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Noncommutativity and Nonassociativity of Closed Bosonic
String on T-dual Toroidal Backgrounds

B. Nikolíc* and D. Obríc

In this article we consider closed bosonic string in the presence of constant
metric and Kalb-Ramond field with one non-zero component, Bx y = H z,
where field strength H is infinitesimal. Using Buscher T-duality procedure we
dualize along x and y directions and using generalized T-duality procedure
along z direction imposing trivial winding conditions. After first two
T-dualizations we obtain Q flux theory which is just locally well defined, while
after all three T-dualizations we obtain nonlocal R flux theory. Origin of
non-locality is variable �V defined as line integral, which appears as an
argument of the background fields. Rewriting T-dual transformation laws in
the canonical form and using standard Poisson algebra, we obtained that Q
flux theory is commutative one and the R flux theory is noncommutative and
nonassociative one. Consequently, there is a correlation between non-locality
and closed string noncommutativity and nonassociativity.

1. Introduction

Coordinate noncommutativity means that there exists minimal
possible length, which imposes natural UV cutoff. Idea of coor-
dinate noncommutativity is very old. Heisenberg suggested coor-
dinate noncommutativity to solve the problem of the occurrence
of infinite quantities before renormalization procedure was de-
veloped and accepted. The first scientific paper considering this
subject appeared 1947[1] where construction of discrete Lorentz
invariant space-time is presented. Later in the period of 1980s A.
Connes developed noncommutative geometry as a generalization
of the standard commutative geometry.[2]

Noncommutativity became again interesting for particle physi-
cists when the paper[3] appeared. In this article it is shown us-
ing propagators that open string endpoints in the presence of
the constant metric and Kalb-Ramond field become noncom-
mutative. D-brane on which the string endpoints are forced
to move becomes noncommutative manifold. After this article
many articles[4] appeared addressing the same subject but us-
ing different approaches - Fourier expansion, canonical methods,
solving of boundary conditions etc.
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In the last two articles of [4] themethod
of solving of boundary conditions is
presented. The basic idea is that open
string boundary condition is treated as
canonical constraint. Investigating the
consistency of the canonical constraint
we obtained the σ dependent form of
the boundary condition. Further, we
can proceed twofold: to introduce Dirac
brackets or solve the constraint. Solving
the constraint, we obtained the initial
coordinate as a linear combination of
the effective coordinate and momenta.
Consequently, initial coordinates are
noncommutative and the main contri-
bution to noncomutativity parameter
comes from Kalb-Ramond field as it was
expected.

Following the result of the article[5] it
can be proven that gauge fields “live” at

the open string endpoints. Consequently, many interesting pa-
pers concerning non-commutative Yang-Mills theories and their
renormalisability appeared.[6] In the papers[7] cross sections for
some decays, allowed in noncommutative Yang-Mills theories
and forbidden in commutative ones, are calculated, which offers
a possibility of the experimental check of the noncommutativity
idea and further, indirectly, idea of strings.
It is obvious that closed bosonic string in the presence of

constant background fields remains commutative. There are no
boundaries and, consequently, boundary conditions constraining
string dynamics. In the case of open string we obtained initial
coordinate in the form of linear combination of effective coordi-
nates and momenta using boundary condition. That is achieved
in the closed string case[8] using T-duality procedure and coordi-
nate dependent background.
T-duality as a fundamental feature of string theory,[9–15] unex-

perienced by point particle, makes that there is no physical dif-
ference between string theory compactified on a circle of radius
R and circle of radius 1/R. Buscher T-dualization procedure[10]

represents a mathematical frame in which T-dualization is
realized. If the background fields do not depend on some co-
ordinates then those coordinates are isometry directions. Con-
sequently, that symmetry can be localized replacing ordinary
world-sheet derivatives ∂± by covariant ones D±xμ = ∂±xμ + v

μ
±,

where v
μ
± are gauge fields. In order to make T-dual theory has the

same number of degrees of freedom, the new termwith Lagrange
multipliers is added to the action which forces the gauge fields to
be unphysical degrees of freedom. Because of the shift symme-
try, using gauge freedom we fix initial coordinates. Variation of
this gauge fixed action with respect to the Lagrange multipliers
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produces initial action and with respect to the gauge fields pro-
duces T-dual action.
Standard Buscher T-dualization was applied in closed string

case in the papers.[8,16–19] In Ref. [16] authors consider 3-torus
in the presence of constant metric and Kalb-Ramond field with
one nonzero component Bxy = Hz, where field strength H is in-
finitesimal. They systematically apply Buscher procedure and, af-
ter two T-dualizations along isometry directions, obtain theory
with Q flux which is noncommutative. In the calculations they
used nontrivial boundary conditions (winding conditions). The
result is that T-dual closed string coordinates are noncommuta-
tive for the same values of parameters σ = σ̄ with noncommuta-
tivity parameter proportional to field strength H and N3, winding
number for z coordinate.
But, except this standard Buscher procedure, there is a gen-

