




2. Биографски подаци кандидата 
 
Милан Радоњић је рођен 14. јула 1983. године у Смедеревској Паланци. Завршио је Прву 
крагујевачку гимназију 2002. године као матурант генерације и освајач бронзане медаље на 
33. Међународној олимпијади из физике. Основне студије на Физичком факултету у Београду, 
смер Теоријска и експериментална физика, завршио је 2007. године као студент генерације 
просечном оценом 10.00, одбранивши дипломски рад на тему “Квантни Холов ефекат у 
графену” под руководством др Милице Миловановић. Током студија био је стипендиста 
Министарства науке и технологије Републике Србиjе. Докторску дисертацију под насловом 
“Electromagnetically induced coherent effects in laser excited Raman resonances in rubidium 
vapor” урадиo jе под руководством др Бранислава Јеленковића и одбранио 2013. године на 
Физичком факултету Универзитета у Београду. Добитник jе и годишње награде Института за 
физику у Београду за наjбољу докторску дисертациjу одбрањену током календарске године. У 
периоду од септембра 2015. до децембра 2017. године, Милан Радоњић jе радио као 
постдокторски истраживач у групи проф. др Филипа Валтера на Факултету за физику 
Универзитета у Бечу. Од јануара 2018. године започео је даље постдокторско усавршавање у 
групи проф. др Себастијана Егерта на Одсеку за физику Техничког универзитета у 
Кајзерслаутерну у Немачкој. 

Током 2008. године Милан Радоњић је као докторанд-стипендиста Министарства науке 
и технологије Републике Србиjе учествовао у раду Центра за фотонику Института за физику 
у Београду. Од 1. јануара 2009. запослен је у истом центру као истраживач-приправник. 
Фебруара 2010. године је изабран у звање истраживач-сарадник. Од 2009. године до 2011. 
године кандидат ради у оквиру пројекта Министарства науке и технолошког развоја бр. 141003 
“Квантна и оптичка интерферометрија”, под руководством др Бранислава Јеленковића. Током 
наредног пројектног циклуса, од јануара 2011. до децембра 2017. године, био је запослен на 
пројектима Министарства просвете и науке бр. ИИИ45016 “Продукција и карактеризација 
нано-фотоничних функционалних структура у био-медицини и информатици” (руководилац 
др Бранислав Јеленковић) и бр. ОН171038 “Холографски методи за генерисање специфичних 
таласних фронтова за ефикасну контролу квантних кохерентних ефеката у интеракцији атома 
и ласера” (руководилац др Дејан Пантелић) са по 6 истраживач-месеци. У звање научног 
сарадника изабран jе 26. фебруара 2014. године. Почевши од 20. децембра 2017. године др 
Милан Радоњић ради у Лабораторији за примену рачунара у науци у оквиру Центра за 
изучавање комплексних система Института за физику у Београду, у оквиру пројекта бр. 
ОН171017 “Моделирање и нумеричке симулације сложених вишечестичних система” 
(руководилац др Антун Балаж). Кандидат је такође учествовао у пројектима NAI-DBEC, IBEC 
и BEC-L билатералне сарадње Министарства просвете, науке и технололошког развоја 
Републике Србије и Немачке агенције за академску размену (DAAD) током периода 2013-2014, 
2015-2016. и 2017-2018. године, респективно, којима је руководио др Антун Балаж. Осим тога, 
био је и учесник билатералног истраживачког SCOPES пројекта бр. IZ73Z0_152511 између 
Института за физику у Београду и Лабораторије за временске и фреквентне стандарде 
Универзитета у Нојшателу у Швајцарској током 2014. и 2015. године. 

Главне научне теме кандидата су проучавање кохерентних и нелинеарних ефеката у 
квантној оптици, Бозе-Ајнштајн кондензата фотона, отворених квантних система, хибридних 
квантно-класичних система и макроскопских квантних система. У тренутку подношења овог 
извештаја, Милан Радоњић је коаутор укупно 47 радова у међународним часописима са ISI 
листе, од којих 16 у категорији М21а, 11 у категорији М21, 4 у категорији М22, 4 у категорији 
М23 и 12 у категорији М33. Укупан број цитата радова кандидата је 166 (100 не рачунајући 
самоцитате), са Хиршовим индексом 8. Др Милан Радоњић научну сарадњу са групама из 
Немачке и Аустрије. Био је ментор за израду докторске дисертациjе Мађити Анђела (Maggitti 
Angelo), одбрањене 2016. године на Физичком факултету Универзитета у Београду. 

  



3. ПРЕГЛЕД НАУЧНЕ АКТИВНОСТИ 
 
Научно-истраживачка активност кандидата обухвата проучавање: 

 кохерентних и нелинеарних ефеката у квантној оптици, 
 хибридних квантно-класичних система, 
 отворених квантних система, 
 макроскопских квантних система, 
 Бозе-Ајнштајн кондензата фотона. 

У наредним одељцима укратко су приказани главни научни резултати добијени у оквиру 
набројаних тема. 
 
3.1 Кохерентни и нелинеарни ефекти у квантној оптици 
 
Приликом интеракције атома са сложеном структуром енергијских нивоа и ласерске светлости 
могу се испољити различити нелинеарни и кохерентни ефекти. Током рада на својој 
докторској дисертацији кандидат је проучавао и бавио се теоријско-нумеричким моделирањем 
електромагнетски индуковане транспаренције, електромагнетски индуковане апсорпције, 
нелинеарне магнето-оптичке ротације и Штарковог брзог адијабатског прелаза. Испитиван је 
утицај профила интензитета ласерског снопа на поменуте ефекте у термалним атомским 
парама рубидијума. Узимајући у обзир детаље сложене хиперфине структуре рубидијума и 
реалистичне параметре система кандидат је развио теоријски модел који је успешно описао и 
разјаснио експерименте урађене у Центру за фотонику Института за физику. Развијени модел 
је омогућио увид у различите типове кохерентне еволуције атома приликом интеракције са 
ласерским сноповима различитих профила. Такође је успешно примењен у каснијим 
истраживањима просторно и временски одвојених ласерских побуда у тзв. Рамзијевој 
конфигурацији. Претходно поменути резултати су садржај радова: 

 M. Radonjić, D. Arsenović, Z. Grujić, and B. M. Jelenković, Coherent population trapping 
linewidths for open transitions: Cases of different transverse laser intensity distribution, Phys. 
Rev. A 79, 023805 (2009), 

 A. J. Krmpot, S. M. Ćuk, S. N. Nikolić, M. Radonjić, D. G. Slavov, and B. M. Jelenković, 
Dark Hanle resonances from selected segments of the Gaussian laser beam cross-section, Opt. 
Express 17, 22491 (2009), 

 А. J. Krmpot, S. M. Ćuk, S. N. Nikolić, M. Radonjić, Z. D. Grujić, and B. M. Jelenković, Laser 
Beam Profile Influence on Dark Hanle Resonances in Rb Vapor, Acta Phys. Pol. A 116, 563 
(2009), 

 M. M. Mijailović, Z. D. Grujić, M. Radonjić, D. Arsenović, and B. M. Jelenković, Nonlinear 
magneto-optical rotation narrowing in vacuum gas cells due to interference between atomic 
dark states of two spatially separated laser beams, Phys. Rev. A 80, 053819 (2009), 

 Z. Grujić, D. Arsenović, M. Radonjić, M. Mijailović, and B. Jelenković, Numerical simulation 
of Raman resonance due to the Ramsey interference induced by thermal motion of atoms, Phys. 
Scr. T135, 014026 (2009), 

 S. M. Ćuk, M. Radonjić, A. J. Krmpot, S. N. Nikolić, Z. D. Grujić, and B. M. Jelenković, 
Influence of laser beam profile on electromagnetically induced absorption, Phys. Rev. A 82, 
063802 (2010), 

 A. J. Krmpot, M. Radonjić, S. M. Ćuk, S. N. Nikolić, Z. D. Grujić, and B. M. Jelenković, 
Evolution of dark state of an open atomic system in constant intensity laser field, Phys. Rev. A 
84, 043844 (2011), 



 Z. D. Grujić, M. M. Lekić, M. Radonjić, D. Arsenović, and B. M. Jelenković, Ramsey effects 
in coherent resonances at closed transition Fg = 2 → Fe = 3 of  87Rb, J. Phys. B 45, 245502 
(2012), 

 S. N. Nikolić, V. Djokić, N. M. Lučić, A. J. Krmpot, S. M. Ćuk, M. Radonjić, and B. M. 
Jelenković, The connection between electromagnetically induced transparency in the Zeeman 
configuration and slow light in hot rubidium vapor, Phys. Scr. T149, 014009 (2012), 

 S. N. Nikolić, A. J. Krmpot, N. M. Lučić, B. V. Zlatković, M. Radonjić, and B. M. Jelenković, 
Effects of laser beam diameter on electromagnetically induced transparency due to Zeeman 
coherences in Rb vapor, Phys. Scr. T157, 014019 (2013), 

 S. N. Nikolić, M. Radonjić, A. J. Krmpot, N. M. Lučić, B. V. Zlatković, and B. M. Jelenković, 
Effects of a laser beam profile on Zeeman electromagnetically induced transparency in the Rb 
buffer gas cell, J. Phys. B 46, 075501 (2013), 

 S. M. Ćuk, A. J. Krmpot, M. Radonjić, S. N. Nikolić, and B. M. Jelenković, Influence of a 
laser beam radial intensity distribution on Zeeman electromagnetically induced transparency 
line-shapes in the vacuum Rb cell, J. Phys. B 46, 175501 (2013), 

 S. N. Nikolić, M. Radonjić, N. M. Lučić, A. J. Krmpot, and B. M. Jelenković, Optical Ramsey 
fringes observed during temporal evolution of Zeeman coherences in Rb buffer gas cell, Phys. 
Scr. T162, 014038 (2014), 

 S. N. Nikolić, M. Radonjić, N. M. Lučić, A. J. Krmpot, and B. M. Jelenković, Transient 
development of Zeeman electromagnetically induced transparency during propagation of 
Raman-Ramsey pulses through Rb buffer gas cell, J. Phys. B 48, 045501 (2015), 

 Ivan S. Radojičić, Milan Radonjić, Marina M. Lekić, Zoran D. Grujić, Dragan Lukić, and 
Branislav Jelenković, Raman-Ramsey electromagnetically induced transparency in the 
configuration of counterpropagating pump and probe in vacuum Rb cell, J. Opt. Soc. Am. B 
32, 426 (2015). 
Кандидат је уопштио постојећу теорију Штарковог брзог адијабатског прелаза у 

системима са два или три енергијска нивоа на случај када ти нивои могу имати произвољан 
број поднивоа. Коришћени приступ представља генерализацију Морис-Шорове 
трансформације на случајеве када уклоњена дегенерација поднивоа доводи до раздешавања 
дво-фотонске Раманове резонанце. На основу тога су детаљно испитане могућности преноса 
популације међу нивоима и показано да је могућ веома ефикасан пренос када је почетно стање 
погодно изабрана суперпозиција стања која одговарају поднивоима. То је предмет радова: 

 M. Radonjić and B. M. Jelenković, Stark-chirped rapid adiabatic passage among degenerate-
level manifolds, Phys. Rev. A 80, 043416 (2009), 

 M. Radonjić and B. M. Jelenković, Stark-Chirped Rapid Adiabatic Passage in a Multilevel 
Atom, Acta Phys. Pol. A 116, 476 (2009). 
Четвороталасно мешање је још један нелинеарни квантно-оптички феномен који је био 

истраживан од стране кандидата. Користећи термалну пару калијума побуђивану двама 
ласерским сноповима у -конфигурацији, добијени су веома велики квантни приноси у двама 
накнадно генерисаним светлосним сноповима. На основу квалитативног теоријског описа то 
је доведено у везу са великом сусцептибилношћу атома калијума, која је последица малог 
хиперфиног цепања основног стања. Претходно је садржај рада: 

 B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, Efficient parametric 
non-degenerate four wave mixing in hot potassium vapor, Laser Phys. Lett. 13, 015205 (2016). 
У току менторства при изради докторске тезе Анђела Мађитија кандидат је радио на 

генерализацијама поларитона тамних стања. У питању су сложене ексцитације које су 
суперпозиција атомских и фотонских стања и настају у атомским медијумима побуђиваним 
ласерским пољима у условима електромагнетски индуковане транспаренције. Једна од 
њихових примена је спора или заустављена светлост. Прво уопштење се тиче атома чији 



побуђивани енергијски нивои поседују дегенерацију. У зависности од поларизације 
коришћених побудних поља, одређене су дисперзионе релације и састав тамних поларитона и 
предложена примена тих сазнања. Претходно је приказано је у раду: 

 A. Maggitti, M. Radonjić, and B. M. Jelenković, Dark-state polaritons in a degenerate two-
level system, Laser Phys. 23, 105202 (2013). 
Друго уопштење се односи на низове спрегнутих микрорезонатора у којима се налази по 

један атом, односно на једнодимензионални Џејнс-Камингс-Хабардов модел са додатном 
модификацијом. Разматран је случај две ексцитације и нађено да оне могу образовати две 
различите врсте везаних парова тамних поларитона, који су просторно локализовани и са 
енергијама у процепима између енергијских трака делокализованих стања. Додатно је 
показана могућност да везани пар поларитона буде основно стање и да се може користити као 
квантна меморија. Испитивани систем поседује велику подесивост и ова истраживања су тек 
први корак у откривању његових даљих потенцијала. За више детаља погледати рад:  

 A. Maggitti, M. Radonjić, and B. M. Jelenković, Dark-polariton bound pairs in the modified 
Jaynes-Cummings-Hubbard model, Phys. Rev. A 93, 013835 (2016). 

 
3.2 Хибридни квантно-класични системи 
 
Један од постулата квантне механике је мерни постулат којим се описује пробабилистички 
колапс стања квантног система приликом интеракције са класичним мерним апаратом. 
Међутим, не постоји доследан динамички опис мерног процеса. Разлози су у различитим 
особинама квантних и класичних система и у различитим формализмима којима се описују. 
Квантна механика се најчешће изражава у терминима Хилбертових простора, док је класична 
механика формулисана на фазном простору. Теорија хибридних квантно-класичних система 
има за циљ превазилажење ових препрека и конзистентно динамичко моделовање процеса 
мерења квантног система. Кандидат је развио и анализирао приступ заснован на формализму 
Хамилтонових динамичких система. Полазећи од квантно-механичког описа оба система, на 
један од њих је наметнута веза која осигурава да је његова динамика ограничена на 
многострукост кохерентних стања, која у макроскопском лимиту постају класична. Овај 
приступ је основа следећих радова: 

 Milan Radonjić, Slobodan Prvanović, and Nikola Burić, System of classical nonlinear 
oscillators as a coarse-grained quantum system, Phys. Rev. A 84, 022103 (2011), 

 M. Radonjić, S. Prvanović, and N. Burić, Emergence of classical behavior from the quantum 
spin, Phys. Rev. A 85, 022117 (2012), 

 M. Radonjić, Slobodan Prvanović, and Nikola Burić, Alternative routes to equivalent classical 
models of a quantum system, Chin. Phys. B 21, 120301 (2012), 

 M. Radonjić, S. Prvanović, and N. Burić, Hybrid quantum-classical models as constrained 
quantum systems, Phys. Rev. A 85, 064101 (2012), 

 N. Burić, I. Mendaš, D. B. Popović, M. Radonjić, and S. Prvanović, Statistical ensembles in 
the Hamiltonian formulation of hybrid quantum-classical systems, Phys. Rev. A 86, 034104 
(2012), 

 Milan Radonjić, Slobodan Prvanović, and Nikola Burić, Constrained quantum dynamics and 
coarse-grained description of a quantum system of nonlinear oscillators, Phys. Scr. T149, 
014011 (2012), 

 N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Hybrid quantum-classical model of 
quantum measurements, Phys. Rev. A 87, 054101 (2013), 

 N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Hamiltonian Formulation of 
Statistical Ensembles and Mixed States of Quantum and Hybrid Systems, Found. Phys. 43, 1459 



(2013), 
 N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Orbits of hybrid systems as qualitative 

indicators of quantum dynamics, Phys. Lett. A 378, 1081 (2014), 
 N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Unified Treatment of Geometric 

Phases for Statistical Ensembles of Classical, Quantum and Hybrid Systems, Int. J. Theor. Phys. 
53, 1046 (2014), 

 D. Arsenović, N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Cloning in nonlinear 
Hamiltonian quantum and hybrid mechanics, Phys. Rev. A 90, 042115 (2014), 

 N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, A quantum-classical theory with 
nonlinear and stochastic dynamics, Phys. Scr. T163, 014003 (2014), 

 Nikola Burić, Duška B. Popović, Milan Radonjić, and Slobodan Prvanović, Phase space 
theory of quantum-classical systems with nonlinear and stochastic dynamics, Ann. Phys. (N.Y.) 
343, 16 (2014), 

 D. Arsenović, N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Positive-operator-
valued measures in the Hamiltonian formulation of quantum mechanics, Phys. Rev. A 91, 
062114 (2015). 
Комплементаран приступ хибридним системима помоћу Купман-фон Нојмановог 

унитарног описа класичних система у Хилбертовом простору такође је био предмет 
истраживања кандидата. Уведени су апстрактни системи који интерполирају између 
класичних и квантних система и размотрена је физичка конзистентност описа два таква 
система чија је интеракција потенцијална, што је представљено у раду: 

 M. Radonjić, D. B. Popović, S. Prvanović, and N. Burić, Ehrenfest principle and unitary 
dynamics of quantum-classical systems with general potential interaction, Phys. Rev. A 89, 
024104 (2014). 

 
3.3 Отворени квантни системи 
 
Сваки квантни систем се неизбежно налази под утицајем окружења – отворен је. Услед тога 
долази до ефеката декохеренције и дисипације, па је еволуција отвореног квантног система 
неунитарна. Стога је уопштење разултата који су познати у случају унитарне квантне 
еволуције на неунитарни сценарио врло нетривијално. Најједноставнији тип окружења не 
поседује меморију о својој прошлости. Тада је динамика отвореног квантног система описана 
Линдбладовом мастер једначином. Еволуција атомских система поменутих у одељку 3.1 је 
управо моделирана таквим једначинама. 

Кандидат је анализирао могућност дефинисања геометријске фазе отвореног квантног 
система помоћу ансамбла таласних функција чија стохастичко-дифузна еволуција у средњем 
репродукује еволуцију задату Линдбладовом једначином. Показано је да постоји погодна 
дефиниција која је инваријантна на унитарну групу симетрија ансамбла и указано на 
ограничења приступа такве врсте, што се може видети у радовима: 

 Nikola Burić and Milan Radonjić, Uniquely defined geometric phase of an open system, Phys. 
Rev. A 80, 014101 (2009), 

 N. Burić and M. Radonjić, Geometric Phase of an Open System, Acta Phys. Pol. A 116, 483 
(2009). 
Геометријска фаза побуђиваног квантног система са два нивоа је аналитички израчуната 

у раду: 
 

 I. Mendaš, N. Burić, D. B. Popović, S. Prvanović, and M. Radonjić, Geometric Phase for 
Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems, Acta Phys. Pol. A 
126, 670 (2014). 



Даље, испитивана је динамика дво-модног ласеру сличног система проширујући дво-
модни Тејвис-Камингсов модел дисипативним процесима и некохерентном побудом атомског 
медијума. Аналитички су нађена четири могућа неравнотежна стационарна стања (фиксне 
тачке еволуције) и одређен је одговарајући фазни дијаграм. Могуће фазе се разликују по броју 
фиксних тачака и по њиховој стабилности. Додатно, проучена су три сценарија увођења 
Пирагасове контролне повратне спреге са кашњењем. У зависности од времена кашњења и 
јачине контроле показано је да се може постићи стабилизација нестабилних фиксних тачака 
или избор конкретне моде која ће садржати макроскопски број фотона. Више детаља садржи 
рад: 

 Wassilij Kopylov, Milan Radonjić, Tobias Brandes, Antun Balaž, and Axel Pelster, 
Dissipative two-mode Tavis-Cummings model with time-delayed feedback control, Phys. Rev. 
A 92, 063832 (2015). 

 
3.4 Макроскопски квантни системи 
 
Позната је чињеница да се суперпозиције веома различитих квантних стања макроскопских 
система не реализују у свету око нас. Парадокс Шредингерове живо-мртве мачке управо 
говори о томе. С тим у вези, кандидат је проучавао које врсте макроскопских суперпозиција 
(не)могу природно бити јединствена основна стања локалних, физички релевантних 
многочестичних Хамилтонијана са коначним енергијским процепом. Изведена је горња 
граница величине процепа произвољног физичког Хамилтонијана под претпоставком да је 
његово основно стање суперпозиција два добро различива макроскопска стања. За веома 
велику класу таквих стања показано је да енергијски процеп Хамилтонијана мора тежити нули 
у термодинамичком лимиту. Последица тога је да припрема таквих стања једноставним 
поступком хлађења у основно стање није експериментално изводљива, јер би водила мешаном 
стању уместо чистом. Коришћени методи и добијени резултати су од ширег значаја и могу 
послужити нпр. расветљавању неких аспеката квантних маргиналних проблема. Више о томе 
видети у раду: 

 Borivoje Dakić and Milan Radonjić, Macroscopic Superpositions as Quantum Ground States, 
Phys. Rev. Lett. 119, 090401 (2017). 

 
3.5 Бозе-Ајнштајн кондензати фотона 
 
Системима у којима је остварена Бозе-Ајнштајн кондензација 2010. године су прибројани и 
фотони. Основу изведбе чини микрорезонатор испуњен молекулима органских боја који се 
могу побуђивати фотонима резонаторских мода. Димензије резонатора и ширина 
апсорпционог спектра молекула обезбеђују динамичку битност само једне лонгитудиналне 
моде. Додавши претходном закривљеност огледала резонатора, фотони у њему ефективно 
постају масени и у дводимензионалном хармонијском потенцијалу. Термализација је 
обезбеђена реапсорпцијом и емисијом од стране молекула органских боја. Кондензат се 
постиже довољно снажном некохерентном побудом молекула. 

Полазећи од Линдбладове мастер једначине поменутог система кандидат је развио 
детаљни микроскопски модел као уопштење постојећег неравнотежног модела, који осим 
дисипативног укључује и кохерентни допринос динамици. На тај начин модел успешно 
интерполира између два дијаметрално супротна физичка случаја – Бозе-Ајнштајн кондензата 
фотона, када дисипација доминира динамиком, и стања сличног ласеру, када су кохерентни 
ефекти довољно изражени. У случају фотонског кондензата показано је да кохерентни процеси 
воде појави ефективне фотон-фотон интеракције која се преноси преко молекула органских 
боја. Процењена је јачина интеракције и добијено добро слагање са литературом. Такође је 
испитана њена зависност од параметара система. Све то је садржано у раду: 



 M. Radonjić, W. Kopylov, A. Balaž, and A. Pelster, Interplay of coherent and dissipative 
dynamics in condensates of light, New J. Phys. 20, 055014 (2018). 

 
 
4. ЕЛЕМЕНТИ ЗА КВАЛИТАТИВНУ ОЦЕНУ НАУЧНОГ ДОПРИНОСА 
КАНДИДАТА 
 
4.1 Квалитет научних резултата 
 
4.1.1 Научни ниво и значај резултата, утицај научних радова 
 
Др Милан Радоњић је у свом досадашњем раду објавио 47 радова у међународним часописима 
са ISI листе, од којих 16 у категорији М21а, 11 у категорији М21, 4 у категорији М22, 4 у 
категорији М23 и 12 у категорији М33. 

У периоду након одлуке Научног већа о предлогу за стицање претходног научног звања, 
др Милан Радоњић је објавио 21 рад у међународним часописима са ISI листе, од којих 4 у 
категорији М21а, 8 у категорији М21, 4 у категорији М22, 1 у категорији М23 и 4 у категорији 
М33. 

Kao пет најзначајнијих радова кандидата могу се узети: 
1. M. Radonjić, D. Arsenović, Z. Grujić, and B. M. Jelenković, Coherent population trapping 

linewidths for open transitions: Cases of different transverse laser intensity distribution, Phys. 
Rev. A 79, 023805 (2009), цитиран 15 пута, 

2. M. Radonjić, S. Prvanović, and N. Burić, Hybrid quantum-classical models as constrained 
quantum systems, Phys. Rev. A 85, 064101 (2012), цитиран 23 пута, 

3. Wassilij Kopylov, Milan Radonjić, Tobias Brandes, Antun Balaž, and Axel Pelster, 
Dissipative two-mode Tavis-Cummings model with time-delayed feedback control, Phys. Rev. 
A 92, 063832 (2015), цитиран 12 пута, 

4. Borivoje Dakić and Milan Radonjić, Macroscopic Superpositions as Quantum Ground States, 
Phys. Rev. Lett. 119, 090401 (2017), цитиран 1 пут, 

5. M. Radonjić, W. Kopylov, A. Balaž, and A. Pelster, Interplay of coherent and dissipative 
dynamics in condensates of light, New J. Phys. 20, 055014 (2018), цитиран 0 пута. 
Први рад је био полазна основа докторске дисертације кандидата. У њему је уведен 

детаљни теоријски модел временски зависне ласер-атом интеракције, који узима у обзир 
комплексну хиперфину структуру атома алкалних метала. Користећи развијени метод 
успешно су описани и физички интерпретирани експерименти у вези са квантно-оптичким 
кохерентним и нелинеарним ефектима. Модел је омогућио да се прецизно испита временска 
еволуција атома рубидијума приликом интеракције са ласерским пољима различитих профила 
интензитета и да се схвате сасвим различити физички феномени у разматраним случајевима. 

Други рад уводи оригинални конзистентни опис хибридних интерагујућих квантно-
класичних система преко Хамилтоновог формализма. Приступ је надаље резултовао бројним 
публикацијама на ту тему. Дираков формализам система са везама, познат у класичној 
механици, искоришћен је у контексту хибридних система и резултовао тзв. описом у смислу 
средњег поља. Наиме, класични системи су описани као макроскопски квантни са динамиком 
ограниченом на многострукост кохерентних стања. Тиме је омогућен унифициран третман 
класичних и квантних система на компатибилан начин. 

Трећи рад садржи анализу дисипативног дво-модног Тејвис-Камингсовог модела 
интеракције атомског ансамбла и светлости. Основу чини теорија средњег поља примењена 
на Линдбладову мастер једначину система. Разматрана су могућа стационарна стања система 



када постоји спољашња побуда и утврђена њихова стабилност. Рад заправо садржи доста 
поједностављени модел потпуног микроскопског описа кондензата светлости, без механизма 
термализације. Међутим, добијени резултати ипак одговарају карактеристичним особинама 
реалистичних система. Такође су разматране могућности које нуди контрола преко повратне 
спреге са кашњењем. 

Четврти рад се бави питањем да ли макроскопске квантне суперпозиције могу бити 
јединствена основна стања локалних Хамилтонијана. Под претпоставком да таква 
суперпозиција јесте основно стање, показано је да у термодинамичком лимиту енергијски 
процеп мора тежити нули. Физичка последица тога је да хлађење макроскопског квантног 
система води препарацији мешаног стања, а не чистог. Такав резултат делимично расветљује 
парадокс Шредингерове мачке и има импликације на квантни маргинални проблем, као и на 
адијабатско квантно рачунање које користи основна стања квантних система. 

Пети рад излаже детаљни микроскопски модел кондензата светлости и добијање 
Линдбладове мастер једначине система. За разлику од постојеће литературе, конзистентно је 
урачунат допринос кохерентне динамике, поред дисипативне. То је омогућило да се истим 
моделом интерполира између два потпуно различита физичка сценарија – стања сличног 
ласеру и Бозе-Ајнштајн кондензата фотона. У првом случају кохерентни ефекти су знатни и 
воде усаглашавању фаза светлости и активног медијума. У другом режиму дисипативни 
ефекти доминирају и воде термализацији светлости. Кохерентни ефекти тада узрокују појаву 
слабе ефективне фотон-фотон интеракције која се преноси путем активног медијума и чије 
понашање у зависности од параметара система је проучено. 
 
4.1.2 Позитивна цитираност научних радова кандидата 
 
Према бази података Web of Science на дан 1. октобра 2018. године, радови кандитата су 
цитирани укупно 166 пута, односно 100 пута не рачунајући самоцитате. Према истој бази, 
Хиршов индекс кандидата је 8. Релевантни подаци о цитираности са интернет странице Web 
of Science базе су дати након списка свих радова (одељак 6). 
 
4.1.3 Параметри квалитета часописа 
 
Битан елемент за процену квалитета научних резултата је и квалитет часописа у којима су 
радови објављени, односно њихов импакт фактор – ИФ. У категоријама М21а, М21, М22, М23 
и М33 кандидат је објавио радове у следећим часописима, при чему су подвучени случајеви у 
који се односе на период након одлуке Научног већа о предлогу за стицање претходног 
научног звања: 

 1 рад у Physical Review Letters (ИФ = 8,839), 
 1 рад у Optics Express (ИФ = 3,880), 
 1 рад у New Journal of Physics (ИФ = 3,786), 
 1 рад у Laser Physics (ИФ = 3,605), 
 1 рад у Annals of Physics (N.Y.) (ИФ = 3,318), 
 11 + 5 радова у Physical Review A (ИФ = 3,042 за 4 рада, ИФ = 2,878 за 2 рада, 

ИФ = 2,866 за 1 рад, ИФ = 2,908 за 4 рада, ИФ = 3,042 за 2 рада, ИФ = 2,991 за 2 рада, 
ИФ = 2,925 за 1 рад), 

 1 рад у Laser Physics Letters (ИФ = 2,964), 
 2 + 2 рада у Journal of Physics B (ИФ = 2,031 за 2 рада, ИФ = 2,031 за 1 рад, ИФ = 1,975 

за 1 рад), 
 1 рад у Journal of the Optical Society of America B (ИФ = 1,970), 



 1 рад у Physics Letters A (ИФ = 1,766), 
 1 рад у Chinese Physics B (ИФ = 1,631), 
 3 + 3 рада у Physica Scripta (ИФ = 1,204 за 2 рада, ИФ = 1,088 за 1 рад, ИФ = 1,296 за 1 

рад, ИФ = 1,296 за 2 рада), 
 1 рад у International Journal of Theoretical Physics (ИФ = 1,186), 
 1 рад у Foundations of Physics (ИФ = 1,170), 
 3 + 1 рад у Acta Physica Polonica A (ИФ = 0,433 за 3 рада, ИФ = 0,604 за 1 рад), 
 3 + 1 рад у Proceedings of SPIE (без ИФ), 
 2 рада у Journal of Physics: Conference Series (без ИФ). 

Укупан фактор утицаја радова кандидата је 98,883, а у периоду након одлуке Научног 
већа о предлогу за стицање претходног научног звања тај фактор је 52,093. Часописи у којима 
је кандидат објављивао су по свом угледу веома цењени у областима којима припадају. Међу 
њима се посебно истичу: Physical Review Letters, Optics Express, New Journal of Physics, 
Physical Review A и Annals of Physics. 

Додатни библиометријски показатељи у вези са објављеним радовима кандидата након 
одлуке Научног већа о предлогу за стицање претходног научног звања дати су у доњој табели. 
Она садржи импакт факторе (ИФ) радова, М бодове радова по српској категоризацији 
научноистраживачких резултата, као и импакт фактор нормализован по импакту цитирајућег 
чланка (СНИП). У табели су дате укупне вредности, као и вредности свих фактора усредњених 
по броју чланака и по броју аутора по чланку, за радове објављене у категоријама М20. 
 
 ИФ М СНИП 
Укупно 48,205 127 21,359 
Усредњено по чланку 2,836 7,471 1,256 
Усредњено по аутору 13,811 32,683 5,671 

 
4.1.4 Степен самосталности и степен учешћа у реализацији радова у научним центрима 
у земљи и иностранству 
 
Кандидат је водећи аутор 11 радова, други аутор 12 радова, трећи аутор 11 радова, четврти 
аутор 10 радова, пети аутор 2 рада и шести аутор 1 рада, од укупно 47 радова. На радовима 
који су објављени у периоду након одлуке Научног већа о предлогу за стицање претходног 
звања, кандидат је водећи аутор 2 рада, други аутор 7, трећи аутор 6 радова, четврти аутор 4 
рада и пети аутор 2 рада, од укупно 21 рада. У другом назначеном периоду кандидат је на 2 
рада други аутор, док је први аутор студент Анђело Мађити чијом израдом докторске тезе је 
кандидат руководио. 

При изради поменутих радова др Милан Радоњић је учествовао у осмишљавању, 
формулацији и дискусији проблема, изведби релевантних нумеричких симулација, анализи 
добијених података (и поређењу са експериментима у одређеним случајевима), развоју 
аналитичких метода и аналитичким прорачунима, као и самом писању радова. 

Током израде докторске дисертације у Центру за фотонику Института за физику у 
Београду, кандидат је развио теоријско-нумерички модел интеракције ласерског зрачења и 
атома алкалних метала који је био кључан за опис и разумевање експеримената урађених у 
поменутом Центру на тему кохерентних и нелинеарних ефеката у квантној оптици. Током 
завршне године израде докторске дисертације кандидат је започео плодотворну сарадњу са др 
Николом Бурићем и разрадио оригинални приступ конзистентном третману хибридних 
интерагујућих квантно-класичних система. Такође, започео је и водио истраживање 



поларитона тамних стања који су били тема докторске дисертације студента Анђела Мађитија. 
Након завршетка своје докторске дисертације кандидат је наставио са истраживањима на 
претходно поменуте теме и уз др Антуна Балажа успоставио сарадњу са др Акселом 
Пелстером са Техничког универзитета у Кајзерслаутерну на истраживањима Бозе-Ајнштајн 
кондензата фотона. Током постдокторског усавршавања у групи проф. др Филипа Валтера на 
Универзитету у Бечу кандидат је радио на теоријским проблемима макроскопских квантних 
стања и осмишљавању фотоничких симулатора. Експерименти у вези са последњом темом су 
у фази израде. Кандидат се тренутно бави и проучавањем ефеката динамичког неуређења на 
Бозе-Ајнштајн кондензате у оквиру постдокторског ангажмана на Техничком универзитету у 
Кајзерслаутерну. 

Кандидат учествује у раду Центра за изучавање комплексних система и Центра за 
фотонику Института за физику у Београду. Такође, има међународну сарадњу са групом проф. 
др Филипа Валтера у Бечу, са др Боривојем Дакићем у Бечу, са др Акселом Пелстером у 
Кајзерслаутерну и др Василијем Копиловим у Берлину. Скорашњи радови настали као 
резултат међународне сарадње су видни у листи публикација кандидата, док је неколико 
радова тренутно у фази припреме. 
 
4.1.5 Награде 
 
Кандидат је добитник Студентске награде Института за физику у Београду 2014. године за 
најбољу докторску дисертацију урађену током претходне године. 
 

Прилог: диплома Студентске награде Института за физику у Београду. 
 
4.2 Ангажованост у формирању научних кадрова 
 
Кандидат др Милан Радоњић је био ментор доктората студента Физичког факултета у 
Београду Анђела Мађитија, на тему поларитона тамних стања и дво-поларитонских везаних 
стања у низовима атома и оптичких микрорезонатора. Током рада на изради поменутог 
доктората урађени су следећи радови: 

 A. Maggitti, M. Radonjić, and B. M. Jelenković, Dark-state polaritons in a degenerate two-
level system, Laser Phys. 23, 105202 (2013), 

 A. Maggitti, M. Radonjić, and B. M. Jelenković, Dark-polariton bound pairs in the modified 
Jaynes-Cummings-Hubbard model, Phys. Rev. A 93, 013835 (2016), 

који су део докторске дисертације: 
 Анђело Мађити (Angelo Maggitti), Formation of dark-state polaritons and two-polariton 

bound states in arrays of atoms and optical cavities, Физички факултет Универзитета у 
Београду, октобар 2015. године 
Ментор: др Милан Радоњић, коментор: др Бранислав Јеленковић. 

 

Прилог: одговарајући записник са седнице Наставно-научног већа Физичког факултета, 
одговарајућа страница интернет портала НаРДуС (Национални Репозиторијум Дисертација у 
Србији) и уводне странице дисертације Анђела Мађитија. 
 
4.3 Нормирање броја коауторских радова, патената и техничких решења 
 
21 радова кандидата, објављених након одлуке Научног већа о предлогу за стицање 
претходног научног звања, спадају у следеће категорије: 

 у категорију теоријских радова у природно-математичким наукама који се признају са 



пуним бројем M бодова до три коаутора спадају радови [1,2,3,4,18,21,30,31,32,37] и 
нормирани су у складу са Правилником, 

 у категорију радова са нумеричким симулацијама који се признају са пуним бројем M 
бодова до пет коаутора спадају радови [17,20,23,29] и нормирани су у складу са 
Правилником, 

 у категорију експерименталних радова у природно-математичким наукама који се 
признају са пуним бројем M бодова до седам коаутора спадају радови [19,22,24,28,36, 
38,39] и нормирани су у складу са Правилником. 
Према томе, нормирањем према Правилнику, број М бодова које је кандидат остварио 

након одлуке Научног већа о предлогу за стицање претходног научног звања по основу 
категорија М20 и М30 је 126,5 (пре нормирања 136). 
 
4.4 Руковођење пројектима, потпројектима и пројектним задацима 
 
Кандидат руководи потпројектом “Утицај динамичког неуређења на особине Бозе-Ајнштајн 
кондензата” у оквиру пројекта ОН171017 “Моделирање и нумеричке симулације сложених 
вишечестичних система” којим руководи др Антун Балаж. 
 

Прилог: потврда руководиоца пројекта о руковођењу потпројектом. 
 
Такође, током постдокторског рада на Факултету за физику Универзитета у Бечу кандидат је 
руководио пројектним задатком у оквиру европског QUCHIP пројекта са темом теоријског 
дизајна квантног кола за симулацију бензена помоћу шест фотона. Експеримент који се бави 
реализацијом дизајнираног кола је у току. 
 

Прилог: потврдно писмо о руковођењу пројектним задатком. 
 
4.5 Активност у научним и научно-стручним друштвима 
 
Кандидат је рецензент у следећим научним часописима: Physical Review Letters, Optics 
Communications, Optical and Quantum Electronics и International Journal of Modern Physics B. 
 

Прилог: писма уредништва часописа рецензенту. 
 
4.6 Утицајност научних резултата 
 
Утицајност научних резултата кандидата је наведена у одељку 4.1 овог документа. Пун списак 
радова је дат у одељку 6, а подаци о цитираности са интернет странице Web of Science базе су 
дати након списка свих радова кандидата. 
 
4.7 Конкретан допринос кандидата у реализацији радова у научним центрима у земљи и 
иностранству 
 
Кандидат је значајно допринео сваком раду у чијој припреми је учествовао. Сви радови 
објављени у периоду након одлуке Научног већа Института за физику о предлогу за стицање 
претходног научног звања су урађени у сарадњи са колегама из земље и иностранства. Др 
Радоњић је имао кључни допринос публикацијама на којима је први аутор (2 рада) и други 
аутор (7 радова). Током израде ових радова, он је битно утицао на сам ток истраживања, радио 
на развоју и извођењу одговарајућих нумеричких симулација, анализи релевантних података, 



на теоријским и аналитичким прорачунима, методима и техникама приступа проблемима, 
писању радова, а такође је учествовао и у комуникацији са рецензентима приликом припреме 
радова за објављивање. 
 
4.8 Уводна предавања на конференцијама и друга предавања 
 
У периоду након одлуке Научног већа о предлогу за стицање претходног звања, кандидат је 
одржао следећа предавања по позиву на међународним скуповима, која су штампана у изводу 
(категорија М32): 

 M. Radonjić, Hamiltonian Formulation of Hybrid Quantum-classical Systems, Nikola Burić 
Memorial Workshop, 9. December 2016, Institute of Physics Belgrade, Serbia, 

 M. Radonjić, W. Kopylov, A. Balaž, and A. Pelster, Interplay of coherent and dissipative 
dynamics in condensates of light, 659. WE-Heraeus-Seminar on “Condensates of Light”, 14-
17. January 2018, Physikzentrum Bad Honnef, Germany. 

 
Поред тога, одржао је и следећа саопштења на међународним конференцијама, која су 
штампана у изводу (категорија М34): 

 M. Radonjić, W. Kopylov, T. Brandes, A. Balaž, and A. Pelster, Microscopic Model of Photon 
Condensation, 616. WE-Heraeus-Seminar on “Ultracold Quantum Gases – Current Trends and 
Future Perspectives”, 9-13. May 2016, Physikzentrum Bad Honnef, Germany, 

 Milan Radonjić and Philip Walther, Photonic simulation of open quantum systems with 
various exchange statistics, PHOTONICA2017 The Sixth International School and Conference 
on Photonics, 28. August - 1. September 2017, Belgrade, Serbia, 

 M. Radonjić, W. Kopylov, A. Balaž, and A. Pelster, Modeling Dye-Mediated Photon-Photon 
Interaction in Condensates of Light, 82nd Annual Conference of the DPG and DPG Spring 
Meeting, 4-9.  March 2018, Erlangen, Germany, 

 M. Radonjić, W. Kopylov, A. Balaž, and A. Pelster, Interplay of coherent and dissipative 
dynamics in condensates of light, 49th Annual DAMOP Meeting, 28. May - 1. June 2018, Ft. 
Lauderdale, Florida, USA. 

 
У оквиру међународне сарадње, др Радоњић је одржао следећа предавања на иностраним 
универзитетима и институтима: 

 Milan Radonjić, Microscopic Model of Photon Condensation, 19. November 2015, 
Department of Physics, Technical University of Kaiserslautern, Germany. 

 
Прилог: позивна писма, апстракти излагања са пропратним материјалом. 
  



5. ЕЛЕМЕНТИ ЗА КВАНТИТАТИВНУ ОЦЕНУ НАУЧНОГ ДОПРИНОСА 
КАНДИДАТА 
 
Остварени резултати у периоду након одлуке Научног већа о предлогу за стицање 
претходног научног звања: 
 

Категорија М бодова по 
раду 

Број радова Укупно М 
бодова 

Нормирани 
број М бодова 

М21а 10 4 40 35,48 
М21 8 8 64 61,72 
М22 5 4 20 18,33 
М23 3 1 3 2,14 
М32 1,5 2 3 3 
М33 1 4 4 3,83 
М34 0,5 4 2 2 

 
Поређење са минималним квантитативним условима за избор у звање виши научни 
сарадник: 
 

 
Минимални број М бодова 

Остварено, 
М бодова без 
нормирања 

Остварено, 
нормирани 

број М бодова 
Укупно 50 136 126,5 

М10+М20+М31+М32+М33+М41+М42+М90 40 134 124,5 
М11+М12+М21+М22+М23 30 127 117,67 

 
Према бази података Web of Science на дан 1. октобра 2018. године, радови кандитата су 
цитирани укупно 166 пута, односно 100 пута не рачунајући самоцитате. Према истој бази, 
Хиршов индекс кандидата је 8. 
  



6. СПИСАК РАДОВА ДР МИЛАНА РАДОЊИЋА 
 

6.1 Радови у међународним часописима изузетних вредности (М21а) 
 

Радови објављени након претходног избора у звање: 
 

1. Borivoje Dakić and Milan Radonjić, Macroscopic Superpositions as Quantum Ground States, 
Phys. Rev. Lett. 119, 090401 (2017) (ИФ = 8,839 за 2017. годину), 

2. D. Arsenović, N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Cloning in nonlinear 
Hamiltonian quantum and hybrid mechanics, Phys. Rev. A 90, 042115 (2014) (ИФ = 3,042 за 
2012. годину), 

3. M. Radonjić, D. B. Popović, S. Prvanović, and N. Burić, Ehrenfest principle and unitary 
dynamics of quantum-classical systems with general potential interaction, Phys. Rev. A 89, 
024104 (2014) (ИФ = 3,042 за 2012. годину), 

 

Радови објављени после одлуке Научног већа о предлогу за стицање претходног научног 
звања: 
 

4. A. Maggitti, M. Radonjić, and B. M. Jelenković, Dark-state polaritons in a degenerate two-
level system, Laser Phys. 23, 105202 (2013) (ИФ = 3,605 за 2011. годину), 

 

Радови објављени пре претходног избора у звање: 
 

5. N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Hybrid quantum-classical model of 
quantum measurements, Phys. Rev. A 87, 054101 (2013) (ИФ = 3,042 за 2012. годину), 

6. N. Burić, I. Mendaš, D. B. Popović, M. Radonjić, and S. Prvanović, Statistical ensembles in the 
Hamiltonian formulation of hybrid quantum-classical systems, Phys. Rev. A 86, 034104 (2012) 
(ИФ = 3,042 за 2012. годину), 

7. M. Radonjić, S. Prvanović, and N. Burić, Hybrid quantum-classical models as constrained 
quantum systems, Phys. Rev. A 85, 064101 (2012) (ИФ = 3,042 за 2012. годину), 

8. M. Radonjić, S. Prvanović, and N. Burić, Emergence of classical behavior from the quantum 
spin, Phys. Rev. A 85, 022117 (2012) (ИФ = 3,042 за 2012. годину), 

9. A. J. Krmpot, M. Radonjić, S. M. Ćuk, S. N. Nikolić, Z. D. Grujić, and B. M. Jelenković, 
Evolution of dark state of an open atomic system in constant intensity laser field, Phys. Rev. A 
84, 043844 (2011) (ИФ = 2,878 за 2011. годину), 

10. Milan Radonjić, Slobodan Prvanović, and Nikola Burić, System of classical nonlinear 
oscillators as a coarse-grained quantum system, Phys. Rev. A 84, 022103 (2011) (ИФ = 2,878 
за 2011. годину), 

11. S. M. Ćuk, M. Radonjić, A. J. Krmpot, S. N. Nikolić, Z. D. Grujić, and B. M. Jelenković, 
Influence of laser beam profile on electromagnetically induced absorption, Phys. Rev. A 82, 
063802 (2010) (ИФ = 2,908 за 2008. годину), 

12. M. M. Mijailović, Z. D. Grujić, M. Radonjić, D. Arsenović, and B. M. Jelenković, Nonlinear 
magneto-optical rotation narrowing in vacuum gas cells due to interference between atomic dark 
states of two spatially separated laser beams, Phys. Rev. A 80, 053819 (2009) (ИФ = 2,908 за 
2008. годину), 

13. A. J. Krmpot, S. M. Ćuk, S. N. Nikolić, M. Radonjić, D. G. Slavov, and B. M. Jelenković, Dark 
Hanle resonances from selected segments of the Gaussian laser beam cross-section, Opt. 
Express 17, 22491 (2009) (ИФ = 3,880 за 2008. годину), 



14. M. Radonjić and B. M. Jelenković, Stark-chirped rapid adiabatic passage among degenerate-
level manifolds, Phys. Rev. A 80, 043416 (2009) (ИФ = 2,908 за 2008. годину), 

15. Nikola Burić and Milan Radonjić, Uniquely defined geometric phase of an open system, Phys. 
Rev. A 80, 014101 (2009) (ИФ = 2,908 за 2008. годину), 

16. M. Radonjić, D. Arsenović, Z. Grujić, and B. M. Jelenković, Coherent population trapping 
linewidths for open transitions: Cases of different transverse laser intensity distribution, Phys. 
Rev. A 79, 023805 (2009) (ИФ = 2,908 за 2008. годину). 

 

6.2 Радови у врхунским међународним часописима (М21) 
 

Радови објављени након претходног избора у звање: 
 

17. M. Radonjić, W. Kopylov, A. Balaž, and A. Pelster, Interplay of coherent and dissipative 
dynamics in condensates of light, New J. Phys. 20, 055014 (2018) (ИФ = 3,786 за 2016. годину), 

18. A. Maggitti, M. Radonjić, and B. M. Jelenković, Dark-polariton bound pairs in the modified 
Jaynes-Cummings-Hubbard model, Phys. Rev. A 93, 013835 (2016) (ИФ = 2,925 за 2016. 
годину), 

19. B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, Efficient parametric 
non-degenerate four wave mixing in hot potassium vapor, Laser Phys. Lett. 13, 015205 (2016) 
(ИФ = 2,964 за 2013. годину, рад објављен 30.11.2015), 

20. Wassilij Kopylov, Milan Radonjić, Tobias Brandes, Antun Balaž, and Axel Pelster, Dissipative 
two-mode Tavis-Cummings model with time-delayed feedback control, Phys. Rev. A 92, 063832 
(2015) (ИФ = 2,991 за 2013. годину), 

21. D. Arsenović, N. Burić, D. B. Popović, M. Radonjić, and S. Prvanović, Positive-operator-
valued measures in the Hamiltonian formulation of quantum mechanics, Phys. Rev. A 91, 
062114 (2015) (ИФ = 2,991 за 2013. годину), 

22. S. N. Nikolić, M. Radonjić, N. M. Lučić, A. J. Krmpot, and B. M. Jelenković, Transient 
development of Zeeman electromagnetically induced transparency during propagation of 
Raman-Ramsey pulses through Rb buffer gas cell, J. Phys. B 48, 045501 (2015) (ИФ = 1,975 за 
2014. годину), 

23. Nikola Burić, Duška B. Popović, Milan Radonjić, and Slobodan Prvanović, Phase space theory 
of quantum-classical systems with nonlinear and stochastic dynamics, Ann. Phys. (N.Y.) 343, 
16 (2014) (ИФ = 3,318 за 2012. годину). 

 

Радови објављени после одлуке Научног већа о предлогу за стицање претходног научног 
звања: 
 

24. S. M. Ćuk, A. J. Krmpot, M. Radonjić, S. N. Nikolić, and B. M. Jelenković, Influence of a laser 
beam radial intensity distribution on Zeeman electromagnetically induced transparency line-
shapes in the vacuum Rb cell, J. Phys. B 46, 175501 (2013) (ИФ = 2,031 за 2012. годину). 

 

Радови објављени пре претходног избора у звање: 
 

25. S. N. Nikolić, M. Radonjić, A. J. Krmpot, N. M. Lučić, B. V. Zlatković, and B. M. Jelenković, 
Effects of a laser beam profile on Zeeman electromagnetically induced transparency in the Rb 
buffer gas cell, J. Phys. B 46, 075501 (2013) (ИФ = 2,031 за 2012. годину), 

26. M. Radonjić, Slobodan Prvanović, and Nikola Burić, Alternative routes to equivalent classical 
models of a quantum system, Chin. Phys. B 21, 120301 (2012) (ИФ = 1,631 за 2010. годину), 



27. Z. D. Grujić, M. M. Lekić, M. Radonjić, D. Arsenović, and B. M. Jelenković, Ramsey effects in 
coherent resonances at closed transition Fg = 2 → Fe = 3 of 87Rb, J. Phys. B 45, 245502 (2012) 
(ИФ = 2,031 за 2012. годину). 

 

6.3 Радови у истакнутим међународним часописима (М22) 
 

Радови објављени након претходног избора у звање: 
 

28. Ivan S. Radojičić, Milan Radonjić, Marina M. Lekić, Zoran D. Grujić, Dragan Lukić, and 
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Influence of a laser beam radial intensity distribution on Zeeman electromagnetically induced transparency line-shapes in

the vacuum Rb cell

By: Cuk, S. M.; Krmpot, A. J.; Radonjic, M.; et al.

JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS   Volume: 46   Issue: 17     Article Number: 175501   Published: SEP 14 2013

0 0 1 0 0 1 0.17

Hybrid quantum-classical model of quantum measurements

By: Buric, N.; Popovic, D. B.; Radonjic, M.; et al.

PHYSICAL REVIEW A   Volume: 87   Issue: 5     Article Number: 054101   Published: MAY 31 2013

1 0 0 0 0 3 0.50

Effects of a laser beam profile on Zeeman electromagnetically induced transparency in the Rb buffer gas cell

By: Nikolic, S. N.; Radonjic, M.; Krmpot, A. J.; et al.

JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS   Volume: 46   Issue: 7     Article Number: 075501   Published: APR 14 2013

1 0 2 1 0 4 0.67

Hybrid dynamics as a constrained quantum system

By: Buric, N.; Mendas, I.; Popovic, D. B.; et al.

Conference: 6th International Workshop on Decoherence, Information, Complexity and Entropy (DICE) Location: Castiglioncello, ITALY Date: SEP

17-21, 2012 

Sponsor(s): Univ Pisa; Domus Galilaeana; Centro Interdisciplinare Studio Sistemi Complessi (CISSC); Univ Salerno, Dipartimento Ingn

Industriale; Ist Italiano Studi Filosofici (IISF); Solvay Italia SA; Inst Phys Publishing (IOP); Springer Verlag; Hungarian Sci Res Fund (OTKA)

6TH INTERNATIONAL WORKSHOP DICE2012 SPACETIME - MATTER - QUANTUM MECHANICS: FROM THE PLANCK SCALE TO EMERGENT

PHENOMENA   Book Series: Journal of Physics Conference Series   Volume: 442     Article Number: UNSP 012027   Published: 2013

0 0 0 0 0 0 0.00

Ramsey effects in coherent resonances at closed transition F-g=2 -> F-e=3 of Rb-87

By: Grujic, Z. D.; Lekic, M. M.; Radonjic, M.; et al.

JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS   Volume: 45   Issue: 24     Article Number: 245502   Published: DEC 28 2012

1 0 0 1 0 2 0.29

Alternative routes to equivalent classical models of a quantum system

By: Radonjic, M.; Prvanovic, Slobodan; Buric, Nikola

CHINESE PHYSICS B   Volume: 21   Issue: 12     Article Number: 120301   Published: DEC 2012

0 0 0 0 0 1 0.14

Statistical ensembles in the Hamiltonian formulation of hybrid quantum-classical systems

By: Buric, N.; Mendas, I.; Popovic, D. B.; et al.

PHYSICAL REVIEW A   Volume: 86   Issue: 3     Article Number: 034104   Published: SEP 27 2012

3 0 0 1 0 21 3.00

Hybrid quantum-classical models as constrained quantum systems

By: Radonjic, M.; Prvanovic, S.; Buric, N.

PHYSICAL REVIEW A   Volume: 85   Issue: 6     Article Number: 064101   Published: JUN 4 2012

3 0 1 1 0 23 3.29

The connection between electromagnetically induced transparency in the Zeeman configuration and slow light in hot

rubidium vapor

By: Nikolic, S. N.; Djokic, V.; Lucic, N. M.; et al.

Conference: 3rd International School and Conference on Photonics Location: Belgrade, SERBIA Date: AUG 29-SEP 02, 2011

PHYSICA SCRIPTA   Volume: T149     Article Number: 014009   Published: APR 2012

0 0 0 0 0 0 0.00

Constrained quantum dynamics and coarse-grained description of a quantum system of nonlinear oscillators

By: Radonjic, Milan; Prvanovic, Slobodan; Buric, Nikola

Conference: 3rd International School and Conference on Photonics Location: Belgrade, SERBIA Date: AUG 29-SEP 02, 2011

PHYSICA SCRIPTA   Volume: T149     Article Number: 014011   Published: APR 2012

0 0 0 0 0 0 0.00
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Emergence of classical behavior from the quantum spin

By: Radonjic, M.; Prvanovic, S.; Buric, N.

PHYSICAL REVIEW A   Volume: 85   Issue: 2     Article Number: 022117   Published: FEB 13 2012

2 0 0 0 0 9 1.29

Coarse-grained quantum systems and symmetries

By: Buric, N.; Prvanovic, S.; Radonjic, M.

Conference: 7th International Conference on Quantum Theory and Symmetries (QTS) Location: Prague, CZECH REPUBLIC Date: AUG 07-13, 2011 

Sponsor(s): Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math & Phys; Bogoliubov Lab Theoret Phys Joint Inst Nucl Res; Acad Sci, Inst Phys

7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7)   Book Series: Journal of Physics Conference Series

  Volume: 343     Article Number: 012018   Published: 2012

0 0 0 0 0 0 0.00

Evolution of dark state of an open atomic system in constant intensity laser field

By: Krmpot, A. J.; Radonjic, M.; Cuk, S. M.; et al.

PHYSICAL REVIEW A   Volume: 84   Issue: 4     Article Number: 043844   Published: OCT 25 2011

1 0 1 0 0 4 0.50

System of classical nonlinear oscillators as a coarse-grained quantum system

By: Radonjic, Milan; Prvanovic, Slobodan; Buric, Nikola

PHYSICAL REVIEW A   Volume: 84   Issue: 2     Article Number: 022103   Published: AUG 2 2011

2 0 0 0 0 15 1.88

Dark Hanle resonance narrowing by blocking the central part of the Gaussian laser beam

By: Krmpot, A. J.; Nikolic, S. N.; Cuk, S. M.; et al.

Conference: 16th International School on Quantum Electronics - Laser Physics and Applications Location: Nessebar, BULGARIA Date: SEP 20-24,

2010 

Sponsor(s): SPIE; Inst Elect, Bulgarian Acad Sci; Opt Soc Amer; European Phys Soc; Natl Techn Univ Athens, Sch Appl Math & Phys Sci; European

Opt Soc; VIVACOM

16TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS   Book Series: Proceedings of SPIE   Volume:

7747     Article Number: 77470E   Published: 2011

0 0 0 0 0 0 0.00

Influence of laser beam profile on electromagnetically induced absorption

By: Cuk, S. M.; Radonjic, M.; Krmpot, A. J.; et al.

PHYSICAL REVIEW A   Volume: 82   Issue: 6     Article Number: 063802   Published: DEC 1 2010

0 0 0 0 0 2 0.22

Dark Hanle resonances from selected segments of the Gaussian laser beam cross-section

By: Krmpot, A. J.; Cuk, S. M.; Nikolic, S. N.; et al.

OPTICS EXPRESS   Volume: 17   Issue: 25   Pages: 22491-22498   Published: DEC 7 2009

0 0 0 0 0 6 0.60

Nonlinear magneto-optical rotation narrowing in vacuum gas cells due to interference between atomic dark states of two

spatially separated laser beams

By: Mijailovic, M. M.; Grujic, Z. D.; Radonjic, M.; et al.

PHYSICAL REVIEW A   Volume: 80   Issue: 5     Article Number: 053819   Published: NOV 2009

0 0 0 0 0 1 0.10

Stark-Chirped Rapid Adiabatic Passage in a Multilevel Atom

By: Radonjic, M.; Jelenkovic, B. M.

Conference: International School and Conference on Photonics (PHOTONICA09) Location: Belgrade, SERBIA Date: AUG 24-28, 2009

ACTA PHYSICA POLONICA A   Volume: 116   Issue: 4   Pages: 476-478   Published: OCT 2009

0 0 0 0 0 0 0.00

Geometric Phase of an Open System

By: Buric, N.; Radonjic, M.

Conference: International School and Conference on Photonics (PHOTONICA09) Location: Belgrade, SERBIA Date: AUG 24-28, 2009

ACTA PHYSICA POLONICA A   Volume: 116   Issue: 4   Pages: 483-485   Published: OCT 2009

0 0 0 0 0 1 0.10

 Select Page      

Sort by:    Page 4  of 5 

Web of Science InCites Journal Citation Reports Essential Science Indicators EndNote Publons Sign In  Help  English 

Tools  Searches and alerts  Search History Marked List

2008  2018 

Times Cited Date More 

2008  2018 

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Save to Excel File 

Times Cited Date More 

Search Search Results

http://apps.webofknowledge.com/home.do?SID=E4AX16BVxm7YgqAZFpU
javascript:void(0)
http://apps.webofknowledge.com/summary.do?product=WOS&parentProduct=WOS&search_mode=CitationReport&parentQid=16&qid=17&SID=E4AX16BVxm7YgqAZFpU&colName=WOS&&page=3&isCRHidden=true
http://apps.webofknowledge.com/summary.do?product=WOS&parentProduct=WOS&search_mode=CitationReport&parentQid=16&qid=17&SID=E4AX16BVxm7YgqAZFpU&colName=WOS&&page=5&isCRHidden=true
http://apps.webofknowledge.com/summary.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&crNavigationAction=Previous&endYear=11
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=31
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=31&REFID=428837598&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=32
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=33
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=33&REFID=424077617&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=34
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=34&REFID=421084444&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=35
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=36
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=36&REFID=351563888&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=37
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=37&REFID=286559420&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=38
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=38&REFID=285888038&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=39
javascript:;
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=4&doc=40
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=40&REFID=284295204&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/summary.do?product=WOS&parentProduct=WOS&search_mode=CitationReport&parentQid=16&qid=17&SID=E4AX16BVxm7YgqAZFpU&colName=WOS&&page=3&isCRHidden=true
http://apps.webofknowledge.com/summary.do?product=WOS&parentProduct=WOS&search_mode=CitationReport&parentQid=16&qid=17&SID=E4AX16BVxm7YgqAZFpU&colName=WOS&&page=5&isCRHidden=true
javascript:;
javascript: void('InCites')
javascript: void('JCR')
javascript: void('ESI')
javascript: void('EndNote')
javascript: void('PUBLONS')
javascript:void(0);
javascript:void(0)
javascript: void(0)
javascript: void(0)
javascript: void(0)
http://apps.webofknowledge.com/WOS_CombineSearches_input.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CombineSearches
http://apps.webofknowledge.com/ViewMarkedList.do?action=Search&product=WOS&SID=E4AX16BVxm7YgqAZFpU&mark_id=UDB&search_mode=MarkedList&colName=WOS&entry_prod=WOS
http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=GeneralSearch
http://apps.webofknowledge.com/summary.do?product=WOS&search_mode=GeneralSearch&qid=16&SID=E4AX16BVxm7YgqAZFpU&page=


Web of Science

Citation report for 47 results from Web of Science Core Collection between  and  Go

You searched for: AUTHOR: (Radonjic Milan OR Radonjic M)

Refined by: WEB OF SCIENCE CATEGORIES: ( OPTICS OR PHYSICS ATOMIC MOLECULAR CHEMICAL OR PHYSICS MULTIDISCIPLINARY OR PHYSICS MATHEMATICAL ) AND DOCUMENT TYPES: ( ARTICLE OR PROCEEDINGS PAPER )

Timespan: 2008-2018. Indexes: SCI-EXPANDED, CPCI-S, CPCI-SSH, BKCI-S, ESCI.

...Less

 

This report reflects citations to source items indexed within Web of Science Core Collection. Perform a Cited Reference Search to include citations to items not indexed within Web of Science Core Collection.

Sort by:    Page 5  of 5  

 

2015 2016 2017 2018 2019 Total Average

Citations 

per Year

Use the checkboxes to remove individual items from this Citation Report 

 

or restrict to items published between and  Go  

21 7 15 26 0 166 16.60

Laser Beam Profile Influence on Dark Hanle Resonances in Rb Vapor

By: Krmpot, A. J.; Cuk, S. M.; Nikolic, S. N.; et al.

Conference: International School and Conference on Photonics (PHOTONICA09) Location: Belgrade, SERBIA Date: AUG 24-28, 2009

ACTA PHYSICA POLONICA A   Volume: 116   Issue: 4   Pages: 563-565   Published: OCT 2009

0 0 0 0 0 0 0.00

Stark-chirped rapid adiabatic passage among degenerate-level manifolds

By: Radonjic, M.; Jelenkovic, B. M.

PHYSICAL REVIEW A   Volume: 80   Issue: 4     Article Number: 043416   Published: OCT 2009

0 0 1 0 0 3 0.30

Numerical simulation of Raman resonance due to the Ramsey interference induced by thermal motion of atoms

By: Grujic, Zoran; Arsenovic, Dusan; Radonjic, Milan; et al.

Conference: 15th Central European Workshop on Quantum Optics Location: Belgrade, SERBIA Date: MAY 29-JUN 03, 2008

PHYSICA SCRIPTA   Volume: T135     Article Number: 014026   Published: JUL 2009

0 0 0 0 0 0 0.00

Uniquely defined geometric phase of an open system

By: Buric, Nikola; Radonjic, Milan

PHYSICAL REVIEW A   Volume: 80   Issue: 1     Article Number: 014101   Published: JUL 2009

2 0 1 1 0 16 1.60

Coherent population trapping linewidths for open transitions: Cases of different transverse laser intensity distribution

By: Radonjic, M.; Arsenovic, D.; Grujic, Z.; et al.

PHYSICAL REVIEW A   Volume: 79   Issue: 2     Article Number: 023805   Published: FEB 2009

2 0 0 2 0 15 1.50

Open system CPT with spatially separated pump and probe beams

By: Jelenkovic, B. M.; Arsenovic, D.; Grujic, Z.; et al.

Conference: Conference of the 15th International School on Quantum Electronics - Laser Physics and Applications Location: Bourgas, BULGARIA

Date: SEP 15-19, 2008 

Sponsor(s): Bulgarian Acad Sci, Inst Elect; ASO Sofia - Austrian Sci & Res Liaison off; HORIBA Jobin Yvon GmbH; Optella Ltd; Coherent Inc

15TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS   Book Series: Proceedings of SPIE   Volume:

7027     Article Number: 70270D   Published: 2008

0 1 0 0 0 1 0.09

Line-shapes and widths of CPT resonances: Effect of laser beam profile in open atomic system

By: Radonjic, M.; Arsenovic, D.; Grujic, Z.; et al.

Conference: Conference of the 15th International School on Quantum Electronics - Laser Physics and Applications Location: Bourgas, BULGARIA

Date: SEP 15-19, 2008 

Sponsor(s): Bulgarian Acad Sci, Inst Elect; ASO Sofia - Austrian Sci & Res Liaison off; HORIBA Jobin Yvon; Optella Ltd; Coherent Inc

15TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS   Book Series: Proceedings of SPIE   Volume:

7027     Article Number: 70270N   Published: 2008

0 0 0 0 0 0 0.00

 Select Page      

Sort by:    Page 5  of 5 

Web of Science InCites Journal Citation Reports Essential Science Indicators EndNote Publons Sign In  Help  English 

Tools  Searches and alerts  Search History Marked List

2008  2018 

Times Cited Date More 

2008  2018 

41.

42.

43.

44.

45.

46.

47.

Save to Excel File 

Times Cited Date More 

47 records matched your query of the 26,083,729 in the data limits you selected. 

Key:  = Structure available.

Clarivate
Accelerating innovation

© 2018 Clarivate Copyright notice Terms of use Privacy statement Cookie policy

Sign up for the Web of Science newsletter Follow us  

Search Search Results

http://apps.webofknowledge.com/home.do?SID=E4AX16BVxm7YgqAZFpU
javascript:void(0)
http://apps.webofknowledge.com/summary.do?product=WOS&parentProduct=WOS&search_mode=CitationReport&parentQid=16&qid=17&SID=E4AX16BVxm7YgqAZFpU&colName=WOS&&page=4&isCRHidden=true
javascript: void('paginationNext')&isCRHidden=true
http://apps.webofknowledge.com/summary.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=5&crNavigationAction=Previous&endYear=11
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=5&doc=41
javascript:;
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=5&doc=42
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=42&REFID=275971032&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=5&doc=43
javascript:;
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=5&doc=44
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=44&REFID=270442955&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=5&doc=45
javascript:;
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=45&REFID=264660148&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=5&doc=46
http://apps.webofknowledge.com/CitingArticles.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CitingArticles&parentProduct=WOS&parentQid=17&parentDoc=46&REFID=306390172&excludeEventConfig=ExcludeIfFromNonInterProduct
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=CitationReport&qid=17&SID=E4AX16BVxm7YgqAZFpU&page=5&doc=47
http://apps.webofknowledge.com/summary.do?product=WOS&parentProduct=WOS&search_mode=CitationReport&parentQid=16&qid=17&SID=E4AX16BVxm7YgqAZFpU&colName=WOS&&page=4&isCRHidden=true
javascript: void('paginationNext')&isCRHidden=true
javascript:;
javascript: void('InCites')
javascript: void('JCR')
javascript: void('ESI')
javascript: void('EndNote')
javascript: void('PUBLONS')
javascript:void(0);
javascript:void(0)
javascript: void(0)
javascript: void(0)
javascript: void(0)
http://apps.webofknowledge.com/WOS_CombineSearches_input.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=CombineSearches
http://apps.webofknowledge.com/ViewMarkedList.do?action=Search&product=WOS&SID=E4AX16BVxm7YgqAZFpU&mark_id=UDB&search_mode=MarkedList&colName=WOS&entry_prod=WOS
javascript: void('home')
javascript: void('copyright')
javascript: void('policy');
javascript: void('privacy');
javascript: void('cookies')
javascript: void('Newsletter')
http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&SID=E4AX16BVxm7YgqAZFpU&search_mode=GeneralSearch
http://apps.webofknowledge.com/summary.do?product=WOS&search_mode=GeneralSearch&qid=16&SID=E4AX16BVxm7YgqAZFpU&page=






З А П И С Н И К 
са IX седнице Изборног и Наставно-научног већа Физичког факултета  

одржане у среду 1. јула 2015. године  

 

Седници присуствује 49 чланова Изборног и Наставно-научног већа. 

 
Службено одсутни:  проф. др Петар Аџић 

   Мирослав Поповић 

 

Оправдано одсутни: проф. др Владимир Милосављевић 

   проф. др Јован Пузовић 

   проф. др Владан Вучковић 

   доц. др Зоран Борјан 

   доц. др Владимир Миљковић 

   доц. др Иван Виденовић 

   мр Саша Ивковић 

   Весна Ковачевић 

   Биљана Николић 

 

 

 Декан Факултета проф. др Јаблан Дојчиловић, отворио је седницу у 11:15 и предложио 

следећи  
 

Д н е в н и    р е д 
 

1. Усвајање Записника са VIII седнице Изборног и Наставно-научног већа.  

Изборно веће 

2. Утврђивање предлога за избор директора Института за физику и Института за метеорологију Физичког 

факултета за мандатни период 2015-2018 година 

3. Усвајање Извештаја Комисије за избор наставника Физичког факултета и то: 

a) једног редовног професора за ужу научну област Нуклеарна физика  

b) једног редовног професора за ужу научну област Примењена физика  

c) једног асистента за ужу научну област Физика честица и поља  
Наставно-научно веће 

4. Одређивање Комисије за оцену испуњености услова и оправданост предложене теме за израду докторске 

дисертације за: 

a) МИЛОША ДРАЖИЋА, дипломираног физичара, који је пријавио докторску дисертацију под називом: 

„ТЕОРИЈА НЕРАВНОТЕЖНОГ, ВРЕМЕНСКИ ЗАВИСНОГ ЕЛЕКТРОНСКОГ ТРАНСПОРТА КРОЗ КВАНТНЕ 

ТАЧКЕ И МОЛЕКУЛЕ“ 

5. Усвајање Извештаја Комисије за оцену испуњености услова и оправданост предложене теме за израду 

докторске дисертације и одређивање ментора за:  

a) АНЂЕЛА МАЂИТИЈА, дипломираног физичара, који је пријавио докторску дисертацију под називом: 

„FORMATION OF DARK-STATE POLARITONS AND TWO-POLARITON BOUND STATES IN ARRAYS OF ATOMS 

AND OPTICAL CAVITIES“ (Формирање тамних поларитона и дво-поларитонских везаних стања у 

низовима атома и оптичких микрорезонатора) 

b) МАРИЈУ МАРЈАНОВИЋ, дипломираног физичара, која је пријавила докторску дисертацију под 

називом: „ПОТРАГА ЗА СУПЕРСИМЕТРИЧНИМ ЧЕСТИЦАМА ПРОДУКОВАНИМ ЈАКОМ ИНТЕРАКЦИЈОМ 

ПОМОЋУ АТЛАС ДЕТЕКТОРА И ИНТЕРПРЕТАЦИЈА РЕЗУЛТАТА У ОКВИРУ pMSSM МОДЕЛА“ 

c) ИРИНЕЛА ТАПАЛАГУ, дипломираног физичара, који је пријавио докторску дисертацију под називом: 

„ИСПИТИВАЊЕ РЕГУЛАРНОСТИ ШТАРКОВОГ ШИРЕЊА КОД ИЗОЕЛЕКТРОНСКИХ НИЗОВА ЛИТИЈУМА И 

НАТРИЈУМА“ 

6. Одређивање Комисије за преглед и оцену докторске дисертације за: 



 1. јули 2015. 

 

  др Радомир Жикић, научни саветник ИФ 

 

 

5. тачка 

 

Усвојен је Извештај Комисије за оцену испуњености услова и оправданост предложене 

теме за израду докторске дисертације и одређен ментор за:  

a) АНЂЕЛА МАЂИТИЈА, дипломираног физичара, који је пријавио докторску дисертацију 

под називом: „FORMATION OF DARK-STATE POLARITONS AND TWO-POLARITON BOUND 

STATES IN ARRAYS OF ATOMS AND OPTICAL CAVITIES“ (Формирање тамних поларитона и 

дво-поларитонских везаних стања у низовима атома и оптичких микрорезонатора) 

Ментор:  др Милан Радоњић, научни сарадник ИФ 

 

b) МАРИЈУ МАРЈАНОВИЋ, дипломираног физичара, која је пријавила докторску 

дисертацију под називом: „ПОТРАГА ЗА СУПЕРСИМЕТРИЧНИМ ЧЕСТИЦАМА 

ПРОДУКОВАНИМ ЈАКОМ ИНТЕРАКЦИЈОМ ПОМОЋУ АТЛАС ДЕТЕКТОРА И 

ИНТЕРПРЕТАЦИЈА РЕЗУЛТАТА У ОКВИРУ pMSSM МОДЕЛА“ 

Ментор:  др Марија Врањеш-Милосављевић 

 

c) ИРИНЕЛА ТАПАЛАГУ, дипломираног физичара, који је пријавио докторску дисертацију 

под називом: „ИСПИТИВАЊЕ РЕГУЛАРНОСТИ ШТАРКОВОГ ШИРЕЊА КОД 

ИЗОЕЛЕКТРОНСКИХ НИЗОВА ЛИТИЈУМА И НАТРИЈУМА“ 

Ментор:  проф. др Иван Дојчиновић 

 

6. тачка 

 

Одређена је Комисија за преглед и оцену докторске дисертације за: 

a) ГОРАНА СРЕТЕНОВИЋА,  дипломираног физичара, који је предао докторску дисертацију 

под називом: „СПЕКТРОСКОПСКА ИСТРАЖИВАЊА ДИНАМИКЕ РАЗВОЈА СТРИМЕРА У 

ХЕЛИЈУМУ“ 

Комисија: др Милорад Кураица, редовни професор ФФ 

  др Братислав Обрадовић, ванредни професор ФФ 

  др Невена Пуач, виши научни сарадник ИФ 

 

b) МИРЈАМ ВУЈАДИНОВИЋ, дипломираног метеоролога, која је предала докторску 

дисертацију под називом: „МОДЕЛИРАЊЕ ХИДРОЛОШКОГ ЦИКЛУСА У ИНТЕГРИСАНОМ 

ГЕОФИЗИЧКОМ СИСТЕМУ“ 

Комисија: др Боривој Рајковић, ванредни професор ФФ у пензији 

  др Владимир Ђурђевић, доцент ФФ 

  др Ана Вуковић, доцент Пољопривредног факултета 

 

c) АЛЕКСАНДРА ТОМОВИЋА, дипломираног физичара, који је предао докторску 

дисертацију под називом: „ЕЛЕКТРОНСКЕ ОСОБИНЕ И МОРФОЛОГИЈА ТАНКИХ 



10/5/2018 Formation of dark-state polaritons and two-polariton bound states in arrays of atoms and optical cavities

http://nardus.mpn.gov.rs/handle/123456789/7258?locale-attribute=sr 1/1

Formation of dark-state polaritons and two-polariton bound states in arrays of atoms
and optical cavities
Формирање тамних поларитона и дво-поларитонских везаних стања у низовима атома и оптичких микрорезонатора.

 

(/bitstream/handle/123456789/7258/Disertacija.pdf?sequence=1&isAllowed=y)

Отварање
 Disertacija.pdf (3.200Mb) (/bitstream/handle/123456789/7258/Disertacija.pdf?

sequence=1&isAllowed=y)
 Angelo_Maggitti_referat_disertacija_FIF.pdf (253.3Kb)

(/bitstream/handle/123456789/7258/Angelo_Maggitti_referat_disertacija_FIF.pdf?
sequence=5&isAllowed=y)

Докторанд:
Maggitti, Angelo

Факултет:
Универзитет у Београду, Физички
факултет

Датум одбране дисертације:
07-04-2016

Ментор:
Radonjić, Milan  (http://orcid.org/0000-
0002-2972-2969)

Чланови комисије:
Jelenković, Branislav
(http://orcid.org/0000-0001-8276-1169)

Kuraica, Milorad  (http://orcid.org/0000-
0001-8201-8500)

Konjević, Nikola  (http://orcid.org/0000-
0002-2507-9099)

Damnjanović, Milan
(http://orcid.org/0000-0003-2806-253X)

Метаподаци
Приказ свих података о дисертацији
(/handle/123456789/7258?show=full)

Остали линкови:

http://eteze.bg.ac.rs/application/showtheses?thesesId=4224 (http://eteze.bg.ac.rs/application/showtheses?thesesId=4224)

https://fedorabg.bg.ac.rs/fedora/get/o:13925/bdef:Content/download (https://fedorabg.bg.ac.rs/fedora/get/o:13925/bdef:Content/download)

http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=48203023 (http://vbs.rs/scripts/cobiss?
command=DISPLAY&base=70036&RID=48203023)

http://nardus.mpn.gov.rs/123456789/7258 (http://nardus.mpn.gov.rs/123456789/7258)

Сажетак:

This thesis covers a theoretical analysis of non-interacting and interacting quasi particles, called polaritons. Polaritons are composites,
based on photonic and atomic excitations in a tunable and controlled manner. Dark-state polaritons, as a subclass of polaritons, are very
curious objects, as they can act as a quantum memory of photons within an ensemble of alkali-metal atoms in -type conguration which
admit electromagnetically induced transparency (EIT). This thesis focus on the formation of dark-state polaritons in degenerate two-level
systems, where two light elds, a quantum probe and a classical driving eld, couple the same transition between the ground state and
excited state manifold. An algorithm is going to be derived in order to determine the dispersion relation and inherent composition of the
dark-state polaritons in the degenerate two-level system. The algorithm is based on a microscopic equation of motion technique and
provides an extension of the non-degenerate case. Depending  Више
 
Ova teza predstav a teorijsku analizu neinteragujuih i interagujuih kvazi-qestica, tzv. polaritona. Polaritoni su kombinacije fotonskih i atom-
skih ekscitacija u kontrolisano promen ivom odnosu. Vrsta polaritona, tamni polaritoni, su veoma neobiqni objekti budui da mogu da slue
kao kvantna memorija za fotone unutar ansambla atoma alkalnih metala u - konfiguraciji, a u vezi sa efektom elektromagnetno indukovane
transparen- cije (EIT). Teza se fokusira na prouqavae formiraa tamnih polaritona u sistemima sa dva nivoa, osnovnim i pobuenim, koji
poseduju mnogostrukosti degenerisanih podnivoa i spregnuti su kvantnim probnim i klasiqnim kon- trolnim laserskim po em. Bie izveden
algoritam za dobijae disperzione relacije i odgovarajueg sastava tamnih polaritona u sistemima sa dva-nivoa i degeneracijom. Algoritam je
zasnovan na tehnici mikroskopskih jednaqina kretaa i predstav a proxiree sluqaja bez degeneracije. Bie pokazano da u zavisnosti od
polarizacije po a mogu postojati jedan ili dva tamna  Више

Кључне речи:

EIT, dark-state polaritons, cavity QED arrays, interacting darkpolaritons, dark-polariton bound pairs, quantum memory of light and disorder;
elektromagnetno indukovana transparencija (EIT), tamni polaritoni, niz kvantno-elektrodinamiqkih mikrorezonatora, interagujui tamni
polaritoni, vezani parovi tamnih polaritona, kvantna memorija za fo- tone i neureee
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To whom it may concern Vienna, September 21th, 2018 

 

Dear ladies and gentlemen, 

it is my great pleasure to write a letter of recommendation for Milan Radonjić, who has been part of 

my research group at the University of Vienna as a postdoctoral researcher. During his research he 

was the prime person in charge of managing the task of theoretical design of the quantum circuit 

for the six-photon benzene simulation within the European QUCHIP project, in which he proved 

himself very valuable regarding the efforts of the group as well as the project.  

Milan Radonjić’s results and achievements were of importance for ongoing experiments. Through 

his work he could demonstrate that he possesses a great creativity and a scientific insight in solving 

physical problems. 

In conclusion, I give Milan Radonjić my high recommendation without any reservation. 

Please send an e-mail or call me if you have any further questions. 

With kind regards, 

 
Philip Walther 
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Hamiltonian Formulation of Hybrid Quantum-classical
Systems

Milan Radonjić1,2,a)
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University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

2Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.

a)Corresponding author: milan.radonjic@ipb.ac.rs

In this talk an overview of the dynamical description of interacting quantum-classical systems will be given,
based on a novel approach recently introduced by N. Burić and co-workers. General constrained Hamiltonian frame-
work is applied to quantum systems in order to tackle the emergence of classical systems and their consistent joint
treatment. Some results and emerging issues will be presented by following the development time-line of the approach.

Nikola Burić Memorial Workshop
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Dear Dr. Radonjic,
  

thank you very much, we are looking forward to your talk.
 (which will probably be Tuesday early afternoon).

