Научном већу Института за физику у Београду

Предмет: Молба за покретање поступка за избор у звање истраживач приправник

Молим Научно веће Института за физику у Београду да у складу са Правилником о поступку и начину вредновања и квантитативном исказивању научно-истраживачких резултата истраживача покрене поступак за мој избор у звање истраживач приправник.

У прилогу достављам:

- 1. Мишљење руководиоца пројекта са предлогом чланова комисије за избор у звање
- 2. Стручну биографију
- 3. Преглед научне активности
- 4. Списак публикација
- 5. Уверење о завршеним додипломским студијама на Физичком факултету Универзитета у Београду
- Уверење о завршеним мастер студијама на Физичком факултету Универзитета у Београду
- 7. Уверење о положеним испитима на додипломским студијама на Физичком факултету Универзитета у Београду
- 8. Уверење о положеним испитима на мастер студијама на Физичком факултету Универзитета у Београду
- 9. Уверење о уписаним докторским студијама

У Београду,

Сања Ђурђић

универзитет у београду ИНСТИТУТ ЗА ФИЗИКУ БЕОГРАД институт од националног значаја за републику србију

Прегревица 118, 11080 Земун - Београд, Република Србија Телефон: +381 11 3713000, Факс: +381 11 3162190, www.ipb.ac.rs ПИБ: 100105980, Матични број: 07018029, Текући рачун: 205-66984-23

Научном већу Института за физику у Београду

Предмет: Мишљење руководиоца пројекта о избору Сање Ђурђић у звање истраживач приправник

Сања Ђурђић је студент докторских студија физике, а тезу ради под менторством др Ненада Лазаревића. Биће ангажована на пројекту основних истраживања Министарства просвете, науке и технолошког развоја Републике Србије III 45018 ("Наноструктурни мултифункционални материјали и нанокомпозити") у Центру за чврсто стање и нове материјале. Докторска теза кандидаткиње ће бити везана за Раманову спектроскопију јако корелисаних електронских система. У досадашњем раду, кандидаткиња је објавила један научни чланак у врхунском међународном часопису Phys. Rev. B. С обзиром да испуњава све предвиђене услове у складу са Правилником о поступку, начину вредновања и квантитативном исказивању научноистраживачких резултата Министарства просвете, науке и технолошког развоја, сагласан сам са покретањем поступка за избор Сање Ђурђић у звање истраживач приправник.

За састав комисије за избор Сање Ђурђић у звање истраживач приправник предлажем:

- (1) др Ненад Лазаревић, виши научни сарадник, Институт за физику у Београду
- (2) др Маја Шћепановић, научни саветник, Институт за физику у Београду
- (3) др Борислав Васић, научни сарадник, Институт за физику у Београду
- (3) др Божидар Николић, доцент, Физички факултет Универзитет у Београду

Академик Воран В. Поповић Руковрдилац пројекта ИИИ 45018

Стручна биографија Сање Ђурђић

Сања Ђурђић је рођења у Београду, Србија, 1993. године, где је завршила Земунску гимназију 2012. године, као носилац Вукове дипломе. Исте године уписује Физички факултет у Београду, где основне студије на смеру Примењена и компјутерска физика завршава 2016. године, са просечном оценом 9.57/10.00. Након тога, на истом факултету уписује мастер студије из области кондензоване материје. У оквиру пројекта 2015-2-ES01-KA107-022648 програма ERASMUS+ мастер тезу под називом "*Компаративна студија поларизоване оптичке емисије из поларних и неполарних квантних тачака у GaN/InGaN наножицама*" ради на Техничком Универзитету у Мадриду, под менторством др Жарка Гачевића, и на Самосталном Универзитету у Мадриду, под менторством др Снежане Лазић. Мастер рад је одбранила 5. јула 2017. године, чиме завршава мастер студије са просечном оценом 10.00/10.00.

У фебруару 2018. свој научно-истраживачки рад наставља на Институту за физику у Београду, у Центру за чврсто стање и нове материјале у групи академика Зорана В. Поповића, под менторством др Ненада Лазаревића. У септембру 2018. године публикује први рад у часопису категорије M21 (Phys. Rev. B).

Докторске студије на Физичком факултету у Београду уписује у октобру 2018. године, под менторством др Ненада Лазаревића. У оквиру свог доктората ће се бавити Рамановом спектроскопијом јако-корелисаних електронских 2D система.

Преглед научне активности Сање Ђурђић

Експериментални део своје мастер тезе Сања Ђурђић је радила на Техничком Универзитету у Мадриду, под менторством др Жарка Гачевића, и на Самосталном Универзитету у Мадриду, под менторством др Снежане Лазић. Рад на Техничком Универзитету у Мадриду је обухватао нарастање наножица са квантним тачкама методом нарастања молекулским снопом и селекцију одговарајућих наножица коришћењем скенирајуће електронске микроскопије. На Самосталном Универзитету у Мадриду су рађена микрофотолуминисцентна мерења одабраних наножица. Показано је да је степен линеарности већи за оптичку поларизацију која долази из квантних тачака неполарних равну, у односу на квантне тачке поларних равних, као и да постоји разлика у степену линеарности у зависности од усмерености емисије дуж поларне осе. Најважнији резултат овог рада је индикација да линеарност оптичке емисије из квантних тачка поларне равни расте са порастом енергије (таласне дужине).