eralized Buscher procedure dealing with background fields
depending on all coordinates. The generalized procedure was
applied to the case of bosonic string moving in the weakly
curved background[20–22] and in the casewheremetric is quadratic
in coordinates and Kalb-Ramond field is linear function of
coordinates.[23] The generalized procedure enables us to make
T-dualization in mentioned cases along arbitrary subset of coor-
dinates.
Double space is one picturesque framework for representation

of T-duality. Double space is introduced two to three decades
ago.[24–28] It is spanned by double coordinates ZM = (xμ, yμ)
(μ = 0, 1, 2, . . . , D − 1), where xμ are the coordinates of the
initial theory and yμ are T-dual coordinates. In this space
T-dualization is represented as O(d, d) transformation.[29–33]

Permutation of the appropriate subsets of the initial and
T-dual coordinates is interpreted as partial T-dualization[34,35]

expanding Duff ’s idea.[24] The newly invented intrinsic
noncommutativity[36] is related to double space. Intrinsic
noncommutativity exists in the constant background case
because it is considered within double space framework.
In this article we will deal with closed bosonic string propagat-

ing in the constant metric and linear dependent Kalb-Ramond
field with Bxy = Hz, the same background as in [16]. This con-
figuration is known in literature as torus with H-flux. As in
the Ref. [16] we will use approximation of diluted flux, which
means that in all calculations we keep constant and linear terms
in infinitesimal field strength H. Transformation laws, relations
which connect initial and T-dual variables, we will write in canon-
ical form expressing initial momenta in terms of the T-dual co-
ordinates. Unlike Ref. [16], except T-dualization along two isom-
etry directions, we will make one step more and T-dualize along
z coordinate using generalized T-dualization procedure. During
dualization procedure we will use trivial boundary (winding) con-
ditions.
Transformation laws in canonical form enable us to express

sigma derivative of the T-dual coordinate as a linear combination
of the initial momenta and coordinates. Because initial theory is
geometrical locally and globally, its coordinates and canonically
conjugated momenta satisfy standard Poisson algebra. This fact
means that we can calculate the Poisson brackets of the T-dual
coordinates using technical instruction given in subsection 4.1.
After T-dualizations along isometry directions (along x and

y) we obtain the same background as in Ref. [16] but, obtained
Q flux theory, which is still locally well defined, is commuta-

tive. This is a consequence of the imposed trivial winding condi-
tions.Having inmind the generalized T-duality procedure,[20,21,23]

T-dualization along z coordinate produces R flux nonlocal theory
because it depends on the variable �V which is defined as line
integral. Calculating Poisson brackets of the T-dual coordinates
we obtain two nonzero Poisson brackets and show that there is a
correlation between non-locality and closed string noncommuta-
tivity.
The form of noncommutativity is such that it exists when ar-

guments of the coordinates are different, σ �= σ̄ . That is another
difference with respect to the result of Ref. [16] but there is no
contradiction because the origins of noncommutativity are differ-
ent. In this article non-locality is related with noncommutativity
of R flux theory under trivial winding conditions while in Ref. [16]
it is about noncommutativity of Q flux theory under nontrivial
winding conditions.
From the noncommutativity relations it follows that Jacobi

identity is broken i.e. nonassociativity occurs. Nonassociativity
parameter, R flux, is proportional to the field strength H. Us-
ing generalized T-duality[20,21,23] we obtain the concrete form of
nonassociativity from string dynamics. Similar as noncommu-
tativity, discovery of nonassociativity pushes the scientists to ex-
plore the effects of nonassociativity in the field of renormalis-
ability of φ4 theory[37] as well as formulation of nonassociative
gravity.[38]

At the end we add an appendix containing some conventions
used in the paper.

2. Bosonic String Action and Choice of Background
Fields

The action of the closed bosonic string in the presence of
the space-time metric Gμν (x), Kalb-Ramond antisymmetric field
Bμν (x), and dilaton scalar field �(x) is given by the following
expression[9]

S = κ

∫
	

d2ξ
√−g

×
{[

1
2
g αβGμν (x)+ εαβ

√−g
Bμν (x)

]
∂αxμ∂βxν + �(x)R(2)

}
,

(2.1)

where 	 is the world-sheet surface parameterized by ξα = (τ, σ )
[(α = 0, 1), σ ∈ (0, π )], while the D-dimensional space-time is
spanned by the coordinates xμ (μ = 0, 1, 2, . . . , D − 1). We de-
note intrinsic world sheetmetric with gαβ , and the corresponding
scalar curvature with R(2).
In order to keep conformal symmetry on the quantum level

background fields must obey space-time field equations[39]

βG
μν ≡ Rμν − 1

4
Bμρσ Bν

ρσ + 2Dμaν = 0, (2.2)

βB
μν ≡ DρBρ

μν − 2aρBρ
μν = 0, (2.3)