  
Best regards,

   Martin Weitz
  

 
On Sun, 07 Jan 2018 21:29:59 +0100

  Milan Radonjić <milan.radonjic@ipb.ac.rs> wrote:
Dear Prof. Weitz,

  
thank you very much for the opportunity to deliver a hot topic talk. I am quite glad to accept it. The title
is "Interplay of Coherent and Dissipative Dynamics in Condensates of Light" and the abstract you may find in
the attachment.

  
Best wishes,

 Milan Radonjic
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Dear Dr. Radonjic,

  
this email is to inquite whether you would be willing to deliver a hot

 topic talk on a topic related to your recent preprint arXiv:1801.00155
 on the upcoming condensates of light conference. If you accept this invitation,

 please also send me a title of your talk very shortly (and best also
 an abtract),

 because we have to complete the program. The title could very well
 id´dentical to

 that of your preprint. We would be looking forward to your talk.
  

Best regards,
   Martin Weitz
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Microscopic Model of Photon Condensation 
M. Radonjić1,3, W. Kopylov2, T. Brandes2, A. Balaž3, and A. 
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3Institute of Physics Belgrade, University of Belgrade, Serbia 

4Physics Department and Research Center OPTIMAS, Technische Universität 
Kaiserslautern, Germany 
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Convincing evidence of macroscopic occupation of the lowest mode for a gas of 
photons confined in a dye-filled optical microcavity has been first presented in a 
seminal experiment in Bonn [1] and recently also in London [2]. Thermal relaxation of 
the dye molecules due to interaction with solvent gives rise to a Bose-Einstein 
distribution of the microcavity photons in the experiment. These equilibrium 
properties could recently be understood within the framework of a non-equilibrium 
description [3,4]. We critically analyze and extend this description by including 
coherent coupling between the dye molecules and the microcavity photons, 
influenced by the solvent, in addition to a dissipative coupling that leads to 
thermalization. Interestingly, we find that strong interaction of the dye molecules with 
the solvent favors the thermalization dynamics and makes possible Bose-Einstein 
condensation of photons. On the other hand, weak solvent influence promotes the 
coherent dynamics and enables the formation of a laser-like state. Depending on the 
values of experimental parameters different optical cavity modes may become 
macroscopically occupied. The onset of the latter behavior has recently been noticed 
in a simplistic two-mode laser model [5] that can be seen as a minimalistic precursor 
of the detailed model of photon condensation. 
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Photonic simulation of open quantum systems with various exchange statistics 
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Photonic quantum technology has reached a point where it is almost viable to use photonic setups to simulate 
the behavior of other quantum systems. Realistic quantum systems are inevitably influenced by the external 
environment – they are open. When the environment introduces pronounced memory effects, one speaks of 
non-Markovianity. The need to understand and the possibility of exploiting this phenomenon as a potential 
resource for quantum information tasks has spurred an increasing interest in generating and manipulating non-
Markovian quantum dynamics using various experimental platforms, including photonic setups. 
 
The essentially distinct dynamical behavior of quantum entities obeying different exchange statistics (e.g., 
bosonic, fermionic or anyonic) has to leave a marked signature on non-Markovianity. We will describe the 
project that ultimately aims to emphasize and to explore theoretically the versatility of photonic setups for 
simulating and studying the interplay between various exchange statistics and quantum non-Markovianity, 
with the ultimate goal of identifying and experimentally validating the benefits for quantum information 
applications. 
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Modeling Dye-Mediated Photon-Photon Interaction in Condensates of
Light — •MILAN RADONJIĆ1, WASSILIJ KOPYLOV2, ANTUN BALAŽ1, and AXEL PELSTER3 —
1Institute of Physics Belgrade, University of Belgrade, Serbia — 2Department of
Physics, Technische Universität Berlin, Germany — 3Department of Physics and
Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany

Based entirely on the Lindblad master equation approach we obtain a
microscopic description of photons in a dye-filled cavity, which features
condensation of light [1,2]. To this end we generalize the nonequilibrium
approach of Ref. [3] such that the dye-mediated contribution to the photon-
photon interaction in the light condensate is accessible. We describe the
dynamics of the system by analyzing the resulting equations of motion. In
particular, we discuss the existence of two limiting cases for steady states:
photon BEC and laser-like. In the former case, we determine the corresponding
dimensionless interaction strength relying on realistic experimental data and
find a good agreement with the previous theoretical estimate [4]. Furthermore,
we investigate how the dimensionless interaction strength depends on the
respective system parameters such as the effective temperature of the dye and
the number of the dye molecules.
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Microscopic model of photon condensation 
Convincing evidence of macroscopic occupation of the lowest mode for a gas of photons confined in 
a dye-filled optical microcavity has been first presented in a seminal experiment in Bonn [1] and 
recently also in London [2]. Thermal relaxation of the dye molecules due to interaction with the 
solvent gives rise to a Bose-Einstein distribution of the microcavity photons in the experiment. 
 
These equilibrium properties could recently be 
understood within the frame- work of a non-
equilibrium description [3].  We will critically 
analyze and extend this des- cription by inclu-
ding coherent coupling be- tween dye mole-
cules and microcavity pho- tons, influenced 
by the solvent, in addition to a dissipative cou-
pling that leads to the thermalization.  
Interestingly, our prelimnary results indicate 
that the strong interaction of the dye molecules with the solvent favors the thermalization dynamics 
and makes possible Bose-Einstein condensation of photons. 
 
On the other hand, weak solvent influence promotes the coherent dynamics and enables the 
formation of a laser-like state. Depending on the values of experimental parameters different 
optical cavity modes may become macroscopically occupied. The onset of the latter behavior has 
recently been noticed in a simplistic two-mode laser model [4] that can be seen as a minimalistic 
precursor of the detailed model of photon condensation.  
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Abstract
Based on the Lindbladmaster equation approachwe obtain a detailedmicroscopicmodel of photons
in a dye-filled cavity, which features condensation of light. To this endwe generalise a recent non-
equilibrium approach of Kirton andKeeling such that the dye-mediated contribution to the photon–
photon interaction in the light condensate is accessible due to an interplay of coherent and dissipative
dynamics.We describe the steady-state properties of the systemby analysing the resulting equations of
motion of both photonic andmatter degrees of freedom. In particular, we discuss the existence of two
limiting cases for steady states: photon Bose–Einstein condensate and laser-like. In the former case, we
determine the corresponding dimensionless photon–photon interaction strength by relying on
realistic experimental data andfind a good agreement with previous theoretical estimates.
Furthermore, we investigate how the dimensionless interaction strength depends on the respective
systemparameters.

1. Introduction

Within the last decades open dissipativemany-body quantum systems have emerged as a promising research
direction for both basic research and applications. In particular, this is due to the development of exquisite
technologies to coherentlymanipulate and control the internal and external degrees of freedomof atomic and
photonicmatter, as well as their interaction. A prominent example at the immediate interface of quantumoptics
and condensedmatter physics is provided by the laser as a coherent light sourcewhich has contributed not only
to ourmodern understanding of non-equilibriumphase transitions in general but even tomany useful
applications in our everyday life [1–4].

Anothermoremodern prominent object of research is the Bose–Einstein condensate (BEC) of light, which
has so far been realised in a dye-filledmicrocavity at room temperature in Bonn [5], in London [6], and quite
recently also inUtrecht [7]. One of the key ingredients is the possibility of photons to acquire an effectivemass by
trapping them in a cavity in two dimensions—without this, the photonswould just disappear according to the
Planck lawupon lowering the temperature. In the experiment, this is achieved via a curved-mirror cavity, which
changes the dispersion relation of the photons from linear to quadratic. Along the resonator axis the frequency
of themode is quantised according to the resonance condition. Simultaneously, the curvedmirrors create a
harmonic trapping potential for the photons in the transverse direction. The next crucial element is given by dye
molecules in the resonator, which are pumped incoherently. Themultiple absorption and emission events
between the cavity photons and the dyemolecules lead to a thermalisation of the light [8], so the resulting
photonBEC emerges from an equilibriumphase transition [9–11]. Photon thermalisationwas also shown to be
possible inmuch simpler but periodically driven systems, such as double quantumdots [12], or a collection of
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harmonicmodes [13], both coupled to some environment. Recently, an elaborate theoretical proposal for a BEC
of light in nanofabricated semiconductormicro-cavities has been put forward [14].

The usual atomic BEC as a thermal equilibriumphase transition occurs for temperatures below some critical
value [15, 16]when the resulting ground-state condensate acquiresmacroscopic occupation, while the
populations of the higher energy levels obey the Bose–Einstein distribution even before the transition. Phase
transition into amacroscopically occupiedmode emerges as well in a controllable way in the laser case, but—in
contrast to the BEC—this transition depends on the rate of the loss and the pumping channels, whichmakes it a
non-equilibriumparadigm. The two transitions, which a priori seem to be incompatible with each other due to
their different nature, can thus be regarded as two sides of the same coinwithin a single non-equilibrium setup
[17]. Several studies concerning the similarities and differences of condensate and lasing states and their
appearance in different systems exist [18–23]. The investigation of systems and conditions underwhich a
complex equilibrium state can be realizedwithin a non-equilibrium setup has developed into an attractive topic,
both in experiment and theory.

Apart fromphotonic systems, condensation effects of bosonic quasi-particles have also been observed in
solid-state physics formagnons [24–28] and exciton polaritons [29–34]. The latter quasi-particles can be created
in semiconductormicro-cavities using strong coupling between photons and particle-hole excitations [29]. A
non-equilibriumBECof polaritons has been observed in various experiments in polymers [35, 36]. Surprisingly,
the transition therein is not always restricted to amodewith the lowestmomentum [37].

Thefirstmicroscopicmodel of a photon condensate was developed byKirton andKeeling [38, 39], which
has recently been further extended by the same authors [40, 41]. They considered a dye-filled cavitywith
multiple opticalmodes together with additional incoherent pump and loss channels and derived aMarkovian
quantummaster equation of the Lindblad type [42, 43]. Using an adiabatic elimination of the degrees of freedom
of the dyemolecules, Kirton andKeeling obtained amean-field equation for the occupation of the cavitymodes.
The resulting steady-state turned out to have different physical properties depending on the values of the
respective systemparameters. Provided that the relaxation time towards equilibrium ismuch shorter than the
life time of the photons in the cavity, the steady-state is given by a Bose–Einstein distribution, otherwise a laser-
like state occurs havingmacroscopic occupation of a higher energymode. Inspired by such a behaviour, a
minimal two-mode lasermodel with aDicke-like interactionwas investigated [44]. Different phaseswith up to
four possible and up to two stable fixed points were found, some ofwhich have an analogy to the laser-to-
condensate-like transition. However, this analogy is only quite limited due to the absence of a temperature scale
in themodel. Quite recently, by considering the full spatial dynamics of light [40] a rich non-equilibriumphase
diagram featuring Bose–Einstein condensation,multimode condensation and lasing has been demonstrated
[45]. On the other side, by using the Schwinger–Keldysh formalism a Langevin field equation describing the
dynamics of photons in a dye-filled cavity was obtained [46] and later utilised to study phase fluctuations [47]
and phase diffusion [48] in such systems.Moreover, a quantumLangevinmodel for non-equilibrium
condensation of photons in planarmicrocavity devices was developed in [49] and recently extended to address
pseudo-thermalisation in driven-dissipative non-Markovian open quantum systems [50]. A theoretical
description of a photon condensate based on three-dimensionalMaxwell equations, which aremapped via a
paraxial approximation to a two-dimensional Schrödinger equation, was suggested aswell [51].We also note
that a unified theory for excited-state, fragmented and equilibrium-like Bose condensation in pumped photonic
many-body systems has recently been introduced in [52].

The theoreticalmodelling of dissipative condensates usually strives for a reduced description in terms of a
mean-field approximation in the formof a complex-valuedGross–Pitaevskii equation, which explicitly takes
into account gains and losses. It describes the system around this phase transition even in non-equilibrium
[53–55].Within equilibrium, a real-valuedGross–Pitaevskii equation is a standard tool to describe
condensation effects [15, 16, 56–59]. At the present stage, theGross–Pitaevskii-like equation for a photon
condensate can only be obtained by including a nonlinear self-interaction into themodel on a
phenomenological level [5, 49, 51]. Amore detailed investigation shows that this nonlinear self-interaction of
photons ismediated via the change of the refractive index of the dyemolecules due to themutual presence of the
optical Kerr and the thermo-optical effect [60]. Due to dimensional reasons the effective photon–photon
interaction strength g in two spatial dimensions corresponds to a dimensionless number g gm 2= / [61],
which turns out to be of the order of 10 109 8-- - for theKerr and 10−4 for the thermo-optic effect, respectively
[60]. Based on the observedmomentum- and position-resolved spectra and images of the photoluminescence
from thermalised and condensed dye-microcavity photons, the upper bound g 10 3 - was obtained [62]. In
addition, a theoretical investigation of the influence of photon–photon interaction on the numberfluctuations
in a BECof light [63] successfully explained themeasurements [64] and estimated the range g 10 108 7~ -- - .
Surprisingly, even amuch higher value for the interaction g 10 2~ - was recentlymeasured [65].

In this paperwe generalise themicroscopicmodel of the photon BECbyKirton andKeeling [38, 39] such
that the dye-mediated contribution to the photon–photon interaction strength becomesmicroscopically
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accessible due to an interplay of coherent and dissipative dynamics. To this end, in section 2wework out in
detail the underlyingmodel and discuss its improvements in comparison to [38, 39]. Based on the
corresponding Lindbladmaster equation, we derive the resulting equations ofmotion of expectation values of
the relevant systemoperators. In section 3we determine the realisticmodel parameters in relation to current
experiments.We then proceed in section 4 to analyse the steady-state properties of the system and identify the
two limiting cases: a photon BEC and a laser-like regime. The latter one is novel and accessible precisely due to
the inclusion of the coherent dynamics. For the former case, in section 5we determine the dye-mediated
dimensionless photon–photon interaction strength from realistic experimental data and, in particular, how it
depends on the respective systemparameters. Section 6 presents our concluding remarks.

2.Model

Let us now introduce a physical systemwhich encompasses both laser and photon BEC as the possible limiting
cases. This is going to be done in close correspondencewith the actual experimental setups of photonBEC
experiments.We considerN identical non-interacting two-level systems (TLS) inside an optical cavity. The
transition between the two levels has the frequencyΔ and it is nearly resonantwithMmodes of the cavity. The
dipole coupling between the TLS and the cavitymodes has the strength g and it is assumed to be sufficiently
weak so that the rotatingwave approximation (RWA) holds. In the photonBEC experiments, the TLSwere
actually dyemolecules dissolved in a solvent. The dyemolecules have very broad rovibrational absorption and
emission spectra, which can bemodelled as an on-site phonon coupled to its own thermal bath [38, 39]. In
addition, due to frequent collisions with the solvent particles the dyemolecules experience rapid dephasing.
Hence, we take that each of the TLS is coupled to its own reservoir ofR?1 harmonic oscillators. This can be
thought of as a compound reservoir consisting of a phonon and its bath. The reservoirs are supposed to be
independent and of identical properties. The collisional dephasing rate of each TLS is denoted by γf.We also
assume that the TLS are incoherently pumped to the excited-state with the rate g and decay to the ground-state
with the rate g via spontaneous emission of photons outside of the cavity. The decay rate of all cavitymodes is
abbreviated byκ. A conceptually similar systemhas previously been treated byKirton andKeeling [38, 39] using
amixture of themaster equation and the Schwinger–Keldysh formalisms, butwithout accounting for the
dephasing quantitatively. Our approach, instead, is based entirely on themaster equation formalism andwe
improve several aspects of theirmodel. Later onwe underline those specific points and our enhancements that
enable us to have access to a completely different regime of physical parameters.

In reality, the coupling betweenTLS and some cavitymodewill also depend on the spatialmode function. A
tractablemodel that incorporates the spatial dynamics was devised byKeeling andKirton [40]. It has led to the
successful understanding of the recent experiments [6, 17]. However, the spatial dynamics introduces yet
another level of complexity to the theoretical description. It could be implemented in our approach aswell, but
thatwouldmake the numerical calculations an order ofmagnitudemore challenging. Thus, in the present work
wemake two additional simplifying assumptions: (i) all TLS are at exactly the same position and (ii) all cavity
modes have the same intensity at the position of the TLS. Thismeans that all TLS can be considered to evolve in
an equivalentmanner. Later onwewill indicate how these assumptionsmay influence some of our results.

2.1.Master equation
Due to the abovementioned assumptions we consider the systemHamiltonian (ÿ=1)
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whereωm denote the cavity-mode frequencies and am (am
†) the bosonic annihilation (creation) operators of the

cavitymodes. TheHamiltonian H j
,R

( ) describes the jth TLS and its reservoir, with js and j
zs being its Pauli spin

operators. Bosonic annihilation (creation) operators and frequencies of the reservoir oscillators are bj r, (bj r,
† ) and

wr, respectively, whileλr are the appropriate interaction strengths. Since the experimental spectra of the dye
molecules are very broad, we are led to assume that the TLS-reservoir coupling is strong. In order to treat it non-
perturbatively to all orders, we perform the polaron transformation H UHU=˜ † with
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are the polaron displacement operators of the jth TLS. In this way,V ,C captures the coupling of the TLS and the
cavitymodeswhich is dressed by the reservoir oscillators.

In order to proceed further, we assume that the oscillators in the polaron frame represent a bath in a thermal
state at temperatureT

Z Hexp , 5j
N j1

1 Rr b= Ä -b b
-

= [ ] ( )( )

whereZβ stands for the canonical partition function andβ=1/(kBT) [66].We consider such initial conditions
that the subsystemTLS-cavity is uncorrelatedwith the bath in the polaron frame, i.e., total ,Cr r r= Ä b . Since
the coupling strength g is supposed to beweak, the bath influence can be incorporated bymeans of amaster
equation, i.e., by treating V ,C as a perturbation up to the second order [67, 68]. Thefirst order contributes to
the coherent unitary evolution through the thermal-averaged term
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wherewe introduced the notation X XTr rá ñ ºb b[ ] for a bath expectation value. Using the result
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for a harmonic oscillator of frequencyω in a thermal state, wefind for the bath expectation value of the polaron
displacement operators (4)
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Hence, one can naturally introduce a bath-dressed TLS-cavity coupling strength Djg g= á ñb b
 . Obviously, due

to (8)we have 0 1g g< <b , so that the influence of the bath in thefirst order is to effectively reduce the TLS-
cavity interaction
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At this point we note that the previousfirst-order termwas omitted byKirton andKeeling [38, 39], based on the
implicit assumption that it is irrelevant due to the rapid collisional dephasing [69]. Aswewill demonstrate below,
its influence deep in the photonBEC regime turns out to be negligible, so this regime can be described
satisfactorily even if it is not taken into account. However, in the opposite laser-like regime such a termdoes play
amajor role, even in the presence of a fast sub-picosecond dephasing. Anyhow, on formal grounds, it should be a
part of the proper treatment.

We continue by applying the Born–Markov approximation as well as RWA, by tracing out the bath degrees
of freedom and by taking into account the cavity losses alongwith the pumping and the decay of the TLS,
similarly as [38, 39]. As alreadymentioned, we additionally account for the dephasing of the individual TLS.
Incoherent pumping can be formally described as coupling eachTLS to a bath of inverted harmonic oscillators
[70].With this we find that the reduced densitymatrix ,Cr of the TLS-cavity subsystemobeys the following

master equation
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where X X X X X, 2 r r r= -[ ] { }† † andwe havemoved into the frame rotatingwith the frequencyΔ, so that
δm=ωm−Δ stands for the detuning of the cavitymode from the TLS transition. The thermalfluctuations of
V ,C give rise in the second order of perturbation theory to the incoherent transitions described by the
dissipative Lindblad terms contained in the last double-sumof (10). The terms proportional to

mg
+ correspond to

the absorption of the cavity photons by the TLS, while thosewith the prefactor
mg
- represent the stimulated

emission into the cavitymodes. The previous approach should be satisfactory whenever V ,C has small
fluctuations around its thermal average andwhen the characteristic time scale, inwhich the bathmodes undergo
a displacement in order to adjust themselves to the instantaneous state of the TLS-cavity subsystem, is very short
in comparisonwith the time scale of the subsystem relaxation. Note that the additional Lamb shifts due to the
presence of the bath have been neglected as in [38, 39]. Due to the dynamical influence of the bath, the
corresponding rates m mg g d=  ( ) turn out to be frequency-dependent and are obtained along the lines of
[38, 39, 71] as
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being the retarded connected correlation function of the bath displacement operators. One can notice that the
pumping and the decay of the TLS yield an exponentially decaying factor in (11), i.e., they introduce an
additional level broadening [71]. The time evolution of D tj

-( ) is generated by the freeHamiltonian H j
R
( ), starting

from D D0j jº- -( ) . Having inmind the result (7), one gets D t Dj já ñ = á ñb b
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Note that in the long-time limit themany oscillatory terms from the above sum simply add up to zero, such that,
recalling (8), onefinds D t D D Dlimt j j j já ñ = á ñ á ñb b b¥

- + - +( ) and tlim 0t  =b¥ ( ) , i.e., the two displacement
operators of very distantmoments in time become uncorrelated. In theKirton–Keelingʼs approach [38, 39], the
definition of the quantity (11)was actually without the last termof (12), i.e., tb( ) had afinite long-time limit.
On formal grounds, if both g and g are zero, that leads to a divergence of the absorption and emission rates of
resonant light, i.e., 0g d =  ¥( ) .We trace this shortcoming back to the very absence of the first-order
coherent term (9) from their treatment. Thus, the two improvements we havemade to their approach come
in pair.

The fullmaster equation (10) is notoriously difficult to solve. However, its structure already reveals some
general features of the systemdynamics. Namely, one can clearly distinguish the coherent and the dissipative
influence of the oscillator bath. The former one comes from the TLS-cavity coupling of the reduced strength
gb — in a typical laser-like fashion, while the latter one is realised through the terms containing

mg
, whichwere

shown to lead to thermalisation of light and emergence of photon BEC [38, 39]. In the followingwewill
demonstrate that precisely their interplay determines these two limiting stationary behaviours, i.e., a photon
BECor a laser.

2.2. Equations ofmotion approach
In order to be able to perform a quantitative analysis, we proceed to obtain the equations ofmotion for themean
values of the systemobservables X Tr X ,Crº ⟨ ⟩ [ ], e.g., the populations of the cavitymodes, the population
inversion of the TLS etc from themaster equation (10). Since this procedure yields an infinite hierarchy of
coupled equations, we use the cumulant expansionmethod [72–75] to truncate the hierarchy at the second level,
i.e., wewill keep the cumulants up to the second order only. If onewants to calculate higher-order correlation
functions, a higher level of truncationwill be necessary. However, due to the presence of coherent terms in the
master equation, the situation becomes considerablymore involved than in [38, 39], even at this second-order
truncation level.
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Wenote that the systempossesses aU(1) gauge symmetry: a a a ae , e , em m m m j j
i i is s  f f f- - - -† † and

e ,j j
i s s f Îf+ + . In a single experimental run a coherent fieldwith a particular spontaneously chosen phase

f can build up.However, since the densitymatrix describes an average overmany such realisations, the
following equalities hold a a 0m m j js sá ñ = á ñ = á ñ = á ñ =- +† and similarly for all other gauge non-invariant

operators [73]. In particular, itmeans that a a a a a a,m m k m k m1 1 c cs sá ñ = á ñ á ñ = á ñ+ + † † etc., since
XY XY X Ycá ñ = á ñ + á ñá ñ, where the index c denotes connected correlation functions. For instance, one has
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Due to the two simplifying assumptionsmentioned in the beginning, we assume that all the TLS aremutually
equivalent such that, e.g., i

z z
1s sá ñ = á ñand i j 1 2s s s sá ñ = á ñ+ - + - for all i j N, 1, ,= ¼ and i j¹ . The resulting

equations ofmotion for the cavitymode occupations n a am m má ñ º á ñ† read
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whereas for the TLS population inversion z
1sá ñwe obtain
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These equations are exactly like those of Kirton andKeeling [38, 39], apart from the coherent terms proportional
to gb which introduce the additional coupling to themixed-type terms a am m1 1 *s sá ñ = á ñ+ -† . Theymeasure the
correlation between TLS and cavity photons and evolve according to
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where now the additional quantities a ak má ñ† and 1 2s sá ñ+ - appear. The former represent the correlations between
different cavitymodes, whose evolution is governed by
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and the latter the correlations between dipoles of different TLS following from
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It is important to notice that the quantities a a a,m k m1sá ñ á ñ+ † and 1 2s sá ñ+ - can reach non-zero stationary values
precisely due to the coherent part of the evolution, whichwe have introduced in addition to [38, 39].

At this point, one additional specialisation is in order. Namely, based on the photon BEC experiments, we
consider the photonmodes as being transverse, arising from a two-dimensional effective harmonic potential [5].
We thus consider regularly spaced cavity levelsωℓ=ω1+(ℓ−1)Ωwithℓ=1,K, L, such that the energy
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levelωℓhas the degeneracy d 2= ℓℓ , where the factor 2 comes from the two independent polarisations of light.
The lowest frequencyω1 represents the cavity cutoff. Since degenerate cavitymodes evolve in the samemanner,
we have

f a a d f a a, , , , , 20
m

M

m m

L

1 1
å å¼ = ¼
= =

( ) ( ) ( )
ℓ

ℓ ℓ ℓ
† †

for any arbitrary function f, where from each levelωℓwe have chosen a representativemode described by aℓ
and aℓ

†.

2.3. Bathmodel
In the followingwe analyse the stationary solutions of the equations (15)–(19) in the two regimes: a photon BEC
and a laser-like regime. To this end, we specialise themodel by choosing the bath spectral density, defined by
J w w wr

R
r r1
2l d= å -=( ) ( ), to be super-ohmicwith an exponential cutoff [76, 77]

J w
w

w w wexp , 21
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c2
3h
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where η represents a dimensionless parametermeasuring the coupling strength of the TLS to the bath andwc is
the cutoff frequency of the bath. This allows us to obtain for (8) and (13) the closed-form expressions
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where z z zy = G¢ G( ) ( ) ( ) denotes a logarithmic derivative of the gamma function. In relation to the
experiments, both parameters η andwc characterise the impact of the used solvent on the spectral properties of
the dyemolecules. Belowwe discuss in detail that they change the absorption and the emission spectra γ(±δ)
drastically. Furthermore, they turn out to have an impact upon the resulting bath-dressed coupling strength gb .

3.Determination of realisticmodel parameters

In order to apply our theory to the current experimental setups, we have tofix themodel parameters in the
experimentally accessible regimes. One of the key ingredients for the thermalisation of photons are the spectral
properties of the dyemolecules [17, 50].Whereas the Einstein rate coefficient for absorptionB12(ω) is usually
measured, the stimulated emission rateB21(ω) is determined via theKennard–Stepanov relation [78–80]

B

B k T
exp , 2321

12 B

w
w

w
~ -

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

where the spectral (rovibrational) temperatureT of the dyemolecules isT=300K [17]. Comparing the rate
equation from the supplementalmaterial of [17]with our equation (15), we can interpret the rates

m mg g d=+ ( )
and m mg g d= -- ( ) as the absorption and the emission ratesB12(ωm) andB21(ωm), respectively. Therefore, we fit
the expression γ(ω−Δ) from (11), using equations (22a) and (22b) as well, to the experimentallymeasured
absorption spectrumB12(ω) of the usedRhodamine 6Gdye dissolved in ethylene glycol [81], by taking into
account the absolute valueB12(ω=3300THz)=1.3kHz [17]. Thefitting allows then tofix the parameters of
our bathmodel, namely the dimensionless coupling strength η of the TLS and the bath, the cutoff frequency of
the bathwc, as well as the TLS-cavity coupling strength g and the TLS transition frequencyΔ, which physically
corresponds to the zero-phonon-line frequency of the dye. The obtained values are listed in table 1. Thus, the
fitted value for η=0.6 leads to a rather small bath-dressed TLS-cavity coupling strength 8.3 10 3g g= ´b

- , as
expected, since this corresponds to the BEC regime.

Table 1.Parameters of themodel adjusted to current experimental setup of photonBEC [5]. Thefirst four parameters are
obtained from thefit to the absorption spectrumof the dye. The remaining parameters are taken from [17, 64, 81].

wc η g Δ κ δ1 δL T N

20.5THz 0.6 2.46GHz 3487THz 3.5GHz −260THz −120THz 300K 109
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Figure 1 shows the resulting fit for γ(ω−Δ) and the experimentally provided data. Note, that we do not fit
the absorption curve forω>3700THz, sincemost of the relevant cavitymodes are not influenced by the
departure from the actual spectrum, as is indicated by the vertical dashed lines. If onewants to alsofit this
higher-frequency region, the inclusion of another bathwould be necessary since the experimental spectrum
displays the presence of another peak. A corresponding physicalmotivation in terms of another dye-molecule
active phonon coupled to a thermal environment was discussed in [39].With thefitted values our theory
provides the emission rate curve γ(−ω+Δ) aswell, which is shown in the samefigure. The curves γ(ω−Δ)
and γ(−ω+Δ) cross at the frequencyΔ.We checked that the Kennard–Stepanov relation (23) is valid in the
BEC regime for the relevant range of the cavitymode frequencies. For comparison, in the laser regimewhere η is
small, the absorption and emission curves become squeezed towards the zero-phonon-line frequencyΔ, see the
dotted curves infigure 1.However, the Kennard–Stepanov relation (23) in this regime is no longer granted for
frequencies highly detuned fromΔ. The corresponding experimental number of dyemolecules is taken to be
N=109, based on the extensive discussion in [64]. The loss rate g can be fixed to 0.25GHz [81]. Furthermore,
the pumping of the TLS g is considered as a control parameter which is tuned to cross the boundary of the phase
transition. Knowing that dyemolecules experience at least 1012 collisions per secondwith solventmolecules
[82], wewill consider here γf=0.1THz as a referent value. Since there is an uncertainty about the exact order
ofmagnitude of this rate, wewill later analyse how its variation in a broad range of values influences our results.

In the experiment the cavity cutoff wavelength, corresponding to themode of frequencyω1, can be tuned
from570 to 610nm. The frequency separation of the cavitymodes is 0.26 THz [5]. For the simulationwe choose
ω1 to correspond to 585nm, thuswe get for the highest detuning δ1=ω1−Δ=−260 THz.Our simulations
cover the same spectral range as in [5], but due to computational complexity we choose a higher value
Ω=1.4 THz, if not stated otherwise. The photon loss rateκ is frequency-dependent [17], sowe take amean
valueκ=3.5GHz. For the sake of clarity the used spectral range ismarked infigure 1 by vertical dashed lines.

4. Two regimes: photonBEC and laser-like state

Having discussed the realistic values of themodel parameters, in this sectionwe take:
N w T10 , 20.5 THz, 300 K, 2.3 GHz, 0.25 GHz, 0.1 GHz, 3.5 GHzc

9 g g g k= = = = = = =  and
δ1=−260 THz. The results will be presented for two values of the dephasing rate, γf=0.1THz estimated
from the literature [82] and amuch larger one, γf=10THz, for the sake of comparison.Herewe takeΩ=10
THz and consider L=20 energy levels of the cavity. In the followingwe distinguish two limiting regimes:

(i) η   1. In this case one has D 1jg g = á ñb b
  , meaning that the coherent contribution of the bath is

highly suppressed and the evolution is dominated by the dissipative influencewhich leads to a
thermalisation of light and an emergence of photon BEC;

(ii) η=1. Here one finds 1g g »b , so that the bath has a pronounced coherent influence. In addition, the

rates
mg
 of the highly detuned cavitymodes acquire orders ofmagnitude smaller values in comparisonwith

the previous regime, so that the dissipative influence becomes overwhelmed, but is still relevant.Hence, we
expect that the non-equilibrium stationary state is then highly coherent and laser-like.

Figure 1.Absorption rate γ(ω−Δ) (brown/dark)fitted tomeasured data from [17, 81] (dash–dotted). Emission rate γ(−ω+Δ)
(orange/light) for same parameters. Absorption and emission rates are also shown for lasing regimewith η=0.1 (dashed).
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For the regime (i)we chooseη=1.5, yielding 6.2 10 6g g = ´b
- . The resulting steady-state solution yields the

distributionofoccupations of the cavitymodesnℓ forℓ=1,K, 20 as shown infigure 2(a). It is noticeable that the
results (almost)donot dependon the value of dephasing rate. This is predictable since the coherent evolution is
anyhow largely suppressed in this regime. The lowest energy level ismacroscopically occupiedwith about
2.84×107 photons. The straight line corresponds to aBose–Einsteindistribution nlog 1 1 b d m+ = -( ) ( )ℓ ℓ ,
whereμdenotes the chemical potential. Such a statewas already analysed in detail in [38, 39] and itwas shown to
correspond to aphotonBEC.Our approach enables us to additionally characterise the stationary states by their
photonic correlations.Namely,wehave access to the quantities

c
a a

n n
L, 1 , 24,  =

á ñ
< ¢¢

¢

¢
ℓ ℓ

∣ ∣
( )ℓ ℓ

ℓ ℓ

ℓ ℓ

†

which provide ameasure of correlations between representative cavitymodes related to different energy levels.
Their values belong to the interval [0,1], where values close to 1 (0) correspond to a high (low) degree of
correlation. In case (i)wefind c 4 10,

7< ´¢
-

ℓ ℓ , i.e., the photon BEC state has almost no correlation between
themodes of different frequencies. This is expected since the correlations build up through the coherent
evolutionwhich is highly ineffective in this regime.

In the opposite regime (ii), we take η=0.05, which gives 0.67g g =b . The distribution of stationary

populations of the representative cavitymodes is presented infigure 2(b) for two values of γf, namely 0.1 and
10 THz. In the former case, the cavity levelℓ=9 acquiresmacroscopic occupation of almost 1.90×107

photons, but the distribution is quite distinct from the Bose–Einstein one. In this case wefind c 0.996, >¢ℓ ℓ ,
which demonstrates that the stationary state contains a quite high degree of correlations among the cavitymodes
of different energies. This is expected since the coherent influence of the bath is very pronounced. The stationary
state is laser-likewith some dissipative bath influence. For the larger value of the dephasing rate, the levelℓ=10
becomesmacroscopically occupiedwith 1.76×107 photons, while c 0.986, >¢ℓ ℓ . Interestingly, in the
considered parameter regime the results for γf=0would be almost indistinguishable from those for
γf=0.1 THz. Thismeans that there is a certain dephasing threshold belowwhich the coherent system
dynamics is robust to the dephasing.Moreover, if one considered the full spatial structure of the cavitymodes as
in [40], the aforementioned correlationswould decrease due to only partial overlap among differentmodes.
However, this would not alter the present conclusions.We note that similar states supportingmacroscopic
occupations of opticalmodes of higher energies were also observed in [38, 39] and, indeed, we can also
reproduce such behaviour in the regime (i). However, the steady-state we have just presented features near-unity
correlations of light, which represents a crucial difference and indicates that it is of an entirely different nature.
Moreover, for different values of the cavity decay rate even the lowest level can acquiremacroscopic occupation,
while the populations of other cavity levels strongly depart from the Bose–Einstein distribution.Hence, the
stationary states in the two regimes (i) and (ii) differ completely regarding the correlations and the distribution of
photons among the cavity levels, as a consequence of different influences of the bath.

5. Properties of photonBEC

In the following, we focus on interesting properties of the photon BEC. Atfirst, we determine fromourmodel
the equation of state. This allows then to extract the dimensionless effective photon–photon interaction strength
in the photonBEC regime and study its dependence on variousmodel parameters, which could be tuned

Figure 2. Stationary occupations nℓ of cavitymodesℓ=1,K,20when (a) η=1.5 and (b) η=0.05. Cyan colour corresponds to
γf=0.1 THz, while green is used for γf=10 THz. For other used parameters seemain text. Note that in (a) the two cases are visually
indistinguishable.

9

New J. Phys. 20 (2018) 055014 MRadonjić et al



experimentally.Wewill adopt the terminology in accordancewith the experiments and, for instance, instead of
TLS refer to dyemolecules.

5.1. Equation of state
In this sectionwe apply our theory to experimentally realistic values and determine atfirst the steady-state of the
equations ofmotion (15)–(19) for different pumping rates g and evaluate the dependence of the chemical
potentialμ on the total photon number ntot, i.e., we obtain the equation of stateμ(ntot). In the followingwe
present and discuss this procedure in detail by using the specific parameters from table 1, if not stated otherwise.

Infigure 3(a)we show the occupation of different energy levels of the cavity in the BEC regime for the
increasing pump rate gwith all other parameters beingfixed. The onset of the condensation starts at the critical

value crg . A zoomaround crg is shown infigure 3(b). Clearly, the occupation of the lowest level d1n1 shows a
sudden increase at the critical point and becomesmacroscopic afterwards. Further increase of gmainly
populates the lowest level, while the population of higher energy levels does not change significantly after the
transition. At the critical value of the pumping parameter crg the total number of photons n d nL

tot 1= å =ℓ ℓ ℓ

amounts to n 2800tot
crg »( ) , which is quite close to the expected critical photon number for the condensation

onset in the case of non-interacting interacting bosons in two dimensions [15, 16] and atT=300K

n
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2640, 25cr
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where the existence of two independent polarisations of light has been taken into account. Note that the rise of
the total photon number ntot around the transition point becomes smoothenedwhen the number of cavity levels
L in the considered frequency range is increased, as is seen infigure 3(b). This can be explainedwith the
significant contribution of degeneracies dℓ of the energy levels with highℓ to ntot.

Themode occupation nℓ for afixed g is shown in a logarithmic representation infigure 4(a), along the
triple-dashed vertical line offigure 3(a). The linear behaviour indicates that themodes are distributed according
to Bose–Einstein statistics

n
1

exp 1
. 26

b d m
=

- -[ ( )]
( )ℓ

ℓ

Fitting a linear function to nlog 1 1+( )ℓ yields the inverse temperatureβ and the chemical potentialμ due to
equation (26). For a non-interacting BEC condensate, i.e., 0g =b , the temperature obtained by fitting to a
thermal cloud coincides with the spectral temperature of the dye and the chemical potential is locked to the value
δ1 above the threshold [38]. However, here gb is non-zero but small, which induces additional small corrections
of the occupation. As a consequence, the effective thermalisation temperature of the thermal cloud differs
generically from the spectral temperature of the dye. This behaviour depends on all systemparameters, and
especially a high pumping rate g can significantly change the temperature. For a choice of parameters outside of
a certain region the non-equilibriumproperties of themodel are dominating the tendency to thermalise and the
distribution is, in general, not thermal anymore. This happens even in the case 0g =b [39]. Therefore, we
restrict our further analysis only to the cases where a thermal cloud does exist.We have observed that a few of the
lowestmodes do not follow the linear dependency infigure 4(a), thus they are not considered in ourfitting

Figure 3. (a)Occupation of 1st, 2nd and some higher cavity levels as well as total occupation of allmodes as function of pumping g
reveals condensation for crg g>  (vertical dashed line) for L=101. Further increase of gmainly populates the lowest level. Orange

triple-dashed vertical linemarks the value 0.011g g= . (b)Zoomaround crg shows onset of condensation in the lowest energy level

(green squares). Onset of condensation in total number of photons (red circles) becomes smoothened for higher number of levels (red
circles versusdashed and dotted lines). Transition is also visible in occupation of higher levels (blue rhombi). Parameters are listed in
table 1.
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procedure. Additionally, we drop some of the highestmodes as well, as they hold relatively small occupation and
can, therefore, have large relative numerical error. The resulting value ofμ from figure 4(a) is shown by a crossed
square symbol infigure 4(b).We repeat the procedure for different values of the pumping rate g and obtain a
linear equation of stateμ=μ(ntot), as presented infigure 4(b).

5.2. Photon–photon interaction strength
The slope∂μ /∂ ntot of the equation of stateμ=μ(ntot) infigure 4(b) is a consequence of the dye-mediated
effective photon–photon interaction (see the appendix), which ismeasured by the dimensionless interaction
strength

g
n

2
. 27

tot
p ¶m

=
W ¶

 ( )

Thus, we infer from figure 4(b) the resulting interaction strength g 5.2 10 7= ´ - , which agrees quite well with
the range g 10 108 7~ -- - given in [63]. Note that, asmentioned in the introduction, the thermo-optical effect
dominates the photon–photon interaction. Therefore, this value cannot be directly comparedwith themeasured
values [5, 62, 65], sincewe onlymodel one of the respective contributions.

Nowwe investigate how g depends on the parameters of ourmodel. First, we vary those that could be tuned
in experimental setups: the number of cavity levels L in the experimentally relevant range of 140 THz above δ1,
the number of dyemoleculesN, the spectral temperature of the dyeT and the cavity decay rateκ. Next, it is
instructive to think of gb as being an independent parameter. In this way, by tuning gb from zero to its

experimental value expgb , we are able to examine how the coherent terms of ourmodel give rise to the effective

photon–photon interaction strength. Finally, since the dephasing rate γf is only approximately known in the
experiments, we also investigate its influence on g for various values of other parameters. The corresponding
results are presented infigure 5. The number of equations increases quadratically with the number of levels L.
We have chosen L=101 due to computational constraints. Figure 5(a) shows that the interaction strength g
depends non-monotonously on L. In case of up to 200 levels, the interaction g increases nearly exponentially
with the number of cavity levels. However, after reaching themaximumat L≈200 the dimensionless
interaction strength g starts to decrease. The value of g in the case of the experimental number of levels L=501
is then comparable with the value for L=101 levels, whichwe used in our simulations.

According tofigure 5(b), a larger number of dyemoleculesN increases g dramatically, sincemore dye
moleculesmediating an effective coupling between the photons are present. In addition,much larger photon–
photon interaction can also be achieved by lowering the temperature, seefigure 5(c). In contrast, figure 5(d)
reveals that increasing the decay rateκ decreases only slightly the interaction strength g. An intuitive
explanation of the last two results is as follows. Increasing either the temperature or the photon decay rate
reduces the total number of photons in the system, thus there are less photons available tomodify the dye
medium and g decreases correspondingly.

Infigure 5(e)we investigate the dependency of g on the coherent coupling gb , whichwe vary artificially from
zero to the experimental value extgb . Quite expectedly, in the limit 0g b the dimensionless interaction strength

g practically vanishes, the latter corresponding to the case of the Kirton–Keelingmodel [38, 39]. The increase of
g is nonlinear and in the considered range an even polynomial in gb yields a good fit (red line).We observe that

the quadratic term is almost negligible compared to quartic and higher-order terms, akin to the consideration of
a photon–photon interaction corresponding to the box Feynman diagram analysed in thework [63]. In our

Figure 4. (a)Occupation nℓ of every fourthmode for 0.011g g= , i.e., vertical triple-dashed line infigure 3(a), shows linear
behaviour in logarithmic representation indicating thermalisation. Fittedμ value shown as crossed square on the right. (b)Chemical
potentialμ as function of total photon number ntot reveals non-zero slope for two different temperatures.We use L=101, other
parameters are given in table 1.
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framework, such a dependence could easily be understood via a simple perturbative expansion of the
expectation values X Xp

p
0á ñ = å á ñ=

¥ ( ), where X p pgá ñ µ b
( ) , for an arbitrary systemoperatorX in the

equations (15)–(19), with the time derivatives set to zero. In such away, higher perturbation orders can be
systematically calculated from the lower ones. The zeroth order solutions for nm

0á ñ( ) and z
1

0sá ñ( ) are exactly those

Figure 5.Dependence of dimensionless effective photon–photon interaction strength g on: (a)number of cavity levels L, (b)number
of dyemoleculesN, (c) temperatureT, (d) cavity decay rateκ and (e) rescaled dressed dye-cavity coupling strength expg gb b , using a

fixed γf=0.1 THz. Influence of dephasing rate for various: (f) temperatures, (g) cavity cutoffs δ1, (h) ratios expg gb b . From (a)we see
that the number of cavity levels (i.e., the value ofΩ) in ourmodel has a non-monotonous effect on the interaction strength g: the
maximum is located around L≈200, where L=501 (crossed square) corresponds to the experimental regime. Blue filled squares in
all panels show results in the case of experimentally chosen values (see table 1), apart from L=101which is used in (b)–(h). As we see,
increase ofN or decrease ofT significantly increases g, whereasκ and γf affect its value only slightly in the vicinity of experimentally
realistic values. Fit (red line) in (e) indicates the dependence of g on gb in the formof an even polynomial.
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from thework of Kirton andKeeling [38, 39]. It turns out that n n n nm m m m
0 2 4á ñ = á ñ + á ñ + á ñ + ¼( ) ( ) ( ) , so that

we have an expansion g g g2 4= + + ¼  ( ) ( ) in even powers of gb .

Next, we analyse the effect of the dephasing on g and the sensitivity of the obtained dependence on other
systemparameters. Figures 5(f)–(h) show that, quite generically, g is affected insignificantly when the dephasing
rate γf is varied from zero to fewTHz. Such a result could be attributed to the presence of a large detuning in
(17), of the order of 100 THz, which anyhow strongly suppresses the coherent evolution on its own. Further
increase of γfmay lead to the appearance of a resonance-like peak, followed by a polynomial decay for dephasing
rates above several hundreds of THz. The latter is expected to happenwhen the dephasing rate becomes larger
than 1d∣ ∣. The resonance-like peak becomesmore pronounced as gb is increased or the temperature decreased, as

is seen infigures 5(f) and (h). This observation indicates that the peak is of coherent origin. On the other hand,
the resonance-like peak can completely disappear when the cavity cutoff frequency is shifted towards the zero-
phonon line, which is demonstrated infigure 5(g).

6. Conclusions

Herewe presented amodel which can interpolate between two different kinds of states of light in amicrocavity,
namely between a nearly non-interacting photonBEC and a laser-like state. Ourmodel is based on amaster
equation approach, with an interplay between coherent and dissipative dynamics. The dominance of the former
or the latter leads either to a coherent lasing state or to an equilibrated BEC state, respectively.We demonstrated
that in the BEC case the lowest cavity energy level ismacroscopically occupied and cavitymodes of different
energies are almost uncorrelated, whereas in the lasing case some cavity level becomesmacroscopically occupied
with strong correlations being present in the system. Afterwards, we showed how tofix the parameters of our
theory in an experimentally realistic regime.We emphasised that the coherent part of themaster equation is then
overwhelmed by the dissipative effects, but still significant enough to lead to an additional effective photon–
photon interaction. As a consequence, the chemical potential depends linearly on the total number of photons,
as is expected from a perturbative solution of aGross–Pitaevskii equation for the condensate wave function. This
dependency allowed us to determine the dimensionless interaction strength g to be of the order of 10−7 for
experimentally realistic parameters.

We also investigated the dependency of g on differentmodel parameters, which can feasibly be tuned in the
photonBEC experiments. Our numerics showed that increasing the number of dyemolecules or decreasing the
spectral dye temperature can significantly increase the g value, whereas it is notmuch influenced by the cavity
loss rateκ. However, this value cannot be directly connected to the current experimental values [5, 62, 65]. The
reason is that in the experimental setups the dominating photon–photon interaction is of thermo-optical origin,
whereas our theory has no spatial degrees of freedomand, thus, cannot capture such diffusive effects. Instead, in
our case the effective photon–photon interaction could be comparedwith the dye-mediated photon–photon
scattering. And indeed, our value is in the range of the expected estimate [63].

Another currently disputed feature of the photon condensate concerns its possible polarisation.Whereas no
significant polarisation of the photon BECwas found in the original Bonn experiment [5], recent systematic
measurements of the Stokes parameters inUtrecht [83] indicate that the polarisation of the photonBEC
correlates with the polarisation of the pumppulse. These new experimental results togetherwith the recent
theoretical investigation in the BEC case [41] offer the prospect that the polarisation dependency could be
investigated on the basis of an extension of ourmicroscopicmodel during thewhole crossover from the photon
BEC to the laser-like phase.
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Appendix. Interaction dependence of equation of state

Herewe derive relation (27), which allows to determine the dimensionless photon–photon interaction strength
g from the slope∂μ/∂ ntot of the equation of stateμ (ntot ). To this endwe follow [5] and assume that the photon
BEC is described by a condensate wave functionΨ(x), which obeys a two-dimensional time-independent Gross–
Pitaevskii equation:

m
m gx x x x

2

1

2
. A.1

2
2 2 2

m- D + W + Y Y = Y
⎡
⎣⎢

⎤
⎦⎥∣ ( )∣ ( ) ( ) ( )

Here, g denotes the photon–photon interaction strength,m stands for the photonmass,Ω is the trapping
frequency andμ represents the chemical potential. As the photon–photon interaction strength g is supposed to
be small, we solve equation (A.1) perturbatively. Atfirst we neglect the interaction g , so equation (A.1) can be
solved exactly. The ground-state wave functionΨ(0)(x), which is normalised to the total number of photons ntot,
reads

n

l l
x

x
exp

2
, A.20 tot

2

2

2p
Y = -

⎛
⎝⎜

⎞
⎠⎟( ) ( )( )

with the oscillator length l m= W and the chemical potential 0 m = W( ) coincides with the zero-point
energy of the two-dimensional harmonic oscillator. For a non-vanishing interaction strength g we assume a
perturbative correction infirst order for both the condensate wave function and the chemical potential:

x x x , A.30 1Y = Y + Y +¼( ) ( ) ( ) ( )( ) ( )

. A.40 1m m m= + + ¼ ( )( ) ( )

With this ansatz theGross–Pitaevskii equation (A.1) reduces to

m
m gx x x x

2

1

2
, A.5

2
2 2 0 1 1 0 0 3

m m- D + W - Y = Y - Y
⎡
⎣⎢

⎤
⎦⎥ ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

which determines both interaction correctionsΨ(1)(x) andμ(1). In our context it is sufficient to calculate the
latter one, which follows from the Fredholm alternative [84]. To this endwemultiply equation (A.5)withΨ(0)(x)
and integrate over x, sowe get due to (A.2)with the dimensionless interaction parameter [61]

g
gm

A.6
2

= ( )

the equation of state

g
n

2
. A.7tot


m

p
= W +

W
+ ¼

 ( )

Thus, for small interactions g the chemical potentialμ changes linearly with the photon number ntot. The slope
∂μ/∂ntot of the equation of stateμ(ntot ) depends then via n g 2tot m p¶ ¶ = W ( )/ / linearly on the dimensionless
interaction strength g, which leads to relation (27).
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We study the question of what kind of a macroscopic superposition can(not) naturally exist as a ground
state of some gapped local many-body Hamiltonian. We derive an upper bound on the energy gap of an
arbitrary physical Hamiltonian provided that its ground state is a superposition of two well-distinguishable
macroscopic “semiclassical” states. For a large class of macroscopic superposition states we show that the
gap vanishes in the macroscopic limit. This in turn shows that preparation of such states by simple cooling
to the ground state is not experimentally feasible and requires a different strategy. Our approach is very
general and can be used to rule out a variety of quantum states, some of which do not even exhibit
macroscopic quantum properties. Moreover, our methods and results can be used for addressing quantum
marginal related problems.
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Introduction.—Ever since Schrödinger’s cat gedanken
experiment [1] the question of whether a macroscopic
system can be found in a quantum superposition state
remains unanswered. Various attempts were made to address
our inability to detect macroscopic quantum superpositions.
Decoherence-type arguments are commonly employed in
which one advocates that the quantumness of a macroscopic
system is lost due to interactions with a noisy environment
[2]. Alternatively, it was indicated that classical behavior can
emerge because our measurements suffer from limited
resolution or limited sensitivity [3–5]. Moreover, various
spontaneous collapse models introduce a stochastic non-
linear modification of the Schrödinger equation that causes
macroscopic superpositions to quickly appear as classical,
while giving the same experimental predictions as quantum
theory in the microscopic regime [6].
Naturally, the boundary between the quantum and

classical realms should be explored by experiments
[7–9]. In recent decades, typical quantum features have
been demonstrated in large molecules [10,11], hundreds of
photons [12,13], superconducting circuits [14,15], micro-
mechanical oscillators [16,17], and fragmented Bose con-
densates [18,19]. Nonetheless, quantum superpositions of
truly macroscopic objects remain an uncharted territory that
will hopefully be revealed by future experiments.
Recently, different measures have been proposed to

quantify macroscopicity of quantum states [20–30]. The
literature about this topic is diverse and various measures are
mutually compared in Refs. [20,21] and summarized in
Ref. [22]. Generally speaking, a macroscopic quantum state
(MQS) is a state capable of displaying macroscopic quantum
effects that can be utilized to validate quantum mechanics
(against classical theories) on a macroscopic scale. An

important task is the identification of a characteristic
parameter that measures the “size” or “macroscopicity” of
a certain quantum state [7], such as the characteristic energy,
mass, number of elementary constituents, etc. Here we focus
on the case of macroscopically large number of particles N
that interact via a local Hamiltonian.
An important subclass of MQS are macroscopic super-

positions (MS): states of the type jψi ¼ jψ1i þ jψ2i, where
jψ1;2i are macroscopically well-distinguishable states.
However, such a definition is not operational as there
are infinitely many decompositions of the kind jψ1i þ jψ2i
and it might not be clear how to unambiguously identify the
“semiclassical” components of the MS. Therefore, we
define MS with respect to a measurement of an additive
(collective) observable [20,21,23,28,29]. A pure state jψi is
MS if a measurement of some additive observable Ŝ can
sharply distinguish the semiclassical states that constitute
MS; e.g., the distribution of eigenvalues of Ŝ exhibits two
well-resolvable regions (see Fig. 1). Our main focus here is
on (i) the possibility of the natural appearance of such states
as unique ground states of macroscopic quantum systems
and, consequently, (ii) the feasibility of preparing MS by
simply cooling down such systems. The latter might be
achievable provided that the system has a unique MS
ground state; i.e., there is a finite energy gap in the
thermodynamic limit. In this respect, it was proven that
no MS of “locally distinguishable” states can be the unique
ground state of N spins described by a local Hamiltonian
whose energy gap is at least O(1=polyðNÞ) [31].
Conversely, numerical evidence was given in Ref. [32]
that the energy gap of a certainN-qubit Hamiltonian decays
exponentially fast in the macroscopic limit when its ground
state actually is MS. Moreover, relation between the
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spectral gap and ground state properties of spin lattice
systems was studied in Refs. [33,34].
We provide a simple sufficient criterion enforcing the

energy gap to vanish in the thermodynamic limit for a very
general class of ground states of local many-body
Hamiltonians. The most important feature of our approach
is an operational method to identify semiclassical states that
constitute the macroscopic superposition. We show that in
many cases local Hamiltonians are not capable of linking
such states, so that the corresponding MS can only
represent a degenerate ground state in the macroscopic
limit. Our main theorem provides an interesting relation
between the energy gap and the order of interaction (i.e.,
the number K in the case of a K-body interaction).
Therefore, one may derive the lowest order of interaction
for which a given MS might be a unique ground state. We
discuss our results in the context of different physical
systems and various proposals for preparation of MS.
Furthermore, we show that a certain class of states that
are not even considered to be macroscopically quantum
(e.g., W states) cannot naturally exist as ground states of
gapped local Hamiltonians. Finally, we demonstrate that
the methods and results derived here are relevant for
quantum marginal related problems.
Preliminaries.—Let us consider a system of N interact-

ing particles described by a K-local Hamiltonian
Ĥ ¼ P

ði1;i2;…;iKÞ∈I ðKÞ
N
Ĥi1i2…iK , where Ĥi1i2…iK is the con-

tribution due to interaction between particles i1; i2;…; iK
and I ðKÞ

N is the set of all K-tuples of N interacting particles.
We call K the order of interaction. For instance, usual
physical interactions are pairwise with the order K ¼ 2.

We begin with the following general lemma:
Lemma.—Let a Hamiltonian Ĥ have a unique ground

state of the form jψi ¼ a1jψ1i þ a2jψ2i, where jψ1;2i are
normalized, hψ2jψ1i ¼ λ and a1; a2 > 0. Then the energy
gap ΔE satisfies the inequality

ΔE ≤
jhψ2jĤjψ1i − λE0j
a1a2ð1 − jλj2Þ ; ð1Þ

where E0 denotes the ground state energy (see
Supplemental Material [35] for the proof).
Without loss of generality we set E0 ¼ 0 hereafter. We

start our analysis with the simple observation that the
energy gap is essentially upper bounded by a magnitude of
the matrix element hψ2jĤjψ1i ¼ H21 [assuming that the
overlap λ is vanishingly small and a1;2 ¼ OðN0Þ when
N → ∞]. Therefore, the system cannot have a finite gap in
the macroscopic limit if H21 is vanishing when N → ∞.
An archetypal example of MS is a so-called GHZ state

[44], closely related to an original Schrödinger’s proposal
as it is a superposition of two macroscopically distinct
states of N particles, i.e., jψi ∝ jφ1i⊗N þ jφ2i⊗N . The
states jφ1;2i are normalized with the fixed nonzero overlap
ω ¼ jhφ1jφ2ij < 1. Here, one can naturally identify the
two constituents jψ1;2i ¼ jφ1;2i⊗N with exponentially

small overlap jλj ¼ ωN and a1;2 →
N→∞

1=
ffiffiffi
2

p
. Denote by

H½K�
21 the maximal magnitude of all matrix elements

hφ2j⊗KĤi1;i2;…;iK jφ1i⊗K. The value of H½K�
21 does not scale

with N and solely depends on the nature of the interaction.
It is not difficult to see that

jH21j ≤ jI ðKÞ
N jωN−KH½K�

21 ≤
�
N

K

�
ωN−KH½K�

21 ; ð2Þ

since for K fixed the total number of interaction terms

grows at most polynomially with N, i.e., jI ðKÞ
N j ≤

ð NKÞ ¼ OðNKÞ. Therefore, we conclude that the energy
gap vanishes exponentially fast when N → ∞, as long as
the order of interaction is fixed. In other words, all the states
jψðαÞi ∝ jφ1i⊗N þ eiαjφ2i⊗N give the same energy in the
thermodynamic limit and the ground state becomes at least
doubly degenerate. Consequently, cooling down the system
towards zero temperature will result in a classical mixture
1
2
jψð0Þihψð0Þj þ 1

2
jψðπÞihψðπÞj. In order to make the

energy gap finite in the thermodynamic limit, it is necessary
that the order of interaction K grows with the number of
particles N, which is usually considered nonphysical.
This reasoning can be trivially extended to a finite
sum jφ1i⊗N þ � � � þ jφni⊗N of macroscopically distin-
guishable states, i.e., hφijφji ¼ OðN0Þ when i ≠ j. In
the Supplemental Material [35] we show that the same
result holds for a more general class of states, i.e., the
superpositions of locally distinguishable states that have
been considered in literature as a natural generalization of
the GHZ-like states [20,24].

Whereas the previous examples are fairly easy to grasp,
as the superimposed states are identifiable by definition,
such a clean prescription is not a priori available for
arbitrary MQS. Therefore, we continue our analysis by
invoking a measurement of some collective observable Ŝ
that should serve as a reference point to identify jψ1;2i.

FIG. 1. The distribution pm of eigenvalues sm of an additive
observable Ŝ for a MS state jψ1i þ jψ2i. A continuous curve is
used for aesthetic purposes. The distribution has two well-
resolved regions (left and right from the separation point sm̄)
each corresponding to the superimposed semiclassical states jψ1i
and jψ2i, respectively. The distance between the regions is
Δ ≔ jhŜiψ2

− hŜiψ1
j. The separation probability related to the

finite-sized shaded segment js − sm̄j ≤ δ ¼ OðN0Þ should be
vanishing in the macroscopic limit N → ∞.
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Consider a system of N particles in a total Hilbert space
HN ¼⊗N

i¼1 Hi, with dimðHiÞ ¼ d. Let Ŝ ¼ P
N
i¼1 Ŝi be an

additive observable. The single-particle operators satisfy
Ŝijσi; μiii ¼ σijσi; μiii, where σi ∈ fς1 < ς2 < … < ςlg
and 2 ≤ l ≤ d, while μi ¼ 1;…; μðσiÞ enumerate the
degeneracies obeying

P
l
l¼1 μðςlÞ ¼ d. We denote the

different eigenvalues of Ŝ by s1 < s2 < … < sM,
where sm ¼ Pl

l¼1 nm;lςl, nm;l ∈ N0 and
Pl

l¼1 nm;l ¼ N.
Clearly, s1 ¼ Nς1 and sM ¼ Nςl. The states jσ; μi ¼
⊗N

i¼1 jσi; μiii constitute a complete basis in HN , i.e.,P
σ

P
μ jσ; μihσ; μj ¼ 1, where σ ¼ ðσ1; σ2;…; σNÞ and

μ ¼ ðμ1; μ2;…; μNÞ. This yields a decomposition

jψi ¼
X

σ

X

μ

jσ; μihσ; μjψi ¼
XM

m¼1

ffiffiffiffiffiffi
pm

p jsmi; ð3Þ

where Ŝjsmi ¼ smjsmi, and jsmi contains all the terms from
the multisums such that

P
N
i¼1σi¼sm. The numbers pm ≥ 0

correspond to the probabilities of obtaining the value sm
when measuring the observable Ŝ in the state jψi,
hence,

P
M
m¼1 pm ¼ 1.

Now, if the state jψi is MS of two states jψ1i and jψ2i,
then we expect that the probability distribution Pψ ¼
fpmgMm¼1 has two distinguishable regions with correspond-
ing probabilities of the order OðN0Þ and with vanishingly
small probability within the finite-sized bordering segment
around some eigenvalue sm̄ of Ŝ (see Fig. 1). Those regions
should precisely be related to the semiclassical constituents
of the state jψi. The distance between the regions Δ ≔
jhŜiψ2

− hŜiψ1
j is closely related to the fluctuation of the

observable Ŝ in the state jψi and it is commonly assumed
that MS displays Δ ¼ OðNÞ [20,29,30]. However, we will
address quantum states from another aspect, which will
render our main result independent ofΔ. Namely, the prime
quantity in our analysis is the separation probability
Pψðjs − sm̄j ≤ δÞ, i.e., the probability of finding the result
s, when measuring Ŝ, within a tiny segment of size 2δ ¼
OðN0Þ centered at the separation point sm̄. We will provide
an upper bound on the energy gap, which essentially
depends on the separation probability and the order of
interaction. Thus, the interplay between the two will have a
crucial role in vanishing of the gap.
Next, we will make use of sm̄ to express the ground state

in the form of a superposition

jψi ¼ a1jψ1i þ a2jψ2i; ð4Þ
with

a1jψ1i¼
X̄m−1

m¼1

ffiffiffiffiffiffi
pm

p jsmi; a2jψ2i¼
XM

m¼m̄

ffiffiffiffiffiffi
pm

p jsmi; ð5Þ

where a1 ¼ðp1þ���þpm̄−1Þ1=2, a2¼ðpm̄þ�� �þpMÞ1=2,
and, presumably, a1;2 ¼ OðN0Þ. By construction, one has
hψ2jψ1i ¼ 0. We will employ the introduced separation to
derive an upper estimate of the energy gap.

Let us suppose that the Hamiltonian of the physical
system is 2-local, i.e., Ĥ ¼ P

ði;jÞ∈I ð2Þ
N
Ĥij, where Ĥij

represents pairwise interaction between particles i and j

and I ð2Þ
N is the set of pairs of interacting particles.

Obviously, the number of interaction terms in the

Hamiltonian satisfies jI ð2Þ
N j ≤ NðN − 1Þ=2 ¼ OðN2Þ. The

magnitude of the matrix element in the inequality (1) can be
estimated in order to obtain the following central result:
Theorem.—Under the assumptions given in the text, the

energy gap of the system is bounded as

ΔE ≤
jI ð2Þ

N j
2a21a

2
2

max
ði;jÞ∈I ð2Þ

N

∥Ĥij∥ · Pψ ðjs − sm̄j ≤ 2δςÞ; ð6Þ

where maxði;jÞ∈I ð2Þ
N
∥Ĥij∥ sets the characteristic energy scale

(independent of N) and δς ¼ ςl − ς1. Here, ∥ · ∥ denotes
the operator spectral norm. The complete proof is given in
the Supplemental Material [35].

The bound (6) is valid for any sm̄, which has been
arbitrary up to now. Clearly, one should select Ŝ and the
corresponding sm̄ so that Pψðjs − sm̄j ≤ 2δςÞ vanishes as
fast as possible for N → ∞. In the previously discussed
GHZ-like case, the separation probability scales as
exp½−OðNÞ� and the energy gap vanishes exponentially
fast with N. Furthermore, it is clear that for any state
exhibiting Pψ ¼ oð1=N2Þ the gap will vanish in the
thermodynamic limit and the state can only represent a
degenerate ground state. In general, such a state does not
necessarily display anomalous fluctuation of Ŝ. One can
even find examples where Δ ¼ OðN0Þ [such as jψi¼
ðjsm1

iþjsm2
iÞ= ffiffiffi

2
p

, where sm1
¼sm̄−2δ and sm2

¼sm̄þ2δ,
with δ > δς]. Conversely, when the system features
a finite energy gap, the relation (6) puts a lower bound
Pψðjs − sm̄j ≤ 2δςÞ ≥ Oð1=N2Þ for any gapped 2-local
Hamiltonian and arbitrary observable Ŝ.
The appearance of probabilities corresponding to the

interval of size 4δς centered at sm̄ is a direct consequence of
the 2-local nature of the Hamiltonian. We note that the
Theorem could easily be generalized for arbitrary K-local

Hamiltonians. In that case, one would consider the set I ðKÞ
N

ofK-tuples of interacting particles, for which jI ðKÞ
N j≤ðNKÞ¼

OðNKÞ, and the corresponding estimate of the gap
would involve the probability Pψ ðjs − sm̄j ≤ 2KδςÞ.
Thus, for a gapped K-local Hamiltonian we conclude
that the best possible separation probability one can
achieve for a ground state is asymptotically lower
bounded by Oð1=NKÞ. Consequently, all the states exhib-
iting the scaling Pψ ¼ oð1=NKÞ are excluded as possible
unique ground states.
Various examples.—Our general result nicely complies

with the investigation of ground states of various physical
systems. For example, a twofold fragmented condensate of
interacting bosons trapped in a single well [18] features a
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doubly degenerate ground state, in the thermodynamic
limit. It was shown in Ref. [19] that in the appropriate Fock
space basis the corresponding ground states are identical to
the photon cat states. In accordance with our findings, the
proposed preparation of these states requires other means
than simple cooling, i.e., the rapid sweep of interaction
couplings [45]. Another example is a one-dimensional
array of circuit quantum electrodynamic (cQED) systems
in the ultrastrong cavity-qubit coupling regime [46]. The
authors showed that the photon hopping between cavities
can be mapped to the Ising interaction between the lowest
two levels of individual cQED of the chain. Based on the
mapping, they found two nearly degenerate GHZ-type
ground states with energy splitting exponentially small
in the system size. Again, this is in perfect agreement with
our results. Moreover, we mention the study of a bosonic
Josephson junction made of N ultracold and dilute atoms
confined by a quasi-one-dimensional double-well potential
within the two-site Bose-Hubbard model framework [47].
Detailed treatment showed that the ground state of the
system evolves towards NOON state when increasing
attractive interatomic interaction. The estimated gap between
two lowest energy states vanishes exponentially with N, in
full compliance with our considerations. Our work also
nicely agrees with Ref. [48] where the possibility of creating
many-particle catlike states was examined for a Bose-
Einstein condensate trapped in a double-well potential. It
was discussed in detail that creating cat states via adiabatic
manipulation of the many-body ground state is experimen-
tally unfeasible due to the fact that the end state is nearly
degenerate with the first-excited state; hence, such a process
would require an exponentially long time. This difficulty
was surpassed by proposing to exploit dynamic evolution
following a sudden flipping of the sign of the atomic
interaction, accomplished via Feshbach resonance technique
[49]. Finally, we mention that our treatment assumes a close
correspondence between the macroscopicity of the system
and the number of its constituents. However, the macro-
scopicity might be related to other quantities and only
weakly depend on the system size. SQUID systems, which
were proposed as good candidates to host the “genuine”
MS [7], are a paramount example of that. Although our
results are not directly applicable to such a case, in the
Supplemental Material [35] we provide a discussion of
SQUIDs showing some similarities with our findings.
Our generic analysis demonstrates that more sophisticated

experimental techniques are needed for the preparation of a
variety of macroscopic superpositions in the thermodynamic
limit. This may require some form of dynamical driving of a
system, as in the mentioned examples, advanced matter-
wave interferometric approaches [50] or use of demanding
postselection techniques [51].

Furthermore, we present an example to demonstrate that
our results can be used to address the states that are more
general than MQS (see Supplemental Material [35]).
Consider a lattice model of N spin-1=2 particles interacting

with the fixed number of neighbors. Thus, one has d ¼ 2,

l ¼ 2, δς ¼ 1, and jI ð2Þ
N j ¼ OðNÞ. In order to prove that

the model becomes gapless in the limit N → ∞, one has to
find an appropriate additive observable Ŝ for which the
ground-state-related separation probability vanishes as
oð1=NÞ. Collective states that naturally appear in spin
systems are the Dicke states [52] jj; mi (m ¼ −j;…; j),
where j ¼ N=2. They are permutation invariant and satisfy
Ĵ2jj;mi ¼ jðjþ 1Þjj; mi and Ĵzjj; mi ¼ mjj; mi. All
Dicke states are unique ground states of some fully 2-

local, gapped Hamiltonian for which jI ð2Þ
N j ¼ NðN − 1Þ=2

(all the particles mutually interact pair wisely, such
as indistinguishable particles) [31]. However, such
Hamiltonians do not correspond to the present case.
Therefore, we will show that, for example, an N-qubit
W state jj; j − 1i, which represents the case of symmet-
rically distributed one-spin excitations, cannot be a unique
ground state of any considered spin-lattice model. First,
we find the appropriate collective observable to be Ĵx. Let
jj; mix (m ¼ −j;…; j) be the common eigenbasis of
Ĵ2 and Ĵx. The related probability distribution is pm ¼
jhj; j − 1jj; mixj2 (see Fig. 1 in the Supplemental Material
[35]), sm ¼ m, and we choose sm̄ ¼ 0 for j integer or sm̄ ¼
1=2 for j half-integer. As presented in the Supplemental
Material [35], we find

pm ¼ 2m2

22jj

�
2j

jþm

�
∼

2m2

ffiffiffi
π

p
j3=2

; ð7Þ

where the last asymptotic behavior holds for fixed m and
j → ∞. We conclude that the separation probability
Pψðjs − sm̄j ≤ 2Þ scales as Oð1=j3=2Þ, i.e., Oð1=N3=2Þ.
Thus, the W state can only be a degenerate ground state
of the arbitrary spin-lattice model considered here.
Moreover, the distance between the two peaks has sublinear
asymptotic scaling ∼

ffiffiffiffiffiffiffi
2N

p
. Hence, the W state is an

example of a state that is not even a MQS according to
the anomalous fluctuation criterion, but is nevertheless
amenable to our present analysis.
Finally, our results can be naturally related to quantum

marginal problem [53,54]. There, the main task is to check
whether or not a given set of marginal states ρ̂ ¼
ðρ̂s1 ; ρ̂s2 ;…Þ can be extended to some N-particle quantum
state ϱ̂½N�, i.e., ρ̂sk ¼ Trs̄k ϱ̂

½N�, where sk denotes a subset of
N particles. The set of all representable marginals ρ̂ is
convex and completely characterized by its extremal points
(for finite-dimensional systems); therefore, their identifi-
cation is of great importance. On the other hand, the set of
extremal points is in unique correspondence to the set
of N-particle nondegenerate ground states of the local
Hamiltonians [54]. Namely, for a given Hamiltonian
Ĥ ¼ P

kĤsk , where Ĥsk denotes local Hamiltonian acting
on the subset of particles sk, we have E ¼ Trðϱ̂½N�ĤÞ ¼P

kTrskðρ̂skĤskÞ ¼ Trðρ̂ ĤÞ, where Ĥ ¼ ðĤs1 ; Ĥs2 ;…Þ.
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Thus, the energy E is a linear functional on the set of all
representable marginals ρ̂ and it reaches its extreme values
on the set of nondegenerate ground states. Our criterion (6)
implies that a large class of degenerate ground states (in the
thermodynamic limit) has the set of marginals that cannot
be extremal.
Summary and outlook.—In this Letter we provided a

powerful generic method to analyze the possibility for
ground states of gapped many-body quantum systems to be
superpositions of macroscopically distinct quantum states.
We have ruled out a large class of quantum states that
cannot be prepared by simply cooling macroscopic quan-
tum systems that exhibit interactions involving some finite
number of their constituents. For such a state, we require
that the separation probability, related to the small segment
around the separation point between its two semiclassical
components, vanishes sufficiently fast in the thermody-
namic limit. We expect our results to be valuable for future
experiments aiming at preparing quantum states that exhibit
macroscopic quantum properties. Furthermore, we have
shown that our study is relevant for quantum marginal
problem.
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In this Supplemental Material we provide the proofs
of the statements from the main text. Furthermore,
we study an example of certain superpositions of Dicke
states as possible ground states of local Hamiltonians of
spin-lattice models. At the end, we provide the discus-
sion about quantum superpositions in superconducting
quantum interference devices (SQUIDs).

Proof of the Lemma

To ease the notation, we introduce the operator ĥ =
Ĥ − E0. The ground state energy of ĥ is zero, whereas
the energy of the first excited state is equal to the energy
gap ∆E of Ĥ. The ground state |ψ〉 = a1|ψ1〉 + a2|ψ2〉
satisfies the condition ĥ|ψ〉 = 0. Therefore, we get the
following set of equations

a1h11 + a2h12 = 0, (1a)

a1h21 + a2h22 = 0, (1b)

with hij = 〈ψi|ĥ|ψj〉. The linear system above has
non-trivial solutions if its determinant is zero. Hence,
h11h22 = h12h21 ≡ |h21|2. Obviously, h11, h22 ≥ 0 as the

ground state energy of ĥ is zero. Consider now the ex-
pansion |ψ1〉 = c1|ψ〉+

√

1− |c1|2|ψ⊥〉, where |ψ⊥〉 is the
linear combination of |ψ1〉 and |ψ2〉 such that 〈ψ|ψ⊥〉 = 0.
We get the following inequality

〈ψ1|ĥ|ψ1〉 = (1− |c1|2)〈ψ⊥|ĥ|ψ⊥〉 ≥ (1− |c1|2)∆E. (2)

The last inequality follows from the fact that the lowest
energy of ĥ in the subspace orthogonal to |ψ〉 is ∆E. It
is easy to obtain 1− |c1|2 = |a2|2(1− |λ|2), so that

∆E ≤ 〈ψ1|ĥ|ψ1〉
1− |c1|2

=
h11

|a2|2(1− |λ|2) . (3)

From the equations (1) we find h11/|a2|2 = |h12|/|a1a2| =
|h21|/|a1a2| = h22/|a1|2. Consequently, we get

∆E ≤ |h21|
|a1a2|(1− |λ|2) . (4)

Recalling the assumptions a1, a2 > 0 from the main text,
the previous result proves the Lemma.

Macroscopic superpositions of “locally

distinguishable” states

Let us assume that the unique ground state |ψ〉 is a
macroscopic superposition of two states |ψ1〉 and |ψ2〉.
We will rely on the measurement-based measure of the
size of macroscopic quantum superpositions in terms of
“local distinguishability”, introduced in Ref. [1] and elab-
orated in Ref. [2]. In this context, it was shown in Ref.
[3] that if the energy gap scales as O(1/poly(N)), then
no MS of locally distinguishable states can be the unique
ground state ofN spins described by a local Hamiltonian.
Our goal here is to prove the opposite − if such a state is
a ground state of local Hamiltonian, then the energy gap
vanishes exponentially fast in the macroscopic limit. Fol-
lowing [1, 2], we divide N particles into a maximal num-
ber Ñ of distinct groups of particles such that |ψ1〉 can
be distinguished from |ψ2〉 with probability P > 1/2 by
performing a measurement on any single group. The su-
perposition state |ψ〉 is called macroscopic if Ñ = O(N).
To avoid cumbersome notation, we assume that the size
of every group is N/Ñ and introduce the abbreviation
[N ] = {1, 2, . . . , N}. In the sequel, we will derive an ex-
ponential bound for the magnitude of the matrix element
of a 2-local Hamiltonian

〈ψ2|Ĥ|ψ1〉 =
∑

(i,j)∈I
(2)
N

〈ψ2|Ĥij |ψ1〉

=
∑

(i,j)∈I
(2)
N

Tri,j

(

ĤijTr[N ]\{i,j}

(

|ψ1〉〈ψ2|
)

)

.

(5)

Our approach is based on the one given in the Ap-
pendix C of Ref. [3]. Denote by Â(k) the measure-
ment operator on group k that optimally distinguishes
the states |ψ1〉 and |ψ2〉. One can always choose it so
that its spectrum is {−1,+1}. In such a case, the suc-
cess probability to distinguish the two states is given by
P = 1/2 + 1/4 |〈Â(k)〉ψ1

− 〈Â(k)〉ψ2
|. Since P > 1/2, we

can assume that −1 ≤ 〈Â(k)〉ψ2
< 〈Â(k)〉ψ1

≤ 1 for all
k. For the kth group, the projection operator on out-

come α is denoted by Π̂
(k)
α . The measurement probabil-

ities are then ‖Π̂(k)
±1 |ψi〉‖2 = (1 ± 〈Â(k)〉ψi

)/2 ≡ pi,± for
i = 1, 2. One additional comment is in order. Namely, in
the generic case Ñ can depend on the success probability
P . As discussed in Ref. [2], the additional assumption,



2

that the measurements on any group do not influence the
measurement outcomes on other groups, resolves this is-
sue. It basically means that only correlations within the
groups exist and not among different groups. Thus, we
formally require that 〈Â(k)Â(k′)〉ψi

= 〈Â(k)〉ψi
〈Â(k′)〉ψi

,
for i = 1, 2 and for all groups k 6= k′. This in turn implies

the factorization ‖Π̂(k)
α Π̂

(k′)
α′ |ψi〉‖2 = pi,α pi,α′ for i = 1, 2.

Similar factorization is found for the joint probabilities
of the results of measurements on more than two distinct
groups.

Denote by Γ = {Γ(k)}Ñk=1 the set of the considered
distinct groups of particles. Let us examine the partial

trace of |ψ1〉〈ψ2| over n groups {Γ(k1), . . . ,Γ(kn)} ≡ Γ
(k)
n

Tr
Γ

(k)
n

(

|ψ1〉〈ψ2|
)

= Tr
Γ

(k)
n

( n
⊗
i=1

(Π̂
(ki)
+1 + Π̂

(ki)
−1 ) |ψ1〉〈ψ2|

n
⊗
j=1

(Π̂
(kj)
+1 + Π̂

(kj)
−1 )

)

= Tr
Γ

(k)
n

(

∑

α1,...,αn=±1

∑

α′

1,...,α
′

n=±1

Π̂
(k1)
α1

. . . Π̂
(kn)
αn

|ψ1〉〈ψ2| Π̂(k1)
α′

1
. . . Π̂

(kn)
α′

n

)

= Tr
Γ

(k)
n

(

∑

α1,...,αn=±1

Π̂
(k1)
α1

. . . Π̂
(kn)
αn

|ψ1〉〈ψ2| Π̂(k1)
α1

. . . Π̂
(kn)
αn

)

= Tr
Γ

(k)
n

(

∑

α∈{−1,1}n

Π̂
(k)
α |ψ1〉〈ψ2| Π̂(k)

α

)

, (6)

where Π̂
(k)
α = Π̂

(k1)
α1

. . . Π̂
(kn)
αn

. We used the orthogo-

nality Π̂
(k)
α Π̂

(k)
α′ = δαα′Π̂

(k)
α and the completeness rela-

tion Π̂
(k)
+1 + Π̂

(k)
−1 = I

(k). In evaluating (5) we will en-
counter two types of terms, the ones where both par-
ticles i and j belong to two different groups, say Γ(ki)

and Γ(kj), and the ones where they belong to the same
group, say Γ(kij). In both cases we have to perform par-
tial traces over at least Ñ − 2 groups of particles. To
make the derivation more compact, we will treat the two
cases on the same footing. Namely, we shall introduce
Γij = {Γ(ki),Γ(kj)} in the former case. In the latter case,

we define Γij = {Γ(kij),Γ(k∗ij)}, where to each group k
we assign its “partner” group k∗ 6= k. For instance, one
may set 1∗ = 2, 2∗ = 3, . . ., (N − 1)∗ = N and N∗ = 1.
We then have

Tr[N ]\{i,j}

(

|ψ1〉〈ψ2|
)

= TrΓij\{i,j}TrΓ\Γij

(

|ψ1〉〈ψ2|
)

,

(7)

where the last partial trace is always over Ñ − 2 groups.
Let ki,j label those groups. Combining the previous, we
get

|〈ψ2|Ĥ|ψ1〉| =
∣

∣

∣

∑

(i,j)∈I
(2)
N

Tri,j

(

ĤijTrΓij\{i,j}TrΓ\Γij

(

|ψ1〉〈ψ2|
)

)∣

∣

∣

=
∣

∣

∣

∑

(i,j)∈I
(2)
N

Tri,j

(

ĤijTrΓij\{i,j}TrΓ\Γij

(

∑

α∈{−1,1}Ñ−2

Π̂
(ki,j)
α |ψ1〉〈ψ2| Π̂(ki,j)

α

)

)
∣

∣

∣

=
∣

∣

∣

∑

(i,j)∈I
(2)
N

∑

α∈{−1,1}Ñ−2

Tri,j

(

ĤijTr[N ]\{i,j}

(

Π̂
(ki,j)
α |ψ1〉〈ψ2| Π̂(ki,j)

α

)

)
∣

∣

∣

≤
∑

(i,j)∈I
(2)
N

∑

α∈{−1,1}Ñ−2

∣

∣

∣
Tri,j

(

ĤijTr[N ]\{i,j}

(

Π̂
(ki,j)
α |ψ1〉〈ψ2| Π̂(ki,j)

α

)

)
∣

∣

∣

≤
∑

(i,j)∈I
(2)
N

∑

α∈{−1,1}Ñ−2

‖Ĥij‖ ·
∥

∥Tr[N ]\{i,j}

(

Π̂
(ki,j)
α |ψ1〉〈ψ2| Π̂(ki,j)

α

)
∥

∥

1

≤ max
(i,j)∈I

(2)
N

‖Ĥij‖
∑

(i,j)∈I
(2)
N

∑

α∈{−1,1}Ñ−2

∥

∥Tr[N ]\{i,j}

(

Π̂
(ki,j)
α |ψ1〉〈ψ2| Π̂(ki,j)

α

)∥

∥

1

≤ max
(i,j)∈I

(2)
N

‖Ĥij‖
∑

(i,j)∈I
(2)
N

∑

α∈{−1,1}Ñ−2

∥

∥Π̂
(ki,j)
α |ψ1〉〈ψ2| Π̂(ki,j)

α

∥

∥

1

= max
(i,j)∈I

(2)
N

‖Ĥij‖
∑

(i,j)∈I
(2)
N

∑

α∈{−1,1}Ñ−2

∥

∥Π̂
(ki,j)
α |ψ1〉

∥

∥ ·
∥

∥Π̂
(ki,j)
α |ψ2〉

∥

∥. (8)
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In the second inequality we used Hölder’s inequality for
the operator spectral and 1-norm

∣

∣Tr
(

X̂Ŷ
)
∣

∣ ≤ ‖X̂‖ ·
‖Ŷ ‖1. In the third inequality we utilized the property

‖Tr1
(

X̂12

)

‖1 ≤ ‖X̂12‖1 for X̂12 ∈ L(H1 ⊗ H2) [4], and

finally in the last one we used
∥

∥|u〉〈v|
∥

∥

1
= ‖|u〉‖ · ‖|v〉‖.