У току рада у Центру за чврсто стање и нове материјале, Сања Ђурђић се бавила динамиком решетке 2D материјала, користећи методу Раманове спектроскопије. Пажња је усмерена на 2D материјале због њихових јединствених карактеристика и могућности развоја функционалних Ван дер Валс хетероструктура, са посебна освртом на материјал CrI₃ због могућности изучавања магнетних монослојева. CrI₃ је феромагнетни полупроводник који пролази кроз фазни прелаз на око 220 К. Резултати Раман спектроскопије су омогућили идентификацију фононских модова карактеристичних за нискотемпературску и за високотемпературску кристалну структуру. У овом раду је показано да се фазни прелаз одиграва на темпратури од 180 К, што је ниже у односу на претходне експерименталне резултате, као и да не постоји коегзистенција фаза у широком температурском опсегу, као што је то у био случај у претходним пријављеним резултатима.

Током докторских студија, Сања Ђурђић ће наставити проучавање динамике решетке у јако-корелисаним 2D системима, коришћењем метода Раман спектроскопије.

Списак публикација Сање Ђурђић

1. *S. Djurdjić-Mijin*, et al. *Lattice dynamics and phase transition in CrI3 single crystals*, Phys. Rev. B 98, 104307, (2018),

 УНИВЕРЗИТЕТ У БЕОГРАДУ ФИЗИЧКИ ФАКУЛТЕТ UNIVERSITY OF BELGRADE FACULTY OF PHYSICS

 Студентски трг 12, 11000 Београд, П.П. 44, Тел: 011-7158-151, Факс: 011-3282-619

 Studentski trg 12, 11000 Belgrade, Serbia, POB 44, Tel; +381-11-7158-151, Fax: +381-11-3282-619

 www.ff.bg.ac.rs

Број 2292016 Београд, 05. 09. 2016. године

На основу члана 161. Закона о општем управном поступку и члана 4. Правилника о садржају и облику образаца јавних исправа које издају више школе, факултети и универзитети, по захтеву, Ђурђић (Горан) Сање издаје се следеће

УВЕРЕЊЕ

БУРБИЋ (ГОРАН) САЊА рођен- а 29. 09. 1993. године у Београду, Савски венац, Република Србија уписан-а школске 2012/2013. године на четворогодишње основне академске студије, Студијски програм: **Примењена и компјутерска физика**, положио-ла је испите предвиђене наставним планом и програмом и завршио-ла студије на Физичком факултету 15. јула 2016. године, са средњом оценом 9,57 (девет и 57/100) у току студија и постигнутим укупним бројем 242 ЕСПБ (двестачетрдесетдва ЕСП бодова) и тиме стекао-ла високу стручну спрему и стручни назив

ДИПЛОМИРАНИ ФИЗИЧАР

Уверење се издаје на лични захтев, а служи као доказ о завршеној високој стручној спреми до издавања дипломе.

Д Е К А Н ФИЗИЧКОГ ФАКУЛТЕТА

Проф. др Јаблан Дојчиловић

Република Србија Универзитет у Београду Физички факултет Број индекса: 2012/3109 Датум: 12.02.2018.

На основу члана 29. Закона о општем управном поступку и службене евиденције издаје се

УВЕРЕЊЕ О ПОЛОЖЕНИМ ИСПИТИМА

Сања Ђурђић, име једног родитеља Горан, ЈМБГ 2909993715064, рођена 29.09.1993. године, Београд, општина Београд-Савски Венац, Република Србија, уписана школске 2012/13. године, дана 15.07.2016. године завршила је основне академске студије на студијском програму Примењена и компјутерска физика, у трајању од четири године, обима 240 (двеста четрдесет) ЕСПБ бодова, и стекла стручни назив дипломирани физичар. Током студија положила је испите из следећих предмета:

Р.бр.	Шифра	Шифра Назив предмета		ЕСПБ	Фонд часова**	Датум
1.	09ПФ1005	Лабораторија физике 1	10 (десет)	3	I:(1+0+2)	29.01.2013.
2.	09ПФ1003	Обрада резултата мерења	10 (десет)	6	I:(2+3+0)	29.01.2013.
3.	09ПФ1051	Математика 1Ц	9 (девет)	8	I:(4+4+0)	31.01.2013.
4.	09ПФ1004	Енглески језик 1	9 (девет)	4	I:(2+2+0)	24.01.2013.
5.	09ПФ1001	Физичка механика	8 (осам)	9	I:(4+3+0)	18.02.2013.
6.	09ПФ1011	Лабораторија физике 2	10 (десет)	3	II:(1+0+2)	21.06.2013.
7.	09ПФ1009	Програмирање	10 (десет)	4	II:(2+2+0)	21.06.2013.
8.	09ПФ1007	Основи хемије	9 (девет)	4	II:(2+1+0)	30.08.2013.
9.	09ПФ1119	Популаризација физике	10 (десет)	2	II:(2+0+0)	19.09.2013.
10.	09ПФ1008	Математика 2Ц	8 (осам)	8	II:(4+4+0)	19.07.2013.
11.	09ПФ1006	Молекуларна физика и термодинамика	8 (осам)	9	II:(4+3+0)	08.07.2013.
12.	09ПФ2015	Нумерички методи у физици	9 (девет)	5	III:(2+2+0)	11.02.2014.
13.	09ПФ1120	Изабрана поглавља нанофизике	10 (десет)	2	III:(2+0+0)	27.06.2014.
14.	09ПФ2013	Електромагнетизам	10 (десет)	9	III:(4+3+0)	20.06.2014.
15.	09ПФ2052	Математика 3Ц	9 (девет)	10	III:(4+5+0)	10.03.2014.
16.	09ПФ1118	Рачунари у обради слике и звука	10 (десет)	2	III:(2+0+0)	17.01.2014.
17.	09ПФ2016	Лабораторија физике 3	10 (десет)	3	III:(1+0+2)	29.01.2014.
18.	09ПФ2014	Основи математичке физике	10 (десет)	5	III:(2+2+0)	25.08.2014.
19.	09ПФ2021	Лабораторија физике 4	10 (десет)	3	IV:(1+0+2)	30.06.2014.
20.	09ПФ2019	Класична теоријска физика 1	7 (седам)	5	IV:(3+2+0)	06.10.2014.
21.	09ПФ1010	Енглески језик 2	10 (десет)	4	IV:(2+2+0)	24.06.2014.
22.	09ПФ2018	Таласи и оптика	10 (десет)	9	IV:(4+3+0)	20.06.2014.
23.	09ПФ2053	Објектно - орјентисано програмирање	10 (десет)	5	IV:(2+0+2)	19.06.2014.
24.	09ПФ1111	Практикум из математике и физике	10 (десет)	2	V:(2+0+0)	24.07.2015.
25.	09ПФ3004	Електроника за физичаре	10 (десет)	9	V:(4+2+3)	16.07.2015.
26.	09ПФ3032	Термотехника	10 (десет)	4	V:(2+2+0)	23.06.2015.
27.	09ПФ3025	Увод у информационе системе	10 (десет)	4	V:(2+0+2)	16.01.2015.
28.	09ПФ3024	Квантна физика	10 (десет)	5	V:(3+2+0)	06.02.2015.
29.	09ПФ3022	Класична теоријска физика 2	9 (девет)	5	V:(2+2+0)	24.07.2015.
30	09ПФ0047	Геометријска оптика и оптички инструменти	10 (лесет)	4	VI:(2+1+1)	18.06.2015.

Овлашћено лице факултета IIIl

Страна 1 од 2

Република Србија Универзитет у Београду Физички факултет Број индекса: 2012/3109 Датум: 12.02.2018.

Р.бр.	Шифра	Назив предмета	Оцена	ЕСПБ	Фонд часова**	Латум
31.	09ПФ0046	Базе података	10 (70007)	-	111 (2. 2. 0)	y
32.	09ПФ3123	Програмирање интернет страница	10 (decer)	4	V1:(2+2+0)	06.07.2015
33.	09ПФ3029	Основи атомске физике	ПО (десет)	4	VI:(2+0+2)	04.02.2015
34.	09ПФ3031	Електриция маран о	10 (десет)	9	VI:(4+2+3)	22.06.2015
35	091703028	И политична мерења	9 (девет)	5	VI:(2+0+3)	24.09.2015
26	00000000	Класична теоријска физика 3	10 (десет)	5	VI:(2+2+0)	01.07.2015
30.	091104037	Квантна оптика	8 (осам)	6	VII:(2+2+0)	19 02 2016
37.	0911Ф4036	Основи физике јонизованих гасова	10 (десет)	4	VII·(2+0+2)	22.01.2016
38.	09пффјич	Физика језгра и честица Ц	8 (ocam)	9	VII:(4+2+2)	22.01.2010
39.	09ПФАКУС	Акустика	10 (Jacar)	1	VII.(4+2+3)	23.06.2016.
40.	09пфксуф	Компјутерске симулације у физици	10 (десет)	4	VII:(2+2+0)	16.06.2016.
41.	09ПФФЧСТ	Физика чврстог стања Ц	10 (десет)	5	VII:(2+2+0)	13.07.2016.
42.	09ПФ0044	Метрологија и стандарлизација	10 (десет)	7	VIII:(4+0+3)	23.06.2016.
43.	09пфосрт	Основа ваничавана ваничација	10 (десет)	7	VIII:(4+0+3)	13.07.2016.
44	Одифлирс	Пистове рачунарске технике	10 (десет)	4	VIII:(2+2+0)	17.06.2016.
15	оотфире	дистрибуирани рачунарски системи	10 (десет)	4	VIII:(2+2+0)	15.06.2016
43.	09104032	Квантна статистичка физика	10 (десет)	6	VIII:(4+2+0)	19 02 2016
40.	О9пфинте	Интернет технологије	10 (десет)	4	VIII:(2+2+0)	15.07.2016

** - Фонд часова је у формату (предавања+вежбе+остало).

Укупно остварено 242 ЕСПБ. Општи успех: 9,57 (девет и 57/100)

Овлашћено лице факултета

Страна 2 од 2

Универзитет у Београду Физички факултет Број индекса: 2016/7038 Број: 2202017 Датум: 10.07.2017.