β� ≡ 2πκ
D − 26

6
− R − 1

24
Bμρσ Bμρσ − Dμaμ + 4a2 = c,

(2.4)
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where c is an arbitrary constant. The function β� could be a con-
stant because of the relation

DνβG
νμ + ∂μβ� = 0. (2.5)

Further, Rμν and Dμ are Ricci tensor and covariant derivative with
respect to the space-time metric Gμν , while

Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν, aμ = ∂μ�, (2.6)

are field strength for Kalb-Ramond field Bμν and dilaton gradient,
respectively. Trivial solution of these equations is that all three
background fields are constant. This case was pretty exploited in
the analysis of the open string noncommutativity.
The less trivial case would be a case where some background

fields are coordinate dependent. If we choose Kalb-Ramond field
to be linearly coordinate dependent and dilaton field to be con-
stant then the first equation (2.2) becomes

Rμν − 1
4
Bμρσ Bν

ρσ = 0. (2.7)

The field strength Bμνρ is constant and, if we assume that it is in-
finitesimal, thenwe can takeGμν to be constant in approximation
linear in Bμνρ . Consequently, all three space-time field equations
are satisfied. Especially, the third one is of the form

2πκ
D − 26

6
= c, (2.8)

which enables us to work in arbitrary number of space-time di-
mensions.
In this article we will work in D = 3 dimensions with the fol-

lowing choice of background fields

Gμν =

⎛
⎜⎝
R2
1 0 0

0 R2
2 0

0 0 R2
3

⎞
⎟⎠ , Bμν =

⎛
⎜⎝

0 Hz 0

−Hz 0 0

0 0 0

⎞
⎟⎠ , (2.9)

where Rμ(μ = 1, 2, 3) are radii of the compact dimensions. This
choice of background fields is known in geometry as torus with
flux (field strength) H.[16] Our choice of infinitesimal H can be
understood in terms of the radii as that(

H
R1R2R3

)2

= 0. (2.10)

This approximation is known in literature as the approximation
of diluted flux. Physically, this means that we work with the torus
which is sufficiently large. Consequently, we can rescale the co-
ordinates

xμ �−→ xμ

Rμ

, (2.11)

which simplifies the form of the metric

Gμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ . (2.12)

The final form of the closed bosonic string action is

S = κ

∫
	

d2ξ∂+xμ�+μν∂−xν

= κ

∫
	

d2ξ
[
1
2
(∂+x∂−x + ∂+y∂−y + ∂+z∂−z)

+ ∂+xHz∂−y − ∂+yHz∂−x
]
, (2.13)

where ∂± = ∂τ ± ∂σ is world-sheet derivative with respect to the
light-cone coordinates ξ± = 1

2 (τ ± σ ), �±μν = Bμν ± 1
2Gμν and

xμ =

⎛
⎜⎝
x
y
z

⎞
⎟⎠ . (2.14)

Let us note that we do not write dilaton term because its
T-dualization is performed separately within quantum formal-
ism and here will be skipped.

3. T-dualization of the Bosonic Closed String
Action

In this section we will perform T-dualization along three direc-
tions, one direction at time. Our goal is to find the relations con-
necting initial variables with T-dual ones called transformation
laws. Using transformation laws we will find noncommutativity
and nonassociativity relations.

3.1. T-dualization Along x Direction – from Torus with H Flux to
the Twisted Torus

Let us perform standard Buscher T-dualization[10] of action (2.13)
along x direction. Note that x direction is an isometry direction
whichmeans that action has a global shift symmetry, x−→ x+ a.
In order to perform Buscher procedure, we have to localize this
symmetry introducing covariant world-sheet derivatives instead
of the ordinary ones

∂±x −→ D±x = ∂±x + v±, (3.1)

where v± are gauge fields which transform as δv± = −∂±a. Be-
cause T-dual action must have the same number of degrees of
freedom as initial one, we have to make these fields v± be un-
physical degrees of freedom. This is accomplished by adding fol-
lowing term to the action

Sadd = κ

2

∫
	

d2ξ y1(∂+v− − ∂−v+), (3.2)

where y1 is a Lagrange multiplier. After gauge fixing, x = cons t .,
the action gets the form

Sf ix = κ

∫
d2ξ

[
1
2
(v+v− + ∂+y∂−y + ∂+z∂−z)+ v+Hz∂−y

− ∂+yHzv− + 1
2
y1(∂+v− − ∂−v+)

]
. (3.3)
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From the equations of motion for y1 we obtain that field
strength for the gauge field v± is equal to zero

F+− = ∂+v− − ∂−v+ = 0, (3.4)

which gives us the solution for gauge field

v± = ∂±x. (3.5)

Inserting this solution for gauge field into gauge fixed action (3.3)
we obtain initial action given by Eq. (2.13). Equations of motion
for v± will lead to the T-dual action. Varying the gauge fixed action
(3.3) with respect to the gauge field v+ we get

v− = −∂−y1 − 2Hz∂−y, (3.6)

while on the equation of motion for v− it holds

v+ = ∂+y1 + 2Hz∂+y. (3.7)