Now, from the factorization of joint probabilities we get

∥

∥Π̂
(ki,j)
α |ψl〉

∥

∥ =
∥

∥Π̂
(k1)
α1

Π̂
(k2)
α2

. . . Π̂
(k

Ñ−2)

α
Ñ−2

|ψl〉
∥

∥

= (pl,α1
pl,α2

. . . pl,α
Ñ−2

)1/2 = (pl,+)
m
2 (pl,−)

Ñ−2−m
2 ,

(9)

where m is the number of positive eigenvalues among
α1, α2, . . . , αÑ−2. Hence, we find

|〈ψ2|Ĥ|ψ1〉| ≤ max
(i,j)∈I

(2)
N

‖Ĥij‖
∑

(i,j)∈I
(2)
N

∑

α∈{−1,1}Ñ−2

(p1,+ p2,+)
m
2 (p1,− p2,−)

Ñ−2−m
2

≤ |I(2)
N | max

(i,j)∈I
(2)
N

‖Ĥij‖
∑

α∈{−1,1}Ñ−2

(p1,+ p2,+)
m
2 (p1,− p2,−)

Ñ−2−m
2

= |I(2)
N | max

(i,j)∈I
(2)
N

‖Ĥij‖
Ñ−2
∑

m=0

(

Ñ − 2

m

)

(p1,+ p2,+)
m
2 (p1,− p2,−)

Ñ−2−m
2

= |I(2)
N | max

(i,j)∈I
(2)
N

‖Ĥij‖ qÑ−2, (10)

where q =
√
p1,+ p2,++

√
p1,− p2,−. Since by assumption

〈Â(k)〉ψ2
< 〈Â(k)〉ψ1

, we have p1,± 6= p2,±. Using the
inequality

√
xy < (x+y)/2 for distinct positive numbers,

we obtain

q <
p1,+ + p2,+

2
+
p1,− + p2,−

2
= 1. (11)

In addition, due to Ñ = O(N) for a macroscopic su-
perposition state, we find the estimate |〈ψ2|Ĥ|ψ1〉| ≤
exp[−O(N)]. Thus, we have derived an exponential
bound with respect to N . In the general case of K-local
Hamiltonian one could analogously derive the bound

|〈ψ2|Ĥ|ψ1〉| ≤ |I(K)
N | max

(i1,...,iK)∈I
(K)
N

‖Ĥi1...iK‖ qÑ−K .

(12)

Based on this result, the Lemma implies that the energy
gap as well vanishes exponentially fast in the macroscopic
limit N → ∞.

Proof of the Theorem

Our task is to estimate the magnitude of the matrix
element 〈ψ2|Ĥ|ψ1〉 of a 2-local Hamiltonian, under the
assumptions from the main text. Recall that an additive
observable Ŝ =

∑N
i=1 Ŝi introduces the decomposition

of a given state |ψ〉 =
∑M
m=1

√
pm|sm〉, where Ŝ|sm〉 =

sm|sm〉, √
pm|sm〉 =

∑

|σ|=sm

∑

µ |σ,µ〉〈σ,µ|ψ〉 and

|σ| ≡ ∑N
i=1 σi. Furthermore, we used the separating

eigenvalue sm̄ to express the ground state in the form
of superposition |ψ〉 = a1|ψ1〉 + a2|ψ2〉, with a1|ψ1〉 =
∑m̄−1
m=1

√
pm|sm〉 and a2|ψ2〉 =

∑M
m=m̄

√
pm|sm〉. Then,

we find the following

〈ψ2|Ĥ|ψ1〉 =
∑

(i,j)∈I
(2)
N

〈ψ2|Ĥij |ψ1〉 =
1

a1a2

∑

(i,j)∈I
(2)
N

m̄−1
∑

m=1

M
∑

m′=m̄

√
pm′ 〈sm′ |Ĥij |sm〉√pm. (13)

Evaluation of 〈sm′ |Ĥij |sm〉 boils down to considering

〈σ′,µ′|Ĥij |σ,µ〉 = Tri,j
(

ĤijTr[N ]\{i,j}

(

|σ,µ〉〈σ′,µ′|
))

,

where |σ′| = sm′ and |σ| = sm. One finds that

Tr[N ]\{i,j}

(

|σ,µ〉〈σ′,µ′|
)

= |σi, µi〉i|σj , µj〉j〈σ′
i, µ

′
i|i〈σ′

j , µ
′
j |j

∏

k∈[N ]\{i,j}

δσ′

k
,σ

k
δµ′

k
,µ

k
. (14)
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A necessary condition for the last product to be nonzero
is
∑

k∈[N ]\{i,j}(σ
′
k−σk) = 0, i.e., sm′−sm = σ′

i+σ
′
j−(σi+

σj). Since−2δς ≤ σ′
i+σ

′
j−(σi+σj) ≤ 2δς , all the nonvan-

ishing terms from (13) must obey −2δς ≤ sm′−sm ≤ 2δς ,
while by construction we have sm′ ≥ sm̄ and sm < sm̄.
Hence, the only nonzero terms are those related to the

triangular region Tm̄ in the (m,m′)-plane that is deter-
mined by the previous inequalities. Letm> be the largest
m such that sm < sm̄ + 2δς . Similarly, let m< be the
smallest m such that sm ≥ sm̄ − 2δς . We obtain the
following

|〈ψ2|Ĥ|ψ1〉| =
1

a1a2

∣

∣

∣

∑

(i,j)∈I
(2)
N

∑

(m,m′)∈Tm̄

√
pm′ 〈sm′ |Ĥij |sm〉√pm

∣

∣

∣

=
1

a1a2

∣

∣

∣

∑

(i,j)∈I
(2)
N

m̄−1
∑

m=m<

m>
∑

m′=m̄

√
pm′ 〈sm′ |Ĥij |sm〉√pm

∣

∣

∣
(15a)

=
1

a1a2

∣

∣

∣

∑

(i,j)∈I
(2)
N

m̄−1
∑

m=m<

m>
∑

m′=m̄

Tri,j

(

ĤijTr[N ]\{i,j}

(√
pm|sm〉〈sm′ |√pm′

)

)∣

∣

∣

=
1

a1a2

∣

∣

∣

∑

(i,j)∈I
(2)
N

Tri,j

(

ĤijTr[N ]\{i,j}

(

m̄−1
∑

m=m<

√
pm|sm〉

m>
∑

m′=m̄

√
pm′〈sm′ |

)

)∣

∣

∣

≤ 1

a1a2

∑

(i,j)∈I
(2)
N

∣

∣

∣
Tri,j

(

ĤijTr[N ]\{i,j}

(

m̄−1
∑

m=m<

√
pm|sm〉

m>
∑

m′=m̄

√
pm′〈sm′ |

)

)
∣

∣

∣

≤ 1

a1a2

∑

(i,j)∈I
(2)
N

‖Ĥij‖ ·
∥

∥

∥
Tr[N ]\{i,j}

(

m̄−1
∑

m=m<

√
pm|sm〉

m>
∑

m′=m̄

√
pm′〈sm′ |

)

∥

∥

∥

1
(15b)

≤ 1

a1a2

∑

(i,j)∈I
(2)
N

‖Ĥij‖ ·
∥

∥

∥

m̄−1
∑

m=m<

√
pm|sm〉

m>
∑

m′=m̄

√
pm′〈sm′ |

∥

∥

∥

1
(15c)

≤ |I(2)
N |

a1a2
max

(i,j)∈I
(2)
N

‖Ĥij‖ ·
∥

∥

∥

m̄−1
∑

m=m<

√
pm|sm〉

m>
∑

m′=m̄

√
pm′〈sm′ |

∥

∥

∥

1

=
|I(2)
N |

a1a2
max

(i,j)∈I
(2)
N

‖Ĥij‖ ·
∥

∥

∥

m̄−1
∑

m=m<

√
pm|sm〉

∥

∥

∥
·
∥

∥

∥

m>
∑

m′=m̄

√
pm′〈sm′ |

∥

∥

∥
(15d)

=
|I(2)
N |

a1a2
max

(i,j)∈I
(2)
N

‖Ĥij‖ ·
(

m̄−1
∑

m=m<

pm

)1/2

·
(

m>
∑

m′=m̄

pm′

)1/2

≤ |I(2)
N |

2a1a2
max

(i,j)∈I
(2)
N

‖Ĥij‖ ·
(

m̄−1
∑

m=m<

pm +

m>
∑

m′=m̄

pm′

)

(15e)

≤ |I(2)
N |

2a1a2
max

(i,j)∈I
(2)
N

‖Ĥij‖ · Pψ(|s− sm̄| ≤ 2δς). (15f)

In the line (15a) we found convenient to extend the sum-
mation over Tm̄ to the summation over the encompass-
ing rectangular region. Note that all the added terms
are actually zero-terms. Thereafter, m and m′ index
the eigenvalues of Ŝ within the interval [sm̄ − 2δς , sm̄)
and [sm̄, sm̄ + 2δς), respectively. The line (15b) is a
consequence of Hölder’s inequality for operator spectral

and 1-norm
∣

∣Tr
(

X̂Ŷ
)∣

∣ ≤ ‖X̂‖ · ‖Ŷ ‖1, whereas the line
(15c) follows from ‖Tr1

(

X̂12

)

‖1 ≤ ‖X̂12‖1 for X̂12 ∈
L(H1 ⊗H2) [4] and we used ‖|u〉〈v|‖1 = ‖|u〉‖ · ‖|v〉‖ in
the line (15d). Finally, in the line (15e) we invoked the
inequality

√
xy ≤ (x+y)/2 for nonnegative reals. Recall-

ing the Lemma from the main text, the fact 〈ψ2|ψ1〉 = 0
and the choice E0 = 0, we find
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∆E ≤ |I(2)
N |

2a21a
2
2

max
(i,j)∈I

(2)
N

‖Ĥij‖ · Pψ(|s− sm̄| ≤ 2δς). (16)

The proof of the Theorem is now completed.

Example of W state |j, j − 1〉

Here, we give the derivation of the probability distri-
bution pm = |〈j, j − 1|j,m〉x|2 for j → ∞ and small m,

where |j,m〉x = e−i
π
2 Ĵy |j,m〉. Particular example of such

distribution is given in Fig. 1. First, we will evaluate the
overlap

〈j, j − 1|j,m〉x =
1√
2j

〈j, j|Ĵ+|j,m〉x

=
1√
2j

〈j, j|(Ĵx + iĴy)e
−iπ2 Ĵy |j,m〉

=
1√
2j

〈j, j|e−iπ2 Ĵy (Ĵz + iĴy)|j,m〉, (17)

where we used properties and definition of the angular
momentum ladder operator Ĵ+, as well as the relation

ei
π
2 Ĵy Ĵxe

−iπ2 Ĵy = Ĵz. Next, we employ

0 = 〈j, j|Ĵ−e−i
π
2 Ĵy

= 〈j, j|(Ĵx − iĴy)e
−iπ2 Ĵy

= 〈j, j|e−iπ2 Ĵy (Ĵz − iĴy), (18)

so that

〈j, j|e−iπ2 Ĵy Ĵz = 〈j, j|e−iπ2 Ĵy iĴy, (19)
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FIG. 1. Normalized probability distributions pm for W state
for N = 40 (blue line) and N = 200 (green line). Normal-
ization is such that the maximal value is unity. Continuous
curves are used for aesthetic purposes.

and we conclude

〈j, j − 1|j,m〉x =
1√
2j

〈j, j|e−iπ2 Ĵy 2Ĵz|j,m〉

= m

√

2

j
〈j, j|e−iπ2 Ĵy |j,m〉 ≡ m

√

2

j
cm.

(20)

In order to calculate the matrix element, denoted by cm,
we proceed as follows. First, from (19) and the relation
2iĴy = Ĵ+ − Ĵ−, we get

2mcm =
√

(j−m)(j+m+1) cm+1

−
√

(j+m)(j−m+1) cm−1. (21)

Second, using ei
π
2 Ĵy Ĵze

−iπ2 Ĵy = −Ĵx together with Ĵx =
(Ĵ+ + Ĵ−)/2, we find

〈j, j|Ĵze−i
π
2 Ĵy = −〈j, j|e−iπ2 Ĵy Ĵx

= −1

2
〈j, j|e−iπ2 Ĵy (Ĵ+ + Ĵ−), (22)

which allows us to obtain

2jcm = −
√

(j−m)(j+m+1) cm+1

−
√

(j+m)(j−m+1) cm−1. (23)

From the two relations (21) and (23), we derive the re-

currence relation cm = −
√

j+m+1
j−m cm+1, which leads

to cm = (−1)j−m
√

(

2j
j+m

)

cj . Using the normalization

condition
∑j
m=−j |cm|2 = 1, we get |cj | = 1

2j and

|cm| = 1
2j

√

(

2j
j+m

)

. Finally, from (20) we obtain

pm =
2m2

22j j

(

2j

j +m

)

, (24)

as stated in the main text. The asymptotic behavior for
fixedm and j → ∞ can be easily obtained using Stirling’s
asymptotic series.

Example of superpositions of Dicke states

Additionally, we will demonstrate that certain super-
positions of Dicke states cannot be unique ground states
of 2-local Hamiltonians. We consider N = 2j spin-1/2
particles, with j integer (for the notational simplicity).
Thus, d = 2, ℓ = 2, and δς = 1. Assume that the unique
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FIG. 2. The probability distribution pm for the superposition
(|j,−1〉+ |j, 5〉)/

√
2 of two Dicke states for j = 100. The blue

(green) line labels pm for m even (odd). Continuous curves
are used for aesthetic purposes.

ground state of some 2-local Hamiltonian of the spins has
the following form

|ψ±
n 〉 =

n
∑

k=0

(±)kck|j,−n+ 2k〉, n = O(N0) ∈ N, (25)

where the coefficients ck ∈ C satisfy
∑n
k=0 |ck|2 = 1 and

∑n
k=0 ck = 0. Some particular instances of such states

are (|j,−1〉 ∓ |j, 1〉)/
√
2, (|j,−2〉 ∓ |j, 4〉)/

√
2, (|j,−3〉 −

2|j, 1〉+ |j, 5〉)/
√
6, etc. It can be verified that the proper

additive observable for |ψ+
n 〉 states is Ĵy, while for |ψ−

n 〉
states it is Ĵx. All the states (25) are in fact general
macroscopic quantum states since the variance of the ad-
ditive observable scales as O(N2).

We first concentrate on |ψ−
n 〉 states. The required

probability distribution is given by pm = |〈ψ−
n |j,m〉x|2,

sm = m, and we again select sm̄ = 0 (see Fig. 2 for an
example). We are going to analyze the behavior of the
probabilities pm for j → ∞ and small m, i.e., we want to

examine the overlap 〈j,m′|j,m〉x = 〈j,m′|e−iπ2 Ĵy |j,m〉 =
djm′m(π/2) for j large. In the last equality we recognized

the Wigner (small) d function that can be related to Ja-

cobi polynomials P
(a,b)
n (z) in the following manner [5]

djm′m(θ) =

[

(j +m)!(j −m)!

(j +m′)!(j −m′)!

]
1
2

P
(m−m′,m+m′)
j−m (cos θ)

×
(

sin
θ

2

)m−m′
(

cos
θ

2

)m+m′

. (26)

Thus, we find

djm′m

(π

2

)

=
1

2m

[

(j +m)!(j −m)!

(j +m′)!(j −m′)!

]
1
2

P
(m−m′,m+m′)
j−m (0).

(27)

Using Stirling’s asymptotic series and asymptotic expan-
sion of Jacobi polynomials [6–8] in the limit j → ∞ and

m,m′ finite, we obtain

〈j,m′|j,m〉x ∼
√

2

πj
cos

(j −m+m′)π

2
+O

(

j−3/2
)

.

(28)

so that

〈ψ−
n |j,m〉x =

n
∑

k=0

(−1)kc∗k〈j,−n+ 2k|j,m〉x

∼
√

2

πj

n
∑

k=0

(−1)kc∗k cos

[

(j −m− n)π

2
+ kπ

]

+O
(

j−3/2
)

=

√

2

πj
cos

(j −m− n)π

2

n
∑

k=0

c∗k +O
(

j−3/2
)

= O
(

j−3/2
)

, (29)

since by construction we have
∑n
k=0 ck = 0. Thus, we

establish the asymptotic relation pm = |〈ψ−
n |j,m〉x|2 =

O(j−3). The choice sm̄ = 0 guaranties that ak → 1/
√
2

(k = 1, 2) as j → ∞, so that the separation probabil-
ity Pψ(|s − sm̄| ≤ 2) vanishes at least as O(j−3), i.e.,
O(N−3). Essentially the same approach can also be ap-
plied to |ψ+

n 〉 states. Finally, we conclude that none of
the states (25) can be reached by cooling the system of
N spin-1/2 particles described by an arbitrary 2-local
Hamiltonian.

This example can also be put into the context of
double-well (or twofold fragmented single-well) Bose-
Einstein condensates of N particles via the Schwinger
representation of angular momentum operators in terms
of two bosonic modes. Hence, for arbitrary pairwise par-
ticle interactions and potential trap designs the consid-
ered superpositions of Dicke states cannot in principle
arise as a result of the simple condensation process and
necessitate other means of preparation. Contrarily, we
conclude from our previous analysis that one would need
genuine 3-particle interactions in order for it to be possi-
ble to prepare such states by the process of cooling.

Quantum superpositions in SQUIDs

Here we provide the discussion of superpositions of
magnetic-flux states in SQUIDs and show the relation
to our analysis. We will consider the simplest form of
Josephson device which displays all the features relevant
for the present discussion, namely a single rf SQUID [9].
In the thermodynamic limit (the number of Cooper pairs
N tends to infinity), the full many-body description re-
duces to a simple model with one macroscopic quantum
variable, i.e., the total flux Φ trapped through the SQUID
ring, and the dynamics follows an effective single-particle
1D Schrödinger equation, where the effective Hamilto-
nian Ĥeff(Φ) has a usual kinetic ∝ −∂2/∂Φ2 and a poten-
tial term U(Φ) [10]. The system exhibits a finite energy
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gap ∆E independent of N . For an appropriate choice
of external magnetic field, the problem boils down to the
analysis of a 1D quantum particle in a double-well poten-
tial U(Φ) [9]. The ground state wave function ψ0(Φ) has
two peaks to which we can associate the states ψ−(Φ)
and ψ+(Φ). They correspond to the states of supercur-
rent flowing in one or in the other direction around the
ring. Since the magnitude of the total magnetic moment
in each of the cases can be 106µB [11], or even 1010µB
[12], these states are asserted to be macroscopically dis-
tinct.

For simplicity reasons, let us assume the symmetric
potential U(−Φ) = U(Φ) with two degenerate wells sep-
arated by a classically impenetrable barrier [9]. For the
case of an even potential, the well-known textbook re-
sult states that the ground state wave function is even,
i.e. ψ0(−Φ) = ψ0(Φ), whereas the first excited state wave
function is odd ψ1(−Φ) = −ψ1(Φ). Here Ĥeff(Φ)ψi(Φ) =
Eiψi(Φ) and ∆E = E1−E0. Since ψ

′
0(0) = 0, the proba-

bility density |ψ0(Φ)|2 attains a minimum at the center of
the barrier Φ = 0. Precisely this is the natural choice for
the separation point that divides the ground state wave
function into the two components ψ±(Φ).

Following Ref. [13], simple algebraic manipulation of
eigenequations Ĥeff(Φ)ψi(Φ) = Eiψi(Φ) yields the rela-
tion

∆E = const× ψ0(0)ψ
′
1(0)

∫∞

0
ψ0(Φ)ψ1(Φ)dΦ

, (30)

meaning that the energy gap is directly proportional to
the ground state probability amplitude ψ0(0) at the cen-
ter of the barrier. Since ∆E is nonzero, ψ0(0) must be
nonvanishing as well. Therefore, as long as the energy
gap is finite, there is a nonvanishing macroscopic proba-
bility density |ψ0(0)|2 of Cooper pairs at the center of the
barrier (the separation point). Thus, one concludes that
the states ψ±(Φ) cannot be arbitrarily well separated
whenever the energy gap is finite. In addition, the same
general conclusion as above holds for arbitrary confining

potential. Namely, it is a well-known fact that a non-
degenerate ground state wave function has no nodes, i.e.,
it exhibits the nonzero probability density everywhere.

Finally, we point out that instead of an effective de-
scription and an analysis of the flux variable, one might
consider the full 2-local many-body Hamiltonian and in-
voke the analysis of some additive observable, such as
the pseudo-angular-momentum [14]. In such a case, the
dependence on the number of Cooper pairs N would ex-
plicitly be taken into account. Our main theorem would
then directly yield the conclusion that for any considered
additive observable there is a lower bound on the sepa-
ration probability Pψ ≥ O(1/N2). In other words, this is
the best separation of the two wave function components
one can expect to have.
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Dark-polariton bound pairs in the modified Jaynes-Cummings-Hubbard model
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We investigate a one-dimensional modified Jaynes-Cummings-Hubbard chain of N identical QED cavities
with nearest-neighbor photon tunneling and periodic boundary conditions. Each cavity contains an embedded
three-level atom which is coupled to a cavity mode and an external classical control field. In the case of two
excitations and common large detuning of two Raman-resonant fields, we show the emergence of two different
species of dark-polariton bound pairs (DPBPs) that are mutually localized in their relative spatial coordinates.
Due to the high degree of controllability, we show the appearance of either one or two DPBPs, having the
energies within the energy gaps between three bands of mutually delocalized eigenstates. Interestingly, in a
different parameter regime with negatively detuned Raman fields, we find that the ground state of the system is
a DPBP which can be utilized for the photon storage, retrieval, and controllable state preparation. Moreover, we
propose an experimental realization of our model system.

DOI: 10.1103/PhysRevA.93.013835

I. INTRODUCTION

The interaction between light and matter is one of the
most fundamental and basic processes in nature, and it
represents a milestone in our understanding of a broad range
of physical phenomena. The recent experimental success in
engineering strong interactions between photons and atoms
in high-quality microcavities opens up the possibility to use
light-matter systems as quantum simulators for many-body
physics [1]. Key examples as first-principles proposals are
quantum phase transitions of light in coupled cavities [2–4],
quantum fluids of light (see [5]) and the Mott-insulator-
to-superfluid phase transition of polaritons in an array of
coupled QED cavities [6–11]. Coupled cavities are realized
in a variety of physical systems, among them microcavities
and nanocavities in photonic crystals [12]. These have paved
the way to study strongly correlated phenomena in a controlled
way by using such systems. Richness in these systems emerges
from the interplay of two main effects. At one side, light-matter
interaction inside the cavity leads to a strong effective Kerr
nonlinearity between photons. By controlling the atomic level
spacings as well as the cavity-mode frequency, it is possible
to achieve a photon-blockade regime [13–16] where photon
fluctuations are suppressed in each cavity. On the other
side, photon hopping between neighboring cavities supports
delocalization and competes with the photon blockade.

At the end of the past century, Fleischhauer and Lukin
introduced the theoretical concept of dark-state polaritons
(DSPs), form-stable coupled excitations of light and matter
associated with the propagation of quantum fields in electro-
magnetically induced transparency (EIT), and showed their
potential usage as quantum memories for photons [17,18].
Since then, DSPs have been in the focus of intense theoretical
and experimental investigations [19–33]. The first proposal
for realization of strong interactions among DSPs and Mott-
insulator-to-superfluid phase transition thereof was given by

*mangelo@ff.bg.ac.rs
†Present address: Faculty of Physics, University of Vienna, Boltz-
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Hartmann et al. [9]. They demonstrated the possibility to
generate attractive onsite potentials for polaritons yielding
highly entangled states and a phase with particles much
more delocalized than in superfluids. Moreover, two-polariton
bound states, composite excitations of two polaritons that may
be spatially confined together, were predicted by Wong and
Law [34]. Very recently, two-polariton bound states have been
related to spin-orbit interactions by Li et al. [35]. Both are
features of the systems described by the one-dimensional
Jaynes-Cummings-Hubbard model (JCH) and represent an
important connection between condensed matter physics and
quantum optics. In such systems, it is possible to realize various
many-body effects where the particles of interest are photons
rather than electrons.

In this paper, we present a scheme based on a modified
Jaynes-Cummings-Hubbard model (MJCH) that enables the
formation of two different species of spatially, mutually
localized dark-polariton bound pairs (DPBPs). Our scheme
is based on N identical coupled QED cavities with periodic
boundary conditions. Each cavity embeds a single three-level
atom. A cavity mode and an external control field, which are
in two-photon Raman resonance, drive the transitions from
the two atomic ground states to the excited state. We assume
that a common single-photon detuning of the fields is large
compared to the coupling strengths. Under such conditions, the
description of the three-level atoms is effectively reduced to
ground-state two-level systems with tunable coupling strength
between the ground levels and controllable level Stark shifts.
Hence, our model circumvents the drawbacks of the excited-
state spontaneous emission and provides a tunable extension of
two-polariton bound states of the classical Jaynes-Cummings-
Hubbard model [34]. Furthermore, we find that when the
common detuning of the coupling fields is negative, the
lowest-energy eigenstate of the system becomes a mutually
localized DPBP of a new type that may be used as a quantum
memory of light. This may find potential use in quantum
information processing and controllable state preparation.

This paper is organized as follows. In Sec. II, we recapit-
ulate the standard Jaynes-Cummings model and focus on its
spectrum and eigenstates. In Sec. III, we discuss the modified
Jaynes-Cummings model where we derive the modified
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Jaynes-Cummings Hamiltonian from a bare model. Further,
we analyze the eigenstates and highlight the differences to
the standard Jaynes-Cummings model. In Sec. IV, we present
the considered model system and extend the modified Jaynes-
Cummings model to a modified Jaynes-Cummings-Hubbard
model, highlighting that it features the formation of bound
states of two dark-polaritons. In Sec. V, we present a detailed
discussion of the two-excitation subspace and explain the for-
mation of dark-polariton bound pairs (DPBPs), accentuating
their tunability through the control field Stark shift. In Sec. VI,
we demonstrate an application of a ground-state DPBP as a
quantum memory on which storage and retrieval of a single
photon can be performed, while the second photon remains not
influenced by the storage and retrieval process. Even though
two photons are bound, exactly one photon can be addressed.
The state composition of the ground-state DPBP can be tuned
by the relative importance of the intercavity photon hopping,
e.g., increasing the common single-photon detuning |�|. In
Sec. VII, we propose an experimental realization of our
model system, where we state not only promising candidates
to the creation of one-dimensional chains of N -coupled
QED cavities, but also name single � atoms which can be
considered. In addition, we point out that for Cs the measured
strong-coupling constant gm fits very well with our theoretical
prediction, where the formation of DPBPs as well as the
storage and retrieval process can be seen. Finally, In Sec. VIII
we draw our conclusions.

II. STANDARD JAYNES-CUMMINGS MODEL

Within this section, we recapitulate the standard Jaynes-
Cummings model (JC). Especially, we focus on its spectrum
and eigenstates. In this model, a two-level atom with ground
level |g〉 and excited level |e〉 having energies ωg and ωe

interacts with a single mode of an electromagnetic field of
frequency ω0 that couples the transition |g〉 → |e〉 with the
strength g0. In the (rotating-wave) approximation (RWA), JC
Hamiltonian has the form (� = 1) [36,37]

Ĥ (JC) = ω0n̂ + δσ̂+σ̂− − g0(âσ̂+ + â†σ̂−), (1)

where ĉ† (ĉ) is the photonic creation (annihilation) operator and
σ̂+ = |e〉〈g| (σ̂− = |g〉〈e|) is the atomic raising (lowering)
operator. n̂ = ĉ†ĉ + σ̂+σ̂− is the number operator of the
combined photonic and atomic excitations (polaritons) which
is a conserved quantity, i.e., [Ĥ (JC),n̂] = 0. δ = ωe − ω0 is the
detuning. Due to the conservation of n̂, Ĥ (JC) in the subspace
{|g,n〉,|e,n − 1〉} is represented with the block matrix hn:

hn =
(

ω0n −g0
√

n

−g0
√

n ω0n + δ

)
, (2)

with n = 1,2,3, . . . being the total number of excitations.
The matrix in (2) is a 2×2 matrix and can be analytically
diagonalized. The eigenenergies are given as

En =
{

En± = ω0n + 1
2 [δ ± χn(δ)], n � 1

E0 = 0, n = 0
(3)

with χn(δ)=
√

δ2 + 4g2
0n being the generalized Rabi fre-

quency and + stands for the higher and − for the lower
eigenenergy, while the eigenstates are

|n,+〉 := sin (θn)|g,n〉 + cos (θn)|e,n − 1〉, (4a)

|n,−〉 := cos (θn)|g,n〉 − sin (θn)|e,n − 1〉. (4b)

n = 0 corresponds to the state of zero polaritons. It takes on
the form

|0,±〉 ≡ |0,g〉 = |0〉, (5)

whereas the occurring mixing angle θn is defined as

θn = 1
2

arctan
(

2g0
√

n

δ

)
. (6)

The eigenstates (4) are called polaritons. Polaritons are low-
energy quasiparticles which are composed of photonic and
atomic excitations in superposition. As we change the mixing
angle θn by a rotation from 0 to π

2 , which basically corresponds
to a change of the detuning δ, we tune the polaritons to either
pure photonic or pure atomic excitations in a reversible manner.
Due to the contribution of the excited atomic state |e,n − 1〉,
these polaritons in a more precise way can be called bright
polaritons similar to [17–19,33].

III. MODIFIED JAYNES-CUMMINGS MODEL

For the subsequent discussion, we need to derive the mod-
ified Jaynes-Cummings (mJC) Hamiltonian which describes
an effective interaction of a � system with a highly detuned
mode of an electromagnetic and classical field. We show that
due to the large, common single-photon detuning �, i.e.,
|�| � |gm|,|
|, it is possible to circumvent the drawback
of the excited-state spontaneous emission that would plague
realizations of the JC model by using atoms and optical
cavities [37]. Moreover, we focus on the discussion of the
eigenstates and eigenspectrum in two specific cases which
naturally arise in our case.

A. Derivation of the modified Jaynes-Cummings
model Hamiltonian

We consider a single photon in a single-mode QED cavity
in which a � three-level atom is embedded. The ground levels
are |g〉 and |f 〉 with their level energies ωg and ωf , whereas
the excited level |e〉 with level energy ωe is detuned by a
large, common single-photon detuning � with respect to two
coupling fields. The cavity field with frequency ωm couples
the transition |g〉 → |e〉 with strength gm. Further, a classical
control field with frequency ωc and Rabi frequency 
 couples
the transition |f 〉 → |e〉. Our bare model Hamiltonian (� = 1)
has the form

Ĥbare(t) = Ĥc + Ĥa + Ĥint(t), (7a)

Ĥc = ωmĉ†ĉ, (7b)

Ĥa = ωgσ̂gg + ωf σ̂ff + ωeσ̂ee, (7c)

Ĥint(t) = −(gmĉσ̂eg + g∗
mĉ†σ̂ge + 
e−iωct σ̂ef

+
∗eiωct σ̂f e), (7d)

013835-2



DARK-POLARITON BOUND PAIRS IN THE MODIFIED . . . PHYSICAL REVIEW A 93, 013835 (2016)

where Ĥc denotes the free-field Hamiltonian of the QED
cavity, Ĥa stands for the free-atomic Hamiltonian, and Ĥint(t)
describes the interaction of the fields with the atom. ĉ† (ĉ) is
the photonic creation (annihilation) operator and σ̂αβ = |α〉〈β|
(α,β ∈ {g,f }) are the atomic operators. Ĥbare(t) in (7) satisfies
the time-dependent Schrödinger equation

i∂t |�(t)〉 = Ĥ ′(t)|�(t)〉. (8)

We move to a rotating frame in which (7) is time independent.
The corresponding gauge transformation [19,33] has the form
(� = 1)

Ĥ T = Û (t)Ĥbare(t)Û †(t) + i∂t [Û (t)]Û †(t), (9)

where Û (t) is a unitary transformation. Under the gauge (9),
Ĥbare(t) reads as

Ĥ T
bare = Ĥc + Ĥa + Ĥint, (10a)

Ĥc = ωmĉ†ĉ, (10b)

Ĥa = ωgσ̂gg + (ωf + ωc)σ̂ff + ωeσ̂ee, (10c)

Ĥint = −(gmĉσ̂eg + g∗
mĉ†σ̂ge + 
σ̂ef + 
∗σ̂f e). (10d)

Û (t) = e−iωctσ̂ff has been chosen as the unitary transfor-
mation in deriving (10). Assume that the � three-level atom is
initially prepared in the state |g,n〉 = |g〉 ⊗ |n〉. n represents
the arbitrary but fixed number of excitations with n = 1,2,3 . . .

and |n〉 the corresponding number state. Under the action of
Ĥ T

bare onto the state |g,n〉 = |g〉 ⊗ |n〉, we get the relations

Ĥ T
bare|g,n〉 = (ωmn + ωg)|g,n〉 − gm

√
n|e,n − 1〉, (11a)

Ĥ T
bare|e,n − 1〉 = [ωm(n − 1) + ωe]|e,n − 1〉

−g∗
m

√
n|g,n〉 − 
∗|f,n − 1〉, (11b)

Ĥ T
bare|f,n − 1〉 = [ωm(n − 1) + ωf + ωc]|f,n − 1〉

−
|e,n − 1〉. (11c)

In the subspace {|g,n〉,|e,n − 1〉,|f,n − 1〉}, Ĥ T
bare has the

matrix representation

hbare =

⎛
⎜⎝

(ωmn + ωg) −gm

√
n 0

−g∗
m

√
n ωm(n−1) + ωe −
∗

0 −
 (ωm(n−1)+ωf +ωc)

⎞
⎟⎠.

(12)

Under Raman resonance condition ωmn + ωg = ωf + ωc =
ωe − �, we get

hbare =

⎛
⎜⎝

(ωmn + ωg) −gm

√
n 0

−g∗
m

√
n (ωm(n−1) + ωe) −
∗

0 −
 (ωm(n−1)+ωf +ωc)

⎞
⎟⎠.

(13)

Under a rotating-wave approximation, (13) is reduced to

hRaman
bare =

⎛
⎜⎝

0 −gm

√
n 0

−g∗
m

√
n � −
∗

0 −
 0

⎞
⎟⎠. (14)

In addition, as we have a far detuned excited state |e,n − 1〉,
i.e., |�| � |gm|,|
| [36,38] we can adiabatically eliminate the

contribution of the excited state |e,n − 1〉 directly on the level
of (14). This yields to

h(mJC) =
(

−|gm|2n
�

− g∗
m


√
n

�

− gm
∗√n

�
−|
|2

�

)
. (15)

Equation (15) represents the matrix form of the modi-
fied Jaynes-Cummings Hamiltonian (mJC) in the subspace
{|g,n〉,|f,n − 1〉}. The operator form of the modified Jaynes-
Cummings Hamiltonian (mJC) reads as

Ĥ (mJC) = ĤS + Ĥint, (16a)

ĤS = −
( |gm|2

�
ĉ†ĉσ̂gg + |
|2

�
σ̂ff

)
, (16b)

Ĥint = −
(

g∗
m


�
ĉ†σ̂gf + gm
∗

�
ĉσ̂fg

)
. (16c)

The term ĤS incorporates the influence of Stark shifts of
the detuned fields, while Ĥint represents the interaction of the
cavity field and the atom, where G = g∗

m
/� is the effective
atom-photon coupling constant. Hamiltonians ĤS and Ĥint
constitute the modified Jaynes-Cummings Hamiltonian. In the
sequel, we are going to discuss the eigenstates of Ĥ (mJC) and
look at the effect of the control field Stark shift.

B. Eigenstates of the modified Jaynes-Cummings
model Hamiltonian

In the following, we calculate the eigenenergies and
eigenstates of Ĥ (mJC). We show that dependent on whether
one compensates the control field Stark shift by using external
fields or not, the eigenenergies, composition of the eigenstates,
and the mixing angle θn differ significantly. First, we consider
the case of noncompensated control field Stark shift. Ĥ (mJC)

of (16) reduces in the subspace {|g,n〉,|f,n − 1〉} as

h(m)
n =

(
−|gm|2n

�
−G

√
n

−G∗√n −|
|2
�

)
, (17)

with n = 1,2,3, . . . the total number of excitations and
corresponding number state |n〉. The eigenenergies are given
as

E
(m)
+,n = 0, (18)

E
(m)
−,n = −

( |gm|2n
�

+ |
|2
�

)
. (19)

The eigenstates to the eigenenergies E
(m)
+,n and E

(m)
−,n read as

|n,DP(+)〉 := sin (θn)|f,n − 1〉 − cos (θn)|g,n〉, (20a)

|n,DP(−)〉 := cos (θn)|f,n − 1〉 + sin (θn)|g,n〉 (20b)

with the occurring mixing angle θn which is defined as

θn = 1
2

arctan
(

2|gm|√n

|
|
)

. (21)

However, |n,DP(±)〉 are called dark-polaritons. A dark-
polariton is a quasiparticle which is a superposition of photonic
and atomic excitations, where the atomic excitations have
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only contributions of ground levels |g〉 and |f 〉 and not
the excited level |e〉. Such dark-polaritons are very similar
to the known dark-state polaritons [17,18], but with one
major difference. Dark-state polaritons are defined at Raman
resonance of two coupling fields and formed independently
of the single-photon detuning. Instead, dark-polaritons, which
are also defined at Raman resonance, are formed for a large
single, common photon detuning � of the two coupling
fields, i.e., |�| � |gm|,|
|. The dependence on � enables
to tune the eigenstate |n,DP(±)〉 from an excited to a ground
eigenstate. This follows from the eigenenergy E

(m)
−,n of the dark-

polariton |n,DP(−)〉. If � > 0 (� < 0), |n,DP(+)〉 is an excited
(a ground) eigenstate and |n,DP(−)〉 a ground (an excited)
eigenstate. Note that |n,DP(+)〉 is a degenerate eigenstate
because the corresponding eigenenergy E

(m)
+,n does not depend

on the dark-polariton number n. |n,DP(−)〉 is a degenerate
eigenstate as well for n � 2. Thus, the spectrum is discrete
and degenerate in dependence of the dark-polariton number n.
Now, we switch to the case of compensated control field Stark
shift. Compensation is achieved by using an additional field,
which couples the ground state |f 〉 with some far-off-resonant
excited state [39]. Within (17) we set the control field Stark
shift |
|2

�
to zero. Hence, the new block-matrix representation

h
(m,comp)
n in the subspace {|g,n〉,|f,n − 1〉} reads as

h(m,comp)
n =

(
−|gm|2n

�
−G

√
n

−G∗√n 0

)
, (22)

with n = 1,2,3, . . . the total number of excitations and corre-
sponding number state |n〉. The block-matrix (22) is a 2 × 2
matrix and can be analytically diagonalized. The eigenenergies
are given as

E
(comp,m)
−,n = −|gm|2n + |gm|√n

√
|gm|2n + 4|
|2

2�
,

E
(comp,m)
+,n = −|gm|2n + |gm|√n

√
|gm|2n + 4|
|2

2�
. (23)

The respective eigenstates to the eigenenergies E
(comp,m)
+,n and

E
(comp,m)
−,n are

|n,DP(+)
comp〉 := sin (θn)|f,n − 1〉 + cos (θn)|g,n〉, (24a)

|n,DP(−)
comp〉 := cos (θn)|f,n − 1〉 − sin (θn)|g,n〉, (24b)

with the occurring mixing angles θn which are defined as

θn =1
2

arctan
[

A(
,n)
B(gm,
,n)

]
, (25a)

A(
,n) = 2
√

2 × |
|√n, (25b)

B(gm,
,n) =
√

C(gm,
,n), (25c)

C(gm,
,n) = |gm|n2 + 4|
|2n + D(gm,
,n), (25d)

D(gm,
,n) = |gm|n√
n
√

|gm|2n + 4|
|2. (25e)

|n,DP(±)
comp〉 are dark-polaritons, but of a different type com-

pared to the case of noncompensated control field Stark shift.
First of all, the eigenenergies E

(comp,m)
s,n with s = +,− depend

on the generalized Rabi frequency ξ (n) =
√

|gm|2n + 4|
|2.
Second, |n,DP(±)

comp〉 have a common mixing angle θn that
depends on the generalized Rabi frequency ξ (n) as well. In
addition, the two dark-polariton branches, represented through
|n,DP(±)

comp〉, are separated by the energy amount

E
(comp,m)
−,n − E

(comp,m)
+,n = |gm|√n

√
|gm|2n + 4|
|2

�
. (26)

The separation energy is directly dependent on the generalized
Rabi frequency ξ (n) and the common single-photon detuning
� as well. This separation is related to the photon-photon
repulsion. It is a consequence of the onsite repulsion U (n)
which is a measure of the Kerr nonlinearity [40].

C. Comparison to standard Jaynes-Cummings model

On the level of the individual Hamiltonians, major differ-
ences are that at first, in Ĥ (mJC) the number operator depends
on the projection operator σ̂gg of the ground level |g〉 which is
not the case in Ĥ (JC). Second, in Ĥ (mJC) the atom-cavity field
coupling strength G = gm
/� is rescaled by the common
single-photon detuning � and the Rabi frequency 
, where
G is chosen to be real. Regarding the eigenstates, a key
difference between Ĥ (mJC) and Ĥ (JC) is that in the modified
Jaynes-Cummings model we have eigenstate dependence on
the control field Stark shift. In addition, within the modified
Jaynes-Cummings model, we only have a dependence on
ground levels, whereas in the standard Jaynes-Cummings
model there exists a dependence on the excited level. Hence,
these dependencies affect the coherences. Namely, the bright
polaritons in the standard Jaynes-Cummings model only
consist of optical coherences σ̂eg and are explored to spon-
taneous emission, while in the modified Jaynes-Cummings
model, dark-polaritons only consist of spin coherences σ̂fg
and no exploration to spontaneous emission is present. This
enables the usage of dark-polaritons as a quantum memory
for photons over their spin coherences likewise the dark-
state polaritons [17–33]. Changing the mixing angles in (21)
and (25) over rotations from 0 → π

2 , which corresponds to
an adiabatical change of the Rabi frequency 
, photons are
transferred to and stored in the spin coherences in a reversible
manner. Optical coherences have shorter coherence times
compared to the spin coherences which have longer coherence
times. Coherence times of spin coherences are in the range of
μs to ms in dark-state polaritons [17,18]. Similar is the case for
dark-polaritons. In the sequel, we focus on our model system
and state the effective model Hamiltonian which is based on
our derivation of the modified Jaynes-Cummings model.

IV. MODEL SYSTEM AND EFFECTIVE
MODEL HAMILTONIAN

In the previous sections, we have investigated the stan-
dard and modified Jaynes-Cummings model on the level
of a single QED cavity. In the subsequent step, we extend
the modified Jaynes-Cummings model to a one-dimensional
array of coupled QED cavities. This will lead us to the
modified Jaynes-Cummings Hubbard model as our effective
model Hamiltonian. It includes the hopping between adjacent
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cavities. First, we state the model system and, second, present
the effective model Hamiltonian.

A. Model system

The system we consider consists of a one-dimensional array
of N -coupled QED cavities. We assume periodic boundary
conditions, i.e., the cavity labeled by n = N + 1 corresponds
to the cavity n = 1. Each cavity embeds a three-level atom
with two ground levels |g〉 and |f 〉, and an excited level
|e〉. The level energies are ωg , ωf , and ωe, respectively,
and the excited level |e〉 is detuned by the common single-
photon detuning �. In reality, the levels can be either fine
or hyperfine levels of alkali-metal atoms. Their D1 or D2
line transitions are nowadays easily accessible via available
lasers and optical modes of QED cavities. One mode of a
tunable cavity [41,42] of frequency ωm couples the transition
|g〉 → |e〉 with the strength gm, and the classical control field
of frequency ωc and Rabi-frequency 
 couple the transition
|f 〉 → |e〉. This configuration is known to feature vacuum
induced transparency, as first experimentally demonstrated by
the group of Vuletić [43]. Both gm and 
 are typically in MHz
range for alkali-metal atoms, which are strongly coupled to
QED cavities, and for moderate laser powers.

B. Effective model Hamiltonian

As we consider a one-dimensional chain of N identical
coupled QED cavities, the derived modified Jaynes-Cummings
model for a single QED cavity is valid for all QED cavities
in the one-dimensional chain. Therefore, our effective model
Hamiltonian (modified Jaynes-Cummings Hubbard model)
(� = 1) has the form

Ĥ (mJCH) = Ĥ (mJC) + Ĥhop, (27a)

Ĥ (mJC) = ĤS + Ĥint, (27b)

ĤS = −
N∑

μ=1

(
g2

m

�
ĉ†μĉμσ̂ (μ)

gg + 
2

�
σ̂

(μ)
ff

)
, (27c)

Ĥint = −G

N∑
μ=1

(
ĉ†μσ̂

(μ)
gf + ĉμσ̂

(μ)
fg

)
, (27d)

Ĥhop = −J

N∑
μ=1

(ĉ†μ+1ĉμ + ĉ†μĉμ+1), (27e)

where ĉ†μ (ĉμ) is the photonic creation (annihilation) operator
and σ̂

(μ)
αβ = |α〉μ〈β| (α,β ∈ {g,f }) are the atomic operators

for the site number μ. The term ĤS incorporates the
influence of Stark shifts of the detuned fields, while Ĥint

represents the interaction of the cavity field and the atom,
where G = gm
/� is the effective atom-photon coupling
constant which is set to be real. Hamiltonians ĤS and Ĥint
constitute the modified Jaynes-Cummings Hamiltonian. As
will be shown in the sequel, the Stark shifts have profound
influence on the energy eigenspectrum. Ĥhop describes the
photon hopping between adjacent cavities, based on evanes-
cent field coupling, with J as the intercavity photon hopping
strength. Similar effective Hamiltonian has been previously
used to describe a network of fiber coupled cavities, embedded
with three-level atoms [39]. However, while that scheme
requires the compensation of the level Stark shifts, here we
utilize the individual Stark shifts to achieve tunability. Our
effective model Hamiltonian (27) supports the formation of
dark-polariton bound pairs. We will see that the different
dark-polaritons, which have been discussed in Sec. III, are
actually involved in the formation of the energy bands and the
bound states. Moreover, we show and discuss that the bound
states are formed due to the presence of a force called Kerr
nonlinearity which is determined by the onsite repulsion.

V. FORMATION OF DARK-POLARITON BOUND PAIRS

In the following, we discuss the formation of dark-polariton
bound pairs in our system. In order to exploit the invariance of
the system under cyclic permutations of the sites, we introduce
the following operators via discrete Fourier transforms:

b̂k = 1√
N

N∑
μ=1

e− 2πi
N

μk ĉμ, (28a)

ŝ
(k)
gf = 1√

N

N∑
μ=1

e− 2πi
N

μk σ̂
(μ)
gf , (28b)

where k = 0,1, . . . ,N−1 is related to the (discrete) quasimo-
mentum of the excitation. Similarly to [34], we work in the
two-excitation subspace that is spanned by the states |kj 〉F ≡
b̂
†
kb̂

†
j |�0〉, |k〉F |j 〉A ≡ b̂

†
kŝ

(j )†
gf |�0〉, and |kj 〉A ≡ ŝ

(k)†
gf ŝ

(j )†
gf |�0〉.

The subscripts F and A stand for the photonic and atomic
excitations, respectively. The state |�0〉 = ⊗N

μ=1|g〉μ|0〉μ is
the ground state of the system, where |0〉μ denotes the vacuum
state of the cavity number μ. We note that the excitations
(polaritons) are in our case dark in a sense that they do not
have the contribution of the excited levels |e〉 and are not
subjected to spontaneous emission. The atomic excitations
|kj 〉A are in general not orthogonal to each other because
of A〈k′j ′|kj 〉A = δk,k′δj,j ′ + δk,j ′δj,k′ − 2

N
δk+j,k′+j ′ . b̂k and

b̂
†
j fulfill the bosonic commutation relation [b̂k,b̂

†
j ] = δkj ,

while the atomic operators fulfill the commutation relation
[ŝ(k)

gf ,ŝ
(j )†
gf ] = − 1

N

∑N
μ=1 e

2πi
N

μ(j−k)σ̂
(μ)
z with σ̂

(μ)
z as the Pauli z

matrix for the atom in the μth cavity. Under the action of Ĥ

on the states which form the two-excitation subspace, we get
the relations

Ĥ |kj 〉F = (ωk + ωj − 2a)|kj 〉F − G(|k〉A|j 〉F + |j〉A|k〉F ), (29a)

Ĥ |k〉A|j 〉F = (ωj − a − b)|k〉A|j 〉F − G(|kj 〉A + |kj 〉F ) + a

N

∑
(k′,j ′)∈SP

(|k′〉A|j ′〉F + |j ′〉A|k′〉F ) + 2G

N

∑
(k′,j ′)∈SP

|k′j ′〉A, (29b)
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Ĥ |j 〉A|k〉F = (ωk − a − b)|j 〉A|k〉F − G(|kj 〉A + |kj 〉F ) + a

N

∑
(k′,j ′)∈SP

(|k′〉A|j ′〉F + |j ′〉A|k′〉F ) + 2G

N

∑
(k′,j ′)∈SP

|k′j ′〉A, (29c)

Ĥ |kj 〉A = −G(|k〉A|j 〉F + |j〉A|k〉F ) − 2b|kj 〉A, (29d)

where ωl = −2J cos( 2πl
N

) for l ∈ {k,j}, a = g2
m/�, and b =


2/�. Within Eqs. (29b) and (29c), we have a sum over the
set SP = {(k,j ) | 0 � k < j � N − 1, k + j ≡ P (mod N )}
that is determined by the quasimomentum P . From
Eqs. (29a)–(29d) we can deduce that the quasimomentum
P is a conserved quantity and hence a good quantum
number. Apart from the quasimomentum, the total number
of excitations (dark-polaritons) N̂ = ∑N

μ=1(ĉ†μĉμ + σ̂
(μ)
ff ) is a

conserved quantity.
We can construct the complete set of eigenvectors by

solving the eigenproblem within each of the subspaces P =
0,1, . . . ,N−1. Following [34], we restrict the discussion to
the case of even N and odd P . A general dark two-polariton
eigenvector |�(D)

P 〉 has the form∣∣� (D)
P

〉 =
∑

(k,j )∈SP

(αkj |kj 〉F + βkj |k〉A|j 〉F

+β ′
kj |j 〉A|k〉F + γkj |kj 〉A). (30)

|� (D)
P 〉 satisfies the time-independent Schrödinger equation

Ĥ |� (D)
P 〉 = λ|� (D)

P 〉 which yields within each of the subspaces
P = 1,3, . . . ,N−1 an eigenproblem that is given by the
subsequent set of linear equations

λαkj = (ωk + ωj − 2a)αkj − G(βkj + β ′
kj ), (31a)

λβkj = −Gαkj + (ωj − a − b)βkj − Gγkj

+ a

N

∑
(k′,j ′)∈SP

(βk′j ′ + β ′
k′j ′) + 2G

N

∑
(k′,j ′)∈SP

γk′j ′ (31b)

λβ ′
kj = −Gαkj + (ωk − a − b)βkj − Gγkj

+ a

N

∑
(k′,j ′)∈SP

(βk′j ′ + β ′
k′j ′ ) + 2G

N

∑
(k′,j ′)∈SP

γk′j ′ , (31c)

λγkj = −G(βkj + β ′
kj ) − 2bγkj , (31d)

where λ is the corresponding eigenvalue. As it was demon-
strated in [34], for various values of the quasimomentum P

the majority of eigenvalues are at most distributed among three
bands. When all three bands are well resolved, it was shown
that each of the two band gaps contains an eigenenergy of the
single two-polariton bound state. For sufficiently large inter-
cavity photon hopping strength J comparing to the strength of
the atom-photon interaction, the bands start to overlap.

However, since we are not dealing with the standard JCH
model, but rather with a modified one, we find some important
differences and new features. Namely, as opposed to [34] there
is only one mutually localized DPBP within one of the existing
band gaps, while the other one joins the adjacent outer band.
The other DPBP can reappear provided that the Stark shift of
the control field is compensated. In both cases, when � < 0,
gm � 
 and g2

m/|�| � 1.5 J , the ground state of the system
is DPBP of a different type than the aforementioned ones. In

the sequel, we report on the state composition of the different
DPBP types.

The Kerr nonlinearity is a known force in light-atom
interactions which depends on the atomic level structure as
well as on the coupling strength of light-atom interactions. In
our case, the strength of light-atom interaction is described
by the effective coupling strength G = gm
/�. Tuning gm

and/or 
 directly affects the Kerr nonlinearity. Compared
to [34], we can not only tune and control the Kerr nonlinearity
by the cavity-mode coupling strength gm, but also by the Rabi
frequency 
. This force can be attractive or repulsive [1,13–
16]. This force generates the bound state of two dark-polaritons
in our case. A measure of the Kerr nonlinearity is the onsite
repulsion U (n) which is in general defined as

U (n) := (E+ − E−)(n + 1) − (E+ − E−)(n) (32)

with E± the eigenenergies of the considered eigenstates. In
case of the standard Jaynes-Cummings model, the onsite
repulsion U (n) = χ (n + 1) − χ (n) is determined by the
generalized Rabi frequency χ (n) [3]. This will be different
in our case as we will see in the following. In our DPBPs
we have bound photons and bound atoms. In [44], they have
experimentally shown bound states of atoms in coupled QED
cavities, when atoms occupy the same site.

A. Dark-polariton bound pairs in the regime
of noncompensated control field Stark shift

We focus on the single DPBP solution of Eqs. (31) which
is given in red color within Fig. 1(a) representing the energy
eigenspectrum of the model Hamiltonian Ĥ in dependence
of odd values of quasimomentum P . Three energy bands
are visible for the used parameter values. We define the gap
between the two upper energy bands as the high-energy band
gap and in accordance the gap between the two lower-energy
bands as the low-energy band gap. The dark-polaritons, which
are involved in the formation of energy bands and the single
DPBP in Fig. 1(a), are given in (20). This can be seen by
solving Eqs. (31) for intercavity hopping J = 0. Note that
the bands are a consequence of repulsively interacting dark-
polaritons of different types with respect to the eigenenergies
E

(m)
±,n. By different types here, we mean that the dark-polariton

with eigenenergy E
(m)
+,n interacts with the dark-polariton of

eigenenergy E
(m)
−,n in a repulsive way at the same site μ. This

is a consequence of the onsite repulsion U (n). On different
sites, dark-polaritons with eigenenergies E

(m)
+,n and E

(m)
−,n are

noninteracting. Instead, the mentioned Kerr nonlinearity,
expressed through the onsite repulsion U (n) = g2

m

�
, enables

the single DPBP state formation by the two dark-polaritons
with eigenenergies E

(m)
−,n which is placed at the same site μ in

case of � > 0. There is an additional DPBP, formed by the
two dark-polaritons with eigenenergies E

(m)
+,n in case of � > 0,

but is not visible in the spectrum as it is attached to the central
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(a) (b)

(c) (d)

FIG. 1. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears in the low-energy band gap. The eigenvalues are
joined by lines for ease of visualization. (b)–(d) Joint probabilities
for different types of double excitations associated to DPBP state for
P = 1. Used parameters: � > 0, gm = 0.05 |�|, 
 = 0.06 |�|, and
J = 0.001 |�|.

band. On the contrary, formation of single DPBP interchanges
for � < 0. Our determined U (n) from [3] is mainly affected
by the cavity field coupling strength gm. By increasing gm we
increase the onsite repulsion U (n) which directly enhances the
interaction between the two dark-polaritons with eigenenergies
E

(m)
−,n at the same site μ with � > 0. Thus, single DPBP is

strengthened. Due to the interaction, the single DPBP lies
inside the energy band gaps. Depending on the sign of the
common single-photon detuning �, DPBP lies either in the
high- or low-energy band gap. In the case � > 0, DPBP lies
in the low-energy band gap, whereas in the opposite case it
resides within the high-energy band gap. In order to get some
information on the inherent state composition of the single
DPBP, we calculate, in line with [34], the joint probabilities

pFF =
∣∣∣∣∣〈� (D)

P

∣∣ ĉ
†
nĉ

†
m√

1 + δnm

|�0〉
∣∣∣∣∣
2

, (33a)

pAF = ∣∣〈� (D)
P

∣∣ĉ†nσ̂ (m)†
gf |�0〉

∣∣2
, (33b)

pAA = ∣∣〈� (D)
P

∣∣σ̂ (n)†
gf σ̂

(m)†
gf |�0〉

∣∣2 (33c)

of finding pure photonic, photon-atom, and pure atomic
excitations, respectively, in cavities at positions n and m. These
excitations (pure photonic, pure atomic, and photon-atom)
reflect the unique property of dark-polaritons in which the
superposition of photonic and collective atomic excitations
can be tuned by changing 
 in first place. In our case,
we can not only change 
, but also gm as we use tunable
cavities [41,42]. For a given value of quasimomentum P , all
three joint probabilities only depend on the relative distance
|n − m| within the cavities.

In Figs. 1(b)–1(d) we present the joint probabilities for the
single DPBP state of Fig. 1(a). We have chosen the number
of coupled QED cavities to be N = 30, single-photon detun-

ing � > 0, cavity-mode coupling strength gm = 0.05 �, the
control field Rabi frequency 
 = 0.06 �, intercavity photon
hopping strength J = 0.001 �, and subspace P = 1. One can
see that the DPBP excitations are well confined together,
and all three possible excitation types coexist with roughly
equal contributions. The state composition gradually changes
by decreasing the contribution of double atomic excitations
when P approaches the midrange values. This regime is
roughly characterized by gm ≈ 
 and (g2

m + 
2)/|�| > 5J .
The energy band gaps close when decreasing the ratio of
(g2

m + 
2)/|�| and J . At the same time, DPBP becomes
relatively delocalized, similarly as in [34].

B. Dark-polariton bound pairs in the regime of compensated
control field Stark shift

The tunability of our model enables not only the control
of the shape of the energy bands, but also the emergence
of an additional DPBP state. Namely, if the control field
Stark shift is compensated by using an additional field, which
couples the ground state |f 〉 with some far-off-resonant excited
state [39], another DPBP state appears in the formerly empty
energy band gap. Such an add reflects in the removal of the
parameter b from Eqs. (31). The energy bands in Fig. 2(a),
shown for discrete and distinct quasimomenta P , are formed
by the dark-polaritons in (24). This can be seen by solving
Eqs. (31) for the intercavity hopping strength J = 0 and set
the parameter b equal to zero. The onsite repulsion U (n),
which ensures the formation of the two DPBPs, is given as

U (n) = gm

√
n+1

√
g2

m(n+1)+4
2−gm

√
n
√

g2
mn+4
2

�
for positive and

negative common single-photon detuning �. Thus, the onsite
repulsion U (n) is invariant under the sign change of �.
Distinctly to the DPBP formation under noncompensated
control field Stark shift, the onsite repulsion U (n) apart
from the cavity field coupling strength gm directly depends
on the Rabi frequency 
. This gives the opportunity to
effectively control and enhance the interaction through gm

and 
. Further, in Fig. 2(a) one can observe that each of
the two energy band gaps now contains a single DPBP state
(blue and red curves). We used the same parameter values
as in Fig. 1, but with compensated control field Stark shift.
In Figs. 2(b)–2(d) and Figs. 2(e)–2(g) we characterize the
state composition of lower- and higher-energy DPBP states,
respectively, by considering the joint probabilities as in the
previous subsection. The DPBP in the lower-energy band gap
is dominantly composed of two-photon excitation, while in the
other DPBP state atom-photon excitation prevails. Moreover,
higher-energy DPBP state is further apart from the outer energy
band and it is relatively more localized than the lower-energy
DPBP state. We checked that the same behavior persists for
other values of quasimomentum P . Note that the described
situation is for � > 0, while it interchanges for � < 0.

VI. QUANTUM MEMORY OF LIGHT IN
A DARK-POLARITON BOUND PAIR

In the parameter regime where the common single-photon
detuning � is negative and the cavity-atom coupling strength
gm is significantly larger than the control field Rabi frequency

, we have a single DPBP state which is the ground state
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(b)

(c)

(d)

(f)

(g)

(a)

(e)

FIG. 2. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Two dark-polariton bound pair
states (blue and red curves) appear in both energy band gaps. The
eigenvalues are joined by lines for ease of visualization. (b)–(d) Joint
probabilities for different types of double excitations associated to
lower-energy DPBP state. (e)–(g) Joint probabilities for different
types of double excitations associated to higher-energy DPBP state
for P = 1. Used parameters: � > 0, gm = 0.05 |�|, 
 = 0.06 |�|,
and J = 0.001 |�|.

of the system. It is well separated from the rest of the
energy spectrum when g2

m/|�| � 1.5 J . This is presented in
Fig. 3(a). DPBP state composition, given in Figs. 3(b)–3(d)
by the corresponding joint probabilities, reveals that the state
is dominantly composed of combined atomic and photonic
excitations which are localized in their relative spatial coordi-
nates. Note that this DPBP state is of a completely different
type than the ones found in the previous section.

It is important that this state also enables the storage
of a single photon in the form of a collective atomic spin
coherence excitation to which the other photon is closely
bound. Namely, when 
 → 0 adiabatically, a DPBP becomes
a pure combination of an atomic and photonic excitation.
From this we can deduce that one photon remains attached

(a) (b)

(c) (d)

FIG. 3. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears as the ground state. The eigenvalues are joined
by lines for ease of visualization. (b)–(d) Joint probabilities for
different types of double excitations associated to DPBP state for
P = 1. Used parameters: � < 0, gm = 0.05 |�|, 
 = 0.001 |�|, and
J = 0.00125 |�|.

to the atomic spin coherence wave. This is reminiscent of the
atom-photon molecule [36].

The state composition can be tuned by increasing the
relative importance of the intercavity photon hopping, e.g., by
increasing |�|. This is achieved gradually for distinct values
of quasimomentum, starting from the values P = 1, N − 1
and proceeding towards the midrange values of P . Figure 4(a)
shows the energy spectrum in such a case. For P ∈ {1,3,N−3,

N − 1} the DPBP state is predominantly composed of two-
photon excitations which become delocalized in their relative

(a) (b)

(c) (d)

FIG. 4. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears as the ground state. The eigenvalues are joined
by lines for ease of visualization. (b)–(d) Joint probabilities for
different types of double excitations associated to DPBP state for
P = 1. Used parameters: � < 0, gm = 0.05 |�|, 
 = 0.001 |�|, and
J = 0.002 |�|.
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spatial positions, as can be seen in Figs. 4(b)–4(d). The reason
for such behavior can be traced back to the emergence of the
avoided crossings of the ground state and the first excited state
near the edges of the quasimomentum zone. The crossings
shift towards the P -zone center as the influence of the photon
hopping is being increased. For the quasimomentum values
between the crossings, the DPBP state remains dominantly
of the atom-photon type. In the case when the control field
strength adiabatically reduces to zero, the DPBP state becomes
of a pure two-photon type. Therefore, this corresponds to the
retrieval procedure of the previously stored photon excitation.

VII. EXPERIMENTAL REALIZATION

Our model system is a large, one-dimensional mJCH
chain of N -coupled QED cavities. In order to realize it,
we need a structure, in which large arrays of coupled QED
cavities can be realized. Promising candidates are photonic
band-gap cavities [12,45]. It is manageable to produce and
position them with high precision and in large numbers. A
tempting alternative are photonic crystals as they offer the
possibility of fabricating large arrays of QED cavities in one- or
two-dimensional lattices as well as networks [46–48]. A third
possibility would be the use of toroidal micro-QED cavities
that are coupled via tapered optical fibers [49]. Single atoms,
embedded in each QED cavity, are three-level atoms where
the excited level is far detuned by the common single-photon
detuning with respect to the two coupling fields. In real
experiments, Cs and ultracold 87Rb atoms have shown to
be very suitable [44,50,51]. For Cs in a toroidal micro-QED
cavity it has be shown that gm in the strong-coupling regime
reaches the value of ∼ 50 MHz [50]. This fits pretty well with
our theoretically chosen value for the formation of individual
DPBP inside the energy band gaps, but also for the ground
DPBP at � < 0 with its potential use as a quantum memory
for a single photon.

VIII. CONCLUSION

To summarize, we have derived a modified Jaynes-
Cummings model from the bare model under two conditions:
(i) two-photon Raman resonance of the cavity mode and

classical control field, (ii) common single-photon detuning
|�| � gm,
. We have shown that the eigenstates on one
hand depend on the common single-photon detuning and,
on the other hand, their composition differs with respect to
the control field Stark shift. Moreover, we have extended
the modified Jaynes-Cummings model to a modified Jaynes-
Cummings-Hubbard model where an array of N -coupled QED
cavities, each having an embedded single three-level atom, is
considered. The modified Jaynes-Cummings-Hubbard model
supports DPBPs. The formation of two different species of
spatially localized dark-polariton bound pairs (DPBPs) has
been elaborated when there are exactly two excitations in
the system. It was shown that the onsite repulsion U (n) as a
consequence of the Kerr nonlinearity represents the attractive
force between interacting dark-polaritons and enables the
existence of DPBP states. Furthermore, it is demonstrated
that our model system offers a high degree of tunability
that can affect both quantitative and qualitative behavior. In
particular, the number of DPBP states can be controlled by
(not) compensating the Stark shift due to the control field.
Further, in the regime when cavity-atom coupling overwhelms
the influence of the control field, and the common single-
photon detuning of the fields is negative, we obtained a
ground DPBP eigenstate on which the storage and readout of
a single photon can be effectively performed. An experimental
realization is proposed for our model system. Cs atom has
been mentioned as a promising candidate as its value of the
cavity-mode coupling strength gm fits very well with our
theoretically chosen and determined one. We expect that future
investigations of this kind of system under different settings,
i.e., with distinct and alternating hopping strengths between
the cavities, in the presence of disorder, or in two-dimensional
lattice configurations, may lead to various effects and rich
physics.
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Four-wave mixing (FWM) is a nonlinear interaction of light 
and a medium accompanied by a characteristic transfer of 
energy between four modes of the electric field while these 
modes interact with the medium [1]. FWM in atomic vapors 
is a valuable tool for the generation of non-classical states of 
light. Signal and idler beams (here referred to as the probe and 
the conjugate beams, respectively) generated by this process 
display intensity correlations and entanglement [2]. These 
features make them applicable in high-precision spectroscopy 
[3], sub-shot-noise measurements [4, 5], quantum imaging 
[6–8], quantum communications and quantum information 
processing [9, 10].

The first experimental demonstration of squeezed light 
was made using FWM in an atomic beam of Na [11]. Since 
such FWM processes generate squeezed light near atomic 
resonance, the amount of squeezing is limited by other reso-
nant processes such as one-photon absorption and spon-
taneous emission. Renewed interest in FWM came after 
predictions [12, 13] that non-degenerate FWM in atomic 
systems with a double-Λ scheme could overcome these 
limitations. Experiments that followed confirmed that it was 
indeed possible to obtain squeezing near atomic resonance 
[14–16].

Higher gains of the probe and the conjugate beams (also 
called ‘twin’ beams) in a non-degenerate FWM process leads 
to higher relative intensity squeezing and deeper noise reduc-
tion [17]. The gains of the probe and the conjugate are defined 
as Gp  =  Pp /Pin and Gc  =  Pc /Pin, respectively, where Pp and 
Pc are the measured powers of the probe and the conjugate 
beams, respectively, and Pin is initial power of the probe seed 
inside the amplifying medium. The ability of different medi-
ums to yield large gains of the twin beams was tested with 
different interaction schemes. So far, all alkali atoms except 
Fr and Li have been used as the gain medium for FWM [11, 
14–26]. In the majority of studies the counter-propagating 
geometry of two pump beams and one probe beam was used 
and the degenerate case of FWM process was observed.

However, new beams generated in the aforementioned 
arrangements are not suitable for applications that require 
spatially separated beams. The most suitable interaction 
scheme and experimental arrangement for employing twin 
beams in relative intensity squeezing experiments was real-
ized by McCormick et al [15]. The coupling of hyperfine 
levels of an alkali atom by a double-Λ scheme is depicted in 
figure 1. The first Λ scheme consists of a strong pump that 
couples the lower hyperfine sublevel 1  of the ground state to 
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the excited level 3  with one-photon detuning Δ of typically 
several hundred MHz. The other ‘leg’ of the first Λ scheme is 
the weak probe that stimulates the Stokes scattering from 3  
to the higher hyperfine sublevel 2  of the ground state, hav-
ing two-photon detuning δ. The pump is sufficiently strong to 
drive the off-resonant transition starting from 2 . The newly 
created conjugate closes the second Λ scheme by stimulating 
anti-Stokes scattering to the lower hyperfine sublevel.

Such an arrangement, yielding non-degenerate FWM and 
spatially separated twin beams, was employed with achieved 
gains  ≈20 [16, 24] or even 30 [25] in rubidium, ≈32 in sodium 
[26] and recently  ≈  2 in cesium [27]. The theoretical explana-
tions for this arrangement were also provided [24, 28, 29]. 
Apart from relative intensity squeezing experiments, this 
scheme is used in other applications such as slow light [25, 
30–32], storage of light [33, 34], and heralded state density 
matrix reconstruction [35], and is also proposed for all-optical 
quantum networks [36–39].

In this paper we report FWM in a double-Λ scheme in hot 
potassium vapor. There are very few works on FWM in potas-
sium vapor [19, 20] and all of them are done with counter- 
propagating pumps. Ground state hyperfine splitting (HFS) in 39K  
(461 MHz [40]) is lower than in any other alkali atom, both for 
lighter atoms such as 7Li (803 MHz [41, 42]) or 23Na (1772 MHz 
[42, 43]) and heavier atoms, like 85Rb (3036 MHz [42–44]) or 
133Cs (9193 MHz [43, 45]). In addition, all the transitions of 
the D1 line of 39K completely overlap due to Doppler broad-
ening. This affects the dynamics of pumping and repopulating 
ground state hyperfine sublevels in a different way than in other 
alkali atoms. All of the aforementioned properties of 39K make 
it interesting as a medium for FWM and other applications.

The influence of ground state HFS on the efficiency of 
FWM can be estimated from the theoretical model given 
by Turnbull et al [24]. In the model, the following equa-
tions describe the change of the probe Εp and the conjugate 
Εc electric field along the z axis (the propagation direction of 
the pump beam):
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where, kp and kc are the magnitudes of the probe and the con-
jugate wave vectors, Δkz is the projection of the phase mis-
match Δk on the z axis, χpp and χcc are the effective linear 
susceptibilities for the probe and the conjugate and χpc and 
χcp are cross-susceptibilities that give rise to FWM process. 
The phase mismatch is defined as Δk = 2k0  −  kp  −  kc where 
k0 is the pump wave vector.

Atomic susceptibilities govern the FWM process and affect 
the gains. The dependence of |χpc| on HFS and two-photon 
detuning is shown in figure 2 and is calculated according to 
equations A12–A20 given in the appendix of [24].The equa-
tions enable the calculation of the stationary values of |χpc| as a 
function of the relevant experimental parameters: one-photon 
detuning, two-photon detuning, ground state HFS, pump laser 
Rabi frequencies, and the concentration of the atoms, i.e. the 
temperature. The equations  are given under the assumption 
that Rabi frequencies for both pump transitions in figure 1 are 
equal. The probe and conjugate fields are assumed to be weak 
and their contribution is kept only to the first order. Since we 
want to estimate the influence of ground state HFS of alkali 
atoms on the efficiency of FWM we kept all other quantities 
constant, except the two-photon detuning. The results show 
that the maximum of |χpc| increases as HFS decreases. The 
model also predicts that the two-photon detuning δ, corre-
sponding to the maximum |χpc|, also decreases, thus both Λ 
schemes are closer to Raman resonance.

Motivated by the above analysis, the present work inves-
tigates the properties of FWM in hot potassium vapor using 
the non-degenerate scheme of figure 1 and a co-propagating 
geometry of the pump and probe beams. To the best of our 
knowledge there are no previous investigations of this kind 
in potassium. Exceptionally high gains could make potassium 
vapor the preferred medium for relative intensity squeezing 
experiments [16] and other applications utilizing highly effi-
cient FWM [3–10]

We have performed the double-Λ scheme on the D1 line 
of 39K. Level 3  from figure 1 is 4P1/2 while two lower levels 

Figure 1.  Double-Λ scheme at the D1 line of an alkali atom. 
HFS—hyperfine splitting, Δ—one photon detuning, δ—two photon 
detuning. HFS of the nP1/2 (i.e. 3 ) level is negligible in comparison 
with the ground state HFS.

Figure 2.  Dependence of |χpc| on ground state HFS and two-photon 
detuning δ. The one-photon detuning (Δ  =  700 MHz) and dipole 
matrix elements of the double-Λ scheme transitions were kept 
constant.
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1  and 2  are 4S1/2, F  =  1 and 4S1/2, F  =  2 respectively. The 
simplified scheme of the experimental setup is presented in 
figure 3. A single-mode frequency stabilized Ti:Saphire laser 
was used in the experiment. It delivers 600 mW at the 770 nm 
D1 line of 39K and it is used for both the pump and probe 
seed beams. The probe seed (≈200 μW) is obtained by pick-
ing up a small fraction of the pump at the 90:10 beam split-
ter and sending it through the two acousto–optic modulators 
(AOMs). The first AOM produces a tunable frequency shift  
(170–200 MHz) and it operates in a double-pass configura-
tion. The second AOM has a fixed frequency shift (80 MHz), 
making the overall frequency offset between the pump and 
probe seed close to the HFS of the 39K ground state. Two-
photon detuning δ is scanned by changing the RF frequency 
fed to the first AOM.

The pump and the probe seed have mutually orthogonal 
linear polarizations. The beams are combined at a polarization 
beam splitter and sent through the heated, 50 mm long, natural- 
abundance vacuum potassium vapor cell, where they intersect 
at a small angle that we change in the range of 2–10 mrad.  
Both beams, the pump and the probe seed, are focused at the 
intersection and their waists are 1.05 mm and 0.8 mm, respec-
tively. The windows of the cell are Brewster angled and the 
cell is rotated to provide the maximal pump transmission 
(≈95% per window). Since the probe seed is polarized per-
pendicularly to the pump, its transmission is lower (≈70% per 
window).

After passing through the vapor cell, the pump beam is 
rejected by the second polarizing beam splitter. The conjugate 
beam (which has the same polarization as the probe seed) and 
the amplified probe beam are detected by two photodiodes.

We have investigated the dependence of the probe and the 
conjugate gains on two-photon detuning δ with one-photon 
detuning Δ as a parameter. The δ step was 2 MHz. The results 
for various values of Δ are shown in figure 4.

The maximal conjugate gain (Gc  =  82; peak value in  
figure 4(b)) was obtained at Δ  =  700 MHz and δ  =  −6 MHz. 
The probe gain for the same parameters was Gp  =  58. The 
reason for the maximum gains occurring at a particular Δ is 
the competition of two effects: amplification and absorption 
[16, 24]. When Δ increases, the amplification of the probe 
and the conjugate beams decreases, but so does one-photon 
absorption. The trade-off is in our case for Δ  =  700 MHz 
(figure 4(c)). Since the frequency offset between the probe 

and the conjugate beams is  ≈920 MHz (approximately 
double the HFS) and the probe beam is tuned closer to the 
resonance, one-photon absorption is stronger for the probe 
beam. This is the reason why we observe different Gp and Gc 
for smaller Δ (figures 4(a) and (b)). At larger Δ , one-pho-
ton absorption becomes smaller, thus Gp and Gc get closer 
(figure 4(d)), but are rather small due to detuning far from 
resonance.

According to our expectations, qualitatively supported by 
results in figure 2, we have obtained higher gains than in other 
alkali atoms under comparable experimental conditions. For 
more detailed theoretical study and quantitative comparison 
between experimental and theoretical results one might con-
sider adjusting the theoretical model from [24] for particular 
properties of potassium. Unlike rubidium, all the transitions 
forming the double-Λ scheme in potassium are overlapped 
due to large Doppler broadening at specified temperatures. 
Moreover, one might also consider the geometry and inten-
sity profiles of overlapping laser beams and their spectral 
properties.

The dependence of Gp and Gc on the temperature for vari-
ous values of Δ is shown in figure 5. For each Δ on the graph, 
we set δ to maximize the gains of the probe and the conjugate 
beams. As the concentration of potassium atoms increases, the  
cross-susceptibilities (χcp and χpc) also increase [24]. On  
the other hand, large susceptibilities lead to large values of the 
refractive index and its transverse gradient that cause beam 
focusing and beam filamentation [1, 24]. Stars in figure  5  
indicate the highest temperatures for particular values of Δ, above 
which these effects prevent the proper measurement of the inten-
sities of the probe and the conjugate beams. At high vapor tem-
peratures and/or pump intensities self-focusing of the probe and 
conjugate beams appears gradually, ending up with beam break-
up. As the pump intensity and/or vapor temperature increases the 
probe and the conjugate beams become more divergent due to 
self-focusing. This makes the beams partially overlapped and 
hinders proper measurement of the powers independently.

Varying the temperature and Δ we have determined that 
the values of T  =  140 °C and Δ  =  1500 MHz provide the 
highest probe gain, Gp  =  63 (we found Gc  =  69 for the same 
set of parameters).

The dependence of Gp and Gc on the mutual angle between 
the pump and the probe beam is presented in figure 6(a). While 
in rubidium [24] the dependence on this angle has a maximum 
at 5 mrad, in potassium it monotonically decreases. This is in 
accordance with Glassner et al [19] where, in their configu-
ration of counter-propagating pumps and degenerate FWM, 
the probe reflectivity can be considered as an analogue to the 
probe gain, since both are affected by atomic susceptibility.

The dependence of the probe and the conjugate gains on 
the pump power is shown in figure 6(b). We found that the 
lowest pump intensity, at which we were able to detect the 
conjugate beam, is about 10 W cm−2 corresponding to laser 
power of  ≈100 mW. This, relatively low, laser power can eas-
ily be attained with conventional lasers diodes. We were able 
to measure even higher gains (96 for the conjugate, 73 for the 
probe) at a pump intensity of 51 W cm−2 but the laser becomes 
unstable at high powers.