На основу члана 161 Закона о општем управном поступку ("Службени лист СРЈ", бр. 33/97, 31/2001 и "Службени гласник РС", бр. 30/2010) и службене евиденције, Универзитет у Београду - Физички факултет, издаје

У*ВЕРЕ*ЬЕ

Сања Ђурђић

име једної родишеља Горан, ЈМБГ 2909993715064, рођена 29.09.1993. године, Беоїрад, ойшшина Беоїрад-Савски Венац, Рейублика Србија, уйисана школске 2016/17. године, дана 05.07.2017. године завршила је масшер академске сшудије на сшудијском йроїраму Теоријска и ексйерименшална физика, у шрајању од једне године, обима 60 (шездесеш) ЕСПБ бодова, са йросечном оценом 10,00 (десеш и 00/100).

На основу наведеног издаје јој се ово уверење о стеченом високом образовању и академском називу мастер физичар.

Декан Декан Кроф. др Јаблан Дојчиловић

Република Србија Универзитет у Београду Физички факултет Број индекса: 2016/7038 Датум: 12.02.2018. Универзитет у Београду

На основу члана 29. Закона о општем управном поступку и службене евиденције издаје се

УВЕРЕЊЕ О ПОЛОЖЕНИМ ИСПИТИМА

Сања Ђурђић, име једног родитеља Горан, ЈМБГ 2909993715064, рођена 29.09.1993. године, Београд, општина Београд-Савски Венац, Република Србија, уписана школске 2016/17. године, дана 05.07.2017. године завршила је мастер академске студије на студијском програму Теоријска и експериментална физика, у трајању од једне године, обима 60 (шездесет) ЕСПБ бодова, и стекла академски назив мастер физичар. Током студија положила је испите из следећих предмета:

Р.бр.	Шифра	Назив предмета	мета Оцена		Фонд часова**	Латум
1.	15МТФВКТЧС	Виши курс теорије чврстог стања	10/>	10		j
2.	15МТФБИО	Биофизика	ТО (десет)	10	1:(6+4+0)	23.01.2017.
3	15МТФЛР	Лиционали вол	10 (десет)	10	I:(6+4+0)	24.01.2017.
4	15MTAHCD	дипломски рад	10 (десет)	20	II:(0+0+20)	05.07.2017.
4.	тэмтфиср	истраживачки студијски рад	П.	20	II:(0+0+20)	23.06.2017

* - еквивалентиран/признат испит.
 ** - Фонд часова је у формату (предавања+вежбе+остало).

Укупно остварено 60 ЕСПБ. Општи успех: 10,00 (десет и 00/100)

Овлашћено лице факултета

Страна 1 од 1

Република Србија Универзитет у Београду Физички факултет Д.Бр.2018/8017 Датум: 11.10.2018. године

На основу члана 161 Закона о општем управном поступку и службене евиденције издаје се

УВЕРЕЊЕ

Ђурђић (Горан) Сања, бр. индекса 2018/8017, рођена 29.09.1993. године, Београд, Београд-Савски Венац, Република Србија, уписана школске 2018/2019. године, у статусу: финансирање из буџета; тип студија: докторске академске студије; студијски програм: Физика.

Према Статуту факултета студије трају (број година): три. Рок за завршетак студија: у двоструком трајању студија.

Ово се уверење може употребити за регулисање војне обавезе, издавање визе, права на дечији додатак, породичне пензије, инвалидског додатка, добијања здравствене књижице, легитимације за повлашћену вожњу и стипендије.

вышћено лице факултета central

Република Србија Универзитет у Београду Физички факултет Д.Бр.2018/8017 Датум: 11.10.2018. године

На основу члана 161 Закона о општем управном поступку и службене евиденције издаје се

УВЕРЕЊЕ

Бурђић (Горан) Сања, бр. индекса 2018/8017, рођена 29.09.1993. године, Београд, Београд-Савски Венац, Република Србија, уписана школске 2018/2019. године, у статусу: финансирање из буџета; тип студија: докторске академске студије; студијски програм: Физика.

Према Статуту факултета студије трају (број година): три. Рок за завршетак студија: у двоструком трајању студија.

Ово се уверење може употребити за регулисање војне обавезе, издавање визе, права на дечији додатак, породичне пензије, инвалидског додатка, добијања здравствене књижице, легитимације за повлашћену вожњу и стипендије.

ашћено лице факултета

Lattice dynamics and phase transition in CrI₃ single crystals

S. Djurdjić-Mijin,¹ A. Šolajić,¹ J. Pešić,¹ M. Šćepanović,¹ Y. Liu (刘育),² A. Baum,^{3,4} C. Petrovic,²

N. Lazarević,¹ and Z. V. Popović^{1,5}

¹Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade,

Pregrevica 118, 11080 Belgrade, Serbia

²Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

³Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany

⁴Fakultät für Physik E23, Technische Universität München, 85748 Garching, Germany

⁵Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

(Received 9 July 2018; published 18 September 2018)

The vibrational properties of CrI₃ single crystals were investigated using Raman spectroscopy and were analyzed with respect to the changes of the crystal structure. All but one mode are observed for both the low-temperature $R\bar{3}$ and the high-temperature C2/m phase. For all observed modes the energies and symmetries are in good agreement with DFT calculations. The symmetry of a single layer was identified as $p\bar{3}1/m$. In contrast to previous studies we observe the transition from the $R\bar{3}$ to the C2/m phase at 180 K and find no evidence for coexistence of both phases over a wide temperature range.