Inserting relations (3.6) and (3.7) into expression for gauge
fixed action (3.3), keeping terms linear in H, we obtain the
T-dual action

xS = κ

∫
	

d2ξ∂+(x X)μx�+μν∂−(x X)ν, (3.8)

where subscript x denotes quantity obtained after T-dualization
along x direction and

x Xμ =

⎛
⎜⎝
y1
y

z

⎞
⎟⎠ . (3.9)

Further we have the T-dual background fields

x�+μν = xBμν + 1
2 xGμν, xBμν = 0,

xGμν =

⎛
⎜⎝

1 2Hz 0

2Hz 1 0

0 0 1

⎞
⎟⎠ . (3.10)

Obtained background fields (3.10) define that what is known
in literature as twisted torus geometry. String theory after one
T-dualization is geometrically well defined globally and locally or,
simply, theory is geometrical (fluxH takes the role of connection).
Combining the solutions of equations of motion for La-

grange multiplier (3.5) and for gauge fields, (3.6) and (3.7), we
get the transformation laws connecting initial, xμ, and T-dual,
x Xμ, coordinates

∂±x ∼= ±∂±y1 ± 2Hz∂±y, (3.11)

where∼= denotes T-duality relation. Themomentum πx is canon-
ically conjugated to the initial coordinate x. Using the initial
action (2.13) we get

πx = δS
δẋ

= κ(ẋ − 2Hzy ′), (3.12)

where Ȧ ≡ ∂τ A and A′ ≡ ∂σ A. From transformation law (3.11) it
is straightforward to obtain

ẋ ∼= y ′
1 + 2Hzy ′, (3.13)

which, inserted in the expression for momentum πx, gives trans-
formation law in canonical form

πx
∼= κy ′

1. (3.14)

3.2. From Twisted Torus to Non-geometrical Q Flux

In this subsection we will continue the T-dualization of
action (3.8) along y direction. After x and y T-dualization we ob-
tain the structure which has local geometrical interpretation but
global omissions. Such structure is known in literature as non-
geometry.
We repeat the procedure from the previous subsection and

form the gauge fixed action

Sf ix = κ

∫
	

d2ξ
[
1
2
(∂+y1∂−y1 + v+v− + ∂+z∂−z)+ ∂+y1Hzv−

+ v+Hz∂−y1 + 1
2
y2(∂+v− − ∂−v+)

]
. (3.15)

From the equation of motion for Lagrange multiplier y2

∂+v− − ∂−v+ = 0 −→ v± = ∂±y, (3.16)

gauge fixed action becomes initial one (3.8). Varying the gauge
fixed action (3.15) with respect to the gauge fields we get

v± = ±∂±y2 − 2Hz∂±y1. (3.17)

Inserting these expressions for gauge fields into gauge fixed ac-
tion, keeping the terms linear in H, gauge fixed action is driven
into T-dual action

xy S = κ

∫
d2ξ∂+(xy X)μxy�+μν∂−(xy X)ν, (3.18)

where

(xy X)μ =

⎛
⎜⎝
y1
y2
z

⎞
⎟⎠ ,

xy�+μν = xy Bμν + 1
2 xyGμν =

⎛
⎜⎝

1
2 −Hz 0

Hz 1
2 0

0 0 1
2

⎞
⎟⎠ . (3.19)

Explicit expressions for background fields are

xy Bμν =

⎛
⎜⎝

0 −Hz 0

Hz 0 0

0 0 0

⎞
⎟⎠ = −Bμν, xyGμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

(3.20)
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Let us note that background fields obtained after two
T-dualizations are similar to the geometric background of
torus with H flux, but they should be considered only locally.
Their global properties are non-trivial and because of that the
term “non-geometry” is introduced.
Combining the equations ofmotion for Lagrangemultiplier y2

and for gauge fields v±, we obtain T-dual transformation laws

∂±y ∼= ±∂±y2 − 2Hz∂±y1. (3.21)

The y component of the initial canonical momentum πy is a vari-
ation of the initial action with respect to the ẏ

πy = δS
δ ẏ

= κ( ẏ + 2Hzx′). (3.22)

Using T-dual transformation laws (3.21) we easily get

ẏ ∼= y ′
2 − 2Hzẏ1, (3.23)

while from the transformation law (3.11), at zeroth order in H,
it holds x′ ∼= ẏ1. Inserting last two expression into πy we obtain
transformation law in canonical form

πy
∼= κy ′

2. (3.24)

After two T-dualizations along isometry directions, in the approx-
imation of the diluted flux (keeping just terms linear in H), ac-
cording to the canonical forms of the transformation laws (3.14)
and (3.24), we see that T-dual coordinates y1 and y2 are still com-
mutative. This is a consequence of the simple fact that variables
of the initial theory, which is geometrical one, satisfy standard
Poisson algebra

{
xμ(σ ), πν (σ̄ )