Figure 3.  Experimental setup. Pump (red) and probe seed (green) 
beams are combined at a polarization beam splitter (PBS). They 
intersect at a small angle ϕ inside the potassium vapor cell (K-cell) 
yielding the conjugate beam (blue) and amplified probe beam 
(green) via the FWM process. The probe and the conjugate beams 
are detected by two photodiodes (PD). Note that angle between the 
conjugate and the probe beams is 2ϕ.
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Figure 5.  Temperature dependence of (a) the probe gain Gp and (b) the conjugate gain Gc. Different colors correspond to the different 
values of Δ (given in the legend). For the given range of the temperature of potassium vapor the number density of the atoms, calculated 
according to Ticke [40], is between 3.7  ×  1011 atoms cm−3 (at 90 °C) and 1.7  ×  1013 atoms cm−3 (at 150 °C). Stars denote the temperatures 
at which filamentation and self-focusing of the probe and the conjugate beams occur. Parameters are P0  =  400 mW, Pin  =  200 μW,  
ϕ  =  2 mrad.

Figure 6.  Dependence of the probe (black squares) and the conjugate (red circles) gain on (a) the angle ϕ between the pump and the probe 
for P0  =  400 mW and (b) the pump intensity for ϕ  =  2 mrad. Parameters for both cases are Pin  =  200 μW, T  =  120 °C, Δ  =  700 MHz.

Figure 4.  The probe (black squares) and the conjugate (red circles) gain curves versus two-photon detuning δ in the vicinity of Raman 
resonance (δ  =  0) at Δ equal to (a) 400 MHz, (b) 700 MHz, (c) 1000 MHz and (d) 1300 MHz. The pump power was P0  =  400 mW and the 
probe seed power was Pin  =  200 μW. Vapor temperature was kept constant at 120 °C (≈3  ×  1012 atoms cm3), and angle between the pump 
and the probe was ϕ  =  3 mrad. The lines are to guide the eye.
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In conclusion, we have observed non-degenerate FWM 
in hot potassium vapor at the D1 line using co-propagating 
pump and probe beams and a double-Λ coupling scheme. In 
accordance with simple qualitative theoretical considerations, 
the obtained gains are among the highest in alkali atoms. This 
is due to the high atomic susceptibilities caused by the lowest 
ground state HFS in potassium. We expect that the obtained 
high gains might find useful application in experiments for 
relative intensity squeezing, sub-shot-noise measurements 
and other applications requiring efficient FWM.
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We investigate the dynamics of a two-mode laser system by extending the two-mode Tavis-Cummings
model with dissipative channels and incoherent pumping and by applying the mean-field approximation in
the thermodynamic limit. To this end we analytically calculate up to four possible nonequilibrium steady states
(fixed points) and determine the corresponding complex phase diagram. Various possible phases are distinguished
by the actual number of fixed points and their stability. In addition, we apply three time-delayed Pyragas feedback
control schemes. Depending on the time delay and the strength of the control term, this can lead to the stabilization
of unstable fixed points or to the selection of a particular cavity mode that is macroscopically occupied.
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I. INTRODUCTION

Lasers build one of the key technologies in the current
world as their rich dynamical behavior and high degree of
control establish a solid basis for a wide range of applications
[1]. Specifically, time-delayed feedback control [2] can
effectively manipulate short and long time behavior of a laser
system [3]. Typical examples are the control of laser bistability
[4], chaos, and noise [5], as well as the manipulation of the
laser emission [6,7].

A common description of the controlled laser dynamics,
particularly in the case of a quantum dot laser, is based on the
semiclassical rate equations known as the Lang-Kobayashi
model [8]. It provides good agreement with the experiments
if the photon output power is high enough [9]. However,
there exists a more general microscopic quantum treatment
[10,11] which describes successfully the photon statistics of
laser light. It turned out that this microscopic laser theory
also represents an essential ingredient for describing the Bose-
Einstein condensation of photons [12], which has been realized
in dye-filled microcavities in a seminal experiment in Bonn
[13] and recently also in London [14]. Both lasing transition
and Bose-Einstein condensation of light may appear in such
systems under appropriate conditions, although the former
reveals nonequilibrium physics, whereas the latter represents
an equilibrium phenomenon. For low cavity losses and above
the external pumping threshold, the modes of the cavity
become thermally populated according to a Bose-Einstein
distribution with the macroscopically occupied lowest mode
[15]. However, for higher cavity losses the system behavior
switches to be laserlike, where one of the excited cavity modes
becomes macroscopically occupied and all thermal properties
are lost [16].

Here we work out a two-mode laser model which allows us
to study under which conditions one of the two cavity modes
becomes macroscopically occupied. To this end we extend
the Tavis-Cummings model and consider N noninteracting

*Present address: Faculty of Physics, University of Vienna, Boltz-
manngasse 5, A-1090 Vienna, Austria.

two-level atoms in a two-mode optical cavity with incoherent
pumping and decay channels. Starting from a quantum master
equation for the density operator, we apply a mean-field
approximation and determine the equations of motion for
the statistical averages of the respective system operators
in the thermodynamic limit. We find an analytical solution
for the steady states and obtain the resulting complex phase
diagram. Under proper conditions, either the lower or the
excited cavity mode can become macroscopically occupied.
Hence, our model can be seen as a minimalistic precursor of the
detailed model of photon condensation [12,16]. In this sense,
the former case could be referred to as condensatelike and the
latter case as a laserlike state of light, although a direct analogy
is not applicable due to the absence of the temperature scale
in our simplified approach. The richness of possible phases
even within this reduced model indicates that the inclusion of
realistic processes, like the thermalization via phonon dressing
of the absorption and emission of the emitters, can potentially
lead to an even larger variety of states.

Additionally, we design different feedback control schemes
to stabilize or to select one of the two radiating modes. The two-
mode laser, also known as two-color laser, with feedback was
already studied both experimentally [17,18] and theoretically
[19]. However, these studies within the Lang-Koboyashi model
were focused on switching between the two modes using a
non-Pyragas feedback type. In contrast to that, we apply here
the Pyragas type of feedback that was originally designed to
prevent chaos by stabilizing an unstable periodic orbit [20]. It
is generally known as a powerful tool to change the stability
of stationary states without modifying them. This is due to the
fact that the feedback control term vanishes in the stationary
state since it is proportional to the difference of the system
observable at two times, t − τ and t [21,22].

The paper is structured as follows. In Sec. II we introduce
the underlying model and apply a mean-field approximation
in the thermodynamic limit. In Sec. III we calculate the fixed
points, investigate their stability, and discuss the resulting
phase diagram. In Sec. IV we suggest several Pyragas feedback
control schemes to stabilize the unstable mode or to select
the mode of interest. Section V contains the summary of the
obtained results with a short outlook.

1050-2947/2015/92(6)/063832(9) 063832-1 ©2015 American Physical Society
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II. MODEL

We consider N noninteracting two-level atoms inside a
two-mode cavity. The light-atom interaction is assumed to be
of the Jaynes-Cummings type [23]. Thus, the total Hamiltonian
of the system is

Ĥ =
2∑

i=1

ωiâ
†
i âi + �Ĵz + g√

N

2∑
i=1

(âi Ĵ
+ + â

†
i Ĵ

−) (1)

and represents an extension of the Tavis-Cummings (TC)
model [24,25] from one to two modes. Here, we put � = 1, and
â

(†)
i (i ∈ {1,2}) is a ladder algebra of the first or second cavity

mode with frequency ω1,2, where we assume ω1 < ω2 without
loss of generality. The collective angular momentum operators
are given by the sums Ĵz = 1

2
∑N

k=1 σ z
k and Ĵ± = ∑N

k=1 σ±
k

over all Pauli matrices of each two-level atom with energy-
level splitting �. The population inversion of the atomic
ensemble is directly related to Ĵz, while its dipole moment can
be expressed in terms of Ĵ±. The coupling between the atoms
and the optical mode assumes a rotating wave approximation
(RWA) and has the strength g/

√
N that is taken to be the

same for both modes. In spite of RWA, the TC model for
large values of g has its own physical relevance since it can
be experimentally realized in an ingenious setup using Raman
transitions [26,27].

To generate a lasing behavior and the interesting dynamics
we add decay channels and incoherent pumping to the system.
We note in passing that two-mode Jaynes-Cummings models
were studied in the past either with mode degeneracy [28,29]
or without dissipative effects [30], or without pumping of the
atomic system but in the presence of additional driving of
the cavity mode [31,32]. Following Ref. [33], we couple our
system to three different baths. Both cavity fields are damped
by coupling them to a zero-temperature bath of harmonic
modes with the characteristic decay rate κ , while the atomic
system radiates into the noncavity modes with a rate γ↓.
Additionally, the atomic system is incoherently pumped with
a rate γ↑. Pumping can be formally described as coupling the
atomic system to a bath of inverted harmonic oscillators [34].
All these effects are captured by the following Markovian
master equation of Lindblad type for the density operator ρ̂:

dρ̂(t)
dt

= −i[Ĥ ,ρ̂] − κ L[â1]ρ̂ − κ L[â2]ρ̂

− γ↑
2

N∑
k=1

L[σ̂+
k ]ρ̂ − γ↓

2

N∑
k=1

L[σ̂−
k ]ρ̂, (2)

with the Lindblad operator L[x̂]ρ̂ = x̂†x̂ρ̂ + ρ̂x̂†x̂ − 2x̂ρ̂x̂†.
Pumping effectively occurs provided that γ↑ > γ↓.

The dynamics of the statistical average 〈Â〉 = Tr(Âρ̂) of
an arbitrary system operator Â is described by d〈Â〉/dt =
Tr(Â ˙̂ρ). To obtain a closed set of semiclassical equations,
we perform the thermodynamic limit where the number N

of two-level atoms tends to infinity [35–39]. Therefore, we
factorize the averages of an atomic operator Â and a light
operator L̂ according to 〈ÂL̂〉 ≈ 〈Â〉〈L̂〉 and rescale them with
the atom number N , denoting the rescaled operator averages
by corresponding symbols without the hat symbol, i.e.,
J± ≡ 〈Ĵ±〉/N , Jz ≡ 〈Ĵz〉/N , and a

(∗)
1,2 ≡ 〈â(†)

1,2〉/
√

N , where

the asterisk denotes complex conjugation. The resulting mean-
field equations of the two-mode laser model are then

ȧ1 = (−κ − iω1)a1 − igJ−, (3a)

ȧ∗
1 = (−κ + iω1)a∗

1 + igJ+, (3b)

ȧ2 = (−κ − iω2)a2 − igJ−, (3c)

ȧ∗
2 = (−κ + iω2)a∗

2 + igJ+, (3d)

J̇− = (−	D − i�)J− + 2ig(a1 + a2)Jz, (3e)

J̇+ = (−	D + i�)J+ − 2ig(a∗
1 + a∗

2 )Jz, (3f)

J̇z = 	T (z0 − Jz) + ig(a∗
1 + a∗

2 )J− − ig(a1 + a2)J+,

(3g)

where we have introduced the abbreviations 	T = 2	D =
γ↓ + γ↑ and z0 = γ↑−γ↓

2(γ↑+γ↓) . Note that J− = (J+)∗ and Jz is
a real quantity, and by definition, one has −1/2 � z0 � 1/2.

In the one-mode limit, the corresponding equations similar
to Eqs. (3) represent a common example of a laser model. For
the critical value of gc = { κ	D

2z0
[1 + (ω1−�)2

(κ+	D )2 ]}1/2
, the optical

mode becomes macroscopically occupied, i.e., a phase transi-
tion occurs from a nonlasing to a lasing state. In the limit of
vanishing pumping and losses, i.e., 	T → 0,κ → 0, Eqs. (3)
describe the quantum phase transition in the Dicke model
with RWA from a normal to a superradiant phase [37,40–43].
Thus, the presence of the two modes and the pumping term
allows the generation of a much more complicated dynamics,
as either of the two modes can be macroscopically occupied.
Moreover, we can influence the dynamical evolution of the
system by applying different Pyragas time delay schemes,
which allows us to stabilize or destabilize the modes and to
select the transition type.

III. DYNAMICS WITHOUT FEEDBACK

Equations (3) describe the dynamical evolution of the two-
mode system depending on decay rates and pumping strength.
A steady state of these equations can be either a stable fixed
point or an oscillating state, i.e., a limit cycle. In the following
we provide an analytical description of the possible steady
states.

A. Steady states

The system (3) has a trivial fixed point a0
1 = a0

2 = (a∗
1 )0 =

(a∗
2 )0 = 0, (J+)0 = (J−)0 = 0, and J 0

z = z0, where no cavity
mode is occupied and the atomic ensemble has a stationary
population inversion with zero dipole moment. Due to the
U (1) symmetry of Eqs. (3), there also exist nontrivial solutions
that can oscillate in time with some characteristic frequency,
so that the observables, like the mode occupation a∗

1a1, reach
a fixed value. To find such steady-state solutions, we have to
determine the frame where also a

(∗)
1,2 and J± reach a fixed value.

Therefore, we switch into a frame rotating with frequency
ω, which has to be determined, i.e., we put ai → aie

−iωt ,
a∗

i → a∗
i e

iωt , J± → J±e±iωt . Note that this transformation
shifts the natural frequencies of both the cavity modes and the
atoms by ω, i.e.,

ωi → ωi − ω ≡ ωi,s , � → � − ω ≡ �s, (4)
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but does not change the observables like a∗
1a1. Setting ȧ

(∗)
1,2 in

the transformed equations (3a)–(3d) to zero, we can express
these cavity quantities in terms of J±. Next, setting J̇± to
zero in the transformed equations (3e)–(3f) with the cavity
quantities being eliminated, we find the requirement

0 != J±{±2g2Jz[∓2κ + i(ω1,s + ω2,s)]

+ (	D ∓ i�s)(κ ∓ iω1,s)(κ ∓ iω2,s)}. (5)

For J± !

= 0 the previous equation determines the value of the

stationary atomic inversion:

J 0
z = (	D − i�s)(κ − iω1,s)(κ − iω2,s)

2g2(2κ − iω1,s − iω2,s)
. (6)

However, since J 0
z has to be real on physical grounds, its

imaginary part has to be zero. This condition enforces the
characteristic frequency ω to solve the equation

	D(ω1,s + ω2,s)(κ2 + ω1,s ω2,s)

+ κ�s

(
2κ2 + ω2

1,s + ω2
2,s

) = 0. (7)

Note that, due to Eq. (4), Eq. (7) is a cubic equation in ω and
has up to three real solutions. For each real solution ω, the
real part of the expression for J 0

z in (6) gives the steady-state
expectation value

J 0
z = κ

(
	2

D + �2
s

)(
2κ2 + ω2

1,s + ω2
2,s

)
2g2	D[4κ2 + (ω1,s + ω2,s)2]

. (8)

The remaining transformed equation (3g) can be solved for
J+J− in the steady state, yielding

(J+J−)0 = 	T

(
z0 − J 0

z

)(
κ2 + ω2

1,s

)(
κ2 + ω2

2,s

)
2g2κ

(
2κ2 + ω2

1,s + ω2
2,s

) . (9)

Since J+J− has to be positive, the obtained steady-state values
are physical iff J 0

z � z0. If that is the case, the previous
equation fixes J± up to the phase factor. Therefore, we
may choose (J+)0 = (J−)0 =

√
(J+J−)0 as a steady-state

expectation. Finally, the corresponding expressions for a0
i

and (a∗
i )0 (i ∈ {1,2}) in terms of (J±)0 follow from their

transformed equations

a0
i = − ig(J−)0

κ + iωi,s

, (a∗
i )0 = ig(J+)0

κ − iωi,s

. (10)

With this we have found a complete set of steady-state
solutions for our two-mode model. Each physical solution
for a characteristic frequency ω corresponds to a different
nontrivial fixed point. Thus, together with the trivial fixed
point, the laser model possesses up to four different steady-
state configurations, whose stability properties we are going
to study in more detail in the next section.

B. Stability of steady states

First, we investigate the stability of the fixed points. This is
checked as usual by linearizing the mean-field equations (3)
in the rotated frame around the fixed point and by determining
the eigenvalues of the linearized system. An eigenvalue with
a positive (negative) real part would support the solution
divergence (convergence) from (to) the fixed point, which

FIG. 1. (Color online) The phase diagram shows the total number
of fixed points and the number of stable fixed points in the g-κ plane.
For small κ , there exist up to four physical fixed points, two of which
are stable. In region (c) all fixed points are unstable. Table I sums
up the main properties of regions (a)–(g). The green color gradient
encodes the mode population ratio n1/n2, where ni = a∗

i ai . The
lower part shows the effect of increased pumping. Parameters: ω1 =
2�,ω2 = 4�,γ↓ = 0.1�,γ↑ = 0.2� (upper),γ↑ = 0.5� (lower).

is then unstable (stable). If not mentioned otherwise, we
choose the following parameter values: ω1 = 2�, ω2 = 4�,
γ↓ = 0.1�, γ↑ = 0.2�.

Figure 1 shows the main result in the form of a complex
phase diagram in the g−κ plane for two different pumping
rates γ↑ = 0.2�,0.5�, encoding the total number and the
number of stable fixed points. We see that, if the atom-field
coupling is too small, only one trivial solution exists which
corresponds to region (a). By overcoming some critical value
for g, at least one nontrivial solution appears; thus the ω1
and ω2 modes become macroscopically occupied. For smaller
κ rates, we see a rich structure in the phase diagram. One
can have different combinations of possible and stable fixed
points, which are represented by a combination of color and
dashing in Fig. 1. For example, the region (d) has two nontrivial
physical solutions, but only one is stable. Table I provides
the corresponding overview. For larger κ and g values, the
phase diagram contains region (c) without any stable fixed
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TABLE I. Overview of the total number of fixed points #(FP) and
the number of stable fixed points #(SFP) within different regions of
the phase diagram in Fig. 1.

Area (a) (b) (c) (d) (e) (f) (g)

#(FP) 1 2 2 3 3 4 4
#(SFP) 1 1 0 1 2 1 2

points. Here the system observables, like the mode occupation,
oscillate with fixed frequency and amplitude; thus a limit
cycle represents the only stable solution in this area. Note
that we have found no stable limit cycles except in region
(c). The coloring in the (b) region shows the ratio n1/n2 of
occupation of both modes, where ni = a∗

i ai . We observe that
the occupation ratio and thus the dominating mode changes
with the dissipation rate κ and the coupling strength g. Note
that in the regions (e) and (g), where we have two stable
fixed points, both ratios n1/n2 ≷ 1 for fixed κ and g values
exist. Especially in this region one of the modes is much more
occupied and vice versa; thus the emitted radiation comes here
mainly from one mode.

The lower part of Fig. 1 shows the effect of increased
pumping. We see that the region with more than two fixed
points (d)–(g) becomes larger, while the limit cycle region (c)
is shifted to higher κ values.

Figure 2 shows the occupation of both modes as a function
of coupling strength g for a fixed value of κ = 0.01�, along the
horizontal gray arrow in the phase diagram of Fig. 1. We plot all
possible stationary solutions including the unstable ones. The
unstable fixed points are dashed, while the occupations, which
belong to the same fixed point, have the same color and the
same thickness. The curves of the second mode are additionally
marked with crosses. We see different types of bifurcations
while increasing g. First, at g = 0.3� a pitchfork bifurcation
occurs, where the trivial solution becomes unstable and a new

FIG. 2. (Color online) All stationary solutions of the mean-field
Eq. (3) for the occupation of both modes (n1,n2) are plotted as a
function of g for fixed κ value along the horizontal dashed arrow in
Fig. 1 (upper). The unstable solutions are dashed, the solution set is
marked by the same color and the same thickness. The trivial solution
with zero-mode occupation is always present but unstable beyond a
critical g. Note that all occupations in the plot are shifted by 10−2 due
to the log scaling. Parameters: κ = 0.01�,ω1 = 2�,ω2 = 4�,γ↓ =
0.1�,γ↑ = 0.2�.

FIG. 3. (Color online) Attraction region of two stable fixed points
from Fig. 2 depending on the initial population of the cavity modes
n1(0) and n2(0). Used parameters: J +(0) = J −(0) = 0.185, Jz(0) =
0.076, g = 2�, κ = 0.01�, ω1 = 2�, ω2 = 4�, γ↓ = 0.1�, γ↑ =
0.2�.

stable solution occurs. Afterwards, an additional bifurcation
takes place at g = �, where an unstable solution splits up
from the trivial one and becomes stable at g = 1.5�. Later, at
g = 3.2�, a third bifurcation with an unstable solution splits
up. For the used parameter values Eq. (7) has three real roots;
nevertheless at least one of the observables in Eqs. (8) and (9)
is unphysical, for instance, a negative mode population ni or
an imaginary J+J− value. Thus we have only two nontrivial
solutions for g > 1.5�. The two solutions allow the lower
or the upper mode to have a high occupation, respectively.
Note that the solution depends crucially on the chosen initial
condition. Figure 3 shows an example of this behavior where
we vary the initial state of the cavity modes n1(0),n2(0) for a
given initial state of the atomic system. In the light blue area
(diagonal lines) the system converges to the fixed point FP 1,
in the dark blue area (vertical lines), to the fixed point FP 2
from Fig. 2.

In the next section we present different Pyragas feedback
schemes. They allow us to switch between a macroscopic occu-
pation of the two cavity modes irrespective of the chosen initial
condition and also to change further dynamical properties like
the fixed point attraction region of the considered model.

IV. DYNAMICS WITH FEEDBACK

We now demonstrate the impact of time-delayed feedback
control on the system. As a feedback signal we always use
one of the system properties and restrict ourselves only to
Pyragas-type feedback [20]. Therefore, we insert into the
mean-field equations, Eqs. (3), an additional control term,
which is conditioned on the difference of a system property at
two different times t − τ and t , where τ represents a time delay
between the signal determination and the feedback into the
system. Due to the rich phase diagram, even without feedback
in Fig. 1, it seems impossible to engineer one feedback scheme
which works in every part of the phase diagram. Hence, we
have to find for each part of the phase diagram a scheme
which produces the desired results, such as mode selection or
stabilization. However, the chosen feedback may not work in
other parts of the phase diagram or will have other influences
onto the system dynamics. In the following, we present three
feedback schemes for different purposes and parts of the
phase diagram, give a possible implementation picture for each
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FIG. 4. (Color online) (left) Pyragas feedback control of Jz (11)
stabilizes the nontrivial fixed point in region (c) of phase diagram
Fig. 1. Without feedback the stationary solution is a limit cycle
(gray dotted curves). With feedback the solution converges to a fixed
point (solid curves). Parameters: τ = �−1, λ = 0.4�. (right) Control
diagram in τ -λ plane. Vertical scale bar gives the largest real part
of the eigenvalues of the linearized equations. In the blue region the
fixed point becomes stable. Green dots show the boundaries from an
analytical expression [see Eq. (A7)]. Parameters: κ = 0.5�, g = 5�,
ω1 = 2�, ω2 = 4�, γ↓ = 0.1�, γ↑ = 0.2�.

scheme, and demonstrate exemplarily their influence onto the
system evolution.

A. Stabilization of fixed points

The phase diagram in Fig. 1 has regions with nontrivial
unstable steady states, which do not attract the solution. If no
stable point exists, the solution oscillates periodically. This
occurs only in the region (c); see gray dotted curve in Fig. 4
(left) obtained using the parameters κ = 0.5�, g = 5�. To
stabilize the unstable nontrivial fixed point, we suggest the
following feedback scheme of Pyragas type [20]:

J̇z → J̇z − λ[Jz(t − τ ) − Jz(t)]. (11)

Thus we modify the population inversion by a difference of the
Jz spin component at two different times t − τ and t , where τ

denotes the time delay parameter. Additionally, this difference
is scaled by λ. The feedback term in Eq. (11) can be realized,
for instance, by extra pumping of the atomic system or by
opening additional decay channels, depending on the value of
the feedback signal λ[Jz(t − τ ) − Jz(t)].

The solid lines in Fig. 4 (left) show feedback actions for
a point in the region (c). We see that for t � 1/�, the mode
occupations become constant; thus the fixed point is stabilized
and the feedback signal vanishes. In contrast, without feedback
the oscillations with finite amplitude are always present (gray
dotted line). The right part of Fig. 4 shows the control diagram
[44] in the τ−λ plane. The color encodes the largest real part of
all existing eigenvalues, obtained from the linearized equation
of motion [21] (see Appendix A 1). The fixed point is stable
if this value is negative, which is the case in the blue area
(Fig. 4, right). For the boundaries (green dots in Fig. 4, right)
an analytical expression can be derived (see Appendix A 1).

B. Selection of the dominantly occupied mode

We now focus on region (e), which features two stable
nontrivial fixed points. The main interest in this region is the

occupation of the respective cavity modes. In each of both
solutions one mode has a high occupation, whereas the other
one has a low occupation (see Fig. 2). In that way, the light
leaking out from a cavity is generated by mostly one of the
two modes. Without feedback the dominating mode is selected
by the initial condition (see Fig. 3), which is usually hard
to control. Interestingly, we found a feedback scheme which
allows one to select the mode of interest, i.e., to select the
frequency of the radiated light, which was also achieved for a
quantum dot laser in Ref. [19] with a non-Pyragas feedback
type. We argue that our feedback type can switch the system
behavior between a macroscopic occupation of the higher or
the lower cavity mode.

To select the lower mode ω1 we modify its frequency in
Eqs. (3) as

ω1 → ω1 + λ[n2(t − τ ) − n2(t)], (12)

where n2 = a∗
2a2 represents the occupation of the second

mode. This feedback type is also measurement based, as the
mean photon flux is proportional to the mean occupation of
the photonic modes [45,46]. Thus, the frequency of the first
mode has to be changed according to the difference of mean
photon fluxes of the second mode at times t − τ and t .

However, the previous (or similar) feedback scheme does
not work well for selecting the upper mode ω2. For that purpose
we modify the feedback scheme according to [47]

ȧ1 → ȧ1 − λ[a1(t − τ ) − a1(t)], (13)

which is now a coherent type of feedback, as one can interpret
it as a direct control without measurement [47]. One possible
realization is the back coupling of emitted photons by a mirror,
where the mirror distance fixes the time delay τ [48]. This
scheme works for a properly chosen τ parameter [21] as,
for instance, τ = 2π/ω (or multiples of it), where ω denotes
the characteristic frequency of the rotated frame determined
by Eq. (7). This choice guarantees that the feedback term in
Eq. (13) vanishes for t � 1/�.

The action of both feedback types is shown in Fig. 5 for
the system parameters κ = 0.005�,g = 2� and the feedback
parameters λ = 0.01�,τ = �−1 (upper) or λ = �,τ = 2π/ω

(lower), where ω denotes the rotating frame frequency deter-
mined from Eq. (7). Solid marked curves show the cavity mode
occupations with feedback, dashed curves without feedback.
Both feedback schemes destabilize only one fixed point in
region (e) of Fig. 1; thus the system converges to the other
one. In the top figure we see the action of feedback Eq. (12).
Without the feedback, the excited mode ω2 has a dominant
population (dashed violet line), whereas with control its
occupation becomes low (violet line with markers) and instead
the ground mode ω1 (red line with markers) is macroscopically
occupied. The bottom figure shows the opposite behavior.
Instead of the lower mode (red, dashed), the higher mode
is macroscopically occupied (violet line with markers). Note
that both stable steady states exist without feedback in region
(e) of Fig. 1. However, their attraction regions depend on the
initial condition, as is shown without feedback in Fig. 3. We
emphasize that with feedback the selection of modes works
independently of the chosen initial condition for the tested
parameter values.
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FIG. 5. (Color online) Usage of feedback schemes in region (e)
of Fig. 1 for driving the system toward a macroscopic occupation
of the lower (top) or higher cavity mode (bottom). (Top) Feedback
scheme Eq. (12) selects highly populated ground mode (red line
with markers), whereas (bottom) control type Eq. (13) selects highly
populated excited mode (violet line with markers). The inset (bottom)
shows the zoom for small photon numbers. Without feedback the
other modes have a macroscopic population (dashed violet and red
lines in both figures). Parameters: λ = 0.01� (top), λ = � (bottom),
κ = 0.005�, g = 2�, ω1 = 2�, ω2 = 4�, γ↓ = 0.1�, γ↑ = 0.2�.

Figure 6 shows the control diagram in the τ -λ space
with κ = 0.005�, g = 2� for the feedback type Eq. (12)
obtained from a linear stability analysis. We see that there
are parameter regions where only one of the fixed points
becomes unstable and also where both fixed points become
unstable. In the blue-dotted area the fixed point with n2 � n1
becomes unstable, whereas in the green-dashed region another
fixed point with n1 � n2 is destabilized. The boundaries are
calculated analytically (see Appendix A 2). In order to reach
the fixed point with a macroscopic occupation of the lower
cavity mode, we have to choose the parameters in the region
having only blue dots. Fixing the feedback parameter in the
region having only green dashes (arrow in the diagram) should
select the fixed point with a macroscopic population of the
higher cavity mode. However, there are some exceptions. The
fixed point with n2 � n1 attracts the solution if the initial
condition is rather close to it; otherwise the solution converges

FIG. 6. (Color online) Stability diagram for Pyragas feedback
type Eq. (12). In the dashed (dotted) region the first (second) fixed
point (FP), related to a macroscopic population of the lower (higher)
cavity mode as in Fig. 2, becomes unstable. Parameters: κ = 0.005�,
g = 2�, ω1 = 2�, ω2 = 4�, γ↓ = 0.1�, γ↑ = 0.2�.

to a limit cycle, which appears in this case in the presence of
Pyragas control [22]. Limit cycle solutions are also present in
the parameter area where both fixed points become unstable
due to the time-delayed feedback control.

V. SUMMARY AND OUTLOOK

In this paper we have investigated the mean-field dynamics
of a two-mode laser model based on an extended Tavis-
Cummings model in the thermodynamic limit without and
with time-delayed feedback. The corresponding mean-field
equations can be solved analytically in the steady state. Even
without feedback control this model exhibits a complex phase
diagram with multiple stable fixed points. Our Pyragas feed-
back schemes allow us to drive the system to different phases
by selecting or stabilizing one preferred stationary solution.

We studied also other feedback schemes of the Pyragas
type, but they led to similar results as already shown. However,
especially in phases with a combination of unstable and stable
nontrivial fixed points, it is difficult to design a feedback
scheme which stabilizes or selects one stable configuration
for a wide range of initial conditions. The reason for this is
that the Pyragas control type affects the stability of all fixed
points. For example, the stabilization succeeds only close to the
corresponding fixed point in the sense of the linear stability
analysis. Farther away from the fixed point, we have often
observed the appearance of limit cycles with large attraction
regions or even chaotic solutions, which is a known feature
in laser systems with feedback [49] and also occurs for other
nonlinear dynamical systems with time delay [50–53].

Since our calculations were done at a semiclassical level
by restricting ourselves to first-order cumulants, we expect
that the results should hold in the thermodynamic limit,
where the number N of two-level atoms tends to infinity.
On the one hand, the fluctuations scale like 1/

√
N with

the number of atoms N [34]. On the other hand, the laser
dynamics or a condensation is usually studied at this level.
Furthermore, the semiclassical regime of the quantum-optical
models like Dicke [54] or Lipkin-Meshkov-Glick [55] predicts
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correctly their main properties, like observable averages or
the occurrence of a quantum phase transition [37,39,56].
However, going beyond the factorization assumption could
be performed by including higher-order cumulants, e.g., by
using the Gaussian approximation, which involves first- and
second-order cumulants [36,38,57].

It would be certainly interesting to analyze the impact
of control on the quantum fluctuations. This could be
investigated with other approaches to feedback [58,59], which
usually requires a high numerical effort. In this respect a
promising feedback scheme was introduced in Refs. [60]
and [61], which allows one to control the entanglement and
light bunching by structured environment and converges to a
Pyragas control type in the one excitation limit. However, the
general quantum version of Pyragas control type remains an
unsolved question. A new, conceptually significant approach
has been recently introduced in Ref. [62], although it appears
to be numerically demanding.

Finally, we note that it would be worthwhile to extend
our two-mode laser model with the thermalization mechanism
along the lines of Refs. [12] and [16]. This would yield a
minimal model to study the transition between a condensate-
like and a laserlike state, which originate from a macroscopic
occupation of the lower and higher cavity mode, respectively.
Adding Pyragas feedback control terms as suggested here
should thus allow one to switch the system behavior between
condensatelike and laserlike.
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APPENDIX

In the following we show how to determine the boundary
condition in the stability diagrams Fig. 4 (right) and of Fig. 6 in
the presence of time-delayed Pyragas feedback control terms
Eq. (11) and Eq. (12), respectively.

1. Stabilization of fixed points

Linearizing the equation of motion (3) together with the
feedback condition Eq. (11) we obtain the equation

δv̇(t) = A δv(t) + B δv(t − τ ), (A1)

where v = (a1,a
∗
1 ,a2,a

∗
2 ,J+,J−,Jz), δv gives a deviation from

the fixed point v0 determined via the procedure given in
Sec. III A, and we have introduced the matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iω1,s − κ 0 0 0 0 −ig 0
0 iω1,s − κ 0 0 ig 0 0
0 0 −iω2,s − κ 0 0 −ig 0
0 0 0 iω2,s − κ ig 0 0
0 −2igJ 0

z 0 −2igJ 0
z i�s − 	D 0 −2ig((a∗

1 )0 + (a∗
2 )0)

2igJ 0
z 0 2igJ 0

z 0 0 −i�s − 	D 2ig
(
a0

1 + a0
2
)

−ig(J+)0 ig(J−)0 −ig(J+)0 ig(J−)0 −ig
(
a0

1 + a0
2
)

ig((a∗
1 )0 + (a∗

2 )0) −	T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B = λ · (0,0,0,0,0,0,1)T ⊗ (0,0,0,0,0,0,1).

The stability condition is then [21]

0 = det [(A − B) − B · e−
τ − 
1]. (A2)

The fixed point is stable if all possible solutions for 


have a negative real part. From Eq. (A2) the equation for
phase boundaries can be obtained as follows. At the phase
boundaries, 
 has a vanishing real part. Thus, by replacing

 → i� (� ∈ R) in Eq. (A2) and calculating the determinant,
we obtain

0 = e−i�τ

6∑
j=0

cjAj�
j +

7∑
j=0

cjBj�
j , (A3)

cj =
{

1, j even,

i, j odd,
(A4)

where Ai , Bi , i ∈ {1,2, . . . .7} are real coefficients which
depend on the system parameters both explicitly and implicitly
via the fixed point solution, and on the feedback strength

λ. However, the corresponding expressions are too long for
showing them here.

Splitting the equation into real and imaginary parts, we
obtain the following two equations:

0 = C1 + C2 cos(�τ ) + C3 sin(�τ ),
(A5)

0 = C4 + C3 cos(�τ ) − C2 sin(�τ ),

where

C1 = B0 + B2�
2 + B4�

4 + B6�
6,

C2 = A0 + A2�
2 + A4�

4 + A6�
6,

(A6)
C3 = A1� + A3�

3 + A5�
5,

C4 = B1� + B3�
3 + B5�

5 + B7�
7.

Squaring and summing Eqs. (A5), we can eliminate the τ

dependence and obtain a 14th-order polynomial equation in
�. This provides up to 14 solutions for �, but only two of
them turn out to be real. Next, we sum both of the Eqs. (A5)
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together in a suitable way in order to eliminate the sin term.
The resulting equation can then be solved for τ as

τ = 1
�

arccos
(

−C3C4 + C1C2

C2
2 + C2

3

)
+ 2π

�
z, z ∈ Z. (A7)

This yields the boundaries in Fig. 4 (right), which perfectly
agree with the corresponding numerical calculations. Two
valid solutions for � build the

⋃
-shaped structure in the

diagram, whereas z is responsible for its periodic structure.

2. Selecting the fixed point

The procedure is similar to Appendix A 1, but the feedback
condition is given now by Eq. (12). The matrix B is then
redefined as

B = −iλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 (a∗
2 )0a1

0 (a∗
2 )0a1

0 0 0 0

0 0 −a2
0(a∗

1 )0 −a2
0(a∗

1 )0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The further procedure is the same. First we calculate the
determinant Eq. (A2) and write it in a similar form as

Eq. (A3):

0 = e−i�τ

4∑
j=0

cj Ãj�
j +

7∑
j=0

cj B̃j�
j , (A8)

cj =
{

1, j even,

i, j odd.
(A9)

As the parameters Ãj ,B̃j are real, Eq. (A8) can be split into
real and imaginary parts, which yields

0 = C̃1 + C̃2 cos(�τ ) + C̃3 sin(�τ ),
(A10)

0 = C̃4 + C̃3 cos(�τ ) − C̃2 sin(�τ ),

where

C̃1 = B̃0 + B̃2�
2 + B̃4�

4 + B̃6�
6,

C̃2 = Ã0 + Ã2�
2 + Ã4�

4,
(A11)

C̃3 = Ã1� + Ã3�
3,

C̃4 = B̃1� + B̃3�
3 + B̃5�

5 + B̃7�
7.

From the upper equations one can then eliminate the τ

dependence to determine possible � values. With this τ can
be calculated as in Eq. (A7), but Ci is then replaced by C̃i . The
resulting (�,τ ) combinations are the boundaries in Fig. 6.
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In the Hilbert space formulation of quantum mechanics, ideal measurements of physical variables are discussed
using the spectral theory of Hermitian operators and the corresponding projector-valued measures (PVMs).
However, more general types of measurements require the treatment in terms of positive-operator-valued measures
(POVMs). In the Hamiltonian formulation of quantum mechanics, canonical coordinates are related to PVM. In
this paper the results of an analysis of various aspects of applications of POVMs in the Hamiltonian formulation
are reported. Several properties of state parameters and quantum observables given by POVMs or represented
in an overcomplete basis, including the general Hamiltonian treatment of the Neumark extension, are presented.
An analysis of the phase operator, given by the corresponding POVMs, in the Hilbert space and the Hamiltonian
frameworks is also given.

DOI: 10.1103/PhysRevA.91.062114 PACS number(s): 03.65.Fd, 03.65.Sq

I. INTRODUCTION

The Hamiltonian formulation of quantum mechanics
(HQM) [1–4] provides an alternative mathematical formu-
lation that is equivalent to the more standard one based on
Hilbert spaces and has proven to be useful in discussing
such issues as nonlinear constraints [5,6] the geometry of
entanglement [2], the classical limit [7,8], hybrid quantum-
classical systems [9–11], and nonlinear and stochastic gen-
eralizations of quantum mechanics (QM) [1,2,12]. In the
Hamiltonian formulation quantum pure states are repre-
sented by points of an appropriate smooth manifold M
and the quantum dynamics is represented by a Hamiltonian
flow on M. In order to formulate probabilistic aspects of
QM and in particular describe ideal measurements in the
sense of von Neumann, the manifold M is equipped with
a Riemannian metric. Standard postulates of QM about
states, observables, and dynamics are formulated in terms
of notions associated directly with a Hamiltonian dynamical
system on M, without any reference to the Hilbert space
formulation.

An ideal measurement of a quantum observable, repre-
sented in the von Neumann scheme by a Hermitian operator
and its spectral projector-valued measure (PVM), is in the
Hamiltonian framework formulated using quadratic functions
of canonical coordinates on M, their critical values and
critical points, and the Riemannian metric on M. However,
there are legitimate questions that can be asked about the
preparation of a quantum system that cannot be cast into the
von Neumann ideal measurement conception [13–15]. Data
about the system can be collected that cannot be obtained as
eigenvalues of an appropriate self-adjoined operator. On the
other hand, such sets of data do satisfy certain conditions, such
as covariance with respect to some natural transformations
[13,14], which justify association of such data with certain
physical quantities. Important examples of such data sets,
like those related to polarization or the phase of quantum
motion, are conveniently described by positive-operator-
valued measures (POVMs) instead of PVMs. Another instance

*buric@ipb.ac.rs

where the use of POVMs appears most naturally is in the
context of approximate or indirect measurements or joined
measurements of canonically related observables. It is our goal
to formulate and analyze important properties of POVMs in the
framework of the Hamiltonian formulation and thus prepare
the way for the Hamiltonian formulation of the generalized
measurement.

The paper is organized as follows. In the next section we
provide a brief presentation of the Hamiltonian formulation
of QM, insisting on its independence from the Hilbert space
formulation. Section III is devoted to an abstract treatment
in the framework of the Hamiltonian formulation of var-
ious questions related to the use of the POVM, with all
considerations restricted to a finite-dimensional state space.
In particular, we discuss in detail the kinematical and the
dynamical aspects of the Hamiltonian analog of the Neumark
extension for a POVM. In Sec. IV we treat in detail the example
of a POVM corresponding to the phase of quantum motion.
The Neumark extension of the phase POVM in the Hilbert
space formulation is derived and the corresponding Hamil-
tonian formulation is presented. Section V provides a brief
summary.

II. BASICS OF THE HAMILTONIAN FORMULATION

The Hamiltonian formulation of quantum mechanics is
formally rather similar to the standard theory of Hamiltonian
dynamical systems as it is used in classical mechanics [16].
The additional features are related to the statistical properties
of quantum systems. Pure states of a quantum system are
in the HQM mathematically represented by points of a
smooth manifold with Kahler structure (M,G,�,J ), where
M is a smooth manifold admitting a Riemannian G and
symplectic � structures and J is a map on the tangent
space TM satisfying G(X,Y ) = �(X,JY ). One refers to
(M,G,�,J ) as the quantum phase space. In fact, in the
case of systems with a finite N -dimensional Hilbert space
HN , the Hamiltonian formulation is given using M = R2N

with the standard Riemannian, symplectic, and complex
structures. On the other hand, phase spaces for systems with
infinite-dimensional Hilbert spaces can be considered as direct
sums of an even number of real infinite-dimensional vector
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spaces. In this and the next section we restrict our attention
to the finite-dimensional cases. In any case, a pure quantum
state is represented by an equivalence class of points in M.
Nevertheless, we almost always refer to the points of M as the
quantum states neglecting the fact that many points correspond
to physically the same quantum pure state.

The symplectic two-form � associates a Hamiltonian
vector field Xf with a sufficiently smooth function f on M
by the formula

�(X,Xf ) = df (X), (1)

where X is a vector field on M. Thus, any smooth function
generates a symplectic transformation. The symplectic struc-
ture also defines a Poisson bracket between smooth functions
f and g on M,

{f,g} = �(Xf ,Xg), (2)

where Xf ,Xg are Hamiltonian vector fields corresponding to
f,g.

The Euclidian space R2N admits global canonical co-
ordinates (q,p) ≡ {qi,pj ; i,j = 1,2, . . . ,N}, which satisfy
{qi,pj } = δij and {qi,qj } = {pi,pj } = 0. In the classical me-
chanical application of Hamiltonian dynamics any real smooth
function of (q,p) represents a physical variable. Quantum
mechanics is characterized also by the metric structure and
therefore the set of physical variables of a quantum system,
defined as generators of transformations that preserve the
typical structures � and G, is different: Only real quadratic
functions of the form

f (q,p) =
N∑
ij

f 1
ij (qiqj + pipj ) + f 2

ij qipj , (3)

where f 1
ij are real symmetric and f 2

ij are real antisymmetric,
are assumed to be related to quantum physical observables.
The most important property of such quadratic functions is
that the corresponding Hamiltonian vector fields generate
symplectic maps that preserve the Riemannian structure. Thus,
the physical variables generate transformations that preserve
the two constituting structures of the quantum phase space
(M,G,�,J ). It is important to stress that, contrary to the
case of classical mechanics, not all values of a function (3)
representing a physical variable can be obtained as a result
of quantum measurements of this physical variable. Possible
results of measurements in the Hamiltonian formulation will
be discusses shortly.

It is convenient to introduce the set of complex coefficients
πlm such that

f (q,p) =
N∑
ij

f 1
ij

(
q2

i + p2
i

) + f 2
ij qipj

=
N∑
lm

πlm(ql − ipl)(qm + ipm). (4)

Obviously, one has

Reπij = f 1
ij , Imπij = −f 2

ij /2. (5)

In fact, πlm form an N × N Hermitian matrix, so there is a
Hermitian operator F̂ on a Hilbert space HN and a proper

basis |el〉, l = 1,2, . . . ,N , such that

πlm = 〈el|F̂ |em〉. (6)

Here the Hermitian scalar product between two vectors
〈ψ1|ψ2〉 is related to the metric and symplectic structures on
M by 〈ψ1|ψ2〉 = G(ψ1,ψ2)/2 + i�(ψ1,ψ2)/2, where on the
right-hand side we identified R2N with its tangent space.

Using the proper basis |el〉, one associates a Hilbert space
vector |ψqp〉 ∈ HN with the point m ∈ R2N parametrized
by the canonical coordinates values {ql = ml,pl = ml+N ; l =
1,2, . . . ,N}. The relation is

|ψ〉 =
N∑
l

(ql + ipl)|el〉. (7)

The operator F̂ in (6) is given in terms of this proper basis by

F̂ =
N∑
ij

πij |ei〉〈ej | (8)

and the quadratic function

F (q,p) = 〈ψqp|F̂ |ψqp〉 (9)

is to be interpreted as the quantum expectation of the
quantum observable F̂ in the state |ψqp〉. The Poisson bracket
between two quadratic functions F1 and F2 is related to the
quadratic function corresponding to the commutator between
the corresponding operators F̂1 and F̂2:

1
i
〈ψ |[F̂1,F̂2]|ψ〉 = {F1,F2}, (10)

where, as before, Fi(ψ) = 〈ψ |F̂i |ψ〉.
The kinematic part of the Hamiltonian formulation of QM

will be referred to as the quantum phase-space formulation.
The dynamics of a quantum system is in the HQM given by
the abstract Hamiltonian equations

ṁ = XH (m), (11)

where m ∈ M and XH is the Hamiltonian vector field
corresponding to the function H (m) = 〈ψm|Ĥ |ψm〉, where Ĥ

is the Hamiltonian of the system. In the complex space the
corresponding equation is the Schrödinger equation

i�|ψ̇(t)〉 = Ĥ |ψ(t)〉. (12)

In canonical coordinates Eq. (11) is

q̇i = {H (q,p),qi} = ∂H (q,p)
∂pi

,

ṗi = {H (q,p),pi} = −∂H (q,p)
∂qi

, i = 1,2, . . . ,N.

(13)

Information about the state of a quantum system is obtained
by performing operations with the considered systems and
possibly additional systems. A quite restricted class of such
operations is the ideal measurements in the sense of von
Neumann. In the Hilbert space formulation, the data collected
by such a measurement involve spectral decomposition of an
appropriate Hermitian operator, i.e., involve an appropriate
PVM. In the Hamiltonian formulation of quantum mechanics,
the data collected by such measurements involve only the
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functions of the form (9) and the Riemannian structure G.
A full description of the von Neumann measurement of
an observable with a possibly degenerate and continuous
spectrum in the Hamiltonian framework is discussed in [1].
As an illustration, we recapitulate the case of an observable
with a discrete nondegenerate spectrum. Possible results of
a measurement from this class are exhausted by the critical
values of a function of the form (9). We denote these critical
values and the corresponding critical points from R2N by F0,i ,
i = 1,2, . . . ,N , and XF,i , respectively. For the system in a state
min ≡ (qin,pin) the probability of the measurement result F0,i

is given by G(min,XF,i), where XF,i is the ith critical point of
F . In terms of the quadratic function (9), the possible results
of an F measurement are obtained by diagonalization of the
Hermitian matrix π

f

ij . Spectral decomposition of the operator
F̂ corresponds to the harmonic-oscillator representation of
the quadratic function f (q ′,p′) = ∑

l π
f

l (q ′2
l + p′2

l ), where
the sum goes over distinct eigenvalues π

f

l of the matrix π
f

ij

and {q ′
l ,p

′
l} denote here the real and imaginary parts of the

eigenvalues of F̂ . The transformation from (q,p) to (q ′,p′)
coordinates is of course canonical and isometric.

However, the most general class of quantum operations that
can be used to obtain information about a quantum state is in
the Hilbert space formulation described by POVMs [14,15].
A description of such a generalized measurement process
in terms of a POVM involves two important mathematical
properties of POVMs. (i) For all purposes related to quantum
information processing, a POVM can always be given in
terms of an overcomplete basis (Davis theorem [15,17]). (ii) A
POVM can be obtained by projecting a PVM acting in a larger
Hilbert space (Neumark theorem [15,18]). The Hamiltonian
formulation of these properties of POVMs is the topic of this
paper.

III. POSITIVE-OPERATOR-VALUED MEASURES AND
FUNCTIONS REPRESENTING PHYSICAL VARIABLES

Consider an overcomplete set of vectors {|bi〉,i ∈ I } where
the index i can be discrete i = 1,2, . . . ,M > N or continuous.
It is sometimes convenient to use a multidimensional or com-
plex index set I , for example, in the case of ordinary coherent
states. The one-dimensional (1D) projectors |bi〉〈bi | are not
mutually orthogonal. Such an overcomplete set provides a
POVM {B̂i = |bi〉〈bi |,i ∈ I }. Such a POVM can be used,
instead of a PVM, to define a Hermitian operator or to represent
a Hermitian operator as a function of the corresponding 2M

noncanonical variables. Furthermore, there is a Hilbert space
H̄, a PVM {P̂i}, and a projector �̂, H̄ → H, such that a POVM
{B̂i} is given by B̂i = �̂P̂i�̂. We analyze the formulation and
consequences of these facts in the Hamiltonian framework
of QM. In the abstract treatment of this section we restrict
our attention to the case when the index i, enumerating the
vectors of the overcomplete basis, is discrete and finite. The
case when the index enumerating the overcomplete basis is
real and continuous but bounded will be treated in detail in
the next section using the example of a POVM associated
with the quantum phase. Another common example of an
overcomplete basis and the corresponding POVM with an
interesting Hamiltonian formulation, which, however, will

not be treated here, is provided by the coherent states of
a single linear harmonic oscillator on L2(R). The index set
here is the complex plane C. The Neumark extension of this
POVM is the PVM given by the multiplication operator on the
Hilbert space L2(R2). The Hamiltonian formulations of the
original and the extended system with constraints both involve
infinite-dimensional Hamiltonian systems.

A. Positive-operator-valued measures as a set of
dependent coordinates

A set of canonical coordinates (q,p) is uniquely related to
a basis of mutually orthogonal vectors, i.e., with a PVM. On
the other hand, an overcomplete basis {|bj 〉} with the index
j continuous or discrete with maxj = M > N can be used
to associate with each vector in the 2N-dimensional space a
set of 2M > 2N real numbers. Thus, the overcomplete basis
provides 2M parameters to characterize the points from R2N .
Obviously, the values of these parameters on R2N cannot be
linearly independent.

Consider a set of vectors B = {|bj 〉}Mj=1 (M � N ) generat-
ing a resolution of unity in HN ,

M∑
j=1

|bj 〉〈bj | = IN. (14)

The set B could be a proper basis (M = N ) where the vectors
are necessarily mutually orthogonal, but could also be an
overcomplete basis (M > N ), when at least two of the vectors
are not orthogonal. In any case, a (normalized) state |ψ〉 from
the Hilbert space HN can be expanded, using (14), as

|ψ〉 =
M∑

j=1

cj |bj 〉 =
M∑

j=1

(qj + ipj )/
√

2� |bj 〉, (15)

with real qj and pj . Coefficients (qj ,pj ) are uniquely defined
if and only if the vectors |bj 〉 form a proper basis. On the other
hand, if the resolution of unity (14) is overcomplete, i.e., if
some of the |bj 〉 are not mutually orthogonal, the coefficients
(qj ,pj ) satisfying (15) are not unique, but any such set of 2M

coefficients satisfies the relations

qi =
∑

j

qj Re〈bi |bj 〉 − pj Im〈bi |bj 〉,

pi =
∑

j

pj Re〈bi |bj 〉 + qj Im〈bi |bj 〉.
(16)

Obviously, if the basis B is proper then Eq. (16) are reduced to
trivial identities and the explicit expressions for the coefficients
are

qj = Re〈bj |ψ〉, pj = Im〈bj |ψ〉. (17)

However, if the basis is overcomplete the relations are
nontrivial and express the nonuniqueness of the expansion
(15). The general explicit form of the coefficients in this case
is given later in (22).

The coordinate form of the abstract Schrödinger equation
(12) or equivalently of the abstract Hamilton equations (11),
corresponding to the general setB satisfying (14), is equivalent
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to the set of equations

GB

[
q̇
ṗ

]
=

[
∂H/∂ p

−∂H/∂q

]
, (18)

where the vectors of coordinates are given by q =
[q1, . . . ,qM ]T and p = [p1, . . . ,pM ]T , while H (q, p) =
〈ψq,p|Ĥ |ψq,p〉. The Gram matrix of the set B can be cast
into the real form

GB =
[

g −π

π g

]
, (19)

where matrices g and π have the elements gjk = Re〈bj |bk〉
and πjk = Im〈bj |bk〉, respectively. If B is a proper basis (M =
N ), then GB becomes an identity matrix of dimension 2N

and Eq. (18) assumes the form of the Hamilton equations in a
canonical basis [

q̇
ṗ

]
=

[
∂H/∂ p

−∂H/∂q

]
. (20)

Consider now the case when the setB is overcomplete (M >

N ). Due to the overcompleteness of the basis B, there are M −
N nontrivial zero-valued complex linear combinations of basis
vectors or equivalently 2(M − N ) real linear combinations

GB

[
x(k)

y(k)

]
= 0, GB

[−y(k)

x(k)

]
= 0, k = 1, . . . ,M − N,

(21)
where x(k) = [x(k)

1 , . . . ,x
(k)
M ]T and y(k) = [y(k)

1 , . . . ,y
(k)
M ]T are

M − N independent solutions of (21). Thus, the general form
of the (qj ,pj ) coefficients satisfying (15) is

[
q
p

]
=

[
Re〈b|ψ〉
Im〈b|ψ〉

]
+

M−N∑
k=1

(
ak

[
x(k)

y(k)

]
+ bk

[−y(k)

x(k)

])
. (22)

The matrix GB is singular and Eq. (18) cannot be cast into
the canonical form of Hamiltonian equations. The parameters
{qj ,pj } do not form a set of canonical coordinates on R2N . In
fact, (18) has the equivalent form[

q̇
ṗ

]
= G(−1)

B

[
∂H/∂ p

−∂H/∂q

]
+

M−N∑
k=1

(
λk

[
x(k)

y(k)

]
+ μk

[− y(k)

x(k)

])
,

(23)

where λk and μk are arbitrary real numbers and G(−1)
B is

the Moore-Penrose pseudoinverse. The terms in (23) under
the sum do not influence the evolution of the state |ψ〉. In
anticipation of the Hamiltonian treatment, in the next section
the numbers λk and μk can be considered as corresponding
to the gauge degrees of freedom. Fixing their values would
give additional 2(M − N ) constraints and yield one possible
solution. For example, the natural gauge could be λk = 0 and
μk = 0 for k = 1, . . . ,M − N .

B. Hamiltonian formulation of the Neumark extension

We shall first briefly recapitulate the Hilbert space formu-
lation of the Neumark extension, introducing the appropriate
notation at the same time. It will then be demonstrated that the
Hamiltonian description of the relation between the Neumark
extension and the original system is in fact given in terms of a

reduction of the Hamiltonian systems with primary constraints.
i.e., with gauge degrees of freedom.

Let {|ek〉}Nk=1 be a proper orthonormal basis of HN . Then
one has

|bj 〉 =
N∑

k=1

βkj |ek〉, j = 1, . . . ,M, (24)

with βkj = 〈ek|bj 〉. Using (14) we get the relations

M∑
j=1

βkjβ
∗
k′j =

M∑
j=1

〈ek|bj 〉〈bj |ek′ 〉 = 〈ek|ek′ 〉 = δk′k. (25)

The relation means that we have a set {bk =
[βk1, . . . ,βkM ]T }Nk=1 of N orthonormal vectors from
CM . We can choose M − N auxiliary vectors {bN+1, . . . ,bM}
such that {bk}Mk=1 is an orthonormal basis of CM . Now let us
consider an enlarged Hilbert space

HM = HN ⊕ H⊥, (26)

whereH⊥ = S({|ek〉}Mk=N+1) with orthonormal auxiliary basis
states {|ek〉}Mk=N+1 and S denoting the span. The states {|Bj 〉 =∑M

k=1 βkj |ek〉}Mj=1 are also orthonormal. Hence, an arbitrary
normalized state |
〉 ∈ HM has the unique expansion

|
〉 =
M∑

j=1

(Qj + iPj )/
√

2� |Bj 〉, (27)

with real Qj and Pj that can be regarded as a pair of canonical
coordinates on the extended phase space R2M . Define the
projector operator by

�̂|ek〉 = |ek〉, k = 1, . . . ,N (28a)

�̂|ek〉 = 0, k = N + 1, . . . ,M. (28b)
This leads to

�̂|Bj 〉 = |bj 〉 (29)

and

�̂|
〉 =
M∑

j=1

(Qj + iPj )/
√

2� |bj 〉, (30)

which is of the same form as (15). In other words, the PVM
given by the proper basis {|Bj 〉} in HM is the Neumark
extension of the POVM given on HN by {|bj 〉}).

Strictly speaking, the Neumark theorem is not concerned
with the dynamics, i.e., Hamiltonians, on HN versus that on
HM . Nevertheless, it is natural to require that Ĥ on HN and
the corresponding Ĥex on HM satisfy the following condition:
All states from HM that are projected onto the same state
|ψ(t0)〉 in HN evolve during t − t0 into the states that are
all projected onto the same state |ψ(t)〉. This is the case
if

Ĥex = �̂−1Ĥ �̂. (31)

In anticipation of the Hamiltonian formulation, expectation
values of Ĥex in |
〉 and Ĥ in |ψ〉 = �̂|
〉 are related
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by

Hex(Q,P ) = 〈
Q,P |Ĥex |
Q,P 〉
=

∑
j,j ′

(Qj − iPj )(Qj ′ + iPj ′ )〈Bj |�̂−1Ĥ �̂|Bj ′ 〉

=
∑
j,j ′

(Qj − iPj )(Qj ′ + iPj ′ )〈bj |Ĥ |bj ′ 〉

= H (Qj,Pj ), (32)

where (Q,P ) in Hex(Q,P ) and in H (Q,P ) are the same
numbers but are treated as values of independent coordinates
on R2M or dependent parameters on R2N , respectively.

We now present the phase-space formulation of the Neu-
mark extension. Consider the space R2M as a symplectic man-
ifold of a Hamiltonian system with the canonical coordinates
denoted by {(Qj,Pj ); j = 1,2, . . . ,M}. The natural conditions
〈ek|
(t)〉 = 0 for k = N + 1, . . . ,M are implemented as
constraints on the phase space R2M . Explicitly, the 2(M − N )
constraints are

φk( Q,P) ≡
M∑

j=1

(
βR

kjQj − βI
kjPj

) = 0, (33a)

πk( Q,P) ≡
M∑

j=1

(
βI

kjQj + βR
kjPj

) = 0, (33b)

where βR
kj = Reβkj and βI

kj = Imβkj . The constraints satisfy
the Poisson brackets

{φk,πk′ }Q,P = Re
M∑

j=1

β∗
k′jβkj = δk′k, (34a)

{φk,φk′ }Q,P = {πk,πk′ }Q,P = Im
M∑

j=1

β∗
k′jβkj = 0. (34b)

In the general case of arbitrary constraints, the constrained
manifold need not be symplectic and need not support a Hamil-
tonian system. However, in our case (33), the matrix of Poisson
brackets between the constraints (34) is nonsingular, i.e., the
constraints are primary, and therefore the manifold determined
by the constraints is also symplectic. The symplectic structure
on the constrained manifold is given by the Dirac-Poisson
bracket on R2N [19,20],

{f1,f2}R2N = {f1,f2}R2M + c

2(M−N)∑
m,n

{Fn,f1}R2M

×{Fm,Fn}−1
R2M {Fm,f2}R2M , (35)

where f1,f2 are functions on the constrained manifold, the
symbols Fn,Fm,m,n = 1,2, . . . ,2(M − N ) denote the con-
straints (33), and the Poisson brackets on the right-hand side
are the canonical brackets on R2M . The general formula (35)
in the notation (33) assumes the explicit form

{f1,f2}R2N = {f1,f2}Q,P −
M∑

k=N+1

(
∂f1

∂φk

∂f2

∂πk

− ∂f2

∂φk

∂f1

∂πk

)
.

(36)

Consider now the relation between the Hamiltonian func-
tion H (Q,P ) as a function of the dependent parameters on
R2N , i.e., as the Hamiltonian of the system given on R2N ,
and the Hamiltonian system on R2M with the Hamiltonian
H (Q,P ) [where (Q,P ) are now independent and canonical
on R2M ] with imposed constraints (33). In the case of
general constraints they can be incorporated into the dynamics
using the standard Dirac approach [19,20]. Namely, the total
Hamilton function has the form

HT = H +
M∑

k=N+1

(φkλk − πkμk),

HT = H +
M∑

k=N+1

(φk{πk,H }Q,P − πk{φk,H }Q,P ),

(37)

where the appropriate Lagrange multipliers λk,μk have been
determined from the compatibility conditions and using (34).
However, if the constraints are such that the constrained
manifold is symplectic, as they are in our case, then the
general procedure of constructing the Hamiltonian on the
constrained manifold can be bypassed. In fact, in this case
the Hamiltonian of the system on the constrained manifold is
simply obtained as a restriction of the Hamiltonian on R2M on
the constrained manifold R2N . This is precisely the relation
between the expectation values of the Hamiltonian operators
(32) introduced within the treatment of the Neumark extension.

What has been demonstrated is that the 2M real state
parameters {Qj,Pj ; j = 1,2, . . . ,M} given by the POVM,
i.e., by the overcomplete set {|bj 〉〈bj |; j = 1,2, . . . ,2M} in
HN , can be considered as parameters on R2N or equivalently
as canonical coordinates of an extended Hamiltonian system
on R2M with imposed primary constraints. We see that
the overcomplete description given by a POVM involves
in the Hamiltonian formulation the existence of constraints,
i.e., the gauge degrees of freedom, and the corresponding
reduction of an extended Hamiltonian system. This is yet
another example of the insights into the quantum-mechanical
formalism provided by the Hamiltonian formulation.

C. Functions associated with POVMs

In this section we derive several simple but useful formulas.

1. Functions corresponding to PVMs or POVMs

As before, B = {|bk〉; k = 1,2, . . . ,M � N} denotes an
arbitrary set of vectors, with the corresponding set of 1D
projectors {P̂k = |bk〉〈bk|}. Using another set B′ = {|b′

l〉; l =
1,2, . . . ,M ′ � N}, with the corresponding set {P̂l = |b′

l〉〈b′
l|}

that satisfies (14), each of the projectors |bk〉〈bk| is associated
with a quadratic function of the parameters (q ′

l ,p
′
l) provided by

B′. Thus, corresponding to the set {P̂k} is the set of quadratic
functions

Pk(q ′,p′) =
M ′∑
lm

πk
lm(q ′

l − ip′
l)(q

′
m + ip′

m), (38a)

where

πk
lm = 〈b′

l |P̂k|b′
m〉, k = 1,2, . . . ,M. (38b)
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It is our goal to obtain explicit conditions that distinguish the
sets of coefficients πk

lm in (38), given by B and B′ representing
a PVM and/or a POVM. In this setup, N is the dimension
of the Hilbert space, M � N is the number of vectors in the
set B whose properties such as the resolution of unity and
orthogonality are to be studied, and M ′ � N is the number of
vectors in the complete (or overcomplete) set B′ that is used
to associate functions with projectors from the set B.

If the set of functions (38) corresponds to either a PVM
or a POVM, an analog of the condition (14) must be satisfied
by the coefficients πk

lm. Furthermore, if the set corresponds
to a PVM, then the condition of mutual orthogonality of the
involved projectors has its analog in terms of the coefficients
πk

lm.

2. Resolution of unity in terms of π k
lm coefficients

Consider the scalar product 〈b′
l |b′

m〉 between arbitrary two-
vectors from B′. The condition (14) on B would imply

〈b′
l |b′

m〉 = 〈b′
l|

M∑
k

P̂k|b′
m〉 =

M∑
k

〈b′
l|P̂k|b′

m〉

=
M∑
k

πk
lm, l,m = 1,2, . . . ,M ′. (39)

Thus, if B is complete, then
M∑
k

πk
lm = 〈b′

l|b′
m〉, l,m = 1,2, . . . ,M ′. (40)

Obviously, if the coordinates (q ′
l ,p

′
l) in the set of functions

(38) are associated with an orthogonal (and complete) basis,
then

M∑
k

πk
lm = δlm. (41)

It is equally simple to show that if (40) is true, then the set
B satisfies (14). This follows from the equalities in the reverse
order of (39) and from the fact that if an operator has all matrix
elements between vectors from a complete (or overcomplete)
set equal to zero, then it is the zero operator, i.e., it annihilates
each vector from the Hilbert space. Thus, the set of functions
given by (38) satisfies (40) if and only if the set of projectors
{P̂k = |bk〉〈bk|; k = 1,2, . . . ,M � N} generates a resolution
of unity (14).

3. Orthogonality of two projectors in terms of π k
lm coefficients

The orthogonality of projectors P̂k and P̂k′ is equivalent to

P̂kP̂k′ = δkk′ P̂k′ . (42)

Using arbitrary set B′ satisfying (14), the condition (42)
implies the following conditions on all pairs of coefficients
πk

lm,πk′
lm:

M ′∑
l

πk
l′lπ

k′
ll′′ = δkk′πk

ll′′ , l,l′ = 1,2, . . . ,M;

(43)
k,k′ = 1,2, . . . ,M.

Observe that the two conditions (43) and (40) are based only
on the assumption that |ψ〉 = ∑M ′

l (q ′
l + ip′

l)|b′
l〉, which is true

since B′ satisfies (14).
The two criteria (43) and (40) taken together imply that

the set of functions Pk = ∑M ′
l,m πk

lm(q ′
l − ip′

l)(q ′
m + ip′

m), k =
1,2, . . . ,M , represents a PVM if all pairs π

k1
lm,π

k2
lm (k1,k2 =

1,2, . . . ,M) correspond to orthogonal projectors, i.e., satisfy
(43), and if the condition (40) is satisfied. If only the condition
(40) is satisfied but there is a pair of πk1 ,πk2 violating (43),
then the set of functions corresponds to a POVM. Furthermore,
the parameters appearing as the arguments in the considered
functions are canonical, i.e., the basis is proper orthonormal if
(41) is satisfied.

Let us also briefly discuss the notion of orthogonality of
the quadratic functions representing observables in a proper
basis. Consider two operators Â1 and Â2. The operators are
orthogonal if

Tr[Â1Â2] = 0. (44)

In terms of the coefficients πk
ij in the quadratic functions

corresponding to Â1,Â2 the previous condition is written as

Tr[Â1Â2] =
N∑
i

〈ai |Â1Â2|ai〉

=
N∑
ii ′

〈ai |Â1|a′
i〉〈a′

i |Â2|ai〉

=
N∑
i,i ′

π1
ii ′π

2
i ′i = 0. (45)

Thus, it makes sense to call two quadratic functions of the
form (9) orthogonal if

N∑
ij

π1
ijπ

2
ji = 0. (46)

The condition (46) supplies us with the notion of orthogonality
between two quadratic functions solely in terms of these
functions, with no reference to the analogous Hilbert space
formulation.

An alternative criterion for orthogonality of two 1D
projectors in terms of the associated quadratic function, i.e., in
terms of π1

ij ,π
2
ij , is obtained from the fact that orthogonal 1D

projectors commute and the relation (10). In fact,

〈[P̂μ,P̂ν]〉 = δμ,ν = i{Pμ,Pν}
= i

∑
ij

〈ak|eμ〉〈eμ|al〉〈ak|eν〉〈eν |al〉

× [−i{pi,qj } − i{qi,pj }]
= 2

∑
k

π
μ

ii π
ν
ii . (47)

If the two 1D projectors are orthogonal, the sum of the products
of the diagonal coefficients in the corresponding quadratic
functions is zero.

062114-6



POSITIVE-OPERATOR-VALUED MEASURES IN THE . . . PHYSICAL REVIEW A 91, 062114 (2015)

4. Relations between functions representing an operator given by
PVMs or by POVMs

A Hermitian operator can be defined using a proper
basis |ei〉, i = 1,2, . . . ,N , or an overcomplete basis |bl〉,
l = 1,2, . . . ,M . Similarly, the operator can be represented as
a quadratic function of 2N canonical variables (q,p) using the
proper basis or as a quadratic function of the 2M noncanonical
parameters (Q,P ). Relations between different representations
are given by the simple formula

πlm =
∑
ij

aij 〈bl |ei〉〈ej |bm〉, (48)

where πlm (l,m = 1,2, . . . ,M) and aij (i,j = 1,2, . . . ,N) are
the coefficients in representations given by the overcomplete
and the proper orthogonal basis, respectively.

The inverse relation expressing aij (i,j = 1,2, . . . ,N) in
terms of πlm (l,m = 1,2, . . . ,M) reads

aij =
∑
lm

πlm〈ei |bl〉〈bm|ej 〉. (49)

In formulas (48) and (49) the Hermitian scalar product could be
replaced by the combination of the Riemannian scalar product
and the symplectic skew product, expressing the relations
entirely in terms of objects appearing in the Hamiltonian
formulation. However, the corresponding transformations are
not canonical.

IV. RELEVANT EXAMPLE: THE PHASE

The phase of quantum motion is an observable physical
quantity that is naturally expressed using an appropriate
POVM (see [21] and references therein). For our purpose
it is enough to discuss the phase POVM in the case of
the simplest quantum systems with finite Hilbert spaces and
with a nondegenerate energy spectrum. In this section we
first illustrate the construction of the relevant nonorthogonal
basis and the POVM in the Hilbert space formulation. We
then present the corresponding Neumark extension. The
Hilbert space analysis will be followed by the corresponding
Hamiltonian treatment.

A. Phase POVMs and the Neumark extension

Consider an N1-dimensional Hilbert space H1 with an
arbitrary proper basis denoted by |n〉1, n = 1,2, . . . ,N1. With
this basis one associates an infinite set of vectors parametrized
by an angle ϕ ∈ [0, 2π ) defined as

|ϕ〉1 = 1√
2π

N∑
n=1

eiknϕ|n〉1, ϕ ∈ [0, 2π ), (50)

where kn ∈ Z are integers. In the general construction pre-
sented here these integers are arbitrary. However, if the
constructed POVM is to correspond to the phase, then the
integers are to be precisely the nondegenerate and discrete
energy eigenvalues of the considered system.

A collection of operators defined as

�̂1(ϕ1,ϕ2) =
∫ ϕ2

ϕ1

P̂1(ϕ)dϕ (51)

and

P̂1(ϕ) ≡ |ϕ〉11〈ϕ| = 1
2π

N∑
n=1

N∑
m=1

ei(kn−km)ϕ|n〉11〈m| (52)

forms a resolution of unity, i.e.,

�̂1(0,2π) = Î , (53)

but the operators associated with disjoined subsets of ϕ ∈
[0,2π) are not orthogonal. Thus the collection (52) forms a
POVM. As pointed out, if the integers kn coincide with the
energy eigenvalues, the collection of operators (51) satisfies
the so-called covariance condition

exp −iaĤ �̂1(ϕ1,ϕ2) exp iaĤ

= �̂1((ϕ1 + a)mod2π,(ϕ2 + a)mod2π ). (54)

This fact justifies the association of the POVM (52) with the
data corresponding to the phase of the quantum motion.

In order to formulate the Neumark extension of the phase
POVM one needs an appropriate Hilbert space H2 with
dimension N2 > N1 and a projector-valued measure P2(ϕ)
with projectors onto orthogonal subspaces of H2 associated
with disjoined intervals. Then the theorem claims that there is
a projector P2→1 from H1 onto H2 such that P2→1�̂2P2→1 is
isomorphic to �̂1.

For the case of the POVM given by (52) the Hilbert space
H2, the PVM P̂2, and the projector P2→1 are given as follows.
The Hilbert space H2 is in fact the complex vector space
of square integrable functions on the interval (0, 2π ). The
coordinate representation is determined by generalized vectors
|ϕ〉2 and 2〈ϕ|ϕ′〉2 = δ(ϕ − ϕ′) and a proper basis |k〉2 is given
by

2〈ϕ|k〉2 ≡ ψk(ϕ) = 1√
2π

e−ikϕ, k ∈ Z. (55)

The proper basis with orthogonal generalized vectors

|ϕ〉2 = 1√
2π

+∞∑
k=−∞

eikϕ|k〉2 (56)

is used to define the PVMs

�̂2(a,b) =
∫ b

b

P̂2dϕ, (57)

P̂2(ϕ) = |ϕ〉22〈ϕ| = 1
2π

+∞∑
k=−∞

+∞∑
k′=−∞

ei(k−k′)ϕ|k〉22〈k′|. (58)

The relevant projector P2→1 is defined as

P̂2→1 = |q1〉22〈q1| + |q2〉22〈q2| + · · · + |qN 〉22〈qN |, (59)

where |qi〉2 are vectors (56) with k = |qi〉. It follows that

P̂2→1P̂2(ϕ)P̂2→1 = P̂2→1|ϕ〉22〈ϕ|P̂2→1

= 1
2π

N∑
i=1

N∑
i ′=1

ei(qi−qi′ )ϕ|qi〉22〈qi ′ |, (60)

which is isomorphic to the measure P̂1(ϕ). This is the Neumark
theorem for the POVM given by (52).
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B. The phase in the Hamiltonian formulation

The Hamiltonian formulation of the original quantum
system on the finite-dimensional Hilbert space H1 is given on
the finite even-dimensional phase space M1. The Neumark
extension involves a Hamiltonian system on an infinite-
dimensional symplectic manifold M2, which is a direct sum
of two real vector spaces of square integrable functions on
[0,2π).

The phase POVM involves an overcomplete set of vectors
{|ϕ〉} indexed by the continuous index ϕ ∈ [0,2π). Conse-
quently, the expansion of an arbitrary |ψ〉 ∈ CN ,

|ψ〉 =
∫

dϕ[q(ψ ; ϕ) + ip(ψ ; ϕ)]|ϕ〉, (61)

generates functional parameters [q(ψ ; ϕ),p(ψ ; ϕ)] of points
ψ ∈ CN . On the other hand, the proper energy basis {|n〉1}
(with eigenvalues kn 
= kn′ ,n 
= n′) generates, via

|ψ〉 =
N∑
n

[qn(ψ) + ipn(ψ)]|n〉1, (62)

2N canonical coordinates {qn(ψ),pn(ψ)} of a point ψ indexed
by discrete and finite n. All relevant formulas from Sec. III
involve either of the expressions

〈ϕ1|ϕ2〉 = 1
2π

N∑
n

exp ikn(ϕ2 − ϕ1) (63)

or

〈n|ϕ〉 = 1√
2π

exp iknϕ (64)

and the real and the imaginary parts thereof. For example, the
arbitrary vector |
〉2 from H2 is expended as

|
〉2 =
∫ 2π

0
dϕ[Q(ϕ) + iP (ϕ)]|ϕ〉2, (65)

where the conditions 〈el|
〉2 = 0, l 
= kn, and n = 1, . . . , N

obtain the explicit form
∫ 2π

0
dϕ[Q(ϕ) + iP (ϕ)]〈el |ϕ〉2

=
∫ 2π

0
dϕ[Q(ϕ) + iP (ϕ)]

1√
2π

eilϕ = 0. (66)

The functions Q(ϕ),P (ϕ) are the canonical coordinates on
M2. The constraints (33) are explicitly given by

φl(Q(ϕ),P (ϕ))

= 1√
2π

∫ 2π

0
dϕ[cos(lϕ)Q(ϕ) − sin(lϕ)P (ϕ)] = 0,

πl(Q(ϕ),P (ϕ))

= 1√
2π

∫ 2π

0
dϕ[sin(lϕ)Q(ϕ) + cos(lϕ)P (ϕ)] = 0. (67)

Variational derivatives of the constraints read
δφl

δQ
= 1√

2π
cos(lϕ),

δφl

δP
= − 1√

2π
sin(lϕ),

δπl

δQ
= 1√

2π
sin(lϕ),

δπl

δP
= 1√

2π
cos(lϕ).

(68)

Poisson brackets between the constraints are, as in the general
case (34),

{φl,πl′ }Q,P =
∫ 2π

0
dϕ

(
δφl

δQ

δπl′

δP
− δφl

δP

δπl′

δQ

)

= 1
2π

∫ 2π

0
dϕ[cos(lϕ) cos(l′ϕ)

+ sin(lϕ) sin(l′ϕ)] = δll′ ,

{φl, φl′ }Q,P = 1
2π

∫ 2π

0
dϕ[− cos(lϕ) sin(l′ϕ)

+ sin(lϕ) cos(l′ϕ)] = 0,

{πl,πl′ }Q,P = 1
2π

∫ 2π

0
dϕ[sin(lϕ) cos(l′ϕ)

− cos(lϕ) sin(l′ϕ)] = 0. (69)

The functions �
(a,b)
2 (Q,P ) of the canonical (Q,P ) correspond-

ing to the PVM �̂2(a,b) is given, after some computation, by
the simple expression

�
(a,b)
2 (Q,P ) = 2〈
|

∫ b

a

dϕ|ϕ〉22〈ϕ|
〉2

=
∫ b

a

dϕ[Q2(ϕ) + P 2(ϕ)], (70)

which is as expected for the coordinates corresponding to the
eigenbases of �̂2. The functions corresponding to the POVM
�̂1(a,b) in the original space are by definition

P
(a,b)
1 (Q,P ) = 1〈
|

∫ b

a

dϕ|ϕ〉11〈ϕ|
〉1. (71)

Due to nonorthogonality of the vectors |ϕ〉1, this expression
cannot be significantly simplified. The explicit expression
reads

P
(a,b)
1 (Q,P ) =

∫ 2π

0
dϕ

∫ 2π

0
dϕ′′[Q(ϕ) − iP (ϕ)]

× [Q(ϕ′′) + iP (ϕ′′)]
∫ b

a

dϕ′
1〈ϕ|ϕ′〉11〈ϕ′|ϕ′′〉1,

where

1〈ϕ|ϕ′〉11〈ϕ′|ϕ′′〉1 = 1
2π

N∑
n=1

eikn(ϕ′−ϕ) 1
2π

N∑
m=1

eikm(ϕ′′−ϕ′).

This expression results also from explicit substitution of the
constraints (67) satisfied by (Q,P ) into the expression (70).

V. SUMMARY

We have studied several questions related to the description
and interpretation of POVMs in the Hamiltonian formulation
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of quantum mechanics. The topic is important from the
point of view that considers the Hamiltonian formulation as
independent and equivalent to the Hilbert space formulation,
because the POVMs appear as a description of important
quantum mechanical concepts, originally represented math-
ematically within the Hilbert space formulation. In particular,
the POVMs appear in the treatment of approximate and indirect
measurements and in the description of joint measurement of
conjugate variables. Furthermore, a physically justified defini-
tion of certain observables requires the corresponding POVMs
instead of standard representation via PVMs. As pointed
out, if the Hamiltonian formulation is to be considered as a
viable alternative approach to the mathematical formulation
of quantum mechanics, it is important to analyze properties
of representatives of the POVMs within the Hamiltonian
approach.

In particular we have studied the properties of the sets of
state coordinates corresponding in the Hamiltonian formula-
tion to an overcomplete basis in the Hilbert space formulation.
Coordinates in such a set are dependent and the relations

can be treated as constraints on the Hamiltonian formulation
in a larger phase space. We have demonstrated that the
Hamiltonian treatment of systems with linear primary con-
straints corresponds to the Neumark extension and reduction.
We have also provided the criteria that distinguish between
objects representing POVMs from those of PVMs entirely
within the Hamiltonian formulation. Finally, these abstract
considerations have been illustrated using the example of
a POVM corresponding to the phase of quantum motion.
The Hilbert space formulation of the phase POVM and the
corresponding Neumark extension was described first and then
the corresponding Hamiltonian description was provided.
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Counterpropagating, spatially separated hollow pump and coaxial probe laser beams generate narrow Zeeman
electromagnetically induced transparency (EIT) resonances in the vacuum Rb cell. The lasers are locked to D2
line transition Fg � 2 → Fe � 1 of 87Rb. For the probe laser beam intensity between 0.1 and 3.0 mW∕cm2 this
Ramsey-type configuration yields dual-structured resonances having a narrow peak on top of a broader pedestal.
Linewidths of the narrow peak are nearly independent of the probe laser beam intensity and of the probe diameter
(for diameters 0.8 and 2.7 mm), provided that the dark region between the pump and the probe beams is fixed. At
the probe laser beam intensities below 0.1 mW∕cm2 Zeeman EIT is a single narrow resonance. With this geometry
of laser beams, and at low probe intensity, the presence of the pump enables the probe EIT, i.e., the probe
transmission becomes enhanced in a narrow spectral window. Accompanying theoretical model showed good
quantitative agreement with the measurements. © 2015 Optical Society of America

OCIS codes: (270.1670) Coherent optical effects; (300.3700) Linewidth.
http://dx.doi.org/10.1364/JOSAB.32.000426

1. INTRODUCTION
Electromagnetically induced transparency (EIT) is a laser(s)
transmission peak due to coherences between atomic levels
induced by the same laser(s) whose transmission is monitored
[1]. EIT as a quantum phenomenon has its classical analog
[2]. In a typical interaction scheme, two lasers couple two
hyperfine levels (hyperfine coherence) or Zeeman sublelevels
(Zeeman coherence) with the common excited-state hyper-
fine level. Hyperfine (Zeeman) level (sublevels) are long lived
and degeneracy of the ground-state angular momentum is
larger or equal to that of the excited state. Alkali atoms with
two long-lived hyperfine levels in the ground state, and optical
transitions to excited-state hyperfine level in a suitable wave-
length region are most often used in EIT experiments. Quantum
EIT, the subject of this investigation, is a manifestation of the
coherent superposition of Zeeman sublevels of the ground
hyperfine level due to interactions with the laser field.
Superposition called dark state [3–5] is decoupled from the in-
teraction and presents foundation of EIT. EIT has gained con-
siderable interest because of nonlinear response and steep
dispersion around the atomic resonance at reduced absorption.