DOI: 10.1103/PhysRevB.98.104307

I. INTRODUCTION

Two-dimensional layered materials have gained attention due to their unique properties, the potential for a wide spectrum of applications, and the opportunity for the development of functional van der Waals heterostructures. CrI₃ is a member of the chromium-trihalide family which are ferromagnetic semiconductors [1]. Recently they have received significant attention as candidates for the study of magnetic monolayers. The experimental realization of CrI₃ ferromagnetic monolayers [1] motivated further efforts towards their understanding. CrI_3 features electric field controlled magnetism [2] as well as a strong magnetic anisotropy [3,4]. With the main absorption peaks lying in the visible part of the spectrum, it is a great candidate for low-dimensional semiconductor spintronics [5]. In its ground state, CrI₃ is a ferromagnetic semiconductor with a Curie temperature of 61 K [1,6] and a band gap of 1.2 eV [6]. It was demonstrated that the magnetic properties of CrI_3 mono- and bilayers can be controlled by electrostatic doping [2]. Upon cooling, CrI₃ undergoes a phase transition around 220 K from the high-temperature monoclinic (C2/m) to the low-temperature rhombohedral $(R\bar{3})$ phase [3,7]. Although the structural phase transition is reported to be first order, it was suggested that the phases may coexist over a wide temperature range [3]. Raman spectroscopy can be of use here due to its capability to simultaneously probe both phases in a phase-separated system [8–10].

A recent theoretical study predicted the energies of all Raman active modes in the low-temperature and high-temperature structure of CrI_3 suggesting a near degeneracy between the A_g and B_g modes in the monoclinic (C2/m) structure. Their energies match the energies of E_g modes in the rhombohedral $(R\bar{3})$ structure [7].

In this article we present an experimental and theoretical Raman scattering study of CrI_3 lattice dynamics. In both phases all but one of the respective modes predicted by

symmetry were observed. The energies for all modes are in good agreement with the theoretical predictions for the assumed crystal symmetry. Our data suggest that the firstorder transition occurs at $T_{\rm s} \approx 180$ K without evidence for phase coexistence over a wide temperature range.

II. EXPERIMENT AND NUMERICAL METHOD

The preparation of the single crystal CrI₃ sample used in this study is described elsewhere [11]. The Raman scattering experiment was performed using a Tri Vista 557 spectrometer in backscattering micro-Raman configuration with a 1800/1800/2400 groves/mm diffraction grating combination. The 532 nm line of a Coherent Verdi G solid state laser was used for excitation. The direction of the incident light coincides with the crystallographic c axis. The sample was oriented so that its principal axis of the $R\bar{3}$ phase coincides with the x axis of the laboratory system. A KONTI CryoVac continuous helium flow cryostat with a 0.5-mm-thick window was used for measurements at all temperatures under high vacuum (10^{-6} mbar). The sample was cleaved in air before being placed into the cryostat. The obtained Raman spectra were corrected by the Bose factor and analyzed quantitatively by fitting Voigt profiles to the data whereby the Gaussian width $\Gamma_{\text{Gauss}} = 1 \text{ cm}^{-1}$ reflects the resolution of the spectrometer.

The spin polarized density functional theory (DFT) calculations have been performed in the Quantum Espresso (QE) software package [12] using the Perdew-Burke-Ernzehof (PBE) exchange-correlation functional [13] and PAW pseudopotentials [14,15]. The energy cutoffs for the wave functions and the charge density were set to be 85 and 425 Ry, respectively, after convergence tests. For *k*-point sampling, the Monkhorst-Pack scheme was used with a $8 \times 8 \times 8$ grid centered around the Γ point. Optimization of the atomic positions in the unit cell was performed until the interatomic forces were smaller than 10^{-6} Ry/Å. To treat the van der Waals (vdW) interactions a Grimme-D2 correction [16] is used in order to include long-ranged forces between the layers, which are not properly captured within LDA or GGA functionals. This way, the parameters are obtained more accurately, especially the interlayer distances. Phonon frequencies were calculated at the Γ point using the linear response method implemented in QE. The phonon energies are compiled in Table III together with the experimental values. The eigenvectors of the Raman active modes for both the low- and high-temperature phase are depicted in Fig. 5 of the Appendix.

III. RESULTS AND DISCUSSION

CrI₃ adopts a rhombohedral $R\bar{3}$ (C_{3i}^2) crystal structure at low temperatures and a monoclinic C2/m (C_{2h}^3) crystal structure at room temperature [3], as shown in Fig. 1. The main difference between the high- and low-temperature crystallographic space groups arises from different stacking sequences with the CrI₃ layers being almost identical. In the rhombohedral structure the Cr atoms in one layer are placed above the center of a hole in the Cr honeycomb net of the two adjacent layers. When crossing the structural phase transition at $T_{\rm s}$ to the monoclinic structure the layers are displaced along the *a* direction so that every fourth layer is at the same place as the first one. The interatomic distances, mainly the interlayer distance, and the vdW gap, are slightly changed by the structural transition. The crystallographic parameters for both phases are presented in Table I. The numerically obtained values are in good agreement with reported x-ray diffraction data [11].

The vibrational properties of layered materials are typically dominated by the properties of the single layers composing the crystal. The symmetry of a single layer can be described by one of the 80 diperiodic space groups (DG) obtained by

FIG. 1. Schematic representation of (a) the low-temperature $R\bar{3}$ and (b) the high-temperature C2/m crystal structure of CrI₃. Black lines represent unit cells.