} = δμ
νδ(σ − σ̄ ), {xμ, xν} = {

πμ, πν

} = 0,

(3.25)

where

πμ =

⎛
⎜⎝

πx

πy

πz

⎞
⎟⎠ . (3.26)

3.3. From Q to R Flux – T-dualization Along z Coordinate

In this subsection we will finalize the process of T-dualization
dualizing along remaining z direction. For this purpose we will
use generalized T-dualization procedure.[20,21,23] The result is a
theory which is not well defined even locally and is known in
literature as theory with R-flux.
We start with the action obtained after T-dualizations along x

and y directions (3.18). The Kalb-Ramond field (3.20) depends on
z and it seems that it is not possible to perform T-dualization. Let

us assume that Kalb-Ramond field linearly depends on all coor-
dinates, Bμν = bμν + 1

3 Bμνρxρ and check if some global transfor-
mation can be treated as isometry one. We start with global shift
transformation

δxμ = λμ, (3.27)

and make a variation of action

δS = κ

3
Bμνρλ

ρ

∫
	

d2ξ∂+xμ∂−xν

= 2k
3
Bμνρλ

ρεαβ

∫
	

d2ξ [∂α(xμ∂βxν )− xμ(∂α∂βxν )]. (3.28)

The second term vanishes explicitly, while the first term is sur-
face one. Consequently, in the case of constant metric and lin-
early dependent Kalb-Ramond field, global shift transformation
is an isometry transformation. This means that we can make
T-dualization along z coordinate using generalized T-dualization
procedure.
The generalized T-dualization procedure is presented in detail

in Ref. [20]. In order to localize shift symmetry of the action (3.18)
along z direction we introduce covariant derivative

∂±z −→ D±z = ∂±z+ v±, (3.29)

which is a part of the standard Buscher procedure. The novelty is
introduction of the invariant coordinate as line integral

zinv =
∫
P
dξαDαz

=
∫
P
dξ+D+z+

∫
P
dξ−D−z = z(ξ )− z(ξ0)+ �V, (3.30)

where

�V =
∫
P
dξαvα =

∫
P
(dξ+v+ + dξ−v−). (3.31)

Here ξ and ξ0 are the current and initial point of the world-sheet
line P . At the end, as in the standard Buscher procedure, in order
to make v± to be unphysical degrees of freedom we add to the
action term with Lagrange multiplier

Sadd = κ

2

∫
	

d2ξ y3(∂+v− − ∂+v−). (3.32)

The final form of the action is

S̄ = κ

∫
	

d2ξ
[

− Hzinv(∂+y1∂−y2 − ∂+y2∂−y1)

+ 1
2
(∂+y1∂−y1 + ∂+y2∂−y2 + D+zD−z)

+1
2
y3(∂+v− − ∂−v+)

]
. (3.33)
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Because of existing shift symmetry we fix the gauge, z(ξ ) = z(ξ0),
and then the gauge fixed action takes the form

Sf ix = κ

∫
	

d2ξ
[

− H�V (∂+y1∂−y2 − ∂+y2∂−y1)

+1
2
(∂+y1∂−y1 + ∂+y2∂−y2 + v+v−)

+ 1
2
y3(∂+v− − ∂−v+)

]
. (3.34)

From the equation of motion for Lagrange multiplier y3 we
obtain

∂+v− − ∂−v+ = 0 =⇒ v± = ∂±z, �V = �z, (3.35)

which drives back the gauge fixed action to the initial action
(3.18). Varying the gauge fixed action (3.34) with respect to the
gauge fields v± we get the following equations of motion

v± = ±∂±y3 − 2β∓, (3.36)

where β± functions are defined as

β± = ±1
2
H(y1∂∓y2 − y2∂∓y1). (3.37)

The β± functions are obtained as a result of the variation of the
term containing �V

δv

(
−2κ

∫
d2ξεαβH∂α y1∂β y2�V

)

= κ

∫
d2ξ

(
β+δv+ + β−δv−

)
, (3.38)

using partial integration and the fact that ∂±V = v±. Inserting
the relations (3.36) into the gauge fixed action, keeping linear
terms in H, we obtain the T-dual action

xyzS = κ

∫
	

d2ξ∂+xyzXμ
xyz�+μν∂−xyzXν, (3.39)

where

xyzXμ =

⎛
⎜⎝
y1
y2
y3

⎞
⎟⎠ , xyz�+μν = xyzBμν + 1

2 xyzGμν, (3.40)

xyzBμν =

⎛
⎜⎝

0 −H� ỹ3 0

H� ỹ3 0 0

0 0 0

⎞
⎟⎠ , xyzGμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

(3.41)

Here we introduced double coordinate ỹ3 defined as

∂±y3 ≡ ±∂± ỹ3. (3.42)

Let us note that �V stands beside field strength H, which impli-
cates that, according to the diluted flux approximation, we calcu-
late �V in the zeroth order in H

�V =
∫

dξ+∂+y3 −
∫

dξ−∂−y3. (3.43)