A method analog to the Ramsey method of separated oscil-
latory fields [6] can be utilized for narrowing dark resonances
in alkali atoms using thermal atomic beam [7–9] or atoms
contained in vacuum glass cells, by spatially separating pump
and probe beams [10,11]. Ramsey-like mechanisms yield very
narrow EIT resonances in alkali-metal vapor cells with buffer
gas (or with antirelaxation wall coating), even with a single
laser beam [12,13].

In experiments with vacuum gas cells it is necessary to
apply a particular geometry of a hollow pump and a narrow
coaxial probe in order to see narrow fringes on the probe EIT
[14], or to implement a multizone spectroscopy like in [15].
Instead of spatially separating continuous wave pump and
probe, pulses of the pump and probe were used in a Ramsey-
like method for narrowing EIT by switching the laser beams
on and off. Hyperfine EIT produced in the double Λ scheme
with the pump and the weak probe pulse have produced high
contrast, very narrow fringes (≈100 Hz) in the probe EIT in Cs
buffer gas cell [16,17].

In this work we use counterpropagating pump and probe
beams to study Ramsey effect on linewidths and amplitudes
of the probe Zeeman EIT in Rb vacuum cell. Zeeman coher-
ences are generated in the Fg � 2 hyperfine level of the
ground state of 87Rb by the pump beam, made in the form of
a hollow cylinder. The atomic coherence is carried by the
atomic thermal motion to a small-diameter probe beam that
passes through the center of the hollow pump laser. There
is dark region between the pump and probe beam, which
we keep constant in the study. This counterpropagating
geometry allows EIT with much weaker probe intensity as
opposed to the copropagating pump and probe [14] due to
reduced multiple scattering of pump light into the direction
of the probe and toward the photodetector. Therefore in this
work we cover much lower probe laser beam intensities than
in [14]. Also, differently than in [14], here we investigate EIT
line shapes for D2 line of 87Rb. We examine how different
probe diameters, for the same dark region, change the shape
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of the dual-structured probe EIT resonances having a nar-
rower central peak (due to atomic coherence coming from the
pump) and a wider pedestal (due to probe beam influence).
The dependence of narrow resonances as a function of
the probe laser beam intensity and diameter is studied.
Experimental results are compared with the detailed theoreti-
cal model based on time-dependent optical Bloch equations
(OBEs). We determine the range of the probe intensity when
Zeeman EIT has only narrow structure, i.e., the transmission
of the probe beam becomes enhanced when the pump is
turned on. EIT resonances in vacuum cells, even with the
Ramsey method, are wider than EIT in buffer gas cells.
However, there is an interest for narrow EIT in vacuum cells
at room temperature because atomic collisions, and temper-
ature fluctuations are reduced, which is important for EIT
applications.

2. EXPERIMENTAL SETUP
The schematic of the experiment, given in Fig. 1, describes the
geometry of laser beams we have used to investigate effects of
spatially separating the probe and pump beam on the EIT line
shapes. A large-diameter hollow pump beam and narrow co-
axial probe beam counterpropagate through the Rb cell. The
two beams are generated from the same external cavity diode
laser (ECDL). Employing counterpropagating probe and
pump beams requires precise laser frequency tuning to the
optical transition; otherwise the probe and pump will not
be able to interact with the same atoms (atomic velocity is
not expected to change in the region between the pump
and probe). The laser is locked using the Doppler free dichroic
atomic laser lock (DDAVLL) technique [18] on D2 line transi-
tion Fg � 2 → Fe � 1 of 87Rb, and is linearly polarized. The
vacuum Rb cell, 85 mm long and of 25 mm in diameter, is kept
at room temperature. The Rb cell is inside cylindrical solenoid
that provides longitudinal magnetic field. The triple layers of
μ-metal, around the cell, minimize effects of stray magnetic
fields. In the experiment we measure the probe transmission
as a function of the external magnetic field. Pump intensity is
11.5 mW∕cm2 and the probe intensity varies from 0.1
to 3.0 mW∕cm2.

We have measured Zeeman EIT by sweeping the magnetic
field for two probe 1∕e2 diameters, 2.7 and 0.8 mm. The pump
beam inner diameter is changed from 5 to 7 mm when the
probe diameter is changed from 0.8 to 2.7 mm, respectively.

Thus, the distance between pump and the probe, or “dark
region,” is the same and equals 2.1 mm.

3. THEORY
The model is similar to one described in more detail in [19].
The difference stems from the fact that in this case the pump
and probe are counterpropagating. The evolution of Rb atoms
interacting with spatially separated pump and probe laser
beams is described using time-dependent OBEs for the atomic
density matrix

dρ̂
dt

� −

i
ℏ
�Ĥatom�B� � Ĥ int�t�; ρ̂� �

�
dρ̂
dt

�
SE

�
�
dρ̂
dt

�
relax

; (1)

where

Ĥatom�B� �
X
j

ℏωj�B�jgjihgjj �
X
k

ℏωk�B�jekihekj (2)

is the Hamiltonian of an atom in the external magnetic field B,
aligned with the laser beam propagation direction. Zeeman-
shifted energies ℏωj�B� (ℏωk�B�) correspond to ground (ex-
cited) states jgji (jeki). The interaction of an atom with laser
is treated in dipole approximation

Ĥ int�t� � −

X
j;k

E�t� · djk�jgjihekj � jekihgjj�; (3)

where E�t� is the laser electric field (in the atomic reference
frame) and djk is the atomic electric dipole moment for the
transition between states jgji and jeki. Spontaneous emission
is given by

�
dρ̂
dt

�
SE

�
X
m

2Γ̂mρ̂Γ̂†
m − Γ̂†

mΓ̂mρ̂ − ρ̂Γ̂†
mΓ̂m; (4)

where Γ̂m are Lindblad operators related to dipole transitions
from the excited- to ground-state manifold. In order to obtain
good agreement with experimental line shapes, and in addi-
tion to [19], we include relaxation of ground-state populations
toward the equilibrium

�
dρ̂
dt

�
relax

� −γ
X
j

�
ρgj;gj −

1 − πe
8

�
jgjihgjj; (5)

where πe is the total excited-state population. When consider-
ing D2 line transition Fg � 2 → Fe � 1, the excited hyperfine
levels Fe � 2 and Fe � 3 are also populated due to the
Doppler broadening and therefore have to be taken into
account. Equations for Fg � 1 ground-level density matrix
elements are disregarded since that level is not laser-coupled.
OBEs are numerically integrated for a collection of atoms
passing through the laser beams at different trajectories
with velocities sampling Maxwell–Boltzmann distribution.
The cylindrical symmetric atomic ensemble density matrix
is obtained after averaging over velocities and suitable angular
integration. This enables the calculation of atomic vapor
polarization, the laser electric field after propagation through
the Rb cell and, eventually, Zeeman EIT resonances.
Additional details can be found in [20,21].

Pump and probe laser beams have linear polarization
and the same frequency. Their propagation directions are

Fig. 1. Experimental setup: ECDL, external cavity diode laser; OI,
optical isolator; DDAVLL, Doppler free dichroic atomic laser lock;
BS, beam splitter; OF, optical fiber; M, mirrors; P, polarizer; NF,
variable neutral density filter; BE, beam expander; λ∕2, retardation
plate; B, blade iris diaphragm; D, photodetector.
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opposite. As schematically presented in Fig. 2, the probe laser
beam passes coaxially through the center of the hollow pump
beam. The probe beam profile along radial distance r at the Rb
cell entrance is modeled by a Gaussian,

Iprobe�r� � 2Īprobe exp�−2r2∕r20�; (6)

where r0 is 1∕e2 the radius of the probe beam and Īprobe is the
probe beam intensity (total probe power divided by r20π). The
pump beam radial intensity profile is taken to be the same
along the cell length and ring-shaped:

Ipump�r� � Īpumpa�erf�p�r − r1�� − erf�p�r − r2���; (7)

where Īpump is the pump beam intensity and a is the normali-
zation constant. Parameter p controls the steepness of the
profile near the beam inner and outer edge that are deter-
mined by the parameters r1 and r2, respectively.

4. RESULTS AND DISCUSSION
We show results of interactions of the probe beam with atoms
prepared in the dark state by the spatially separated pump
beam. Both the pump and probe have linear and mutually
parallel polarizations. Sweep of the magnetic field provides
detuning of two circular components from the two photon
resonance among Zeeman sublevels for which ΔmF � 2. In
the following we present EIT line shapes, amplitudes, and
linewidths obtained by measuring the probe transmission at
different magnetic fields. In this work we are not concerned
with absolute values of the probe transmission. Therefore, we
present EIT line shapes normalized such that maximal trans-
mission is set to unity.

Figure 3(a) shows measured and Fig. 3(b) calculated
Zeeman EIT resonances for two probe laser beam intensities,
0.2 mW∕cm2 (upper rows) and 1.4 mW∕cm2 (lower rows),
and two probe laser beam diameters, 0.8 mm (left column)
and 2.7 mm (right column). EIT line shapes for both laser
beam intensities have dual structure, a narrow peak with
fringes appearing on top of a broader pedestal. A broader ped-
estal is generated by the probe itself, while narrow peak and
fringes result from Ramsey interference. Ramsey fringes are
well pronounced for the narrower probe beam because of the
shorter interaction time of Rb atoms with the probe light, i.e.,
smaller probe influence. When the probe laser beam intensity
is increased, or its diameter is increased, the Ramsey fringes
lose their visibility. Theoretical results in Fig. 3(b) are in quite
good agreement with the experiment.

EIT widths and amplitudes of the narrow and wide struc-
tures are obtained after resolving the two structures in EIT
line shapes. Figure 4 presents widths of the narrow structure

of EIT resonances, for two probe laser beam diameters.
Experimental results are in Fig. 4(a), and theoretical in
Fig. 4(b). The linewidth of the narrow structure in our experi-
ment is ≈15 mG or ≈18 kHz. This is similar to the narrowest
EIT obtained in vacuum alkali gas cells with multizone
Ramsey technique [15]. As seen from Fig. 4, the narrow struc-
ture EIT linewidth is narrower and also more robust against
probe intensity for the narrower probe beam. The behavior of
the pedestal width is as expected for a single beam EIT [22]: it
is narrower for the wider probe, and it changes much more
rapidly with the probe laser beam intensity. Calculated line-
widths follow the same trend and the narrower probe beam
also gives narrower linewidth.

In the experiment with a single laser beam and coated cell
[13], EIT has also dual structure. Similar to our result, narrow
structure of EIT in [13] is narrower for the smaller laser beam
diameter. Moreover, intensity dependence of the linewidths of
the narrower peak is similar as in our setup: EIT linewidth
obtained with the narrower beam is less dependent on the
laser intensity. Such intensity dependence given in [13] is
due to the geometry of the cell and the Ramsey effect of a
multiple interaction of atoms with the same laser beam—

narrowing the laser increases the dark region, i.e., time that
the atom spends in the dark. The similar behavior of the

Fig. 2. Radial profiles of counterpropagating hollow pump and
coaxial probe laser beams used in the theoretical model.

(a)

(b)

Fig. 3. (a) Experimental and (b) theoretical Zeeman EIT at D2 line,
for two probe laser beam intensities, 0.2 mW∕cm2 (upper rows) and
1.4 mW∕cm2 (lower rows), and two probe laser beam diameters,
0.8 mm (left column) and 2.7 mm (right column).
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narrow peak of the EIT in our work has a different explana-
tion. The probe laser beam, apart from probing the atoms
coherently prepared in the pump beam, influences the atomic
evolution, which affects the narrow structure linewidth.
During atomic passage through the laser beams the atomic
state changes due to competitive effects of the laser electric
field and the external magnetic field. The laser field continu-
ously prepares the atoms into the dark state. The external
magnetic field causes oscillations of the atomic ground-state
coherences at the corresponding Larmor frequency and alters
the atoms from the dark state. When the external magnetic
field is zero the atoms reach the dark state inside the strong
pump beam, which consequently leads to a maximum in the
probe transmission. At nonzero magnetic field the state of the
atoms passing through the probe beam differs from the dark
state, so that the probe transmission decreases. However, this
decrease in probe transmission due to the influence of the mag-
netic field is partially compensated by preparation of the atoms
into the dark state within the probe beam. Hence, the actual
probe transmission at some magnetic field is somewhat larger
than the one expected without the probe influence. This causes
broadening of the narrow structure in Zeeman EIT resonances
that becomes more pronounced as the probe intensity and/or
diameter increases.

Figure 5 shows measured and calculated amplitudes of the
narrow structure of EIT resonances, for probe laser beam
diameters 0.8 mm [Fig. 5(a)] and 2.6 mm [Fig. 5(b)]. As both

experiment and theory show, amplitudes of narrow peaks of
the probe EIT are nearly independent on probe beam diam-
eter. Their dependence on the probe intensity and diameter
is different than the amplitude of the wide structure EIT.

Amplitudes of the narrow peak of the probe EIT (obtained
when the pump laser beam is turned on) have different
dependence on the probe laser beam intensity than a single
beam EIT, tuned to the same Raman resonance and with
the same diameter. This is demonstrated in Fig. 6 where
we plot amplitudes of both narrow and wide structure as a

(a)

(b)

Fig. 4. (a) Experimental and (b) theoretical full width at half-
maximum of the narrow structure of EIT as a function of the probe
laser beam intensity, for two probe laser beam diameters, 0.8 and
2.7 mm.

(a)

(b)

Fig. 5. Experimental and theoretical results for the amplitudes of
the narrow structure of EIT resonances for two probe laser beam
diameters: (a) 0.8 mm and (b) 2.7 mm.

Fig. 6. Amplitudes of the probe EIT with and without pump laser
beam, for two probe laser beam diameters: 0.8 and 2.7 mm.
Amplitudes of wide (narrow) structures are shown for the pump laser
beam turned off (on).
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function of probe intensity, for two probe diameters. The
maximum of the narrow structure of the probe EIT in the
Raman–Ramsey configuration is at very low laser intensities,
below values that we can detect in the experiment.

At very low probe laser beam intensities, below 0.1 mW∕
cm2, the probe EIT has only narrow structure. The transmis-
sion of the weak probe can be controlled in a narrow spectral
range around zero magnetic field by switching the pump beam
on/off. For small magnetic fields and when the pump laser
beam is present, the atoms coming into the probe beam are
already coherently prepared into the dark state. This leads
to the increase of the probe transmission, as presented in
Fig. 7, where we show probe EIT for 0.8 mm probe beam
diameter and for probe beam intensity of 0.1 mW∕cm2,
without or with pump beam of intensity 11.5 mW∕cm2.
Enhancement of the probe transmission is better for larger
pump beam intensities.

5. CONCLUSION
We presented effects of the counterpropagating spatially sep-
arated pump and probe laser beam configuration on the probe
Zeeman EIT. Both pump and probe beams are tuned to the D2

line of 87Rb. For the geometry of the experiment, with the
probe coaxial with the surrounding hollow pump and small
dark region between the pump and probe, we showed that
in the vacuum cell, like in cells with antirelaxation coating,
resonances can be narrower when the probe diameter is
smaller. For the probe of 0.8 mm in diameter we observed
and calculated narrower linewidths, almost independent of
the probe laser beam intensity. Also, for this small probe diam-
eter, when its intensity is below 0.1 mW∕cm2, dual structure
of Zeeman EIT turns in to a single narrow EIT. Probe trans-
mission is enhanced in a narrow range of small magnetic fields
when the pump laser beam is present, which is akin to optical
switch behavior.
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Abstract
We investigate, experimentally and theoretically, time development of Zeeman
electromagnetically induced transparency (EIT) during propagation of two time separated
polarization laser pulses, preparatory and probe, through Rb vapour. The pulses were produced
by modifying laser intensity and degree of elliptical polarization. The frequency of the single
laser beam is locked to the hyperfine = → =F F2 1g e transition of the D1 line in 87Rb.
Transients in the intensity of σ− component of the transmitted light are measured or calculated at
different values of the external magnetic field, during both preparatory and probe pulse. Zeeman
EIT resonances at particular time instants of the pulse propagation are reconstructed by
appropriate sampling of the transients. We observe how laser intensity, Ramsey sequence and the
Rb cell temperature affect the time dependence of EIT line shapes, amplitudes and linewidths.
We show that at early times of the probe pulse propagation, several Ramsey fringes are present
in EIT resonances, while at later moments a single narrow peak prevails. Time development of
EIT amplitudes are determined by the transmitted intensity of the σ− component during the pulse
propagation.

Keywords: electromagnetically induced transparency, Ramsey effect, rubidium

(Some figures may appear in colour only in the online journal)

1. Introduction

Electromagnetically induced transparency (EIT) [1–3] is a
quantum interference phenomenon which is manifestated as a
narrow spectral resonance observed in transmitted laser light
through otherwise opaque vapour of, typically, alkali metals.
EIT is attained when two light fields couple two atomic
ground levels to a common excited level (so-called Λ-
scheme). Within the spectral bandwidth of the EIT there is a
strong dispersion of the index of refraction, resulting in a slow
light and storage of light phenomena in EIT medium [4, 5].
EIT is demonstrated as a coherent technique for controlling
the propagation of classical light pulses and other nonlinear
optics applications [4]. A review of EIT in various atomic
schemes is given in [6].

Studies of pulse propagation through EIT medium is a
mature field. Measurements of transient fluorescence [7], of
transient gains of the probe pulse [8], and of non-resonant (for
both preparation and probe beams) transients [9] were done.
Also, transient effects in adiabatic [10] and non-adiabatic [11]
regimes, depending if the rise time of the pulse is slow or fast
compared to the Rabi period and relaxation times, were
analyzed. Transients of transmission of the probe pulse were
studied for cases when the pump beam is turned off [9] or on
[11], when the probe itself is turned on, and when pump and
probe fields are suddenly detuned from the resonance [8, 12].
Detailed theoretical investigation of EIT and features of the
space-time dependent probe field in Λ-, V-, and cascade-type
schemes are presented in [13]. The same authors performed a
time-dependent analysis of the four-wave mixing process
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(FWM) in a double-Λ system, showing that generated FWM
field can acquire ultraslow group velocity [14].

It was shown that the pulse strength of the laser, the pulse
switching rate, and the magnetic field determine the rate at
which transmitted pulse reaches a new steady state. These
parameters also determine transient behavior of the probe
transmission with or without free induction decay [15].
Stepwise Raman detuning of circularly polarized pump and
probe beams resulted in the oscillatory behavior of the tran-
sient signal, with the period of oscillations depending on the
Raman detuning [16]. Dependence of decay rates of the
amplitudes of the signal oscillations on the cell temperature
and laser power was studied in [12]. Behavior of transmission
of lasers inducing Zeeman EIT, when magnetic field is sud-
denly turned off and on, was studied both experimentally and
theoretically [17]. Transients in coherent population trapping
(CPT) can be also induced by ac magnetic field as calculated
in [18, 19]. Transient response of an EIT media to a phase-
modulated pump was examined in [20].

Propagation of a probe pulse through EIT medium is
closely related to temporal evolution of EIT resonance. How-
ever, the transient development of EIT was much less studied
than transmission of the laser pulse. In [21], the build up of EIT
was observed after sudden two-photon detuning from EIT. It
was found that the Zeeman EIT width decreases inversely with
the interaction time and approaches an asymptotic value
determined by the preparatory laser intensity [21].

Various models of transient effects were developed to
predict, or to explain, the propagation of the laser pulse through
EIT medium. Typically, analytical solutions of equations for
density matrix describing a three-state model is used [15]. In
[22] the authors compared transients for the dressed-atom and
bare-atom pictures. The calculations of temporal evolution of
EIT were also studied [23]. The transient response of atomic
system was calculated when the laser is suddenly turned on in
the presence of external magnetic field [24].

The Ramsey method of separated oscillatory fields [25]
was applied to alkali atoms contained in the glass cell in order
to narrow resonance linewidth. Application of two or more
successive laser pulses leads to the appearance of high contrast
and narrow (∼100 Hz) CPT and EIT fringes [26–30]. Calcu-
lations have also shown that quantum interference, driven by
two identical pulses, results in Ramsey-like fringes [31]. Two-
photon free-induction decay in a three-level Λ system used to
obtain EIT was reported in [32]. Ramsey interference effect
appears after pulsed excitation, with fringes observed as time-
domain oscillations in the transmission amplitude of a long
attenuated query pulse [33]. Transient of Raman–Ramsey
fringes (RRF) and EIT have been measured in sodium vapour
in the hyperfine Λ system [34]. Ramsey fringes induced by
Zeeman coherence in various Rb cells for both spatially and
temporally separated laser fields were reported in [35]. Ram-
sey-like measurements of Zeeman decoherence that determine
the dumping rate of such oscillations are presented in [36]. One
application of Ramsey interference is frequency selective
magnetometer based on light-pulse atom interferometry, as
described in [37]. Implementation of a compact atomic clock
based on Ramsey–CPT interference is proposed in [38].

This work extends previous studies of laser pulse pro-
pagation through EIT medium by observing transient devel-
opment of Zeeman EIT during the pulse propagation.
Experimentally and theoretically, we monitor intensity of the
σ− component during propagation of two time separated
elliptically polarized laser pulses. The laser is locked to the D1

line of 87Rb. Zeeman EIT curves are reconstructed from
transients of σ− intensity at different external magnetic fields.
We investigate transient behavior of the EIT line shapes,
amplitudes and linewidths from the moments when laser
pulses enter the Rb buffer gas cell. In particular, we investi-
gated the case when pulses are highly elliptical (maximum
relative optical power of σ− component is only 15%), since
several slow and stored light experiments typically use this
level of ellipticity [4, 39]. We explore the effects of Ramsey
sequences by comparing the behavior of EIT during the
preparatory and the probe pulse by varying the length of the
dark time between them. The Zeeman EIT resonances are
then expected to exhibit the oscillation of transmission in
magnetic field caused by Larmor precession during the dark
time. The motivation of this work was in part to investigate
the properties of the foreseen Ramsey oscillation with respect
to pulse intensities and Rb density. Experimentally observed
developments of the Zeeman EIT are compared with corre-
sponding theoretical results. Our theoretical model based on
time dependent Maxwell–Bloch equations qualitatively
reproduces experimental observations. We are not aware of
previous publications that show the time evolution of Zeeman
EIT and Ramsey effect on this evolution when fast devel-
oping pulse propagates through Rb cell with buffer gas.

The detection of Raman–Ramsey oscillations on EIT line
shapes presented in this work can find application in high
precision magnetic field measurements and in determining the
atomic decoherence rates.

2. Theory

2.1. Description of the model

The evolution of Rb atoms contained in a buffer-gas cell is
calculated using time dependent optical Bloch equations for
Rb density matrix ρ̂

ρ ρ
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where H Bˆ ( )atom is the atomic Hamiltonian in the external
longitudinal magnetic field, V r tˆ ( , )int describes laser-atom
interaction and the term with subscript SE corresponds to
spontaneous emission. The hyperfine levels either coupled to
the laser light or populated due to spontaneous emission are
shown in the energy level diagram in figure 1.

Collisions with the buffer-gas affect the atomic evolution
in several ways. First, Rb atoms acquire diffusive motion
within the cell, as described by the first term at the right-hand
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side of (1) with D as the diffusion coefficient. Second, within
each excited state manifold the populations of Zeeman sub-
levels are equalized, while the coherences are destroyed due
to total collisional depolarization of the excited state [40, 41].
The collisions with the buffer gas also broaden the optical
transition and together with the Rb–Rb collisions lead to the
relaxation of the ground state populations and coherences.
These effects correspond to the last term at the right-hand side
of (1). For the buffer gas pressure of 30 Torr the collisional
broadening of ≈300–400MHz is comparable with the Dop-
pler width, so that we use the approximation of the motionless
atoms in the direction of the laser beam propagation. Detailed
exposition of the theoretical model is given in [42]. The
present experimental configuration requires some additions
concerning time dependent features. Contrary to the steady
state calculations in [42], here we are solving (1) in cylind-
rical coordinates (r, z) and in time. The effects of propagation
of slowly varying envelopes (SVEs) of the laser electric field
 and the polarization  of the Rb vapour are also incorpo-
rated via

ω
ϵ

∂
∂

+ ∂
∂

=  
c

r z t B

t

r z t B

z c
r z t B

1 ( , , ; ) ( , , ; ) i

2
( , , ; ), (2)

0

where ϵ0 is the vacuum dielectric constant, c is vacuum speed
of light and ω is the laser frequency. The time dependence of
these SVEs originates from the time dependent boundary
condition for the electric field at the entrance to the Rb cell

= = r z t B r t( , 0, ; ) ( , )in . In the frequency domain the
propagation equation is

ν ν ν ω
ϵ

ν+ ∂
∂

= 
c

r z B
r z B

z c
r z Bi ( , , ; )

( , , ; ) i

2
( , , ; ). (3)

0

The frequencies for which ν r( , )in is significant satisfy

ν ν ν ν
≪ ∂

∂
∼  

c
r z B

r z B

z

r

L
( , , ; )

( , , ; ) ( , )
, (4)in

where L is the cell length, so that we can safely drop the first
term from (2). This leads to

ω
ϵ

∂
∂

= r z t B

z c
r z t B

( , , ; ) i

2
( , , ; ), (5)

0

which is used, in conjunction with (1), for calculation of the
transmitted electric field at z = L and Zeeman EIT resonances
at particular time instants. The normalized σ− transmission
corresponds to the ratio − −I Itr in , where −Itr and

−Iin denote
intensities of the σ− component of a laser beam, after pro-
pagation through and before entering into the Rb cell,
respectively. Numerical calculations are performed using the
DOLFIN finite element library [43] (part of the FEniCS
project [44]) and CBC.PDESys package [45].

2.2. Theoretical results

The EIT resonances were determined from calculated σ−

transmissions at a given time instant after the σ− pulse is
launched into the Rb cell, at various magnetic fields. The cell
temperature is 67 °C. The period between the two pulses,
when the laser beam was turned off, was set to 60 μs. Overall
laser intensities during the first (preparatory) and the second
(probe) pulse were 4.9 and 0.9 mW cm−2, respectively. Both
pulses were elliptically polarized with 15% of photons car-
rying the σ− polarization. Calculated EIT curves at t = 6, 16,
100, and 328 μs from the beginning of the probe pulse are
shown in figures 2(a)–(d), respectively.

From the calculated transmission signals, the amplitudes
and the linewidths of Zeeman EIT resonances evolving in
time were extracted and shown in figures 3(a) and (b),
respectively. These results show that the central peak has
higher amplitude and wider line shape soon after the start of
the probe pulse.

3. Experiment

3.1. Description of the experiment

Propagation of the polarization laser pulses and temporal
evolution of Zeeman EIT resonances are experimentally
realized in the Hanle configuration. A schematic of the
experiment is given in figure 4(a).

The external cavity diode laser is frequency locked to the
hyperfine = → =F F2 1g e transition of the D1 line in 87Rb
using the Doppler-free dichroic atomic vapour laser lock
method [46, 47]. Gaussian profile for the laser beam is
obtained by the short single mode optical fiber. In order to
apply the Ramsey method of repeated interactions of a laser
light with Rb atoms, the power of the first order diffracted
beam from the AOM is modulated and transmitted through
the cell. The linear polarization of the laser light is assured by
the high quality polarizer. The Pockels cell and the λ/4 plate
are used to generate laser pulses with elliptical polarization:
pure σ+ circular polarization is obtained when no voltage is
applied to the cell, while 15% of the σ− light is produced

Figure 1. Energy level diagram for D1 line transitions considered in
the theoretical model. Solid lines represent transitions induced by the
laser, while dotted lines correspond to possible spontaneous
emission channels from excited levels. Frequency differences
between adjacent hyperfine levels are shown.
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otherwise. The Rb cell containing 30 Torr of Ne buffer gas is
8 cm long and has 2.5 cm in diameter. The Rb cell was heated
by using hot air circulating around the cell. Measurements
were done at 67 oC and 85 oC. The Rb cell is shielded from

stray magnetic fields by the triple μ-metal layers which reduce
stray magnetic fields below 10 nT. In order to obey two-
photon detuning, long solenoid placed around the Rb cell
produces controllable longitudinal magnetic field in the range

Figure 2. Time evolution of calculated Zeeman EIT resonances during the probe pulse with overall laser beam intensity of I2 = 0.9 mW cm−2.
The overall laser beam intensity during the preparatory pulse is I1 = 4.9 mW cm−2. The dark period is TD = 60 μs. The resonances are
reconstructed and normalized from σ− transmission signals at four different times: (a) t = 6 μs, (b) t = 16 μs, (c) t = 40 μs, and (d) t = 100 μs.
The cell temperature is 67 °C.

Figure 3. Theoretically obtained time evolution of Zeeman EIT (a) amplitudes and (b) linewidths of the central fringe during the probe pulse,
for overall laser beam intensity of I2 = 0.9 mW cm−2. The overall laser beam intensity during the preparatory pulse is I1 = 4.9 mW cm−2. The
dark period is TD = 60 μs. The cell temperature is 67 °C.
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of ±10 μT. The σ− light is extracted from the transmitted laser
beam with the λ/4 plate and the PBS. Transmitted σ− laser
intensity over time, for a given magnetic field, is measured by
the photodetector and recorded by the digital storage
oscilloscope.

Laser pulses are produced after applying voltage pulses
to the AOM and the Pockels cell as shown in figure 4(b). Note
that the laser pulse here refers to the temporal change of a
laser beam polarization. That is, polarization changes from σ+

before the pulse, to elliptical polarization with 15% of σ−

relative optical power during the pulse. The first voltage pulse
to the Pockels cell (signal (i)) is preparatory pulse that pre-
pares Rb atoms into the dark state. Then, the voltages on the
Pockels cell and the AOM are synchronously turned off for a
certain period of dark time. During the dark time, Zeeman
coherence makes a Larmor precession if the external magnetic
field is not zero. After the dark time, the voltage pulses are
again applied to AOM and Pockels cell and the second
(probe) pulse, with the same polarization but intensity that can

Figure 4. (a) Experimental setup: ECDL—external cavity diode laser; OI—optical insulator; DDAVLL—Doppler-free dichroic atomic
vapour laser lock; BS—beam splitter; FC—fiber coupler; SMF—single-mode fiber; FCL—fiber collimator; AOM—acousto-optic modulator;
P—polarizer; PBS—polarizing beam splitter; PD—photodetector. Hot air is used for heating the cell. (b) Pockels cell and AOM signals used
in the experiment.

Figure 5. Measured σ− transmission signals during preparatory and probe polarization laser pulse for magnetic field (a) 3.5 μT and (b)
−0.1 μT. The curves in both figures correspond to the probe pulse overall intensity of (i) I2 = 4.9 mW cm−2, (ii) I2 = 2.5 mW cm−2, and (iii)
I2 = 0.9 mW cm−2. The overall laser beam intensity during the preparatory pulse is I1 = 4.9 mW cm−2. The cell temperature is 67 °C.

Figure 6. Time evolution of Zeeman EIT resonances during the
preparatory pulse with overall laser beam intensity of
I1 = 4.9 mW cm−2. The resonances are reconstructed and normalized
from the σ− transmission signals at four different times: t = 6 μs
(curve i), t = 16 μs (curve ii), (c) t = 100 μs (curve iii), and (d)
t = 328 μs (curve iv). The cell temperature is 67 °C.
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be different than the preparatory pulse, is created to probe the
atomic coherences. At the end of the probe pulse, we return to
a strong σ+ polarization for several ms to repump atoms back
to the Zeeman sublevels of the ground state before the next
Ramsey sequence of pulses. Note that all the time we measure

only the σ− component of the elliptically polarized laser
beam. We denote by I1 and I2 overall intensities of a laser
beam during the preparatory (duration T1) and probe pulse
(duration T2), respectively. Two synchronous voltage signals,
controlling the AOM and the Pockels cell with fully

Figure 7. Time evolution of Zeeman EIT resonances during the probe pulse with overall laser beam intensity of I2 = 0.9 mW cm−2. The
overall laser intensity during the preparatory pulse is I1 = 4.9 mW cm−2. The dark period is TD = 60 μs. The resonances are reconstructed and
normalized from the σ− transmission signals at four different times (from top to bottom): t = 6 μs, t = 16 μs, t = 40 μs, and t = 100 μs. The cell
temperature is 67 °C.

Figure 8. Experimentally obtained time evolution of Zeeman EIT (a) amplitude and (b) linewidth during the probe pulse. The overall
intensities of the probe pulse are I2 = 0.9 mW cm−2 or I2 = 2.5 mW cm−2. The overall laser intensity during the preparatory pulse is
I1 = 4.9 mW cm−2. The dark period is TD = 60 μs. The cell temperature is 67 °C. Solid lines are to guide the eye.
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adjustable amplitudes and durations, were generated by field-
programmable gate array based signal generator and oscillo-
scope, as described in [48].

Development of Zeeman EIT for cell temperature of
67 °C, corresponding to Rb density of 5×1011 cm−3 [49],
was measured with the following sequence of pulses:
I1 = 4.9 mW cm−2, T1 = 400 μs; TD = 60 μs and TD = 160 μs;
T2 = 400 μs. We varied the overall laser intensity during the
probe pulse: I2 = 4.9 mW cm−2 (AOM signal (ii)),
I2 = 2.5 mW cm−2 (AOM signal (iii)), and I2 = 0.9 mW cm−2

(AOM signal (iv)) in order to measure the intensity depen-
dencies of the: (1) σ− transmission and (2) Zeeman EIT
temporal development. The same Ramsey sequence was
used for the cell temperature of 85 °C (Rb density of
1.4×1012 cm−3 [49]), except the higher laser intensity was
required during the two pulses due to increased residual
absorption: I1 = 49 mW cm−2 and I2 = 4.8 mW cm−2.

3.2. Experimental results

In this section we show effects of the probe pulse intensity,
the Ramsey sequences of successive excitation pulses, the
external magnetic field and the cell temperature on propaga-
tion of pulses and development of EIT.

Measured transmissions of the σ− component of a laser
beam, during the preparatory and the probe pulse are shown
in figure 5. The Rb cell temperature is 67 °C. Presented results
are obtained for three values of the overall laser intensities
during the probe pulse, and for the two values of magnetic
field. The intensity and duration of the preparatory pulse are
always I = 4.9 mW cm−2 and T1 = 400 μs, so that during this
pulse 87Rb atoms are efficiently prepared into the dark state.

Transient behavior of the probe pulse depends on the
laser intensity, duration of the dark time, and magnetic field.
We show in figure 5 propagation of preparatory and probe
pulse for two values of magnetic field, 3.5 and −0.1 μT, for
three values of the probe pulse intensity, and for dark time of
60 μs. For the preparatory pulse intensity of 4.9 mW cm−2,
transmission of the probe pulse can be quite different

depending on its intensity. At high intensity of the probe
pulse (4.9 mW cm−2), probe transmission increases with time
due to optical pumping. When probe intensity is decreased to
2.5 mW cm−2, transmission is constant in time. For the lowest
probe intensity of 0.9 mW cm−2, the probe pulse probes the
coherences without significantly contributing to atomic evo-
lution and optical pumping. The signal then decays due to
decoherence and relaxation. At low magnetic field, the
transmission of the probe is higher compared to transmission
at higher magnetic fields (compare figures 5(a) and (b)),
because more atoms are coherently prepared into the dark
state by the preparatory pulse.

Due to Larmor precession of atomic polarization during
the dark time, oscillations in the measured intensity of the
probe pulse can be seen in figure 5(a), when intensity is low
and magnetic field is different from zero. Frequency of
observed fringes depends on the magnetic field, while their
amplitudes depend on the amount of coherence between
Zeeman sublevels. These results are in agreement with
[35, 36]. The fringes on the transmission signal disappear
when the σ+ polarized laser beam is kept on between the
preparatory and probe pulse (not shown), providing the evi-
dence that observed fringes are indeed due to interference
between coherently prepared atoms and the probe light.

From the transient curves of the σ− transmission, like
those in figure 5, taken at 70 different values of the long-
itudinal magnetic field, we have reconstructed Zeeman EIT
resonances at different times during the development of pre-
paratory and probe pulse. We first show Zeeman EIT reso-
nances developing during the preparatory pulse (see curves
(i)–(iv) in figure 6). As time progresses, EIT resonances keep
the similar shape and only have higher amplitude since more
atoms undergo dark state preparation.

Development of EIT during the probe pulse, when dark
time is TD = 60 μs is shown in figure 7. The overall laser
beam intensities during the preparatory and the probe pulses
were I1 = 4.9 mW cm−2 and I2 = 0.9 mW cm−2. Character-
istically, EIT resonance has central peak and fringes due to
interference between atomic coherence precessing in the

Figure 9. Measured σ− transmission signals during preparatory and probe polarization laser pulse for magnetic field (a) 3.5 μT and (b)
0.35 μT. The curves in both figures correspond to the probe pulse overall intensity of I2 = 4.8 mW cm−2. The overall laser beam intensity
during the preparatory pulse is I1 = 49 mW cm−2. The cell temperature is 85 °C.
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magnetic field and probe electric field (at t = 6 μs and
t = 16 μs). The frequency width of the fringes decreases with
time of precession. At about 40 μs since the beginning of the
probe pulse only first order fringes are visible. At longer
time they start merging with the central peak (t = 100 μs),
and at even longer time only central peak remains.

Experimental waveforms of EIT are in qualitative agreement
with theoretical curves shown in figure 2, which are calcu-
lated under the same experimental conditions. We also
found similar transition from EIT with fringes to EIT with
only central peak at higher pulse intensity, except this
transition is during shorter time.

Figure 10. Time evolution of Zeeman EIT resonances during the probe pulse with overall laser beam intensity of I2 = 4.8 mW cm−2. The
overall laser intensity during the preparatory pulse is I1 = 49 mW cm−2. The dark period is TD = 60 μs (left column) and TD = 160 μs (right
column). The resonances are reconstructed and normalized from σ− transmission signals at four different times (from top to bottom): t = 6 or
8 μs, t = 16 μs, t = 40 μs, and t = 100 μs. The cell temperature is 85 °C.
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Time dependencies of Zeeman EIT amplitudes and
linewidths are shown in figures 8(a) and (b), respectively,
for dark time of 60 μs and two values of probe intensity, 0.9
and 2.5 mW cm−2. One can see that more contrasted and
narrower resonances are obtained when the probe pulse
intensity is lower. Amplitudes of EIT behave differently at
different pulse intensities. Similar to time dependence of
transmitted probe intensity in figure 5, amplitudes of EIT
resonances increase (decrease) with time for high (lower)
probe intensity. When the pulse intensity is higher there is
prevalent influence of power broadening. High intensity of
the probe pulse also affects time evolution of Zeeman EIT.
At high intensities (black squares at figure 8(b)) the strong
electric field slows the precession, causing merging of the
fringes with the central peak and broadening of the peak.
However, at the beginning of the pulse, the EIT width is
independent on the pulse intensity. It remains the same even
when two pulses have very different intensities, as seen in
figure 8. The significance of this finding is that EIT width
will not vary with variations of intensities of the probe pulse
as long as the pulse is shorter then a few μs. The width of the
central peak is not sensitive to the intensity/power but to the
absorbed energy of the laser light. The measured amplitudes
agree well with calculated data shown in figure 3(a). How-
ever, the calculated linewidths (figure 3(b)) are somewhat
larger than experimental ones.

In the investigation of the development of EIT when
Raman detuning is achieved by modulating laser frequency at
constant magnetic field, Yoshida et al have distinguished
between the Raman–Ramsey and the hyperfine EIT spectra
depending on the time gating within excitation pulse [34].
RRF were obtained at the pulse beginning while the EIT
spectrum was obtained at its end. Due to variable magnetic
field in our experiment, reconstructed σ− transmission curve
at each time instant consists of both Raman–Ramsey and EIT
spectra.

Dependence of the transient development of Zeeman EIT
resonances on Rb density and on the length of the dark time is
studied by measuring signal pulse waveforms for Rb cell

temperature of 85 °C and for two dark times: 60 μs and
160 μs. Similarly, σ− transmission signal was measured at
different magnetic fields during the preparatory and the probe
pulse.

For investigations of transient behavior of EIT reso-
nances, the intensities of preparatory and probe pulse were 49
and 4.8 mW cm−2, respectively. At higher Rb density we
needed to increase incident intensities in order to obtain signal
from the transmitted σ− component, that is high enough for
good visibility of reconstructed EIT fringes. Measured
transmissions of the σ− component of the laser beam, during
the preparatory and the probe pulse, are shown in figure 9 for
two values of external magnetic field. As seen from
figure 9(b), transmission of the σ− component at very low
magnetic field increases once the probe pulse has been
established, and reaches the maximal value at some instant.
After that moment, transmission starts to decay. This could be
explained in terms that the probe pulse has enough optical
power to further pump the atoms into the dark state, but at
later times decoherence prevails and transmission drops. In
the case of higher magnetic field, transmission drops right
after the pulse is generated because of the higher value of
two-photon detuning.

The reconstructed EIT curves for two dark times of 60
and 160 μs, are shown in figure 10.

RRF are observed at 6 and 8 μs after the beginning of the
probe pulse. The fringes get narrower and weaker with pre-
cession time due to Zeeman decoherence, leading to a single
EIT peak at later time instants. In classical Ramsey effect, the
frequency width of the central Ramsey fringe is ( )T1 2 · D .
We have found that for dark times of 60 and 160 μs, the ratio
of widths of the first order Ramsey fringes is in agreement
with ( )T1 2 · D dependence. At these density and laser
intensities fringes decay faster comparing to lower intensities
(case with 67 °C cell temperature) because precession of the
dark state is affected by electric field. The central peak is at
each time instant also narrower when the dark time is 160 μs.
Its narrowing could be explained by the work from [36]

Figure 11. Experimentally obtained time evolution of Zeeman EIT (a) amplitude and (b) linewidth during the probe pulse. The overall
intensities of the laser beam during preparatory and probe pulse are I1 = 49 mW cm−2 and I2 = 4.8 mW cm−2, respectively. The dark period is
TD = 60 μs. The cell temperature is 85 °C.
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where authors have shown the increase of Zeeman deco-
herence rate because of the Rb–Rb spin-exchange collisions.

Measured time dependencies of EIT amplitudes and
linewidths during the probe pulse when dark time is 60 μs and
temperature is 85 °C are shown in figures 11(a) and (b),
respectively. The amplitudes increase at the beginning of the
probe pulse and decay later. This is in qualitative agreement
with the σ− transmission time dependence as presented in
figure 9(b). The linewidths of EIT resonances are wider at
higher density (85 °C versus 67 °C) due to the power broad-
ening caused by higher laser beam intensity. At high pulse
intensities needed for this Rb vapour density, the precession
of the Zeeman coherences is slowed in the laser electric field
and fringes start to merge with the central peak, thus broad-
ening the resonance at earlier times.

4. Conclusion

We presented experimental and theoretical study of the transient
response of EIT medium to propagation of laser polarization
pulses resonant to EIT transition. Through observed time
development of the σ− pulse transmission at different magnetic
fields, we reconstructed Zeeman EIT resonances corresponding
to various time instants during pulse propagation. The EIT
resonances during the probe pulse have characteristic Ramsey
fringes at early times and a narrow central peak at later
moments. Ramsey fringes or oscillations of probe transmission
during pulse propagation in magnetic field are caused by Lar-
mor precession during the dark time. The disappearance of
fringes is faster for larger probe pulse intensities due to inco-
herent pumping and effects of electric field on precession of
atomic coherences. The behavior of amplitudes and linewidths
of the EIT central peak depends on the probe intensity and Rb
density. At very low probe intensity they both monotonically
decay if Rb density is low, while at higher density amplitudes
and widths they first increase and then decay.

We have studied transients of the polarization laser pul-
ses for the system that is often used in slow light and storage
of light experiments. Thus, better knowledge of polarization
pulse transmission and time development of EIT resonances
is valuable.
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ABSTRACT 
 

In this study we show the results for parametric non-degenerate four wave mixing (FWM) obtained using double lambda 
scheme at D1 line in hot potassium vapor. We have investigated the influence of one-photon detuning and two-photon 
detuning on the FWM gain. The laser frequency is locked at approximately 1GHz from the resonance 4S1/2 Fg=1 -> 4P1/2, 
using external reference cavity. The probe beam passes through acoustooptic modulator that enables controllable 
detuning around 460 MHz (ground state hyperfine splitting) in respect to the pump beam. The vacuum glass cell 
containing the potassium vapor was heated by hot air in order to achieve necessary concentration of atoms. The 
efficiency of FWM process is studied by measuring the gains of the conjugate beam the probe beam, simultaneously. 
The maximal gain was achieved for nonzero two photon detuning.  

Keywords: four wave mixing, potassium, copropagating beams  

 
1. INTRODUCTION 

 
Four wave mixing in atomic vapors is a non-linear interaction between atoms and light that allows exchange of energy 
between four different modes of light in a nonlinear medium. It has been investigated in inhomogeneously broadened hot 
atomic vapor1, and in cold atomic samples2, using different atomic level schemes. FWM in alkali atoms have shown 
success in generating high gain of twin beams, probe and conjugate photons, and efficient amount of relative intensity 
squeezing3, 4. Although there is a number of studies exploring FWM in Rb and Cs5 to our knowledge this is the first 
investigation of FWM in double-Λ schemes in K.  
 
We study FWM in 39K, using double-Λ scheme, driven by far detuned (compared to Doppler width), and nearly co-
propagating pump and probe laser beams. The pump and the probe are in near two-photon resonance between ground 
state hyperfine levels. Such FWM relies on coherence among two hyperfine levels6 in the ground state of K, and 
elimination of resonant absorption due to electromagnetically induced transparency3.The goal is to investigate ability of 
this scheme in K for efficient FWM and large gains of both pump and conjugate beam. Potassium hyperfine splitting in 
the ground state is 460 MHz7, narrower that the Doppler broadened width. Therefore, detuning of the probe photons 
from the exited state hyperfine levels, in the outer Λ branch, is much smaller than in other alkalis and this could lead to 
very efficient FWM process and high gains. Besides atomic scheme, laser intensity and a single photon detuning, i.e., 
saturation intensity, together with atomic density and two-photon detuning play major roles in efficiency of FWM. In 
this work we investigate gains of the probe and the conjugate beams as a function of two-photon detuning, for various 
values of a single photon detuning. The pump laser power, atomic density, angle between the pump and the probe beams 
and diameters of the pump and the probe are kept fixed. 
FWM in the atomic scheme of this experiment is suggested to efficiently generate non-classical beams and relative 
intensity squeezed light8. Our aim in this work is to maximize the gain of the FWM process since the degree of relative 
intensity squeezing depends on this gain. Interactions like FWM offer many promising applications due to unique 
properties of the conjugate beam and high entanglement between probe and conjugate9.   
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2. EXPERIMENTAL SETUP 
 
We have used the D1 line of potassium for the realization of the double-L system. The lower levels of the L scheme are 
two hyperfine sublevels of K ground level 2S1/2, F=1 and 2S1/2, F=2 (figure 1). For the upper level we neglect the 
hyperfine splitting since it is small compared to detuning. The hyperfine splitting between two lower levels is 461.7 
MHz7. 
 
 
 

 
Figure 1. Double-L scheme on the D1 line of 39K. HFS – hyperfine splitting of the ground state, D- one photon detuning, d- two 
photon detuning. 
 
 
The experimental scheme is presented in Figure 2. Ti:Sapphire ring laser (MBR 110, Coherent Inc) is used as a light 
source. The pump and the probe beams are obtained by dividing the same laser beam with an asymmetric (90:10) beam 
splitter. Main part of the laser power is used as a pump beam, driving the D1 line of 39K at 770 nm and it is detuned for 
approximately 1GHz. The probe beam passes an acousto optic (AOM) modulator which operates on 230 MHz in double-
pass configuration. The pump and the probe beams are focused with two pairs of lenses in order to achieve 1mm and 0.8 
mm diameters respectively. They are perpendicularly polarized and combined on polarization beam splitter at the small 
angle of 1.5 mrad. Two beams intersect in the center of a 50 mm long natural-abundance potassium vapor cell. The 
temperature of the cell is kept at 100oC. Concentration of potassium atoms on this temperature is 7.6*1017 atoms/m3. In 
order to heat up the cell we have put it in an aluminum cylinder with drilled holes along its axis through which the hot air 
was blown. The windows of the cell are Brewster’s angled and the position of the cell is optimized for maximal pump 
transmission (~90%). Since the probe is polarized perpendicularly to the pump transmission of the probe is much lower 
(~50%). Optical powers of the pump and the probe inside the cell are estimated to 400 mW and 0.2 mW respectively 
upon direct measurements in front of the cell and windows transmissivity. The four wave mixing process occurs in the 
intersection volume creating probe and conjugate photons. The amplified probe and the conjugate beams leave the cell 
and hit two photodiodes while the pump beam is reflected away by another polarizing beam splitter after the cell.  
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Figure 2. Experimental setup. BS - beam splitter, M - mirrors, Mf - flip mirrors, PBS - polarizing beam splitter, AOM - acousto optic    
modulator, L - lenses, l/4 - lambda-quarter wave plate, l/2 - lambda-half wave plates, PD - photodiodes. 
 
The probe beam frequency i.e. the two photon detuning d is scanned by changing the AOM frequency. The double-pass 
configuration of the AOM allows us to scan this frequency without the change of the probe beam direction. The 
frequency of the laser was locked   by the internal locking system of the laser. Internal locking system of the laser has 
two stages. Firstly the single mode oscillation is achieved with an intracavity etalon and secondly the frequency was 
locked to the external reference cavity using Pound-Hall-Drever method.   In order to determine the long term frequency 
stability of the laser and to measure one photon detuning we have incorporated the saturation spectroscopy (SS) setup 
into our experiment. To this end we have added two flip mirrors which divert the probe beam before the AOM making it 
the saturation beam in SS configuration which counter propagates the pump in the vapor cell. Initial pump is highly 
attenuated and used like probe beam in SS configuration. Spectrum with hyperfine resolved features are given in Figure 
3.The temperature of the vapor was 67oC.This spectra is obtained by subtracting Doppler profile from the SS signal. We 
can distinguish three groups of lines corresponding to different sublevels of ground state. Within these three groups there 
are three peaks (except for Fg=2 group) which correspond to different hyperfine transitions. We have used the Fg =1 -> 
CO transitions as our reference for one-photon detuning.  
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Figure 3. Measured saturation spectra of the D1 line of 39K (Scheme of levels is given in the inset1).  
 

3. EXPERIMENTAL RESULTS 
 
In our experiment we have measured the gain of the probe and conjugate as a function of two-photon detuning for three 
different values of one-photon detuning. The gain of the pump and the conjugate is defined as Gp=Pp/Pin and Gc=Pc/Pin 
respectively where Pp and Pc are measured powers of the probe and the conjugate respectively and Pin is initial power of 
the probe inside the vapor cell. The losses of the probe and the conjugate due to the output window of the vapor cell 
(~30%) are not taken in count. Two-photon detuning (d) is swept over 60 MHz around the two-photon resonance in 4 
MHz steps. The values of one-photon detuning (D) in the experiment are chosen to be 700 MHz, 1000 MHz and 1300 
MHz. The results are given in figure 4a, b, and c respectively. For D=700 MHz maximal gains of the conjugate and the 
probe beam are 2 and 0.55 respectively. They are located at d-20 MHz. For this particular set of the parameters 
maximal gain for the conjugate is rather small while the probe amplification is negligible. The gain region spans about 
MHz of two-photon detuning determined as full width at half maximum (FWHM)  
For D=1000 MHz maximal gains of the conjugate and the probe beam are significantly higher, and reach 8.2 and 2.2 
respectively. These maximal gains occur at d- 9 MHz. The gain region is a bit narrower and spans around 16 MHz, 
also measured as FWHM.  
For D= 1300 MHz maximal gain of the conjugate and the probe is 5.9 and 1.7 respectively which is lower than for the 
D=1000 MHz case. They are placed around d-5 MHz. Gain region is even narrower and spans about 12 MHz. 
Regarding to the measurements, the highest gains are achieved for D=1000 MHz. Possible reason for that is the 
competition between the resonant absorption and the FWM process. The probe and the conjugate photons which are 
created in the FWM process are subjected to the resonant absorption on the D1 line. Increasing the detuning of the pump 
and with it the detuning of the probe and the conjugate decreases the probability for resonant absorption, but decreases 
the probability for FWM process as well. The optimum is found at the wing of the Doppler profile (the width of the 
Doppler profile for 39K vapor at t=100oC is 860 MHz10) which is in our case about 1000 MHz. The conjugate is detuned 
about 920 MHz (two hyperfine splitting of ground states plus d) more from the D1 line than the probe which may 
explain its larger gain.  
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4. CONCLUSION 
 

We have demonstrated non-degenerate four wave mixing in hot potassium vapor based on coherent population trapping. 
The experiments of this type and generated twin beams are mostly used further for relative intensity squeezing and sub 
shot noise measurements. Unlike of ours, most of the experiments with similar problematic are performed in rubidium or 
cesium vapor. FWM process in potassium vapor is predicted to yield lager gain due to smaller ground state hyperfine 
splitting and thus smaller mutual detuning of the two lambda schemes.  
The achieved effect is examined for maximum gain regarding to two most important parameters, one and two photon 
detuning. Counter intuitively we found out that maximum gain is achieved for non zero two photon detuning. This 
finding is in accordance with results of Turnbull et al1. Also, one photon detuning for the maximum gain is determined. 
Other parameters, such as vapor temperature, mutual pump-probe angle and intensities were fixed in the experiment, and 
the dependence of the FWM process on those parameters is not examined in details in this study.  
These parameters will be investigated in the future studies, aiming to characterize relative intensity squeezing, and 
achieve noise below standard quantum limit.   
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Abstract
The method of constrained dynamical systems on the quantum-classical phase space is utilized to
develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom
on the quantum part are modeled using an appropriate constraint, and the interaction also
includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in
terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The
theory provides a successful dynamical description of the collapse during quantum measurement.

Keywords: quantum-classical systems, degrees of freedom, hybrid theory

1. Introduction

The general motivation for hybrid theories of quantum-classi-
cal systems are given in the contribution by Prof. H-T Elze [1].
Hybrid theories can be divided into two groups according to
the conceptual status and aims. In the theories of the first group
one considers all systems in nature as described at the funda-
mental level by quantum theory and therefore the hybrid sys-
tem is an approximation of two interacting quantum systems,
where one of the systems is treated in the corresponding
classical limit [2–4]. In the other approach, one assumes from
the beginning that the classical and quantum mechanics are
both correct theories with different domains of validity (illus-
trative examples of this approach are given in [5, 6]). The only
restriction on the descriptions of the quantum-classical (QC)
interaction is then given by the experiments involving micro-
macro objects and the phenomenological collapse postulate. Of
course, it is clear that a macro-object has many degrees of
freedom which are not described by the macroscopic model of
the classical theory. The effects of those degrees of freedom
have to be somehow included into the manner a hybrid theory
treats the QC interaction. The hybrid theory constructed in the
present paper presents a particular way of doing this.

2. Construction of the hybrid theory

The mathematical framework of the hybrid theory to be
developed is that of an abstract dynamical system

Ω( )G H, , , on a differentiable manifold  with sym-

plectic and Riemannian structures Ω and G respectively, with
some preferred function, the Hamiltonian H. Let us stress
right at the beginning that the dynamical law of the hybrid
theory need not be of the Hamiltonian form, but will involve
differential equations on  given in terms of Ω and G. The
manifold is also assumed to possess a complex structure

= −J I2 , where I stands for identity, such that

Ω= ( )G x y x Jy( , ) , .

Formulation of the classical mechanics of isolated con-

servative systems using Ω( )H, , is standard [7]. The for-

mulation of quantum mechanics in terms of Ω( )G H, , , is

perhaps less well known, but shall not be presented here in
any detail since there exist excellent reviews [8] and brief
accounts [9–11] which are sufficient for our purposes. The
generic point from  is usually denoted by (x, y), X or Xa,
where = …a N1, 2, 2 is an abstract index. In what follows
the symplectic and Riemannian structures on the quantum

phase space are denoted by ωab and gab. The Hamiltonʼs
function H(X) is given by the quantum expectation of the

Hamiltonian Ĥ in the state ψ
X

corresponding to a point X:

ψ ψ ψ ψ= ˆ( )H X H
X X X X

. In fact, all observables are

represented by quadratic functions A(X) on , and are the
quantum mechanical expectations of the corresponding

quantum observables ψ ψ ψ ψ= ˆ( )A X A
X X X X

. The
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Schrödinger dynamical law is that of Hamiltonian mechanics

ω˙ = ∇X H. (1)
a ab

b

2.1. Elements of the hybrid model

In the hybrid theory to be constructed, the hybrid phase space
 is assumed to be given by the Cartesian product

= × ×   qp QP xy. Local canonical coordinates are

separated into three groups: (q, p), (Q, P) and (x, y). The first

two groups ∈ q p( , ) qp and ∈ ( )Q P, QP correspond to

the degrees of freedom of the macroscopic system, and the
third ∈ x y( , ) xy to the degrees of freedom of the micro-

scopic quantum system, called quantum degrees of freedom
(QDF). The coordinates (q, p) represent (usually a small
number of) distinguished macroscopic degrees of freedom of
the macroscopic object. They are supposed to be well
described by classical mechanics and are called classical
degrees of freedom (CDF). If in a particular physical situation
there are no degrees of freedom that are well described by
classical mechanics then the whole idea of hybrid description
is meaningless.

The degrees of freedom denoted by (Q, P) describe the
physical quantities that are not used in the characterization of
the CDF of the macroscopic object nor of the QDF of the
micro-system. Apart from the fact that there are many of these
degrees of freedom, nothing else about their character is
assumed in the hybrid theory. One could argue that the
acroscopic system is composed of quantum microscopic
components which interact and entangle with the micro-sys-
tem. Therefore, the hybrid theory, with no possibility of
explicit entanglement between CDF and QDF, must take the
fact of entanglement due to micro-system and micro-com-
ponents of the macro-system into account in some manner.
The influence of (Q, P) degrees of freedom on the CDF-QDF
system might be interpreted partly as due to the entanglement
between the micro and macro-system, and partly due to the
physical interaction of the micro degrees of freedom of the
macro-system with QDF and with CDF. Alternatively, one
could just conceive (Q, P) degrees of freedom as a sufficiently
general type of environment of the CDF-QDF degrees of
freedom.

Interactions between various types of degrees of freedom
might be of a different nature. We shall assume that the
interactions between (q, p) and (x, y) are conservative and
described by the corresponding Hamiltonian. On the other
hand, interactions between the unspecified degrees of freedom
(Q, P) and the QDF (x, y) might be more general, and are
described by a complex Hamiltonian of the form

=( ) ( )H x y Q P F Q P A x y, , , , ( , )int where A x y( , ) is a

quadratic function of (x, y) corresponding to the operator Â of

the micro-system and = +( ) ( ) ( )F Q P F Q P F Q P, , i ,R I in

terms of real functions ( )F Q P,R and ( )F Q P,I . Of course, the

equations of motion for the real coordinates q p x y( , , , ) must
be expressed only in terms of real quantities. The dynamics of

the total system is thus determined by the complex Hamil-
tonian of the following form

= + +

+ +
( )

( )
H H q p H x y H Q P

f q p A x y F Q P A x y

( , ) ( , ) ,

( , ) ( , ) , ( , ), (2)

cl q QP

where the notation is obvious. We have neglected the influ-
ence of (Q, P) on CDF (q, p) but this can be easily added.

2.2. Dynamics of QDF

The main requirement on the hybrid theory of QDF evolution,
based on the collapse model, is that if the state of the quantum

system is a superposition of Â eigenstates then, because of the
interaction with the macro-system, the state must evolve

towards one of the Â eigenstates. However, such behavior is
not obtained starting from the Hamiltonian dynamics with the
Hamiltonian (2) of the hybrid. One is therefore forced to
adopt different approaches in modeling the collapse require-
ments. One approach, adopted here, is to consider the collapse
requirements as appropriate constraints onto the otherwise
Hamiltonian dynamics and to derive the dynamical law as the
constrained dynamics.

The eigenstates of any observable Â are characterized by

the property that the dispersion Δ = ˆ − ˆA A A
2 2

is equal

to zero. In the case when all observables ˆ{ }An interacting

with the macro-system commute, the relevant constraint
might be given in the form

∑Γ Δ= =x y A x y( , ) ( , ) 0, (3)A

n

n

which corresponds to a common eigenstate of all the obser-

vables ˆ{ }An . Generalization to several non-commuting

observables mediating the QC interaction is not trivial and is
indicated in [12].

Besides the appropriate constraint we shall also suppose
that the complicated functions of time Q t P t( ), ( ) are well
approximated by white noise. The full derivation of the
resulting dynamical equations is given in [12]. The result is
the dynamical equation of QDF in interaction with the macro-
system, given by the following stochastic differential equation
of a non-autonomous diffusion process,

ω

Γ

Γ
Γ ω

= ∇ +

−
∇

∇ + ∇

+ ∇

( )
{ }

dX H f q p A x y t

k
H

g t A W

g A W

( , ) ( , ) d

,
d d

d . (4)

a ab
b q

A q

A

ab
b A

ab
b R

ab
b I

2

The equation (4) is the main dynamical equation of the
QDF interacting with the macro-system of the hybrid theory

developed here. The free parameter ∈ ⎡⎣ ⎤⎦k 0, 1 takes the

value k = 1 if the dynamics of isolated (q, p) degrees of
freedom is well described by classical mechanics. This cor-
responds to the proper hybrid theory. At the other extreme are
the systems where isolated (q, p) degrees of freedom are
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described also by quantum mechanics. In this case k = 0. The
first part of the drift in (4) describes Hamiltonian evolution
with the Hamiltonian +H x y f q p A x y( , ) ( , ) ( , )q . The sec-

ond term of the drift represents a gradient flow with the
tendency to decrease the total dispersion Δ Δ= ∑A A

n n. The

joint effect of the Hamiltonian and the gradient drift terms is
to preserve constant the total dispersion (when k = 1). If there
is only one observable A x y( , ), or a set of commuting
observables, then the role of the gradient terms is to force the

evolution towards the common eigenstates of ˆ{ }An . If the

observables ˆ{ }An do not commute, then there is a competition

of tendencies due to the corresponding gradient terms. If these
observables generate a representation of a semi-simple Lie
algebra, then the gradient terms drive the system towards the
invariant manifold of the coherent states of the algebra.

The stochastic terms are divided into two quite different
groups. The Hamiltonian terms, which can be included as
stochastic perturbations of the Hamiltonian, describe the
Hamiltonian influence of the (Q, P) degrees of freedom on the
motion of the quantum system. The gradient stochastic terms,
on the other hand, describe the influence of (Q, P) degrees of
freedom which is not Hamiltonian. However, as opposed to
the Hamiltonian stochastic terms, the gradient stochastic
terms induce localization onto the constraint manifold.

2.3. Dynamics of CDF

Classical degrees of freedom (q, p) satisfy the Hamiltonian
evolution equations given by the Hamiltonian (2). The
equations in terms of (q, p) are

˙ =
∂

∂
+

∂
∂

˙ = −
∂

∂
−

∂
∂

q
H q p

p
A x y

f q p

p

p
H q p

q
A x y

f q p

q

( , )
( , )

( , )

( , )
( , )

( , )
. (5)

cl

cl

The evolution of CDF is also stochastic because the quantum

observables ( )A x t y t( ), ( ) evolve stochastically. We have

neglected possible direct stochastic perturbation of (q, p)
dynamics by Q t P t( ), ( ). This could be included easily, but
does not play any fundamental role.

Remark. Most of the well known dynamical collapse
models are given as nonlinear and stochastic modifications of
the Schrödinger equation, and contain the Schrödinger term,
the nonlinear gradient term and the stochastic term [13, 14].
One such equation, with minimal appropriate generalization,
can be postulated for the QDF dynamics of the hybrid and
coupled with the Hamiltonian equations for the CDF. An
example of such approach is studied in [14]. The result is a set
of stochastic differential equations of the form similar to (4).
However, there are technical and conceptual differences [12].

2.4. Quantum measurement process

Additional assumptions can be used in order to simplify the
evolution equations (4) and (5) in the case of a quantum
measurement process. One such approximation is based on

the assumption that the dynamics of QDF is much faster than
that of CDF. Consequently, one can replace in (4) the func-

tions ( )q t p t( ), ( ) with their initial values q p( , )
0 0

. The

equation for QDF becomes autonomous.This is useful for an
analytic treatment of the asymptotic states using methods of
stochastic stability analysis. The situation when QDF and

CDF are coupled via only one observable Â with the inter-
action term given by =H pA x y( , )int , and when the gradient
terms dominate the QDF dynamics, corresponds to the pro-

cess of measurement of Â. Numerical computations [12]

show that the state Â, and the probability of the asymptotic
eigenstate α αx y( , ) depends on its distance from the initial state

ψ≡x y( , )init init , i.e. on ψ α∥ ∥
init

2. At the same time, the

dynamics of the apparatus is dominated by the asymptotic
eigenvalue. Thus, the approximate equations describe well the
dynamics and the results of the measurement process.

3. Summary

Our goal was to derive a theory that provides a dynamical
description of the Schrödinger evolution supplemented with the
collapse postulate. It is assumed that such a theory would
suggest a unified dynamical description of system with quan-
tum and classical degrees of freedom. The basic requirement
imposed on the theory is to obtain dynamical equations of the
hybrid systems such that the sum of dispersions of the quantum
observables that figure in the quantum-classical interaction are
constrained to be minimal during the evolution. The crucial
assumption that was used to simplify the constrained equations
is that the dynamics of the unobserved degrees of freedom is to
be replaced by white noise. Furthermore, it was assumed that
part of the interaction with the unobserved degrees of freedom
is described by a complex Hamiltonian, but the equations for
the real canonical coordinates q p x y( , , , ) are real. The
resulting evolution of the hybrid system is nonlinear and sto-
chastic. If the hybrid system is intended as a model of the
measurement process of one observable, then the constraint
gives the dynamics with eigenstates as attractors, and the sto-
chastic term describes the stochastic nature of the process with
the correct probabilities for different asymptotic eigenstates.
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Cloning in nonlinear Hamiltonian quantum and hybrid mechanics
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The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear
evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the
cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a
classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-
classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural
evolution. The latter represents an example of a theory where it appears to be possible to communicate between
two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.

DOI: 10.1103/PhysRevA.90.042115 PACS number(s): 03.65.Fd, 03.65.Sq

I. INTRODUCTION

The impossibility of cloning unknown quantum states is
a fundamental property of quantum systems [1,2]. It has
been used as a basis for information theoretic axiomatization
of quantum mechanics (QM) [3] and is crucial in several
quantum-information-processing tasks [4]. Roughly speaking,
state cloning is a process which involves at least two systems:
an object system whose state is to be cloned and a target
system whose state is transformed into the state which is
equal to the state of the object system. Often, and in order
to allow for the most general type of process, one includes
also an ancilla system, which in the context of cloning is
called the cloning machine. Standard simple proofs of no
cloning involve properties of quantum processes, such as (a)
linearity or (b) preservation of a nontrivial distance between
quantum states, and also use (c) the direct product structure
of composite quantum systems. The properties (a), (b), and
(c) are not independent in QM, but each of them implies
crucial differences between QM and classical mechanics
(CM). Modifying any of the three properties leads to gen-
eralization of QM, which is also different from CM. Some of
generalizations are mathematically inconsistent or in conflict
with other fundamental physical theories like special relativity
or thermodynamics [5,6]. Depending on the modification,
cloning of states in the modified theory might, but need not, be
possible. The possibility of cloning in a modified theory need
not be related to superluminal signaling, like it is in standard
QM. It is the purpose of this paper to discuss possibility of
cloning in two types of modifications of QM. Both types
of modified theories are formulated in the framework of
Hamiltonian dynamical systems (HDSs). Standard QM can
be formulated as a linear HDS on an appropriate phase space
[7,8]. Mathematically consistent generalizations of QM can
be obtained by modifying some of the standard QM properties
but remaining within the framework of HDS. It is known that
cloning is possible in classical mechanics with Hamiltonian
dynamics [9]. Thus, it is interesting to investigate the possibil-
ity of cloning within different Hamiltonian generalizations of
QM. The first class of modified theories that we study retains
all the kinematical properties of QM in HDS formulation

*buric@ipb.ac.rs

but allows evolution given by general nonlinear Hamiltonian
equations. Weinberg [10] and Bialynicki–Birula and Mycielski
[11] nonlinear Schrödinger equations are actually of this
type. We abbreviate this type of theories as NHQM, which
stands for nonlinear Hamiltonian QM. The second type of
modified theory assumes that some of the degrees of freedom
(DFs) of the HDS corresponding to a bipartite system are
constrained to behave as classical DF [12,13]. We call this
type Hamiltonian hybrid mechanics (HHM). The constraint
implies nonlinear evolution of both classical-like DF (CDF)
and of quantum DF (QDF) [12,14], but also changes the way
in which the phase spaces of QDF and CDF are composed
to form the phase space of the total hybrid system. Thus, in
these types of theories the evolution is nonlinear and the tensor
product rule is not valid for all DF. Our main results are (a)
self-replication, i.e., a type of cloning in the restricted sense
without the cloning machine, is impossible in NHQM; (b)
inclusion of a quantum cloning machine makes the cloning
in NHQM possible, and (c) cloning with the object and the
target quantum systems and a classical cloning machine is
also possible with nonlinear hybrid evolution. Thus, these two
types of nonlinear generalizations of quantum mechanics, in
which the evolution of the total system is Hamiltonian, allow
the cloning of quantum states by natural evolution. However,
cloning is impossible in a type of HHM with the Hamiltonian
of a special mean-field form. These results are to be contrasted
with the known result that the cloning is impossible within
bipartite classical Hamiltonian systems (object and target),
but becomes possible within three-partite systems [9] (object,
target, and cloning machine). In the latter case the cloning can
be achieved by a linear symplectic map [9]. Thus, it seems
that if the object and the target are quantum (tensor product)
and the evolution of the total system that includes the machine
is Hamiltonian, then the cloning map is necessarily nonlinear,
irrespective of the quantum or classical nature of the cloning
machine. However, if all three systems are classical (Cartesian
product), then the cloning is possible by linear transformations
which are symplectic on the total phase space.

The structure of the paper is as follows: The next section
serves to recapitulate, very briefly, the Hamiltonian formu-
lation of QM and of the HHM, and then to formulate the
definitions of the the cloning and self-replication processes in
NHQM and in HHM. In Sec. III we prove our main results
concerning the cloning (and self-replication) in NHQM and in

1050-2947/2014/90(4)/042115(7) 042115-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.042115
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HHM. Section IV contains several remarks which provide a
discussion of our results. A summary is given in Sec. V.

II. FORMULATION OF CLONING IN HAMILTONIAN
QUANTUM AND HYBRID THEORIES

A. Hamiltonian formulation of quantum mechanics
and of hybrid mechanics

1. Hamiltonian quantum mechanics
and nonlinear generalizations

Quantum and classical mechanics can be formulated by
using the same mathematical framework of Hamiltonian
dynamical systems (M,ω,H ), where M is a symplectic
manifold, ω is the corresponding symplectic structure, and
H is the Hamilton’s function. Formulation of the classical
mechanics of isolated conservative systems using (M,ω,H )
is standard [15]. The formulation of quantum mechanics in
terms of (M,ω,g,H ), where g is an appropriate Riemann
structure, is perhaps less well known but shall not be presented
here in any detail since there exist excellent reviews [7,8].
Very briefly, the basic observation beyond the Hamiltonian
formulation of quantum mechanics is that the evolution of
a pure quantum state in a Hilbert space HN , given by the
Schrödinger equation, can be equivalently described by a HDS
on an Euclidean manifold M = R2N . Here N is the complex
dimension of the relevant Hilbert space. The manifold M is
just the Hilbert space considered as a real manifold, with the
symplectic and Riemann structures given by the real and the
imaginary parts of the Hilbert scalar product. The manifold
also possesses an almost complex structure J 2 = −I such that
g(x,y) = ω(x,Jy). Normalization and global phase invariance
of quantum states can be incorporated into the formulation of
the phase space of quantum states which is the projective
space PHN−1 ∼ S2N−1/S1, with the corresponding symplec-
tic, Riemann, and almost complex structures. However, in
our computation we shall use the Hamiltonian formulation
based on R2N , so that, when treating the problem of cloning,
we shall have to take care of the global phase invariance
explicitly. Representing a normalized vector |ψ〉 ∈ HN in
an arbitrary basis {|ej 〉}Nj=1 as |ψ〉 = ∑N

j=1 cj |ej 〉, one can
introduce the real canonical coordinates xj = (c̄j + cj )/

√
2�,

yj = i(c̄j − cj )/
√

2�, j = 1,2, . . . ,N , where bar indicates
complex conjugation. Change of the basis by a unitary map
involves a linear symplectic transformation of the canonical
coordinates. A generic point from M will also be denoted by
X or Xa , where a = 1,2, . . . ,2N is an abstract index, such that
Xa = xa , a = 1,2, . . . ,N and Xa = ya , a = N + 1, . . . ,2N .
If we want to stress that the point X corresponds to the vector
|ψ〉 ∈ HN we write Xψ , and vice versa |ψX〉 for the vector
corresponding to the point X. It should be stressed, perhaps,
that the canonical coordinates (xj ,yj ) have nothing to do with
the canonical coordinates of the classical system that after
quantization gives the considered quantum system with the
Hilbert space HN . The Hamilton’s function H (X) is given by
the quantum expectation of the Hamiltonian Ĥ in the state
|ψX〉: H (X) = 〈ψX|Ĥ |ψX〉. The Schrödinger dynamical law
is that of Hamiltonian mechanics:

Ẋa = ωab∇bH, (1)

where ωab is the standard unit symplectic matrix

ω =
(

0 1
−1 0

)
, (2)

where 0 and 1 are zero and unit matrices of dimension N .
In the Hilbert space QM and in Hamiltonian CM the

dynamical variables can be introduced formally as generators
of the isomorphisms of the respective relevant structures.
In QM these are self-adjoined operators generating unitary
transformations that preserve the Hilbert scalar product. In
the Hamiltonian formulation of QM the Hilbert scalar product
generates both the symplectic and the metric Riemann struc-
tures. The symplectic structure is preserved by Hamiltonian
vector fields of arbitrary smooth functions, but the metric
is preserved only by the Killing vector fields, i.e., by the
Hamiltonian vector fields generated by quadratic functions
of the canonical variables. In particular, the unitarity of the
QM evolution implies that the Hamilton equations (1) are
linear. All observables are represented by quadratic functions
A(X) on M and are the quantum-mechanical expectations of
the corresponding quantum observables A(X) = 〈ψX|Â|ψX〉.
On the other hand, the canonical coordinates of the quantum
phase space do not have physical interpretation. It is important
to observe that the Poisson bracket between two quadratic
functions is also a quadratic function and satisfies

{A1(X),A2(X)} = 1
i�

〈ψX|[Â1,Â2]|ψX〉. (3)

In what follows we shall need to consider a bipartite
quantum system composed of two systems with Hilbert spaces
HN1

1 and HN2
2 . The phase space of the total system is the

manifold M12 = R2N1N2 ∼ HN1
1 ⊗ HN2

2 . Of course, the space
M12 is much larger than the Cartesian product M1 × M2,
which is relevant for the formation of classical compound
systems. If |e1

j 〉 and |e2
k〉 are basis vectors in HN1

1 and HN2
2

respectively, with the corresponding canonical coordinates
(x1

j ,y
1
j ) and (x2

k ,y
2
k ), then the canonical coordinates (x12

l ,y12
l )

corresponding to the basis |e1
j 〉 ⊗ |e2

k〉 in HN1
1 ⊗ HN2

2 are given
by rather complicated formulas in general. Fortunately, we
shall need only the formulas in the most simple cases, further
simplified by a special choice of the target system state before
the cloning transformation. In what follows we denote the
composition of phase spaces of two systems with phase spaces
M1 andM2 byM1 	 M2, which meansM12 in the quantum
and M1 × M2 in the classical case.

The Hamiltonian formulation of QM suggests natural
formal generalizations [7]. Several such generalizations could
be seen as special cases of the theory called extended quantum
mechanics which was introduced and extensively studied in
Ref. [16]. The most obvious one is to consider a theory where
the evolution can be generated by functions which are not
quadratic [7,10,17] but to retain the assumption that only
the quadratic functions correspond to physical observables,
and to retain the composition rule for compound systems.
This would correspond to a nonlinear Schrödinger evolution
equation. Such a theory, which we abbreviate by NHQM, is
still a HDS with the same set of states and observables as in
QM, but the Hamiltonian evolution equations are nonlinear
and the metric is not evolution invariant. Since the proofs
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of the no-cloning property in QM are based on linearity or
unitarity of the QM evolution, it is interesting to investigate if
the cloning is possible in NHQM.

2. Hamiltonian hybrid theory

There is no unique generally accepted theory of interaction
between micro and macro degrees of freedom, where the
former are described by quantum and the latter by classical
theory. The reason is primarily because each of the suggested
theories has some unexpected or controversial features (see
Ref. [13] for an informative review). Partial selection of hybrid
theories can be found in Refs. [18–23]. Some of the suggested
hybrid theories are mathematically inconsistent, and “no-go”
type theorems have been formulated [24], suggesting that
no consistent hybrid theory can be formulated. Nevertheless,
mathematically consistent but inequivalent hybrid theories
exist [13,22,23]. The Hamiltonian hybrid theory, as formulated
and discussed, for example, in Refs. [12,13], has many of the
properties commonly expected of a good hybrid theory. In
fact, the dynamical formulas of the Hamiltonian theory are
equivalent to the well-known mean-field approximation, the
main novelty being that the theory is formulated entirely in the
framework of the theory of Hamiltonian dynamical systems,
which enables useful insights and methods of analysis [25–27].
Analysis of cloning in the Hamiltonian hybrid system is one
such application. In fact, we analyze the possibility of cloning
in general HHM where the Hamiltonian is not necessarily of
mean-field form and contrast the results with the HHM of the
restricted type where the Hamiltonian is of mean-field form.

The phase space in the Hamiltonian theory of a hybrid
classical-quantum system, denoted by M, is considered as a
Cartesian product M = Mc × Mq of the classical subsystem
phase space Mc with dimMc = 2Nc and of the quantum
subsystem phase space Mq with dimMq = 2Nq . Local
coordinates on the product are denoted (q,p,x,y), where
(q,p) ∈ Mc are called the classical degrees of freedom (CDF)
and (x,y) ∈ Mq are called the quantum degrees of freedom
(QDF). Notice that the classical and the quantum parts are
composed as if both were classical, i.e., there is no possibility
of entanglement between CDF and QDF. Generalized Hamil-
tonian hybrid theory is given by a Hamiltonian dynamical
system on the phase space M = Mc × Mq . In the general
case, nothing is supposed about the total Hamiltonian, and
it is only the structure of the phase space that justifies the
terminology of hybrid quantum-classical systems. The Poisson
bracket on M of arbitrary functions of the local coordinates
(q,p,x,y) is defined as

{f1,f2}M =
Nc∑
i=1

(
∂f1

∂qi

∂f2

∂pi

− ∂f2

∂qi

∂f1

∂pi

)

+ 1
�

Nq∑
j=1

(
∂f1

∂xj

∂f2

∂yj

− ∂f2

∂xj

∂f1

∂yj

)
. (4)

Thus, the Hamiltonian form of the hybrid dynamics on M as
the phase space reads

q̇ = {q,H }M, ṗ = {p,H }M,

ẋ = {x,H }M, ẏ = {y,H }M, (5)

where H is an arbitrary smooth function on the total phase
space M.

A particular case of HHM, treated, for example, in
Refs. [12,13] and equivalent to the mean-field approach,
is obtained by further assumptions about the form of the
Hamiltonian. The evolution equations of the hybrid system
are in this type of HHM given by the Hamiltonian of the
following form:

Ht (q,p,x,y) = 〈ψx,y |Ĥq + V̂int(q,p)|ψx,y〉 + Hc(q,p)

= Hc(q,p) + Hq(x,y) + Vint(q,p,x,y), (6)

where Hc is the Hamilton’s function of the classical
subsystem, Hq(x,y) = 〈ψx,y |Ĥq |ψx,y〉 is the Hamilton’s
function of the quantum subsystem, and Vint(q,p,x,y) =
〈ψx,y |V̂int(q,p)|ψx,y〉, where V̂int(q,p) is a Hermitian operator
in the Hilbert space of the quantum subsystem which depends
on the classical coordinates (q,p) and describes the interaction
between the subsystems. Despite the fact that the Hamiltonian
is a quadratic function of QDF (and arbitrary function of CDF)
the evolution of the QDF is nonlinear because of the coupling
between QDF and CDF.