TABLE I. Calculated and experimental [11] parameters of the crystallographic unit cell for the low-temperature $R\bar{3}$ and high-temperature C2/m phase of CrI₃.

	Space	e group R3	Space group C2/m		
T (K)	Calc.	Expt. [11]	Calc.	Expt. [11]	
a (Å)	6.87	6.85	6.866	6.6866	
b (Å)	6.87	6.85	11.886	11.856	
c (Å)	19.81	19.85	6.984	6.966	
α (deg)	90	90	90	90	
β (deg)	90	90	108.51	108.68	
γ (deg)	120	120	90	90	

lifting translational invariance in the direction perpendicular to the layer [17]. In the case of CrI₃, the symmetry analysis revealed that the single layer structure is fully captured by the $p\bar{3}1/m$ (D_{3d}^1) diperiodic space group DG71, rather than by $R\bar{3}2/m$ as proposed in Ref. [7].

FIG. 2. (a) Compatibility relations for the CrI₃ layer and the crystal symmetries. Raman spectra of (b) the low-temperature $R\bar{3}$ and (c) the high-temperature C2/m crystal structure measured in parallel (open squares) and crossed (open circles) polarization configurations at 100 and 300 K, respectively. Red and blue solid lines represent fits of Voigt profiles to the experimental data.

	Space group <i>R</i> 3	Diper	Findic space group $p\bar{3}1/m$	Space group: C2/m		
AtomsIrreducible representationsCr (6c) $A_g + A_u + E_g + E_u$		Atoms	Irreducible representations	Atoms	$\frac{\text{Irreducible representations}}{A_g + A_u + 2B_g + 2B_u}$	
		Cr (2 <i>c</i>)	$A_{2g} + A_{2u} + E_g + E_u$	Cr (4 <i>g</i>)		
I (18 <i>f</i>)	$3A_g + 3A_u + 3E_g + 3E_u$	I $(6k)$	$2A_{1g} + A_{1u} + A_{2g} + 2A_{2u} + 3E_g + 3E_u$	I (4 <i>i</i>) I (8 <i>j</i>)	$2A_g + 2A_u + B_g + B_u$ $3A_g + 3A_u + 3B_g + 3B_u$	
$^{1}E_{g} = \begin{pmatrix} c \\ d \\ e \end{pmatrix}$	$A_{g} = \begin{pmatrix} a \\ & a \\ & b \end{pmatrix}$ $\begin{pmatrix} d & e \\ -c & f \\ f \end{pmatrix}^{2} E_{g} = \begin{pmatrix} d & -c & -f \\ -c & -d & e \\ -f & e \end{pmatrix}$	${}^{1}E_{g} = \begin{pmatrix} c \\ \end{pmatrix}$	$A_{1g} = \begin{pmatrix} a \\ & a \\ & b \end{pmatrix}$ $-c \ d \end{pmatrix} {}^{2}E_{g} = \begin{pmatrix} -c & -d \\ -c \\ -d & e \end{pmatrix}$		$A_g = \begin{pmatrix} a & d \\ c & b \\ d & b \end{pmatrix}$ $B_g = \begin{pmatrix} e & f \\ f & f \end{pmatrix}$	

TABLE II. Wyckoff positions of the two types of atoms and their contributions to the Γ -point phonons for the $R\overline{3}$ and C2/m as well as the $p\overline{3}1/m$ diperiodic space group. The second row shows the Raman tensors for the corresponding space groups.

According to the factor group analysis (FGA) for a single CrI₃ layer, six modes $(2A_{1g} + 4E_g)$ are expected to be observed in the Raman scattering experiment (see Table II). By stacking the layers the symmetry is reduced and, depending on the stacking sequence, FGA yields a total of eight Raman active modes $(4A_g + 4E_g)$ for the $R\bar{3}$ and 12 Raman active modes $(6A_g + 6B_g)$ for the C2/m crystal symmetry. The correlation between layer and crystal symmetries for both cases is shown in Fig. 2(a) [18,19].

Figure 2(b) shows the CrI₃ single crystal Raman spectra measured at 100 K in two scattering channels. According to the selection rules for the rhombohedral crystal structure (Table II) the A_g modes can be observed only in the parallel polarization configuration, whereas the E_g modes appear in both parallel and crossed polarization configurations. Based on the selection rules the peaks at about 78, 108, and 128 cm⁻¹ were identified as A_g symmetry modes, whereas the peaks at about 54, 102, 106, and 235 cm⁻¹ are assigned as E_g symmetry. The weak observation of the most pronounced A_g modes in crossed polarizations [Fig. 2(b)] is attributed to the leakage due to a slight sample misalignment and/or the presence of defects in the crystal. The energies of all observed modes are compiled in Table III together with the energies predicted by our calculations and by Ref. [7], and are found to be in good agreement for the E_g modes. The discrepancy is slightly larger for the low energy A_g modes. Our calculations in general agree with those from Ref. [7]. The A_g^4 mode of the rhombohedral phase, predicted by calculation to appears at about 195 cm⁻¹, was not observed in the experiment, most likely due to its low intensity.

