR there also derives from
the multiscale structure of the system. However, the ac-
tual mechanism behind the effect is associated to phase-
sensitive (non-uniform) excitability of a limit cycle orbit
conforming to relaxation oscillations [12]. These findings
and the results here suggest that ISR may indeed provide
a generic means of controlling and optimizing the firing
rate in multi-timescale systems, which can be applied to
neuronal activity, calcium signaling and other types of cell
dynamics.
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Inverse stochastic resonance in a system of active rotators with
adaptive coupling
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Inverse stochastic resonance is a phenomenon where an oscillating system shows a nonlinear response
to noise, displaying a minimal oscillation frequency at an intermediate noise level. Such an effect has been
indicated to play important functional roles in neuronal systems, contributing to reduction of spiking frequency
in the absence of neuromodulators or to triggering of the on-off tonic spiking activity. We demonstrate a
novel generic scenario for such an effect in a multi-timescale system, considering the example of emergent
oscillations in two adaptively coupled active rotators with excitable local dynamics. The fast-slow analysis we
carry out indicates that the plasticity plays a facilitatory role by guiding the fast-flow dynamics to parameter
domains where the stable equilibria change character from nodes to focuses, which ultimately enhances the
influence of noise. The described scenario persists for different plasticity rules, underlying its robustness in
light of potential application to neuronal systems.
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We report preliminary results from unprecedented near edge X-ray absorption fine structure action 
spectroscopy of a gas-phase nanosolvated peptide ion. Doubly protonated substance P (Arg-Pro-
Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2) cations have been isolated in a linear ion trap and 
submitted to soft X-ray synchrotron radiation by means of coupling a commercial quadrupole ion 
trap mass spectrometer (Thermo Finningan LTQ XL) to the PLEIADES beamline at the SOLEIL 
synchrotron radiation facility (France) [1]. X-ray activation tandem mass spectra have been 
recorded for different photon energies, scanned over C, N and O K-edge ionization thresholds.   

Figure 1 shows the photofragment ions yield corresponding to a total water loss (a normalized 
integral yield of all fragments corresponding to the loss of one or more water molecules) from the 
doubly protonated substance P cation nanosolvated with 11 water molecules [M+2H+11H2O]2+ 
upon soft X-ray irradiation. We observed that a resonant excitation of an O 1s electron to an 
unoccupied molecular orbital, following by a resonant Auger decay, induces an increased water 
detachment from the precursor.   
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Fig.1. Photofragment ions yield that corresponds to a range m/z 674-766 (an integral yield of all 
fragments corresponding to the loss of one or more water molecules) from a doubly protonated nanosolvated 

substance P cation precursor [M+2H+11H2O]2+ (m/z 773.5). 
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