It is important to mention the evolution of statistical ensem-
bles of hybrid systems in this type of HHM. Such an ensemble
is described by a probability distribution ρ(q,p,x,y), which
evolves by the Liouville equation with the Hamiltonian (6).
The following expression:

ρ̂(t) =
∫
M

ρ(q,p,x,y; t)�̂(x,y)dxdydqdp

=
∫
M

ρq(x,y; t)�̂(x,y)dxdy =
∫
M

ρ̂cl(q,p; t)dqdp,

(7)

where �̂(x,y) is a normalized projector onto the vector |ψx,y〉,
is a well-defined density matrix representing a state of the
QDF at each t . There are many ρq(x,y; t) giving the same
density matrix ρ̂(t). From the evolution equation satisfied
by Eq. (7), or from Eq. (5), it is seen that a pure state
|ψ(t)〉〈ψ(t)| obtained from an initial ensemble ρ(q,p,x,y) =
δ(q − q0)δ(p − p0)δ(x − x0)δ(y − y0) with CDF (and QDF)
in pure states is always a pure state of QDF. The evolution
equation satisfied by this pure state is in the form of a
(linear) Schrödinger equation with the Hamiltonian which is a
Hermitian operator that depends explicitly on (q(t),p(t)). On
the other hand, if the CDF are initially in a mixed state, a pure
state of the QDF will evolve into a mixed state. Furthermore,
it was shown in Ref. [26] that the evolution of a general ρ(t)
will involve explicitly the convex expansion (7), and not only
ρ(t). Therefore, it seems that this type of HHM can be used
for superluminal communication between distant subparts of
the quantum DF.

Discussion of cloning within the restricted type of HHM
with the classical part playing the role of the cloning machine
requires special treatment as compared with the general HHM.

B. Definitions of cloning and self-replication

Cloning is a process involving three systems: the object
system So with the state space So, a target system St with the
state space St the same as that of So, and an auxiliary system,
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the cloning machine Sm, with the state space of dimension M

that is not specified in advance. It is said that cloning of some
arbitrary object state Xo ∈ So is possible if there is a state of
the target Xt,in ∈ St and a state of the machine Xm,in ∈ Sm

such that

Xo 	 Xt,in 	 Xm,in → Xo 	 {Xt = Xo} 	 Xm (Xo) . (8)

The arbitrary state of the object system is conserved by cloning;
one fixed state of the target and another fixed state of the
machine are chosen as initial, independently of the object state.
The fixed initial target state is mapped into the initial state
of the object. The final state of the machine might depend on
the object state Xo. It is not assumed that the final machine
state is uniquely related to Xo. Observe that the possibility
of cloning does not imply that the cloning is achieved with
any initial target and machine states, but only with a specific
choice of these states. The domain and the range of the cloning
map (8) are proper subsets of the sets of possible states of the
object + target + machine system.

The system So

⋃
St

⋃
Sm is characterized by its natural

evolution, and the question is if the cloning map belongs
to that class. In our case the natural evolution is given by
a Hamiltonian flow on So 	 St 	 Sm and thus preserves the
symplectic structure on So 	 St 	 Sm. In NHQM all three
systems are quantum and, as was stated in the previous section,
	 is the tensor product. In HHM we shall consider the case
when the object system and the target are quantum and the
machine is classical. Thus, in this case, 	 between the machine
and object + target is the Cartesian product. Alternatively,
which we shall not do, one could analyze cloning with all
three systems of the hybrid nature. The only fixed property
of the cloning problems within the Hamiltonian framework
is the canonical Hamiltonian evolution and the fact that pure
states are represented by points in the corresponding phase
spaces. If Xo and Xt represent phase space points in the
Hamiltonian formulation corresponding to the vectors |ψo〉
and |ψt 〉, respectively, then it is natural to assume that the
cloning is successful if at the output |ψt 〉 exp(iθ ) = |ψo〉, i.e.,

xi
t cos θ − yi

t sin θ = xi
o,

yi
t cos θ + xi

t sin θ = yi
o,

i = 1,2, . . . ,N. (9)

The role of the machine DF can be justified from two
different points of view. One is the operational point of view,
where the appearance of the cloning machine is natural. The
other role of the cloning machine is to actually enable the
object + target subsystem to evolve in a non-Hamiltonian way.
Quite analogously to the role of the machine in the standard
QM formulation of cloning, here the presence of the cloning
machine enables the total object + target + machine system
to evolve canonically while enabling a more general type of
evolution of the subsystem object + target. In this respect a
related more restrictive problem with no cloning machine
is sometimes considered. Such a process has been termed
self-replication and consists of mapping a fixed state of the
target system into an arbitrary state of the object system,
the latter remaining unchanged, but without any influence
of the third system. In the self-replication process the
object + target system is considered as isolated. Together

with the problem of proper cloning within NHQM (with the
cloning machine) we shall also analyze the possibility of
self-replication in such theories.

III. MAIN RESULTS

Our strategy to analyze the possibility of self-replication
and cloning will be the same in NHQM and HHM. Let us
denote by Motm the total phase space of the object + target +
machine system. By Min ⊂ Motm we denote the submanifold
of the total phase space of the form Mo 	 Xt,in 	 Xm,in,
where Xt,in and Xm,in are specific initial vectors representing
states of the target and the machine, respectively. We shall
all the time deal with vectors of unit norm. Similarly, we
denote by Mf ⊂ Motm the submanifold which is the image
of Min by the cloning map. Points in Mf are of the
form Xo 	 Xo 	 Xm,f (Xo), Xo ∈ Mo, and thus dimMf =
dimMin = dimMo. We then choose an arbitrary point X ∈
Min and two arbitrary normalized tangent vectors gX,hX ∈
TX(Min) ⊂ TX(Motm). The value of the symplectic area
ωX(gX,hX) is then computed. Cloning (or self-replication) is
represented by the mapping φ : Min → Mf with the tangent
map φ
 : TX(Min) → Tφ(X)(Mf ). Symplectic area between
the images of the two vectors ωφ(X)(φ
gX,φ
hX) is then
computed. If φ is a symplectic map, i.e., can be generated
by a piecewise smooth Hamiltonian flow, then

ωφ(X) (φ
gX,φ
hX) = ωX (gX,hX) . (10)

If Eq. (10) is not satisfied, for any choice of Xt,in,Xm,in, and
Xm,f , then the cloning (self-replication) map φ cannot be
realized by a Hamiltonian flow. To apply the procedure, we
shall write explicitly the cloning map φ and its tangent map
φ
, corresponding to the phase spaces Min and Mf with a
specific choice of the initial target and machine states in the
NHQM and HHM. The only difference will be in the way
the machine phase space Mm is added to the phase space
of the object + target.

In our discussion, we consider the simplest possible systems
as object, target, and machine. The object and the target are
each taken to be a single qubit. An arbitrary state of the object
qubit is a normalized C2 vector with complex coefficients
(α,β) corresponding to some basis of So. Furthermore, the
initial state of the target qubit will be represented by vector
(1,0) in a basis of St chosen in the same way as the basis
in So. This does not seem to be a restriction with crucial
consequences, but grossly simplifies explicit formulas for the
self-replication (and later cloning) map.

In the case of NHQM the machine is also a quantum system
and the coupling of it with the object + target is via tensor
product. In order to demonstrate that, in NHQM, cloning by a
symplectic (nonlinear) transformation is possible, it is enough
to assume that the cloning machine is also a qubit, set initially
in the state (αm,βm) = (1,0), represented in some basis of Sm.
Cloning is also possible by a symplectic map in the case of
general HHM, when the machine is a classical system with
two degrees of freedom and is coupled to the object + target
via the Cartesian product. However, an additional argument is
used to show that in the specific HHM with the Hamiltonian of
the form (6), i.e., quadratic in the QDF, cloning of the quantum
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state is impossible by symplectic transformation generated by
the Hamilton functions of the stated form.

A. Impossibility of self-replication in NHQM

Let us first illustrate the computations for the case of
self-replication in NHQM. The real dimension of Min with
normalized object states is three. In the complex notation the
initial point in Min representing the state of object + target
before self-replication is

Xin = (α,0,β,0), |α|2 + |β|2 = 1. (11)

Two normalized tangent vectors g and h in T (Min) at Xin are
given as

gre = (−g1αim + g3βre,0, − g3αre − g2βim,0), (12a)

gim = (g1αre + g3βim,0, − g3αim + g2βre,0), (12b)

with arbitrary real numbers g1, g2, and g3 chosen to respect
the unity norm. Analogous formulas apply to hre and him.
Subscripts re and im stand for real and imaginary parts. The
skew product of the two tangent vectors is

ω(g,h) = [g3(h1 − h2) + (g2 − g1)h3](αreβre + αimβim).

(13)

In formulas (12) and (13) we have, for the sake of brevity,
skipped the subscript indicating the related point Xin.

Image by the self-replication map φ of Xin, again in the
complex coordinates, is given by

Xf = (α2,αβ,βα,β2) exp[iθ (α,β)]. (14)

Notice the arbitrary phase factor added to the result of the
self-replication operation. Images of g and h by the tangent
map φ
 are given by rather long formulas which we do not
reproduce here. However, the skew product of φ
g and φ
h at
the point Xf is given by

ω(φ
g,φ
h) = 2[g3(h1 − h2) + (g2 − g1)h3]

× (αreβre + αimβim)(|α|2 + |β|2). (15)

Notice that the previous result is independent of arbitrary phase
factor. The ratio of the symplectic areas after and before the
application of the self-replication map is

ω(φ
g,φ
h)
ω(g,h)

= 2(|α|2 + |β|2) = 2. (16)

Thus, the self-replication map does not preserve the skew
product and therefore cannot be realized by any symplectic
map between Min and Mf .

B. Possibility of cloning in NHQM

Consider now the proper cloning map in NHQM with the
quantum machine included. Since we shall see that the cloning
map is symplectic with the cloning machine given by a qubit,
it is enough to assume this simplest realization of the machine.
The final state of the machine (αmf ,βmf ) is free to chose, and
the choice can be done such that the factor of two appearing
in the result of self-replication (16) can be canceled.

Formulas for the initial point and its image by the cloning
map for the indicated choice of initial states of the target and

the machine in the complex notation are given by:

Xin = (α,0,0,0,β,0,0,0), (17)

Xf = (α2αmf ,α2βmf ,αβαmf ,αββmf ,

×αβαmf ,αββmf ,β2αmf ,β2βmf ), (18)

where (αmf ,βmf ) denote the final state of the machine. The
tangent vector g is given by

gre = (−g1αim + g3βre,0,0,0,−g3αre − g2βim,0,0,0),

(19a)

gim = (g1αre + g3βim,0,0,0,−g3αim + g2βre,0,0,0),

(19b)

and analogously for h. The skew product between g and h

is

ω(g,h) = [g3(h1 − h2) + h3(g2 − g1)](αreβre + αimβim).

(20)

The images of g and h by the tangent map, their skew
product, and the ratio ω(φ
g,φ
h)/ω(g,h) are given by rather
long formulas, which depend on the final machine state.
However, we have found that the choice of final machine
state as (αmf ,βmf ) = (ᾱ,β̄), where the bar indicates complex
conjugation, renders the ratio equal to unity for the normalized
state (α,β) of the object. Therefore, the cloning map can be
realized by a symplectic transformation. From the standard
QM it follows that the symplectic cloning transformation in
NHQM must be nonlinear.

C. Possibility of cloning in general HHM

We chose the object and the target to be the same systems
and to be in the same states as in the case of NHQM. The
machine is chosen to be a convenient classical system with
two DF and coordinates (q1m,q2m,p1m,p2m) or in complex
notation (q1m + ip1m,q2m + ip2m) = (αm,βm). Formulas for
the initial point for the indicated special choice of initial target
and machine states are given in the complex coordinates by

Xin = (α,0,β,0,1,0) . (21)

The machine final state is free to choose. With the choice
(αmf = αim + iαre,βmf = βim + iβre) the state after cloning
operation is

Xf = (α2,αβ,βα,β2,αim + iαre,βim + iβre). (22)

Tangent normalized vector g is given by

gre = (−g1αim + g3βre,0,−g3αre − g2βim,0,0,0), (23a)

gim = (g1αre + g3βim,0,−g3αim + g2βre,0,0,0), (23b)

and similarly for tangent vector h. The skew product
between g and h is given by

ω(g,h) = [g3(h1 − h2) + h3(g2 − g1)](αreβre + αimβim).

(24)

The images of the normalized tangent vectors and their skew
product are again given by rather long formulas. However, the
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above choice of the machine final state renders the ratio
ω (φ
g,φ
h)

ω (g,h)
= 1, (25)

for normalized initial object states. Again, the cloning map can
be realized by a symplectic transformation.

D. Impossibility of cloning in the HHM with the
specific form of the Hamiltonian

Special form of the hybrid Hamiltonian (6) implies special
status of the cloning operation in this type of HHM, as
compared with the general case. In fact, due to the properties
of the evolution of pure hybrid states, summarized in Sec. II,
pure states of QDF remain pure if the initial state of CDF
is also pure. Furthermore, the scalar product between two
QDF pure states is preserved. Therefore, the standard no-
cloning argument from linear QM applies. Thus, cloning of
quantum states is impossible within the specific HHM with
Hamiltonian (6), and with classical DF assuming the role of
the cloning machine. Here we have an example of a theory
that does not admit cloning of pure quantum states, but whose
natural extension that includes ensembles admits superluminal
communication.

IV. DISCUSSION

Remark 1: Physical interpretation and consequences.
Cloning is commonly considered as an information-processing
task. From this point of view, the problem formulated in Sec.
II and discussed in Sec. III is rather formal and is concerned
with an idealized system that could never occur in information-
processing protocols with real systems. Pure states of isolated
systems and their idealized evolution are only probabilistically
related to information and its processing. Therefore, the
relation between the system’s states and information must be
probabilistic, and the processing of such information necessary
involves stochastic perturbations. This has been analyzed
in the standard QM [28]. The question of cloning in real,
experimentally available systems was not studied in the present
publication but is important in analyzing the fundamental
and practical consequences. In order to do that, one needs
to use probability ensembles, represented by distributions on
the relevant phase spaces and stochastic evolution equations.
We believe that only with such an analysis could one attempt
to draw conclusions as to the physical consistency of the
nonlinear HQM and HHM.

Remark 2: Cloning vs superluminal signaling. It is well
known that, if cloning would be possible in the standard QM
then, also in the framework of this theory, it would also be
possible to communicate information at superluminal speed.
It has also been claimed that the condition of no superluminal
signaling puts an upper bound on the fidelity of cloning, in
effect excluding the perfect cloning in QM [29]. The condition
of no superluminal signaling is in Ref. [29] expressed in terms
of convex expansions of mixed states. In the opposite direction,
it has been argued [2,17] that a nonlinear evolution of pure
quantum states would enable signaling at superluminal speed.
This is consistent with our results which show the possibility of
cloning in NHQM. However, the argument does not exclude
theories in which pure quantum states cannot be perfectly

cloned, but the superluminal signaling is possible. Mean-field
HHM with the special form of the Hamiltonian (6) is an
example of such a theory.

Remark 3: Cloning in classical mechanics. It is commonly
understood that perfect cloning of classical information con-
tained in a classical pure state is possible. Of course, in order to
discuss the possibility of cloning, one needs a precise definition
of the state space and the type of dynamics characterizing the
classical system. One formulation of the problem, particularly
relevant in fundamental physics and for comparison with
our results, is for the classical system modeled by using the
framework of classical Hamiltonian dynamical systems. States
of the system, the target, and the machine are described by the
corresponding symplectic manifolds, their union is given by
the Cartesian product and the symplectic structure on the total
space is such that the symplectic structures on the components
are obtained by the corresponding projections. It is known
that the self-replication is not, but the cloning is possible by
symplectic mappings on the total phase space, provided that
the machine space has enough dimensions [9]. The proof of
no self-replication is similar to the case in nonlinear quantum
mechanics, presented in Sec. III. The possibility of cloning
in Hamiltonian CM is established and discussed by concrete
examples of symplectic cloning maps. It should be stressed
that cloning is performed by linear symplectic mapping. On
the other hand, cloning in NHQM and general HHM can
be achieved by a symplectic map which must be nonlinear.
This seems to be the crucial difference between the theories
involving tensor or Cartesian products between the target and
the object systems.

Remark 4: Cloning in classical statistical mechanics.
Evolution of a probability distribution generated by a measure
preserving mapping of a phase space is by definition linear and
preserves the relative entropy between two distributions. These
two properties, i.e., preservation of a nontrivial (quasi) distance
between states and linearity are features of the Schrödinger
evolution of pure quantum states. Also, the space of statistical
states of a compound system, for example, L1(M1 × M2) can
be considered as the tensor product of L1(M1) and L1(M2).
Thus, all three ingredients that are used in the standard
proofs of no cloning in QM are also properties of classical
statistical mechanics. Therefore, one expects, and it has been
proved to be true [30], that cloning in classical statistical
mechanics is impossible. Due to the creation of correlations
between the subsystems, it is also possible to formulate the
question of cloning in a more general way, more akin to the
notion of broadcasting in QM. The answer to the question
of possibility of broadcasting in Hamiltonian CM is also
negative [30].

V. SUMMARY

We have analyzed the possibility of exact cloning of
unknown quantum states in two types of nonlinear general-
izations of quantum mechanics. Both types of generalizations
were formulated as Hamiltonian dynamical systems on appro-
priate phase spaces. In the first type, which we called nonlinear
Hamiltonian quantum mechanics (NHQM), the object, the
target and the machine are treated as quantum systems, and it
is shown that cloning can be realized by a nonlinear symplectic
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mapping. On the other hand, the process of self-replication,
involving only the system and the target, cannot be realized by
any symplectic transformation in NHQM. The other type of
nonlinear generalizations of QM which we treated describes
hybrid quantum-classical systems, again using the framework
of Hamiltonian dynamical systems. Here, the object and the
target are quantum, but the machine is a classical system. We
show that there exists a nonlinear symplectic transformation
which realizes the cloning operation. However, the cloning
transformation cannot be realized in the Hamiltonian hybrid
theory of the mean-field type, in which case the Hamiltonian
must be a quadratic function of the quantum degrees of
freedom and an arbitrary one of the classical degrees of

freedom. It would be interesting to try to extend these
results to the problem of broadcasting of mixed states in the
nonlinear generalizations. This would require analysis of the
Liouville evolution of densities and might result in possibility
of broadcasting also in the mean-field Hamiltonian hybrid
theory.
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[14] N. Burić, Ann. Phys. (NY) 323, 17 (2008).

[15] V. I. Arnold, Mathematical Methods of Classical Mechanics
(Springer, New York, 1978).

[16] P. Bona, Acta Physica Slovaca 50, 1 (2000).
[17] B. Mielnik, Phys. Lett. A 289, 1 (2001).
[18] T. N. Sherry and E. C. G. Sudarshan, Phys. Rev. D 18, 4580

(1978).
[19] W. Boucher and J. Traschen, Phys. Rev. D 37, 3522 (1988).
[20] I. V. Aleksandrov, Z. Naturf. 36A, 902 (1981).
[21] A. Peres and D. R. Terno, Phys. Rev. A 63, 022101 (2001).
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Abstract
We experimentally studied the temporal evolution of Zeeman electromagnetically induced
transparency (EIT) resonances induced by the laser resonant to hyperfine transition
F F2 1g e= → = of 87Rb in a rubidium buffer gas cell. We simultaneously modulated the laser
beam intensity and polarization to achieve the repeated interaction of the laser beam with
coherently prepared atoms. Our cell was placed in a homogenous magnetic field to obtain the
Larmor precession of the phase of coherences. The weak laser beam was used to probe the atoms
at the end of the Ramsey sequence. We measured the transparency of the probe pulse at different
magnetic fields for a given excitation pulse and the period of free evolution of Zeeman
coherences in the dark. From these data, we reconstructed the temporal evolution of EIT
resonances. The Ramsey fringes that appeared on the EIT curves at the beginning of the second
probing pulse disappeared at later moments due to various decay processes.

Keywords: electromagnetically induced transparency (EIT), Zeeman coherences, slow light,
storage of light, Ramsey fringes

(Some figures may appear in colour only in the online journal)

1. Introduction

Electromagnetically induced transparency (EIT) is a phe-
nomenon characterized by a narrow transparency resonance
of a laser field through coherent media, such as alkali atomic
vapor [1]. This effect is of special interest because it allows
for fine control of pulse propagation. EIT-based slow and
stored light observations [2] may benefit telecommunications
and quantum memories.

EIT resonance in Hanle configuration is based on Zee-
man coherences between magnetic sublevels of a given
hyperfine state of an alkali atom electronic ground state.
When such an atom is exposed to the external magnetic field,
its magnetic dipole moment rotates around the field direction
with a Larmor frequency. This allows the possibility for a
Ramsey method of separated oscillatory fields [3]. For
instance, in the interaction of an atom with a first light field,
coherence between atomic levels is created. Under the influ-
ence of the magnetic field, the phase of the rotation of the

magnetic dipole moment defines the coherence phase. The
second light field, which can be either spatially or temporally
separated from the first field, probes the coherence [4]. The
result is an interferometric picture with Ramsey fringes in the
probe transparency signal, due to the phase differences
between the coherence and the probe field.

Ramsey-like measurements of Zeeman decoherence that
determine the dumping rate of the oscillations are presented in
[5]. The effects of Ramsey narrowing of EIT resonances due
to atomic diffusion in and out from the interaction region
were discussed in [6, 7]. High contrast Ramsey fringes in a
double Λ atomic scheme were obtained in [8]. Raman–-
Ramsey fringes are also shown in vacuum Rb cells using
time-delayed optical pulses [9] and a probe beam that was
spatially enclosed by the pump beam [10].

In this work, we present the experimental study of the
temporal evolution of the Zeeman EIT resonances based on
repeated interaction of coherently prepared atoms with the
laser beam. The obtained transparency of the σ− probe at
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different magnetic fields was used to reconstruct the EIT
resonances at different moments from the beginning of the
probe pulse. The studies of dark states temporal behavior [11]
and transient effects of EIT phenomenon [12–14] have been
previously shown. In our work, the evolutions of (i) damped
Ramsey fringes on the probe transparency and (ii) recon-
structed EIT resonances during the probe propagation allowed
for unique observation of the development and decay of
Zeeman coherences.

2. Experimental setup

The experimental setup is shown in figure 1. The external
cavity diode laser is frequency locked to the hyperfine
F F2 1g e= → = transition of the D1 line in 87Rb in vacuum
cell using the Doppler-free dichroic atomic vapor laser lock
(DDAVLL) method [16, 17]. Gaussian distribution of radial
laser intensity is obtained using the single-mode optical fiber.
To achieve the repeated interaction of the laser light with Rb
atoms, the power of the acousto-optical modulator (AOM)
first-order diffracted beam is modulated and transmitted
through the cell. The linear polarization of the laser light is
assured by the high-quality linear polarizer. The Pockels cell
and the λ/4 plate are used to modulate the polarization of the
laser beam, so that pure σ+ circular polarization is obtained
when no voltage is applied to the cell and some percent of the
σ− light is produced otherwise. The arbitrary signal generator
is programmed by the computer, whereas its two synchro-
nized outputs control the AOM and the Pockels cell. The Rb
cell containing 30 Torr of Ne buffer gas is 8 cm long and
25 mm in diameter. The difference between the
F F2 1g e= → = transition frequencies in a vacuum and our
buffer gas cell is approximately −20MHz [18], which in total
gives one photon detuning of −90MHz in the experiment,
due to −110MHz AOM frequency shift in the first diffraction
maximum. The Rb cell was heated using hot air circulating
around the cell. The Rb vapor is shielded from external

magnetic fields by the triple μ-metal layers, which reduce
stray magnetic fields below 10 nT. To obey two-photon
detuning, a long solenoid placed around the Rb cell produces
a controllable longitudinal magnetic field in the range of ±
40 μT. The estimated magnetic field error is on the order of 10
nT. The transmitted σ− laser light is extracted with λ/4 plate
and polarizing beam splitter (PBS). The σ− laser intensity as a
function of applied magnetic field is measured by the pho-
todetector and recorded by the storage oscilloscope. The
intensities of polarization pulses were 4.9 and 0.95 mW cm−2

and the cell temperature was set to 67 ° C.
The signals applied to the AOM and the Pockels cell are

shown in figure 2(a). We first generate a 400 μs pulse, in
which 15% of the optical power is carried by σ− polarized
photons. Two coherent light fields (strong σ+ and weak σ−)
pump the Rb atoms into the nonabsorbing dark state. After
completion, the voltage on the Pockels cell is set back to zero
and the AOM is synchronously turned off for 60 μs. During
this dark interval, Zeeman coherence makes a Larmor pre-
cession in the external magnetic field. After this dark interval,
the Pockels cell again generates the same elliptically polarized
pulse and the AOM is turned back on to produce five times
weaker light. This second pulse, with 400 μs duration, probes
the previously created Zeeman coherences. Finally, we return
the full beam power and set circular σ+ polarization during 5
ms to reset atoms back in the ground state before the next
pulse train. In this way, we produced Ramsey-like measure-
ments with two temporally separated polarization pulses.

3. Results and discussions

The σ− transparency signals measured for three different
values of the external magnetic field are shown in figure 2(b).
As expected, in the case of zero magnetic field, we see no
Ramsey fringes in the transparency curve. We measured the
linear dependence of fringes’ frequency on the applied mag-
netic field with a slope close to magnetic sublevels energy
splitting factor of 87Rb hyperfine state S52

1 2 Fg = 2 (not
shown). Due to decoherence processes, the oscillations are
dumped.

The noise in figure 2(b) comes from the low transparency
of the σ- signal and the photo detectorʼs electronic noise. The
measured value of signal to noise ratio is 12 dB in the
21MHz bandwidth of the entire data acquisition system.
From these data, we were able to reconstruct the EIT reso-
nances at different times during the probe pulse propagation.
First, we set t = 0 at the beginning of the second polarization
pulse. Next, we take the values of the σ- transparency at a
particular time instant t for all magnetic field values and plot
this data set using the B-spline routine. EIT resonances
obtained this way, as shown in figure 3(a), show clean
oscillations because the reconstruction process takes one
transparency value at a time and therefore eliminates the noise
itself. However, because of measurement uncertainty, these
oscillations are not perfect, i.e., fringes of the same order have
slightly different amplitudes. The reconstructed EIT reso-
nances are shown in figure 3 for the Rb density of ∼ 4.5·1011

Figure 1. Experimental setup and atomic transition [15] used in the
experiment. ECDL—external cavity diode laser; OI—optical
insulator; DDAVLL—Doppler-free dichroic atomic vapor laser lock;
BS—beam splitter; FC—fiber coupler; SMF—single-mode fiber;
FCL—fiber collimator; AOM—acousto-optic modulator;
P—polarizer; PBS—polarizing beam splitter; PD—photodetector.
Hot air is used to heat the cell.
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cm−3 and the laser beam diameter of 1.3 mm. Ramsey fringes
were observed at EIT resonances for t 196 sμ≲ and vanish at
later moments due to the finite lifetime of Zeeman coherence.
The decay rate of Zeeman coherences γ2 was obtained by
fitting the σ− transparency signal (ii) from figure 2(b) to
function y A e A e tsin ( )t t

1 2 0
1 2 ω φ= + +γ γ− − (not shown).

The measured γ2 value is on the order of ∼9000 s−1. In
figure 3(a), an EIT resonance with oscillation pattern at
t 16= μs is shown. In figure 3(b), an EIT curve at t 328= μs
with no fringes is presented.

4. Conclusion

We experimentally studied the Zeeman coherence using
Ramsey fringes obtained at the transparency signal of the
probe σ− laser field in the presence of the external magnetic
field. Temporal evolution of Zeeman EIT resonances in Rb
buffer gas cell were also presented. The first polarization
pulse containing weak σ− and strong σ+ fields was used to
create Zeeman coherences in Rb atoms. The subsequent
weaker probe pulse with the same polarization state was
produced to probe these coherences. The laser beam was
completely turned off between the pulses to enable free
evolution of the dark state in the magnetic field. The oscil-
latory pattern on the reconstructed EIT curves obtained soon

after the second pulse generation disappeared at later times
because of the various decoherence processes.
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1. Introduction

Driven two-level systems are ubiquitous in quantum
mechanics. Examples of exactly soluble two-level prob-
lems include Landau�Zener [1, 2], and Rabi [3] problems,
Jaynes�Cummings [4] model, and others [6�11]. A new
theoretical approach to the driven two-state system was
recently introduced by Barnes and Das Sarma [12]. This
uses a single-axis control �eld along the z axis, which is
represented by a driving �eld J(t) in the Hamiltonian
(the time varying energy splitting between states):

H(t) =
1

2

[
J(t) h

h −J(t)

]
. (1)

Here h represents a constant (an energy splitting between
the two levels). The evolution operator, from an initial
time t = 0, to a later t, and corresponding to H is repre-
sented by the 2× 2 unitary matrix

U(t) =

[
U11 −U∗21
U21 U∗11

]
, (2)

with |U11(t)|2 + |U21(t)|2 = 1.
One then uses an innovative approach [12] to solve the

corresponding time-dependent Schrödinger equation for
the evolution operator and obtains the forms for the ma-
trix elements of the evolution operator, Eqs. (12)�(16)
in [12].
It turns out that the driving �eld, J(t), appearing in

the Hamiltonian (1) is related to a function q(t), with
corresponding initial conditions given by Eq. (17) in [12],
via

J(t) =
q̈ + h2q√

h2(1− q2)− q̇2
. (3)

Such a simple prescription enables one to generate a num-
ber of novel, analytically solvable two-state problems to-
gether with their explicit solutions.

*corresponding author; e-mail: mendas@ipb.ac.rs

With such solutions one is able (at least in principle)
to determine corresponding total, dynamic and geomet-
ric phases [13�19], in order to study and monitor the
time development of the state vectors evolving under the
Hamiltonian given by Eq. (1). This is of interest in the
context of qubit control and quantum computing. The
phases, for a pure state, are as follows. The total phase,
ϕ(0, t), of the state vector |Ψ , t〉 = U(t)|Ψ , 0〉, accumu-
lated during the evolution from an initial time 0 to a
�nal t, is determined by the argument of the inner prod-
uct

〈Ψ , 0|Ψ , t〉 ≡ r(0, t) exp (iϕ(0, t)) ,

ϕ(0, t) = arg [〈Ψ , 0|Ψ , t〉] . (4)

Here we restrict ourselves to r(0, t) > 0, so that the two
states in question are not orthogonal, and the relative
phases can be determined. By convention the result of
the argument of the complex number z, arg(z), is always
between −π and +π. Thus the total phase is in radians
and ranges across this interval. A part of the total phase
is the dynamic phase, which is given by the time integral
of the expectation value of the Hamiltonian (we use units
~ = 1)

δ(0, t) ≡ −
∫ t

0

〈Ψ , τ |H(τ)|Ψ , τ〉dτ. (5)

The geometric phase is then simply the surplus in the
total phase over δ(0, t):

β(0, t) ≡ ϕ(0, t)− δ(0, t). (6)

Thus, in order to determine the geometric phase, the
road is in principle simple. If one can solve the time-
-dependent Schrödinger equation (and this is precisely
the case treated in [12]), the total phase is determined by
the argument of the inner product 〈Ψ , 0|Ψ , t〉, Eq. (4).
Subsequently, the corresponding dynamic phase follows
from the time integral of the expectation value of the
Hamiltonian, Eq. (5). Finally, the di�erence between the
two, Eq. (6), yields the geometric phase. There are nu-
merous papers related to the geometric phase e.g. [20�22].

Here, in Sect. 2, we �rst present in some detail the the-
ory on which the results of the calculations reported here

(670)
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are based, while in the subsequent Sect. 3 we describe
the calculation of the phases. Finally a brief summary is
presented.

2. Spin polarization vector

It is convenient to parametrize the time dependent
Hamiltonian operator of a two-level system as

H(t) = H0(t)12 +H(t) · σ, (7)

where σ denotes the vector of three Pauli 2 × 2 matri-
ces (σ1, σ2, σ3), and 12 denotes the 2 × 2 unit matrix.
In the case of the Hamiltonian (1) one has H0(t) = 0,
H1(t) = 1

2h, H2(t) = 0 and H3(t) = 1
2J(t).

Similarly one parametrizes the 2 × 2 unitary matrix
Eq. (2) as

U(t) = U0(t)12 + iU(t) · σ, (8)

with additional condition which stems from the unitarity
condition of the evolution operator U(t): U(t) · U(t) +
U2
0 = 1. In the case of (2) one has U0(t) = <{U11(t)},

U1(t) = ={U21(t)}, U2(t) = −<{U21(t)}, and U3(t) =
={U11(t)}, where < and = denote the corresponding real
and imaginary parts, respectively. Finally, the corre-
sponding 2× 2 density matrix is of the form

ρ(t) = |Ψ , t〉〈Ψ , t| = 1

2

(
12 + P (t) · σ

)
. (9)

Here P (t) denotes the time dependent average spin
polarization vector. Using this notation one has, from
Eqs. (5) and (6)

ϕ(0, t) = arg (Tr (U(t)ρ(0))) =

arctan

(
U(t) · P (0)

U0(t)

)
≡ arctanα, (10)

with α = α(t) ≡
(
={U21}(t)P1(0) − <{U21(t)}P2(0) +

={U11(t)}P3(0)
)
/<{U11(t)}, and

δ(0, t) = −
∫ t

0

Tr (H(τ)ρ(τ)) dτ

= −
∫ t

0

(
H0(τ) +H(τ) · P (τ)

)
dτ

= −1

2
h

∫ t

0

P1(τ)dτ − 1

2

∫ t

0

J(τ)P3(τ)dτ. (11)

With the known evolution operator, given by Eqs. (2),
(3) and (8), the average spin polarization vector is ob-
tained readily from the formal solution of the quantum
Liouville equation

P (t) · σ = U(t)
(
P (0) · σ

)
U†(t) = U(t)A(t), (12)

where part of the rhs is an auxiliary 2× 2 matrix A(t) ≡(
P (0) ·σ

)
U†(t). For a general case of the initial spin po-

larization vector P (0) = (P1(0), P2(0), P3(0)), one �nds
the matrix elements

A11(t) = P3(0)U∗11 + [P1(0)− iP2(0)](−U21),

A12(t) = P3(0)U∗21 + [P1(0)− iP2(0)]U11,

A21(t) = [P1(0) + iP2(0)]U∗11 − P3(0)(−U21),

A22(t) = [P1(0) + iP2(0)]U∗21 − P3(0)U11.

Since in Eq. (12) the rhs is a known 2 × 2 matrix, and

because the lhs is the 2× 2 matrix

P (t) · σ =

[
P3(t) P1(t)− iP2(t)

P1(t) + iP2(t) −P3(t)

]
, (13)

by equating the corresponding elements of the two ma-
trices one determines the components of the spin polar-
ization vector at a time t. One �nds

P1(t) = <{U11(t)A12(t)− U∗21A22(t)},
P2(t) = ={U11(t)A12(t)− U∗21A22(t)},
P3(t) = <{U11(t)A11(t)− U∗21A21(t)}. (14)

Let us note that the magnitude of P (t) is a constant
throughout the evolution and is, in fact, equal to one for
a pure state.

3. Calculation of phases

Despite the existence of a number of analytical solu-
tions to the time-dependent Schrödinger equation for rel-
atively simple examples describing a driven two-level sys-
tem provided in [12], these are mainly not translated to
the corresponding analytical expressions for the phases
and one has to turn to numerical analysis. This neverthe-
less enables an e�cient analysis in a number of cases. We
illustrate the typical results for the total, dynamic and
geometric phases, obtained from Eqs. (10), (11) and (6).
For a typical case considered in [12], namely the choice
(Eq. (19) in [12])

q(t) = exp
(
(−2/a) sinh2(

√
aht/2)

)
, (15)

with a real constant a ≤ 2, and the corresponding driving
�eld is from Eq. (3)

J(t)

h
=

1
a sinh2(

√
aht)− 2 sinh2(

√
aht/2)√

e
4
a sinh2(

√
aht/2) − 1

a sinh2(
√
aht)− 1

. (16)

For such a driving �eld, the total, dynamic and geomet-
ric phases, as functions of time t are plotted in Figs. 1
and 2 for h = 1 and a = 2

3 .
It is seen that from an initial time t = 0 to a �nal

t = 10, during which the driving �eld J(t) is appre-
ciably di�erent from zero, the corresponding geometric
phase changes (by ∆β ≈ 0.8 radians) thus enabling de-
tection. Analogous results are also obtained for other
driving �elds considered in [12].

4. Conclusions

Phase is a fundamental notion in quantum mechan-
ics, and in particular the study of geometric phases is
an attempt to understand quantum mechanics better. It
is known that the total phase and visibility are directly
observable in an interference experiment [23]. Geometric
phases have some implications in quantum information
theory. These phases can form the basis of any quan-
tum computation [24, 25], resilient to certain types of
errors. It o�ers the potential of a fault-tolerant way of
performing geometric quantum computation. Two refer-
ences concerning the robustness of the geometric phase
for non-Abelian gates and Berry phase are [26, 27].
Here we determine the geometric phase corresponding

to a new type of driven two-state system [12] which is
thus of relevance to qubit control. The main result of
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Fig. 1. Total phase ϕ(0, t) (solid curve) and dynamic
phase δ(0, t) (dashed curve), in radians, for driven time-
-dependent two-level quantum system, with the Hamil-
tonian (1), and in the case of the driving �eld Eq. (16).
The initial spin polarization vector is P (0) = (1, 0, 0),
completely along the x-axis, while the two other con-
stants are h = 1 and a = 2

3
. It is seen that the dynamic

phase is a smooth, monotonically decreasing function of
the elapsed time t. The two jumps by +π radians in
the total phase, stem from the multiple-valued arctan
function appearing in Eq. (10) for the total phase, rep-
resent the change of sign in the probability amplitude,
and are experimentally observable. By using the princi-
pal value of the function arctan, one removes the jumps
and obtains for the total phase the dotted curve.

Fig. 2. Geometric phase β(0, t), in radians (solid
curve), for driven time-dependent two-level quantum
system, with the Hamiltonian (1), and in the case of
the driving �eld Eq. (16). It is seen that there is a con-
siderable change in the geometric phase of ≈ 5.5 radians
(solid curve). By removing the jumps in the total phase
(there are two jumps of +π), one �nds a slight net de-
crease in geometric phase of ≈ 0.8 rad (dotted curve).
The initial spin polarization vector is P (0) = (1, 0, 0),
while the two other constants are h = 1 and a = 2

3
.

The resulting geometric phase re�ects the behavior of
the total and dynamic phases presented in Fig. 1.

our work is contained in Eqs. (11) and (14), which give
explicit expressions for computing geometric phase for a
given evolution.
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A novel theory of hybrid quantum–classical systems is developed,
utilizing the mathematical framework of constrained dynamical
systems on the quantum–classical phase space. Both, the quantum
and classical descriptions of the respective parts of the hybrid sys-
tem are treated as fundamental. Therefore, the description of the
quantum–classical interaction has to be postulated, and includes
the effects of neglected degrees of freedom. Dynamical law of the
theory is given in terms of nonlinear stochastic differential equa-
tions with Hamiltonian and gradient terms. The theory provides a
successful dynamical description of the collapse during quantum
measurement.
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1. Introduction

Interaction of a quantum system with a classical one is in the standard formulation of quantum
mechanics described by the collapse postulate, introduced by vonNeumann [1]. However, a dynamical
description of the postulate requires a consistent theory of systems which cannot be described by
either quantum or classical mechanics alone. Such a description of interacting quantum–classical

∗ Corresponding author.
E-mail address: buric@ipb.ac.rs (N. Burić).

0003-4916/$ – see front matter© 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.aop.2014.01.007

http://dx.doi.org/10.1016/j.aop.2014.01.007
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2014.01.007&domain=pdf
mailto:buric@ipb.ac.rs
http://dx.doi.org/10.1016/j.aop.2014.01.007


N. Burić et al. / Annals of Physics 343 (2014) 16–26 17

systems is commonly called a hybrid theory. The Schrödinger evolution of an isolated quantum system
is linear and deterministic, and the evolution of classical systems is also deterministic, but is typically
nonlinear. The collapse postulate requires the evolution of a quantum system interacting with the
classical apparatus to be nonlinear and stochastic. The hybrid theory, developed in the present paper,
incorporates both types of evolution into a single dynamical process.

Hybrid systems are interesting independently of their fundamental aspects (for a recent review
see [2]). Despite ‘‘no go’’ theorems [3], several nonequivalent mathematically consistent hybrid
theories have been constructed [4–8]. Formulation of the classical dynamics in terms of unitary
transformations in an appropriate Hilbert space exists since long time ago [9]. Likewise, there is a
formulation of quantummechanics in terms of Hamiltonian dynamical systems with the appropriate
symplectic phase space and the corresponding Hamiltonian dynamics [10,11]. However, the crucial
difference between the two theories is not in the mathematical framework, but in the treatment of
the interactions between subsystems.

Hybrid theories can be divided into two groups according to the conceptual status and aims. In
the theories of the first group one considers all systems in Nature as described at the fundamental
level by quantum theory and therefore the hybrid system is an approximation of two interacting
quantum systems, where one of the systems is treated in the corresponding classical limit [4,8]. In
the other approach, one assumes from the beginning that the classical and quantum mechanics are
both fundamental theories with different domains of validity. The only restriction on the descriptions
of the quantum–classical (QC) interaction is then given by the experiments involving micro–macro
objects and the phenomenological collapse postulate. Of course, it is clear that a macro-object has
many degrees of freedom which are not described by the macroscopic model of the classical theory.
The effects of those degrees of freedomhave to be somehow included into themanner a hybrid theory
treats the QC interaction. The hybrid theory constructed in the present paper, and denoted by FHT (for
‘‘Fundamental Hybrid Theory’’ [12]), presents a particular way of doing this.

2. Mathematical framework

Mathematical framework of the hybrid theory to be developed is that of an abstract dynamical
system (M,Ω,G,H) on a differentiable manifold M with symplectic and Riemannian structures
Ω and G respectively, with some preferred function, the Hamiltonian H . Let us stress right at the
beginning that the dynamical law of the hybrid theory need not be of the Hamiltonian form, but will
involve differential equations onM given in terms ofΩ andG. Themanifold is also assumed to possess
a complex structure J2 = −I , where I stands for identity, such that G(x, y) = Ω(x, Jy). Furthermore,
the evolution law of the hybrid theory might be given in terms of a stochastic process, in which case
the points from M are values of random variables on some probability space. The latter will not be
explicitly referred.

Formulation of the classical mechanics of isolated conservative systems using (M,Ω,H) is stan-
dard [13]. The formulation of quantum mechanics in terms of (M,Ω,G,H) is perhaps less well
known, but shall not be presented here in any detail since there exist excellent reviews [10,11,14] and
brief accounts [15–19]which are sufficient for our purposes. Very briefly, the basic observationbeyond
the Hamiltonian formulation of quantummechanics is that the evolution of a quantum pure state in a
Hilbert spaceH , as given by the Schrödinger equation, can be equivalently described by aHamiltonian
dynamical system on an Euclidean manifold M. The manifold is just the Hilbert space considered as a
real manifold, with the symplectic and Riemannian structures given by the real and imaginary parts
of the Hilbert space scalar product. Representing a vector |ψ⟩ ∈ H in a basis {|k⟩ | k = 1, 2, . . . ,N},
where N is the dimension of the complex Hilbert space, by coefficients {ck | k = 1, 2, . . . ,N}, one
can introduce the canonical coordinates xk = (c∗

k + ck)/
√
2 and yk = i(c∗

k − ck)/
√
2, k = 1, 2, . . . ,N .

Generic point from M is usually denoted by (x, y), X or Xa, where a = 1, 2, . . . , 2N is an abstract
index. In what follows the symplectic and Riemannian structures on the quantum phase space are
denoted by ωab and gab. The Hamilton’s function H(X) is given by the quantum expectation of the
Hamiltonian Ĥ in the state |ψX ⟩ corresponding to a point X: H(X) = ⟨ψX |Ĥ|ψX ⟩/⟨ψX |ψX ⟩. In fact, all
observables are represented by quadratic functions A(X) on M, and are the quantum mechanical ex-
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pectations of the corresponding quantum observables A(X) = ⟨ψX |Â|ψX ⟩/⟨ψX |ψX ⟩. The Schrödinger
dynamical law is that of Hamiltonian mechanics

Ẋa
= ωab

∇bH. (1)

The Hamiltonian formulation is also crucial in the formulation and applications of nonlinear con-
straints within quantum mechanics [15,18,19,16,17,8].

3. Construction of the hybrid theory

The total system is conceived as composed of a microscopic quantum system and amacro-system.
It is the central assumption of the present hybrid theory that themacro-systemhas a distinguished set
of degrees of freedom, described by classical mechanics. Usually, it is not claimed that macro-systems
are composed of something other thanmicroscopic partswell described by quantum theory. However,
it is assumed that the dynamics of at least some of the observable degrees of freedomof amacroscopic
system is correctly described by classical mechanics, and that the classical mechanical description
need not be reduced or derived from quantum description of all the microscopic components.

3.1. Elements of the hybrid model

In the FHT the hybrid phase space M is assumed to be given by the Cartesian product M =

Mqp × MQP × Mxy. Local canonical coordinates are separated into three groups: (q, p), (Q , P) and
(x, y). The first two groups (q, p) ∈ Mqp and (Q , P) ∈ MQP correspond to the degrees of freedom
of the macroscopic system, and the third (x, y) ∈ Mxy to the degrees of freedom of the microscopic
quantum system, called quantum degrees of freedom (QDF). The coordinates (q, p) represent (usually
a small number of) distinguished macroscopic degrees of freedom of the macroscopic object. They
are supposed to be well described by classical mechanics and are called classical degrees of freedom
(CDF).

The degrees of freedom denoted by (Q , P) describe the physical quantities that are not used in
the characterization of the CDF of the macroscopic object nor of the QDF of the micro-system. Apart
from the fact that there are many of these degrees of freedom, nothing else about their character
is assumed in the hybrid theory. In other words, the FHT does not assume that (Q , P) are either
classical or quantum. In the hybrid theory, it is assumed that the state of the system is completely
described by the values of CDF and QDF, and the dynamical equations of the theory will be formulated
in terms of (q, p, x, y) only, with no explicit reference to (Q , P). Particular physical interpretation
of the (Q , P) degrees of freedom is not strictly a part of FHT. However, one could think of several
different physical interpretations depending on the conceptual background and on the particular
system. On the conceptual side, one could argue that themacroscopic system is composed of quantum
microscopic components which interact and entangle with the micro-system. Therefore, the hybrid
theory, with no possibility of explicit entanglement between CDF and QDF, must take the fact of
entanglement due to the micro-system and micro-components of the macro-system into account
in some manner. The influence of (Q , P) degrees of freedom on the CDF–QDF system might be
interpreted partly as due to the entanglement between the micro and macro-systems, and partly due
to the influence of themicroscopic degrees of freedomof themacro-systemon the CDF. This argument
is expressed more formally as follows. The phase space of a bipartite quantum system, corresponding
to themicro–macro system, is the realmanifoldM12 associatedwith theHilbert spaceH12 = H1⊗H2,
where H1 and H2 are the Hilbert spaces of the micro and macro-systems, respectively. The phase
space corresponding to the macro-system is denoted by M2. A submanifold, denoted by Γ ⊂ M2
corresponds to CDF of the macro-system. Local coordinates (x, y) of M1 correspond to QDF. The
degrees of freedom (Q , P) are then the local coordinates of the complement of M1 × Γ in M12.
Alternatively, one could just conceive (Q , P) degrees of freedom as a sufficiently general type of
environment of the CDF–QDF degrees of freedom. Furthermore, the physical interpretation of (Q , P)
degrees of freedom will depend on the physical picture of the particular macro-system. For example,
the macro-system might be a large magnet, conceived as a large collection of spins, interacting via
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the Heisenberg interaction. It is the main assumption of the hybrid theory that the interaction of such
a magnet with a micro quantum system can be described by the selected degrees of freedom of the
magnet, i.e. the macroscopic magnetization, which are well described by classical physics, provided
that the effects of the unobserved degrees of freedom are somehow included in the hybrid theory.

Interactions between various types of degrees of freedom might be of different nature. We
shall assume that the interactions between (q, p) and (x, y) are conservative and described by
the corresponding Hamiltonian. On the other hand, interactions between the unspecified degrees
of freedom (Q , P) and the QDF (x, y) might be more general, and are described by a complex
Hamiltonian of the formHint(x, y,Q , P) = F(Q , P)A(x, y)whereA(x, y) is a quadratic function of (x, y)
corresponding to the operator Â of the micro-system and F(Q , P) = FR(Q , P) + iFI(Q , P) in terms
of real functions FR(Q , P) and FI(Q , P). Of course, the equations of motion for the real coordinates
(q, p, x, y)must be expressed only in terms of real quantities.We shall also suppose that the influence
of the (Q , P) degrees of freedom on the macroscopic classical variables (q, p) is negligible. The
dynamics of the total system is thus determined by the complex Hamiltonian of the following form

H = Hcl(q, p)+ Hq(x, y)+ HQP(Q , P)+ f (q, p)A(x, y)+ F(Q , P)A(x, y). (2)

The meaning of the first three terms is obvious, and the rest describes the interaction between the
macroscopic system and the quantum system. In order to shorten the notation we have denoted the
collection of all observables {An}, appearing in the interaction terms, by a single letter A. In the simpli-
fied version, presented here, all degrees of freedom of themacro-system are assumed to interact with
the same quantum observables A(x, y) which might, but need not, form canonical pairs. As pointed
out the functions F(Q , P) are complex. However, they do not enter into the part of the Hamiltonian
that depends only on the (q, p, x, y) degrees of freedom

Hphys(q, p, x, y) = Hcl(q, p)+ Hq(x, y)+ f (q, p)A(x, y). (3)

The equations of motion for the real quantities as functions of (q, p, x, y) must be real, but need not
be Hamiltonian.

The main requirement on the hybrid theory of QDF evolution, based on the collapse model, is
that if the state of the quantum system is a superposition of Â eigenstates then, because of the
interaction with the macro-system, the state must evolve towards one of the Â eigenstates. However,
such behavior is not obtained starting from the Hamiltonian dynamics with the Hamiltonian (2) of the
hybrid. One is therefore forced to adopt different approaches in modeling the collapse requirements.
One approach, adopted here, is to consider the collapse requirements as appropriate constraints onto
the otherwise Hamiltonian dynamics and to derive the dynamical law as the constrained dynamics.
The phase space formulation of quantum mechanics is specially suitable for the formulation and
treatment of nonlinear constraints [15,18,19,16,17,8].

3.2. Constrained dynamics approach

The eigenstates of any observable Â are characterized by the property that the dispersion ∆A =

⟨Â2
⟩ − ⟨Â⟩

2 is equal to zero. In the case when all observables {Ân} interacting with the macro-system
commute, the relevant constraint might be given in the form

ΓA(x, y) =


n

∆An(x, y) = 0, (4)

which corresponds to the common eigenstate of all the observables {Ân}. However, if there are several
non-commuting observables, then the relevant constraint assumes the form

ΓA(x, y) =


n

∆An(x, y)−∆min = 0, (5)

where∆min is the minimal possible value of the sum of the relevant dispersions. If these observables
generate a representation of a semi-simple Lie algebra, then the constraint submanifold given by (5)
is in fact the manifold of coherent states of the algebra [20].
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In order to satisfy the constraint, the component of the Hamiltonian vector field orthogonal to the
constraint submanifold ΓA(x, y) = 0 has to be removed, so that the QDF X ≡ (x, y) evolve according
to

Ẋa
= ωab

∇bH − λgab
∇bΓA, (6)

where λ is a single Lagrange multiplier to be determined. Substitution of (6) in Γ̇A(X(t)) results in

ωab
∇aΓA∇bH = λgab

∇aΓA∇bΓA. (7)

Substituting λ from (7) into (6) results in the constrained dynamical equations

Ẋa
= ωab

∇bH −
{ΓA,H}

∥∇ΓA∥
2
gab

∇bΓA, (8)

where {F1, F2} = ωab
∇aF1∇bF2. The first term can be written more explicitly as

ωab
∇bH = ωab

∇bHphys + (FRωab
+ FI(Jω)ab)∇bA

= ωab
∇bHphys + FRωab

∇bA + FIgab
∇bA. (9)

The last two terms contain a large number of complicated functions of time Q (t), P(t). We shall sup-
pose that these processes are well approximated by white noise. Consequently, functions FR(Q (t),
P(t)) and FI(Q (t), P(t)) are also stochastic processes. The corresponding increments, denoted by dWR
and dWI and understood in the Itô sense, are assumed to satisfy

E[dWnR] = 0, E[dWnI ] = 0,
dWnRdWmR = dWnIdWmI = δnmdt,
dWnRdWmI = 0,
dWnRdt = dWnIdt = 0,

(10)

where E[ · ] denotes the expectation with respect to the stochastic process and n,m count up to the
number of observables {Ân}. This implies, among other things, that all FR(t), FI(t) satisfy the Marko-
vian property. Finally, the dynamical equation of QDF in interaction with the macro-system is given
by the stochastic differential equation of a non-autonomous diffusion process,

dXa
= ωab

∇bHphysdt −
{ΓA,Hq}

∥∇ΓA∥
2
gab

∇bΓAdt + ωab
∇bA dWR + gab

∇bA dWI . (11)

Equation (11) is the main dynamical equation of the QDF interacting with the macro-system of
the FHT developed here. If all degrees of freedom of the system are described by quantummechanics,
then unitary quantum evolution applies and there is only the first term with Hphys = Hq. If there is an
interaction of QDF and the macro-system, i.e. some of the degrees of freedom are a priori described
by classical mechanics, then the full equation (11) applies. Notice that no unobservable degrees
of freedom (Q , P) appear in the equation. The first part of the drift in (11) describes Hamiltonian
evolution with the Hamiltonian Hq(x, y) + f (q, p)A(x, y). The second term of the drift represents a
gradient flowwith the tendency to decrease the total dispersion∆A =


n∆An. The joint effect of the

Hamiltonian and gradient drift terms is to preserve constant the total dispersion. If there is only one
observableA(x, y), or a set of commuting observables, then the role of the gradient terms is to force the
evolution towards the common eigenstates of {Ân}. If the observables {Ân} do not commute, then there
is a competition of tendencies due to the corresponding gradient terms. If these observables generate
a representation of a semi-simple Lie algebra, then the gradient terms drive the system towards the
invariant manifold of the coherent states of the algebra.

The stochastic terms are divided into two quite different groups. TheHamiltonian terms,which can
be included as stochastic perturbations of the Hamiltonian Hphys, describe the Hamiltonian influence
of the (Q , P) degrees of freedom on the motion of the quantum system. For example, this is like the
influence of an external stochastic electromagnetic field. However, these terms do not contribute
to the localization onto the constraint manifold. The gradient stochastic terms, on the other hand,
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describe the influence of (Q , P) degrees of freedomwhich is not Hamiltonian. However, as opposed to
theHamiltonian stochastic terms, the gradient stochastic terms induce localization onto the constraint
manifold. If all {Ân} are commuting, then the stochastic terms of both types are zero if ∇An(x, y) = 0
for all observables. This means that the point (x, y) is a fixed point of the Hamiltonian evolution
with each An as the Hamiltonian. Such a point corresponds to a common eigenstate of the nonlinear
operators Ân − ⟨Ân⟩ with all eigenvalues being zero. The common eigenstates of these operators
coincide with the common eigenstates of Ân. Thus, the stochastic terms in Eq. (11) are equal to zero
if only commuting quantum observables appear, and (x, y) corresponds to a common eigenstate of
{Ân}.
Dynamics of CDF

Classical degrees of freedom (q, p) satisfy the Hamiltonian evolution equations given by the
Hamiltonian (3). The equations in terms of (q, p) are

q̇ =
∂Hcl(q, p)

∂p
+ A(x, y)

∂ f (q, p)
∂p

ṗ = −
∂Hcl(q, p)

∂q
− A(x, y)

∂ f (q, p)
∂q

. (12)

The evolution of CDF is also stochastic because the quantum observables A(x(t), y(t)) evolve stochas-
tically.

3.3. Quantum measurement process

Additional assumptions can be used in order to simplify the evolution equations (11) and (12) in
the case of a quantum measurement process. One such approximation is based on the assumption
that the dynamics of QDF is much faster than that of CDF. Consequently, one can replace in (11) the
functions (q(t), p(t)) with their initial values (q0, p0). The equation for QDF becomes autonomous.
The situation when QDF and CDF are coupled via only one observable Â with the interaction term
given by Hint = pA(x, y), and when the gradient terms dominate the QDF dynamics, corresponds to
the process of measurement of Â. QDF dynamics is approximately given by

dXa
= ωab

∇b(Hq + p0A(x, y))dt −
{ΓA,Hq}

∥∇ΓA∥
2
gab

∇bΓAdt

+ωab
∇bA(x, y)dWR + gab

∇bA(x, y)dWI . (13)

Due to the gradient terms, the state approaches one of the eigenstates of Â, denoted by (xα, yα) ≡ |α⟩,
with the eigenvalue A(xα, yα) = α. The stochastic term introduces fluctuations, and the probability
of the asymptotic eigenstate (xα, yα) depends on its distance from the initial state (x, y)init ≡

|ψ⟩init , i.e. on ∥⟨ψinit |α⟩∥
2. These facts can be demonstrated numerically as we shall do shortly. The

asymptotic dynamics of (13), or of (11) and (12), can also be analyzed using methods of stochastic
stability analysis [21], in particular the stochastic generalization of the first Lyapunov method with
the constraint ΓA playing the role of the Lyapunov function, as will be illustrated elsewhere. Using the
same assumption about different time scales and assuming that Hcl is negligible, the CDF dynamics of
the coordinate of the apparatus pointer is approximated by

q̇ = α (14)

and reads the eigenvalue of Â. Thus, the approximate equations describe well the dynamics and the
results of the measurement process.

3.4. Numerical example

We shall illustrate the hybrid dynamicsmodeling themeasurement as given by (11) and (12) using
the simplest example where the quantum system is a single 1/2-spin and the classical system is an
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Fig. 1. (Color online) (a) ⟨ŝx⟩(t) and (b) ∆sx(t) for two typical stochastic paths. (c) Classical orbits corresponding to the
stochastic paths in parts (a) and (b). (d) Histogram of the number of paths converged to +1/2 or −1/2 eigenstate of ŝx .

oscillator. The phase space of the quantum part corresponding to the Hilbert space C2 is R4, with the
canonical coordinates (x1, x2, y1, y2). The relations between the real canonical coordinates and the
complex expansion coefficients, (c1, c2) in the computational basis, of a normalized vector from C2

are given by the following formulas

ck =
xk + iyk

√
2

, c∗

k =
xk − iyk

√
2

, k = 1, 2. (15)

The quantum Hamiltonian of a single spin is Ĥq = ωŝz , the classical Hamiltonian of the oscillator is
Hcl = p2/2m + mΩ2q2/2 and the interaction Ĥint = µpŝx corresponds to the measurement of ŝx. The
functions on the QC phase space corresponding to Ĥq and Ĥint are

Hq(x, y) =
ω

2
x21 + y21 − x22 − y22
x21 + y21 + x22 + y22

(16)

Hint(q, p, x, y) = µp
x1x2 + y1y2

x21 + y21 + x22 + y22
. (17)

The constraint Γsx , corresponding to the measurement of ŝx, is ∆sx = ⟨ŝ2x⟩ − ⟨ŝx⟩2 = 0, and is given
in terms of the canonical coordinates (x, y) by a slightly more complicated expression

Γsx =
((x1 − x2)2 + (y1 − y2)2)((x1 + x2)2 + (y1 + y2)2)

(x21 + y21 + x22 + y22)2
. (18)

The Poisson bracket {Γsx(x, y),Hq(x, y)}x,y, the gradients∇Γsx(x, y) and∇sx(x, y) are easily computed
and shall not be presented. These expressions are used to write down the dynamical equations (11)
and (12), which are solved using the appropriate code for numerical solutions of SDE. Results are
illustrated in Fig. 1(a)–(d). Each of 100 sample stochastic paths after some time converges to either
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Fig. 2. (Color online) Normalized concurrence for two typical sample paths of FHT evolution (a) and for purely Hamiltonian
evolution (b) starting from the same initial state (see text for details).

−1/2 or 1/2 eigenstate of ŝx, denoted by |1/2,−1/2⟩ and |1/2, 1/2⟩, respectively. Fig. 1(a) and (b)
show ⟨ŝx⟩(t) and ∆sx(t) for two typical realizations of the stochastic process starting from the same
initial state and converging to the state |1/2, 1/2⟩ (red curves) and the state |1/2,−1/2⟩ (blue curves),
respectively. The initial state is determined by |ψ⟩init ≡ (x1, x2, y1, y2)init =

√
2(2, 4,−2, 1)/5 and

(q, p) = (1, 1), which yield |⟨1/2,−1/2|ψinit⟩|
2

= 0.26 and |⟨1/2, 1/2|ψinit⟩|
2

= 0.74. Fig. 1(c)
illustrates the evolution of CDF (q, p) for the two stochastic sample trajectories related to Fig. 1(a) and
(b). The two classical orbits are obviously different. The percentage of stochastic paths converging to
either of the eigenstates is illustrated in Fig. 1(d) and is proportional to the distance of the initial state
form the eigenstates. Qualitatively the same results are obtained for all different initial states that we
have tested.

Let us point out that in the described numerical example the full system of equations (11) and (12)
was used, and the sufficiently fast convergence of the QDF and the inertial properties of the CDF are
obtained by the appropriate choice of the parameter values.

4. Remarks

(1) Dynamics of entanglement in a quantum system coupled to a classical one, as described in FHT,
can be studied using, for example, a pair of qubits interacting with a classical oscillator. The relevant
part of the Hamiltonian is given by

Ĥq = ωŝ1z + ωŝ2z + cŝ1x ŝ
2
x ,

Hcl =
p2

2m
+

mΩ2q2

2
,

Ĥint(q, p) = µpŝ1z .

(19)

The complex coefficients of an arbitrary two spin state |ψ⟩ ∈ C4 in the computational basis are
denoted by c1, c2, c3, c4 and their real and imaginary parts are the canonical coordinates given by
(xk, yk) =

√
2(Re(ck), Im(ck)), k = 1, 2, 3, 4. The total Hamilton’s function is H(x, y, q, p) = Hq(x, y)

+ Hint(x, y, q, p)+ Hcl(q, p)where Hq(x, y) = ⟨ψ |Ĥq|ψ⟩/⟨ψ |ψ⟩ and Hint(x, y) = ⟨ψ |Ĥint |ψ⟩/⟨ψ |ψ⟩.
The constraint corresponding to Ĥint in (19) is∆s1z = 0.

It can be shown, by numerical computations, that the entanglement of an initial entangled state
of the qubits evolves to zero for sufficiently large ratio µ/c . The entanglement dynamics is most
easily studied by monitoring the normalized concurrence of the pure state of QDF given by C =

|c1c4−c2c3|/(|c1|2+|c2|2+|c3|2+|c4|2). A pure state of the qubit pair is separable iff the concurrence
is zero. The asymptotic QDF state of the evolution for µ/c sufficiently large has zero concurrence.
This fact is illustrated by the time series C(t) with full FHT equations in Fig. 2(a) and with the purely
Hamiltonian dynamics discussed in the remark (2) in Fig. 2(b) starting from the same initial state. The
asymptotic state of QDF is a product state of the form |1/2,±1/2⟩1 ⊗ |ψ⟩2, where |1/2,±1/2⟩1 are
the eigenstates of ŝ1z and |ψ⟩2 is a state of the second qubit. Two sample paths in Fig. 2(a) correspond
to the concurrence in these two cases.
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(2) The constraint (5) was introduced so as to obtain a hybrid system such that the selected
observables of the quantum part behave as almost classical. This is admittedly an ad hoc assumption.
Alternatively onemight study the Hamiltonian system (2)with no additional constraints, and analyze it
as a purely Hamiltonian system with possibly complicated interactions. This is the approach adopted
for example in [2], where it was supposed that there are no (Q , P) degrees of freedom so that the
evolution is given by the Hamiltonian system on Mqp × Mxy with H = Hq(x, y) + Hcl(q, p) +

Hint(q, p, x, y). The result is mathematically consistent purely Hamiltonian theory of a hybrid system.
However, application of the theory to themeasurement situation shows that classical pointer variable
is in general coupled to the expectation ⟨Â⟩ of the measured observable Â and not to its eigenvalues
[22,23]. Furthermore, the theory in its exact form predicts some features of QDF which might imply
possibility of superluminal communication [24]. The evolution of QDF can be presented in the form of
the Schrödinger equation with the Hamiltonian that depends on the total system state. Also, different
initial convex representations of a mixed state ρ̂ might evolve into different ρ̂(t). Furthermore,
investigations of entanglement dynamics, like in the remark (1), show that the entanglement between
qubits oscillates with large amplitudes forever and for any values of the parameters. It is well
known that the possibility of entanglement and nonlinear evolution, or the dependence of a density
matrix evolution on its initial convex representation, might be used for superluminal communication
[25,26]. In the FHT this nonphysical effectmight be prevented by the stochastic terms in the evolution.

In short, the purely Hamiltonian theory predicts properties of QDF, interacting with CDF, that are
not displayed by physical systems. The way to remedy the theory might be to include the influence
of the internal degrees of freedom (Q (t), P(t)), perhaps in the form of stochastic perturbations. This
has not been done in full generality. Some results [2], where the CDF are treated as an environment
and are supposed to introduce stochastic perturbations, indicate that such an approach might be
successful. In conclusion, purely Hamiltonian theory with the Hamiltonian (2) must be supplemented
by an analysis of complicated classical systems with complex CDF dynamics, and only after physically
plausible approximations might explain the observed behavior.

(3) Instead of imposing the main effects of the collapse process as the general requirements on the
dynamical equation for QDF, and realizing those requirements as a minimal but adequate constraint,
one can postulate that the dynamical equations of QDF are given by some of the existing dynamical
collapse models, reviewed recently in [27] or open quantum system dynamics [28,29] or models of
continuous measurements [30]. Such equations usually assume some properties, and specific form,
that are not necessary for the most general description of the hybrid dynamics. The most well known
dynamical collapse models are given as nonlinear and stochastic modifications of the Schrödinger
equation, and contain the Schrödinger term, the nonlinear gradient term and the stochastic term.
Similarly, the master equation for the density operator ρ̂(t) of an open quantum system under the
Markovian assumption is of the Lindblad form, and can be written as a stochastic diffusion equation
for the individual quantum systems in pure states [29,28], with terms of the similar form and the
same effect on the evolution as in the explicit collapse models. One such equation, with minimal ap-
propriate generalization, can be postulated for the QDF dynamics of the hybrid and coupled with the
Hamiltonian equations (11) for the CDF. An example of such approach is studied in [30]. The result is
a set of stochastic differential equations of the form similar to those of FHT . Nevertheless, conceptual
differences should be stressed. The theories of explicit collapse do not make an a priori distinction
between quantum and classical systems. Instead, unique nonlinear and stochastic dynamics for micro
and macro systems is postulated, the only difference being in the values of the relevant parameters.
If there is a micro-system coupled to a macro-system, then the micro-system dynamics is indistin-
guishable from the linear Schrödinger evolution, and the collapse occurs in the macroscopic part of
the system. This collapse is a consequence of themacroscopic size of themacro-system. In FHT , classi-
cal behavior of CDF of themacro-systems is assumed from the beginning, and in this respect the theory
is conceptually similar to the hybrid theory in [30]. The collapse occurs directly in the quantum part
and is a consequence of the interaction between the quantum system and the macro-system, where
the latter is conceived as a system with some degrees of freedom described by classical mechanics.

We shall illustrate a possible hybrid theory based on an explicit collapse model, given basically by
Hughston [31], since it has been formulated using the quantumphase space.We present the equations
in the case when there is only one observable Â, and in terms of evolution on M. A hybrid theory with
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typical collapse equation for the QDF would then be of the form

dXa
= 2ωab

∇H(X, q, p)dt −
µ2

4
gab

∇b(∆A(X))dt + µ∇A(X)dW (20)

where X ≡ (x, y) and dW are the stochastic increments of theWiener process. Eq. (20) for QDF should
be supplemented by Eq. (12) for the CDF. Other models of continuous collapse or individual open sys-
tem dynamics might be written in forms quite similar to (20) with real or complex noise. In Hugh-
ston [31] and QMUPL [27] equations dW are real, while in the QSD equation [29] dW are increments of
a complex Wiener process. The Hamiltonian H = ⟨Ĥ⟩ is modified to include the interaction with CDF
given by µf (p, q)A(x, y). Together with the corresponding equations (12) for the CDF dynamics the
system represents a model of an individual hybrid system evolution, which has not been investigated
in the literature (to the best of our knowledge). Eq. (20) is similar with (11) in that it has a determin-
istic gradient term, given by the gradient of the relevant dispersion, and the gradient stochastic term
given by the gradient of the relevant observable. However, the dynamics of a single quantum open
system, for example in QSD [29], is equivalent to the Lindblad equation which is physically justified
using weak coupling approximation, and no such approximation is assumed in (11). The major tech-
nical difference between (20) and (11) is that the latter has a pre-factor multiplying the deterministic
gradient term. A further and deeper comparison of the hybrid theories with Eq. (11) or (20) for the
QDF part will certainly be of some interest.

5. Summary

In summary, we have constructed a novel theory of hybrid quantum–classical systems of the
type where the quantum and the classical mechanics are both treated as fundamental theories. We
have started from the observation that if all degrees of freedom of the system are considered as
quantum then the evolution is given by the Schrödinger law, while if there are some degrees of
freedom which behave as described by classical mechanics then the collapse postulate should be
added to the Schrödinger evolution of the quantum degrees of freedom. Our goal was to derive a
theory that provides a dynamical description of the Schrödinger evolution supplemented with the
collapse postulate. It is assumed that such a theory would provide a unified dynamical description of
the system with quantum and classical degrees of freedom. The basic requirement imposed on the
theory is to obtain dynamical equations of the hybrid systems such that the sum of dispersions of the
quantum observables that figure in the quantum–classical interaction are constrained to be minimal
during the evolution. The crucial assumption that was used to simplify the constrained equations is
that the dynamics of the unobserved degrees of freedom is to be replaced bywhite noise. Furthermore,
it was assumed that part of the interaction with the unobserved degrees of freedom is described by
complex Hamiltonian, but the equations for the real canonical coordinates (q, p, x, y) are real. The
resulting evolution of the hybrid system is nonlinear and stochastic. Some of the stochastic terms
are multiplied by the gradients of expectations of the chosen quantum observables, and together
with the deterministic gradient terms lead to localization onto the constraint manifold. If the hybrid
system is intended as amodel of themeasurement process of one observable, then the constraint gives
the dynamics with eigenstates as attractors, and the stochastic term describes the stochastic nature
of the process with the correct probabilities for different asymptotic eigenstates. At the same time,
interaction establishes the necessary correlations between the states of the quantum and classical
parts.

The hybrid theory derived here has been considered at an abstract level, with the primary goal of
demonstrating that consistent hybrid theories, formulated within the specific mathematical frame-
work, are possible. Validity of the theory was tested only with reference to the simplified description
of themeasurement process as summarized by quantummechanicswith the collapse postulate. There
are several immediate questions that are interesting and should be analyzed. On the theoretical side,
one should analyze if the hybrid dynamics given by FHT can be used for superluminal communication
between entangled quantum systems in interaction with the corresponding macroscopic objects. To
this end, one should analyze the FHT dynamics of ensembles of hybrid systemswith the corresponding
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master equation for the QDF. Because of the stochastic terms, and perhaps under physically justified
assumptions, one expects that the evolution of the suitably defined density matrix pertaining to QDF
can be expressed with no reference to particular convex representations of the density matrix. How-
ever, the Fokker–Planck equation for general hybrid densities implied by the stochastic FHT dynamics
(11) of pure states is rather complicated, and we are not presently able to obtain from it a closed form
equation for the mixed states of the quantum system. This question will certainly be thoroughly an-
alyzed. Such analysis will also help to clarify the relation of FHT with the hybrid theories based on
models of explicit collapse, as discussed in the remark (3). Another theoretical task is to analyze in
detail, using suitable examples, the form of the theory where the quantum and macroscopic systems
interact via several non-commuting observables. This would pave the way to apply the theory onto
realistic physical systems, other than the rudimentary measurement setting, which are expected to
be in the domains of hybrid theories.
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Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 December 2013
Accepted 26 February 2014
Available online 4 March 2014
Communicated by A.P. Fordy

Hamiltonian theory of hybrid quantum–classical systems is used to study dynamics of the classical
subsystem coupled to different types of quantum systems. It is shown that the qualitative properties
of orbits of the classical subsystem clearly indicate if the quantum subsystem does or does not have
additional conserved observables.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Linear Schrödinger equation of any quantum mechanical system
is equivalent to an integrable Hamiltonian dynamical system [1–6].
As such, the linear Schrödinger equation of a bounded system has
only periodic or quasi-periodic orbits. However, integrable systems
are exceptional [7]. Typical Hamiltonian system has also plenty of
irregular, i.e. chaotic orbits [7], but these do not appear in standard
quantum mechanics. Integrability, or the lack of it, of Hamilto-
nian dynamical systems is related to the symmetries of the model
and to the existence of a sufficient number of integrals of motion.
The difference between integrable and non-integrable systems is
clearly manifested in the qualitative properties of orbits. The for-
mer have only regular, periodic or quasi-periodic orbits, and in the
latter the chaotic orbits dominate. Classification of quantum sys-
tem into regular or irregular such as ergodic or chaotic, is possible
using different plausible and variously motivated criteria without
reference to the orbital properties. Usually, the criteria are formu-
lated in terms of the properties of the energy spectrum, and the
connection with the classical, well developed, notions of regular
or chaotic dynamics, formulated in terms of orbital properties, is
obscured.

The purpose of our work was to investigate qualitative prop-
erties of orbits of a hybrid quantum–classical system, where the
classical part is integrable when isolated and the quantum part is
characterized as symmetric or non-symmetric by the existence of
constant observables. In particular, we want to see if the symme-
try, or the lack of it, might be displayed in the qualitative proper-
ties of orbits of the classical part. To this end we utilized recently
developed Hamiltonian hybrid theory of quantum–classical (QC)
systems [8–12]. Our main result is that indeed quantum systems,

* Corresponding author.
E-mail address: buric@ipb.ac.rs (N. Burić).

characterized as non-symmetric imply chaotic orbits of the clas-
sical degrees of freedom (CDF) coupled to the quantum system.
On the other hand, CDF show regular dynamics if coupled to a
symmetric quantum system, i.e. a quantum system with sufficient
number of constant observables.

One of the first to introduce some sort of dynamical distinc-
tion between quantum systems was von Neumann [13] with his
definition of quantum ergodicity based on the properties of the
Hamiltonian eigenspectrum. Further developments and different
approaches to the problems of quantum irregular dynamics can be
divided into three groups. The literature on the topic is enormous,
and we shall give only a few examples or a relevant review for
each of the approaches. The most popular was the type of studies
analyzing the spectral properties of quantum systems obtained by
quantization of chaotic classical systems (see the reviews collected
in [14]). Still in the framework of systems whose classical ana-
log is chaotic, there were studies of semi-classical dynamics [14]
and phase space distributions [14]. The second group of studies
consists of those works where an intrinsic definition of quantum
chaoticity is attempted [15]. Neither the works in the first nor
those in the second group rely on the topological properties of
pure state orbits of quantum systems. The third group originates
from the studies of open quantum systems, and here the proper-
ties of orbits of an open quantum system are important. Classical
property of chaoticity defined in terms of orbital properties was
analyzed in quantum systems interacting with different types of
environments [16–18]. It was observed that orbits of such open
quantum systems in the macro-limit might be chaotic.

In the next section we shall briefly recapitulate the Hamilto-
nian theory of hybrid systems. In Section 3 we present the hybrid
models consisting of qualitatively different pairs of qubits as the
quantum part and the linear oscillator as the classical part. Sec-
tion 4 will describe numerical computations of hybrid dynamics
and our main results. Brief summary will be given in Section 5.

http://dx.doi.org/10.1016/j.physleta.2014.02.037
0375-9601/© 2014 Elsevier B.V. All rights reserved.
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2. Hamiltonian hybrid theory

There is no unique generally accepted theory of interaction be-
tween micro and macro degrees of freedom, where the former are
described by quantum and the latter by classical theory (see [8]
for an informative review). Some of the suggested hybrid theories
are mathematically inconsistent, and “no go” type theorems have
been formulated [19], suggesting that no consistent hybrid theory
can be formulated. Nevertheless, mathematically consistent but in-
equivalent hybrid theories exist [8,20–23].

The Hamiltonian hybrid theory, as formulated and discussed for
example in [8,11,12], has many of the properties commonly ex-
pected of a good hybrid theory, but has also some controversial
features. Its physical content is equivalent to the standard mean
field approximation, but it is formulated entirely in terms of the
Hamiltonian framework, which provides useful insights such as
the one presented in this communication. The theory is based on
the equivalence of the Schrödinger equation on HN and the corre-
sponding Hamiltonian system on R

2N . The Riemannian g and the
symplectic ω structures on the phase space Mq = R

2N are given
by the real and imaginary parts of the Hermitian scalar product on
HN : 〈ψ |φ〉 = g(ψ,φ) + iω(ψ,φ). Schrödinger equation in an ab-
stract basis {|n〉} of HN

ih̄
∂cn

∂t
=

∑
m

Hnmcm (1)

where |ψ〉 = ∑
n cn|n〉 and Hnm = 〈n|Ĥ|m〉 is equivalent to Hamil-

tonian equations

ẋn = ∂ H(x, y)

∂ yn
, ẏn = −∂ H(x, y)

∂xn
(2)

where cn = (xn + iyn)/
√

2h̄ and

H(x, y) = 〈ψxy|Ĥ|ψxy〉, (3)

where (x, y) stands for (x1, x2 . . . xN , y1, y2 . . . yN). Only quadratic
functions A(x, y) of the form A(x, y) = 〈ψxy | Â|ψxy〉 are related to
the physical observables Â. In particular, the canonical coordinates
(x, y) of quantum degrees of freedom (QDF) do not have such in-
terpretation.

Hamiltonian hybrid theory uses the Hamiltonian formulations
of quantum and classical dynamics, and couples the classical and
quantum systems as they would be coupled in the theory of
Hamiltonian systems. The phase space of QC system is given by
the Cartesian product

Mqc = Mq ×Mc, (4)

and the total Hamiltonian is of the form

Hqc(x, y,q, p) = Hq(x, y) + Hcl(q, p) + Hint(x, y,q, p). (5)

The dynamical equations of the hybrid theory are just the Hamil-
tonian equations with the Hamiltonian (5).

Observe two fundamental properties of the Hamiltonian hybrid
theory: (a) There is no entanglement between QDF and CDF and
(b) the canonical coordinates of CDF have the interpretation of
conjugate physical variables and have sharp values in any pure
state (x, y,q, p) of the hybrid. Hamiltonian theory of hybrid sys-
tems can be developed starting from the Hamiltonian formulation
of a composite quantum system and imposing a constraint that
one of the components is behaving as a classical system [11].

3. Qualitatively different quantum systems coupled to the
classical harmonic oscillator

We shall consider the following three examples of quantum
system with different symmetry properties. All three examples in-
volve a pair of interacting qubits, where σ 1,2

x,y,z denote x, y or z
Pauli matrix of the qubit 1 or the qubit 2, and ω, μ and β are
parameters. The simplest is given by

Ĥs = h̄ωσ 1
z + h̄ωσ 2

z + h̄μσ 1
z σ 2

z . (6)

The system has two additional independent constant observables
σ 1

z and σ 2
z corresponding to the SO(2) × SO(2) symmetry of the

model. Next two models are examples of non-symmetric systems.
The system

Ĥns1 = Ĥs + h̄βσ 1
y (7)

has only σ 2
z as the additional constant observable, and in the sys-

tem

Ĥns2 = h̄ωσ 1
z + h̄ωσ 2

z + h̄μσ 1
x σ 2

x , (8)

there are no additional dynamical constant observables. Let us
stress that the Hamiltonian systems with the Hamiltonian func-
tions given by 〈ψ |Ĥ |ψ〉 are integrable with only the regular (non-
chaotic) orbits irrespective of their symmetry properties.