When the symmetry is lowered in the high-temperature monoclinic C2/m phase [Fig. 2(c)] the E_g modes split into an A_g and a B_g mode each, whereas the rhombohedral A_g^2 and A_g^4 modes are predicted to switch to the monoclinic B_g symmetry. The correspondence of the phonon modes across the phase transition is indicated by the arrows in Table III. The selection rules for C2/m (see Table II) predict that A_g and B_g modes can be observed in both parallel and crossed polarization configurations. Additionally, the sample forms three types of domains which are rotated with respect to each other. We

correspon	correspondence of the phonon modes across the phase transition.								
Space group $R\bar{3}$					Space group C2/m				
Symm.	Expt. (cm^{-1})	Calc. (cm^{-1})	Calc. (cm^{-1}) [7]		Symm.	Expt. (cm^{-1})	Calc. (cm^{-1})	Calc. [7] (cm ⁻¹)	
$\overline{E_g^1}$	54.1	59.7	53	\rightarrow	B_g^1	52.0	57.0	52	
Ť				\rightarrow	A_g^1	53.6	59.8	51	
A_g^1	73.33	89.6	79	\longrightarrow	A_g^2	78.6	88.4	79	
E_g^2	102.3	99.8	98	\rightarrow	A_g^3	101.8	101.9	99	
Ŭ				\longrightarrow	B_g^2	102.4	101.8	99	
E_g^3	106.2	112.2	102	\rightarrow	B_g^3	106.4 ^a	108.9	101	
				\rightarrow	A_g^4	108.3	109.3	102	
A_g^2	108.3	98.8	88	\longrightarrow	B_g^4	106.4 ^a	97.8	86	
A_g^3	128.1	131.1	125	\longrightarrow	A_g^5	128.2	131.7	125	
A_g^4	_	195.2	195	\longrightarrow	B_g^5	_	198.8	195	
E_{g}^{4}	236.6	234.4	225	\rightarrow	A_g^6	234.6	220.1	224	
				\rightarrow	$B_{g}^{\acute{6}}$	235.5	221.1	225	

TABLE III. Phonon symmetries and phonon energies for the low-temperature $R\bar{3}$ and high-temperature C2/m phase of CrI₃. The experimental values were determined at 100 and 300 K, respectively. All calculations were performed at zero temperature. Arrows indicate the correspondence of the phonon modes across the phase transition.

^aObserved as two peak structure.

FIG. 3. Temperature dependence of the A_g^1 and A_g^3 phonon modes of the rhombohedral structure and the corresponding A_g^2 and A_g^5 modes of the monoclinic structure, respectively. (a) and (b) Raman spectra at temperatures as indicated. The spectra are shifted for clarity. Solid red lines represent Voigt profiles fitted to the data. (c) and (d) and (e) and (f) Temperature dependence of the phonon energies and linewidths, respectively. Both modes show an abrupt change in energy at the phase transition at 180 K.

therefore identify the phonons in the C2/m phase in relation to the calculations and find again good agreement of the energies. The B_g^3 and B_g^4 modes overlap and therefore cannot be resolved separately. As can be seen from the temperature dependence shown below [Fig. 4(b)] the peak at 106 cm⁻¹ broadens and gains spectral weight in the monoclinic phase in line with the expectance that two modes overlap. The missing rhombohedral A_g^4 mode corresponds to the monoclinic B_g^5 mode, which is likewise absent in the spectra.

The temperature dependence of the observed phonons is shown in Figs. 3 and 4. In the low-temperature rhombohedral phase all four E_g modes as well as A_g^1 and A_g^2 soften upon warming, whereas A_g^3 hardens up to $T \approx 180$ K before softening again. Crossing the first-order phase transition from $R\bar{3}$ to C2/m crystal symmetry is reflected in the spectra as a symmetry change and/or renormalization for the nondegenerate modes and lifting of the degeneracy of the E_g modes as shown in Table II. In our samples, this transition is observed at $T_s \approx 180$ K. The splitting of the E_g phonons into A_g and B_g modes at the phase transition is sharp (Fig. 4). The rhombohedral A_g^1 and A_g^3 phonons show a jump in energy and a small discontinuity in the linewidth at T_s (Fig. 3). Our spectra were taken during warming in multiple runs after

FIG. 4. Temperature dependence of the rhombohedral A_g^4 and E_g modes. (a)–(c) Raman spectra in parallel (open squares) and crossed (open circles) light polarizations at temperatures as indicated. The spectra are shifted for clarity. Blue and red solid lines are fits of Voigt profiles to the data. Two spectra were analyzed simultaneously in two scattering channels with the integrated intensity as the only independent parameter. (d)–(f) Phonon energies obtained from the Voigt profiles. Each E_g mode splits into an A_g and a B_g mode above 180 K.

cooling to 100 K each time. We found that the temperature dependence for the phonon modes obtained this way was smooth in each phase. McGuire *et al.* [3,20] reported T_s in the range of 220 K, a coexistence of both phases and a large thermal hysteresis. However, they also noted that the first and second warming cycle showed identical behavior and only found a shift of the transition temperature to higher values for cooling cycles. We therefore consider the difference between the reported transition around 220 K and our $T_s \approx 180$ K significant. To some extent this difference may be attributed

to local heating by the laser. More importantly, we find no signs of phase coexistence in the observed temperature range. The spectra for the low-temperature and high-temperature phases are distinctly different (Fig. 2) and the E_g modes exhibit a clearly resolved splitting which occurs abruptly at T_s . We performed measurements in small temperature steps (see Figs. 3 and 4). This limits the maximum temperature interval where the phase coexistence could occur in our samples to approximately 5 K, much less than the roughly 30 to 80 K reported earlier [3,20]. We cannot exclude the possibility that a small fraction of the low-temperature phase could still

coexist with the high-temperature phase over a wider temperature range, whereby weak peaks corresponding to the remains of the low-temperature $R\bar{3}$ phase might be hidden under the strong peaks of the C2/m phase.