Having this into account it is clear why we defined double co-
ordinate ỹ3 as in Eq. (3.42). Also it is useful to note that pres-
ence of �V , which is defined as line integral, represents the
source of non-locality of the T-dual theory. the result of the
three T-dualization is a theory with R flux as it is known in
the literature.
Combining the equations of motion for Lagrange multiplier

(3.35), v± = ∂±z, and equations of motion for gauge fields (3.36),
we obtain the T-dual transformation law

∂±z ∼= ±∂±y3 − 2β∓. (3.44)

Adding transformation laws for ∂±z and ∂−zwe get the transfor-
mation law for ż

ż ∼= y ′
3 + H(y1y ′

2 − y2y ′
1), (3.45)

which enables us to write down the transformation law in the
canonical form

y ′
3

∼= 1
κ

πz − H(xy ′ − yx′). (3.46)

Here we used the expression for the canonical momentum of the
initial theory (2.13)

πz = δS
δż

= κ ż. (3.47)

4. Noncommutativity and Nonassociativity Using
T-duality

In the open string case noncommutativity comes from the
boundary conditions which makes that coordinates xμ depend
both on the effective coordinates and on the effectivemomenta.[4]

Effective coordinates and momenta do not commute and, conse-
quently, coordinates xμ do not commute. In the closed bosonic
string case the logic is the same but the execution is different.
Using T-duality we obtained transformation laws, (3.11), (3.21)
and (3.44), which relate T-dual coordinates with the initial coordi-
nates and their canonically conjugated momenta. In this section
we will use these relations to get noncommutativity and nonas-
sociativity relations.

4.1. Noncommutativity Relations

Let us start with the Poisson bracket of the σ derivatives of two
arbitrary coordinates in the form

{A′(σ ), B′(σ̄ )} = U ′(σ )δ(σ − σ̄ )+ V (σ )δ′(σ − σ̄ ), (4.1)
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where δ′(σ − σ̄ ) ≡ ∂σ δ(σ − σ̄ ). In order to find the form of the
Poisson bracket

{A(σ ), B(σ̄ )},

we have to find the form of the Poisson bracket

{�A(σ, σ0),�B(σ̄ , σ̄0)},

where

�A(σ, σ0) =
∫ σ

σ0

dxA′(x) = A(σ )− A(σ0),

�B(σ̄ , σ̄0) =
∫ σ̄

σ̄0

dxB′(x) = B(σ̄ )− B(σ̄0). (4.2)

Now we have

{�A(σ, σ0), �B(σ̄ , σ̄0)}

=
∫ σ

σ0

dx
∫ σ̄

σ̄0

dy
[
U ′(x)δ(x − y)+ V (x)δ′(x − y)

]
. (4.3)

After integration over y we get

{�A(σ, σ0),�B(σ̄ , σ̄0)} =
∫ σ

σ0

dx
{
U ′(x)

[
θ (x − σ̄0)− θ (x − σ̄ )

]
+ V (x)

[
δ(x − σ̄0)− δ(x − σ̄ )

]}
, (4.4)

where function θ (x) is defined as

θ (x) =
∫ x

0
dηδ(η) = 1

2π

[
x + 2

∑
n≥1

1
n
sin(nx)

]

=

⎧⎪⎨
⎪⎩
0 if x = 0

1/2 if 0 < x < 2π.

1 if x = 2π

(4.5)

Integrating over x using partial integration finally we obtain

{�A(σ, σ0),�B(σ̄ , σ̄0)} = U(σ )[θ (σ − σ̄0)− θ (σ − σ̄ )]

−U(σ0)[θ (σ0 − σ̄0)− θ (σ0 − σ̄ )]−U(σ̄0)[θ (σ − σ̄0)− θ (σ0 − σ̄0)]

+U(σ̄ )[θ (σ − σ̄ )− θ (σ0 − σ̄ )]+ V (σ̄0)[θ (σ − σ̄0)− θ (σ0 − σ̄0]

−V (σ̄ )[θ (σ − σ̄ )− θ (σ0 − σ̄ )]. (4.6)

From the last expression, using the right-hand sides of the ex-
pressions in Eq. (4.2), we extract the desired Poisson bracket

{A(σ ), B(σ̄ )} = −[U(σ )−U(σ̄ )+ V (σ̄ )]θ (σ − σ̄ ). (4.7)

Let us rewrite the canonical forms of the transformation laws,
(3.14), (3.24) and (3.46), in the following way

y ′
1

∼= 1
κ

πx, y ′
2

∼= 1
κ

πy , y ′
3

∼= 1
κ

πz − H(xy ′ − yx′). (4.8)

In order to find the Poisson brackets between T-dual coordinates
yμ we will use the algebra of the coordinates and momenta of
the initial theory (3.25). It is obvious that only nontrivial Poisson
brackets will be {y1(σ ), y3(σ̄ )} and {y2(σ ), y3(σ̄ )}.
Let us first write the corresponding Poisson brackets of the

sigma derivatives of T-dual coordinates yμ using (4.8)