The Hamilton functions corresponding to the three quantum
systems (6), (7) and (8) are given by the general rule (3). In
the computational basis |1〉 = |1,1〉, |2〉 = |1,−1〉, |3〉 = |−1,1〉,
|4〉 = |−1,−1〉, where for example |1,1〉 = |1〉 ⊗ |1〉 and |±1〉 are
the eigenvectors of σz , the Hamilton functions are

Hs(x, y) = ω
(
x2

1 + y2
1 − x2

4 − y2
4

)
+ μ

2

(
x2

1 − x2
2 − x2

3 + x2
4 + y2

1 − y2
2 − y2

3 + y2
4

)
, (9)

Hns1(x, y) = ω
(
x2

1 + y2
1 − x2

4 − y2
4

)
+ μ

2

(
x2

1 − x2
2 − x2

3 + x2
4 + y2

1 − y2
2 − y2

3 + y2
4

)
+ β(y3x1 + y4x2 − y1x3 − y2x4) (10)

and

Hns2(x, y) = ω
(
x2

1 + y2
1 − x2

4 − y2
4

)
+ μ(x2x3 + x1x4 + y2 y3 + y1 y4). (11)

Observe that, due to the 1/
√

2h̄ scaling of the canonical coordi-
nates (x, y), h̄ does not appear in the Hamilton functions (9), (10)
and (11) nor in the corresponding Hamilton equations and their
solutions x(t) . . .. Of course, h̄ reappears in the functions 〈σ 1

x 〉 . . . .
The classical system that we want to couple with quantum sys-

tems (9), (10) or (11) is one-dimensional linear oscillator with the
Hamiltonian

Hcl(q, p) = p2

2m
+ kq2, (12)

which of course has only regular periodic orbits.
The QC interaction term is taken to be such that it does not in-

terfere with the existence of operators commuting with the Hamil-
tonian of the quantum part. In other words, the operator Ĥq + Ĥint
has the same additional constant observables as the quantum
part Ĥq . Furthermore, Ĥint must depend on observables of the
qubit 1 and of the qubit 2. For example Ĥint = q(c1h̄σ 1

z + c2h̄σ 2
z )

implying Hint(x, y,q, p) = q(c1h̄〈σ 1
z 〉 + c2h̄〈σ 2

z 〉) or explicitly
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Fig. 1. Figures illustrate the time series q(τ ) (a, c) and the corresponding amplitudes
of the Fourier spectra (b, d), of the classical oscillator subpart of the hybrid system
with the quantum subpart given by symmetric (9) (a, b) and non-symmetric (11)
(c, d) systems. The values of the parameters are ω = 1, μ = 5, m = k = 1, c1 = 15,
c2 = 1.

Fig. 2. Figures illustrate the time series (a, c) and the corresponding amplitudes of
the Fourier spectra (b, d), of the x1 canonical coordinate of the quantum subpart of
the hybrid system given by symmetric Hs(9) (a, b) and non-symmetric Hns2(11) (c,
d) systems. The values of the parameters are the same as in Fig. 1.

Hint = c1q

2

(
x2

1 + x2
2 − x2

3 − x2
4 + y2

1 + y2
2 − y2

3 − y2
4

)
+ c2q

2

(
x2

1 − x2
2 + x2

3 − x2
4 + y2

1 − y2
2 + y2

3 − y2
4

)
. (13)

The total Hamiltonian is given by the sum of (12), (13) and one
of (9), (10) or (11). Observe that the functions 〈σ 1

z 〉 and 〈σ 2
z 〉 are

constants of motion for the hybrid Hs + Hint + Hcl , as is the func-
tion 〈σ 2

z 〉 constant for the hybrid Hns1 + Hint + Hcl . Thus, Hint given
by (13) satisfies the general condition that we impose on the QC
interaction.

4. Numerical computations and the results

Hamiltonian equations are solved numerically and the dynam-
ics of CDF, illustrated in Fig. 1 and Figs. 3a, b and of QDF illustrated
in Fig. 2 and Figs. 3c, d, is observed in the cases corresponding to
the symmetric or non-symmetric quantum parts for different val-

Fig. 3. Figures illustrate the time series q(τ ) (a) and x1(τ ) and the corresponding
amplitudes of the Fourier spectra (b, d). The Hamiltonian is non-symmetric Hns1

(10). The values of the parameters are the same as in Fig. 1.

ues of the parameters μ and c. Let us first stress again that if there
is no classical system then all orbits are regular for either of the
quantum systems. On the other hand the hybrid system displays
different behavior. Consider first the time series generated by the
CDF. Figs. 1a, b, c, d and Figs. 3a, b show the time series q(τ )

(Figs. 1a, c and Fig. 3a), where τ = ωt is the dimensionless time,
and the corresponding Fourier amplitude spectra (Figs. 1b, d and
Fig. 3b). Figs. 1a, b are obtained with the quantum symmetric
system (9), Figs. 1c, d with quantum non-symmetric system (11)
and Fig. 3 with quantum non-symmetric system (10). Obviously,
the orbits of the CDF are periodic, with single frequency, in the
symmetric case, and chaotic with a broad-band spectrum in the
non-symmetric cases. We can conclude that the qualitative proper-
ties of orbits of a classical system coupled with a quantum system
are excellent indicators of the symmetries of the quantum system.

Consider now the dynamics of QDF illustrated in Figs. 2a, b,
c, d and Figs. 3c, d by plotting the time series generated by x1(t)
and the corresponding Fourier amplitudes spectra. Qualitatively the
same properties are displayed by dynamics of other canonical coor-
dinates x2, x3, x4, y1, y2, y3, y4 or, for example, by the dynamics of
expectation values 〈σ 1

x (t)〉, . . . . Again, the time series are regular if
the quantum systems are symmetric and are chaotic in the quan-
tum non-symmetric case. The same conclusion is obtained with
Hns2 replaced by Hns1. We can conclude that the orbits of the hy-
brid system, are regular or chaotic, in the sense of Hamiltonian
dynamics, depending on the quantum subpart being symmetric
or non-symmetric. Thus, the relation between symmetry and ex-
istence of independent constants of motion on one hand and the
qualitative properties of orbits on the other, which is the character-
istic feature of classical mechanics and is not a feature of isolated
quantum systems, is restored by appropriate coupling of the quan-
tum and a classical integrable system.

Observe that such behavior cannot be obtained by coupling two
quantum systems (instead of quantum–classical coupling). In this
case, and even for the simplest quantum system in place of the
classical one, the phase space of the quantum composite system
is much larger than Mqc because of the degrees of freedom corre-
sponding to the possibility of entanglement, and the total system is
always linear. All degrees of freedom of a quantum–quantum sys-
tem in the Hamiltonian formulation display only regular dynamics,
independently of the symmetries of the quantum Hamiltonian. On
the other hand, the hybrid systems are nonlinear, due to the QC
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coupling and the phase space of the form (4), and the relation be-
tween the symmetries and the qualitative properties of orbits is
like in the general Hamiltonian theory.

Explanation of the observed properties relies on the fact that
the five degrees of freedom hybrid Hamiltonian system with quan-
tum symmetric subpart has enough independent constants of mo-
tion in involution. These are given by H(x, y,q, p), Hs(x, y), 〈σ 1

z 〉,
〈σ 2

z 〉 and the norm of the state of the quantum subpart. On
the other hand Hns1 + Hint + Hcl , or Hns2 + Hint + Hcl do not
have enough such constants of motion since the quantum part
Ĥns2 does not commute with σ 1

z and σ 2
z and Ĥns1 with σ 1

z .
Only Hs + Hint + Hcl is integrable while those obtained with non-
symmetric quantum subparts are not and thus have some chaotic
orbits.

5. Summary

In summary, we have shown that the orbits of an integrable
classical system when coupled to a quantum system in an appro-
priate way remain regular or become chaotic depending on the
presence or lack of symmetries in the quantum part. To this end
we used the Hamiltonian theory of quantum–classical systems and
examples of qubit systems. The first fact is an important restric-
tion on our work. On the second point, the nature of our results
is qualitative and is therefore expected to be valid generically, and
not only for the considered examples. Considering the choice of
Hamiltonian theory to describe QC interaction, we were motivated
by the mathematical consistency of the theory and the fact that
the theory describes orbits of pure states of a deterministic Hamil-
tonian system. There are other consistent hybrid theories, but they
are either formulated in terms of probability densities [21,22] or
in terms of stochastic pure state evolution [20,23]. Of course, the
significance of our result could be properly judged only after the
status of Hamiltonian hybrid theory is sufficiently understood.
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potential interaction
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Representation of classical dynamics by unitary transformations has been used to develop a unified description
of hybrid classical-quantum systems with a particular type of interaction, and to formulate abstract systems
interpolating between classical and quantum ones. We solved the problem of a unitary description of two
interpolating systems with general potential interaction. The general solution is used to show that with arbitrary
potential interaction between the two interpolating systems the evolution of the so-called unobservable variables
is decoupled from that of the observable ones if and only if the interpolation parameters in the two interpolating
systems are equal.
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I. INTRODUCTION

Koopman–von Neumann (KvN) [1] unitary description of
the Liouville equation of classical Hamiltonian dynamical
systems was utilized for modeling hybrid quantum-classical
systems by Sherry and Sudarshan [2]. They analyzed par-
ticular types of interaction between the classical and the
quantum parts, and ad hoc prescriptions for definitions of
the corresponding Hilbert space operators. It was shown
that the premeasurement process can be modeled as an
interaction between a classical apparatus and a quantum
system within the unitary framework. Sherry and Sudarshan
also analyzed the so-called integrity conditions which ought
to be satisfied in order that classical variables remain classical
during the hybrid unitary evolution in the Heisenberg form.
Peres and Terno [3] analyzed consistency of the Koopman–
von Neumann–Sudarshan (KNS) hybrid dynamics with the
quantum-quantum and the classical-classical limits for the
case of linear interaction between harmonic oscillators. Some
aspects of the KNS formalism for a hybrid system with
specific interaction have also been studied in [4]. The authors
investigated the role of unphysical variables which are called
unobservables because they do not influence the evolution of
the physical observables of the quantum or the classical part
if there is no quantum-classical interaction. It was observed,
using particular examples of quantum-classical interaction
and specific forms of its Hilbert space description, that the
evolution of the unobservable and observable variables become
coupled.

More recently, KvN formalism and Ehrenfest principle
were used to propose a family of abstract unitary systems
interpolating between classical system and its quantized
counterpart [5]. The problem of hybrid dynamics was not
analyzed using the interpolating systems. Our goal is to study
the same type of questions, but for the most general potential
interaction between the classical and the quantum systems.
In fact, we shall obtain unitary dynamical equations for two
interpolating abstract systems (IAS) with general potential
interaction, and use this to show that generally the evolution

*buric@ipb.ac.rs

of the unphysical variables is decoupled from that of the
physical ones if and only if the interpolation parameters in
the two IAS are equal. In particular, unitary dynamics of
hybrid systems with potential interaction in general couples
the dynamics of the two types of variables. However, there
is one special case in the family of general solutions such
that the corresponding quantum-classical potential interaction
does not couple the physical and the unphysical variables, and
implies other properties consistent with this fact.

II. INTERPOLATING ABSTRACT SYSTEMS
AND HYBRID MODELS

Dynamical equations for averages of the basic observables
of a classical system and that of its quantized counterpart
can be mathematically interpolated by an abstract system that
depends on a suitable parameter. The first step to achieve this
is to rewrite the dynamics of classical and quantum averages
using the same mathematical framework. This can be done by
rewriting the classical dynamics as a unitary evolution on a
suitable Hilbert space, or by rewriting the unitary Schrödinger
equation as a (linear) Hamiltonian system on a symplectic
manifold. We shall treat here the unitary approach with general
potential interaction.

Consider an abstract dynamical system with the basic
variables xj ,pj ,χj ,πj (hereafter j = 1,2). Properties of the
system, expressed through appropriate algebraic relations
between the basic variables, are supposed to depend on
parameters aj . The basic variables satisfy commutation
relations

[xj ,pj ] = i�aj , [xj ,πj ] = [χj ,pj ] = i�, (1)

with all other commutators being zero. Let us suppose that the
algebra (1) is represented by operators acting on a Hilbert space
H. Assume that the dynamical variables xj ,pj are measurable
and that their averages in a state |ψ〉 ∈ H are computed
as

〈xj 〉ψ = 〈ψ |x̂j |ψ〉, 〈pj 〉ψ = 〈ψ |p̂j |ψ〉. (2)

1050-2947/2014/89(2)/024104(4) 024104-1 ©2014 American Physical Society
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Suppose that the dynamics of these averages is given by the
Ehrenfest principle

d

dt
〈ψ(t)|x̂j |ψ(t)〉 = 〈ψ(t)| p̂j

mj

|ψ(t)〉, (3a)

d

dt
〈ψ(t)|p̂j |ψ(t)〉 = 〈ψ(t)| − V ′

j (x̂j )|ψ(t)〉, (3b)

and that the state evolution is unitary i�|ψ̇〉 = ĤIAS|ψ〉.
The corresponding evolution equations for the dynamical
variables in the Heisenberg form are i� dx̂j /dt = [x̂j ,ĤIAS]
and analogously for p̂j ,χ̂j ,π̂j . The operator ĤIAS is the
evolution generator and might depend on all dynamical
variables ĤIAS = HIAS(x̂j ,p̂j ,χ̂j ,π̂j ). It is not necessarily
interpreted as the physical energy. It should be remarked that
the relations (2) and (3) are treated as axioms in the general
abstract formulation [5], expressing the conservative nature of
the dynamics. Following the approach of [5], one can obtain
the class of evolution generators yielding (3),

ĤIAS =
∑
j=1,2

1
aj

(
p̂2

j

2mj

+Vj (x̂j )
)

+Fj (x̂j − aj χ̂j ,p̂j − aj π̂j ),

(4)

where Fj are arbitrary functions of the indicated arguments.
Observe that, consistent with (3), there are no terms coupling
observables with different subscripts, so that the abstract
system (4) can be interpreted as a compound system with
two noninteracting components.

Explicit representation of the operator ĤIAS depends on the
representation space H, and is not important in our analysis.
Nevertheless, it should be remarked that the Hilbert space H
is determined as a space of an irreducible representation of
the algebra (1), and is the same space for any value of the
parameters aj . In particular, it is seen that in the case we want
to represent two quantum systems, the Hilbert space needed
to accommodate (1) with a1 = a2 = 1 is larger than the space
L2(x1) ⊗ L2(x2) ≡ L2(x1,x2), which is relevant in the standard
quantum mechanics without the additional variables χj ,πj . It
can be shown that one irreducible representation of the algebra
is provided with the Hilbert space of operators on L2(x1,x2)
[6]. Thus, the vectors from H can be considered as density
matrices or mixed states of the quantum-quantum system
[5]. Similarly, if the abstract systems represent two classical
systems, i.e., when a1 = a2 = 0 so that x̂j ,p̂j all commute,
the interpretation of the state |ψ〉 is that of the amplitude
of a probability density ρ(x1,x2,p1,p2) = |〈x1,x2,p1,p2|ψ〉|2
on the corresponding phase space M(x1,x2,p1,p2) [5]. The
scalar product in (2) coincides with the ensemble average∫
M ρ xj dM or

∫
M ρ pj dM . Observe that the classical Hilbert

space can be partitioned into equivalence classes |ψ〉 ∼
eiφ|ψ〉, where each class corresponds to a single density ρ. The
evolution equations preserve the equivalence classes because
there is no interaction [4].

Convenient choices of the arbitrary functions Fj can
reproduce the evolution equations for noninteracting classical-
classical (C-C) (a1 = a2 = 0), quantum-quantum (Q-Q) (a1 =
a2 = 1), and classical-quantum systems (C-Q) (a1 = 0, a2 =
1). The relevant choice of functions Fj and the corresponding

equations can be obtained as the special case from the general
equations, that will be given later, with interaction set to zero.

For arbitrary a1,a2 	= 0,1 the dynamical equations describe
the evolution of an abstract system interpolating between
the quantum and the classical systems (hence the notation
ĤIAS). Because there is no interaction between the two
systems, the evolution of x̂j ,p̂j is also independent of χ̂j ,π̂j .
The system has 2 + 2 degrees of freedom, and each of the
degrees of freedom evolves independently of the others. If
the abstract system (4) is meant to represent two quantum
or two classical systems, the variables x̂j ,p̂j are interpreted
as physical observables of coordinates and momenta. The
variables χ̂j ,π̂j , similarly as ĤIAS, do not represent physical
observables. They are dynamically separated from the physical
observables and appear because the family of systems (4) must
interpolate between the classical and the quantum dynamics
[5].

III. IAS WITH GENERAL POTENTIAL INTERACTION

Potential interaction between two quantum systems or
between two classical systems appears in the equations of
motion in the form of gradients of the corresponding scalar
potential. In the extended Hilbert space formalism, which is
required for the formulation of the IAS, such potential Q-Q or
C-C interaction can be represented by an operator expression
in terms of all variables with the role of coordinates Ŵ =
W (x̂1,x̂2,χ̂1,χ̂2). We assume that in the dynamical equations
for the corresponding momenta Ŵ should appear as a gradient
with respect to the corresponding coordinate.

We shall now consider dynamics of two abstract systems
with arbitrary values of a1,a2 and with an arbitrary potential
interaction between them. Like in the Q-Q and C-C cases, we
demand that the following relations hold:

d

dt
〈�(t)|x̂j |�(t)〉 = 〈�(t)| p̂j

mj

|�(t)〉, (5a)

d

dt
〈�(t)|p̂j |�(t)〉 = 〈�(t)| − V ′

j (x̂j ) − ∂Ŵ

∂x̂j

|�(t)〉. (5b)

Notice that the potential interaction can be completely gen-
eral. Particular examples of interaction which do not necessar-
ily satisfy (5) have been assumed in a somewhat ad hoc manner
and studied in [2–4]. Our goal is to determine the unitary
evolution generator ĤIAS = HIAS(x̂1,p̂1,x̂2,p̂2,χ̂1,π̂1,χ̂2,π̂2)
such that i�|d�(t)/dt〉 = ĤIAS|�(t)〉 holds. The unitary
evolution and (5) give the following relations:

1
i�

[x̂j ,ĤIAS] = p̂j

mj

, − 1
i�

[p̂j ,ĤIAS] = V ′
j (x̂j ) + ∂Ŵ

∂x̂j

,

(6)

and the related system of partial differential equations (PDEs)
for the function HIAS,

aj

∂HIAS

∂pj

+ ∂HIAS

∂πj

= pj

mj

, (7a)

aj

∂HIAS

∂xj

+ ∂HIAS

∂χj

= V ′
j (xj ) + ∂W

∂xj

. (7b)
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The commutation relations (6), i.e., the PDEs (7), are
not consistent for an arbitrary choice of the interaction po-
tential Ŵ . Jacobi identity [ĤIAS,[p̂1,p̂2]] + [p̂1,[p̂2,ĤIAS]] +
[p̂2,[ĤIAS,p̂1]] = 0 and the commutation relation [p̂1,p̂2] = 0
imply that [p̂1,[p̂2,ĤIAS]] = [p̂2,[p̂1,ĤIAS]], so that[

a1
∂

∂x1
+ ∂

∂χ1
,a2

∂

∂x2
+ ∂

∂χ2

]
HIAS = 0 (8)

must be satisfied. Invoking the second relation of (7), we get
the consistency requirement(

a1
∂

∂x1
+ ∂

∂χ1

)
∂W

∂x2
−

(
a2

∂

∂x2
+ ∂

∂χ2

)
∂W

∂x1
= 0. (9)

The general solution of (9) is

W =
∫ ∞

−∞
W(x1 + (α − a1)χ1, x2 + (α − a2)χ2, α) dα,

(10)

whereW is an arbitrary function such that the previous integral
is defined. Note that when a1 	= a2, i.e., when the systems are
of different type, the interaction potential Ŵ will depend on at
least one of the unobservables χ̂1,χ̂2. This conclusion remains
valid in the particular case of a hybrid classical-quantum
system, where a1 = 0 corresponds to the classical part and
a2 = 1 is related to the quantum part. Let us stress that this
fact is proved here for quite general potential interaction and
not just observed for some special choices of the interaction
[3,4].

Consider a particular choice of W ∝ δ(α − a) yielding
the interaction potential Ŵ = W (x̂1 + (a − a1)χ̂1, x̂2 + (a −
a2)χ̂2). The related solution of the PDEs (7) gives

ĤIAS =
∑
j=1,2

1
aj

(
p̂2

j

2mj

+ Vj (x̂j )
)

+ 1
a

W (x̂1 + (a − a1)χ̂1, x̂2 + (a − a2)χ̂2)

+F (x̂1 − a1 χ̂1,p̂1 − a1 π̂1,x̂2 − a2 χ̂2,p̂2 − a2 π̂2),

(11)

where F is arbitrary real-valued smooth function that com-
mutes with the observables O(x̂1,p̂1,x̂2,p̂2). Let us observe
that when the two systems are of the same type, the unobserv-
ables do not influence the evolution of the physical observables
for the choice a1 = a2 = a. The result (11) can be extended,
although with some care, to the limit a → 0, which will turn
out to be interesting for the hybrid Q-C system. Namely, one
can take a part of the function F to be of the suitable form
− 1

a
W (x̂1 − a1χ̂1, x̂2 − a2χ̂2) that yields in the a → 0 limit,

ĤIAS =
∑
j=1,2

1
aj

(
p̂2

j

2mj

+ Vj (x̂j )
)

+ ∂1W (x̂1 − a1χ̂1, x̂2 − a2χ̂2) χ̂1

+ ∂2W (x̂1 − a1χ̂1, x̂2 − a2χ̂2) χ̂2

+F (x̂1 − a1 χ̂1,p̂1 − a1 π̂1,x̂2 − a2 χ̂2,p̂2 − a2 π̂2),

(12)

where ∂jW denotes partial derivative of the potential with
respect to the j th argument.

The limit of (11) when aj → 0 can also be obtained by
choosing a part of the function F in the form − 1

aj
[ (p̂j −aj π̂j )2

2mj
+

Vj (x̂j − aj χ̂j )], as in [5]. In particular, this yields the Hamilto-
nian, as the dynamics generator, of a hybrid classical-quantum
system (a1 → 0, a2 = 1)

Ĥhyb = p̂1
m1

π̂1 + V ′
1(x̂1) χ̂1 + p̂2

2
2m2

+ V2(x̂2)

+ 1
a

W (x̂1 + aχ̂1, x̂2 + (a − 1)χ̂2)

+F (x̂1,p̂1,x̂2 − χ̂2,p̂2 − π̂2), (13)

where the first four terms describe a noninteracting hybrid sys-
tem. As already mentioned, the interaction potential depends
on at least one of the unobservables χ̂1,χ̂2. The appearance
of the unphysical variables in the Hamiltonian is not a
problem per se, because the Hamiltonian is anyway interpreted
as the dynamics generator and not as the physical energy.
Additionally, in the purely C-C case (a1 = a2 = a → 0) one
gets

ĤC-C = p̂1
m1

π̂1 + V ′
1(x̂1) χ̂1 + p̂2

m2
π̂2 + V ′

2(x̂2) χ̂2

+ ∂1W (x̂1,x̂2) χ̂1 + ∂2W (x̂1,x̂2) χ̂2, (14)

with the unobservables being present, but not within the
arguments of the interaction potential. However, in the C-C
case the unphysical variables do not appear in the evolution
equations of the physical observables. We may remark in
passing that Ŵ is not interpreted as the potential energy
of the hybrid, but as a term in the generator of dynamics
corresponding to the potential interaction. However, the crucial
property of hybrid Q-C systems is that the equations of motion
for the physical and unphysical variables become coupled.
Those equations are easily obtained from the generator (13).
Thus, we have shown that the dynamical equations couple
physical and unphysical variables in the case of a potential
Q-C interaction in general, that is with the Hamiltonian of the
general hybrid form (13).

A very special case of (13) is obtained in the limit a → 0
with the appropriate choice of the function F yielding the
Hamiltonian

Ĥhyb = p̂1
m1

π̂1 + V ′
1(x̂1) χ̂1 + p̂2

2
2m2

+ V2(x̂2)

+ ∂1W (x̂1, x̂2 − χ̂2) χ̂1 + ∂2W (x̂1, x̂2 − χ̂2) χ̂2,

(15)

with the corresponding equations of motion of the variables

dx̂j

dt
= p̂j

mj

, (16a)

dp̂j

dt
= −V ′

j (x̂j ) − ∂jW (x̂1, x̂2 − χ̂2), (16b)

d

dt
(x̂2 − χ̂2) = 0. (16c)
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This solution describes the situation when the evolution of the
classical system depends on the quantum system only through
a constant of motion x̂2 − χ̂2. In this very special case of the
general hybrid solution, the classical variables see only a quite
coarse-grained effect of the quantum evolution. On the other
hand, the dynamics of the quantum sector is influenced by
the details of the dynamics of the classical physical variables
x̂1,p̂1. In addition, this is the only case of the potential Q-C
interaction which satisfies the integrity principle of Sudarshan
[2]. Namely, the terms ∂jW (x̂1, x̂2 − χ̂2) in this form of
the Hamiltonian commute with the momenta p̂1,p̂2, which
assures commutation of the classical variables at different
times.

IV. SUMMARY

We have studied the type of theory of hybrid quantum-
classical systems where the evolution is described by unitary
transformations on an appropriate Hilbert space. The fact
that both classical and quantum mechanics can be formulated
on the same Hilbert space makes it possible to introduce a
parameter dependent family of abstract systems interpolating
between a classical system and its quantized counterpart [5].
The variables involved in the formulation of the abstract
interpolating model can be divided into two groups, one with
the standard physical interpretation and one with no physical
interpretation. In the limits of the classical or the quantum
system the two groups of variables are dynamically separated.
We have studied two such abstract interpolating systems with
quite arbitrary potential interaction between them. General
solution for the problem of constructing dynamical equations

for such a pair of systems is provided. It is shown that, with
the most general type of potential interaction, the dynamics
of the two groups of variables is separated if and only if the
two abstract interpolating systems have the same value of the
interpolation parameter. On the other hand, if the interpolation
parameters of the two system are different, the two groups
of variables dynamically influence each other. The variables
which can be considered as unphysical and cannot be observed
in the purely quantum or in the purely classical case, do have an
observable effect in the hybrid quantum-classical system. Our
results demonstrate this fact for arbitrary potential interaction,
in line with the previous special cases [3,4]. Analogous
conclusions are obtained in the symplectic approach to the
conservative hybrid dynamics [7,8], and the analogy is worth
further investigation. We have also analyzed the particular
case of the general solution corresponding to the situation
when the classical part is influenced by the quantum part only
through a particular combination of the variables from the
quantum system that remains constant during the evolution.
This, rather special case, is the only possible dynamics of the
hybrid system within the framework of unitary dynamics with
potential interaction, when the physical and the unphysical
variables can be considered as decoupled, and also when
the Sudarshan integrity condition of the classical system is
satisfied.
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Abstract Geometric phases for evolution of statistical ensembles of Hamiltonian dynami-
cal systems are introduced utilizing the fact that the Liouville equation is itself an infinite
integrable Hamiltonian system. This general framework provides unified treatment of ge-
ometric phases for pure or mixed states of classical, quantum or hybrid quantum-classical
systems.

Keywords Geometric phases · Statistical ensembles

1 Introduction

Geometric phases have been introduced in order to describe non-holonomic effects in the
evolution of pure quantum states (the most relevant references are listed and commented in
[1]). Originally defined for adiabatic and cyclic evolution, the notion of the geometric phases
has been extended to arbitrary curves in the space of pure states. It has been realized that
objects with analogous meaning exist in the dynamics of pure states of an integrable clas-
sical mechanical system [2, 3]. However, most states in applications and experiments are
mixed rather than pure. The problem of an appropriate definition of geometric phases for
mixed states has been approached from different perspectives, and the different approaches
resulted in nonequivalent definitions [4–9]. Geometric ideas analogous to those applied in
the case of pure states have been explored also in the context of mixed states [10]. It is fair
to say that the proper definition of geometric phases for mixed states is still an unsettled
issue. In this communication we present a unified treatment of a special type of geomet-
ric phases for statistical ensembles of Hamiltonian dynamical systems with different details
and physical interpretation. The type of geometric phase treated here is a generalization of
Hannay angles introduced for adiabatic time-periodic Hamiltonian evolution of integrable
classical systems in pure states. Our approach is based on: (a) the fact that quantum systems
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(with finite state spaces) and classical mechanical systems are examples of Hamiltonian dy-
namical systems with finite number of degrees of freedom [11–13]; and (b) the fact that the
Liouville evolution of statistical ensembles of such Hamiltonian systems is an integrable
(functional) Hamiltonian system. The approach applies also on the Hamiltonian description
of so-called hybrid systems, i.e. systems composed of interacting classical and quantum
units [14–17]. In what follows we shall first present the general theory leading to the notion
of Hannay angles for statistical ensembles of Hamiltonian systems (with arbitrary physical
interpretation). The general definition provides the corresponding definitions for the Han-
nay angles of classical, quantum and of hybrid systems in mixed and in pure states. Our
presentation is conceptual rather than mathematically rigorous. Presentation containing all
necessary details would require much larger space, but is possible, using the methods and
results presented for example in [18, 19].

2 Hamiltonian Framework for Pure States

Evolution of conservative systems, either of classical mechanical or of quantum variety or of
hybrid type, can be described using the mathematical framework of Hamiltonian dynamical
systems. Formulation of classical mechanics as a Hamiltonian dynamical system is well
known [18]. In the case of a quantum system with an N dimensional Hilbert space HN the
corresponding phase space is given as M = R2N , or using normalization and global phase
invariance by M = CP N−1 ≡ S2N−1/S1. The symplectic structure on M is given by the
imaginary part of the Hilbert space scalar product, and the system also has real Riemannian
structure given by the real part of the scalar product. A point from M associated with the
state |ψ〉 (or the corresponding ray) is denoted as xψ . Generic point from M will also be
denoted by x or xa , where a = 1,2, . . . ,2N is an abstract index. The dimension of the
quantum phase space is 2N where N is the complex dimension of the system’s Hilbert
space. It should be stressed, perhaps, that the canonical coordinates have nothing to do with
the canonical coordinates of the classical system that after quantization gives the considered
quantum system with the Hilbert space H. The Hamilton’s function H(x) is given by the
quantum expectation of the Hamiltonian Ĥ in the state |ψx〉 ↔ x: H(x) = 〈ψx |Ĥ |ψx〉. The
Schrödinger dynamical law is that of Hamiltonian mechanics

ẋa = ωab∇bH. (1)

In the Hamiltonian formulation of QM, only the quadratic functions generate the auto-
morphisms, and only such functions are related to dynamical variables or observables. In
fact, all dynamical variables are represented by quadratic functions A(x) on M and are
the quantum mechanical expectations of the corresponding quantum observables A(x) =
〈ψx |Â|ψx〉. In particular, the canonical coordinates of the quantum phase space do not have
this physical interpretation. It is important to observe that the Poisson bracket between two
quadratic functions is also a quadratic function and satisfies

{
A1(x),A2(x)

} = 1
i�

〈
ψX

∣∣[Â1, Â2]
∣∣ψX

〉
. (2)

An arbitrary density on M generates a statistical operator

ρ̂ =
∫
M

ρ(x)Π̂(x)dx (3)
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where Π̂(x) is the projector on the state |ψx〉 and dx is the appropriate volume element.
Expectation of an observable h(x) in an ensemble ρ(x) is given by

〈ρ|h〉 =
∫
M

h(x)ρ(x)dx = Tr[ρ̂ĥ]. (4)

All densities ρ(x) with the same second moments give the same expectation of the observ-
able h(x), and the same ρ̂ via (3), and are therefore equivalent. The Liouville equation maps
equivalent densities into equivalent densities, and generates the von Neumann equation of
ρ̂(t) = ∫

M ρ(x; t)Π̂(x)dx.
Hamiltonian formulations of a quantum system and of a classical system are combined

to give the Hamiltonian formulation of a hybrid system as in [14–17]. Ensembles of such
hybrid systems are represented as for any Hamiltonian system by the phase space densities,
but the corresponding Liouville equation generates evolution of the quantum degrees of
freedom with peculiar properties. This will be further discussed later in the context of the
appropriate geometric phases.

3 Liouville Equation as a Hamiltonian System

In general, the triple (M,ω,h) consisting of the 2N dimensional symplectic manifold M,
some symplectic structure ω and the Hamiltonian function h(x) on M completely specifies
the Hamiltonian system, which could correspond to a classical, quantum or hybrid system.
Points from M represent the pure states of the considered system. If the system with the
Hamiltonian h is integrable, then there is a preferred choice of the canonical coordinates,
the action and the angle coordinates (ji, θi), i = 1,2, . . . ,N , and there exist N geometric
phases (called Hannay angles) [2, 3] associated with the evolution of the pure states. If the
Hamiltonian system is of the quantum origin, then it is linear and therefore integrable, and
the Hannay angles reproduce standard geometric phases associated with an adiabatic unitary
evolution of a pure quantum state [15, 16].

A statistical ensemble of Hamiltonian systems is described by a probability density ρ(x)

on M. The set of densities has the structure of an infinite-dimensional manifold and is
denoted by M̃. Physically, ρ ∈ M̃ may correspond to an ensemble of classical mechanical
systems, to a mixed quantum state ρ̂ = ∫

M ρ(x)Π̂(x) or to an ensemble of hybrid systems.
From the interpretation of ρ(x) as a probability density follows the evolution equation for
ρ(x; t), which is just the linear Liouville equation

∂ρ/∂t = −{ρ,h}M. (5)

The central point of our approach to the general construction of Hannay angles is the fact that
the Liouville equation for ρ(x; t) on a finite-dimensional M can be presented in the form
of an appropriate functional Hamiltonian dynamical system [18–20]. The infinite manifold
M̃ admits Poisson structure which, however, is degenerate. Degeneracies correspond to
gauge degrees of freedom and the Liouville equation needs to be restricted onto an invariant
submanifold of M̃ which admits a nondegenerate i.e. symplectic structure. The relevant
submanifold is determined by the automorphism group of the original system (M,ω,h). In
the general case this is the group of canonical transformations on M, denoted by G. The
Lie algebra g of the infinite Lie group G consists of the Hamiltonian vector fields on M and
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is isomorphic to the Lie algebra of smooth functions C∞(M). The dual of C∞(M) is the
coadjoint algebra g∗ isomorphic with the space of densities ρ ∈ M̃. The paring is given by:

〈ρ|h〉 =
∫
M

ρ(x)h(x)dx. (6)

In order to present the Liouville equation ρ̇ = −{ρ,H }M as a Hamiltonian dynamical sys-
tem, one follows the standard construction of the symplectic structure on a coadjoint orbit
Oρ = G/Gρ of the Lie group G, where Gρ is the invariance subgroup of ρ. First, a Poisson
structure is defined on M̃ [20, 21] as

{
H1(ρ),H2(ρ)

}
M̃ =

∫
M

ρ

{
δH1

δρ
,
δH2

δρ

}
M

dx

=
∫
M

ρ{h1, h2}Mdx, (7)

where Hi(ρ) = ∫
M ρhidx. The Poisson structure (7) on M̃ is degenerate but its restriction

on an orbit of G in S

Oρ = {ρ ◦ λ |λ ∈ G} (8)

gives the desired symplectic structure on Oρ denoted by ω(ρ). It follows, from an ap-
propriate formulation of Darboux theorem, that Oρ admits canonically conjugate variables
ρ(x) → (Q(x),P (x)) [18]. The manifold M̃ is a union of disjoint symplectic submanifolds
Oρ .

Remark The order of introducing the Poissonian structure on M̃ and the symplectic struc-
ture on the coadjoint orbit Oρ can be reversed. In fact, a tangent vector to Oρ at ρ ∈ Oρ has
the following form {ρ,h}M for some h ∈ g. The Kirillov, Kostant and Souriau symplectic
form [19, 20] on Oρ is given at ρ by

ω
({ρ,h}M, {ρ, k}M

) = 〈
ρ|{h, k}M

〉
. (9)

The Hamiltonian vector fields XF on Oρ are given by functionals F : g∗ → R by the formula

XF (ρ) =
{
ρ,

δF

δρ

}
M

(10)

In this order of definitions, the Poisson bracket on M̃ is given by{
H1(ρ),H2(ρ)

}
M̃ = ω(XH1 ,XH2) (11)

which, by (9) and (10), coincides with the definition via (7).

The Liouville equation (5) appears as a Hamiltonian system on M̃ with the correspond-
ing Hamiltonian H(ρ) = ∫

M ρhdx and the Hamiltonian equations

ρ̇ = {ρ,H }M̃ = {h,ρ}M. (12)

In fact, as pointed out, a coadjoint orbit is invariant under such an evolution so that the Li-
ouville equation can be regarded as an integrable Hamiltonian system (Oρ,ω,H) on each
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coadjoint orbit. The Hamiltonian system on the coadjoint orbit (Oρ,ω,H(ρ)) has no gauge
degrees of freedom and all invariant quantities are due to symmetries. The Hamilton equa-
tions (12) are linear and therefore integrable.

Remark In what follows we shall have to deal with a Hamiltonian that depends on time-
dependent parameters R(t). Furthermore, it will be assumed that the time dependence is
periodic R(t + T ) = R(t) and adiabatic. The major observation is that any solution ρ(t)

of the Hamiltonian system (12), corresponding to the Liouville equation with such periodic
time-dependent Hamiltonian, belongs to a single coadjoint orbit.

The functional Hamiltonian dynamical system (M̃,Ω,H), or its restriction on an or-
bit Oρ , will be refereed to as the ensemble Hamiltonian system. This Hamiltonian formu-
lation of the Liouville equation on the phase space M is different from the Hamiltonian
formulation for ensembles on a configuration space utilized in [22, 23]. Notice that in the
Hamiltonian formulation of the Liouville equation presented here, the abstract Hamiltonian
system and the Liouville equation, and also the ensemble Hamiltonian, are of the same form
irrespective of the physical origin of the Hamiltonian system (M,Ω,H). In the “ensemble
on configuration space” approach of [22, 23], the ensemble Hamiltonian corresponding to a
classical system differs in form from the one corresponding to a quantum system. Further-
more, only pure quantum states are treated in [22, 23].

4 Hannay Angles for Densities

The Hamiltonian evolution equation (12) for ρ(x; t) is linear. Therefore, the ensemble
Hamiltonian system is an integrable Hamiltonian system with an infinite number of degrees
of freedom. As an integrable Hamiltonian system the ensemble evolution has the appropri-
ate geometric (Hannay) angles. The geometric angles are introduced via generalization of
the standard procedure for the Hannay angles of an integrable system with finite number of
degrees of freedom.

The action-angle variables of the integrable system (Oρ,ω,H(ρ)) are denoted as
(J,Θ) ≡ {(Jk(Q,P ),Θk(Q,P )), k = 1,2 . . . }. The evolution of ρ(x; t) is restricted onto
a single one of the infinite number of infinite dimensional invariant Lagrangian submani-
folds. If the Hamiltonian h depends on a time-depended multi-parameter R(t) the ensem-
ble Hamiltonian H(ρ;R(t)) also depends on R(t). As in the standard definition of the
Hannay angles, we shall assume that the time dependence is periodic R(t + T ) = R(t)

and adiabatic. The generating functional of the time-dependent canonical transformation
S(R(t)) : (Q,P ) → (J,Θ) such that H does not depend on Θ is analogous to the standard
treatment of the Hannay angles in the finite mechanical case. The new Hamiltonian is

H ′(Θ,J ; t) = H
(
Q(Θ,J ; t),P (Θ,J ; t)) + ∂S(Q,J ; t)

∂t
(13)

where S ′(Θ,J ; t) = S(Q,J ; t) satisfies the chain rule

∂S ′

∂t
= ∂S

∂t
+ δS

δQ

∂Q

∂t
= ∂S

∂t
+ P

∂Q

∂t
. (14)
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Integration of the Hamilton’s equation dΘ
dt

= δH ′
δJ

followed by Θ integration over each one
of the infinite-dimensional Lagrangian submanifolds parameterized by values of J gives

�Θk(τ) = δ

δJk

∫ τ

0
dt

∫
DΘH

(
Q(Θ,J ),P (Θ,J ); t)

− δ

δJk

∫ τ

0
dt

∫
DΘP(Θ,J ; t) ∂

∂t
Q(Θ,J ; t) (15)

where DΘ is the normalized measure in the functional angle space. For each k the first term
is the dynamical phase �Θd,k and the second term is the geometric phase �Θg,k , acquired
by the evolution of ρ. There is an infinite number of geometric phases �Θg,k . These phases
are by construction gauge invariant.

5 Special Cases

5.1 Hannay Angles in the Case of a Pure State

If ρ is a pure state represented by a delta function on M, then Oρ coincides with M.
In this case and for an integrable Hamiltonian system on M, as in the quantum case, the
above general procedure gives standard Hannay angles. As is well known [15, 16] these are
equivalent to the geometric phases of the corresponding quantum system in a pure state.

5.2 Hannay Angles for a Quantum Mixed State

Consider now the above formalism appropriate for quantum systems, where the preservation
of the Riemannian structure of M introduces the corresponding restrictions on G, g and g∗.
The structure isomorphism group Gq in the quantum case is the finite subgroup of canonical
transformations generated by quadratic functions on M. This is isomorphic to the unitary
group U(N). The group Lie algebra gq is the Lie algebra of real quadratic functions identical
to the Hermitian operators on HN . It is a peculiarity of quantum mechanics to consider as
representatives of mixed states of a system only those elements of the dual algebra which are
given by density matrices ρ̂, or equivalently by equivalence classes of densities. The pairing
between the algebras is given by

∫
M ρ(x)h(x)dx = Tr[ρ̂ĥ] where ρ is any element of the

equivalence class ρρ̂ and h(x) is the quadratic function representing ĥ. The coadjoint orbit
through ρ̂ is isomorphic to

U(N)/U(k1) . . .U(km), k1 + k2 + · · · + km = N, (16)

where k1, k2 . . . km are dimensions of the eigenspaces of ρ̂. The symplectic structure on
Oρ̂ , introduced in Eq. (9), turns Oρ̂ into a finite-dimensional symplectic manifold. The di-
mension of Oρ̂ depends on the spectrum of ρ̂. The algebra of density matrices is a union of
disjoint symplectic manifolds Oρ̂ . The von Neumann equation for ρ̂ restricted onto the sym-
plectic manifold Oρ̂ is seen as an integrable Hamilton system with finite number of degrees
of freedom. An equivalent construction directly in terms of finite Hilbert spaces and unitary
evolution was treated in detail for special types of density matrices in [10]. The orbit Oρ̂

is invariant under the evolution with periodic and adiabatic time dependence of the Hamil-
tonian. The finite number of Hannay angles for this Hamiltonian system on Oρ̂ provide an
example of geometric phases for the mixed state ρ̂(t). The orbit Oρ̂ and the definition of the
Hannay angles depend only on ρ̂ and not on particular convex mixture representation of ρ̂.
As in the general case, the geometric phases are gauge invariant by construction.
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5.3 Hannay Angles for a Hybrid System

There is no unique generally accepted theory of interaction between micro and macro de-
grees of freedom, where the former are described by quantum and the later by classical
theory. The reason is primarily because each of the suggested theories has some unexpected
or controversial features (see [14] for an informative review). Partial selection of hybrid
theories can be found in [22, 24–28]. Some of the suggested hybrid theories are mathemati-
cally inconsistent, and “no go” type theorems have been formulated [29], suggesting that no
consistent hybrid theory can be formulated. Nevertheless, mathematically consistent but in-
equivalent hybrid theories exist [14, 22, 28]. The Hamiltonian hybrid theory, as formulated
and discussed for example in [14–17], has many of the properties commonly expected of a
good hybrid theory. In fact, the dynamical formulas of the Hamiltonian theory are equiva-
lent to the well known mean field approximation, the main novelty being that the theory is
formulated entirely in the framework of the theory of Hamiltonian dynamical systems.

General procedure for construction of Hannay angles requires construction of the sym-
plectic manifold Oρ using the group of automorphisms of the relevant structure. Therefore,
we need to determine the automorphism group of a hybrid system in the Hamiltonian for-
mulation. To this end we first present a brief recapitulation of the Hamiltonian formulation
of hybrid systems dynamics as described in [14, 17].

The phase space of the hybrid system M is considered as a Cartesian product M =
Mc ×Mq of the classical subsystem phase space Mc with dimMc = 2Nc and of the quan-
tum subsystem phase space Mq with dimMq = 2Nq . Local coordinates on the product are
denoted {p,q, x, y}, where (p, q) ∈ Mc are called the classical degrees of freedom (CDF)
and (x, y) ∈ Mq are called the quantum degrees of freedom (QDF). The evolution equations
of the hybrid system are of the Hamiltonian form with the Hamilton’s function comprised
of three terms

Ht(p,q, x, y) = Hc(p,q) + Hq(x, y) + Vint (p, q, x, y), (17)

where Hc is the Hamilton’s function of the classical subsystem, Hq(x, y) is the Hamilton’s
function of the quantum subsystem and Vint (p, q, x, y) = 〈ψx,y |V̂int (p, q)|ψx,y〉, where
V̂int (p, q) is an operator in the Hilbert space of the quantum subsystem which depends on
the classical coordinates (p, q) and describes the interaction between the subsystems. The
Poisson bracket on M of arbitrary functions of the local coordinates (p, q, x, y) is defined
as

{f1, f2}M =
k∑

i=1

(
∂f1

∂qi

∂f2

∂pi

− ∂f2

∂qi

∂f1

∂pi

)

+ 1
�

∑
j

(
∂f1

∂xj

∂f2

∂yj

− ∂f2

∂xj

∂f1

∂yj

)
. (18)

Thus, the Hamiltonian form of the hybrid dynamics on M as the phase space reads

q̇ = {q,Ht }M, ṗ = {p,Ht }M, (19)

ẋ = {x,Ht }M, ẏ = {y,Ht }M, (20)

where Ht is given by (17). The evolution of QDF might be nonlinear due to the nonlinear
evolution of CDF and the interaction between the QDF and CDF.
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The most general ensemble of hybrid systems is represented by some probability den-
sity ρ(p,q, x, y). The densities evolve according to the Liouville equation with a solution
ρ(p,q, x, y; t). The density ρ(p,q, x, y; t) for any fixed t generates a unique statistical
operator:

ρ̂(t) =
∫
M

ρ(p,q, x, y; t)Π̂(x, y)dM. (21)

Due to the properties of the Liouville evolution of ρ(p,q, x, y; t) the formula (21) defines
a continuous one-parameter family of statistical operators on H.

The dynamical equation for ρ̂(t) [30] is

dρ̂(t)

dt
= 1

i�

[
Ĥq, ρ̂(t)

]
+ 1

i�

∫
Mc

[
V̂int (p, q), ρ̂(p, q; t)]dMc. (22)

The first term generates the unitary part of the evolution and the second term does not pre-
serve the norm of ρ̂ and is responsible for non-unitary effects. Nevertheless, the evolution
of the density of the total system is Hamiltonian and given by the Liouville equation. No-
tice that the evolution of ρ̂(t) cannot be expressed only in terms of ρ̂(t), but irreducibly
involves the full probability density ρ(p,q, x, y; t). Many hybrid ensembles represented by
different ρ(p,q, x, y; t0) have the QDF in the same mixed state ρ̂(t0). However, different
ρ(p,q, x, y; t0) that give the same ρ̂(t0), generate different evolution of ρ̂(t) and thus must
be considered as physically different [30].

The evolution equation (22) for ρ̂(t) is reduced to (19) and (20) if the initial ρ(p,q, x, t; t0)
is a pure state in M. If however, the initial density is of the form δ(x −x0)δ(y −y0)ρ(q,p),
the pure state ρ̂(t0) = |ψxy(t0)〉〈ψxy(t0)| might evolve according to (22) into a non-pure
mixture. This in an important observation for the hybrid description of the quantum mea-
surement process.

The evolution of QDF of a hybrid system is fundamentally different from the linear
evolution of a quantum subsystem of a quantum system. The characteristic main features of
the QDF evolution are expressed by the nonlinearity of the pure state evolution, or by the
dynamically induced differences of ρ̂(t) with different convex mixture representations of the
initial ρ̂(t0). Therefore, the automorphism group of a hybrid system is not Gc(Nc)⊗U(Nq),
but must be taken to be the infinite group of all canonical transformations i.e. Gc(Nc +
Nq). Therefore, the Hannay angles for a hybrid system in a general mixed state ρ(x) are
given by the formula (15) of the general case. Infinite number of Hannay angles for the
QDF can be interpreted as dependence of the QDF geometric phases on the convex mixture
representation ρ̂ = ∫

ρ(x)Π̂(x)dx i.e. on the full details of the density ρ. In the case of the
initial state which is pure in both QDF and CDF, and for an integrable classical subsystem,
the situation is reduced to the general pure case, and the corresponding Nq + Nc Hannay
angles provide the geometric phases and the Hannay angles of the quantum and the classical
subsystems respectively.

6 Summary

Our goal in this paper was to indicate the existence of a general framework for unified
treatment of geometric phases in classical, quantum and hybrid system in pure or mixed
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states. In the general case the Liouville dynamical equation can be presented in the form
of a Hamiltonian dynamical system and this fact enables one to introduce the concepts of
geometric phases quite generally. In this way the geometric phases in all these cases could be
seen as a consequence of the geometry of Hamiltonian dynamics. However, in this paper we
have treated only the very special case of geometric phases, that are generalizations of the
Hannay angles of a classical integrable system in a pure state undergoing time periodic and
adiabatic evolution. The Hamiltonian formulation of the Liouville equation is applied for
the treatment of linear time-periodic and adiabatic Hamiltonian dynamics and the derivation
of the corresponding generalized Hannay angles. Hannay angles in the particular cases like
quantum, integrable hybrid and integrable classical systems in pure or mixed states can
be obtained as special instances of the general procedure. Thus, we have used the general
framework to explore only a very special issue, and in this way illustrate our main point. To
the best of our knowledge, there has been no discussion of Hannay angles for mixed states in
either quantum or classical case, and therefore no direct relation with existing constructions
of geometric phases for mixed states in the form of Hannay angles is possible. Unified
treatment of geometric phases, and geometric issues, in other types of evolution that have
been treated, specially in the context of quantum mechanics, have not been discussed. In
particular we did not pursue the relation of the symplectic area of the phase space in the
general formulation with the possibility to introduce a single geometric phase. Also, we
did not analyze the importance of bundle structures and parallel transport conditions of the
general state space for the geometric understanding of generalized geometric phases. These
issues will have to be treated within the general framework in order to discuss the cases
of single geometric phase introduced in quantum cyclic unitary dynamics of mixed states
like in [6] and [10]. The generalized Hamiltonian framework presented here is probably not
suited for the treatment of very relevant case of the geometric phase of non-unitary evolution
of mixed states [7–9].
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9. Burić, N., Radonjić, M.: Phys. Rev. A 80, 014101 (2009)

10. Chaturvedi, S., Ercolessi, E., Marmo, G., Morandi, G., Mukunda, N., Simon, R.: Eur. Phys. J. C 35, 413
(2004)

11. Heslot, A.: Phys. Rev. D 31, 1341 (1985)
12. Brody, D.C., Hughston, L.P.: J. Geom. Phys. 38, 19 (2001)
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Abstract Representation of quantum states by statistical ensembles on the quantum
phase space in the Hamiltonian form of quantum mechanics is analyzed. Various
mathematical properties and some physical interpretations of the equivalence classes
of ensembles representing a mixed quantum state in the Hamiltonian formulation are
examined. In particular, non-uniqueness of the quantum phase space probability den-
sity associated with the quantum mixed state, Liouville dynamics of the probability
densities and the possibility to represent the reduced states of bipartite systems by
marginal distributions are discussed in detail. These considerations are used to study
ensembles of hybrid quantum-classical systems. In particular, nonlinear evolution of
a single hybrid system in a pure state and unequal evolutions of initially equivalent
ensembles are discussed in the context of coupled hybrid systems.

Keywords Statistical ensembles · Hybrid systems

1 Introduction

Schrödinger equation of quantum mechanics (QM) on a Hilbert space H can be writ-
ten as a Hamiltonian dynamical system on the corresponding phase space [1–5].
This fact enables elegant treatment of quantum dynamical problems, like for ex-
ample analysis of quantum dynamics with nonlinear constraints [6, 7] and related
issues of classical limit [8, 9]. One hopes that full geometrical formulation of QM
analogous to that of classical Hamiltonian systems, besides its usefulness in the
dynamical issues and its mathematical elegance, will also provide better intuitive
understanding of typically quantum phenomena [4, 5]. Furthermore, the Hamil-
tonian formulation is specially convenient for the treatment of coupling between
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classical and quantum systems, called hybrid systems, [10–13], because it pro-
vides a unified mathematical framework for both theories. However, the formal
similarity between the Hamiltonian formulation of QM and that of classical sys-
tems is only partial, and there are differences in some crucial aspects. The pur-
pose of this paper is to analyze the relation of quantum mixed states with the cor-
responding statistical ensembles of quantum systems in the Hamiltonian formula-
tion, and to utilize such considerations for an analysis of ensembles of hybrid sys-
tems.

The fundamental difference between the Hamiltonian formulation of QM and of
classical mechanics (CM) is in the classes of phase space functions which are con-
sidered as representing dynamical variables in the two theories. In the Hamiltonian
formulation of QM only the quadratic functions on the phase space are interpreted
as observables. Functions of more general types generate nonlinear evolution of the
quantum states. However, non-quadratic functions and nonlinear evolution of the
quantum degrees of freedom appear naturally in the theory of hybrid systems. This
fact has profound physical significance, and is reflected in the interpretation of the
results of the hybrid theory. Another, but related, type of striking differences and
incomplete analogies between Hamiltonian formulations of QM and CM are intro-
duced when states more general than pure are considered. Such considerations re-
veal, from a new perspective, some well known deep features of quantum mixtures,
represented by density operators ρ̂, but also point out to some less known differ-
ences between quantum and classical ensembles represented by density functions
ρ on the quantum phase space. Consequences of these differences in the Hamilto-
nian formulation of hybrid systems is the main topic of this paper. Thus, our main
motivation for the discussion of differences between quantum mixed states and gen-
eral statistical ensembles in the Hamiltonian formulation of QM, given in Sect. 3,
is to better understand the behavior of ensembles of hybrid systems, presented in
Sect. 4. In particular, we analyze, in Sect. 3.1, relations between classes of equiva-
lent discrete convex combinations of pure quantum states on one side, and classes of
equivalent statistical ensembles in the Hamiltonian formulation of QM on the other
side. The well known result of Hughston, Josza and Wooters [14], about the rela-
tion between different finite convex representations of a mixed state is generalized
to Hamiltonian ensembles represented by general densities. Typical representatives
of the equivalence classes of densities representing the same mixed state, such as
Gaussian densities, are discussed. Correct interpretation of the phase space function
〈ψ |ρ̂|ψ〉, where ρ̂ is a density matrix, versus a density ρ corresponding to that den-
sity matrix ρ̂ is stressed. In Sect. 3.2 we briefly describe the formulation of Liou-
ville equation as a Hamiltonian dynamical system. We then analyze, in Sect. 3.3,
the relation between the statistical operator obtained by tracing out a subsystem of
a quantum system in a pure state on one side, and the statistical ensembles given
by marginal distributions in the Hamiltonian formulation on the other side. These
considerations are important for proper interpretation of some recently obtained re-
sults in the Hamiltonian formulation of hybrid systems [10, 13], which we discuss in
Sect. 4.
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2 Hamiltonian Formulation

Quantum and classical mechanics might be formulated using the same mathematical
framework. Relevant references for the CM case are [15, 16] and for the QM case are
[1–5]. This fact suggests to formulate the hybrid theory using the same mathemati-
cal framework of Hamiltonian dynamical systems. All three theories will be consid-
ered here as dynamical systems (M,ω,g,H) on a differentiable manifold M with
a symplectic and Riemannian structures ω and g respectively, with some preferred
function, the Hamiltonian, H . The manifold is also assumed to posses a complex
structure J 2 = −I such that: g(x, y) = ω(x,Jy). All problems that we would like
to discuss appear already in quantum systems with finite-dimensional Hilbert space,
implying a finite-dimensional manifold M. Therefore we shall assume that M is
finite-dimensional.

Formulation of the classical mechanics of isolated conservative systems using
(M,ω,H) is standard [15, 16]. The formulation of quantum mechanics in terms
of (M,ω,g,H) is perhaps less well known, but shall not be presented here in any
detail since there exist excellent reviews [4, 5]. Very briefly, the basic observation
beyond the Hamiltonian formulation of quantum mechanics is that the evolution of a
pure quantum state in a Hilbert space H, as given by the Schrödinger equation, can
be equivalently described by a Hamiltonian dynamical system on an Euclidean mani-
fold M. The manifold is just the Hilbert space considered as a real manifold, with the
symplectic and Riemannian structures given by the real and the imaginary parts of
the Hilbert scalar product. Representing a normalized vector |ψ〉 ∈ H in a basis, one
can introduce the canonical coordinates xj = (c∗

j + cj )/
√

2, yj = i(c∗
j − cj )/

√
2,

j = 1,2 . . .N . Generic point from M will also be denoted by X or Xa , where
a = 1,2 . . .2N is an abstract index. The dimension of the quantum phase space is
2N where N is the complex dimension of the system’s Hilbert space. It should be
stressed, perhaps, that the canonical coordinates xj , yj have nothing to do with the
canonical coordinates of the classical system that after quantization gives the con-
sidered quantum system with the Hilbert space H. The Hamilton’s function H(X)

is given by the quantum expectation of the Hamiltonian Ĥ in the state |ψX〉 ↔ X:
H(X) = 〈ψX|Ĥ |ψX〉. The Schrödinger dynamical law is that of Hamiltonian me-
chanics

Ẋa = ωab∇bH. (1)

In the Hilbert space QM and in the Hamiltonian classical mechanics the dynam-
ical variables can be introduced formally as generators of the isomorphisms of the
respective relevant structures. In QM these are self-adjoined operators generating
unitary transformations that preserve the Hilbert scalar product. In the Hamiltonian
formulation of QM the Hilbert scalar product generates the symplectic and Rieman-
nian structure. The symplectic structure is preserved by Hamiltonian vector fields
of arbitrary smooth functions, but the metric is preserved only by the Killing vector
fields, i.e., by the Hamiltonian vector fields generated by quadratic functions of the
canonical variables. In the Hamiltonian formulation of classical systems, the metric
of the phase space has no physical relevance and thus all smooth functions gener-
ate isomorphic i.e., canonical transformations, and are interpreted as dynamical vari-
ables. In the Hamiltonian formulation of QM, only the quadratic functions generate
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the automorphisms, and only such functions are related to dynamical variables or ob-
servables. In fact, all observables are represented by quadratic functions A(X) on M
and are the quantum mechanical expectations of the corresponding quantum observ-
ables A(X) = 〈ψX|Â|ψX〉. In particular, the canonical coordinates of the quantum
phase space do not have physical interpretation. It is important to observe that the
Poisson bracket between two quadratic functions is also a quadratic function and sat-
isfies

{
A1(X),A2(X)

} = 1
i�

〈
ψX

∣∣[Â1, Â2
]∣∣ψX

〉
. (2)

If one considers the Hilbert space vectors of arbitrary norm, then two vectors |ψ1〉
and |ψ2〉 from H are representing the same physical pure state if there is a com-
plex scalar a 	= 0 such that |ψ2〉 = a|ψ1〉. The set of equivalence classes defines the
complex projective space CP N−1 ≡ (CN − {0})/∼. The pure state space CP N−1 is
isomorphic with the real manifold S2N−1/S1 which has compatible complex, Rie-
mannian and symplectic structures. These structures are used to formulate geometric
Hamiltonian framework of QM based on the pure state space CP N−1. Almost all
formulas that we shall present for the Hamiltonian formulation based on H are of
the same form in the formulation based on CP N−1, with the corresponding under-
standing of the symbols representing the phase space M, the symplectic structure
ω and the Riemannian metric g, and renormalization of the functions representing
observables, i.e., A(X) = 〈ψX|Â|ψX〉/‖ψX‖2. In particular, the transition probabil-
ity |〈ψ1|ψ2〉|2/(‖ψ1‖‖ψ2‖)2 is expressed as cos2 θ(X1,X2) of the geodesic distance
θ(X1,X2) between the points X1,X2 ∈ CP N−1. Also the eigenstates ψa of an ob-
servable Â are represented by the critical points of the Hamiltonian vector field gen-
erated by A(X). In the discussion that follows we shall not need to distinguish explic-
itly between the formulations based on H and the one based on CP N−1. Rare cases
when a statement is applicable only in one of the formulations, with the non-trivial
transcription, will be clearly stated.

The Hamiltonian formulation of QM suggests natural formal generalizations [4].
The most obvious one is to consider a theory where the evolution can be generated by
functions which are not quadratic [4, 17, 18]. This would correspond to a nonlinear
Schrödinger evolution equation. We shall see that such generalizations are dictated
quite naturally in the Hamiltonian framework for a theory of hybrid systems. It has
been argued, using particular generalization of the nonlinear evolution with all other
aspects of QM unaltered, that such nonlinear evolution would enable superluminal
communication between distant systems [19, 20], or violate the second law of ther-
modynamics [21]. However, other aspects of QM could be altered appropriately, and
conveniently using the Hamiltonian framework, as is required in a consistent theory
of hybrid systems [10, 12, 13], so that such objections do not apply. These issues
will be analyzed after a discussion of ensembles of quantum systems and composite
quantum systems in the Hamiltonian framework.
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3 Hamiltonian Ensembles and Quantum Mixtures

3.1 Statistical Ensembles of Quantum Systems

Ensembles of quantum Hamiltonian systems are in general described by probability
distributions ρ(X) on the phase space M. Average value of a quantum observable
A(X) over an ensemble ρ(X) is given by

Ā =
∫
M

ρ(X)A(X)dM, (3)

where dM represents the appropriate volume element on M. This expression can be
interpreted as unconditional expectation of the conditional expectation of Â in pure
states |ψX〉, the later being distributed according to the probability distribution ρ(X).
For a function A(X) = 〈ψX|Â|ψX〉/‖ψX‖2, representing an observable, one has∫

M
ρ(X)A(X)dM = Tr(ρ̂Â), (4)

where the quantum mixed state ρ̂ associated with the probability distribution ρ(X) is
given by

ρ̂ =
∫
M

ρ(X)Π̂(X)dM, (5)

with Π̂(X) = |ψX〉〈ψX|/‖ψX‖2 being the projector corresponding to the pure state
represented by the point X. In general, the state vectors |ψX〉 can have arbitrary norm.

Special cases of the above formula are provided by densities with the support on
a finite set of points from M, giving finite convex combinations of atomic measures

ρ̂ =
M∑
i=1

ρ(Xi)Π̂(Xi), (6)

where M ≥ Rank(ρ̂). Incidentally, this special case of (5) is the most often discussed
in the standard Hilbert space QM.

The densities ρ(X) satisfy Liouville equation on M

∂

∂t
ρ(X; t) = {

H(X),ρ(X; t)}M, (7)

which differs in sign from the evolution equation of functions on M representing
observables.

One observes that all probability densities with the same second moments give
the same values for the expectations (4) of quadratic functions, i.e., quantum ob-
servables. Consequently all such densities generate the same statistical operator ρ̂

via (5). Furthermore, Liouville evolution of all the densities ρ(X; t0), yielding the
same ρ̂(t0), generates the same von Neumann evolution ρ̂(t). Indeed, the evolution
equation satisfied by ρ̂(t), related by (5) to a solution ρ(X; t) of the Liouville equa-
tion, is the von-Neumann equation i� ∂ρ̂/∂t = −[ρ̂, Ĥ ]. This fact is easily obtained
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from the definition (5) and Eq. (7) by using partial integration. Therefore, a quantum
mechanical (mixed) state, described by ρ̂, is identified with the equivalence class
{ρ}ρ̂ of densities with the same second moments and generating the same ρ̂ via (5).
Equivalence of densities with the same second moments is seen as a generalization
of standard quantum mechanical statement about the non-uniqueness of the convex
decomposition of a statistical operator ρ̂.

The most known physical consequence of the equivalence {ρ}ρ̂ is no-signaling by
distant steering (see for example [19] and the references therein). We shall discuss
some related issues later in the context of hybrid quantum-classical systems.

A pure state ρ̂0 = |ψX0〉〈ψX0 |, where X0 ∈ S2N−1/S1, is uniquely represented
by the corresponding delta function δ(X − X0) on S2N−1/S1. The equivalence class
{ρ}ρ̂0 indeed contains a single element, i.e., δ(X −X0), as can be seen by the follow-
ing reasoning. Let ρ0(X) belong to {ρ}ρ̂0 , i.e.,

ρ̂0 =
∫
M

ρ0(X)Π̂(X)dM. (8)

Choose an arbitrary state |ψ⊥〉 orthogonal to the state |ψX0〉. Now, one has

0 = 〈
ψ⊥∣∣ρ̂0

∣∣ψ⊥〉 = ∫
M

ρ0(X)
∣∣〈ψX

∣∣ ψ⊥〉∣∣2
dM. (9)

This means that ρ0(X) is nonzero only when 〈ψX|ψ⊥〉 = 0. Because of the arbi-
trariness of |ψ⊥〉, the density ρ0(X) is nonzero only at X = X0 leading to ρ0(X) =
δ(X − X0). Thus, a pure state is uniquely represented by single δ-density, i.e., by a
single trivial convex combination on S2N−1/S1.

Each equivalence class {ρ}ρ̂ of densities over M = R
2N based on the Hilbert

space H, corresponding to a mixed state ρ̂, contains a distribution of a unique form
and with fixed normalized second moments. Indeed, consider a statistical operator ρ̂

which matrix elements in the abstract (arbitrary) basis satisfy

Re(ρ̂ij ) =
∫
M

ρ(X)
xixj + yiyj

‖X‖2 dM,

Im(ρ̂ij ) =
∫
M

ρ(X)
yixj − xiyj

‖X‖2 dM,

(10)

where (xi, yi) (i, j = 1,2 . . .N ) i.e., Xa (a = 1,2 . . .2N ) are the components of the
Hilbert space vector in the same abstract basis, while ‖X‖2 = 2‖ψX‖2 holds. All den-
sities from the equivalence class {ρ}ρ̂ give the same ρ̂ij by definition. The form of ρ̂ij

implies that the expectation of any normalized quadratic function AabX
aXb/‖X‖2

(a, b = 1,2 . . .2N) on M = R
2N is computable once one finds the normalized co-

variance matrix of the density ρ

σab
ρ =

∫
M

ρ(X)
XaXb

‖X‖2 dM ≡ σab
ρ̂

, (11)

which is the same for any density from the equivalence class {ρ}ρ̂ , and is thus equiva-
lently denoted by σab

ρ̂
. Next we observe that the following distribution, fixed by (11),
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over M = R
2N

ρ̃(X) = ‖X‖2

(2π)N(detσρ̂)1/2 exp
[
−1

2
(
σ−1

ρ̂

)
ab

XaXb

]
, (12)

is a member of the equivalence class {ρ}ρ̂ because it reproduces the matrix elements
(10). Therefore, the only distributions on M = R

2N that are needed to represent all
possible mixed quantum states are of the form (12).

Each equivalence class corresponding to a mixed state could also be represented
by other types of distributions. In fact, the distribution given by finite discrete convex
combination of delta functions

ρ(X) =
N∑

i=1
ρiδ(X − Xi), (13)

where ρi are the eigenvalues and Xi correspond to the eigenvectors of the density
matrix ρ̂, also satisfies (5).

Assume now that the state vectors are normalized, as is customary in the Hamil-
tonian form of QM. One should be careful with the interpretation of distributions
ρ(X) satisfying (5), the function 〈ψX|ρ̂|ψX〉 and the quantum mechanical expression
|〈ψ |ψ ′〉|2. A statistical operator ρ̂ is Hermitian and therefore can be formally consid-
ered as an observable. The later are represented by the general rule as 〈ψX|ρ̂|ψX〉,
which we shall denote by 〈ρ̂〉(X) in order to distinguish it from the function ρ(X)

defined as to satisfy (5). The relation between the two functions is given by

〈ρ̂〉(X) =
∫
M

ρ
(
X′)|〈ψX′ |ψX〉|2dM ′. (14)

In case of the pure state ensemble |ψX0〉〈ψX0 | uniquely represented by the density
δ(X − X0), the function 〈ρ̂〉(X) is everywhere nonzero except at X corresponding
to vectors orthogonal to |ψX0〉. Note that the function 〈ρ̂〉(X) cannot be considered
as a density on M, representing the quantum ensemble ρ̂, because when substituted
in (5) it does not give the correct result (4), Tr(ρ̂Â). In the case M = CP N−1, the
substitution gives [22]∫

M
〈ρ̂〉(X)A(X)dM = VN

N(N + 1)

(
Tr(ρ̂Â) + Tr(Â)

)
, (15)

where VN is the volume of CP N−1. However, modified function P(X) = (〈ρ̂〉(X) −
1/(N + 1))N(N + 1)/VN , gives the correct averages [22]. Nevertheless, P(X) is
not non-negative for all X even though 〈ρ̂〉(X) is. Therefore, P(X) can be used to
compute the quantum expectation Tr(ρ̂Â), but it cannot be considered as a probability
density on CP N−1.

Fallacy of the interpretation of the function 〈ρ̂〉(X) as a probability distribution
for given ρ̂ is best seen in the case of a pure state ρ̂. Let us be permitted to stress the
basic postulate of quantum mechanics concerning the interpretation of the expression
|〈ψ |ψ ′〉|2. This gives a probability that a system prepared in the state |ψ〉 with cer-
tainty, will transform during measurement of an observable with an eigenvector |ψ ′〉
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precisely into the state |ψ ′〉. It is a probability distribution over the eigenbasis of the
measured observable and is not a probability distribution over the space of all pure
states. Therefore a pure state |ψX0〉 is not represented by function |〈ψX|ψX0〉|2, but
by the probability distribution δ(X −X0). Similarly the ensemble ρ̂ is represented by
some ρ(X) satisfying (5) and not by 〈ρ̂〉(X) or P(X).

For further comparison with the Hilbert space formulation one should observe
that the set of combinations of delta functions centered at discrete set of points is
dense in the space of functionals on the space of continuous functions on M. In
other words, any density ρ(X) can be arbitrary well approximated by a finite discrete
convex combination of δ-functions

ρ(X) =
∫
M

ρ
(
X′)δ(X − X′)dM ′

�

∑
i

ρXi
δ(X − Xi). (16)

Approximation of ρ(X) by finite discrete convex combination of delta functions cor-
responds to a well known ensemble decomposition {ρXi

, |ψXi
〉} of a density matrix in

terms of finite convex combination of pure state projectors. We will call such density
discrete. ρ(X) and ρ′(X) from the same equivalence class {ρ}ρ̂ correspond to equiv-
alent ensemble decompositions {ρXi

, |ψXi
〉} and {ρ′

X′
i

, |ψX′
i
〉} of the density matrix ρ̂.

They are related by the Hughston-Jozsa-Wooters formula [14]

(ρXi
)1/2|ψXi

〉 =
∑
j

uij

(
ρ′

X′
j

)1/2|ψX′
j
〉, (17)

where [uij ] is unitary matrix of appropriate (not necessary equal) dimensions.
The preceding analysis implies the following generalization of (17) to the case of

arbitrary equivalent continuous densities ρ(X) and ρ′(X) from the same equivalence
class {ρ}ρ̂

(
ρ(X)

)1/2|ψX〉 =
∫
M

u
(
X|X′) (

ρ′(X′))1/2|ψX′ 〉dM ′, (18)

where u(X|X′) is a complex integral kernel satisfying∫
M

u
(
X|X′)u∗(X|X′′)dM = δ

(
X′ − X′′), (19)

and ∗ denotes complex conjugation.

3.2 Hamiltonian Dynamics of Densities

Since this paper is about applications of the theory of Hamiltonian dynamical sys-
tems in QM and in hybrid theories, let us mention in passing that von-Neumann and
Liouville equations themselves can be presented in the form of appropriate Hamil-
tonian dynamical systems [16]. Considerations of these issues reveal from another
perspective the importance and the consequences of the QM restriction on the class
of functions generating the structure isomorphisms.
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The Lie algebra g of the infinite Lie group G of canonical transformations on
some finite dimensional symplectic phase space M consists of the Hamiltonian vec-
tor fields on M, and is isomorphic with the Lie algebra of smooth functions C∞(M).
The dual of C∞(M) is the coadjoint algebra g∗ isomorphic with the space of den-
sities ρ ∈ S(M). The paring is given by

∫
M ρ(X)H(X)dM . In order to present the

Liouville equation ρ̇ = −{ρ,H }M as a Hamiltonian dynamical system one follows
the standard construction of the symplectic structure on a coadjoint orbit Oρ of the
Lie group G [16]. First, a Poisson structure is defined on S as

{
H1(ρ),H2(ρ)

}
S

=
∫
M

ρ

{
δH1

δρ
,
δH2

δρ

}
M

dM =
∫
M

ρ{H1,H2}MdM, (20)

where Hi (ρ) = ∫
M ρHidM . Hamiltonian vector fields on S are given by XH(ρ) =

−{ρ, δH
δρ

}S . The Poisson structure (20) on S is degenerate, but its restriction on an
orbit of G in S

Oρ = {ρ ◦ λ |λ ∈ G} (21)

gives the desired symplectic structure on Oρ .
The Liouville equation appears as a Hamiltonian system on Oρ with the corre-

sponding Hamiltonian H(ρ) = ∫
M ρHdM and the Hamiltonian equations

ρ̇ = −{ρ,H}Oρ = {H,ρ}M. (22)

The Hamiltonian system (22) is linear and therefore integrable.
Consider now the above formalism appropriate for QM, where the preservation of

the Riemannian structure of M introduces the corresponding restrictions on G, g and
g∗. The structure isomorphism group Gq is the finite subgroup of canonical transfor-
mations generated by quadratic functions on M. This is isomorphic to the unitary
group U(N). The group Lie algebra gq is the Lie algebra of quadratic functions, and
the coadjoint algebra g∗

q is formed by the equivalence classes ρρ̂ . The coadjoint orbit
through ρ̂ is isomorphic with finite-dimensional manifold

U(N)/U(k1) ⊗ U(k2) ⊗ · · · ⊗ U(km), k1 + k2 + · · · + km = N, (23)

where k1, k2, . . . , km are dimensions of the eigenspaces of ρ̂. The orbit Oρ̂ , given by
(23), is a finite-dimensional symplectic manifold, whose dimension depends on the
spectrum of ρ̂. The symplectic structure on Oρ̂ may be introduced as in the general
case, and the von Neumann equation for ρ̂ is seen as the Hamilton dynamical equation
(22).

3.3 Mixtures as States of Subsystems

Consider a quantum system composed of two subsystems, with Hilbert spaces H1 and
H2 of the components and H12 = H1 ⊗ H2 of the total system. Partial trace Tr2(ρ̂)

of a pure ρ̂ = |ψ12〉〈ψ12| over the space H2 gives a density operator ρ̂1 on H1. The
operator ρ̂1 is a projector corresponding to a pure state |ψ1〉 ∈ H1 if an only if the pure
state of the total system ρ̂ = |ψ12〉〈ψ12| is separable, i.e., of the form |ψ1〉 ⊗ |ψ2〉 for
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some |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. In this case ρ̂1 = |ψ1〉〈ψ1| does not depend on the
particular |ψ2〉 in |ψ12〉〈ψ12|. In the case of a more general non-entangled state, i.e.,
for a convex mixture of separable states of the form ρ̂ = ∑

i pi ρ̂
i
1 ⊗ ρ̂i

2, the partial
trace Tr2(ρ̂) gives a convex mixture of the first subsystem states ρ̂i

1 with the same
coefficients pi .

We now consider statistical ensembles in the Hamiltonian formulation of compos-
ite systems. The phase space M12 of a bipartite quantum system with the Hilbert
space H12 is constructed directly from H12 (or PH12) without any reference to
the components H1 and H2 with the corresponding phase spaces M1 and M2. Of
course, the dimensionality of M12 is much larger than that of M1 × M2. In fact,
M1 ×M2 is an embedded submanifold of M12. In the case M1 = CP N−1,M2 =
CP M−1 and M12 = CP MN−1 the embedding CP N−1 × CP M−1 → CP MN−1 is
known as Segre embedding [5, 23]. We shall denoted the coordinates {Xa} adapted
to the Segre embedding by (X1,X2,X3) where X1 and X2 are the sets of coordinates
on M1 ×M2. The set of coordinates denoted by X3 assume zero values iff the state
is separable.

A statistical ensemble of bipartite systems is described by a probability density
ρ(X) ∈ S(M12). A density on M12 gives a statistical operator on H12 according to
the general prescription:

ρ̂12 =
∫
M12

ρ12(X12) Π̂(X12) dM12. (24)

Mixed state ρ̂12 is separable if there exists a convex mixture representation (24) of
ρ̂12 in terms of separable pure states. If each of the equivalent convex representations
contains at least one entangled pure state then ρ̂12 is entangled. Therefore, it makes
sense to call a density ρ12 separable if ρ12(X1,X2,X3) is zero when X3 	= 0, that
is when it’s support is contained in M1 × M2. Such densities will be denoted by
ρ(X1,X2). If any of the densities in the equivalence class {ρ12}ρ̂12 is separable then
ρ̂12 is by definition separable. On the other hand, if ρ̂12 is entangled then none of the
densities in the equivalence class {ρ12}ρ̂12 is separable, and each must have an en-
tangled state in its support. However, notice that some of the densities from a single
equivalence class, corresponding to a separable mixed state ρ̂12, might be separable
and some might not. In one word, it is misleading to talk about entangled densities,
but the notion of a separable density is perfectly consistent with the standard termi-
nology.

Let us demonstrate the standard relations between the state of a compound system
and the state of the first subsystem using the representation (24). We perform a partial
trace over the second subsystem

ρ̂1 = Tr2(ρ̂12) =
∫
M12

ρ12(X12)Tr2
(
Π̂(X12)

)
dM12. (25)

Let D1 denotes the manifold of the density matrices σ̂1 of the first subsystem and
let δ

(1)
σ and dM

(1)
σ be delta function and Lebesgue measure on D1. By inserting the
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identity1 ∫
D1

δ(1)
σ

(
σ̂1 − Tr2

(
Π̂(X12)

))
dM(1)

σ = 1, (26)

into (25) we express ρ̂1 as a convex combination of density matrices of the first sub-
system

ρ̂1 =
∫
D1

ρ1(σ̂1)σ̂1dM(1)
σ , (27)

where the distribution ρ1 over D1 is normalized to unity and obeys

ρ1(σ̂1) =
∫
M12

ρ12(X12)δ
(1)
σ

(
σ̂1 − Tr2

(
Π̂(X12)

))
dM12. (28)

In the case of a pure state ρ̂12 = Π̂(X̄12) which is represented by the delta density
ρ12(X12) = δ(X12 − X̄12), one obtains

ρ1(σ̂1) = δ(1)
σ

(
σ̂1 − Tr2(ρ̂12)

)
, (29)

which is expected.
The result (28) can be further analyzed. Let Π̂(X12) = |ψX12〉〈ψX12 | in terms of

normalized state vectors. Using the Schmidt decomposition |ψX12〉 =∑R12
i=1

√
pi |φ(1)

i 〉 ⊗ |χ(2)
i 〉, with pi > 0, one obtains mixed state Tr2(Π̂(X12)) =∑R12

i=1 pi |φ(1)
i 〉〈φ(1)

i |, where R12 = Rank(Tr2(Π̂(X12))). Any other state |ψXλ
12

〉 such

that Tr2(Π̂(Xλ
12)) = Tr2(Π̂(X12)) has the form |ψXλ

12
〉 = ∑R12

i=1
√

pi |φ(1)
i 〉 ⊗ |χ(2)

i,λ 〉,
and can be obtained as a result of unitary transformation acting non-trivially on the
second subsystem |ψXλ

12
〉 = Ûλ|ψX12〉. Such transformation induces the correspond-

ing action Xλ
12 = UλX12 on M12 and yields the following equivalent form of (28)

ρ1(σ̂1) =
∫

Λ(σ̂1)
ρ12(UλX̃12)dλ, (30)

where λ parameterizes the space Λ(σ̂1) ∼= U(M)/U(M −Rank(σ̂1)) and X̃12 ∈ M12
is an arbitrary state satisfying Tr2(Π̂(X̃12)) = σ̂1.

We now want to consider a possible analog of the partial trace formulated en-
tirely in terms of the Hamiltonian densities and marginal distributions. We shall first
consider the cases when the total quantum state ρ̂12 is separable pure or mixed. Gen-
eral ensembles are represented by densities on M12 denoted by ρ12(X). In the co-
ordinates X1,X2,X3 adapted to the Segre embedding the densities are written as
ρ12(X) = ρ12(X1,X2,X3). In order to treat the separable states it is enough to con-
sider probability densities with the support on M1 × M2 i.e., densities dependent
only on X1,X2. This is obvious if the state is pure, and if the state is mixed then there

1We are grateful to the referee for this observation and its consequences.
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is at least one convex representation of it with the density having the stated prop-
erty. Ensemble of pure states X0, corresponding to the pure ρ̂12 = Π̂(X0), is repre-
sented by the delta function centered at X0. In the coordinates X1,X2,X3 adapted
to the Segre embedding, the ensemble of pure separable states X0 is represented by
ρ12(X1,X2) = δ(X1 − X01)δ(X2 − X02). If the state is mixed separable then it can
be represented by a density of the form ρ(X) = ρ(X1,X2). Integration over X2 in
the pure separable case gives∫

M2

δ(X1 − X01)δ(X2 − X02)dM2 = δ(X1 − X01),

separable pure ρ̂12 = Π̂(X0). (31)

The result is a delta density on M1 which reproduces, via the general formula (5),
the reduced matrix Tr2(Π̂(X0)). Similarly, in the mixed separable case the integration
over X2 gives a density on M1

ρ1(X1) =
∫
M2

ρ(X1,X2)dM2, separable mixed ρ̂12, (32)

which reproduces Tr2(ρ̂12) if ρ(X1,X2) reproduces ρ̂12. We see that the analog of
the partial trace in the case of separable state, pure or mixed, is provided by taking
the marginal distribution of the appropriate distribution on the total phase space.