IV. CONCLUSION

We studied the lattice dynamics in single crystalline CrI_3 using Raman spectroscopy supported by numerical calculations. For both the low-temperature $R\bar{3}$ and the hightemperature C2/m phase, all except one of the predicted

FIG. 5. Raman-active phonons in CrI_3 for (a) the monoclinic phase hosting A_g and B_g modes and for (b) the rhombohedral phase hosting A_g and E_g modes. Blue and violet spheres denote Cr and I atoms, respectively. Solid lines represent primitive unit cells. Arrow lengths are proportional to the square root of the interatomic forces. The given energies are calculated for zero temperature.

ACKNOWLEDGMENTS

The work was supported by the Serbian Ministry of Education, Science and Technological Development under Projects No. III45018 and No. OI171005. DFT calculations were performed using computational resources at Johannes Kepler University, Linz, Austria. Work at Brookhaven is supported by the U.S. DOE under Contract No. DE-SC0012704.

- E. Navarro-Moratalla, B. Huang, G. Clark *et al.*, Layerdependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature (London) 546, 270 (2017).
- [2] S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Controlling magnetism in 2D CrI₃ by electrostatic doping, Nat. Nanotechnol. **13**, 549 (2018).
- [3] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI₃, Chem. Mater. 27, 612 (2015).
- [4] J. L. Ladno and J. Fernández-Rossier, On the origin of magnetic anisotropy in two dimensional CrI₃, 2D Mater. 4, 035002 (2017).
- [5] W.-B. Zhang, Q. Qu, P. Zhu, and C.-H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable twodimensional single-layer chromium trihalides, J. Mater. Chem. C 3, 12457 (2015).
- [6] J. F. Dillon, Jr. and C. E. Olson, Magnetization, resonance, and optical properties of the ferromagnet CrI₃, J. Appl. Phys. 36, 1259 (1965).
- [7] D. T. Larson and E. Kaxiras, Raman Spectrum of CrI₃: An *ab initio* study, Phys. Rev. B 98, 085406 (2018).
- [8] N. Lazarević, M. Abeykoon, P. W. Stephens, H. Lei, E. S. Bozin, C. Petrovic, and Z. V. Popović, Vacancy-induced nanoscale phase separation in K_xFe_{2-y}Se₂ single crystals evidenced by Raman scattering and powder x-ray diffraction, Phys. Rev. B 86, 054503 (2012).
- [9] H. Ryu, M. Abeykoon, K. Wang, H. Lei, N. Lazarevic, J. B. Warren, E. S. Bozin, Z. V. Popovic, and C. Petrovic, Insulating and metallic spin glass in Ni-doped K_xFe_{2-y}Se₂ single crystals, Phys. Rev. B **91**, 184503 (2015).
- [10] H. Ryu, K. Wang, M. Opacic, N. Lazarevic, J. B. Warren, Z. V. Popovic, E. S. Bozin, and C. Petrovic, Sustained phase separation and spin glass in Co-doped K_xFe_{2-y}Se₂ single crystals, Phys. Rev. B **92**, 174522 (2015).

S.Dj.M. and N.L. conceived the experiment, performed the experiment, analyzed and discussed the data, and wrote the paper. A.Š. and J.P. calculated the phonon energies, analyzed and discussed the data, and wrote the paper. Y.L. and C.P. synthesized and characterized the samples. M.Š. performed the experiment and analyzed and discussed the data. A.B. and Z.V.P. analyzed and discussed the data and wrote the paper. All authors commented on the manuscript.

APPENDIX: EIGENVECTORS

In addition to the phonon energies we also calculated the phonon eigenvectors which are shown in Fig. 5(a)for the high-temperature monoclinic phase and in Fig. 5(b)for the low-temperature rhombohedral phase. The energies, as given, are calculated for zero temperature. The relative displacement of the atoms is denoted by the length of the arrows.

- [11] Y. Liu and C. Petrovic, Three-dimensional magnetic critical behavior in CrI₃, Phys. Rev. B 97, 014420 (2018).
- [12] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, Quantum espresso: A modular and opensource software project for quantum simulations of materials, J. Phys. Condens. Matter 21, 395502 (2009).
- [13] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- [14] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
- [15] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).
- [16] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787 (2006).
- [17] E. A. Wood, The 80 diperiodic groups in three dimensions, Bell Syst. Tech. J. 43, 541 (1964).
- [18] W. G. Fateley, N. T. McDevitt, and F. F. Bentley, Infrared and raman selection rules for lattice vibrations: The correlation method, Appl. Spectrosc. 25, 155 (1971).
- [19] N. Lazarević, Z. V. Popović, R. Hu, and C. Petrovic, Evidence of coupling between phonons and charge-density waves in ErTe₃, Phys. Rev. B 83, 024302 (2011).
- [20] M. A. McGuire, G. Clark, S. KC, W. M. Chance, G. E. Jellison, V. R. Cooper, X. Xu, and B. C. Sales, Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl₃ crystals, Phys. Rev. Mater. 1, 014001 (2017).