{y ′
1(σ ), y

′
3(σ̄ )} ∼= 2

κ
Hy ′(σ )δ(σ − σ̄ )+ 1

κ
Hy(σ )δ′(σ − σ̄ ), (4.9)

{y ′
2(σ ), y

′
3(σ̄ )} ∼= − 2

κ
Hx′(σ )δ(σ − σ̄ )− 1

κ
Hx(σ )δ′(σ − σ̄ ),

(4.10)

while all other Poisson brackets are zero. We see that these Pois-
son brackets are of the form (4.1), so, we can apply the result (4.7).
Consequently, we get

{y1(σ ), y3(σ̄ )} ∼= −H
κ

[
2y(σ )− y(σ̄ )

]
θ (σ − σ̄ ), (4.11)

{y2(σ ), y3(σ̄ )} ∼= H
κ

[
2x(σ )− x(σ̄ )

]
θ (σ − σ̄ ), (4.12)

where function θ (x) is defined in (4.5). Let us note that these two
Poisson brackets are zero when σ = σ̄ and/or field strength H
is equal to zero. But if we take that σ − σ̄ = 2π then we have
θ (2π ) = 1 and it follows

{y1(σ + 2π ), y3(σ )} ∼= −H
κ

[
4πNy + y(σ )

]
, (4.13)

{y2(σ + 2π ), y3(σ )} ∼= H
κ

[
4πNx + x(σ )

]
, (4.14)

where Nx and Ny are winding numbers defined as

x(σ + 2π )− x(σ ) = 2πNx, y(σ + 2π )− y(σ ) = 2πNy . (4.15)

From these relations we can see that if we choose such σ for
which x(σ ) = 0 and y(σ ) = 0 then noncommutativity relations
are proportional to winding numbers. On the other side, for
winding numbers which are equal to zero there is still noncom-
mutativity between T-dual coordinates.

4.2. Nonassociativity

In order to calculate Jacobi identity of the T-dual coordinates
we first have to find Poisson brackets {y1(σ ), x(σ̄ )} as well as
{y2(σ ), y(σ̄ )}. We start with

{�y1(σ, σ0), x(σ̄ )} =
{∫ σ

σ0

dηy ′
1(η), x(σ̄ )

}
, (4.16)

and then use the T-dual transformation for x-direction in canon-
ical form

πx
∼= κy ′

1. (4.17)
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From these two equations it follows

{�y1(σ, σ0), x(σ̄ )} ∼= 1
κ

{∫ σ

σ0

dηπx(η), x(σ̄ )
}

, (4.18)

which, using the standard Poisson algebra, produces

{�y1(σ, σ0), x(σ̄ )} ∼= − 1
κ

[
θ (σ − σ̄ )− θ (σ0 − σ̄ )

]

=⇒ {y1(σ ), x(σ̄ )} ∼= − 1
κ

θ (σ − σ̄ ). (4.19)

The relation {y2(σ ), y(σ̄ )} can be obtained in the same way. Be-
cause the transformation law for y-direction is of the same form
as for x-direction, the Poisson bracket is of the same form

{y2(σ ), y(σ̄ )} ∼= − 1
κ

θ (σ − σ̄ ). (4.20)

Now we can calculate Jacobi identity using noncommutativity re-
lations (4.11) and (4.12) and above two Poisson brackets

{y1(σ1), y2(σ2), y3(σ3)} ≡ {y1(σ1), {y2(σ2), y3(σ3)}}
+{y2(σ2), {y3(σ3), y1(σ1)}} + {y3(σ3), {y1(σ1), y2(σ2)}}

∼= −2H
κ2

[
θ (σ1 − σ2)θ (σ2 − σ3)

+ θ (σ2 − σ1)θ (σ1 − σ3)+ θ (σ1 − σ3)θ (σ3 − σ2)
]
. (4.21)

Jacobi identity is nonzero which means that theory with R-flux is
nonassociative. For σ2 = σ3 = σ and σ1 = σ + 2π we get

{y1(σ + 2π ), y2(σ ), y3(σ )} ∼= 2H
κ2

. (4.22)

From the last two equations, general form of Jacobi identity and
Jacobi identity for special choice of σ ’s, we see that presence of
the coordinate dependent Kalb-Ramond field is a source of non-
commutativity and nonassociativity.