However, the analogy does not work for entangled states. In fact, consider a pure
entangled state, represented by the delta density ρ12(X;X0) = δ(X1 − X01)δ(X2 −
X02)δ(X3 − X03). Integration over X2,X3 gives, up to a function dependent on X0,
the delta function of X1 − X01

ρ1(X1;X0) =
∫

X2,X3

ρ12(X1,X2,X3;X0)dX2dX3 = δ(X1 − X01)g(X0)

entangled pure ρ̂12 = Π̂(X0), (33)

which is proportional to the density that represents a pure state in H1, and not the
reduced mixed state.

The general conclusion of this analysis is that if the state of the total system is sep-
arable then the marginal distribution of a specific probability distribution reproducing
the state of the total system, reproduces the reduced density matrix of the subsystem.
Evolution of such reduced density will preserve this property if the Hamiltonian does
not entangle the two subsystems. In this case, arbitrary transformations or approxima-
tions of the second subsystem density do not effect the evolution of the first subsys-
tem. The case of separable bipartite states is specially important for hybrid systems,
when one of the parts is treated as a classical system, since in the Hamiltonian hybrid
theory, presented in the next Section, there can be no entanglement between the clas-
sical and the quantum parts. On the other hand, if the initial total state of a bipartite
quantum system is entangled, or becomes entangled due to the evolution, then the
states of the subsystems are not given simply in terms of the marginal distributions.
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4 Ensembles of Hybrid Systems

There is no unique generally accepted theory of interaction between micro and macro
degrees of freedom, where the former are described by quantum and the later by clas-
sical theory. The reason is primarily because each of the suggested theories has some
unexpected or controversial features (see [10] for an informative review). Partial se-
lection of hybrid theories can be found in [24–29]. Some of the suggested hybrid
theories are mathematically inconsistent, and “no go” type theorems have been for-
mulated [30], suggesting that no consistent hybrid theory can be formulated. Nev-
ertheless, mathematically consistent but inequivalent hybrid theories exist [10, 28,
29]. Even the proper conceptual status and putative domains of application of hybrid
theories need not be unique and are not generally agreed upon. Hybrid theories that
attempt to describe the quantum measurement process or serve as approximate but
consistent models in quantum chemistry or model the interaction between classical
gravity and quantized matter might be fundamentally different or differ only in some
additional details. Usually, it is not claimed that macroscopic systems are composed
of something other that microscopic parts well described by quantum theory. How-
ever it is legitimate to assume that dynamics of at least some of the observable degrees
of freedom of a macroscopic system are correctly described by classical mechanics,
and that the classical mechanical description need not be reduced or derived from
quantum description of all the microscopic components. Neither quantum nor classi-
cal theory is designed to describe the dynamics of systems consisting of micro and
macro subparts, as separately described by the quantum and the classical mechanics
respectively.

The Hamiltonian hybrid theory, as formulated and discussed for example in [10–
13, 31], has many of the properties commonly expected of a good hybrid theory. In
fact, the dynamical formulas of the Hamiltonian theory are equivalent to the well
known mean field approximation, the main novelty being that the theory is formu-
lated entirely in the framework of the theory of Hamiltonian dynamical systems. In
particular, this demonstrates that the theory is mathematically consistent. However,
the theory also has some controversial features concerning the class of mathemati-
cal objects that should be interpreted as physical variables and the most general type
of states of the hybrid system. In what follows we shall first briefly recapitulate the
Hamiltonian formulation of the hybrid systems and present the dynamical laws for
pure states and for ensembles of hybrid systems. Unlike the purely quantum case,
the dynamics of hybrids in pure states is nonlinear and the dynamics of densities in-
volves the most general class of statistical ensembles. Therefore, one needs to discuss
the possibility of superluminal communication between hybrid systems.

Hamiltonian theory of hybrid systems can be developed starting from the Hamil-
tonian formulation of a composite quantum system and imposing a constraint that
one of the components is behaving as a classical system [12]. The result, in the
macro-limit imposed on the constrained subsystem, turns out to be equivalent to a
Cartesian product of two Hamiltonian systems as in [10]. One of these Hamiltonian
systems corresponds to the quantum and one to the classical subsystem of the hybrid.
However, the interaction between the two subsystems has crucial influence on their
properties.
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The space of pure states of the hybrid system M is considered as a Cartesian
product M = Mc × Mq of the classical subsystem phase space Mc and of the
quantum subsystem phase space Mq . Local coordinates on the product are denoted
{p,q, x, y}, where (p, q) ∈Mc will be called the classical degrees of freedom (CDF)
and (x, y) ∈ Mq will be called the quantum degrees of freedom (QDF). The con-
straint that CDF behave as a classical system implies that there is no entanglement
between QDF and CDF, but no restriction on the entanglement in QDF is imposed.
The evolution equations of the hybrid system are of the Hamiltonian form with the
Hamilton’s function comprised of three terms

Ht(p,q, x, y) = Hc(p,q) + Hq(x, y) + Vint (p, q, x, y), (34)

where Hc is the Hamilton’s function of the classical subsystem, Hq(x, y) =
〈ψx,y |Ĥq |ψx,y〉 is the Hamilton’s function of the quantum subsystem and Vint (p, q,

x, y) = 〈ψx,y |V̂int (p, q)|ψx,y〉 describes the interaction between the subsystems,
where V̂int (p, q) is an operator in the Hilbert space of the quantum subsystem which
depends on the classical coordinates (p, q). The state vectors |ψx,y〉 are normalized
by assumption. The Poisson bracket on M of arbitrary functions of the local coordi-
nates (p, q, x, y) is defined as

{F1,F2}M =
nc∑

i=1

(
∂F1

∂qi

∂F2

∂pi

− ∂F2

∂qi

∂F1

∂pi

)
+

nq∑
j=1

(
∂F1

∂xj

∂F2

∂yj

− ∂F2

∂xj

∂F1

∂yj

)
, (35)

where nc and nq are numbers of CDF and QDF respectively. Of course, if the Hilbert
space of the quantum part is of infinite dimension then nq is infinite. Thus, the Hamil-
tonian form of the hybrid dynamics on M as the phase space reads

q̇ = {q,Ht }M, ṗ = {p,Ht }M, (36)

ẋ = {x,Ht }M, ẏ = {y,Ht }M, (37)

where Ht is given by (34).
In particular, the evolution of QDF can be stated in the form of the Schrödinger

equation

i� ∂t |ψx,y〉 = Ĥqc(p, q)|ψx,y〉, (38)

with the Hamiltonian operator Ĥqc(p, q) = 〈p,q|Ĥ |p,q〉 acting on the Hilbert space
of quantum subsystem and depending parametrically on the CDF (p, q) through the
coherent states |p,q〉. The evolution of the state vectors (38) is norm-preserving, but
nonlinear.

It is worth noticing that the state of QDF in a hybrid system might have nonzero
entanglement. We tested this using as an example a pair of 1/2-spins in interaction
with a 2D classical oscillator. The interaction between QDF and CDF couples the
classical coordinates with the spins components σ

1,2
x,y,z,. It turns out that the concur-

rence of the pure state of the two spins displays nontrivial dynamics and is often
nonzero.
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Thus, QDF of the hybrid model display some typically quantum properties and
evolve nonlinearly in the same time. Furthermore, the Poisson bracket (35) of two
functions F1(p, q, x, y) and F2(p, q, x, y) which are both quadratic in QDF and de-
pend on CDF, is not a function quadratic in the QDF. However, the proper interpreta-
tion of this fact is nontrivial. Let us first reexamine the situation in the purely quantum
case with linear evolution and normalized state vectors. There, a quadratic function
A(x,y) = 〈ψx,y |Â|ψx,y〉 was considered as mathematical representative of a dynam-
ical variable, and the set of quadratic functions is invariant under the evolution. Thus,
in the purely quantum case, the evolution of a quadratic function can be interpreted as
the Heisenberg picture of the evolution of a dynamical variable or as the Schrödinger
picture of the expectation of the variable in an evolving state. On the other hand, in
the Hamiltonian hybrid theory one can stick to the original interpretation of A(x,y)

as the expectation of the observable Â in the state |ψx,y〉. One could then argue that
the Heisenberg picture of the hybrid evolution is not defined, and the non-quadratic
expression A(x,y; t) = 〈ψx,y(t)|Â|ψx,y(t)〉 should be interpreted as the expectation
value of the standard Schrödinger quantum variable in the state |ψx,y(t)〉 at time t .
Nevertheless, the nonlinear evolution of the QDF shows that QDF of a hybrid system
do not have all the properties of a purely quantum system. Hybrid systems appear
to be qualitatively different from a simple union of classical and quantum systems
[10, 12, 13, 31]. This is further illustrated by studying the evolution of ensembles of
hybrid systems.

The most general ensemble of hybrid systems is represented by some probability
density ρ(p,q, x, y). As pointed out in Sect. 3.1, the function ρ should not be con-
sidered as an expectation 〈ρ̂(q,p)〉 of some density operator ρ̂(q,p) parametrically
dependent on (q,p). The densities evolve according to the Liouville equation with a
solution ρ(p,q, x, y; t). As in Sect. 3.2, this Liouville equation for the hybrid system
is itself a Hamiltonian dynamical system. The density ρ(p,q, x, y; t) for any fixed t

generates a unique positive operator valued function (POVF):

ρ̂(p, q; t) =
∫
Mq

ρ(p, q, x, y; t)Π̂(x, y)dMq, (39)

which can be called the hybrid statistical operator. The unconditional mixed state
of the quantum subsystem of the hybrid in the state ρ(p,q, x, y; t) is also uniquely
obtained as

ρ̂(t) =
∫
M

ρ(p,q, x, y; t)Π̂(x, y)dM ≡
∫
Mq

ρq(x, y; t)Π̂(x, y)dMq, (40)

where the marginal distribution ρq(x, y; t)

ρq(x, y; t) =
∫
Mc

ρ(p, q, x, y; t)dMc (41)

can be considered as the probability density on Mq associated with the state ρ̂(t) of
QDF. Due to the properties of the Liouville evolution of ρ(p,q, x, y; t), the formula
(40) defines for all t a continuous one-parameter family of statistical operators on H.
Like in the purely quantum case, ρ̂(t) and ρ(p,q, x, y; t) give the same expectation
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Tr(ρ̂(t)Â) = ∫
ρA(x, y)dM of quantum observables Â represented by A(x,y). All

that was said about many-to-one relation between ρ and ρ̂ in the quantum case applies
also in the hybrid case.

However, contrary to the purely quantum case, different ρ(p,q, x, y; t0) that give
the same ρ̂(t0) generate different evolution of ρ̂(p, q; t) (or ρ̂(t)) and thus must be
considered as physically different (for a related analysis please see [30, 31]). Indeed,
the evolution equation satisfied by ρ̂(p, q; t) [13] is

∂ρ̂(p, q; t)
∂t

= 1
i�

[
Ĥq + V̂int (p, q), ρ̂(p, q; t)] + {

Hc(p,q), ρ̂(p, q; t)}
p,q

+
∫
Mq

{
Vint (p, q, x, y), ρ(p, q, x, y; t)}

p,q
Π̂(x, y)dMq. (42)

The dynamical equation for ρ̂(t) is

dρ̂(t)

dt
= 1

i�

[
Ĥq, ρ̂(t)

] + 1
i�

∫
Mc

[
V̂int (p, q), ρ̂(p, q; t)]dMc. (43)

The first term of (43) generates the unitary part of the evolution and the second term
does not preserve the norm of ρ̂ and is responsible for non-unitary effects. Notice
that the evolution of ρ̂(p, q; t) (ρ̂(t)) cannot be expressed only in terms of ρ̂(p, q; t)
(ρ̂(t)), but irreducibly involves the probability density ρ(p,q, x, y; t). At this point
we might remark that the von Neumann entropy of SvN = Tr(ρ̂ ln ρ̂) of (40) can in-
crease and decrease during the evolution (43) starting from a general initial ensemble.
However, this is not an instance of the Peres objection [21] against nonlinear evolu-
tion of a quantum system since the QDF form an open dynamical system. On the
other hand the Gibbs entropy S(ρ) = ∫

M ρ lnρ dM is conserved by the Liouville
evolution of the total density.

The evolution equation for ρ̂(t) is reduced to (36) and (37) if the initial
ρ(p,q, x, y; t0) is a pure state in M. This is intuitively clear since there can be
no entanglement between QDF and CDF. Formally, pure initial state is represented
as a delta function on the total phase space and the Liouville equation is reduced to
the Hamilton equations for pure states. If however, the initial density is of the form
δ(x −x0)δ(y −y0)ρ(q,p) the pure state ρ̂(t0) = |ψ(t0)〉〈ψ(t0)| might evolve accord-
ing to (43) into a non-pure mixture. Quantum-classical interaction with the classical
part in the initially mixed state can transform an initially pure state of the quantum
part into a mixed state. This is an important observation.

The evolution of QDF of a hybrid system is fundamentally different from the linear
evolution of a quantum subsystem of a quantum system. The reason for this qualita-
tive difference is that dynamical influences of many degrees of freedom correspond-
ing to the entangled states and to the non-classical states of the classical subsystem
are completely neglected in the derivation of the hybrid dynamics.

The characteristic main features of the QDF evolution in the hybrid case are ex-
pressed by the nonlinearity of the pure state evolution, or by the dynamically induced
differences of ρ̂(t) with different convex mixture representations. It is well known
[19, 20], that the linearity of the Schrödinger equation and the equivalence of different
convex mixtures, are both necessary in order to prevent superluminal communication
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in ordinary quantum mechanics of bipartite systems. If either of the two properties is
violated, without further modification of the quantum formalism, superluminal com-
munication between entangled parts of a bipartite system is possible. The nonlinear
pure state evolution and the evolution dependence on the initially equivalent different
ensembles appear quite naturally in the Hamiltonian description of hybrid systems,
and in the same time the QDF of the hybrid might be in an entangled state. Therefore,
superluminal communication can be avoided only by some further modification of the
hybrid theory. It has been argued that the direct product might not be the natural type
of coupling between systems with nonlinear evolution [19], and that nonlinear evolu-
tion might suggest non-standard computation of correlations [32]. Alternatively, one
might consider the model of hybrid systems presented here as insufficient to describe
fully the true features of coupled real quantum and macroscopic classical systems.
One might resort to ad hoc modifications of the hybrid evolution by introducing dis-
sipation and stochastic terms [33, 34] or one might explore the possibilities opened
up by replacing a simple classical system by truly complex classical systems with
many degrees of freedom [10, 34].

Finally, we would like to stress that the presented theory of quantum-classical in-
teraction does not provide a description of the quantum measurement process (for a
discussion of this opinion see [35]) if the total system is initially in a pure state. The
Hamiltonian system (36) and (37) with, for example Hq(x, y) = 0 and Hc(p,q) = 0,
but with a nonzero interaction, for example Hint (p, q, x, y) = cx2p, where c is a
coupling constant, can describe “classical measurement” of a quantity A(x) = x2 by
the meter given by the variable conjugate to p, that is by q . In fact q(t) and the initial
x0 get correlated as q(t) = cx2

0 t and thus reading of q(t) at some t is a measurement
of x2

0 . However, the result of such “classical measurement”, i.e., A(x,y), is the ex-
pectation of the observable Â, and not one of its eigenvalues, as it should be in ideal
quantum measurement on a single system. Only if the initial state of the QDF is an
eigenstate of Â with eigenvalue a1, the quantum-classical interaction can give the
eigenvalue a1. An arbitrary initial state of the QDF, for example a superposition of a1
and a2 eigenstates would lead to q(t) corresponding to the average of the eigenvalues.
In conclusion, the proper quantum measurement process seems to involve dynamical
entanglement between the quantum system and the apparatus, which, once entangled
with the system, must be considered in some sense complex and classical. The ini-
tial entanglement is impossible in the present model of quantum-classical interaction,
which treats the macroscopic apparatus as completely described by the classical the-
ory from the beginning. On the other hand, in order to reproduce the results of ideal
quantum measurement by quantum-classical interaction one could contemplate the
hybrid systems as effectively dissipative, supplementing the Hamiltonian model with
the attractors indicating the eigenvalues of the quantum observable.

5 Summary

We have explored relations between properties of quantum mixed states as repre-
sented by statistical operators or by density distributions on the phase space in the
Hamiltonian formulation of quantum mechanics and hybrid systems. Some conse-
quences of the fact that in general many density functions correspond to a single
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statistical operator are discussed. Liouville and von Neumann evolution equations
are seen as Hamiltonian dynamical systems. This perspective additionally illustrates
the restriction imposed on a general Hamiltonian system if it is to represent a physi-
cal system with quantum mechanical properties. We then explored representation of
the partial trace operation in terms of partial integration over the relevant variables in
the Hamiltonian formulation. Our main objective was to analyze ensembles of hybrid
quantum-classical systems in the Hamiltonian formulation. In this context relation
between the evolution of the quantum degrees of freedom in a pure state and in a
mixed state is explored. The quantum degrees of freedom of a hybrid in a pure state
evolve nonlinearly and if the hybrid is in a mixed state different convex representa-
tions must be considered as nonequivalent because they evolve differently.

Linear evolution of QM, and invariance of the evolution of ρ̂ on different con-
vex representations, need to be abandoned if the effects of interaction with CDF, like
those occurring during measurements, are to be described dynamically. On the other
hand, QM treatment of composite systems is adapted to the linear evolution, and if
the later is replaced by a nonlinear one, the kinematic properties of the composite QM
systems have to be modified as well. The needed modification of the kinematic prop-
erties of quantum composite systems is not supplied by the presented Hamiltonian
hybrid theory. Furthermore, the theory does not describe the measurement process.
It is fair to say that the Hamiltonian hybrid theory, in its presented form, does not
describe the quantum-classical interaction successfully. In fact the QC interaction
is treated in an oversimplified manner, because the macro-object in interaction with
QDF is considered as fully described by a small subset of distinguished degrees of
freedom which are described classically. A large number of degrees of freedom of
the macroscopic object which also interact with the quantum system are completely
neglected. The presented form of the Hamiltonian hybrid theory must be modified in
order to incorporate the effects of these degrees of freedom. It is our belief that such
modifications will result in a hybrid theory which is consistent and whose predictions
are closer to the experimentally observed facts.
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surement with nonlinear and stochastic dynamics. Available as: arXiv:1307.8424
35. Elze, H.-T.: Int. J. Quantum Inf. 10, 1241012 (2012)

http://arxiv.org/abs/arXiv:1307.8424


IOP PUBLISHING PHYSICA SCRIPTA

Phys. Scr. T157 (2013) 014019 (4pp) doi:10.1088/0031-8949/2013/T157/014019

Effects of laser beam diameter on
electromagnetically induced transparency
due to Zeeman coherences in Rb vapor
S N Nikolić, A J Krmpot, N M Lučić, B V Zlatković, M Radonjić
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Abstract
We experimentally studied the effects of laser beam diameter on electromagnetically induced
transparency (EIT) due to Zeeman coherences induced by a laser resonant with the hyperfine
transition Fg = 2 → Fe = 1 of 87Rb in a rubidium buffer gas cell. We use two laser beams of
Gaussian intensity radial profile for laser beam diameters of 6.5 and 1.3 mm, laser intensities
in the range of 0.1–35 mW cm−2 and cell temperatures between 60 and 82 ◦C. The results
show that the amplitude of the normalized EIT resonance has a maximum at a laser intensity
which depends on laser beam diameter and cell temperature. The laser intensity corresponding
to the maximum EIT amplitude is higher for a smaller laser beam and higher cell temperature.
The linewidth of Zeeman EIT resonance varies nearly linearly with laser intensity, almost
independent of cell temperature and laser beam diameter.

PACS numbers: 03.65.Fd, 03.65.Sq

(Some figures may appear in colour only in the online journal)

1. Introduction

Electromagnetically induced transparency (EIT) is a
coherence phenomenon characterized by narrow transmission
resonance of a laser beam through alkali atom vapor [1].
It is essential for fields such as slow and stored light [2],
lasing without inversion [3], frequency mixing [4], etc.
Important devices such as atomic frequency standards [5] and
magnetometers [6] are based on EIT. The optimization of all
these processes and devices is therefore directly conditioned
on achieving better EIT properties.

The average time-of-flight of an atom through the laser
beam limits the EIT amplitudes and linewidths. In order to
prolong interaction time and thus the dark states lifetime, an
inert buffer gas is added to atomic vapor to slow down the
diffusion of the coherently prepared atoms through the laser
beam. The linewidth, governed by the ground state relaxation
and laser power, is reduced by several orders of magnitude
due to the Dicke effect [7]. Linewidths as narrow as 30 Hz are
obtained [8].

Hyperfine EIT resonance is formed as a coherent
superposition of two ground hyperfine levels while EIT
resonance in the Hanle configuration is based on Zeeman
coherences between magnetic sublevels of a given hyperfine
state of the alkali atom electronic ground state. Cell
temperature affects differently hyperfine coherences than
Zeeman coherences. For the former, it is found that linewidths
vary inversely with density [9, 10]. The linewidth is a
linear function of laser intensity and the slope of the linear
curve decreases as the cell temperature increases. At lower
temperatures than in [9, 10], in the range 30–60 ◦C, linewidth
can be independent on cell temperature, as shown in [11]. On
the other hand, EIT resonances due to Zeeman coherence are
nearly independent of cell temperature [10]. In addition, the
behavior of EIT as a function of laser beam diameter [12],
optical depth [13], laser intensity [14, 15] and laser beam
profile [16, 17] was investigated.

In this paper, we analyze the properties of Zeeman EIT
resonances under different parameters in order to obtain
optimum EIT contrast and linewidths, which is essential

0031-8949/13/014019+04$33.00 1 © 2013 The Royal Swedish Academy of Sciences Printed in the UK

http://dx.doi.org/10.1088/0031-8949/2013/T157/014019
mailto:stankon@ipb.ac.rs
http://stacks.iop.org/PhysScr/T157/014019


Phys. Scr. T157 (2013) 014019 S N Nikolić et al

Figure 1. Experimental setup: ECDL—external cavity diode laser;
OI—optical insulator; DDAVLL—Doppler-free dichroic atomic
vapor laser lock; BS—beam splitter; VNDF—variable neutral
density filter; SMF—single-mode fiber; FC—fiber coupler;
P—polarizer; BE—beam expander; PD—large-area photodiode.
Hot air is used for heating the cell.

for application of Zeeman coherences, like efficient slowing
down of light pulses in the cell [18] as well as their storage.
Zeeman coherences were induced by the laser locked to the
Fg = 2 → Fe = 1 transition in 87Rb, contained in the cell with
30 Torr of Ne. We analyze EIT for two laser beam diameters
and a wide range of laser intensity and cell temperature.
Unlike the hyperfine EIT, there are no detailed studies on
the behavior of Zeeman EIT when the main experimental
parameters vary.

2. Experimental setup

The experimental setup is shown in figure 1. The external
cavity diode laser is frequency locked to the hyperfine Fg =

2 → Fe = 1 transition of the D1 line in 87Rb by using
the Doppler-free dichroic atomic vapor laser lock method
[19, 20]. Gaussian distribution of laser intensity radial
dependence is achieved by the single-mode optical fiber.
For adjusting the laser beam diameter, a beam expander is
used. The linear polarization of laser light is ensured by a
high-quality polarizer. Laser beam intensity is controlled by
the variable neutral density filter. A Rb cell with 30 Torr of
Ne as the buffer gas is 8 cm long and 25 mm in diameter.
The Rb vapor is shielded from external magnetic fields by
the triple layer of µ-metal which reduces stray magnetic
fields below 10 nT. In order to obey two-photon detuning
in the Hanle experiment, a long solenoid placed around the
Rb cell produces a controllable longitudinal magnetic field
in the range of ±20 µT. The intensity of transmitted laser
light as a function of applied magnetic field was monitored
by the photodiode and recorded by the storage oscilloscope.
The Rb cell was heated up to a certain temperature by using
circulating hot air around the cell. The advantage of this
system in comparison with electrical heating is avoiding the
stray magnetic field inside the µ-metal that is inevitably
introduced by heating current.

Figure 2. Measured EIT resonances for Gaussian laser beams of
diameter (a) D = 6.5 mm and (b) D = 1.3 mm. Resonances are
measured for an overall laser beam intensity of 3.3 mW cm−2 at
temperatures of 60, 75 and 82 ◦C.

3. Results and discussions

We present measured EIT resonances in the Hanle
configuration obtained with laser beams of Gaussian radial
intensity profile for cell temperatures of 60, 75 and 82 ◦C and
laser beam diameters of 1.3 and 6.5 mm. The intensity range
covered in the experiment was 0.1–10 mW cm−2 for wide
and 0.1–35 mW cm−2 for narrow laser beams. EIT resonances
presented in this paper are obtained after normalizing
measured resonances to the transmission signal away from
Raman resonance. Examples of experimentally obtained EIT
resonances for wide and narrow Gaussian laser beams at three
temperatures are given in figure 2.

As can be seen in figure 2, the amplitudes of Zeeman EIT
increase with cell temperature, and this effect is particularly
strong for narrower laser beams.

The EIT amplitude dependence on overall laser beam
intensity measured at different temperatures, for wide and
narrow laser beams, is shown in figures 3(a) and (b),
respectively. As can be seen, the highest cell temperature
with the smaller laser beam diameter gives the strongest EIT
resonances. Higher temperatures mean larger atomic density
and number of atoms coherently prepared in the dark state. As
the laser beam diameter gets smaller, the contribution of wings

2



Phys. Scr. T157 (2013) 014019 S N Nikolić et al

Figure 3. Experimental dependences of EIT amplitudes on overall
light intensity for Gaussian laser beams of diameter (a) 6.5 mm
and (b) 1.3 mm at temperatures of 60, 75 and 82 ◦C.

of the Gaussian laser beam to two-photon type resonance like
EIT is enhanced.

In figure 4 the EIT linewidth as a function of laser
intensity at three different cell temperatures is shown for
two Gaussian laser beam diameters. The dependence of EIT
linewidths on laser intensity, for either wide or narrower laser
beams, is apparently independent of cell temperature. Such
behavior of Zeeman EIT with cell temperature is shown in the
pump–probe laser configuration in [10]. Ultra narrow Zeeman
EIT resonances with linewidths below 100 nT were achieved
because of careful elimination of stray magnetic fields inside
the triple antimagnetic shielding surrounding the Rb buffer
gas cell.

4. Summary

We carried out an experimental study of the behavior of EIT
resonances due to Zeeman coherences among sublevels of the
87Rb hyperfine state Fg = 2 in a Rb buffer gas cell of 8 cm
length, 25 mm diameter and 30 Torr of Ne buffer gas. The
dependence of EIT on laser beam diameter (6.5 and 1.3 mm),
laser intensity (0.1–35 mW cm−2) and Rb cell temperature
(60–82 ◦C) reveals that the highest contrast and amplitude to
linewidth ratios are obtained with the narrower laser beam at
about 5 mW cm−2.

Figure 4. Experimental dependences of EIT linewidth on overall
laser beam intensity for Gaussian laser beams of diameter
(a) 6.5 mm and (b) 1.3 mm at three different temperatures.
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64 1107–10

[5] Knappe S, Shah V, Schwindt P D, Holberg L, Kitching J,
Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 1460–2

[6] Fleischhauer M, Matsko A V and Scully M O 2000 Phys.
Rev. A 62 013808

[7] Dicke R H 1953 Phys. Rev. 89 472–3
[8] Erhard M and Helm H 2001 Phys. Rev. A 63 043813
[9] Sautenkov V A, Kash M M, Velichansky V L and Welch G R

1999 Laser Phys. 9 889–93
[10] Figueroa E, Vewinger F, Appel J and Lvovsky A L 2006 Opt.

Lett. 31 2625–7
[11] Deng J L, Hu Z F, He H J and Wang Y Z 2006 Chin. Phys.

Lett. 23 1745–8
[12] Li L, Peng X, Liu C, Guo H and Chen X 2004 J. Phys. B: At.

Mol. Opt. Phys. 37 1873–8

3

http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/PhysRevLett.86.783
http://dx.doi.org/10.1103/PhysRevLett.62.2813
http://dx.doi.org/10.1103/PhysRevLett.64.1107
http://dx.doi.org/10.1063/1.1787942
http://dx.doi.org/10.1103/PhysRevA.62.013808
http://dx.doi.org/10.1103/PhysRev.89.472
http://dx.doi.org/10.1103/PhysRevA.63.043813
http://dx.doi.org/10.1364/OL.31.002625
http://dx.doi.org/10.1088/0256-307X/23/7/025
http://dx.doi.org/10.1088/0953-4075/37/9/008


Phys. Scr. T157 (2013) 014019 S N Nikolić et al
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Abstract
We investigate the formation of dark-state polaritons in an ensemble of degenerate two-level
atoms admitting electromagnetically induced transparency. Using a generalization of
microscopic equation-of-motion technique, multiple collective polariton modes are identified
depending on the polarizations of two coupling fields. For each mode, the polariton dispersion
relation and composition are obtained in a closed form out of a matrix eigenvalue problem for
arbitrary control field strengths. We illustrate the algorithm by considering the
Fg = 2→ Fe = 1 transition of the D1 line in 87Rb atomic vapor. In addition, an application of
dark-state polaritons to the frequency and/or polarization conversion, using D1 and D2
transitions in cold Rb atoms, is given.

(Some figures may appear in colour only in the online journal)

1. Introduction

At the end of the past century, the novel mechanism of
electromagnetically induced transparency (EIT) [1, 2] and
its many important applications drew a lot of attention.
Nonlinearity of EIT media enables slow, stored and stationary
light [3–5]. Mazets and Matisov were the first to introduce
the concept of adiabatic Raman polaritons that represent
a mixture of photon and collective atomic excitations [6].
Subsequently, Fleischhauer and Lukin further extended
the concept to dark-state polaritons (DSPs) in a 3-type
EIT system [7]. They also developed a quantum memory
technique [8] in order to transfer quantum states of photon
wavepackets onto collective Raman excitations in a loss-free
and reversible manner. DSPs in more sophisticated schemes
have been studied, e.g. double-3 [9–11], dual-V [12],
inverted-Y [13], four-level [14], tripod [15], M-type [16],
cyclic three-level [17] and multi-3 [18, 19]. Collapses and
revivals of the DSP number in an atomic ensemble with
ground state degeneracy were found in [20]. Resonance
beating of light stored using spinor DSPs in a multilevel-
tripod scheme was investigated in [21]. Slow light propagation
in a degenerate two-level system was experimentally
investigated in [22]. DSPs in these various schemes may

find applications in quantum information processing, quantum
memory and quantum repeaters. Furthermore, degenerate
atomic systems, due to their inherent complexity, could lead
to new features of DSPs and building blocks for quantum
information and quantum computation.

Most of the works treat DSPs using the perturbative
approach to the field operator equations of motion, followed
by the adiabatic approximation, which was introduced by
Fleischhauer and Lukin. In addition, Zimmer et al [12] also
used the Morris–Shore transformation [23]. Alternatively,
Juzeliunas and Carmichael applied a Bogoliubov-type
transformation for exact diagonalization of the model
Hamiltonian [24]. Chong and Soljacic [9] elegantly derived
the properties of the DSPs in single- and double-3 systems
using the Sawada–Brout technique [25]. In this work, we
extend the Sawada–Brout–Chong technique to a degenerate
two-level system, having a ground state manifold g and an
excited state manifold e, that admits the appearance of EIT,
i.e. (multiple) dark states exist within g. We present a general
algorithm to identify multiple DSP modes that works for
an arbitrary number of degenerate states within manifolds g
and e and arbitrary polarizations of two coupling fields. The
approach is illustrated by finding DSPs at D1 line transition
Fg = 2 → Fe = 1 in atomic vapor of 87Rb. It is shown
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Figure 1. Schematic of a degenerate two-level system, having a
ground state manifold g and an excited state manifold e, driven by a
strong classical control field (thick line) of Rabi frequency � and by
a weak quantum probe field Ê (dashed line) of different
polarizations.

that depending on the polarizations of the coupling fields,
one or two DSP modes can be determined. In addition,
it is shown how DSP modes, originating from different
87Rb transitions, can be utilized for frequency and/or linear
polarization conversion.

2. Degenerate two-level system

In this section, we present a general formalism of dark-
state polaritons in a degenerate two-level system. It is a
generalization of the neat approach of [9]. We consider a gas
sample of N atoms, where N is large. Let us denote by Hg the
Hilbert space of the atomic states in the ground state manifold
g and let He be the Hilbert space of atomic excited states in
the manifold e. The corresponding ground- and excited-state
energies are denoted by h̄ωg and h̄ωe, respectively. A strong
classical control field of Rabi frequency � and a weak
quantum probe field Ê , which differ in polarizations and both
propagate along the z axis, couple the transition g→ e (see
figure 1). The corresponding raising and lowering operators of
the control (probe) field, V̂†

c and V̂c (V̂†
p and V̂p), connect the

states in manifold g to the states in manifold e and vice versa.
We assume that dim Hg ≥ dim He holds, so that the system
admits EIT [26]. This assures the existence of the Hilbert
space Hd

g of the states in manifold g that are dark to the g→ e
transition for the control field [27, 28]. Formally, we can view
the raising operator V̂†

c as a linear mapping V̂†
c : Hg → He.

The space Hd
g is then the null space of the mapping V̂†

c

Hd
g = {|g〉 ∈ Hg | V̂

†
c |g〉 = 0}. (1)

2.1. Model Hamiltonian

We will now present the model Hamiltonian and the dynamics
of the lowest energy excitations of the ensemble of degenerate
two-level atoms. The free atomic Hamiltonian has the form

Ĥat =
∑

r
(h̄ωgÎg(r)+ h̄ωeÎe(r)), (2)

where the summation index r counts the atomic positions,
while Îg and Îe are the projection operators onto the
states in the manifolds g and e, respectively. The free

photon Hamiltonian, including multiple quantum probe field
modes, is

Ĥph =
∑

k

h̄ωkâ†
k âk, (3)

where â†
k and âk are the creation and annihilation operators

of the probe photons with the wavevector k and frequency
ωk = c|k| ∼ ωeg ≡ ωe − ωg. The atom interaction with the
probe field is given through the minimal coupling Hamiltonian

Ĥp = −
∑

k

∑
r

h̄gkâk exp(ikr)V̂†
p (r)+ H.c. (4)

with coupling constant h̄gk =

√
h̄ωk

2ε0V dge, where dge is the
effective electric dipole moment of the g→ e transition, ε0 is
the vacuum permittivity and V is the quantization volume. The
interaction of the atomic ensemble with the classical control
field of the carrier frequency ωc ∼ ωeg and the wavevector kc
is of the form

Ĥc(t) = −
∑

r
h̄� exp[−i(ωct − kcr)]V̂†

c (r)+ H.c. (5)

For simplicity, we have used the rotating-wave approx-
imation. In addition, for an atomic operator Â(r) we define
a Fourier-transformed operator Â(k) =

∑
rÂ(r) exp(ikr)/

√
N.

Note that
(
Â(k)

)
†
= Â†(−k). Especially, one has

∑
rÂ(r) =

√
NÂ(k = 0). In terms of the Fourier-transformed operators,

various Hamiltonian parts are

Ĥat = h̄ωg
√

N Îg(k = 0)+ h̄ωe
√

N Îe(k = 0), (6a)

Ĥp = −
∑

k

h̄gk

√
N âkV̂†

p (k)+ H.c., (6b)

Ĥc(t) = −h̄�
√

Ne−iωctV̂†
c (kc)+ H.c. (6c)

The entire Hamiltonian of the ensemble of degenerate
two-level atoms interacting with the probe and the control
field is Ĥ(t) = Ĥat + Ĥph + Ĥp + Ĥc(t).

2.2. Dark-state polaritons

Now, we focus on the dark-state polaritons in an ensemble of
degenerate two-level atoms. Various features of the method
in [9], which are obvious per se in the case of a simple
3 system, need to be properly adapted to the degenerate
two-level system. The additional complexity of the system we
investigate also yields some new inherent requirements.

First of all, we remove the time dependence from the
Hamiltonian Ĥ(t) by performing the following unitary gauge
transformation:

ĤT = Ûc(t)Ĥ(t)Û
†
c (t)− h̄ωc

(
√

N Îe(k = 0)+
∑

k

â†
k âk

)
,

(7)

where

Ûc(t) = exp

[
iωct

(
√

N Îe(k = 0)+
∑

k

â†
k âk

)]
. (8)

2
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Eventually, we restate the time-dependent Schroedinger
equation ih̄∂t|φ(t)〉 = Ĥ(t)|φ(t)〉 as

ih̄ ∂t
[
Ûc(t)|φ(t)〉

]
= ĤT

[
Ûc(t)|φ(t)〉

]
. (9)

Solutions of (9) can be obtained by finding the energy
eigenstates of the time-independent Hamiltonian ĤT.

Assume that the atomic ensemble is initially prepared in
the collective vacuum state with no probe photons |g0, 0〉 =
|g0〉 ⊗ |0〉 ≡ ⊗r|g0〉r ⊗ |0〉. Analogously with the 3 system
case [8, 9], the atomic ground state |g0〉 must be dark with
respect to the control field, i.e.

V̂†
c |g0〉 = 0, or equivalently |g0〉 ∈ Hd

g. (10)

Additional requirements on the state |g0〉 will be specified
later.

Dark-state polaritons are particular low energy, single
probe photon driven, collective excitations that do not have a
contribution of the excited atomic states. To obtain DSPs, we
look for a polariton excitation operator φ̂†

k such that in the low

energy, single excitation case φ̂†
k |g0, 0〉 is an eigenstate of ĤT

with the energy h̄ω(k). This leads to the following relation:[
ĤT, φ̂

†
k

]
= h̄ω(k)φ̂†

k + · · · , (11)

where dots represent the terms that are omitted in the single
excitation case and also terms that give zero when acting on
the collective vacuum state |g0, 0〉. Note that, for notational
simplicity, we keep in mind that all subsequent commutators
always act on the state |g0, 0〉. In agreement with [8, 9], we
neglect Langevin noise effects, which do not influence the
adiabatic evolution of the DSPs.

Collective atomic excitations are driven by the probe
photons. Hence, we begin by calculating the commutator[

ĤT, â†
k

]
= h̄(ωk − ωc)â

†
k − h̄gk

√
N V̂†

p (k). (12)

The states that arise from the interaction with the probe field
are the pure photon excitation â†

k |g0, 0〉, and the collective

atomic excitation V̂†
p (k)|g0, 0〉, up to a normalization constant.

Hence, in addition to â†
k the operator V̂†

p (k) is also a member

of the polariton excitation operator φ̂†
k . Next, we determine the

commutation relation[
ĤT, V̂†

p (k)
]
= h̄(ωeg − ωc)V̂

†
p (k)− h̄�∗(V̂cV̂†

p )(k − kc)

−

∑
k′

h̄g∗k′ â
†
k′(V̂pV̂†

p )(k − k′). (13)

Note that
√

N
[
Â1(k), Â2(k′)

]
=
[
Â1, Â2

]
(k + k′) holds for

any two atomic operators Â1 and Â2. The new operators,
(V̂cV̂†

p )(k − kc) and â†
k′(V̂pV̂†

p )(k − k′), appearing in (13)
yield the collective states via stimulated emission. The former
can readily be included into the polariton excitation operator
φ̂

†
k . It creates the spatially dependent coherence among the

atomic ground states |g0〉 and V̂cV̂†
p |g0〉, i.e. the ground state

coherence wave. When we commute the latter operator with
ĤT, we get the operator â†

k′′(V̂pV̂†
p )(k − k′)(V̂pV̂†

p )(k′ − k′′).
The emergence of such operators of increasing complexity
continues and ends with â†

k(N)
∏N

i=1(V̂pV̂†
p )(k(i)−k(i−1)), where

k(0) = k. This case corresponds to a formidably complex DSP
mode that is not tractable. Tractable modes are obtained by
imposing one further requirement on the collective vacuum
state. Namely, it is crucial that upon action V̂pV̂†

p |g0〉 we end
up with the state |g0〉, i.e.,

V̂pV̂†
p |g0〉 = λp|g0〉, (14)

where λp > 0 is the corresponding eigenvalue. Thus, one
obtains (V̂pV̂†

p )(k − k′)|g0, 0〉 = λp
√

Nδk,k′ |g0, 0〉, so that the
relation (13) greatly simplifies to[
ĤT, V̂†

p (k)
]
= h̄(ωeg − ωc)V̂

†
p (k)− h̄�∗(V̂cV̂†

p )(k − kc)

− h̄g∗kλp
√

Nâ†
k . (15)

To proceed further, we define the excited atomic state
|e〉 = V̂†

p |g0〉/
√
λp associated with the action of the probe

field. Clearly, it has the property V̂p|e〉 =
√
λp|g0〉 and it is an

eigenstate of V̂†
p V̂p, i.e. V̂†

p V̂p|e〉 = λp|e〉. The eigenstates |g0〉

and |e〉 are ‘tuned’ to the polarization of the probe field. These
are so-called polarization-dressed states, first introduced and
used in [28, 29] for problems of interaction of resonant
elliptically polarized light with atomic and molecular energy
levels degenerate in angular momentum projections. Next, let
us consider the commutators[

ĤT, (V̂cV̂†
p )(k − kc)

]
= −h̄�(V̂†

c V̂cV̂†
p )(k), (16)

and also[
ĤT, (V̂

†
c V̂cV̂†

p )(k)
]
= h̄(ωeg − ωc)(V̂

†
c V̂cV̂†

p )(k)

− h̄�∗(V̂cV̂†
c V̂cV̂†

p )(k − kc)

−

∑
k′

h̄g∗k′ â
†
k′(V̂pV̂†

c V̂cV̂†
p )(k − k′).

(17)

Similar to the discussion of the relation (13), in order to avoid
the appearance of probe photons with all wavevectors, we
require that V̂pV̂†

c V̂cV̂†
p |g0〉 ∝ |g0〉. That can hold provided that

V̂†
c V̂cV̂†

p |g0〉 = λcV̂†
p |g0〉 i.e. V̂†

c V̂c|e〉 = λc|e〉, (18)

where λc > 0 is the corresponding eigenvalue. Thus, the
excited atomic state |e〉 is a common eigenstate of the
operators V̂†

p V̂p and V̂†
c V̂c. Under such a condition, the relation

(16) becomes[
ĤT, (V̂cV̂†

p )(k − kc)
]
= −h̄�λcV̂†

p (k), (19)

while (17) turns into[
ĤT, (V̂

†
c V̂cV̂†

p )(k)
]
= λc

[
ĤT, V̂†

p (k)
]
, (20)

where the last commutator is found in (15). Hence, under
the previous conditions no new components of the polariton
excitation operator φ̂†

k appear. Stimulated emission, which is
driven by the control field, transfers the atoms from the excited
state |e〉 into the ground state |f 〉 = V̂c|e〉/

√
λc. The states

|g0〉 and |e〉 are coupled by the probe field, while the states
|e〉 and |f 〉 are coupled by the control field. Thus, for each
eigenvalue pair (λp, λc) the three states |g0〉, |e〉 and |f 〉 form

3
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an independent 3 system that is related to one independent
collective DSP mode. The number of such 3 systems, i.e.
tractable DSP modes, can be at most equal to the total number
of DSP modes, i.e. to the dimensionality of the dark space Hd

g.
Now, we collect the necessary commutation relations[

ĤT, â†
k

]
= h̄(ωk − ωc)â

†
k − h̄gk

√
NV̂†

p (k), (21a)[
ĤT, V̂†

p (k)
]
= h̄(ωeg − ωc)V̂

†
p (k)− h̄g∗kλp

√
Nâ†

k

− h̄�∗(V̂cV̂†
p )(k − kc), (21b)[

ĤT, (V̂cV̂†
p )(k − kc)

]
= −h̄�λcV̂†

p (k), (21c)

so that the polariton excitation operator is of the form

φ̂
†
nk = αnkâ†

k + βnk
V̂†

p (k)√
λp
+ γnk

(V̂cV̂†
p )(k − kc)√
λpλc

, (22)

where the band index n enumerates the different polariton
species. Orthonormal collective excitations |g0, 1k〉, |e(k), 0〉
and |f (k − kc), 0〉 result from the action of the operators
â†

k, V̂†
p (k)/

√
λp and (V̂cV̂†

p )(k − kc)/
√
λpλc on the collective

vacuum state |g0, 0〉, respectively,

|g0, 1k〉 = ⊗
r
|g0〉r ⊗ |1k〉, (23a)

|e(k), 0〉 =
1
√

N

∑
r

eikr
|e〉r ⊗

r′ 6=r
|g0〉r′ ⊗ |0〉, (23b)

|f (k − kc), 0〉 =
1
√

N

∑
r

ei(k−kc)r|f 〉r ⊗
r′ 6=r
|g0〉r′ ⊗ |0〉. (23c)

Note that the collective states |e(k), 0〉 and |f (k − kc), 0〉 are
entangled. This enables the usage of the polariton state

|φnk〉 = αnk|g0, 1k〉 + βnk|e(k), 0〉 + γnk|f (k − kc), 0〉 (24)

as a resource for quantum information processing [2].
We determine the c-numbers αnk, βnk and γnk by inserting

(22) into (11) and make use of (21). This leads to three
self-consistency equations that we can represent in the basis
{|g0, 1k〉, |e(k), 0〉, |f (k − kc), 0〉} asωk − ωc − g̃∗k

√
N 0

−̃gk
√

N ωeg − ωc −�̃

0 −�̃∗ 0


αnk

βnk

γnk

 = ωn(k)

αnk

βnk

γnk

 , (25)

where g̃k = gk
√
λp and �̃ = �

√
λc. Our effective Hamil-

tonian in (25) is similar to the one in [9], but with a
major difference. The effective coupling constant g̃k and the
effective Rabi frequency �̃ differ from the corresponding one
in [9] because of the inclusion of the eigenvalues λp and λc.
The mentioned difference clearly arises as a consequence of
the degenerate two-level atomic system.

The dark-state polaritons are obtained as one of the
solutions of the eigenproblem (25). The other two solutions
are bright-state polaritons, similarly as in [9]. Exactly at
the Raman resonance, ωk = ωc, there is an eigenvector
∝
[
−

�̃

g̃k
√

N
, 0, 1

]
. This eigenvector has no contribution of

the excited atomic states and represents a stable dark-state
polariton that is insensitive to incoherent decay processes

acting on the excited atoms. Expansion around the resonance
ωk ∼ ωeg and ωc ∼ ωeg yields a linearized solution for the
dark-state polaritons

ω(k) =
|�̃|2

|̃gk|
2N + |�̃|2

(ωk − ωc), (26a)

αk = −
�̃

g̃k
√

N
γk, βk = −

�̃(ωk − ωc)

|̃gk|
2N + |�̃|2

γk. (26b)

An interesting property of the DSP solution is that it only
depends on the Raman detuning ωk − ωc of the coupling
fields and on the coupling parameters g̃k and �̃. It does
not depend on the energy spacing ωeg of the underlying
degenerate two-level system.

The algorithm for finding tractable DSP modes in a
degenerate two-level system can be summarized as:

(1) determine the dark space Hd
g for the operator V̂†

c ;

(2) find all states |g0〉 from Hd
g and pairs of eigenvalues

(λp, λc) such that V̂pV̂†
p |g0〉 = λp|g0〉 and V̂†

c V̂cV̂†
p |g0〉 =

λcV̂†
p |g0〉 hold;

(3) for every such pair of eigenvalues obtain DSPs
|ψk(λp, λc)〉 from (24) and (26).

3. Dark-state polaritons in rubidium vapor

In this section we apply the general formalism to the rubidium
vapor. Control and probe fields couple the hyperfine levels
5S1/2,Fg = 2 and 5P1/2, Fe = 1 of 87Rb. The atomic lowering
operators of the control and probe fields are, respectively,

V̂c = V̂ · ec, V̂p = V̂ · ep, (27)

where ec and ep are polarizations of the fields. The vector

operator V̂ is defined by [28, 30, 31]

V̂ = (−1)Fe+Jg+I+1
√
(2Fe + 1)(2Jg + 1)

{
Je Jg 1

Fg Fe I

}

×

1∑
q=−1

∑
mg,me

〈Fg,mg|Fe,me; 1, q〉|Fg,mg〉〈Fe,me|e∗q,

(28)

where I = 3/2 is the nuclear quantum number of 87Rb,
{: : :} is the Wigner 6j-symbol and 〈Fg,mg|Fe,me; 1, q〉 is
the Clebsch–Gordan coefficient that connects the excited
level state |Fe,me〉 to the ground level state |Fg,mg〉 via
polarization e∗q,

e
±1 = ∓

1
√

2
(ex ± i ey), e0 = ez, (29)

given in some orthonormal basis of polarization vectors. We
choose the coordinate system such that the fields propagate
along the z axis, and define a basis of Zeeman states relative
to this quantization axis. The bases of the individual Hilbert
spaces He and Hg are

E = {|1,−1〉e, |1, 0〉e, |1, 1〉e}, (30a)

G = {|2,−2〉g, |2,−1〉g, |2, 0〉g, |2, 1〉g, |2, 2〉g}. (30b)

4
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Figure 2. Zeeman sublevel scheme of the transition
Fg = 2→ Fe = 1 at the D1 line of 87Rb. Solid lines denote σ−

transitions coupled by the control field while dashed lines denote
σ+ transitions coupled by the probe field.

We will show that according to the appropriate choice of the
polarizations of the coupling fields, one or two DSP modes
can be obtained.

3.1. Case of orthogonal circular polarizations

Let the control field couple σ− transitions, while the probe
field couples σ+ transitions, i.e. ec = e

+1 and ep = e
−1 (see

figure 2). The lowering operators of the coupling fields, V̂c
and V̂p, are represented in the basis E ∪ G with the matrices

Vc =



03,3 03,5

0 0 0

0 0 0
1

2
√

3
0 0

0 1
2 0

0 0 1
√

2

05,5


, (31a)

Vp =



03,3 03,5
1
√

2
0 0

0 1
2 0

0 0 1
2
√

3
0 0 0

0 0 0

05,5


, (31b)

where zeros 0m,n denote rectangular m × n null matrices.
Ground level dark space determined from the null space of
V†

c is

Hd
g =

{
|2,−2〉g, |2,−1〉g

}
. (32)

Both dark states are appropriate as the initial state |g0〉. Below
we tabulate the corresponding states and eigenvalues of the 3
system:

|g0〉 |e〉 |f 〉 λp λc

I |2,−2〉g |1,−1〉e |2, 0〉g 1/2 1/12
II |2,−1〉g |1, 0〉e |2, 1〉g 1/4 1/4,

Figure 3. Zeeman sublevel scheme of the transition
Fg = 2→ Fe = 1 at the D1 line of 87Rb. Solid lines denote control
field linearly polarized along the y axis while dashed lines denote
probe field linearly polarized along the x axis.

that lead to two DSP modes:

ωI(k) =
|�|2

6 |gk|
2N + |�|2

(ωk − ωc), (33a)

|ψ I
k〉 ∝ −

�
√

6 gk
√

N
|gI

0, 1k〉 + |f I(k − kc), 0〉

−
2
√

3�(ωk − ωc)

6 |gk|
2N + |�|2

|eI(k), 0〉, (33b)

ωII(k) =
|�|2

|gk|
2N + |�|2

(ωk − ωc), (34a)

|ψ II
k 〉 ∝ −

�

gk
√

N
|gII

0 , 1k〉 + |f II(k − kc), 0〉

−
2�(ωk − ωc)

|gk|
2N + |�|2

|eII(k), 0〉. (34b)

We see that for orthogonal circular polarizations of the
coupling fields, the maximal number of tractable DSP modes
exists. This is the generic case, because relevant independent
3 system(s) can be easily recognized.

3.2. Case of orthogonal linear polarizations

Now we analyze the case of the control field polarization
along the y axis and the probe field polarization along the
x axis, i.e. ec = ey and ep = ex (see figure 3). The matrices

representing the atomic lowering operators V̂c and V̂p in the
basis E ∪ G are

Vc = i



03,3 03,5
1
2 0 0

0 1
2
√

2
0

1
2
√

6
0 1

2
√

6
0 1

2
√

2
0

0 0 1
2

05,5


, (35a)
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Vp =



03,3 03,5
1
2 0 0

0 1
2
√

2
0

−
1

2
√

6
0 1

2
√

6
0 −

1
2
√

2
0

0 0 −
1
2

05,5


. (35b)

In this case, the ground level dark space is

Hd
g =

{
−

1
√

2
|2,−1〉g +

1
√

2
|2, 1〉g,

1
√

8
|2,−2〉g −

√
3

2
|2, 0〉g +

1
√

8
|2, 2〉g,

}
, (36)

but only the first dark state satisfies all necessary conditions
for the vacuum state of the tractable mode. The states and
eigenvalues of the corresponding 3 system are

|g0〉 = −
1
√

2
|2,−1〉g +

1
√

2
|2, 1〉g,

|e〉 = |1, 0〉e,

|f 〉 =
1
√

2
|2,−1〉g +

1
√

2
|2, 1〉g,

λp = 1/4, λc = 1/4.

(37a)

We identify one DSP mode

ω(k) =
|�|2

|gk|
2N + |�|2

(ωk − ωc), (38a)

|ψk〉 ∝ −
�

gk
√

N
|g0, 1k〉 + |f (k − kc), 0〉

−
2�(ωk − ωc)

|gk|
2N + |�|2

|e(k), 0〉, (38b)

while the other one is non-tractable.
From the above examples, it can be seen that the choice of

the polarization of the coupling fields yields entirely different
DSP modes. This is reflected in the composition of the DSP
state as well as in the polariton dispersion relation. Note
that different polariton dispersion relations would lead to
distinct slow light group velocities. In section 4 we outline one
possible application of DSP modes in degenerate two-level
systems for frequency and/or linear polarization conversion.

4. Frequency and polarization conversion

Let us consider the DSP modes that can be formed from the
states within 5S1/2,Fg = 1 hyperfine level of 87Rb atoms,
when the control and the probe field have orthogonal linear
polarizations. There are three relevant atomic transitions:

(a) 5S1/2, Fg = 1→ 5P1/2, Fe = 1,

(b) 5S1/2, Fg = 1→ 5P3/2, Fe = 1,

(c) 5S1/2, Fg = 1→ 5P3/2, Fe = 0.

The first belongs to the D1 line. The last two belong to the D2
line and can be rendered non-overlapping by using ultracold
rubidium atoms.

In the case of orthogonal linear polarizations ec = ex and
ep = ey of the fields that are resonant to the D1 line transition
(a), we have

|g0〉 = −
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

|e〉 = |1, 0〉e,

|f 〉 =
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

λp = 1/12, λc = 1/12.

(39a)

When considering the D2 line transition (b) with the same
polarizations of the coupling fields as in the previous case,
ec = ex and ep = ey, we find

|g0〉 = −
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

|e〉 = |1, 0〉e,

|f 〉 =
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

λp = 5/24, λc = 5/24.

(40a)

Finally, for the swapped linear polarizations, ec = ey and
ep = ex, of the fields coupling the D2 line transition (c), we
have

|g0〉 = −
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

|e〉 = |0, 0〉e,

|f 〉 =
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

λp = 1/6, λc = 1/6.

(41a)

Note, if the polarizations of the fields had not been swapped,
the states |g0〉 and |f 〉 would have been interchanged.

As can be seen from (39) to (41), the DSP modes
are formed from the same states |g0〉 and |f 〉 in all three
cases, but the considered transitions and polarizations of the
coupling fields are different. This provides the possibility
for frequency [32, 18] and/or polarization conversion [33]
of linearly polarized light. First, one can store a pulse of
the probe light polarized along the y axis into the atomic
coherence among the states |g0〉 and |f 〉 using the transition
(a) and the control field polarized along the x axis. The
retrieval process, using the transition (b) and the control
field polarized along the x axis, would release the pulse at
a different frequency, but of the same optical quantum state
and polarization along the y axis as the original probe pulse.
However, the pulse retrieved using the transition (c) and the
control field polarized along the y axis would be in the same
optical quantum state as the original probe pulse, but of
different carrier frequency and linear polarization along the
x axis, i.e. orthogonal to the original one. Moreover, this
realization does not suffer from losses in the retrieved pulse,
since the ratios of the probe and control Clebsch–Gordan
coefficients are the same among all three transitions [33].
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5. Conclusion

To sum up, we have investigated the formation of dark-state
polaritons in an ensemble of degenerate two-level atoms
with ground state Hilbert space Hg and excited state
Hilbert space He, where dim Hg ≥ dim He holds. We
elaborated an algorithm, which is a generalization of the
Sawada–Brout–Chong approach [9, 25]. Under suitable
conditions, the polariton mode dispersion relation and
composition can be stated in a closed form. Such DSPs do
not depend on the energy spacing of the two-level system,
but rather on the Raman detuning of the coupling fields. For
each polariton mode, the effective field coupling parameters
depend on the appropriate eigenvalues of the atomic operators
V̂†

p V̂p and V̂†
c V̂c that determine the eigenproblem for the

polariton species. The application of the general procedure
is given for 87Rb atomic transition Fg = 2 → Fe = 1 of
the D1 line. Two cases of polarizations of the control and
probe field are analyzed, when the two fields have orthogonal
circular polarizations and when both are linearly polarized in
the orthogonal directions. In the former case, two DSP modes
are identified, while in the latter case, only one DSP mode
can be determined. The formation of the modes as well as
their dispersion relation critically depend on the polarizations
chosen. Possible application of DSP modes in ultracold 87Rb
atoms for frequency and/or linear polarization conversion
without losses in the retrieved pulse is presented. Our
algorithm can be extended to degenerate systems with more
levels and might have applications in quantum information
processing as a building block for a preparation and read out
schemes with the DSPs as qubit states.
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Abstract
Experimental and theoretical analyses show the effect of laser beam radial intensity
distribution on line-shapes and line-widths of the electromagnetically induced transparency
(EIT). We used Gaussian and � (flat top) laser beam profiles, coupling the D1 transition of
87Rb atoms in the vacuum cell in the Hanle experimental configuration. We obtained
non-Lorentzian EIT line-shapes for a Gaussian laser beam, while line-shapes for a � laser
beam profile are very well approximated with Lorentzian. EIT line-widths, lower for Gaussian
than for �, show nonlinear dependence on laser intensity for both laser beam profiles. EIT
amplitudes have similar values and dependence on laser intensity for both laser beams,
showing the maximum at around 0.8 mW cm−2. Differences between the EIT line-shapes for
the two profiles are mainly due to distinct physical processes governing atomic evolution in the
rim of the laser beam, as suggested from the EIT obtained from the various segments of the
laser beam cross-section.
(Some figures may appear in colour only in the online journal)

1. Introduction

Electromagnetically induced transparency (EIT) [1–3], an
effect causing the narrow coherent resonance in a laser
transmission through the atomic vapour media, is essential for
subjects like slow light and storage of light [4], lasing without
inversion [5], frequency mixing [6], Kerr nonlinearities [7], etc.
The importance of EIT has become evident after several recent
applications, including the development of atomic frequency
standards [8, 9] and magnetometers [10, 11]. Prior to EIT,
magneto-optical effects, like the ground-state Hanle effect
and nonlinear Faraday effect, were studied and their possible
application in extremely low magnetic field measurements was
shown [12–15]. EIT resonance line-shape and line-width are
of interest for many EIT applications. EIT line-shape in alkali
vapours contained in gas cells is altered from the fundamental
Lorentzian shape of atomic resonances by several factors. In

addition to power broadening, thermal motion of atoms in
vacuum cells affects the shape of EIT resonance through a
transient evolution of the state of the atoms passing through
the laser beam [16–18]. The investigation of the temporal
evolution of the optical pumping into a dark state in an atomic
beam, with special attention given to the influence of the weak
external magnetic field, has been performed in [19]. Studies
of EIT dependence on laser beam radius [20], laser intensity
[21, 22] and radial profile of the laser intensity [16, 23–26]
were performed. Recent experiments have shown effects of
different laser modes i.e. a Laguerre–Gaussian laser beam gave
narrower EIT than a Gaussian laser beam [27]. In buffer gas
cells, filled with a mixture of alkali atoms and inert gas at
several Torr, EIT line-shapes are influenced by diffusion of
the alkali atoms in and out of a laser beam. Such repeated
interaction effectively enables Ramsey-induced narrowing
and non-Lorentzian EIT line-shape in media where Doppler

0953-4075/13/175501+08$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-4075/46/17/175501
mailto:krmpot@ipb.ac.rs
http://stacks.iop.org/JPhysB/46/175501


J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 175501 S M Ćuk et al

Figure 1. (a) Experimental setup: ECDL—external cavity diode laser; DDAVLL—Doppler-free dichroic atomic vapour laser lock;
SMF—single-mode fiber; P—polarizer; BE—beam expander; PD—large area photo diode. For certain measurements the small aperture on
the translation stage is placed in the laser beam allowing only a selected part of the laser beam cross-section to reach the detector, while the
rest of the laser beam is blocked. �-shaped beam profiles were recorded by a beam profiler placed at 3 cm (b) and 30 cm (c) from the 3 mm
circular aperture. (b) The dashed (red) curve is the profile of the Gaussian laser beam of the same power and diameter as the �-shaped
beam. Note that, in order to have the same overall power of the two laser beams, the peak of the Gaussian beam in the present graph has to
have double the value of the flat region of the �-shaped beam if the diameter of the Gaussian beam is measured at 1/e2 of the peak intensity.

broadening is not influential (see [28, 29] and references
therein).

Theoretical studies of EIT line-shapes in vacuum cells
were mainly carried out assuming a � (flat top) function
for the radial intensity distribution of the laser radiation (see
[21] and references therein). Measurements of the EIT line-
width as a function of the laser intensity [22], performed with
the Gaussian laser beam, show different EIT behaviour with
laser intensity than theory [21]— theory predicts wider EIT
resonances than experiment, with the discrepancy increasing
with the laser intensity. The importance of the laser beam
profile on the EIT was indeed demonstrated theoretically for
the vacuum [26] and the buffer gas cells [23–25]. Our previous
studies have shown that the evolution of the states of the atoms
passing through laser beams of different profiles is governed by
distinct physical processes [17, 18]. Consequently, line-shapes
of EIT resonances obtained from various segments of the laser
beam cross-section reflect these differences. It is expected that
line-shapes of EIT resonances obtained by detecting whole
laser beams of different profiles should also present distinct
properties. However, there are no detailed investigations of this
kind for vacuum alkali-metal vapour cells. In this work we
confirm that the mentioned difference in physical processes
significantly affects the overall EIT resonance line-shapes.
Besides the results of [17, 18], here we take into account
relative amplitudes of EIT resonances from various segments
of the laser beam cross-section. The goal of this work is to
show how laser intensity affects: (a) differences between the
whole beam EIT resonances that are obtained using two laser
profiles, (b) contribution of EIT resonances from different parts
of the laser beam cross-section to the whole beam EIT and

(c) necessity of using a realistic laser beam profile in
calculations for proper modelling of experimental results.

The present study is concerned with the radial intensity
distribution effects of the laser beam on Zeeman EIT line-
shapes in 87Rb contained in a vacuum cell. The study was
performed using the Hanle technique. EIT resonances are due
to Zeeman coherences developed in the Fg = 2 hyperfine
level of 87Rb by using resonant laser light that couples
the Fg = 2 level to the excited hyperfine level Fe = 1.
We have investigated the dependence of the EIT line-widths
and amplitudes on the laser beam profile for a wide range
of laser intensities, 0.1–4 mW cm−2. Experimental results
are compared with the results of the theoretical model that
calculates the density matrix elements by taking into account
all of the Rb atomic levels (with Zeeman sublevels) that are
resonantly coupled by the laser light.

2. Experiment

The Zeeman EIT experiment employs a single laser whose
radiation frequency and polarization are stable and well
controlled. Essential for Zeeman EIT measurements is the
elimination of laboratory stray magnetic fields, and creation
of a variable, homogeneous magnetic field over the entire
volume of the Rb cell, directed along the axis of the cell.
For the present studies, a careful control of the laser diameter
and radial distribution of laser radiation is also necessary. A
schematic of the experiment is given in figure 1. We used
the extended cavity diode laser whose frequency is stabilized
to the Fg = 2 → Fe = 1 transition of the D1 line in
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Figure 2. Zeeman sublevels scheme in 87Rb at the D1 line. The solid
lines denote coupling with σ+ and σ− components of the linearly
polarized laser light. Dashed lines represent spontaneous emission.

87Rb, where Fg and Fe represent the angular momenta of the
ground- and excited-state hyperfine levels, respectively. The
stabilization scheme is based on the Doppler-free dichroic
atomic vapour laser locktechnique [30, 31]. The laser beam is
linearly polarized.

The laser beam with Gaussian radial intensity dependence,
and 3 mm diameter (measured at 1/e2 of the peak intensity),
is obtained by the single-mode optical fibre, beam collimator
and beam expander. For the � distribution of the laser beam
intensity along its radius, the laser beam behind the fibre is first
expanded to about 20 mm, and then the circular diaphragm of
3 mm in diameter is placed over the central part of the laser
beam. We used thin foil with a 3 mm hole to obtain the �

profile of laser radiation over the entire length of the Rb cell.
The laser beam profile, measured with the commercial beam
profilometer, which we consider as the � radial profile, is
given in figures 1(b) and (c), at different distances from the
aperture (3 and 30 cm, respectively). In the experiment, this
aperture is at the entrance cell window. Laser beam intensity
is controlled by the variable neutral density filter. The vacuum
Rb vapour cell is 5 cm long and 25 mm in diameter, and is
held at room temperature.

The solenoid surrounding the Rb cell produces the
magnetic field for the Hanle experiment in the range of
±100 μT. In order to minimize the stray magnetic fields in the
interaction volume, the solenoid and cell are placed inside the
triple layered μ-metal. Intensity of the transmitted laser light,
as a function of the magnetic field, is detected by the large
area photo diode and recorded by the storage oscilloscope.
With the small aperture (0.5 mm in diameter) placed in front
of the photo diode (with 10 mm in diameter), which we can
move along the laser diameter, we were able to obtain EIT
resonances only from a small cylindrical segment of the well
collimated laser beam.

3. Theoretical model

Zeeman EIT resonances were calculated for the D1 line
transition between hyperfine levels of 87Rb coupled by a
linearly polarized laser. The energy level diagram given in
figure 2 shows hyperfine levels either coupled to the laser light
or populated due to spontaneous emission. The quantization
axis is chosen to be parallel to the external magnetic field. The
complete magnetic sublevels structure of the transition Fg =
2 → Fe = 1 is considered in the calculations. The theoretical
model is based on time-dependent optical Bloch equations for

the density matrix of a moving atom assuming purely radiative
relaxation. Equations for density matrix elements related to
the ground level Fg = 1 are excluded since that level is not
coupled by the laser. For additional details about the resulting
equations please refer to [18, 26]. It is assumed that after
colliding with cell walls, atoms reset into an internal state
with equally populated ground magnetic sublevels. Between
collisions with cell walls, rubidium atoms interact only with
the axially oriented homogeneous magnetic field and spatially
dependent laser electric field. Collisions among Rb atoms
are negligible due to very low Rb vapour pressure at room
temperature, so that an atom moves through the laser beam
with constant velocity v = v‖ + v⊥, where v‖ and v⊥ are
longitudinal and transverse velocity components, respectively,
with regard to the laser propagation direction. The former
affects the longitudinal direction of the atomic trajectory and
Doppler shift of the laser frequency seen by a moving atom,
while the latter determines the transverse direction of the
trajectory and the interaction time. The dependence of the
laser intensity on the radial distance r for a Gaussian and
�-shaped profile were modelled using the following equations

IGauss(r) = 2Ī exp
(−2 r2/r2

0
)
,

I�(r) = Īa(1 + erf(p(r0 − r)))2 (1)

where r0 is the beam radius, Ī is the beam intensity (total laser
power divided by r2

0π ), a is the normalization constant and p is
a positive parameter affecting the steepness of the profile near
r = r0. In our calculations we neglect longitudinal changes
of the beam profile compared to transverse ones so that only
the transverse direction of the trajectory matters. From the
reference frame of the moving atom, the electric field varies
and the rate of variation depends only on v⊥. Assume that
the transverse projection of the atomic trajectory is given by
r⊥(t) = r0⊥ + v⊥t, where r0⊥ is the perpendicular component
of the atom position vector at t = 0. The temporal variation of
the laser intensity seen by the atom is given by

I(t) ≡ I(r⊥(t)) = I(r0⊥ + v⊥t), (2)

representing the spatial laser intensity variation along the
trajectory of the atom in the laboratory frame. Additionally,
due to the cylindrical symmetry of the beam profile, spatial
dependence becomes purely radial dependence.

The observed resonances in EIT experiments are a
probabilistic average of the contributions of many individual,
mutually non-interacting atoms. Rb atoms traverse the
laser beam at different trajectories with different velocities.
Maxwell–Boltzmann velocity distribution, diversity of atomic
trajectories, the custom cylindrical symmetric radial profile
of the laser electric field, effects of the laser propagation along
the cell and induced atomic polarization of the Rb vapour are
treated similarly as in [18, 26]. The cell temperature was set
to room temperature as in the experiment.

4. Results and discussion

In this section we compare EIT resonances obtained with
two laser beam profiles in vacuum Rb gas cells. Previous
comparisons between the EIT resonances obtained with
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(a) (b)

Figure 3. (a) Experimental and (b) theoretical Zeeman EIT resonances obtained by Gaussian and � laser beam profiles. Laser intensity is
4 mW cm−2 and the laser beam diameter is 3 mm for both profiles.

(a) (b)

(c) (d)

Figure 4. Experimental Zeeman EIT resonances and their Lorentzian fits for the (a) Gaussian and (b) � laser beam profile. The resonances
are obtained under the same conditions like in figure 3(a). Insets show the resonances in the vicinity of their peaks. Residuals, obtained as
the difference between the raw data and the corresponding fit, for Gaussian and � profiles are given in (c) and (d), respectively.

Gaussian and � laser beam profiles were performed for alkali
atoms in buffer gas cells [23–25]. It was calculated, assuming
motionless atoms, that EIT line-shapes obtained with a � laser
beam profile are pure Lorentzian. It was also found that the
resonances line-shapes are narrower for the Gaussian than for
the � laser beam profile [25]. On the other hand, analysis of
the effects of the laser beam shape on EIT in vacuum Rb cells
was treated only theoretically [26].

Our EIT resonances were obtained by measuring and
calculating the laser transmission as a function of the
scanning longitudinal magnetic field, for the Gaussian and
the � laser radial profiles, and for the laser intensity range
0.1–4 mW cm−2. The laser is locked to the Fg = 2 → Fe = 1
transition of the 87Rb D1 line. Figure 3 shows measured

and calculated resonances for two laser profiles at the laser
intensity of 4 mW cm−2. The EIT line-widths and amplitudes,
shown and discussed below, were extracted from resonances
like these in figure 3, normalized at their maximum values.
As seen in figure 3, EIT resonance obtained with the Gaussian
laser beam is narrower than the one obtained with the � laser
beam.

If the relaxation of atomic coherences is determined by the
radiative decay or by atomic collisions, the line-shapes of the
magneto-optical resonances are Lorentzian [16, 23–25, 32].
Experimental resonances and their Lorentzian fits, for the
two laser beam profiles, are given in figures 4(a) and (b).
It is apparent from these figures, and from residuals between
the data and the fits, given in figures 4(c) and (d), that the
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(a) (b)

Figure 5. Intensity dependence of (a) experimental and
(b) theoretical line-widths of Zeeman EIT resonances for Gaussian
and � laser beam profiles. The beam diameter is 3 mm in both
cases. The curves are to guide the eye.

Lorentzian function can better fit the resonance with the �

laser beam profile than with the Gaussian profile. This is
particularly the case in the vicinity of a resonance peak, as
shown in the insets of figures 4(a) and (b). Corresponding
R-square factors, representing the fit goodness, are RGauss =
0.998 71 and R� = 0.999 341. These differences between the
two profiles remain for all laser intensities.

Figure 4 shows that in an effusive regime of the vacuum
cell, the Gaussian laser beam profile gives the EIT line-shape
that is narrower in the vicinity of the resonance peak than pure
Lorentzian. This is in accordance with the previous results [16]
and could be attributed to the time of flight and Ramsey-like
narrowing during the free atomic passage through the Gaussian
laser beam [17]. In buffer gas cells and diffusive regimes, non-
Lorentzian shape (similar to figure 4(a)) is also observed due
to the Ramsey effect. However, in buffer gas cells, the Ramsey
type narrowing occurs because coherently prepared atoms,
after leaving the laser beam and spending time outside of the
beam, come back into the laser beam [28]. Line-shapes of
the EIT resonances obtained with the � laser beam profile
are Lorentzian. In the case of the � laser beam profile, laser
intensity is constant during the atomic passage through the

beam and there is no Ramsey-like narrowing like in the case
of the Gaussian beam [17]. In figure 5 we present variations of
EIT line-widths with the laser intensity for the two laser beam
profiles. As the laser intensity increases the difference between
the corresponding EIT line-widths also increases. Theoretical
results show very good agreement with the experiment, both
qualitatively and quantitatively. For the entire range of laser
intensities EIT line-width increases nonlinearly with intensity,
but the slope decreases at higher laser powers. This increase in
line-width is due to power broadening. For the range of laser
intensities as in this work, analytical results, based on the three-
level atomic system, predicted square root dependence on laser
intensity [21]. What we have observed in the vacuum gas cell
is different from line-width dependence on laser intensity in
buffer gas cells where the linear dependence of line-width on
the laser intensity is reported [25, 33–35].

Without entering into details of the atom–laser interaction
for particular laser beam profile, one can give a qualitative
argument as to why a �-shaped laser beam yields broader
resonances than the Gaussian laser beam. In vacuum cells
Rb atoms traverse a laser beam without collisions and along
straight lines. During the transit through the laser beam, the
atomic state is influenced by both the laser electric field and
the external magnetic field. The laser electric field prepares the
atoms into a dark state determined by the laser polarization.
In such a state, absorption probability of the laser light is
minimal—a manifestation of EIT. The external magnetic field
introduces oscillations of the atomic Zeeman ground-state
coherences at the corresponding Larmor frequencies, and also
degrades the dark state. At low laser intensities, the influence
of the magnetic field is more significant, and the dark atomic
state degrades more easily. The omnichanging electric field of
the Gaussian laser beam decreases the robustness of the dark
state with respect to the external magnetic field. If the dark
state is more robust, the transmission decreases more slowly
with the magnetic field. Therefore, greater robustness of the
EIT with respect to the external magnetic field requires a larger
magnetic field to halve the peak transmission and hence yields
larger EIT line-widths for the �-shaped beam than for the
Gaussian beam.

Differences in robustness of dark atomic states for the
two beam profiles are illustrated in figure 6. We present

(a) (b)

Figure 6. Integrated fluorescence along the atomic trajectory during the atomic passage through (a) Gaussian and (b) � laser beam at
different magnetic fields (given by numbers below each curve). Laser intensity is 4 mW cm−2 and radial atomic velocity 180 m s−1.
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(a) (b)

Figure 7. Experimental EIT obtained from only a small circular portion (0.5 mm in diameter) of the laser beam transmitted through the
Rb cell when this portion is (a) on the beam axis (r = 0.0 mm) and (b) near the beam edge (r = 1.5 mm).

fluorescence calculated from the total population of excited
Zeeman sublevels of the Fe = 1 hyperfine level, integrated
along the atomic trajectory that passes through the beam centre,
for several values of the external magnetic field. We assume
that atom enters the laser beam from the left side with a radial
atomic velocity of 180 m s−1, which is the most probable in
room temperature Rb vapour. From the curves corresponding
to the same magnetic fields, it is apparent that the integrated
atomic fluorescence, at the exit of an atom from the laser
beam, has increased more for the Gaussian profile than for the
� profile.

In figure 7 we show the EIT obtained by detecting
only a portion of the laser beam, defined by (movable)
aperture placed in front of the large area photo diode (see
section 2 for details). This aperture is centred on the beam axis
(r = 0.0 mm) for the resonances in figure 7(a), and is near
the beam edge (r = 1.5 mm) for data in figure 7(b). The EIT
resonances obtained near the centre of the laser beam are very
similar for two laser beam profiles. A large difference exists
between EIT measured with the aperture near the beam edges
of these two beam profiles. The Gaussian laser beam produces
much narrower Zeeman EIT resonances near its edge than the
�-shaped beam.

Further understanding of what causes different EIT line-
widths with two laser beam profiles can be obtained from
measurements and calculations of EIT amplitudes at various
distances from the beam axis, presented in figures 8(a)–(d).
Results are given for two laser beam profiles and for two laser
intensities. Amplitudes of EIT resonances are increasing with
the distance from the beam axis for both beam profiles, which
is more pronounced at higher laser intensities. Amplitudes are
the highest in the beam segments that have a high geometrical
contribution to the total laser beam cross-section. As seen in
figure 7, these are also the segments where the resonances for
the Gaussian beam are much narrower than for the � beam
profile. Thus, the results of figures 7 and 8 show that the outer
parts of the laser beam cross-section are primarily responsible
for the observed differences between EIT line-widths obtained
with the two laser beam profiles. Physical mechanisms leading
to such differences are explained in detail in [17, 18].

Next, we show the behaviour of the EIT amplitudes
obtained with the entire Gaussian and � laser beams. In

(a) (b)

(c) (d)

Figure 8. Experimental (a) and (c), and theoretical (b) and (d)
amplitudes of the Zeeman EIT resonances obtained at different
positions of small aperture along the laser beam radius for the two
laser beam profiles.

figure 9 we present measured and calculated EIT amplitudes
as a function of the laser intensity. As seen in figure 9, there are
no essential differences between EIT amplitudes obtained with
the two laser beams. At lower intensities EIT amplitudes show
a steep, nearly linear increase with intensity, like in buffer gas
cells [36]. The decrease in EIT amplitudes above ∼1 mW cm−2

is caused by the increase of the population loss due to optical
pumping to the Fg = 1 hyperfine level of the Rb ground state,
which is not coupled by the laser. Indeed, when the re-pumper
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(a) (b)

Figure 9. Experimental (solid lines) and theoretical (dashed lines) intensity dependence of Zeeman EIT amplitudes for Gaussian (a) and �
laser beam profile (b). The curves are to guide the eye.

is used to bring the population back to Fg = 2 as in [37], the
contrast of the amplitudes increases considerably. Figures 9(a)
and (b) also show good agreement between experiment and
theory.

5. Conclusion

We have demonstrated substantial differences between
Zeeman EIT line-shapes and line-widths obtained using two
laser radial intensity profiles: Gaussian profile—frequently
used in experiments, and �-shaped laser radial distribution—
common in theoretical calculations. Our work is concerned
with the effects of these two laser radial profiles on EIT,
generated in the Hanle configuration by laser coupling
Fg = 2 → Fe = 1 hyperfine levels in 87Rb atoms in
vacuum gas cells. We have shown theoretically and confirmed
experimentally the different line-shapes of EIT resonances:
those obtained with � laser beam are very well approximated
with Lorentzian, while the Gaussian laser beam profile gives
non-Lorentzian Zeeman EIT resonances. EIT resonances are
wider for the � laser beam than for the Gaussian laser beam
profile and this difference becomes larger as the laser intensity
increases. The study is performed for laser intensities up to
4 mW cm−2. We have shown that major differences in line-
widths between two laser profiles are in the regions near the rim
of the laser beams. The differences in line-shapes are attributed
to different physical processes that Rb atoms undergo during
the interaction with the two laser beam profiles. In the wings of
the Gaussian laser beam, a Ramsey-like effect can reshape EIT
resonances with respect to those near the laser beam centre, as
shown in [16, 17]. For the � profile, optical pumping to the
uncoupled ground level dominantly influences the line-shape
[18]. The theory demonstrates that the atomic dark state is
more sensitive to magnetic field when the atoms are traversing
the Gaussian laser beam than when passing through a constant
intensity field of the � laser beam. Larger sensitivity of the
atomic dark state to magnetic field variation implies narrower
Zeeman EIT line-shapes. The increase of EIT line-widths
with the laser intensity is square-root-like for both profiles.
Amplitudes of the EIT increase linearly for a laser intensity

up to 0.8 mW cm−2 for both profiles and decrease at higher
intensities due to pumping to the Fg = 1 hyperfine level of
87Rb. Observed dependence of line-widths and amplitudes of
the EIT with the laser intensity in vacuum gas cells is different
from previous results in buffer gas cells.
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