5. Conclusion

In this article we have considered the closed bosonic string
propagating in the three-dimensional constant metric and Kalb-
Ramond field with just one nonzero component Bxy = Hz. This
choice of background is in accordance with consistency condi-
tions in the sense that all calculations were made in approxi-
mation linear in Kalb-Ramond field strength H. Geometrically,
this settings corresponds to the torus with H flux. Then we per-
formed standard Buscher T-dualization procedure along isom-
etry directions, first along x and then along y direction. At the
end we performed generalized T-dualization procedure along z
direction and obtained nonlocal theory with R flux. Using the re-
lations between initial and T-dual variables, called T-dual trans-
formation laws, in canonical form we find the noncommutativity
and nonassociativity relations between T-dual coordinates.
After T-dualization along x direction we obtained theory em-

bedded in geometry known in literature as twisted torus geom-

etry. The relation between initial and T-dual variables is triv-
ial, πx

∼= κy ′
1, where πx is x component of the canonical mo-

mentum of the initial theory and y1 is coordinate T-dual to x.
Consequently, flux H takes a role of connection, obtained the-
ory is globally and locally well defined and commutative, because
the coordinates and their canonically conjugated momenta sat-
isfy the standard Poisson algebra (3.25).
The second T-dualization, along y direction, produces nonge-

ometrical theory, in literature known as Q flux theory. Themetric
is the same as initial one and Kalb-Ramond field have the same
form as initial up to minus sign. But, this theory has just local
geometrical interpretation. We obtained that, in approximation
linear in H, the transformation law in canonical form is again
trivial, πy

∼= κy ′
2, where πy is y component od the canonical mo-

mentum of the initial theory and y2 is coordinate T-dual to y.
As a consequence of the standard Poisson algebra (3.25), we con-
clude that Q flux theory is still commutative. This result seems to
be opposite from the result of the reference [16] where in detailed
calculation it is shown that Q flux theory is noncommutative. The
difference is in the so called boundary condition i.e. winding con-
dition. In the Ref. [16] they imposed nontrivial winding condition
whichmixes the coordinates and their T-dual partners (condition
given in Eq. (C.18) of Ref. [16]) and the result is noncommutativ-
ity. In this article the trivial winding condition is imposed on x
and y coordinates. The consequence is that Q flux theory is com-
mutative. But as it is written in Ref. [16] on page 42, “a priori other
reasonings could as well be pursued”.
T-dualizing along coordinate zusing themachinery of the gen-

eralized T-dualization procedure[20,21,23] we obtain the nonlocal
theory (theory with R flux) and nontrivial transformation law
in canonical form. Non-locality stems from the fact that back-
ground fields are expressed in terms of the variable �V which
is defined as line integral. On the other side, dependence of the
Kalb-Ramond field on z coordinate produces the β±(x, y) func-
tions and nontrivial transformation law for πz. Consequently, co-
ordinate dependent background gives non-locality and, further,
nonzero Poisson brackets of the T-dual coordinates.We can claim
that there is a correlation between non-locality (R-flux theory)
and closed string noncommutativity and nonassociativity. In ad-
dition, nonzero Poisson bracket implies nonzero Jacobi identity
which is a signal of nonassociativity.
From the expressions (4.11), (4.12) and (4.21) it follows that

parameters of noncommutativity and nonassociativity are pro-
portional to the field strength H. That means that closed string
noncommuatativity and nonassociativity are consequence of the
fact that Kalb-Ramond field is coordinate dependent, Bxy = Hz,
where H is an infinitesimal parameter according to the approxi-
mation of diluted flux. Using T-duality and trivial winding condi-
tions we obtained noncommutativity relations. The noncommu-
tativity relations are zero if σ = σ̄ because in noncommuatativity
relations function θ (σ − σ̄ ) is present, which is zero if its argu-
ment is zero. This is also at the first glance opposite to the result
of Ref. [16], but, having in mind that origin of noncommutativ-
ity is not same, this difference is not surprising. If we made a
round in sigma choosing σ → σ + 2π and σ̄ → σ , because of
θ (2π ) = 1, we obtained nonzero Poisson brackets. From the rela-
tions (4.13) and (4.14) we see that noncommutativity exists even
in the case when winding numbers are zero, noncommutativity
relations still stand unlike the result in [16]. Consequently, we can
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speak about some essential noncommutativity originating from
non-locality.
We showed that in ordinary space coordinate dependent back-

ground is a sufficient condition for closed string noncommutativ-
ity. Some papers[36] show that noncommutativity is possible even
in the constant background case. But that could be realized using
the double space formalism. At the zeroth order the explanation fol-
lows from the fact that transformation law in canonical form is of
the form πμ

∼= κy ′
μ, where yμ is T-dual coordinate. Forming dou-

ble space spanned by ZM = (xμ, yμ), we obtained noncommua-
tive (double) space. In literature this kind of noncommutativity
is called intrinsic one.

Appendix: Light-Cone Coordinates

In the paper we often use light-cone coordinates defined as

ξ± = 1
2
(τ ± σ ). (A.1)

The corresponding partial derivatives are

∂± ≡ ∂

∂ξ± = ∂τ ± ∂σ . (A.2)

Two dimensional Levi-Civita εαβ is chosen in (τ, σ ) basis as
ετσ = −1. Consequently, in the light-cone basis the form of ten-
sor is

εl c =
(

0 1
2− 1

2 0

)
. (A.3)

The flat world-sheet metric is of the form in (τ, σ ) and light-cone
basis, respectively

η =
(
1 0
0 −1

)
, ηl c =

( 1
2 0
0 1

2

)
. (A.4)
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